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ARCHIMEDES

Hand-painted Photogravure from the Painting by Niccolo Barabino

The most important services of Archimedes were rendered to pure Geometry,
but his popular fame rests chiefly on his application of mathematical theory
to mechanics. He invented the water-screw and discovered the principle of the
lever. Conerning the latter the famous saying is attributed to him :

" Give
me where 1 may stand and I will move the world." He first established the
truth that a body plunged in a fluid loses as much of its weight as is

equal to the weight of an equal volume of fluid. This is known as the
"
Principle of Archimedes,'" and is one of the most important discoveries in the

science of Hydrostatics. It was by this law that he determined how much
alloy the goldsmith, whom King Hiero had commissioned to make a crown of

pure gold, had fraudulently mixed with the metal. The solution of the

problem suggested itself to Archimedes as he was entering the bath, and he
is reported to have been so overjoyed that he ran through the streets without

waiting to dress, exclaiming, "Eureka! Eureka!" (I have found it!). He was
killed at the age of seventy-five, during the capture of Syracuse by Marcellus
in 287 B.C. The original painting of Archimedes by Niccolo Barabino is in

the Orsini palace, Genoa.
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MENTAL EDUCATION OF A GREEK YOUTH

Photogravure from the Painting by Otto Knille

Greek youths were carefully trained by educators who gave equal attention

to the physical and the mental needs of their charges, severity of ordeal being
characteristic of both. The picture opposite is a reproduction of a section of

a frieze painted by Knille for the library of the Berlin University, in which

by a series of four pictures the artist very admirably depicted the prime
features that distinguished the process of Greek education.
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THERE are many departments of inquiry whose scope is so well

defined by the consensus of experts that one may proceed, almost

without preliminary, to mark off the boundaries of one science from

other departments, to investigate the relations in which it stands

to them, and to exhibit the place which each occupies in the whole

scheme of human knowledge. In other departments opinion differs

not only regarding special problems and results, but concerning the

whole nature of the science and its relation to connected subjects.

The study of ethics still belongs to this latter group. In it there is no

consensus of experts. Competent scholars hold diametrically opposed
views as to its scope. They differ not merely in the answers they

give to ethical questions, but in their views as to what the fundamen-

tal question of ethics is. And this opposition of opinion as to its

nature is connected with a difference of view regarding the relation

of ethics to the sciences. By many investigators it is set in line

with the sciences of biology, psychology, and sociology; and its

problems are formulated and discussed by the application of the same

historical method as those sciences employ. On the other hand, it is

maintained that ethics implies and requires a concept so different

from the concepts used by the historical and natural sciences as to

give its problem an altogether distinct character and to indicate
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for it a far more significant position in the whole scheme of human

thought.
The question of the relation of ethics to the sciences implies a view

of the nature of ethics itself and, in particular, of the fundamental

concept used in ethical judgments. If the nature of this concept and

its relation to the concepts employed in other branches of inquiry

can be determined, the relations of ethics will become clear of them-

selves. The problem of this paper will receive its most adequate
solution so far as the time at my disposal permits by an in-

dependent inquiry into the nature of the ethical concept in relation

to the concepts used in other sciences.

The immediate judgments of experience fall into two broadly

contrasted classes, which may be described in brief as judgments
of fact and judgments of worth. The former are the foundations

on which the whole edifice of science (as the term is commonly used)

is built. Science has no other object than to understand the relations

of facts as exhibited in historical sequence, in causal interconnection,

or in the logical interdependence which may be discovered amongst
their various aspects. In its beginnings it may have arisen as an aid

to the attainment of practical purposes: it is still everywhere yoked
to the chariot of man's desires and aims. But it has for long
vindicated an independent position for itself. It may be turned to

what uses you will; but its essential spirit stands aloof from these

uses. .It has one interest only, to know what happens and how.

Otherwise it is indifferent to all purposes alike. It studies with

equal mind the slow growth of a plant or the swift destruction

wrought by the torpedo, the reign of a Caligula or of a Victoria; it

takes no side, but observes and describes all "just as if the question
were of lines, planes, and solids." Mathematical method does not

limit its range, but it typifies its attitude of indifference to every
interest save one, that of knowing the what and how of things.

We can conceive an intelligence of this nature, a pure intelligence,

or mere intelligence, to whose understanding all the relations of

things are evident, with the prophetic power of the Laplacian Demon
and the gift of tongues to make its knowledge clear, and yet unable to

distinguish between good and evil or to see beauty or ugliness in

nature. We can cor reive such an intelligence; but it is an unreality,

a mere abstraction from the scientific aspect of human intelligence.

Pure intelligence of this sort does not exist in man, and we have no

grounds for asserting its existence anywhere. In the experience
which forms the basis of mental life, judgments of reality are every-
where combined with and colored by judgments of worth. And the

latter are as insistent as the former, and make up as large a part of

our experience. If we go back to the original judgments of experi-

ence, we find that they are not only of the form "it is here or there,"
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"it is of this nature or that," "it has such and such effects;" just

as a large part of our experience is of another order which may be

expressed in judgments of the form "it is good or evil," "it is fair or

foul."

Nor does the way in which scientific judgments are elaborated

give any rationale of the distinction between good and evil. If we
ask of science "What is good?" it can give no relevant answer to the

question. Strictly speaking, it does not understand the meaning of

the question at all. The ball has gone out of bounds; and science can-

not touch it until it has been thrown back into the field. It can say
what is, and what will happen, and it can describe the methods or

laws by which things come to pass; that is all; it has only one law

for the just and the unjust.

But science is very resourceful, and is able to deal with judgments
of worth from its own point of view. For these judgments also are

facts of individual experience: they are formed by human minds

under certain conditions, betray certain relations to the judgments
of fact with which they are associated, and are connected with an

environment of social institutions and physical conditions of life:

they have a history therefore. And in these respects they become

part of the material for science: and a description of them can be

given by psychological and historical methods.

The general nature and results of the application of these methods

to ethics are too well known to need further comment, too well estab-

lished to require defense. But these results may be exaggerated and

have been exaggerated. When all has been said and done that the

historical method can say and do, the question "What is good?"
is found to remain exactly where it was. We may have learned much
as to the way in which certain kinds of conduct in certain circum-

stances promote certain ends, and as to the gradual changes which

men's ideas about good and evil, virtue and vice, have passed through;
but we have not touched the fundamental question which ethics has

to face the question of the nature of worth or goodness or duty.
And yet it is this question only which gives significance to the

problems on which historical evolution has been able to throw light.

Moral ideas and moral institutions have all along been effective

factors in human development, as well as the subject of development
themselves. And the secret of their power has lain in this that men
have believed in those ideas as expressing a moral imperative or a

moral end, and that they have looked upon moral institutions as

embodiments of something which has worth for man or a moral

claim upon his devotion. These ideas and institutions would have

had no power apart from this belief in their validity.

But was this belief true? Were the ideas or institutions valid?

This question the man of science, as sociologist or historian, does not
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answer and has no means of answering. He can show their adapta-

tion or want of adaptation to certain ends, but he can say nothing

about the validity of these ends themselves. It is implied in their

efficiency that these ends were conceived as having moral value or

moral authority. But to what ends does this moral value or authority

truly belong? and what is its significance? these are questions

which the positive sciences (such as psychology and sociology) can-

not touch and which must be answered by other methods than those

which they employ.
The moral concept is expressed in various ways and by a variety

of terms, right, duty, merit, virtue, goodness, worth. And these

different terms indicate different aspects opened up by a single new

point of view. Thus "
right

" seems to imply correspondence with a

standard or rule, which standard or rule is some moral law or ideal

of goodness; and "merit" indicates performance of the right,

perhaps in victory over some conflicting desire; and "virtue" means

a trait of character in which performance of this sort has become

habitual. The term "worth" has conveniences which have led to

its having considerable vogue in ethical treatises since the time of

Herbart; it lends itself easily to psychological manipulation; but

it does not seem to refer to a concept fundamentally distinct from

goodness. But between "goodness" and "duty" there seems to be

this difference at any rate, that the latter term refers definitely to

something to be done by a voluntary agent, whereas, in calling some-

thing "good," we may have no thought of action at all, but only
see and name a quality.

There lies here therefore a difference which is not a mere difference

of expression.

On the one hand it may be held that good is a quality which be-

longs to certain things and has no special and immediate reference

to volition: that we say this or that is good as we say that some-

thing else is heavy or green or positively electrified. No relation to

human life at all may be implied in the one form of judgment any
more than in the other. That relation will only follow by way of

application to circumstances. Just as a piece of lead may serve as

a letter-weight because it is heavy, so certain actions may come to

be our duty because they lead to the realization of something which

is objectively good in quality.

According to the other view goodness has reference in its primary

meaning to free self-conscious agency. The good is that which

ought to be brought into existence: goodness is a quality of things,

but only in a derivative regard because these things are produced

by a good will. It is objective, too, inasmuch as it unites the individual

will with a law or ideal which has a claim upon the will; but it does

not in its primary meaning indicate something out of relation to the
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will: if there were no will there would be no law; apart from con-

scious agency good and evil would disappear.

The question thus raised is one of real and fundamental import-
ance.

" Ethics " by its very name may seem to have primary refer-

ence to conduct; and that is the view which most moralists have,

in one way or another, adopted. But the other view which gives to

the concept "good" an independence of all relation to volition is not

always definitely excluded, even by these moralists; by others it

has been definitely maintained: it seems implied in Plato's idealism,

at one stage of its development; and quite recently a doctrine of

the principles of ethics has been worked out which is based on its

explicit recognition.
1

If we would attempt to decide between these two conflicting

views of the ethical concept, we must, in the first place, imitate the

procedure of science and examine the facts on which the concept
is based. To get to the meaning of such scientific concepts as "mass,"

"energy," or the like, we begin by a consideration of the facts which

the concepts are introduced to describe. These facts are in the last-

resort the objects of sense perception. No examination of these

sense percepts will, as we have seen, yield the content of the ethical

concept; good and evil are not given in sense perception they are

themselves an estimate of, or way of regarding, the immediate

material of experience. Moral experience is thus in a manner reflex,

as so many of the English moralists have called it. Its attitude to

things is not merely receptive; and the concepts to which it gives

rise have not mere understanding in view. Objects are perceived as

they occur; and experience of them is the groundwork of science.

There is also, at the same time, an attitude of approbation or dis-

approbation; this attitude is the special characteristic of moral

experience; and from moral experience the ethical concept is formed.

This reflex experience, or reflex attitude to experience, is exhibited

in different ways. There is, to begin with, the appreciation of beauty
in its various kinds and degrees and the corresponding depreciation

of ugliness or deformity. These give rise to the concepts and judg-

ments of esthetics. They are closely related to moral approbation
and disapprobation, so closely that there has always been a tendency

amongst a school of moralists to strain the facts by identifying them.

A certain looseness in our use of terms favors this tendency. For

we do often use good of a work of art or even scene in nature when
we mean beautiful. But if we reflect on and compare our mental

attitudes in commending, say, a sunset and self-sacrifice, it seems

to me that there can be no doubt that the two attitudes are different.

Both objects may be admired; but both are not, in the same sense,

approved. It is hard to express this difference otherwise than by
1
Principia Ethica, by G. E. Moore (1903).
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saying that the moral attitude is present in the one and absent in the

other. But the difference is brought out by the fact that our aesthet-

ical and moral attitudes towards the same experience may diverge

from one another. We may admire the beauty of that which we

condemn as immoral. De Quincey saw a fine art in certain cases

of murder; the finish and perfection of wickedness may often stir

a certain artistic admiration, especially if we lull the moral sense to

sleep. And, on the other hand, moral approval is often tempered

by a certain aesthetic depreciation of those noble character who do

good awkwardly, without the ease and grace of a gentleman. John

Knox and Mary Queen of Scots (if I may assume for the moment
an historical judgment which may need qualification) will each have

his or her admirers according as the moral or aesthetic attitude

preponderates the harsh tones of the one appealing to the law

of truth and goodness, the other an embodiment of the beauty and

gaiety of life, "without a moral sense, however feeble."

Nor is aesthetic appreciation the only other reflex attitude which

has a place in our experience side by side with the moral. Judgments
about matters of fact and relations of ideas are discriminated as

true or false; an ideal of truth is formed; and conditions of its

realization are laid down. Here again we have a concept and class

of judgments analogous to our sesthetical and ethical concepts and

judgments, but not the same as them, and not likely to be confused

with them.

Beside these may be put a whole class of judgments of worth
which may be described as judgments of utility. We estimate and

approve or disapprove various facts of experience according to their

tendency to promote or interfere with certain ends or objects of

desire. That moral judgments are to be identified with a special
class of these judgments of utility is a thesis too well known to

require discussion here, and too important to admit of discussion in

a few words. But it may be pointed out that it is only in a very
special and restricted sense of the term "utility" that judgments
of utility have ever been identified with moral judgments. The
"
jimmy

"
is useful to the burglar, as his instruments are useful to

the surgeon; and they are in both cases appreciated by the same
kind of reflective judgment. Judgments of utility are all of them,
properly speaking, judgments about means to ends; and the ends

may and do differ; while it is only by a forced interpretation that all

these ends are sometimes and somehow made to resolve themselves
into pleasure.

t is enough, however, for my present purpose to recognize the

prima facie distinction of moral judgments or judgments of goodness
from other judgments of worth, such as those of utility, of beauty,
and of truth (in the sense in which these last also are judgments of
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worth). Had the question of the origin and history of the moral

judgment been before us, a great deal more might have been neces-

sary. For our present purpose what has been already said may be

sufficient: it was required in order to enable us to approach the

consideration of the question already raised concerning the applica-

tion and meaning of the moral concept.

The question is, Does our moral experience support the assignment
of the predicate "good" or "bad" to things regarded as quite inde-

pendent of volition or consciousness? At first sight it may seem

easy to answer the question in the affirmative. We do talk of sun-

shine and gentle rain and fertile land as good, and of tornadoes and

disease and death as bad. But I think that when we do so, in nine

cases out of ten, our "good" or "bad" is not a moral good or

bad; they are predicates of utility or sometimes aesthetic predicates,

not moral predicates; and we recognize this in recognizing their

relativity: the fertile land is called good because its fertility makes

it useful to man's primary needs; but the barren and rocky moun-

tain may be better in the eyes of the tourist, though the farmer

would call it bad land. There is an appreciation, a judgment of

worth in the most general sense, in such experiences; but they are

in most cases without the special feature of moral approbation or

disapprobation.

There remains, however, the tenth case in which the moral predi-

cate does seem to be applied to the unconscious. One may instance

J. S. Mill's passionate impeachment of the course of nature, in which

"habitual injustice" and "nearly all the things which men are

hanged or imprisoned for doing to one another" are spoken of as

"nature's every-day performances;"
1 and a similar indictment

was brought by Professor Huxley, twenty years after the publica-

tion of Mill's essay, against the cosmic process for its encourage-
ment of selfishness and ferocity.

2 These are only examples. Litera-

ture is full of similar reflections on the indiscriminate slaughter

wrought by the earthquake or the hurricane, and on the sight of the

wicked flourishing or of the righteous begging his bread; and these

reflections find an echo in the experience of most men.

But the nature of this experience calls for remark.

In the first place, if we look more closely at the arguments of Mill

or Huxley, we see that both are cases of criticism of a philosophical

theory. Mill was refuting a view which he held (and rightly held)

to have influence still on popular thought, though it might have

ceased to be a living ethical theory the doctrine that the standard

of right and wrong was to be found in nature; it was in keeping
with his purpose, therefore, to speak of the operations of nature as

1 J. S. Mill, Three Essays on Religion, pp. 35, 38.
* T. H. Huxley, Evolution and Ethics (Romanes Lecture).
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if they were properly the subject of moral praise or blame. In the

same way, when Huxley wrote, the old doctrine which Mill regarded

as philosophically extinct and only surviving as a popular error had

been revived by the impetus which the theory of evolution had

given to every branch of study; and Huxley was criticising the evo-

lutionist ethics of Spencer and others who looked for moral guidance

to the course of evolution. He, therefore, was led to speak of the

cosmic process as a possible subject of moral predicates, not neces-

sarily because he thought that application appropriate, but in order

to demonstrate the hollowness of the ethics of evolution by showing
that if the moral predicate could be applied at all, then the appro-

priate adjective would be not "good" but "bad."

Perhaps there is more than this in Huxley; and Mill's expressions

often betray a direct and genuine moral condemnation of the methods

of nature as methods of wickedness; and, still more clearly, this

immediate moral disapproval may be found in expressions of common

experience as yet uncolored by philosophy. But if we examine these

we find that, while there is no reference to philosophical theories

about nature, the things approved or condemned are yet looked upon
as implying consciousness. In the lower stages of development this

implication is simply animistic; at a later period it becomes theo-

logical. But throughout experience moral judgments upon nature are

not passed upon mere nature. Its forces are regarded as expressing a

purpose or mind; and it is this that is condemned or approved. The

primitive man and the child do not merely condemn the misdoings of

inanimate objects; they wreak their vengeance upon them or punish
them: and this is a consequence of their animistic interpretation of

natural forces. Gradually, in the mental growth of the child, this ani-

mistic interpretation of things gives place to an understanding of the

natural laws of their working; and at the same time and by the same

degrees, the child ceases to inflict punishment upon the chair that

has fallen on him or to condemn its misdemeanor. Here the moral

judgment is displaced by the causal judgment; and the reason of its

displacement is the disappearance of mind or purpose from amongst
the phenomena. When the child comes to understand that the

chair falls by "laws of nature" which are not the expression of will,

like the acts done by himself or his companions, he ceases to disap-

prove or to resent, though he does not cease to feel pain or to im-

prove the circumstances by setting the chair firmly on the floor.

The recognition of natural causation as all that there is in the case

leaves no room for the moral attitude. So true is this that the same
result is sometimes thought to be a consequence of the scientific

understanding even of what is called moral causation, "tout com-

prendre c'est tout pardonner" as if knowledge of motive and cir-

cumstances were sufficient to dispense with praise or blame.
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Moral judgments of a more mature kind on the constitution and

course of nature form the material for optimistic and pessimistic

views of the world at least, when these views rise above the asser-

tion of a preponderance of pleasure or of pain in life. But, so far as

I can see, in such moral judgments nature is never looked upon as

consisting of dead mechanical sequences. It is because it is looked

upon as the expression of a living will or as in some way perhaps

very vaguely conceived animated by purpose or consciousness, that

we regard it as morally good or evil. Apart from some such theological

conception, it does not seem to me that the nature of things calls out

the attitude of moral approval or disapproval. Things are estimated

as useful for this or that end, they are seen and appreciated as

beautiful or the reverse, without any reference to them as due to an

inspiring or originating mind ;
and in one or other of these references

the terms "good" or "bad" may be used. But when we use the

term good in its specifically moral signification, we do not apply
it to the inanimate, except in a derivate way, on account of the

relation in which these inanimate
'

things stand to the moral ends

and character of conscious beings.

So far, therefore, as the evidence of moral experience goes, it

does not support the view that the "good" is a quality which be-

longs to things out of relation to self-conscious activity. And, in so

far, the peculiarity of the moral experience would seem to be better

brought out by the conception "ought" than by the conception

"good."
But here a difficulty arises at once. For how can we say that any-

thing ought to be done or to be except on the assumption that it is

antecedently good? Is not such antecedent and independent good-
ness necessary in order to justify the assertion that any one ought
to produce it?

The question undoubtedly points to a difficulty; and if that diffi-

culty can be solved it may help to bring out the true significance of

the moral concept. The judgment which assigns the duty of an indi-

vidual according to which I or any one ought to adopt a certain

course of action involves a special application of the moral con-

cept. It binds the individual to a certain objective rule or end. The
individual's desires as mere facts of experience may point in an

altogether different direction; the purpose or volition contemplated
and approved by the moral judgment has in view the union of indi-

vidual striving with an end which is objective and, as objective, uni-

versal. This union involves an adaptation of two things which may
fall asunder, and which in every case of evil volition do fall asunder.

And the adaptation may be regarded from either side: on the side

of the individual, application to his individuality is implied; the

duty of one man is not just the same as the duty of any other; he
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has his own special place and calling. But he is connected with

a larger purpose which in his consciousness becomes both an ideal

and a law, while its application is not limited to his individuality or

his circumstances.

All this is implied in the moral judgment. It is not limited to one

individual consciousness or volition. But it does not follow that the

predicate "good," in the ethical meaning of the term, is or can be

applied out of relation to consciousness altogether. At the earliest

stages of moral development we find it applied unhesitatingly

wherever conscious activity is supposed to be present to anything
that is regarded as the embodiment of spirit; and it is applied to the

universe as a whole when the universe is thought of as the product
of mind. " Good "

is not even limited to an actual existent; it neither

implies nor denies actual existence. "Such and such, if it existed,

would be a good
"

is as legitimate though not so primitive an expres-

sion of the moral judgment as "this existent is good." But it does

imply a relation to existence. It does not even seem possible to

distinguish except verbally between "good" and "ought to be."

And this
"
ought

" seems to imply a reference to a purpose through
which the idea is to be realized.

This conception "ought to be" is not the same as the concept

"ought to be done by me." The latter is an application of the more

general concept to a special individual in special circumstances;

and this is the common meaning of the concept duty. The former

is the more general concept of "goodness." It may be called object-

ive, because it does not refer to any individual state of mind; it is

universal because independent of the judgments and desires of the

individual
;
and when the goodness is not due to its tendency towards

some further end, it may also be called absolute.

The point of the whole argument can thus be made clear if we
bear in mind the familiar distinction between "good in itself" and

"good for me now." That the latter has always a relation to con-

sciousness is obvious: it is something to be done or experienced by
me. But there must be some ground why anything is to be or ought
to be done or experienced by me at any time. Present individual

activity must rest upon or be connected with some wider or objective

basis. What is good for me points to and depends upon something
which is not merely relatively good, but good in itself or absolutely.

Yet it does not follow that this good in itself is necessarily absolute

in the sense of having significance apart altogether from conscious-

ness. Its absoluteness consists in independence of individual con-

sciousness or feeling, not in independence of consciousness altogether.

It is objective rather than absolute in the literal sense of the term.

The good in itself, like the relative good, is one aspect which can only

belong to a consciousness to purpose. The moral judgment on
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things either on the universe as a whole, or on anything in the

universe which is not regarded as due to the will of man is only

justified if we regard these things as in some way expressing con-

sciousness; either as directly due to it, or as aiding it, or as in con-

flict with it. From any other point of view, to speak of things as good
or evil (unless in some non-ethical sense of these terms) seems out

of place, and is unsupported by the mode of application which be-

longs to the immediate judgments of the moral consciousness. If

the moral concept has significance beyond the range of the feelings

and desires of men, it is because the objects to which it applies are

the expression of mind.

This is not put forward as a vindication of a spiritual idealism.

It is only a small contribution towards the meaning of "good." A
comprehensive idealism may not be the only view of reality with

which the conclusions reached so far will harmonize. But it is the

view with which they harmonize most simply. The conception of a

purpose to which all the events of the world are related is a form in

which the essential feature of idealism may be expressed; the view

of this purpose as good makes the idealism at the same time a moral

interpretation of reality, and allows of our classing each distinguish-

able event as good or evil according as it tends to the furtherance or

hindrance of that purpose.

This doctrine of the significance and application of the ethical

concept would enable us to reach a definite view of the nature of

ethics and of the way in which it is related to the sciences and to

metaphysics. The ethical concept is based upon the primary facts

of the moral consciousness, just as scientific concepts have as their

basis the facts of direct experience. The primary facts of the moral

consciousness are themselves of the nature of judgment they are

approbations or disapprobations. But all facts of experience involve

judgments, though these judgments may be only of the form "it is

here" or "it is of this or that nature." Again, tne primary ethical

facts or judgments cannot be assumed to be of unquestionable val-

idity: we may approve what is not worthy of approval, or disap-

prove what ought to have been approved. Our moral judgments
claim validity; and their claim is of the nature of an assertion, not

that one simply feels in such and such a way, but that something

ought or ought not to be. They imply an objective standard. But

the objective standard, when more clearly understood, may modify
or even reverse them. Our primary ethical judgments all our

ethical judgments, indeed stand in need of revision and criti-

cism; and they receive this revision and criticism in the course of

the elaboration of the ethical concept and of its application to the

worlds of fact and possibility. In the same way it may be contended

that the direct judgments of experience upon which science is based
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need criticism and correction; though their variation may be less in

amount than the variation of moral judgments. The color-blind

man identifies red with green, and his judgment on this point has to

be reversed; the hypersensitive subject often confuses images with

percepts; exact observation needs a highly trained capacity. The

correction and criticism which is needed come from objective stand-

ards; and these are the result of the comparison of many experiences
and the work of many minds.

It is no otherwise in the case of ethics. Criticism brings to light

inconsistencies in the primary judgments of approbation and disap-

probation as well as in the later developments of the moral judgment.
And these inconsistencies must be dealt with in a way similar to that

in which we deal with inconsistencies in the judgments of perception
and of science. The objective standard is not itself given once for

all; it has to be formed by accumulation and comparison of moral

experiences. Like the experiences on which science is based, these

have to be made as far as possible harmonious, and analysis has to

be employed to bring out the element of identity which often lurks

behind apparent contradiction. They have also to be made as com-

prehensive as possible, so that they may be capable of application to

all relevant facts, and that the scattered details of the moral con-

sciousness may be welded into an harmonious system. In these

general respects the criticism of ethical concepts proceeds upon the

same lines as the criticism of scientific concepts. The difference lies

in the concepts themselves, for ethics involves a point of view to

which science must always remain a stranger.
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SINCE the appearance of the three chief works of Kant a certain

rhythm in the treatment of philosophical problems, first of all in

Germany, but also, in less degree, in other civilized countries, is un-

mistakable. After an intense occupation with theoretical problems
a flood of ethical discussion usually follows; and this then is usually

resolved into a renewed revision of aesthetical problems. If I am
not deceived, we are now at the period of transition from the second

to the third epoch; so much the more favorable is the time to re-

view the present condition of ethical problems. In the first place,

then, it seems rather remarkable that recent ethical discussion, so

intensely carried on, has resulted in a definite victory for neither one

school nor the other. One thing alone, however, may with some

accuracy be said, that the school of utilitarianism of the older inter-

pretation by Bentham, which earlier prevailed almost alone in

England with a fairly strong representation in France and Germany,
seems to be withdrawn from the field. Not as if there were no men

to-day who in other times would have sworn by Bentham 's flag,

rather we are here facing a fact that a theory which formerly ap-

peared in independence, now may be deemed a special case of a

more inclusive theory, which with the help of its wider horizon can

remove a whole series of difficulties, which apparently raised insolv-

able problems for the special theory. Utilitarianism, since it had

started with the examination of the individual, could not, even in the

master-hand of Bentham, transfer itself without remainder into the

greatest happiness of the greatest number; the interest paid on

the sacrifice offered to fellow men, again and again seemed dubitable

and probable; again and again the best calculation seemed to con-

sist in egoism pure and simple. The impossibility of an exact calcula-

tion of consequences in pleasure and in pain was likewise repeatedly

emphasized by opponents; the suggestion that we do not count the

shrewd calculator so good as the man who acts impulsively was also

not lacking: all these were difficulties, which, on the ground of the

older utilitarianism, could be evaded but not quite entirely put out

of the world.
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It is then easily understood that the further combinations into

which evolution was able to advance ethical questions have resulted

in the cessation of utilitarianism as an independent system. Around

the huge system of thought of Herbert Spencer one of the great camps
of ethical workers is collected. It is not correct to count Herbert

Spencer as systematizer of Darwin's thoughts; his main thoughts

were finished, before a line of Darwin had appeared. But it is correct

that the wonderful inductions of Darwin were precisely that which

Spencer's system needed in order to begin its triumphal march

through the civilized world. Here the case is the reverse of that of

Copernicus and Giordano Bruno: the systematizer precedes the

man of special research. It is superfluous on American soil to give

a description of Spencer's thoughts; they have become parts of the

general consciousness. So it may suffice to emphasize a few character-

istic features, to which my remarks shall be attached, since, other-

wise, in view of the richness of the system, there might easily be

other sides of it in the mind of my hearers than those to which I

have here to attach importance.

The characteristic feature of the system of Spencer is its unity and

compactness. Just as every picture has a definite point from which

it should be seen, so also the system of Spencer is a view of the world

from a quite definite point of view, that of evolution. Systems
of evolution had already occurred in philosophy, I mention the

vast performance of Hegel only, but that which gives Spencer's

system its characteristic significance is that here evolution is con-

ceived not as logical, but as biological; while in the case of Hegel
nature is the vestibule of the realm of purpose, and therein alone

has its significance, Spencer takes nature as his point of departure,

and the realm of human activity represents itself to him merely as

the finest conformation of natural events. Here the whole evolution

from the nebula in world-space to the most delicate relations between

man and man are comprehended in one grand conception. The same

amount of force which then existed in world-space exists still to-day,

only in infinitely more differentiated form. The new which is pro-

duced is nothing else than the transformed old, but transformed in

an essential relation, in the direction towards constantly increasing

complexity of relations in which single things and centres of force

stand to each other.

If it be asked what this principle is which is the ground for this

differentiation, a glance at the behavior of organisms informs us. In

them we can most clearly recognize effects which result, with the

necessity of laws of nature, from increasing differentiation. The
undifferentiated individual is powerless in the presence of every

change of his environment. Banished to its accidental place, the

plant must wait for what happens to it. Only within a narrow limit
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can it maintain its existence. Better equipped we find the animal,

especially when it has gathered into social groups, either for pro-

tection against carnivora or for the breeding of progeny in common.

The young steer has an infinitely better prospect to maintain itself,

to grow up, than the single egg in the spawn of the sturgeon.

So it is, before all else, the fact of social combination which attracts

to itself the attention of the revolutionary ethicist. His ethics is

social ethics. The analysis of the historical development of mankind

forms the standard, in which the social combinations have resulted,

and in which greater and world-inclusive formations have replaced

those earlier, smaller, and smallest, usually engaged in war with

each other. It is a long way from the time when hospes was equivalent

to hostis to international expositions, and the single stages of this

way reflect themselves in the moral behavior of the individuals.

The old question, which in so many ways agitated the English

ethics of the seventeenth and eighteenth centuries, the question,

whether man should be regarded as an originally egoistic being, or

whether equally original, benevolent instincts must be ascribed to

him, is transferred by evolutionists of to-day beyond the realm of

man to that of his animal ancestors and, in this case, in favor of the

originality of egoism. But long before man appeared as an inde-

pendent species the effects of the life of the horde must have shown

themselves in him, since those communities only in which the single

members were bound to each other by sympathy had any prospect
of survival. It is therefore possible to speak of animal ethics. The

interesting attempts which Darwin had made in this field were taken

by Spencer, as a whole, into his system. It must, however, be con-

ceded that we must observe the full development of this process,

first of all, in man, and the tendency then consists in a constant

decrease of egoistic, as compared with altruistic, actions. How it

was possible that the individual was ever willing to renounce the

amounts of pleasure, which he could obtain, in favor of others,

Spencer skillfully tried to explain by the introduction of the egoistic-

altruistic feelings. These give the impulse to actions which are useful

to the community, but which give to the doer honor and distinction,

and thus, from egoistic motives, make actions which promote the

welfare of the community commendable. But those actions which

damage the community are visited with punishment of all kinds.

The theory of sanctions in Bentham and Mill here passes over into

the more extensive system of evolution. For modern theory of

evolution, by the broader biological foundation of its system, suc-

ceeds in explaining why even, in the case of those who cannot over-

look the consequences of such actions as are injurious to their own

person, these consequences are still ignored. The fact of the con-

science, for the consistent Benthamite a negligible quantity, forms
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the keystone of Spencei^s ethics, and affords the chance of making
the theory of heredity applicable in a new field of ethical speculation.

It is, as a matter of fact, impossible for the single individual to

calculate, by Bentham's receipt, all the consequences of pleasure or

of pain which result from the actions for his own welfare. The

inaividual need not, however, undertake this calculation at all. He
does not begin at the .beginning of making his experiences in this

world; he enjoys the heaped-up treasure of experiences which, before

him, long-forgotten generations of ancestors had made; and the

sum of these experiences he calls his conscience. This voice of the

conscience restrains the individual from anti-social actions, which,

in accordance with experience, must lead to an injury to his own

person; in accordance, of course, with the experience not of single

ancestors but of the whole line. Here, again, a selective process in the

struggle for existence is being completed. Men with no conscience at

all or with an only imperfectly developed conscience have to contend

with disadvantages similar to those in whom the corporal adjustment
to the modern conditions of civilization have proved defective; they
are exterminated by seclusion in prison or by execution, as the others

by diseases which their bodies cannot resist. The criminal of to-day

might perhaps have been, in primitive times, a respected member of

his horde, perhaps, even a great chief. To-day he can be regarded

only as an atavistic survivor, who fits into our conditions as little

as a living ichthyosaurus into this lecture-hall. Again, it is to be

hoped, it is even definitely to be predicted, that many who to-day

are quite irreproachable in moral respects, in later times will no

longer succeed in satisfying the requirements in the form of their

grandson or great-grandson. For the progress is a biological necessity;

and he who cannot attach himself to its ways is submerged.
It is small disparagement for this vast construction of the connec-

tion between the moral life of the individual and the total evolution

of the associations of men, of organisms, of the whole, that, now espe-

cially in English ethics, a bitter strife has broken forth, which we may
regard as the one-sided elaboration of the individualistic parts of

Spencer's ethics on the one side, of the social on the other side.

While the orthodox disciples of Spencer insist that such progress

only can be kept in aim which must assure to the individual, to the

fit the most unrestricted possible amount of free movement, while

the whole rigor of the process of selection must fall upon the unad-

justed and the unfit, the socialist tendencies of our time tend to

advocate a reversal of this harsh result and to advocate both the

united struggle of human society, by suppressing over-energetic

individuals, and the preservation of the economically weak. Though
it would be interesting to trace this division to its final grounds, I

must limit myself to note the fact that the socialist movement
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seems here also to be in advance, at least, so far as European
movements of thought are concerned; and that they are in the

condition to compensate for their departure from the teachings of

the master by an appeal to the main thoughts of his system, con-

cerns me just here. Doubtless socialistic thought is on the whole

in advance when compared with liberal and individualistic thought.

And, under these circumstances, the inference for every disciple of

Darwin's theory of evolution is simple; that here again is a case

of survival of the fittest; that socialistic ideals represent a higher
form of adjustment; that just by the fact of their victory the ne-

cessity and justification of this victory is placed beyond doubt. It

helped little that the venerable thinker himself in the last years of

his rich and active life descended into the arena of the contest and

warned his beloved England against the dangers of this socialistic

tendency. It was inconsistent that he tried to brand these thoughts
as a retrograde movement, as a step backward, since his own system
with its powerful optimism affords no possibility for victorious

retrograde movements. Even imperfection and evil has for Spencer

only the significance of an imperfect progress; and the thought
that imperfection could even win the victory over the perfect, that

must be warned against it, could only be nonsense in connection

with his system. For him, as for Hegel, the final formula, obtained

it is true by a very different way, is the thesis: The actual is

rational.

But just this reference to Hegel's system makes clear to us the

opposition which Herbert Spencer's system found in Germany,
first of all, but also in wide circles in England and in America. If

it could be objected against Hegel that the activity of the individual,

in contrast to the might of the developing process of the logical idea,

is reduced to insignificance, this consideration returns with doubled

force in contrast to the concept of the thought of development, which

is found in the modern theory of evolution of Spencer. For here

it is not teleological necessities which prevail, but causal. To have

proved evolution by the laws of nature is precisely his system's title

to fame. The question must then be raised whether an obligation

to any definite practical action can be deduced from the proof of the

necessity of any event. If the development is necessary, it will be

completed whether I cooperate with it or not. If it needs my coopera-

tion, it need not be regarded as a law of nature. It is exactly the

same difficulty which beset the Stoics, when they tried to harmon-

ize the determinism of world events with the demands which their

ethics put upon the moral resolves of the individual. It is absurd

to will any necessary event of the laws of nature; I can suspend my
action so that I count upon the occurrence of such an incident, but

I cannot make this incident the object of my will. I can decide that
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I will observe an eclipse of the moon, but I cannot will the occurrence

of this eclipse of the moon, or not will it.

If we reduce the difficulty to the simplest formula, it would be as

follows: the theory of evolution did not distinguish between two

completely different kinds of attitudes on the part of human mental

activity ;
between the knowledge of the necessity of what exists and

its judgment by standards of value. But it is precisely with the

latter that ethics has to do. It is, like logic and aesthetics, a science

of values; the interest in the question how something has come to be,

is quite different from the interest in determining its value. Every-

thing has come to be, the valueless as well as the valued, with the

same necessity; that is a self-evident presupposition of all explana-

tory science. The bungling drawing of a school-toy and the Sistine

Madonna, the hallucinations of a lunatic and the thought of a

Herbert Spencer, a demonic crime and a deed of the purest ethical

fulfillment of duty, are, in the same sense, necessary; but with the

knowledge of this necessity we have not come a single step nearer

to the task of their valuation.

The difference between these two kinds of attitudes has perhaps
never been more clearly sketched than in Fichte's book On the

Calling of Man. If we assume that I have a fully adequate scientific

knowledge of the course of nature, I might discern that this grain

of sand which the storm has set in motion could not drift a hair's

breadth farther, unless the whole previous course of nature had been

quite different; what then would be gained for my own moral action?

The answer must be: Nothing. More than that, if this point of view

were the only possible for man, then this action would have no

longer, as a moral action, any significance, and could have none;
since as a part of the world event alike in value to all other parts it

would remain like in value, and it would be meaningless to select and

emphasize out of this continuum of facts and environments, alike in

value, single elements as especially valuable and significant. The
man who could not resign himself to this knowledge, who could

not be satisfied to continue, in cool content, at the point of view of

the silent contemplation of causes, must fall into conflicts similar

to those which Carlyle so vividly described in Sartor Resartus. We
must then, in order to an understanding for this new problem,

provisionally disregard, above all else, whatever the theory of evo-

lution has accomplished by way of scientific explanation, and reserve

for a later investigation the ethical valuation of this sequence of

development. The question which is now to occupy us is directed,
first of all, to the subject of our moral valuation. What do we call

good or bad?

This is the main question of all normative ethics in general, and its

answer by Kant will always remain a brilliant feat in this field. He
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proved, in the first place, that this predicate can be properly applied

to no action whatever, that we can speak of a good action in figur-

ative language only, when we believe that we can make from this

action an inference with regard to something else, the disposition

of the actor; and that the same action which we do not hesitate

to describe as good, on the supposition of the correctness of this

inference, loses directly this character as soon as doubt of the cor-

rectness of the inference arises. This disposition, which we distin-

guish in this way, which forms the substrate of our moral valuation,

we call the good will, and the Magna Charta of the Kantian ethics

consists in the celebrated thesis: Nothing can possibly be good

except a good will. This reasoning appears to be as self-evident

as its result is important.
The whole ethical process is removed within the soul. While the

theory of evolution and, still more, utilitarianism could still hope
to obtain, with the character of the work, at the same time an ex-

pression with regard to the ethical value of the action; while, in this

combination of ideas, the ethical goodness of the disposition could

be judged by the usefulness or value to civilization of the performance

done, so that both these systems would have essentially the character

of an ethics of results, we have in Kant and his successors, most

decidedly, an ethics of dispositions. It has rightly been pointed
out that this ethics could grow only upon Protestant soil, that here

the same contradiction prevails which Luther once summed up in the

words: "Good works do not make the good man, but the good man
creates good works." All the excellences, but all the weaknesses

also, of Protestantism, cling to Kant's ethics.

First, let us follow the further stages of Kant's thought. How
must a good will be constituted, so that we may count it as ethically

good? All our acts happen in order to fulfill a purpose. The character

of the action depends upon the character of the purpose, which the

actor proposes for himself, which he affirms with his will, which he

makes his own. But if the purpose be no longer willed, then all the

actions cease, which hitherto had had to be accomplished for its

fulfillment. All those purposes, which under the circumstances

cannot be willed, cannot therefore produce that lasting constitution

of the will which we understand under the term the good will. But

among the different motivations of the will, there are some which

for the observer become separated. They have not a character such

that they could, under any circumstances, cease to motivate the

will; they are necessary and universal determinations of the will.

The imperative which they contain and with which they demand
action has not the hypothetical form: "If thou wilt obtain this or

that, you must;
" but the absolute:

" Thou shalt." It is a categorical

imperative, to which the will is here subordinated, which determines
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my actions; and such a categorical imperative we term duty. Only
the dutiful will is good. It is clear that this determination shows

an exact analogy to the other norms of judgment in the logical and

the sesthetical field. The principle of contradiction states nothing

at all with regard to the single thoughts, it only asserts that our think-

ing can then alone make a claim upon a logical valuation while it

fills the condition which the principle of contradiction states. Like-

wise, the impulses of our wills can be morally valued only when they

refer to an absolute "Thou shalt;" if this is not the case, they are

excluded from the range of valuation, just as the play of our fancy,

which does not recognize the principle of contradiction, is excluded

from the realm of the norm of scientific thinking.

Here again the normal action of ethics is represented as a selective

process. While the evolutionist ethicist can estimate every single

content of human consciousness with reference to the point whether

it is preservative of the species or not, and thus give it ethical value,

the realm of the Kantian ethics is much more confined. Only those

impulses of the will occur with conscious subordination under the

command of duty, or in conscious opposition to it fall within the

realm of moral valuation. All others and their name is legion
-

must be termed unmoral. Not as if they become thereby actually

valueless; they may stand as high as you please in the intellectual,

aesthetic, or religious scale of values. But to bring them under just

the moral norms of judgment would be an attempt at an unappli-

able object. This is the point, perhaps, where the Kantian ethics

gives the hardest shock to the healthy human understanding. It

will always seem a paradox that we have a moral act when a man
with strong desires for theft, after a severe inner struggle, does not

put a silver spoon into his pocket, while the man who omits all this

quite as a matter of course may have no claim upon moral desert.

And yet each one of us would feel it as an insult, if he should be

praised for such omission. The solution of this difficulty lies in the

distinction of the value of the single resolve and that of the whole

moral personality. The man who is still led into temptation by silver

spoons stands morally upon the same plane upon which the scholar

stands who struggles with extreme mental effort to calculate a simple

example in multiplication. In the case of the more advanced person
our moral approval is not aroused because he no longer needs, in

this simple case, to appeal to the law of duty, but because we be-

lieve that we may conclude that his moral personality is attacking
other more difficult problems with full force, and that he is here in

himself feeling the full weight of the contest. If we were deceived

in this, if it prove true that he, content with what had been attained,
had withdrawn to the position of the ethical capitalist, our ethical

interest in him would likewise cease, just as our intellectual interest
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ceases in the scholar for whom there are no more problems in his

science. From this point of view the result is necessary that the

category of duties, to speak with Hegel, is absolutely infinite; and

in this perhaps lies the considerable difference between modern and

ancient ethics. For ancient ethics the ideal of the wise man was

a distinctly finitely determined amount. However difficult it might
be to fulfill the conditions for it, it could still be fulfilled in a human

life; and a further advance beyond this fulfilled ideal would have

been to the Greeks an absurdity: it is the "nothing too much"
transferred to the ethical point of view. It is otherwise in modern

ethics, and with this is connected the change in that the concept of

the infinite has become a concept of value. It is as Carlyle says:
"
Fulfill the next duty which presents itself to thee, and when thou

hast fulfilled it, wait for ten, twenty, a hundred to be fulfilled." But

we recognize the degree of ethical development which a man has

attained by noting that it is no longer duty to him.

If the limits of the moral valuation have been much restricted

by the introduction of the concept of unmoral actions, it has been

extended in the other direction by the insight that now every action

which happens in fulfillment of a command of duty is to be valued

as the result of a moral disposition. We come thus to the problem

which, since the time of the ancient sophists, has not ceased to occupy

minds, and which may most simply be termed the anthropological

problem. What in the world is there that is not by individuals and

by people deemed to be moral! With what strange contents the

formal " Thou shalt
"
of morality is filled ! In face of these contradic-

tions, is there any sense at all in speaking of ethical commands? All

skeptical attacks upon ethics find in such considerations their strong-

est support; and here again the answer is easy when we reflect upon
the analogy with science, art, and religion. Aristotle and Democritus,

Hegel and Hobbes, have taught very differently, and yet all have been

busy with science. Raphael and Menzel are surely to be valued as

artists; Mahomet and Buddha were both religious geniuses of the first

magnitude. Why should it be different in the field of ethics? What
other men have held to be moral, how they have acted, this can be

valuable to me, in order for me to become clear with regard to my
own moral determination, just as the artist sees the works of other

masters, just as the scientific man must know the theorems of others.

But all this cannot be the standard for the formation of my own life.

I am, once for all, placed in this world, to be active there; I am
responsible to myself for what I wish to accomplish with this life.

And so it can, it is true, be an encouragement to me that other men
have felt in themselves the same motive to moral activity; I can

give them my hand as striving for the same with me through the

separating centuries and across the estranging seas. But their way
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of solving the great problems of life cannot be the standard for me
save in the sense that I receive them into my will, recognize them as

valid for my own life.

So, then, the whole weight of the distinction, the whole moral

process, is transferred to the individual. He is the point of depart-

ure and the goal of the struggle for a content in life. Is this now

egoism? This much-discussed question also suffers, as I believe, by
a defect in the statement of the problem. If it is intended that that

action is meant by egoism, the motive for which is one's own welfare

or happiness, by altruism, however, the action which aims at the

happiness of others, it is quite clear that these two contrasts have as

little meaning for the ethics of disposition as the complementary
contrast of beautiful and ugly. Moral action is completely indifferent

with regard to these contrasts. Moral actions can be characterized

as altruistic as well as egoistic, and the same is the case for unmoral

or bad actions. By knowing that distinct advantages have resulted

to the doer from an action, or that "the greatest happiness of the

greatest number" has resulted from it, I have not gained one step

for the moral valuation of this action. I should surely act immorally
if I omitted an action acknowledged as moral by me because it

would involve pain for others and thus would have an anti-altruistic

character. Whence this confusion of the altruistic with the moral

arose is easy to see. Long before the child could himself act morally,

it must be accustomed to feel that its beloved self cannot be the sole

standard for its action; and to the end that it keep peace and content

with its brothers and playmates, it is properly accustomed to regard
in its action the welfare of the human beings about it. That is a

preparatory step to moral action; but, strictly speaking, it can be

counted as moral by those only who are determined not to recognize

the limits between psychological motivation and normative deter-

mination.

It would be an interesting task to trace the relations into which

the autonomous moral individual enters with the great moral

institutions which dominate the community and have combined in

usage, society, and state, and which Hegel described in a happy
expression as "

objective morality." Here it is no longer the regard
for the weal or woe of fellow men which strives to gain influence

over my action; here the ethical will of past generations of my own
ancestors accosts and asks me whether I can bring my action into

harmony with that which they willed and for which they strove.

It is a slight disadvantage to the ethically directed man that, in

order to protect these moral institutions from injury, an arsenal

of punishments, of social influences, of boycotts, and of whatever
finer or coarser means of compulsion there may be, are set up. This

arsenal is necessary to sustain the social structure which alone
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affords the chance for moral action; and he who calculates with

pleasure and pain, who tries to arrange his life as happily as possible,

will be restrained by shrewd calculation from injuring the prevailing

moral institutions. The moral man has nothing to do with such

considerations. When he affirms the objective morality, he does so

because he recognizes his moral will as identical with that of previous

generations which have made these forms. But the time can come
when he discovers that a moral life within these forms is no longer

possible for him, when with deep regret he sees the bond of continuity
break which knit him in affection with the past, when he must
resolve to enter new untrodden paths, just as Copernicus was forced

to resolve to substitute a new knowledge for those which had satisfied

centuries. Such a man will endure calmly and patiently the con-

sequences which result from such a course; he will not expect to

be justified, through the purity of his intentions, in the eyes of his

fellows, if he undertakes to lay hands on the institutions which the

moral consciousness of his contemporaries recognizes as valid. But
he will also know that these same institutions owe what sacredness

they possess to the blood of previous martyrs, that these shadows

of a past can only then speak to a living generation when they have

tasted the sacred blood of sacrifice.

So then we see two great movements in our time struggling about

the ethical questions. The one has on its side the whole apparatus
of scientific conceptions, the presupposition of necessary events

without exceptions, the knowledge that the single individual is an

infinitely small element in a necessary sequence of development. It

can explain everything, deduce everything from its conditions. At
one point only its power breaks down : it cannot make the individual

comprehend why he should raise a finger to keep in motion this

machine which goes of itself.

And, opposed to this, is the other movement, which rests upon the

one fact that the point of view of its opponent, the scientific, is also

a relation of reality to values, and that man alone introduces these

values into reality, measures and tests it by these values. According
to this movement, every new human life has the question put to it,

what it can accomplish with these values, whether it is capable of

making something out of reality, out of itself, which has in itself a

value such as to raise it above the flux of appearances as the bearer

of these values. Everything previous as well as everything subsequent
vanishes before these thoughts that it is now day, that the night is

soon coming when no man can work, that at the day's end the day's
work must be done. But what each recognizes as his day's work, he

must himself find within himself. This decision is his destiny.

I cannot better close than with the words of the man whose life

had little joy, but who grappled with these questions in the solitude
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of Craigenputtock, in the supreme solitude of the human wilderness

of London, with a seriousness which still to-day proves to be soul-

wooing and soul-winning: "Centuries have passed that thou might-
est be born, and centuries are waiting in dumb expectation of what

thou wilt accomplish with this life, now that it has begun." And
what this life can offer Carlyle, by combining the thoughts of Fichte

and of Goethe, has united in the call:

" Work and despair not."
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IF conventional divisions of time are to serve as means by which we

may mark the movement of thought as it develops, we may well

say that the nineteenth century saw a real awakening in relation

to aesthetics among those who concern themselves with accurate

thinking, a coming to consciousness, as it were, of the importance
to the philosophy of life of the existence of beauty in the world, and

of the sense of beauty in man.

And with this awakening came a marked breadth of inquiry; an

attempt to throw the light given by psychological analysis upon the

broad field of aesthetics, and an effort to grasp the relations within

the realm in which beauty holds sway to philosophy as a whole.

That the questions thus presented to us have been answered, I

imagine few, if any, would claim; rather may we say that the nine-

teenth century set the problems which it concerns the sesthetician

of the twentieth century to solve; and this without underestimating
the value of the work of the masters in esthetics who lived and

wrote in the century so lately closed, some of whom are fortunately

with us still.

Of these present problems M. Dessoir will treat in his address to

follow mine; in the regretted absence of Professor Lipps the privilege

has been granted to me to consider with you briefly the relations

of aesthetics to psychology, and to philosophy, which must in the



418 AESTHETICS

end determine the nature of the problems to be studied by the sesthe-

tician, and the import of the solutions of these problems which they

present for our consideration.

I. The Relation of Esthetics to Psychology

We live in what may well be called the era of psychological develop-

ment, an era marked by the recognition of the truth that no philo-

sophical view of life can be adequate which does not take full account

of the experience of the individual human spirit which interprets this

life. And so quite naturally for ourselves, and in all probability

quite in accord with the habit of thought of the immediate future,

we begin our study by the consideration of the relation of aesthetics

to psychology.
In turning for light to psychology, the sesthetician finds himself of

course asking what is the nature of the states of mind related to his

inquiry; and here at once he finds himself confronted with a distinc-

tion which must be made if a correct aesthetic doctrine is to become

established. He notes that there is a sharp difference between (1)

the mental attitude of an artist who produces works of beauty; and

(2) the mental attitude of a man at the moment when he appreciates

beauty in his experience.
1 The failure to note this distinction has in

my view led to much confusion of thought among the sestheticians

of the past, and to the defense of dogmas which otherwise would

not have been maintained.

That this distinction is an important one becomes clear in the

fact that the sense of beauty is aroused in us by objects in nature

which bear no relation to what men call fine art. The mental state

of the appreciator of beauty has therefore a breadth which does not

belong to the mental state which accompanies, or leads to, the pro-
duction of works of beauty by the artist.

And yet it should not surprise us that this distinction has so

often been overlooked; for the theorists first follow the trend of

thought of the uncritical man, and this uncritical man does not

naturally make the distinction referred to.

For, on the one hand, even the least talented of men has some
little tendency to give part of his strength to artistic creation in one

form or another; the creative artist is guided by what is a truly racial

instinct, which under favorable conditions will appear in any man
who is not defective: each of us thus in the appreciation of beauty
throws himself to some degree into the attitude of the creative artist.

And, on the other hand, the artist, when not in creative mood, falls

back into the ranks of men who keenly appreciate beauty but who

1 Cf . my Esthetic Principles, chap, i,
" The Observer's Standpoint," and

chap, in,
" The Artist's Standpoint."
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are not productive artists; he thus alternately creates and appre-

ciates, and with difficulty separates his diverse moods.

We may well consider these two distinguishable mental attitudes

separately.

a

In asking what is the nature of the experience which we call the

sense of beauty, we are stating what may well be held to be the most

important problem in aesthetics that is presented to the psychologist.

Man is practical before he deals with theory, and his first theo-

retical questionings are aroused by practical demands in connection

with his failures to reach the goal toward wrhich he strives. The de-

velopment of modern aesthetic theory has in the main quite naively

followed this course, and we may properly consider first the psycho-

logical inquiries which seem to have the most direct bearing upon

practical questions.

The artist asks why his efforts so often fail, and he is led to inquire

what are the qualities in his work which he so often misses, but now
and again gains with the resulting attainment of beauty.

It is thus that we naturally find the aesthetician appealing to the

psychologist, asking him what special types of impression yield

beauty, what special characteristics of our mental states involve the

fullest aesthetic experience.

The psychologist is naturally first led to consider certain striking

relations found within the beautiful object which impresses us, and

to inquire into the nature of the psychic functioning which is in-

volved with the impressions thus given. He thus comes to consider

the relations of the lineal parts of pleasing plane-surface figures; and

the study of these relations has given to us such investigations as

the notable ones of Fechner in respect to the "Golden Section,"

which have been supplemented by the more rigid tests of Dr. Witmer
and Doctors Haines and Davies in our own day. In similar manner
the basis of the beauty found in symmetry and in order, and the

problems related to rhythm, have been closely studied, especially

in late years by Lipps; and the fundamental principles of tonal

relation, and of melodic succession, by Helmholtz, Stumpf, and

later writers.

But all these studies of the striking characteristics found in the

object are for the psychologist necessarily involved with the study
of the distinctly subjective accompaniments in the sense of beauty
aroused by the objective forms thus brought to our attention, and

he is led to dwell upon the active part the mind takes in connection

with aesthetic appreciation. We see this tendency in Berenson's

emphasis, and perhaps on the whole over-emphasis, of the import-
ance of the interpretation of works of art, in the group of what I

would call the arts of sight, in terms of the tactile sensibilities. But
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we see it much more markedly in the important studies of Lipps,

who shows us how far our appreciation of beauty in nature, and in

artistic products, is due to the sympathetic introjection of ourselves

as it were into the object, to what he calls Einfuhlung.

But, broad as he shows the applicability of this principle to be, it

is clear that we have not in it the solution of the fundamental aesthetic

problem with which the psychologist must deal when appealed to by
the aesthetician. For no one would claim that all of this sympathetic

introjection this Einfuhlung is aesthetic : the aesthetic Einfuhl-

ung is of a special type. Nor to my mind does it seem clearly

shown that there are no sources of beauty which do not involve this

introjection, as would be the case if we had reached in this principle

the solution of the fundamental aesthetico-psychologic problem. For

instance, the sense of beauty experienced when I look at some one

bright star in the deep blue of the heaven seems to me to be inex-

plicable in terms of such introjection.

All this work, howr

ever, brings help to the practical artist and to

the critic. They do not acknowledge it fully to-day, but year by year,

more and more will the influence of the results of these studies be

felt as they gain the attention of thinking men.

Nevertheless, we cannot but face the fact that the practical benefit

to be gained from them is of a negative sort. There is no royal road

to the attainment of beauty; but the psychologist is able to point

out, by the methods here considered, the inner nature of certain

sources of beauty; thus teaching the artist how he may avoid ugliness,

and even indicating to him the main direction in which he may best

travel toward the attainment of his goal.

But, after all, the relations thus discovered in the beautiful object,

and the related special analyses of mental functioning which are

involved with our appreciation of beauty, tell us of but relatively

isolated bits of the broad realm of beauty. The objects which arouse

within us the sense of beauty are most diverse, and equally diverse

are the modes of mental functioning connected with the appreciation
of their beauty.

1

And this has led to the formulation of such principles as that of

the "
unity of manifoldness "

of which Fechner makes so much, and
that of the monarchischen Unterordnung which Lipps has more lately

enunciated.

It is indeed of great interest to inquire why it is that the processes
which lead to the recognition of these principles are so clearly defined

in many cases where the sense of beauty is aroused. But very evi-

dently these general principles, important though they be in them-

Nothing has shown this more clearly than the investigations of Haines and
9 in reference to the Golden Section of which we have spoken above. See

Psychological Review, xi, 415.
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selves, are not ones upon which we can afford to rest: for clearly

they apply in very many cases where beauty does not claim sway.
Our whole mental life exemplifies the unification of the manifold,

and monarchic subordination, whether the processes be sesthetic or

not. It does not suffice us to show, what is thus shown, that the

sesthetic states conform with conditions of our mental life that

have a broad significance, although it is of great importance to

demonstrate the fact: for our mental functioning in the apprecia-

tion of beauty appears thus as in truth an important type, but

for all that but a special and peculiar type of the functioning which

we thus bring into prominence.
The problem then remains, what is the special nature of this

functioning which yields to us the sense of beauty?
And here in my view we have the problem which is of prime

importance to aesthetics to-day, and which psychology alone can

answer; namely, what is the characteristic that differentiates the

sense of beauty from all other of our mental states? Until this

question is answered, all else must seem of secondary importance
from the standpoint of theoretical psychology, however important
other forms of inquiry may be from a practical point of view.

When the psychologist turns his attention to this problem, he

at once perceives that he is unable to limit his inquiry to the experi-

ence of the technically trained artist, or even to that of the man of

culture who gives close attention to sesthetic appreciation.

Beauty is experienced by all men. But beauty is very clearly of

varied types, and the sense of beauty is evidently called out by
impressions of most varied nature; but the fields of what is considered

beautiful by different people so far overlap that we can rest assured

that we all refer to an experience of the same characteristic mental

state when we proclaim the existence of beauty; for when we by

general agreement use a special term as descriptive of an objective

impression, we do so because this impression excites in us certain

more or less specific mental states; and when different people use

the same term in reference to objects of diverse nature, we are wont

to assume, and are in general correct in assuming, that these objects

affect these different people in approximately the same way.
It seems probable, therefore, that if the child, who has learned how

to apply words from his elders, speaks of having a beautiful time at

his birthday party; and if the grown man speaks of a beautiful day;
and if the pathologist speaks of his preparation of morbid tissue as

beautiful; and if the artist or connoisseur speaks of the beauty of

a picture, a statue, a work of architecture, a poem, a symphony;
then the word beauty must be used to describe a certain special mental

state which is aroused in different people by very diverse objective

impressions.
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This view is strengthened when we consider that the application

of the term by individuals changes as they develop naturally or by

processes of education; and that the standards of beauty alter in

like manner in a race from generation to generation as it advances

in its development.
We must then look for the essence of beauty in some quality of

our mental states which is called up by different objective impres-

sions in different people, and under diverse conditions by different

objects at different times in the same individual.

Search for such a quality has led not a few psychologists to look

to pleasure as the quality of our mental states which is most likely

to meet our demand. It is true that the consideration of pleasure

as of the essence of the sense of beauty has not often been seriously

carried out ; apparently because so many of what we speak of as our

most vivid pleasures appear as non-aesthetic; and because pleasure

is recognized to be markedly evanescent, while beauty is thought of

as at least relatively permanent.
It is true, also, that there is a hesitancy in using the word pleasure

in this connection; many writers preferring the less definite word

"feeling" in English, and "gefiihl" in German. But by a large

number of psychologists the words pleasure and feeling are used as

synonyms; and those who, with me, agree that what we loosely call

feeling is broader than mere pleasure, must note that it is the pleas-

urable aspect alone of what is called "feeling" that is essentially

related to our experience of the sense of beauty.
All of us agree, in any event, that the sense of beauty is highly

pleasant; and, in fact, most of our sestheticians have come to assume

tacitly in their writings that the field of aesthetics must be treated

as a field of pleasure-getting; and this whether or not they attempt
to indicate the relation of pleasure-getting to the sense of beauty.
The suggestion that pleasure of a certain type is of the essence of

beauty seems the more likely to prove to be satisfactory when we
consider that pleasure is universally acknowledged to be the con-

tradictory opposite of pain; and that we have in ugliness, which is

always unpleasant, a contradictory opposite of beauty.
1

Clearly then it behooves the psychologist to give to the aesthetician

an account of the nature of pleasure which shall be compatible with

the pleasurable nature of the sense of beauty; and which shall either

explain the nature of this sense of beauty in terms of pleasure, or

explain the nature of pleasure in a manner which shall throw light

upon the nature of this sense of beauty to which pleasure is so indis-

solubly attached.

1 It is of course agreed that beauty and ugliness may be held together in a
complex impression: but in such cases the beauty and the ugliness are inherent
in diverse elements of the complex.
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The jesthetician thus demands urgently of the psychologist an

analysis of the nature of pleasure; and an analysis of this so-

called "feeling," which shall show the relation between the two

experiences.

Concerning the latter problem I hope some day to have something
to say.

Those of you who happen to be familiar with my published works

will realize that my efforts in this field in the past have been given

largely to the study of the former problem. My own view may be

succinctly stated thus.

While all aesthetic experiences are pleasant, very evidently much
that we call pleasant is not aesthetic. We must look then for some

special differentiation of aesthetic pleasure, and this I find in its

relative permanency.
This view is led up to by a preliminary study of the psychological

nature of pleasure.

Pleasure I find to be one phase of a general quality Pleasure-

Pain which, under proper conditions, may inhere in any emphasis
within the field of attention, or, to use more common language, may
belong to any element of attention.

Now pleasure, as we have said, is notably evanescent, but this

does not preclude the existence of pleasurable states of attention

which are relatively permanent. This permanency may be given by
the shifting of attention from one pleasurable element to another;

by the summation of very moderate pleasures, etc., etc.

Any pleasant psychic element may become an element of an

aesthetic complex: and any psychic complex which displays a relative

permanency of pleasure is in that fact aesthetic. Our aesthetic states

are those in which many pleasant elements are combined to produce
a relative permanency of pleasure.

Our "non-aesthetic pleasures," so called, are those states which

have been experienced in the past as vividly pleasant, and to which

the name pleasure has become indissolubly attached: but they are

states which do not produce a relatively permanent pleasure in

revival; and correctly speaking, are not pleasures at the moment
when they are described as such, and at the same time as non-

aesthetic.

I am glad to feel that this view of mine is not discrepant from that

of Dr. Santayana, as given in quite different terms in his book en-

titled The Sense of Beauty. For what is relatively permanent has

the quality which I call realness; and that in experience which has

realness we tend to objectify. Hence it is quite natural to find Dr.

Santayana defining beauty as objectified pleasure.

You will not blame me I believe for thinking that my own defini-

tion cuts down closer to the root of the matter than Dr. Santayana 's.
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But if this theory of mine is found wanting, the aesthetician will

not cease to call upon the psychologist for some other which shall

meet the demands of introspection; and which shall accord with our

experiences of the sense of beauty, which in all their wealth of impres-

sion the acsthetician offers to the psychologist as data for the labor-

ious study asked of him.

Before leaving this subject I may perhaps be allowed to call

attention to the fact that the theoretical view, which places the essence

of the sense of beauty in pleasure-getting, if it prove to be true, is

not without such practical applications as are so properly demanded

in our time. For if this view is correct, it teaches to the critic a lesson

of sympathetic tolerance; for he learns from it that the sources from

which the sense of beauty are derived differ very markedly in people

of diverse types: and it warns him also against the danger of an

artificial limitation of his own aesthetic sense, which will surely

result unless he carefully avoids the narrowing of his interests.

It teaches further that there is no validity in the distinction

between fine art and aesthetics on the one hand, and beauty on the

other, on the ground, commonly accepted by the highly trained

artist and connoisseur, that a work of art may deal with what is not

beautiful.

For it appears that while the sense of beauty is the same for each

of us, the objects which call it out are in some measure different for

each.

Now it happens naturally that the objects which arouse the sense

of beauty in a large proportion of men of culture get the word beauty

firmly attached to them in common speech.

But under the view here maintained, it must be that the highly

trained artist or critic will pass beyond these commoner men, and

find his sense of beauty aroused by objects and objective relations

quite different from those which arouse the sense of beauty in the

commoner man; so that often he may deal with the beauty of

elements in connection with which beauty is unknown to the com-

moner man, and even with elements which arouse a sense of ugliness

in the commoner man; while on the other hand the objects which

the commoner man signalizes as most beautiful, and which are cur-

rently so called, may not arouse in the trained artist or critic the

sense of beauty which is now aroused in him by effects of broader

nature, and of less common experience.
The critic and the skilled artist thus often find their aesthetic sense

aroused no longer by the objects to which the word beauty has by com-
mon consent come to be attached

; although with the commonerman he

still uses the word beauty as descriptive of the object which arouses

the aesthetic thrill in the mass of normally educated men. He may
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even find his aesthetic sense aroused by what the common man calls

ugly; although it is for himself really beautiful. And he comes thus

quite improperly to think of the highest art as in a measure inde-

pendent of what he calls "mere beauty." What he has a right to

say, however, is merely this, that the highest art deals with sources

of beauty which are not appreciated by even the generally well-

cultivated man.

I have dwelt, perhaps, too long on the psychological problems

presented when the psychologist attempts to describe to the sesthet-

ician the nature of the experience of one who appreciates beauty;
and have left perhaps too little time for the consideration of the

problems presented when he is asked to consider the nature of the

experience of the artist who creates.

The man who finds strongly developed within him the creative

tendency, is wont, when he turns to theory, to lay emphasis upon

expression as of the essence of beauty.

It is, of course, to be granted that the process of Einfiihlung,
-

of introjection, above referred to, leads us to find a source of

beauty in the vague imagination of ourselves as doing what others

have done; and we may take great aesthetic delight in reading,

through his work, the mind of the man who has created the object

of beauty for us. But evidently, when we lay stress upon this intro-

jection, we are dealing with the appreciation of beauty, and not with

the force which leads to its production.

Just as clearly is it impossible to hold that expression is of the

essence of the making of beauty. For expressiveness is involved in

all of man's creative activity, much of which has no relation what-

ever to the aesthetic. The expression of the character of the genius
of the inventor of a cotton loom, or of the successful leader of an

army in a bloody battle, excites our interest and wonder; but the

expression of his character as read in the result accomplished does

not constitute it a work of beauty.
I speak of this point at this length because in my opinion views

of the nature of that here objected to could not have been upheld

by such men as Bosanquet and V4ron had they kept clear the dis-

tinction referred to above between the experience of one who ap-

preciates beauty, and the experience of the creative artist; and

especially because the teaching of the doctrine thus combated is

wont to lead the artist whose cry is
" Art for Art's sake "

to excessive

self-satisfaction, and to lack of restraint which leads to failure. 1

1 In order to avoid misunderstanding, I may say here that notwithstanding
these remarks I am in full sympathy with the artist who thus expresses himself,
as will presently appear clear.
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The strong hold which this theory has in many minds has its value,

however, in the emphasis of the fact that {esthetic creation is due

to impulses which are born of innate instincts expressing them-

selves in the production of works of beauty. And if this be so, we see

how true it must be that each of us must have in him some measure

of this instinct; and that the appearance of its appropriate impulses
should not mislead us, and induce us to devote our lives to the

worship of the Muses, unless we become convinced that no other work

can adequately express the best that is in us.

But the true artist is not troubled by such questionings. He finds

himself carried away by what is a true passion; by what is instinct-

ive and not ratiocinative.

The fact that the artist is thus impelled by what may well be called

the
"
art instinct

"
is one he could only have learned from the psy-

chologist, or when in introspective mood he became a psychologist

himself; and it carries with it corollaries of great value, which the

psychologist alone can elucidate.

It teaches the artist, for instance, that his success must be deter-

mined by the measure of this instinct that is developed within him;
that he must allow himself to be led by this instinct; that his best

work will be his "spontaneous" work. This, of course, is very far

from saying that he cannot gain by training; but it does mean that

he must learn to treat this training as his tool; that he must riot

trust overmuch to his ratiocinative work, the result of which must

be assimilated by, and become part of, his impulsive nature, if he is

to be a master.

An artist is one in whom is highly developed the instinct which

leads him to create objects that arouse the sense of beauty. The

expression of this instinct marks his appropriate functioning. He

may incidentally do many useful things, and produce results apart
from his special aptitude; but as an artist his work is solely and

completely bound up in the production of works of beauty.

We naturally ask here what may be the function in life of the

expressions of such an instinct as we have been studying, and this

leads us to consider a point of more than psychological interest,

and turns our thought to our second division.

II. The Relation of Esthetics to Philosophy

For while the science of psychology must guide, it can never dom-
inate the thought of the philosopher who strives to gain a broad view

of the world of experience; and, as will appear below, the aesthetician

calls upon the philosopher for aid which the psychologist as such

cannot give.
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a

In approaching this subject we may take at the start what we may
call the broadly philosophical view, and may consider the question

raised immediately above, where we ask what may be the function

in life of the art instinct, and what the significance of the aesthetic

production to which its expression leads.

We, in our day, are still strongly influenced by the awakening of

interest in the problems of organic development with which Darwin's

name is identified, and thus naturally look upon this problem from

a genetic point of view; from which, to my mind, artistic expression

appears, as I have elsewhere argued at length, as one of nature's

means to enforce social consolidation. But it is possible that we
are led, by the present-day interest above spoken of, to over-

emphasize the importance of the processes of the unfolding of our

capacities, and it is not improbable that those who follow us, less

blinded by the brilliancy of the achievement of the evolutionists,

may be able to look deeper than we can into the essence of the

teleological problem thus raised.

That art is worthy for art's sake is the conviction of a large body
of artists, who labor in their chosen work often with a truly martyr-
like self-abnegation; and as an artist I find myself heartily in sym-

pathy with this attitude. But aesthetics looks to philosophy for

some account of this artistic re'Aos, which shall harmonize the artist's

effort with that of mankind in general, from whom the artist all too

often feels himself cut off by an impassable gulf.

The study of aesthetics by the philosopher from the genetic stand-

point has, however, already brought to our attention some facts

which are both significant and helpful.

It has shown us how slow and hesitant have been the steps in the

development of aesthetic accomplishment and appreciation in the

past, and how dependent these steps have been upon economic con-

ditions. This on the one hand arouses in us a demand for a fuller

study of the relations of the artistic to the other activities of men;
and on the other hand is a source of encouragement to critic and

artist alike, each of whom in every age is apt to over-emphasize the

artistic failures of his time, and to minimize the importance of its

artistic accomplishment.
This genetic study has a further value in the guidance of our

critical judgment, in that it shows us that the artistic tendencies

of our time are but steps in what is a continuous process of develop-
ment. It shows us arts which have differentiated in the past, and

teaches us to look for further artistic differentiations of the arts in

the future; thus leading us to critical conclusions of no little im-

portance. This consideration seems to me to be of sufficient interest

to warrant our dwelling upon it a little at length.



428 .ESTHETICS

The arts of greatest importance in our time may well be divided

into the arts of hearing (that is, literature, poetry, music), and the

arts of sight (that is, architecture, sculpture, painting, and the

graphic arts).

These diverse groups of arts were differentiated long before any

age of which we have a shadow of record. But many animals display

what seem to be rudimentary art instincts, in which rhythmical move-

ment (which is to be classed as an art of sight) and tonal accompani-
ment are invariably combined as they are also in the dance and

song of the savage; and this fact would seem to indicate that in the

earliest times of man's rise from savagery the differentiation between

the arts of sight and the arts of hearing was at least very incom-

plete.

But leaving such surmises, we may consider the arts of sight and

the arts of hearing in themselves. We see them still in a measure

bound together; for many an artist, for instance, devotes his life

to the making of paintings which "tell a story," and many a poet
to the production of "word-pictures."

In general, however, it may be said that the arts of hearing and

the arts of sight express themselves in totally different languages,

so to speak, and they have thus differentiated because each can give

a special form of aesthetic delight.

Turning to the consideration of each great group, we note that

the arts of sight have become clearly differentiated on lines which

enable us to group them broadly as the graphic arts, painting,

sculpture, and architecture. Each of these latter has become im-

portant in itself, and has separated itself from the others, just so

far as it has shown that it can arouse the sense of beauty in a man-

ner which its kindred arts of sight cannot approach. It is true that

all the arts of sight hold together more closely than do the arts of

sight, as such, with the arts of hearing, as such. But it is equally
clear that the bond between the several arts of sight was closer

in earlier times than it is to-day, in the fact that modeled paint-

ing, and colored sculpture, were common media of artistic expres-
sion among the ancients, the latter being still conventional even so

late as in the times of the greatest development of art among the

Greeks.

But the modern has learned that in painting and graphics the

artist can gain a special source of beauty of color and line which he

is able to gain with less distinctness when he models the surface upon
which he works : and the experience of the ages has gradually taught
the sculptor once for all that he in his own special medium is able

to gain a special source of beauty of pure form which no other arts

can reach, and that this special type of beauty cannot be brought
into as great emphasis when he colors his modeled forms.
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In my view we may well state, as a valid critical principle, that,

other things being equal, in any art the artist does best who presents

in his chosen medium a source of beauty which cannot be as well

presented by any other art. That this principle is appreciated and

widely accepted (although implicitly rather than explicitly) is

indicated by the unrationalized objection of the cultivated critic in

our day to colored sculpture or to modeled painting, and in a more

special direction to the use of body-color in aquarelle work. The

objection in all cases is apparently to the fact that the artist fails to

bring into prominence that type of beauty which his medium can

present as no other medium can.

Personally I have no objection to raise to a recombination of the

arts of sight, provided a fuller sense of beauty can thereby be

reached. But it is clear that this recombination becomes more and

more difficult as the ages of development pass; and I believe the

principle of critical judgment above enunciated is valid, based as

it is upon the inner sense of cultivated men.

Better than attempts to recombine the already differentiated

arts of sight are attempts to use them in conjunction, so that our

shiftings of attention from one type of beauty to another may carry

with them more permanent and fuller aesthetic effects
;
and such

attempts we see common to-day in the conjunction of architecture

and of sculpture and of painting, in our private and public galleries,

in which are collected together works of the arts of sight.

Now if we turn to the consideration of the arts of hearing, we find

a correspondence which leads to certain suggestions of no little

importance to the critical analyst in our day.

The arts of hearing have become differentiated on lines which

enable us to group them broadly as rhetoric, poetry and literature,

and music. Each has become important in itself, and has gradually

separated itself from the others; and this just so far as it has

shown that it can arouse in men, in a special and peculiar manner,
the sense of beauty.

It is true, as with the arts of sight, that the special arts of hearing
still hold well together.

But in relatively very modern times music, having discovered a

written language of its own, has differentiated very distinctly from

the other arts of hearing. Men have discovered that pure music

can arouse in a special manner the sense of beauty, and can bring to

us a form of esthetic delight which no other art can as well give.

Poetry has long been written which is not to be sung; and it has

gained much in freedom of development in that fact.

Music in our modern times is composed by the greatest masters

for its own intrinsic worth, and not as of old as a mere accompani-
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ment of the spoken word of the poet; the existence of the works

of Bach, to mention no others, tells of the value of this differentiation.

And here I think we may apply with justice the principle of criticism

above presented. The poet and the musician each do their best work,

other things being equal, when they emphasize the forms of beauty
which their several arts alone can give. We have here in my view

a rational ground for the repulsion many of us feel for the so-called
"
programme music "

of our day.

Music and literature of the highest types nowadays present

sources of beauty of very diverse character, and any effort to make
one subsidiary to the other is likely to lessen the aesthetic worth of

each, and of the combination.

Here again I may say that I have no objection to raise to a recom-

bination of the arts of hearing, provided a fuller sense of beauty
can thereby be reached. But this recombination becomes year by
year more difficult as the several arts become more clearly differen-

tiated, and must in my view soon reach its limit.

The opera of to-day attempts such a recombination, but does so

either to the detriment of the musical or of the literary constituent
;

that is clear when we consider the musical ineptitude of such operas
as deal with a finely developed drama, and the literary crudeness of

the plot-interest in Wagner's very best works. Such a consideration

makes very clear to us how much each of the great divisions of the

arts of hearing has gained by their differentiation, and by their inde-

pendent development.
Here as with the arts of sight we may, in my view, hope for

better aesthetic results from the development of each of the differ-

entiated arts in conjunction; rather from the persistent attempt to

recombine them, with the almost certain result that the aesthetic

value of each will be reduced.

6

But aesthetics demands more of philosophy than an account of the

genesis of art, with all the valuable lessons that this involves. It de-

mands, rightly, that it be given a place of honor in any system which

claims to give us a rationalized scheme of the universe of experience.

The aesthetician tells the philosopher that he cannot but ask

himself what significance aesthetic facts have for his pluralism, or

for his monism. He claims that this question is too often overlooked

entirely or too lightly considered; but that it must be satisfactorily

answered if the system-maker is to find acceptance of his view.

And in the attempt to answer this and kindred questions, the aesthet-

ician is not without hope that no inconsiderable light may be thrown

by the philosopher upon the solution of the problems of aesthetics

itself.
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Nor are the problems of aesthetics without relation to pure meta-

physic. The existence of aesthetic standards must be considered by
the metaphysician, and these standards, with those of logic and ethics,

must be treated by him as data for the study of ontological

problems.
But beyond this, aesthetics cries out for special aid from the

ontologist. What, he asks, is the significance of our standards of

aesthetic appreciation? What the inner nature of that which we call

the real of beauty? What its relation with the real of goodness
and the real of truth?

From a practical standpoint this last-mentioned question is of

special import at this time. For the world of art has for centuries

been torn asunder by the contention of the aesthetic realists and their

opponents.

That, in its real essence, beauty is truth, and truth beauty, is

a claim which has often been, and is still heard; and it is a claim

which must finally be adjudicated by the metaphysician who deals

with the nature of the real.

The practical importance of the solution of this problem is brought
home forcibly to those who, like myself, seem to see marked aesthetic

deterioration in the work of those artists who have been led to listen

to the claims of aesthetic realism; who learn to strive for the expres-

sion of truth, thinking thus certainly to gain beauty.

That many great artists have announced themselves as aesthetic

realists shows how powerfully the claims of the doctrine appeal to

them. But one who studies the artistic work of Leonardo, for in-

stance, cannot but believe that he was a great artist notwithstanding

his theoretical belief, and cannot but believe that all others of his

way of thinking, so far as they are artists, are such because in them

genius has overridden their dogmatic thought.

It is clearly not without significance that the world of values is

by common consent held to be covered by the categories of the True,

the Good, and the Beautiful. This common consent seems surely

to imply that each of the three is independent of the other two,

although all are bound together in one group. And if this is true, then

the claim of the aesthetic realist can surely not be correct.

But this claim will not be overthrown by any reference to such

a generalization as that above mentioned. The claim of the aesthetic

realist is based upon what he feels to be clear evidence founded upon
experience; and he cannot be answered unless we are able to show
him what is the basis for his ready conviction that truth and beauty
are one and identical; and what is the true relation between the

True, the Good, and the Beautiful. And these problems, which are

in our day of vital importance to the artist, the philosopher alone

can answer.
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In my view some aid in the solution of this problem may be gained

from the examination of the meaning of our terms. From this study

I feel convinced that we must hold that when we speak of the True,

and the Good, and the Beautiful, as mutually exclusive as above,

we use the term "true" in a narrow sense. On the other hand, the

True is often used in a broader sense, as equivalent to the Real.

This being so we may say

That the Beautiful is the Real as discovered in the world of im-

pression; the relatively permanent pleasure which gives us the sense

of beauty being the most stable characteristic of those parts of the

field of impression which interest us we may also assent

That the Good is the Real as discovered in the world of expression,

that is, of impulse, which is due to the inhibited capacity for expres-

sion, and the reaction of the self in its efforts to break down the

inhibition. And in the same way we may conclude

That the True (using the term in the narrow sense) is the Real

as discovered in the realm of experience exclusive of impression or

expression.

a. The Real of Impression The Beautiful

THE REAL
J. The Real of Expression The Good

(.
The Real in realms The True

exclusive of a and ft (in the narrower

sense of the term)

or

THE TRUE

(in the broad sense

of the term)

That the Beautiful is part of the REAL, that is, is always the

TRUE, using the term true in the broader sense, is not questioned: and

that, in my view, is the theoretical truth recognized by the aesthetic

realists. But in practice the aesthetic realist maintains that the

beautiful is always the true, using the term true in the narrow sense,

and in this, in my view, lies his error.

And if the relation of the beautiful to the true demands the

attention of the philosopher, equally so does the relation of the

beautiful to the good. As I look upon it, all of the true (using the

term as above explained in the narrow sense) and all of the good,

so far as either involve relatively permanent pleasure of impression,

are possible elements of beauty. But, on the other hand, it seems clear

that neither the true (still using the term in the narrower sense), nor

the good, is necessarily pleasing, but may be unpleasant, and there-

fore either of them may be an element of ugliness, and as such must

lose all possibility of becoming an element in the beautiful.

One further word, in closing, upon the closely allied question as

to the nature of worth-values. There is a worth-value involved

in the Good, and a worth-value involved in the True, and a worth-
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value involved in the Beautiful: and each of these worth-values

in itself seems to be involved with pleasure-getting. Now if this is

the case, then, under the theory I uphold, any worth-value should be

a possible aesthetic element, and this I think it will be granted is

true. But the distinctions between these worth-values are on differ-

ent planes, as it were. In the case of the worth-value of the Good,
we appreciate the worth-pleasure within the realm of the Real of

Expression, that is, of impulse. In the case of the worth-value of the

True (in the narrow sense) ,
we appreciate the worth-pleasure within

the realm of the Real in other fields than that of expression or that

of impression. In the case of the worth-value of the Beautiful, we

appreciate the worth-pleasure within the realm of the Real of Im-

pression; that is, we appreciate, with pleasure, the significance for

life of the existence of relatively permanent pleasure in and for

itself.
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IN the development which our science has undergone, from its

inception up to the present day, one thought has held a central

place, that aesthetic enjoyment and production, beauty and art,

are inseparably allied. The subject-matter of this science is held to

be, though varied, of a unitary character. Art is considered as the

representation of the beautiful, which comes to pass out of an aes-

thetic state or condition, and is experienced in a similar attitude; the

science which deals with these two psychical states, with the beau-

tiful and its modifications, and with art in its varieties, is, inasmuch

as it constitutes a unity, designated by the single name of aesthetics.

The critical thought of the present day is, however, beginning to

question whether the beautiful, the aesthetic, and art stand to one

another in a relation that can be termed almost an identity. The

undivided sway of the beautiful has already been assailed. Since

art includes the tragic and the comic, the graceful and the sublime,

and even the ugly, and since aesthetic pleasure can attach itself to

all these categories, it is clear that by "the beautiful" something
narrower must be meant than the artistically and aesthetically

valuable. Yet beauty might still constitute the end and aim and

central point of art, and it might be that the other categories but

denote the way to beauty beauty in a state of becoming, as it

were.

But even this view, which sees in beauty the real content of art,

and the central object of aesthetic experiences, is open to serious

question. It is confronted with the fact, above all, that the beauty

enjoyed in life and that enjoyed yi art are not the same. The artist's

copy of the beauty of nature takes on a quite new character. Solid

objects in space become in painting flat pictures, the existent is in

poetry transformed into matter of speech; and in every realm is a
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like metamorphosis. The subjective impression might indeed be sup-

posed to remain the same, in spite of objective differentiations. But

even that is not the case. Living human beauty an acknowledged

passport for its possessor speaks to all our senses; it often stirs

sex-feeling in however delicate and scarce conscious a way; it

involuntarily influences our actions. On the other hand, there hangs
about the marble statue of a naked human being an atmosphere
of coolness in which we do not consider whether we are looking

upon man or woman: even the most beauteous body is enjoyed as

sexless shape, like the beauty of a landscape or a melody. To
the aesthetic impression of the forest belongs its aromatic fragrance,

to the impression of tropical vegetation its glowing heat, while

from the enjoyment of art the sensations of the lower senses are

barred. In return for what is lost, as it were, art-enjoyment involves

pleasure in the personality of the artist, and in his power to over-

come difficulties, and in the same way many other elements of pleas-

ure, which are never produced by natural beauty. Accordingly,
what we call beautiful in art must be distinguished from what goes

by that name in life, both as regards the object and the subjective

impression.

Another point, too, appears from our examples. Assuming that

we may call the pure, pleasurable contemplation of actual things

and events aesthetic, and what reason against it could be adduced

from common usage ? it is thus clear that the circle of the aesthetic

is wider than the field of art. Our admiring and adoring self-abandon-

ment to nature-beauties bears all the marks of the aesthetic attitude,

and needs for all that no connection with art. Further: in all in-

tellectual and social spheres a part of the productive energy expresses

itself in aesthetic forms; these products, which are not works of art,

are yet aesthetically enjoyed. As numberless facts of daily experience

show us that taste can develop and become effective independently
of art, we must then concede to the sphere of the aesthetic a wider

circumference than that of art.

This is not to maintain that the circle of art is a narrow section of

a large field. On the contrary, the aesthetic principle does not by
any means exhaust the content and purpose of that realm of human

production which taken together we call "art." Every true work of

art is extraordinarily complex in its motives and its effects; it arises

not alone from the free play of aesthetic impulse, and aims at more

than pure beauty at more than aesthetic pleasure. The desires

and energies in which art is grounded are in no way fulfilled by
the serene satisfaction which is the traditional criterion of the aes-

thetic impression, as of the aesthetic object. In reality the arts

have a function in intellectual and social life, through which they are

closely bound up with all our knowing and willing.
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It is, therefore, the duty of a general science of art to take account

of the broad facts of art in all its relations. ^Esthetics is not capable

of this task, if it is to have a determined, self-complete, and clearly

bounded content. We may no longer obliterate the differences

between the two disciplines, but must rather so sharply separate

them by ever finer distinctions that the really existent connections

become clear. The first step thereto has been taken by Hugo Spitzer.

The relation of earlier to current views is comparable to that between

materialism and positivism. While materialism ventured on a pretty

crude resolution of the spiritual into the corporeal, positivism set

up a hierarchy of forces of nature, whose order was determined

by the relation of dependence. Thus mechanical forces, physico-

chemical processes, the biological and the social-historical groups

of facts, are not traced back each to the preceding by an inner con-

nection, but are so linked that the higher orders appear as dependent
on the lower. In the same way is it now sought to link art methodo-

logically with the aesthetic. Perhaps even more closely, indeed, since

already aesthetics and the science of art often play into each other's

hands, like the tunnel-workers who pierce a mountain from opposite

points, to meet at its centre.

Often it so happens, but not invariably. In many cases research is

carried to an end, quite irrespectively of what is going on in other

quarters. The field is too great, and the interests are too various.

Artists recount their experiences in the process of creation, con-

noisseurs enlighten us as to the technique of the special arts; socio-

logists investigate the social function, ethnologists the origin, of art;

psychologists explore the aesthetic impression, partly by experiment,

partly through conceptual analysis; philosophers expound aesthetic

methods and principles; the historians of literature, music, and

pictorial art have collected a vast deal of material and the sum
total of these scientific inquiries constitutes the most substantial

though not the greatest part of the published discussions, which,

written from every possible point of view, abound in newspapers and

magazines.
" There is left, then, for the serious student, naught but

to resolve to fix a central point somewhere, and thence to find out

a way to deal with all the rest as outlying territory
"
(Goethe).

Only by the mutual setting of bounds can a united effect be pos-

sible from the busy whirl of efforts. Contradictory and heterogeneous
facts are still very numerous. He who should undertake to construct

thereof a clear intelligible unity of concepts, would destroy the

energy which now proves itself in the encounters, crossing of swords,
and lively controversies of scholars, and would mutilate the fullness

of experience which now expresses itself in the manifold special

researches. System and method signify for us: to be free from one

system and one method.
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II

If we are to consider how we answer to-day the questions put for

scientific consideration as to the facts of aesthetic life and of art, first

of all we must examine the now prevailing theories of aesthetics.

They fall in general into aesthetic objectivism and subjectivism.

By the first collective name we denote the aggregate of all theories

which find the characteristic of their field of inquiry essentially in

the quality and conformation of the object, not in the attitude of

the enjoying subject. This quality of the aesthetically valuable is

most easily characterized by setting it off against reality. Of such

theories, which explain "the beautiful" and art from their relation

to what is given in nature, naturalism stands for the identity of real-

ity and art, while the various types of idealism set forth art as more

than reality, and vice versa, formalism, illusionism, sensualism make
it less than reality.

Inasmuch as naturalism is still defended only by a handful of

artists who write, it would appear almost superfluous to consider it.

But the refutations of it which are still appearing indicate that it

must have some life. And in fact it still exists, partly as a present-

day phenomenon in literature and art, partly as the permanent
conviction of many artists. The naturalistic style testifies to revolt

against forms and notions which are dying out; it therefore only
attains a pure aesthetic interest through the theoretic ground which

is furnished to it. And this rests above all on the testimony of the

artists, who are never weary of assuring us that they immediately

reproduce what is given in perception. Some philosophical concep-
tions also play therein a certain role. The adherents of the doctrine

that only the sense-world is real come as a matter of course to the

demand that art shall hold itself strictly to the given. And what

optimist, who explains the real world as the best of all possible

worlds, can, without a logical weakening, admit a play of imagination
different from the reality.

^Esthetic idealism, too, is borne on general philosophical premises.

However various these are, in this they all agree, that the world is

not exhausted by appearances, but has an ideal content and import,
which finds in the aesthetic and in the field of. art its expression to

sense. Even H. Taine sets to art the task of showing the
" dominant

character" of things. The beautiful is therefore something higher
than the chance reality, the typical as over against the anomalous

natural objects or events. It can then be objectively determined

with reference to its typical and generic quality and in its various

kinds.

Somewhat different is the case of formalism, which to-day scarcely

anywhere sets up to be a complete system of aesthetics, but points
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the way for many special investigations. It seeks the aesthetically

effective in the form, that is, in the relation of parts, which has

in principle nothing to do with the content of the object. Every

clearly perceptible unity in manifoldness is pleasing. As "this ar-

rangement is independent of the material, the aesthetic represents

only a part of reality.

In contrast thereto, illusionism sets the world of art as a whole over

against the whole of reality. Art, we are taught, presents neither a

new aspect of the given nor hidden truth, nor pure form; it is, on the

contrary, a world of appearance only, and is to be enjoyed without

regard to connections in life or any consequences. While we other-

wise consider objects as to how they serve our interests and as to their

place in the actual connection of all things, in the aesthetic experi-

ence this twofold relation is disregarded. Neither what things do

for us, nor what they do for each other, comes in question. Their

reality disappears, and the beautiful semblance comes to its own.

Konrad Lange has given to this theory especially in the line of

a subjective side, to be later mentioned its modern form.

Of the nearly-related sensualism, the connoisseur Fiedler and the

sculptor Hildebrand are the recent exponents; Rutgers Marshall

and certain French scholars also lean that way. It is the arts which

fix the transitory element of the sense-image, hold fast the fleeting,

make immortal the perishable, and lend stability and permanence
to all pleasure that is bound up with perception. What does painting

accomplish? Arisen, as it has, out of the demands of the eye, its

sole task is to gain for the undefined form- and color-impressions

of reality a complete and stable existence. The same thing is true

of the other arts, for their respective sense-impressions.

To sum up: If the transformation of reality is acknowledged as

a fundamental principle of art, it is also to be granted that this takes

place in two directions: art is something at once more and less

than nature. Inasmuch as art pushes on to the vraie vtrite, and at

the same time disregards all that is not of the nature of semblance

or image, we take from it ideas whose quality enthralls and stimu-

lates us quite independently of their meaning. Art shows us the

hidden essence of the world and of life and at the same time the

outsides of things created for our pleasure; that is, the objects'

pure psychical value in the field of sense. It involves a lifting above

nature, and at the same time the rounding out and fulfillment of

sense. Through making of the object an image, it frees us from our

surrounding, yet leaves us at rest in it.

We turn now to aesthetic subjectivism. Under this name we com-

prehend the essence of those theories which seek to solve the riddle

of the beautiful by a general characterization of the aesthetic atti-

tude. Many of these are near akin to the objectivistic theories; some,
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however, like the Einfiihlung-iheory, take an independent place.

For the former, therefore, a mere indication will suffice. The prin-

ciple of "semblance" or illusion, for instance, takes very easily a

subjectivistic turn. The question then runs: Wherein consists the

peculiarity of the conscious processes which are set up by the

semblance? The answer as given by Meinong and Witasek starts

from the fact that the totality of psychical processes falls into two

divisions. Every process in one division has its counterpart in the

other. To perception corresponds imagination, to judgment assump-

tion, to real emotion ideal emotion, to earnest desire fancied desire.

The aesthetic emotions attached to assumptions, the semblance-emo-

tions, that is, are held to be scarcely distinguished, so far as feeling

goes, from other emotions, at most, perhaps, by less intensity. The
chief difference lies rather in the premise or basis of emotion; and

this is but a mere assumption or fiction.

A critical treatment of the foregoing cannot be given here; nor

of that view which explains the psychical condition in receiving an

aesthetic impression as a conscious self-deception, a continued and

intentional confusion of reality and semblance. The aesthetic pleas-

ure, according to this, is a free and conscious hovering between

reality and unreality; or, otherwise expressed, the never successful

seeking for fusion of original and copy. The enjoyment of a good

graphic representation of a globe would then depend on the specta-

tor's now thinking he sees a real globe, now being sure he views a flat

drawing.
While this theory has found but small acceptance, comparatively

many modern ajstheticians admit the doctrine of Einfilhlung. Its

leading exponent, Theodor Lipps, sees the decisive characteristic

of aesthetic enjoyment in the fusion of an alien experience with one's

own: as soon as something objectively given furnishes us the pos-

sibility of freely living ourselves into it, we feel aesthetic pleasure.

In the example of the Doric column, rearing itself and gathering
itself up to our view, Lipps has sought to show how given space-
forms are interpreted first dynamically, then anthropomorphically.
We read into the geometrical figure not only the expression of energy,
but also free purposiveness. In so far as we look at it in the light of

our own activity, and sympathize with it accordingly, in so far do

we feel it as beautiful.

Could we enter upon a critical discussion at this point, it would

appear that the Einfiihlung-iheory, like its fellows, is open to well-

founded objections. The belief in an all-explaining formula is a

delusion. In truth, every one of the enumerated principles is rela-

tively justified. And as they all have points of similarity with one

another, it is not hard for the past-master of terminology and the

technique of concepts to epitomize the common element in a single
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phrase or thesis. Still, nothing is gained by such a general formula

in presence of the richness of the reality; and just as little as an

exhaustive treatment would have to prove by the concise ex-

positron of a single method for our science.

The specially approved method of procedure at the present day
is that of psychological description and explanation. It seems,

indeed, very natural to see in psychical processes the real subject-

matter of aesthetics, and in psychology, accordingly, the science to

which it is subordinate. Some philosophers, however, among
whom I may instance Jonas Cohn, wish to make of aesthetics a

science of values, and demand that on the basis of this pretension

the mutually contradictory judgments of taste and types of art be

tried and tested. They will have no mere descriptive and explan-

atory aesthetics, but a normative, precept-giving science. In truth,

the opposition of the schools is complete at every point; in the

writings of Volkelt and Groos we have the proof of it.

Ill

The special research in the narrower field of aesthetics is at present

almost entirely of the psychological type. Our survey can touch

upon only the salient points.

The aim of the extended and highly detailed study consists in

fixating by means of psychological analysis the course of develop-

ment, the effective elements, and the various sub-species of the

aesthetic experience. Certain philosophers seek a point of departure
for this undertaking in the aesthetic object. Thus Volkelt's system
of aesthetics finds, for the chief elements of the aesthetic enjoyment,

corresponding features in the object; in the special field of poetry

Dilthey has undertaken an analysis along the same lines. For the

most part, however, such dissection is limited to the subjective side.

In Wundt's psychology, for instance, the aesthetic state of mind is

shown to be built up of sense-feelings, feelings from perceptions, in-

tellectual and emotional excitements; the most important, that is

to say, the pivotal feelings, which are bound up with space- and

time-relations, become in turn the condition and support of the

higher emotions, because they lead over from the field of sense to

that of the logical and emotional.

If we limit ourselves to the psychological, we must first ask in what
order the elements of the aesthetic impression are wont to follow

each other. The phases of this development, however, are as yet not

completely studied, although they are of great significance for the

differences in enjoyment. The second problem concerns the con-

stitution (taken as timeless) of the experience. All formulas which

attempt to fix in two words the totality of the impression fail com-
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pletely, so extraordinarily various and manifold are the factors

which enter here. What these are and how they are bound together

is the question which is for the moment occupying the scholars with

a leaning toward psychology.
The aesthetic impression is an emotion. According to the well-

known sensualistic theory of the emotions, it must therefore, in so

far as it is more than mere perception or idea, be composed of organic

sensations. G. Sergi and Karl Lange see, in fact, the peculiar mark
of the aesthetic experience in the general sensations which appear
with changes in the circulation, breathing, etc. Unprejudiced ob-

servation must satisfy every one that much in all this is true. On the

other hand, it is to be recalled that we do not reckon the organic

sensations to the objective qualities of aesthetic things, and that we
cannot explain in this way every artistic enjoyment. In regard to

the sensations of taste, smell, and touch, it is generally granted that

they play a certain role, even if but as reproduced ideas and only

corresponding to natural beauty. Among the most important are

the attitudes and imitative movements, finely investigated by Karl

Groos. To this must be added the sensuous pleasantness of visual

and auditory perceptions. Yet attempts to construct the aesthetic

enjoyment in its entirety out of such pleasure-factors have so far

failed. The undertaking is already wrecked by the fact that elements

displeasing to sense are demonstrably present, not only as negligible

admixtures, but also as necessary factors. The relations of similarity

between the contents of a sense-field, and the spatial and temporal
connections between them, are in any case incomparably more

important; we devote to them, therefore, a closer consideration.

Finally, alongside all these ideas and the emotions immediately

attaching to them, there must be arrayed the great multitude of as-

sociated ideas and connecting judgments. While scientific interest

in the associations is now greatly diminished, explanations of the

part played by the element of really active thought are many. A
universally satisfactory theory is still to appear, for the reason,

above all, that here the higher principles referred to in the second

section enter into the problems.

Elementary aesthetics, therefore, willingly turns aside from the

shore of the very complex emotions, of association, Einfuhlung and

illusion in aesthetic experience, in order to become independent of

general philosophical fundamental conceptions. Its own field lies

in the general province of the perception-feelings determined im-

mediately by the object: more exactly, of the feelings which are

induced partly by the relations of similarity, partly by the outer

connections of the content, partly by the linking of inner and outer

reference. The qualitative relation of tones and colors arouses the

so-called feelings of harmony; the arrangement in space and time
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awakes the so-called proportion-feelings; and from the cooperation

of these two arise the so-called aesthetic complication-feelings.

As to the pleasurable tone- and color-combinations, the first are

better known than the second, but even their theoretical interpre-

tation is not well settled. More diligent and successful at the present

time is the research into the proportion-feelings. So far as these

bear upon space-relations, they attach either to the outlines or to the

structure of the forms. The bounding-lines are then pleasing, One

theory holds, when they correspond to the easiest eye-movements, and

in general meet our desire for easy, effortless orientation. Another

doctrine, already referred to, explains their aesthetic value from a

cooperation of general bodily feelings, especially sensations of

breathing and equilibrium. Accurate experiments have not succeeded

in finding a real conformity to law in either the first or the second

direction. In the matter of the structure of forms, symmetry in

the horizontal position, and the proportion of the golden section

in the vertical position, receive especial attention. All those space-

shapes may be called symmetrical, whose halves are of equal value

aesthetically. How these must be constituted, has been studied

from the simplest examples by Miinsterberg and his pupils. The

explanation of the pleasing quality rests on the fact that the spec-

tator feels the contents of the two halves lines or colors as light

or heavy, according to the energy expended in the necessary eye-

movements. In the vertical position a proportion pleases (as does also

equality) which is only approximately that of the golden section.

The numerical proportion is, therefore, not the ground of pleasure,

for otherwise those forms which are thus divided would have to be

the absolutely beautiful ones, and the more a division varies from

the exact fraction, the more would it sacrifice in beauty. The ground
of pleasure is rather descried in the fact that in the case of the pleas-

ing divisions the two parts stand out as distinct and clearly character-

ized, while yet unified effect is secured through the larger division.

The temporal ordering of an aesthetic character is that of rhythm.

Concerning the aesthetic object as such that is, concerning the

metrical forms in music and poetry, the views are still widely at

variance; this is true to a startling degree of poetry, because here

the element, that is to say, the word, is made up of accented and

unaccented syllables, and because the tendency of the logical con-

nections of the content to create unities cannot be done away with.

This state of confusion is so much the more to be regretted as it is

just to the art-forms that the most vivid rhythmical feelings attach.

The psychological investigations of Neumann, Bolton, and others have

nevertheless much advanced our scientific understanding of this

subject. A new point of view has taken its rise from Souriau and

Biicher: the connection of the art-rhythm with work and other
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aspects of life. But the collections of data do not yet render it pos-

sible to settle the question in what manner the rhythm of work,
which runs on automatically, and is controlled by the idea of an end,

goes over into aesthetic rhythm.
The aesthetic complication-feelings are bound up with the products

of the fusion of rhythm and harmony, form and color, rhythm and

form (in the dance). So long as all elements of association are

neglected, three characteristics remain to be noted: an increasing

valuation of the absolute quantity, the building-up of definite

form-qualities (Gestaltqualitateri) ,
and a reconciliation or harmony

of differences, wherein the quantitative element is wont to be the

unifying, the qualitative element the separating factor. I need not,

however, go any further into investigations so subtle, and even now

merely in their beginnings.

This entire fabric of experience, from which but a few threads

have been drawn out 'to view, can now take on various shadings.

These we refer to as the aesthetic moods, or by a less psychological

name, as the aesthetic categories. The ideally beautiful and the

sublime, the tragic and the ugly, the comic and the graceful, are

the best known among them. Modern science has shown most

interest in the study of the comic and the tragic. According to Lipps
the specific emotion of the comic arises in the disappointing of a

psychical preparation for a strong impression, by the appearance of

a weak one. The pleasurable character of the experience would be

explained by the fact that the surplus of psychical impulse, like every
excess of inner energy, is felt as agreeable. The tragic mood is under-

stood no longer as arising in fear and pity, but in pathos and wonder.

Its objective correlate should not be forced to the standard of a nar-

row ethics. The demand for guilt and expiation is being given up
by progressive thinkers in aesthetics; but the constituents of tragedy
remain fast bound to the realm of harshness, cruelty, and dissonance.

IV

From a period more or less remote there have existed poetics,

musical theory, and the science of art. To examine the presupposi-
tious methods and aims of these disciplines from the epistemological

point of view, and to sum up and compare their most important results
,

is the task of a general science of art; this has besides, in the pro-

blems of artistic creation and the origin of art, and of the classification

of the arts and their social function, certain fields of inquiry that

would otherwise have no definite place. They are worked, indeed,

with remarkable diligence and productiveness. Most to be regretted,

on the other hand, is that so little energy is applied to laying the

epistemological foundation.

The theory of the development of art deals with it both in its
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individual and its generally human aspect. Concerning the genesis of

the child's understanding of art and impulse to produce it, we learn

most from the studies of his drawings at an early age. Here are to be

noted well-established results of observation, even though as yet

they are few in number. On the other hand, the unfolding of primi-

tive feeling (and of the aesthetic sensibility in general) during the

historical period can be only approximately reconstructed. The
case is somewhat more favorable for our information in regard to

the beginnings of art, especially since it has been systematically
assembled by Ernst Grosse and Yrjo Him. If the conditions of the

most primitive of the races now living in a state of nature can be

taken as identical with those at the beginnings of civilization, the

entire vast material of ethnology can be made use of. We gather
therefrom how close-linked with the useful and the necessary beauty

is, and see clearly that primitive art is thoroughly penetrated by
the purpose of a common enjoyment, and is effective in a social

way; but beyond such general principles one can go only with

hesitation, inasmuch as it seems scarcely possible to us, creatures of

civilization, to fix the boundaries of what is really art there.

There are three conjectures as to objective origin of art. It may
be that the separate arts have developed through variation from one

embryonic state. Or the main arts may have been separate from the

very first, having arisen independently of each other. Finally, there

are middle views, like that of Spencer, according to which poetry,

music, and the dance on the one hand, and writing, painting, and

sculpture on the other, have a common root
;
Mobius recognizes

three primitive arts, to which the others are to be traced back. The
solution of this question would be especially important, could one

hope to find Darwin's maxim for all jetiological investigations valid

for our field also that is, the dictum: What is of like origin is of

like character.

As psychological conditions, from which the artistic activity is

likely first to have arisen, the following functions have been suggested
and maintained, the play-instinct, imitation, the need for expres-
sion and communication, the sense for order and arrangement, the

impulse to attract others and the opposed impulse to startle others.

Each of these theories of conditions must clearly connect itself with

one or the other of the just-named three theories of art's origin; for

had music, taken in our sense and independently, existed as the orig-

inal art, one could hardly regard imitation as the psychological root

of art. All in all, art and the play-instinct seem most closely linked;

that is also true, moreover, of its development with the child.

I come now to the fundamental problems of artistic creation. It

is they which present the most obstinate difficulties to a thorough
and exact investigation, for experiment and the questionnaire
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which aims at least at objectivity are but crude means to the end in

view. At the present day, as earlier, there is no lack of very refined,

penetrating, nay, brilliant analyses. They have a very superior

value; but this has no special significance for the present status of

the science of aesthetics, and for this reason our survey may omit

much which yet has an interest for individuals.

The influence of heredity and environment on the artist's talent

offers rich material for research. It is conceded, though, that how
the most material and the most spiritual of influences, inherited

disposition and fortune, the chances of descent and of intercourse

with one's fellows, how all this is fused into a unified personality,

can be established only in individual cases by the biographer. A
second very productive source of material in this field has appeared
in Lombroso's teaching. The days of the most violent controversies

lie behind us. It is the general view that genius and madness are near

allied in their expression, that greatness often breaks forth in ques-

tionable forms; yet the majority perceive an essential difference
;
the

genius points onward, the mind diseased harks back; the one has

purposive significance, the other not. After these more introductory

inquiries, the real work begins. It has to show in what points every

gift for art coincides with generally disseminated abilities, and just

where the specific power sets in, which the inartistic person lacks.

Take, for example, the memory. We retain this or that fact without,

in principle, any selection; the remembrance of the artist, on the

contrary, is dissociative it favors what is needful for its own ends.

The memory of the painter battens on forms and colors, the conscious-

ness of the musician is filled with melodies, the fancy of the poet lives

in verbal images. Also there is, especially with the poet, a peculiar

understanding for human experience. In truth, the fanciful products
of the imagination are but the starting-point for the soul-know-

ledge of the poet. Without going into details we may say that by
such penetrating and delimiting analyses the superficial theory of

inspiration is refuted. Out of date, too, is the notion that the artist

creates by putting things together; on the contrary his fancy has

the whole before the parts, it gives to the world an organism, within

which the members gradually emerge. Finally, the old theory is no

longer held, according to which the work of art is already complete
in the inner man, and afterwards merely brought to light. More

definite explanation is given by the doctrine of the way in which the

artistic creation runs its course,, which Eduard v. Hartmann has

skillfully portrayed.
The distinction, differentiation, and comparison of the special

arts offers opportunity and material for numberless special studies.

Music is here the least fully represented, since it is only exceptionally

that art-philosophers feel a drawing to it. So much the more, how-
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ever, are they inclined to the study of poetry. They are even begin-

ning to make use, for poetics, of the studies in the modern psychology
of language, since it is acknowledged that language is the essential

element, and thus more than the mere form of expression, of the

poetic art. Th. A. Meyer has thrown an apple of discord into the

question whether the poet's words must, in order to arouse pleasure,

also awake an image. As a matter of fact, the aesthetic value does not

depend on the chance-aroused sense-images, but on the language
itself and the images which belong to it alone; for the most part the

understanding of the words alone is enough to give the reader pleas-

ure in the poetic treatment. In the general theory of the visu-

ally representative arts there are two opposed doctrines. The one

emphasizes the common element, and believes to have found it in

the so-called Fernbild, or distant image; the other seeks salvation

in complete separations as, for instance, of the so-called Griffel-

kunst. or graphic art, from painting. Only the future can decide

between them.

The existence of the total field of art as an essential factor of hu-

man endeavors involves difficulties which must be removed partly

in the philosophical consideration, partly in law and governmental

practice. The last factor must also be taken account of in theory;

for so long as we do not live in an ideal world, the state will claim

regulation of all activities expressing themselves in it, and so also

of art. In first line it is concerned for art's relation to morality.

Secondly, the social problems arise: does art bind men together,

or part them? does it reconcile or intensify oppositions? is it demo-
cratic or aristocratic? is it a necessity or a luxury? does it further or

reject patriotic, ethical, pedagogical ends? The artistic education of

youth and the race has become a burning question. Ruskin and

Morris have developed from art-critics to critics of the social order,

and Tolstoi has contracted the democratic point of view to the

most extreme degree. With the desire to transform art from the

privilege of the few to the possession of all is, finally, bound up the

wish that art shall emerge from another seclusion that it shall not

be throned in museums and libraries, in theatres and concert-halls,

but shall mingle with our daily domestic life, and direct and color

every act of the scholar as of the peasant.
A satisfactory decision can be reached only by him who keeps in

view that art presents something extremely complex, and by no
means mere aesthetic form; that, on the other hand, the aesthetic

life is not banished to the sacred circle of the independent arts.

With this conclusion we return to the first words of our reflec-

tions herein presented.



SPECIAL BIBLIOGRAPHY PREPARED BY PROFESSOR
DESSOIR FOR HIS ADDRESS

Thaddeus L. Bolton, Rhythm. Americ. Joum. of Psychol. 1894. vr, 145-238.

Karl Biicher, Arbeit und Rhythmus. 3 Aufl. Leipzig, 1902.

Jonas Cohn, Allgemeine ^Esthetik, Leipzig, 1901.

Wilhelm Dilthey, Die Einbildungshraft des Dichters. Bausterne zu einer Poetik.

In den Zeller gewidmeten Philos. Aufsatzen, Leipzig, 1887.

Konrad Fiedler, Schriften iiber Kunst, Leipzig, 1896.

Karl Groos, Der sesthetische Genuss. Giessen, 1902.

Ernst Grosse, Die Anfange der Kunst, Freiburg und Leipzig, 1894.

Eduard von Hartmann, ^Esthetik, Bd. n, Leipzig, 1887.

Adolf Hildebrand, Das Problem der Form in der bildenden Kunst. 3 Aufl.

Strassburg, 1901

Yrjo Hirn, The Origins of Art, London, 1900. Deutsch, Leipzig, 1904.

Karl Lange, Sinnesgeniisse und Kunstgenuss, Wiesbaden, 1903.

Konrad Lange, Das Wesen der Kunst, 2 Bde., Berlin, 1901.

Theodor Lipps, Raumsesthetik, Leipzig, 1897. Komik und Humor, Hamburg
und Leipzig, 1898. Grundlegung der ^Esthetik, Hamburg und Leipzig, 1903.

Cesare Lombroso, L'uomo di genio in rapporto alia psichiatria. Torino, 1889

und ofter, Deutsch, Hamburg, 1890.

H. Rutgers Marshall, ^Esthetic Principles, New York, 1895.

A. Meinong, Ueber Annahmen, Leipzig, 1902.

Th. A. Meyer, Das Stilgesetz der Poesie, Leipzig, 1901.

P. J. Mobius, Ueber Kunst und Kiinstler, Leipzig, 1901.

William Morris, Hopes and Fears for Art, London, 1882. Deutsch, Bd. i, Die

niederen Ktinste. n, Die Kunst des Volkes. Leipzig, 1891.

Hugo Munsterberg, Harvard Psychological Studies. Bd. i, Lancaster, Pa. 1903.

Ernst Neumann, Untersuchungen fur Psychologic und ^Esthetik des Rhythmus
Philos. Studien, heraug. von W. Wundt, 1894, Bd. x.

John Ruskin, Ausgewahlte Werke. Deutsch, Leipzig, 1900,

G. Sergi, Dolore e Piacere, Milano, 1897.

Paul Souriau, L'esthe'tique du mouvement, Paris, 1889.

Herbert Spencer, Principles of Psychology, Bd. u, London, 1855 und ofter.

Deutsch, Leipzig, 1875, ff.

Hugo Spitzer, Hermann Hettners Kunstphilosophische Anfange, Graz, 1903.

H. Taine, Philosophic de 1'Art. 2 Bde. 7 Aufl. Paris, 1895.

Leo Tolstoj, Was ist Kunst? Deutsch, Berlin, 1892.

Johannes Volkelt, /Esthetische Zeitfragen, Muenchen, 1895. Deutch, Leipzig,

1902-03. jEsthetik des Tragischen, Munchen, 1897. System der ^Esthetik,

Bd. i, Munchen, 1905.

Stephan Witasek, Grundziige der allgemeinen ^Esthetik, Leipzig.

Wilheim Wundt, Grundziige der physiologsichen Psychologic, 1904. Bd. in. 5

Aufl. Leipzig, 1903.



SHORT PAPERS

A short paper was contributed by Professor A. D. F. Hamlin, of Columbia

University, on the "Sources of Savage Conventional Patterns." The speaker

said that, in the exhibit of the Department of the Interior, two glass cases displayed

side by side the handiwork of the American Indian of one hundred years ago and

of to-day. In the Fine Arts palace the blankets and basketry of the Navahoes

were shown beside the leather work and other handicrafts of white Americans.

In both instances the contrast between the savage and the civilized work em-

phasizes the fact that civilization tends to stifle or destroy the decorative instinct.

The savage art is spontaneous, instructive, unpremeditated. The work of the

civilized artist is thoughtful, carefully elaborated, intellectual. Among these

peoples both the crafts and the patterns are traditional, and there is little or no

ambition to innovate. The forms and combinations we admire in their work are

the result of long-continued processes of evolution and elimination in which, as in

the world of living organisms, the fittest have survived. The structure of savage

patterns is almost always extremely simple. There are three theories advanced to

account for them: that they were invented out of hand; that they were evolved

out of the technical processes, tools, and materials of primitive industry; that

they are descended from fetish or animistic representations of natural forms.

The first is the common view of laymen; the second was first expressed (though

chiefly with reference to civilized art) by Semper; and the third is widely enter-

tained by anthropologists.

Ths savage instinct for decoration has probably developed from primitive

animism from that fear of the powers of nature, and that confounding of the

animate and inanimate world which is universally recognized as a primitive

trait. But once awakened in even the slightest degree, it has found exercise in

the operations of primitive industry, and given existence to a long series of repeti-

tive forms produced in weaving, basketry, string-lashing, and carving. The two

classes of patterns thus originated those derived from the imitation of nature

under fetish ideas, and those derived from technical processes have invariably

converged, overlapping at last in many forms of decorative art, so that the real

origin of a given pattern may be dual. Myths have invariably arisen to explain

the origin of the technical patterns, which have received magic significance and

names, in accordance with savage tendency to assign magical powers to all visible

or at least to all valued objects: all savage art is talismanic. One ought to be

cautious about dogmatizing as to origins in dealing with savage art, because both

the phenomenon of what I call convergence in ornament evolution, and that of

the myths, poetic faculty, and habit among savages, tend to confuse and obscure

the real origin of the patterns with which they deal. And finally, for the artist

as distinguished from the archaeologist and the theorist, the real lesson of savage
art is not in its origins, but in its products; in the strength, simplicity, admirable

distribution, and high decorative effects of poor and despised peoples. Savage
all-over patterns and Greek carved ornament and decorative sculpture represent

the opposed poles of decorative design, and both are of fundamental value as

objects of study for the designer.
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THE Chairman of the Department of Mathematics was Professor

Henry S. White, of Northwestern University. In opening the pro-

ceedings Professor White said:
" Influenced by patriotism and by pride in material progress, cities

and whole nations meet and celebrate the building of bridges, the

opening of long railways, the tunneling of difficult mountain passes,

the acquisition of new territories, or commemorate with festivity the

discovery of a continent. These things are real and significant to us

all.

" In the realm of ideas also there are events of no less moment,
discoveries and conquests that greatly enlarge the empire of human
reason. In the lapse of a century there may be many such notable

achievements, even in the domain of a single science.
" Mathematics is a science continually expanding; and its growth,

unlike some political and industrial events, is attended by universal

acclamation. We are wont to-day, as devotees of this noble and

useful science, to pass in review the newest phases of her expansion,
I say newest, for in retrospect a century is but brief, and to

rejoice in the deeds of the past. At the same time, also, we turn

an eye of aspiration and resolution towards the mountains, rivers,

deserts, and the obstructing seas that are to test the mathematicians

of the future."



THE FUNDAMENTAL CONCEPTIONS AND METHODS OF
MATHEMATICS

BY PROFESSOR MAXIME BQCHER

[Maxima Bocher, Professor of Mathematics, Harvard University, b. August 28,

1867, Boston, Mass. A.B. Harvard, 1888; Ph.D. Gottingen, 1891. In-

structor, Assistant Professor and Professor, Harvard University, 1891-.
Fellow of the American Academy. Author of Ueber die Reihenentwickel-

ungen der Potentialtheorie; and various papers on mathematics.]

I. Old and New Definitions of Mathematics

I AM going to ask you to spend a few minutes with me in consider-

ing the question: what is mathematics? In doing this I do not propose
to lay down dogmatically a precise definition

;
but rather, after hav-

ing pointed out the inadequacy of traditional views, to determine

what characteristics are common to the most varied parts of mathe-

matics but are not shared by other sciences, and to show how this

opens the way to two or three definitions of mathematics, any one of

which is fairly satisfactory. Although this is, after all, merely a dis-

cussion of the meaning to be attached to a name, I do not think that

it is unfruitful, since its aim is to bring unity into the fundamental

conceptions of the science with which we are concerned. If any of

you, however, should regard such a discussion of the meaning of words

as devoid of any deeper significance, I will ask you to regard this

question as merely a bond by means of which I have found it con-

venient to unite what I have to say on the fundamental conceptions

and methods of what, with or without definition, we all of us agree
to call mathematics.

The old idea that mathematics is the science of quantity, or that

it is the science of space and number, or indeed that it can be charac-

terized by any enumeration of several more or less heterogeneous

objects of study, has pretty well passed away among those mathe-

maticians who have given any thought to the question of what

mathematics really is. Such definitions, which might have been

intelligently defended at the beginning of the nineteenth century,

became obviously inadequate as subjects like projective geometry,
the algebra of logic, and the theory of abstract groups were de-

veloped; for none of these has any necessary relation to quantity

(at least in any ordinary understanding of that word), and the last

two have no relation to space. It is true that such examples have

had little effect on the more or less orthodox followers of Kant,
who regard mathematics as concerned with those conceptions which
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are obtained by direct intuition of time and space without the aid of

empirical observation. This view seems to have been held by such

eminent mathematicians as Hamilton and DeMorgan; and it is a

very difficult position to refute, resting as it does on a purely meta-

physical foundation which regards it as certain that we can evolve

out of our inner consciousness the properties of time and space.

According to this view the idea of quantity is to be deduced from

these intuitions; but one of the facts most vividly brought home to

pure mathematicians during the last half-century is the fatal weak-

ness of intuition when taken as the logical source of our knowledge
of number and quantity.

1

The objects of mathematical study, even when we confine our

attention to what is ordinarily regarded as pure mathematics are,

then, of the most varied description; so that, in order to reach a

-satisfactory conclusion as to what really characterizes mathematics,

one of two methods is open to us. On the one hand we may seek

some hidden resemblance in the various objects of mathematical

investigation, and having found an aspect common to them all we

may fix on this as the one true object of mathematical study. Or,

on the other hand, we may abandon the attempt to characterize

mathematics by means of its objects of study, and seek in its methods

its distinguishing characteristic. Finally, there is the possibility of

our combining these two points of view. The first of these methods is

that of Kempe, the second will lead us to the definition of Benjamin

Peirce, while the third has recently been elaborated at great length

by Russell. Other mathematicians have naturally followed out more

or less consistently the same ideas, but I shall nevertheless take the

liberty of using the names Kempe, Peirce, and Russell as convenient

designations for these three points of view. These different methods

of approaching the question lead finally to results which, without

being identical, still stand in the most intimate relation to one an-

other, as we shall now see. Let us begin with the second method.

II. Peirce's Definition

More than a third of a century ago Benjamin Peirce wrote :

2

Mathematics is the science which draws necessary conclusions. Accord-

ing to this view there is a mathematical element involved in every

inquiry in which exact reasoning is used. Thus, for instance,
8 a

jury listening to the attempt of the counsel for the prisoner to prove
an alibi in a criminal case might reason as follows: "If the witnesses

1
I refer here to such facts as that there exist continuous functions without

derivatives, whereas the direct untutored intuition of space would lead any one
to believe that every continuous curve has tangents.

2 Linear Associative Algebra. Lithographed 1870. Reprinted in the American
Journal of Mathematics, vol. iv.

3 This illustration was suggested by the remarks by J. Richard, Sur la philoso-
phie des mathmcatiques. Paris, Gauthier-Villars, 1903, p. 50.
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are telling the truth when they say that the prisoner was in St. Louis

at the moment the crime was committed in Chicago, and if it is

true that a person cannot be in two places at the same time, it follows

that the prisoner was not in Chicago when the crime was committed."

This, according to Peirce, is a bit of mathematics; while the further

reasoning by which the jury would decide whether or not to believe

the witnesses, and the reasoning (if they thought any necessary)

by which they would satisfy themselves that a person cannot be

in two places at once, would be inductive reasoning, which can give

merely a high degree of probability to the conclusion, but never

certainty. This mathematical element may be, as the example

just given shows, so slight as not to be worth noticing from a prac-

tical point of view. This is almost always the case in the transac-

tions of daily life and in the observational sciences. If, however, we
turn to such subjects as chemistry and mineralogy, we find the

mathematical element of considerable importance, though still

subordinate. In physics and astronomy its importance is much

greater. Finally in geometry, to mention only one other science, the

mathematical element predominates to such an extent that this

science has been commonly rated a branch of pure mathematics,

whereas, according to Peirce, it is as much a branch of applied

mathematics as is, for instance, mathematical physics.

It is clear from what has just been said that, from Peirce's point

of view, mathematics does not necessarily concern itself with quanti-

tative relations, and that any subject becomes capable of mathe-

matical treatment as soon as it has secured data from which import-
ant consequences can be drawn by exact reasoning. Thus, for

example, even though psychologists be right when they assure us

that sensations and the other objects with which they have to deal

cannot be measured, we need still not necessarily despair of one day

seeing a mathematical psychology, just as we already have a math-

ematical logic.

I have said enough, I think, to show what relation Peirce's con-

ception of mathematics has to the applications. Let us then turn

to the definition itself and examine it a little more closely. You
have doubtless already noticed that the phrase,

"
the science which

draws necessary conclusions,
"

contains a word which is very much
in need of elucidation. What is a necessary conclusion? Some of

you will perhaps think that the conception here involved is one

about which, in a concrete case at least, there can be no practical

diversity of opinion among men with well-trained minds; and in

fact when I spoke a few minutes ago about the reasoning of the

jurymen when listening to the lawyer trying to prove an alibi, I

assumed tacitly that this is so. If this really were the case, no further

discussion would be necessary, for it is not my purpose to enter into
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any purely philosophical speculations. But unfortunately we can-

not dismiss the matter in this way; for it has happened not infre-

quently that the most eminent men, including mathematicians,
have differed as to whether a given piece of reasoning was exact or

not; and, what is worse, modes of reasoning which seem absolutely

conclusive to one generation no longer satisfy the next, as is shown

by the way in which the greatest mathematicians of the eighteenth

century used geometric intuition as a means of drawing what they

regarded as necessary conclusions. 1

I do not wish here to raise the question whether there is such a

thing as absolute logical rigor, or whether this whole conception of

logical rigor is a purely psychological one bound to change with

changes in the human mind. I content myself with expressing the

belief, which I will try to justify a little more fully in a moment,
that as we never have found an immutable standard of logical rigor

in the past, so we are not likely to find it in the future. However
this may be, so much we can say with tolerable confidence, as past

experience shows, that no reasoning which claims to be exact can

make any use of intuition, but that it must proceed from definitely

and completely stated premises according to certain principles of

formal logic. It is right here that modern mathematicians break

sharply with the tradition of a priori synthetic judgments (that is,

conclusions drawn from intuition) which, according to Kant, form an

essential part of mathematical reasoning.

If then we agree that
"
necessary conclusions "

must, in the present

state of human knowledge, mean conclusions drawn according to

certain logical principles from definitely and completely stated

premises, we must face the question as to what these principles

shall be. Here, fortunately, the mathematical logicians from Boole

down to C. S. Peirce, Schroder, and Peano have prepared the field

so well that of late years Peano and his followers 2 have been able

to make a rather short list of logical conceptions and principles upon
which it would seem that all exact reasoning depends.

3 We must

remember, however, when we are tempted to put implicit confidence

in certain fundamental logical principles, that, owing to their extreme

generality and abstractness, no very great weight can be attached

to the mere fact that these principles appeal to us as obviously

1 All writers on elementary geometry from Euclid down almost to the close
of the nineteenth century use intuition freely, though usually unconsciously, in

obtaining results which they are unable to deduce from their axioms. The first

few demonstrations of Euclid are criticised from this point of view by Russell in
his Principles of Mathematics, vol. i, 404-407. Gauss's first proof (1799) that

every algebraic equation has a root gives a striking example of the use of intuition
in what was intended as an absolutely rigorous proof by one of the greatest and at
the same time most critical mathematical minds the world has ever seen.

2 And, independently, Frege.
3 It is not intended to assert that a single list has been fixed upon. Different

writers naturally use different lists.
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true; for, as I have said, other modes of reasoning which are now

universally recognized as faulty have appealed in just this way to

the greatest minds of the past. Such confidence as we feel must,

I think, come from the fact that those modes of reasoning which

we trust have withstood the test of use in an immense number of

cases and in very many fields. This is the severest test to which any

theory can be put, and if it does not break down under it we may
feel the greatest confidence that, at least in cognate fields, it will

prove serviceable. But we can never be sure. The accepted modes

of exact reasoning may any day lead to a contradiction which would

show that what we regard as universally applicable principles are

in reality applicable only under certain restrictions. 1

To show that the danger which I here point out is not a purely
fanciful one, it is sufficient to refer to a very recent example. Inde-

pendently of one another, Frege and Russell have built up the theory
of arithmetic from its logical foundations. Each starts with a definite

list of apparently self-evident logical principles, and builds up a

seemingly flawless theory. Then Russell discovers that his logical

principles when applied to a very general kind of logical cZass lead

to an absurdity; and both Frege and Russell have to admit that

something is wrong with the foundations which looked so secure.

Now there is no doubt that these logical foundations will be somehow
recast to meet this difficulty, and that they will then be stronger

than ever before. 2 But who shall say that the same thing will not

happen again?
It is commonly considered that mathematics owes its certainty

to its reliance on the immutable principles of formal logic. This,

as we have seen, is only half the truth imperfectly expressed. The

other half would be that the principles of formal logic owe such

degree of permanence as they have largely to the fact that they
have been tempered by long and varied use by mathematicians.

"A vicious circle!" you will perhaps say. I should rather describe

it as an example of the process known to mathematicians as the

method of successive approximations. Let us hope that in this

case it is really a convergent process, as it has every appearance of

being.

But to return to Peirce's definition. From what are these neces-

1 If the view which I here maintain is correct, it follows that if the term " abso-
lute logical rigor" has a meaning, and if we should some time arrive at this abso-
lute standard, the only indication we should ever have of the fact would be that
for a long period, several thousand years let us say, the logical principles in ques-
tion had stood the test of use. But this state of affairs might equally well mean
that during that time the human mind had degenerated, at least with regard to

some of its functions. Consider, for instance, the twenty centuries following Euclid

when, without doubt, the high tide of exact thinking attained during Euclid's gen-
eration had receded.

2
Cf. Poincar<'s view in La Science et VHypothese, p. 179, according to which

a theory never renders a greater service to science than when it breaks down.



sary conclusions to be drawn? The answer clearly implied is, from

any premises sufficiently precise to make it possible to draw neces-

sary conclusions from them. In geometry, for instance, we have a

large number of intuitions and fixed beliefs concerning the nature

of space: it is homogeneous and isotropic, infinite in extent in every

direction, etc.; but none of these ideas, however clearly defined

they may at first sight seem to be, gives any hold for exact reasoning.

This was clearly perceived by Euclid, who therefore proceeded to

lay down a list of axioms and postulates, that is, specific facts which

he assumes to be true, and from which it was his object to deduce all

geometric propositions. That his success here was not complete
is now well known, for he frequently assumes unconsciously further

data which he derives from intuition; but his attempt was a monu-
mental one.

III. The Abstract Nature of Mathematics

Now a further self-evident point, but one to which attention seems

to have been drawn only during the last few years, is this : since we
are to make no use of intuition, but only of a certain number of

explicitly stated premises, it is not necessary that we should have

any idea what the nature of the objects and relations involved in

these premises is.
1 I will try to make this clear by a simple example.

In plane geometry we have to consider, among other things, points and

straight lines. A point may have a peculiar relation to a straight

line which we express by the words, the point lies on the line. Now
one of the fundamental facts of plane geometry is that two points
determine a line, that is, if two points are given, there exists one and

only one line on which both points lie. All the facts that I have just

stated correspond to clear intuitions. Let us, however, eliminate our

intuition of what is meant by a point, a line, a point lying on a line.

A slight change of language will make it easy for us to do this. In-

stead of points and lines, let us speak of two different kinds of objects,

say ^-objects and -S-objects; and instead of saying that a point
lies on a line we will simply say that an .A-object bears a certain

relation R to a 5-object. Then the fact that two points determine

a line will be expressed by saying: If any two J.-objects are given,

there exists one and only one 5-object to which they both bear the

relation R. This statement, while it does not force on us any specific

intuitions, will serve as a basis for mathematical reasoning
2

just as

well as the more familiar statement where the terms points and lines

1 This was essentially Kempe's point of view in the papers to be referred to

Eresently.

In the geometric example which follows it was clearly brought out

y H. Wiener: Jahresbericht d. deutschen Mathematiker-Vereinigung, vol. i (1891),

p. 45.
2 In conjunction, of course, with further postulates with which we need not

here concern ourselves.
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are used. But more than this. Our A.-objects, our B-objects, and our

relation R may be given an interpretation, if we choose, very different

from that we had at first intended.

We may, for instance, regard the A-objects as the straight lines in

a plane, the .^-objects as the points in the same plane (either finite

or at infinity), and when an ^.-object stands in the relation R to a

.B-object, this may be taken to mean that the line passes through the

point. Our statement would then become: Any two lines being given,

there exists one and only one point through which they both pass.

Or we may regard the A-objects as the men in a certain community,
the 5-objects as the women, and the relation of an A-object to a

B-object as friendship. Then our statement would be: In this com-

munity any two men have one, and only one, woman friend in com-

mon.

These examples are, I think, sufficient to show what is meant

when I say that we are not concerned in mathematics with the

nature of the objects and relations involved in our premises, except
in so far as their nature is exhibited in the premises themselves.

Accordingly mathematicians of a critical turn of mind, during the

last few years, have adopted more and more a purely nominalistic

attitude towards the objects and relations involved in mathematical

investigation. This is, of course, not the crude mixture of nominalism

and empiricism of the philosopher Hobbes, whose claim to mathe-

matical fame, it may be said in passing, is that of a circle-squarer.
1

The nominalism of the present-day mathematician consists in treating

the objects of his investigation and the relations between them as

mere symbols. He then states his propositions, in effect, in the fol-

lowing form: If there exist any objects in the physical or mental

world with relations among themselves which satisfy the conditions

which I have laid down for my symbols, then such and such facts

will be true concerning them.

It will be seen that, according to Peirce's view, the mathematician

as such is in no wise concerned with the source of his premises or with

their harmony or lack of harmony with any part of the external

world. He does not even assert that any objects really exist which

correspond to his symbols. Mathematics may therefore be truly

said to be the most abstract of all sciences, since it does not deal

directly with reality.
2

This, then, is Peirce's definition of mathematics. Its advantages
in the direction of unifying our conception of mathematics and of

assigning to it a definite place among the other sciences are clear.

1 Hobbes practically obtains as the ratio of a circumference to its diameter

the value vTO. Cf. for instance Molesworth's edition of Hobbes's English Works,
vol. vn, p. 431.

2 Cf. the very interesting remarks along this line of C. S. Peirce in The Monist,
vol. vii, pp. 23-24.
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What are its disadvantages? I can see only two. First that, as has

been already remarked, the idea of drawing necessary conclusions

is a slightly vague and shifting one. Secondly, that it lays exclusive

stress on the rigorous logical element in mathematics and ignores

the intuitional and other non-rigorous tendencies which form an

important element in the great bulk of mathematical work concern-

ing which I shall speak in greater detail later.

IV. Geometry an Experimental Science

Some of you will also regard it as an objection that there are

subjects which have almost universally been regarded as branches

of mathematics but are excluded by this definition. A striking

example of this is geometry, I mean the science of the actual space

we live in; for though geometry is, according to Peirce's definition,

preeminently a mathematical science, it is not exclusively so. Until

a system of axioms is established mathematics cannot begin its work.

Moreover, the actual perception of spatial relations, not merely
in simple cases but in the appreciation of complicated theorems, is

an essential element in geometry which has no relation to mathe-

matics as Peirce understands the term. The same is true, to a con-

siderable extent, of such subjects as mechanical drawing and model-

making, which involve, besides small amounts of physics and math-

ematics, mainly non-mathematical geometry. Moreover, although the

mathematical method is the traditional one for arriving at the truth

concerning geometric facts, it is not the only one. Direct appeal to

the intuition is often a short and fairly safe cut to geometric results;

and on the other hand experiments may be used in geometry, just

as they are used every day in physics, to test the truth of a proposi-

tion or to determine the value of some geometric magnitude.
1

We must, then, admit, if we hold to Peirce's view, that there is

an independent science of geometry just as there is an independent
science of physics, and that either of these may be treated by math-

ematical methods. Thus geometry becomes the simplest of the

natural sciences, and its axioms are of the nature of physical laws,

to be tested by experience and to be regarded as true only within

the limits of error of observation. This view, while it has not yet

gained universal recognition, should, I believe, prevail, and geo-

metry be recognized as a science independent of mathematics, just

as psychology is gradually being recognized as an independent
science and not as a branch of philosophy.
The view here set forth, according to which geometry is an ex-

perimental science like physics or chemistry, has been held ever

1 I am thinking of measurements and observations made on accurately con-
structed drawings and models. A famous example is Galileo's determination of

the area of a cycloid by cutting out a cycloid from a metallic sheet and weighing it.
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since Gauss's time by almost all the leading mathematicians who
have been conversant with non-Euclidean geometry.

1

Recently,

however, Poincare
1

has thrown the weight of his great authority

against this view,
2
claiming that the experiments by which it is

sought to test the truth of geometric axioms are really not geometrical

experiments at all but physical ones, and that any failure of these

experiments to agree with the ordinary geometrical axioms could

be explained by the inaccuracy of the physical laws ordinarily as-

sumed. There is undoubtedly an important element of truth here.

Every experiment depends for its results not merely on the law we
wish to test, but also on other laws which for the moment we assume

to be true. But, if we prefer, we may, in many cases, assume as

true the law we were before testing and our experiment will then

serve to test some of the remaining laws. If, then, we choose to stick

to the ordinary Euclidean axioms of geometry in spite of what any
future experiments may possibly show, we can do so, but at the cost,

perhaps, of our present simple physical laws, not merely in one

branch of physics but in several. Poincare^s view 3
is that it will

always be expedient to preserve simple geometric laws at all costs.,

an opinion for which I fail to see sufficient reason.

V. Kempe's Definition

Let us now turn from Peirce's method of defining mathematics to

Kempe's, which, however, I shall present to you in a somewhat

modified form. 4 The point of view adopted here is to try to define

mathematics, as other sciences are defined, by describing the objects

with which it deals. The diversity of the objects with which mathe-

matics is ordinarily supposed to deal being so great, the first stcjp

must be to divest them of what is unessential for the mathematical

treatment, and to try in this way to discover their common and

characteristic element.

The first point on which Kempe insists is that the objects of mathe-

matical discussion, whether they be the points and lines of geometry,
the numbers real or complex of algebra or analysis, the elements of

groups or anything else, are always individuals, infinite in number

perhaps, but still distinct individuals. In a particular mathematical

investigation we may, and usually do, have several different kinds of

individuals; as for instance, in elementary plane geometry, points,

straight lines, and circles. Furthermore, we have to deal with certain

relations of these objects to one another. For instance, in the example
1
Gauss, Riemann, Helmholtz are the names which will carry perhaps the

greatest weight.
2 Cf. La Science et THypothese. Paris, 1903.
* L. c., chapter v. In

particular, p. 93.

Kempe has set forth his ideas in rather popular form in the Proceedings of
the London Mathematical Society, vol. xxvi (1894), p. 5; and in Nature, vol. XLIII

1890), p. 156, where references to his more technical writings will be found.
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just cited, a given point may or may not lie on a given line; a given

line may or may not touch a given circle; three or more points may
or may not be collinear, etc. This example shows how in a single

mathematical problem a large number of relations may be involved,

relations some of which connect two objects, others three, etc.

Moreover these relations may connect like or they may connect

unlike objects; and finally the order in which the objects are taken

is not by any means immaterial in general, as is shown by the relation

between three points which states that the third is collinear with and

lies between the first two.

But even this is not all; for, besides these objects and relations

of various kinds, we often have operations by which objects can be

combined to yield another object, as, for instance, addition or multi-

plication of numbers. Here the objects combined and the resulting

object are all of the same kind, but this is by no means necessary.

We may, for instance, consider the operation of combining two

points and getting the perpendicular bisector of the line connecting

them; or we may combine a point and a line and get the perpen-
dicular dropped from the point on the line.

These few examples show how diverse the relations and operations,

as well as the objects of mathematics, seem at first sight to be. Out

of this apparent diversity it is not difficult to obtain a very great

uniformity by simply restating the facts in a little different language.

We shall find it convenient to indicate that the objects a, b, c, . . .
,

taken in the order named, satisfy a relation R by simply writing

R(a. b, c, . . . ), where it should be understood that among the

objects a, b. c, . . . the same object may occur a number of times.

On the other hand, if two objects a and b are combined to yield

a third object c, we may write a o b = c,
1 where the symbol o is

characteristic of the special operation with which we are concerned.

Let us first notice that the equation aob=c denotes merely
that the three objects a, b, c bear a certain relation to one another,

say R(a, b, c). In other words the idea of an operation or law of

combination between the objects we deal with, however convenient

and useful it may be as a matter of notation, is essentially merely
a way of expressing the fact that the objects combined bear a certain

relation to the object resulting from their combination. Accordingly,
in a purely abstract discussion like the present, where questions of

practical convenience are not involved, we need not consider such

rules of combination. 2

1

I speak here merely of dyadic operations, i. e., of operations by which
two objects are combined to yield a third, these being by far the most import-
ant as well as the simplest. What is said, however, obviously applies to opera-
tions by which any number of objects are combined.

2 Even from the point of view of the technical mathematician it may some-
times be desirable to adopt the point of view of a relation rather than that of an
operation. This is seen, for instance, in laying down a system of postulates for the
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Furthermore, it is easy to see that when we speak of objects of

different kinds, as, for instance, the points and lines of geometry, we

are introducing a notion which can very readily be expressed in our

relational notation. For this purpose we need merely to introduce

a further relation which is satisfied by two or more objects when and

only when they are of the same "kind."

Let us turn finally to the relations themselves. It is customary
to distinguish here between dyadic relations, triadic relations, etc.,

according as the relation in question connects two objects, three

objects, etc. There are, however, relations which may connect any
number of objects, as, for instance, the relation of collinearity which

may hold between any number of points. Any relation holds for

certain ordered groups of objects but not for others, and it is in no

way necessary for us to fix our attention on the fact, if it be true,

that the number of objects in all the groups for which a particular

relation holds is the same. This is the point of view we shall adopt,

and we shall relegate the property that a relation is dyadic, triadic,

etc., to the background along with the various other properties

relations may have,
1

all of which must be taken account of in the

proper place.

We are thus concerned in any mathematical investigation, from

our present point of view, with just two conceptions: first a set, or

as the logicians say, a class of objects a, b, c, . . .; and secondly a

class of relations R, S, T
,

. . . . We may suppose these objects

divested of any qualitative, quantitative, spatial, or other attributes

which they may have had, and regard them merely as satisfying or not

satisfying the relations in question, where, again, we are wholly
indifferent to the nature which these relations originally had. And
now we are in a position to state what I conceive to be really the

essential point in Kempe's definition of mathematics; although I

have omitted one of the points on which he insists most strongly,
2

by saying:

If we have a certain class of objects and a certain class of relations,

and if the only questions which we investigate are whether ordered

groups of these objects do or do not satisfy the relations, the results

of the investigation are called mathematics.

theory of abstract groups (cf., for example, Huntington, Bulletin of the Ameri-
can Mathematical Society, June, 1902), where the postulate:

If a and b belong to the class, a o b belongs to the class,
which in this form looks indecomposable, immediately breaks up, when stated in

the relational form, into the following two:
1. If a and b belong to the class, there exists an element c of the class such that

R(a, b, c).

2. If a, b, c, d belong to the class, and if R(a, b, c) and R(a, b, d), then c = d.
1 For instance, the property of symmetry. A relation is said to be symmetrical

if it holds or fails to hold independently of the order in which the objects are taken.
2
Namely, that the only relation that need be considered is that of being

"
in-

distinguishable," t. e., a symmetrical and transitive relation between two groups
of objects.



CONCEPTIONS AND METHODS OF MATHEMATICS 467

It is convenient to have a term to designate a class of objects

associated with a class of relations between these objects. Such an

aggregate we will speak of as a mathematical system. If now we have

two different mathematical systems, and if a one-to-one correspond-
ence can be set up between the two classes of objects, and also

between the two classes of relations in such a way that whenever

a certain ordered set of objects of the first system satisfies a relation

of that system, the set consisting of the corresponding objects of the

second system satisfies the corresponding relation of that system,
and vice versa, then it is clear that the two systems are, from our

present point of view, mathematically equivalent, however different

the nature of the objects and relations may be in the two cases. 1 To
use a technical term, the two systems are simply isomorphic.

2

It will be noticed that in the definition of mathematics just given

nothing is said as to the method by which we are to ascertain whether

or not a given relation holds between the objects of a given set. The
method used may be a purely empirical one, or it may be partly or

wholly deductive. Thus, to take a very simple case, suppose our class

of objects to consist of a large number of points in a plane and sup-

pose the only relation between them with which we are concerned

is that of collinearity. Then, if the points are given us by being
marked in ink on a piece of white paper, we can begin by taking three

pins, sticking them into the paper at three of the points; then, by

sighting along them, we can determine whether or not these points

are collinear. We can do the same with other groups of three

points, then with all groups of four points, etc. The same result

can be obtained with much less labor if we make use of certain

simple properties which the relation of collinearity satisfies, pro-

perties which are expressed by such propositions as:

R(a, b, c) implies R(b, a, c),

R(a, b, c, d) implies R(a, b, c),

R(a, b, c) and R(a, b, d) together imply R(a, b, c, d), etc.

By means of a small number of propositions of this sort it is easy
to show that no empirical observations as to the collinearity of

groups of more than three points need be made, and that it may
not be necessary to examine even all groups of three points. Having

1 The point of view here brought out, including the term isomorphism, was
first developed in a special case, the theory of groups.

2 Inasmuch as the relations in a mathematical system are themselves objects,
we may, if we choose, take our class of objects so as to include these relations as
well as what we called objects before, some of which, we may remark in passing,
may themselves be relations. Looked at from this point of view, we need one
additional relation which is now the only one which we explicitly call a relation.

If we denote this relation by inclosing the objects which satisfy it in parentheses,
then if the relation denoted before by R(a, b} is satisfied, we should now write

(R, a, 6), whereas we should not have (a, R, b) (S, R, a, b), etc. Thus we see that

any mathematical system may be regarded as consisting of a class of objects and
a single relation between them.
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made this relatively small number of observations, the remaining
results would be obtained deductively. Finally, we may suppose
the points given by their coordinates, in which case the complete
answer to our question may be obtained by the purely deductive

method of analytic geometry.

According to the modified form of Kempe's definition which I

have just stated, mathematics is not necessarily a deductive science.

This view, while not in accord with the prevailing ideas of mathe-

maticians, undoubtedly has its advantages as well as its dangers.
The non-deductive processes, of which I shall have more to say

presently, play too important a part in the life of mathematics to

be ignored, and the definition just given has the merit of not exclud-

ing them. It would seem, however, that the definition in the form

just given is too broad. It would include, for instance, the deter-

mination by experimental methods of what pairs of chemical com-

pounds of the known elements react on one another when mixed
under given conditions.

VI. Axioms and Postulates. Existence Theorems

If, however, we restrict ourselves to exact or deductive mathe-

matics, it will be seen that Kempe's definition becomes coextensive

with Peirce's. Here, in order to have a starting-point for deductive

reasoning, we must assume a certain number of facts or primitive

propositions concerning any mathematical system we wish to study,
of which all other propositions will be necessary consequences.

1

We touch here on a subject whose origin goes back to Euclid and

which has of late years received great development, primarily at

the hands of Italian mathematicians. 2

It is important for us to notice at this point that not merely these

primitive propositions but all the propositions of mathematics may
be divided into two great classes. On the one hand, we have pro-

positions which state that certain specified objects satisfy certain

specified relations. On the other hand are the existence theorems.

which state that there exist objects satisfying, along with certain

specified objects, certain specified relations. 3 These two classes of

propositions are well known to logicians and are designated by them

1 These primitive propositions may be spoken of as axioms or postulates, ac-

cording to the point of view we wish to take concerning their source, the word
axiom, which has been much misused of late, indicating an intuitional or empirical
source.

2
Peano, Fieri, Padoa, Burali-Forti. We may mention here also Hilbert, who,

apparently without knowing of the important work of his Italian predecessors,
has also done valuable work along these lines.

* Or we might conceivably have existence theorems which state that there
exist relations which are satisfied by certain specified objects; or these two kinds
of existence theorems might be combined. If we take the point of view explained
in the second footnote on p. 467, all existence theorems will be of the type men-
tioned in the text.
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universal and particular propositions respectively.
1 It is only during

the last fifty years or so that mathematicians have become conscious

of the fundamental importance in their science of existence theorems,

which until then they had frequently assumed tacitly as they needed

them, without always being conscious of what they were doing.

It is sometimes held by non-mathematicians that if mathematics

were really a purely deductive science, it could not have gained

anything like the extent which it has without losing itself in trivial-

ities and becoming, as Poincare puts it, a vast tautology.
2 This

view would doubtless be correct if all primitive propositions were

universal propositions. One of the most characteristic features of

mathematical reasoning, however, is the use which it makes of aux-

iliary elements. I refer to the auxiliary points and lines in proofs

by elementary geometry, the quantities formed by combining in

various ways the numbers which enter into the theorems to be

proved in algebra, etc. Without the use of such auxiliary elements

mathematicians would be incapable of advancing a step; and

whenever we make use of such an element in a proof, we are in reality

using an existence theorem. 3 These existence theorems need not,

to be sure, be among the primitive propositions; but if not, they must

be deduced from primitive propositions some of which are existence

theorems, for it is clear that an existence theorem cannot be deduced

from universal propositions alone.
4 Thus it may fairly be said that

existence theorems form the vital principle of mathematics, but these

in turn, it must be remembered, would be impotent without the

material basis of universal propositions to work upon.

VII. Russell's Definition

We have so far arrived at the view that exact mathematics is

the study by deductive methods of what we have called a mathe-

matical system, that is, a class of objects and a class of relations

between them. If we elaborate this position in two directions we
shall reach the standpoint of Russell. 5

In the first place Russell makes precise the term deductive method

"All men are mortals" is a standard example of a universal proposition;
while as an illustration of a particular proposition is often given: "Some men are
Greeks. " That this is really an existence theorem is seen more clearly when we
state it in the form: "There exists at least one man who is a Greek."

2 Cf. La Science et I'Hypothese, p. 10.
5 Even when in algebra we consider the sum of two numbers a + b, we are using

the existence theorem which says that, any two numbers a and b being given,
there exists a number c which stands to them in the relation which we indicate in

ordinary language by saying that c is the sum of a and b.
4 The power which resides in the method of mathematical induction, so called,

comes from the fact that this method depends on an existence theorem. It is,

however, not the only fertile principle in mathematics as Poincare' would have
us believe (cf. La Science et I'Hypothese). In fact there are great branches of

mathematics, like elementary geometry, in which it takes little or no part.
8 The Principles of Mathematics, Cambridge, England, 1903.
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by laying down explicitly a list of logical conceptions and prin-

ciples which alone are to be used; and, secondly, he insists,
1 on the

contrary, that no mathematical system, to use again the technical

term introduced above, be studied in pure mathematics whose exist-

ence cannot be established solely from the logical principles on which

all mathematics is based. Inasmuch as the development of mathemat-

ics during the last fifty years has shown that the existence of most,

if not all the mathematical systems which have proved to be im-

portant can be deduced when once the existence of positive integers

is granted, the point about which interest must centre here is the

proof, which Russell attempts, of the existence of this latter sys-

tem. 2 This proof will necessarily require that, among the logical

principles assumed, existence theorems be found. Such theorems

do not seem to be explicitly stated by Russell, the existence theorems

which make their appearance further on being evolved out of some-

what vague philosophical reasoning. There are also other reasons,

into which I cannot enter here, why I am not able to regard the

attempt made in this direction by Russell as completely successful. 3

Nevertheless, in view of the fact that the system of finite positive

integers is necessary in almost all branches of mathematics (we
cannot speak of a triangle or a hexagon without having the numbers

three and six at our disposal), it seems extremely desirable that the

system of logical principles which we lay at the foundation of all

mathematics be assumed, if possible, broad enough so that the

existence of positive integers at least finite integers follows from

it; and there seems little doubt that this can be done in a satisfactory

manner. When this has been done we shall perhaps be able to regard,

with Russell, pure mathematics as consisting exclusively of deduc-

tions "by logical principles from logical principles."

VIII. The Non-Deductive Elements in Mathematics

I fear that many of you will think that what I have been saying
is of an extremely one-sided character, for I have insisted merely on

the rigidly deductive form of reasoning used and the purely abstract

character of the objects considered in mathematics. These, to the

great majority of mathematicians, are only the dry bones of the

science. Or, to chang3 the simile, it may perhaps be said that instead

of inviting you to a feast I have merely shown you the empty dishes

' In the formal definition of mathematics at the beginning of the book this is

not stated or in any way implied; and yet it comes out so clearly throughout
the book that this is a point of view which the author regards as essential, that
I have not hesitated to include it as a part of his definition.

1 Cf. also Burali-Forti, Congres Internationale de philosophic. Paris, vol. in,
p. 289.

* Russell's unequivocal repudiation of nominalism in mathematics seems to
me a serious if not in insurmountable barrier to progress.
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and explained how the feast would be served if only the dishes were

filled.
1 I fully agree with this opinion, and can only plead in excuse

that my subject was the fundamental conceptions and methods of

mathematics, not the infinite variety of detail and application

which give our science its real vitality. In fact I should like to

subscribe most heartily to the view that in mathematics, as else-

where, the discussion of such fundamental matters derives its interest

mainly from the importance of the theory of which they are the

so-called foundations. 2 I like to look at mathematics almost more

as an art than as a science; for the activity of the mathematician,

constantly creating as he is, guided though not controlled by the

external world of the senses, bears a resemblance, not fanciful I

believe but real, to the activity of an artist, of a painter let us say.

Rigorous deductive reasoning on the part of the mathematician

may be likened here to technical skill in drawing on the part of the

painter. Just as no one can become a good painter without a certain

amount of this skill, so no one can become a mathematician without

the power to reason accurately up to a certain point. Yet these

qualities, fundamental though they are, do not make a painter or

a mathematician worthy of the name, nor indeed are they the most

important factors in the case. Other qualities of a far more subtle

sort, chief among which in both cases is imagination, go to the

making of the good artist or good mathematician. I must content

myself merely by recalling to you this somewhat vague and difficult

though interesting field of speculation which arises when we attempt
to attach value to mathematical work, a field which is familiar

enough to us all in the analogous case of artistic or literary criticism.

We are in the habit of speaking of logical rigor and the considera-

tion of axioms and postulates as the foundations on which the superb
structure of modern mathematics rests; and it is often a matter of

wonder how such a great edifice can rest securely on such a small

foundation. Moreover, these foundations have not always seemed so

secure as they do at present. During the first half of the nineteenth

century certain mathematicians of a critical turn of mind Cauchy,

Abel, Weierstrass, to mention the greatest of them perceived to

their dismay that these foundations were not sound, and some of the

best efforts of their lives were devoted to strengthening and improv-

ing them. And yet I doubt whether the great results of mathematics

1 Notice that just as the empty dishes could be filled by a great variety of

viands, so the empty symbols of mathematics can be given meanings of the most
varied sorts.

2 Cf. the following remark by Study, Jahrcsbericht der deutschcn Mathematiker-

Vereinigung, vol. xi (1902), p. 313:
" So wertvoll auch Untersuchungen liber die systematische Stellung der math-

ematischen Grundbegriffe sind . . . wertvoller ist doch noch der materielle Inhalt
der einzelnen Disciplinen, um dessentwillen allein ja derartige Untersuchungen
liberhaupt Zweck haben. ..."



472 MATHEMATICS

seemed less certain to any of them because of the weakness they

perceived in the foundations on which these results are built up.

The fact is that what we call mathematical rigor is merely one of

the foundation stones of the science; an important and essential

one surely, yet not the only thing upon which we can rely. A science

which has developed along such broad lines as mathematics, with

such numerous relations of its parts both to one another and to other

sciences, could not long contain serious error without detection.

This explains how, again and again, it has come about, that the

most important mathematical developments have taken place by
methods which cannot be wholly justified by our present canons of

mathematical rigor, the logical "foundation" having been supplied

only long after the superstructure had been raised. A discussion

and analysis of the non-deductive methods which the creative

mathematician really uses would be both interesting and instructive.

Here I must content myself with the enumeration of a few of them.

First and foremost there is the use of intuition, whether geometrical,

mechanical, or physical. The great service which this method has

rendered and is still rendering to mathematics both pure and applied

is so well known that a mere mention is sufficient.

Then there is the method of experiment; not merely the physical

experiments of the laboratory or the geometrical experiments I

had occasion to speak of a few minutes ago, but also arithmetical

experiments, numerous examples of which are found in the theory
of numbers and in analysis. The mathematicians of the past fre-

quently used this method in their printed works. That this is now
seldom done must not be taken to indicate that the method itself is

not used as much as ever.

Closely allied to this method of experiment is the method of

analogy, which assumes that something true of a considerable num-
ber of cases will probably be true in analogous cases. This is, of

course, nothing but the ordinary method of induction. But in mathe-

matics induction may be employed not merely in connection with

the experimental method, but also to extend results won by deduct-

ive methods to other analogous cases. This use of induction has

often been unconscious and sometimes overbold, as, for instance,

when the operations of ordinary algebra were extended without

scruple to infinite series.

Finally there is what may perhaps be called the method of optim-

ism, which leads us either willfully or instinctively to shut our eyes

to the possibility of evil. Thus the optimist who treats a problem in

algebra or analytic geometry will say, if he stops to reflect on what

he is doing: "1 know that 1 have no right to divide by zero; but

there are so many other values which the expression by which I am
dividing might have that I will assume that the Evil One has not
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thrown a zero in my denominator this time." This method, if a pro-

ceeding often unconscious can be called a method, has been of great

service in the rapid development of many branches of mathematics,

though it may well be doubted whether in a subject as highly devel-

oped as is ordinary algebra it has not now survived its usefulness. 1

While no one of these methods can in any way compare with

that of rigorous deductive reasoning as a method upon which to

base mathematical results, it would be merely shutting one's eyes
to the facts to deny them their place in the life of the mathematical

world, not merely of the past but of to-day. There is now. and there

always will be room in the world for good mathematicians of every

grade of logical precision. It is almost equally important that the

small band whose chief interest lies in accuracy and rigor should

not make the mistake of despising the broader though less accurate

work of the great mass of their colleagues; as that the latter should

not attempt to shake themselves wholly free from the restraint the

former would put upon them. The union of these two tendencies

in the same individuals, as it was found, for instance, in Gauss and

Cauchy, seems the only sure way of avoiding complete estrangement
between mathematicians of these two types.

1
Cf. the very suggestive remarks by Study, Jahresbericht d. Deutschen Math-

ematiker-Vereinigung, vol. xi (1902), p. 100, footnote, in which it is pointed out
how rigor, in cases of this sort, may not merely serve to increase the correctness of
the result, but actually to suggest new fields for mathematical investigation.



THE HISTORY OF MATHEMATICS IN THE NINETEENTH
CENTURY

BY PROFESSOR JAMES P. PIERPONT OF YALE UNIVERSITY

THE extraordinary development of mathematics in the last century
is quite unparalleled in the long history of this most ancient of

sciences. Not only have those branches of mathematics which were

taken over from the eighteenth century steadily grown, but entirely

new ones have sprung up in almost bewildering profusion, and

many of these have promptly assumed proportions of vast extent.

As it is obviously impossible to trace in the short time allotted to

me the history of mathematics in the nineteenth century even in

merest outline, I shall restrict myself to the consideration of some

of its leading theories.

Theory of Functions of a Complex Variable

Without doubt one of the most characteristic features of mathe-

matics in the last century is the systematic and universal use of the

complex variable. Most of its great theories received invaluable aid

from it, and many owe their very existence to it. What would the

theory of differential equations or elliptic functions be to-day without

it, and is it probable that Poncelet, Steiner, Chasles, and von Staudt

would have developed synthetic geometry with such elegance and

perfection without its powerful stimulus?

The necessities of elementary algebra kept complex numbers

persistently before the eyes of every mathematician. In the eight-

eenth century the more daring, as Euler and Lagrange, used them

sparingly; in general one avoided them when possible. Three events,

however, early in the nineteenth century changed the attitude of

mathematicians toward this mysterious guest. In 1813 Argand

published his geometric interpretation of complex numbers. In

1824 came the discovery by Abel of the imaginary period of the

elliptic function. Finally Gauss in his second memoir on biquadratic

residues (1832) proclaims them a legitimate and necessary element

of analysis.

The theory of function of a complex variable may be said to have

had its birth when Cauchy discovered his integral theorem

ff(x)dx=Q

published in 1825. In a long series of publications beginning with

the Cows d>Analyse (1821), Cauchy gradually developed his theory
of functions and applied it to problems of the most diverse nature;
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for example, existence theorems for implicit functions and the solu-

tions of certain differential equations, the development of functions

in infinite series and products, and the periods of integrals of one

and many valued functions.

Meanwhile Germany is not idle; Weierstrass and Riemann de-

velop Cauchy's theory along two distinct and original paths. Weier-

strass starts with an explicit analytical expression, a power series,

and defines his function as the totality of its analytical continua-

tions. No appeal is made to geometric intuition, his entire theory
is strictly arithmetical. Riemann growing up under Gauss and

Dirichlet not only relies largely on geometric intuition, but he also

does not hesitate to impress mathematical physics into his service.

Two noteworthy features of his theory, are the many leaved surfaces

named after him, and the extensive use of conformal representation.

The history of functions as first developed is largely a theory of

algebraic functions and their integrals. A general theory of func-

tions is only slowly evolved. For a long time the methods of Cauchy,

Riemann, and Weierstrass were cultivated along distinct lines by
their respective pupils. The schools of Cauchy and Riemann were

the first to coalesce. The entire rigor which has recently been im-

parted to their methods has removed all reason for founding, as

Weierstrass and his school have urged, the theory of functions on

a single algorithm, namely, the power series. We may therefore say
that at the close of the century there is only one theory of functions

in which the ideas of its three great creators are harmoniously united.

Let us note briefly some of its lines of advance. Weierstrass early

observed that an analytic expression might represent different

analytic functions in different regions. Associated with this is the

phenomenon of natural boundaries. The question therefore arose,

What is the most general domain of definition of an analytic function?

Runge has shown that any connected region may serve this purpose.
An important line of investigation relates to the analytic expression
of a function by means of infinite series, products, and fractions.

Here may be mentioned Weierstrass *s discovery of prime factors;

the theorems of Mittag-Leffler and Hilbert; Poincar4's uniform-

ization of algebraic and analytic functions by means of a third

variable, and the work of Stieljes, Fade", and Van Vleck on infinite

fractions. Since an analytic function is determined by a single

power series, which in general has a finite circle of convergence, two

problems present themselves: determine, first, the singular points of

the analytic function so defined, and, second, an analytic expression
valid for its whole domain of definition. The celebrated memoir of

Hadamard inaugurated a long series of investigations on the first

problem; while Mittag-Leffler 's star theorem is the most important
result yet obtained relating to the second.
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Another line of investigation relates to the work of Poincare",

Borel, Fade", et al., on divergent series. It is, indeed, a strange vicissi-

tude of our science that these series which early in the century
were supposed to be banished once and for all from rigorous mathe-

matics should at its close be knocking at the door for readmission.

Let us finally note an important series of memoirs on integral

transcendental functions, beginning with Weierstrass, Laguerre, and

Poincare*.

Algebraic Functions and their Integrals

A branch of the theory of functions has been developed to such

an extent that it may be regarded as an independent theory; we
mean the theory of algebraic functions and their integrals. The

brilliant discoveries of Abel and Jacobi in the elliptic functions from

1824 to 1829 prepared the way for a similar treatment of the hyper-

elliptic case. Here a difficulty of gravest nature was met. The cor-

responding integrals have 2p linearly independent periods; but as

Jacobi had shown, a one valued function having more than two

periods admits a period as small as we choose. It therefore looked

as if the elliptic functions admitted no further generalization.

Guided by Abel's theorem, Jacobi at last discovered the solution to

the difficulty (1832); to get functions analogous to the elliptic func-

tions we must consider functions not of one but of p independent

variables, namely, the p independent integrals of the first species.

The great problem now before mathematicians, known as Jacobi 's

Problem of Inversion, was to extend this apergu to the case of any

algebraic configuration and develop the consequences. The first to

take up this immense task were Weierstrass and Riemann, whose

results belong to the most brilliant achievements of the century.

Among the important notions hereby introduced we note the fol-

lowing: the birational transformation, rank of an algebraic con-

figuration, class invariants, prime functions, the theta and multiply

periodic functions in several variables. Of great importance is

Riemann 's method of proving existence theorems, as also his repre-

sentation of algebraic functions by means of integrals of the second

species.

A new direction was given to research in this field by Clebsch, who
considered the fundamental algebraic configuration as defining a

curve. His aim was to bring about a union of Riemann 's ideas and

the theory of algebraic curves for their mutual benefit. Clebsch's

labors were continued by Brill and Nother; in their work the tran-

scendental methods of Riemann are placed quite in the background.
More recently Klein and his school have sought to unite the tran-

scendental methods of Riemann with the geometric direction begun

by Clebsch, making systematic use of homogeneous coordinates and
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the invariant theory. Noteworthy, also, is his use of normal curves

in (p 1) way space, to represent the given algebraic configuration.

Dedekind and Weber, Hensel and Landsberg, have made use of the

ideal theory with marked success. Many of the difficulties of the

older theory, e. g., the resolution of singularities of the algebraic

configuration, are treated with a truly remarkable ease and generality.

In the theory of multiply periodic functions and the general &

functions we mention, besides Weierstrass, the researches of Prym,

Krazer, Frobenius, Poincare, and Wirtinger.

Automorphic Functions

Closely connected with the elliptic functions is a class of functions

which has come into great prominence in the last quarter of a cen-

tury, namely, the elliptic modular and automorphic functions. Let

us consider first the modular functions of which the modulus K and

the absolute invariant J are the simplest types.

The transformation theory of Jacobi gave algebraic relations be-

tween such functions in endless number. Hermite, Fuchs, Dedekind,
and Schwarz are forerunners, but the theory of modular functions as

it stands to-day is principally due to Klein and his school. Its goal

is briefly stated thus : Determine all sub-groups of the linear group

(1) xl

where a, /?, 7-,
d are integers and ad /?^

=
1; determine for each

such group associate modular functions and investigate their rela-

tion to one another and especially to J. Important features in this

theory are the congruence groups of (1); the fundamental polygon

belonging to a given sub-group, and its use as substitute for a Rie-

mann surface; the principle of reflection over a circle, the modular

forms.

The theory of automorphic functions is due to Klein and Poincare.

It is a generalization of the modular functions; the coefficients in

(1) being any real or imaginary numbers, with non-vanishing de-

terminant, such that the group is discontinuous. Both authors have

recourse to non-Euclidean geometry to interpret the substitutions (1).

Their manner of showing the existence of functions belonging to

a given group is quite different. Poincare by a brilliant stroke of

genius actually writes down their arithmetic expressions in terms

of his celebrated 8 series. Klein employs the existence methods of

Riemann. The relation of automorphic functions to differential

equations is studied by Poincare in detail. In particular, he shows that

both variables of a linear differential equation with algebraic coeffi-

cients can be expressed uniformly by their means.
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Differential Equations

Let us turn now to another great field of mathematical activity,

the theory of differential equations. The introduction of the theory
of functions has completely revolutionized this subject. At the

beginning of the nineteenth century many important results had

indeed been established, particularly by Euler and Lagrange; but

the methods employed were artificial, and broad comprehensive

principles were lacking. By various devices one tried to express
the solution in terms of the elementary functions and quadratures

a vain attempt; for as we know now, the goal they strove so

laboriously to reach was in general unattainable.

A new epoch began with Cauchy, who by means of his new theory

of functions first rigorously established the existence of the solution

of certain classes of equations in the vicinity of regular points. He
also showed that many of the properties of the elliptic functions

might be deduced directly from their differential equations. Ere

long, the problem of integrating a differential equation changed
its base. Instead of seeking to express its solution in terms of the

elementary functions and quadratures, one asked what is the nature

of the functions defined by a given equation. To answer this ques-

tion we must first know what are the singular points of the integral

function and how does it behave in their vicinity. The number of

memoirs on this fundamental and often difficult question is enormous;
but this is not strange if we consider the great variety of interesting

and important classes of equations which have to be studied.

One of the first to open up this new path was Fuchs, whose classic

memoirs (1866-68) gave the theory of linear differential equations
its birth. These equations enjoy a property which renders them

particularly accessible, namely, the absence of movable singular

points. They may, however, possess points of indetermination, to

use Fuchs's terminology, and little progress has been made in this

case. Noteworthy in this connection is the introduction by v. Koch
of infinite determinants, first considered by our distinguished coun-

tryman Hill
;

also the use of divergent series that invention of

the Devil, as Abel called them by Poincare". A particular class

of linear differential equations of great importance is the hyper-

geometric equation; the results obtained by Gauss, Kummer,
Riemann, and Schwarz relating to this equation have had the great-

est influence on the development of the general theory. The vast

extent and importance of the theory of linear differential equations

may be estimated when we recall that within its borders it embraces

not only almost all the elementary functions, but also the modular

and automorphic functions.

Too important to pass over in silence is the subject of algebraic
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differential equations with uniform solutions. The brilliant researches

of Poinleve" deserve especial mention.

Another field of great importance, especially in mathematical

physics, relates to the determination of the solution of differential

equations with assigned boundary conditions. The literature of this

subject is enormous; we may therefore be pardoned if mention is

made only of the investigation of our countrymen Bocher, Van

Vleck, and Porter.

Since 1870 the theory of differential equations has been greatly

advanced by Lie's theory of groups. Assuming that an equation or a

system of equations admits one or more infinitesimal transformations,

Lie has shown how they may be employed to simplify the problem
of integration. In many cases they give us exact information how
to conduct the solution and upon what system of auxiliary equations

the solution depends. One of the most striking illustrations of this

is the theory of ordinary linear differential equations which Picard

and Vessiot have developed, analogous to Galois 's theory for algebraic

equations. An interesting result of this theory is a criterion for the

solution of such equations by quadratures. As an application, we
find that Ricatti's equation cannot be solved by quadratures. The

attempts to effect such a solution of this celebrated equation in the

century before were therefore necessarily in vain.

A characteristic feature of Lie's theories is the prominence given
to the geometrical aspects of the questions involved. Lie thinks in

geometrical images, the analytical formulation comes afterwards.

Already Morge had shown how much might be gained in geometrizing
the problem of integration. Lie has gone much farther in this direc-

tion. Besides employing all the geometrical notions of his predeces-

sors extended to n-way space, he has introduced a variety of new

conceptions, chief of which are his surface element and contact

transformations.

He has also used with great effect Pliicker's line geometry, and his

own sphere geometry in the study of certain types of partial differential

equations of the first and second orders which are of great geometrical

interest, for example, equations whose characteristic curves are lines

of curvature, geodesies, etc. Let us close by remarking that Lie's

theories not only afford new and valuable points of view for attack-

ing old problems, but also give rise to a host of new ones of great
interest and importance.

Groups

We turn now to the second dominant idea of the century, the

group concept.

Groups first became objects of study in algebra when Lagrange

(1770), Ruffini (1799), and Abel (1826) employed substitution groups
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with great advantage in their work on the quintic. The enormous

importance of groups in algebra was. however, first made clear by

Galois, whose theory of the solution of algebraic equations is one

of the great achievements of the century. Its influence has stretched

far beyond the narrow bounds of algebra.

With an arbitrary but fixed domain of rationality, Galois observed

that every algebraic equation has attached to it a certain group of

substitutions. The nature of the auxiliary equations required to

solve the given equation is completely revealed by an inspection of

this group.

Galois 's theory showed the importance of determining the sub-

groups of a given substitution group, and this problem was studied

by Cauchy, Serret, Matthieu, Kirkmann, and others. The publica-

tion of Jordan's great treatise in 1870 is a noteworthy event. It

collects and unifies the results of his predecessors and contains an

immense amount of new matter.

A new direction was given to the theory of groups by the introduc-

tion by Cayley of abstract groups (1854, 1878). The work of Sylow,
Holder and Frobenius, Burnside and Miller, deserve especial notice.

Another line of research relates to the determination of the finite

groups in the linear group of any number of variables. These groups
are important in the theory of linear differential equations with

algebraic solutions, in the study of certain geometrical problems
as the points of inflection of a cubic, the twenty-seven lines on a

surface of the third order, in crystallography, etc. They also enter

prominently into Klein's Formen-problem. An especially important
class of finite linear groups are the congruence groups first considered

by Galois. Among the laborers in the field of linear groups, we note

Jordan, Klein, Moore, Maschke, Dickson. Frobenius, and Wiman.

Up to the present we have considered only groups of finite order.

About 1870 entirely new ideas coming from geometry and differential

equations give the theory of groups an unexpected development.
Foremost in this field are Lie and Klein.

Lie discovers and gradually perfects his theory of continuous

transformation groups and shows their relations to many different

branches of mathematics. In 1872 Klein publishes his Erlanger

Programme and in 1877 begins his investigations on elliptic modular

functions, in which infinite discontinuous groups are of primary im-

portance, as we have already seen. In the now famous Programme,
Klein asks what is the principle which underlies and unifies the

heterogeneous geometrical methods then in vogue, as, for example,
the geometry of the ancients, whose figures are rigid and invariable;

the modern protective geometry, whose figures are in ceaseless

flux passing from one form to another; the geometries of Plucker

and Lie, in which the elements of space are no longer points, but line
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spheres, or other configurations at pleasure, the geometry of birational

transformation, the analysis situs, etc., etc. Klein finds this answer:

In each geometry we have a system of objects and a group which

transforms these objects one into another. We seek the invariants

of this group. In each case it is the abstract group and not the con-

crete objects which is essential. The fundamental r61e of a group in

geometrical research is thus made obvious. Its importance is the

solution of algebraic equation, in the theory of differential equations
in the automorphic functions we have already seen. The immense

theory of algebraic invariants developed by Cayley and Sylvester,

Aronhold. Clebsch, Gordan, Hermite, Brioschi, and a host of zealous

workers in the middle of the century, also finds its place in the far

more general invariant theory of Lie's theory of groups. The same is

true of the theory of surfaces, so far as it rests on the theory of differ-

ential forms. In the theory of numbers, groups have many important

applications, for example, in the composition of quadratic forms and

the cyclotomic bodies. Finally, let us note the relation between hyper-

complex numbers and continuous groups discovered by Poincare.

In re'sume', we may thus say that the group concept, hardly not-

iceable at the beginning of the century, has at its close become one

of the fundamental and most fruitful notions in the whole range of

our science.

Infinite Aggregates

Leaving the subject of groups, we consider now briefly another

fundamental concept, namely, infinite aggregates. In the most

diverse mathematical investigations we are confronted with such

aggregates. In geometry the conceptions of curves, surface, region,

frontier, etc., when examined carefully, load us to a rich variety of

aggregates. In analysis they also appear, for example, the domain

of definition of an analytic function, the points where a function of

a real variable ceases to be continuous or to have a differential coeffi-

cient, the points where a series of functions ceases to be uniformly

convergent, etc.

To say an aggregate (not necessarily a point aggregate) is infinite

is often an important step; but often again only the first step. To

penetrate farther into the problem may require us to state how

infinite. This requires us to make distinctions in infinite aggregates,

to discover fruitful principles of classification, and to investigate the

properties of such classes.

The honor of having done this belongs to George Cantor. The

theory of aggregates is for the most part his creation; it has en-

riched mathematical science with fundamental and far-reaching

notions and results.

The theory falls into two parts; a theory of aggregates in general,
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and a theory of point aggregates. In the theory of point aggregates
the notion of limiting points gives rise to important classes of aggre-

gates as discrete, dense, everywhere dense, complete, perfect, con-

nected, etc., which are so important in the function theory.

In the general theory two notions are especially important,

namely, the one to one correspondence of the elements of two ag-

gregates, and well-ordered aggregates. The first leads to cardinal

numbers and the idea of enumerable aggregates, the second to trans-

finite or ordinal numbers.

Two striking results of Cantor's theory are these: the algebraic

and therefore the rational numbers, although everywhere dense, are

enumerable; and secondly, one-way and n-way space have the

same cardinal number.

Cantor's theory has already found many applications, especially

in the function theory, where it is to-day an indispensable instrument

of research.

Functions of Real Variables The Critical Movement

One of the most conspicuous and distinctive features of mathe-

matical thought in the nineteenth century is its critical spirit. Be-

ginning with the calculus, it soon permeates all analysis, and toward

the close of the century it overhauls and recasts the foundation of

geometry and aspires to further conquests in mechanics and in the

immense domains of mathematical physics.

Ushered in with Lagrange and Gauss just at the close of the

eighteenth century, the critical movement receives its first decisive

impulse from the teachings of Cauchy, who in particular introduces

our modern definition of limit and makes it the foundation of the

calculus. We must also mention in this connection Abel, Bolzano,
and Dirichlet. Especially Abel adopted the reform ideas of Cauchy
with enthusiasm, and made important contributions in infinite series.

The figure, however, which towers above all others in this move-

ment, whose name has become an epithet of rigor, is Weierstrass.

Beginning at the very foundations, he creates an arithmetic of real

and complex numbers, assuming the theory of positive integers to be

given. The necessity of this is manifest when we recall that until

then the simplest properties of radicals and logarithms were utterly

devoid of a rigorous foundation; so, for example,

V2 N/5=ViO log 2+log 5=log 10

Characteristic of the pre-Weierstrassean era is the loose way in

which geometrical and other intuitional ideas were employed in

the demonstration of analytical theorems. Even Gauss is open to

this criticism. The mathematical world received a great shock

when Weierstrass showed them an example of a continuous function
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without a derivative, and Hankel and Cantor, by means of their

principle of condensation of singularities, could construct analytic

expressions for functions having in any interval however small an

infinity of points of oscillation, an infinity of points in which the

differential coefficient is altogether indeterminate, or an infinity of

points of discontinuity. Another rude surprise was Cantor's dis-

covery of the one to one correspondence between the points of a

unit segment and a unit square, followed up by Peano's example
of a space-filling curve.

These examples and many others made it very clear that the

ideas of a curve, a surface region, motion, etc., instead of being clear

and simple, were extremely vague and complex. Until these notions

had been cleared up, their admission in the demonstration of an

analytical theorem was therefore not to be tolerated. On a purely

arithmetical basis, with no appeal to our intuition, Weierstrass

develops his stately theory of functions which culminates in the

theory of Abelian and multiply periodic functions.

But the notion of rigor is relative and depends on what we are

willing to admit either tacitly or explicitly. As we observed, Gauss,

whose rigor was the admiration of his contemporaries, freely ad-

mitted geometrical notions. This Weierstrass would criticise. On
the other hand, Weierstrass has made a grave oversight: he no-

where shows that his definitions relative to the number he introduces

do not involve mutual contradictions. If he replied that such con-

tradictions would involve contradictions in the theory of positive

integers, one might ask what assurance have we that such contradic-

tions may not actually exist. A flourishing young school of mathe-

matical logic has recently grown up under the influence of Peano.

They have investigated with marked success the foundations of

analysis and geometry, and in particular have attempted to show

the non-contradictoriness of the axioms of our number-system by

making them depend on the axioms of logic, which axioms we must

admit, to reason at all.

The critical spirit, which in the first half of the century was to

be found in the writings of only a few of the foremost mathematicians,
has in the last quarter of the century become almost universal, at

least in analysis. A searching examination of the foundation of

arithmetic and the calculus has brought to light the insufficiency of

much of the reasoning formerly considered as conclusive. It became

necessary to build up these subjects anew. The theory of irrational

numbers invented by Weierstrass has been supplanted by the more

flexible theories of Dedekind and Cantor. Stolz has given us a sys-

tematic and rigorous treatment of arithmetic. The calculus has

been completely overhauled and arithmetized by Thomae, Harnack,

Peano, Stolz, Jordan, and Valle'e-Poussin.
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Leaving the calculus, let us notice briefly the theory of functions

of real variables. The line of demarcation between these two sub-

jects is extremely arbitrary. We might properly place in the latter

all those finer and deeper questions relating to the number-system;
the study of our curve, surface, and other geometrical notions, the

peculiarities that functions present with reference to discontinuity,

oscillation, differentiation, and integration; as well as a very exten-

sive class of investigations whose object is the greatest possible

extension of the processes, concepts, and results of the calculus.

Among the many not yet mentioned who have made important
contributions to this subject we note: Fourier, Riemann, Stokes,

Dini, Tannery, Pringsheim, Arzela, Osgood, Broden, Ascoli, Borel,

Baire, Kopke, Holder, Volterra, and Lebesgue.

Closely related with the differential calculus is the calculus of

variations; in the former the variables are given infinitesimal varia-

tions, in the latter the functions. Developed in a purely formal

manner by Jacobi, Hamilton, Clebsch, and others in the first part
of the century, a new epoch began with Weierstrass, who, having

subjected the labors of his predecessors to an annihilating criticism,

placed the theory on a new and secure foundation and so opened the

path for further research by Schwarz, A. Mayer, Scheffers, v. Esche-

rich, Kneser, Osgood, Bolza, Kobb, Zermelo, and others. At the

very close of the century Hilbert has given the theory a fresh im-

pulse by the introduction of new and powerful methods, which

enable us in certain cases to neglect the second variation and sim-

plifies the consideration of the first. As application he gives the

first direct and yet simple demonstration of Dirichlet's celebrated

Principle.

Theory of Numbers Algebraic Bodies

The theory of numbers as left by Fermat, Euler, and Legendre
was for the most part concerned with the solution of Diophantine

equations, that is, given an equation f(x, y, z, . . . ) =0 whose

coefficients are integers, find all rational, and especially all integral

solutions. In this problem Lagrange had shown the importance
of considering the theory of forms. A new era begins with the ap-

I>earance of Gauss's Disquisitiones arithmeticae in 1801. This great

work is remarkable for three things: (1) The notion of divisibility

in the form of congruences is shown to be an instrument of wonder-

ful power; (2) the Diophantine problem is thrown in the back-

ground and the theory of forms is given a dominant r61e; (3) the

introduction of algebraic numbers, namely, the roots of unity.

The theory of forms has been further developed along the lines

of the Disquisitiones by Dirichlet, Eisenstein, Hermite, H. Smith, and

Minkowski.
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Another part of the theory of numbers also goes back to Gauss,

namely, algebraic numerical bodies. The Law of Reciprocity of

Quadratic Residues, one of the gems of the higher arithmetic, was

first rigorously proved by Gauss. His attempts to extend this

theorem to cubic and biquadratic residues showed that the elegant

simplicity which prevailed in quadratic residues was altogether

missing in these higher residues, until one passed from the domain

of real integers to the domain formed of the third and fourth roots of

unity. In these domains, as Gauss remarked, algebraic integers have

essentially the same properties as ordinary integers. Further explor-

ation in this new and promising field by Jacobi, Eisenstein, and

others soon brought to light the fact that already in the domain

formed of the twenty-third roots of unity the laws of divisibility were

altogether different from those of ordinary integers; in particular,

a number could be expressed as the product of prime factors in more

than one way. Further progress in this direction was therefore

apparently impossible.

It is Rummer's immortal achievement to make further progress

possible by the invention of his ideals. These he applied to Fermat's

celebrated Last Theorem and the Law of Reciprocity of Higher
Residues.

The next step in this direction was taken by Dedekind and Kro-

necker, who developed the ideal theory for any algebraic domain.

So arose the theory of algebraic numerical bodies, which has come

into such prominence in the last decades of the century through
the researches of Hensel, Hurwitz, Minkowski, Weber, and, above

all, Hilbert.

Kronecker has gone farther, and in his classic Grundziige he has

shown that similar ideas and methods enable us to develop a theory
of algebraic bodies in any number of variables. The notion of divis-

ibility so important in the preceding theories is generalized by Kro-

necker still farther in the shape of his system of moduli.

Another noteworthy field of research opened up by Kronecker is

the relation between quadratic forms with negative determinant

and complex multiplication of elliptic functions. H. Smith, Gierster,

Hurwitz, and especially Weber have made important contributions.

A method of great power in certain investigations has been created

by Minkowski, which he called the Geometric der Zahlen. Introduc-

ing a generalization of the distance function, he is led to the concep-
tion of a fundamental body (Aichkorper) . Minkowski shows that

every fundamental body is nowhere concave, and conversely to

each such body belongs a distance function. A theorem of great

importance is now the following: The minimum value which each

distance function has at the lattice points is not greater than a certain

number depending on the function chosen.
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We wish finally to mention a line of investigation which makes

use of the infinitesimal calculus arid even the theory of functions.

Here belong the brilliant researches of Dirichlet relating to the num-
ber of classes of binary forms for a given determinant, the number
of primes in a given arithmetic progression; and Riemann's remark-

able memoir on the number of primes in a given interval.

In this analytical side of the theory of numbers we notice also the

researches of Mertens. Weber, and Hadamard.

Protective Geometry

The tendencies of the eighteenth century were predominantly

analytical. Mathematicians were absorbed for the most part in

developing the wonderful instrument of the calculus with its countless

applications. Geometry made relatively little progress. A new era

begins with Monge. His numerous and valuable contributions to

analytical descriptive and differential geometry, and especially his

brilliant and inspiring lectures at the Ecole Polytechnique (1795,

1809), put fresh life into geometry and prepared it for a new and

glorious development in the nineteenth century.

When one passes in review the great achievements which have

made the nineteenth century memorable in the annals of our science,

certainly projective geometry will occupy a foremost place. Pascal,

De la Hire, Monge, and Carnot are forerunners, but Poncelet, a pupil

of Monge, is its real creator. The appearance of his Traite des pro-

prietes projectiles des figures, in 1822, gives modern geometry its

birth. In it we find the line at infinity, the introduction of imagin-

aries, the circular points at infinity, polar reciprocation, a discus-

sion of homology, the systematic use of projection, section, and

anharmonic ratio.

While the countrymen of Poncelet, especially Chasles, do not fail

to make numerous and valuable contributions to the new geometry,
the next great steps in advance are made on German soil. In 1827

Mobius publishes the Barycentrische Calcul; Pliicker's Analytisch-

geometrische Entwickelungen appears in 1828-31 and Steiner's Ent-

wickelung der Abhdngigkeit geometrischer Gestalten von einander in

1832. In the ten years which embrace the publication of these

immortal works of Poncelet, Pliicker, and Steiner, geometry has

made more real progress than in the two thousand years which had

elapsed since the time of Appolonius. The ideas which had been

slowly taking shape since the time of Descartes suddenly crystallized

and almost overwhelmed geometry with an abundance of new ideas

and principles.

To Mobius we owe the introduction of homogeneous coordinates,

and the far-reaching conception of geometric transformation, includ-

ing collineation and duality as special cases. To Pliicker we owe the
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use of the abbreviate notation which permits us to study the proper-

ties of geometric figures without the intervention of the coordinates,

the introduction of line and plane coordinates, and the notion of

generalized space elements. Steiner, who has been called the greatest

geometer since Appolonius, besides enriching geometry in countless

ways, was the first to employ systematically the method of generating

geometrical figures by means of protective pencils.

Other noteworthy works belonging to this period are Pliicker's

System der analytischen Geometric (1835), and Chasles's classic Apercu

(1837).

Already at this stage we notice a bifurcation in geometrical

methods. Steiner and Cha'sles become eloquent champions of the

synthetic school of geometry, while Pliicker, and later Hesse and

Cayley, are leaders in the analytical movement. The astonishing

fruitfulness and beauty of synthetic methods threatened for a short

time to drive the analytic school out of existence. The tendency
of the synthetic school was to banish more and more metrical methods.

In effecting this the anharmonic ratio became constantly more promi-
nent. To define this fundamental ratio without reference to measure-

ment, and so free projective geometry from the galling bondage
of metric relations, was thus a problem of fundamental importance.
The glory of this achievement, which has, as we shall see, a far

wider significance, belongs to v. Staudt. Another equally important
contribution of v. Staudt to synthetic geometry is his theory of

imaginaries. Poncelet, Steiner, Chasles operate with imaginary
elements as if they were real. Their only justification is recourse to

the so-called principles of continuity or to some other equally vague

principle. V. Staudt gives this theory a rigorous foundation, defining

the imaginary points, lines, and planes by means of involutions

without ordinal elements.

The next great advance made is the advent of the theory of alge-

braic invariants. Since projective geometry is the study of those

properties of geometric figures which remain unaltered by projective

transformations, and since the theory of invariants is the study of

those forms which remain unaltered (except possibly for a numerical

factor) by the group of linear substitutions, these two subjects are

inseparably related and in many respects only different aspects of the

same thing. It is no wonder, then, that geometers speedily applied
the new theory of invariants to geometrical problems. Among the

pioneers in this direction were Cayley, Salmon. Aronhold, Hesse,

and especially Clebsch.

Finally we must mention the introduction of the line as a space
element. Forerunners are Grassmann (1844) and Cayley (1859), but

Pliicker in his memoirs of 1865, and his work Neue Geometric des

Raumes (1868-69), was the first to show its great value by studying
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complexes of the first and second order and calling attention to

their application to mechanics and optics.

The most important advance over Pliieker has been made by

Klein, who takes as coordinates six-line complexes in involution.

Klein also observed that line geometry may be regarded as a point

geometry on a quadric in five-way space. Other laborers in this

field are Clebsch, Reye, Segre, Sturm, and Konigs.

Differential Geometry

During the first quarter of the century this important branch of

geometry was cultivated chiefly by the French. Monge and his

school study with great success the generation of surfaces in vari-

ous ways, the properties of envelopes, evolutes, lines of curvature,

asymptotic lines, skew curves, orthogonal systems, and especially the

relation between the surface theory and partial differential equations.

The appearance of Gauss's Disquisitiones generates circa super-

ficies curvas, in 1828, marks a new epoch. Its wealth of new ideas

has furnished material for countless memoirs, and given geometry
a new direction. We find here the parametric representation of a

surface, the introduction of curvilinear coordinates, the notion of

spherical image, the Gaussian measure of curvature, and a study of

geodesies. But by far the most important contributions that Gauss

makes in this work is the consideration of a surface as a flexible,

inextensible film or membrane, and the importance given quadratic
differential forms.

We consider now some of the lines along which differential geometry
has advanced. The most important is perhaps the theory of differen-

tial quadratic forms with their associate invariants and parameters.
We mention here Lame", Beltrami, Menardi, Codazzi, Christoffel,

and Weingarten.
An especially beautiful application of this theory is the immense

subject of applicability and deformation of surfaces, in which Mind-

ing, Bauer, Beltrami, Weingarten, and Voss have made important
contributions.

Intimately related with the theory of applicability of two surfaces

is the theory of surfaces of constant curvature which play so import-
ant a part in non-Euclidean geometry. We mention here the work

of Minding, Beltrami, Dini, Backlund, and Lie.

The theory of rectilinear congruences has also been the subject

of important researches from the standpoint of differential geometry.
First studied by Monge as a system of normals to a surface and then

in connection with optics by Mains, Dupin, and Hamilton, the gen-

eral theory has since been developed by Kummer, Ribaucour,

Guichard, Darboux, Voss, and Weingarten. An important applica-

tion of this theorv is the infinitesimal deformation of a surface.
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Minimum surfaces have been studied by Monge, Bonnet, and

Enneper. The subject owes its present extensive development prin-

cipally to Weierstrass, Riemann, Schwarz, and Lie. In it we find

harmoniously united the theory of surfaces, the theory of functions,

the calculus of variations, the theory of groups, and mathematical

physics.

Another extensive division of differential geometry is the theory of

orthogonal systems, of such importance in physics. We note espe-

cially the investigations of Dupin, Jacobi, Darboux, Combescure,
and Bianchi.

Under this head we group a number of subjects too important
to pass oVer in silence, yet which cannot be considered at length for

lack of time.

In the first place is the immense subject of algebraic curves and

surfaces. To develop adequately all the important and elegant

properties of curves and surfaces of the second order alone would

require a bulky volume. In this line of ideas would follow curves

and surfaces of higher order and class. Their theory is far less

complete, but this lack it amply makes good by offering an almost

bewildering variety of configurations to classify and explore. No

single geometer has contributed more to this subject than Cayley.
A theory of great importance is the geometry on a curve or sur-

face inaugurated by Clebsch in 1863.

Expressing the coordinates of a plane cubic by means of elliptic

functions and employing their addition theorems, he deduced with

hardly any calculation Steiner's theorem relating to the inscribed

polygons and various theorems concerning conies touching the curve.

Encouraged by such successes, Clebsch proposed to make use of

Riemann 's theory of Abelian functions in the study of algebraic

curves of any order. The most important result was a new classifica-

tion of such curves. Instead of the linear transformation, Clebsch

in harmony with Riemann 's ideas employs the birational transforma-

tion as a principle of classification. From this standpoint we ask

what arc the properties of algebraic curves which remain invariant

for such transformation.

Brill and Nother follow Clebsch. Their method is, however, alge-

braical, and rests on their celebrated Residual theorem which in

their hands takes the place of Abel's theorem. We mention further

the investigation of Castelnuovo, Weber, Krause, and Segre. An

important division of this subject is the theory of correspondences.
First studied by Chasles for curves of deficiency in 1864, Cayley,

and, immediately after, Brill extended the theory to the case of any

p. The most important advance made in later years has been made
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by Hurwitz, who considers the totality of possible correspondences
on an algebraic curve, making use of the corresponding integrals of

the first species.

Alongside the geometry on a curve is the vastly more difficult and

complicated geometry on a surface, or more generally, on any algebraic

spread in n-way space. Starting from a remark of Clebsch (1868).

Nother made the first great step in his famous memoir of 1868-

74. Further progress has been due to the French and Italian mathe-

maticians. Picard, Poincare", and Humbert make use of transcend-

ental methods, in which figure prominently double integrals which

remain finite on the surface and single integrals of total differentials.

On the other hand, Enriques and Castelnuovo have attacked the

subject from a more algebraic-geometric standpoint by means of

linear systems of algebraic curves on the surface.

The first invariants of a surface were discovered by Clebsch and

Nother; still others have been found by Castelnuovo and Enriques
in connection with irregular surfaces.

Leaving this subject, let us consider briefly the geometry of n

dimensions. A characteristic of nineteenth-century mathematics

is the generality of its methods and results. When such has been

impossible with the elements in hand, fresh ones have been invented;

witness the introduction of imaginary numbers in algebra and the

function theory, the ideals of Kummer in the theory of numbers,

the line and plane at infinity in projective geometry. The benefit

that analysis derived from geometry was too great not to tempt
mathematicians to free the latter from the narrow limits of three

dimensions, and so give it the generality that the former has long

enjoyed. The first pioneer in this abstract field was Grassmann (1844) ;

we must, however, consider Cayley as the real founder of n-dimen-

sional geometry (1869). Notable contributions have been made by
the Italian school, Veronese, Segre, etc.

Non-Euclidean Geometry

Each century takes over as a heritage from its predecessor a

number of problems whose solution previous generations of mathe-

maticians have arduously but vainly sought. It is a signal achieve-

ment of the nineteenth century to have triumphed over some of the

most celebrated of these problems.
The most ancient of them is the Quadrature of the Circle, which

already appears in our oldest mathematical document, the Papyrus

Rhind, B.C. 2000. Its impossibility was finally shown by Lindemann

(1882).

Another famous problem relates to the solution of the quintic,

which had engaged the attention of mathematicians since the middle

of the sixteenth century. The impossibility of expressing its roots by
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radicals was finally shown by the youthful Abel (1824), while Hermite

and Kroneker (1858) showed how they might be expressed by the

elliptic modular functions, and Klein (1875) by means of the icosa-

hedral irrationality.

But of all problems which have come down from the past, by far

the most celebrated and important relates to Euclid's parallel

axiom. Its solution has profoundly affected our views of space,

and given rise to questions even deeper and more far-reaching which

embrace the entire foundation of geometry and our space conception.

Let us pass in rapid review the principal events of this great move-

ment. Wallis in the seventeenth, Seccheri, Lambert, and Legendre
in the eighteenth, are the first to make any noteworthy progress

before the nineteenth century. The really profound investigations

of Seccheri and Lambert, strangely enough, were entirely over-

looked by later writers and have only recently come to light.

In the nineteenth century non-Euclidean geometry develops along
four directions, which roughly follow each other chronologically.

Let us consider them in order.

The naive-synthetic direction. The methods employed are similar to

those of Euclid. His axioms are assumed with the exception of the

parallel axiom; the resulting geometry is what is now called hyper-
bolic or Lobatschewski 's geometry. Its principal properties are de-

duced, in particular its trigonometry, which is shown to be that of a

sphere with imaginary radius as Lambert had divined. As a specific

result of these investigations the long-debated question relating to

the independence of the parallel axiom was finally settled. The great
names in this group are Lobatschewski, Bolyai, and Gauss. The first

publications of Lobatschewski are his Exposition succinct des prin-

cipesde la geometric (1829), and the Geometrische Untersuchungen, in

1840. Bolyai's Appendix was published in 1832. As to the extent

of Gauss's investigations, we can only judge from scattered remarks

in private letters and his reviews of books relating to the parallel

axioms. His dread of the Geschrei der Sootier, that is, the followers

of Kant, prevented him from publishing his extensive speculations.

The metric-differential direction. This is inaugurated by three great

memoirs by Riemann, Helmholtz, and Beltrami, all published in the

same year, 1868.

Beltrami, making use of results of Gauss and Minding relating to

the applicability of two surfaces, shows that the hyperbolic geometry
of a plane may be interpreted on a surface of constant negative

curvature, the pseudosphere. By means of this discovery the purely

logical and hypothetical system of Lobatschewski and Bolyai takes

on a form as concrete and tangible as the geometry of a plane.

The work of Riemann is as original as profound. He considers

space as an n-dimensional continuous numerical multiplicity, which
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is distinguished from the infinity of other such multiplicities by
certain well-defined characters. Chief of them are (1) the quadratic

differential expression which defines the length of an elementary arc,

and (2) a property relative to the displacements of this multiplicity

about a point. There are an infinity of space multiplicities which

satisfy Riemann's axioms. By extending Gauss's definition of a

curvature &, of a surface at a point to curvature of space at a point,

by considering the geodesic surfaces passing through that point,

Riemann finds that all these spaces fall into three classes according
as k is equal to, greater, or less than 0. For ?i=3 and fc=0 we have

Euclidean space; when fc<0 we have the space found by Gauss,

Lobatschewski, and Bolyai; when fc>0 we have the space first

considered in the long-forgotten writings of Seccheri and Lambert,
in which the right line is finite.

Helmholtz, like Riemann, considers space as a numerical multiplic-

ity. To characterize it further, Helmholtz makes use of the notions

of rigid bodies and free mobility. His work has been revised and ma-

terially extended by Lie from the standpoint of the theory of groups.
In the present category also belong important papers by New-

comb and Killing.

The protective direction. We have already noticed the efforts of

the synthetic school to express metric properties by means of project-

ive relations. In this the circular points at infinity were especially

serviceable. An immense step in this direction was taken by Laguerre,
who showed, in 1853, that all angles might be expressed as an anhar-

monic ratio with reference to these points, that is, with reference to

a certain fixed conic. The next advance is made by Cayley in his

famous sixth memoir on quantics, in 1859. Taking any fixed conic

(or quadric, for space) which he calls the absolute, Cayley introduces

two expressions depending on the anharmonic ratio with reference

to the absolute. When this degenerates into the circular points

at infinity, these expressions go over into the ordinary expressions

for the distance between two points and the angle between two

lines. Thus all metric relations may be considered as protective

relations with respect to the absolute. Cayley does not seem to be

aware of the relation of his work to non-Euclidean geometry. This

was discovered by Klein, in 1871. In fact, according to the nature of

the absolute, three geometries are possible; these are precisely the

three already mentioned. Klein has made many important contri-

butions to non-Euclidean geometry. We mention his modification

of v. Staudt's definition of anharmonic ratio so as to be independ-
ent of the parallel axiom, his discovery of the two forms of Rie-

mann's space, and finally his contributions to a class of geometries
first noticed by Clifford and which are characterized by the fact that

only certain of its motions affect space as a whole.
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As a result of all these investigations, both in the protective as

also in the metric differential direction, we are led irresistibly to the

same conclusion, namely: The facts of experience can be explained

by all three geometries when the constant k is taken small enough.
It is, therefore) merely a question of convenience whether we adopt
the parabolic, hyperbolic, or elliptic geometry.
The critical synthetic direction represents a return to the old syn-

thetic methods of Euclid, Lobatschewski, and Bolyai, with the added

feature of a refined and exacting logic. Its principal object is no

longer a study of non-Euclidean but of Euclidean geometry. Its

aim is to establish a system of axioms for our ordinary space which

is complete, compatible, and irreducible. The fundamental terms

point, line, plane, between, congruent, etc., are introduced as ab-

stract marks whose properties are determined by inter-relations in

the form of axioms. Geometric intuition has no place in this order

of ideas which regards geometry as a mere division of pure logic.

The efforts of this school have already been crowned with eminent

success, and much may be expected from it in the future. Its leaders

are Peano, Veronese, Fieri, Padoa, Burali-Forti, and Levi-Civitta, in

Italy, Pasch and Hilbert in Germany, and Moore in America.

Closing at this point our hasty and imperfect survey of mathe-

matics in the last century, let us endeavor to sum up its main charac-

teristics. What strikes us at once is its colossal proportions and rapid

growth in nearly all directions, the great variety of its branches, the

generality and complexity of its methods; an inexhaustible creative

imagination, the fearless introduction and employment of ideal

elements, and an appreciation for a refined and logical development
of all its parts.

We who stand on the threshold of a new century can look back on

an era of unparalleled progress. Looking into the future, an equally

bright prospect greets our eyes; on all sides fruitful fields of re-

search invite our labor and promise easy and rich returns.

Surely this is the golden age of mathematics.
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IT is one of the objects of a congress such as this which now

brings us together, to show the bonds between the diverse parts of

science taken in its most extended acceptation. So the organizers

of this meeting have insisted that the relations between different

sections should be put in evidence.

To undertake a study of this sort, somewhat indeterminate in

character, it is necessary to forget that all is in all; in what con-

cerns algebra and analysis, a Pythagorean would be dismayed at the

extent of his task, remembering the celebrated formula of the school:
"
Things are numbers." From this point of view my subject would

be inexhaustible.

But I, for the best of reasons, will make no such pretensions.

In casting merely a glance over the development of our science

through the ages, and particularly in the last century, I hope to be

able to characterize sufficiently the role of mathematical analysis in

its relations to certain other sciences.

It would appear natural to commence by speaking of the concept
itself of whole number; but this subject is not alone of logical order,
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it is also of order historic and psychologic, and would draw us away
into too many discussions.

Since the concept of number has been sifted, in it have been found

unfathomable depths; thus, it is a question still pending to know,
between the two forms, the cardinal number and the ordinal number,
under which the idea of number presents itself, which of the two is

anterior to the other, that is to say, whether the idea of number

properly so called is anterior to that of order, or if it is the inverse.

It seems that the geometer-logician neglects too much in these

questions psychology and the lessons uncivilized races give us; it

would seem to result from these studies that the priority is with the

cardinal number.

It may also be there is no general response to the question, the

response varying according to races and according to mentalities.

I have sometimes thought, on this subject, of the distinction be-

tween auditives and visuals, auditives favoring the ordinal theory,

visuals the cardinal.

But I will not linger on this ground full of snares; I fear that our

modern school of logicians with difficulty comes to agreement with

the ethnologists and biologists; these latter in questions of origin

are always dominated by the evolution idea, and, for more than one

of them, logic is only the resume of ancestral experience. Mathe-

maticians are even reproached with postulating in principle that

there is a human mind in some way exterior to things, and that it

has its logic. We must, however, submit to this, on pain of con-

structing nothing. We need this point of departure, and certainly,

supposing it to have evolved during the course of prehistoric time,

this logic of the human mind was perfectly fixed at the time of the

oldest geometric schools, those of Greece; their works appear to

have been its first code, as is expressed by the story of Plato writing

over the door of his school,
" Let no one not a "geometer enter

here."

Long before the bizarre word algebra was derived from the Arabic,

expressing, it would seem, the operation by which equalities are

reduced to a certain canonic form, the Greeks had made algebra

without knowing it; relations more intimate could not be imagined
than those binding together their algebra and their geometry, or

rather, one would be embarrassed to classify, if there were occasion,

their geometric algebra, in which they reason not on numbers but on

magnitudes.

Among the Greeks also we find a geometric arithmetic, and one of

the most interesting phases of its development is the conflict which,

among the Pythagoreans, arose in this subject between number and

magnitude, apropos of irrationals.

Though the Greeks cultivated the abstract study of numbers, called
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by them arithmetic, their speculative spirit showed little taste for

practical calculation, which they called logistic.

In remote antiquity, the Egyptians and the Chaldeans, and later

the Hindus and the Arabs, carried far the science of calculation.

They were led on by practical needs; logistic preceded arithmetic,

as land-surveying and geodesy opened the way to geometry; in the

same way trigonometry developed under the influence of the in-

creasing needs of astronomy.
The history of science at its beginnings shows a close relation

between pure and applied mathematics; this we shall meet again

constantly in the course of this study.

We have remained up to this point in the domain which ordinary

language calls elementary algebra and arithmetic.

In fact, from the time that the incommensurability of certain

magnitudes had been recognized, the infinite had made its appearance,

and, from the time of the sophisms of Zeno on the impossibility of

motion, the summation of geometric progressions must have been

considered.

The procedures of exhaustion which are found in Eudoxus and in

Euclid appertain already to the integral calculus, and Archimedes

calculates definite integrals.

Mechanics also appeared in his treatise on the quadrature of the

parabola, since he first finds the surface of the segment bounded by
an arc of a parabola and its chord with the help of the theorem of

moments; this is the first example of the relations between me-

chanics and analysis, which since have not ceased developing.,

The infinitesimal method of the Greek geometers for the measure

of volumes raised questions whose interest is even to-day not ex-

hausted.

In plane geometry, two polygons of the same area are either

equivalent or equivalent-by-completion, that is to say, can be de-

composed into a finite number of triangles congruent in pairs, or

may be regarded as differences of polygons susceptible of such a

partition.

It is not the same for the geometry of space, and we have lately

learned that stereometry cannot, like planimetry, get on without

recourse to procedures of exhaustion or of limit, which require the

axiom of continuity or the Archimedes assumption.
Without insisting further, this hasty glance at antiquity shows

how completely then were amalgamated algebra, arithmetic, geo-

metry, and the first endeavors at integral calculus and mechanics, to

the point of its being impossible to recall separately their history.

In the Middle Ages and the Renaissance, the geometric algebra of

the ancients separated from geometry. Little by little algebra

properly so called arrived at independence, with its symbolism and
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its notation more and more perfected; thus was created this lan-

guage so admirably clear, which brings about for thought a veritable

economy and renders further progress possible.

This is also the moment when distinct divisions are organized.

Trigonometry, which, in antiquity, had been only an auxiliary of

astronomy, is developed independently; toward the same time the

logarithm appears, and essential elements are thus put in evidence.

II

In the seventeenth century, the analytic geometry of Descartes,

distinct from what I have just called the geometric algebra of the

Greeks by the general and systematic ideas which are at its base,

and the new-born dynamic were the origin of the greatestprogress of

analysis.

When Galileo, starting from the hypothesis that the velocity of

heavy bodies in their fall is proportional to the time, from this

deduced the law of the distances passed over, to verify it afterward

by experiment, he took up again the road upon which Archimedes

had formerly entered and on which would follow after him Cavalieri,

Fermat, and others still, even to Newton and Leibnitz. The integral

calculus of the Greek geometers was born again in the kinematic of

the great Florentine physicist.

As to the calculus of derivatives or of differentials, it was founded

with precision apropos of the drawing of tangents.

In reality, the origin of the notion of derivative is in the confused

sense of the mobility of things and of the rapidity more or less great

with which phenomena happen; this is well expressed by the words

fluents and fluxions, which Newton used, and which one might

suppose borrowed from old Heraclitus.

The points of view taken by the founders of the science of motion,

Galileo, Huygens, and Newton, had an enormous influence on the

orientation of mathematical analysis.

It was with Galileo an intuition of genius to discover that, in

natural phenomena, the determining circumstances of the motion

produce accelerations: this must have conducted to the statement

of the principle that the rapidity with which the dynamic state of

a system changes depends in a determinate manner on its static state

alone. In a more general way we reach the postulate that the in-

finitesimal changes, of whatever nature they may be, occurring in

a system of bodies, depend uniquely on the actual state of this

system.
In what degree are the exceptions apparent or real? This is a ques-

tion which was raised only later and which I put aside for the

moment.

From the principles enunciated becomes clear a point of capital
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importance for the analyst: Phenomena are ruled by differential

equations which can be formed when observation and experiment
have made known for each category of phenomena certain physical

laws.

We understand the unlimited hopes conceived from these results.

As Bertrand says in the preface of his treatise, "The early successes

were at first such that one might suppose all the difficulties of science

surmounted in advance, and believe that the geometers, without

being longer distracted by the elaboration of pure mathematics,
could turn their meditations exclusively toward the study of the

natural laws."

This was to admit gratuitously that the problems of analysis, to

which one was led, would not present very grave difficulties.

Despite the disillusions the future was to bring, this capital point

remained, that the problems had taken a precise form, and that a

classification could be established in the difficulties to be surmounted.

There was, therefore, an immense advance, one of the greatest

ever made by the human mind. We understand also why the theory
of differential equations acquired a considerable importance.

I have anticipated somewhat, in presenting things under a form

so analytic. Geometry was intermingled in all this progress. Huy-
gens, for example, followed always by preference the ancients, and

his Horologium oscillatorium rests at the same time on infinitesi-

mal geometry and mechanics; in the same way, in the Principia

of Newton, the methods followed are synthetic.

It is, above all, with Leibnitz that science takes the paths which

were to lead to what we call mathematical analysis; it is he who,
for the first time, in the latter years of the seventeenth century,

pronounces the word function.

By his systematic spirit, by the numerous problems he treated,

even as his disciples James and John Bernoulli, he established in a

final way the power of the doctrines to the edification of which had

successively contributed a long series of thinkers from the distant

times of Eudoxus and of Archimedes.

The eighteenth century showed the extreme fecundity of the new

methods. That was a strange time, the era cf mathematical duels

where geometers hurled defiance, combats not always without

acrimony, when Leibnitzians and Newtonians encountered in the

lists.

From the purely analytic point of view, the classification and study
of simple functions is particularly interesting; the function idea, on

which analysis rests, is thus developed little by little.

The celebrated works of Euler hold then a considerable place.

However, the numerous problems which present themselves to the

mathematicians leave no time for a scrutiny of principles; the
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foundations themselves of the doctrine are elucidated slowly, and

the mot attributed to d'Alembert, "Allez en avant et la foi vous

viendra,
"

is very characteristic of this epoch.

Of all the problems started at the end of the seventeenth century
or during the first half of the eighteenth, it will suffice for me to recall

those isoperimetric problems which gave birth to the calculus of

variations.

I prefer to insist on the interpenetration still more intimate

between analysis and mechanics when, after the inductive period of

the first age of dynamics, the deductive period was reached where one

strove to give a final form to the principles. The mathematical and

formal development played then the essential role, and the analytic

language was indispensable to the greatest extension of these prin-

ciples.

There are moments in the history of the sciences and, perhaps, of

society, when the spirit is sustained and carried forward by the words

and the symbols it has created, and when generalizations present

themselves with the least effort. Such was particularly the rdle of

analysis in the formal development of mechanics.

Allow me a remark just here. It is often said an equation contains

only what one has put into it. It is easy to answer, first, that the

new form under which one finds the things constitutes often of itself

an important discovery.

But sometimes there is more; analysis, by the simple play of

its symbols, may suggest generalizations far surpassing the primitive

outline. Is it not so with the principle of virtual velocities, of which

the first idea comes from the simplest mechanisms; the analytic

form which translates it will suggest extensions leading far from the

point of departure.

In the same sense, it is not just to say analysis has created nothing,
since these more general conceptions are its work. Still another

example is furnished us by Lagrange's system of equations; here

calculus transformations have given the type of differential equations
to which one tends to carry back to-day the notion of mechanical

explanation.

There are in science few examples comparable to this, of the

importance of the form of an analytic relation and of the power of

generalization of which it may be capable.

It is very clear that, in each case, the generalizations suggested
should be made precise by an appeal to observation and experiment,
then it is still the calculus which searches out distant consequences
for checks, but this is an order of ideas which I need not broach here.

Under the impulse of the problems set by geometry, mechanics,
and physics, we see develop or take birth almost all the great divisions

of analysis. First were met equations with a single independent vari-



able. Soon appear partial differential equations, with vibrating cords,

the mechanics of fluids and the infinitesimal geometry of surfaces.

This was a wholly new analytic world; the origin itself of the

problems treated was an aid which from the first steps permits no

wandering, and in the hands of Monge geometry rendered useful

services to the new-born theories.

But of all the applications of analysis, none had then more renown

than the problems of celestial mechanics set by the knowledge of the

law of gravitation and to which the greatest geometers gave their

names.

Theory never had a more beautiful triumph; perhaps one might
add that it was too complete, because it was at this moment above

all that were conceived for natural philosophy the hopes at least

premature of which I spoke above.

In all this period, especially in the second half of the eighteenth

century, what strikes us with admiration and is also somewhat

confusing, is the extreme importance of the applications realized,

while the pure theory appeared still so ill assured. One perceives it

when certain questions are raised like the degree of arbitrariness in

the integral of vibrating cords, which gives place to an interminable

and inconclusive discussion.

Lagrange appreciated these insufficiencies when he published his

theory of analytic functions, where he strove to give a precise foun-

dation to analysis.

One cannot too much admire the marvelous presentiment he had

of the role which the functions, which with him we call analytic,

were to play; but we may confess that we stand astonished before

the demonstration he believed to have given of the possibility of the

development of a function in Taylor's series.

The exigencies in questions of pure analysis were less at this

epoch. Confiding in intuition, one was content with certain probabil-

ities, and agreed implicitly about certain hypotheses that it seemed

useless to formulate in an explicit way; in reality, one had con-

fidence in the ideas which so many times had shown themselves

fecund, which is very nearly the mot of d'Alembert.

The demand for rigor in mathematics has had its successive

approximations, and in this regard our sciences have not the absolute

character so many people attribute to them.

Ill

We have now reached the first years of the nineteenth century.

As we have explained, the great majority of the analytic researches

had, in the eighteenth century, for occasion a problem of geometry,
and especially of mechanics and of physics, and we have scarcely

found the logical and sesthetic preoccupations which are to give a
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physiognomy so different to so many mathematical works, above all

in the latter two thirds of the nineteenth century.

Not to anticipate, however, after so many examples of the in-

fluences of physics on the developments of analysis, we meet still a

new one, and one of the most memorable, in Fourier's theory of heat.

He commences by forming the partial differential equations which

govern temperature.
What are for a partial differential equation the conditions at the

limits permitting the determination of a solution?

For Fourier, the conditions are suggested by the physical problem,
and the methods that he followed have served as models to the

physicist-geometers of the first half of the last century.

One of these consists in forming a series with certain simple solu-

tions. Fourier thus obtained the first types of developments more

general than the trigonometric developments, as in the problem of

the cooling of a sphere, where he applies his theory to the terrestrial

globe, and investigates the law which governs the variations of

temperature in the ground, trying to go even as far as numerical

applications.

In the face of so many beautiful results, we understand the enthu-

siasm of Fourier which scintillates from every line of his preliminary

discourse. Speaking of mathematical analysis, he says,
" There could

not be a language more universal, more simple, more exempt from

errors and from obscurities, that is to say, more worthy to express
the invariable relations of natural things. Considered under this

point of view, it is as extended as nature herself; it defines all sen-

sible relations, measures times, spaces; forces, temperatures. This

difficult science forms slowly, but it retains all the principles once

acquired. It grows and strengthens without cease in the midst of

so many errors of the human mind."

The eulogy is magnificent, but permeating it we see the tendency
which makes all analysis uniquely an auxiliary, however incom-

parable, of the natural sciences, a tendency, in conformity, as we
have seen, with the development of science during the preceding two

centuries; but we reach just here an epoch where new tendencies

appear.

Poisson having in a report on the Fundamenta recalled the re-

proach made by Fourier to Abel and Jacobi of not having occupied
themselves preferably with the movement of heat, Jacobi wrote to

Legendre: "It is true that Monsieur Fourier held the view that

the principal aim of mathematics was public utility, and the ex-

planation of natural phenomena; but a philosopher such as he

should have known that the unique aim of science is the honor of

the human spirit, and that from this point of view a question about

numbers is as important as a question about the system of the
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world." This was without doubt also the opinion of the grand geo-

meter of Goettingen, who called mathematics the queen of the sciences,

and arithmetic the queen of mathematics.

It would be ridiculous to oppose one to the other these two

tendencies; the harmony of our science is in their synthesis.

The time was about to arrive when one would feel the need of

inspecting the foundations of the edifice, and of making the inventory

of accumulated wealth, using more of the critical spirit. Mathematical

thought was about to gather more force by retiring into itself; the

problems were exhausted for a time, and it is not well for all seekers

to stay on the same road. Moreover, difficulties and paradoxes

remaining unexplained made necessary the progress of pure theory.

The path on which this should move was traced in its large outlines,

and there it could move with independence without necessarily losing

contact with the problems set by geometry, mechanics, and physics.

At the same time more interest was to attach to the philosophic

and artistic side of mathematics, confiding in a sort of pree'stab-

lished harmony between our logical and aesthetic satisfactions and the

necessities of future applications.

Let us recall rapidly certain points in the history of the revision

of principles where Gauss, Cauchy, and Abel likewise were laborers

of the first hour. Precise definitions of continuous functions, and their

most immediate properties, simple rules on the convergence of series,

were formulated; and soon was established, under very general

conditions, the possibility of trigonometric developments, legiti-

matizing thus the boldness of Fourier.

Certain geometric intuitions relative to areas and. to arcs give

place to rigorous demonstration. The geometers of the eighteenth

century had necessarily sought to give account of the degree of the

generality of the solution of ordinary differential equations. Their

likeness to equations of finite differences led easily to the result; but

the demonstration so conducted must not be pressed very close.

Lagrange, in his lessons on the calculus of functions, had intro-

duced greater precision, and starting from Taylor's series, he saw

that the equation of order m leaves indeterminate the function,

and its m 1 first derivatives for the initial value of the variable;

we are not surprised that Lagrange did not set himself the question
of convergence.

In twenty or thirty years the exigencies in the rigor of proofs had

grown. One knew that the two preceding modes of demonstration

are susceptible of all the precision necessary.

For the first, there was need of no new principle; for the second

it was necessary that the theory should develop in a new way. Up
to this point, the functions and the variables had remained real.

The consideration of complex variables comes to extend the field of
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analysis. The functions of a complex variable with unique derivative

are necessarily developable in Taylor's series; we come back thus

to the mode of development of which the author of the theory of

analytic functions had understood the interest, but of which the

importance could not be put fully in evidence in limiting one's self

to real variables. They also owe the grand r61e that they have not

ceased to play to the facility with which we can manage them, and

to their convenience in calculation.

The general theorems of the theory of analytic functions permitted
to reply with precision to questions remaining up to that time un-

decided, such as the degree of generality of the integrals of differential

equations. It became possible to push even to the end the demon-

stration sketched by Lagrange for an ordinary differential equa-
tion. For a partial differential equation or a system of such equations,

precise theorems were established. It is not that on this latter point

the results obtained, however important they may be, resolve

completely the diverse questions that may be et
;
because in mathe-

matical physics, and often in geometry, the conditions at the limits

are susceptible of forms so varied that the problem called Cauchy's

appears often under very severe form. I will shortly return to this

capital point.

IV

Without restricting ourselves to the historic order, we will follow

the development of mathematical physics during the last century,

in so far as it interests analysis.

The problems of calorific equilibrium lead to the equation already

encountered by Laplace in the study of attraction. Few equations
have been the object of so many works as this celebrated equation.

The conditions at the limits may be of divers forms. The simplest

case is that of the calorific equilibrium of a body of which we main-

tain the elements of the surface at given temperatures; from the

physical point of view, it may be regarded as evident that the tem-

perature, continuous within the interior since no source of heat is

there, is determined when it is given at the surface.

A more general case is that where, the state remaining permanent,
there might be radiation toward the outside with an emissive power

varying on the surface in accordance with a given law; in particular

the temperature may be given on one portion, while there is radiation

on another portion.

These questions, which are not yet resolved in their greatest gen-

erality, have greatly contributed to the orientation of the theory of

partial differential equations. They have called attention to types of

determinations of integrals, which would not have presented them-

selves in remaining at a point of view purely abstract.
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Laplace's equation had been met already in hydrodynamics and

in the study of attraction inversely as the square of the distance.

This latter theory has led to putting in evidence the most essential

elements, such as the potentials of simple strata and of double

strata. Analytic combinations of the highest importance were there

met, which since have been notably generalized, such as Green's

formula.

The fundamental problems of static electricity belong to the

same order of ideas, and that was surely a beautiful triumph for

theory, the discovery of the celebrated theorem on electric phe-
nomena in the interior of hollow conductors, which later Faraday
rediscovered experimentally, without having known of Green's

memoir.

All this magnificent ensemble has remained the type of the theories

already old of mathematical physics, which seem to us almost to

have attained perfection, and which exercise still so happy an in-

fluence on the progress of pure analysis in suggesting to it the most

beautiful problems. The theory of functions offers us another mem-
orable affiliation.

There the analytic transformations which come into play are not

distinct from those we have met in the permanent movement of

heat. Certain fundamental problems of the theory of functions of

a complex variable lost then their abstract enunciation to take a

physical form, such as that of the distribution of temperature on

a closed surface of any connection and not radiating, in calorific

equilibrium with two sources of heat which necessarily correspond
to flows equal and of contrary signs. Transposing, we face a ques-
tion relative to Abelian integrals of the third species in the theory of

algebraic curves.

The examples which precede, where we have envisaged only the

equations of heat and of attraction, show that the influence of

physical theories has been exercised not only on the general nature

of the problems to be solved, but even in the details of the analytic

transformations. Thus is currently designated in recent memoirs on

partial differential equations under the name of Green's formula,

a formula inspired by the primitive formula of the English physicist.

The theory of dynamic electricity and that of magnetism, with

Ampere and Gauss, have been the origin of important progress; the

study of curvilinear integrals and that of the integrals of surfaces

have taken thence all their developments, and formulas, such as

that of Stokes which might also be called Ampere's formula, have

appeared for the first time in memoirs on physics. The equations
of the propagation of electricity, to which are attached the names of

Ohm and Kirchoff, while presenting a great analogy with those of

heat, offer often conditions at the limits a little different; we know



508 ALGEBRA AND ANALYSIS

all that telegraphy by cables owes to the profound discussion of a

Fourier's equation carried over into electricity.

The equations long ago written of hydrodynamics, the equations
of the theory of electricity, those of Maxwell and of Hertz in electro-

magnetism, have offered problems analogous to those recalled above,
but under conditions still more varied. Many unsurmounted diffi-

culties are there met with; but how many beautiful results we owe
to the study of particular cases, whose number one would wish to

see increase. To be noted also as interesting at once to analysis and

physics are the profound differences which the propagation may
present according to the phenomena studied. With equations such

as those of sound, we have propagation by waves; with the equa-
tion of heat, each variation is felt instantly at every distance, but

very little at a very great distance, and we cannot then speak of

velocity of propagation.

In other cases of which Kirchoff 's equation relative to the propa-

gation of electricity with induction and capacity offers the simplest

type, there is a wave front with a velocity determined but with a

remainder behind which does not vanish.

These diverse circumstances reveal very different properties of

integrals; their study has been delved into only in a few particular

cases, and it raises questions into which enter the most profound
notions of modern analysis.

I will enter into certain analytic details especially interesting for

mathematical physics.

The question of the generality of the solution of a partial differential

equation has presented some apparent paradoxes. For the same

equation, the number of arbitrary functions figuring in the general

integral was not always the same, following the form of the integral

envisaged. Thus Fourier, studying the equation of heat in an indefin-

ite medium, considers as evident that a solution will be determined

if its value for ^=0 is given, that is to say one arbitrary function of

the three coordinates x, y, z ; from the point of view of Cauchy ,
we

may consider, on the contrary, that in the general solution there are

two arbitrary functions of the three variables. In reality, the ques-

tion, as it has long been stated, has not a precise signification.

In the first place, when it is a question only of analytic functions,

any finite number of functions of any number of independent vari-

ables presents, from the arithmetical point of view, no greater gen-

erality than a single function of a single variable, since in the one

case and in the other the ensemble of coefficients of the development
forms an enumerable series. But there is something more. In reality,

beyond the conditions which are translated by given functions, an
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integral is subjected to conditions of continuity, or is to become in-

finite in a determined manner for certain elements; one may so be

led to regard as equivalent to an arbitrary function the condition

of continuity in a given space, and then we clearly see how badly
formulated is the question of giving the number of the arbitrary

functions. It is at times a delicate matter to demonstrate that con-

ditions determine in a unique manner a solution, when we do not

wish to be contented with probabilities; it is then necessary to make

precise the manner in which the function and certain of. its deriva-

tives conduct themselves.

Thus in Fourier's problem relative to an indefinite medium cer-

tain hypotheses must be made about the function and its first

derivatives at infinity, if we wish to establish that the solution is

unique.

Formulas analogous to Green's render great services, but the

demonstrations one deduces from them are not always entirely

rigorous, implicitly supposing fulfilled for the limits conditions

which are not, a priori at least, necessary. This is, after so many
others, a new example of the evolution of exigencies in the rigor of

proofs.

We remark, moreover, that the new study, rendered necessary,

has often led to a better account of the nature of integrals.

True rigor is fecund, thus distinguishing itself from another purely
formal and tedious, which spreads a shadow over the problems it

touches.

The difficulties in the demonstration of the unity of a solution

may be very different according as it is question of equations of

which all the integrals are or are not analytic. This is an important

point, and shows that even when we wish to put them aside, it is

necessary sometimes to consider non-analytic functions.

Thus we cannot affirm that Cauchy's problem determines in a

unique manner one solution, the data of the problem being general,

that is to say not being characteristic.

This is surely the case, if we envisage only analytic integrals,

but with non-analytic integrals there may be contacts of order

infinite. And theory here does not outstrip applications; on the

contrary, as the following example shows:

Does the celebrated theorem of Lagrange on the potentials of

velocity in a perfect fluid hold good in a viscid fluid? Examples have

been given where the coordinates of different points of a viscous

fluid starting from rest are not expressible as analytic functions of

the time starting from the initial instant of the motion, and where

the nul rotations as well as all their derivatives with respect to the

time at this instant are, however, not identically nul; Lagrange 's

theorem, therefore, does not hold true.
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These considerations sufficiently show the interest it may have

to be assured that all the integrals of a system of partial differential

equations continuous as well as all their derivatives up to a deter-

mined order in a certain field of real variables are analytic functions;

it is understood, we suppose, there are in the equations only analytic

elements. We have for linear equations precise theorems, all the

integrals being analytic, if the characteristics are imaginary, and

very general propositions have also been obtained in other cases.

The conditions at the limits that one is led to assume are very
different according as it is question of an equation of which the

integrals are or are not analytic. A type of the first case is given

by the problem generalized by Dirichlet; conditions of continuity

there play an essential part, and, in general, the solution cannot

be prolonged from the two sides of the continuum which serves as

support to the data; it is no longer the same in the second case,

where the disposition of this support in relation to the characteris-

tics plays the principal r61e, and where the field of existence of the

solution presents itself under wholly different conditions.

All these notions, difficult to make precise in ordinary language
and fundamental for mathematical physics, are not of less interest

for infinitesimal geometry.
It will suffice to recall that ah

1

the surfaces of constant positive

curvature are analytic, while there exist surfaces of constant 'nega-

tive curvature not analytic.

From antiquity has been felt the confused sentiment of a certain

economy in natural phenomena; one of the first precise examples
is furnished by Format's principle relative to the economy of time

in the transmission of light.

Then we came to recognize that the general equations of mechanics

correspond to a problem of minimum, or more exactly of variation,

and thus we obtained the principle of virtual velocities, then Ham-
ilton's principle, and that of least action. A great number of problems

appeared then as corresponding to minima of certain definite in-

tegrals.

This was a very important advance, because the existence of

a minimum could in many cases be regarded as evident, and con-

sequently the demonstration of the existence of the solution was

effected.

This reasoning has rendered immense services; the greatest geo-

meters, Gauss in the problem of the distribution of an attracting

mass corresponding to a given potential, Riemann in his theory of

Abelian functions, have been satisfied with it. To-day our attention

has been called to the dangers of this sort of demonstration; it is

possible for the minima to be simply limits and not to be actually

attained by veritable functions possessing the necessary properties



of continuity. We are, therefore, no longer content with the prob-
abilities offered by the reasoning long classic.

Whether we proceed indirectly or whether we seek to give a rigor-

ous proof of the existence of a function corresponding to the mini-

mum, the route is long and arduous.

Further, not the less will it be always useful to connect a ques-
tion of mechanics or of mathematical physics with a problem of

minimum; in this first of all is a source of fecund analytic trans-

formations, and besides in the very calculations of the investigation
of variations useful indications may appear, relative to the condi-

tions at the limits; a beautiful example of it was given by Kirchoff

in the delicate investigation of the conditions at the limits of the

equilibrium of flexure of plates.

VI

I have been led to expand particularly on partial differential

equations.

Examples chosen in rational mechanics and in celestial mechanics

would readily show the role which ordinary differential equations

play in the progress of these sciences whose history, as we have seen,

has been so narrowly bound to that of analysis.

When the hope of integrating with simple functions was lost, one

strove to find developments permitting to follow a phenomenon as long
as possible, or at least to obtain information of its qualitative bearing.
For practice, the methods of approximation form an extremely

important part of mathematics, and it is thus that the highest parts

of theoretic arithmetic find themselves connected with the. applied
sciences. As to series, the demonstrations themselves of the exist-

ence of integrals furnish them from the very first; thus Cauchy's
first method gives developments convergent as long as the integrals

and the differential coefficients remain continuous.

When any circumstance permits our foreseeing that such is always
the case, we obtain developments always convergent. In the pro-

blem of n bodies, we can in this way obtain developments valid so

long as there are no shocks.

If the bodies, instead of attracting, repel each other, this contin-

gency need not be feared and we should obtain developments valid

indefinitely; unhappily, as Fresnel said one day to Laplace, nature

is not concerned about analytic difficulties and the celestial bodies

attract instead of repelling each other.

One would even be tempted at times to go further than the great

physicist and say that nature has sown difficulties in the paths of

the analysts.

Thus, to take another example, we can generally decide, given a

system of differential equations of the first order, whether the gen-
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eral solution is stable or not about a point, and to find developments
in series valid for stable solutions it is only necessary that certain

inequalities be verified.

But if we apply these results to the equations of dynamics to dis-

cuss stability, we find ourselves exactly in the particular case which

is unfavorable. Nay, in general, here it is not possible to decide on

the stability; in the case of a function of forces having a maximum,
reasoning classic, but indirect, establishes the stability which cannot

be deduced from any development valid for every value of the time.

Do not lament these difficulties; they will be the source of future

progress.

Such are also the difficulties which still present to us, in spite of

so many works, the equations of celestial mechanics; the astro-

nomers have almost drawn from them, since Newton, by means of

series practically convergent and approximations happily con-

ducted, all that is necessary for the foretelling of the motions of the

heavenly bodies.

The analysts would ask more, but they no longer hope to attain

the integration by means of simple functions or developments al-

ways convergent.

What admirable recent researches have best taught them is the

immense difficulty of the problem; a new way has, however, been

opened by the study of particular solutions, such as the periodic

solutions and the asymptotic solutions which have already been

utilized. It is not perhaps so much because of the needs of practice

as in order not to avow itself vanquished, that analysis will never

resign itself to abandon, without a decisive victory, a subject where

it has met so many brilliant triumphs; and again, what more beau-

tiful field could the theories new-born or rejuvenated of the modern

doctrine of functions find, to essay their forces, than this classic

problem of n bodies?

It is a joy for the analyst to encounter in applications equations
that he can integrate with known functions, with transcendents

already classed.

Such encounters are unhapily rare; the problem of the pendulum,
the classic cases of the motion of a solid body around a fixed point,

are examples where the elliptic functions have permitted us to effect

the integration.

It would also be extremely interesting to encounter a question
of mechanics which might be the origin of the discovery of a new

transcendent possessing some remarkable property; I should be

embarrassed to give an example of it unless in carrying back to the

pendulum the de"but of the theory of elliptic functions.

The interpenetration between theory and applications is here

much less than in the questions of mathematical physics. Thus
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is explained that, since forty years, the works on ordinary differ-

ential equations attached to analytic functions have had in great

part a theoretic character altogether abstract.

The pure theory has notably taken the advance; we have had

occasion to say that it was well it should be so, but evidently there

is here a question of measure, and we may hope to see the old pro-

blems profit by the progress accomplished.

It would not be over-difficult to give some examples, and I will re-

call only those linear differential equations, where figure arbitrary

parameters whose singular values are roots of entire transcendent

functions
;
which in particular makes the successive harmonics of

a vibrating membrane correspond to the poles of a meromorphic
function.

It happens also that the theory may be an element of classifica-

tion in leading to seek conditions for which the solution falls under

a determined type, as for example that the integral may be uniform.

There have been and there yet will be many interesting discoveries

in this way, the case of the motion of a solid heavy body treated

by Madame de Kovalevski and where the Abelian functions were

utilized is a remarkable example.

VII

In studying the reciprocal relations of analysis with mechanics

and mathematical physics, we have on our way more than once

encountered the infinitesimal geometry, which has proposed so

many celebrated problems; in many difficult questions, the happy
combination of calculus and synthetic reasonings has realized con-

siderable progress, as is shown by the theories of applicable surfaces

and systems triply orthogonal.

It is another part of geometry which plays a grand role in certain

analytic researches, I mean the geometry of situation or analysis

situs. We know that Riemann made from this point of view a com-

plete study of the continuum of two dimensions, on which rests his

theory of algebraic functions and their integrals.

When this number of dimensions augments, the questions of

analysis situs become necessarily complicated; the geometric intui-

tion ceases, and the study becomes purely analytic, the mind being

guided solely by analogies which may be misleading and need to be

discussed very closely. The theory of algebraic functions of two

variables, which transports us into a space of four dimensions,

without getting from analysis situs an aid so fruitful as does the

theory of functions of one variable, owes it, however, useful orient-

ations.

There is also another order of questions where the geometry of

situation intervenes; in the study of curves traced on a surface and
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defined by differential equations, the connection of this surface plays

an important r6le; this happens for geodesic lines.

The notion of connexity, moreover, presented itself long ago in

analysis, when the study of electric currents and magnetism led

to non-uniform potentials; in a more general manner certain multi-

form integrals of some partial differential equations are met in

difficult theories, such as that of diffraction, and varied researches

must continue in this direction.

From a different point of view, I must yet recall the relations of

algebraic analysis with geometry, which manifest themselves so

elegantly in the theory of groups of finite order.

A regular polyhedron, say an icosahedron, is on the one hand the

solid that all the world knows; it is also, for the analyst, a group of

finite order, corresponding to the divers ways of making the poly-

hedron coincide with itself.

The investigation of all the types of groups of motion of finite

order interests not alone the geometers, but also the crystallo-

graphers; it goes back essentially to the study of groups of ternary

linear substitutions of determinant +1, and leads to the thirty-

two systems of symmetry of the crystallographers for the particular

complex.
The grouping in systems of polyhedra corresponding so as to fill

space exhausts all the possibilities in the investigation of the struc-

ture of crystals.

Since the epoch when the notion of group was introduced into

algebra by Galois, it has taken, in divers ways, considerable devel-

opment, so that to-day it is met in all parts of mathematics. In the

applications, it appears to us above all as an admirable instrument

of classification. Whether it is a question of substitution groups
or of Sophus Lie's transformation groups, whether it is a question

of algebraic equations or of differential equations, this comprehen-
sive doctrine permits explanation of the degree of difficulty of the

problems treated and teaches how to utilize the special circumstances

which present themselves; thus it should interest as well mechanics

and mathematical physics as pure analysis.

The degree of development of mechanics and physics has per-

mitted giving to almost all their theories a mathematical form;

certain hypotheses, the knowledge of elementary laws, have led

to differential relations which constitute the last form under which

these theories settle down, at least for a time. These latter have

seen little by little their field enlarge with the principles of thermo-

dynamics; to-day chemistry tends to take in its turn a mathemat-

ical form.

I will take as witness of it only the celebrated memoir of Gibbs

on the equilibrium of chemical systems, so analytic in character,
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and where it needed some effort on the part of the chemists to

recognize, under their algebraic mantle, laws of high importance.
It seems that chemistry has to-day gotten out of the premathe-

matic period, by which every science begins, and that a day must

come when will be systematized grand theories, analogous to those

of our present mathematical physics, but far more vast, and com-

prising the ensemble of physicochemic phenomena.
It would be premature to ask if analysis will find in their develop-

ments the source of new progress; we do not even know before-

hand what analytic types one might find.

I have constantly spoken of differential equations ruling phe-

nomena; will this always be the final form which condenses a theory?
Of this I know nothing certain, but we should, however, remember

that many hypotheses have been made of more or less experimental
nature

; among them, one is what has been called the principle of

non-heredity, which postulates that the future of a system depends

only on its present state and its state at an instant infinitely near,

or, more briefly, that accelerations depend only on positions and

velocities.

We know that in certain cases this hypothesis is not admissible,

at least with the magnitudes directly envisaged; one has sometimes

misemployed on this subject the memory of matter, which recalls

its past, and has spoken in affected terms of the life of a morsel of

steel. Different attempts have been made to give a theory of these

phenomena, where a distant past seems to interfere; of them I need

not speak here. An analyst may think that in cases so complex it

is necessary to abandon the form of differential equations, and resign

one's self to envisage functional equations, where figure definite

integrals which will be the witness of a sort of heredity.

To see the interest which is attached at this moment to functional

equations, one might believe in a presentiment of the future needs

of science.

VIII

After having spoken of non-heredity, I scarcely dare touch the

question of the applications of analysis to biology.

It will be some time, no doubt, before one forms the functional

equations of biologic phenomena; the attempts so far made are

in a very modest order of ideas; yet efforts are being made to get

out of the purely qualitative field, to introduce quantitative meas-

ures. In the question of the variation of certain characteristics,

mensuration has been engaged in, and statistic measures which are

translated by curves of frequency. The modifications of these curves

with successive generations, their decompositions into distinct curves,

may give the measure of the stability of species or of the rapidity
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of mutations, and we know what interest attaches itself to these

questions in recent botanic researches. In all this so great is the

number of parameters that one questions whether the infinitesimal

method itself could be of any service. Some laws of a simple arith-

metic character like those of Mendel come occasionally to give

renewed confidence in the old aphorism which I cited in the begin-

ning, that all things are explained by numbers; but, in spite of

legitimate hopes, it is clear that, in its totality, biology is still far

from entering upon a period truly mathematical.

It is not so, according to certain economists, with potential econ-

omy. After Cournot, the Lausanne school made an effort extremely

interesting to introduce mathematical analysis into political econ-

omy.
Under certain hypotheses, which fit at least limiting cases, we

find in learned treatises an equation between the quantities of

merchandise and their prices, which recalls the equation of virtual

velocities in mechanics: this is the equation of economic equilib-

rium. A function of quantities plays in this theory an essential role

recalling that of the potential function. Moreover, the best author-

ized representatives of the school insist on the analogy of economic

phenomena with mechanical phenomena. "As rational mechanics,"

says one of them,
" considers material points, pure economy con-

siders the homo oeconomicus."

Naturally, we find there also the analogues of Lagrange's equa-

tions, indispensable matrix of all mechanics.

While admiring these bold works, we fear lest the authors have

neglected certain hidden masses, as Helmholtz and Hertz would

have said. But although that may happen, there is in these doctrines

a curious application of mathematics, which, at least, in well-circum-

scribed cases, has already rendered great services.

I have terminated, messieurs, this summary history of some of

the applications of analysis, with the reflections which it has at

moments suggested to me. It is far from being complete; thus I have

omitted to speak of the calculus of probabilities, which demands

so much subtlety of mind, and of which Pascal refused to explain the

niceties to the Chevalier de Me"r6 because he was not a geometer.

Its practical utility is of the first rank, its theoretic interest has

always been great; it is further augmented to-day, thanks to the

importance taken by the researches that Maxwell called statistical

and which tend to envisage mechanics under a wholly new light.

I hope, however, to have shown, in this sketch, the origin and

the reason of the bonds.so profound which unite analysis to geometry
and physics, more generally to every science bearing on quantities

numerically measurable.
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The reciprocal influence of analysis and physical theories has been

in this regard particularly instructive.

What does the future hold?

Problems more difficult, corresponding to an approximation of

higher order, will introduce complications which we can only vaguely

forecast, in speaking, as I have just done, of functional equations

replacing systematically our actual differential equations, or further

of integrations of equations infinite in number with an infinity of

unknown functions. But even though that happens, mathematical

analysis will alwr

ays remain that language which, according to the

mot of Fourier, has no symbols to express confused notions, a lan-

guage endowed with an admirable power of transformation and

capable of condensing in its formulas an immense number of results.



ON PRESENT PROBLEMS OF ALGEBRA AND ANALYSIS

BY HEINRICH MASCHKE

[Heinrich Maschke, Associate Professor of Mathematics, University of

Chicago, b. Breslau, Germany, October 24, 1853. A.B. Magdalenen Gym-
nasium, Breslau, 1872; Ph.D. Gottingen, 1880. Post-graduate Heidelberg,
Breslau, Berlin, and Gottingen. Professor Mathematics Lvisenstadt. Gym-
nasium, Berlin, 1880-90; Electric Engineer at Weston Electric Company,
Newark, New Jersey, 1890-92; Assistant Professor of Mathematics, Uni-

versity of Chicago, 1892-96.]

As set forth by the Committee directing the affairs of this Interna-

tional Congress, the address which I have the distinguished privilege

of delivering to-day shall be on "Present Problems in Algebra and

Analysis,"
- but it is not provided by the Committee how many

of these problems shall be treated.

The different branches of algebra and analysis which have been

investigated are so numerous that it would be quite impossible to

give an approximately exhaustive representation even only of the

most important problems, within the limits of the time allowed to

me. I, therefore, have confined myself to the minimum admissible

number, namely one, or rather one group of problems.
Of this one problem, however, this Section of Algebra and Analysis

has the right to expect that it is neither purely algebraic nor purely

analytic, but one which touches both fields; and at least in this

respect I hope that my selection has been fortunate.

I purpose to speak to-day on the Theory of Invariants of Quad-
ratic Differential Quantics. Invariants suggest at once algebra,

differential quantics: analysis. At the same time the subject also

leads into geometry, it contains, for instance, a great part of

differential geometry and of geometry of hyperspace. But is there,

indeed, any algebraic or analytic problem which does not allow

geometrical interpretation in some way or other? And when it comes

to geometry of hyperspace, it is then only geometrical language
that we are using, what we are actually considering are analytic

or algebraic forms. Moreover, rigorous definitions and discussions

of geometrical propositions of an invariant character in particular

can only be given by tracing them back to their analytic origin.

In the following exposition I shall first speak on the various in-

variant expressions of differential quadratics as they occur in geo-

metry of two and more dimensions, and then take up the purely

analytic representation in the second part of the paper.

This corresponds also to the historical development of the sub-
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ject: geometry has here as well as in many other branches of mathe-

matics indicated the problems which in their later development
turned out to be of paramount interest in pure analysis.

A few preliminary remarks concerning the nomenclature of the

different types of invariant expressions will be necessary.

To a given differential quadratic form

where the a^'s are functions of the n independent variables Xi,x2 ,
. . .

xn ,
we apply a general point transformation of the variables x,

Xi = xi(y l ,y,, . . .yn ).

We observe that the differentials dx are then transformed into

linear expressions of the differentials dy with the Jacobian of the

x's with respect to the y's as the substitution-determinant which

we shall call r.

By this transformation A goes into

A' =2a' ikdyidyk .

Let now be a function

(a) of the coefficients aik and their first, second, . . . derivatives,

(b) of U, V, . . , and their derivatives, where U, V, . . . are any

arbitrary functions of x
lf
x2 ,

. . . xn .

If then remains the same whether formed for the new or for

the old quantities, that is, if

dyX dyX dxX dxX

. . . V, . . . )

we say that is an invariant (in the wider sense) of A.

If contains only the a^'s and their derivatives, we call it an

invariant proper, and its order the order of the highest derivative

occurring in it. If <? contains also one or more arbitrary functions

U,V, . . . we call it a differential parameter, the definition of order

being the same as before.

If more than one differential quadratic is given it is easily under-

stood what is meant by simultaneous invariants and simultaneous

differential parameters.
In strict analogy with the algebraic theory of invariants we call

covariants expressions of the above invariantive nature, provided
that we also allow the differentials dx to enter into <?.

The first and the most important example of a differential quad-
ratic quantic is the square of the arc-element on a surface

ds 2 =Edu 2 +2Fdudv+Gdv 2
.

It was Gauss who made (1827), in his Disquisitiones generates

circa superficies curvas, this expression the fundamental object of
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investigation. He also gave, in what has been called after him the

Gaussian Curvature

the first example of an invariant. Gauss defines this curvature

geometrically and finds for it the analytic expression

LN-M 2

EG-F2

which is a simultaneous invariant of two differential quantics,

ds 2

namely, of ds 2 and of =Ldu2 +2Mdudv+Ndv2
.

This shows that K is independent of the w,v-system on the

surface. And now Gauss expresses K in terms of E, F, G and the

first and second derivatives of these quantities alone. A direct

demonstration that K is an invariant proper of the differential

quantic ds 2
alone, that is, without passing through the second

ds 2

differential quantic , is of course desirable. 1 Each one of the
P

general methods of treating the theory of invariants, which will be

discussed in the latter part of this paper, furnishes such a direct

proof. In particular, the aspect of the formula for K, on p. 528,

deduced by the symbolic method, shows immediately the invariant

character of K.

Differential parameters were introduced into differential geometry

by Beltrami in 1863. These are the well-known expressions

dv dv

EG-F2

+ Q
du dv dv duj du du

V)

'

I-
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J from Lame, who, in his Lecons sur les coordonnees curvilignes,

defined in 1859 his differential parameters

,oy/ \oz
2
(> 0(0

<p

dx 2

3y
2 3z2

for the three-dimensional case where the arc-element is of the form

ds 2 =dx 2 +dy 2 +dz 2
.

Lame recognized the fundamental importance of these quantities

and made a systematical use of them on account of their invariance

with respect to any point-transformation preserving the form ds 2
.

The general theory of invariants defines the differential parameters

J, and J
2
for the case of n variables. From these general expressions

Beltrami's differential parameters are directly obtained for n = 2,

Lame's quantities (Ji)
2 and J

2
for the special form of ds 2 in the case

n = 3.

The number of differential parameters is of course infinite, but

Darboux in his Lecons sur la theorie generate des surfaces has proved
that all of them are expressible by means of J

t ,
J

2 , p and the evident

differential parameter

du ~3v~ 3v 3u

VEG-F2

(by forming, for instance, Ji(J 2<^) etc.) an important theorem

which has later been extended by Staeckel to an analogous theorem

for the case of n variables.

The expression J^ occurs already in Gauss's Disquisitiones.

By taking as parameter curves a singly infinite system of geodesies
and its orthogonal trajectories he transforms the arc-element into

the form

ds 2 =dr2 +m 2

d<p
2

and shows that r satisfies the differential equation

J,r
= l.

An important differential parameter is the geodesic curvature.

Its expression was thrown by Bonnet into a form which is easily

recognized as a differential parameter (of the second order). Its

numerator =0 represents the differential equation of geodesic lines

in an invariant form.

Since a transformation of the two independent variables u, v which

preserves the same value of ds 2 can also be considered as a transfor-

mation of two surfaces which are applicable to each other, it follows

that all invariants of ds 2 are also invariants of a surface with respect
to the process of bending. From this reason these invariants have
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been called by Weingarten and Knoblauch, who were among the first

writers emphasizing and developing to a certain extent the invari-

antive side of differential geometry, in the case of invariants proper,
"
Biegungsinvarianten," in the case of differential parameters,

" Bie-

gungscovarianten," and this notation has been more or less generally

adopted. The notation "
Biegungscovarianten

"
does not agree with

the definition of a covariant given above, but a differential para-
meter of ds 2 can easily be modified into a covariantive form by

replacing according to the differential equation of the curve

U(u,v) = const.

3U dU
the derivatives and - by udv and udu.

Su dv

A surface is completely defined, apart from its location in space,

when in addition to the quadratic form ds 2
also

ds 2

- =Ldu2 +2Mdudv+Ndv2

P

is given, where p denotes the radius of curvature along ds, a the-

orem which was proved (1867) by Bonnet.

With these two differential quantics given, we can now at once

form simultaneous invariants and differential parameters. The six

coefficients, E, F, G, L, M, N are, however, not independent; they
are related by three partial differential equations, the Gaussian

relation and the two Codazzi-Mainardi equations. These three

relations are expressible in an invariantive form. The Gaussian re-

lation is

W-M* dE

while the two Codazzi formulas are given by the identical vanishing
of one simultaneous linear covariant.

As examples of simultaneous differential parameters and covariants

I mention the expressions which, when set equal to zero, represent

the differential equations of conjugate lines, asymptotic lines, and

lines of curvature. The differential equation of lines of curvature, for

instance, if written in terms of du, dv represents a linear simultaneous

covariant; if written as a partial differential equation derived from

U(u,v) = const.

it represents a simultaneous differential parameter involving the

arbitrary function U. The differential equation of conjugate lines,

if written in two sets of differentials du, dv and du, 8v represents

a bilinear simultaneous covariant; if written as a partial differential

equation it represents a differential parameter involving two arbi-

trary functions U and V.

The theory of invariants of the above two differential quadratics,
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together with the condition of the vanishing of one simultaneous

invariant proper and one simultaneous covariant, dominates then,
in a certain sense, the whole of differential geometry.

Passing now to the case of n variables we may consider the differ-

ential quadratic form

^aikdxfdxk =ds
2

i,A-=l

as the square of the arc in a hyperspace of n dimensions.

The fundamental role which the Gaussian curvature plays in the

case n = 2 is here represented by -an invariant expresson of ds 2 which
- in a certain sense might be regarded as a generalization of the

Gaussian curvature, namely, the Riemann curvature of the hyper-

space. Riemann 's investigations on this subject are found in his

paper, Ueber die Hypothesen, welche der Geometric zu Grunde liegen,

and in the mathematical supplement to it Commentatio mathematica,

etc. in the prize-problem of the Parisian Academy, 1861.

The geometrical definition of the Riemann curvature is briefly the

following: Starting from any point P with the coordinates x^ we
consider two linear directions defined by the increments dxi and dxi.

If we remain in the vicinity of P these two directions define a plane
of two dimensions and the determinants

may be considered as the coordinates of this plane. If now we
draw geodesic lines from the point P whose initial arc-elements

lie all in this plane, then these geodesies define a surface of two di-

mensions and the Gaussian curvature of this geodesic surface at the

point P is the Riemann curvature. The analytic expression for it is

2 (ikrs) (dx{
dx

s
dx

s
dx

{) (dxkdxr dxrdxk)R = $
2(a ik

a
rs

a
ir
aks)(dxi

ox
s

dx
s
ox

i)(dxkoxr dxrdxlc ,

where the sum is to be taken over all values of i, k, r, s from 1 to n

with the exception of those for which i =k or r =s.

The coefficients (ikrs) are certain quantities depending on the

coefficients aik ,
their first and second derivatives; they occur in the

literature mostly under the name of the
"
Christoffel quadruple index

symbols." A better, certainly shorter, notation would be the one

used by Ricci, namely,
" Riemann symbols."

The Riemann curvature R is an invariant expression, and as its

form shows it is a covariant of two sets of differentials. For n = 2

it is identical with the Gaussian curvature. For greater numbers

n the value of R depends, at a given point, on the plane-direction

at that point and in general varies with the plane. If it should be

constant for all plane-directions through one point, and if this is

so for all the points, then R is, as Schur has shown, altogether con-

stant that is, for every point.
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Spaces of constant Riemann curvature have been the object of

numerous interesting investigations, but these are more or less of

a specific geometric character.

If in particular R is zero, then all the Riemann symbols vanish

and it can easily be shown that ds 2 can be transformed into the

sum of n squares

The converse is true. In this case the hyperspace of n dimensions

is called a flat or also Euclidean space.

In every case the quadratic

can be transformed into
n+r

where r has the maximum value
n
^~

) ' We might say then that the

given hyperspace of n dimensions is always contained in an

Euclidean space of n+r dimensions, where r is one of the numbers,
n 1 n(n-l)v

) *> 2

The number r is evidently characteristic for the hyperspace the

square of the arc-element of which is the given quadratic. This

number r has been called by Ricci the class of the given differential

quadratic quantic. It is evident that this class is an invariant num-

ber, and the condition that a given differential quadratic be of class

r must certainly be an invariantive condition. For r=0 we have

just seen that the condition is R = 0. For higher values of r no at-

tempt has yet been made, so far as I know, to establish this invari-

antive condition though this problem is certainly one of fundamental

interest.

Beltrami, in his paper, Teoria generale dei parametri differenziali,

has extended the definition of his differential parameters to the

case of n variables. The definition, for instance, of the first differ-

ential parameters is

!
"

dtp d<pA&=a 2 A
'*-F- T-a

0=1 dxi dxk

where A ik denotes the minor of the element a^ in the determinant

I flf* I

=
Beltrami shows that by means of the geodesies emanating from one

point and of the hypersurfaces orthogonal to them he can choose

his parameters such that ds 2
is transformed into

,*-=!

where r satisfies the equation A^r = 1, and that thus Gauss's theorems
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on geodesic polar coordinates for n=2 admit a perfect analogon
in hyperspace. Also in hyperspace then the determination of systems
of geodesies amounts to the integration of the partial differential

equation

J^ = l.

This leads now to the application of differential quadratics to

analytic mechanics. If we write down the expression of th'e vis

viva of a (holonomous) material system in terms of generalized

coordinates qv q2 , -qn -

T = \Zaik

d^ ***

dt dt

we have at once in

2Tdt*=ds 2

a differential quadratic before us.

If no external forces act on the system, then a geodesic line of ds 2

represents at once, as also Beltrami has shown, a path of the sys-

tem. Thus the mechanical problem is practically reduced to the

integration of the equation Ajp = \.

In the case of the existence of external forces having a potential

U, the above differential quantic has to be replaced by

I'(U +h)aikdqidqk

and the mechanical problem is equivalent to the integration of the

equation

Ai<p
= U+h

where A\<p is the differential parameter of the quadratic form de-

noted before by ds 2
.

A detailed exposition of the above-mentioned researches of Bel-

trami, as well as this application to mechanics, is given in the second

volume of Darboux's Lecons sur la theorie des surfaces.

Passing now to the second part of my address, the purely ana-

lytic theory of invariants of differential quadratics, I have first

to discuss that paper which forms the foundation of almost all

later literature on the subject: Christoffel's article in Crelle's Jour-

nal, vol. LXX (1870), "Ueber die Transformation der homogenen
Differentialausdriicke des zweiten Grades."

Christoffel puts his problem in this form: Given two differential

quadratics

A la^dxidxk and A' =Ia' ikdyidy^,

what are the necessary and sufficient conditions for the equivalence
of the two quadratics, that is, for the existence of a transformation

of one quantic into the other; and if these conditions are established

how can the required transformation be determined? (I should men-
tion that Lame" in his already quoted work, Lecons sur les coor-
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danntes curvilignes, treats and solves the analogous problem for the

case A =dx2
+dy

2 +dz2
).

Since the differentials dx are substituted linearly in terms of the

dy there exists one and only one algebraic condition for the trans-

formation, namely,

This condition would be sufficient if the coefficients a^ and the

elements of the determinant r were constants. In our case, how-

ever, other conditions must be satisfied, namely, the conditions of

integrability in order that the expressions for the dx's are com-

plete differentials. This is the way in which Christoffel introduces

his problem to the reader.

The difficulty lies in the fact that the integrability conditions

lead at once to a great number of partial differential equations of

an apparently highly complex character. But Christoffel succeeds

in substituting for all these partial differential equations a purely

algebraic problem: The equivalence of two finite systems of alge-

braic forms in the sense of the algebraic theory of invariants. If

this equivalence is satisfied, which is merely a question of algebra,
- no further discussion of the integrability conditions is required;

they are all taken care of by the equivalence of the two systems.

For the following it will be necessary to sketch briefly the char-

acter of these forms.

The first is the quadratic form A itself. The next form is a quad-
rilinear covariant GI in four sets of differentials dx 1

,
dx 2

,
dx3

, dx*,

the coefficients of which are precisely the quantities (i k r s ) the

"Christoffel quadruple index symbols" or the "Riemann symbols"
- which occur in the expression for the Riemann curvature:

G =

It is highly interesting to observe how the quantities ( i k r s )

have entered into the theory from two so apparently different stand-

points. Christoffel found these expressions quite independently.

Though Riemann's paper was written in 1861, that is, before Chris-

toffePs article which appeared in 1870, it was only published in 1876,

ten years after Riemann's death, by Weber-Dedekind.

For the deduction of the following forms G
b ,
G

9 , ... these

forms are covariants linear in resp. 5 , ,
. . . sets of differentials -

Christoffel uses a certain reduction process. The coefficients (Xikr s)

for instance of (?5 are obtained from (i k r s) first by differentiating

(i k r s) with respect to zx and then by the addition of a sum of 5n

terms which are linear in the different symbols ( i k r s ) with co-

efficients depending on the so-called Christoffel triple index sym-
bols of the second kind expressions involving the quantities

aac and their first derivatives.
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Continuing in this way Christoffel obtains a well-defined set of

covariants G& ,
G

e ,
. . .

,
and this is his final result: the necessary

and sufficient condition for the equivalence of the two differential

quadratics is the algebraic equivalence in the sense of the alge-

braic theory of invariants of the forms A, G4 ,
G

s ,
. . . G^and A',

G'
4 ,
G'

5
. . . G'

M ,
where

/<
is a certain finite number.

In several papers covering the period from about 1884 up to the

present time Ricci has worked out in a systematical way the funda-

mental principles of ChristoffeFs investigation, and has applied his

theory to many problems in analysis, geometry, mechanics, and

mathematical physics. He recognized in particular the importance
of ChristoffeFs deduction of the covariants GA+1 from GA . He found

that this process of deduction can be applied with a proper modifi-

cation to any functions of the x's and the az-&'s and that whenever

invariantive relations with respect to the fundamental differential

quadratic A come into question, this process is always of vital im-

portance. He calls this process covariantive differentiation with

respect to the fundamental quadratic A. On the systematical use

of this covariantive differentiation Ricci based a calculus which he

called Calcolo differenziale assoluto.

A collection of all his various investigations is given in two places:

(1) In a paper published, together with Levi-Civitta in the Math.

Annalcn, vol. LIV.

(2) In his Lezioni sulla teoria delle super-fide, Verona, Padua, 1898.

In the introduction of these autographed lectures he presents a

complete exposition of his absolute differential calculus. Charac-

teristic is the way in which he treats in his Lezioni the differential

geometry. He divides it into two parts:

(1) Properties of surfaces depending on the one differential quad-
ratic ds 2

.

(2) Properties of surfaces depending on the two quadratics
ds 2

ds 2 and .

P

We are here chiefly interested in his applications to the theory of

differential invariants. This is the result in his language: In order

to obtain all invariants proper and differential parameters of order
//.

it is sufficient to determine the algebraic invariants of the system
of the following forms:

(1) The fundamental differential quantic A.

(2) The covariantive derivatives of the arbitrary functions

t/, V, ... up to the order
/*.

(3) (for j>l) the quadrilinear covariant (74 and its covariantivo

derivatives up to the order 2.

Another treatment of the invariant theory of differential quan<
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tics was given by myself. I applied a symbolic method to the theory
which consists chiefly in identifying the fundamental quadratic

with the square of a linear expression

Widxy
by setting fifk=dik- This is strictly analogous to the introduction of

symbols in the algebraic theory. The difference, of course, comes

in at once when we have to consider also the derivatives of a,*.

A systematic development leads to expressions and formulas

which with respect to simplicity and shortness are as superior to

the formulas of the ordinary notation as the formulas of the so-

called symbolic notation in the algebraic theory are superior to the

non-symbolic expressions.

As examples I give the most important invariant expressions
for the case n=2.

Let us introduce the abbreviation

(Pi Q* -P, Qi ) =(PQ), where P*= etc.;
a 2

i2

let further /, <p, $ . . .be symbols of .A, so that

and let f/, F ... be arbitrary functions of xl} xr
Then we have

=Ai U,

=2K (Gaussian curvature),

<p) (<pU) ((//)/) : (Ji t/)
3 =Geodesic curvature of curve U=const.

To give also some examples of simultaneous invariant expressions

let /, <p, . . . be as before symbols of

Edu2 +2Fdudv+Gdv2

and F, d> . . . symbols of

Ldu z +2Mdudv +Ndv2
,

Then:

(/F)
2 = mean curvature.

The differential equations
of asymptotic curves U =c are (Ft/)

2
=0,

of conjugate curves U =c, V=c: (FU)(FV)=Q,
of lines of curvature U = c : (fF) (fU) (FU) = 0.

The equation (fo) (<pF) ( (/^) C7) =0 gives the two Cadazzi formulas

by setting the coefficients of C7, and U? separately equal to zero.

In these examples the invariant expressions always appear as

products of factors of the type (P.R). The general theorem holds

that any product of factors of this type represents always an in-
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variant expression provided that the symbols/, <p, . . .
, F, <D, . . .

occur in such a connection as to permit actual meaning.
The symbolic representation of invariant expressions suggested

by the case n=2 can without essential difficulty be extended to the

general case of n variables. In this treatment of the subject all the

essential quantities entering into the theory present themselves quite

naturally; they lie, so to say, on the surface; so, for instance, all the

Christoffel symbols of the different kinds including the Riemann

symbols and in particular also the process of covariantive differ-

entiation.

The results of my investigation are chiefly laid down in the paper
"A symbolic treatment of the theory of invariants of quadratic
differential quantics of n variables," Transactions of the American

Mathematical Society, vol. iv.

A third method of investigation of our theory of invariants is

based on Lie's theory of continuous groups. The general point

transformation by which A is transformed into A' defines a so-

called "infinite" continuous group. In order to obtain the invari-

ants of A, this group must first be "extended" in Lie's sense to

include the coefficients a^ of A and also the arbitrary functions

involved in the differential parameters.
Lie himself developed a short outline of the determination of

invariants in the second volume of the Mathematische Annalen for

the case n=2, and indicated in particular how the Gaussian curv-

ature and the parameter Ji^> could be found. The general plan of

investigation was taken up in the sixteenth volume of the Acta

Mathematica by Zorowski, who studied the case n = 2 in detail, adding
the complete computation of the Gaussian curvature and the most

important differential parameters.
An extension of Lie's methods to the general case of n variables

as far as the actual determination of invariants is concerned has,

so far as I know, not yet been made; only the problem of deter-

mining the number of functionally independent invariants of a given
order has been taken up. It seems that Lie's method is especially

well adapted to this particular problem. In a paper in the Atti del

Reale Institute Veneto (1897), Levi-Civitta found a lower limit for the

number of invariants of a given order. The actual number was

determined by Haskins in the Transactions of the American Mathe-

matical Society, vol. in, for the case of invariants proper (including

also simultaneous invariants) and in vol. v, of differential parameters.

I am at the end of my paper. I have attempted to show, in a

compendious way, what has been done in this attractive field of

research which is so closely connected with various interesting parts
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of pure and applied mathematics. The number of problems that re-

main to be solved are numerous. Excepting the lowest cases as to

the number of variables and the order of the invariants, not much
more than the mere existence of the invariants is known, so that

we have hardly the right to speak of a theory of these invariants.

When it comes to the question which of the different methods

will be best adapted to a further systematical study of the subject,

it seems probable that a combination of two or more of them will

be the most promising one. But here, as always, it is the man, not

the method, that solves the problem.
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To appreciate the progress geometry has made during the cen-

tury just ended, it is of advantage to cast a rapid glance over the

state of mathematical science at the beginning of the nineteenth

century.

We know that, in the last period of his life, Lagrange, fatigued by
the researches in analysis and mechanics, which assured him, however,
an immortal glory, neglected mathematics for chemistry (which,

according to him, was easy as algebra), for physics, for philosophic

speculations.

This mood of Lagrange we almost always find at certain moments
of the life of the greatest savants. The new ideas which came to

them in the fecund period of youth and which they introduced into

the common domain have given them all they could have expected;

they have fulfilled their task and feel the need of turning their
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mental activity towards wholly new subjects. This need, as we

recognize, manifested itself with particular force at the epoch of La-

grange. At this moment, in fact, the programme of researches opened
to geometers by the discovery of the infinitesimal calculus appeared

very nearly finished up. Some differential equations more or less

complicated to integrate, some chapters to add to the integral

calculus, and one seemed about to touch the very outmost bounds

of science.

Laplace had achieved the explanation of the system of the world

and laid the foundations of molecular physics. New ways opened
before the experimental sciences and prepared the astonishing

development they received in the course of the century just ended.

Ampere, Poisson, Fourier, and Cauchy himself, the creator of the

theory of imaginaries, were occupied above all in studying the appli-

cation of the analytic methods to molecular physics, and seemed to

believe that outside this new domain, which they hastened to cover,

the outlines of theory and science were finally fixed.

Modern geometry, a glory we must claim for it, came, after the

end of the eighteenth century, to contribute in large measure to the

renewing of all mathematical science, by offering to research a way
new and fertile, and above all in showing us, by brilliant successes,

that general methods are not everything in science, and that even

in the simplest subject there is much for an ingenious and inventive

mind to do.

The beautiful geometric demonstrations of Huygens, of Newton,
and of Clairaut were forgotten or neglected. The fine ideas introduced

by Desargues and Pascal had remained without development and

appeared to have fallen on sterile ground.

Carnot, by his Essai sur les transversales and his Geometric de.

position, above all Monge, by the creation of descriptive geometry
and by his beautiful theories on the generation of surfaces, came to

renew a chain which seemed broken. Thanks to them, the conceptions
of the inventors of analytic geometry, Descartes and Fermat, retook

alongside the infinitesimal calculus of Leibnitz and Newton the place

they had lost, yet should never have ceased to occupy. With his

geometry, said Lagrange, speaking of Monge, this demon of a man
will make himself immortal.

Arid, in fact, not only has descriptive geometry made it possible

to coordinate and perfect the procedures employed in all the arts

where precision of form is a condition of success and of excellence for

the work and its products; but it appeared as the graphic translation

of a geometry, general and purely rational, of which numerous and

important researches have demonstrated the happy. fertility.

Moreover, beside the Geometric descriptive we must not forget

to place that other masterpiece, the Application de I'analyse d la
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geometric ; nor should we forget that to Monge are due the notion

of lines of curvature and the elegant integration of the differential

equation of these lines for the case of the ellipsoid, which, it is said,

Lagrange envied him. To be stressed is this character of unity of the

work of Monge.
The renewer of modern geometry has shown us from the beginning,

what his successors have perhaps forgotten, that the alliance of

geometry and analysis is useful and fruitful, that this alliance is

perhaps for each a condition of success.

II

In the school of Monge were formed many geometers: Hachette,

Brianchon, Chappuis, Binet, Lancret, Dupin, Malus, Gaultier de

Tours, Poncelet, Chasles, et al. Among these Poncelet takes first

rank. Neglecting, in the works of Monge, everything pertaining to

the analysis of Descartes or concerning infinitesimal geometry, he

devoted himself exclusively to developing the germs contained in

the purely geometric researches of his illustrious predecessor.

Made prisoner by the Russians in 1813 at the passage of the Dnieper
and incarcerated at Saratoff, Poncelet employed the leisure captivity

left him in the demonstration of the principles which he has developed
in the Traite des proprietes projectives des figures, issued in 1822,

and in the great memoirs on reciprocal polars and on harmonic

means, which go back nearly to the same epoch. So we may say the

modern geometry was born at Saratoff.

Renewing the chain broken since Pascal and Desargues, Poncelet

introduced at the same time homology and reciprocal polars, putting
thus in evidence, from the beginning, the fruitful ideas on which the

science has evolved during fifty years.

Presented in opposition to analytic geometr}', the methods of Ponce-

let were not favorably received by the French analysts. But such

were their importance and their novelty, that without delay they

aroused, from divers sides, the most profound researches.

Poncelet had been alone in discovering the principles; on the

contrary, many geometers appeared almost simultaneously to study
them on all sides and to deduce from them the essential results which

they implicitly contained.

At this epoch, Gergonne was brilliantly editing a periodical which

has to-day for the history of geometry an inestimable value. The
Annales de Mathematiqucs, published at Nimes from 1810 to 1831.

was during more than fifteen years the only journal in the entire

world devoted exclusively to mathematical researches.

Gergonne, who, in many regards, was a model editor for a scienti-

fic journal, had the defects of his qualities; he collaborated, often
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against their will, with the authors of the memoirs sent him, rewrote

them, and sometimes made them say more or less than they would

have wished. Be that as it may, he was greatly struck by the origin-

ality and range of Poncelet's discoveries.

In geometry some simple methods of transformation of figures

were already known; homology even had been employed in the plane,

but without extending it to space, as did Poncelet, and especially

without recognizing its power and fruitfulness. Moreover, all these

transformations were punctual ; that is to say, they made correspond
a point to a point.

In introducing polar reciprocals, Poncelet was in the highest

degree creative, because he gave the first example of a transformation

in which to a point corresponded something other than a point.

Every method of transformation enables us to multiply the num-
ber of theorems, but that of polar reciprocals had the advantage of

making correspond to a proposition another proposition of wholly
different aspect. This was a fact essentially new. To put it in evi-

dence, Gergonne invented the system, which since has had so much

success, of memoirs printed in double columns with correlative

propositions in juxtaposition; and he had the idea of substituting

for Poncelet's demonstrations, which required an intermediary
curve or surface of the second degree, the famous "principle of

duality," of which the signification, a little vague at first, was suffi-

ciently cleared up by the discussions which took place on this subject

between Gergonne, Poncelet, and Pluecker.

Bobillier, Chasles. Steiner, Lame", Sturm, and many others whose

names escape me, were, at the same time as Pluecker and Poncelet,

assiduous collaborators of the Annales de Mathematiques. Gergonne,

having become rector of the Academy of Montpellier, was forced to

suspend in 1831 the publication of his journal. But the success it had

obtained, the taste for research it had contributed to develop, had

commenced to bear their fruit. Que"telet had established in Belgium
the Correspondance mathematique et physique. Crelle, from 1826,

brought out at Berlin the first sheets of his celebrated journal, where

he published the memoirs of Abel, of Jacobi, of Steiner.

A great number of separate works began also to appear, wherein

the principles of modern geometry were powerfully expounded and

developed.

First came in 1827 the Barycentrische Calcul of Moebius, a work

truly original, remarkable for the profundity of its conceptions, the

elegance and the rigor of its exposition; then in 1828 the Analytisch-

geometrische Entwickelungen of Pluecker, of which the second part

appeared in 1831, and which was soon followed by the System der

analytischen Geometrie of the same author, published at Berlin in

1835.
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In 1832 Steiner brought out at Berlin his great work: Systemat-
ische Entwickelung der Abhaengigkeit der geometrischen Gestalten von

einander, and, the following year, Die geometrischen Konstruktionen

ausgefuehrt mittels der geraden Linie und eines festen Kreises, where

was confirmed by the most elegant examples a proposition of Pon-

celet's relative to the employment of a single circle for the geometric
constructions.

Finally, in 1830, Chasles sent to the Academy of Brussels, which

happily inspired had offered a prize for a study of the principles of

modern geometry, his celebrated Apergu historique sur I'origine et

le developpement des methodes en geometric, followed by Memoire
sur deux principes generaux de la science : la dualite et I'homographie,

which was published only in 1837.

Time would fail us to give a worthy appreciation of these beautiful

works and to apportion the share of each. Moreover, to what would

such a study conduct us, but to a new verification of the general laws

of the development of science ? When the times are ripe, when the

fundamental principles have been recognized and enunciated, nothing

stops the march of ideas
;
the same discoveries, or discoveries almost

equivalent, appear at nearly the same instant, and in places the most

diverse. Without undertaking a discussion of this sort, which, besides,

might appear useless or become irritating, it is, however, of import-
ance to bring out a fundamental difference between the tendencies

of the great geometers, who, about 1830, gave to geometry a scope
before unknown.

Ill

Some, like Chasles and Steiner, who consecrated their entire lives

to research in pure geometry, opposed what they called synthesis to

analysis, and, adopting in the ensemble if not in detail the tendencies

of Poncelet, proposed to constitute an independent doctrine, rival of

Descartes's analysis.

Poncelet could not content himself with the insufficient resources

furnished by the method of projections; to attain imaginaries he

created that famous principle of continuity which gave birth to such

long discussions between him and Cauchy.

Suitably enunciated, this principle is excellent and can render

great service. Poncelet was wrong in refusing to present it as a simple

consequence of analysis; and Cauchy, on the other hand, was not

willing to recognize that his own objections, applicable without

doubt to certain transcendent figures, were without force in the

applications made by the author of the Traite des proprietes pro-

jectives.

Whatever be the opinion of such a discussion, it showed at least

in the clearest manner that the geometric system of Poncelet rested
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on an analytic foundation, and besides we know, by the untoward

publication of the manuscripts of Saratoff, that by the aid of

Descartes's analysis were established the principles which serve as

foundation for the TraiU des proprietes projectiles.

Younger than Poncelet, who besides abandoned geometry for

mechanics where his works had a preponderant influence, Chasles,

for whom was created in 1847 a chair of Geometrie superieure in the

Faculty of Science of Paris, endeavored to constitute a geometric
doctrine entirely independent and autonomous. He has expounded
it in two works of high importance, the Traite de geometric supe-

rieure, which dates from 1852, and the Traite des sections conigues,

unhappily unfinished and of which the first part alone appeared in

1865.

In the preface of the first of these works he indicates very clearly

the three fundamental points which permit the new doctrine to share

the advantages of analysis and which to him appear to mark an

advance in the cultivation of the science. These are: (1) The intro-

duction of the principle of signs, which simplifies at once the enuncia-

tions and the demonstrations, and gives to Carnot's analysis of trans-

versals all the scope of which it is susceptible; (2) the introduction of

imaginaries, which supplies the place of the principle of continuity

and furnishes demonstrations as general as those of analytic geo-

metry; (3) the simultaneous demonstration of propositions which are

correlative, that is to say, which correspond in virtue of the principle

of duality.

Chasles studies indeed in his work homography and correlation;

but he avoids systematically in his exposition the employment of

transformations of figures, which, he thinks, cannot take the place of

direct demonstrations since they mask the origin and the true nature

of the properties obtained by their means.

There is truth in this judgment, but the advance itself of the science

permits us to declare it too severe. If it happens often that, em-

ployed without discernment, transformations multiply uselessly the

number of theorems, it must be recognized that they often aid us to

better understand the nature of the propositions even to which they
have been applied. Is it not the employment of Poncelet's projection

which has led to the so fruitful distinction between projective proper-

ties and metric properties, which has taught us also the high import-
ance of that cross-ratio whose essential property is found already
in Pappus, and of which the fundamental r61e has begun to appear
after fifteen centuries only in the researches of modern geometry?
The introduction of the principle of signs was not so new as Chasles

supposed at the time he wrote his TraiU de Geometric superieure.

Moebius, in his Barycentrische Calcul, had already given issue to

a desideratum of Carnot, and employed the signs in a way the largest
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and most precise, defining for the first time the sign of a segment
and even that of an area.

Later he succeeded in extending the use of signs to lengths not

laid off on the same straight line and to angles not formed about the

same point.

Besides Grassmann, whose mind has so much analogy to that of

Moebius, had necessarily employed the principle of signs in the defini-

tions which serve as basis for his methods, so original, of studying
the properties of space.

The second characteristic which Chasles assigns to his system of

geometry is the employment of imaginaries. Here, his method was

really new, and he illustrates it by examples of high interest. One will

always admire the beautiful theories he has left us on homofocal

surfaces of the second degree, where all the known properties and

others new, as varied as elegant, flow from the general principle that

they are inscribed in the same developable circumscribed to the

circle at infinity.

But Chasles introduced imaginaries only by their symmetric func-

tions, and consequently would not have been able to define the cross-

ratio of four elements when these ceased to be real in whole or in

part. If Chasles had been able to establish the notion of the cross-

ratio of imaginary elements, a formula he gives in the Geometric

suprieure (p. 118 of the new edition) would have immediately
furnished him that beautiful definition of angle as logarithm of a

cross-ratio which enabled Laguerre, our regretted confrere, to give

the complete solution, sought so long, of the problem of the trans-

formation of relations which contain at the same time angles and

segments in homography and correlation.

Like Chasles, Steiner, the great and profound geometer, followed

the way of pure geometry; but he has neglected to give us a complete

exposition of the methods upon which he depended. However, they

may be characterized by saying that they rest upon the introduction

of those elementary geometric forms which Desargues had already

considered, on the development he was able to give to Bobillier's

theory of polars, and finally on the construction of curves and sur-

faces of higher degrees by the aid of sheaves or nets of curves of

lower orders. In default of recent researches, analysis would suffice

to show that the field thus embraced has just the extent of that into

which the analysis of Descartes introduces us without effort.

IV

While Chasles, Steiner, and, later, as we shall see, von Staudt, were

intent on constituting a rival doctrine to analysis and set in some

sort altar against altar, Gergonne, Bobillier, Sturm, and above all

Pluecker, perfected the geometry of Descartes and constituted an
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analytic system in a manner adequate to the discoveries of the

geometers. It is to Bobillier and to Pluecker that we owe the method

called abridged notation. Bobillier consecrated to it some pages truly

new in the last volumes of the Annales of Gergonne.
Pluecker commenced to develop it in his first work, soon followed

by a series of works where are established in a fully conscious manner

the foundations of the modern analytic geometry. It is to him that

we owe tangential coordinates, trilinear coordinates, employed with

homogeneous equations, and finally the employment of canonical

forms whose validity was recognized by the method, so deceptive

sometimes, but so fruitful, called the enumeration of constants.

All these happy acquisitions infused new blood into Descartes's

analysis and put it in condition to give their full signification to the

conceptions of which the geometry called synthetic had been unable

to make itself completely mistress.

Pluecker, to whom it is without doubt just to adjoin Bobillier,

carried off by a premature death, should be regarded as the veritable

initiator of those methods of modern analysis where the employment
of homogeneous coordinates permits treating simultaneously and,

so to say, without the reader perceiving it, together with one figure

all those deducible from it by homography and correlation.

Parting from this moment, a period opens brilliant for geometric
researches of every nature.

The analysts interpret all their results and are occupied in trans-

lating them by constructions.

The geometers are intent on discovering in every question some

general principle, usually undemonstrable without the aid of ana-

lysis, in order to make flow from it without effort a crowd of particu-

lar consequences, solidly bound to one another and to the principle

whence they are derived. Otto Hesse, brilliant disciple of Jacobi,

develops in an admirable manner that method of homogeneous
coordinates to which Pluecker perhaps had not attached its full

value. Boole discovers in the polars of Bobillier the first notion of

a covariant; the theory of forms is created by the labors of Cayley,

Sylvester, Hermite, Brioschi. Later Aronhold, Clebsch and Gordan,
and other geometers still living, gave to it its final notation, estab-

lished the fundamental theorem relative to the limitation of the

number of covariant forms and so gave it all its amplitude.
The theory of surfaces of the second order, built up principally

by the school of Monge, was enriched by a multitude of elegant

properties, established principally by O. Hesse, who found later in

Paul Serret a worthy emulator and continues
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The properties of the polars of algebraic curves are developed by
Pluecker and above all by Steiner. The study, already old, of curves

of the third order is rejuvenated and enriched by a crowd of new
elements. Steiner, the first, studies by pure geometry the double

tangents of curves of the fourth order, and Hesse, after him, applies

the methods of algebra to this beautiful question, as well as to that

of points of inflection of curves of the third order.

The notion of class introduced by Gergonne, the study of a para-

dox in part elucidated by Poncelet and relative to the respective

degrees of two curves reciprocal polars one of the other, give birth

to the researches of Pluecker relative to the singularities called ordi-

nary of algebraic plane curves. The celebrated formulas to which

Pluecker is thus conducted are later extended by Cayley and by
other geometers to algebraic skew curves, by Cayley again and by
Salmon to algebraic surfaces.

The singularities of higher order are in their turn taken up by
the geometers; contrary to an opinion then very widespread, Hal-

phen demonstrates that each of these singularities cannot be con-

sidered as equivalent to a certain group of ordinary singularities, and

his researches close for a time this difficult and important question.

Analysis and geometry, Steiner, Cayley, Salmon, Cremona, meet in

the study of surfaces of the third order, and, in conformity with

the anticipations of Steiner, this theory becomes as simple and as

easy as that of surfaces of the second order.

The algebraic ruled surfaces, so important for applications, are

studied by Chasles, by Cayley, of whom we find the influence and the

mark in all mathematical researches, by Cremona, Salmon, La Gour-

nerie; so they will be later by Pluecker in a work to which we must

return.

The study of the general surface of the fourth order would seem

to be still too difficult; but that of the particular surfaces of this order

with multiple points or multiple lines is commenced, by Pluecker for

the surface of waves, by Steiner, Kummer, Cayley, Moutard, Laguerre,

Cremona, and many other investigators.

As for the theory of algebraic skew curves, grown rich in its ele-

mentary parts, it receives finally, by the labors of Halphen and of

Noether, whom it is impossible for us here to separate, the most

notable extensions.

A new theory with a great future is born by the labors of Chasles,

of Clebsch, and of Cremona; it concerns the study of all the algebraic

curves which can be traced on a determined surface.

Homography and correlation, those two methods of transformation

which have been the distant origin of all the preceding researches,

receive from them in their turn an unexpected extension; they are

not the only methods which make a single element correspond to a
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single element, as might have shown a particular transformation

briefly indicated by Poncelet in the Traite des proprtites projectives.

Pluecker defines the transformation by reciprocal radii vectores or

inversion, of which Sir W. Thomson and Liouville hasten to show all

the importance, as well for mathematical physics as for geometry.
A contemporary of Moebius and Pluecker, Magnus believed he had

found the most general transformation which makes a point corre-

spond to a point, but the researches of Cremona show us that the

transformation of Magnus is only the first term of a series of bira-

tional transformations which the great Italian geometer teaches us to

determine methodically, at least for the figures of plane geometry.
The Cremona transformations long retained a great interest,

though later researches have shown us that they reduce always to

a series of successive applications of the transformation of Magnus.

VI

All the works we have enumerated, others to which we shall return

later, find their origin and, in some sort, their first motive in the con-

ceptions of modern geometry; but the moment has come to indicate

rapidly another source of great advances for geometric studies.

Legendre's theory of elliptic functions, too much neglected by the

French geometers, is developed and extended by Abel and Jacobi.

With these great geometers, soon followed by Riemann and Weier-

strass, the theory of Abelian functions which, later, algebra would

try to follow solely with its own resources, brought to the geometry
of curves and surfaces a contribution whose importance will continue

to grow.

Already, Jacobi had employed the analysis of elliptic functions

in the demonstration of Poncelet's celebrated theorems on inscribed

and circumscribed polygons, inaugurating thus a chapter since en-

riched by a multitude of elegant results; he had obtained also, by
methods pertaining to geometry, the integration of Abelian equa-
tions.

But it was Clebsch who first showed in a long series of works all

the importance of the notion of deficiency (Geschlecht, genre) of a

curve, due to Abel and Riemann, in developing a crowd of results

and elegant solutions that the employment of Abelian integrals would

seem, so simple was it, to connect with their veritable point of

departure.

The study of points of inflection of curves of the third order, that

of double tangents of curves of the fourth order, and, in general, the

theory of osculation on which the ancients and the moderns had so

often practiced, were connected with the beautiful problem of the

division of elliptic functions and Abelian functions.

In one of his memoirs, Clebsch had studied the curves which are
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rational or of deficiency zero; this led him, toward the end of his

too short life, to envisage what may be called also rational surfaces,

those which can be simply represented by a plane. This was a vast

field for research, opened already for the elementary cases by Chasles,

and in which Clebsch was followed by Cremona and many other

savants. It was on this occasion that Cremona, generalizing his re-

searches on plane geometry, made known not indeed the totality of

birational transformations of space, but certain of the most interest-

ing among these transformations.

The extension of the notion of deficiency to algebraic surfaces is

already commenced; already also works of high value have shown

that the theory of integrals, simple or multiple, of algebraic differ-

entials will find, in the study of surfaces as in that of curves, an ample
field of important applications; but it is not proper for the reporter

on geometry to dilate on this subject .

VII

While thus were constituted the mixed methods whose principal

applications we have just indicated, the pure geometers were not

inactive. Poinsot, the creator of the theory of couples, developed,

by a method purely geometric, "that, where one never for a mo-

ment loses from view the object of the research," the theory of the

rotation of a solid body that the researches of d'Alembert, Euler, and

Lagrange seemed to have exhausted; Chasles made a precious con-

tribution to kinematic by his beautiful theorems on the displacement
of a solid body, which have since been extended by other elegant

methods to the case where the motion has divers degrees of freedom.

He made known those beautiful propositions on attraction in gen-

eral, which figure without disadvantage beside those of Green and

Gauss. Chasles and Steiner met in the study of the attraction of

ellipsoids and showed thus once more that geometry has its desig-

nated place in the highest questions of the integral calculus.

Steiner did not disdain at the same time to occupy himself with

the elementary parts of geometry. His researches on the contacts of

circles and conies, on isoperimetric problems, on parallel surfaces, on

the centre of gravity of curvature, excited the admiration of all by
their simplicity and their depth.

Chasles introduced his principle of correspondence between two

variable objects which has given birth to so many applications; but

here anatysis retook its place to study the principle in its essence,

make it precise and generalize it.

It was the same concerning the famous theory of characteristics

and the numerous researches of de Jonquieres, Chasles, Cremona,
and still others, which gave the foundations of a new branch of the

science, Enumerative Geometry.
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During many years, the celebrated postulate of Chasles was ad-

mitted without any objection: a crowd of geometers believed they
had established it in a manner irrefutable.

But, as Zeuthen then said, it is very difficult to recognize whether,
in demonstrations of this sort, there does not exist always some weak

point that their author has not perceived; and, in fact, Halphen,
after fruitless efforts, crowned finally all these researches by clearly

indicating in what cases the postulate of Chasles may be admitted

and in what cases it must be rejected.

VIII

Such are the principal works which restored geometric synthesis

to honor and assured to it, in the course of the last century, the place

belonging to it in mathematical research. Numerous and illustrious

workers took part in this great geometric movement, but we must

recognize that its chiefs and leaders were Chasles and Steiner. So

brilliant were their marvelous discoveries that they threw into the

shade, at least momentarily, the publications of other modest geo-

meters, less preoccupied perhaps in finding brilliant applications,

fitted to evoke love for geometry than to establish this science itself

on an absolutely solid foundation. Their works have received per-

haps a recompense more tardy, but their influence grows each day;
it will assuredly increase still more. To pass them over in silence

would be without doubt to neglect one of the principal factors which

will enter into future researches. We allude at this moment above

all to von Staudt. His geometric works were published in two books

of great interest: the Geometric der Lage, issued in 1847, and the

Beitrage zur Geometric der Lage, published in 1856, that is to say,

four years after the Geometric superieure. Chasles, as we have seen,

had devoted himself to constituting a body of doctrine independent
of Descartes's analysis and had not completely succeeded. We have

already indicated one of the criticisms that can be made upon this

system: the imaginary elements are there defined only by their sym-
metric functions, which necessarily exclude them from a multitude

of researches. On the other hand, the constant employment of cross-

ratio, of transversals, and of involution, which requires frequent

analytic transformations, gives to the Geometrie superieure a char-

acter almost exclusively metric which removes it notably from the

methods of Poncelet. Returning to these methods, von Staudt

devoted himself to constituting a geometry freed from all metric

relation and resting exclusively on relations of situation.

This is the spirit in which was conceived his first work, the Geo-

metrie der Lage of 1847. The author there takes as point of departure
the harmonic properties of the complete quadrilateral and those

of homologic triangles, demonstrated uniquely by considerations
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of geometry of three dimensions, analogous to those of which the

school of Monge made such frequent use.

In this first part of his work, von Staudt neglected entirely im-

aginary elements. It is only in the Beitrage, his second work, that

he succeeds, by a very original extension of the method of Chasles,

in defining geometrically an isolated imaginary element and dis-

tinguishing it from its conjugate.

This extension, although rigorous, is difficult and very abstract.

It may be defined in substance as follows: Two conjugate imaginary

points may always be considered as the double points of an involu-

tion on a real straight; and just as one passes from an imaginary to

its conjugate by changing i into i, so one may distinguish the two

imaginary points by making correspond to each of them one of the

two different senses which may be attributed to the straight. In this

there is something a little artificial; the development of the theory
erected on such foundations is necessarily complicated. By methods

purely projective, von Staudt establishes a calculus of cross-ratios of

the most general imaginary elements. Like all geometry, the pro-

jective geometry employs the notion of order and order engenders

number; we are not astonished therefore that von Staudt has been

able to constitute his calculus; but we must admire the ingenuity

displayed in attaining it. In spite of the efforts of distinguished

geometers who have essayed to simplify its exposition, we fear that

this part of the geometry of von Staudt, like the geometry otherwise

so interesting of the profound thinker Grassmann, cannot prevail

against the analytical methods which have won to-day favor almost

universal. Life is short; geometers know and also practice the

principle of least action. Despite these fears, which should discour-

age no one, it seems to us that under the first form given it by von

Staudt, projective geometry must become the necessary companion
of descriptive geometry, that it is called to renovate this geometry
in its spirit, its procedures, and its applications.

This has already been comprehended in many countries, and

notably in Italy, where the great geometer Cremona did not disdain

to write for the schools an elementary treatise on projective geometry.

IX

In the preceding articles, we have essayed to follow and bring out

clearly the most remote consequences of the methods of Monge and

Poncelet. In creating tangential coordinates and homogeneous coor-

dinates, Pluecker seemed to have exhausted all that the method of

projections and that of reciprocal polars give to analysis.

It remained for him, toward the end of his life, to return to his

first researches to give them an extension enlarging to an unexpected

degree the domain of geometry.
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Preceded by innumerable researches on systems of straight lines,

due to Poinsot, Moebius, Chasles, Dupin, Malus. Hamilton, Krummer,
Transon. above all to Cayley, who first introduced the notion of the

coordinates of the straight, researches originating perhaps in statics

and kinematics, perhaps in geometrical optics, Pluecker's geometry of

the straight line will always be regarded as the part of his work where

are met the newest and most interesting ideas.

Pluecker first set up a methodic study of the straight line, which

already is important, but that is nothing beside what he discov

ered. It is sometimes said that the principle of duality shows that

the plane an well as the point may be considered as a space element.

That is true; but in adding the straight line to the plane and point
as possible space element, Plueckcr was led to recognize that any

curve, any surface, may also be considered as space element, and so

was born a new geometry which already has inspired a great number
of works, which will raise up still more in the future.

A beautiful discovery, of which we shall speak further on, has

already connected the geometry of spheres with that of straight lines

and permits the introduction of the notion of coordinates of a sphere.

The theory of systems of circles is already commenced; it will

be developed without doubt when one wishes to study the representa-

tion, which we owe to Laguerre, of an imaginary point in space by an

oriented circle.

But before expounding the development of these new ideas which

have vivified the infinitesimal methods of Monge, it is necessary to go
back to take up the history of branches of geometry that we have

neglected until now.

X

Among the works of the school of Monge, we have hitherto con-

fined ourselves to the consideration of those connected with finite

geometry; but certain of the disciples of Monge devoted themselves

above all to developing the new notions of infinitesimal geometry

applied by their master to curves of double curvature, to lines of curv-

ature, to the generation of surfaces, notions expounded at least in

part in the Application de VAnalyse a la Geometrie. Among these

we must cite Lancret, author of beautiful works on skew curves, and

above all Charles Dupin, the only one perhaps who -followed all the

paths opened by Monge.

Among other works, we owe to Dupin two volumes Monge would

not have hesitated to sign: Les Dcveloppements de Geometrie pure,

issued in 1813, and Les Applications de Geometrie et de Mecanique,

dating from 1822.

There we find the notion of indicatrix, which was to renovate,

after Euler and Meunier, all the theory of curvature, that of conjugate
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tangents, of asymptotic lines which have taken so important a place

in recent researches. Nor should we forget the determination of the

surface of which all the lines of curvature are circles, nor above all

the memoir on triple systems of orthogonal surfaces where is found,

together with the discovery of the triple system formed by surfaces

of the second degree, the celebrated theorem to which the name of

Dupin will remain attached.

Under the influence of these works and of the renaissance of syn-

thetic methods, the geometry of infinitesimals retook in all researches

the place Lagrange had wished to take away from it forever.

Singular thing, the geometric methods thus restored were to receive

the most vivid impulse in consequence of the publication of a memoir

which, at least at first blush, would appear connected with the purest

analysis; we mean the celebrated paper of Gauss, Disquisitiones

generates circa superficies curvas, which was presented in 1827 to the

Gottingen Society, and whose appearance marked, one may say.

a decisive date in the history of infinitesimal geometry.
From this moment, the infinitesimal method took in France a free

scope before unknown.

Frenet, Bertrand, Molins, J. A. Serret, Bouquet, Puiseux, Ossian

Bonnet, Paul Serret, develop the theory of skew curves. Liouville,

Chasles, Minding, join them to pursue the methodic study of the

memoir of Gauss.

The integration made by Jacobi of the differential equation of the

geodesic lines of the ellipsoid started a great number of researches.

At the same time the problems studied in the Application de I'Analyse
of Monge were greatly developed.
The determination of all the surfaces having their lines of curvature

plane or spheric completed in the happiest manner certain partial

results already obtained by Monge.
At this moment, one of the most penetrating of geometers, ac-

cording to the judgment of Jacobi, Gabriel Lam4, who, like Charles

Sturm, had commenced with pure geometry and had already made to

this science contributions the most interesting by a little book pub-
lished in 1817 and by memoirs inserted in the Annales of Gergonne,
utilized the results obtained by Dupin and Binet on the system of

confocal surfaces of the second degree, and, rising to the idea of

curvilinear coordinates in space, became the creator of a wholly new

theory destined to receive in mathematical physics the most varied

applications.

XI

Here again, in this infinitesimal branch of geometry are found the

two tendencies we have pointed out a propos of the geometry of finite

quantities.
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Some, among whom must be placed J. Bertrand and O. Bonnet,

wish to constitute an independent method resting directly on the

employment of infinitesimals. The grand TraiU de Calcul differentiel,

of Bertrand, contains many chapters on the theory of curves and

of surfaces, which are, in some sort, the illustration of this con-

ception.

Others follow the usual analytic ways, being only intent to clearly

recognize and put in evidence the elements which figure in the first

plan. Thus did Lame
1

in introducing his theory of differential para-

meters. Thus did Beltrami in extending with great ingenuity the

employment of these differential invariants to the case of two inde-

pendent variables, that is to say, to the study of surfaces.

It seems that to-day is accepted a mixed method whose origin is

found in the works of Ribaucour, under the name perimorphie. The

rectangular axes of analytic geometry are retained, but made mobile

and attached as seems best to the system to be studied. Thus dis-

appear most of the objections which have been made to the method

of coordinates. The advantages of what is sometimes called intrinsic

geometry are united to those resulting from the use of the regular

analysis. Besides, this analysis is by no means abandoned; the com-

plications of calculation which it almost always carries with it, in its

applications to the study of surfaces and rectilinear coordinates, usu-

ally disappear if one employs the notion on the invariants and the

covariants of quadratic powers of differentials which we owe to the

researches of Lipschitz and Christoffel, inspired by Riemann's studies

on the non-Euclidean geometry.

XII

The results of so many labors were not long in coming. The notion

of geodesic curvature which Gauss already possessed, but without

having published it, was given by Bonnet and Liouville; the theory

of surfaces of which the radii of curvature are functions one of the

other, inaugurated in Germany by two propositions which would

figure without disadvantage in the memoir of Gauss, was enriched

by Ribaucour, Halphen, S. Lie, and others, with a multitude of propo-

sitions, some concerning these surfaces envisaged in a general man-

ner; others applying to particular cases where the relation between

the radii of curvature takes a form particularly simple; to minimal

surfaces for example, and also to surfaces of constant curvature,

positive or negative.

The minimal surfaces were the object of works which make of

their study the most attractive chapter of infinitesimal geometry.
The integration of their partial differential equation constitutes one

of the most beautiful discoveries of Monge; but because of the im-

perfection of the theory of imaginaries, the great geometer could not
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get from its formulas any mode of generation of these surfaces, nor

even any particular surface. We will not here retrace the detailed

history which we have presented in our Lecons sur la theorie des

surfaces ; but it is proper to recall the fundamental researches of

Bonnet which have given us, in particular, the notion of surfaces

associated with a given surface, the formulas of Weierstrass which

establish a close bond between the minimal surfaces and the functions

of a complex variable, the researches of Lie by which it was estab-

lished that just the formulas of Monge can to-day serve as founda-

tion for a fruitful study of minimal surfaces.

In seeking to determine the minimal surfaces of smallest classes

or degrees, we were led to the notion of double minimal surfaces

which is dependent on analysis situs.

Three problems of unequal importance have been studied in this

theory.

The first, relative to the determination of minimal surfaces in-

scribed along a given contour in a developable equally given, was

solved by celebrated formulas which have led to a great number of

propositions. For example, every straight traced on such a surface

is an axis of symmetry.
The second, set by S. Lie, concerns the determination of all the

algebraic minimal surfaces inscribed, in an algebraic developable,
without the curve of contact being given. It also has been entirely

elucidated.

The third and the most difficult is what the physicists solve experi-

mentally, by plunging a closed contour into a solution of glycerine.

It concerns the determination of the minimal surface passing through
a given contour.

The solution of this problem evidently surpasses the resources of

geometry. Thanks to the resources of the highest analysis, it has

been solved for particular contours in the celebrated memoir of

Riemann and in the profound researches which have followed or

accompanied this memoir.

For the most general contour, its study has been brilliantly begun;
it will be continued by our successors.

After the minimal surfaces, the surfaces of constant curvature at-

tracted the attention of geometers. An ingenious remark of Bonnet

connects with each other the surfaces of which one or the other of the

two curvatures, mean curvature or total curvature, is constant.

Bour announced that the partial differential equation of surfaces

of constant curvature could be completely integrated. This result

has not been secured; it would seem even very doubtful if we con-

sider a research where S. Lie has essayed in vain to apply a general

method of integration of partial differential equations to the particu-

lar equation of surfaces of constant curvature.
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But, if it is impossible to determine in finite terms all these sur-

faces, it has at least been possible to obtain certain of them, char-

acterized by special properties, such as that of having their lines of

curvature plane or spheric; and it has been shown, by employing a

method which succeeds in many other problems, that from every sur-

face of constant curvature may be derived an infinity of other surfaces

of the same nature, by employing operations clearly defined which

require only quadratures.

The theory of the deformation of surfaces in the sense of Gauss

has been also much enriched. We owe to Minding and to Bour the

detailed study of that special deformation of ruled surfaces which

leaves the generators rectilineal. If we have not been able, as has

been said, to determine the surfaces applicable on the sphere, other

surfaces of the second degree have been attacked with more success,

and, in particular, the paraboloid of revolution.

The systematic study of the deformation of general surfaces of the

second degree is already entered upon; it is one of those which will

give shortly the most important results.

The theory of infinitesimal deformation constitutes to-day one of

the most finished chapters of geometry. It is the first somewhat

extended application of a general method which seems to have a great

future.

Being given a system of differential or partial differential equations,

suitable to determine a certain number of unknowns, it is advantage-

ous to associate with it a system of equations which we have called

auxiliary system, and which determines the systems of solutions

infinitely near any given system of solutions. The auxiliary system

being necessarily linear, its employment in all researches gives

precious light on the properties of the proposed system and on the

possibility of obtaining its integration.

The theory of lines of curvature and of asymptotic lines has been

notably extended. Not only have been determined these two series

of lines for particular surfaces such as the tetrahedral surfaces of

Lame
1

;
but also, in developing Moutard's results relative to a par-

ticular class of linear partial differential equations of the second

order, it proved possible to generalize all that had been obtained for

surfaces with lines of curvature plane or spheric, in determining com-

pletely all the classes of surfaces for which could be solved the pro-

blem of spheric representation.

Just so has been solved the correlative problem relative to asymp-
totic lines in making known all the surfaces of which the infinitesimal

deformation can be determined in finite terms. Here is a vast field

for research whose exploration is scarcely begun.

The infinitesimal study of rectilinear congruences, already com-

menced long ago by Dupin, Bertrand, Hamilton, Kummer, has come
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to intermingle in all these researches. Ribaucour, who has taken in

it a preponderant part, studied particular classes of rectilinear con-

gruences and, in particular, the congruences called isotropes, which

intervene in the happiest way in the study of minimal surfaces.

The triply orthogonal systems which Lame used in mathematical

physics have become the object of systematic researches. Cayley
was the first to form the partial differential equation of the third

order on which the general solution of this problem was made to

depend.
The system of homofocal surfaces of the second degree has been

generalized and has given birth to that theory of general cyclides in

which may be employed at the same time the resources of metric

geometry, of projective geometry, and of infinitesimal geometry.

Many other orthogonal systems have been made known. Among
these it is proper to signalize the cyclic systems of Ribaucour, for

which one of the three families admits circles as orthogonal trajecto-

ries and the more general systems for which these orthogonal trajec-

tories are simply plane curves.

The systematic employment of imaginaries, which we must be

careful not to exclude from geometry, has permitted the connection

of all these determinations with the study of the finite deformation

of a particular surface.

Among the methods which have permitted the establishment of

all these results, it is proper to note the systematic employment of

linear partial differential equations of the second order and of systems
formed of such equations. The most recent researches show that this

employment is destined to renovate most of the theories.

Infinitesimal geometry could not neglect the study of the two

fundamental problems set it by the calculus of variations.

The problem of the shortest path on a surface was the object of

masterly studies by Jacobi and by Ossian Bonnet. The study of

geodesic lines has been followed up; we have learned to determine

them for new surfaces. The theory of ensembles has come to permit
the following of these lines in their course on a given surface.

The solution of a problem relative to the representation of two

surfaces one on the other has greatly increased the interest of dis-

coveries of Jacobi and of Liouville relative to a particular class of

surfaces of which the geodesic lines could be determined. The results

concerning this particular case led to the examination of a new ques-

tion : to investigate all the problems of the calculus of variations of

which the solution is given by curves satisfying a given differential

equation.

Finally, the methods of Jacobi have been extended to space of

three dimensions and applied to the solution of a question which

presented the greatest difficulties: the study of properties of mini-
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mum appertaining to the minimal surface passing through a given
contour.

XIII

Among the inventors who have contributed to the development of

infinitesimal geometry, Sophus Lie distinguishes himself by many
capital discoveries which place him in the first rank.

He was not one of those who show from infancy the most char-

acteristic aptitudes, and at the moment of quitting the University of

Christiania in 1865, he still hesitated between philology and mathe-

matics.

It was the works of Pluecker which gave him for the first time

full consciousness of his true calling.

He published in 1869 a first work on the interpretation of imagin-
aries in geometry, and from 1870 he was in possession of the directing

ideas of his whole career. I had at this time the pleasure of seeing

him often, of entertaining him at Paris, where he had come with his

friend F. Klein.

A course by M. Sylow followed by Lie had revealed to him all the

importance of the theory of substitutions; the two friends studied

this theory in the great treatise of C. Jordan; they were fully con-

scious of the important r61e it was called on to play in so many
branches of mathematical science where it had not yet been applied.

They have both had the good fortune to contribute by their works

to impress upon mathematical studies the direction which to them

appeared the best.

In 1870, Sophus Lie presented to the Academy of Sciences of Paris

a discovery extremely interesting. Nothing bears less resemblance

to a sphere than a straight line, and yet Lie had imagined a singular

transformation which made a sphere correspond to a straight line,

and permitted, consequently, the connecting of every proposition

relative to straight lines with a proposition relating to spheres, and

vice versa.

In this so curious method of transformation, each property relative

to the lines of curvature of a surface furnishes a proposition relative

to the asymptotic lines of the surface attained.

The name of Lie will remain attached to these deep-lying relations

which join to one another the straight line and the sphere, those two

essential and fundamental elements of geometric research. He de-

veloped them in a memoir full of new ideas which appeared in 1872.

The works which followed this brilliant de"but of Lie fully con-

firmed the hopes it had aroused. Pluecker's conception relative to

the generation of space by straight lines, by curves or surfaces

arbitrarily chosen, opens to the theory of algebraic forms a field

which has not yet been explored, which Clebsch scarcely began to

recognize and settle the boundaries of. But, from the side of infini-
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tesimal geometry, this conception has been given its full value by

Sophus Lie. The great Norwegian geometer was able to find in it

first the notion of congruences and complexes of curves, and after-

ward that of contact transformations of which he had found, for the

case of the plane, the first germ in Pluecker. The study of these

transformations led him to perfect, at the same time with M. Mayer,
the methods of integration which Jacobi had instituted for partial

differential equations of the first order; but above all it threw the

most brilliant light on the most difficult and the most obscure parts
of the theories relative to partial differential equations of higher
order. It permitted Lie, in particular, to indicate all the cases in

which the method of characteristics of Monge is fully applicable to

equations of the second order with two independent variables.

In continuing the study of these special transformations, Lie was

led to construct progressively his masterly theory of continuous

groups of transformations and to put in evidence the very important
role that the notion of group plays in geometry. Among the essential

elements of his researches, it is proper to signalize the infinitesimal

transformations, of which the idea belongs exclusively to him.

Three great books published under his direction by able and de-

voted collaborators contain the essential part of his works and their

applications to the theory of integration, to that of complex units and

to the non-Euclidean geometry.

XIV

By an indirect way I have arrived at that non-Euclidean geometry
the study of which takes in the researches of geometers a place which

grows greater each day.

If I were the only one to talk with you about geometry, I should

take pleasure in recalling to you* all that has been done on this sub-

ject since Euclid or at least from Legendre to our days.

Envisaged successively by the greatest geometers of the last cen-

tury, the question has progressively enlarged.

It commenced with the celebrated postulatum relative to parallels;

it ends with the totality of geometric axioms.

The Elements of Euclid, which have withstood the action of so

many centuries, will have at least the honor before ending of arous-

ing a long series of works admirably enchained which will contrib-

ute, in the most effective way, to the progress of mathematics, at the

same time that they furnish to the philosophers the most precise and

the most solid points of departure for the study of the origin and of

the formation of our cognitions.

I am assured in advance that my distinguished collaborator will

not forget, among the problems of the present time, this one, which is

perhaps the most important, and with which he has occupied himself
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with so much success; and I leave to him the task of developing it

with all the amplitude which it assuredly merits.

Thave just spoken of the elements of geometry. They have received

in the last hundred years extensions which must not be forgotten.

The theory of polyhedrons has been enriched by the beautiful dis-

coveries of Poinsot on the star polyhedrons and those of Moebius

on polyhedrons with a single face. The methods of transformation

have enlarged the exposition. We may say to-day that the first book

contains the theory of translation and of symmetry, that the second

amounts to the theory of rotation and of displacement, that the

third rest on homothety and inversion. But it must be recognized
that it is due to analysis that the Elements have been enriched by
their most beautiful propositions.

It is to the highest analysis that we owe the inscription of regular

polygons of seventeen sides and analogous polygons. To it we owe

the demonstrations, so long sought, of the impossibility of the quad-
rature of the circle, of the impossibility of certain geometric con-

structions with the aid of the ruler and the compasses; and to it finally

we owe the first rigorous demonstrations of the properties of maxi-

mum and of minimum of the sphere. It will belong to geometry to

enter upon this ground where analysis has preceded it.

What will be the elements of geometry in the course of the cen-

tury which has just commenced? Will there be a single elementary
book of geometry? It is perhaps America, writh its schools free from

all programme and from all tradition, which will give us the best solu-

tion of this important and difficult question.

Von Staudt has sometimes been called the Euclid of the nine-

teenth century; I would prefer to call him the Euclid of protective

geometry ; but is projective geometry, interesting though it may be,

destined to furnish the unique foundation of the future elements?

XV

The moment has come to close this over-long recital, and yet there

is a crowd of interesting researches that I have been, so to say, forced

to neglect.

I would have loved to talk with you about those geometries of

any number of dimensions of which the notion goes back to the first

days of algebra, but of which the systematic study was commenced

only sixty years ago by Cayley and by Cauchy. This kind of researches

has found favor in your country and I need not recall that our illus-

trious president, after having shown himself the worthy successor

of Laplace and Le Verrier, in a space which he considers with us as

being endowed with three dimensions, has not disdained to publish,

in the American Journal, considerations of great interest on the

geometries of n dimensions.
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A single objection can be made to studies of this sort, and was

already formulated by Poisson: the absence of all real foundation, of

all substratum permitting the presentation, under aspects visible and

in some sort palpable, of the results obtained.

The extension of the methods of descriptive geometry, and above

all the employment of Pluecker's conceptions on the generation of

space, will contribute to take away from this objection much of its

force.

I would have liked to speak to you also of the method of equi-

pollences, of which we find the germ in the posthumous works of

Gauss, of Hamilton's quaternions, of Grassmann's methods, and in

general of systems of complex units, of the analysis situs, so inti-

mately connected with the theory of functions, of the geometry
called kinematic, of the theory of abaci, of geometrography, of the

applications of geometry to natural philosophy or to the arts. But

1 fear, if I branched out beyond measure, some analyst, as has hap-

pened before, would accuse geometry of wishing to monopolize

everything.

My admiration for analysis, grown so fruitful and so powerful in

our time, would not permit me to conceive such a thought. But if

some reproach of this sort could be formulated to-day, it is not to

geometry, it is to analysis it would be proper, I believe, to address it.

The circle in which the mathematical studies appeared to be inclosed

at the beginning of the nineteenth century has been broken on all

sides.

The old problems present themselves to us under a new form, new

problems offer themselves, whose study occupies legions of workers.

The number of those who cultivate pure geometry has become

prodigiously restricted. Therein is a danger against which it is im-

portant to provide. We must not forget that, if analysis has acquired
means of investigation which it lacked heretofore, it owes them in

great part to the conceptions introduced by the geometers. Geometry
must not remain in some sort entombed in its triumph. It is in its

school we have learned; our successors must learn never to be blindly

proud of methods too general, to envisage the questions in themselves

and to find, in the conditions particular to each problem, perhaps
a direct way towards a solution, perhaps the means of applying in

an appropriate manner the general procedures which every science

should gather.

As Chasles said at the beginning of the Apercu, historique, "The
doctrines of pure geometry offer often, and in a multitude of ques-

tions, that simple and natural way which, penetrating to the very
source of the truths, lays bare the mysterious chain which binds them
to each other and makes us know them individually in the way most

luminous and most complete."
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Cultivate therefore geometry, which has its own advantages, with-

out wishing, on all points, to make it equal to its rival.

For the rest, if we were tempted to neglect it, it would soon find in

the applications of mathematics, as it did once before, means to rise

up again and develop itself anew. It is like the giant Antaeus who
recovered his strength in touching the earth.
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IN spite of the richness and power of recent geometry, it is notice-

able that the geometer himself has become more modest. It was the

ambition of Descartes and Leibnitz to discover universal methods,

applicable to all conceivable questions; later, the Ausdehnungslehre
of Grassmann and the quaternion theory of Hamilton were believed

by their devotees to be ultimate geometric analyses; and Chasles

attributed to the principles of duality and homography the same

role in the domain of pure space as that of the law of gravitation

in celestial mechanics. To-day, the mathematician admits the ex-

istence and the necessity of many theories, many geometries, each

appealing to certain interests, each to be developed by the most

appropriate methods; and he realizes that, no matter how large his

conceptions and how powerful his methods, they will be replaced

before long by others larger and more powerful.

Aside from the conceivability of other spaces with just as self-

consistent properties as those of the so-called ordinary space, such

diverse theories arise, in the first place, on account of the variety

of objects demanding consideration, curves, surfaces, congruences
and complexes, correspondences, fields of differential elements, and

so on in endless profusion. The totality of configurations is indeed

not thinkable in the sense of an ordinary assemblage, since the total-

ity itself would have to be admitted as a configuration, that is, an

element of the assemblage.

However, more essential in most respects than the diversity in

the material treated is the diversity in the points of view from which

it may be regarded. Even the simplest figure, a triangle or a circle,

has an infinity of properties indeed, recalling the unity of the

physical world, the complete study of a single figure would involve

its relations to all other figures and thus not be distinguishable from

the whole of geometry. For the past three decades the ruling thought
in this connection has been the principle (associated with the names
of Klein and Lie) that the properties which are deemed of interest

in the various geometric theories may be classified according to the
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groups of transformations which leave those properties unchanged.
Thus almost all discussions on algebraic curves are connected with

the group of displacements (more properly the so-called principal

group), or the group of projective transformations, or the group of

birational transformations; and the distinction between such theories

is more fundamental than the distinction between the theories of

curves, of surfaces, and of complexes.

Historically, the advance has been, in general, from small to larger

groups of transformations. The change thus produced may be likened

to the varying appearance of a painting, at first viewed closely in all

its details, then at a distance in its significant features. The analogy
also suggests the desirability of viewing an object from several stand-

points, of studying geometric configurations with respect to various

groups. It is indeed true, though in a necessarily somewhat vague

sense, that the more essential properties are those invariant under

the more extensive groups; and it is to be expected that such groups
will play a predominating role in the not far distant future.

The domain of geometry occupies a position, as indicated in the

programme of the Congress, intermediate between the domain of

analysis on the one hand and of mathematical physics on the other;

and in its development it continually encroaches upon these adjacent
fields. The concepts of transformation and invariant, the algebraic

curve, the space of n dimensions, owe their origin primarily to the

suggestions of analysis; while the null-system, the theory of vector

fields, the questions connected with the applicability and deforma-

tion of surfaces, have their source in mechanics. It is true that some

mathematicians regard the discussion of point sets, for example,
as belonging exclusively to the theory of functions, and others look

upon the composition of displacements as a part of mechanics.

While such considerations show the difficulty, if not impossibility,

of drawing strict limits about any science, it is to be observed that

the consequent lack of definiteness, deplored though it be by the

formalist, is more than compensated by the fact that such overlap-

ping is actually the principal means by which the different realms

of knowledge are bound together.

If a mathematician of the past, an Archimedes or even a Descartes,

could view the field of geometry in its present condition, the first

feature to impress him would be its lack of concreteness. There are

whole classes of geometric theories which proceed, not merely with-

out models and diagrams, but without the slightest (apparent) use

of the spatial intuition. In the main this is due, of course, to the

power of the analytic instruments of investigation as compared
with the purely geometric. The formulas move in advance of thought,
while the intuition often lags behind; in the oft-quoted words of

d'Alembert, "L'algebre est ge'ne'reuse, elle donne souvent plus qu'on
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lui demande." As the field of research widens, as we proceed from

the simple and definite to the more refined and general, we naturally

cease to picture our processes and even our results. It is often neces-

sary to close our eyes and go forward blindly if we wish to advance

at all. But admitting the inevitableness of such a change in the

spirit of any science, one may still question the attitude of the geo-

meter who rests content with his blindness, who does not at least

strive to intensify and enlarge the intuition. Has not such an inten-

sification and enlargement been the main contribution of geometry
to the race, its very raison d'etre as a separate part of mathematics,
and is there any ground for regarding this service as completed?
From the point of view here referred to, a problem is not to be

regarded as completely solved until we are in position to construct

a model of the solution, or at least to conceive of such a construction.

This requires the interpretation, not merely of the results of a geo-

metric investigation, but also, as far as possible, of the intermediate

processes an attitude illustrated most strikingly in the works of

Lie. This duty of the geometer, to make the ground won by means

of analysis really geometric, and as far as possible concretely intui-

tive, is the source of many problems of to-day, a few of which will

be referred to in the course of this address.

The tendency to generalization, so characteristic of modern geo-

metry, is counteracted in many cases by this desire for the concrete,

in others by the desire for the exact, the rigorous (not to be con-

fused with the rigid). The great mathematicians have acted on the

principle "Devinez avant de demontrer," and it is certainly true

that almost all important discoveries are made in this fashion. But

while the demonstration comes after the discovery, it cannot there-

fore be disregarded. The spirit of rigor, which tended at first to the

arithmetization of all mathematics and now tends to its exhibition

in terms of pure logic, has always been more prominent in analysis

than in geometry. Absolute rigor may be unattainable, but it can-

not be denied that much remains to be done by the geometers, judg-

ing even by elementary standards. We need refer only to the loose

proofs based upon the invaluable but insufficient enumeration of

constants, the so-called principle of the conservation of number, and

the discussions which confine themselves to the "general case."

Examples abound in every field of geometry. The theorem announced

by Chasles concerning the number of conies satisfying five arbitrary

conditions was proved by such masters as Clebsch and Halphen be-

fore examples invalidating the result were devised. Picard recently

called attention to the need of a new proof of Noether's theorem that

upon the general algebraic surface of degree greater than three every

algebraic curve is a complete intersection with another algebraic

surface. The considerations given by Noether render the result
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highly probable, but do not constitute a complete proof; while the

exact meaning of the term general can be determined only from

the context.

The reaction against such loose methods is represented by Study
*

in algebraic geometry, and Hilbert in differential geometry. The

tendency of a considerable portion of recent work is towards the

exhaustive treatment of definite questions, including the considera-

tion of the special or degenerate cases ordinarily passed over as

unimportant. Another aspect of the same tendency is the discussion

of converses of familiar problems, with the object of obtaining con-

ditions at once necessary and sufficient, that is, completely character-

istic results. 2

Another set of problems is suggested by the relation of geometry
to physics. It is the duty of the geometer to abstract from the physical

sciences those domains which may be expressed in terms of pure

space, to study the geometric foundations (or, as some would put it,

the skeletons) of the various branches of mechanics and physics.

Most of the actual advance, it is true, has hitherto come from the

physicists themselves, but undoubtedly the time has arrived for

more systematic discussions by the mathematicians. In addition to

the importance which is due to possible applications of such work,
it is to be noticed that we meet, in this way, configurations as inter-

esting and remarkable as those created by the geometer's imagina-
tion. Even in this field, one is tempted to remark, truth is stranger
than fiction.

We have now considered, briefly and inadequately, some of the

leading ideals and influences which are at work towards both the

widening and the deepening of geometry in general; and turn to our

proper topic, a survey of the leading problems or groups of problems
in certain selected (but it is hoped representative) fields of contem-

poraneous investigation.

Foundations

The most striking development of geometry during the past decade

relates to the critical revision of its foundations, more precisely, its

logical foundations. There are, of course, other points of view, for

1 "
[Es ist eine] tief eingewurzelte Gewohnheit yieler Geometer, Satze zu formu-

lieren, die 'im allgemeinen
'

gelten sollen. d. h. einen klaren Sinn iiberhaupt nicht

haben, zudem noch haufig als allgemein giiltig hingestellt oder mangelhaft be-

griindet werden. [Dies Verfahren wird], trotz etwanigen Verweisungen auf Trager
sehr beriihmter Namen, spateren Geschlechtern sicher als ganz unzulassig erschei-

nen, scheint aber in unserem 'kritischen' Zeitalter von vielen als eine berechtigte

Eigentiimlichkeit der Geometric betrachtet zu werden . . ." Jahr. Deut. Math.-

Ver., vol. xi (1902), p. 100.
2 As an example may be mentioned the theorem of Malus and Dupin, known

for almost a century, that the rays emanating from a point are converted, by any
refraction, into a normal congruence. Quite recently, Levi-Civitta succeeded in

showing that this property is characteristic; that is, any normal congruence may
be refracted into a bundle.
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example, the physical, the physiological, the psychological, the meta-

physical, but the interest of mathematicians has been confined to the

purely logical aspect. The main results in this direction are due to

Peano and his co-workers; but the whole field was first brought

prominently to the attention of the mathematical world by the

appearance, five years ago, of Hilbert's elegant Festschrift.

The central problem is to lay down a system of primitive (unde-

fined) concepts or symbols and primitive (unproved) propositions

or postulates, from which the whole body of geometry (that is, the

geometry considered) shall follow by purely deductive processes.

No appeal to intuition is then necessary.
" We might put the axioms

into a reasoning apparatus like the logical machine of Stanley Jevons,

and see all geometry come out of it" (Poincare). Such a system of

concepts and postulates may be obtained in a great (indeed end-

less) variety of ways: the main question, at present, concerns the

comparison of various systems, and the possibility of imposing lim-

itations so as to obtain a unique and perhaps simplest basis.

The first requirement of a system is that it shall be consistent.

The postulates must be compatible with one another. No one has yet
deduced contradictory results from the axioms of Euclid, but what

is our guarantee that this will not happen in the future? The only
method of answering this question which has suggested itself is the

exhibition of some object (whose existence is admitted) which fulfills

the conditions imposed by the postulates. Hilbert succeeded in con-

structing such an ideal object out of numbers; but remarks that the

difficulty is merely transferred to the field of arithmetic. The most

far-reaching result is the definition of number in terms of logical

classes as given by Pieri and Russell; but no general agreement is

yet to be expected in these discussions. Will the ultimate conclu-

sion be the impossibility of a direct proof of compatibility?

More accessible is the question concerning the independence of

postulates (and the analogous question of the irreducibility of con-

cepts). Most of the work of the last few years has been concentrated

on this point. In Hilbert's original system the various groups of

axioms (relating respectively to combination, order, parallels, con-

gruence, and continuity) are shown to be independent, but the dis-

cussion is not carried out completely for the individual axioms. In

Dr. Veblen's recently published system of twelve postulates, each

is proved independent of the remaining eleven. 1 This marks an ad-

vance, but, of course, it does not terminate the problem. In what

respect does a group of propositions differ from what is termed a

single proposition? Is it possible to define the notion of an absolutely

simple postulate? The statement that any two points determine a

straight line involves an infinity of statements, and its fulfillment for

1 Trans. Amer. Math. Soc., vol. v (1904).
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certain pairs of points may necessitate its fulfillment for all pairs.

If in Euclid's system the postulate of parallels is replaced by the

postulate concerning the sum of the angles of a triangle, a well-known

example of such a reduction is obtained; for it is sufficient to as-

sume the new postulate for a single triangle, the general result being
then deducible. As other examples we may mention Peano's reduc-

tion of the Euclidean definition of the plane; and the definition of

a collineation which demands, instead of the conversion of all straight

lines into straight lines, the existence of four simply infinite systems
of such straight lines.

1

These examples illustrate the difficulty, if not the impossibility,

of formulating a really fundamental, that is, absolute standard of

independence and irreducibility. It is probable that the guiding
ideas will be obtained in the discussion of simpler deductive theories,

in particular, the systems for numbers and groups.

Two features are especially prominent in the actual develop-
ment of the body of geometry from its fundamental system. First,

the consideration of what may be termed the collateral geometries,

which arise by replacing one of the original postulates by its opposite,

or otherwise varying the system. Such theories serve to show the

limitation of that point of view which restricts the term general

geometry (pangeometry) to the Euclidean and non-Euclidean geo-

metries. The variety of possible abstract geometries is, of course,

inexhaustible; this is the central fact brought to light by the ex-

hibition of such systems as the non-Archimedean and the non-

arguesian. In the second place, much valuable work is being done in

discussing the various methods by which the same theorem may
be deduced from the postulates, the ideal being to use as few of the

postulates as possible. Here again the question of simplicity (simplest

proof), though it baffles analysis, forces itself upon the attenti9n.

Among the minor problems in this field, it is sufficient to consider

that concerning the relation of the theory of volume to the axiom of

continuity. This axiom need not be used in establishing the theory
of areas of polygons ;

but after Dehn and others had proved the exist-

ence of polyhedra having the same volume though not decomposable
into mutually congruent parts (even after the addition of congruent

polyhedra), it was stated by Hilbert, and deemed evident generally,

that reference to continuity could not be avoided in three dimensions.

In a recent announcement 2 of Vahlen's forthcoming Abstrakte

Geometric this conclusion is declared unsound. It seems probable,

however, that the difference is merely one concerning the interpreta-

tion to be given to the term continuity.

1

Together with certain continuity assumptions. Cf. Bull. Amer. Math. Soc.,
vol. ix (1903), p. 545.

2 Jahr. Deut. Math.-Ver., vol. xin (1904), p. 395.
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The work on logical foundations has been confined almost entirely

to the Euclidean and projective geometries. It is desirable, however,
that other geometric theories should be treated in a similar deductive

fashion. In particular, it is to be hoped that we shall soon have

a really systematic foundation for the so-called inversion geometry,

dealing with properties invariant under circular transformations.

This theory is of interest, not only for its own sake and for its appli-

cations in function theory, but also because its study serves to free

the mind from what is apt to become, without some check, slavery to

the projective point of view.

The Curve Concept Analysis Situs

Although curves and surfaces have constituted the almost exclu-

sive material of the geometric investigation of the thirty centu-

ries of which we have record, it can hardly be claimed that the con-

cepts themselves have received their final analysis. Certain vague
notions are suggested by the naive intuition. It is the duty of mathe-

maticians to create perfectly precise concepts which agree more or

less closely with such intuitions, and at the same time, by the reac-

tion of the concepts, to refine the intuition. The problem, evidently, is

not at all determinate. It would be of interest to trace the evolution

which has actually produced several distinct curve concepts defining

more or less extensive classes of curves, agreeing in little beyond the

possession of an infinite number of points.

The more familiar special concepts or classes of curves are defined

in terms of the corresponding equation y =f(x) or function f(x) .

Such are, for example: (1) algebraic curves; (2) analytic curves;

(3) graphs of functions possessing derivatives of all orders; (4) the

curves considered in the usual discussions of infinitesimal geometry,
in which the existence of first and second derivatives is assumed;

(5) the so-called regular curves with a continuously turning tangent

(except for a finite number of corners); (6) the so-called ordinary
curves possessing a tangent and having only a finite number of

oscillations (maxima and minima) in any finite interval; (7) curves

with tangents; (8) the graphs of continuous functions.

How far are such distinctions accessible to the intuition? Of

course there are limitations. For over two centuries, from Descartes

to the publication of Weierstrass's classic example, the intuition of

mathematicians declared the classes (7) and (8) to be identical. Still

later it was found that such extraordinary (pathological or crinkly)

curves may present themselves in class (7). However, even here

partially successful attempts to connect with intuition have been

made by Wiener, Hilbert, Schoenflies, Moore, and others.

Let us consider a simpler extension in the field of ordinary curves.

If the functiony (a:) is continuous except for a certain value of x
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where there is an ordinary discontinuity, this is indicated by a break

in the graph; iff is continuous, but the derivativey has such a dis-

continuity, this shows itself by a sharp turn in the curve; if the

discontinuity is only in the second derivative, there is a sudden

change in the radius of curvature, which is, however, relatively

difficult to observe from the figure; finally, if the third derivative

is discontinuous, the effect upon the curve is no longer apparent.
Does this mean that it is impossible to picture it? Does it not rather

indicate a limitation in the usual geometric training which goes

only as far as relations expressible in terms of tangency and curva-

ture? For the interpretation of the third derivative it is necessary
to consider say the osculating parabola at each point of the curve:

in the case referred to, as we pass over the critical point, the

tangent line and osculating circle change continuously, but there is

a sudden change in the osculating parabola. If in fact our intuition

were trained to picture osculating algebraic curves of all orders, it

would detect a discontinuity in a derivative of any order. A partial

equivalent would be the ability to picture the successive evolutes

of a given curve; a complete equivalent would be the picturing of

the successive slope curves y=f'(x), y=f"(x), etc. All this requires,

evidently, only an increase in the intensity of our intuition, not a

change in its nature.

This, however, would not apply to all questions. There are func-

tions which, while possessing derivatives of all orders (then neces-

sarily continuous), are not analytic (that is, not expressible by power

series). What is it that distinguishes the analytic curves among this

larger class? Is it possible to put the distinction in a form capable
of assimilation by an idealized intuition? In short, what is the

really geometric definition of an analytic curve ?
1

Much recent work in function theory has had for its point of de-

parture a more general basis than the theory of curves, namely, the

theory of sets or assemblages of points, with special reference to

the notions of derived set and the various contents or areas. The

geometry of point sets must indeed be regarded as one of the most

important and promising in the whole field of mathematics. It

receives its distinctive character, as compared with the general

abstract theory of assemblages (Mengenlehre), from the fact that it

operates not with all one-to-one correspondences, but with the

group of analysis situs, the group of continuous one-to-one corre-

spondences. From the point of view of the larger group, there is no

distinction between a one-dimensional and a two- or many-dimen-
sional continuum (Cantor). This is still the case if the correspondence

1 One method of attack would be the interpretation of Pringsheim's condi-

tions; this requires not merely the individual derivative curves, but the limit of
the system.
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is continuous but not one-to-one (Peano, 1890). In the domain of

continuous one-to-one correspondence, however, spaces of different

dimensions are not equivalent (Jiirgens, 1899).

An important class of curves, much more general than those

referred to above, consists of those point sets which are equivalent

(in the sense of analysis situs) to the straight line or segment of a

straight line. This is Hurwitz's simple and elegant geometric form-

ulation of the concept originally treated analytically by Jordan,

the most fundamental curve concept of to-day. The closed Jordan

curves are defined in analogous fashion as equivalent to the peri-

meter of a square (or the circumference of a circle).

A curve of this kind divides the remaining points of the plane into

two simply connected continua, an inside and an outside. The

necessity for proof of this seemingly obvious result is seen from the

fact that the Jordan class includes such extraordinary types as the

curve with positive content constructed recently by Osgood.
1 Such

a separation of the plane may, however, be thought about by other

than Jordan curves: the concept of the boundary of a connected

region gives perhaps the most extensive class of point sets which

deserve to be called curve. Schoenflies proposes a definition for the

idea of a simple closed curve which makes it appear as the natural

extension, in a certain sense, of the polygon: a perfect set of points

P which separates the plane into an exterior region E and an interior

region / such that any E point can be connected with any / point

by a path (Polygonstrecke) having only one point in common with

P. This is in effect a converse of Jordan's theorem, and shows

precisely how the Jordan curve is distinguished from other types
of boundaries of connected regions.

These discussions are mentioned here simply as aspects of a really

fundamental problem: the revision of the concepts and results of

that division of geometry which has been variously termed analysis

situs, theory of connection, topology, geometry of situation a

revision to be carried out in the light of the theory of assemblages.
2

Algebraic Surfaces and Birational Transformations

After the demonstration of the power of the methods based upon
projective transformation, the chief contribution due to the

geometers of the first half of the nineteenth century, attempts
were made to introduce other types of one-to-one correspondence or

transformation into algebraic geometry; in particular the inversion

of William Thomson and Liouville, and the quadratic transformation

of Magnus. The general theory of such Cremona transformations

was inaugurated by the Italian geometer in his memoir Sulle tras-

1 Trans. Amer. Math. Soc., vol. iv (1903), p. 107.
2 Cf. Schoenflies, Math. Annalen, vols. LVIII, LIX (1903, 1904).
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jormazioni geometriche delle figure piane, published in 1863. Within

a few years, Clifford, Noether, and Rosanes, working independently,
established the remarkable result that every Cremona transforma-

tion in a plane can be decomposed into a succession of quadratic

transformations, thus bringing to light the fact that there are at

bottom only two types of algebraic one-to-one correspondence, the

homographic and the quadratic.
1

The development of a corresponding theory in space has been one

of the chief aims of the geometers of Italy, Germany, and England
for the last thirty years, but the essential question of decomposition
still remains unanswered. Is it possible to reduce the general Cremona
transformation of space to a finite number of fundamental types ?

In its application to the study of the properties of algebraic

curves and surfaces, the theory of the Cremona transformation

is usually merged in the more general theory of the birational trans-

formation. By means of the latter, a correspondence is established

which is one-to-one for the points of the particular figure considered

and the transformed figure, but not for all the points of space. In

the plane theory an important result is that a curve with the most

complicated singularities can, by means of Cremona transformations,

be converted into a curve whose only singularities are multiple

points with distinct tangents (Noether); furthermore, by means of

birational transformations, the singularities may be reduced to the

very simplest type, ordinary double points (Bertini). The known

theory of space curves is also, in this aspect, quite complete. The

analogous problem of the reduction of higher singularities of a sur-

face has been considered by Noether, Del Pezzo, Segre, Kobb, and

others, but no ultimate conclusion has yet been obtained.

One principal source of difficulty is that, while in case of two

birationally equivalent curves the correspondence is one-to-one

without exception, on the other hand, in the case of two surfaces,

there may be isolated points which correspond to curves, and just

such irregular phenomena escape the ordinary methods. Again,
not only singular points require consideration, as is the case in the

plane theory, but also singular lines, and the points may be isolated

or superimposed on the lines. Most success is to be expected from

further application of the method of projection from a higher space
due to Clifford and Veronese. In this direction the most important
result hitherto obtained is the theorem, of Picard and Simart, that

any algebraic surface (in ordinary space) can be regarded as the

projection of a surface free from singularities situated in five-dimen-

sional space.

1

Segre recently called attention to a case where the usual methods of discus-
sion fail to apply; the proof has been completed by Caatelnuovo. Cf. Atti d\

Torino, vol. xxxvi (1901).
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A question which awaits solution even in the case of the plane
is that relating to the invariants of the group of Cremona trans-

formations proper. The genus and the moduli of a curve are unaltered

by all birational transformations, but the problem arises: Are there

properties of curves which remain unchanged by Cremona, although
not by other birational transformations ? From the fact that

birationally equivalent curves need not be equivalent under the

Cremona group, it would seem that such invariants Cremona
invariants proper do exist, but no actual examples have yet been

obtained. The problem may be restated in the form: What are the

necessary and sufficient conditions which must be fulfilled by two

curves if they are to be equivalent with respect to Cremona trans-

formations? Equality of genera and moduli, as already remarked, is

necessary but not sufficient.

The invariant theory of birational transformations has for its

principal object the study of the linear systems of point groups
on a given algebraic curve, that is, the point groups cut out by
linear systems of curves. Its foundations were implicitly laid by
Riemann in his discussion of the equivalent theory of algebraic func-

tions on a Riemann surface, though the actual application to curves

is due to Clebsch. Most of the later \vork has proceeded along
the algebraic-geometric lines developed by Brill and Noether, the

promising purely geometric treatment inaugurated by Segre being
rather neglected.

The extension of this type of geometry to space, that is, the de-

velopment of a systematic geometry on a fundamental algebraic

surface (especially as regards the linear systems of curves situated

thereon), is one of the main tasks of recent mathematics. The

geometric treatment is given in the memoirs of Enriques and Castel-

nuovo, while the corresponding functional aspect is the subject of

the treatise of Picard and Simart on algebraic functions of two

variables, at present in course of publication.

The most interesting feature of the investigations belonging in

this field is the often unexpected light which they throw on the

inter-relations of distinct fields of mathematics, and the advantage
derived from such relations. For example, Picard (as he himself

relates on presenting the second volume of his treatise to the Paris

Academy a few months ago)
l for a long time was unable to prove

directly that the integrals of algebraic total differentials can be

reduced, in general, to algebraic-logarithmic combinations, until

finally a method for deciding the matter was suggested by a theorem

on surfaces which Noether had stated some twenty years earlier.

Again, in the enumeration of the double integrals of the second

species, Picard arrived at a certain result, which was soon noticed

1

Comptes Rendus, February 1, 1904.
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to be essentially equivalent to one obtained by Castelnuovo in his

investigations on linear systems; and thus there was established

a connection between the so-called numerical and linear genera of a

surface, and the number of distinct double integrals.
l

A closely related set of investigations, originating with Clebsch's

theorems on intersections and Liouville's on confocal quadrics, may
be termed the "geometry of Abel's theorem." As later applications

we can merely mention Humbert's memoirs on certain metric pro-

perties of curves, and Lie's determination of surfaces of translation.

Investigations in analysis have often suggested the introduc-

tion of new types of configurations into geometry. The field of alge-

braic surfaces is especially fruitful in this respect. Thus, while in the

case of curves (excluding the rational) there always exist integrals

everywhere finite, this holds for only a restricted class of surfaces;

their determination depends on the solution of a partial differential

equation which has been discussed in a few special cases.

In addition to such relations between analysis and geometry,

important relations arise between various fields of geometry. Just

as an algebraic function of one variable is pictured by either a plane
curve or a Riemann surface (according as the independent and de-

pendent variables are taken to be real or complex), so an algebraic

function of two independent variables may be represented by either

a surface in ordinary space or a Riemannian four-dimensional mani-

fold in space of five dimensions. In the case of one variable, the

single invariant number (deficiency or genus p) which arises is

capable of definition in terms of the characteristics of the curve or

the connectivity of the Riemann surface. In passing to two variables,

however, it is necessary to consider several arithmetical invariants

just how many is an unsettled question. For the algebraic surface

we have, for instance, the geometric genus of Clebsch, the numerical

genus of Cayley, and the so-called second genus, each of which may
be regarded as a generalization, from a certain point of view, of the

single genus of a curve; all are invariant with respect to birational

transformation.

The other geometric interpretation, by means of a Riemannian

manifold, has rendered -necessary the study of the analysis situs of

higher spaces. The connection of such a manifold is no longer ex-

pressed by a single number as in the case of an ordinary surface, but

by a set of two or more, the so-called numbers of Betti and Riemann.

The detailed theory of these connectivities, difficult and delicate

because it must be derived with little aid from the intuition, has been

made the subject of an extensive series of memoirs by Poincare".

From the point of view of analysis, the chief interest in these

investigations is the fact that the connectivities are related to the

1

Comptes Rendus, February 22, 1904.
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number of integrals of certain types. The chief problem for the

geometer, however, is the discovery of the precise relations between

the connectivities of the Riemann manifold and the various genera
of the algebraic surface. That relations do exist between such di-

verse geometries the one operating with all continuous, the other

with the algebraic, one-to-one correspondence is one of the most

striking results of recent mathematics.

Geometry of Multiple Forms

For some time after its origin, the linear invariant theory of

Boole, Cayley, and Sylvester confined itself to forms containing a

single set of variables. The needs of both analysis and geometry,

however, have emphasized the importance and the necessity of

further development of the theory of forms containing two or more

sets of variables (of the same or different type), so-called multiple

forms.

In the plane we have both point coordinates (x) and line coor-

dinates (u). A form in x corresponds to a point curve (locus), a

form in u to a line curve (envelope), and a form involving both x

and u to a connex. The latter was introduced into geometry, some

thirty years ago, by Clebsch, the suggestion coming from the fact

that, even in the study of a simple form in x, covariants in x and u

present themselves, so that it seemed desirable to deal with such

forms ab initio.

Passing to space, we meet three simple elements, the point (x~),

the plane (u), and the line (p). Forms in a single set of variables

represent, respectively, a surface as point locus, a surface as plane

envelope, and a complex of lines. The compound elements composed
of two simple elements are the point-plane, the point-line, and the

plane-line. The first type, leading to point-plane connexes, has been

studied extensively during the past few years; the second to a more

limited degree; the third is merely the dual of the second. To com-

plete the series, the case of the point-line-plane as element, or forms

involving x, u, and p, requires investigation.

In the corresponding n-dimensional theory it is necessary to take

account of n simple elements and the various compound elements

formed by their combinations.

The importance of such work is twofold: First, on account of

connection with the algebra of invariants. A fundamental theorem

of Clebsch states that, in the investigation of complete systems of

comitants, it is sufficient to consider forms involving not more than

one set of variables of each type : if in the given forms the types are

involved in any manner, it is possible to find an equivalent reduced

system of the kind described. On the other hand, it is impossible

to reduce the system further, so that the introduction of the n types
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of variables is necessary for the algebraically complete discussion.

Geometry must accordingly extend itself to accommodate the

configurations defined by the new elements.

Second, on account of connection with the theory of differential

equations. The ordinary plane connex in x, u, assigns to each point

of the plane a certain number of directions (represented by the

tangents drawn to the corresponding curve), and thus gives rise to

an (algebraic) differential equation of the first order in two variables;

the point-plane connex in space, associating with each point a single

infinity of incident planes, defines a partial differential equation
of the first order; the point-line connex yields a Monge equation.

The point-line-plane case has not yet been interpreted from this

point of view.

One special problem in this field deserves mention, on account of its

many applications. This is the study of the system composed of a

quadric form in any number of variables and a bilinear form in con-

tragredient variables, that is, a quadric manifold and an arbitrary

(not merely automorphic) collineation in n-space. For n = 6, for

example, this corresponds to the general linear transformation of

line or sphere coordinates.

In addition to forms containing variables of different types, the

forms involving several sets of variables of the same type require

consideration. Forms in two sets of line coordinates present them-

selves in connection with the pfaffian problem of differential systems.

The main interest attaches, however, to forms in sets of point coor-

dinates, since it is these which occur in the theory of contact trans-

formations and of multiple correspondences. For example, while

the ordinary homography on a line is represented by a bilinear form

in binary variables, the trilinear form in similar variables gives rise

to a new geometric variety, the so-called homography of the second

class (associating with any two points a unique third point), which

has applications to the generation of cubic surfaces and to the con-

structions at the basis of photogrammetry. The theory of multilinear

forms in general deserves more attention than it has yet received.

Other important problems, connected with the geometric phases of

linear invariant theory, can merely be mentioned: (1) The general

geometric interpretation of what appears algebraically as the sim-

plest protective relation, namely, apolarity. (2) The invariant dis-

cussion of the simpler discontinuous varieties, for example, the poly-

gon considered as n-point or as n-line. 1

(3) The establishment of a

system of forms corresponding to the general space curve. (4) The

study of the properties and the groups of the configurations cor-

1 Cf. F. Morley "On the geometry whose element is the 3-point of a plane,"
Trans. Amer. Math. Soc., voL v (1904). E. Study in his Geometric der Dynamen
develops a new foundation for kinematics by employing as element the Soma or

trirectangular trihedron.
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responding in hyperspace to the simpler systems of invariants. (5)

Complete systems of orthogonal or metric invariants for the simpler
curves. 1

Transcendental Curves

To reduce to systematic order the chaos of non-algebraic curves

has been the aspiration of many a mathematician; but, despite all

efforts, we have no theory comparable with that of algebraic curves.

The very vagueness and apparent hopelessness of the question is

apt to repel the modern mathematician, to cause him to return to

the more familiar field. The resulting concentration has led to the

powerful methods, already referred to, for studying algebraic varie-

ties. In the transcendental domain, on the other hand, we have a

multitude of interesting but particular geometric forms, some

suggested by mechanics and physics, others derived from their relation

to algebraic curves, or by the interpretation of analytic results

a few thousands of which have been considered of sufficient importance
to deserve specific names. 2 The problem at issue is then a practical

one (comparable with corresponding discussions in natural history) :

to formulate a principle of classification which will apply, not to all

possible curves, but to as many as possible of the usual important
transcendental curves.

The most fruitful suggestion hitherto applied has come from

the consideration of differential equations : almost all the important
transcendental curves satisfy algebraic differential equations, and

these in the great majority of cases are of the first order. Hence the

need of a systematic discussion of the curves defined by any algebraic

equation F(x, y, y'} =0, the so-called panalgebraic curves of Loria. If

F is of degree n in y' and of degree v in x, y, the curve is said to belong
to a system with the characteristics (n, v}, and we thus have an im-

portant basis for classification. Closely related is the theory of the

Clebsch connex; this figure, it is true, is considered as belonging to

algebraic geometry, but it defines (by means of its principal coinci-

dence) a system of usually transcendental panalgebraic curves.

Both points of view appear to characterize certain systems of

curves rather than individual curves. The following interpretation

may serve as a simple geometric definition of the curves considered.

With any plane curve C we may associate a space curve in this

\vay: at each point of C erect a perpendicular to the plane whose

length represents the slope of the curve at that point; the locus of

the end points of these perpendiculars is the associated space curve

1 Here would belong in particular the theory of algebraic curves based on link-

ages. Little advance has been made beyond the existence theorems of Kempe
and Koenigs. An important unsolved problem is the determination of the link-

age with minimum number of pieces by which a given curve can be described.
2
Cf. Loria, Spezielle Kurven, Leipzig, 1902.
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C". Not every space curve is obtained in this way, but only those

whose tangents belong to a certain linear complex. If C is algebraic

so is C", and then an infinite number of algebraic surfaces may be

passed through the latter. If C is transcendental, so is C', and

usually no algebraic surface can be passed through it. Sometimes,

however, one such algebraic surface F exists. (If there were two,

C' and C would be algebraic.) It is precisely in this case that the

curve C is panalgebraic in the sense of Loria's theory. That such a

curve belongs to a definite system is seen from the fact that while the

surface F is unique, it contains a singly infinite number of curves

whose tangents belong to the linear complex mentioned, and the

orthogonal projections of these curves constitute the required system.
The principal problems in this field which require treatment are:

first, the exhaustive discussion of the simplest systems, correspond-

ing to small values of the characteristics n and v ; second, the study of

the general case in connection with (1) algebraic differential equa-
tions. (2) connexes, and (3) algebraic surfaces and linear complexes.

Natural or Intrinsic Geometry

In spite of the immediate triumph of the Cartesian system at the

time of its introduction into mathematics, rebellion against what

may be termed the tyranny of extraneous coordinates, first expressed
in the Characteristica geometrica of Leibnitz, has been an ever-present

though often subdued influence in the development of geometry.

Why should the properties of a curve be expressed in terms of x's

and y's which are defined not by the curve itself, but by its relation

to certain arbitrary elements of reference? The same curve in differ-

ent positions may have unlike equations, so that it is not a simple
matter to decide whether given equations represent really distinct or

merely congruent curves. The idea of the so-called natural or in-

trinsic coordinates had its birth during the early years of the nine-

teenth century, but it is only the systematic treatment of recent

years which has created a new field of geometry.
For a plane curve there is at each point the arc s measured from

some fixed point on the curve, and the radius of curvature p; these

intrinsic coordinates are connected by a relation p=f(s) which is

precisely characteristic of the curve, that is, the curves corresponding
to the equation differ only in position. There is, however, still

something arbitrary in the point taken as origin. This is eliminated

by taking as coordinates p and its derivative 8 taken with respect

to the arc; so that the final intrinsic equation is of the form 8 =F(p).
There is no difficulty in extending the method to space curves. The

two natural equations necessary are here r=<j)(p), S=t/;(p), where

p and T are the radii of first and second curvature and 8 is the arc

derivative of p.
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The application to surfaces is not so evident. Thus, in Cesaro's

standard work, while the discussion of curves is consistently in-

trinsic, this is true to only a slight extent in the treatment of surfaces.

The natural geometry of surfaces is in fact only in process of forma-

tion. Bianchi proposes as intrinsic the familiar representation by
means of the two fundamental quadratic differential forms; but,

although it is true that the surfaces corresponding to a given pair

of forms are necessarily congruent, there is the disadvantage, arising

from the presence of arbitrary parameters, that the same surface

may be represented by distinct pairs of forms. One way of over-

coming this difficulty is to introduce the common feature of all pairs

corresponding to a surface, that is, the invariants of the forms: in

this direction we may cite Ricci's principle of covariant differentia-

tion and Maschke's recent application of symbolic methods.

The basis of natural geometry is, essentially, the theory of differ-

ential invariants. Under the group of motions, a given configuration

assumes oo
r
positions, where r is in general 6, but may be smaller

in certain cases. The r parameters which thus enter in the analytic

representation may be eliminated by the formation of differential

equations. The aim of natural geometry is to express these differ-

ential equations in terms of the simplest geometric elements of the

given configuration.

The beginning of such a discussion of surfaces was given by Sophus
Lie in 1896 and his work has been somewhat simplified by Scheffers.

As natural coordinates we may take the principal radii of curvature

Ri, R2 ,
at a point of the surface, and their derivatives

dR
1 _dR, dRi dR

2

ds
2

ds
2

ds
t

ds
2

taken in the principal directions. For a given surface (excluding

the Weingarten class) the radii are independent, and there are four

relations of the form

Conversely, these equations are not satisfied by any surfaces except
those congruent or symmetric to the given surface.

It is to be noticed that four equations thus appear to be necessary
to define a surface, although two are sufficient for a twisted curve.

If a single equation in the above-mentioned natural coordinates is

considered, it is not, as in the case of ordinary coordinates, charac-

teristic: surfaces not congruent or symmetric to the given surface

would satisfy the equation. The apparent inconsistency which arises

is removed, however, by the fact that the four natural equations are
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dependent.
1 It is just this that makes the subject difficult as com-

pared with the theory of curves, in which the defining equations are

entirely arbitrary. The questions demanding treatment fall under

these two headings: first, the derivation of the natural equations
of the familiar types of surfaces, and second, the study of the new

types that correspond to equations of simple form. The natural

geometry of the Weingarten class of surfaces requires a distinct basis.

The fact that intrinsic* coordinates are, at bottom, differential

invariants with respect to the group of motions, suggests the exten-

sion of the same idea to the other groups. Thus in the projective

geometry of arbitrary (algebraic or transcendental) curves, coor-

dinates are required which, unlike the distances and angles ordin-

arily used, are invariant under projection. These might, for exam-

ple, be introduced as follows. At each point of the general curve C,

there is a unique osculating cubic and a unique osculating W (self-

projective) curve. Connected with each of these osculating curves

is an absolute projective invariant defined as an anharmonic ratio.

These ratios may then be taken as natural projective coordinates

y and o>, and the natural equation on the curve is of the form

y=f(w}. The principal advantage of such a representation is that

the necessary and sufficient condition for the equivalence of two

curves under projective transformations is simply the identity of the

corresponding equations.

Returning to the theory of surfaces, natural coordinates may
be introduced so as to fit into the so-called geometry of a flexible

but inextensible surface, originated by Gauss, in which the criterion

of equivalence is applicability, or, according to the more accurate

phraseology of Voss, isometry. Intrinsic coordinates must then be

invariant with respect to bending (Biegungsinvariante) . This pro-

perty is fulfilled, for example, by the Gaussian curvature K and the

differential parameters connected with it X=A (K, K), /t=A(/c, X),

^=A(X, X), all capable of simple geometric interpretation. The

intrinsic equations are then of the form p,=(j)(K, X), V=(J>(K, X).

A pair of equations of this kind thus represent, not so much a

single surface S, as the totality of all surfaces applicable on S (or

into which S may be bent) a totality which is termed a complete

group G, since no additional surfaces are obtained when the same

process is applied to any member of the totality. The discussion of

such groups is ordinarily based on the first fundamental form (repre-

senting the squared element of length), since this is the same for

isometric surfaces; though of course it changes on the introduction

of new parameters.
The simplest example of a complete isometric group is the group

1 The three relations connecting the functions /n , /, fn , fn have been worked
out recently by S. Heller, Math. Annalen, vol. LVIII (1904).
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typified by the plane, consisting of all the developable surfaces. In

this case the equations of the group may be obtained explicitly, in

terms of eliminations, differentiations, and quadratures. This is,

however, quite exceptional; thus, even in the case of the surfaces

applicable on the unit sphere (surfaces of constant Gaussian curv-

ature + 1), the differential equation of the group has not been

integrated explicitly. In fact, until the year 1866, not a single case

analogous to that of the developable surfaces was discovered. Wein-

garten, by means of his theory -of evolutes, then succeeded in deter-

mining the complete group of the catenoid and of the paraboloid
of revolution, and, some twenty years later, a fourth group defined

in terms of minimal surfaces.

During the past decade, the French geometers have concentrated

their efforts in this field mainly on the arbitrary paraboloid (and to

some extent on the arbitrary quadric). The difficulties even in this

extremely restricted and apparently simple case are great, and are

only gradually being conquered by the use of almost the whole

wealth of modern analysis and the invention of new methods which

undoubtedly have wider fields of application. The results obtained

exhibit, for example, connections with the theories of surfaces of

constant curvature, isometric surfaces, Backlund transformations,

and motions with two degrees of freedom. The principal workers

are Darboux, Goursat, Bianchi, Thybaut, Cosserat, Servant, Gui-

chard, and Raffy.

Geometry im Grossen

The questions we have just been considering, in common with

almost all the developments of general or infinitesimal geometry,
deal with the properties of the figure studied im Kleinen, that is,

in the sufficiently small neighborhood of a given point. Algebraic

geometry, on the other hand, deals with curves and surfaces in their

entirety. This distinction, however, is not inherent in the subject-

matter, but is rather a subjective one due to the limitations of our

analysis: our results being obtained by the use of power series are

valid only in the region of convergence. The properties of a curve

or surface (assumed analytic) considered as a whole are represented
not by means of function elements, but by means of the entire func-

tions obtained say by analytic continuation.

Only the merest traces of such a transcendental geometry im
Grossen are in existence, but the interest of many investigators is

undoubtedly tending in this direction. The difficulty of the problems
which arise (in spite of their simple and natural character) and the

delicacy of method necessary in their treatment may be compared
to the corresponding problems and methods of celestial mechanics.

The calculation of the ephemeris of a planet for a limited time is
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a problem im Kleinen, while the discovery of periodic orbits and the

theory of the stability of the solar system are typical problems im
Grossen.

The principal problems in this field of geometry are connected

with closed curves and surfaces. Of special importance are the inves-

tigations relating to the closed geodesic lines which can be drawn
on a given surface, since these are apt to lead to the invention of

methods applicable to the wider field of dynamics. Geodesies may
in fact be defined dynamically as trajectories of a particle constrained

to the surface and acted upon either by no force or by a force due to

a force function U whose first differential parameter is expressible

in terms of U. The few general theorems known in this connection

are due in the main to Hadamard (Journal de Mathematiques, 1897,

1898). Thus, on a closed surface whose curvature is everywhere

positive, a point describing a geodesic must cross any existing closed

geodesic an infinite number of times, so that, in particular, two

closed geodesies necessarily intersect. 1 On a surface of negative

curvature, under certain restrictions, there exist closed geodesies

of various topological types, as well as geodesies which approach
these asymptotically.

As regards surfaces all of whose geodesies are closed, the investi-

gations have been confined entirely to the case of surfaces of revo-

lution, the method employed being that suggested by Darboux in

the Cours de Mecanigue of Despeyrons. Last year Zoll 2 succeeded

in determining such a surface (beyond the obvious sphere) which

differs from the other known solutions in not having any singularities.

Analogous problems in connection with closed lines of curvature

and asymptotic lines will probably soon secure the consideration

they deserve.

A problem of different type is the determination of applicability

criteria valid for entire surfaces. The ordinary conditions (in terms

of differential parameters) assert, for example, the applicability of

any surface of constant positive curvature upon a sphere; but the

bending is actually possible only for a sufficiently small portion of the

surface. A spherical surface as a whole cannot be applied on any
other surface, that is, cannot be bent without extension or tearing.

This result is analogous to the theorem known to Euclid, although

first proved by Cauchy, that a closed convex polyhedral surface is

necessarily rigid. Lagrange, Minding, and Jellet stated the result for

all closed convex surfaces, but the complete discussion is due to

H. Liebmann. 8 The theory of the deformation of concave surfaces

1 In a paper read before the St. Louis meeting of the American Mathematical

Society, Pomcare' stated reasons which make very probable the existence of at

least three closed geodesies on a surface of this kind.
2 Math. Anndlen, vol. LVII (1903).
*
Gottingen Nachrichten, 1899; Math. Annalen, vols. LIII, LIV.
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is far more complicated, and awaits solution even in the case of

polyhedral surfaces.

Beltrami's visualization of Lobachevsky's geometry by pictur-

ing the straight lines of the Lobachevsky plane as geodesies on

a surface of constant negative curvature is well known. However,
since the known surfaces of this kind, like the pseudosphere, have

singular lines, this method really depicts only part of the plane. In

fact Hilbert (Transactions of the American Mathematical Society

for 1900), by very refined considerations, has shown that an analytic

surface of constant negative curvature which is everywhere regular

does not exist, so that the entire Lobachevsky plane cannot be

depicted by any analytic surface. 1 There remains undecided the

possibility of a complete representation by means of a non-analytic

surface. The partial differential equation of the surfaces of negative
constant curvature is of the hyperbolic type and hence does admit

non-analytic solutions.
2

(This is not true for surfaces of positive

curvature, since the equation is then of elliptic type.) The discussion

of non-analytic curves and surfaces will perhaps be one of the really

new features of future geometry, but it is not yet possible to indicate

the precise direction of such a development.
3

Other theories belonging essentially to geometry im Grossen

are the questions of analysis situs, or topology, to which reference has

been made on several occasions, and the properties of the very

general convex surfaces introduced by Minkowski in connection

with his Geometric der Zahlen.

Systems of Curves Differential Equations

Although projective geometry has for its domain the investigation

of all properties unaltered by collineation, attention has been con-

fined almost exclusively to the algebraic configuration, so that pro-

jective is often confused with algebraic geometry. To the more

general projective geometry belong, for example, the ideas of oscu-

lating conic of an arbitrary curve and the asymptotic lines of an

arbitrary surface, and Mehmke's theorem which asserts that when
two surfaces touch each other, the ratio of their Gaussian curvatures

at the point of contact is an (absolute) projective invariant. The

field for investigation in this direction is of course very extensive,

but we may mention as a problem of special importance the deriva-

1 The entire projective plane, on the other hand, can be so depicted on a sur-

face devised by W. Boy (inaugural Dissertation, Gottingen, 1901).
2

According to Bernstein (Math. AnnaUn, vol. LIX, 1904, p. 72), the proof given
by Liitkemeyer (Inaugural Dissertation, Gottingen, 1902) is not valid, though
the conclusion is correct.

3
Lebesgue (Comptes Rendus, 1900, and Thse, 1902) has examined the theory

of surfaces applicable on a plane without assuming the existence of derivatives
for the defining functions, and thereby obtains an example of a non-ruled develop-
able.
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tion of the conditions for the protective equivalence of surfaces in

terms of their fundamental quadratic forms.

Coordinate with what has just been stated, that general configura-

tions may be studied from the protective point of view, is the fact

that algebraic configurations may be studied in relation to general

transformation theory. One may object that, with respect to the

group of all (analytic) point transformations, the algebraic con-

figurations do not form a body,
1 that is, are not converted into

algebraic configurations; but such a body is obtained by adjoining

to the algebraic all those transcendental configurations which are

equivalent to algebraic. As this appears to have been overlooked,

it seems desirable to give a few concrete instances, of interest in

showing the effect of looking at familiar objects from a new and

more general point of view.

As a first example, consider the idea of a linear system of plane
curves. In algebraic geometry, a linear system is understood to be

one represented by an equation of the form

where the X's are parameters and the F's are polynomials hi x,y. On
the other hand, in general (infinitesimal) geometry, a system is defined

to be linear when it can be reduced (by the introduction of new

parameters) to the same form where the F's are arbitrary functions.

The first definition is invariant under the projective group; the sec-

ond, under the group of all point transformations. If now we apply
the second definition to algebraic curves, the result does not coincide

with that given by the first definition. Thus, every one-parameter

system is linear in the general sense, while only pencils of curves are

linear in the projective sense. The first case of real importance is,

however, the two-parameter system, since here each point of view

gives restricted, though not identical, types. An example in point

is furnished by the vertical parabolas tangent to a fixed line, the

equation of the system being y = (ax+b)
2

. From the algebraic or

projective point of view, this is a quadratic system since the para-

meters are involved to the second degree; but the system is linear

from the general point of view since its equation may be written

ax+b V^=0. This suggests the problem: Determine the systems
of algebraic curves which are linear in the general sense.

As a second example, consider, from both points of view, the

equivalence of pencils of straight lines in the plane. By means of

collineations any two pencils may be converted into any other two;

1 The most extensive group for which the algebraic configurations form a body
consists of all algebraic transformations. It is rather remarkable that even this

theory has received no development.
1
Halphen, Laguerre, Forsyth. This theory has been extended to simultaneous

equations and applied geometrically by E. J. Wilczynski (Trans. Amer. Math.
Soc., 1901-1904).
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but if three pencils are given, it is necessary to distinguish the case

where the three base points are in a straight line from the case where

they are not so situated. We thus have two protectively distinct

cases, which may be represented canonically by: (1) z=const.,

y=const., x+y=const., and (2) z=const., y = const., y/x=const.
The first type may, however, be converted into the second by the

transcendental transformation x
l
=ec

, ?/ 1
=ey

,
so that, in the general

group of point transformations, all sets of three pencils are equivalent.

The discussion for four or more pencils yields the rather surprising

result that the protective classification remains valid for the larger

group.

Dropping these special considerations on algebraic systems, let us

pass to the theory of arbitrary systems of curves, or, what is equiva-

lent, the geometry of differential equations. While belonging to the

cycle of theories due primarily to Sophus Lie, it has received little

development in the purely geometric direction. Most attention has

been devoted to special classes of differential equations with respect

to special groups of transformations. Thus there is an extensive

theory of the homogeneous linear equations with respect to the

group x
l =$(x), y1 =yi](x) which leaves the entire class invariant. 1

A special theory which deserves development is that of equations of

the first order with respect to the infinite group of conformal trans-

formations.

As regards the general group of all point transformations, all

equations of the first order are equivalent, so that the first case of

interest is the theory of the two-parameter systems. The invariants

of the differential equation of second order have been discussed

most completely in the prize essay of A. Tresse (submitted to the

Jablonowski Gesellschaft in 1896), with application to the equiva-
lence problem. A specially important class, treated earlier by Lie

and R. Liouville, consists of the equations of cubic type

y" =Ay'
3
+By'

2
+Cy' +D,

where the coefficients are functions of x, y. It includes, in particular,

the general linear system and all systems capable of representing
the geodesies of any surface. While the analytical conditions which

characterize these subclasses are known, little advance has been

made in their geometric interpretation.

Perhaps the simplest configuration belonging to the field considered,

that is, having properties invariant under all point transformations,

is that composed of three simply infinite systems of curves, which

may be represented analytically by an equation of third degree in

y' with one-valued functions of x, y for coefficients. In the case of

equations of the fourth and higher degree in y', certain invariants

1 The elementary (metric) theory of curve systems has been too much neglected ;

it may be compared in interest and extent with the usual theory of surfaces.



582 GEOMETRY

may be found immediately from the fact that when x and y undergo
an arbitrary transformation, the derivative y' undergoes a fractional

linear transformation (of special type). The invariants found from

this algebraic principle are, however, in a sense, trivial, and the real

problem remains almost untouched: to determine the essential

invariants due to the differential relations connecting the coefficients

in the linear transformation of the derivative.

General Theory of Transformations

Closely connected with the geometry of differential equations

that we have been considering is the geometry of point transform-

ations. In the former theory the transformations enter only as

instruments, in the latter these instruments are made the subject-

matter of the investigation. The distinction is parallel to that which

occurs in protective geometry between the theory of projective

properties of curves and surfaces and the properties of collineations.

(It may be remarked, however, that although a transformation is

generally regarded as dynamic and a configuration as static, the

distinction is not at all essential. Thus a point transformation or

correspondence between the points of a plane may be viewed as

simply a double infinity of point pairs; on the other hand, a curve

in the plane may be regarded as the equivalent of .a correspondence
between the points of two straight lines.

1

)

We consider first two problems concerning the general (analytic)

point transformation which are of interest and importance from the

theoretic standpoint. The one relates to the discussion of the char-

acter of such a transformation in the neighborhood of a given point.

Transon's theorem states that the effect of any analytjc transform-

ation upon an infinitesimal region is the same as that of a pro-

jective transformation. This is true, however, only in general; it

ceases to hold when the derivatives of the defining functions vanish

at the point considered. What is the character of the transformation

in the neighborhood of such singular points ?

A more fundamental problem relates to the theory of equiva-
lence. Consider a transformation T which puts in correspondence
the points P and Q of a plane. Let the entire plane be subjected to

a transformation S which converts P into Pr and Q into Q'. We thus

obtain a new transformation T' in which P' and Q' are corresponding

points. This is termed the transform of T by means of *S,the relation

being expressed symbolically by T' =S~ *TS. The question then arises

whether all transformations are equivalent, that is, can any one be

converted into any other in the manner defined. The answer de-

pends on certain functional equations which also arise in connection

1

Geometry on a straight line, in its entirety, is as rich as geometry in a plane
or in space of any number of dimensions.
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with the question whether an arbitrary transformation belongs to

a continuous group. The problem deserves treatment not merely for

the analytic transformations, but also for the algebraic and for

the continuous transformations. 1

Aside from such fundamental questions, further development
is desirable both in the study of the general properties (associated

curve systems and contact relations) of an arbitrary transforma-

tion, and in the introduction of new special types of transformation,

for instance, those which may be regarded as natural extensions of

familiar types.

The main problems in the theory of point transformation are

connected with certain fields of application which we now pass in

review.

1. Cartography. A map may be regarded, abstractly, as the point

by point representation of one surface upon another, the case of

especial practical importance being, of course, the representation of

a spherical or spheroidal surface upon the plane. As it is impossible

to map any but the developable surfaces without distortion upon a

plane, the chief types of available representation are characterized

by the invariance of certain elements, as angles or #reas, or the

simple depiction of certain curves, as of geodesies by straight lines.

Most attention has been devoted to the conformal type, but the

question proposed by Gauss remains unsolved: what is the best

conformal representation of a given surface on the plane, that is,

the one accompanied by the minimum distortion? The answer, of

course, depends on the criterion adopted for measuring the degree

of distortion, and it is in this direction that progress is to be

expected.

2. Mathematical theory of elasticity. As a geometric foundation

for the mechanics of continua, it is necessary to study the most

general deformation of space, defined say by putting xi} y l} Zi equal

to arbitrary functions of x, y, z. The most elegant analytical repre-

sentation, as given for instance in the memoir of E. and F. Cosserat

(Annales de Toulouse, volume 10), is obtained by introducing the

elements of length ds and ds
l
before and after deformation, and the

related quadratic differential form ds* ds 2 =2e
l
dx2 +2e2dy

2 +2e3
dz2

+2yl dydz +2y2
dxdz +2y3 dxdy. The theory is thus seen to be ana-

logous to though of course more complicated than the usual theory of

surfaces. The six functions of x, y, z which appear as coefficients

in this form are termed the components of the deformation. Their

1 This problem is not to be confused with the similar (but simpler) question
connected with Lie's division of (analytic) groups into demokratisch and aristo-

kratisch. In those of the first kind all the infinitesimal transformations are

equivalent, in those of the second there exist non-equivalent infinitesimal trans-

formations. Lie shows that all finite groups are aristokratisch, while the groups
of all (analytic) point and contact transformations are demokratisch. Cf. Leip-
ziger Berichte, vol. XLVII (1895), p. 271.
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importance is due to the fact that they vanish only when the trans-

formation is a rigid displacement, so that two deformations have

the same components when, and only when, they differ by a dis-

placement. The case where the components are constants leads to

the homogeneous deformation (or affine transformation of the geo-

meters), the type considered almost exclusively in the usual dis-

cussions of elasticity. It would seem desirable to study in detail

the next case which presents itself, namely, that in which the com-

ponents are linear functions of x, y, z.

In the general deformation, the six components are not inde-

pendent, but are connected by nine differential equations analogous
to those of Codazzi. The fact that a transformation is defined by
three independent functions indicates, however, that there should be

only three distinct relations between the components. This means
that the nine equations of condition which occur in the standard

theory are themselves interdependent; but their relations (analogous
to syzygies among syzygies in the algebra of forms) do not appear
to have been worked out.

3. Vector fields. From its beginning in the Faraday-Maxwell

theory of electricity until the present day, the course which the

discussion of vector fields has followed has been guided almost

entirely by external considerations, namely, the physical applications.

While this is advantageous in many respects, it cannot be denied

that it has led to lack of symmetry and generality. The time seems

to be ripe for a more systematic mathematical development. The

vector field deserves to be introduced as a standard form into geo-

metry.

Abstractly, such a field is equivalent to a point transformation of

space, since each is represented by three scalar relations in six variables.

Instead of taking these variables as the coordinates of corresponding

points, it is more convenient to consider three as the coordinates

x, y, z of a particle and the other three as components u, v, w of its

velocity; we thus picture the set of functional relations by means
of the steady motion of a hypothetical space-filling fluid. This image
should be of service even in abstract analysis; for its role is analogous
to that of the curve in dealing with a single relation between two

variables. The streaming of a material fluid is, of course, not suffi-

ciently general for such a purpose, since, in virtue of the equation of

continuity, it images only a particular class of vector fields.

In addition to the ordinary vector fields, physics makes use of

so-called hypervector fields, which, geometrically, lead to configur-

ations consisting of a triply infinite system of quadric surfaces, one

for each point of space. In the special case of interest in hydro-

dynamics (irrotational motion), the configuration simplifies in that

the quadrics are ellipsoids about the corresponding points as centres.
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This is equivalent to the tensor field which arises in studying the

moments of inertia of an arbitrary distribution of mass. The more

general case actually arises in Maxwell's theory of magnetism.
4. As a final domain of application we mention the class of ques-

tions which have received systematic treatment, under the title of

nomography , only during the past few years. This subject deals with

the methods of representing graphically, in a plane, functional

relations containing any number of variables. Thus a function of

two independent variables, z=f(x, y), may be represented by the

system of plane curves /(z, y) =c, each marked with the correspond-

ing value of the. parameter. This "
parametered

"
system is then

a cartesian graphical table, which is the simplest type of abacus or

nomogram.

By means of any point transformation, one nomogram is con-

verted into another which may serve to represent the same functional

relation. The importance of this process of conversion (the so-called

anamorphosis of Lalanne and Massau) depends on the fact that it

may replace a complicated table by a simpler. The problems which

arise (for example, the determination of all relations between three

variables which can be represented by a nomogram composed of

three systems of straight lines 1

) are of both practical and theoretical

interest. The literature is scattered through the French, Italian,

and German technological journals, but a systematic presentation

of the main results is to be found in the Traite de Nomographie
of d'Ocagne (Paris, 1899).

We return to the abstract theory of transformations. The type
of transformation we have been considering, converting point into

point, is only a special case of more general types. The most im-

portant extension hitherto made depends upon the introduction of

differential elements. Thus the lineal element or directed point

(x, y, y'} leads to transformations which in general convert a point
into a system of elements; when the latter form a curve, every curve

is converted into a curve and the result is termed a contact trans-

formation. Backlund has shown that no extension results from the

elements of second or higher order: osculation transformations are

necessarily contact transformations. The discussion of elements of

infinitely high order, defined by an infinite set of coordinates (x, y,

y') y") )> may perhaps lead to a real extension. The question may
be put in this form: Are there transformations (in addition to or-

dinary contact transformations) which convert analytic curves into

analytic curves in such a way that contact is an invariant relation?

The idea of curve transformation in general will probably be worked

1 The case of three systems of circles has also been discussed. See d'Ocagne,
Journal de I'Ecole Polytechnique, 1902.
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out in the near future: what is the most general mode of setting up
a correspondence which associates with every Jordan curve another

Jordan curve? Such discussions are aspects of geometry with an

infinite number of dimensions.

After a review of the kind given in this paper, one is tempted to

ask: What is it which influences the mathematician in selecting

certain (out of an infinite number of equally conceivable) problems
for investigations? It is true, of course, that his subject is ideal,

self-created, and that
" Das Wesen der Mathematik liegt in. ihrer

Freiheit." Georg Cantor would indeed replace the term pure mathe-

matics by free mathematics. This freedom, however, is not entirely

caprice. The investigators of each age have always felt it their

duty to deal with the unsolved questions and to generalize the re-

sults and conceptions inherited from the past, to correlate with

other fields of contemporaneous thought, to keep in contact, as far

as possible, with the whole body of truth. This is not all, however.

The influence of aesthetic considerations, though less subject to

analysis, has been, and still is, of at least equal importance in guiding

the course of mathematical development.
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The Section of Geometry was very fully attended and productive of extended

discussion and a number of supplementary papers. For the same reason as in the

Section of Algebra and Analysis it is impossible to give a satisfactory resume of

the short papers on this subject owing to their close technical reasoning.

The first paper was presented by Professor Harris Hancock, of the University
of Cincinnati, on "Algebraic Minimal Surfaces."

The second paper was presented by Professor H. T. Blichfeldt, of Leland Stan-

ford Jr. University, on the subject "Concerning some Geometrical Properties
of Surfaces of Revolution."

The third paper was presented by Professor George Bruce Halsted, of Kenyon
College, on

"
Non-Euclidean Spherics."

The fourth paper was presented by Professor Arnold Emch, of the University
of Colorado, on "The Configuration of the Points of Inflection of a Plane

Cubic and their Harmonic Polars."

The fifth paper was presented by Professor H. P. Manning, of Brown University,
on "

Representation of Complex Variables in Space of Four Dimensions."

The sixth paper was read by Professor G. A. Bliss, of the University of Missouri,

on "
Concerning Calcidus of Variations."

The seventh paper was presented by Professor L. W. Dowling, of the University
of Wisconsin, on "Certain Universal Curves."
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MY present lecture has been put under the heading of applied

mathematics, while my activity as a teacher and investigator be-

longs to the science of physics. The immense gap which divides

the latter science into two distinct camps has almost nowhere been

so sharply emphasized as in the division of the lecture material

of this scientific congress, which covers such an enormous range of

subjects that one may designate it as a flood, or, to preserve local

coloring, as a Niagara of scientific lectures. I speak of the division

of physics into theoretical and experimental. Although I have

been assigned, as representative of theoretical physics, to "A.

Normative Science," experimental physics appears much later under
" C. Physical Science." Between them lie history, science of lan-

guage, literature, art, and science of religion. Over all this, however,
the theoretical physicist must extend his hand to the experimental

physicist. We shall therefore not be able to avoid entirely the ques-
tion of the justification of dividing physics into two parts and, in

particular, into theoretical and experimental.
Let us listen first of all to an investigator of a time when natural

science had not yet grown beyond its first beginnings, to Emmanuel
Kant. Kant requires of each science that it should be developed
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logically from unified principles and firmly established theories.

Natural science seems to him a primary science only in so far as

it rests on a mathematical basis. Thus, he does not reckon the chem-

istry of his day among the sciences, because it rests merely upon
an empirical basis and lacks a unified, regulative principle.

From this point of view theoretical physics is preferred to ex-

perimental physics, and occupies, in a sense, a higher rank. Experi-
mental physics was merely to gather the material, but it remained

for the theoretical physics to form the structure.

But the succession in the order of rank becomes reversed when
we take into account the acquisitions of the last decades as well as

the progress which is to be expected in the immediate future. The
chain of experimental discoveries of the last century received a

fitting completion with the discovery of the Rontgen rays. Con-

nected with these there appear in the present century a multitude

of new rays, with the most enigmatical properties, which have the

profoundest effects upon our conceptions of nature. The more

enigmatical these newly discovered facts are, and the more they
seem at first to contradict our present conceptions, the greater the

successes which they promise for the future. But this is not the occa-

sion for the discussion of these experimental triumphs. I must leave

to the representatives of experimental physics at this Congress the

prolific problem of portraying all of the fruits which have hitherto

been gathered in this domain, one might almost say, daily, and

those which are to be expected.

The representative of theoretical physics scarcely finds himself in

an equally fortunate position. Great activity does indeed prevail

in this domain. One could almost say that it is in process of revolu-

tion. Only how much less tangible are the results here attained in

comparison with those in experimental physics! It appears here

that in a certain sense experimentation deserves precedence over

all theory. An immediate fact is at once comprehensible. Its fruits

may become evident in the shortest time, such as the various appli-

cations of the Rontgen rays and the utilization of the Hertz waves

in wireless telegraphy. The battle which the theories have to fight

is, however, an infinitely wearisome one; indeed, it seems as if cer-

tain disputed questions which existed from the beginning will live

as long as the science.

Every firmly established fact remains forever unchangeable; at

most, it may be generalized, completed, additions may be made,

but it cannot be completely upset. Thus it is explained why the

development of experimental physics is continuously progressive,

never making a sudden jump, and never visited by great tremblings

and revolutions. It occurs only in rare instances that something
which was regarded as a fact turns out afterwards to have been an
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error, and in such cases the explanations of the errors follow soon,

and they are not of great influence on the structure of the science as

a whole.

It is, indeed, strongly emphasized that every established and

logically recognized truth must remain incontrovertible. Although
this cannot be doubted, experience teaches that the structure of our

theories is by no means composed entirely of such incontrovertibly

established truths. They are composed rather of many arbitrary

pictures of the connections between phenomena, of so-called hypo-
theses.

Without some departure, however slight, from direct observation,

a theory or even an intelligibly connected practical description for

predicting the facts of nature cannot exist. This is equally true of

the old theories whose foundations have become questionable, and

of the most modern ones, which are resigning themselves to a great

illusion if they regard themselves as free from hypotheses.
The hypotheses may perhaps be indefinite, or may be in the shape

of mathematical formulae, or the thought may be equivalent to the

latter, but expressed in words. In the latter cases the agreement
with given data may be checked step by step; a complete revolu-

tion of that previously constructed is indeed not absolutely impos-
sible, as, for example, if the law of the conservation of energy should

turn out to be incorrect. But such a revolution will be exceedingly
rare and highly improbable.
Such an indefinite, slightly specialized theory might serve as a

guiding thread for experiments whose purpose is a detailed develop-
ment of knowledge previously acquired and which is proceeding in

barren channels
; beyond this its usefulness does not reach.

In contradistinction to these are the hypotheses which give the

imagination room for play and by boldly going beyond the material

at hand afford continual inspiration for new experiments, and are

thus pathfinders for the most unexpected discoveries. Such a theory
will indeed be subject to change, a very complicated mass of inform-

ation will be brought together and will then be replaced by a new
and more comprehensive theory in which the old one will be the pic-

ture of a limited type of phenomena. Examples of this are the theory
of emission in regard to the description of the phenomena of catoptrics

and dioptrics, the hypothesis of an elastic ether in the representation
of the phenomena of interference and refraction of light, and the

notion of the electric fluid in the description of the phenomena of

electrostatics.

Moreover the theories which proudly designate themselves as free

from hypotheses are not exempt from great revolutions; thus, no one

will doubt that the so-called theory of energy will have completely
to alter its form if it desires to remain effective.
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The accusation has been made that physical hypotheses have

sometimes proved injurious and have delayed the progress of the

science. This accusation is based chiefly upon the r61e which the

hypothesis of the electric fluid has played in the development of the

theory of electricity. This hypothesis was brought to a high stage
of perfection by Wilhelm Weber, and the general recognition which

his works found in Germany did indeed stand in the road of the

theory of Maxwell. In a similar manner Newton's emanation theory
stood in the way of the theory of undulations. But such incon-

veniences can scarcely be entirely avoided in the future. It will al-

ways be the tendency to complete as far as possible the prevailing

view, and to make it self-sufficient whenever such a theory is self-

consistent and does not in any way lead to a contradiction, whether

it consist of mechanical models, of geometrical pictures, or of mathe-

matical formulas. It will always be possible that a new theory will

arise which has not yet been tested by experiment and which will

represent a much larger field of phenomena. In such cases the older

theory will count the largest following until this field of phenomena
is brought into the range of experiment, and decisive tests demon-

strate the superiority of the newer one. It is certainly useful, if the

theory of Weber be always held up as a warning example, that one

should bear in , mind the essential progressiveness of the intellect.

The services of Weber are not decreased by this, however; Maxwell

himself speaks of his theory with the greatest wonder. Indeed, this

instance cannot be taken into consideration against the usefulness of

hypotheses, since Maxwell's theory contained as much of the hypo-
thetical as any other. And this was eliminated only after it became

generally known through Hertz, Poynting, and others.

The accusation has also been raised against hypotheses in physics
that the creation and development of mathematical methods for

the computation of the hypothetical molecular motions has been

useless and even harmful. This accusation I cannot recognize as

substantiated. Were it so, the theme selected for my present lecture

would be an unfortunate one; and this fact may excuse me for

having lingered on this much-discussed subject and for having sought
to justify the use of hypotheses in physics.

I have not chosen for the thesis of my present lecture the entire

development of physical theory. Several years ago I treated this

subject at the German Naturforscherversammlung in Munich, and

although some new developments have taken place since then, I

should have to repeat myself a great deal. Moreover, one who has

committed himself to one faction is not in a position to judge the

other factions in a completely objective manner. I do not refer to a

criticism of its value; my lecture shall not criticise, but shall judge.

I am also convinced of the value of the views of my opponents and
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only arise to repel them when they attempt to belittle mine. But

one can scarcely give as complete an account according to subject-

matter, and an exposition of the inter-relations of all ideas in the

views of another, as in his own.

I shall therefore select as the goal of my lecture to-day not merely
the kinetic theory of molecules, but, moreover, a highly specialized

branch of it. Far from denying that it contains hypotheses, I must

rather characterize it as a bold advance beyond the facts of observa-

tion. And I nevertheless do not consider it unworthy of this occa-

sion; this much faith do I have in hypotheses which present certain

peculiarities of observation in a new light or which bring forth rela-

tions among them which cannot be reached by other methods. We
must indeed be mindful of the fact that hypotheses require and are

capable of continuous development, and are only then to be aban-

doned when all the relations which they represent can be better

understood in some other manner.

To the above-mentioned problems, which are as old as the science

and still unsolved, belongs the one if matter is continuous, or if it

is to be considered as made up of discrete parts, of very many, but

not in the mathematical sense infinite, individuals. This is one of

the difficult questions which form the boundary of philosophy and

physics.

Even some decades ago, scientists felt very shy of going deeply

into the discussion of such questions. The one before us is too real

to be entirely avoided
;
but one cannot discuss it without touching on

some profounder still, such as upon the nature of the law of causation,

of matter, of force, and so forth. The latter are the ones of which it

was said that they did not trouble the scientist, that they belonged

entirely to philosophy. To-day the situation is different, there is

evident a tendency among scientists to consider philosophic questions,

and properly so. One of the first rules of science is never to trust

blindly to the instrument with which one works, but to test it in

all directions. How, then, are we to trust blindly to inherited and

historically developed conceptions, particularly when there are

instances known where they led us into error ? But in the examina-

tion of even the simplest elements, where is the boundary between

science and philosophy at which we should pause ?

I hope that none of the philosophers present will take offense or

perceive an accusation, if I say boldly that by assigning this question

to philosophy the resulting success has been rather meagre. Philo-

sophy has done noticeably little toward the explanation of these

questions, and from her own one-sided point of view she can do so just

as little as natural science can from hers. If real progress is possible,

it is only to be expected by cooperation of both of these sciences.

May I therefore be pardoned if I touch slightly upon these questions
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although not a specialist; their connection with the aim of my lec-

ture is very intimate.

Let us consult the famous thinker already quoted, Emmanuel

Kant, on the question if matter is continuous, or if it is composed
of atoms. He treats of this in his Antimonies. Of all the questions

there raised, he shows that both the pro and con can be logically

demonstrated. It can be shown rigorously that there is no limit to

the divisibility of matter while an infinite divisibility contradicts the

laws of logic. Kant shows likewise that a beginning and end of time,

a boundary where space ceases, are as inconceivable as absolutely

endless duration, absolutely endless extension.

This is by no means the sole instance where philosophical thought
becomes tangled in contradictions; indeed, one finds them at every

step. The ordinary things of philosophy are sources of insolvable

riddles; to explain our perceptions it invents the concept of matter

and then finds that it is altogether unsuited to possess perception

itself or to generate perception in a spirit. With consummate acumen

it constructs the concept of space, or of time, and finds that it is

absolutely impossible that things should exist in this space, that

events should occur during this time. It finds insurmountable

difficulties in the relation of cause to effect, of body and soul, in

the possibility of consciousness, in short, everywhere and in every-

thing. Indeed, it finally finds it inexplicable and self-contradictory

that anything can exist at all, that something originated and is cap-

able of continuing, that everything can be classified according to

our categories, nor that there is a quite perfect classification. Such

a classification will always be a variable one and adapted to the

requirements of the moment. Also the breaking up of physics into

theoretical and experimental is merely a consequence of the preval-

ent division of methods and will not last forever.

My present thesis is quite different from the one that certain

questions are beyond the boundary of human comprehension. For

according to the latter, there is a deficiency, an incompleteness in the

human intelligence, while I consider the existence of these questions,

these problems, as an illusion. By superficial consideration it seems

astonishing, after this illusion is recognized, that the impulse to

answer those questions does not cease. Habit of thought is much too

powerful to release us.

It is here as with the ordinary illusion which continues operative

after its cause is recognized. In consequence of this is the feeling of

uncertainty, of want of satisfaction which the scientist feels when he

philosophizes. These illusions will yield but very slowly and gradually,

and I consider it as one of the chief problems of philosophy to set

forth clearly the uselessness of reaching beyond the limits of our

habits of thought and to strive, in the choice and combination of
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concepts and words, to give the most useful expression of facts in a

manner which is independent of our inherited habits. Then all these

complications and contradictions must vanish. It must be made
clear what is stone in the structure of our thoughts and what is

mortar, and the oppressive sentiment, that the simplest things are

the most inexplicable and the most trivial are the most mysterious,
becomes mere imagination-change.
To call upon logic seems to me as if one were to put on for a trip

into the mountains a long flowing robe, which always wrapped
itself about the feet so that one fell at the first steps while on the level.

The source of this kind of logic is the immoderate trust in the so-

called laws of thought. It is certain that we could not gather experi-

ence did we not have certain forms of connecting phenomena, that is

to say, of thought, innate. If we wish to call these laws of thought,

they are indeed a priori to the extent that they accompany every

experience in our soul, or if we prefer, in our brain. Only nothing
seems to me less reasonable than the conclusion from the reasoning
in this sense to certainty, to infallibility. These laws of thought
have been developed according to the same laws of evolution as

the optical apparatus of the eye, the acoustic apparatus of the ear,

and the pumping arrangements of the heart. In the course of human

development everything useless was eliminated, and thus a unity
and finish arose which might be mistaken for infallibility. Thus the

perfection of the eye, of the ear, of the arrangement of the heart

excite our admiration, without the absolute perfection of these

organs being emphasized, however. Just so little should the laws of

thought be regarded as absolutely infallible. They are the very ones

which have developed with regard to seizing that which is most

necessary and practically useful in the maintenance of life. With

these, the results of experimental investigation show more relation

than the examination of the mechanism of thought. We should,

therefore, not be surprised that the customary forms of thought
for the abstract are not entirely suited to practical applications

in far removed problems of philosophy, and that they have not

become applicable since the days of Thales. Therefore the simplest

things seem to be the most puzzling to the philosopher. And he

finds everywhere contradictions; these are nothing more, however,

than useless, incorrect facsimiles of that which is given us through
our thoughts. In facts there can be no contradictions. As soon as

contradictions seem unavoidable we must test, extend, and seek

to modify that which we call laws of thought, but which are only

inherited, customary representations, preserved for aeons, for the

description of practical needs. Just as to the inherited discoveries

of the cylinder, the carriage, the plow, numerous artificial ones have

been consciously added, so must we improve, artificially and con-
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sciously, our likewise inherited concepts. Our problem cannot be

to quote facts before the judgment seat of our laws of thought, but

to lit our mental representations and concepts to the facts. Since

we attempt to express with clearness such complicated processes

merely by words, written, spoken, or inwardly thought, it might
also be said that we should combine the words in such wise as to

give the most appropriate expression of the facts, that the relations

indicated by our words should be most adequate for the relations

among the actualities. When the problem is enunciated in this

fashion, its appropriate solution may still offer the greatest difficulties,

but one knows then the end in view and will not stumble on self-

made difficulties.

Much that is useless in the usage and in the bearing of the nature

of life is brought forth by a method of treatment which, being
useful in most cases, becomes through habit a second nature, until

one cannot set it aside when it becomes inapplicable somewhere.

I say that the adaptability goes beyond the point aimed at. This

happens frequently in the commonplaces of thought, and becomes

the source of apparent contradictions between the laws of thought
and the world, as well as between the laws of thought themselves.

Thus, the regularity of the phenomena of nature is the funda-

mental condition for all cognition; thus comes the habit of inquiring
of everything the cause, the non-resisting compulsion, and we

inquire also concerning the cause, why everything must have a cause.

In fact people strove for a long time to determine if cause and effect

is a necessary bond or merely an accidental sequence, and if it did

or did not have a unique meaning to say that a certain particular

phenomenon was connected with, and a necessary consequence of,

a definite group of other phenomena.

Similarly, something is said to be useful, valuable, if it satisfies the

needs of the individual or of humanity; but we go beyond the mark
if we ask concerning the value of life itself, if such it seem to have,
because it has no purpose outside of itself. The same happens when
we strive vainly to explain the simplest concepts, out of which all

others are built, by means of simpler ones still, to explain the simplest

fundamental laws.

We should not attempt to deduce nature from our concepts, but

should adapt the latter to the former. We should not believe our

inherited rules of thought to be conditions preceding our more com-

plicated experiences, for they are not so for the simplest essentials.

They arose slowly in connection with simple experiences and passed,

by heredity, to the more highly organized being. Thus is explained
how synthetic judgments arise which were formed by our ancestors

and were born in us, and are in this sense a priori. Their great

power is also seen in this way, but not their infallibility.
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In saying that such judgments as "everything is red or is not red"

are results of experience, I do not mean that every person checks this

empty truth by experience, but that he learns that his parents called

everything either red or not red and that he preserves this nomen-

clature.

It might seem as if we had gone somewhat deeply into philosophical

questions, but I believe that the views we have reached could not

have been attained in a shorter and simpler manner. For we have

reached an impartial judgment how the question of the atomistic

structure of matter is to be viewed. We shall not invoke the law of

thought that there is no limit to the divisibility of matter. This law

is of no more value than if a naive person were to say that no matter

where he went upon the earth the plumb-line directions seemed

always to be parallel and therefore there were no antipodes.

On the one hand we shall start from facts only, and on the other

we shall take nothing into consideration except the effort to attain

to the most adequate expression of these facts.

Regarding the first point, the numerous facts of the theory of

heat, of chemistry, of crystallography, show that bodies which are

apparently continuous do not by any means fill the entire volume

indistinguishably and uniformly with matter. Indeed, it appears
that the space which they occupy is filled with innumerably many
individuals, molecules, and atoms, which are extraordinarily small,

but not infinitely small in the mathematical sense. Their sizes can

be computed in different manners and always with the same result.

The fruitfulness of this line of thought has been verified in the

most recent time. All the phenomena which are observed with the

cathode rays, the Becquerel rays, etc., indicate that we are dealing

with diminutive, moving particles, electrons. After a vigorous

battle, this view vanquished completely the opposing explanation of

these phenomena by the theory of undulations. Not only did the

former theory give a better explanation of the previously known

facts, it inspired new experiments and permitted the prediction of

unknown phenomena, and thus it developed into an atomistic theory
of electricity. If it continue to develop with the same success as

in past years, if phenomena, such as the one observed by Ramsay
on the transmutation of radium into helium, do not remain isolated,

this theory promises deductions concerning the nature and structure

of atoms as yet undreamed of. Computation shows that electrons are

much smaller than the atoms of ponderable matter; and the hypo-
thesis that the atoms are built up of many elements, as well as

various interesting views on the character and structure of this com-

position, is to-day on every tongue. The word atom should not

lead us into error, it comes from a past time; no physicist ascribes

indivisibility to the atoms.
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It is not my intention to confine the thought merely to the above

facts and their resulting consequences; these are not sufficient to

carry through the question as to the finite or infinite divisibility

of matter. If we are going to think of the atoms of chemistry as

made up of electrons, what would hinder us from considering the

electrons as particles filled with rarefied, continuous matter? We
shall adhere faithfully to the previously developed philosophical

principles and shall examine in the most unhampered manner the

concepts themselves in order to express them in a consistent and

most useful form.

It appears now, that we are unable to define the infinite in any other

way except as the limit of continually increasing magnitudes, at

least no one has hitherto been able to set up any other intelligible

conception of the infinite. Should we desire a verbal picture of the

continuum, we must first think of a large finite number of particles

which are endowed with certain properties and study the totality

of these particles.. Certain properties of this totality may approach
a definite limit as the number of particles is increased, and their

size decreased. It can be asserted, concerning these properties, that

they belong to the continuum, and it is my opinion that this is the

only self-consistent definition of a continuum which is endowed

with certain properties.

The question if matter is composed of atoms or is continuous

becomes then the question if the observed properties are accurately

satisfied by the assumption of an exceedingly great number of

such particles or, by increasing number, their limit. We have not

indeed answered the old philosophical question, but we are cured of

the effort to answer it in a senseless and hopeless manner. The

thought-process, that we must investigate the properties of a finite

totality and then let the number of members of this totality increase

greatly, remains the same in both cases. It is nothing other than

the abbreviated expression in algebraic symbols of exactly the same

thought when, as often happens, differential equations are made

the basis of a mathematical-physical theory.

The members of the totality which we select as the picture of the

material body cannot be thought of as absolutely at rest, for there

would then be no motion of any kind, nor can the members be thought
of as relatively at rest in one and the same body, for in this case it

would be impossible to account for the fluids. No effort has been

made to subject them to anything more than to the general laws

of mechanics. In order to explain nature we shall therefore select

a totality of an exceedingly large number of very minute funda-

mental individuals which are constantly in motion, and which are

subject to the laws of mechanics. But an objection is raised that

will be an appropriate introduction to the final considerations of
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this lecture. The fundamental equations of mechanics do not alter

their form in the slightest way when the algebraic sign of the time is

changed. All pure mechanical events can therefore occur equally

well in one sense as in its opposite, that is, in the sense of increasing

time or of diminishing time. We remark, however, that in ordinary
life future and past do not coincide as completely as the directions

right and left, but that the two are distinctly different.

This becomes still more definite by means of the second law of the

mechanical theory of heat, which asserts that when an arbitrary

system of bodies is left to itself, uninfluenced by other bodies, the

sense in which changes of condition occur can be assigned. A certain

function of the condition of all the bodies, the entropy, can be

determined, which is such that every change that occurs must be in

the sense of carrying with it an increase of this function; thus,

with increasing time the entropy increases. This law is indeed an

abstraction, just as the principle of Galileo; for it is impossible, in

strict rigor, to isolate a system of bodies from all others. But since

it has given correct results hitherto, in connection with all the other

laws, we assume it to be correct, just as in the case of the principle of

Galileo.

It follows from this law that every closed system of bodies must

tend toward a definite final condition for which the entropy is a

maximum. The outcome of this law, that the universe must come
to a final state in which nothing more can occur, has caused aston-

ishment; but this outcome is only comprehensible on the assump-
tion that the universe is finite and subject to the second law of the

mechanical theory of heat. If one regards the universe as infinite,

the above-mentioned difficulties of thought arise again if one does

not consider the infinite as a mere limit of the finite. Since there is

nothing analogous to the second law in the differential equations
of mechanics, it follows that it can be represented mechanically only

by the initial conditions. In order to find the assumptions suit-

able for this purpose, we must reflect that, to explain the appar-
ent continuity of bodies, we had to assume that every family
of atoms, or more generally, of mechanical individuals, existed in

incredibly many different initial positions. In order to treat this

assumption mathematically, a new science was founded whose pro-

blem is, not the study of the motion of a single mechanical system,

but of the properties of complexes of very many mechanical systems
which begin with a great variety of initial conditions. The task of

systematizing this science, of compiling it into a large book, and of

giving it a characteristic name, was executed by one of the greatest

American scholars, and in regard to abstract thinking, purely theo-

retic investigation, perhaps the greatest, Willard Gibbs, the recently

deceased professor at Yale University. He called this science statis-
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tical mechanics, and it falls naturally into two parts. The first in-

vestigates the conditions under which the outwardly visible proper-
ties of a complex of very many mechanical individuals is not in any
wise altered; this first part I shall call statistical statics. The sec-

ond part investigates the gradual changes of these outwardly visible

properties when those conditions are not fulfilled; it may be called

statistical dynamics. At this point we may allude to the broad view

which is opened by applying this science to the statistics of ani-

mated beings, of human society, of sociology, etc., and not merely

upon mechanical particles. A development of the details of this

science would only be possible in a series of lectures and by means
of mathematical formulas. Apart from mathematical difficulties it is

not free from difficulties of principle. It is based upon the theory
of probabilities. The latter is as exact as any other branch of mathe-

matics if the concept of equal probabilities, which cannot be de-

duced from the other fundamental notions, is assumed. It is here

as in the method of least squares which is only free from objection

when certain definite assumptions are made concerning the equal

probability of elementary errors. The existence of this fundamental

difficulty explains why the simplest result of statistical statics, the

proof of Maxwell's speed law among the molecules of a gas, is still

being disputed.

The theorems of statistical mechanics are rigorous consequences
of the assumptions and will always remain valid, just as all well-

founded mathematical theorems. But its application to the events

of nature is the prototype of a physical hypothesis. Starting from

the simplest fundamental assumption of the equal probabilities, we
find that aggregates of very many individuals behave quite ana-

logously as experience shows of the material world. Progressive or

visible rotary motion must always go over into invisible motion of

the minutest particles, into heat, as Helmholtz characteristically

says: ordered motion tends always to go over into not ordered

motion; the mixture of different substances as well as of different

temperatures, the points of greater or less intense molecular

motion, must always tend toward homogeneity. That this mixture

was not complete from the start, that the universe began in such

an improbable state, belongs to the fundamental hypotheses of the

entire theory; and it may be said that the reason for this is as little

known as the reason why the universe is just so and not otherwise.

But we may take a different point of view. Conditions of great mix-

ture and great differences in temperature are not absolutely impos-
sible according to the theory but are very highly improbable. If the

universe be considered as large enough there will be, according to the

laws of probability, here and there places of the size of fixed stars,

of altogether improbable distributions. The development of such
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a spot would be one-sided both in its structure and subsequent dis-

solution. Were there thinking beings at such a spot their impressions
of time would be the same as ours, although the course of events in

the universe as a whole would not be one-sided. The above-developed

theory does indeed go boldly beyond our experience, but it has the

merit which every such theory should have of showing us the facts

of experience in an entirely new light and of inspiring us to new

thought and reflection. In contradistinction to the first fundamental

law, the second one is merely based on probability, as Gibbs pointed
out in the 70 's of the last century.

I have not avoided philosophical questions, in the firm hope that

cooperation between philosophy and natural science will give new
sustenance to both; indeed, that only in this manner a consistent

argument can be carried through. I agree with Schiller when he

says to the scientists and philosophers of his day,
" Let there be strife

between you, and the union will come speedily;" I believe that the

time for this union has now arrived.
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WHAT is the actual state of mathematical physics? What are the

problems it is led to set itself? What is its future? Is its orientation

on the point of modifying itself?

Will the aim and the methods of this science appear in ten years

to our immediate successors in the same light as to ourselves; or,

on the contrary, are we about to witness a profound transformation?

Such are the questions we are forced to raise in entering to-day upon
our investigation.

If it is easy to propound them, to answer is difficult.

If we feel ourselves tempted to risk a prognostication, we have,

to resist this temptation, only to think of all the stupidities the

most eminent savants of a hundred years ago would have uttered,

if one had asked them what the science of the nineteenth century

would be. They would have believed themselves bold in their pre-

dictions, yet after the event how very timid we should have found

them.

Mathematical physics, we know, was born of celestial mechanics,

which engendered it at the end of the eighteenth century, at the

moment when the latter was attaining its complete development.

During its first years especially, the infant resembled in a striking

way its mother.

The astronomic universe is formed of masses, very great without

doubt, but separated by intervals so immense that they appear to

us only as material points. These points attract each other in the

inverse ratio of the square of the distances, and this attraction is

the sole force which influences their movements. But if our senses

were sufficiently subtle to show us all the details of the bodies which

the physicist studies, the spectacle we should there discover would

scarcely differ from what the astronomer contemplates. There also

we should see material points, separated one from another by inter-
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vals enormous in relation to their dimensions, and describing orbits

following regular laws.

These infinitesimal stars are the atoms. Like the stars properly

so called, they attract or repel each other, and this attraction or this

repulsion directed following the straight line which joins them, de-

pends only on the distance. The law according to which this force

varies as function of the distance is perhaps not the law of Newton,
but it is an analogous law; in place of the exponent 2, we have

probably a different exponent, and it is from this change of exponent
that springs all the diversity of physical phenomena, the variety of

qualities and of sensations, all the world colored and sonorous which

surrounds us, in a word, all nature.

Such is the primitive conception in all its purity. It only remains

to seek in the different cases what value should be given to this

exponent in order to explain all the facts. It is on this model that

Laplace, for example, constructed his beautiful theory of capillarity;

he regards it only as a particular case of attraction, or as he says

of universal gravitation, and no one is astonished to find it in the

middle of one of the five volumes of the Mecanique celeste.

More recently Briot believed he had penetrated the final secret

of optics in demonstrating that the atoms of ether attract each other

in the inverse ratio of the sixth power of the distance; and does not

Maxwell himself say somewhere that the atoms of gases repel each

other in the inverse ratio of the fifth power of the distance? We have

the exponent 6, or 5 in place of the exponent 2, but it is

always an exponent.

Among the theories of this period, one alone is an exception, that

of Fourier; in it are indeed atoms, acting at a distance one upon the

other; they mutually transmit heat, but they do not attract, they
never budge. From this point of view, the theory of Fourier must

have appeared to the eyes of his contemporaries, even to Fourier

himself, as imperfect and provisional.

This conception was not without grandeur; it was seductive, and

many among us have not finally renounced it; we know that we
shall attain the ultimate elements of things only by patiently disen-

tangling the complicated skein that our senses give us; that it is

necessary to advance step by step, neglecting no intermediary; that

our fathers were wrong in wishing to skip stations; but we believe

that when we shall have arrived at these ultimate elements, there

again will be found the majestic simplicity of celestial mechanics.

Neither has this conception been useless; it has rendered us an

inestimable service, since it has contributed to make precise in us

the fundamental notion of the physical law.

I will explain myself; how did the ancients understand law? It

was for them an internal harmony, static, so to say, and immutable;
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or it was like a model that nature constrained herself to imitate. A
law for us is not that at all; it is a constant relation between the

phenomenon of to-day and that of to-morrow; in a word, it is a

differential equation.'

The ideal form of physical law is the law of Newton which first

covered it; and then how has one to adapt this form to physics?

by copying as much as possible this law of Newton, that is, in imi-

tating celestial mechanics.

Nevertheless, a day arrived when the conception of central forces

no longer appeared sufficient, and this is the first of those crises of

which I just now spoke.

Then investigators gave up trying to penetrate into the detail

of the structure of the universe, to isolate the pieces of this vast

mechanism, to analyze one by one the forces which put them in

motion, and were content to take as guides certain general prin-

ciples which have precisely for their object the sparing us this minute

study.

How so? Suppose that we have before us any machine; the ini-

tial wheel-work and the final wheel-work alone are visible, but the

transmission, the intermediary wheels by which the movement is

communicated from one to the other are hidden in the interior

and escape our view; we do not know whether the communication

is made by gearing or by belts, by connecting-rods or by other dis-

positives.

Do we say that it is impossible for us to understand anything about

this machine so long as we are not permitted to take it to pieces?

You know well we do not, and that the principle of the conservation

of energy suffices to determine for us the most interesting point. We
easily ascertain that the final wheel turns ten times less quickly than

the initial wheel, since these two wheels are visible; we are able

thence to conclude that a couple applied to the one will be balanced

by a couple ten times greater applied to the other. For that there

is no need to penetrate the mechanism of this equilibrium and to

know how the forces compensate each other in the interior of the

machine; it suffices to be assured that this compensation cannot fail

to occur.

Well, in regard to the universe, the principle of the conservation

of energy is able to render us the same service. This is also a machine,

much more complicated than all those of industry, and of which

almost all the parts are profoundly hidden from us; but in observing

the movement of those that we can see, we are able, by aid of this

principle, to draw conclusions which remain true whatever may be

the details of the invisible mechanism which animates them.

The principle of the conservation of energy, or the principle of

Mayer, is certainly the most important, but it is not the only one;
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there are others from which we are able to draw the same advantage.
These are:

The principle of Carnot, or the principle of the degradation of

energy.

The principle of Newton, or the principle of the equality of action

and reaction.

The principle of relativity, according to which the laws of phys-
ical phenomena should be the same, whether for an observer

fixed, or for an observer carried along in a uniform move-

ment of translation; so that we have not and could not

have any means of discerning whether or not we are carried

along in such a motion.

The principle of the conservation of mass, or principle of

Lavoisier.

I would add the principle of least action.

The application of these five or six general principles to the differ-

ent physical phenomena is sufficient for our learning of them what

we could reasonably hope to know of them.

The most remarkable example of this new mathematical physics

is, beyond contradiction, Maxwell's electro-magnetic theory of light.

We know nothing of the ether, how its molecules are disposed,

whether they attract or repel each other; but we know that this

medium transmits at the same time the optical perturbations and

the electrical perturbations; we know that this transmission should

be made conformably to the general principles of mechanics, and

that suffices us for the establishment of the equations of the electro-

magnetic field.

These principles are results of experiments boldly generalized;

but they seem to derive from their generality itself an eminent

degree of certitude.

In fact the more general they are, the more frequently one has

the occasion to check them, and the verifications, in multiplying

themselves, in taking forms the most varied and the most unex-

pected, finish by no longer leaving place for doubt.

Such is the second phase of the history of mathematical physics,

and we have not yet emerged from it.

Do we say that the first has been useless? that during fifty years

science went the wrong way, and that there is nothing left but to

forget so many accumulated efforts as vicious conceptions condemned

in advance to non-success?

Not the least in the world
;
the second phase could not have come

into existence without the first?

The hypothesis of central forces contained all the principles; it

involved them as necessary consequences; it involved both the con-
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servation of energy and that of masses, and the equality of action

and reaction; and the law of least action, which would appear, it

is true, not as experimental verities, but as theorems, and of which

the enunciation would have at the same time a something more pre-

cise and less general than under their actual form.

It is the mathematical physics of our fathers which has familiar-

ized us little by little with these divers principles; which has taught
us to recognize them under the different vestments in which they

disguise themselves. One has to compare them to the data of ex-

perience, to find how it was necessary to modify their enunciation

so as to adapt them to these data; and by these processes they
have been enlarged and consolidated.

So we have been led to regard them as experimental verities;

the conception of central forces became then a useless support, or

rather an embarrassment, since it made the principles partake of its

hypothetical character.

The frames have not therefore broken, because they were elastic;

but they have enlarged; our fathers, who established them, did not

work in vain, and we recognize in the science of to-day the general

traits of the sketch which they traced.

Are we about to enter now upon the eve of a second crisis? Are

these principles on which we have built all about to crumble away
in their turn? For some time, this may well have been asked.

In hearing me speak thus, you think without doubt of radium,
that grand revolutionist of the present time, and in fact I will come

back to it presently; but there is something else.

It is not alone the conservation of energy which is in question;

all the other principles are equally in danger, as we shall see in pass-

ing them successively in review.

Let us commence with the principle of Carnot. This is the only
one which does not present itself as an immediate consequence of

the hypothesis of central forces; more than that, it seems, if not

directly to contradict that hypothesis, at least not to be reconciled

with it without a certain effort.

If physical phenomena were due exclusively to the movements

of atoms whose mutual attraction depended only on the distance,

it seems that all these phenomena should be reversible; if all the

initial velocities were reversed, these atoms, always subjected to

the same forces, ought to go over their trajectories in the contrary

sense, just as the earth would describe in the retrograde sense this

same elliptic orbit which it describes in the direct sense, if the initial

conditions of its movement had been reversed. On this account, if

a physical phenomenon is possible, the inverse phenomenon should

be equally so, and one should be able to reascend the course of

time.
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But it is not so in nature, and this is precisely what the principle

of Carnot teaches us; heat can pass from the warm body to the cold

body; it is impossible afterwards to make it reascend the inverse

way and reestablish differences of temperature which have been

effaced.

Motion can be wholly dissipated and transformed into heat by

friction; the contrary transformation can never be made except in

a partial manner.

We have striven to reconcile this apparent contradiction. If the

world tends toward uniformity, this is not because its ultimate parts,

at first unlike, tend to become less and less different, it is because,

shifting at hazard, they end by blending. For an eye which should

distinguish all the elements, the variety would remain always as

great, each grain of this dust preserves its originality and does not

model itself on its neighbors; but as the blend becomes more and

more intimate, our gross senses perceive no more than the uniform-

ity. Behold why, for example, temperatures tend to a level, without

the possibility of turning backwards.

A drop of wine falls into a glass of water; whatever may be the

law of the internal movements of the liquid, we soon see it colored

to a uniform rosy tint, and from this moment, however well we

may shake the vase, the wine and the water do not seem capable of

further separation. Observe what would be the type of the reversible

physical phenomenon: to hide a grain of barley in a cup of wheat

is easy; afterwards to find it again and get it out is practically im-

possible.

All this Maxwell and Boltzmann have explained; the one who has

seen it most clearly, in a book too little read because it is a little

difficult to read, is Gibbs, in his Elementary Principles of Statistical

Mechanics.

For those who take this point of view, the principle of Carnot is

only an imperfect principle, a sort of concession to the infirmity of

our senses; it is because our eyes are too gross that we do not dis-

tinguish the elements of the blend; it is because our hands are too

gross that we cannot force them to separate; the imaginary demon
of Maxwell, who is able to sort the molecules one by one, could well

constrain the world to return backward. Can it return of itself? That

is not impossible; that is only infinitely improbable.
The chances are that we should long await the concourse of cir-

cumstances which would permit a retrogradation, but soon or late

they would be realized, after years whose number it would take

millions of figures to write.

These reservations, however, all remained theoretic and were not

very disquieting, and the principle of Carnot retained all its practical

value.
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But here the scene changes.

The biologist, armed with his microscope, long ago noticed in his

preparations disorderly movements of little particles in suspension:
this is the Brownian movement; he first thought this was a vital

phenomenon, but he soon saw that the inanimate bodies danced with

no less ardor than the others; then he turned the matter over to the

physicists. Unhappily, the physicists remained long uninterested in

this question; the light is focused to illuminate the microscoprc pre-

paration, thought they; with light goes heat; hence inequalities of

temperature and interior currents produce the movements in the

liquid of which we speak.

M. Gouy, however, looked more closely, and he saw, or thought
he saw, that this explanation is untenable, that the movements
become more brisk as the particles are smaller, but that they are not

influenced by the mode of illumination.

If, then, these movements never cease, or rather are reborn with-

out ceasing, without borrowing anything from an external source

of energy, what ought we to believe? To be sure, we should not

renounce our belief in the conservation of energy, but we see under

our eyes now motion transformed into heat by friction, now heat

changed inversely into motion, and that without loss since the move-

ment lasts forever. This is the contrary of the principle of Carnot.

If this be so, to see the world return backward, we no longer

have need of the infinitely subtle eye of Maxwell's demon; our

microscope suffices us. Bodies too large, those, for example, which

are a tenth of a millimeter, are hit from all sides by moving atoms,

but they do not budge, because these shocks are very numerous and

the law of chance makes them compensate each other: but the

smaller particles receive too few shocks for this compensation to

take place with certainty and are incessantly knocked about. And
thus already one of our principles is in peril.

We come to the principle of relativity : this not only is confirmed

by daily experience, not only is it a necessary consequence of the

hypothesis of central forces, but it is imposed in an irresistible way
upon our good sense, and yet it also is battered.

Consider two electrified bodies; though they seem to us at rest,

they are both carried along by the motion of the earth; an electric

charge in motion, Rowland has taught us, is equivalent to a current;

these two charged bodies are, therefore, equivalent to two parallel

currents of the same sense and these two currents should attract

each other. In measuring this attraction, we measure the velocity

of the earth; not its velocity in relation to the sun or the fixed stars,

but its absolute velocity.

I know it will be said that it is not its absolute velocity that

is measured, but its velocity in relation to the ether. How unsatis-
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factory that is! Is it not evident that from a principle so under-

stood we could no longer get anything? It could no longer tell us

anything just because it would no longer fear any contradiction.

If we succeed in measuring anything, we should always be free

to say that this is not the absolute velocity in relation to the ether,

it might always be the velocity in relation to some new unknown
fluid with which we might fill space.

Indeed, experience has taken on itself to ruin this interpretation

of the principle of relativity; all attempts to measure the velocity

of the earth in relation to the ether have led to negative results.

This time experimental physics has been more faithful to the prin-

ciple than mathematical physics; the theorists, to put in accord

their other general views, would not have spared it; but experiment
has been stubborn in confirming it.

The means have been varied in a thousand ways and finally

Michelson has pushed precision to its last limits; nothing has come

of it. It is precisely to explain this obstinacy that the mathematicians

are forced to-day to employ all their ingenuity.

Their task was not easy, and if Lorentz has gotten through it,

it is only by accumulating hypotheses.

The most ingenious idea has been that of local time.

Imagine two observers who wish to adjust their watches by

optical signals; they exchange signals, but as they know that the

transmission of light is not instantaneous, they take care to cross

them.

When the station B perceives the signal from the station A, its

clock should not mark the same hour as that of the station A at the

moment of sending the signal, but this hour augmented by a con-

stant representing the duration of the transmission. Suppose, for

example, that the station A sends its signal when its clock marks

the hour 0, and that the station B perceives it when its clock marks

the hour t. The clocks are adjusted if the slowness equal to t repre-

sents the duration of the transmission, and to verify it the station B
sends in its turn a signal when its clock marks 0; then the station A
should perceive it when its clock marks t. The time-pieces are then

adjusted. And in fact, they mark the same hour at the same phys-
ical instant, but on one condition, namely, that the two stations are

fixed. In the contrary case the duration of the transmission will not

be the same in the two senses, since the station A, for example,
moves forward to meet the optical perturbation emanating from B,

while the station B flies away before the perturbation emanating
from A. The watches adjusted in that manner do not mark, there-

fore, the true time; they mark what one may call the local time, so

that one of them goes slow on the other. It matters little, since we
have no means of perceiving it. All the phenomena which happen
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at A, for example, will be late, but all will be equally so, and the

observer who ascertains them will not perceive it, since his watch is

slow; so, as the principle of relativity would have it, he will have no

means of knowing whether he is at rest or in absolute motion.

Unhappily, that does not suffice, and complementary hypotheses
are necessary ;

it is necessary to admit that bodies in motion undergo
a uniform contraction in the sense of the motion. One of the dia-

meters of the earth, for example, is shrunk by 200000000
in conse-

quence of the motion of our planet, while the other diameter retains

its normal length. Thus, the last little differences find themselves

compensated. And then there still is the hypothesis about forces.

Forces, whatever be their origin, gravity as well as elasticity, would

be reduced in a certain proportion in a world animated by a uniform

translation; or, rather, this would happen for the components perpen-
dicular to the translation; the components parallel would not change.

Resume, then, our example of two electrified bodies; these bodies

repel each other, but at the same time if all is carried along in a

uniform translation, they are equivalent to two parallel currents of

the same sense which attract each other. This electro-dynamic

attraction diminishes, therefore, the electro-static repulsion, and the

total repulsion is more feeble than if the two bodies were at rest.

But since to measure this repulsion we must balance it by another

force, and all these other forces are reduced in the same proportion,

we perceive nothing.

Thus, all is arranged, but are all the doubts dissipated?

What would happen if one could communicate by non-luminous

signals whose velocity of propagation differed from that of light?

If, after having adjusted the watches by the optical procedure, one

wished to verify the adjustment by the aid of these new signals,

then would appear divergences which would render evident the com-

mon translation of the two stations. And are such signals incon-

ceivable, if we admit with Laplace that universal gravitation is

transmitted a million times more rapidly than light?

Thus, the principle of relativity has been valiantly defended in

these latter times, but the very energy of the defense proves how
serious was the attack.

Let us speak now of the principle of Newton, on the equality of

action and reaction.

This is intimately bound up with the preceding, and it seems

indeed that the fall of the one would involve that of the other.

Thus we should not be astonished to find here the same difficulties.

Electrical phenomena, we think, are due to the displacements of

little charged particles, called electrons, immersed in the medium
that we call ether. The movements of these electrons produce per-

turbations in the neighboring ether; these perturbations propagate
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themselves in every direction with the velocity of light, and in turn

other electrons, originally at rest, are made to vibrate when the

perturbation reaches the parts of the ether which touch them.

The electrons, therefore, act upon one another, but this action is

not direct, it is accomplished through the ether as intermediary.
Under these conditions can there be compensation between action

and reaction, at least for an observer who should take account

only of the movements of matter, that is to say, of the electrons, and

who should be ignorant of those of the ether that he could not see?

Evidently not. Even if the compensation should be exact, it could

not be simultaneous. The perturbation is propagated with a finite

velocity; it, therefore, reaches the second electron only when the

first has long ago entered upon its rest.

This second electron, therefore, will undergo, after a delay, the

action of the first, but certainly it will not react on this, since around

this first electron nothing any longer budges.
The analysis of the facts permits us to be still more precise. Imagine

for example, a Hertzian generator, like those employed in wireless

telegraphy; it sends out energy in every direction; but we can

provide it with a parabolic mirror, as Hertz did with his smallest

generators, so as to send all the energy produced in a single direction.

What happens, then, according to the theory? It is that the

apparatus recoils as if it were a gun and as if the energy it has

projected were a bullet; and that is contrary to the principle of

Newton, since our projectile here has no mass, it is not matter, it

is energy.

It is still the same, moreover, with a beacon light provided with

a reflector, since light is nothing but a perturbation of the electro-

magnetic field. This beacon light should recoil as if the light it

sends out were a projectile. What is the force that this recoil should

produce? It is what one has called the Maxwell-Bartholdi pressure.

It is very minute, and it has been difficult to put it into evidence

even with the most sensitive radiometers; but it suffices that it exists.

If all the energy issuing from our generator falls on a receiver,

this will act as if it had received a mechanical shock, which will

represent in a sense the compensation of the recoil of the generator;
the reaction will be equal to the action, but it will not be simulta-

neous; the receiver will move on but not at the moment when the

generator recoils. If the energy propagates itself indefinitely with-

out encountering a receiver, the compensation will never be made.

Do we say that the space which separates the generator from

the receiver and which the perturbation must pass over in going
from the one to the other is not void, that it is full not only of ether,

but of air; or even in the interplanetary spaces of some fluid subtle

but still ponderable; that this matter undergoes the shock like the
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receiver at the moment when the energy reaches it, and recoils in its

turn when the perturbation quits it? That would save the principle

of Newton, but that is not true.

If energy in its diffusion remained always attached to some ma-
terial substratum, then matter in motion would carry along light

with it, and Fizeau has demonstrated that it does nothing of the

sort, at least for air. This is what Michelson and Morley have since

confirmed.

One may suppose also that the movements of matter, properly
so called, are exactly compensated by those of the ether; but that

would lead us to the same reflections as just now. The principle so

extended would explain everything, since whatever might be the

visible movements, we should always have the power of imagining

hypothetical movements which compensated them.

But if it is able to explain everything, this is because it does

not permit us to foresee anything; it does not enable us to decide

between different possible hypotheses, since it explains everything
beforehand. It therefore becomes useless.

And then the suppositions that it would be necessary to make
on the movements of the ether are not very satisfactory.

If the electric charges double, it would be natural to imagine
that the velocities of the divers atoms of ether double also, and for

the compensation, it would be necessary that the mean velocity of

the ether quadruple.
This is why I have long thought that these consequences of

theory, contrary to the principle of Newton, would end some day

by being abandoned, and yet the recent experiments on the move-

merits of the electrons issuing from radium seem rather to confirm

them.

I arrive at the principle of Lavoisier on the conservation of masses :

in truth this is one not to be touched without unsettling all mechanics.

And now certain persons believe that it seems true to us only
because we consider in mechanics merely moderate velocities, but

that it would cease to be true for bodies animated by velocities com-

parable to that of light. These velocities, it is now believed, have

been realized; the cathode rays or those of radium may be formed

of very minute particles or of electrons which are displaced with

velocities smaller no doubt than that of light, but which might be its

one tenth or one third.

These rays can be deflected, whether by an electric field, or by
a magnetic field, and we are able by comparing these deflections, to

measure at the same time the velocity of the electrons and their mass

(or rather the relation of their mass to their charge). But when
it was seen that these velocities approached that of light, it was

decided that a correction was necessary.



PRINCIPLES OF MATHEMATICAL PHYSICS 615

These molecules, being electrified, could not be displaced with-

out agitating the ether; to put them in motion it is necessary to

overcome a double inertia, that of the molecule itself and that of the

ether. The total or apparent mass that one measures is composed,

therefore, of two parts: the real or mechanical mass of the mole-

cule and the electro-dynamic mass representing the inertia of the

ether.

The calculations of Abraham and the experiments of Kaufmann
have then shown that the mechanical mass, properly so called, is

null, and that the mass of the electrons, or, at least, of the negative

electrons, is of exclusively electro-dynamic origin. This forces us to

change the definition of mass; we cannot any longer distinguish

mechanical mass and electro-dynamic mass, since then the first would

vanish; there is no mass other than electro-dynamic inertia. But

in this case the mass can no longer be constant, it augments with the

velocity, and it even depends on the direction, and a body animated

by a notable velocity will not oppose the same inertia to the forces

which tend to deflect it from its route, as to those which tend to

accelerate or to retard its progress.

There is still a resource; the ultimate elements of bodies are

electrons, some charged negatively, the others charged positively.

The negative electrons have no mass, this is understood; but the

positive electrons, from the little we know of them, seem much

greater. Perhaps they have, besides their electro-dynamic mass,
a true mechanical mass. The veritable mass of a body would, then,

be the sum of the mechanical masses of its positive electrons, the

negative electrons not counting; mass so defined could still be con-

stant.

Alas, this resource also evades us. Recall what we have said

of the principle of relativity and of the efforts made to save it. And
it is not merely a principle which it is a question of saving, such

are the indubitable results of the experiments of Michelson.

Lorentz has been obliged to suppose that all the forces, what-

ever be their origin, were affected with a coefficient in a medium
animated by a uniform translation; this is not sufficient; it is still

necessary, says he, that the masses of all the particles be influenced

by a translation to the same degree as the electro-magnetic masses

of the electrons.

So the mechanical masses will vary in accordance with the same

laws as the electro-dynamic masses; they cannot, therefore, be con-

stant.

Need I point out that the fall of the principle of Lavoisier in-

volves that of the principle of Newton? This latter signifies that

the centre of gravity of an isolated system moves in a straight line;

but if there is no longer a constant mass, there is no longer a centre
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of gravity, we no longer know even what this is. This is why I

said above that the experiments on the cathode rays appeared to

justify the doubts of Lorentz on the subject of the principle of

Newton.

From all these results, if they are confirmed, would arise an

entirely new mechanics, which would be, above all, characterized by
this fact, that no velocity could surpass that of light, any more than

any temperature could fall below the zero absolute, because bodies

would oppose an increasing inertia to the causes, which would tend

to accelerate their motion; and this inertia would become infinite

when one approached the velocity of light.

Nor for an observer carried along himself in a translation he

did not suspect could any apparent velocity surpass that of light;

there would then be a contradiction, if we recall that this observer

would not use the same clocks as a fixed observer, but, indeed, clocks

marking "local time/'

Here we are then facing a question I content myself with stating.

If there is no longer any mass, what becomes of the law of Newton?
Mass has two aspects, it is at the same time a coefficient of iner-

tia and an attracting mass entering as factor into Newtonian attrac-

tion. If the coefficient of inertia is not constant, can the attracting

mass be? That is the question.

At least, the principle of the conservation of energy yet remains

to us, and this seems more solid. Shall I recall to you how it was

in its turn thrown into discredit? This event has made more noise

than the preceding and it is in all the records.

From the first works of Becquerel, and, above all. when the

Curies had discovered radium, one saw that every radio-active body
was an inexhaustible source of radiations. Its activity would seem

to subsist without alteration throughout the months and the years.

This was already a strain on the principles; these radiations were in

fact energy, and from the same morsel of radium this issued and for-

ever issued. But these quantities of energy were too slight to be

measured; at least one believed so and was not much disquieted.

The scene changed when Curie bethought himself to put radium

into a calorimeter; it was seen then that the quantity of heat in-

cessantly created was very notable.

The explanations proposed were numerous; but in so far as no

one of them has prevailed over the others, we cannot be sure there

is a good one among them.

Sir William Ramsay has striven to show that radium is in process

of transformation, that it contains a store of energy enormous but

not inexhaustible.

The transformation of radium, then, would produce a million

times more of heat than all known transformations; radium would
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wear itself out in 1250 years; you see that we are at least certain

to be settled on this point some hundreds of years from now. While

waiting our doubts remain.

In the midst of so many ruins what remains standing? The prin-

ciple of least action has hitherto remained intact, and Larmor appears
to believe that it will long survive the others; in reality, it is still

more vague and more general.

In presence of this general ruin of the principles, what attitude

will mathematical physics take?

And first, before too much perplexity, it is proper to ask if all this

is really true. All these apparent contradictions to the principles are

encountered only among infinitesimals; the microscope is necessary

to see the Brownian movement; electrons are very light; radium is

very rare, and no one has ever seen more than some milligrams of

it at a time.

And, then, it may be asked if, beside the infinitesimal seen, there

be not another infinitesimal unseen counterpoise to the first.

So, there is an interlocutory question, and, as it seems, only

experiment can solve it. We have, therefore, only to hand over the

matter to the experimenters, and, while waiting for them to deter-

mine the question finally, not to preoccupy ourselves with these dis-

quieting problems, but quietly continue our work, as if the princi-

ples were still uncontested. We have much to do without leaving

the domain where they may be applied in all security; we have

enough to employ our activity during this period of doubts.

And as to these doubts, is it indeed true that we can do nothing
to disembarrass science of them? It may be said, it is not alone

experimental physics that has given birth to them; mathematical

physics has well contributed. It is the experimenters who have seen

radium throw out energy, but it is the theorists who have put in

evidence all the difficulties raised by the propagation of light across

a medium in motion; but for these it is probable we should not have

become conscious of them. Well, then, if they have done their best

to put us into this embarrassment, it is proper also that they help us

to get out of it.

They must subject to critical examination all these new views

I have just outlined before you, and abandon the principles only
after having made a loyal effort to save them.

What can they do in this sense? That is what I will try to ex-

plain.

Among the most interesting problems of mathematical physics,

it is proper to give a special place to those relating to the kinetic

theory of gases. Much has already been done in this direction, but

much still remains to be done. This theory is an eternal paradox.
We have reversibility in the premises and irreversibility in the con-
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elusions; and between the two an abyss' Statistic considerations,

the law of great numbers, do they suffice to fill it? Many points

still remain obscure to which it is necessary to return, and doubtless

many times. In clearing them up, we shall understand better the

sense of the principle of Carnot and its place in the ensemble of

dynamics, and we shall be better armed to interpret properly the

curious experiment of Gouy, of which I spoke above.

Should we not also erideavor to obtain a more satisfactory theory
of the electro-dynamics of bodies in motion? It is there especially,

as I have sufficiently shown above, that difficulties accumulate.

Evidently we must heap up hypotheses, we cannot satisfy all the

principles at once; heretofore, one has succeeded in safeguarding
some only on condition of sacrificing the others; but all hope of

obtaining better results is not yet lost. Let us take, therefore, the

theory of Lorentz, turn it in all senses, modify it little by little, and

perhaps everything will arrange itself.

Thus in place of supposing that bodies in motion undergo a con-

traction in the sense of the motion, and that this contraction is the

same whatever be the nature of these bodies and the forces to which

they are otherwise submitted, could we not make an hypothesis
more simple and more natural?

We might imagine, for example, that it is the ether which is

modified when it is in relative motion in reference to the material

medium which it penetrates, that when it is thus modified, it no

longer transmits perturbations with the same velocity in every direc-

tion. It might transmit more rapidly those which are propagated

parallel to the medium, whether in the same sense or in the opposite

sense, and less rapidly those which are propagated perpendicularly.

The wave surfaces would no longer be spheres, but ellipsoids, and we
could dispense with that extraordinary contraction of all bodies.

I cite that only as an example, since the modifications one might

essay would be evidently susceptible of infinite variation.

It is possible also that the astronomer may some day furnish us data

on this point; he it was in the main who raised the question in

making us acquainted with the phenomenon of the aberration of light.

If we make crudely the theory of aberration, we reach a very curious

result. The apparent positions of the stars differ from their real

positions because of the motion of the earth, and as this motion is

variable, these apparent positions vary. The real position we cannot

know, but we can observe the variations of the apparent position.

The observations of the aberration show us, therefore, not the

movement of the earth, but the variations of this movement; they

cannot, therefore, give us information about the absolute motion

of the earth. At least this is true in first approximation, but it

would be no longer the same if we could appreciate the thousandths
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of a second. Then it would be seen that the amplitude of the oscil-

lation depends not alone on the variation of the motion, variation

which is well known, since it is the motion of our globe on its elliptic

orbit, but on the mean value of this motion; so that the constant of

aberration would not be altogether the same for all the stars, and the

differences would tell us the absolute motion of the earth in space.

This, then, would be, under another form, the ruin of the prin-

ciple of relativity. We are far, it is true, from appreciating the

thousandths of a second, but after all, say some, the total absolute

velocity of the earth may be much greater than its relative velocity

with respect to the sun. If, for example, it were 300 kilometers per
second in place of 30, this would suffice to make the phenomena
observable.

I believe that in reasoning thus we admit a too simple theory
of aberration. Michelson has shown ms, I have told you, that the

physical procedures are powerless to put in evidence absolute mo-

tion; I am persuaded that the same will be true of the astronomic

procedures, however far one pushes precision.

However that may be, the data astronomy will furnish us in

this regard will some day be precious to the physicist. While wait-

ing, I believe the theorists, recalling the experience of Michelson,

may anticipate a negative result, and that they would accomplish
a useful work in constructing a theory of aberration which would

explain this in advance.

But let us come back to the earth. There also we may aid the

experimenters. We can, for example, prepare the ground by study-

ing profoundly the dynamics of electrons; not, be it understood,
in starting from a single hypothesis, but in multiplying hypotheses
as much as possible. It will be, then, for the physicists to utilize

our work in seeking the crucial experiment to decide between these

different hypotheses.
This dynamics of electrons can be approached from many sides,

but among the ways leading thither is one which has been somewhat

neglected, and yet this is one of those which promise us most of sur-

prises. It is the movements of the electrons which produce the line

of the emission spectra; this is proved by the phenomenon of Zee-

mann; in an incandescent body, what vibrates is sensitive to the

magnet, therefore electrified. This is a very important first point,

but no one has gone farther; why are the lines of the spectrum
distributed in accordance with a regular law?

These laws have been studied by the experimenters in their least

details; they are very precise and relatively simple. The first study
of these distributions recalled the harmonics encountered in acous-

tics
;
but the difference is great. Not only the numbers of vibrations

are not the successive multiples of one number, but we do not
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even find anything analogous to the roots of those transcendental

equations to which so many problems of mathematical physics con-

duct us: that of the vibrations of an elastic body of any form, that

of the Hertzian oscillations in a generator of any form, the problem
of Fourier for the cooling of a solid body.
The laws are simpler, but they are of wholly other nature, and to

cite only one of these differences, for the harmonics of high order

the number of vibrations tends toward a finite limit, instead of

increasing indefinitely.

That has not yet been accounted for, and I believe that there we
have one of the most important secrets of nature. Lindemann has

made a praiseworthy attempt, but, to my mind, without success;

this attempt should be renewed. Thus we shall penetrate, so to say,

into the inmost recess of matter. And from the particular point of

view which we to-day occupy, when we know why the vibrations

of incandescent bodies differ from ordinary elastic vibrations, why
the electrons do not behave themselves like the matter which is familiar

to us, we shall better comprehend the dynamics of electrons and

it will be perhaps more easy for us to reconcile it with the princi-

ples.

Suppose, now, that all these efforts fail, and after all I do not

believe they will, what must be done? Will it be necessary to seek

to mend the broken principles in giving what we French call a coup
de pouce f That is evidently always possible, and I retract nothing
I have formerly said.

Have you not written, you might say if you wished to seek a

quarrel with me, have you not written that the principles, though of

experimental origin, are now unassailable by experiment because

they have become conventions? And now you have just told us the

most recent conquests of experiment put these principles in danger.

Well, formerly I was right and to-day I am not wrong.

Formerly I was right, and what is now happening is a new proof

of it. Take, for example, the calorimeter experiment of Curie on

radium. Is it possible to reconcile that with the principle of the

conservation of energy?
It has been attempted in many ways; but there is among them

one I should like you to notice.

It has been conjectured that radium was only an intermediary,

that it only stored radiations of unknown nature which flashed

through space in every direction, traversing all bodies, save radium,

without being altered by this passage and without exercising any
action upon them. Radium alone took from them a little of their

energy and afterward gave it out to us in divers forms.

What an advantageous explanation, and how convenient! First,

it is unverifiable and thus irrefutable. Then again it will serve to
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account for any derogation whatever to the principle of Mayer; it

responds in advance not only to the objection of Curie, but to all

the objections that future experimenters might accumulate. This

new and unknown energy would serve for everything. This is just

what I have said, and we are thereby shown that our principle is

unassailable by experiment.
And after all, what have we gained by this coup de pouce ?

The principle is intact, but thenceforth of what use is it?

It permitted us to foresee that in such or such circumstance we
could count on such a total quantity of energy; it limited us; but

now where there is put at our disposition this indefinite provision of

new energy, we are limited by nothing; and as I have written else-

where, if a principle ceases to be fecund, experiment, without con-

tradicting it directly, will be likely to condemn it.

This, therefore, is not what would have to be done, it would be

necessary to rebuild anew.

If we were cornered down to this necessity, we should moreover

console ourselves. It would not be necessary to conclude that science

can weave only a Penelope's web, that it can build only ephemeral

constructions, which it is soon forced to demolish from top to bot-

tom with its own hands.

As I have said, we have already passed through a like crisis. I

have shown you that in the second mathematical physics, that of

the principles, we find traces of the first, that of the central forces;

it will be just the same if we must learn a third.

When an animal exuviates, and breaks its too narrow carapace to

make itself a fresh one, we easily recognize under the new envelope
the essential traits of the organism which have existed.

We cannot foresee in what way we are about to expand; perhaps
it is the kinetic theory of gases which is about to undergo develop-
ment and serve as model to the others. Then, the facts which first

appeared to us as simple, thereafter will be merely results of a very

great number of elementary facts which only the laws of chance

make cooperate for a common end. Physical law will then take an

entirely new aspect; it will no longer be solely a differential equation,
it will take the character of a statistical law.

Perhaps, likewise, we should construct a whole new mechanics,
of which we only succeed in catching a glimpse, where inertia increas-

ing with the velocity, the velocity of light would become an impass-
able limit.

The ordinary mechanics, more simple, would remain a first approx-

imation, since it would be true for velocities not too great, so that we
should still find the old dynamics under the new.

We should not have to regret having believed in the principles,

and even, since velocities too great for the old formulas would always
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be only exceptional, the surest way in practice would-be still to act

as if we continued to believe in them. They are so useful, it would be

necessary to keep a place for them. To determine to exclude them

altogether would be to deprive one's self of a precious weapon. I hasten

to say in conclusion we are not yet there, and as yet nothing proves
that the principles will not come forth from the combat victorious

and intact.

SHORT PAPERS

Three short papers were read in the Section of Applied Mathematics, the first

by Professor Henry T. Eddy, of the University of Minnesota, on " The Electro-

magnetic Theory and the Velocity of Light."
The second paper was presented by Professor Alexander Macfarlane, of Chat-

ham, Ontario, "On the Exponential Notation in Vector-analysis."
The third paper was presented by Professor James McMahon, of Cornell Uni-

versity,
" On the Use of N-fold Riemann Spaces in Applied Mathematics."
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SCIENCE AND HYPOTHESIS 1

BY PROF. JULES HENRI POINCARE, UNIVERSITY OF PARIS

PART I NUMBER AND MAGNITUDE

On the Nature of Mathematical Reasoning

THE very possibility of mathematical science seems an insoluble

contradiction. If this science is only deductive in appearance, from

whence is derived that perfect rigor which is challenged by none?

If, on the contrary, all the propositions which it enunciates may be

derived in order by the rules of formal logic, how is it that mathe-

matics is not reduced to a gigantic tautology? The syllogism can

teach us nothing essentially new, and if everything must spring from

the principle of identity, then everything should be capable of being

reduced to that principle. Are we then to admit that the enunciations

of all the theorems with which so many volumes are filled, are only

indirect ways of saying that A is A?
No doubt we may refer back to axioms which are at the source of all

these reasonings. If it is felt that they cannot be reduced to the

principle of contradiction, if we decline to see in them any more than

experimental facts which have no part or lot in mathematical neces-

sity, there is still one resource left to us: we may class them among
a priori synthetic views. But this is no solution of the difficulty

it is merely giving it a name; and even if the nature of the synthetic

views had no longer for us any mystery, the contradiction would not

have disappeared; it would have only been shirked. Syllogistic rea-

soning remains incapable of adding anything to the data that are given

it
;
the data are reduced to axioms, and that is all we should find in the

conclusions.

No theorem can be new unless a new axiom intervenes in its dem-

onstration
; reasoning can only give us immediately evident truths

borrowed from direct intuition; it would only be an intermediary

i This is a translation of Prof. Poincare"'s celebrated treatise entitled

La Science et I'Hypothese. It is presented here in the nature of collateral

reading to the lectures on Mathematics and other scientific lectures deliv-

ered at the International Congress of Arts and Science.
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parasite. Should we not therefore have reason for asking if the syllo-

gistic apparatus serves only to disguise what we have borrowed ?

The contradiction will strike us the more if we open any book on

mathematics; on every page the author announces his intention of

generalizing some proposition already known. Does the mathematical

method proceed from the particular to the general, and, if so, how
can it be called deductive?

Finally, if the science of number were merely analytical, or could

be analytically derived from a few synthetic intuitions, it seems that a

sufficiently powerful mind could with a single glance perceive all its

truths
; nay, one might even hope that some day a language would be

invented simple enough for these truths to be made evident to any

person of ordinary intelligence.

Even if these consequences are challenged, it must be granted that

mathematical reasoning has of itself a kind of creative virtue, and is

therefore to be distinguished from the syllogism. The difference must

be profound. We shall not, for instance, find the key to the mystery
in the frequent use of the rule by which the same uniform operation

applied to two equal numbers will give identical results. All these

modes of reasoning, whether or not reducible to the syllogism, pro-

perly so called, retain the analytical character, and ipso facto, lose

their power.
The argument is an old one. Let us see how Leibnitz tried to show

that two and two make four. I assume the number one to be defined,

and also the operation oH-1 i.e., the adding of unity to a given num-

ber x. These definitions, whatever they may be, do not enter into the

subsequent reasoning. I next define the numbers 2, 3, 4 by the

equalities :

(1) 1 + 1 = 2; (2) 2 + 1 = 3; (3) 3 + 1 = 4, and in the same way
I define the operation re + 2 by the relation; (4) x + 2 =(x + 1)+ 1.

Given this, we have :

2+2=(2+l)+l; (def. 4).

(2+1) +1=3+1 (def. 2).

3+1=4 (def. 3).

whence 2+2=4 Q.E.D.

It cannot be denied that this reasoning is purely analytical. But

if we ask a mathematician, he will reply :

" This is not a demonstra-

tion properly so called; it is a verification." We have confined our-

selves to bringing together one or other of two purely conventional

definitions, and we have verified their identity ; nothing new has been

learned. Verification differs from proof precisely because it is analyti-

cal, and because it leads to nothing. It leads to nothing because the

conclusion is nothing but the premisses translated into another lan-

guage. A real proof, on the other hand, is fruitful, because the con-

clusion is in a sense more general than the premisses. The equality
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2+2=4 can be verified because it is particular. Each individual enun-

ciation in mathematics may be always verified in the same way. But

if mathematics could be reduced to a series of such verifications it

would not be a science. A chess-player, for instance, does not create

a science by winning a piece. There is no science but the science of the

general. It may even be said that the object of the exact sciences is to

dispense with these direct verifications.

Let us now see the geometer at work, and try to surprise some of

his methods. The task is not without difficulty; it is not enough to

open a book at random and to analyze any proof we may come across.

First of all, geometry must be excluded, or the question becomes

complicated by difficult problems relating to the role of the postulates,

the nature and the origin of the idea of space. For analogous rea-

sons we cannot avail ourselves of the infinitesimal calculus. We must

seek mathematical thought where it has remained pure i.e., in Arith-

metic. But we still have to choose
;
in the higher parts of the theory

of numbers the primitive mathematical ideas have already undergone
so profound an elaboration that it becomes difficult to analyze them.

It is therefore at the beginning of Arithmetic that we must expect

to find the explanation we seek; but it happens that it is precisely in

the proofs of the most elementary theorems that the authors of classic

treatises have displayed the least precision and rigor. We may not

impute this to them as a crime; they have obeyed a necessity. Begin-
ners are not prepared for real mathematical rigor; they would see in

it nothing but empty, tedious subtleties. It would be waste of time to

try to make them more exacting; they have to pass rapidly and without

stopping over the road which was trodden slowly by the founders of

the science.

Why is so long a preparation necessary to habituate oneself to this

perfect rigor, which it would seem should naturally be imposed on

all minds ? This is a logical and psychological problem which is well

worthy of study. But we shall not dwell on it; it is foreign to our

subject. All I wish to insist on is, that we shall fail in our purpose
unless we reconstruct the proofs of the elementary theorems, and give

them, not the rough form in which they are left so as not to weary
the beginner, but the form which will satisfy the skilled geometer.

Definition of Addition

I assume that the operation x-\-l has been defined; it consists in

adding the number 1 to a given number x. Whatever may be said of

this definition, it does not enter into the subsequent reasoning.

We now have to define the operation oH-o, which consists in adding
the number a to any given number x. Suppose that we have defined

the operation x + (a 1) ; the operation x + a will be defined by
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the equality: (1) x + a = [x + (a !)] + !. We shall know what

x + a is when we know what x+(a 1) is, and as I have assumed

that to start with we know what x + 1 is, we can define suc-

cessively and "
by recurrence

"
the operations x + 2, x + 3, etc. This

definition deserves a moment's attention; it is of a particular nature

which distinguishes it even at this stage from the purely logical defi-

nition; the equality (1), in fact, contains an infinite number of dis-

tinct definitions, each having only one meaning when we know the

meaning of its predecessor.

Properties of Addition

Associative. I say that a + (& + c)
=

(a + &)+ c; in fact the theo-

rem is true for c = 1. It may then be written a +(& + 1)= (a + &)

-f- 1
; which, remembering the difference of notation, is nothing but the

equality (1) by which I have just defined addition. Assume the

theorem true for c y, I say that it will be true for c = y + 1.

Let (a + &)+y = a+(&+y), it follows that [(a + 6)+y] + l =
[a + (& + y)]+l; or by del (1) (a + &)+ (y + l)=o+(& + y +
l)=a + [&+(y + l)L which shows by a series of purely analytical

deductions that the theorem is true for y + 1. Being true for c = 1, we

see that it is successively true for c = 2, c = 3, etc.

Commutative. (1)1 say that a + 1 = 1 + a. The theorem is evi-

dently true for a = 1
;
we can verify by purely analytical reasoning that

if it is true for a = y it will be true for a = y + I.
1

Now, it is true for

a = 1, and therefore is true for a = 2, a = 3, and so on. This is what

is meant by saying that the proof is demonstrated "
by recurrence."

(2) I say that a + b & + a. The theorem has just been shown to

hold good for & = 1, and it may be verified analytically that if it is true

for b = , it will be true for b = ft + 1. The proposition is thus estab-

lished by recurrence.

Definition of Multiplication

We shall define multiplication by the equalities: (l)aXl = a. (2)

a X 6 = [a X (& 1)] -f a. Both of these include an infinite number

of definitions; having defined a X 1, it enables us to define in succession

a X 2, a X 3, and so on.

Properties of Multiplication

Distributive. I say that (a + &) X c = (a X c)+ (6 X c) . We can

verify analytically that the theorem is true for c = 1
; then if it is true

for c y, it will be true for c = y + 1. The proposition is then proved

by recurrence.

i For ( y+i ) +1= ( i+y )+1=1+ ( y+ 1 ) . [TB.J
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Commutative. (1) I say that a X 1 1 X a. The theorem is

obvious for a = 1. We can verify analytically that if it is true for

a = a, it will be true foi a = a + 1.

(2) I say that a X b
~

b X a. The theorem has just been proved
for b = 1. We can verify analytically that if it be true for b = (3

it

will be true for & = ft + 1.

This monotonous series of reasonings may now be laid aside; but

their very monotony brings vividly to light the process, which is uni-

form, and is met again at every step. The process is proof by recur-

rence. We first show that a theorem is true for n 1; we then show

that if it is true for n 1 it is true for n, and we conclude that it is

true for all integers. We have now seen how it may be used for the

proof of the rules of addition and multiplication that is to say,

for the rules of the algebraical calculus. This calculus is an instru-

ment of transformation which lends itself to many more different

combinations than the simple syllogism; but it is still a purely an-

alytical instrument, and is incapable of teaching us anything new.

If mathematics had no other instrument, it would immediately be ar-

rested in its development; but it has recourse anew to the same

process i.e., to reasoning by recurrence, and it can continue its

forward march. Then if we look carefully, we find this mode of

reasoning at every step, either under the simple form which we have

just given to it, or under a more or less modified form. It is there-

fore mathematical reasoning par excellence, and we must examine it

closer.

The essential characteristic of reasoning by recurrence is that it

contains, condensed, so to speak, in a single formula, an infinite num-
ber of syllogisms. We shall see this more clearly if we enunci-

ate the syllogisms one after another. They follow one another, if one

may use the expression, in a cascade. The following are the hypo-
thetical syllogisms: The theorem is true of the number 1. Now, if it

is true of 1, it is true of 2; therefore it is true of 2. Now, if it is

true of 2, it is true of 3; hence it is true of 3, and so on. We see that

the conclusion of each syllogism serves as the minor of its successor.

Further, the majors of all our syllogisms may be reduced to a single

form. If the theorem is true of n 1, it is true of n.

We see, then, that in reasoning by recurrence we confine ourselves to

the enunciation of the minor of the first syllogism, and the general

formula which contains as particular cases all the majors. This unend-

ing series of syllogisms is thus reduced to a phrase of a few lines.

It is now easy to understand why every particular consequence of

a theorem may, as I have above explained, be verified by purely an-

alytical processes. If, instead of proving that our theorem is true for

all numbers we only wish to show that it is true for

the number 6 for instance, it will be enough to establish the first five
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syllogisms in our cascade. We shall require 9 if we wish to prove it

for the number 10; for a greater number we shall require more still;

but however great the number may be we shall always reach it, and the

analytical verification will always be possible. But however far we went

we should never reach the general theorem applicable to all numbers,

which alone is the object of science. To reach it we should require

an infinite number of syllogisms, and we should have to cross an abyss

which the patience of the analyst, restricted to the resources of formal

logic, will never succeed in crossing.

I asked at the outset why we cannot conceive of a mind powerful

enough to see at a glance the whole body of mathematical truth. The

answer is now easy. A chess-player can combine for four or five

moves ahead; but, however extraordinary a player he may be, he

cannot prepare for more than a finite number of moves. If he applies

his faculties to Arithmetic, he cannot conceive its general truths by
direct intuition alone ; to prove even the smallest theorem he must use

reasoning by recurrence, for that is the only instrument which enables

us to pass from the finite to the infinite. This instrument is always

useful, for it enables us to leap over as many stages as we wish
;
it frees

us from the necessity of long, tedious, and monotonous verifications

which would rapidly become impracticable. Then when we take in

hand the general theorem it becomes indispensable, for otherwise we

should ever be approaching the analytical verification without ever

actually reaching it. In this domain of Arithmetic we may think our-

selves very far from the infinitesimal analysis, but the idea of math-

ematical infinity is already playing a preponderating part, and with-

out it there would be no science at all, because there would be nothing

general.

The views upon which reasoning by recurrence is based may be

exhibited in other forms; we may say, for instance, that in any finite

collection of different integers there is always one which is smaller

than any other. "We may readily pass from one enunciation to an-

other, and thus give ourselves the illusion of having proved that

reasoning by recurrence is legitimate. But we shall always be brought

to a full stop we shall always come to an indemonstrable axiom,

which will at bottom be but the proposition we had to prove translated

into another language. We cannot therefore escape the conclusion

that the rule of reasoning by recurrence is irreducible to the principle

of contradiction. Nor can the rule come to us from experiment. Ex-

periment may teach us that the rule is true for the first ten or the first

hundred numbers, for instance; it will not bring us to the indefinite

series of numbers, but only to a more or less long, but always limited,

portion of the series.

Now, if that were all that is in question, the principle of contradic-

tion would be sufficient, it would always enable us to develop as many
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syllogisms as we wished. It is only when it is a question of a single

formula to embrace an infinite number of syllogisms that this prin-

ciple breaks down, and there, too, experiment is powerless to aid.

This rule, inaccessible to analytical proof and to experiment, is the

exact type of the a priori synthetic intuition. On the other hand, we

cannot see in it a convention as in the case of the postulates of geom-

etry.

Why then is this view imposed upon us with such an irresistible

weight of evidence? It is because it is only the affirmation of the

power of the mind which knows it can conceive of the indefinite repe-

tition of the same act, when the act is once possible. The mind has a

direct intuition of this power, and experiment can only be for it an

opportunity of using it, and thereby of becoming conscious of it.

But it will be said, if the legitimacy of reasoning by recurrence

cannot be established by experiment alone, is it so with experiment
aided by induction ? We see successively that a theorem is true of the

number 1, of the number 2, of the number 3, and so on the law is

manifest, we say, and it is so on the same ground that every physical

law is true which is based on a very large but limited number of ob-

servations.

It cannot escape our notice that here is a striking analogy with the

usual processes of induction. But an essential difference exists. In-

duction applied to the physical sciences is always uncertain, because

it is based on the belief in a general order of the universe, an order

which is external to us. Mathematical induction i.e., proof by re-

currence is, on the contrary, necessarily imposed on us, because it

is only the affirmation of a property of the mind itself.

Mathematicians, as I have said before, always endeavor to generalize

the propositions they have obtained. To seek no further example, we

have just shown the equality, a+l=l+a, and we then used it to estab-

lish the equality, a+&=&+a, which is obviously more general. Math-

ematics may, therefore, like the other sciences, proceed from the

particular to the general. This is a fact which might otherwise have

appeared incomprehensible to us at the beginning of this study, but

which has no longer anything mysterious about it, since we have

ascertained the analogies between proof by recurrence and ordinary

induction.

No doubt mathematical recurrent reasoning and physical inductive

reasoning are based on different foundations, but they move in par-

allel lines and in the same direction namely, from the particular to

the general.

Let us examine the case a little more closely. To prove the equality

a+2=2-f-a (1), we need only apply the rale a-f-l^l+a, twice,

and write a+2=a+l+l=l+a+l=l+l+a=2+a (2).

The equality thus deduced by purely analytical means is not, how-
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ever, a simple particular case. It is something quite different. We
may not therefore even say in the really analytical and deductive part

of mathematical reasoning that we proceed from the general to the

particular in the ordinary sense of the words. The two sides of the

equality (2) are merely more complicated combinations than the two

sides of the equality (1), and analysis only serves to separate the ele-

ments which, enter into these combinations and to study their relations.

Mathematicians therefore proceed
"
by construction," they

"
con-

struct
" more complicated combinations. When they analyze these

combinations, these aggregates, so to speak, into their primitive ele-

ments, they see the relations of the elements and deduce the relations

of the aggregates themselves. The process is purely analytical, but it

is not a passing from the general to the particular, for the aggregates

obviously cannot be regarded as more particular than their elements.

Great importance has been rightly attached to this process of
"
con-

struction," and some claim to see in it the necessary and sufficient

condition of the progress of the exact sciences. Necessary, no doubt,

but not sufficient! For a construction to be useful and not mere

waste of mental effort, for it to serve as a stepping-stone to higher

things, it must first of all possess a kind of unity enabling us to see

something more than the juxtaposition of its elements. Or more ac-

curately, there must be some advantage in considering the construc-

tion rather than the elements themselves. What can this advantage

be? Why reason on a polygon, for instance, which is always decom-

posable into triangles, and not on elementary triangles? It is be-

cause there are properties of polygons of any number of sides, and

they can be immediately applied to any particular kind of polygon.

In most cases it is only after long efforts that those properties can be

discovered, by directly studying the relations of elementary triangles.

If the quadrilateral is anything more than the juxtaposition of two

triangles, it is because it is of the polygon type.

A construction only becomes interesting when it can be placed side

by side with other analogous constructions for forming species of the

same genus. To do this we must necessarily go back from the particu-

lar to the general, ascending one or more steps. The analytical

process
"
by construction

"
does not compel us to descend, but it

leaves us at the same level. We can only ascend by mathematical

induction, for from it alone can we learn something new. Without

the aid of this induction, which in certain respects differs from, but

is as fruitful as, physical induction, construction would be powerless

to create science.

Let me observe, in conclusion, that this induction is only possible if

the same operation can be repeated indefinitely. That is why the

theory of chess can never become a science, for the different moves of

the same piece are limited and do not resemble each other.
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Mathematical Magnitude and Experiment

If we want to know what the mathematicians mean by a continuum,

it is useless to appeal to geometry. The geometer is always seeking,

more or less, to represent to himself the figures he is studying, but

his representations are only instruments to him
;
he uses space in his

geometry just as he uses chalk; and further, too much importance
must not bo attached to accidents which are often nothing more than

the whiteness of the chalk.

The pure analyst has not to dread this pitfall. He has disen-

gaged mathematics from all extraneous elements, and he is in a

position to answer our question :

"
Tell me exactly what this con-

tinuum is, about which mathematicians reason." Many analysts who

reflect on their art have already done so M. Tannery, for instance,

in his Introduction a la theorie des Fonctions d'une variable.

Let us start with the integers. Between any two consecutive sets,

intercalate one or more intermediary sets, and then between these sets

others again, and so on indefinitely. We thus get an unlimited num-

ber of term?, and these will be the numbers which we call fractional,

rational, or commensurable. But this is not yet all; between these

terms, which, be it marked, are already infinite in number, other terms

are intercalated, and these are called irrational or incommensurable.

Before going any further, let me make a preliminary remark. The

continuum thus conceived is no longer a collection of individuals ar-

ranged in a certain order, infinite in number, it is true, but external

the one to the other. This is not the ordinary conception in which it

is supposed that between the elements of the continuum exists an inti-

mate connection making of it one whole, in which the point has no

existence previous to the line, but the line does exist previous to the

point. Multiplicity alone subsists, unity has disappeared
"
the

continuum is unity in multiplicity," according to the celebrated for-

mula. The analysts have even less reason to define their continuum

as they do, since it is always on this that they reason when they are

particularly proud of their rigor. It is enough to warn the reader that

the real mathematical continuum is quite different from that of the

physicists and from that of the metaphysicians.

It may also be said, perhaps, that mathematicians who are con-

tented with this definition are the dupes of words, that the nature of

each of these sets should be precisely indicated, that it should be ex-

plained how they are to be intercalated, and that it should be shown

how it is possible to do it. This, however, would be wrong; the only

property of the sets which comes into the reasoning is that of pre-

ceding or succeeding these or those other sets
;
this alone should there-

fore intervene in the definition. So we need not concern ourselves

with the manner in which the sets are intercalated, and no one will
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doubt the possibility of the operation if he only remembers that
"
pos-

sible
"

in the language of geometers simply means exempt from con-

tradiction. But our definition is not yet complete, and we come back

to it after this rather long digression.

Definition of Incommensurables. The mathematicians of the Ber-

lin school, and Kronecker in particular, have devoted themselves to

constructing this continuous scale of irrational and fractional num-

bers without using any other materials than the integer. The math-

ematical continuum from this point of view would be a pure creation

of the mind in which experiment would have no part.

The idea of rational number not seeming to present to them any

difficulty, they have confined their attention mainly to defining incom-

mensurable numbers. But before reproducing their definition here, I

must make an observation that will allay the astonishment which this

will not fail to provoke in readers who are but little familiar with the

habits of geometers.

Mathematicians do not study objects, but the relations between

objects; to them it is a matter of indifference if these objects are

replaced by others, provided that the relations do not change. Matter

does not engage their attention, they are interested by form alone.

If we did not remember it, we could hardly understand that Kro-

necker gives the name of incommensurable number to a simple symbol
that is to say, something very different from the idea we think we

ought to have of a quantity which should be measurable and almost

tangible.

Let us see now what is Kronecker's definition. Commensurable

numbers may be divided into classes in an infinite number of ways,

subject to the condition that any number whatever of the first class is

greater than any number of the second. It may happen that among
the numbers of the first class there is one which is smaller than all

the rest; if, for instance, we arrange in the first class all the numbers

greater than 2, and 2 itself, and in the second class all the numbers

smaller than 2, it is clear that 2 will be the smallest of all the num-
bers of the first class. The number 2 may therefore be chosen as the

symbol of this division.

It may happen, on the contrary, that in the second class there is one

which is greater than all the rest. This is what takes place, for ex-

ample, if the first class comprises all the numbers greater than 2,

and if, in the second, are all the numbers less than 2, and 2 itself.

Here again the number 2 might be chosen as the symbol of this

division.

But it may equally well happen that we can find neither in the

first class a number smaller than all the rest, nor in the second class a

number greater than all the rest. Suppose, for instance, we place in

the first class all the numbers whose squares are greater than 2, and in
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the second all the numbers whose squares are smaller than 2. We
know that in neither of them is a number whose square is equal to 2.

Evidently there will be in the first class no number which is smaller

than all the rest, for however near the square of a number may be to 2,

we can always find a commensurable whose square is still nearer to 2.

From Kronecker's point of view, the incommensurable number of 2

is nothing but the symbol of this particular method of division of

commensurable numbers; and to each mode of repartition corresponds
in this way a number, commensurable or not, which serves as a sym-

bol. But to be satisfied with this would be to forget the origin of these

symbols; it remains to explain how we have been led to attribute to

them a kind of concrete existence, and on the other hand, does not

the difficulty begin with fractions? Should we have the notion of

these numbers if we did not previously know a matter which we con-

ceive as infinitely divisible i.e., as a continuum ?

The Physical Continuum. We are next led to ask if the idea of

the mathematical continuum is not simply drawn from experiment.

If that be so, the rough data of experiment, which are our sensations,

could be measured. We might, indeed, be tempted to believe that this

is so, for in recent times there has been an attempt to measure them,

and a law has even been formulated, known as Fechner's law, accord-

ing to which sensation is proportional to the logarithm of the stimulus.

But if we examine the experiments by which the endeavor has been

made to establish this law, we shall be led to a diametrically opposite

conclusion. It hap, for instance, been observed that a weight A of 10

grammes and a weight B of 11 grammes produced identical sensa-

tions, that the weight B could no longer be distinguished from a

weight C of 12 grammes, but that the weight A was readily distin-

guished from the weight C. Thus the rough results of the experiments

may be expressed by the following relations: A = B, B = C, A< C,
which may be regarded as the formula of the physical continuum.

But here is an intolerable disagreement with the law of contradiction,

and the necessity of banishing this disagreement has compelled us to

invent the mathematical continuum. We are therefore forced to con-

clude that this notion has been created entirely by the mind, but it is

experiment that has provided the opportunity. We cannot believe that

two quantities which are equal to a third are not equal to one another,

and we are thus led to suppose that A is different from B and B from

C, and that if we have not been aware of this, it is due to the imper-

fections of our senses.

The Creation of the Mathematical Continuum : First Stage. So

far it would suffice, in order to account for facts, to intercalate between

A and B a small number of terms which would remain discrete. What

happens now if we have recourse to some instrument to make up for

the weakness of our senses? If, for example, we use a microscope?
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Such terms as A and B, which before were indistinguishable from

one another, appear now to be distinct : but between A and B, which

are distinct, is intercalated another new term D, which we can distin-

guish neither from A nor from B. Although we may use the most

delicate methods, the rough results of our experiments will always

present the characters of the physical continuum with the contradic-

tion which is inherent in it. We only escape from it by incessantly

intercalating new terms between the terms already distinguished, and

this operation must be pursued indefinitely. We might conceive that

it would be possible to stop if we could imagine an instrument power-
ful enough to decompose the physical continuum into discrete ele-

ments, just as the telescope resolves the Milky Way into stars. But

this we cannot imagine; it is always with our senses that we use our

instruments; it is with the eye that we observe the image magnified

by the microscope, and this image must therefore always retain the

characters of visual sensation, and therefore those of the physical

continuum.

Nothing distinguishes a length directly observed from half that

length doubled by the microscope. The whole is homogeneous to the

part ;
and there is a fresh contradiction or rather there would be one

if the number of the terms were supposed to be finite; it is clear

that the part containing less terms than the whole cannot be similar to

the whole. The contradiction ceases as soon as the number of terms is

regarded as infinite. There is nothing, for example, to prevent us

from regarding the aggregate of integers as similar to the aggregate
of even numbers, which is however only a part of it

;
in fact, to each

integer corresponds another even number which is its double. But

it is not only to escape this contradiction contained in the empiric
data that the mind is led to create the concept of a continuum formed

of an indefinite number of terms.

Here everything takes place just as in the series of the integers.

We have the faculty of conceiving that a unit may be added to a col-

lection of units. Thanks to experiment, we have had the opportunity
of exercising this faculty and are conscious of it; but from this fact

we feel that our power is unlimited, and that we can count indefinitely,

although we have never had to count more than a finite number of

objects. In the same way, as soon as we have intercalated terms between

two consecutive terms of a series, we feel that this operation may be

continued without limit, and that, so to speak, there is no intrinsic

reason for stopping. As an abbreviation, I may give the name of a

mathematical continuum of the first order to every aggregate of

terms formed after the same law as the scale of commensurable num-
bers. If, then, we intercalate new sets according to the laws of in-

commensurable numbers, we obtain what may be called a continuum

of the second order.
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Second Stage. We have only taken our first step. We have ex-

plained the origin of continuums of the first order; we must now see

why this is not sufficient, and why the incommensurable numbers had

to be invented.

If we try to imagine a line, it must have the characters of the phy-

sical continuum that is to say, our representation must have a

certain breadth. Two lines will therefore appear to us under the

form of two narrow bands, and if we are content with this rough

image, it is clear that where two lines cross they must have some

common part. But the pure geometer makes one further effort
;
with-

out entirely renouncing the aid of his senses, he tries to imagine a

line without breadth and a point without size. This he can do only

by imagining a line as the limit towards which tends a band that is

growing thinner and thinner, and the point as the limit towards

which is tending an area that is growing smaller and smaller. Our

two bands, however narrow they may be, will always have a common

area; the smaller they are the smaller it will be, and its limit is what

the geometer calls a point. This is why it is said that the two lines

which cross must have a common point, and this truth seems intuitive.

But a contradiction would be implied if we conceived of lines as

continuums of the first order i.e., the lines traced by the geometer
should only give us points, the co-ordinates of which are rational num-

bers. The contradiction would be manifest if we were, for instance, to

assert the existence of lines and circles. It is clear, in fact, that if

the points whose co-ordinates are commensurable were alone regarded
as real, the in-circle of a square and the diagonal of the square would

not intersect, since the co-ordinates of the point of intersection are

incommensurable.

Even then we should have only certain incommensurable numbers,
and not all these numbers.

But let us imagine a line divided into two half-rays (demi-droites) .

Each of these half-rays will appear to our minds as a band of a

certain breadth; these bands will fit close together, because there must

be no interval between them. The common part will appear to us to

be a point which will still remain as we imagine the bands to become

thinner and thinner, so that we admit as an intuitive truth that if a

line be divided into two half-rays the common frontier of these half-

rays is a point. Here we recognize the conception of Kronecker, in

which an incommensurable number was regarded as the common
frontier of two classes of rational numbers. Such is the origin of

the continuum of the second order, which is the mathematical con-

tinuum properly so called.

Summary. To sum up, the mind has the faculty of creating sym-

bols, and it is thus that it has constructed the mathematical con-

tinuum, which is only a particular system of symbols. The only limit
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to its power is the necessity of avoiding all contradiction; but the

mind only makes use of it when experiment gives a reason for it.

In the case with which we are concerned, the reason is given by
the idea of the physical continuum, drawn from the rough data of

the senses. But this idea leads to a series of contradictions from each

of which in turn we must be freed. In this way we are forced to

imagine a more and more complicated system of symbols. That

on which we shall dwell is not merely exempt from internal contra-

diction, it was so already at all the steps we have taken, but it is

no longer in contradiction with the various propositions which are

called intuitive, and which are derived from more or less elaborate

empirical notions.

Measurable Magnitude. So far we have not spoken of the measure

of magnitudes; we can tell if any one of them is greater than any

other, but we cannot say that it is two or three times as large.

So far, I have only considered the order in which the terms are

arranged; but that is not sufficient for most applications. We must

learn how to compare the interval which separates any two terms. On
this condition alone will the continuum become measurable, and the

operations of arithmetic be applicable. This can only be done by the

aid of a new and special convention; and this convention is, that in

such a case the interval between the terms A and B is equal to the

interval which separates C and D. For instance, we started with

the integers, and between two consecutive sets we intercalated n in-

termediary sets; by convention we now assume these new sets to be

equidistant. This is one of the ways of defining the addition of two

magnitudes ; for if the interval AB is by definition equal to the inter-

val CD, the interval AD will by definition be the sum of the intervals

AB and AC. This definition is very largely, but not altogether, arbi-

trary. It must satisfy certain conditions the commutative and as-

sociative laws of addition, for instance; but, provided the definition

we choose satisfies these laws, the choice is indifferent, and we need

not state it precisely.

Remarks. We are now in a position to discuss several important

questions.

(1) Is the creative power of the mind exhausted by the creation

of the mathematical continuum? The answer is in the negative, and

this is shown in a very striking manner by the work of Du Bois Eey-

mond.

We know that mathematicians distinguish between infinitesimals of

different orders, and that infinitesimals of the second order are in-

finitely small, not only absolutely so, but also in relation to those of

the first order. It is not difficult to imagine infinitesimals of frac-

tional or even of irrational order, and here once more we find the

mathematical continuum which has been dealt with in the preceding
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pages. Further, there are infinitesimals which are infinitely small

with reference to those of the first order, and infinitely large with

respect to the order 1 + e, however small e may be. Here, then, are

new terms intercalated in our series; and if I may be permitted to

revert to the terminology used in the preceding pages, a terminology
which is very convenient, although it has not been consecrated by

usage, I shall say that we have created a kind of continuum of the

third order.

It is an easy matter to go further, but it is idle to do so, for we

would only be imagining symbols without any possible application, and

no one will dream of doing that. This continuum of the third order,

to which we are led by the consideration of the different orders of

infinitesimals, is in itself of but little use and hardly worth quoting.

Geometers look on it as a mere curiosity. The mind only uses its

creative faculty when experiment requires it.

(2) When we are once in possession of the conception of the math-

ematical continuum, are we protected from contradictions analogous to

those which gave it birth ? No, and the following is an instance :

He is a savant indeed who will not take it as evident that every

curve has a tangent ; and, in fact, if we think of a curve and a straight

line as two narrow bands, we can always arrange them in such a way
that they have a common part without intersecting. Suppose now
that the breadth of the bands diminishes indefinitely: the common

part will still remain, and in the limit, so to speak, the two lines will

have a common point, although they do not intersect i.e., they will

touch. The geometer who reasons in this way is only doing what we

have done when we proved that two lines which intersect have a com-

mon point, and his intuition might also seem to be quite legitimate.

But this is not the case. We can show that there are curves which

have no tangent, if we define such a curve as an analytical continuum

of the second order. No doubt some artifice analogous to those we

have discussed above would enable us to get rid of this contradiction,

but as the latter is only met with in very exceptional cases, we need

not trouble to do so. Instead of endeavoring to reconcile intuition

and analysis, we are content to sacrifice one of them, and as analysis

must be flawless, intuition must go to the wall.

Tlie Physical Continuum of Several Dimensions. We have dis-

cussed above the physical continuum as it is derived from the imme-

diate evidence of our senses
, or, if the reader prefers, from the

rough results of Feclmer's experiments; I have shown that these

results are summed up in the contradictory formula? : A= B, B =
C, A > C.

Let us now see how this notion is generalized, and how from it may
be derived the concept of continuums of several dimensions. Consider

any two aggregates of sensations. We can either distinguish between
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them, or we cannot; just as in Feehner's experiments the weight of

10 grammes could be distinguished from the
;
weight of 12 grammes,

but not from the weight of 11 grammes. This is all that is required

to construct the continuum of several dimensions.

Let us call one of these aggregates of sensations an element. It

will be in a measure analogous to the point of the mathematicians,

but will not be, however, the same thing. We cannot say that our

element has no size, for we cannot distinguish it from its immediate

neighbors, and it is thus surrounded by a kind of fog. If the astro-

nomical comparison may be allowed, our "
elements

" would be like

nebulae, whereas the mathematical points would be like stars.

If this be granted, a system of elements will form a continuum if

we can pass from any one of them to any other by a series of consecu-

tive elements such that each cannot be distinguished from its prede-

cessor. This linear series is to the line of the mathematician what the

isolated element was to the point.

Before going further, I must explain what is meant by a cut. Let us

consider a continuum C, and remove from it certain of its elements,

which for a moment we shall regard as no longer belonging to the

continuum. We shall call the aggregate of elements thus removed a

cut. By means of this cut, the continuum C will be subdivided into

several distinct continuums; the aggregate of elements which remain

will cease to form a single continuum. There will then be on C two

elements, A and B, which we must look upon as belonging to two dis-

tinct continuums; and we see that this must be so, because it will be

impossible to find a linear series of consecutive elements of C (each
of the elements indistinguishable from the preceding, the first being

A and the last B), unless one of the elements of this series is indis-

tinguishable from one of the elements of the cut.

It may happen, on the contrary, that the cut may not be sufficient to

subdivide the continuum C. To classify the physical continuums, we

must first of all ascertain the nature of the cuts which must be made
in order to subdivide them. If a physical continuum, C, may be

subdivided by a cut reducing to a finite number of elements, all dis-

tinguishable the one from the other (and therefore forming neither

one continuum nor several continuums), we shall call C a continuum

of one dimension. If, on the contrary, C can only be subdivided by
cuts which are themselves continuums, we shall say that C is of

several dimensions; if the cuts are continuums of one dimension, then

we shall say that C has two dimensions ;
if cuts of two dimensions are

sufficient, we shall say that C is of three dimensions, and so on. Thus

the notion of the physical continuum of several dimensions is defined,

thanks to the very simple fact, that two aggregates of sensations may
be distinguishable or indistinguishable.

The Ufathematicdl Continuum of Several Dimensions. The con-
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ception of the mathematical continuum of n dimensions may be led

up to quite naturally by a process similar to that which we discussed

at the beginning of this chapter. A point of such a continuum is

denned by a system of n distinct magnitudes which we call its co-

ordinates.

The magnitudes need not always be measurable; there is, for in-

stance, one branch of geometry independent of the measure of mag-

nitudes, in which we are only concerned with knowing, for example,

if, on a curve ABC, the point B is between the points A and C, and

in which it is immaterial whether the arc A B is equal to or twice

the arc B C. This branch is called Analysis Situs. It contains

quite a large body of doctrine which has attracted the attention of

the greatest geometers, and from which are derived, one from another,

a whole series of remarkable theorems. What distinguishes these

theorems from those of ordinary geometry is that they are purely

qualitative. They are still true if the figures are copied by an un-

skilful draughtsman, with the result that the proportions are distorted

and the straight lines replaced by lines which are more or less curved.

As soon as measurement is introduced into the continuum we have

just defined, the continuum becomes space, and geometry is born. But

the discussion of this is reserved for Part II.
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Non-Euclidean Geometries

Every conclusion presumes premisses. These premisses are either

self-evident and need no demonstration, or can be established only

if based on other propositions ; and, as we cannot go back in this way
to infinity, every deductive science, and geometry in particular, must

rest upon a certain number of indemonstrable axioms. All treatises

of geometry begin therefore with the enunciation of these axioms.

But there is a distinction to be drawn between them. Some of these,

for example,
"
Things which are equal to the same thing are equal

to one another," are not propositions in geometry but propositions in

analysis. I look upon them as analytical a priori intuitions, and they

concern me no further. But I must insist on other axioms which are

special to geometry. Of these most treatises explicitly enunciate

three: (1) Only one line can pass through two points; (2) a

straight line is the shortest distance between two points; (3) through
one point only one parallel can be drawn to a given straight line.

Although we generally dispense with proving the second of these

axioms, it would be possible to deduce it from the other two, and

from those much more numerous axioms which are implicitly ad-

mitted without enunciation, as I shall explain further on. For a long

time a proof of the third axiom known as Euclid's postulate was

sought in vain. It is impossible to imagine the efforts that have been

spent in pursuit of this chimera. Finally, at the beginning of the

nineteenth century, and almost simultaneously, two scientists, a Eus-

sian and a Bulgarian, Lobatschewsky and Bolyai, showed irrefutably

that this proof is impossible. They have nearly rid us of inventors

of geometries without a postulate, and ever since the Academic des

Sciences receives only about one or two new dmonstrations a year.

But the question was not exhausted, and it was not long before a

great step was taken by the celebrated memoir of Riemann, entitled:

Ueber die Hypothesen welche der Geometric zum Grunde liegen. This

little work has inspired most of the recent treatises to which I shall

later on refer, and among which I may mention those of Beltrami and

Helmholtz.

The Geometry of Lobatschewsky. If it were possible to deduce
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Euclid's postulate from the several axioms, it is evident that by reject-

ing the postulate and retaining the other axioms we should be led to

contradictory consequences. It would be, therefore, impossible to

found on those premisses a coherent geometry. Now, this is pre-

cisely what Lobatschewsky has done. He assumes at the outset that

several parallels may be drawn through a point to a given straight

line, and he retains all the other axioms of Euclid. From these

hypotheses he deduces a series of theorems between which it is im-

possible to find any contradiction, and he constructs a geometry as

impeccable in its logic as Euclidean geometry. The theorems are very

different, however, from those to which we are accustomed, and at first

will be found a little disconcerting. For instance, the sum of the

angles of a triangle is always less than two right angles, and the differ-

ence between that sum and two right angles is proportional to the

area of the triangle. It is impossible to construct a figure similar to a

given figure but of different dimensions. If the circumference of a

circle be divided into n equal parts, and tangents be drawn at the

points of intersection, the n tangents will form a polygon if the

radius of the circle is small enough, but if the radius is large enough

they will never meet. We need not multiply these examples. Lobat-

schewsky's propositions have no relation to those of Euclid, but they

are none the less logically interconnected.

Riemann's Geometry. Let us imagine to ourselves a world only

peopled with beings of no thickness, and suppose these
"
infinitely

flat
" animals are all in one and the same plane, from which they

cannot emerge. Let us further admit that this world is sufficiently

distant from other worlds to be withdrawn from their influence, and

while we are making these hypotheses it will not cost us much to en-

dow these beings with reasoning power, and to believe them capable

of making a geometry. In that case they will certainly attribute to

space only two dimensions. But now suppose that these imaginary

animals, while remaining without thickness, have the form of a spher-

ical, and not of a plane figure, and are all on the same sphere, from

which they cannot escape. What kind of a geometry will they con-

struct? In the first place, it is clear that they will attribute to

space only two dimensions. The straight line to them will be the

shortest distance from one point on the sphere to another that is

to say, an arc of a great circle. In a word, their geometry will be

spherical geometry. What they will call space will be the sphere on

which they are confined, and on which take place all the phenomena
with which they are acquainted. Their space will therefore be

unbounded, since on a sphere one may always walk forward without

ever being brought to a stop, and yet it will be finite; the end will

never be found, but the complete tour can be made. Well, Kiemamrs

geometry is spherical geometry extended to three dimensions. To
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construct it, the German mathematician had first of all to throw over-

board, not only Euclid's postulate, but also the first axiom that only

one line can pass through two points. On a sphere, through two given

points, we can in general draw only one great circle which, as we have

just seen, would be to our imaginary beings a straight line. But

there was one exception. If the two given points are at the ends of

a diameter, an infinite number of great circles can be drawn through
them. In the same way, in Riemann's geometry at least in one of

its forms through two points only one straight line can in general

be drawn, but there are exceptional cases in which through two

points an infinite number of straight lines can be drawn. So there

is a kind of opposition between the geometries of Riemann and Lo-

batschewsky. For instance, the sum of the angles of a triangle is

equal to two right angles in Euclid's geometry, less than two right

angles in that of Lobatschewsky, and greater than two right angles

in that of Riemann. The number of parallel lines that can be drawn

through a given point to a given line is one in Euclid's geometry, none

in Riemann's, and an infinite number in the geometry of Lobatschew-

sky. Let us add that Riemann's space is finite, although unbounded

in the sense which we have above attached to these words.

Surfaces with Constant Curvature. One objection, however, re-

mains possible. There is no contradiction between the theorems

of Lobatschewsky and Riemann; but however numerous are the other

consequences that these geometers have deduced from their hypothe-

ses, they had to arrest their course before they exhausted them all,

for the number would be infinite; and who can say that if they had

carried their deductions further they would not have eventually

reached some contradiction? This difficulty does not exist for Rie-

mann's geometry, provided it is limited to two dimensions. As we

have seen, the two-dimensional geometry of Riemann, in fact, does

not differ from spherical geometry, which is only a branch of ordinary

geometry, and is therefore outside all contradiction. Beltrami, by

showing that Lobatschewsky's two-dimensional geometry was only a

branch of ordinary geometry, has equally refuted the objection as

far as it is concerned. This is the course of his argument: Let us

consider any figure whatever on a surface. Imagine this figure to be

traced on a flexible and inextensible canvas applied to the surface, in

such a way that when the canvas is displaced and deformed the differ-

ent lines of the figure change their form without changing their

length. As a rule, this flexible and inextensible figure cannot be

displaced without leaving the surface. But there are certain surfaces

for which such a movement would be possible. They are surfaces of

constant curvature. If we resume the comparison that we made

just now, and imagine beings without thickness living on one of these

surfaces, they will regard as possible the motion of a figure all the
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lines of which remain of a constant length. Such a movement would

appear absurd, on the other hand, to animals without thickness living

on a surface of variable curvature. These surfaces of constant curva-

ture are of two kinds. The curvature of some is positive, and they

may be deformed so as to be applied to a sphere. The geometry of

these surfaces is therefore reduced to spherical geometry namely,

Riemann's. The curvature of others is negative. Beltrami has shown

that the geometry of these surfaces is identical with that of Lobat-

schewsky. Thus the two-dimensional geometries of Riemann and

Lobatschewsky are connected with Euclidean geometry.

Interpretation of Non-Euclidean Geometries. Thus vanishes the

objection so far as two-dimensional geometries arc concerned. It

would be easy to extend Beltrami's reasoning to three dimensional

geometries, and minds which do not recoil before space of four dimen-

sions will see no difficulty in it; but such minds are few in number.

I prefer, then, to proceed otherwise. Let us consider a certain plane,

which I shall call the fundamental plane, and let us construct a kind

of dictionary by making a double series of terms written in two col-

umns, and corresponding each to each, just as in ordinary diction-

aries the Avords in two languages which have the same signification

correspond to one another :

Space The portion of space situated above the

fundamental plane.

Plane Sphere cutting orthogonally the funda-

mental plane.

Line Circle cutting orthogonally the funda-

mental plane.

Sphere Sphere.

Circle Circle.

Angle Angle.

Distance between

two points Logarithm of the anharmonic ratio of these

two points and of the intersection of the

fundamental plane with the circle pass-

ing through these two points and cutting

it orthogonally.

Etc. Etc.

Let us now take Lobatschewsky's theorems and translate them by

the aid of this dictionary, as we would translate a German text with

the aid of a German-French dictionary. We shall then obtain the the-

orems of ordinary geometry. For instance, Lobatschewsky's theo-

rem :

" The sum of the angles of a triangle is less than two right

angles," may be translated thus :

"
If a curvilinear triangle has for

its sides arcs of circles which if produced would cut orthogonally the

fundamental plane, the sum of the angles of this curvilinear triangle
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will be less than two right angles." Thus, however far the conse-

quences of Lobatschewsky's hypotheses are carried, they will never

lead to a contradiction; in fact, if two of Lobatschewsky's theorems

were contradictory, the translations of these two theorems made by

the aid of our dictionary would be contradictory also. But these

translations are theorems of ordinary geometry, and no one doubts that

ordinary geometry is exempt from contradiction. Whence is the

certainty derived, and how far is it justified? That is a question

upon which I cannot enter here, but it is a very interesting question,

and I think not insoluble. Nothing, therefore, is left of the objection

I formulated above. But this is not all. Lobatschewsky's geometry

being susceptible of a concrete interpretation, ceases to be a useless

logical exercise, and may be applied. I have no time here to deal

with these applications, nor with what Herr Klein and myself have

done by using them in the integration of linear equations. Further,

this interpretation is not unique, and several dictionaries may be

constructed analogous to that above, which will enable us by a simple

translation to convert Lobatschewsky's theorems into the theorems of

ordinary geometry.

Implicit Axioms. Are the axioms implicitly enunciated in our

text-books the only foundation of geometry? We may be assured of

the contrary when we see that, when they are abandoned one after

another, there are still left standing some propositions whicTi are com-

mon to the geometries of Euclid, Lobatschewsky, and Kiemamu

These propositions must be based on premisses that geometers admit

without enunciation. It is interesting to try and extract them from

the classical proofs.

John Stuart Mill asserted 1 that every definition contains an axiom,

because by defining we implicitly affirm the existence of the object

defined. That is going rather too far. It is but rarely in mathematics

that a definition is given without following it up by the proof of

the existence of the object defined, and when this is not done it is

generally because the reader can easily supply it; and it must not be

forgotten that the word "
existence

" has not the same meaning when

it refers to a mathematical entity as when it refers to a material

object.

A mathematical entity exists provided there is no contradiction

implied in its definition, eithe ' in itself, or with the propositions pre-

viously admitted. But if the observation of John Stuart Mill cannot

be applied to all definitions, it is none the less true for some of them.

A plane is sometimes defined in the following manner : The plane is

a surface such that the line which joins any two points upon it lies

wholly on that surface. Now, there is obviously a new axiom con-

cealed in this definition. It is true we might change it, and that

i Logic, c. viii., cf. Definitions, 5-6. TB.
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would be preferable, but then we should have to enunciate the axiom

explicitly. Other definitions may give rise to no less important reflec-

tions, such as, for example, that of the equality of two figures. Two

figures are equal when they can be superposed. To superpose them,

one of them must be displaced until it coincides with the other. But

how must it be displaced? If we asked that question, no doubt we

should be told that it ought to be done without deforming it, and as

an invariable solid is displaced. The vicious circle would then be

evident. As a matter of fact, this definition defines nothing. It has

no meaning to a being living in a world in which there are only fluids.

If it seems clear to us, it is because we are accustomed to the pro-

perties of natural solids which do not much differ from those of the

ideal solids, all of whose dimensions are invariable. However, im-

perfect as it may be, this definition implies an axiom. The possi-

bility of the motion of an invariable figure is not a self-evident truth.

At least it is only so in the application to Euclid's postulate, and not

as an analytical a priori intuition would be. Moreover, when we study

the definitions and the proofs of geometry, we see that we are com-

pelled to admit without proof not only the possibility of this motion,

but also some of its properties. This first arises in the definition of

the straight line. Many defective definitions have been given, but

the true one is that which is understood in all the proofs in which the

straight line intervenes.
"

It may happen that the motion of an in-

variable figure may be such that all the points of a line belonging to

the figure are motionless, while all the points situate outside that line

are in motion. Such a line would be called a straight line." "We

have deliberately in this enunciation separated the definition from the

axiom which it implies. Many proofs such as those of the cases of

the equality of triangles, of the possibility of drawing a perpen-

dicular from a point to a straight line, assume propositions the

enunciations of which are dispensed with, for they necessarily imply
that it is possible to move a figure in space in a certain way.

The Fourth Geometry. Among these explicit axioms there is one

which seems to me to deserve some attention, because when we aban-

don it we can construct a fourth geometry as coherent as those of

Euclid, Lobatschewsky, and Eiemann. To prove that we can always

draw a perpendicular at a point A to a straight line A B, we consider

a straight line A C movable about the point A, and initially identical

with the fixed straight line A B. We then can make it turn about the

point A until it lies in A B produced. Thus we assume two propo-

sitions first, that such a rotation is possible, and then that it may
continue until the two linos lie the one in the other produced. If

the first point is conceded and the second rejected, we are led to a

series of theorems even stranger than those of Lobatschewsky and

Riemann, but equally free from contradiction. I shall give only one
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of these theorems, and I shall not choose the least remarkable of

them. A real straight line may be perpendicular to itself.

Lie's Theorem. The number of axioms implicity introduced into

classical proofs is greater than necessary, and it would be interesting

to reduce them to a minimum. It may be asked, in the first place, if

this reduction is possible if the number of necessary axioms and

that of imaginable geometries is not infinite? A theorem due to

Sophus Lie is of weighty importance in this discussion. It may be

enunciated in the following manner : Suppose the following prem-
isses are admitted: (1) space has n dimensions; (2) the movement of

an invariable figure is possible; (3) p conditions are necessary to

determine the position of this figure in space.

The number of geometries compatible with these premisses will be

limited. I may even add that if n is given, a superior limit can be

assigned to p. If, therefore, the possibility of the movement is granted,

we can only invent a finite and even a rather restricted number of

three-dimensional geometries.

Riemann's Geometries. However, this result seems contradicted

by Eiemann, for that scientist constructs an infinite number of geo-

metries, and that to which his name is usually attached is only a par-

ticular case of them. All depends, he says, on the manner in which

the length of a curve is defined. Now, there is an infinite number of

ways of defining this length, and each of them may be the starting-

point of a new geometry. That is perfectly true, but most of these

definitions are incompatible with the movement of a variable figure

such as we assume to be possible in Lie's theorem. These geometries
of Eiemann, so interesting on various grounds, can never be, there-

fore, purely analytical, and would not lend themselves to proofs analo-

gous to those of Euclid.

On the Nature of Axioms. Most mathematicians regard Lobat-

schewsky's geometry as a mere logical curiosity. Some of them have,

however, gone further. If several geometries are possible, they say,

is it certain that our geometry is the one that is true ? Experiment no

doubt teaches us that the sum of the angles of a triangle is equal to

two right angles, but this is because the triangles we deal with are

too small. According to Lobatschewsky, the difference is proportional
to the area of the triangle, and will not this become sensible when we

operate on much larger triangles, and when our measurements become

more accurate? Euclid's geometry would thus be a provisory geo-

metry. Now, to discuss this view we must first of all ask ourselves,

what is the nature of geometrical axioms? Are they aynthetic

a priori intuitions, as Kant affirmed? They would then be imposed

upon us with such a force that we could not conceive of the contrary

proposition, nor could we build upon it a theoretical edifice. There

would be no non-Euclidean geometry. To convince ourselves of this,



SPACE 653

let us take a true synthetic a priori intuition the following, for

instance, which played an important part in the first chapter : If a

theorem is true for the number 1, and if it has been proved that it is

true of Ti+1, provided it is true of n, it will be true for all positive

integers. Let us next try to get rid of this, and while rejecting this

proposition let us construct a false arithmetic analogous to non-

Euclidean geometry. We shall not be able to do it. We shall be

even tempted at the outset to look upon these intuitions as analytical.

Besides, to take up again our fiction of animals without thickness, we

can scarcely admit that these beings, if their minds are like ours,

would adopt the Euclidean geometry, which would be contradicted by
all their experience. Ought we, then, to conclude that the axioms of

geometry are experimental truths? But we do not make experiments

on ideal lines or ideal circles; we can only make them on material

objects. On what, therefore, would experiments serving as a founda-

tion for geometry be based? The answer is easy. We have seen above

that we constantly reason as if the geometrical figures behaved like

solids. What geometry would borrow from experiment would be

therefore the properties of these bodies. The properties of light and

its propagation in a straight line have also given rise to some of the

propositions of geometry, and in particular to those of projective

geometry, so that from that point of view one would be tempted to

say that metrical geometry is the study of solids, and projective

geometry that of light. But a difficulty remains, and is unsurmount-

able. If geometry were an experimental science, it would not be

an exact science. It would be subjected to continual revision. Nay,
it would from that day forth be proved to be erroneous, for we

know that no rigorously invariable solid exists. Tine geometrical

axioms are therefore neither synthetic a priori intuitions nor experi-

mental facts. They are conventions. Our choice among all possible

conventions is guided by experimental facts; but it remains free, and

is only limited by the necessity of avoiding every contradiction, and

thus it is that postulates may remain rigorously true even when the

experimental laws which have determined their adoption are only ap-

proximate. In other words, the axioms of geometry (I do not speak of

those of arithmetic) are only definitions in disguise. What, then, are

we to think of the question: Is Euclidean geometry true? It has

no meaning. We might as well ask if the metric system is true,

and if the old weights and measures are false
;
if Cartesian co-ordinates

are true and polar co-ordinates false. One geometry cannot be more

true than another; it can only be more convenient. Now Euclidean

geometry is, and will remain, the most convenient: 1st, because it is

the simplest, and it is not so only because of our mental habits or

because of the kind of direct intuition that we have of Euclidean

space; it is the simplest in itself, just as a polynomial of the first de-
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gree is simpler than a polynomial of the second degree; 2nd, because

it sufficiently agrees with the properties of natural solids, those bodies

which we can compare and measure by means of our senses.

Space and Geometry

Let us begin with a little paradox. Beings whose minds were made
as ours, and with senses like ours, but without any preliminary edu-

cation, might receive from a suitably-chosen external world impres-
sions which would lead them to construct a geometry other than that

of Euclid, and to localize the phenomena of this external world in a

non-Euclidean space, or even in space of four dimensions. As for us,

whose education has been made by our actual world, if we were sud-

denly transported into this new world, we should have no difficulty in

referring phenomena to our Euclidean space. Perhaps somebody may
appear on the scene some day who will devote his life to it, and be

able to represent to himself the fourth dimension.

Geometrical Space and Representative Space. It is often said

that the images we form of external objects are localized in space,

and even that they can only be formed on this condition. It is also

said that this space, which thus serves as a kind of framework ready

prepared for our sensations and representations, is identical with

the space of the geometers, having all the properties of that space.

To all clear-headed men who think in this way, the preceding state-

ment might well appear extraordinary ; but it is as well to see if they

are not the victims of some illusion which closer analysis may be able

to dissipate. In the first place, what are the properties of space pro-

perly so called? I mean of that space which is the object of geo-

metry, and which I shall call geometrical space. The following are

some of the more essential :

1st, it is continuous; 2nd, it is infinite; 3rd, it is of three dimen-

sions; 4th, it is homogeneous that is to say, all its points are

identical one with another; 5th, it is isotropic. Compare this now
with the framework of our representations and sensations, which I

may call representative space.

Visual Space. First of all let us consider a purely visual impres-

sion, due to an image formed on the back of the retina. A cursory

analysis shows us this image as continuous, but as possessing only

two dimensions, which already distinguishes purely visual from what

may be called geometrical space. On the Bother hand, the image is

enclosed within a limited framework; and there is a no less important
difference: this pure visual space is not homogeneous. All the points

on the retina, apart from the images which may be formed, do not

play the same role. The yellow spot can in no way be regarded as

identical with a point on the edge of the retina. Not only does the
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same object produce on it much brighter impressions, but in the

whole of the limited framework the point which occupies the centre

will not appear identical with a point near one of the edges. Closer

analysis no doubt would show us that this continuity of visual space

and its two dimensions are but an illusion. It would make visual

space even more different than before from geometrical space, but we

may treat this remark as incidental.

However, sight enables us to appreciate distance, and therefore to

perceive a third dimension. But every one knows that this perception

of the third dimension reduces to a sense of the effort of accommoda-

tion which must be made, and to a sense of the convergence of the

two eyes, that must take place in order to perceive an object distinctly.

These are muscular sensations quite different from the visual sensa-

tions which have given us the concept of the two first dimensions.

The third dimension will therefore not appear to us as playing the

same role as the two others. What may be called complete visual space

is not therefore an isotropic space. It has, it is true, exactly three

dimensions; which means that the elements of our visual sensations

(those at least which concur in forming the concept of extension)

will be completely defined if we know three of them ; or, in mathemat-

ical language, they will be functions of three independent variables.

But let us look at the matter a little closer. The third dimension is

revealed to us in two different ways: by the effort of accommodation,
and by the convergence of the eyes. No doubt these two indications

are always in harmony; there is between them a constant relation; or,

in mathematical language, the two variables which measure these two

muscular sensations do not appear to us as independent. Or, again,

to avoid an appeal to mathematical ideas which are already rather too

refined, we may go back to the language of the preceding chapter and

enunciate the same fact as follows : If two sensations of conver-

gence A and B are indistinguishable, the two sensations of accom-

modation A' and B' which accompany them respectively will also be

indistinguishable. But that is, so to speak, an experimental fact. Noth-

ing prevents us a priori from assuming the contrary, and if the con-

trary takes place, if these two muscular sensations both vary inde-

pendently, we must take into account one more independent variable,

and complete visual space will appear to us as a physical continuum

of four dimensions. And so in this there is also a fact of external

experiment. Nothing prevents us from assuming that a being with

a mind like ours, with the same sense-organs as ourselves, may be

placed in a world in which light would only reach him after being

passed through refracting media of complicated form. The two indi-

cations which enable us to appreciate distances would cease to be con-

nected by a constant relation. A being educating his senses in such a
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world would no doubt attribute four dimensions to complete visual

space.

Tactile and Motor Space.
"
Tactile space

"
is more complicated

still than visual space, and differs even more widely from geometrical

space. It is useless to repeat for the sense of touch my remarks

on the sense of sight. But outside the data of sight and touch there

are other sensations which contribute as much and more than they do

to the genesis of the concept of space. They are those which every-

body knows, which accompany all our movements, and which we usu-

ally call muscular sensations. The corresponding framework con-

stitutes what may be called motor space. Each muscle gives rise to a

special sensation which may be increased or diminished so that the

aggregate of our muscular sensations will depend upon as many
variables as we have muscles. From this point of view motor space

would have as many dimensions as we have muscles. I know that it is

said that if the muscular sensations contribute to form the concept

of space, it is because we have the sense of the direction of each move-

ment, and that this is an integral part of the sensation. If this were

so, and if a muscular sense could not be aroused unless it were accom-

panied by this geometrical sense of direction, geometrical space would

certainly be a form imposed upon our sensitiveness. But I do not see

this at all when I analyze my sensations. What I do see is that the

sensations which correspond to movements in the same direction are

connected in my mind by a simple association of ideas. It is to this

association that what we call the sense of direction is reduced. We
cannot therefore discover this sense in a single sensation. This asso-

ciation is extremely complex, for the contraction of the same muscle

may correspond, according to the position of the limbs, to very differ-

ent movements of direction. Moreover, it is evidently acquired; it is

like all associations of ideas, the result of a habit. This habit itself

is the result of a very large number of experiments, and no doubt if

the education of our senses had taken place in a different medium,
where we would have been subjected to different impressions, then

contrary habits would have been acquired, and our muscular sensations

would have been associated according to other laws.

Characteristics of Representative Space. Thus representative

space in its triple form visual, tactile, and motor differs essen-

tially from geometrical space. It is neither homogeneous nor iso-

tropic ;
we cannot even say that it is of three dimensions. It is often

said that we "
project

"
into geometrical space the objects of our

external perception ;
that we "

localize
" them. Now, has that any

meaning, and if so what is that meaning? Does it mean that we

represent to ourselves external objects in geometrical space ? Our rep-

resentations are only the reproduction of our sensations; they cannot

therefore be arranged in the same framework that is to say, in
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representative space. II is also just as impossible for us to repre-

sent to ourselves external objects in geometrical space, as it is impos-
sible for a painter to paint on a flat surface objects with their three

dimensions. Bepresentative space is only an image of geometrical

space, an image deformed by a kind of perspective, and we can only

represent to ourselves objects by making them obey the laws of this

perspective. Thus we do not represent to ourselves external bodies in

geometrical space, but we reason about these bodies as if they were sit-

uated in geometrical space. When it is said, on the other hand, that

we "
localize

"
such an object in such a point of space, what does it

mean ? It simply means that we represent to ourselves the movements

that must take place to reach that object. And it does not mean that

to represent to ourselves these movements they must be projected into

space, and that the concept of space must therefore pre-exist. When I

say that we represent to ourselves these movements, I only mean that

we represent to ourselves the muscular sensations which accompany

them, and which have no geometrical character, and which therefore

in no way imply the pre-existence of the concept of space.

Changes of State and Changes of Position. But, it may be said,

if the concept of geometrical space is not imposed upon our minds, and

if, on the other hand, none of our sensations can furnish us with that

concept, how then did it ever come into existence? This is what we

have now to examine, and it will take some time; but I can sum up
in a few words the attempt at explanation which I am going to develop.

None of our sensations, if isolated, could have brought us to the con-

cept of space; we are brought to it solely by studying the laws by which

those sensations succeed one another. We see at first that our im-

pressions are subject to change ;
but among the changes that we ascer-

tain, we are very soon led to make a distinction. Sometimes we say

that the objects, the causes of these impressions, have changed their

state, sometimes that they have changed their position, that they have

only been displaced. Whether an object changes its state or only its

position, this is always translated for us in the same manner, by a

modification in an aggregate of impressions. How then have we been

enabled to distinguish them ? If there were only change of position,

we could restore the primitive aggregate of inpressions by making
movements which would confront us with the movable object in the

same relative situation. We thus correct the modification which was

produced, and we re-establish the initial state by an inverse modi-

fication. If, for example, it were a question of the sight, and if

an object be displaced before our eyes, we can "
follow it with

the eye/' and retain its image on the same point of the retina by

appropriate movements of the eyeball. These movements we are

conscious of because they are voluntary, and because they are accom-

panied by muscular sensations. But that does not mean that we
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represent them to ourselves in geometrical space. So what charac-

terizes change of position, what distinguishes it from change of state,

is that it can always be corrected by this means. It may therefore

happen that we pass from the aggregate of impressions A to the aggre-

gate B in two different ways. First, involuntarily and without ex-

periencing muscular sensations which happens when it is the

object that is displaced; secondly, voluntarily, and with muscular

sensation which happens when the object is motionless, but when

we displace ourselves in such a way that the object has relative motion

with respect to us. If this be so, the translation of the aggregate A
to the aggregate B is only a change of position. It follows that sight

and touch could not have given us the idea of space without the help

of the
" muscular sense." Not only could this concept not be derived

from a single sensation, or even from a series of sensations; but a

motionless being could never have acquired it, because, not being

able to correct by his movements the effects of the change of position

of external objects, he would have had no reason to distinguish them

from changes of state. Nor would he have been able to acquire it if

his movements had not been voluntary, or if they were unaccompanied

by any sensations whatever.

Conditions of Compensation. How is such a compensation possible

in such a way that two changes, otherwise mutually independent, may
be reciprocally corrected? A mind already familiar with geometry
would reason as follows : If there is to be compensation, the differ-

ent parts of the external object on the one hand, and the different

organs of our senses on the other, must be in the same relative position

after the double change. And for that to be the case, the different

parts of the external body on the one hand, and the different organs

of our senses on the other, must have the same relative position to each

other after the double change; and so with the different parts of our

body with respect to each other. In other words, the external object

in the first change must be displaced as an invariable solid would be

displaced, and it must also be so with the whole of our body in the

second change, which is to correct the first. Under these conditions

compensation may be produced. But we who as yet know nothing of

geometry, whose ideas of space are not yet formed, we cannot reason

in this way we cannot predict a priori if compensation is possible.

But experiment shows us that it sometimes does take place, and we

start from this experimental fact in order to distinguish changes of

state from changes of position.

Solid Bodies and Geometry. Among surrounding objects there

are some which frequently experience displacements that may be thus

corrected by a correlative movement of our own body namely, solid

bodies. The other objects, whose form is variable, only in exceptional

circumstances undergo similar displacement (change of position with-

out change of form). When the displacement of a body takes place
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with deformation, we can no longer by appropriate movements place

the organs of our body in the same relative situation with respect to

this body; we can no longer, therefore, reconstruct the primitive ag-

gregate of impressions.

It is only later, and after a series of new experiments, that we

learn how to decompose a body of variable form into smaller elements

such that each is displaced approximately according to the same laws

as solid bodies. We thus distinguish
"
deformations

" from other

changes of state. In these deformations each element undergoes a

simple change of position which may be corrected; but the modifica-

tion of the aggregate is more profound, and can no longer be corrected

by a correlative movement. Such a concept is very complex even at

this stage, and has been relatively slow in its appearance. It would

not have been conceived at all had not the observation of solid bodies

shown us beforehand how to distinguish changes of position.

//, then, there were no solid bodies in nature there would be no

geontetry.

Another remark deserves a moment's attention. Suppose a solid

body to occupy successively the positions a and /? ;
in the first position

it will give us an aggregate of impressions A, and in the second posi-

tion the aggregate of impressions B. Now let there be a second solid

body, of qualities entirely different from the first of different color,

for instance. Assume it to pass from the position a, where it gives

us the aggregate of impressions A' to the position /?, where it gives

the aggregate of impressions B'. In general, the aggregate A will

have nothing in common with the aggregate A', nor will the aggregate
B have anything in common with the aggregate B'. The transition

from the aggregate A to the aggregate B, and that of the aggregate A'

to the aggregate B', are therefore two changes which in themselves have

in general nothing in common. Yet we consider both these changes
as displacements; and, further, we consider them the same displace-

ment. How can this be? It is simply because they may be both cor-

rected by the same correlative movement of our body.
"
Correlative

movement," therefore, constitutes the sole connection between two

phenomena which otherwise we should never have dreamed of con-

necting.

On the other hand, our body, thanks to the number of its articula-

tion? and muscles, may have a multitude of different movements, but

all are not capable of
"
correcting

"
a modification of external objects;

those alone are capable of it in which our whole body, or at least all

those in which the organs of our senses enter into play are displaced

en bloc -

i.e., without any variation of their relative positions, as in

the case of a solid body.

To sum up :

1. In the first place, we distinguish two categories of phenomena :
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The first involuntary, unaccompanied by muscular sensations, and

attributed to external objects they are external changes ;
the second,

of opposite character and attributed to the movements of our own

body, are internal changes.
2. We notice that certain changes of each in these categories may

be corrected by a correlative change of the other category.

3. We distinguish among external changes those that have a corre-

lative in the other category which we call displacements; and in

the same way we distinguish among the internal changes those which

have a correlative in the first category.

Thus by means of this reciprocity is defined a particular class of

phenomena called displacements. The laws of these phenomena are

the object of geometry.

Law of Homogeneity. The first of these laws is the law of homo-

geneity. Suppose that by an external change we pass from the aggre-

gate of impressions A to the aggregate B, and that then this change
a is corrected by a correlative voluntary movement ft, so that we are

brought back to the aggregate A. Suppose now that another external

change a brings us again from the aggregate A to the aggregate B.

Experiment then shows us that this change a', like the change a, may
be corrected by a voluntary correlative movement ft', and that this

Momevent ft' corresponds to the same muscular sensations as the

movement ft which corrected a.

This fact is usually enunciated as follows : Space is homogeneous
and isotropic. We may also say that a movement which is once pro-

duced may be repeated a second and a third time, and so on, without

any variation of its properties. In the first chapter, in which we

discussed the nature of mathematical reasoning, we saw the import-

ance that should be attached to the possibility of repeating the same

operation indefinitely. The virtue of mathematical reasoning is due

to this repetition; by means of the law of homogeneity geometrical

facts are apprehended. To be complete, to the law of homogeneity
must be added a multitude of other laws, into the details of which I

do not propose to enter, but which mathematicians sum up by saying
that these displacements form a "

group."

The Non-Euclidean World. If geometrical space were a frame-

work imposed on each of our representations considered individually,

it would be impossible to represent to ourselves an image without this

framework, and we should be quite unable to change our geometry.

But this is not the case; geometry is only the summary of the laws

by which these images succeed each other. There is nothing, there-

fore, to prevent us from imagining a series of representations, similar

in every way to our ordinary representations, but succeeding one

another according to laws which differ from those to which we are

accustomed. We may thus conceive that beings whose education has
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taken place in a medium in which those laws would be so different,

might have a very different geometry from ours.

Suppose, for example, a world enclosed in a large sphere and

subject to the following laws: The temperature is not uniform; it

is greatest at the centre, and gradually decreases as we move towards

the circumference of the sphere, where it is absolute zero. The law

of this temperature is as follows : If E be the radius of the sphere,

and r the distance of the point considered from the centre, the abso-

lute temperature will be proportional to R2
r
2

. Further, I shall sup-

pose that in this world all bodies have the same co-efficient of dilata-

tion, so that the linear dilatation of any body is proportional to its ab-

solute temperature. Finally, I shall assume that a body transported

from one point to another of different temperature is instantaneously

in thermal equilibrium with its new environment. There is nothing
in these hypotheses either contradictory or unimaginable. A moving

object will become smaller and smaller as it approaches the circum-

ference of the sphere. Let us observe, in the first place, that although
from the point of view of our ordinary geometry this world is finite,

to its inhabitants it will appear infinite. As they approach the sur-

face of the sphere they become colder, and at the same time smaller

and smaller. The steps they take are therefore also smaller and

smaller, so that they can never reach the boundary of the sphere. If

to us geometry is only the study of the laws according to which in-

variable solids move, to these imaginary beings it will be the study

of the laws of motion of solids deformed by the differences of tem-

perature alluded to.

No doubt, in our world, natural solids also experience variations of

form and volume due to differences of temperature. But in laying

the foundations of geometry we neglect these variations; for besides

being but small they are irregular, and consequently appear to us to

be accidental. In our hypothetical world this will no longer be the

case, the variations will obey very simple and regular laws. On the

other hand, the different solid parts of which the bodies of these

inhabitants are composed will undergo the same variations of form

and volume.

Let me make another hypothesis: suppose that light passes through
media of different refractive indices, such that the index of refrac-

tion is inversely proportional to ft* r
2

. Under these conditions it is

clear that the rays of light will no longer be rectilinear but circular.

To justify what lias been said, we have to prove that certain changes
in the position of external objects may be corrected by correlative

movements of the beings which inhabit this imaginary world; and in

such a way as to restore the primitive aggregate of the impressions

experienced by these sentient beings. Suppose, for example, that an

object is displaced and deformed, not like an invariable solid, but like
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a solid subjected to unequal dilatations in exact conformity with

the law of temperature assumed above. To use an abbreviation, we

shall call such a movement a non-Euclidean displacement.
If a sentient being be in the neighborhood of such a displacement

of the object, his impressions will be modified; but by moving in a

suitable manner, he may reconstruct them. For this purpose, all that

is required is that the aggregate of the sentient being and the object,

considered as forming a single body, shall experience one of those

special displacements which I have just called non-Euclidean. This

is possible if we suppose that the limbs of these beings dilate accord-

ing to the same laws as the other bodies of the world they inhabit.

Although from the point of view of our ordinary geometry there is

a deformation of the bodies in this displacement, and although their

different parts are no longer in the same relative position, neverthe-

less we shall see that the impressions of the sentient being remain the

same as before; in fact, though the mutual distances of the different

parts have varied, yet the parts which at first were in contact are

still in contact. It follows that tactile impressions will be unchanged.
On the other hand, from the hypothesis as to refraction and the curva-

ture of the rays of light, visual impressions will also be unchanged.
These imaginary beings will therefore be led to classify the phenomena

they observe, and to distinguish among them the
"
changes of posi-

tion," which may be corrected by a voluntary correlative movement,

just as we do.

If they construct a geometry, it will not be like ours, which is the

study of the movements of our invariable solids; it will be the study
of the changes of position which they will have thus distinguished, and

will be
"
non-Euclidean displacements," and this will be non-Euclidean

geometry. So that beings like ourselves, educated in such a world,

will not have the same geometry as ours.

The World of Four Dimensions. Just as we have pictured to our-

selves a non-Euclidean world, so we may picture a world of four di-

mensions.

The sense of light, even with one eye, together with the muscular

sensations relative to the movements of the eyeball, will suffice to

enable us to conceive of space of three dimensions. The images of

external objects are painted on the retina, which is a plane of two

dimensions; these are perspectives. But as eye and objects are mov-

able, we see in succession different perspectives of the same body
taken from different points of view. We find at the same time that

the transition from one perspective to another is often accompanied

by muscular sensations. If the transition from the perspective A
to the perspective B, and that of the perspective A' to the perspec-

tive B' are accompanied by the same muscular sensations, we con-

nect them as we do other operations of the same nature. Then when
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we study the laws according to which these operations are combined

we see that they form a group, which has the same structure as that

of the movements of invariable solids. Now, we have seen that it IB

from the properties of this group that we derive the idea of geomet-
rical space and that of three dimensions. We thus understand how

these perspectives gave rise to the conception of three dimensions,

although each perspective is of only two dimensions, because they

succeed each other according to certain laws. Well, in the same way
that we draw the perspective of a three-dimensional figure on a plane,

so we can draw that of a four-dimensional figure on a canvas of three

(or two) dimensions. To a geometer this is but child's play. We can

even draw several perspectives of the same figure from several different

points of view. We can easily represent to ourselves these perspective,

since they are of only three dimensions. Imagine that the different

perspectives of one and the same object occur in succession, and

that the transition from one to the other is accompanied by muscular

sensations. It is understood that we shall consider two of these tran-

sitions as two operations of the same nature when they are associated

with the same muscular sensations. There is nothing, then, to prevent

us from imagining that these operations are combined according to

any law we choose for instance, by forming a group with the same

structure as that of the movements of an invariable four-dimensional

solid. In this there is nothing that we cannot represent to ourselves,

and, moreover, these sensations are those which a being would experi-

ence who has a retina of two dimensions, and who may be displaced

in space of four dimensions. In this sense we may say that we can

represent to ourselves the fourth dimension.

Conclusions. It is seen that experiment plays a considerable role

in the genesis of geometry ; but it would be a mistake to conclude from

that that geometry is, even in part, an experimental science. If it were

experimental, it would only be approximate and provisory. And
what a rough approximation it would be! Geometry would be only

the study of the movements of solid bodies; but, in reality, it is not

concerned with natural solids: its object is certain ideal solids, abso-

lutely invariable, which are but a greatly simplified and very remote

image of them. The concept of these ideal bodies is entirely mental,

and experiment is but the opportunity which enables us to reach the

idea. The object of geometry is the study of a particular
"
group

"
;

but the general concept of group pre-exists in our minds, at least

potentially. It is imposed on us not as a form of our sensitiveness, but

as a form of our understanding ; only, from among all possible groups,
we must choose one that will be the standard, so to speak, to which

we shall refer natural phenomena.

Experiment guides us in this choice, which it does not impose on

us. It tells us not what is the truest, but what is the most convenient
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geometry. It will be noticed that my description of these fantastic

worlds has required no language other than that of ordinary geo-

metry. Then, were we transported to those worlds, there would be

no need to change that language. Beings educated there would no

doubt find it more convenient to create a geometry different from ours,

and better adapted to their impressions ; but as for us, in the presence

of the same impressions, it is certain that we should not find it more

convenient to make a change.

Experiment and Geometry

1. I have on several occasions in the preceding pages tried to show

how the principles of geometry are not experimental facts, and that in

particular Euclid's postulate cannot be proved by experiment. How-
ever convincing the reasons already given may appear to me, I feel I

must dwell upon them, because there is a profoundly false conception

deeply rooted in many minds.

2. Think of a material circle, measure its radius and circumference,

and see if the ratio of the two lengths is equal to IT. What have we

done? We have made an experiment on the properties of the matter

with which this roundness has been realized, and of which the measure

we used is made.

3. Geometry and Astronomy. The same question may also be

asked in another way. If Lobatschewsky's geometry is true, the paral-

lax of a very distant star will be finite. If Kiemann's is true, it will

be negative. These are the results which seem within the reach of

experiment, and it is hoped that astronomical observations may enable

us to decide between the two geometries. But what we call a straight

line in astronomy is simply the path of a ray of light. If, therefore,x

we were to discover negative parallaxes, or to prove that all parallaxes

are higher than a certain limit, we should have a choice between two

conclusions: we could give up Euclidean geometry, or modify the

laws of optics, and suppose that light is not rigorously propagated in

a straight line. It is needless to add that every one would look upon
this solution as the more advantageous. Euclidean geometry, there-

fore, has nothing to fear from fresh experiments.

4. Can we maintain that certain phenomena which are possible

in Euclidean space would be impossible in non-Euclidean space, so

that experiment in establishing these phenomena would directly con-

tradict the non-Euclidean hypothesis? I think that such a question

cannot be seriously asked. To me it is exactly equivalent to the fol-

lowing, the absurdity of which is obvious : There are lengths which

can be expressed in metres and centimetres, but cannot be measured in

toises, feet, and inches; so that experiment, by ascertaining the exist-

ence of these lengths, would directly contradict this hypothesis, that
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there are toises divided into six feet. Let us look at the question a

little more closely. I assume that the straight line in Euclidean space

possesses any two properties, which I shall call A and B
;
that in non-

Euclidean space it still possesses the property A, but no longer pos-

sesses the property B; and, finally, I assume that in both Euclidean

and non-Euclidean space the straight line is the only line that pos-

sesses the property A. If this were so, experiment would be able to

decide between the hypotheses of Euclid and Lobatschewsky. It would

be found that some concrete object, upon which we can experiment
for example, a pencil of rays of light possesses the property A.

We should conclude that it is rectilinear, and we should then

endeavor to find out if it does, or does not, possess the property B.

But it is not so. There exists no property which can, like this pro-

perty A, be an absolute criterion enabling us to recognize the straight

line, and to distinguish it from every other line. Shall we say, for

instance,
" This property will be the following : the straight line is a

line such that a figure of which this line is a part can move without

the mutual distances of its points varying, and in such a way that all

the points in this straight line remain fixed
"

? Now, this is a pro-

perty which in either Euclidean or non-Euclidean space belongs to

the straight line, and belongs to it alone. But how can we ascer-

tain by experiment if it belongs to any particular concrete object?

Distances must be measured, and how shall we know that any concrete

magnitude which I have measured with my material instrument really

represents the abstract distance? We have only removed the diffi-

culty a little farther off. In reality, the property that I have just

enunciated is not a property of the straight line alone; it is a pro-

perty of the straight line and of distance. For it to serve as an ab-

solute criterion, we must be able to show, not only that it does not

also belong to any other line than the straight line and to distance, but

also that it does not belong to any other line than the straight line, and

to any other magnitude than distance. Now, that is not true, and if

we are not convinced by these considerations, I challenge any one to

give me a concrete experiment which can be interpreted in the Eucli-

dean system, and which cannot be inteipreted in the system of Lobat-

schewsky. As I am well aware that this challenge will never be ac-

cepted, I may conclude that no experiment will ever be in contradic-

tion with Euclid's postulate: but, on the other hand, no experiment
will ever be in contradiction with Lobatschewsky's postulate.

5. But it is not sufficient that the Euclidean (or non-Euclidean)

geometry can ever be directly contradicted by experiment. Nor could

it happen that it can cnly agree with experiment by a violation of

the principle of sufficient reason, and of that of the relativity of space.

Let me explain myself. Consider any material system whatever. We
have to consider on the one hand the

"
state

"
of the various bodies of
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this system for example, their temperature, their electric potential,

etc.; and on the other hand their position in space. And among the

data which enable us to define this position we distinguish the mutual

distances of these bodies that define their relative positions, and the

conditions which define the absolute position of the system

and its absolute orientation in space. The law of the pheno-

mena which will be produced in this system will depend on the

state of these bodies, and on their mutual distances; but because

of the relativity and the inertia of space, they will not depend on the

absolute position and orientation of the system. In other words, the

state of the bodies and their mutual distances at any moment will

solely depend on the state of the same bodies and on their mutual dis-

tances at the initial moment, but will in no way depend on the abso-

lute initial position of the system and on its absolute initial orientation.

This is what we shall call, for the sake of abbreviation, the law of rela-

tivity.

So far I have spoken as a Euclidean geometer. But I have said

that an experiment, whatever it may be, requires an interpretation

on the Euclidean hypothesis; it equally requires one on the non-

Euclidean hypothesis. Well, we have made a series of experiments.

We have interpreted them on the Euclidean hypothesis, and we have

recognized that these experiments thus interpreted do not violate this
" law of relativity." We now interpret them on the non-Euclidean

hypothesis. This is always possible, only the non-Euclidean distances

of our different bodies in this new interpretation will not generally

be the same as the Euclidean distances in the primitive interpretation.

Will our experiment interpreted in this new manner be still in agree-

ment with our " law of relativity," and if this agreement had not

taken place, would we not still have the right to say that experiment
has proved the falsity of non-Euclidean geometry? It is easy to see

that this is an idle fear. In fact, to apply the law of relativity in all

its rigor, it must be applied to the entire universe; for if we were to

consider only a part of the universe, and if the absolute position of

this part were to vary, the distances of the other bodies of the universe

would equally vary; their influence on the part of the universe con-

sidered might therefore increase or diminish, and this might modify
the laws of the phenomena which take place in it. But if our system

is the entire universe, experiment is powerless to give us any opinion

on its position and its absolute orientation in space. All that our

instruments, however perfect they may be, can let us know will be the

state of the different parts of the universe, and their mutual distances.

Hence, our law of relativity may be enunciated as follows : The

readings that we can make with our instruments at any given moment
will depend only on the readings that we were able to make on the

same instruments at the initial moment. Now such an enunciation is
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independent of all interpretation by experiments. If the law is true

in the Euclidean interpretation, it will be also true in the non-Eucli-

dean interpretation. Allow me to make a short digression on this

point. I have spoken above of the data which define the position of

the different bodies of the system. I might also have spoken of those

which define their velocities. I should then have to distinguish the

velocity with which the mutual distances of the different bodies are

changing, and on the other hand the velocities of translation and

rotation of the system; that is to say, the velocities with which its

absolute position and orientation are changing. For the mind to be

fully satisfied, the law of relativity would have to be enunciated as

follows : The state of bodies and their mutual distances at any

given moment, as well as the velocities with which those distances are

changing at that moment, will depend only on the state of those bodies,

on their mutual distances at the initial moment, and on the velocities

with which those distances were changing at the initial moment. But

they will not depend on the absolute initial position of the system
nor on its absolute orientation, nor on the velocities with which that

absolute position and orientation were changing at the initial moment.

Unfortunately, the law thus enunciated does not agree with experi-

ments at least, as they are ordinarily interpreted. Suppose a man
were translated to a planet, the sky of which was constantly covered

with a thick curtain of clouds, so that he could never see the other

stars. On that planet he would live as if it were isolated in space.

But he would notice that it revolves, either by measuring its ellipticity

(which is ordinarily done by mean? of astronomical observations, but

which could be done bv purely geodesic means), or by repeating the

experiment of Foucault's pendulum. The absolute rotation of this

planet might be clearly shown in this way. Now, here is a fact which

shocks the philosopher, but which the physicist is compelled to accept.

We know from this fact Newton concluded the existence of absolute

space. I myself cannot accept this way of looking at it. I shall ex-

plain why in Part III., but for the moment it is not my intention to

discuss this difficulty. I must therefore resign myself, in the enun-

ciation of the law of relativity, to including velocities of every kind

among the data which define the state of the bodies. However that

may be, the difficulty is the same for both Euclid's geometry and for

Lobatschewsky's. I need not therefore trouble about it further, and

I have only mentioned it incidentally. To sum up, whichever way we
look at it, it is impossible to discover in geometric empiricism a ra-

tional meaning.
6. Experiments only teach us the relations of bodies to one another.

They do not and cannot give us the relations of bodies and space, nor

the mutual relations of the different parts of space.
" Yes !

"
you

reply,
"
a single experiment is not enough, because it only gives us
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one equation with several unknowns; but when I have made enough

experiments I shall have enough equations to calculate all my un-

knowns." If I know the height of the main-mast, that is not sufficient

to enable me to calculate the age of the captain. When you have

measured every fragment of wood in a ship you will have many equa-

tions, but you will be no nearer knowing the captain's age. All your

measurements bearing on your fragments of wood can tell you only

what concerns those fragments ;
and similarly, your experiments, how-

ever numerous they may be, referring only to the relations of bodies

with one another, will tell you nothing about the mutual relations of

the different parts of space.

7. Will you say that if the experiments have reference to the bodies,

they at least have reference to the geometrical properties of the bodies ?

First, what do you understand by the geometrical properties of bodies ?

I assume that it is a question of the relations of the bodies to space.

These properties therefore are not reached by experiments which only

have reference to the relations of bodies to one another, and that is

enough to show that it is not of those properties that there can be a

question. Let us therefore begin by making ourselves clear as to the

sense of the phrase: geometrical properties of bodies. Wlien I say

that a body is composed of several parts, I presume that I am thus

enunciating a geometrical property, and that will be true even if I

agree to give the improper name of points to the very small parts I

am considering. When I say that this or that part of a certain body
is in contact with this or that part of another bod)", I am enunciating
a proposition which concerns the mutual relations of the two bodies,

and not their relations with space. I assume that you will agree

with me that these are not geometrical properties. I am sure that at

least you will grant that these properties are independent of all know-

ledge of metrical geometry. Admitting this, I suppose that we have

a solid body formed of eight thin iron rods, oa, ob, oc, od, oe, of,

og, oh, connected at one of their extremities, o. And let us take a

second solid body for example, a piece of wood, on which are

marked three little spots of ink which I shall call a ft y. I now

suppose that we find that we can bring into contact a (3 y with ago;

by that I mean a with a, and at the same time ft with g, and y
with o. Then we can successively bring into contact a/3y with bgo,

ego, dgo, ego, fgo, then with oho, bho, cho, dho, eho, fho; and then

ay successively with ab, be, cd, de, ef, fa. Now these are observations

that can be made without having any idea beforehand as to the form

or the metrical properties of space. They have no reference whatever

to the
"
geometrical properties of bodies." These observations will not

be possible if the bodies on which we experiment move in a group

having the same structure as the Lobatschewskian group (I mean

according to the same laws as solid bodies in Lobatschewsky's geo-
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metry). They therefore suffice to prove that these bodies move ac-

cording to the Euclidean group; or at least that they do not move

according to the Lobatschewskian group. That they may be com-

patible with the Euclidean group is easily seen; for we might make
them so if the body a(3y were an invariable solid of our ordinary geo-

metry in the shape of a right-angled triangle and if the points

abcdefgh were the vertices of the polyhedron formed of two regular

hexagonal pyramids of our ordinary geometry having abcdef

as their common base, and having the one g and the other h as their

vertices. Suppose now, instead of the previous observations, we note

that we can as before apply a/3y successively to ago, bgo, ego, dgo, ego,

igo, oho, bho, clw, dho, eho, fho, and then that we can apply a/3 (and
no longer ay) successively to ab, be, cd, de, cf, and fa. These are

observations that could be made if non-Euclidean geometry were true,

if the bodies a(3y, oabcdefgh were invariable solids, if the former

were a right-angled triangle, and the latter a double regular hexagonal

pyramid of suitable dimensions. These new verifications are there-

fore impossible if the bodies move according to the Euclidean group ;

but they become possible if we suppose the bodies to move according

to the Lobatschewskian group. They would therefore suffice to show,

if we carried them out, that the bodies in question do not move ac-

cording to the Euclidean group. And so, without making any hypo-
thesis on the form and the nature of space, on the relations of the

bodies and space, and without attributing to bodies any geometrical

property, I have made observations which have enabled me to show

in one case that the bodies experimented upon move according to

a group, the structure of which is Euclidean, and in the other case that

they move in a group, the structure of which is Lobatschewskian. It

cannot be said that all the first observations would constitute an exper-

iment proving that space is Euclidean, and the second an experiment

proving space is non-Euclidean: in fact, it might be imagined (note

that I use the word imagined) that there are bodies moving in such a

manner as to render possible the second series of observations: and

the proof is that the first mechanic who came our way could con-

struct it if he would only take the trouble. But you must not con-

clude, however, that space is non-Euclidean. In the same way, just

as ordinary solid bodies would continue to exist when the mechanic

had constnicted the strange bodies I have just mentioned, he would

have to conclude that space is both Euclidean and non-Euclidean.

Suppose, for instance, that we have a large sphere of radius E, and

that its temperature decreases from the centre to the surface of the

sphere according to the law of which I spoke when I was describing
the non-Euclidean world. We might have bodies whose dilatation is

negligible, and which would behave as ordinary invariable solids;

and, on the other hand, we might have very dilatable bodies, which
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would behave as non-Euclidean solids. We might have two double

pyramids oabcdefgh and o a V c <f e' f g h', and two triangles a ft y
and a ft' y. The first double pyramid would be rectilinear, and the

second curvilinear. The triangle afty would consist of undilatable

matter, and the other of very dilatable matter. We might therefore

make our first observations with the double pyramid o' a h' and the

triangle a ft' y.

And then the experiment would seem to show first, that Eucli-

dean geometry is true, and then that it is false. Hence, experiments
have reference not to space but to bodies.

8. To round the matter off, I ought to speak of a very delicate

question, which will require considerable development; but I shall

confine myself to summing up what I have written in the Revue de

Metaphysique et de Morale and in the Monist. When we say that

space has three dimensions, what do we mean? We have seen the im-

portance of these
"
internal changes

" which are revealed to us by
our muscular sensations. They may serve to characterize the different

attitudes of our body. Let us take arbitrarily as our origin one of

these attitudes, A. When we pass from this initial attitude to another

attitude B we experience a series of muscular sensations, and this series

S of muscular sensations will define B. Observe, however, that we

shall often look upon two series S and S' as defining the same attitude

B (since the initial and final attitudes A and B remaining the same,

the intermediary attitudes of the corresponding sensations may differ).

How then can we recognize the equivalence of these two series? Be-

cause they may serve to compensate for the same external change, or

more generally, because when it is a question of compen-
sation for an external change, one of the series may be replaced

by the other. Among these series we have distinguished those which

can alone compensate for an external change, and which we have

called
"
displacements." As we cannot distinguish two displacements

which are very close together, the aggregate of these displacements

presents the characteristics of a physical continuum. Experience
teaches us that they are the characteristics of a physical continuum of

six dimensions; but we do not know as yet how many dimensions

space itself possesses, so we must first of all answer another question.

What is a point in space ? Every one thinks he knows, but that is an

illusion. What we see when we try to represent to ourselves a point

in space is a black spot on white paper, a spot of chalk on a blackboard,

always an object. The question should therefore be understood as

follows : What do I mean when I say the object B is at the point

which a moment before was occupied by the object A? Again, what

criterion will enable me to recognize it ? I mean that although I have

not moved (my muscular sense tells me this), my finger, which just

now touched the object A, is now touching the object B. I might have
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used other criteria for instance, another finger or the sense of sight

but the first criterion is sufficient. I know that if it answers in the

affirmative all other criteria will give the same answer. I know

it from experiment. I cannot know it a priori. For the same reason

I say that touch cannot be exercised at a distance ;
that is another way

of enunciating the same experimental fact. If I say, on the contrary,

that sight is exercised at a distance, it means that the criterion fur-

nished by sight may give an affirmative answer while the others reply

in the negative.

To sum up. For each attitude of my body my finger determines a

point, and it is that and that only which defines a point

in space. To each attitude corresponds in this way a point. But

it often happens that the same point corresponds to several different

attitudes (in this case we say that our finger has not moved, but the

rest of our body has). We distinguish, therefore, among changes of

attitude those in which the finger does not move. How are we led to

this? It is because we often remark that in these changes the object

which is in touch with the finger remains in contact with it. Let us

arrange then in the same class all the attitudes which are deduced one

from the other by one of the changes that we have thus distinguished.

To all these attitudes of the same class will correspond the same point

in space. Then to each class will correspond a point, and to each

point a class. Yet it may be said that what we get from this experi-

ment is not the point, but the class of changes, or, better still, the

corresponding class of muscular sensations. Thus, when we say that

space has three dimensions, we merely mean that the aggregate of

these classes appears to us with the characteristics of a physical con-

tinuum of three dimensions. Then if, instead of defining the points

in space with the aid of the first finger, I use, for example, another

finger, would the results be the same? That is by no means a priori

evident. But, as we have seen, experiment has shown us that all our

criteria are in agreement, and this enables us to answer in the affirma-

tive. If we recur to what we have called displacements, the aggre-

gate of which forms, as we have seen, a group, we shall be brought
to distinguish those in which a finger does not move, and by what has

preceded, those are the displacements which characterize a point in

space, and their aggregate will form a sub-group of our group. To
each sub-group of this kind, then, will correspond a point in space.

We might be tempted to conclude that experiment has taught us the

number of dimensions of space; but in reality our experiments have

referred not to space, but to our body and its relations with neighbor-

ing objects. What is more, our experiments are exceeding crude. In

our mind the latent idea of a certain number of groups pre-existed;

these are the groups with which Lie's theory is concerned. Which
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shall we choose to form a kind of standard by which to compare nat-

ural phenomena? And when this group is chosen, which of the sub-

groups shall we take to characterize a point in space ? Experiment has

guided us by showing us what choice adapts itself best to the proper-
ties of our body ; but there its role ends.



PAET III FOKCE

The Classical Mechanics.

THE English teach mechanics as an experimental science; on the

Continent it is taught always more or less as a deductive and a priori

science. The English are right, no doubt. How is it that the other

method has been persisted in for so long; how is it that Continental

scientists who have tried to escape from the practice of their predeces-

sors have in most cases been unsuccessful ? On the other hand, if the

principles of mechanics are only of experimental origin, are they not

merely approximate and provisory? May we not be some day com-

pelled by new experiments to modify or even to abandon them ? These

are the questions which naturally arise, and the difficulty of solution

is largely due to the fact that treatises on mechanics do not clearly

distinguish between what is experiment, what is mathematical rea-

soning, what is convention, and what is hypothesis. This is not all.

1. There is no absolute space, and we only conceive of relative

motion; and yet in most cases mechanical facts are enunciated as if

there is an absolute space to which they can be referred.

2. There is no absolute time. When we say that two periods are

equal, the statement has no meaning, and can only acquire a meaning

by a convention.

3. Not only have we no direct intuition of the equality of two

periods, but we have not even direct intuition of the simultaneity of

two events occurring in two different places. I have explained this in

an article entitled
" Mesure du Temps."

1

4. Finally, is not our Euclidean geometry in itself only a kind of

convention of language? Mechanical facts might be enunciated with

reference to a non-Euclidean space which would be less convenient but

quite as legitimate as our ordinary space; the enunciation would be-

come more complicated, but it still would be possible.

Thus, absolute space, absolute time, and even geometry are not con-

ditions which are imposed on mechanics. All these things no more

existed before mechanics than the French language can be logicallj

said to have existed before the truths which are expressed in French.

i Revue de Metaphysique et de Morale, t. vi., pp. 1-13, January, 1898.
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We might endeavor to enunciate the fundamental law of mechanics

in a language independent of all these conventions; and no doubt we

should in this way get a clearer idea of those laws in themselves. This

is what M. Andrade has tried to do, to some extent at any rate, in his

Lemons de Mecanique physique. Of course the enunciation of these

laws would become much more complicated, because all these con-

ventions have been adopted for the very purpose of abbreviating and

simplifying the enunciation. As far as we are concerned, I shall

ignore all these difficulties; not because I disregard them, far from it;

but because they have received sufficient attention in the first two

parts of the book. Provisionally, then, we shall admit absolute time

and Euclidean geometry.

The Principle of Inertia. A body under the action of no force can

only move uniformly in a straight line. Is this a truth imposed on

the mind a priori ? If this be so, how is it that the Greeks ignored it ?

How could they have believed that motion ceases with the cause of

motion? or, again, that every body, if there is nothing to prevent it,

will move in a circle, the noblest of all forms of motion ?

If it be said that the velocity of a body cannot change, if there is

no reason for it to change, may we not just as legitimately maintain

that the position of a body cannot change, or that the curvature of its

path cannot change, without the agency of an external cause? Is,

then, the principle of inertia, which is not an a priori truth, an exper-

imental fact? Have there ever been experiments on bodies acted on

by no forces ? and, if so, how did we know that no forces were acting ?

The usual instance is that of a ball rolling for a very long time on a

marble table
; but why do we say it is under the action of no force ?

Is it because it is too remote from all other bodies to experience any
sensible action? It is not further from the earth than if it were

thrown freely into the air; and we all know that in that case it

would be subject to the attraction of the earth. Teachers of mechan-

ics usually pass rapidly over the example of the ball, but they add that

the principle of inertia is verified indirectly by its consequences. This

is very badly expressed; they evidently mean that various conse-

quences may be verified by a more general principle, of which the

principle of inertia is only a particular case. I shall propose for

this general principle the following enunciation: The acceleration

of a body depends only on its position and that of neighboring bodies,

and on their velocities. Mathematicians would say that the move-

ments of all the material molecules of the universe depend on

differential equations of the second order. To make it clear that this

is really a generalization of the law of inertia we may again have

recourse to our imagination. The law of inertia, as I have said above,

is not imposed on us a priori; other laws would be just as compatible

with the principle of sufficient reason. If a body is not acted upon
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by force, instead of supposing that its velocity is unchanged we may
suppose that its position or its acceleration is unchanged.

Let us for a moment suppose that one of these two laws is a law

of nature, and substitute it for a law of inertia: what will be the

natural generalization? A moment's reflection will show us. In

the first case, we may suppose that the velocity of a body depends only

on its position and that of neighboring bodies; in the. second case,

that the variation of the acceleration of a body depends only on the

position of the body and of neighboring bodies, on their velocities

and accelerations; or, in mathematical terms, the differential equations

of the motion would be of the first order in the first case and of the

third order in the second.

Let us now modify our supposition a little. Suppose a world ana-

logous to our solar system, but one in which by a singular chance the

orbits of all the planets have neither eccentricity nor inclination;

and further, suppose that the masses of the planets are too small

for their mutual perturbations to be sensible. Astronomers living

in one of these planets would not hesitate to conclude that the orbit

of a star can only be circular and parallel to a certain plane ; the posi-

tion of a star at a given moment would then be sufficient to determine

its velocity and path. The law of inertia which they would adopt
would be the former of the two hypothetical laws I have mentioned.

Now, imagine this system to be some day crossed by a body of vast

mass and immense velocity coming from distant constellations. All

the orbits would be profoundly disturbed. Our astronomers would not

be greatly astonished. They would guess that this new star is in

itself quite capable of doing all the mischief; but, they would say, as

soon as it has passed by. order will again be established. No doubt

the distances of the planets from the sun will not be the same as

before the cataclysm, but the orbits will become circular again as soon

as the disturbing cause has disappeared. It would be only when \he

perturbing body is remote, and when the orbits, instead of being

circular are found to be elliptical, that the astronomers would find

out their mistake, and discover the necessity of reconstructing their

mechanics.

I have dwelt on these hypotheses, for it seems to me that we can

clearly understand our generalized law of inertia only by opposing it

to a contrary hypothesis.

Has this generalized law of inertia been verified by experiment, and

can it be so verified ? When Newton wrote the Principia, he certainly

regarded this truth as experimentally acquired and demonstrated.

It was so in his eyes, not only from the anthropomorphic conception

to which I shall later refer, but also because of the work of Galileo. It

was so proved by the laws of Kepler. According to those laws, in fact,

the path of a planet is entirely determined by its initial position and
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initial velocity; this, indeed, is what our generalized law of inertia

requires.

For this principle to be only true in appearance lest we should

fear that some day it must be replaced by one of the analogous prin-

ciples which I opposed to it just now we must have been led astray

by some amazing chance such as that which had led into error our

imaginary astronomers. Such an hypothesis is so unlikely that it need

not delay us. No one will believe that there can be such chances; no

doubt the probability that two eccentricities are both exactly zero is

not smaller than the probability that one is 0.1 and the other 0.2.

The probability of a simple event is not smaller than that of a

complex one. If, however, the former does occur, we shall not attri-

bute its occurrence to chance; we shall not be inclined to believe that

nature has done it deliberately to deceive us. The hypothesis of an

error of this kind being discarded, we may admit that so far as astro-

nomy is concerned our law has been verified by experiment.

But Astronomy is not the whole of Physics. May we not fear that

some day a new. experiment will falsify the law in some domain of

physics? An experimental law is always subject to revision; we may

always expect to see it replaced by some other and more exact law. But

no one seriously thinks that the law of which we speak will ever be

abandoned or amended. Why? Precisely because it will never be

submitted to a decisive test.

In the first place, for this test to be complete, all the bodies of the

universe must return with their initial velocities to their initial posi-

tions after a certain time. We ought then to find that they would re-

sume their original paths. But this test is impossible; it can be

only partially applied, and even when it is applied there will still be

some bodies which will not return to their original positions. Thus

there will be a ready explanation of any breaking down of the law.

Yet this is not all. In Astronomy we see, the bodies whose motion

we are studying, and in most cases we grant that they are not subject

to the action of other invisible bodies. Under these conditions, our

law must certainly be either verified or not. But it is not so in

Physics. If physical phenomena are due to motion, it is to the motion

of molecules which we cannot see. If, then, the acceleration of bodies

we cannot see depends on something else than the positions or veloci-

ties of other visible bodies or of invisible molecules, the existence of

which we have been led previously to admit, there is nothing to

prevent us from supposing that this something else is the position or

velocity of other molecules of which we have not so far suspected

the existence. The law will be safeguarded. Let me express the same

thought in another form in mathematical language. Suppose we are

observing n molecules, and find that their 3n co-ordinates satisfy a

system of 3n differential equations of the fourth order (and not of
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the second, as required by the law of inertia) . We know that by intro-

ducing 3n variable auxiliaries, a system of 3n equations of the fourth

order may be reduced to a system of 6n equations of the second order.

If, then, we suppose that the 3n auxiliary variables represent the co-

ordinates of n invisible molecules, the result is again conformable to

the law of inertia. To sum up, this law, verified experimentally in

some particular cases, may be extended fearlessly to the most general

cases; for we know that in these general cases it can neither be con-

firmed nor contradicted by experiment.

The Law of Acceleration. The acceleration of a body is equal to

the force which acts on it divided by its mass.

Can this law be verified by experiment? If so, we have to measure

the three magnitudes mentioned in the enunciation : acceleration, force,

and mass. I admit that acceleration may be measured, because I pass

over the difficulty arising from the measurement of time. But how
are we to measure force and mass? We do not even know what they

are. What is mass ? Newton replies :

" The product of the volume

and the density."
"

It were better to say," answer Thomson and Tait,
"
that density is the quotient of the mass by the volume." What is

force ?
"
It is," replies Lagrange,

"
that which moves or tends to

move a body."
"

It is," according to Kirchoff,
"
the product of the

mass and the acceleration." Then why not say that mass is the quo-

tient of the force by the acceleration? These difficulties are insur-

mountable.

When we say force is the cause of motion, we are talking metaphy-
sics

;
and this definition, if we had to be content with it, would be

absolutely fruitless, would lead to absolutely nothing. For a defini-

tion to be of any use it must tell us how to measure force; and that

is quite sufiicient, for it is by no means necessary to tell what force

is in itself, nor whether it is the cause or the effect of motion. We
must therefore first define what is meant by the equality of two

forces. When are two forces equal? We are told that it is when they

give the same acceleration to the same mass, or when acting in oppo-
site directions they are in equilibrium. This definition is a sham. A
force applied to a body cannot be uncoupled and applied to another

body as an engine is uncoupled from one train and coupled to an-

other. It is therefore impossible to say what acceleration such a force,

applied to such a body, would give to another body if it were applied

to it. It is impossible to tell how two forces which are not acting in

exactly opposite directions would behave if they were acting in oppo-
site directions. It is this definition which we try to materialize, as

it were, when we measure a force with a dynamometer or with a bal-

ance. Two forces, F and F', which I suppose, for simplicity, to be

acting vertically upwards, are respectively applied to two bodies, C
and f '. T attach a body weighing P first to C and then to C'; if
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there is equilibrium in both cases I conclude that the two forces F and

F' are equal, for they are both equal to the weight of the body P. But

am I certain that the body P has kept its weight when I transferred it

from the first body to the second? Far from it. I am certain of the

contrary. I know that the magnitude of the weight varies from one

point to another, and that it is greater, for instance, at the pole than

at the equator. No doubt, the difference is very small, and we neglect

it in practice; but a definition must have mathematical rigor; this

rigor does not exist. What I say of weight would apply equally to

the force of the spring of a dynamometer, which would vary accord-

ing to temperature and many other circumstances. Nor is this all.

We cannot say that the weight of the body P is applied to the body
C and keeps in equilibrium the force F. What is applied to the body
C is the action of the body P on the body C. On the other hand, the

body P is acted on by its weight, and by the reaction E of the body C
on P the forces F and A are equal, because they are in equilibrium;

the forces A and R are equal by virtue of the principle of action

and reaction; and finally, the force R and the weight P are equal be-

cause they are in equilibrium. From these three equalities we deduce

the equality of the weight P and the force F.

Thus we are compelled to bring into our definition of the equality

of two forces the principle of the equality of action and reaction;

hence this principle can no longer "be regarded as an experimental law

but only as a definition.

To recognize the equality of two forces we are then in possession of

two rules: the equality of two forces in equilibrium and the equality

of action and reaction. But, as we have seen, these are not sufficient,

and we are compelled to have recourse to a third rule, and to admit

that certain forces the weight of a body, for instance are con-

stant in magnitude and direction. But this third rule is an experi-

mental law. It is only approximately true : it is a bad definition. We
are therefore reduced to Kirchoff's definition: force is the product of

the mass and the acceleration. This law of Newton in its turn

ceases to be regarded as an experimental law, it is now only a defini-

tion. But as a definition it is insufficient, for we do not know what

mass is. It enables us, no doubt, to calculate the ratio of two forces

applied at different times to the same body, but it tells us nothing

about the ratio of two forces applied to two different bodies. To fill

up the gap we must have recourse to Newton's third law, the equality

of action and reaction, still regarded not as an experimental law but

as a definition. Two bodies, A and B, act on each other ;
the accelera-

tion of A, multiplied by the mass of A, is equal to the action of B
on A ;

in the same way the acceleration of B, multiplied by the mass

of B, is equal to the -reaction of A on B. As, by definition, the action

and the reaction are equal, the masses of A and B are respectively in
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the inverse ratio of their masses. Thus is the ratio of the two masses

defined, and it is for experiment to verify that the ratio is constant.

This would do very well if the two bodies were alone and could be

abstracted from the action of the rest of the world; but this is by no

means the case. The acceleration of A is not solely due to the action

of B, but to that of a multitude of other bodies, C, D, . . . To apply

the preceding rule we must decompose the acceleration of A into many
components, and find out which of these components is due to the

action of B. The decomposition would still be possible if we suppose

that the action of C on A is simply added to that of B on A, and that

the presence of the body C does not in any way modify the action of

B on A, or that the presence of B does not modify the action of C

on A ;
that is, if we admit that any two bodies attract each other, that

their mutual action is along their join, and is only dependent on their

distance apart ; if, in a word, we admit the hypothesis of central forces.

We know that to determine the masses of the heavenly bodies we

adopt quite a different principle. The law of gravitation teaches us

that the attraction of two bodies is proportional to their masses; if r

is their distance apart, ra and in their masses, Jc, a constant, then their

attraction will be Jcmm'/r
2

. What we are measuring is therefore not

mass, the ratio of the force to the acceleration, but the attracting

mass; not the inertia of the body, but its attracting power. It is an

indirect process, the use of which is not indispensable theoretically.

We might have said that the attraction is inversely proportional to

the square of the distance, without being proportional to the product
of the masses, that it is equal to f/r

2 and not to Tcmm. If it were so,

we should nevertheless, by observing the relative motion of the celestial

bodies, be able to calculate the masses of these bodies.

But have we any right to admit the hypothesis of central forces ? Is

this hypothesis rigorously accurate ? Is it certain that it will never be

falsified by experiment? Who will venture to make such an asser-

tion? And if we must abandon this hypothesis, the building which

has been so laboriously erected must fall to the ground.
We have no longer any right to speak of the component of the ac-

celeration of A which is due to the action of B. We have no means of

distinguishing it from that which is due to the action of C or of any
other body. The rule becomes inapplicable in the measurement of

masses. What then is left of the principle of the equality of action

and reaction? If we reject the hypothesis of central forces this prin-

ciple must go too; the geometrical resultant of all the forces applied
to the different bodies of a system abstracted from all external action

will be zero. In other words, the motion of the centre of gravity of

this system will be uniform and in a straight line. Here would seem

to be a means of defining mass. The position of the centre of gravity

evidently depends on the values given to the masses; we must select
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these values so that the motion of the centre of gravity is uniform and

rectilinear. This will always be possible if Newton's third law holds

good, and it will be in general possible only in one way. But no sys-

tem exists which is abstracted from all external action; every part
of the universe is subject, more or less, to the action of the other parts.

The law of the motion of the centre of gravity is only rigorously true

when applied to the whole universe.

But then, to obtain the values of the masses we must find the motion

of the centre of gravity of the universe. The absurdity of this con-

clusion is obvious ; the motion of the centre of gravity of the universe

will be forever to us unknown. Nothing, therefore, is left, and our

efforts are fruitless. There is no escape from the following definition,

which is only a confession of failure: Masses are co-efficients, which

it is found convenient to introduce into calculations.

We could reconstruct our mechanics by giving to our masses differ-

ent values. The new mechanics would be in contradiction neither with

experiment nor with the general principles of dynamics (the principle

of inertia, proportionality of masses and accelerations, equality of

action and reaction, uniform motion of the centre of gravity in a

straight line, and areas). But the equations of this mechanics would

not be so simple. Let us clearly understand this. It would be only

the first terms which would be less simple i.e., those we already

know through experiment ; perhaps the small masses could be slightly

altered without the complete equations gaining or losing in sim-

plicity.

Hertz has inquired if the principles of mechanics are rigorously

true.
" In the opinion of many physicists it seems inconceivable that

experiment will ever alter the impregnable principles of mechanics;

and yet, what is due to experiment may always be rectified by experi-

ment." From what we have just seen these fears would appear to be

groundless. The principles of dynamics appeared to us first as ex-

perimental truths, but we have been compelled to use them as defini-

tions. It is by definition that force is equal to the product of the mass

and the acceleration; this is a principle which is henceforth beyond
the reach of any future experiment. Thus it is by definition that

action and reaction are equal and opposite. But then it will be said,

these unverifiable principles are absolutely devoid of any significance.

They cannot be disproved by experiment, but we can learn from them

nothing of any use to us ; what then is the use of studying dynamics ?

This somewhat rapid condemnation would be rather unfair. There is

not in Nature any system perfectly isolated, perfectly abstracted from

all external action; but there are systems which are nearly isolated.

If we observe such a system, we can study not only the relative motion

of its different parts with respect to each other, but the motion of

its centre of gravity with respect to the other parts of the universe.
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We then find that the motion of its centre of gravity is nearly uni-

form and rectilinear in conformity with Newton's Third Law. This

is an experimental fact, which cannot be invalidated by a more accu-

rate experiment. What, in fact, would a more accurate experiment
teach us? It would teach us that the law is only approximately true,

and we know that already. Thus is explained how experiment may
serve as a basis for the principles of mechanics, and yet will never

invalidate them.

Anthropomorphic Mechanics. It will be said that Kirchoff has

only followed the general tendency of mathematicians towards nom-

inalism; from this his skill as a physicist has not saved him. He
wanted a definition of a force, and he took the first that came handy;
but we do not require a definition of force ; the idea of force is primi-

tive, irreducible, indefinable; we all know what it is; of it we have

direct intuition. This direct intuition arises from the idea of effort

which is familiar to us from childhood. But in the first place, even

if this direct intuition made known to us the real nature of force in

itself, it would prove to be an insufficient basis for mechanics; it

would, moreover, be quite useless. The important thing is not to

know what force is, but how to measure it. Everything which does

not teach UP how to measure it is as useless to the mechanician as,

for instance, the subjective idea of heat and cold to the student of

heat. This subjective idea cannot be translated into numbers, and is

therefore useless: a scientist whose skin is an absolutely bad con-

ductor of heat, and who, therefore, has never felt the sensation of

heat or cold, would read a thermometer in just the same way as any
one else, and would have enough material to construct the whole of

the theory of heat.

Now this immediate notion of effort is of no use to us in the

measurement of force. It is clear, for example, that I shall experi-

ence more fatigue in lifting a weight of 100 Ib. than a man who is

accustomed to lifting heavy burdens. But there is more than this.

This notion of effort does not teach us the nature of force; it is

definitely reduced to a recollection of muscular sensations, and no

one will maintain that the sun experiences a muscular sensation when

it attracts the earth. All that we can expect to find from it is a sym-

bol, less precise and less convenient than the arrows (to denote

direction) used by geometers, and quite as remote from reality.

Anthropomorphism plays a considerable historic role in the genesis

of mechanics; perhaps it may yet furnish us with a symbol which

some minds may find convenient; but it can be the foundation of

nothing of a really scientific or philosophical character.

The Thread School. M. Andrade, in his Legons de Mecanique

physique, has modernized anthropomorphic mechanics. To the school
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of mechanics with which Kirchoff is identified, he opposes a school

which is quaintly called the
" Thread School."

This school tries to reduce everything to the consideration of

certain material systems of negligible mass, regarded in a state of

tension and capable of transmitting considerable effort to distant

bodies systems of which the ideal type is the fine string, wire, or

thread. A thread which transmits any force is slightly lengthened in

the direction of that force ; the direction of' the thread tells us the

direction of the force, and the magnitude of the force is measured by
the lengthening of the thread.

We may imagine such an experiment as the following : A body A
is attached to a thread; at the other extremity of the thread acts a

force which is made to vary until the length of the thread is increased

by a, and the acceleration of the body A is recorded. A is then de-

tached, and a body B is attached to the same thread, and the same

or another force is made to act until the increment of length again is a,

and the acceleration of B is noted. The experiment is then renewed

with both A and B until the increment of length is (3. The four ac-

celerations observed should be proportional. Here we have an ex-

perimental verification of the law of acceleration enunciated above.

Again, we may consider a body under the action of several threads in

equal tension, and by experiment we determine the direction of those

threads when the body is in equilibrium. This is an experimental
verification of the law of the composition of forces. But, as a matter

of fact, what have we done ? We have defined the force acting on the

string by the deformation of the thread, Avhich is reasonable enough;
we have then assumed that if a body is attached to this thread, the

effort which is transmitted to it by the thread is equal to the action

exercised by the body on the thread
;
in fact, we have used the principle

of action and reaction by considering it, not as an experimental

truth, but as the very definition of force. This definition is quite as

conventional as that of Kirchoff, but it is much less general.

All the forces are not transmitted by the thread (and to compare
them they would all have to be transmitted by identical threads). If

we even admitted that the earth is attached to the sun by an invisible

thread, at any rate it will be agreed that we have no means of mea-

suring the increment of the thread. Nine times out of ten, in con-

sequence, our definition will be in default; no sense of any kind can

be attached to it, and we must fall back on that of Kirchoff. Why
then go on in this roundabout way? You admit a certain definition

of force which has a meaning only in certain particular cases. In

those cases you verify by experiment that it leads to the law of accel-

eration. On the strength of these experiments you then take the law

of acceleration as a definition of force in all the other cases.

Would it not be simpler to consider the law of acceleration as a



FOKCE 683

definition in all cases, and to regard the experiments in question, not

as verifications of that law, but as verifications of the principle of

action and reaction, or as proving the deformations of an elastic body

depend only on the forces acting on that body? Without taking

into account the fact that the conditions in which your definition

could be accepted can only be very imperfectly fulfilled, that a thread

is never without mass, that it is never isolated from all other forces

than the reacticn of the bodies attached to its extremities.

The ideas expounded by M. Andrade are none the less very interest-

ing. If they do not satisfy our logical requirements, they give us a

better view of the historical genesis of the fundamental ideas of

mechanics. The reflections they suggest show us how the human
mind passed from a naive anthropomorphism to the present concep-

tion of science.

We see that we end with an experiment which is very particular,

and as a matter of fact very crude, and we start with a perfectly

general law, perfectly precise, the truth of which we regard as abso-

lute. We have, so to speak, freely conferred this certainty on it by

looking upon it as a convention.

Are the laws of acceleration and of the composition of forces only

arbitrary conventions ? Conventions, yes ; arbitrary, no they would

be so if we lost sight of the experiments which led the founders of

the science to adopt them, and which, imperfect as they were, were

sufficient to justify their adoption. It is well from time to time to

let our attention dwell on the experimental origin of these conventions.

Relative and Absolute Motion

TJic Principle of Relative Motion. Sometimes endeavors have

been made to connect the law of acceleration with a more general

principle. The movement of any system whatever ought to obey the

same laws, whether it is referred to fixed axes or to the movable axes

which are implied in uniform motion in a straight line. This is

the principle of relative motion; it is imposed upon us for two rea-

sons: the commonest experiment confirms it; the consideration of the

contrary hypothesis is singularly repugnant to the mind.

Let us admit it then, and consider a body under the action of a

force. The relative motion of this body with respect to an observer

moving with a uniform velocity equal to the initial velocity of the

body, should be identical with what would be its absolute motion if

it started from rest. We conclude that its acceleration must not de-

pend upon its absolute velocity, and from that we attempt to deduce

the complete law of acceleration.

For a long time there have been traces of this proof in the regula-

tion? for the degree of B.Sc. It is clear that the attempt has
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failed. The obstacle which prevented us from proving the law of

acceleration is that we have no definition of force. This obstacle

subsists in its entirety, since the principle invoked has not furnished

us with the missing definition. The principle of relative motion is

none the less very interesting, and deserves to be considered for its

own sake. Let us try to enunciate it in an accurate manner. We have

said above that the accelerations of the different bodies which form

part of an isolated system only depend on their velocities and their

relative positions, and not on their velocities and their absolute posi-

tions, provided that the movable axes to which the relative motion is

referred move uniformly in a straight line ; or, if it is preferred, their

accelerations depend only on the differences of their velocities and the

differences of their co-ordinates, and not on the absolute values of

these velocities and co-ordinates. If this principle is true for relative

accelerations, or rather for differences of acceleration, by combining
it with the law of reaction we shall deduce that it is true for

absolute accelerations. It remains to be seen how we can prove
that differences of acceleration depend only on differences of

velocities and co-ordinates; or, to speak in mathematical language,
that these differences of co-ordinates satisfy differential equations of

the second order. Can this proof be deduced from experiment or

from a priori conditions? Remembering what we have said before,

the reader will give his own answer. Thus enunciated, in fact, the

principle of relative motion curiously resembles what I called above

the generalized principle of inertia; it is not quite the same thing,

since it is a question of differences of co-ordinates, and not of the co-

ordinates themselves. The new principle teaches us something more

than the old, but the same discussion applies to it, and would lead

to the same conclusions. We need not recur to it.

Newton's Argument. Here we find a very important and even

slightly disturbing question. I have said that the principle of relative

motion was not for us simply a result of experiment ;
and that a priori

every contrary hypothesis would be repugnant to the mind. But, then,

why is the principle only true if the motion of the movable axes is

uniform and in a straight line? It seems that it should be imposed

upon us with the same force if the motion is accelerated, or at any rate

if it reduces to a uniform rotation. In these two cases, in fact, the

principle is not true. I need not dwell on the case in which the mo-

tion of the axes is in a straight line and not uniform. The paradox
does not bear a moment's examination. If I am in a railway carriage,

and if the train, striking against any obstacle whatever, is suddenly

stopped, I shall be projected on to the opposite side, although I have

not been directly acted upon by any force. There is nothing mysteri-

ous in that, and if I have not been subject to the action of any exter-

nal force, the train has experienced an external impact. There can be
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nothing paradoxical in the relative motion of two bodies being dis-

turbed when the motion of one or the other is modified by an external

cause. NOT need I dwell on the case of relative motion referring to

axes which rotate uniformly. If the sky were forever covered with

clouds, and if we had no means of observing the stars, we might,

nevertheless, conclude that the earth turns round. We should be

warned of this fact by the flattening at the poles, or by the experiment
of Foucault's pendulum. And yet, would there in this case be any

meaning in saying that the earth turns round? If there is no abso-

lute space, can a thing turn without turning with respect to some-

thing; and, on the other hand, how can we admit Newton's conclu-

sion and believe in absolute space? But it is not sufficient to state

that all possible solutions are equally unpleasant to us. We must

analyze in each case the reason of our dislike, in order to make our

choice with the knowledge of the cause. The long discussion which

follows must, therefore, be excused.

Let us resume our imaginary story. Thick clouds hide the stars

from men who cannot observe them, and even are ignorant of their

existence. How will those men know that the earth turns round ? No

doubt, for a longer period than did our ancestors, they will regard the

soil on which they stand as fixed and immovable. They will wait a

much longer time than we did for the coming of a Copernicus; but

this Copernicus will come at last. How will he come? In the first

place, the mechanical school of this world would not run their heads

against an absolute contradiction. In the theory of relative motion we

observe, besides real forces, two imaginary forces, which we call ordi-

nary centrifugal force and compounded centrifugal force. Our imag-

inary scientists can thus explain everything by looking upon these two

forces as real, and they would not see in this a contradiction of the

generalized principle of inertia, for these forces would depend, the one

on the relative positions of the different parts of the system, such as

real attraction?, and the other on their relative velocities, as in the

case of real frictions. Many difficulties, however, would before long
awaken their attention. If they succeeded in realizing an isolated

system, the centre of gravity of this system would not have an ap-

proximately rectilinear path. They could invoke, to explain this fact,

the centrifugal forces which they would regard as real, and which,

no doubt, they would attribute to the mutual actions of the bodies

only they would not see these forces vanish at great distances that is

to say, in proportion as the isolation is better realized. Far from it.

Centrifugal force increases indefinitely with distance. Already this

difficulty would seem to them sufficiently serious, but it would not

detain them for long. They would soon imagine some very subtle

medium analogous to our ether, in which all bodies would be bathed,

and which would exercise on them a repulsive action. But that is not
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all. Space is symmetrical yet the laws of motion would present

no symmetry. They should be able to distinguish between right and

left. They would see, for instance, that cyclones always turn in the

same direction, while for reasons of symmetry they should turn in-

differently in any direction. If our scientists were able by dint of

much hard work to make their universe perfectly symmetrical, this

symmetry would not subsist, although there is no apparent reason

why it should be disturbed in one direction more than in another.

They would extract this from the situation no doubt they would

invent something which would not be more extraordinary than the

glass spheres of Ptolemy, and would thus go on accumulating compli-

cations until the long-expected Copernicus would sweep them all

away with a single blow, saying it is much more simple to admit that

the earth turns round. Just as our Copernicus said to us :

"
It is

more convenient to suppose that the earth turns round, because the

laws of astronomy are thus expressed in a more simple language," so

he would say to them :

"
It is more convenient to suppose that the

earth turns round, because the laws of mechanics are thus expressed in

much more simple language." That does not prevent absolute space

that is to say, the point to which we must refer the earth to know

if it really does turn round from having no objective existence.

And hence this affirmation :

"
the earth turns round," has no mean-

ing, since it cannot be verified by experiment; since such an experi-

ment not only cannot be realized or even dreamed of by the most

daring Jules Verne, but cannot even be conceived of without contra-

diction ; or, in other words, these two propositions,
"
the earth turns

round," and "
it is more convenient to suppose that the earth turns

round," have one and the same meaning. There is nothing more in

one than in the other. Perhaps they will not be content with this,

and may find it surprising that among all the hypotheses, or rather

all the conventions, that can be made on this subject there is one

which is more convenient than the rest. But if we have admitted it

without difficulty when it is a question of the laws of astronomy, why
should we object when it is a question of the laws of mechanics? We
have seen that the co-ordinates of bodies are determined by differ-

ential equations of the second order, and that so are the differences

of these co-ordinates. This is what we have called the generalized

principle of inertia, and the principle of relative motion. If the dis-

tances of these bodies were determined in the same way by equations

of the second order, it seems that the mind should be entirely satisfied.

How far does the mind receive this satisfaction, and why is it not

content with it ? To explain this we had better take a simple example.

I assume a system analogous to our solar system, but in which fixed

stars foreign to this system cannot be perceived, so that astronomers

can only observe the mutual distances of planets and the sun, and not
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the absolute longitudes of the planets. If we deduce directly from

Newton's law the differential equations which define the variation of

these distances, these equations will not be of the second order. I mean
that if, outside Newton's law, we knew the initial values of these dis-

tances and of their derivatives with respect to time that would

not be sufficient to determine the values of these same distances at an

ulterior moment. A datum would be still lacking, and this datum

might be, for example, what astronomers call the area-constant. But

here we may look at it from two different points of view. We may
consider two kinds of constants. In the eyes of the physicist the

world reduces to a series of phenomena depending, on the one hand,

solely on initial phenomena, and, on the other hand, on the laws con-

necting consequence and antecedent. If observation then teaches us

that a certain quantity is a constant, we shall have a choice of two

ways of looking at it. So let us admit that there is a law which re-

quires that this quantity shall not vary, but that by chance it has

been found to have had in the beginning of time this value rather

than that, a value that it has kept ever since. This quantity might
then be called an accidental constant. Or again, let us admit on the

contrary that there is a law of nature which imposes on this quantity

this value and not that. We shall then have what may be called an

essential constant. For example, in virtue of the laws of Newton the

duration of the revolution of the earth must be constant. But if it is

366 and something sidereal days, and not 300 or 400, it is because of

some initial chance or other. It is an accidental constant. If, on the

other hand, the exponent of the distance which figures in the expres-

sion of the attractive force is eqiial to 2 and not to 3, it is not by

chance, but because it is required by Newton's law. It is an essential

constant. I do not know if this manner of giving to chance its share

is legitimate in itself, and if there is not some artificiality about this

distinction; but it is certain at least that in proportion as Nature

has secrets, she will be strictly arbitrary and always uncertain in their

application. As far as the area-constant is concerned, we are accus-

tomed to look upon it as accidental. Is it certain that our imaginary
astronomers would do the same? If they were able to compare two

different solar systems, they would get the idea that this constant

may assume several different values. But I supposed at the outset, as

I was entitled to do, that their system would appear isolated, and that

they would see no star which was foreign to their system. Under these

conditions they could only detect a single constant, which would have

an absolutely invariable, unique value. They would be led no doubt

to look upon it as an essential constant.

One word in passing to forestall an objection. The inhabitants

of this imaginary world could neither observe nor define the area-

constant as we do, because absolute longitudes escape their notice;
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but that would not prevent them from being rapidly led to remark

a certain constant which would be naturally introduced into their

equations, and which would be nothing but what we call the area-

constant. But then what would happen? If the area-constant is

regarded as essential, as dependent upon a law of nature, then in

order to calculate the distances of the planets at any given moment it

would be sufficient to know the initial values of these distances and

those of their first derivatives. From this new point of view, dis-

tances will be determined by differential equations of the second order.

Woiild this completely satisfy the minds of these astronomers? I

think not. In the first place, they would very soon see that in differ-

entiating their equations so as to raise them to a higher order, these

equations would become much more simple, and they would be espe-

cially struck by the difficulty which arises from symmetry. They
would have to admit different laws, according as the aggregate of the

planets presented the figure of a certain polyhedron or rather of a

regular polyhedron, and these consequences can only be escaped by

regarding the area-constant as accidental. I have taken this particular

example, because I have imagined astronomers who would not be in

the least concerned with terrestrial mechanics and whose vision would

be bounded by the solar system. But our conclusions apply in all

cases. Our universe is more extended than theirs, since we have fixed

stars
;
but it, too, is very limited, so we might reason on the whole of

our universe just as these astronomers do on their solar system.

We thus see that we should be definitively led to conclude

that the equations which define distances are of an order

higher than the second. Why should this alarm us why do we

find it perfectly natural that the sequence of phenomena depends on

initial values of the first derivatives of these distances, while we

hesitate to admit that they may depend on the initial values of the

second derivatives? It can only be because of mental habits created

in us by the constant study of the generalized principle of inertia

and of its consequences. The values of the distances at any given

moment depend upon their initial values, on that of their first deriva-

tives, and something else. What is that something else? If we do

not want it to be merely one of the second derivatives, we have only

the choice of hypotheses. Suppose, as is usually done, that this some-

thing else is the absolute orientation of the universe in space, or the

rapidity with which this orientation varies ; this may be, it certainly is,

the most convenient solution for the geometer. But it is not the most

satisfactory for the philosopher, because this orientation does not exist.

We may assume that this something else is the position or the velocity

of some invisible body, and this is what is done by certain persons,

who have even called the body Alpha, although we are destined to never

know anything about this body except its name. This is an artifice en-
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tirely analogous to that of which I spoke at the end of the paragraph

containing my reflections on the principle of inertia. But as a matter

of fact the difficulty is artificial. Provided that the future indica-

tions of our instruments can only depend on the indications which

they have given us, or that they might have formerly given us, such is

all we want, and with these conditions we may rest satisfied.

Energy and Thermo-Dynamics

Energetics. The difficulties raised by the classical mechanics have

led certain minds to prefer a new system which they call Energetics.

Energetics took its rise in consequence of the discovery of the prin-

ciple of the conservation of energy. Helmholtz gave it its definite

form. We begin by defining two quantities which play a fundamental

part in this theory. They are kinetic energy, or vis viva, and potential

energy. Every change that the bodies of nature can undergo is regu-

lated by two experimental laws. First, the sum of the kinetic and

potential energies is constant. This is the principle of the conserva-

tion of energy. Second, if a system of bodies is at A at the time t , and

at B at the time t i} it always passes from the first position to the

second by such a path that the mean value of the difference between

the two kinds of energy in the interval of time which separates the

two epochs, t and
t
is a minimum. This is Hamilton's principle, and

is one of the forms of the principle of least action. The energetic

theory has the following advantages over the classical. First, it is

less incomplete that is to say, the principles of the conservation of

energy and of Hamilton teach us more than the fundamental princi-

ples of the classical theory, and exclude certain motions which do not

occur in nature and which would be compatible with the classical

theory. Second, it frees us from the hypothesis of atoms, which it

was almost impossible to avoid with the classical theory. But in its

turn it raises fresh difficulties. The definitions of the two kinds of

energy would raise difficulties almost as great as those of force and

mass in the first system. However, we can get out of these difficulties

more easily, at any rate in the simplest cases. Assume an isolated

system formed of a certain number of material points. Assume that

these points are acted upon by forces depending only on their relative

position and their distances apart, and independent of their velocities.

In virtue of the principle of the conservation of energy there must

be a function of forces. In this simple case the enunciation of the

principle of the conservation of energy is of extreme simplicity. A
certain quantity, which may be determined by experiment, must re-

main constant. This quantity is the sum of two terms. The first

depends only on the position of the material points, and is inde-

pendent of their velocities; the second is proportional to the squares
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of these velocities. This decomposition can only take place in one

way. The first of these terms, which I shall call U, will be potential

energy ; the second, which I shall call T, will be kinetic energy. It is

true that if T+U is constant, so is any function of T+U, <f> (T+U).
But this function

<j> (T+U) will not be the sum of two terms, the

one independent of the velocities, and the other proportional to the

square of the velocities. Among the functions which remain constant

there is only one which enjoys this property. It is T+U (or a linear

function of T+U), it matters not which, since this linear function

may always be reduced to T+U by a change of unit and of origin.

This, then, is what we call energy. The first term we shall call poten-

tial energy, and the second kinetic energy. The definition of the two

kinds of energy may therefore be carried through without any am-

biguity.

So it is with the definition of mass. Kinetic energy, or vis viva,

is expressed very simply by the aid of the masses, and of the relative

velocities of all the material points with reference to one of them.

These relative velocities may be observed, and when we have the ex-

pression of the kinetic energy as a function of these relative veloci-

ties, the co-efficients of this expression will give us the masses. So in

this simple case the fundamental ideas can be defined without diffi-

culty. But the difficulties reappear in the more complicated cases if

the forces, instead of depending solely on the distances, depend also

on the velocities. For example, Weber supposes the mutual action of

two electric molecules to depend not only on their distance but on their

velocity and on their acceleration. If material points attracted each

other according to an analogous law, U would depend on the velocity,

and it might contain a term proportional to the square of the velocity.

How can we detect among such terms those that arise from T or U?
and how, therefore, can we distinguish the two parts of the energy?

But there is more than this. How can we define energy itself? "We

have no reason to take as our definition T + U rather than any
other function of T+U, when the property which characterized T+U
has disappeared namely, that of being the sum of two terms of a

particular form. But that is not all. We must take account, not only

of mechanical energy properly so called, but of the other forms of

energy heat, chemical energy, electrical energy, etc. The principle

of the conservation of energy must be written T+U+Q a con-

stant, where T is the sensible kinetic energy, U the potential energy

of position, depending only on the position of the bodies, Q the internal

molecular energy under the thermal, chemical, or electrical form.

This would be all right if the three terms were absolutely distinct;

if T were proportional to the square of the velocities, U independent
of these velocities and of the state of the bodies, Q independent of the

velocities and of the positions of the bodies, and depending only on
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their internal state. The expression for the energy could be decom-

posed in one way only into three terms of this form. But this is not

the case. Let us consider electrified bodies. The electro-static en-

ergy due to their mutual action will evidently depend on their charge
i. e., on their state; but it will equally depend on their position.

If these bodies are in motion, they will act electro-dynamically on one

another, and the electro-dynamic energy will depend not only on their

state and their position, but on their velocities. We have therefore

no means of making the selection of the terms which should form part

of T, and U, and Q, and of separating the three parts of the energy.

If T+U+Q is constant, the same is true of any function whatever, <

(T+U+Q).
If T+U+Q were of the particular form that I have suggested above,

no ambiguity would ensue. Among the functions $ (T+U+Q) which

remain constant, there is only one that would be of this particular

form, namely the one which I would agree to call energy. But I

have said this is not rigorously the case. Among the functions that

remain constant there is not one which can rigorously be placed in

this particular form. How then can we choose from among them

that which should be called energy? We have no longer any guide
in our choice.

Of the principle of the conservation of energy there is nothing left

then but an enunciation : There is something which remains con-

stant. In this form it, in its turn, is outside the bounds of experi-

ment and reduced to a kind of tautology. It is clear that if the world

is governed by laws there will be quantities which remain constant.

Like Newton's laws, and for an analogous reason, the principle of the

conservation of energy being based on experiment, can no longer be

invalidated by it.

This discussion shows that, in passing from the classical system to

the energetic, an advance has been made, but it shows, at the same

time, that we have not advanced far enough.

Another objection seems to be still more serious. The principle of

least action is applicable to reversible phenomena, but it is by no

means satisfactory as far as irreversible phenomena are concerned.

Helmholtz attempted to extend it to this class of phenomena, but he

did not and could not succeed. So far as this is concerned all has yet

to be done. The very enunciation of the principle of least action is

objectionable. To move from one point to another, a material mole-

cule, acted upon' by no force, but compelled to move on a surface, will

take as its path the geodesic line i.e., the shortest path. This mole-

cule seems to know the point to which we want to take it, to foresee

the time that it will take it to reach it by such a path, and then to

know how to choose the most convenient path. The enunciation of

the principle presents it to us, so to speak, as a living and free entity.
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It is clear that it would be better to replace it by a less objectionable

enunciation, one in which, as philosophers would say, final effects do

not seem to be substituted for acting causes.

Thermo-dynamics. The role of the two fundamental principles of

thermo-dynamics becomes daily more important in all branches of

natural philosophy. Abandoning the ambitious theories of forty years

ago, encumbered as they were with molecular hypotheses, we now try

to rest on thermo-dynamics alone the entire edifice of mathematical

physics. Will the two principles of Mayer and of Clausius assure to it

foundations solid enough to last for some time? We all feel it, but

whence does our confidence arise? An eminent physicist said to me
one day, apropos of the law of errors : every one stoutly believes it,

because mathematicians imagine that it is an effect of observation, and

observers imagine that it is a mathematical theorem. And this was

for a long time the case with the principle of the conservation of

energy. It is no longer the same now. There is no one who does not

know that it is an experimental fact. But then who gives us the

right of attributing to the principle itself more generality and more

precision than to the experiments which have served to demonstrate it ?

This is asking, if it is legitimate to generalize, as we do every day,

empiric data, and I shall not be so foolhardy as to discuss this ques-

tion, after so many philosophers have vainly tried to solve it. One

thing alone is certain. If this permission were refused to us, science

could not exist; or at least would be reduced to a kind of inventory, to

the ascertaining of isolated facts. It would no longer be to us of

any value, since it could not satisfy our need of order and harmony,
and because it would be at the same time incapable of prediction. As

the circumstances which have preceded any fact whatever will never

again, in all probability, be simultaneously reproduced, we already

require a first generalization to predict whether the fact will be

renewed as soon as the least of these circumstances is changed. But

every proposition may be generalized in an infinite number of ways.

Among all possible generalizations we must choose, and we cannot but

choose the simplest. We are therefore led to adopt the same course

as if a simple law were, other things being equal, more probable than

a complex law. A century ago it was frankly confessed and pro-

claimed abroad that Nature loves simplicity; but Nature has proved
the contrary since then on more than one occasion. We no longer con-

fess this tendency, and we only keep of it what is indispensable, so

that science may not become impossible. In formulating a general,

simple, and formal law, based on a comparatively small number of

not altogether consistent experiments, we have only obeyed a neces-

sity from which the human mind cannot free itself. But there is

something more, and that is why I dwell on this topic. No one doubts

that Mayer's principle is not called upon to survive all the particular
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laws from which it was deduced, in the same way that Newton's law

has survived the laws of Kepler from which it was derived, and

which are no longer anything but approximations, if we take pertur-
bations into account. Now why does this principle thus occupy a kind

of privileged position among physical laws? There are many reasons

for that. At the outset we think that we cannot reject it, or even

doubt, its absolute rigor, without admitting the possibility of perpetual

motion; we certainly feel distrust at such a prospect, and we believe

ourselves less rash in affirming it than in denying it. That perhaps
is not quite accurate. The impossibility of perpetual motion only

implies the conservation of energy for reversible phenomena. The

imposing simplicity of Mayer's principle equally contributes to

strengthen our faith. In a law immediately deduced from experi-

ments, such as Mariotte's law, this simplicity would rather appear to

us a reason for distrust
;
but here this is no longer the case. We take

elements which at the first glance are unconnected; these arrange

themselves in an unexpected order, and form a harmonious whole.

We cannot believe that this unexpected harmony is a mere result of

chance. Our conquest appears to be valuable to us in proportion to the

efforts it has cost, and we feel the more certain of having snatched its

true secret from Nature in proportion as Nature has appeared more

jealous of our attempts to discover it. But these are only small rea-

sons. Before we raise Mayer's law to the dignity of an absolute prin-

ciple, a deeper discussion is necessary. But if we embark on this dis-

cussion we see that this absolute principle is not even easy to enunciate.

In every particular case we clearly see what energy is, and we can give

it at least a provisory definition
;
but it is impossible to find a general

definition of it. If we wish to enunciate the principle in all its gen-

eiality and apply it to the universe, we see it vanish, so to speak, and

nothing is left but this there is something which remains constant.

But has this a meaning? In the determinist hypothesis the state of

the universe is determined by an extremely large number n of par-

ameters, which I shall call a*j, a'2 , x 3 . . . xn. As soon as we know

at a given moment the values of these n parameters, we also know

their derivatives with respect to time, and we can therefore calculate

the rallies of these same parameters at an anterior or ulterior moment.

Tn other words, these n parameters specify n differential equations of

the first order. These equations have n 1 integrals, and therefore

there are n 1 functions of .r,, .r2 , #
:i , . . . xn, which remain con-

stant. If we say then, there is something which remains constant, we

are only enunciating a tautology. We would be even embarrassed to

decide which among all our integrals is that which should retain the

name of energy. Besides, it is not in this sense that Mayer's principle

is understood when it is applied to a limited system. We admit, then,

that p of our n parameters vary independently so that we have only
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n p relations, generally linear, between our n parameters and their

derivatives. Suppose, for the sake of simplicity, that the sum of the

work done by the external forces is zero, as well as that of all the

quantities of heat given off from the interior: what will then be the

meaning of our principle ? There is a combination of these n p rela-

tions, of which the first member is an exact differential; and then this

differential vanishing in virtue of our n p relations, its integral is a

constant, and it is this integral which we call energy. But how can it

be that there are several parameters whose variations are independent ?

That can only take place in the case of external forces (although we

have supposed, for the sake of simplicity, that the algebraical sum
of all the work done by these forces has vanished). If, in fact, the

system were completely isolated from all external action, the values of

our n parameters at a given moment would suffice to determine the

state of the system at any ulterior moment whatever, provided that we

still clung to the determinist hypothesis. We should therefore fall

back on the same difficulty as before. If the future state of the system
is not entirely determined by its present state, it is because it further

depends on the state of bodies external to the system. But then, is it

likely that there exist among the parameters x which define the state

of the system of equations independent of this state of the external

bodies? and if in certain cases we think we can find them, is it not

only because of our ignorance, and because the influence of these

bodies is too weak for our experiment to be able to detect it? If the

system is not regarded as completely isolated, it is probable that the

rigorously exact expression of its internal energy will depend upon
the state of the external bodies. Again, I have supposed above that

the sum of all the external work is zero, and if we wish to be free

from this rather artificial restriction the enunciation becomes still

more difficult. To formulate Mayer's principle by giving it an abso-

lute meaning, we must extend it to the whole universe, and then we

find ourselves face to face with the very difficulty we have endeavored

to avoid. To sum up, and to use ordinary language, the law of the

conservation of energy can have only one significance, because there is

in it a property common to all possible properties; but in the deter-

minist hypothesis there is only one possible, and then the law has no

meaning. In the indeterminist hypothesis, on the other hand, it

would have a meaning even if we wished to regard it in an absolute

sense. It would appear as a limitation imposed on freedom.

But this word warns me that I am wandering from the subject, and

that I am leaving the domain of mathematics and physics. I check

myself, therefore, and I wish to retain only one impression of the

whole of this discussion, and that is, tnat Mayer's law is a form subtle

enough for us to be able to put into it almost anything we like. I do

not mean by that that it corresponds to no objective reality, nor that it
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is reduced to mere tautology; since, in each particular case, and pro-

vided we do not wish to extend it to the absolute, it has a perfectly

clear meaning. This subtlety is a reason for believing that it will last

long; and as, on the other hand, it will only disappear to be blended

in a higher harmony, we may work with confidence and utilize it,

certain beforehand that our work will not be lost.

Almost everything that I have just said applies to the principle of

Clausius. What distinguishes it is, that it is expressed by an in-

equality. It will be said perhaps that it is the same with all physical

laws, since their precision is always limited by errors of observation.

But they at least claim to be first approximations, and we hope to

replace them little by little by more exact laws. If, on the other hand,

the principle of Clausius reduces to an inequality, this is not caused

by the imperfection of our means of observation, but by the very nature

of the question.

General Conclusions on Part III. The principles of mechanics are

therefore presented to us under two different aspects. On the one

hand, there are truths founded on experiment, and verified approxi-

mately as far as almost isolated systems are concerned; on the other

hand, there are postulates applicable to the whole of the universe and

regarded as rigorously true. If these postulates possess a generality

and a certainty which falsify the experimental truths from which they

were deduced, it is because they reduce in final analysis to a simple

convention that we have a right to make, because we are certain before-

hand that no experiment can contradict it. This convention, however,

is not absolutely arbitrary; it is not the child of our caprice. We
admit it because certain experiments have shown us that it will be

convenient, and thus is explained how experiment has built up the

principles of mechanics, and why, moreover, it cannot reverse them.

Take a comparison with geometry. The fundamental propositions of

geometry, for instance, Euclid's postulate, are only conventions, and it

is quite as unreasonable to ask if they are true or false as to ask if the

metric system is true or false. Only, these conventions are convenient,

and there are certain experiments which prove it to us. At the first

glance, the analogy is complete, the role of experiment seems the same.

We shall therefore be tempted to say, either mechanics must be looked

upon as experimental science and then it should be the same with

geometry; or, on the contrary, geometry is a deductive science, and

then we can say the same of mechanics. Such a conclusion would

be illegitimate. The experiments which have led us to adopt as more

convenient the fundamental conventions of geometry refer to bodies

which have nothing in common with those that are studied by geo-

metry. They refer to the properties of solid bodies and to the propa-

gation of light in a straight line. These are mechanical, optical expe-

riments. In no way can they be regarded' as geometrical experiments.
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And even the probable reason why our geometry seems convenient to

us is, that our bodies, our hands, and our limbs enjoy the properties
of solid bodies. Our fundamental experiments are pre-eminently phy-

siological experiments which refer, not to the space which is the object
that geometry must study, but to our body that is to say, to the

instrument which we use for that study. On the other hand, the fun-

damental conventions of mechanics and the experiments which prove
to us that they are convenient, certainly refer to the same objects or

to analogous objects. Conventional and general principles are the

natural and direct generalizations of experimental and particular prin-

ciples. Let it not be said that I am thus tracing artificial frontiers

between the sciences; that I am separating by a barrier geometry

properly so called from the study of solid bodies. I might just as well

raise a barrier between experimental mechanics and the conventional

mechanics of general principles. Who does not see, in fact, that by

separating these two sciences we mutilate both, and that what will

remain of the conventional mechanics when it is isolated will be but

very little, and can in no way be compared with that grand body of

doctrine which is called geometry.

We now understand why the teaching of mechanics should remain

experimental. Thus only can we be made to understand the genesis

of the science, and that is indispensable for a complete knowledge of

the science itself. Besides, if we study mechanics, it is in order to

apply it ; and we can only apply it if it remains objective. Now, as we

have seen, when principles gain in generality and certainty they lose

in objectivity. It is therefore especially with the objective side of

principles that we must be early familiarized, and this can only be

by passing from the particular to the general, instead of from the

general to the particular.

Principles are conventions and definitions in disguise. They are,

however, deduced from experimental laws, and these laws have, so to

speak, been erected into principles to which our mind attributes an

absolute value. Some philosophers have generalized far too much.

They have thought that the principles were the whole of science, and

therefore that the whole of science was conventional. This paradoxi-
cal doctrine, which is called Nominalism, cannot stand examination.

How can a law become a principle? It expressed a relation between

two real terms, A and B; but it was not rigorously true, it was only

approximate. We introduce arbitrarily an intermediate term, C, more
or less imaginary, and C is by definition that which has with A exactly

the relation expressed by the law. So our law is decomposed into an

absolute and rigorous principle which expresses the relation of A to C,

and an approximate experimental and revisable law which expresses

the relation of C to B. But it is clear that however far this decom-

position may be carried, laws will always remain. We shall now enter

into the domain of laws properly so called.



PART IV. NATURE

Hypotheses in Physics

The Role of Experiment and Generalization. Experiment is the

sole source of truth. It alone can teach us something new; it alone

can give us certainty. These are two points that cannot be ques-

tioned. But then, if experiment is everything, what place is left for

mathematical physics? What can experimental physics do with such

an auxiliary an auxiliary, moreover, which seems useless, and even

may be dangerous?

However, mathematical physics exists. It has rendered undeniable

service, and that is a fact which has to be explained. It is not suffi-

cient merely to observe; we must use our observations, and for that

purpose we must generalize. This is what has always been done, only

as the recollection of past errors has made man more and more circum-

spect, he has observed more and more and generalized less and less.

Every age has scoffed at its predecessor, accusing it of having gener-

alizet too boldly and too naively. Descartes used to commiserate the

lonians. Descartes in his turn makes us smile, and no doubt some

day our children will laugh at us. Is there no way of getting at once

to the gist of the matter, and thereby escaping the raillery which we

foresee? Cannot we be content with experiment alone? No, that is

impossible; that would be a complete misunderstanding of the true

character of science. The man of science must work with method.

Science is built up of facts, as a house is built of stones
;
but an accu-

mulation of facts is no more a science than a heap of stones is a

house. Most important of all, the man of science must exhibit fore-

sight. Carlyle has written somewhere something after this fashion.
"
Nothing but facts are of importance. John Lackland passed by

here. Here is something that is admirable. Here is a reality for

which I would give all the theories in the world." 1

Carlyle was a

compatriot of Bacon, and, like him, he wished to proclaim his worship
of the God of Things as they are.

But Bacon would not have said that. That is the language of the

historian. The physicist would most likely have said :

" John Lack-

i V. Past and Present, end of Chapter I., Book II. [TR.]
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land passed by here. It is all the same to me, for he will not pass

this way again."

We all know that there are good and bad experiments. The latter

accumulate in vain. Whether there are a hundred or a thousand,

one single piece of work by a real master by a Pasteur, for example
will be sufficient to sweep them into oblivion. Bacon would have

thoroughly understood that, for he invented the phrase experimentum

cruets; but Carlyle would not have understood it. A fact is a fact.

A student has read such and such a number on his thermometer. He
has taken no precautions. It does not matter; he has read it, and if

it is only the fact which counts, this is a reality that is as much
entitled to be called a reality as the peregrinations of King John

Lackland. What, then, is a good experiment? It is that which

teaches us something more than an isolated fact. It is that which

enables us to predict, and to generalize. Without generalization, pre-

diction is impossible. The circumstances under which one has op-

erated will never again be reproduced simultaneously. The fact ob-

served will never be repeated. All that can be affirmed is that under

analogous circumstances an analogous fact will be produced. To pre-

dict it, we must therefore invoke the aid of analogy that is to say,

even at this stage, we must generalize. However timid we may be,

there must be interpolation. Experiment only gives us a certain num-
ber of isolated points. They must be connected by a continuous line,

and this is a true generalization. But more is done. The curve thus

traced will pass between and near the points observed; it will not

pass through the points themselves. Thus we are not restricted to

generalizing our experiment, we correct it; and the physicist who
would abstain from these corrections, and really content himself with

experiment pure and simple, would be compelled to enunciate very

extraordinary laws indeed. Detached facts cannot therefore satisfy us,

and that is why our science must be ordered, or, better still, general-

ized.

It is often said that experiments should be made without precon-
ceived ideas. That is impossible. Not only would it make every

experiment fruitless, but even if we wished to do so, it could not be

done. Every man has his own conception of the world, and this he

cannot so easily lay aside. We must, for example, use language, and

our language is necessarily steeped in preconceived ideas. Only they

are unconscious preconceived ideas, which are a thousand times the

most dangerous of all. Shall we say, that if we cause others to inter-

vene of which we are fully conscious, that we shall only aggravate the

evil? I do not think so. I am inclined to think that they will serve

as ample counterpoises I was almost going to say antidotes. They
will generally disagree, they will enter into conflict one with another,

and ipso facto, they will force us to look at things under different
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aspects. This is enough to free us. He is no longer a slave who can

choose his master.

Thus, by generalization, every fact observed enables us to predict

a large number of others; only we ought not to forget that the first

alone is certain, and that all the others are merely probable. How-
ever solidly founded a prediction may appear to us, we are never

absolutely sure that experiment will not prove it to be baseless if we

set to work to verify it. But the probability of its accuracy is often

so great that practically we may be content with it. It is far better

to predict without certainty, than never to have predicted at all. We
should never, therefore, disdain to verify when the opportunity pre-

sents itself. But every experiment is long and difficult, and the la-

borers are few, and the number of facts which we require to predict

is enormous; and besides this mass, the number of direct verifications

that we can make will never be more than a negligible quantity. Of

this little that we can directly attain we must choose the best. Every

experiment must enable us to make a maximum number of predic-

tions having the highest possible degree of probability. The problem

is, so to speak, to increase the output of the scientific machine. I may
be permitted to compare science to a library which must go on in-

creasing indefinitely ; the librarian has limited funds for his purchases,

and he must, therefore, strain every nerve not to waste them. Exper-
imental physics has to make the purchases, and experimental physics

alone can enrich the library. As for mathematical physics, her duty
is to draw up the catalogue. If the catalogue is well done the library

is none the richer for it; but the reader will be enabled to utilize its

riches
;
and also by showing the librarian the gaps in his collection, it

will help him to make a judicious use of his funds, which is all the

more important, inasmuch as those funds are entirely inadequate.

That is the role of mathematical physics. It must direct generaliza-

tion, so as to increase what I called just now the output of science.

By what means it does this, and how it may do it without danger, is

what we have now to examine.

The Unity of Nature. Let us first of all observe that every gen-

eralization supposes in a certain measure a belief in the unity and

simplicity of Nature. As far as the unity is concerned, there can be

no difficulty. If the different parts of the universe were not as the

organs of the same body, they would not re-act one upon the other;

they would mutually ignore each other, and we in particular should

only know one part. We need not, therefore, ask if Nature is one,

but how she is one.

As for the second point, that is not so clear. It is not certain that

Nature is simple. Can we without danger act as if she were?

There was a time when the simplicity of Mariotte's law was an argu-

ment in favor of its accuracy : when Fresnel himself, after having
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said in a conversation with Laplace that Nature cares naught for

analytical difficulties, was compelled to explain his words so as not to

give offence to current opinion. Nowadays, ideas have changed con-

siderably; but those who do not believe that natural laws must be

simple, are still often obliged to act as if they did believe it. They
cannot entirely dispense with this necessity without making all gen-

eralization, and therefore all science, impossible. It is clear that

any fact can be generalized in an infinite number of ways, and it is a

question of choice. The choice can only be guided by considerations of

simplicity. Let us take the most ordinary case, that of interpolation.

We draw a continuous line as regularly as possible between the points

given by observation. Why do we avoid angular points and inflections

that are too sharp? Why do we not make our curve describe the

most capricious zigzags? It is because we know beforehand, or think

we know, that the law we have to express cannot be so complicated as

all that. The mass of Jupiter may be deduced either from the move-

ments of his satellites, or from the perturbations of the major planets,

or from those of the minor planets. If we take the mean of the deter-

minations obtained by these three methods, we find three numbers

very close together, but not quite identical. This result might be in-

terpreted by supposing that the gravitation constant is not the same

in the three cases; the observations would be certainly much better

represented. Why do we reject this interpretation? Not because it

is absurd, but because it is uselessly complicated. We shall only

accept it when we are forced to, and it is not imposed upon us yet.

To sum up, in most cases every law is held to be simple until the

contrary is proved.

This custom is imposed upon physicists by the reasons that I have

indicated, but how can it be justified in the presence of discoveries

which daily show us fresh details, richer and more complex? How
can we even reconcile it with the unity of nature? For if all things

are interdependent, the relations in which so many different objects

intervene can no longer be simple.

If we study the history of science we see produced two phenomena
which are, so to speak, each the inverse of the other. Sometimes it is

simplicity which is hidden under what is apparently complex; some-

times, on the contrary, it is simplicity which is apparent, and which

conceals extremely complex realities. What is there more complicated

than the disturbed motions of the planets, and what more simple than

Newton's law ? There, as Fresnel said, Nature playing with analytical

difficulties, only uses simple means, and creates by their combination

I know not what tangled skein. Here it is the hidden simplicity which

must be disentangled. Examples to the contrary abound. In the

kinetic theory of gases, molecules of tremendous velocity are dis-

cussed, whose paths, deformed by incessant impacts, have the most
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capricious shapes, and plough their way through space in every direc-

tion. The result observable is Mariotte's simple law. Each individual

fact was complicated. The law of great numbers has re-established

simplicity in the mean. Here the simplicity is only apparent, and the

coarseness of our senses alone prevents us from seeing the complexity.

Many phenomena obey a law of proportionality. But why? Be-

cause in these phenomena there is something which is very small. The

simple law observed is only the translation of the general analytical

rule by which the infinitely small increment of a function is pro-

portional to the increment of the variable. As in reality our incre-

ments are not infinitely small, but only very small, the law of pro-

portionality is only approximate, and simplicity is only apparent.

What I have just said applies to the law of the superposition of small

movements, which is so fruitful in its applications and which is the

foundation of optics.

And Newton's law itself ? Its simplicity, so long undetected, is per-

haps only apparent. Who knows if it be not due to some complicated

mechanism, to the impact of some subtle matter animated by irregu-

lar movements, and if it has not become simple merely through the

play of averages and large numbers ? In any case, it is difficult not to

suppose that the true law contains complementary terms which may
become sensible at small distances. If in astronomy they are negligi-

ble, and if the law thus regains its simplicity, it is solely on account

of the enormous distances of the celestial bodies. No doubt, if our

means of investigation became more and more penetrating, we should

discover the simple beneath the complex, and then the com-

plex from the simple, and then again the simple beneath the

complex, and so on, without ever being able to predict what the last

term will be. We must stop somewhere, and for science to be possible

we must stop where we have found simplicity. That is the only

ground on which we can erect the edifice of our generalizations. But,

this simplicity being only apparent, will the ground be solid enough?
That is what we have now to discover.

For this purpose let us see what part is played in our generalizations

by the belief in simplicity. We have verified a simple law in a con-

siderable number of particular cases. We refuse to admit that this

coincidence, so often repeated, is a result of mere chance, and we

conclude that the law must be true in the general case.

Kepler remarks that the positions of a planet observed by Tycho
are all on the same ellipse. Not for one moment does he think that,

by a singular freak of chance, Tycho had never looked at the heavens

except at the very moment when the path of the planet happened to

cut that ellipse. What does it matter then if the simplicity be real

or if it hide a complex truth? Whether it be due to the influence of

great numbers which reduces individual differences to a level, or to the
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greatness or the smallness of certain quantities which allow of certain

terms to be neglected in no case is it due to chance. This simplicity,

real or apparent, has always a cause. We shall therefore always be

able to reason in the same fashion, and if a simple law has been ob-

served in several particular cases, we may legitimately suppose that it

still will be true in analogous cases. To refuse to admit this would

be to attribute an inadmissible role to chance. However, there is a

difference. If the simplicity were real and profound it would bear

the test of the increasing precision of our methods of measurement.

If, then, we believe Nature to be profoundly simple, we must conclude

that it is an approximate and not a rigorous simplicity. This is what

was formerly done, but it is what we have no longer the right to do.

The simplicity of Kepler's laws, for instance, is only apparent; but

that does not prevent them from being applied to almost all systems

analogous to the solar system, though that prevents them from being

rigorously exact.

Role of Hypothesis. Every generalization is a hypothesis. Hy-

pothesis therefore plays a necessary role, which no one has ever con-

tested. Only, it should always be as soon as possible submitted to

verification. It goes without saying that, if it cannot stand this test,

it must be abandoned without any hesitation. This is, indeed, what

is generally done ; but sometimes with a certain impatience. Ah well !

this impatience is not justified. The physicist who has just given

up one of his hypotheses should, on the contrary, rejoice, for he found

an unexpected opportunity of discovery. His hypothesis, I imagine,

had not been lightly adopted. It took into account all the known

factors which seem capable of intervention in the phenomenon. If

it is not verified it is because there is something unexpected and

extraordinary about it, because we are on the point of finding some-

thing unknown and new. Has the hypothesis thus rejected been

sterile? Far from it. It may be even said that it has rendered more

service than a true hypothesis. Not only has it been the occasion of

a decisive experiment, but if this experiment had been made by chance,

without the hypothesis, no conclusion could have been drawn
; nothing

extraordinary would have been seen ; and only one fact the more would

have been catalogued, without deducing from it the remotest conse-

quence.

Now, under what conditions is the use of hypothesis without dan-

ger ? The proposal to submit all to experiment is not sufficient. Some

hypotheses are dangerous, first and foremost those which are tacit

and unconscious. And since we make them without knowing them, we

cannot get rid of them. Here again, there is a service that mathemat-

ical physics may render us. By the precision which is its character-

istic, we are compelled to formulate all the hypotheses that we would

unhesitatingly make without its aid. Let us also notice that it is
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important not to multiply hypotheses indefinitely. If we construct a

theory based upon multiple hypotheses, and if experiment condemns it,

which of the premisses must be changed? It is impossible to tell.

Conversely, if the experiment succeeds, must we suppose that it has

verified all these hypotheses at once? Can several unknowns be de-

termined from a single equation?
We must also take care to distinguish between the different kinds of

hypotheses. First of all, there are those which are quite natural and

necessary. It is difficult not to suppose that the influence of very dis-

tant bodies is quite negligible, that small movements obey a linear

law, and that effect is a continuous function of its cause. I will

say as much for the conditions imposed by symmetry. All these

hypotheses affirm, so to speak, the common basis of all the theories of

mathematical physics. They are the last that should be abandoned.

There is a second category of hypotheses which I shall qualify as indif-

ferent. In most questions the analyst assumes, at the beginning of

his calculations, either that matter is continuous, or the reverse, that

it is formed of atoms. In either case, his results would have been the

same. On the atomic supposition he has a little more difficulty in

obtaining them that is all. If, then, experiment confirms his con-

clusions, will he suppose that he has proved, for example, the real

existence of atoms?

In optical theories two vectors are introduced, one of which we

consider as a velocity and the other as a vortex. This again is an

indifferent hypothesis, since we should have arrived at the same con-

clusions by assuming the former to be a vortex and the latter to be

a velocity. The success of the experiment cannot prove, therefore, that

the first vector is really a velocity. It only proves one thing namely,

that it is a vector
;
and that is the only hypothesis that has really been

introduced into the premisses. To give it the concrete appearance

that the fallibility of our minds demands, it was necessary to consider

it either as a velocity or as a vortex. In the same way, it was neces-

sary to represent it by an a; or a y. but the result will not prove that

we were right or wrong in regarding it as a velocity; nor will it

prove we are right or wrong in calling it x and not y.

These indifferent hypotheses are never dangerous provided their

characters are not misunderstood. They may be useful, either as arti-

fices for calculation, or to assist our understanding by concrete image-s,

to fix the ideas, as we say. They need not therefore be rejected. The

hypotheses of the third category are real generalizations. They must

be confirmed or invalidated by experiment. Whether verified or con-

demned, they will always be fruitful; but, for the reasons I rjave

given, they will only be so if they are not too numerous.

Origin of Mathematical Physics. Let us go further and study

more closely the conditions which have assisted the development of
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mathematical physics. We recognize at the outset that the efforts of

men of science have always tended to resolve the complex phenomenon

given directly by experiment into a very large number of elementary

phenomena, and that in three different ways.

First, with respect to time. Instead of embracing in its entirety

the progressive development of a phenomenon, we simply try to

connect each moment with the one immediately preceding. We admit

that the present state of the world only depends on the immediate

past, without being directly influenced, so to speak, by the recollection

of a more distant past. Thanks to this postulate, instead of studying

directly the whole succession of phenomena, we may confine ourselves

to writing down its differential equation; for the laws of Kepler we

substitute the law of Newton.

Next, we try to decompose the phenomena in space. What experi-

ment gives us is a confused aggregate of facts spread over a scene of

considerable extent. We must try to deduce the elementary phenom-

enon, which will still be localized in a very small region of space.

A few examples perhaps will make my meaning clearer. If we

wished to study in all its complexity the distribution of temperature in

a cooling solid, we could never do so. This is simply because, if

we only reflect that a point in the solid can directly impart some of

its heat to a neighboring point, it will immediately impart that heat

only to the nearest points, and it is but gradually that the flow of

heat will reach other portions of the solid. The elementary pheno-
menon is the interchange of heat between two contiguous points. It

is strictly localized and relatively simple if, as is natural, we admit

that it is not influenced by the temperature of the molecules whose

distance apart is small.

I bend a rod: it takes a very complicated form, the direct investi-

gation of which would be impossible. But I can attack the problem,

however, if I notice that its flexure is only the resultant of the

deformations of the very small elements of the rod, and that the

deformation of each of these elements only depends on the forces

which are directly applied to it, and not in the least on those which

may be acting on the other elements.

In all these examples, which may be increased without difficulty, it

is admitted that there is no action at a distance or at great distances.

That is an hypothesis. It is not always true, as the law of gravitation

proves. It must therefore be verified. If it is confirmed, even ap-

proximately, it is valuable, for it helps us to use mathematical physics,

at any rate by successive approximations. If it does not stand the

test, we must seek something else that is analogous, for there are

other means of arriving at the elementary phenomenon. If several

bodies act simultaneously, it may happen that their actions are inde-

pendent, and may be added one to the other, either as vectors or as
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scalar quantities. The elementary phenomenon is then the action of

an isolated body. Or suppose, again, it is a question of small move-

ments, or more generally of small variations which obey the well-

known law of mutual or relative independence. The movement ob-

served will then be decomposed into simple movements for example,
sound into its harmonics, and white light into its monochromatic

components. When we have discovered in which direction to seek for

the elementary phenomenon, by what means may we reach it ? First, it

will often happen that in order to predict it, or rather in order to

predict what is useful to us, it will not be necessary to know its mech-

anism. The law of great numbers will suffice. Take for example the

propagation of heat. Each molecule radiates towards its neighbor
we need not inquire according to what law; and if we make any

supposition in this respect, it will be an indifferent hypothesis, and

therefore useless and unverifiable. In fact, by the action of averages

and thanks to the symmetry of the medium, all differences are levelled,

and, whatever the hypothesis may be, the result is always the same.

The same feature is presented in the theory of elasticity, and in that

of capillarity. The neighboring molecules attract and repel each other,

we need not inquire by what law. It is enough for us that this at-

traction is sensible at small distances only, and that the molecules

are very numerous, that the medium is symmetrical, and we have

only to let the law of great numbers come into play.

Here again the simplicity of the elementary phenomenon is hidden

beneath the complexity of the observable resultant phenomenon ;
but in

its turn this simplicity was only apparent and disguised a very com-

plex mechanism. Evidently the best means of reaching the elementary

phenomenon would be experiment. It would be necessary by experi-

mental artifices to dissociate the complex system which nature offers

for our investigations and carefully to study the elements as disso-

ciated as possible; for example, natural white light would be decom-

posed into monochromatic lights by the aid of the prism, and into

polarized lights by the aid of the polarizer. Unfortunately, that is

neither always possible nor always sufficient, and sometimes the mind

must run ahead of experiment. I shall only give one example which

has always struck me rather forcibly. If I decompose white light, I

shall be able to isolate a portion of the spectrum, but however small it

may be, it will always be a certain width. In the same way the nat-

ural lights which are called monochromatic give us a very fine a ray,

but a ray which is not, however, infinitely fine. It might be supposed

that in the experimental study of the properties of these natural lights*

by operating with finer and finer rays, and passing on at last to the

limit, so to speak, we should eventually obtain the properties of a rigor-

ously monochromatic light. That would not be accurate. I assume

that two rays emanate from the same source, that they are first polar-



706 SCIENCE AND HYPOTHESIS

ized in planes at right angles, that they are then brought back again
to the same plane of polarization, and that we try to obtain inter-

ference. If the light were rigorously monochromatic, there would be

interference; but with our nearly monochromatic lights, there will be

no interference, and that, however narrow the ray may be. For it to be

otherwise, the ray would have to be several million times finer than

the finest known rays.

Here then we should be led astray by proceeding to the limit. The

mind has to run ahead of the experiment, and if it has done so with

success, it is because it has allowed itself to be guided by the instinct of

simplicity. The knowledge of the elementary fact enables us to state

the problem in the form of an equation. It only remains to deduce

from it by combination the observable and verifiable complex fact.

That is what we call integration, and it is the province of the mathe-

matician. It might be asked, why in physical science generalization

so readily takes the mathematical form. The reason is now easy to

see. It is not only because we have to express numerical laws;

it is because the observable phenomenon is due to the superposition of

a large number of elementary phenomena which are all similar to each

other; and in this way differential equations are quite naturally intro-

duced. It is not enough that each elementary phenomenon should

obey simple laws: all those that we have to combine must obey the

same law; then only is the intervention of mathematics of any use.

Mathematics teaches us, in fact, to combine like with like. Its object

is to define the result of a combination without having to reconstruct

that combination element by element. If we have to repeat the same

operation several times, mathematics enables us to avoid this repetition

by telling the result beforehand by a kind of induction. This I have

explained before in the chapter on mathematical reasoning. But for

that purpose all these operations must be similar
;
in the contrary case

we must evidently make up our minds to working them out in full

one after the other, and mathematics will be useless. It is therefore,

thanks to the approximate homogeneity of the matter studied by phy-

sicists, that mathematical physics came into existence. In the nat-

ural sciences the following conditions are no longer to be found:

homogeneity, relative independence of remote parts, simplicity of the

elementary fact; and that is why the student of natural science is

compelled to have recourse to other modes of generalization.

The Theories of Modern Physics

Significance of Physical Theories. The ephemeral nature of scien-

tific theories takes by surprise the man of the world. Their brief period

of prosperity ended, he sees them abandoned one after another; he

sees ruins piled upon ruins; he predicts that the theories in fashion
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to-day will in a short time succumb in their turn, and he concludes

that they are absolutely in vain. This is what he calls the bank-

ruptcy of science.

His skepticism is superficial; he does not take into account the

object of scientific theories and the part they play, or he would under-

stand that the ruins may be still good for something. No theory
seemed established on firmer ground than Fresnel's, which attributed

light to the movements of the ether. Then if Maxwell's theory is

to-day preferred, does that mean that Fresnel's work was in vain?

No; for Fresnel's object was not to know whether there really is an

ether, if it is or is not formed of atoms, if these atoms really move in

this way or that; his object was to predict optical phenomena.
This Fresnel's theory enables us to do to-day as well as it did before

Maxwell's time. The differential equations are always true, they

may be always integrated by the same methods, and the results of this

integration still preserve their value. It cannot be said that this is

reducing physical theories to simple practical recipes; these equations

express relations, and if the equations remain true, it is because the

relations preserve their reality. They teach us now, as they did then,

that there is such and such a relation between this thing and that;

only, the something which we then called motion, we now call electric

current. But these are merely names of the images we substituted for

the real objects which Nature will hide forever from our eyes. The

true relations between these real objects are the only reality we can

attain, and the sole condition is that the same relations shall exist be-

tween these objects as between the images we are forced to put in

their place. If the relations are known to us, what does it matter if

we think it convenient to replace one image by another?

That a given periodic phenomenon (an electric oscillation, for in-

stance) is really due to the vibration of a given atom, which, behaving

like a pendulum, is really displaced in this manner or that, all this is

neither certain nor essential. But that there is between the electric

oscillation, the movement of the pendulum, and all periodic phenom-
ena an intimate relationship which corresponds to a profound reality;

that this relationship, this similarity, or rather this parallelism, is

continued in the details; that it is a consequence of more general

principles such as that of the conservation of energy, and that of

least action; this we may affirm; this is the truth which will ever

remain the same in whatever garb we may see fit to clothe it.

Many theories of dispersion have been proposed. The first were

imperfect, and contained but little truth. Then came that of Helm-

holtz, and this in its turn was modified in different ways; its author

himself conceived another theory, founded on Maxwell's principles.

But the remarkable thing is, that all the scientists who followed Helm-

holtz obtain the same equations, although their starting-points were
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to all appearance widely separated. I venture to say that these theo-

ries are all simultaneously true
;
not merely because they express a true

relation that between absorption and abnormal dispersion. In the

premisses of these theories the part that is true is the part common
to all: it is the affirmation of this or that relation between certain

things, which some call by one name and some by another.

The kinetic theory of gases has given rise to many objections, to

which it would be difficult to find an answer were it claimed that the

theory is absolutely true. But all these objections do not alter the

fact that it has been useful, particularly in revealing to us one true

relation which would otherwise have remained profoundly hidden

the relation between gaseous and osmotic pressures. In this sense,

then, it may be said to be true.

When a physicist finds a contradiction between two theories which

are equally dear to him, he sometimes says :

" Let us not be troubled,

but let us hold fast to the two ends of the chain, lest we lose the

intermediate links." This argument of the embarrassed theologian

would be ridiculous if we were to attribute to physical theories the

interpretation given them by the man of the world. In case of con-

tradiction one of them at least should be considered false. But this is

no longer the case if we only seek in them what should be sought. It

is quite possible that they both express true relations, and that the

contradictions only exist in the images we have formed to ourselves of

reality. To those who feel that we are going too far in our limitations

of the domain accessible to the scientist, I reply: These questions

which we forbid you to investigate, and which you so regret, are not

only insoluble, they are illusory and devoid of meaning.
Such a philosopher claims that all physics can be explained by the

mutual impact of atoms. If he simply means that the same relations

obtain between physical phenomena as between the mutual im-

pact of a large number of billiard balls well and good! this is

verifiable, and perhaps is true. But he means something more, and

we think we understand him, because we think we know what an

impact is. Why? Simply because we have often watched a game of

billiards. Are we to understand that God experiences the same sensa-

tions in the contemplation of His work that we do in watching a

game of billiards? If it is not our intention to give his assertion

this fantastic meaning, and if we do not wish to give it the more re-

stricted meaning I have already mentioned, which is the sound mean-

ing, then it has no meaning at all. Hypotheses of this kind have there-

fore only a metaphorical sense. The scientist should no more banish

them than a poet banishes metaphor ;
but he ought to know what they

are worth. They may be useful to give satisfaction to the mind, and

they will do no harm as long as they are only indifferent hypotheses.

These considerations explain to us why certain theories, that were
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thought to be abandoned and definitively condemned by experiment,
are suddenly revived from their ashes and begin a new life. It is be-

cause they expressed true relations, and had not ceased to do so when

for some reason or other we felt it necessary to enunciate the same

relations in another language. Their life had been latent, as it were.

Barely fifteen years ago, was there anything more ridiculous, more

quaintly old-fashioned, than the fluids of Coulomb? And yet, here

they are re-appearing under the name of electrons. In what do

these permanently electrified molecules differ from the electric mole-

cules of Coulomb? It is true that in the electrons the electricity is

supported by a little, a very little matter; in other words, they have

mass. Yet Coulomb did not deny mass to his fluids, or if he did, it

was with reluctance. It would be rash to affirm that the belief in

electrons will not also undergo an eclipse, but it was none the less

curious to note this unexpected renaissance.

But the most striking example is Carnot's principle. Carnot estab-

lished it, starting from false hypotheses. When it was found that

heat was indestructible, and may be converted into work, his ideas

were completely abandoned; later, Clausius returned to them, and

to him is due their definitive triumph. In its primitive form, Car-

not's theory expressed in addition to true relations, other inexact rela-

tions, the debris of old ideas; but the presence of the latter did not

alter the reality of the others. Clausius had only to separate them,

just as one lops off dead branches.

The result was the second fundamental law of thermodynamics.
The relations were always the same, although they did not hold, at

least to all appearance, between the same objects. This was sufficient

for the principle to retain its value. Xor have the reasonings of Car-

not perished on this arcount ; they were applied to an imperfect con-

ception of matter, but their form i.e., the essential part of them,

remained correct. What I have just said throws some light at the

same time on the role of general principles, such as those of the prin-

ciple of least action or of the conservation of energy. These principles

are of very jreat value. They were obtained in the search for

what there was in common in the enunciation of numerous

physical laws: they thus represent the quintessence of innumer-

able observations. However, from their very generality results a

consequence to which I have called attention in Chapter VIII.

namely, that they arc no longer capable of verification. As we

cannot give a general definition of energy, the principle of the con-

servation of energy simply signifies that there is a something which

remains constant. Whatever fresh notions of the world may be given

us by future experiments, we are certain beforehand that there is

something which remains constant, and which may be called energy.

Does this mean that the principle has no meaning and vanishes into
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a tautology ? Not at all. It means that the different things to which

we give the name of energy are connected by a true relationship; it

affirms between them a real relation. But then, if this principle haa

a meaning, it may be false
;
it may be that we have no right to extend

indefinitely its applications, and yet it is certain beforehand to be

verified in the strict sense of the word. How, then, shall we know
when it has been extended as far as is legitimate? Simply when it

ceases to be useful to us t..,when we can no longer use it to pre-

dict correctly new phenomena. We shall be certain in such a case that

the relation affirmed is no longer real, for otherwise it would be fruit-

ful
; experiment without directly contradicting a new extension of the

principle will nevertheless have condemned it.

Physics and Mechanism. Most theorists have a constant predilec-

tion for. explanations borrowed from physics, mechanics, or dynamics.
Some would be satisfied if they could account for all phenomena by
the motion of molecules attracting one another according to certain

laws. Others are more exact; they would suppress attractions acting

at a distance; their molecules would follow rectilinear paths, from

which they would only be deviated by impacts. Others again, such

as Hertz, suppress the forces as well, but suppose their molecules

subjected to geometrical connections analogous, for instance, to those

of articulated systems; thus, they wish to reduce dynamics to a kind

of kinematics. In a word, they all wish to bend nature into a certain

form, and unless they can do this they cannot be satisfied. Is Nature

flexible enough for this?

We shall examine this question hereafter under the head of Max-

well's Theory. Every time that the principles of least action and

energy are satisfied, we shall see that not only is there always a

mechanical explanation possible, but that there is an unlimited num-

ber of such explanations. By means of a well-known theorem due to

Konigs, it may be shown that we can explain everything in an un-

limited number of ways, by connections after the manner of Hertz,

or, again, by central forces. No doubt it may be just as easily demon-

strated that everything may be explained by simple impacts. For

this, let us bear in mind that it is not enough to be content with the

ordinary matter of which we are aware by means of our senses, and

the movements of which we observe directly. We may conceive of

ordinary matter as either composed of atoms, whose internal move-

ments escape us, our senses being able to estimate only the displacement

of the whole; or we may imagine one of those subtle fluids, which

under the name of ether or other names, have from all time played

so important a role in physical theories. Often we go further, and

regard the ether as the only primitive, or even as the only true matter.

The more moderate consider ordinary matter to be condensed ether,

and there is nothing startling in this conception; but others only re-
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duce its importance still further, and see in matter nothing more than

the geometrical locus of singularities in the ether. Lord Kelvin, for

instance, holds what we call matter to be only the locus of those points

at which the ether is animated by vortex motions. Riemann believes it

to be the locus of those points at which ether is constantly destroyed;

to Wiechert or Larmor, it is the locus of the points at which the ether

has undergone a kind of torsion of a very particular kind. Taking

any one of these points of view, I ask by what right do we apply to

the ether the mechanical properties observed in ordinary matter,

which is but false matter ? The ancient fluids, caloric, electricity, etc.,

were abandoned when it was seen that heat is not indestructible. But

they were also laid aside for another reason. In materializing them,

their individuality was, so to speak, emphasized gaps were opened
between them ; and these gaps had to be filled in when the sentiment

of the unity of Nature became stronger, and when the intimate rela-

tions which connect all the parts were perceived. In multiplying the

fluids, not only did the ancient physicists create unnecessary entities,

but they destroyed real ties. It is not enough for a theory not to

affirm false relations; it must not conceal true relations.

Does our ether actually exist? We know the origin of our belief

in the ether. If light takes several years to reach us from a distant

star, it is no longer on the star, nor is it on the earth. It must be

somewhere, and supported, so to speak, by some material agency.

The same idea may be expressed in a more mathematical and more

abstract form. What we note are the changes undergone by the mate-

rial molecules. We see, for instance, that the photographic plate ex-

periences the consequences of a phenomenon of which the incan-

descent mass of a star was the scene several years before. Now, in

ordinary mechanics, the state of the system under consideration de-

pends only on its state at the moment immediately preceding; the

system therefore satisfies certain differential equations. On the other

hand, if we did not believe in the ether, the state of the material uni-

verse would depend not only on the state immediately preceding, but

also on much older states
;
the system would satisfy equations of finite

differences. The ether was invented to escape this breaking down

of the laws of general mechanics.

Still, this would only compel us to fill the interplanetary space with

ether, but not to make it penetrate into the midst of the material

media. Fizeau's experiment goes further. By the interference of

rays which have passed through the air or water in motion, it seems

to show us two different media penetrating each other, and yet being

displaced with respect to each other. The ether is all but in our

grasp. Experiments can be conceived in which we come closer still

to it. Assume that Newton's principle of the equality of action and

re-action is not true if applied to matter alone, and that this can be
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proved. The geometrical sum of all the forces applied to all the

molecules would no longer be zero. If we did not wish to change the

whole of the science of mechanics, we should have to introduce the

ether, in order that the action which matter apparently undergoes

should be counterbalanced by the re-action of matter on something.

Or again, suppose we discover that optical and electrical phenomena
are influenced by the motion of the earth. It would follow that those

phenomena might reveal to us not only the relative motion of material

bodies, but also what would seem to be their absolute motion. Again,

it would be necessary to have an ether in order that these so-called

absolute movements should not be their displacements with respect

to empty space, but with respect to something concrete.

Will this ever be accomplished? I do not think so, and I shall

explain why ;
and yet, it is not absurd, for others have entertained this

view. For instance, if the theory of Lorentz, of which I shall speak

in more detail in Chapter XIII., were true, Newton's principle would

not apply to matter alone, and the difference would not be very far

from being within reach of experiment. On the other hand, many

experiments have been made on the influence of the motion of the

earth. The results have always been negative. But if these experi-

ments have been undertaken, it is because we have not been certain

beforehand; and indeed, according to current theories, the compensa-
tion would be only approximate, and we might expect to find accurate

methods giving positive results. I think that such a hope is illusory;

it was none the less interesting to show that a success of this kind

would, in a certain sense, open to us a new world.

And now allow me to make a digression; I must explain why I

do not believe, in spite of Lorentz, that more exact observations will

ever make evident anything else but the relative displacements of ma-

terial bodies. Experiments have been made that should have dis-

closed the terms of the first order; the results were nugatory.

Could that have been by chance ? No one has admitted this
;
a general

explanation was sought, and Lorentz found it. He showed that the

terms of the first order should cancel each other, but not the terms

of the second order. Then more exact experiments were made, which

were also negative; neither could this be the result of chance. An ex-

planation was necessary, and was forthcoming; they always are; hypo-
theses are what we lack the least. But this is not enough. Who is

there who does not think that this leaves to chance far too important a

role? Would it not also be a chance that this singular concurrence

should cause a certain circumstance to destroy the terms of the first

order, and that a totally different but very opportune circumstance

should cause those of the second order to vanish? No; the same

explanation must be found for the two cases, and everything tends to

show that this explanation would serve equally well for the terms of
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the higher order, and that the mutual destruction of these terms will

be rigorous and absolute.

The Present State of Physics. Two opposite tendencies may be

distinguished in the history of the development of physics. On the

one hand, new relations are continually being discovered between

objects which seemed destined to remain forever unconnected ;
scattered

facts cease to be strangers to each other and tend to be marshalled

into an imposing synthesis. The march of science is towards unity
and simplicity.

On the other hand, new phenomena are continually being revealed;

it will be long before they can be assigned their place sometimes it

may happen that to find them a place a corner of the edifice must be

demolished. In the same way, we are continually perceiving details

ever more varied in the phenomena we know, where our crude senses

used to be unable to detect any lack of unity. What we thought to

be simple becomes complex, and the march of science seems to be

towards diversity and complication.

Here, then, are two opposing tendencies, each of which seems to

triumph in turn. Which will win? If the first wins, science is pos-

sible; but nothing proves this a priori, and it may be that after un-

successful efforts to bend Nature to our ideal of unity in spite of her-

self, we shall be submerged by the ever-rising flood of our new riches

and compelled to renounce all idea of classification to abandon our

ideal, and to reduce science to the mere recording of innumerable

recipes.

In fact, we can give this question no answer. All that we can do

is to observe the science of to-day, and compare it with that of yes-

terday. Xo doubt after this examination we shall be in a position to

offer a few conjectures.

Half-a-century ago hopes ran high indeed. The unity of force had

just been revealed to us by the discovery of the conservation of energy
and of its transformation. This discovery also showed that the phe-
nomena of heat could be explained by molecular movements. Although
the nature of these movements was not exactly known, no one

doubted but that they would be ascertained before long. As for light,

the work seemed entirely completed. So far as electricity was con-

cerned, there was not so great an advance. Electricity had just an-

nexed magnetism. This was a considerable and a definitive step

towards unity. But how was electricity in its turn to be brought into

the general unity, and how was it to be included in the general uni-

versal mechanism? No one had the slightest idea. As to the possi-

bility of the inclusion, all were agreed ; they had faith. Finally, as

far as the molecular properties of material bodies are concerned, the

inclusion seemed easier, but the details were very hazy. In a word,

hopes were vast and strong, but vague.
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To-day, what do we see ? In the first place, a step in advance im-

mense progress. The relations between light and electricity are now

known; the three domains of light, electricity, and magnetism, for-

merly separated, are now one ;
and this annexation seems definitive.

Nevertheless the conquest has caused us some sacrifices. Optical

phenomena become particular cases in electric phenomena; as long as

the former remained isolated, it was easy to explain them by move-

ments which were thought to be known in all their details. That

was easy enough; but any explanation to be accepted must now cover

the whole domain of electricity. This cannot be done without diffi-

culty.

The most satisfactory theory is that of Lorentz ; it is unquestionably
the theory that best explains the known facts, the one that throws into

relief the greatest number of known relations, the one in which we
find most traces of definitive construction. That it still possesses a

serious fault I have shown above. It is in contradiction with New-
ton's law that action and re-action are equal and opposite or rather,

this principle according to Lorentz cannot be applicable to matter

alone; if it be true, it must take into account the action of the ether

on matter, and the re-action of the matter on the ether. Now, in the

new order, it is very likely that things do not happen in this way.
However this may be, it is due to Lorentz that the results of

Fizeau on the optics of moving bodies, the laws of normal and abnor-

mal dispersion and of absorption are connected with each other and

with the other properties of the ether, by bonds which no doubt will

not be readily severed. Look at the ease with which the new Zeeman

phenomenon found its place, and even aided the classification of

Faraday's magnetic rotation, which had defied all Maxwell's efforts.

This facility proves that Lorentz's theory is not a mere artificial com-

bination which must eventually find its solvent. It will probably have

to be modified, but not destroyed.

The only object of Lorentz was to include in a single whole all

the optics and electro-dynamics of moving bodies; he did not claim

to give a mechanical explanation. Larmor goes further; keeping the

essential part of Lorentz's theory, he grafts upon it, so to speak, Mac-

Cullagh's ideas on the direction of the movement of the

ether. MacCullagh held that the velocity of the ether is the

same in magnitude and direction as the magnetic force. Ingenious
as is this attempt, the fault in Lorentz's theory remains, and is even

aggravated. According to Lorentz, we do not know what the move-

ments of the ether are; and because we do not know this, we may
suppose them to be movements compensating those of matter, and re-

affirming that action and re-action are equal and opposite. According
to Larmor we know the movements of the ether, and we can prove
that the compensation does not take place.
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If Larmor has failed, as in my opinion he has, does it necessarily

follow that a mechanical explanation is impossible? Far from it. I

eaid above that as long as a phenomenon obeys the two principles of

energy and least action, so long it allows of an unlimited number of

mechanical explanations. And so with the phenomena of optics and

electricity.

But this is not enough. For a mechanical explanation to be good
it must be simple; to choose it from among all the explanations that

are possible there must be other reasons than the necessity of making
a choice. Well, we have no theory as yet which will satisfy this con-

dition and consequently be of any use. Are we then to complain?
That would be to forget the end we seek, which is not the mechanism ;

the true and only aim is unity.

We ought therefore to set some limits to our ambition. Let us not

seek to formulate a mechanical explanation; let us be content to show

that we can always find one if we wish. In this we have succeeded.

The principle of the conservation of energy has always been con-

firmed, and now it has a fellow in the principle of least action, stated

in the form appropriate to physics. This has also been verified, at

least as far as concerns the reversible phenomena which obey La-

grange's equations in other words, which obey the most general

laws of physics. The irreversible phenomena are much more difficult

to bring into line; but they, too, are being co-ordinated and tend to

come into the unity. The light which illuminates them comes from

Carnot's principle. For a long time thermo-dynamics was confined to

the study of the dilatations of bodies and of their change of state.

For some time past it has been . growing bolder, and has considerably

extended its domain. We owe to it the theories of the voltaic cell

and of their thermo-electric phenomena; there is not a corner in phy-

sics which it has not explored, and it has even attacked chemistry

itself. The same laws hold good; everywhere, disguised in some form

or other, we find Carnot's principle ; everywhere also appears that emi-

nently abstract concept of entropy which is as universal as the con-

cept of energy, and like it, seems to conceal a reality. It seemed that

radiant heat must escape, but recently that, too, has been brought

under the same laws.

In this way fresh analogies are revealed which may be often pur-

sued in detail; electric resistance resembles the viscosity of fluids; hys-

teresis would rather be like the friction of solids.. In all cases friction

appears to be the type most imitated by the most diverse irreversible

phenomena, and this relationship is real and profound.

A strictly mechanical explanation of these phenomena has also been

sought, but, owing to their nature, it is hardly likely that it will be

found. To find it, it has been necessary to suppose that the irreversi-

bility is but apparent, that the elementary phenomena are reversible
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and obey the known laws of dynamics. But the elements are extremely

numerous, and become blended more and more, so that to our crude

sight all appears to tend towards uniformity i.e., all seems to

progress in the same direction, and that without hope of return. The

apparent irreversibility is therefore but an effect of the law of great

numbers. Only a being of infinitely subtle senses, such as Maxwell's

demon, could unravel this tangled skein and turn back the course of

the universe.

This conception, which is connected with the kinetic theory of

gases, has cost great effort and has not, on the whole, been fruitful;

it may become so. This is not the place to examine if it leads to con-

tradictions, and if it is in conformity with the true nature of things.

Let us notice, however, the original ideas of M. Gouy on the Brown-

ian movement. According to this scientist, this singular movement

does not obey Carnot's principle. The particles which it sets moving
would be smaller than the meshes of that tightly drawn net; they

would thus be ready to separate them, and thereby to set back the

course of the universe. One can almost see Maxwell's demon at work. 1

To resume, phenomena long known are gradually being better clas-

sified, but new phenomena come to claim their place, and most of

them, like the Zeeman effect, find it at once. Then we have the

cathode rays, the X-rays, uranium and radium rays; in fact, a whole

world of which none had suspected the existence. How many unex-

pected guests to find a place for! No one can yet predict the place

they will occupy, but I do not believe they will destroy the general

unity; I think that they will rather complete it. On the one hand,

indeed, the new radiations seem to be connected with the phenomena
of luminosity; not only do they excite fluorescence, but they some-

times come into existence under the same conditions as that property ;

neither are they unrelated to the cause which produces the electric

spark under the action of ultra-violet light. Finally, and most im-

portant of all, it is believed that in all these phenomena there exist

ions, animated, it is true, with velocities far greater than those of

electrolytes. All this is very vague, but it will all become clearer.

Phosphorescence and the action of light on the spark were regions

rather isolated, and consequently somewhat neglected by investigators.

It is to be hoped that a new path will now be made which will facili-

tate their communications with the rest of science. Not only do we

discover new phenomena, but those we think we know are revealed in

unlooked-for aspects. In the free ether the laws preserve their majes-
tic simplicity, but matter properly so called seems more and more

i Clerk-Maxwell imagined some supernatural agency at work, sorting mole-
cules in a gas of uniform temperature into (a) those possessing kinetic en-

ergy above the average, (6) those possessing kinetic energy below the average.
-[TB.]
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complex; all we can say of it is but approximate, and our formulae

are constantly requiring new terms.

But the ranks are unbroken, the relations that we have discovered

between objects we thought simple still hold good between the same

objects when their complexity is recognized, and that alone is the

important thing. Our equations become, it is true, more and more

complicated, so as to embrace more closely the complexity of nature;

but nothing is changed in the relations which enable these equations

to be derived from each other. In a word, the form of these equa-

tions persists. Take for instance the laws of reflection. Fresnel estab-

lished them by a simple and attractive theory which experiment
seemed to confirm. Subsequently, more accurate researches have

shown that this verification was but approximate; traces of elliptic

polarization were detected everywhere. But it is owing to the first ap-

proximation that the cause of these anomalies was found in the exist-

ence of a transition layer, and all the essentials of Fresnel's theory
have remained. We cannot help reflecting that all these relations

would never have been noted if there had been doubt in the first

place as to the complexity of the objects they connect. Long ago it

was said: If Tycho had had instruments ten times as precise, we

would never have had a Kepler, or a Newton, or Astronomy. It is

a misfortune for a science to be born too late, when the means of

observation have become too perfect. That is what is happening at

this moment with respect to physical chemistry; the founders are

hampered in their general grasp by third and fourth decimal places;

happily they are men of robust faith. As we get to know the proper-

ties of matter better we see that continuity reigns. From the work

of Andrews and Van der Waals, we see how the transition from the

liquid to the gaseous state is made, and that it is not abrupt. Sim-

ilarly, there is no gap between the liquid and solid states, and in the

proceedings of a recent Congress we see memoirs on the rigidity of

liquids side by side with papers on the flow of solids.

With this tendency there is no doubt a loss of simplicity. Such and

such an effect was represented by straight lines
;

it is now necessary to

connect these lines by more or less complicated curves. On the other

hand, unity is gained. Separate categories quieted but did not sat-

isfy the mind.

Finally, a new domain, that of chemistry, has been invaded by
the method of physics, and we see the birth of physical chemistry. It

is still quite young, but already it has enabled us to connect such

phenomena as electrolysis, osmosis, and the movements of ions.

From this cursory exposition what can we conclude? Taking all

things into account, we have approached the realization of unity.

This has not been done as quickly as was hoped fifty years ago, and
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the path predicted has not always been followed; but, on the whole,

much ground has been gained.

The Calculus of Probabilities

No doubt the reader will be astonished to find reflections on the

calculus of probabilities in such a volume as this. What has that

calculus to do with physical science? The questions I shall raise

without, however, giving them a solution are naturally raised by
the philosopher who is examining the problems of physics. So far is

this the case, that in the two preceding chapters I have several times

used the words "
probability

" and " chance."
"
Predicted facts," as

I said above,
" can only be probable." However solidly founded a

prediction may appear to be, we are never absolutely certain that ex-

periment will not prove it false; but the probability is often so great

that practically it may be accepted. And a little farther on I added :

"
See what a part the belief in simplicity plays in our generalizations.

We have verified a simple law in a large number of particular cases,

and we refuse to admit that this so-often repeated coincidence is a

mere effect of chance." Thus, in a multitude of circumstances the

physicist is often in the same position as the gambler who reckons

up his chances. Every time that he reasons by induction, he more or

less consciously requires the calculus of probabilities, and that is why
I am obliged to open this chapter parenthetically, and to interrupt

our discussion of method in the physical sciences in order to examine

a little closer what this calculus is worth, and what dependence we

may place upon it. The very name of the calculus of probabilities is

a paradox. Probability as opposed to certainty is what one does not

know, and how can we calculate the unknown? Yet many eminent

scientists have devoted themselves to this calculus, and it cannot be

denied that science has drawn therefrom no small advantage. How
can we explain this apparent contradiction? Has probability been

defined? Can it even be defined? And if it cannot, how can we

venture to reason upon it? The definition, it will be said, is very

simple. The probability of an event is the ratio of the number of

cases favorable to the event to the total number of possible cases. A
simple example will show how incomplete this definition is : I

throw two dice. What is the probability that one of the two at least

turns up a 6 ? Each can turn up in six different ways ; the number of

possible cases is 6X6=36. The number of favorable cases is 11; the

probability i|. That is the correct solution. But why cannot we

just as well proceed as follows ? The points which turn up on the

two dice form *-^-
=21 different combinations. Among these com-

binations, six are favorable; the probability is
^.

Now why is the

first method of calculating the number of possible cases more legiti-
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mate than the second? In any case it is not the definition that tells

us. We are therefore bound to complete the definition by saying,
" ... to the total number of possible cases, provided the cases are

equally probable." So we are compelled to define the probable by
the probable. How can we know that two possible cases are equally

probable ? Will it be by a convention ? If we insert at the beginning
of every problem an explicit convention, well and good! We then

have nothing to do but to apply the rules of arithmetic and algebra,

and we complete our calculation, when our result cannot be called in

question. But if we wish to make the slightest application of this

result, we must prove that our convention is legitimate, and we shall

find ourselves in the presence of the very difficulty we thought we had

avoided. It may be said that common-sense is enough to show us the

convention that should be adopted. Alas ! M. Bertrand has amused

himself by discussing the following simple problem :

" What is the

probability that a chord of a circle may be greater than the side of

the inscribed equilateral triangle ?
"

The illustrious geometer suc-

cessively adopted two conventions which seemed to be equally impera-
tive in the eyes of common-sense, and with one convention he finds

1-2, and with the other 1-3. The conclusion which seems to follow

from this is that the calculus of probabilities is a useless science, that

the obscure instinct which we call common-sense, and to which we

appeal for the legitimization of our conventions, must be distrusted.

But to this conclusion we can no longer subscribe. We cannot do

without that obscure instinct. Without it, science would be impos-

sible, and without it we could neither discover nor apply a law.

Have we any right, for instance, to enunciate Newton's law? No
doubt numerous observations are in agreement with it, but is not that

a simple fact of chance? and how do we know, besides, that this law

which has been true for so many generations will not be untrue in the

next? To this objection the only answer you can give is: It is very

improbable. But grant the law. By means of it I can calculate the

position of Jupiter in a year from now. Yet have I any right to say

this? Who can tell if a gigantic mass of enormous velocity is not

going to pass near the solar system and produce unforeseen perturba-

tions? Here again the only answer is: It is very improbable. From
this point of view all the sciences would only be unconscious applica-

tions of the calculus of probabilities. And if this calculus be con-

demned, then the whole of the sciences must also be condemned.

I shall not dwell at length on scientific problems in which the inter-

vention of the calculus of probabilities is more evident. In the fore-

front of these is the problem of interpolation, in which, knowing a

certain number of values of a function, we try to discover the inter-

mediary values. I may also mention the celebrated theory of errors

of observation, to which I shall return later; the kinetic theory of
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gases, a well-known hypothesis wherein each gaseous molecule is sup-

posed to describe an extremely complicated path, but in which,

through the effect of great numbers, the mean phenomena which are

all we observe obey the simple laws of Mariotte and Gay-Lussac.

All these theories are based upon the laws of great numbers, and the

calculus of probabilities would evidently involve them in its ruin.

It is true that they have only a particular interest, and that, save

as far as interpolation is concerned, they are sacrifices to which we

might readily be resigned. But I have said above, it would not be

these partial sacrifices that would be in question; it would be the

legitimacy of the whole of science that would be challenged. I quite

see that it might be said : We do not know, and yet we must act. As

for action, we have not time to devote ourselves to an inquiry that

will suffice to dispel our ignorance. Besides, such an inquiry would

demand unlimited time. We must therefore make up our minds

without knowing. This must be often done whatever may happen,
and we must follow the rules although we may have but little confi-

dence in them. What I know is, not that such a thing is true, but

that the best course for me is to act as if it were true. The calculus

of probabilities, and therefore science itself, would be no longer of

any practical value.

Unfortunately the difficulty does not thus disappear. A gambler
wants to try a coup, and he asks my advice. If I give it him, I use

the calculus of probabilities; but I shall not guarantee success. That

is what I shall call subjective probability. In this case we might be

content with the explanation of which I have just given a sketch.

But assume that an observer is present at the play, that he knows of

the coup, and that play goes on for a long time, and that he makes

a summary of his notes. He will find that events have taken place

in conformity with the laws of the calculus of probabilities. That

is what I shall call objective probability, and it is this phenomenon
which has to be explained. There are numerous Insurance Societies

which apply the rules of calculus of probabilities, and they distribute

to their shareholders dividends, the objective reality of which cannot

be contested. In order to explain them, we must do more than invoke

our ignorance and the necessity of action. Thus, absolute scepti-

cism is not admissible. We may distrust, but we cannot condemn
en bloc. Discussion is necessary.

I. Classification of the Problems of Probability. In order to

classify the problems which are presented to us with reference to

probabilities, we must look at them from different points of view, and

first of all, from that of generality. I said above that probability is

the ratio of the number of favorable to the number of possible cases.

What for want of a better term I call generality will increase with the

number of possible cases. This number may be finite, as, for instance,
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if we take a throw of the dice in which the number of possible cases

is 36. That is the first degree of generality. But if we ask, for in-

stance, what is the probability that a point within a circle is within

the inscribed square, there are as many possible cases as there are

points in the circle that is to say, an infinite number. This is

the second degree of generality. Generality can be pushed further

still. We may ask the probability that a function will satisfy a given
condition. There are then as many possible cases as one can imagine
different functions. This is the third degree of generality, which we

reach, for instance, when we try to find the most probable law after a

finite number of observations. Yet we may place ourselves at a quite

different point of view. If we were not ignorant there would be no

probability, there could only be certainty. But our ignorance cannot

be absolute, for then there would be no longer any probability at all.

Thus the problems of probability may be classed according to the

greater or less depth of this ignorance. In mathematics we may set

ourselves problems in probability. What is the probability that the

fifth decimal of a logarithm taken at random from a table is a 9?

There is no hesitation in answering that this probability is l-10th.

Here we possess all the data of the problem. We can calculate our

logarithm without having recourse to the table, but we need not give

ourselves the trouble. This is the first degree of ignorance. In the

physical sciences our ignorance is already greater. The state of a

system at a given moment depends on two things its initial state,

and the law according to which that state varies. If we know both

this law and this initial state, we have a simple mathematical problem
to solve, and we fall back upon our first degree of ignorance. Then it

often happens that we know the law and do not know the initial

state. It may be asked, for instance, what is the present distribution

of the minor planets? We know that from all time they have obeyed
the laws of Kepler, but we do not know what was their initial dis-

tribution. In the kinetic theory of gases we assume that the gaseous
molecules follow rectilinear paths and obey the laws of impact and

elastic bodies; yet as we know nothing of their initial velocities, we
know nothing of their present velocities. The calculus of probabili-

ties alone enables us to predict the mean phenomena which will result

from a combination of these velocities. This is the second degree of

ignorance. Finally it is possible, that not only the initial conditions

but the laws themselves are unknown. We then reach the third

degree of ignorance, and in general we can no longer affirm anything
at all as to the probability of a phenomenon. It often happens that

instead of trying to discover an event by means of a more or less im-

perfect knowledge of the law, the events may be known, and we want

to find the law; or that, instead of deducing effects from causes, we
wish to deduce the causes from the effects. Now, these problems are
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classified as probability of causes, and are the most interesting of all

from their scientific applications. I play at ecarte with a gentleman
whom I know to be perfectly honest. What is the chance that he

turns up the king? It is 1-8. This is a problem of the probability

of effects. I play with a gentleman whom I do not know. He has

dealt ten times, and he has turned the king up six times. What is the

chance that he is a sharper ? This is a problem in the probability of

causes. It may be said that it is the essential problem of the experi-

mental method. I have observed n values of x and the corresponding

values of y. I have found that the ratio of the latter to the former

is practically constant. There is the event; what is the cause? Is it

probable that there is a general law according to which y would be

proportional to x, and that small divergences are due to errors of

observation? This is the type of question that we are ever asking,

and which we unconsciously solve whenever we are engaged in scientific

work. I am now going to pass in review these different categories of

problems by discussing in succession what I have called subjective and

objective probability.

II. Probability in Mathematics. The impossibility of squaring

the circle was shown in 1885, but before that date all geometers con-

sidered this impossibility as so
"
probable

"
that the Academic des

Sciences rejected without examination the, alas! too numerous mem-
oirs on this subject that a few unhappy madmen sent in every year.

Was the Academic wrong? Evidently not, and it knew perfectly well

that by acting in this manner it did not run the least risk of stifling

a discovery of moment. The Academic could not have proved that it

was right, but it knew quite well that its instinct did not deceive it.

If you had asked the Academicians, they would have answered :

" We
have compared the probability that an unknown scientist should have

found out what has been vainly sought for so long, with the proba-

bility that there is one madman the more on the earth, and the latter

has appeared to us the greater." These are very good reasons, but

there is nothing mathematical about them; they are purely psycho-

logical. If you had pressed them further, they would have added:
"
Why do you expect a particular value of a transcendental function

to be an algebraical number; if * be the root of an algebraical equa-

tion, why do you expect this root to be a period of the function sin 2x,

and why is it not the same with the other roots of the same equation ?"

To sum up, they would have invoked the principle of sufficient reason

in its vaguest form. Yet what information could they draw from it ?

At most a rule of conduct for the employment of their time, which

would be more usefully spent at their ordinary work than in reading
a lucubration that inspired in them a legitimate distrust. But what

I called above objective probability has nothing in common with this

first problem. It is otherwise with the second. Let us consider the
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first 10,000 Igarithms that we find in a table. Among these 10,000

logarithms I take one at random. What is the probability that its

third decimal is an even number? You will say without any hesita-

tion that the probability is 1-2, and in fact if you pick out in a table

the third decimals in these 10,000 numbers you will find nearly as

many even digits as odd. Or, if you prefer it, let us write 10,000

numbers corresponding to our 10,000 logarithms, writing down for

each of these numbers + 1 if the third decimal of the corresponding

logarithm is even, and 1 if odd
;
and then let us take the mean of

these 10,000 numbers. I do not hesitate to say that the mean of these

10,000 units is probably zero, and if I were to calculate it practically,

I would verify that it is extremely small. But this verification is

needless. I might have rigorously proved that this mean is smaller

than 0.003. To prove this result I should have had to make a rather

long calculation for which there is no room here, and for which I may
refer the reader to an article that I published in the Revue generate des

Sciences, April 15th, 1899. The only point to which I wish to draw

attention is the following. In this calculation I had occasion to rest

my case on only two facts namely, that the first and second deriva-

tives of the logarithm remain, in the interval considered, between

certain limits. Hence our first conclusion is that the property is not

only true of the logarithm but of any continuous function what-

ever, since the derivatives of every continuous function are limited.

If I was certain beforehand of the result, it is because I have often

observed analogous facts for other continuous functions; and next,

it is because I went through in my mind in a more or less uncon-

scious and imperfect manner the reasoning which led me to the

preceding inequalities, just as a skilled calculator before finishing his

multiplication takes into account what it ought to come to approx-

imately. And besides, since what I call my intuition was only an

incomplete summary of a piece of true reasoning, it is clear that

observation has confirmed my predictions, and that the objective and

subjective probabilities are in agreement. As a third example I shall

choose the following : The number u is taken at random and n

is a given very large integer. What is the mean value of sin nuf

This problem has no meaning by itself. To give it one, a convention

is required namely, we agree that the probability for the number

u to lie between a and a + da is
<f> (a) da; that it is therefore propor-

tional to the infinitely small interval da, and is equal to this multi-

plied by a function
</> (a), only depending on a. As for this function

I choose it arbitrarily, but I must assume it to be continuous. The

value of sin nu remaining the same when u increases by 2ir, I may
without loss of generality assume that u lies between and 2ir, and I

shall thus be led to suppose that
<f> (a) is a periodic function whose

period is 2 TT . The mean value that we seek is readily expressed by
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a s.'mple integral, aod il is easy to show that this integral is smaller

than 2 ^Mg UK being the maximum value of the nth derivative ot
*K

<f> (u). We see then that if the K& derivative is finite, our mean

value will tend towards zero when n increases indefinitely, and

that more rapidly than ~^ . The mean value of sin nu when n is

n

very large is therefore zero. To define this value I required a con-

vention, but the result remains the same whatever that convention

may be. I have imposed upon myself but slight restrictions when I

assumed that the function
</> (a) is continuous and periodic, and these

hypotheses are so natural that we may ask ourselves how they can be

escaped. Examination of the three preceding examples, so different

in all respects, has already given us a glimpse on the one hand of

the role of what philosophers call the principle of sufficient reason,

and on the other hand of the importance of the fact that certain pro-

perties are common to all continuous functions. The study of prob-

ability in the physical sciences will lead us to the same result.

III. Probability in the Physical Sciences. We now come to the

problems which are connected with what I have called the second

degree of ignorance namely, those in which we know the law but

do not know the initial state of the system. I could multiply exam-

ples, but I shall take only one. What is the probable present distri-

bution of the minor planets on the zodiac ? We know they obey the

laws of Kepler. We may even, without changing the nature of the

problem, suppose that their orbits are circular and situated in the

same plane, a plane which we are given. On the other hand, we

know absolutely nothing about their initial distribution. However,
we do not hesitate to affirm, that this distribution is now nearly uni-

form. Why? Let b be the longitude of a minor planet in the

initial epoch that is to say, the epoch zero. Let a be its mean
motion. Its longitude at the present time i.e., at the time t will

be at + b. To say that the present distribution is uniform is to say

that the mean value of the sines and cosines of multiples of at+b

is zero. Why do we assert this? Let us represent our minor planet

by a point in a plane namely, the point whose co-ordinates are

a and b. All these representative points will be contained in a cer-

tain region of the plane, but as they are very numerous this region
will appear dotted with points. We know nothing else about the dis-

tribution of the points. Now what do we do when we apply the

calculus of probabilities to such a question as this? What is the

probability that one or more representative points may be found in a

certain portion of the plane? In our ignorance we are compelled to

make an arbitrary hypothesis. To explain the nature of this hypo-
thesis I may be allowed to use, instead of a mathematical formula, a

crude but concrete image. Let us suppose that over the surface of

our plane has been spread imaginary matter, the density of which is
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variable, but varies continuously. We shall then agree to say that

the probable number of representative points to be found on a certain

portion of the plane is proportional to the quantity of this imaginary
matter which is found there. If there are, then, two regions of the

plane of the same extent, the probabilities that a representative point

of one of our minor planets is in one or other of these regions will be

as the mean densities of the imaginary matter in one or other of the re-

gions. Here then are two distributions, one real, in which the represent-

ative points are very numerous, very close together, but discrete like

molecules of matter in atomic hypothesis ;
the other remote from reality

in which our representative points are replaced by imaginary continuous

matter. We know that the latter cannot be real, but we are forced

to adopt it through our ignorance. If, again, we had some idea of the

real distribution of the representative points, we could arrange it so

that in a region of some extent the density of this imaginary continu-

ous matter may be nearly proportional to the number of representa-

tive points, or if it is preferred, to the number of atoms which are

contained in that region. Even that is impossible, and our ignorance

is so great that we are forced to choose arbitrarily the function which

defines the density of our imaginary matter. We shall be compelled
to adopt a hypothesis from which we can hardly get away; we shall

suppose that this function is continuous. That is sufficient, as we

shall see, to enable us to reach our conclusion.

What is at the instant t the probable distribution of the minor

planets or rather, what is the mean value of the sine of the longi-

tude at the moment i i.e., of sin (at+b) ? We made at the outset

an arbitrary convention, but if we adopt it, this probable value is en-

tirely denned. Let us decompose the plane into elements of surface.

Consider the value of sin (ai+b) at the centre of each of these ele-

ments. Multiply this value by the surface of the element and by the

corresponding density of the imaginary matter. Let us then take the

sum for all the elements of the plane. This sum, by definition, will

be the probable mean value we seek, which will thus be expressed by a

double integral. It may be thought at first that this mean value

depends on the choice of the function
</>

which defines the density of

the imaginary matter, and as this function
<f>

is arbitrary, we can,

according to the arbitrary choice which we make, obtain a certain

mean value. But this is not the case. A simple calculation shows us

that our double integral decreases very rapidly as t increases. Thus,
I cannot tell what hypothesis to make as to the probability of this or

that initial distribution, but when once the hypothesis is made the

result will be the same, and this gets me out of my difficulty. What-

ever the function < may be, the mean value tends towards zero as t

increases, and as the minor planets have certainly accomplished a

very large number of revolutions, I may assert that this mean value is
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very small. I may give to < any value I choose, with one restriction :

this function must be continuous; and, in fact, from the point of

view of subjective probability, the choice of a discontinuous function

would have been unreasonable. What reason could I have, for in-

stance, for supposing that the initial longitude might be exactly o,
but that it could not lie between o and 1 ?

The difficulty reappears if we look at it from the point of view of

objective probability; if we pass from our imaginary distribution in

which the supposititious matter was assumed to be continuous, to the

real distribution in which our representative points are formed as

discrete atoms. The mean value of sin (at + b) will be represented

quite simply by

J2 "n (at+b),

n being the number of minor planets. Instead of a double integral

referring to a continuous function, we shall have a sum of discrete

terms. However, no one will seriously doubt that this mean value is

practically very small. Our representative points being very close

together, our discrete sum will in general differ very little from an

integral. An integral is the limit towards which a sum of

terms tends when the number of these terms is indefinitely in-

creased. If the terms are very numerous, the sum will differ

very little from its limit that is to say, from the integral,

and what I said of the latter will still be true of the sum
itself. But there are exceptions. If, for instance, for all the minor

planets b = ?- at, the longitude of all the planets at the time t

would be
,
and the mean value in question would be evidently unity.

For this to be the case at the time o, the minor planets must have all

been lying on a kind of spiral of peculiar form, with its spires very

close together. All will admit that such an initial distribution is

extremely improbable (and even if it were realized, the distribution

would not be uniform at the present time for example, on the 1st

January 1900; but it would become so a few years later). Why,
then, do we think this initial distribution improbable ? This must be

explained, for if we are wrong in rejecting as improbable this absurd

hypothesis, our inquiry breaks down, and we can no longer affirm any-

thing on the subject of the probability of this or that present distri-

bution. Once more we shall invoke the principle of sufficient reason,

to which we must always recur. We might admit that at the begin-

ning the planets were distributed almost in a straight line. We

might admit that they were irregularly distributed. But it seems

to us that there is no sufficient reason for the unknown cause that

gave them birth to have acted along a curve so regular and yet so

complicated, which would appear to have been expressly chosen so

that the distribution at the present day would not be uniform.
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IV. Rouge et Noir. The questions raised by games of chance,

such as roulette, are, fundamentally, quite analogous to those we
have just treated. For example, a wheel is divided into thirty-seven

equal compartments, alternately red and black. A ball is spun round

the wheel, and after having moved round a number of times, it stops

in front of one of these sub-divisions. The probability that the divi-

sion is red is obviously 1-2. The needle describes an angle 6, in-

cluding several complete revolutions. I do not know what is the

probability that the ball is spun with such a force that this angle
should lie between 6 and +d 6, but I can make a convention. I

can suppose that this probability is <$>(6)dO. As for the function

<f>(0), I can choose it in an entirely arbitrary manner. I have noth-

ing to guide me in my choice, but I am naturally induced to suppose
the function to be continuous. Let e be a length (measured on the

circumference of the circle of radius unity) of each red and black

compartment. We have to calculate the integral of <f>(6)d&, ex-

tending it on the one hand to all the red, and on the other hand to all

the black compartments, and to compare the results. Consider an

interval 2 e comprising two consecutive red and black compartments.
Let M and m be the maximum and minimum values of the function

<f> (0) in this interval. The integral extended to the red com-

partments will be smaller than ^ Me; extended to the black it will

be greater than ^ me- The difference will therefore be smaller than

^ (M m)e. But if the function
</>

is supposed continuous, and

if on the other hand the interval e is very small with respect to the

total angle described by the needle, the difference M m will be

very small. The difference of the two integrals will be therefore very

small, and the probability will be very nearly 1-2. We see that with-

out knowing anything of the function
<f>
we must act as if the prob-

ability were 1-2. And on the other hand it explains why, from the

objective point of view, if I watch a certain number of coups, ob-

servation will give me almost as many black coups as red. All the

players know this objective law; but it leads them into a remarkable

error, which has often been exposed, but into which they are always

falling. When the red has won, for example, six times running, they

bet on black, thinking that they are playing an absolutely safe game,
because they say it is a very rare thing for the red to win seven times

running. In reality their probability of winning is still 1-2. Ob-

servation shows, it is true, that the series of seven consecutive reds is

very rare, but series of six reds followed by a black are also very

rare. They have noticed the rarity of the series of seven reds; if

they have not remarked the rarity of six reds and a black, it is only

because such series strike the attention less.

V. The Probability of Causes. We now come to the problems
of the probability of causes, the most important from the point of view
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of scientific applications. Two stars, for instance, are very close

together on the celestial sphere. Is this apparent contiguity a mere

effect of chance? Are these stars, although almost on the same

visual ray, situated at very different distances from the earth, and

therefore very far indeed from one another ? or does the apparent cor-

respond to a real contiguity? This is a problem on the probability

of causes.

First of all, I recall that at the outset of all problems of probability

of effects that have occupied our attention up to now, we have had

to use a convention which was more or less justified; and if in most

cases the result was to a certain extent independent of this convention,

it was only the condition of certain hypotheses which enabled us

a priori to reject discontinuous functions, for example, or certain

absurd conventions. We shall again find something analogous to this

when we deal with the probability of causes. An effect may be pro-

duced by the cause a or by the cause b. The effect has just been ob-

served. We ask the probability that it is due to the cause a. This

is an <z posteriori probability of cause. But I could not calculate it,

if a convention more or less justified did not tell me in advance

what is the a priori probability for the cause a to come into play

I mean the probability of this event to some one who had not ob-

served the effect. To make my meaning clearer, I go back to the

game of ecarte mentioned before. My adversary deals for the first

time and turns up a king. What is the probability that he is a

sharper? The formulae ordinarily taught give 8-9. a result which is

obviously rather surprising. If we look at it closer, we see that the

conclusion is arrived at as if, before sitting down at the table, I

had considered that there was one chance in two that my adversary

was not honest. An absurd hypothesis, because in that case I should

certainly not have played with him; and this explains the absurdity

of the conclusion. The function on the a priori probability was un-

justified, and that is why the conclusion of the a posteriori prob-

ability led me into an inadmissible result. The importance of this

preliminary convention is obvious. I shall even add that if none

were made, the problem of the a posteriori probability would have

no meaning. It must be always made either explicitly or tacitly.

Let us pass on to an example of a more scientific character. 1

require to detennine an experimental law; this law, when discovered,

can be represented by a curve. I make a certain number of isolated

observations, each of which may be represented by a point. When I

have obtained these different points, I draw a curve between them as

carefully as possible, giving my curve a regular form, avoiding sharp

angles, accentuated inflections, and any sudden variation of the ra-

dius of curvature. This curve will represent to me the probable law,

and not only will it give me the values of the functions intermediary
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to those which have been observed, but it also gives me the observed

values more accurately than direct observation does; that is why I

make the curve pass near the points and not through the points

themselves.

Here, then, is a problem in the probability of causes. The effects

are the measurements I have recorded; they depend on the com-

bination of two causes the true law of the phenomenon and errors

of observation. Knowing the effects, we have to find the probability

that the phenomenon shall obey this law or that, and that the observa-

tions have been accompanied by this or that error. The most probable

law, therefore, corresponds to the curve we have traced, and the most

probable error is represented by the distance of the corresponding point
from that curve. But the problem has no meaning if before the observa-

tions I had an a priori idea of the probability of this law or that,

or of the chances of error to which I am exposed. If my instruments

are good (and I knew whether this is so or not before beginning the

observations), I shall not draw the curve far from the points which

represent the rough measurements. If they are inferior, I may draw

it a little farther from the points, so that I may get a less sinuous

curve; much will be sacrificed to regularity.

Why, then, do I draw a curve without sinuosities? Because I

consider a priori a law represented by a continuous function (or

function the derivatives of which to a high order are small), as

more probable than a law not satisfying those conditions. But for

this conviction the problem would have no meaning; interpolation

would be impossible ;
no law could be deduced from a finite number

of observations; science would cease to exist.

Fifty years ago physicists considered, other things being equal, a

simple law as more probable than a complicated law.- This prin-

ciple was even invoked in favor of Mariotte's law as against that of

Regnault. But this belief is now repudiated; and yet, how many
times are we compelled to act as though we still held it! However

that may be, what remains of this tendency is the belief in continuity,

and as we have just seen, if the belief in continuity were to disap-

pear, experimental science would become impossible.

VI. The Theory of Errors. We are thus brought to consider the

theory of errors which is directly connected with the problem of the

probability of causes. Here again we find effect* to wit, a certain

number of irreconcilable observations, and we try to find the causes

which are, on the one hand, the true value of the quantity to be

measured, and, on the other, the error made in each isolated observa-

tion. We must calculate the probable a posteriori value of each error,

and therefore the probable value of the quantity to be measured.

But, as I have just explained, we cannot undertake this calculation

unless we admit a priori i.e., before any observations are made
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that there is a law of the probability of errors. Is there a law of

errors? The law to which all calculators assent is Gauss's law, that

is represented by a certain transcendental curve known as the
"

bell."

But it is first of all necessary to recall the classic distinction be-

tween systematic and accidental errors. If the metre with which we
measure a length is too long, the number we get will be too small,

and it will be no use to measure several times that is a systematic

error. If we measure with an accurate metre, we may make a mis-

take, and find the length sometimes too large and sometimes too

small, and when we take the mean of a large number of measurements,

the error will tend to grow small. These are accidental errors.

It is clear that systematic errors do not satisfy Gauss's

law, but do accidental errors satisfy it? Numerous proofs have

been attempted, almost all of them crude paralogisms. But start-

ing from the following hypotheses we may prove Gauss's law:

the error is the result of a very large number of partial and inde-

pendent errors; each partial error is very small and obeys any law

of probability whatever, provided the probability of a positive error

is the same as that of an equal negative error. It is clear that these

conditions will be often, but not always, fulfilled, and we may reserve

the name of accidental for errors which satisfy them.

We see that the method of least squares is not legitimate in every

case; in general, physicists are more distrustful of it than astrono-

mers. This is no doubt because the latter, apart from the systematic

errors to which they and the physicists are subject alike, have to con-

tend with an extremely important source of error which is entirely

accidental I mean atmospheric undulations. So it is very curi-

ous to hear a discussion between a physicist and an astronomer about

a method of observation. The physicist, persuaded that one good
measurement is worth more than many bad ones, is pre-eminently
concerned with the elimination by means of every precaution of the

final systematic errors
;
the astronomer retorts :

" But you can only

observe a small number of stars, and accidental errors will not dis-

appear."

What conclusion must we draw ? Must we continue to use the

method of least squares ? We must distinguish. We have eliminated

all the systematic errors of which we have any suspicion ; we are quite

certain that there are others still, but we cannot detect them ; and yet

we must make up our minds and adopt a definitive value which will

be regarded as the probable value; and for that purpose it is clear

that the best thing we can do is to apply Gauss's law. We have only

applied a practical rule referring to subjective probability. And there

is no more to be said.

Yet we want to go farther and say that not only the probable
value is so much, but that the probable error in the re-
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suit is so much. This is absolutely invalid: it would be true

only if we were sure that all the systematic errors were eliminated,

and of that we know absolutely nothing. We have two series of ob-

servations; by applying the law of least squares we find that the

probable error in the first series is twice as small as in the second.

The second series may, however, be more accurate than the first,

because the first is perhaps affected by a large systematic error. All

that we can say is, that the first series is probably better than the

second because its accidental error is smaller, and that we have no

reason for affirming that the systematic error is greater for one of

the series than for the other, our ignorance on this point being ab-

solute.

VII. Conclusion. In the preceding lines I have set several pro-

blems, and have given no solution. I do not regret this, for perhaps

they will invite the reader to reflect on these delicate questions.

However that may be, there are certain points which seem to be

well established. To undertake the calculation of any probability, and

even for that calculation to have any meaning at all, we must admit,

as a point of departure, an hypothesis or convention which has always

something arbitrary about it. In the choice of this convention we
can be guided only by the principle of sufficient reason. Unfortu-

nately, this principle is very vague and very elastic, and in the cur-

sory examination we have just made we have seen it assume different

forms. The form under which we meet it most often is the belief in

continuity, a belief which it would be difficult to justify by apodeictic

reasoning, but without which all science would be impossible. Finally,

the problems to which the calculus of probabilities may be applied

with profit are those in which the result is independent of the hypo-
thesis made at the outset, provided only that this hypothesis satisfies

the condition of continuity.

Optics and Electricity
l

Fresnel's Theory. The best example that can be chosen is the

theory of light and its relations to the theory of electricity. It is

owing to Fresnel that the science of optics is more advanced than

any other branch of physics. The theory called the theory of undu-

lations forms a complete whole, which is satisfying to the mind; but

we must not ask from it what it cannot give us. The object of math-

ematical theories is not to reveal to us the real nature of things; that

would be an unreasonable claim. Their only object is to co-ordinate

the physical laws with which physical experiment makes us acquainted,

i This section is mainly taken from the prefaces of two of my books
Thdorie Hathtmatique de la lumicre (Paris: Naud, 1889). and Electricity et

Optique (Paris: Naud, 1901).
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enunciation of which, without the aid of mathematics, we should be

unable to effect. Whether the ether exists or not matters little

let us leave that to the metaphysicians; what is essential for us is,

that everything happens as if it existed, and that this hypothesis

is found to be suitable for the explanation of phenomena. After all,

have we any other reason for believing in the existence of material

objects? That, too, is only a convenient hypothesis; only, it will

never cease to be so, while some day, no doubt, the ether will be

thrown aside as useless.

But at the present moment the laws of optics, and the equations

which translate them into the language of analysis, hold good at

least as a first approximation. It will therefore be always useful to

study a theory which brings these equations into connection.

The undulatory theory is based on a molecular hypothesis; this is

an advantage to those who think they can discover the cause under

the law. But others find in it a reason for distrust; and this distrust

seems to me as unfounded as the illusions of the former. These

hypotheses play but a secondary role. They may be sacrificed, and

the sole reason why this is not generally done is, that it would involve

a certain loss of lucidity in the explanation. In fact, if we look at it

a little closer we shall see that we borrow from molecular hypotheses

but two things the principle of the conservation of energy, and

the linear form of the equations, which is the general law of small

movements as of all small variations. This explains why most of

the conclusions of Fresnel remain unchanged when we adopt the

electro-magnetic theory of light.

Maxwell's Theory. We all know that it was Maxwell who con-

nected by a slender tie two branches of physics optics and electricity

until then unsuspected of having anything in common. Thus

blended in a larger aggregate, in a higher harmony, Fresnel's theory

of optics did not perish. Parts of it are yet alive, and their mutual

relations are still the same. Only, the language which we use to

express them has changed; and, on the other hand, Maxwell has re-

vealed to us other relations, hitherto unsuspected, between the differ-

ent branches of optics and the domain of electricity.

The first time a French reader opens Maxwell's book, his admira-

tion is tempered with a feeling of uneasiness, and often of distrust.

It is only after prolonged study, and at the cost of much effort, that

this feeling disappears. Some minds of high calibre never lose this

feeling. Why is it so difficult for the ideas of this English scientist

to become acclimatized among us? No doubt the education received

by most enlightened Frenchmen predisposes them to appreciate pre-

cision and logic more than any other qualities. In this respect the

old theories of mathematical physics gave us complete satisfaction.

All our masters, from Laplace to Cauchy, proceeded along the same



NATURE 733

lines. Starting with clearly enunciated hypotheses, they deduced

from them all their consequences with mathematical rigor, and then

compared them with experiment. It seemed to be their aim to give to

each of the branches of physics the same precision as to celestial

mechanics.

A mind accustomed to admire such models is not easily satisfied

with a theory. Not only will it not tolerate the least appearance of

contradiction, but it will expect the different parts to be logically

connected with one another, and will require the number of hypo-
theses to be reduced to a minimum.

This is not all; there will be other demands which appear to me
to be less reasonable. Behind the matter of which our senses are

aware, and which is made known to us by experiment, such a thinker

will expect to see another kind of matter the only true matter in

his opinion which will no longer have anything but purely geo-

metrical qualities, and the atoms of which will be mathematical points

subject to the laws of dynamics alone. And yet he will try to repre-

sent to himself, by an unconscious contradiction, these invisible and

colorless atoms, and therefore to bring them as close as possible to

ordinary matter.

Then only will he be thoroughly satisfied, and he will then imagine
that he has penetrated the secret of the universe. Even if the satis-

faction is fallacious, it is none the less difficult to give it up. Thus, on

opening the pages of Maxwell, a Frenchman expects to find a theo-

retical whole, as logical and as precise as the physical optics that is

founded on the hypothesis of the ether. He is thus preparing for

himself a disappointment which I should like the reader to avoid;

so I will warn him at once of what he will find and what he will not

find in Maxwell.

Maxwell does not give a mechanical explanation of electricity and

magnetism; he confines himself to showing that such an explanation
is possible. He shows that the phenomena of optics are only a par-

ticular case of electro-magnetic phenomena. From the whole theory

of electricity a theory of light can be immediately deduced. Unfor-

tunately the converse is not true; it is not always easy to find a

complete explanation of electrical phenomena. In particular it is

not easy if we take as our starting-point Fresnel's theory; to do so,

no doubt, would be impossible; but none the less we must ask our-

selves if we are compelled to surrender admirable results which we

thought we had definitively acquired. That seems a step backwards,

and many sound intellects will not willingly allow of this.

Should the reader consent to set some bounds to his hopes, he will

still come across other difficulties. The English scientist does not

try to erect a unique, definitive, and well-arranged building; he seems

to raise rather a large number of provisional and independent con-
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structions, between which communication is difficult and sometimes

impossible. Take, for instance, the chapter in which electrostatic at-

tractions are explained by the pressures and tensions of the dielectric

medium. This chapter might be suppressed without the rest of the

book being thereby less clear or less complete, and yet it contains a

theory which is self-sufficient, and which can be understood without

reading a word of what precedes or follows. But it is not only inde-

pendent of the rest of the book; it is difficult to reconcile it with

the fundamental ideas of the volume. Maxwell does not even attempt
to reconcile it ; he merely says :

"
I have not been able to makie the

next step namely, to account by mechanical considerations for

these stresses in the dielectric."

This example will be sufficient to show what I mean; I could quote

many others. Thus, who would suspect on reading the pages devoted

to magnetic rotatory polarization that there is an identity between

optical and magnetic phenomena?
We must not flatter ourselves that we have avoided every contra-

diction, but we ought to make up our minds. Two contradictory

theories, provided that they are kept from overlapping, and that

we do not look to find in them the explanation of things, may, in

fact, be very useful instruments of research ;
and perhaps the reading

of Maxwell would be less suggestive if he had not opened up to us

so many new and divergent ways. But the fundamental idea is

masked, as it were. So far is this the case, that in most works that

are popularized, this idea is the only point which is left completely
untouched. To show the importance of this, I think I ought to

explain in what this fundamental idea consists; but for that purpose
a short digression is necessary.

The Mechanical Explanation of Physical Phenomena. In every

physical phenomenon there is a certain number of parameters which

are reached directly by experiment, and which can be measured. I

shall call them the parameters q. Observation next teaches us the

laws of the variations of these parameters, and these laws can be

generally stated in the form of differential equations which connect

together the parameters q and time. What can be done to give a

mechanical interpretation to such a phenomenon? We may endeavor

to explain it, either by the movements of ordinary matter, or by those

of one or more hypothetical fluids. These fluids will be considered as

formed of a very large number of isolated molecules m. When may
we say that we have a complete mechanical explanation of the phe-
nomenon? It will be, on the one hand, when we know the differen-

tial equations which are satisfied by the co-ordinates of these hypo-
thetical molecules m, equations which must, in addition, conform to

the laws of dynamics; and, on the other hand, when we know the

relations which define the co-ordinates of the molecules m as func-
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tions of the parameters q, attainable by experiment. These equations,
as I have said, should conform to the principles of dynamics, and, in

particular, to the principle of the conservation of energy, and to that

of least action.

The first of these two principles teaches us that the total energy is

constant, and may be divided into two parts :

(1) Kinetic energy, or vis viva, which depends on the masses of

the hypothetical molecules m, and on their velocities. This I shall

call T. (2) The potential energy which depends only on the co-

ordinates of these molecules, and this I shall call U. It is the sum
of the energies T and U that is constant.

Now what are we taught by the principle of least action? It

teaches us that to pass from the initial position occupied at the in-

stant t to the final position occupied at the instant t1} the system
must describe such a path that in the interval of time between the

instant t and t1} the mean value of the action i.e., the difference

between the two energies T and U, must be as small as possible. The

first of these two principles is, moreover, a consequence of the second.

If we know the functions T and U, this second principle is sufficient

to determine the equations of motion.

Among the paths which enable us to pass from one position to

another, there is clearly one for which the mean value of the action

is smaller than for all the others. In addition, there is only such

path; and it follows from this, that the principle of least action is

sufficient to determine the path followed, and therefore the equations

of motion. We thus obtain what are called the equations of La-

grange. In these equations the independent variables are the co-ordi-

nates of the hypothetical molecules m; but I now assume that we take

for variables the parameters q, which are directly accessible to experi-

ment.

The two parts of the energy should then be expressed as a function

of the parameters q and their derivatives; it is clear that it is under

this form that they will appear to the experimenter. The latter will

naturally endeavor to define kinetic and potential energy by the aid

of quantities he can directly observe. 1 If this be granted, the system

will always proceed from one position to another by such a path that

the mean value of the action is a minimum. It matters little that T
and U are now expressed by the aid of the parameters q and their

derivatives ;
it matters little that it is also by the aid of these parame-

ters that we define the initial and final positions; the principle of

least action will always remain true.

Now here again, of the whole of the paths which lead from one

1 We may add that U will depend only on the q parameters, that T will

depend on them and their derivatives with respect to time, and will be

a homogeneous polynomial of the second degree with respect to these deriva-

tives.
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position to another, there is one and only one for which the mean

action is a minimum. The principle of least action is therefore suffi-

cient for the determination of the differential equations which define

the variations of the parameters q. The equations thus obtained are

another form of Lagrange's equations.

To form these equations we need not know the relations which

connect the parameters g with the co-ordinates of the hypothetical

molecules, nor the masses of the molecules, nor the expression of U
as a function of the co-ordinates of these molecules. All we need

know is the expression of TJ as a function of the parameters q, and

that of T as a function of the parameters q and their derivatives

i.e., the expressions of the kinetic and potential energy in terms of

experimental data.

One of two things must now happen. Either for a convenient choice

of T and U the Lagrangian equations, constructed as we have indi-

cated, will be identical with the differential equations deduced from

experiment, or there will be no functions T and U for which this

identity takes place. In the latter case it is clear that no mechanical

explanation is possible. The necessary condition for a mechanical

explanation to be possible is therefore this: that we may choose the

functions T and U so as to satisfy the principle of least action, and

of the conservation of energy. Besides, this condition is sufficient.

Suppose, in fact, that we have found a function U of the parameters

q, which represents one of the parts of energy, and that the part of

the energy which we represent by T is a function of the parameters q

and their derivatives; that it is a polynomial of the second degree

with respect to its derivatives, and finally that the Lagrangian equa-

tions formed by the aid of these two functions T and U are in con-

formity with the data of the experiment. How can we deduce from

this a mechanical explanation? U must be regarded as the potential

energy of a system of which T is the kinetic energy. There is no

difficulty as far as U is concerned, but can T be regarded as the vis

viva of a material system?
It is easily shown that this is always possible, and in an unlimited

number of ways. I will be content with referring the reader to the

pages of the preface of my Electricite et Optique for further details.

Thus, if the principle of least action cannot be satisfied, no mechanical

explanation is possible; if it can be satisfied, there is not only one

explanation, but an unlimited number, whence it follows that since

there is one there must be an unlimited number.

One more remark. Among the quantities that may be reached by

experiment directly we shall consider some as the co-ordinates of our

hypothetical molecules, some will be our parameters q, and the rest

will be regarded as dependent not only on the co-ordinates but on

the velocities or what comet? to the same thing, we look on them
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as derivatives of the parameters q, or as combinations of these para-
meters and their derivatives.

Here then a question occurs : among all these quantities measured

experimentally which shall we choose to represent the parameters q?
and which shall we prefer to regard as the derivatives of these para-

meters? This choice remains arbitary to a large extent, but a me-

chanical explanation will be possible if it is done so as to satisfy the

principle of least action.

Next, Maxwell apks: Can this choice and that of the two energies

T and U be made so that electric phenomena will satisfy this prin-

ciple? Experiment shows us that the energy of an electro-magnetic

field decomposes into electro-static and electro-dynamic energy. Max-

well recognized that if we regard the former as the potential energy

U, and the latter as the kinetic energy T, and that if on the other

hand we take the electro-static charges of the conductors as the para-

meters q, and the intensity of the currents as derivatives of other

parameters q under these conditions, Maxwell has recognized that

electric phenomena satisfies the principle of least action. He was

then certain of a mechanical explanation. If he had expounded this

theory at the beginning of his first volume, instead of relegating it to

a corner of the second, it would not have escaped the attention of

most readers. If therefore a phenomenon allows of a complete me-

chanical explanation, it allows of an unlimited number of others,

which will equally take into account all the particulars revealed by

experiment. And this is confirmed by the history of every branch of

physics. In Optics, for instance, Fresnel believed vibration to be

perpendicular to the plane of polarization; Neumann holds that it is

parallel to that plane. For a long time an experimentum crucis was

sought for, which would enable us to decide between these two theo-

ries, but in vain. In the same way, without going out of the domain

of electricity, we find that the theory of two fluids and the single fluid

theory equally account in a satisfactory manner for all the laws of

electro-statics. All these facts are easily explained, thanks to the

properties of the Lagrange equations.

Jt is easy now to understand Maxwell's fundamental idea. To
demonstrate the possibility of a mechanical explanation of electricity

we need not trouble to find the explanation itself; we need only know
the expression of the two functions T and U, which are the two

parts of energy, and to form with these two functions Lagrange'ft

equations, and then to compare these equations with the experimental
laws.

How shall we choose from all the possible explanations one in

which the help of experiment will be wanting? The day will per-

haps come when physicists will no longer concern themselves with

questions which are inaccessible to positive methods, and will leave
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them to the metaphysicians. That day has not yet come; man does

not so easily resign himself to remaining for ever ignorant of the

causes of things. Our choice cannot be therefore any longer guided

by considerations in which personal appreciation plays too large a

part. There are, however, solutions which all will reject because of

their fantastic nature, and others which all will prefer because of their

simplicity. As far as magnetism and electricity are concerned, Max-

well abstained from making any choice. It is not that he has a

systematic contempt for all that positive methods cannot reach, as

may be seen from the time he has devoted to the kinetic theory of

gases. I may add that if in his magnum opu& he develops no complete

explanation, he has attempted one in an article in the Philosophical

Magazine. The strangeness and the complexity of the hypotheses he

found himself compelled to make, led him afterwards to withdraw it.

The same spirit is found throughout his whole work. He throws

into relief the essential i.e., what is common to all theories ; every-

thing that suits only a particular theory is passed over almost in

silence. The reader therefore finds himself in the presence of form

nearly devoid of matter, which at first he is tempted to take as a

fugitive and unassailable phantom. But the efforts he is thus com-

pelled to make force him to think, and eventually he sees that there

is often something rather artificial in the theoretical
"
aggregates

"

which he once admired.

Electro-Dynamics

The history of electro-dynamics is very instructive from our point
of view. The title of Ampere's immortal work is, Theorie des phe-
nomenes electro-dynamiques, uniquement fondee sur experience. He
therefore imagined that he had made no hypotheses; but as we shall

not be long in recognizing, he was mistaken; only, of these hypothe-
ses he was quite unaware. On the other hand, his successors see

them clearly enough, because their attention is attracted by the weak

points in Ampere's solution. They made fresh hypotheses, but this

time deliberately. How many times they had to change them before

they reached the classic system, which is perhaps even now not quite

definitive, we shall see.

I. Ampere's Theory. In Ampere's experimental study of the

mutual action of currents, he has operated, and he could operate only,

with closed currents. This was not because he denied the existence

or possibility of open currents. If two conductors are positively and

negatively charged and brought into communication by a wire, a cur-

rent is set up which passes from one to the other until the two po-
tentials are equal. According to the ideas of Ampere's time, this was

considered to be an open current; the current was known to pass
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from the first conductor to the second, but they did not know it

returned from the second to the first. All currents of this kind were

therefore considered by Ampere to be open currents for instance,

the currents of discharge of a condenser; he was unable to experi-

ment on them, their duration being too short. Another kind of open
current may be imagined. Suppose we have two conductors A and

B connected by a wire AMB. Small conducting masses in motion

are first of all placed in contact with the conductor B, receive an elec-

tric charge, and leaving B are set in motion along a path BNA, carry-

ing their charge with them. On coming into contact with A they
lose their charge, which then returns to B along the wire AMB. Now
here we have, in a sense, a closed circuit, since the electricity describes

the closed circuit BNAMB ; but the two parts of the current are quite

different. In the wire AMB the electricity is displaced through a

fixed conductor like a voltaic current, overcoming an ohmic resistance

and developing heat; we say that it is displaced by conduction. In

the part BJSTA the electricity is carried by a moving conductor, and

is said to be displaced by convection. If therefore the convection cur-

rent is considered to be perfectly analogous to the conduction current,

the circuit BNAMB is closed; if on the contrary the convection cur-

rent is not a
"
true current," and, for instance, does not act on the

magnet, there is only the conduction current AMB, which is open.

For example, if we connect by a wire the poles of a Holtz machine,

the charged rotating disc transfers the electricity by convection from

one pole to the other, and it returns to the first pole by conduction

through the wire. But currents of this kind are very difficult to pro-

duce with appreciable intensity; in fact, with the means at Ampere's

disposal we may almost say it was impossible.

To sum up, Ampere could conceive of the existence of two kinds of

open currents, but he could experiment on neither, because they were

not strong enough, or because their duration was too short. Experi-

ment therefore could only show him the action of a closed current

on a closed current or more accurately, the action of a closed cur-

rent on a portion of current, because a current can be made to de-

scribe a closed circuit, of which part may be in motion and the other

part fixed. The displacements of the moving part may be studied

under the action of another closed current. On the other hand, Am-

pere had no means of studying the action of an open current either

on a closed or on another open current.

1. The Case of Closed Currents. In the case of the mutual action

of two closed currents, experiment revealed to Ampere remarkably

simple laws. The following will be useful to us in the sequel :

(1) // the intensity of the currents is kept constant, and if the

two circuits, after having undergone any displacements and deforma-

tions whatever, return finally to their initial positions, the total work
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done by the electro-dynamical actions is zero. In other words, there

is an electro-dynamical potential of the two circuits proportional to

the product of their intensities, and depending on the form and rela-

tive positions of the circuits; the work done by the electro-dynamical

actions is equal to the change of this potential.

(2) The action of a closed solenoid is zero.

(3) The action of a circuit C on another voltaic circuit C' depends

only on the
"
magnetic field

"
developed by the circuit C. At each

point in space we can, in fact, define in magnitude and direction a

certain force called "magnetic force," which enjoys the following

properties :

(a) The force exercised by C on a magnetic pole is applied to that

pole, and is equal to the magnetic force multiplied by the magnetic

.mass of the pole.

(&) A very short magnetic needle tends to take the direction of the

magnetic force, and the couple to which it tends to reduce is propor-

tional to the product of the magnetic force, the magnetic moment

of the needle, and the sine of the dip of the needle.

(c) If the circuit C' is displaced, the amount of the work done by
the electro-dynamic action of C on C' will be equal to the increment of
"
flow of magnetic force

" which passes through the circuit.

2. Action of a Closed Current on a Portion of Current. Ampere
being unable to produce the open current properly so called, had only

one way of studying the action of a closed current on a portion of

current. This was by operating on a circuit C composed of two parts,

one movable and the other fixed. The movable part was, for instance,

a movable wire aft, the ends a and ft of which could slide along a

fixed wire. In one of the positions of the movable wire the end a

rested on the point A, and the end ft on the point B of the fixed

wire. The current ran from a to ft i.e., from A to B along the

movable wire, and then from B to A along the fixed wire. This cur-

rent was therefore closed.

In the second position, the movable wire having slipped, the points
a and ft were respectively at A' and B' on the fixed wire. The current

ran from a to ft i.e., from A' to B' on the movable wire, and re-

turned from B' to B, and then from B to A, and then from A to A'

all on the fixed wire. This current was also closed. If a similar

circuit be exposed to the action of a closed current C, the movable

part will be displaced just as if it were acted on by a force. Ampere
admits that the force, apparently acting on the movable part A B,

representing the action of C on the portion aft of the current, re-

mains the same whether an open current runs through aft, stopping at

a and ft, or whether a closed current runs first to ft, and then returns

to a through the fixed portion of the circuit. This hypothesis seemed

natural enough, and Ampere innocently assumed it; nevertheless the
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hypothesis is not a necessity, for we shall presently see that Helmholtz

rejected it. However that may be, it enabled Ampere, although he

had never produced an open current, to lay down the laws of the

action of a closed current on an open current, or even on an element

of current. They are simple :

(1) The force acting on an element of current is applied to that

element; it is normal to the element and to the magnetic force, and

proportional to that component of the magnetic force which is nor-

mal to the element.

(2) The action of a closed solenoid on an element of current is

zero. But the electro-dynamic potential has disappeared i.e., when

a closed and an open current of constant intensities return to their

initial positions, the total work done is not zero.

3. Continuous Rotations. The most remarkable electro-dynamical

experiments are those in which continuous rotations are produced,

and which are called unipolar induction experiments. A magnet may
turn about its axis; a current passes first through a fixed wire and

then enters the magnet by the pole N, for instance, passes through
half the magnet, and emerges by a sliding contact and re-enters the

fixed wire. The magnet then begins to rotate continuously. This is

Faraday's experiment. How is it possible? If it were a question of

two circuits of invariable form, C fixed and C' movable about an axis,

the latter would never take up a position of continuous rotation; in

fact, there is an electro-dynamical potential; there must therefore be

a position of equilibrium when the potential is a maximum. Con-

tinuous rotations are therefore possible only when the circuit C' is

composed of two parts one fixed, and the other movable about an

axis, as in the case of Faraday's experiment. Here again it is con-

venient to draw a distinction. The passage from the fixed to the

movable part, or vice versa, may take place either by simple contact,

the same point of the movable part remaining constantly in contact

with the same point of the fixed part, or by sliding contact, the

same point of the movable part coming successively into contact with

the different points of the fixed part.

It is only in the second case that there can be continuous rotation.

This is what then happens : the system tends to take up a position

of equilibrium ; but, when at the point of reaching that position, the

sliding contact puts the moving part in contact with a fresh point in

the fixed part; it changes the connections and therefore the conditions

of equilibrium, so that as the position of equilibrium is ever eluding,

PO to speak, the system which is trying to reach it, rotation may take

place indefinitely.

Ampere admits that the action of the circuit on the movable part

of C' is the same as if the fixed part of C' did not exist, and therefore

as if the current passing through the movable part were an open
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current. He concluded that the action of a closed on an open cur-

rent, or vice versa, that of an open current on a fixed current, may

give rise to continuous rotation. But this conclusion depends on

the hypothesis which I have enunciated, and to which, as I said

above, Helmholtz declined to subscribe.

4. Mutual Action of Two Open Currents. As far as the mutual

action of two open currents, and in particular that of two elements of

current, is concerned, all experiment breaks down. Ampere falls

back on hypothesis. He assumes: (1) that the mutual action of two

elements reduces to a force acting along their join; (2) that the

action, of two closed currents is the resultant of the mutual actions of

their different elements, which are the same as if these elements

were isolated.

The remarkable thing is that here again Ampere makes two hypo-
theses without being aware of it. However that may be, these two

hypotheses, together with the experiments on closed currents, suffice

to determine completely the law of mutual action of two elements.

But then, most of the simple laws we have met in the case of closed

currents are no longer true. In the first place, there is no electro-

dynamical potential; nor was there any, as we have seen, in the case

of a closed current acting on an open current. Next, there is, pro-

perly speaking, no magnetic force; and we have above defined this

force in three different ways: (1) By the action on a magnetic pole;

(2) by the director couple which orientates the magnetic needle; (3)

by the action on an element of current.

In the case with which we are immediately concerned, not only

are these three definitions not in harmony, but each has lost its

meaning :

(
1

) A magnetic pole is no longer acted on by a unique force applied

to that pole. We have seen, in fact, the action of an element of cur-

rent on a pole is not applied to the pole but to the element; it may,

moreover, be replaced by a force applied to the pole and by a couple.

(2) The couple which acts on the magnetic needle is no longer a

simple director couple, for its moment with respect to the axis of the

needle is not zero. It decomposes into a director couple, properly so

called, and a supplementary couple which tends to produce the con-

tinuous rotation of which we have spoken above.

(3) Finally, the force acting on an element of a current is not

normal to that element. In other words, the unity of the magnetic

force has disappeared.

Let us see in what this unity consists. Two systems which exercise

the same action on a magnetic pole will also exercise the same action

on an indefinitely small magnetic needle, or on an element of cur-

rent placed at the point in space at which the pole is. Well, this is

true if the two systems only contain closed currents, and according
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to Ampere it would not be true if the systems contained open cur-

rents. It is sufficient to remark, for instance, that if a magnetic pole

is placed at A and an element at B, the direction of the element being

in AB produced, this element, which will exercise no action on the pole,

will exercise an action either on a magnetic needle placed at A, or on

an element of current at A.

5. Induction. We know that the discovery of electro-dynamical

induction followed not long after the immortal work of Ampere. As

long as it is only a question of closed currents there is no difficulty,

and Helmholtz has even remarked that the principle of the conserva-

tion of energy is sufficient for us to deduce the laws of induction from

the electro-dynamical laws of Ampere. But on the condition, as

Bertrand has shown, that we make a certain number of hypothe-

ses.

The same principle again enables this deduction to be made in the

case of open currents, although the result cannot be tested by experi-

ment, since such currents cannot be produced.
If we wish to compare this method of analysis with Ampere's

theorem on open currents, we get results which are calculated to

surprise us. In the first place, induction cannot be deduced from

the variation of the magnetic field by the well-known formula of

scientists and practical men; in fact, as I have said, properly speaking,

there is no magnetic field. But further, if a circuit C is subjected to

the induction of a variable voltaic system S, and if this system S be

displaced and deformed in any way whatever, so that the intensity of

the currents of this system varies according to any law whatever,

then so long as after these variations the system eventually returns to

its initial position, it seems natural to suppose that the mean electro-

motive force induced in the current C is zero. This is true if the

circuit C is closed, and if the system S only contains closed currents.

It is no longer true if we accept the theory of Ampere, since there

would be open currents. So that not only will induction no longer

be the variation of the flow of magnetic force in any of the usual

senses of the word, but it cannot be represented by the variation of

that force whatever it may be.

II. Ilelmlioliz's Theory. I have dwelt upon the consequences of

Ampere's theory and on his method of explaining the action of open
currents. It is difficult to disregard the paradoxical and artificial

character of the propositions to which we are thus led. We feel bound

to think
"

it cannot be so." We may imagine then that Helmholtz

has been led to look for something else. He rejects the fundamental

hypothesis of Ampere namely, that the mutual action of two ele-

ments of current reduces to a force along their join. He admits that

an element of current is not acted upon by a single force but by a

force and a couple, and this is what gave rise to the celebrated polemic
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between Bertrand and Helmholtz. Helmholtz replaces Ampere's hypo-

thesis by the following : Two elements of current always admit of

an electro-dynamic potential, depending solely upon their position

and orientation; and the work of the forces that they exercise one on

the other is equal to the variation of this potential. Thus Helmholtz

can no more do without hypothesis than Ampere, but at least he does

not do so without explicitly announcing it. In the case of closed

currents, which alone are accessible to experiment, the two theories

agree; in all other cases they differ. In the first place, contrary to

what Ampere supposed, the force which seems to act on the movable

portion of a closed current is not the same as that acting on the

movable portion if it were isolated and if it constituted an open cur-

rent. Let us return to the circuit C', of which we spoke above, and

which was formed of a movable wire sliding on a fixed wire. In the

only experiment that can be made the movable portion a /3 is not

isolated, but is part of a closed circuit. When it passes from AB to

A'B', the total electro-dynamic potential varies for two reasons. First,

it has a slight increment because the potential of A'B' with respect to

the circuit C is not the same as that of AB ; secondly, it has a second

increment because it must be increased by the potentials of the ele-

ments AA' and B'B with respect to C. It is this double increment

which represents the work of the force acting upon the portion AB.

If, on the contrary, aft be isolated, the potential would only have the

first increment, and this first increment alone would measure the work

of the force acting on AB. In the second place, there could be no

continuous rotation without sliding contact, and in fact, that, as we

have seen in the case of closed currents, is an immediate consequence

of the existence of an electro-dynamic potential. In Faraday's experi-

ment, if the magnet is fixed, and if the part of the current external

to the magnet runs along a movable wire, that movable wire may
undergo continuous rotation. But it does not mean that, if the con-

tacts of the wire with the magnet were suppressed, and an open cur-

rent were to run along the wire, the wire would still have a movement

of continuous rotation. I have just said, in fact, that an isolated

element is not acted on in the same way as a movable element making

part of a closed circuit. But there is another difference. The action

of a solenoid on a closed current is zero according to experiment and

according to the two theories. Its action on an open current would be

zero according to Ampere, and it would not be zero according to

Helmholtz. From this follows an important consequence. We have

given above three definitions of the magnetic force. The third has

no meaning here, since an element of current is no longer acted upon

by a single force. Nor has the first any meaning. What, in fact, is

a magnetic pole ? It is the extremity of an indefinite linear magnet.
This magnet may be replaced by an indefinite solenoid. For
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the definition of magnetic force to have any meaning, the action exer-

cised by an open current on an indefinite solenoid would only depend
on the position of the extremity of that solenoid i.e., that the action

of a closed solenoid is zero. Now we have just seen that this is not

the case. On the other hand, there is nothing to prevent us from

adopting the second definition which is founded on the measurement

of the director couple which tends to orientate the magnetic needle;

but, if it is adopted, neither the effects of induction nor electro-

dynamic effects will depend solely on the distribution of the lines of

force in this magnetic field.

III. Difficulties raised by these Theories. Helmholtz's theory is

an advance on that of Ampere; it is necessary, however, that every

difficulty should be removed. In both, the name "
magnetic field

"

has no meaning, or, if we give it one by a more or less artificial con-

vention, the ordinary laws so familiar to electricians no longer apply;
and it is thus that the electro-motive force induced in a wire is no

longer measured by the number of lines of force met by that wire.

And our objections do not proceed only from the fact that it is diffi-

cult to give up deeply-rooted habits of language and thought. There

is something more. If we do not believe in actions at a distance, elec-

tro-dynamic phenomena must be explained by a modification of the

medium. And this medium is precisely what we call
"
magnetic field,"

and then the electro-magnetic effects should only depend on that field.

All these difficulties arise from the hypothesis of open currents.

IV. Maxwell's Theory. Such were the difficulties raised by the

current theories, when Maxwell with a stroke of the pen caused them

to vanish. To his mind, in fact, all currents are closed currents.

Maxwell admits that if in a dielectric, the electric field happens to

vary, this dielectric becomes the seat of a particular phenomenon

acting on the galvanometer like a current and called the current of

displacement. If, then, two conductors bearing positive and negative

charges are placed in connection by means of a wire, during the dis-

charge there is an open current of conduction in that wire; but there

are produced at the same time in the surrounding dielectric cur-

rents of displacement which close this current of conduction. We
know that Maxwell's theory leads to the explanation of optical phe-

nomena which would be due to extremely rapid electrical oscillations.

At that period such a conception was only a daring hypothesis which

could be supported by no experiment; but after twenty years Max-

well's ideas received the confirmation of experiment. Hertz succeeded

in producing systems of electric oscillations which reproduce all the

properties of light, and only differ by the length of their wave

that is to say, as violet differs from red. In some measure he made

a synthesis of light. It might be said that Hertz has not directly

proved Maxwell's fundamental idea of the action of the current of
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displacement on the galvanometer. That is true in a sense. What

he has shown directly is that electro-magnetic induction is not in-

stantaneously propagated, as was supposed, but its speed is the speed

of light. Yet, to suppose there is no current of displacement, and

that induction is with the speed of light; or, rather, to suppose that

the currents of displacement produce inductive effects, and that the

induction takes place instantaneously comes to the same thing.

This cannot be seen at the first glance, but it is proved by an analysis

of which I must not even think of giving even a summary here.

V. Rowland's Experiment. But, as I have said above, there are

two kinds of open conduction currents. There are first the currents

of discharge of a condenser, or of any conductor whatever. There

are also cases in which the electric charges describe a closed contour,

being displaced by conduction in one part of the circuit and by con-

vection in the other part. The question might be regarded as solved

for open currents of the first kind; they were closed by currents of

displacement. For open currents of the second kind the solution

appeared still more simple.

It seemed that if the current were closed it could only be by the

current of convection itself. For that purpose it was sufficient to

admit that a
"
convection current

"
i.e., a charged conductor in

motion could act on the galvanometer. But experimental confirma-

tion was lacking. It appeared difficult, in fact, to obtain a sufficient

intensity even by increasing as much as possible the charge and the

velocity of the conductors. Eowland, an extremely skilful experi-

mentalist, was the first to triumph, or to seem to triumph, over these

difficulties. A disc received a strong electrostatic charge and a very

high speed of rotation. An astatic magnetic system placed beside the

disc underwent deviations. The experiment was made twice by Eow-

land, once in Berlin and once at Baltimore. It was afterwards re-

peated by Himstedt. These physicists even believed that they could

announce that they had succeeded in making quantitative measure-

ments. For twenty years Eowland's law was admitted without ob-

jection by all physicists, and, indeed, everything seemed to confirm it.

The spark certainly does produce a magnetic effect, and does it not

seem extremely likely that the spark discharged is due to particles

taken from one of the electrodes and transferred to the other electrode

with their charge? Is not the very spectrum of the spark, in which

we recognize the lines of the metal of the electrode, a proof of it?

The spark would then be a real current of induction.

On the other hand, it is also admitted that in an electrolyte the

electricity is carried by the ions in motion. The current in an electro-

lyte would therefore also be a current of convection; but it acts on

the magnetic needle. And in the same way for cathodic rays ; Crooks

attributed these rays to very subtle matter charged with negative elec-
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tricity and moving with very high velocity. He looked upon them, in

other words, as currents of convection. Now, these cathodic rays are

deviated by the magnet. In virtue of the principle of action and re-

action, they should in their turn deviate the magnetic needle. It is

true that Hertz believed he had proved that the cathodic rays do not

carry negative electricity, and that they do not act on the magnetic

needle; but Hertz was wrong. First of all, Perrin succeeded in col-

lecting the electricity carried by these rays electricity of which

Hertz denied the existence; the German scientist appears to have

been deceived by the effects due to the action of the X-rays, which

were not yet discovered. Afterwards, and quite recently, the action

of the cathodic rays on the magnetic needle has been brought to light.

Thus all these phenomena looked upon as currents of convection,

electric sparks, electrolytic currents, cathodic rays, act in the same

manner on the galvanometer and in conformity to Eowland's law.

VI. Lorentz's Theory. We need not go much further. Accord-

ing to Lorentz's theory, currents of conduction would themselves be

true convection currents. Electricity would remain indissolubly con-

nected with certain material particles called electrons. The circula-

tion of these electrons through bodies would produce voltaic currents,

and what would distinguish conductors from insulators would be that

the one could be traversed by these electrons, while the others would

check the movement of the electrons. Lorentz's theory is very attrac-

tive. It gives a very simple explanation of certain phenomena, which

the earlier theories even Maxwell's in its primitive form could

only deal with in an unsatisfactory manner; for example, the aberra-

tion of light, the partial impulse of luminous waves, magnetic polari-

zation, and Zeeman's experiment.

A few objections still remained. The phenomena of an electric sys-

tem seemed to depend on the absolute velocity of translation of the

centre of gravity of this system, which is contrary to the idea that we

have of the relativity of space. Supported by M. Cremieu, M. Lipp-
man has presented this objection in a very striking form. Imagine
two charged conductors with the same velocity of translation. They
are relatively at rest. However, each of them being equivalent to a

current of convection, they ought to attract one another, and by

measuring this attraction we could measure their absolute velocity.
"
N"o !" replied the partisans of Lorentz.

" What we could measure in

that way is not their absolute velocity, but their relative velocity with

respect to the ether, so that the principle of relativity is safe." What-

ever there may be in these objections, the edifice of electro-dynamics

seemed, at any rate in its broad line?, definitively constructed. Every-

thing was presented under the most satisfactory aspect. The theories

of Ampere and Helmholtz, which were made for the open currents

that no longer existed, seem to have no more than purely historic in-
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terest, and the inextricable complications to which these theories led

have been almost forgotten. This quiescence has been recently dis-

turbed by the experiments of M. Cr6mieu, which have contradicted,

or at least have seemed to contradict, the results formerly obtained

by Eowland. Numerous investigators have endeavored to solve the

question, and fresh experiments have been undertaken. What result

will they give ? I shall take care not to risk a prophecy which might
be falsified between the day this treatise is ready for the press and the

day on which it is placed before the public.
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