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PREFACE 

The International Workshop on Low-Frequency Propagation and 

Noise was held at the Woods Hole Oceanographic Institution, Woods 

Hole, Massachusetts, from October 15 to 19, 1974. These Proceedings 

consist of either author-supplied texts or edited versions of the 

oral presentations and edited condensations of the discussions. In 

the edited sections, the editors have made every effort to render 

faithfully the essential content of the oral presentation or dis- 

cussion. 

These Proceedings are presented in two volumes, each consisting 

of 2 days of presented papers. Several of the original presentations 

have been superceded by a published version, which the authors also have 

submitted for publication here. In these cases, with the permission 

of the authors and the publishers, the published articles are 

reproduced here in facsimile. The presentations so rendered are 

the following: 

i) Dr. Weinberg's paper appeared as NUSC Technical 

Report 4867. 

ii) The presentation of Drs. Flatté and Munk contained 

some of the information presented in the three 

articles published in the Journal of the Acoustical 

Society of America. 

iii) Dr. Raisbeck's paper appeared in the U. S. Navy 

Journal of Underwater Acoustics. 
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LOW-FREQUENCY PROPAGATION AND NOISE WORKSHOP 

INTRODUCTION 

Dr. J. B. Hersey 

Office of Naval Research 

It is a great pleasure to welcome members of the Low-Frequency 

Propagation and Noise Workshop to this, its first meeting. This inter- 

national workshop is sponsored by the Director of Antisubmarine Warfare 

of the staff of the U. S. Chief of Naval Operations. It recognizes 

the growing cooperation among the participating nations in application 

of low-frequency underwater acoustic systems in ASW. Also, it is 

closely related to a series of workshops sponsored by various elements 

of the U. S. Navy oceanography and undersea warfare community. The 

broad purpose of the U. S. workshops is to support progress toward 

solving the priority problems of the U. S. Navy in undersea warfare 

and other concerns of the Navy where the oceans are influential. 

The objective of this workshop is to assess our understanding of 

low-frequency ocean acoustics and to identify and prioritize what 

programs of investigation should be emphasized in the next 5 to 10 

years. It is intended that our final product will be proceedings of 

this meeting and a planning guide that can be a useful and influential 

instrument for all nations here convened. 

The general approach is first to hear reviews of as comprehensive 

a series of topics as possible during the next 4 days. Most of the 

talks are intended strictly to provide a basis for assessing our under- 

standing and knowledge of this field. The remaining few talks present 

viewpoints that are thought to be of special interest because they 

represent new departures. We have tried to order the program so that 
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there will be ample opportunity for discussion, all of which will be 

recorded. On Saturday morning, we will make decisions on a structure 

of small working groups that will be responsible in the next 6 months 

for preparing a written assessment and recommendations for future 

programs of investigation. My office will make every effort to speed 

the availability of the proceedings of this meeting to its members so 

that all the material presented and discussed here will be available 

to the working groups. These proceedings will also be published and 

suitably distributed. 

I earnestly hope that all members of the workshop will participate 

to some degree in the main work of the workshop — that of the next 

6 months. You have received as part of your registration package two 

questionnaires. One is to be filled out and handed to CDR Brookes 

this morning. It will serve as the basis for the first cut at 

organizing the working groups. The second, intended as a guide to 

the Steering Committee, is to be filled out no earlier than Thursday 

afternoon so as to be available for the meeting of the Steering 

Committee Thursday evening. You will notice that it gives you an 

opportunity to change your mind about the first questionnaire. It 

also gives you an opportunity to comment on any aspect of the objec- 

tive of the workshop, its content so far, and what you think should 

be done by the time the workshop is disbanded. Please use it 

generously. 

The final plenary session of the workshop is now planned for 

May 1975, either in San Francisco, Monterey, or San Diego. Its 

objective will be to hear, discuss, and make provision for rewriting, 

editing, and publishing the planning guide. It is envisioned that 

talks will be presented describing the content of the several chapters 

as determined by the working groups. Further, a major part of this 

session will consist of discussion of this material, which should be 
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available to all members of the workshop well before the meeting. A 

small editorial staff will be responsible for final editing, produc- 

tion, and distribution of the planning guide. A record will be kept 

of the discussions at the second plenary session, but no useful 

decision can be made at present about its publication. 

So much for generalities. In the next 4 days we will be review- 

ing some things old and some things new that represent our partial 

understanding of the characteristic behavior of low-frequency sound 

waves in and below the oceans. Low frequency here means the range 

from 1 to 1,000 Hertz. A quite arbitrary range which, unfortunately 

perhaps, includes at low frequencies the Airy wave of the deep ocean 

basins and at high frequencies phenomena that are sensitive to rather 

fine details of water structure and ocean floor topography. The past 

emphasis in research and applications is most uneven. Major U.S. 

emphasis has been on the spectral region from 20 to 150 Hz with some 

far less intense emphasis on the region from 150 to 1,000 Hz. Only in 

the past 3 or 4 years have we attempted anything significant below 20 

Hz. Thus, we will find - if we look - that there is great unevenness 

in our information throughout this spectrum. In some areas of interpre- 

tation, there is great scope for speculation, because there is so 

little hard data; whereas in others we have so much information that 

the knowledgeable interpreter may feel tongue-tied. In the next 

6 months — and a lot longer — we should look at the spectrum 

encompassing both extremes in order to learn what is going on in the 

ocean, thus solving many of the practical problems of warfare there — 

and other marine concerns of mankind as well. 

All nations represented here use their knowledge of ocean 

acoustics more or less intensely for some or all of the following 

purposes: 
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1) To forecast the performance of existing sonars over 

the next few hours, tomorrow, next week, next year, 

and so on 

2) To analyze operations or operational exercises as a 

means of improving system performance 

3) To analyze the results of acoustic intelligence 

4) To assist in force level trade-off studies 

5) To assist in the identification and selection of 

new systems design options 

6) To assist in the entire development process after 

options have been selected for development. 

In formulating objectives within the framework of these purposes, we 

are driven by scientific or technical opportunities and constraints 

in the face of the potential enemy's capabilities and characteristics. 

Our investigations can be programmed either to provide a tech- 

nology base on which new analysis tools or new sonar systems can be 

developed or they can help develop a needed capability. The U.S. 

Defense Department has long subdivided these efforts by names such 

as research, exploratory development, advanced and engineering 

development, and so on. 

The non-U.S. participants will inevitably hear American partic-— 

ipants refer to these activities by their number, the budget sub- 

elements 6.1, 6.2, 6.3, and so on. In principle, I believe this work- 

shop to be concerned with 6.1, 6.2, 6.3, 6.4, and 6.6. In practice 

we hear little of 6.6, and so far as I am aware, have no programs 

whatever in 6.4. For the remainder, I find it easier to divide our 

concerns into 6.1, 6.2, and 6.3 as follows. In 6.1, we should study 

acoustic and oceanic processes and how they interact. In 6.2, 
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we should examine how the resulting understanding of ocean acoustics 

can be applied in the framework of the broad purposes stated above. 

In 6.3, we determine as precisely as deemed necessary the significance 

of ocean acoustics in supplying a particular fleet service, analysis 

tool, or support for the development of a specific new sonar system. 

Again, all of these are a proper concern in this workshop. 

In making our assessment of present understanding of low-frequency 

acoustics, significant confusion may result from the unevenness Of our 

understanding. Acoustical theory has long been able to modél complex 

processes for some simple configurations of the sound medium, and 

the question has been raised repeatedly whether much, if anything, 

remains to be done in basic acoustics. Nevertheless, the ocean, its 

surface, and its floor are so complex that these models are of limited 

practical use. The last 5 to 8 years have seen an intense effort in 

the U. S., mainly in 6.2 and 6.3 programs to develop models that would 

deal in practical and useful detail with the major complexities of 

the ocean and predict transmitted sound levels and noise. We have 

depended altogether on modern digital computing techniques and on 

comparisons with measurements. These modern methods are only now 

beginning to teach us when and where sweeping simplifications of the 

shape of the boundaries and the acoustical properties of the ocean 

are both useful and adequate. We shall be looking at some of these 

results. How should these computational methods be developed in the 

future? 

We have done surprisingly few strict comparisons of acoustic 

measurements with model analysis based on simultaneously measured 

acoustic data and oceanic properties. The necessary impact of the 

few comparisons available has not had time to be fully felt and 

digested. Even so, important lessons are emerging. Nevertheless, 

we still don't now know how detailed a program of measurements is 

required. I hope that the workshop can help us chart a good course 

to answer the nagging question of: How much is enough? 





TIME VARIATIONS OF SOUND SPEED OVER 

LONG PATHS IN THE OCEAN 

G. R. Hamilton 

Ocean Science and Technology Division 

Technology Division 

From 1961 to 1964 a series of precisely located and timed 

SOFAR charges were fired off Antigua to measure the trans- 

mission time stability of the sound channel axis arrival 

(i.e., the SOFAR signal cutoff) to MILS hydrophones at 

Eleuthera, Bermuda, the Canary Islands, Barbados, 

Ascension and Fernando de Noronha. The sound transmission 

speed was found to be stable for a few hours but it 

could not be predicted a week in advance. An application 

to the precise location of missile impacts using SOFAR 

signals, based on the dropping of SOFAR charges at the 

missile impact position within a few hours of missile 

launch, is described. 

The most extensive measurement of sound-speed variations over 

long distances were made in a program in the early 60's called SCAVE, 

for Sound-Channel Axis Velocity Experiment. The locations of the ex- 

periment are shown in Figure 1. Results were published in the proceed- 

ings of the Naval Underwater Acoustics Symposia in 1962, 1963, and 

1964. 

The measurements were designed to make it possible to use SOFAR 

charges to determine the accurate impact position of Polaris missiles 

launched southeast into the Atlantic from Cape Kennedy, Florida. With 

a range of about 1600 miles, these missiles impacted in the open ocean 

east of the Caribbean. For this flight range, they could not be tar- 

geted to impact close to an island or coast line where shore-mounted 

radars or shore-connected bottom hydrophones could be used for deter- 

mining impact position without overflying islands. Could SOFAR charges 

carried in the missile be used to accurately locate the impact position 

at a mid-ocean location? What impact position accuracy would SOFAR 

charge provide? 
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Our initial ideas were to drop SOFAR charges over accurately lo- 

cated bottom hydrophones off Antigua, time the SOFAR arrivals 800 miles 

away at Bermuda, and basically use this experimental sound-speed mea- 

surement to calibrate sound velocimeters, in absolute terms, for the 

ocean conditions at 3000- to 4000-ft depth and 3°c. This was the only 

method we could conceive to obtain an absolute sound velocimeter cali- 

bration for these temperature and pressure conditions. For example, 

in 1962, when calibrating a sound velocimeter in the laboratory, there 

was an elusive one-foot-per-second difference in various tabulated 

values of sound speed for distilled water at surface temperatures 

and pressures. 

In planning the experiment, we assumed that the axis sound speed 

at any open-ocean location would be stable. We would use this 800-mile 

travel-time measurement to calibrate the velocimeters in absolute terms 

based on multiple lowerings along the transmission path. Since SOFAR 

charges off Antigua could also be received on the MILS (Missile Impact 

Location System) sound-channel axis hydrophones at Eleuthera, at 

Fernando de Noronha off Brazil, at Barbados, and at Ascension, we 

recorded on these as well. Looking ahead, since our ultimate problem 

was to accurately locate a missile SOFAR charge in mid-Atlantic, a hy- 

drophone was obviously needed in the northeast Atlantic to balance 

any unknown bias from the existing MILS hydrophones to the south and 

west. Such a hydrophone station was installed in the Canary Islands. 

Figure 2 shows a typical SOFAR signal received over a Sargasso 

Sea transmission path. Typical, in that for a 900-mile transmission 

path the signal has a 9-second duration and terminates with a sharp 

cutoff. For this hydrophone buoyed up into the sound-channel axis, 
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the signal-amplitude cutoff is in excess of 30dB and occurs in about 

0.02 seconds. The trace shown is a Sanborn direct-writing hot-pen re- 

corder in the log-audio mode (i.e., the log of the rectified audio sig- 

nal). The ray diagram shown is from the original Ewing and Worzel 1947 

SOFAR paper. For this Sargasso Sea sound-speed profile with the Sargasso's 

500m thick, near surface layer of 18°C water, the first arrivals of the 

SOFAR signal travel along paths that are near bottom grazing and 

through the 18°C near-surface water. 

In Figure 3 is shown the bottom hydrophone array off Antigua over 

which SOFAR charges were dropped. The water is 3,000 fathoms deep. 

Three hydrophone signals are needed to locate and time an underwater ex- 

plosion. With six hydrophones in this array, there is redundant data 

for greater system reliability and for greater time and position accuracy. 

One SOFAR charge could be located relative to another in the central 

area of this array with a precision of 30 feet. This shot-position pre- 

cision on a transmission path of 1,000 miles to a fixed hydrophone 

means the error in the relative sound-speed measurement due to source- 

charge positioning errors is of the order of 0.04 feet per second. 

In our SCAVE tests, and we ran about 25 or 28 of them, we 

chartered a small boat in Antigua as a SOFAR charge drop boat. This 

boat was the type of yacht you could charter for about $2,000 a 

week. Normally a one-week charter was required to set up aboard, 

sail to the hydrophone area and drop SOFAR charges for two hours, 

return and offload. On one SCAVE, we dropped SOFAR charges every 

hour for 24 hours, and on another occasion every hour for eight 

days. 

Figure 4 is a typical record for an overhead SOFAR signal on 

these bottom hydrophones, illustrating the S/N ratio and system fre- 

quency response that made the 30-ft shot-position precision possible. 

11 
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Again, this is a Sanborn recorder with log-audio recording. The verti- 

cal scale for each of the records covers 50 dB. Shown at the bottom 

is a one-second interval. Direct signals are marked with a D, 

surface reflections with an S. Rise times for these signals are 

less than 0.01 seconds. The two pulses following D and S are sub- 

bottom echoes. 

In Figure 5 are shown the results of the first year's program. 

Primarily shown here are results for two phones at Bermuda and three 

at Eleuthera. The error bars indicate the full spread of the sound- 

speed data. There are two immediate conclusions. Obviously, the sound- 

channel axial speed was not constant. There are times when the speed 

remains constant for a month or two, but it can also change by 2 feet 

per second within a month. The second conclusion concerned the cause 

of the sound-speed variations. The month-to-month variations on the 

Bermuda and Eleuthera phones do not correlate. The inference there- 

fore is that the cause of the speed variations is not a phenomenon at 

the source. Note also that speed variations at the two Bermuda phones 

track very nicely. Although these phones are about ten miles apart, 

the line between the "SOFAR Station bottom hydrophone" and the "BOA 

Spd" (Broad Ocean Area suspended) hydrophone continues directly to the 

Antigua hydrophone area. And so we inferred that whatever is causing 

the variations in the average sound-channel speed between Antigua and 

Bermuda is not some small-scale effect in the area of the receiving 

hydrophones. 

For the three Eleuthera phones, the transmission paths to each of 

the individual phones are not identical, and the speed variations, 

although similar, don't track as accurately as those at Bermuda. 

In Figure 6 are the SCAVE results for 2.5 years. At the top are 

three additional transmission paths, Ascension and Fernando de Noranha 

14 
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in the South Atlantic, and Barbados just 300 miles to the south of 

Antigua. The obvious conclusions we reached from this were that we 

couldn't predict the axis sound speed with the required accuracy for 

missile-splash location. 

Note the long-term correlation between Eleuthera and Bermuda. 

For the first half of the program, there is a six-month cycle, rather 

well displayed, that occurs four months later at Eleuthera than Bermuda. 

Shown in Figure 7 are the results of an eight-day SCAVE with sig- 

nals at hourly intervals. The dots are the actual sound speeds measured. 

The dark line is a seven-point moving average. Although the sound- 

speeds change over this eight-day period, they change slowly. Hydrophones 

with closely adjacent transmission paths have similar changes. It was 

from these data that we developed a system for using SOFAR signals to pro- 

vide accurate missile-impact location estimates. 

Essentially we calibrated or measured the axis sound speed for each 

missile test for each receiving hydrophone. This was done by firing 

SOFAR charges in the missile-impact area over bottom transponders which 

had already been located. Ten SOFAR charges were fired before the 

test and ten after the test. An average measured SOFAR speed for each 

hydrophone was used for calculating the missile splash position. 

In Figure 7, results from the Bermuda suspended phone for the 

first 3 days suggest a sound-speed variation with the period of a semi- 

diurnal tide. This Bermuda phone was at the 4000' sound-channel axis 

depth, but buoyed 5000' off the bottom. It was not unreasonable to 

suspect that this hydrophone moves back and forth with tidal currents 

at Bermuda. Without data on this hydrophone's movements, it is there- 

fore impossible to state whether this is an actual sound-speed varia- 

tion or an artifact of hydrophone motion. The hour-to-hour variations 

iby) 
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here are of the order of 0.15 feet per second. The eight-day variation 

is about 0.4 feet per second. 

Figure 8 data are from a series of SOFAR shots across the center 

of the Antigua hydrophone array on a NE-SW line to see if the axis sound 

speed to each hydrophone was sensitive to small changes in the source 

position. As shown, there is a small effect. Additional profiles would 

have been required to determine if this was a source-position or trans- 

mission-path effect. 

Figure 9 is a record of the seawater temperature at the sound- 

channel axis off Eleuthera. The equivalent sound-speed variations are 

shown at the lower right. Shown are temperature variations in excess 

of 0.5°C corresponding to maximum sound-speed variations of five feet 

per second although more typical sound-speed variations are on the order 

of three feet per second. 

Figure 9 also illustrates a rough comparison of the Figure 6 data 

for 1961, 1962, and 1963 Eleuthera hydrophone sound speeds with the 

seawater thermistor temperature readings. Speeds from Figure 6 are 

plotted as circles on Figure 9 with a vertical line drawn to the sea- 

water temperature at that time. It is apparent that the correlation 

between the two is rather poor, indicating that the sound speed at the 

hydrophone is not the dominant factor controlling the average sound 

speed over this 1,000-mile transmission path. 

Figure 10 is a series of sound-speed profiles in the area of 

the Antigua shot positions illustrating the extreme variability of the 

water masses in this area at axis depths. Two velocimeters calibrated 

to identical readings were used in this instrument package to increase 

the confidence that the small perturbations in the profile were real. 
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Figure 11 is a series of SOFAR signals before and after a missile 

test as recorded at Bermuda. Shown are the scheduled detonation time, 

the detonation depth, the difference in the propagation speed from the 

average for the SOFAR timing tick marked, and the spread in range re- 

sulting from this timing tick. These SOFAR signals do not have the 

sharp, clean SOFAR cutoff of those fired over a flat bottom. Presumably, 

forward scatter from the rough mid-Atlantic Ridge topography degrades 

the cutoff for these signals. 

Note that there is no variation in sound speed for the range of 

detonation depths shown. Actually, this is what you would expect for 

a SOFAR charge position east of Antigua. The average speed there at 

the sound-channel axis is of the order of 4875 feet per second. At 

Bermuda it's about 4890. So the axis is pinching down. This insensi- 

tivity of average axis sound speed to detonation depth was very conve- 

nient because the manufacturer making the SOFAR charges could never 

meet a depth spec on the SOFAR charge. We thought depth variations 

might cause speed variations and therefore wrote a 3 percent depth 

specification. The manufacturer could never meet it, but, as it 

turned out, it did not matter. 

Summarizing the conclusions, 1) the sound channel axis speed was 

not stable; we couldn't predict it, and 2) neither the sound speed at 

the source nor the sound speed at the receiver seemed to control the 

average speed variation over these long transmission paths. The speed 

variations were apparently caused by what was happening in the water 

masses between the source and the receiver. 
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DISCUSSION 

Dr. A. O. Sykes (Office of Naval Research): What do you read for 

the cutoff on the records in Figure 11? 

Mr. Hamilton: You go through a learning cycle to determine what 

fits the data and gives nice results [laughter]. If the delta range 

is large in data such as this, the sources of error are few: 1) the 

shot boat position and the SOFAR detonation depth/time in the trans- 

ponder array; 2) the SOFAR charge did not sink vertically; 3) the 

SOFAR signal cutoff timing; 4) something in the physics of sound trans- 

mission is not understood. It was never necessary to use either 2 

or 4 to explain away inconsistent data. 

Dr. D. C. Stickler (Applied Research Laboratory): Can you 

speculate about the origin of the six-month period in your sound-speed 

program? 

Mr. Hamilton: There has been a recent series of papers by Jacobsen 

of RPI in JASA discussing ocean Rossby waves and their effect on acous- 

tics. Rossby waves are similar to the 200nm diameter eddies seen by 

the Mid-Ocean Dynamics Experiment in 1974 between Bermuda and the 

Bahamas. That six-month variation is about the period of these 

eddies as they move westward a few kilometers per day. 

Dr. Sykes: How far apart in time were the pre- and post-SOFAR 

shots used to calibrate the missile impact area? And how closely do 

the speeds correlate? Is it a matter of a day or so? 

Mr. Hamilton: No, they were approximately two hours before and 

after missile impact. 
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Dr. Sykes: The reason for the question is I was trying to get an 

estimate from you of how close acoustic and sound-speed measurements 

should be made. That is, do you think a day apart is good enough? 

Or a week apart? Or really a few hours? Must they really be simul- 

taneous ? 

Mr. Hamilton: You can see the individual variation from shot to 

shot in Figure 1l. For this purpose the sound-speed measurement 

didn't seem to be very critical. 

But remember we aren't talking about the rays that are going 

through the surface waters. We are talking about what is going 

along the axis. The seawater temperature at Eleuthera on Figure 9 

shows no correlation with the average axis sound speed to a nearby 

hydrophone. The sound-speed measurement at a single site doesn't 

seem to be important. 

The fact that variations in sound speed to the two Bermuda phones 

correlate so beautifully for transmission over exactly the same ocean 

transmission path in Figure 5 and that these do not correlate exactly 

to hydrophones on nearby paths for Eleuthera in Figures 5 and 6 leads 

me to believe that what is happening at the source is not very import- 

anicr 

So I am coming to the conclusion that at least for this measure- 

ment, the sound speed at either the source or the receiver is not 

important for the average horizontal propagation speed along the 

sound-channel axis. 

Ms. E. A. Christian (Naval Ordnance Laboratory): It's no more 

important than the rest of the path? 

Mr. Hamilton: Right. 
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Mr. M. A. Pedersen (Naval Undersea Center): I have several 

comments on this particular presentation. I have worked up a number 

of Pacific profiles for which the slowest arrival is not the axial 

arrival. It seems that the slowest arrival is associated with the 

steepness of the thermocline. That is, in one case I worked out the 

slowest ray formed was about a yard-per-second slower than the axial 

speed. And it corresponded to a ray which is turning around in the 

steep thermocline portion. 

Mr. Hamilton: Figure D-1l shows a comparison of some typical pro- 

files and their SOFAR signals. For the Sargasso Sea profile from 

the western North Atlantic, the slowest SOFAR arrival travels along 

the sound-channel axis. The resulting signal is in the lower left. 

In the typical Eastern Atlantic profile the Mediterranean outflow 

broadens the sound-speed minimum and increases its value, so the 

slowest arrival travels in the surface and bottom grazing ray paths. 

This SOFAR signal is on the lower right. In the Pacific profile, 

the SOFAR signal is shorter as shown in the middle bottom trace. 

It is actually quite similar to what a western North Atlantic SOFAR 

Signal looks like if you eliminate the rays that penetrate the 18°C 

Sargasso water. In the Atlantic where you have the Sargasso water 

in the surface 500 meters, this high sound speed near surface 

water gives the early SOFAR arrivals in the lower left SOFAR signal. 

I ran into the Eastern Atlantic SOFAR signals a few years ago. 

When I saw these signals, I assumed they were from surface shots and 

made some stupid statements to that effect. I then realized that 

the Eastern Atlantic was a different ocean entirely with this entirely 

different profile, that it just reverses the SOFAR signal completely 

from the classical one Dr. Worzel published, 25 years ago. 
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SOUND SPEED 

1463 m/sec 1493 m/sec 1524 m/sec 

4800 '/s 4900 '/s 5000 '/s 

<#—surface lens of 

18°C Sargasso water 

eastern N. Pacific 

sound channel axl 

western N. Atlantic 

1500mj| sound channel axis 

5000! 

\ eastern N. Atlantic 

| @£ with warm salty Mediterranean 

/ a water intrusion 

3000m 

10,000' 

METER DEPTH 

4500m 

15,000' 

SCHEMATIC SOFAR SIGNALS — 900 nm range 

| | | Axis arrival 

Rays that penetrate 

into 18°C Sargasso 

water 
————_ 

WESTERN N. ATLANTIC EASTERN N. PACIFIC EASTERN N. ATLANTIC 
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Dr. R. P. Porter (Woods Hole Oceanographic Institution): Were 

you able to resolve any other arrivals besides the axial arrival? 

In other words, could you say there were specifically other paths 

that stood out that might have been rays that were going through 

water with a higher sound speed? 

Mr. Hamilton: We occasionally would see it on the first group 

of arrivals when we had a suspended hydrophone. Within a group we 

would see the individual arrivals corresponding to the up- and 

down-going paths on both ends. These were apparent for the earliest 

orders, and then they start to get closer together, effectively over- 

lapping. 

Dr. Porter: Would you see this arrival structure then build up 

in the final arrival? In other words, could you analyze those shots 

in terms of the individual arrivals themselves prior to the axial 

arrival, because if you could do that, then you could possibly look 

at some of the average sound speeds through the remaining part of 

the water column. 

Mr. Hamilton: Most of our work was at ranges like a thousand 

miles, and the cycling of the groups is about 30 miles, so we are 

talking about 30 of the groups building up into the final peak. 

We might see the first and the second, but after that it pretty much 

ran together. It didn't look to us at the time like an interesting 

problem to work on, and we didn't look at it. 

Dr. W. B. Moseley (Naval Research Laboratory): In your data, the 

temperature variability at neither the source nor the receiver 

appears to directly correlate with the travel-time variability. 

However, if you were dealing with the same water mass type throughout 

the range, would you expect the statistics at either of the end 

points to correlate with the statistics of the arrival time? 
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In other words, could you simply measure statistics at the end points, 

or do you really need measurements throughout the entire path? 

Mr. Hamilton: Are you asking whether one could take statistics 

at the source and at the receiver and compute the average transmission 

velocity? 

Dr. Moseley: No, compute the statistics of the variability of 

the average travel velocity. 

Mr. Hamilton: Yes. However, in this problem statistics don't 

help very much since the problem was: What is the actual range from 

the launch pad to the impact point expressed as a deterministic, 

accurate value? If the speed variation over that thousand-mile path 

were plus or minus a foot and a half per second, it would equate to 

a location uncertainty path of 1,800 feet. So we really weren't 

interested in the statistics. We had to have as accurate a value 

as we could at the time. 

30 



The Acoustic Output of Explosive Charges 

Ermine A. Christian 

White Oak Laboratory 

Naval Surface Weapons Center 

Silver Spring, Maryland 

Although small explosive charges are widely used as 

sources for underwater acoustics studies, a number of un- 

resolved questions exist concerning the proper source 

levels for use in data analysis. At the present time 

there is no generally accepted "standard" set of source 

levels, and deviations of 5 to 10 dB can be found among 

published values. Better information is needed to define 

a reference range beyond which finite amplitude effects 

are negligible. Spectral energy levels are sensitive to 

charge detonation depth, an experimental variable that 

typically is not controlled in acoustic experiments. 

These and other problem areas associated with explosion 

sources are reviewed with comments on their quantitative 

effects at low frequencies. 

INTRODUCTION 

I am well aware that the members of this acoustic community are 

not, in general, entranced with the beauties of explosions physics. 

It is a delightfully complex subject that is simply a pain in the neck 

to someone who wants a neat, Simple source for underwater acoustics 

research work. 

Unfortunately, in today's sophisticated world we are trying to 

do a number of rather closely controlled experiments. We are looking 

for subtle effects, small differences, and we are looking for detailed 

frequency dependencies rather than the broad-brush quantities that 

sufficed a decade ago. This means we can no longer gloss over inherent 

characteristics of the pressure waves generated by explosions, even 

though they may be uncomfortably complicated. So let me be a purist 
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for a few minutes and talk about an explosion wave as it really is, 

rather than as acousticians would like it to be. 

Desirable attributes of sources for use in low-frequency acoustic 

work are much the same, whether the sources are CW transducers or are 

explosions. For use in the field it is desirable to have sources that 

are reliable, inexpensive, with a high energy output at the desired 

frequency range, and convenient and simple to operate under field test 

conditions. For use in data analysis, it is desirable to have known 

standard source levels, source level values that are compatible with 

the sonar equation, and values that are predictable within some speci- 

fied decibel allowance in a narrow-band frequency. Explosion sources 

often come out ahead when considering field-use desirability, which 

is why they are used so widely for underwater acoustics research. But 

for the analysis end of the problem, explosions sometimes seem to be 

intractable. Today I will show you some of the reasons this is so. 

For today's discussion, let me use values of bandwidths and fre- 

quency ranges and prediction errors that I have heard discussed within 

the past year as being desirable in acoustics research work. (It may 

be that during the course of this Workshop these values will be modi- 

fied. If that is the case, I will only say that I hope all of them 

will increase, from the point of view of our ability to utilize avail- 

able information today.) We would like source levels in 1/3-octave 

bands. And we want these levels to be predictable to within 1 dB, 

over the frequency range of 10 to 300 Hz. Here I purposely use the 

word "predictable," rather than "reproducible" to within 1 dB. Repro- 

ducibility is not the problem with the explosive compositions usually 

used in acoustics work. If you replicate the experiment — the charge 

type and depth, the measurement point, the recording and analysis 
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systems — you reproduce the pressure-wave output within a few per- 

cent.* Predictability, however, is another matter. 

Given these quantitative constraints — source levels predictable 

within 1 dB in 1/3-octave bands over the frequency range 10 to 300 Hz — 

we are in rather poor shape for analyzing data taken with explosion 

sources. We do not have known, standard source level values. We have 

problems with sonar equation compatibility. And we very definitely 

have problems with our 1 dB error allowance. 

I don't think we need much discussion on the question of known, 

standard values. Everyone in this room who has used explosion sources 

is aware that among the published values in the literature, the in- 

house publications, and the backs-of-envelope working papers we all 

turn to, a wide assortment of source level values can be found. These 

values vary perhaps by 5 dB, perhaps more, depending upon the band- 

width of interest. In fact, the question is so wide open that I have 

wondered if data reduction sometimes follows the line of "when in 

doubt, blame the source level; and then look around until you find 

one you like better." 

To mention a few of the many names that are familiar to source 

level seekers, we have Weston's (1960) benchmark paper that is still 

widely used. We have Stockhausen's (1964) data, measurements reported 

by Turner and Scrimger (1970), Maples and Thorp (1970), Buck (1974), 

and Christian (1965, 1967). Oh, there is no dearth of source level 

values. But they do not add up to our desired "known, standard 

* With some of the more exotic explosive materials there are problems 

with reproducibility; the charge output may vary with charge size, 

with the formulation, or with the density. But these materials are 

not found among the standard acoustic sources. 
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values." It is true, of course, that the visible problem is not as 

great for the lowest frequencies of interest as it is for higher fre- 

quencies. Many of the above references do not look at the very low 

frequency end of the scale. 

SONAR EQUATION COMPATIBILITY AND PREDICTABILITY 

In order to examine the problems of sonar equation compatibility 

and predictability, we must face up to the nonlinear nature of explosion 

pressure waves. Before getting into that discussion, let us take a 

brief refresher look at the time and frequency domain functions in this 

explosion pressure field. 

Figure 1 shows two typical pressure-time histories for underwater 

explosions, recorded with the special-purpose equipment designed for 

such measurements. The experimental setup is shown at the top of the 

figure. Charges were fired at depth and recorded at the surface above. 

The record on the left is from a 57-pound TNT charge detonated at 

6,600-foot depth. That on the right is from an 8-pound TNT charge at 

2,050-foot depth. 

These pressure-wave records show the usual high-amplitude shock 

wave followed by the succession of pulses associated with the oscilla- 

ting bubble of product gases. There are scaling laws for explosion 

pressure waves of this sort, in terms of explosive charge material, 

weight, and depth of detonation. Unfortunately (from the point of 

view of simplicity), these scaling laws contain different coefficients 

and exponents for different segments of the pressure wave; and there- 

in lies the problem that you will hear more about later. 

The frequency domain representation of an underwater explosion 

pressure wave, such as Figure 2, is also familiar. But in our everyday 
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treatment of explosion data, where we usually study only narrow-band 

slices of the spectrum taken near selected frequencies, we may forget 

the oscillatory character of the spectral energy distribution. We 

find the highest spectral energy at the so-called "bubble fundamental 

frequency," which corresponds to the first bubble period spacing in 

the time function. We find minor irregularities in the spacings of 

the first several harmonics while the second and third bubble pulses 

are getting shaken out. And after a while, the pattern stabilizes, 

and we have a regularly spaced series of peaks and nulls. I must 

point out that true nulls are in the spectrum, even though they are 

not conspicuous at the higher frequencies in Figure 2. This isa 

computer-generated plot. The computational grid size used and the 

characteristics of the plotter control details of the picture. Lest 

you hope to find these oscillations smoothing out at long ranges, 

or start thinking of clever ways to clean up the source level curve 

by smoothing or filtering (e.g., Skretting and Leroy, 1971), let me 

show you one of Gordon Hamilton's sonagrams of signals recorded some 

500 miles from explosions (Figure 3). The horizontal axis is time 

and the vertical axis is frequency (0 to 500 Hz). Those alternating 

light and dark horizontal bands corresponding to no-energy and high- 

energy show that neither distance nor manipulation can smooth out the 

true source spectrum. 

Naturally we are going to have problems in fitting explosion 

source levels into the sonar equation, where quantities are added 

and subtracted in a comfortable linear fashion. The translation of 

"compatibility with the sonar equation" into more explicit prosaic 

terms is summarized in Figure 4. What we mean is that we wish there 

were no finite amplitude effects; no nonlinearities; no inherent 

change in wave shape or frequency distribution as the wave propagates 

outward, so that all observed changes could be ascribed to the medium. 
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The customary method of getting around the finite amplitude 

problem is indicated at the bottom of Figure 4. Just go a sufficient 

distance from the charge so that the nonlinear effects from that 

point on are negligible for the application of interest, call this a 

"reference range," and there define an effective source level which 

can then be used to examine the signals measured at greater ranges. 

This practice was initiated by Weston, who chose a 100-yard refer- 

ence range. And for the fairly small charge weights and detonation 

depths that Weston was treating, most of the finite amplitude effects 

are, indeed, negligibly small beyond 100 yards range. Unfortunately, 

such quantities have a way of becoming gospel and being dissociated 

from the physical facts that led to their selection. 

The 100-yard reference range by now has become a sort of junc- 

tion through which source levels are shuttled at a rate of 20 log R. 

If you want to compare different measurements made at various ranges — 

a half mile, a mile or so — assume spherical spreading and extrapo- 

late them to 100 yards. If you are enamored of the sonar equation's 

one-yard reference range, just add 40 dB to the source level. We 

rarely find experiments with data taken on a closely scaled grid 

that allow us to see the rate at which finite amplitude effects are 

varying, and to sort out all effects of the medium. So we often are 

trapped in the circuit of using our desired information to reduce 

available data to try to improve our desired information. We must 

break out of this circuit if we really want to know effective source 

levels within 1 dB for an assortment of charge weights, depths, and 

frequency bands. 

The fact is that the appropriate reference range for defining 

effective source level is itself a function of the charge weight, the 

charge depth, and the frequency band of interest. I know of no 
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theoretical treatment that takes as input an explosive charge 

composition, weight, and depth and gives in return realistic, reli- 

able pressure-time histories at any desired range. This problem has 

been worked on for many years, and we are coming closer than Kirkwood 

and Bethe might have hoped for. But we are still in an empirical 

world when trying to examine source levels parametrically. 

Let me show you a sample of data that illustrates the kinds of 

wave-form changes we have to deal with. In Figure 5 some recorded 

pressure waves are sketched on the right, and the experimental 

arrangements used to record them is shown on the left. We lowered 

a small oscilloscope housed in a 30-inch diameter sphere down to 

about 14,000 feet. A tourmaline gage was suspended below the sphere, 

and 50-pound pentolite spheres were suspended some 200 to 1,000 feet 

below the gage. We also had pressure sensors near the surface above 

the charges. 

In the pressure waves shown on the right of Figure 5, solid 

lines represent the data measured with the deep oscilloscope near 

the charge, and dashed lines represent the same pressure wave 

measured near the surface. The upper pair of curves are for a charge 

fired 190 feet below the deep gage; the lower pair are for a charge 

935 feet below the gage. In both cases, the pressure waves for the 

deep (near-field) and shallow (far-field) recordings are plotted on 

scales in the same ratio as the stand-off ranges. In other words, 

had the waves propagated without changes of shape — simply decreased 

in amplitude at the acoustic rate of 1/R — the solid and dashed 

curves would coincide. The top set of curves, where measurements are 

compared for ranges of 190 and 13,690 feet, shows the well known 

shock-wave "finite amplitude effects" of a spreading profile and a 

peak pressure that decays more rapidly than 1/R; it also shows that 

the same nonlinear behavior is followed in the first bubble pulse. 
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In the lower set of curves, where the close-in measurement was at a 

935-foot standoff, the near-field and far-field curves are nearly 

coincident. This might suggest that perhaps 300 yards is a reasonable 

"reference range" for a 50-pound charge at 15,000 foot depth. 

The quality of these few exploratory data is too poor, and the 

extent of them too limited, to give the kind of information on source 

level that we need. But they do show that we must re-examine the 

subject of reference ranges. This is not an academic question. I 

am convinced that the methods of extrapolating and interpolating 

among different sets of measurements contributes some of the vari- 

ation found in reported source levels. And that the choice of 

reference range is important to the third and last of our desirable 

source attributes: predictability to within 1 dB in 1/3-octave bands. 

FACTORS IN SOURCE LEVEL DETERMINATION 

As noted earlier, we must still look primarily to empirical, 

rather than theoretical, methods of determining source levels. Even 

if we had an infinite, homogeneous ocean in which to work, source 

level determination would not be easy, because so many factors enter 

into the acquisition of the right number. The following list shows 

the major factors in more-or-less decreasing order of importance: 

@ CHARGE CHARACTERISTICS 

- Weight 

= Depth 

- Explosive Composition 

- Configuration 

e@ MEASUREMENT RANGE (discussed above) 

@ RECORDING EQUIPMENT CHARACTERISTICS 

@ PROCESSING METHODS 
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Let me work up from the bottom of the list and give a few examples of 

the kinds of variation we have found influencing that desired 1 dB 

predictability in 1/3-octave bands. 

Processing Methods. The most obvious source of differences from 

processing methods is, of course, the fact that some people use analog 

and others use digital processing. Even with digital processing, how- 

ever, we have been surprised to find how easily some tenths of dB 

differences crop up. We recently made a joint study with another 

laboratory of selected data tapes — some we had recorded and some 

they had recorded. After overcoming the numerous communication 

problems involved in exploring our two "Standard FFT programs" (and 

this took no small effort), we still found several computational 

details that introduced greater differences than one would expect. 

For example, simply changing the frequency interval of computation 

by a small amount introduced as much as 0.8 dB difference in the 

1/3-octave band centered at 25 Hz on some of the records, but not on 

others. At 25 Hz, the 1/3-octave band is so narrow that the level 

is quite sensitive to small computational manipulations. This 

exercise reminded us again of how wary one must be of applying routine 

analyses without carefully examining their suitability for a par- 

ticular spectral energy distribution. 

Recording Equipment Characteristics. The importance of this 

factor is so well known that I will mention only one point that may 

be of interest. (We are speaking only of equipment that is fully 

calibrated, of course.) My example has to do with equipment over- 

load. Overloading is familiar to underwater acousticians using 

explosion sources. One would like to think that in an overloaded 

recording the low-frequency content is still usable and that the 

signal has simply suffered high-frequency clipping. Figure 6 shows 

an analytical quick-look at this question, using an idealized 
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pressure history for a 1.8-pound TNT charge at 800-foot depth. This 

curve (1) was "clipped" at 50 percent of the peak value (curve [21 

and again at 10 percent of the peak value (curve [3]) by the computer. 

We assumed the most amiable system imaginable, and calculated the 

spectrum levels in 1/3-octave bands for the two "clipped" records. 

The resultant decreases in levels at the low-frequency end of the 

spectrum are tabulated at the bottom of the figure.* When clipped 

at 50 percent of the peak — a matter of a few dB — the resultant 

error had reached 1 dB in the 250-Hz band. With a 10 percent of peak 

clipping, the error was twice our desired 1 dB even down at 35 Hz. 

Perhaps down at even lower frequency — one HZ or so — the 10 percent 

clipping would not matter. But I think clipped records have to be 

handled cautiously. And remember that the possible distortions im- 

posed by a system without instantaneous recovery are not included in 

this example. 

Charge Configuration. The variations in explosion pressure 

fields that we can achieve simply by distributing our explosive mate- 

rial in different configurations is a complex subject that I will not 

even try to touch on today. This discussion is limited to compact, 

consolidated, "point" charges that are omnidirectional. But if you 

want to modify your spectral energy distribution with a given weight 

of explosive, the quickest way is through charge configuration, and 

we know a fair amount about the subject. 

Explosive Composition. We can accomplish some redistribution of 

spectral energy through choice of explosive composition. The bubble 

fundamental frequency is a function of the charge weight, the charge 

depth, and a material constant. The constants do not differ 

* The positive values in parentheses for 25 Hz are spurious and mirror 

our failure to do a DC leveling when we clipped the wave. 
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appreciably for typical high-explosive material such as TNT, pentolite, 

and RDX. But they are changed significantly when aluminum is added to 

the explosive mixture. For example, HBX-3, which is a particular 

mixture of RDX, TNT, and aluminum, has a bubble period that is about 

25 percent greater than the bubble period of TNT. Consequently, the 

bubble fundamental frequency, and the frequency spacings of subsequent 

peaks and nulls in the spectrum, are only about 80 percent as great as 

those of TNT. This is illustrated in Figure 7, where dashed and solid 

lines refer to HBX-3 and TNT, respectively. These curves are computed 

from simplified analytical representation of the pressure waves. The 

differences in 1/3-octave band spectrum levels of these two materials 

are tabulated on the right-hand side of the figure. At the lowest 

frequencies, while the curves are still increasing toward the first 

peak at the fundamental, the band level for HBX-3 is several dB higher 

than that of TNT. As one moves up in frequency, however, it becomes 

a game of catch-can, and which of the two materials has the higher 

energy level depends on the location of the particular frequency band. 

In any case, we expect serious trouble if we try to compare narrow- 

band data from two such different materials without accounting for 

their different source spectra. 

Charge Weight and Depth. I would like to discuss these two 

important quantities together for a moment, to describe a method of 

source level prediction used by Gaspin and Shuler (1971). The tech- 

nique involves first generating a quasi-theoretical pressure-time 

history, such as that shown in Figure 8, and then transforming to the 

frequency domain. The pressure-time curve is fitted through a series 

of points (indicated in Figure 8), the coordinates of which are de- 

rived from empirical functions as shown in Figure 9 (Slifko, 1967). 

The curve of Figure 9 allows one to estimate the amplitude of the 

first bubble pulse, P for selected values of charge depth, Zo! Bie 
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charge weight, W, and stand-off range, R. The Gaspin and Shuler model 

as it stands is a rather crude one and we need new data to remove some 

of its limitations. Nevertheless, in my opinion, the model provides 

the best source level estimates that are available, and it has been 

widely used. 

Varying Charge Depth. In many experiments it is easier to control 

the weight of the explosive charge than to control its depth. This is 

especially true for acoustic research experiments, where free-fall 

charges are often dropped from moving ships or planes, and detonation 

depths depend on hydrostatic pressure devices or lengths of fuze. The 

SUS Mk-61 sound signal is such a charge. In Figure 10 are shown the 

Gaspin and Shuler (1971) theoretical spectra for 1.8 pounds of TNT — 

the Mk-61 loading — detonated at three depths, 700, 800, and 900 

feet. These three curves indicate the range of source levels one 

might encounter with the Mk-61 SUS set at a nominal 800-foot burst 

depth. Although detonation depths might vary by only a few feet for 

charges drawn from the same lot, the MILSPEC standards are so written 

that mechanisms with variations of almost + 100 feet about the nominal 

800-foot depth might come within acceptable limits and be included in 

stock. The alternate shaded and unshaded frequency bands are the 

popular 1/3-octave bands. What these kinds of depth variations mean 

in terms of source level uncertainty is shown in Figure 1]l. The 

ordinate of Figure 11, AE, shows the dB error introduced when actual 

detonation depth deviates from the ideal 800-foot value. At high 

frequencies, where the 1/3-octave band encompasses a number of bubble 

harmonics, the errors fall within 1 dB of the norm. But down at low 

frequencies, where the measurement band width is narrow relative to 

the spectrum oscillation pattern, the errors are + 3 dB. So much for 

the hope of predicting source levels to within 1 dB, unless the actual 

detonation depth is taken into account. Recent efforts along this 

line will be discussed by Dr. Weinstein. 
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Since I have gone to some lengths to emphasize the need for more 

and better data before we can solve source level problems, let me also 

mention a case where we will have to rely on processing techniques, 

even if we obtain perfect data. This is the shallow burst, where it 

is not possible to record the total output wave of the charge separate 

from the rarefaction wave that is reflected back into the water from 

the surface. For example, the first bubble period of the very popular 

Mk-61 SUS fired at 60 feet is about 120 milliseconds, and the entire 

train of explosion pulses that comprise the charge output lasts for 

several hundred milliseconds. There is no point in the water at 

which this pressure wave can be recorded faithfully, because the 

longest time interval between the direct and surface reflected waves 

that one can find is 24 milliseconds. This maximum interval occurs 

directly below the charge, as shown in Figure 12. The parabolic 

curves of Figure 12 are isopleths of the time of arrival of the re- 

flected wave; values decrease rapidly as the gage location approaches 

the surface. (The cognomen "surface cut-off time, ee of Figure 12 

is the explosions research community's jargon for the time separation 

between the shock front and the surface-reflected wave.) Whether one 

unscrambles the two signals by deconvolution in the frequency domain, 

as suggested by Hovem (1970) and by Hanna and Parkins (1974), or by 

extrapolating time domain functions, as done by Gaspin and Shuler 

(1971), some sort of special processing must be applied to obtain 

source levels. Figure 13 illustrates the degree of spectrum dis- 

tortion introduced by the reflected pulse if it arrives well beyond 

the direct wave (top pair of curves), hard on the heels of the direct 

wave (center pair), or in the midst of the direct wave (bottom pair). 

I have now completed my long list of reasons why it will always 

be difficult — if, indeed, possible — to predict explosion source 

levels in 1/3-octave bands to within 1 dB at low frequencies. Many 
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of the problems can be removed if we want to pay the price: if we 

want to set stringent limits on SUS charge detonation depth toler- 

ances, for example, or require high quality on-site measurement of 

charge output for each shot in a series. But such prices are high. 

I would like to suggest that there may be a better way out, a way that 

will involve some possibly painful changes over the short term, but 

will pay off handsomely over the long term. Why not work toward a 

sensible matching of explosion sources and processing methods? Does 

a SUS charge always have to be matched to 1/3-octave bands? 

An explosion has an "inherent bandwidth," as it were, in its 

bubble fundamental. If analysis bandwidths were selected to be at 

least two or three times as wide as the bubble harmonics, much of the 

variability I have been discussing will be washed out. On the other 

hand, if the practical acoustics problem being attacked includes an 

important fixed recording bandwidth which is controlling, then per- 

haps we should design a charge to match the problem, not just pick 

the one that comes easily to hand. In short, I am suggesting we 

shculd try Figure 14. 

To summarize: if explosion source levels in 1/3-octave (or 

narrower) bands must be predicted to within 1 dB over the frequency 

range of 10 to 300 Hz, then: 

1) Our present state of knowledge is not adequate. 

2) We must acquire new data with controlled experiments. 

3) We must improve our source level models. 

4) Recording and processing methods must be re-examined. 

5) Shallow sources need special attention. 
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At the same time that we are working toward improving source 

level values as they are used today, we should also be considering 

the possibility of a brave new world in which explosion sources and 

analysis methods are matched for particular applications. 
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DISCUSSION 

Dr. J. B. Hersey (Office of Naval Research): We have reviewed 

the way we make measurements and have had a very exciting discussion 

of what we do to ourselves or for ourselves when we use explosive 

charges. 

In recent advanced development work in the United States, we 

have arrived at the same point that anyone does who tries to make 

practical, repeated, continuing application of methods which have 

evolved in an experimental atmosphere. We have no choice but to 

confirm our measurements in some way. We have to be sure. If the 

quantity is a varying quantity, we have to know why it is varying and 

how it is going to vary during the life of the application that we 

are addressing. This need frequently persists over many years. We, 

therefore, have to establish standardization procedures for the 

reliability of the techniques that we use. Dr. Marvin Weinstein 

has led a rather large group of people in taking a close look at 

some of these standardization problems. 
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EXPLOSIVE SOUND-SOURCE STANDARDS 

M. S. Weinstein 

Underwater Systems, Inc. 

Silver Spring, Maryland 

The desired accuracy of low-frequency transmission-loss 

calculations based on experimental data using explosive 

sound sources is plus or minus one decibel. Factors in- 

volved in determining transmission loss include uncer- 

tainties in source level, background noise, and process- 

ing procedures. Data are presented to illustrate the 

quantitative effect of these factors. 

While the desired accuracy has not yet been universally 

achieved, errors may be minimized through the use of 

certain standards concerning source-level monitoring and 

data-processing procedures. 

INTRODUCTION 

The factors involved in propagation-loss determinations using 

explosive sources include: 

® The desired accuracy 

@ The achievable accuracy, stressing the uncertainty 

in the source level, the effect of background noise, 

and processing procedures 

e The information which should be included in technical 

reports to permit comparison of data obtained and 

published by different organizations. 

DESIRED ACCURACY 

The first point to consider is the desired accuracy. Our goal 

is about one decibel. This statement usually generates immediate 

concern, since it has yet to be achieved. There may be basic 
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problems, some of which have been touched on (Christian, these 

Proceedings). However, we shall examine some of the concepts which 

support 1 dB as a reasonable goal against which to gauge our 

performance. 

Suppose we are considering the design of a surveillance system 

which will make detections at long range where the propagation loss 

follows cylindrical spreading. An uncertainty of + 1 dB translates 

into an uncertainty in area coverage of about 50 percent; a not 

inconsiderable factor in estimating costs. 

Suppose we wish to optimize the geographical location or depth 

of such a system. One might perform an experiment for simultaneous 

measurement of propagation loss at a number of sensor locations. We 

want to know the propagation loss difference to within one decibel 

for the same reason. 

In a somewhat different context, fluctuations in propagation 

loss are of considerable interest. If true fluctuations have a 

standard deviation of about 3 dB, one cannot stand an uncertainty of 

more than about 1 dB before the results are significantly degraded. 

Thus, the data needs indicate the desirability of obtaining 

propagation-loss data which are accurate to about one decibel. 

SOURCE-LEVEL UNCERTAINTY 

Consider the accuracies which can be achieved. First, the 

uncertainty in source level. 

Figure 1 shows source levels in 1/3-octave bands for 1.8-pound 

charges detonated at 60 and 300 feet. These three data sets illus- 

trate the range of values with which we are confronted. The spread 
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Figure l. 
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in source-level estimates is as high as 7.7 dB. The three data sets 

also have different spectral shapes. 

The first data set consists of the detailed computation of 

Gaspin and Shuler (1971). Although based on experimental data, it 

does involve the extrapolation of the shock-wave impulse from 

measurements at deeper detonation depths. These extrapolated values 

are a good bit higher than those previously used. 

The second data set is provided by Busch (1973) and corresponds 

to experimental measurements using MILS hydrophones. The system 

sensitivity is computed, and not measured. Additionally, correc- 

tions for surface reflections are made during processing, since 

the reflected signals arrive before the direct signal of shock wave 

and bubble pulses has died down. 

The third data set is computed using the simplistic forms 

published by Weston (1960), which were based on the earlier experi- 

mental work of Arons and Yennie (1948). 

Although the uncertainty in source level represented by the 

spread in these data sets is many times larger than our goal of 

+ 1 dB, the problem is recognized and it is reasonable to assume 

that the uncertainty in source level can be significantly reduced 

by performing carefully controlled experiments. 

SOURCE-LEVEL FLUCTUATIONS 

When measured data are compared to model computations, we 

would like the data to be free from random variations. To help 

satisfy this need, the source conditions should be identical from 

shot to shot. Fluctuation artifacts can arise from variations in 

shot depth which alter the spectral shape, principally by changing 
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the bubble-pulse period, and by variations in yield which change the 

total energy output. 

Additionally, depth variation will alter the multipath propaga- 

tion structure, introducing a third source of fluctuations which will 

be dependent on the environmental details. 

During a recent experiment, SUS shots were monitored with a 

hull-mounted transducer on the drop vessel. The data were processed 

to determine the bubble-pulse period for approximately 700 shots 

each at 60- and 300-foot detonation depths. 

Figure 2 shows the cumulative distribution for the 60-foot shots; 

the bubble-pulse period at the top, the detonation depth at the 

bottom, assuming that the yield was identical for all shots. The 

variation in yield expected from an examination of manufacturing 

procedures results in an uncertainty in detonation depth of about 

+ 2 feet. As is apparent, the detonation depth varies from 50 to 

70 feet. About 90 percent of the data points lie between 54 and 60 

feet. For this range of detonation depths the source-level variation 

in the 1/3-octave bands is about + 1 dB. 

Figure 3 shows similar results for the 300-foot shots with a 

data spread of 250 to 350 feet. About 90 percent of the data points 

lie between 270 and 320 feet, and source-level variations of about 

+ 1.5 dB can be expected. 

For both detonation depths source-level variations directly 

attributable to variation in yield are estimated to be a fraction 

of a decibel. 

These results suggest that source-level variations can be 

corrected to within a fraction of a decibel by monitoring the shots 
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Bubble-Pulse Period (ms) 

110 120 130 140 
99 99. 

Percent 

~ oO 

Figure 2. 

70 66 62 58 54 50 

Depth (ft) 

CUMULATIVE DISTRIBUTION OF BUBBLE-PULSE 

PERIOD AND DERIVED SHOT DEPTH FROM THE 

MK 61 (60 FEET) SUS CHARGES DROPPED BY 

THE USNS SILAS BENT. 654 SHOTS. 
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WIRE) 

Percent 

Bubble-Pulse Period (ms) 

38 40 42 44 46 48 50 

350 330 310 290 270 25:0; 

Depth (ft) 

CUMULATIVE DISTRIBUTION OF BUBBLE-PULSE 

PERIOD AND DERIVED SHOT DEPTH FROM THE 

MK 82 (300 FEET) SUS CHARGES DROPPED BY 

THE USNS SILAS BENT. 655 SHOTS. 

67 



WEINSTEIN: EXPLOSIVE SOUND-SOURCE STANDARDS 

to determine the bubble-pulse period, provided we have either an 

experimentally determined data base, or a proven computational 

procedure, which permits us to relate depth variation to source- 

level variation in the processing bands of interest. 

EFFECT OF NOISE 

The second source of uncertainty is background noise. To deter- 

mine propagation loss, one integrates the signal and noise over the 

signal arrival interval and subtracts out the noise from an estimate 

obtained by measurement prior to signal arrival. The time interval 

between the measurement of noise, and signal plus noise, is typically 

about one-half minute. If the noise varies over this time interval, 

an uncertainty will be introduced in the computed propagation loss. 

Ordinarily, by using only data with high signal-to-noise (S/N) 

ratios, perhaps 10 dB or more, this problem is minimal. However, 

in large-scale experiments employing many ships, thousands of shots, 

and automated remote recording systems, the problem may be more 

significant. If the S/N level is less than desired, quality assurance 

techniques must be applied to extract the good data and reject the 

poor data. 

In Figure 4, the error in propagation loss is plotted as a 

function of S/N ratio for changes in noise level of + 0.2, + 0.4 or 

+ 1.0 dB. As one would expect, the error increases as the signal-to- 

noise ratio decreases. 

This problem was encountered in a recent experiment. The 

following figures illustrate the staged improvement in the quality 

of data as quality assurance procedures were applied. 
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PL Error (pB) 

Figure 4. PROPAGATION LOSS ERROR AS A FUNCTION 

OF S/N FOR INDICATED CHANGES IN 

NOISE LEVEL 
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The central plot of Figure 5 shows the propagation-loss data. 

The ambient-noise levels which were received concurrent with the 

shots are plotted in the upper part of Figure 5 at the ranges of 

the shot. The resulting S/N ratio for each data point is shown in 

the lower set of data. S/N ratios as low as -10 dB had been 

accepted at this stage. Note that the background noise shows a 

large increase and that the propagation loss follows this change. 

Also note that the S/N ratio is poor over this entire region. What 

is happening is simply that following the noise measurement a noise 

burst coincidentally occurs at the approximate time that the SUS 

signal was expected, which is read as signal plus noise, so that, 

in effect, a noise fluctuation is mistaken for signal and an 

erroneous propagation loss is computed. 

It is important to note that the processing system was fully 

automated. Ina large experiment, the product of the number of hydro- 

phones, shots and frequency bands of interest is of the order of too 

Automation is essential to handle this quantity of data. The care 

and subjective experience which the scientist can apply when process- 

ing data by hand have to be converted to definitive algorithms for 

the computer to make a decision. This is not an easy task, particu- 

larly for those qualitative factors which the scientist does not 

verbalize but applies by gut feeling. If a 10-dB S/N ratio require- 

ment were applied to this data set, nothing would be left. 

Based on the preceding curves, we therefore decided to reject 

all data for which S/N was less than -3 dB, and plotted the remaining 

data with different symbols for S/N of -3 to O GB, O to +3 dB, and 

greater than +3 dB. The result is shown in Figure 6. Data rejected 

for poor S/N are shown along the bottom at the appropriate range. 
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These data have been cleansed considerably, but some artifacts 

are still present. The total number of data points which remain is 

considerably reduced so that other criteria can be applied. 

It is known that the nulls and peaks in the source spectrum, 

resulting from the bubble pulse, are retained in the spectrum of 

signals at long range. Fortunately, narrow-band FFT processing was 

a part of the automated processing procedure, so that the spectra 

could be examined. The criteria applied was go/no-go. If the 

signal spectrum looked like a shot, the data point was accepted; 

if it did not, it was rejected. 

Figure 7 shows the circled points that were rejected on the 

basis of the spectral criteria. The remaining data can now be 

relied upon. Further investigations of noise fluctuations permitted 

the establishment of estimated uncertainty bars in signal-to-noise 

bins. These exceeded our goal of +1 dB, exclusive of the uncertainty 

in source level. 

Figure 8 shows the spectrum for signal plus noise on the left, 

and the noise alone at the right for a 300-foot shot at a high S/N 

ratio. Note that the signal plus noise shows pronounced scalloping 

with strong nulls spaced at about 25 Hz, consistent with the source 

spectrum expectation. The noise spectrum is totally different. 

Figure 9 shows similar results for a lower S/N ratio. The 

signal-plus-noise spectrum is still good. 

Figure 10 shows the results for a contaminated sample. Note 

that the signal-plus-noise spectrum does not show the null sequence, 

and is quite similar to the noise spectrum. This is a case where 

signal plus noise is dominated by a noise burst and this data point 

is therefore rejected. 
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PROCESSING PROCEDURES 

Another source of uncertainty results from processing procedures. 

This is a broad subject in itself, which we touch upon only briefly. 

Any processing system has an inherent limit on reproducibility 

which may stem from the tape-playback system, the processing equip- 

ment, or human factors. To illustrate the effect on propagation- 

loss measurements, assume a repeatability of + 0.2 dB, uncorrelated 

for both the noise energy and the signal-plus-noise energy. 

The uncertainty in propagation loss, as a function of the S/N 

ratio, is shown in Figure ll. For a signal-to-noise ratio of - 3 dB, 

the uncertainty is then + 1.0 to - 1.3 dB, about equal to the total 

accuracy goal. Also note that because of the asymmetry, a small 

fixed bias can be expected. 

The results of a repeatability experiment using five 10-second 

noise samples from a direct-record ACODAC system are shown at the 

top of Figure 12. The operator exercised considerable care in tape 

handling to ensure proper lay up of the tape and drive-speed 

stabilization. The differences are plotted for 1/3-octave bands. 

Analog filters were used. The results range from + 1.0 to - 1.2 dB, 

with zero bias and a standard deviation of 0.36 dB. The lower curve 

shows similar results without care. Fast forward and reverse were 

used to find the data segment of interest. The results are con- 

siderably worse over the entire band, and get completely out of hand 

at the higher frequencies. This particular data set typifies the 

human-factors problem when direct record is used. 

Repeatability measurements with an FFT processing system for 

the 50-Hz band yielded similar results; a bias shift of about 0.25 dB 

and a standard deviation of about 0.25 dB. However, the comparison 
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of propagation loss with good S/N ratio was surprisingly good; 

essentially no bias and a standard deviation of 0.14 dB. 

The automated systems used to process a large quantity of data 

are computer controlled but can employ either analog filtering or FFT 

processing. In the latter case, the FFT spectral levels are summed 

in the time domain to cover the total signal interval, and are 

summed in the frequency domain to construct square 1/3-octave or 

one-octave bands. A comparison of analog and FFT processing for 

noise, with everything else the same, yielded a bias of about 0.3 dB 

and a standard deviation of 0.8 dB in the 50-Hz 1/3-octave band. 

For propagation loss, again with good S/N ratio, there was essentially 

zero bias, and a standard deviation of about 0.5 dB. 

Christian (these Proceedings) has pointed out that in processing 

one set of short-range recordings, the level changed by as much as 

0.8 dB as the FFT bandwidth was changed. This observation is unex- 

plained. There are a number of difficulties when we seek high 

accuracy. Concerning FFT processing, it appears that most of our 

knowledge is derived from consideration of long-duration Gaussian 

signals. Explosive signals do not satisfy this criterion. They 

consist of a series of short transients with deterministic spectral 

characteristics. Specifically, we must know how the broadband FFT 

levels depend upon: 

e The bandwidth selected for processing 

e The digitization rate 

e The number of bits 

e Whether Hanning is or is not used 

e Whether coherent or incoherent summation in the 

time domain should be used. 
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It is illustrative to compare data processing results of dif- 

ferent facilities. Each facility used a different duplicate of the 

original recording, either direct or FM, depending upon available 

equipment. Figure 13 compares about 100 shots for Systems (1) and 

(2). System (1) is fully digitized using FFT processing. System (2) 

uses analog 1/3-octave filters followed by digital processing. The 

comparison is for the 50-Hz band only, for three different hydro- 

phones. Independent processing yielded biases from + 1.47 dB to 

+ 2.13 dB, and standard deviations from 1.28 dB to 2.06 dB. One of 

the problems identified at this time was that the two facilities 

made independent and different determinations of signal duration. 

When these were made consistent and the data reprocessed, the bias 

was reduced to between + 0.95 and + 1.85 dB, and the standard 

deviation to between 1.05 and 1.52 dB. 

To help identify the reasons for the observed differences, the 

tape recording used on System (2) was then processed with System (1). 

The additional improvement was a few tenths of a decibel, identify- 

ing the major source of the differences shown as resulting from 

differences in the processing systems. 

A comparison between System (1) and another hybrid analog- 

digital system (System (3)) is shown in Figure 14. The agreement 

is somewhat better. These results, combined with the prior compari- 

son of analog and FFT processing, with all else the same, suggest 

that the differences seen in the previous figure are not totally 

attributable to differences between analog and digital processing. 

Figure 15 compares System (1) and a totally analog shot 

processor, System (4). It employs 1/4-octave rather than 1/3-octave 

filters. A simple 10-log bandwidth ratio correction was made. 
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Summarizing the last three figures, we have propagation-loss 

uncertainties consisting of both biases and standard deviations as 

high as about 1.5 dB, which is not a particularly satisfying accuracy, 

especially since it does not include the uncertainty in source level. 

DATA COMPARABILITY 

Based on the investigations which have been conducted, it is 

clear that the source levels and processing bandwidths should be 

documented to permit data comparisons. Some indication of the 

quality assurance procedures used, or a best estimate of data accu- 

racy is useful. 

Ultimately, it appears desirable to develop standardized pro- 

cedures for checking or adjusting processing systems. Some thought 

is currently being given to this in the LRAPP community using 

recorded transients to simulate explosive signals but constructed 

so that the spectral content can be computed by closed analytic 

forms. 
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DISCUSSION 

Dr. D. V. Wyllie (Weapons Research Establishment (WRE), Adelaide, 

South Australia): We are very interested in propagation-loss measure- 

ments using explosive charges as sound sources. We are also concerned 

with the difficulty in assigning a precise source level to these charges 

at frequencies around 20 Hz. Third-octave bands are unsuitable for use 

at these frequencies since they are too narrow and the resultant source 

level too uncertain. In our measurements we shall be employing octave 

bands. However, the source level still remains a problem. 

Something we have considered is changing the pressure signature of 

the charge through the use of explosives other than TNT. There are 

groups within WRE interested in pursuing this approach. 

Since the variation in level in narrow bands at low frequencies 

results from the interference between the radiation from the pressure 

and first-bubble pulse, the use of rocket propellant as the explosive 

could mcdify the pressure signature of the charge sufficiently to reduce 

level variations at low frequencies. The pressure signature can be 

modified by varying the burn rate of the explosive. The resulting 

explosive may be more useful at low frequencies. Ms. Christian, are 

you aware of previous work along these lines and would you like to comment 

on the approach? 

Ms. E. A. Christian (Naval Surface Weapons Center): The fact is, 

yes, you certainly do have materials which have slower detonation (or 

burning) rates than typical HE materials. But the only way I have ever 

heard of for really eliminating this ungainly bubble pulse is through 

some mechanical method of breaking it up or venting it out. You can 

arrange to have a natural venting, as has been done by Woods Hole for 

many years; that is, you can fire the charge near the surface, shallow 

enough so that the bubble blows out and it isn't there to bother you. 
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However, when using very shallow charges, I think you have a serious 

source-level definition problem because you generate a directional 

pressure field that is highly sensitive to the exact firing depth. 

You no longer are really using the total charge output, so you no longer 

have the kind of source levels we are talking about. The best mechanical 

way of eliminating the bubble that I have heard about is a sort of iron 

maiden with a Swiss cheese skirt. You simply put the charge down into a 

big sphere with holes in it and this breaks up the bubble as it forms. 

As far as eliminating the bubble pulse problem by varying your 

detonation rate in an explosive composition, I think the best you can do 

is redistribute your available energies somewhat; and you still come up 

with some sort of oscillation. What you are doing is transforming a 

solid mass of material into the same volume of gas in a very short time 

however much you slow down the detonation. Willy nilly, the gas is ata 

high pressure and temperature, it is going to expand rapidly, and then 

it is going to collapse. So I really can't see how you could eliminate 

the bubble pulse. 

Dr. Wyllie: I wasn't talking about eliminating the bubble pulse, 

but rather the pressure pulse. 

Ms. Christian: Well, in any case, it seems to me you are going to 

have a double pulse wave, even if you effectively cut off the top of 

your shock wave and have a slow-rising sinusoidal first pulse. 

We have done a little work along those lines, not very much, using 

detonating black powder and an ARP propellant. We had problems of 

reproducibility with those materials. We found, for example, that 

with black powder you must have a very high containment to make the 

charge detonate reliably. And with the propellant indeed, you do cut 

off the top of the shock, but you still have the bubble. So if the 
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bubble is there oscillating, I would think you are still going to have 

an oscillatory spectrum. 

Most likely you would cut off the level of the high-frequency end of 

your spectrum as you cut off the top of your sharp shock. So you have 

lost energy at the high-frequency end. You may not have lost as much 

energy at the low-frequency end as at the high, but possibly some is 

lost there as well. As I see it through my cloudy glasses, the problem 

is that so long as you have an oscillating bubble you don't have a white- 

noise spectrum, and I don't see how you can remedy this with chemical 

composition alone. 

Dr. G. B. Morris (Scripps Institute of Oceanography): I believe 

the oil industry has had this problem of bubble pulses for several years 

and has in the past few years effected quite a number of solutions. 

One such system uses injections of high pressure steam, such that the 

steam condenses into water, eliminating the oscillating gaseous bubble. 

Other systems make use of what is known as a "Sleeve exploder." A 

propane-oxygen mixture is injected into a perforated tube covered by a 

rubber sleeve. Upon detonation the sleeve contains the gaseous products 

which after full expansion are vented to the surface to prevent the 

bubble pulse. 

Devices like these might get away from the bubble problem, although 

I suspect these devices give a lower energy output. The signal-to-noise 

ratios will be lower, and the resulting propagation measurements will be 

subjected to the signal-to-noise ratio problems discussed by Dr. Weinstein. 

What you have gained at one end by eliminating the bubble, you have lost 

at the other end by having a lower energy output source. However, it 

might be worthwhile examining the outputs of some of these sources. 
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Dr. M. Schulkin (Naval Oceanographic Office): What do you estimate 

is the high frequency cutoff for your oscillograms for those charges? 

Ms. Christian: About 100 kHz. The response is flat up to about 

100 kHz in oscilliscope readings. 

Dr. Schulkin: We found that the peak pressure that you actually 

measure very much depended on the high-frequency response of the gage. 

For many systems used at sea, the tape recorder itself cuts off that 

peak. 

Ms. Christian: Right. Actually, you can get within the typical 

reproducibility of the data points probably if your recordings are good 

up to about 20 kHz. You don't lose much in the peak pressure above that 

frequency. That is, you really can't see the very high-frequency spike 

above about 20 kHz. But if you cut off at, say, 5 kHz, you can be down 

30 percent in the peak pressure. So all of those wave functions we 

use in the Gaspin and Shuler model require this extremely broad-band 

recording to give a true wave form. 

Dr. Schulkin: I have seen records published where the peak and the 

first-bubble pulse have the same amplitude. 

Ms. Christian: Oh sure, you will get to the point where the 

bubble peak pressure is higher than the shock if your cutoff frequency 

is sufficiently low. As a matter of fact, I think at an upper limit of 

about 500 Hz the bubble and shock are equal. 

Mr. G. R. Hamilton (Office of Naval Research): What is the uniformity 

of our standard SUS from SUS to SUS if you detonate them all at the 

same depth? You talked about variations from variation in depth. 

What's the variation in source level if we fire them at precisely the 

same depth? 
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Dr. Weinstein: I have to honestly answer that we don't know. We 

don't have a set of data that would answer the question for us. We 

have been discussing means of finding out. 

Mr. C. W. Spofford (Office of Naval Research): I have a comment 

for Dr. Weinstein. I am concerned with the measurements of transmission 

loss at low signal-to-noise ratios, especially when you might have many 

low signal-to-noise arrivals adding in the shot processor versus one 

larger arrival yielding the same total signal-to-noise ratio. The 

question is whether or not the accuracies of these two measurements are 

comparable. I think there may be less accuracy in the first measurement 

than the second, even when you appear to have 3 or 4 dB of signal-to-noise. 

Dr. Weinstein: I think it goes the other way. If you have plus 

3 dB signal-to-noise based on the total integration, and if you look at 

the peak of the individual arrivals and your multi-arrival structure to 

noise, your S/N would be a lot higher. 

Mr. Spofford: I guess I'm concerned about losing arrivals down in 

the noise even though the final transmission loss appears to have adequate 

signal-to-noise. You may have lost the low amplitude arrivals in the 

noise. 

Dr. Weinstein: The problem is we have noise and multiple arrivals. 

The signal-to-noise that I am talking about is what is obtained by doing 

a total integration over the multiple arrivals. You will obtain a lot 

lower signal-to-noise ratio than you would obtain if you were to define 

it based on the peak of one of your multi-path arrivals to noise background. 

Dr. J. S. Hanna (Office of Naval Research): The question of 

signal-to-noise ratio that I believe Mr. Spofford was getting at is not 

the sort of thing that you get from looking at the peaks of those traces. 

He is interested in signal-to-noise ratio in a third-octave band around 
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some frequency. The question is what is the signal-to-noise ratio of 

each successive arrival? That's not directly inferrable from the broad- 

band pressure versue time history you showed. 

You may have a very large signal-to-noise ratio based on peak 

amplitude but at some particular frequency have a very poor signal-to- 

noise ratio for that same arrival. So the point is, you may have some 

very marginal signal-to-noise ratios in that band arrival by arrival 

and yet have a total energy that is misleading. 

Dr. Weinstein: Yes, I understand what you are saying. Why don't 

we consider the time series of the signal in a third-octave band 

already? If we were to look at a part of it, it would have a much 

higher signal-to-noise ratio than we would have for the total. Yes, 

there may be some arrival which we are not seeing which has a poor 

signal-to-noise ratio. But you have to recognize that we have time domain 

problems here. This harks back to the question of overloads in the 

system. Can you take an overloaded signal and make some estimate as 

to what the propagation loss level has to be at which you will overload? 

Well, the answer is you can't because the propagation loss depends 

upon the multistructure. The overload depends upon the individual peak. 

Dr. S. C. Daubin (Rosenstiel School of Marine and Atmospheric 

Science, University of Miami): I want to ask a question related to 

Mr. Hamilton's question of variability from shot to shot at the same 

depth. Could you tell me what the manufacturing tolerance in a SUS is 

regarding the weight of the charge? Is it 1.8 pounds plus or minus 

what? 

Dr. Weinstein: I don't remember the number precisely, but my 

recollection is it's going to be plus or minus a couple of tenths of a 

pound, something of that sort. But the problem doesn't lie in that 

tolerance. The problem lies in how the SUS is manufactured. 
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There can be as many as three pours for a single SUS with hardening 

and, therefore, layering between pours, so you have that additional 

problem. 
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ABSTRACT 

The development of ray tracing techniques is reviewed, 

and then the effects of various sound-speed representations 

on the computed value of propagation loss are discussed. 

Since modified ray theories designed to treat caustics lose 

their effectiveness at the lower acoustic frequencies, an 

alternative approach for the horizontally stratified case 

is proposed. For oceans that are nearly horizontally 

stratified, the method of horizontal rays is applicable. 

Computed predictions are compared with measured data. 
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APPLICATION OF RAY THEORY TO 

LOW FREQUENCY PROPAGATION 

INTRODUCTION 

It is often said that ray theory is not applicable to low frequency propagation 

in the ocean. The purpose of this report is to demonstrate that this is not the 

case. If the word "ray" is allowed a more general meaning than that used in the 

classical sense, then ray tracing is indeed a useful means of modeling low fre- 

quency propagation. 

Early ray tracing programs were primarily concerned with integrating the 

ray tracing equations of the next section accurately and efficiently. It is shown 

that the effect of sound-speed representations on the computed value of propa- 

gation loss is not as important as is currently believed. The most recent addi- 

tion to practical ray tracing programs is the asymptotic treatment of caustics. 

In the case of a horizontally stratified ocean, the integral representation 

may be expanded into a multipath series, each term of which corresponds to a 

particular ray type. Upon integrating, one obtains the acoustic pressure along 

the ray. It is important to note that this multipath expansion is exact. The ac- 

curacy of the final result depends on the method of solving the depth dependent 

wave equation and evaluating the ray type integrals. 

For low frequency propagation in nearly horizontally stratified oceans, the 

method of horizontal rays is recommended. Here, the pressure is expressed as 

a summation of normal modes weighted by amplitudes satisfying horizontal ray 

tracing equations. 

RAY TRACING EQUATIONS 

Several years ago, the state of the art was described in Officer's! book on 

sound transmission. Then, ray tracing involved approximating the solution of 

the reduced wave equation for the acoustic pressure P 

2 eae Vv ee) P=0 

with the Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) form 
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P =a exp (iwT) . 

The travel time T and amplitude a satisfy the eikonal equation 

(WOE ec 
and the transport equation 

Vv: a*VT = 0, 

respectively. 

The eikonal equation may be solved by using the method of characteristics 

for first-order partial differential equations. Characteristic curves, better 

known as rays, are orthogonal to surfaces of constant time. They satisfy the 

ray tracing equations 

% | 2 —~ Qo|F & | & So 
ll 

le alr 

Spot a 
Once the rays have been found, the divergence theorem applied to the trans- 

port equation produces the geometrical spreading law for the pressure amplitude, 

5 fe 50 ie 2 
— — ——_— + 

c 60, 
ag 0 

or for the equivalent plane wave intensity, 
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The subscript zero refers to a reference point (usually 1 yd away from a 

point source), and $0 is the cross-sectional area of an infinitesimal ray tube. 

The intensity satisfies the conservation of energy law along a ray tube. Itcan 

be shown that pressure, on the other hand, satisfies the law of reciprocity. 

In the case of a horizontally stratified ocean, that is, the sound speed and 

ocean boundaries are independent of both horizontal coordinates, the rays re- 

main in a vertical plane and obey Snell's law, 

iar 
— — = constant , 
e ds 

where 

7 Ss rae y2 

SOUND SPEED REPRESENTATIONS 

When ray theory was first implemented on digital computers, the primary 

concern was to integrate the ray tracing equations accurately and efficiently. 

Pedersen2 motivated the design of many ray tracing programs by demonstrating 

the fact that discontinuities in the sound speed gradient could introduce anomalies 

in the computed value of geometrical spreading loss. 

This effect is illustrated by fitting the sound speed profiles of figure 1 with 

piecewise linear, 1 piecewise quadratic, 2 and cubic spline? representations. 

Differences are more readily seen in the sound speed gradients shown in this 

figure. The corresponding ray diagrams, figure 2, show that caustics due to 

discontinuities in the gradient of the piecewise linear fit disappear when smoother 

sound speed representations are employed. Propagation losses computed ac- 

cording to classical ray theory tend to accentuate this effect, but consider what 

would happen if a ray theory generalized to treat caustics correctly were used 

instead. Figure 3 indicates that the effect of different sound speed representa- 

tions is insignificant providing that each representation accurately describes the 

input data to be fitted. 
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As far as ray diagrams and propagation losses computed according to clas- 

sical ray theory are concerned, past experience indicates that cubic splines 

produce the best representations for analytic type sound speeds. However, as 

the input data become more irregular, the curve fitting procedure becomes more 

difficult to automate.4 A second disadvantage of cubic splines is that the corre- 

sponding ray tracing equations cannot be integrated in closed form, whichis a 

process that can be accomplished with piecewise linear and quadratic fits. 

Many of the statements made above are also true when the sound speed 

varies with one or more horizontal coordinates as wellas depth. If, for example, 

the input data are fitted with triangular planes, the ray tracing equations may 

be integrated in closed form, but anomalies due to discontinuous gradients are 

possible. 

ASYMPTOTIC TREATMENT OF CAUSTICS 

In the last few years, significant advances inpractical ray tracing techniques 

involved the treatment of caustics rather than improvements in curve fitting 

algorithms. The problem may be illustrated when the sound speed decreases 

inversely as the square root of depth, as shown in figure 4. We see that the 

ray diagram, figure 5, forms a well defined caustic. 

VELOCITY (kyd/sec) GRADIENT (1/sec) 

] 2 =2 0) =la2 054 5 O74 

DEPTH (kyd) 

Le@ 

Figure 4, Sound Speed and Gradient Studied by 

Pedersen and Gordon 
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Figure 5, Ray Diagram for a 1-kyd Source Depth 

Computed by Using the Sound Speed of Figure 4 

Pedersen and Gordon® compared the classical solution (solid line) with 

Brekhovskikh's® modified ray theory (broken line) in figure 6. Classical ray 

theory predicts an infinite intensity at the caustic at 3159 yd and an infinite 

propagation loss in the shadow zone to the right of the caustic. Pedersen and 

Gordon explain that the abrupt change in loss at 3130 yd occurs at the ray that 

grazes the ocean surface. The modified ray theory did not apply to the left of 

this ray. 

The above remark points out the difficulty of applying modified ray theories 

to the simplest of caustic geometries. Additional effects due to the ocean bound- 

aries, cusped caustics, etc., prevent the theory from being applicable every- 

where. One can program as many special cases as practical considerations 

suggest, but, more often, one uses classical and modified theories outside 

their domain of validity. Since caustic corrections are usually obtained by 

including additional terms of a high frequency expansion, errors increase as 

the frequency decreases. 
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Computed More Accurately Than That for Classical or 

Modified Ray Theories 

Consider what would happen if atheory generalized to treat caustics correctly 

were used instead. The result, figure 7, indicates that there is no discontinuity 

in propagation loss at the ray that grazes the ocean surface and also that classical 

ray theory appears to be more accurate to the right of the grazing ray than to 

the left. Consequently, modified ray techniques should be exercised with caution. 

Spofford was one of the first to implement modified ray theory in a practical 

computer program. The procedure, based on the work of Ludwig, 7 assumes that 

the reduced wave equation has an asymptotic solution of the form 

2/3 Ai' os 
P = exp (iwT)}{ gAi w p) + 

iw 

subject to the orthogonality condition 

VT-Vp=0O0 , 
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where Ai is the Airy function of the first kind, and T, p, g, andh are to be 

found. Upon substituting this ansatz into the reduced wave equation and compar- 

ing similar powers of frequency, one obtains 

T= (Ee )/ 25, 

2/3 p/% = (7, -T_)/2, 

g = pi/4 (a. 4 a5)/72 . 

h = nae (a, + a_)/2 

As illustrated in figure 8, subscripts + and - refer to the two rays that touch 

and do not touch the caustic before reaching the field point, respectively. There- 

fore, all the quantities appearing in Ludwig's representation may be expressed 

in terms of the travel times T; and amplitudes a; of classical ray theory. 

Brekhovskikh's solution lacks the term involving the Airy function derivative, a 

term that is important away from the caustic. As a result, Ludwig's solution 

has a larger domain of validity. 

- CAUSTIC 
ae 

Figure 8. Classical Rays Used to Compute a 

Uniform Asymptotic Solution at a Caustic 
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LOW FREQUENCY PROPAGATION IN HORIZONTALLY 

STRATIFIED OCEANS 

Most of the figures discussed before were produced by a computer program 

designed to model acoustic propagation in a horizontally stratified ocean. For 

mediums such as this, the acoustic pressure due to a unit point harmonic source 

situated at (0, 0, zg) has the integral representation 

foe) 

P(r, Z, 2.3) = of wrtJo (AL) G (Z, Zg3A,w) dA, 

fe) 

where the Green's function G satisfies the depth dependent wave equation 

[a?va z2 + w2 { 7? (z) - 7h G(Z, Zg3A,w) = -26 (Z-Zg) 

and suitable boundary conditions. 

The method of solution used here, that is multipath expansion of the integral 

representation, is quite old, dating back nearly 40 years to Van der Pol and 

Bremmer. 8 Following Leibiger and Lee,9 the Green's function is expressed 
in terms of two linearly independent solutions F; of the homogeneous depth 

dependent equation. The solutions F; are normalized so that their Wronskian 

equals -2wi. Upon expanding the denominator of G into a geometric series, 

the double summation 

00 4 

P(r) 2, -Zg30) =) D> DY pw (fT, 2, 2,3 w) 
v=0 n=1 

is obtained. If z< Zs, one sees that 

Bee (z; Zy Zg3 w) + iwJ, (wr r) F_(Z; A,w) Fy (253d, w) 

oO 

Your (A2®) Yop (Are) ar, 

where Ygyur and Ypot are boundary reflection coefficients. Other terms of 

the series are similar, each integral representing a particular ray type. The 

first four are illustrated in figure 9. It is important to note that, so far, the 

solution is exact. The validity of the final result depends on the method of 
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RANGE 

DEPTH i 

Figure 9. The Principal Ray Types 

solving the depth dependent wave equation and evaluating the ray type integrals. 

If WKBJ and stationary phase techniques are used, respectively, the classical 

ray theoretic solution is obtained. Murphyl0 replaced the WKBJ technique with 
a Weber function representation in order to treat the two-turning-point problem. 

Brekhovskikh replaced the method of stationary phase with an Airy integral 

modification in order to investigate caustics. 

At present, our propagation model uses the following modified WKBJ ex- 

pression to solve the depth dependent wave equation: 

1/2 w 1/6 exp { + iw (2,9 Z 3X) Fin/a} 

8(2Z3d) (Bi {2/3 P (Zz; »} ae iaifu”/S p sn) , 

a 1/2 
Q (29, asnr=| Jeena ye odie, 

Z 

Fy (Z3X,wW) = * 

re) 

3 2/3 a(zsn)| “2/2 
P(Z;X) ra -{2 Q (Z, 2430) 9 and foe (Z3 d) = 32 ; 
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Z, is a suitably chosen reference point 

z, is a turning point 

Bi is the Airy function of the second kind. 

Whenever w2/ 35 is a moderate to large negative number, F, reduces to the 

usual WKBJ representation F 

Fy (23h, 0) = {o-? mee
 Ns 

exp {+ iwQ (Zos zs) : 

Since this modified representation is inaccurate in the vicinity of double turning 

points, Fy; are arbitrarily set to zero whenever they occur. Hopefully, this 

will only affect a small interval of integration and will not introduce significant 
errors in the final result. Murphy's technique offers an alternative procedure. 

The method of evaluating the ray type integrals is based on the following: 

1. Segment the interval of integration into suitably chosen subintervals. 

2. Use stationary phase to evaluate subintegrals whenever possible. 

3. Integrate the remaining cases numerically. 

It was originally though that the numerical integration, although lengthy 

when compared with stationary phase, would be invoked so infrequently that its 

contribution to the total computer running time would be inconsequential. So far, 

this has not been the case. Hopefully, the running time will be reduced eventually 

when the integration routine is made more efficient. 

Since it is customary to give computer programs names so that they may 

be distinguished from others performing similar functions, the program used 

herein is called CONGRATS V, where CONGRATS is an acronym for Continuous 

Gradient Ray Tracing System. Actually, the completed program will predict the 

performance of active and passive sonar systems and is, therefore, more than 

just a propagation program. As shown in figures 1 through 3, CONGRATS V has" 

the option to invoke several ray tracing procedures. The propagation losses were 

obtained by adding the multipath contributions coherently. CONGRATS V also 

produces a plot of propagation loss using power addition, in which case the 

phases of the individual contributors are neglected. 
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A COMPARISON OF PROPAGATION MODELS 

At present, the state of the art of propagation modeling for stratified oceans 

may be illustrated by two figures compiled by E. Jensen of NUSC. (See figures 

10a and 11a.) Both compare FFP, 1! Fact, 12 RAYMODE 9, 8 and nissm 1114 
computer predictions for 50-Hz propagation in the Pacific. The choice of pro- 

grams included in the comparison was mainly of convenience, since each is 

available at NUSC, New London, and all but FACT were designed there. 

Briefly, the Fast Field Program (FFP) utilizes Fast Fourier Transforms 

to evaluate the integral representation. The Fast Asymptotic Coherent Trans- 

mission Model (FACT) is a constant gradient ray tracing program incorporating 

sophisticated low frequency modifications. RAYMODE 9, the latest version of 

the series, uses ray theory to determine which intervals dominate the integral 

representation, but uses normal modes to compute the acoustic amplitude. The 

Navy Interim Surface Ship Model (NISSM) II is a continuous gradient ray tracing 

program designed to predict the performance of active sonar systems. All but 

FFP have the option to combine multipath contributions incoherently as well as 

coherently, and all but FFP use alternative procedures for surface duct propa- 

gation. 

As a result, the first case (figure 10a), which is dominated by surface duct 

propagation, will show the greater variability. FACT is an order of magnitude 

faster than NISSM II and RAYMODE 9, while FFP is a good deal slower. 

Upon adding CONGRATS V to the comparison (figure 10b) and invoking the 

coherent phase option, one sees good agreement with FFP. Had the incoherent 

phase option been invoked instead, CONGRATS V would have agreed with the 

others. 

The second case, figure 1la is dominated by convergence zone propagation. 

The agreement is better than before although running times continue to differ by 

orders of magnitude. 

Upon adding CONGRATS V to this comparison (figure 11b), one obtains 

reasonable agreement with FFP. It is unusual to find agreement among models 

that are based upon different theories and written by different programmers. 

Unfortunately, comparisons are not always this good. Hopefully, all discrep 

ancies will soon be eliminated or at least accounted for. 
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HORIZONTAL RAY THEORY FOR NEARLY HORIZONTALLY 

STRATIFIED OCEANS 

At long ranges or in shallow water, the effects of horizontal variations in 

the sound-speed or bottom characteristics are often large and not readily modeled 

by any of the techniques discussed previously. A nearly horizontally stratified 

ocean is one in which the horizontal variation is slow. 

This rather vague notion is quantized by introducing a small parameter e 

and assuming that the properties of the medium depend n the horizontal coor- 

dinates X,Y only through the combinations15 

X= eX, y= ey. 

This being so, let us seek solutions of the reduced wave equation in the form 
foe) 

P (x, y, 23 e)= exp { 6(x, y)/ie} De ACK Vor Zen 
v=0 

Each A,, in turn, is assumed to have the form 

te 
A, @& Ys 4) > 2, al Vx, Y) W(X Ys 2) >» 

where the Yk are orthonormal eigenfunctions of the depth dependent wave equa- 

tion 

aK 2 2 
2 +K (X, Y> Z)v_E = AL Lan 

OZ 

subject to the appropriate boundary conditions. 

Upon substituting our ansatz into the reduced wave equation and comparing 

similar powers of ie, one finds that the phase function, @, satisfies the hori- 

zontally dependent eikonal equation 

2 a0 - 2 
(—) + (**) = Mi (X,Y) > 

Ox OY, 

where Ap is one of the eigenvalues, kK? computed above. 

This equation, like the ordinary eikonal equation, may be solved by using 

ray tracing techniques. Note,however, that all depth dependence is missing. 

The pressure depends on depth only through the vertical eigenfunctions. It may 

also be shown that the leading amplitude, al”), satisfies the conservation law 
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2 

Ap (-.”) 60 = constant 

along a horizontal ray tube. 

A computer program based onthe consideration above was written to proceed 

in two stages. The first determines the eigenvalues and normalized eigenfunc- 

tions at each point of a rectangular grid in the horizontal plane. Then, during 

the second part, a set of horizontal ray tracing equations is integrated for each 

eigenvalue, and the contributions of individual modes are combined to obtain 

the total field. 

As in ordinary ray programs, only the leading term of the asymptotic ex- 

pansion of each mode is found. The expansion then reduces to that derived by 

Pierce almost 10 years ago. 16 

The program predicted propagation loss along a 1500-nmi track extending 

northward from 27° 30'N, 157° 50'W to 52° 30'N, 157° 50'W. Eleven equidistant 

velocity-depth profiles obtained from the measured data displayed in figure 12 

were entered into the computer program. Note that the SOFAR axis rises from 

a depth of 795 m at 27° 30'N to about 50 m at 52° 30'N. Lack of relevant data 

prevented the inclusion of any dependence of sound speed or bottom depth upon 

longitude. 

Figure 13 displays propagation losses from dynamite charges detonated 

500 ft below sea level along the track to a 2500-ft receiver depth situated at 

27° 30'N. The top graph represents observational data, while the middle graph 

shows computed results. The two are superimposed in the bottom graph. The 

figure displays an interesting feature. The propagation loss decreases with in- 

creasing range beyond 42°N. This decrease may be explained by the fact that 

the receiver is only 124 ft away from the SOFAR axis, where the signal is 

strongly affected by the amplitude of the few lowest modes, as shownin figure 14. 

As the source ship moved north, the source approached the SOFAR axis causing 

the amplitude of these modes (figure 15) toincrease to suchan extent that even- 

tually the loss due to horizontal spreading was overcome and the total propaga- 

tion loss decreased. 

The 10, 800-ft receiver depth of figure 16 is well below the turning points 

of the first few modes, andso the signal there is dominated by the higher modes. 

The amplitudes of these modes are not greatly affected when the source approaches 

the SOFAR axis; therefore, for this receiver, cylindrical spreading dominates 

the entire track. 
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Figure 14. Sound Speed-Depth Profile at 27° 30'N, 157° 50'W and the 

Corresponding First Four Modes for a 31-Hz Frequency 
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Figure 15. Sound Speed-Depth Profile at 50° 0'N, 157° 50'W and the 

Corresponding First Four Modes for a 31-Hz Frequency 
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SUMMARY 

Contrary to popular belief, ray theory is an accurate and efficient means 

of investigating low frequency acoustic propagation in the ocean, Of course, in 

this report ray theory has not been used in its classical sense, 

Several illustrative examples proved that it is possible to design a single 

propagation model that agrees with analytic solutions and measured data, as 

well as other computer programs. This effort is more difficult than one may 

realize, for once a computer program is tuned to the actual environmental con- 

ditions of a real ocean, it may be impossible to input data for which analytic 

solutions are known. The apparently simple task of comparing programs is in 

reality even more difficult than a comparison with analytic solutions. First, 

one must have access to the programs being compared. Second, the programs 

must treat the input data similarly. Finally, the programs must treat the out- 

put data similarly. For example, how is one to compare coherent phase propa- 

gation loss predictions with those of a random phase program ? 

Although all the computer models discussed above have been designed within 

the last few years, the theories upon which they are based are much older. 

Therefore, it is felt that improved computing facilities rather than improved 

acoustic theories have been responsible for improved prediction capabilities. 

The future of ray theory may prove quite different. Application to unstrat- 

ified media, random media, etc. is the next logical step, but these theories need 

more development before they can be implemented into practical prediction 

models. 
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NORMAL MODES IN OCEAN ACOUSTICS 

D. C. Stickler 

Applied Research Laboratory 

Pennsylvania State University 

The utility of using normal-mode theory to explain acoustic 

phenomena when dealing with underwater acoustic problems has 

been established. Pekeris used it to predict the results 

of shallow-water transmission of explosive charges. This 

report discusses applications of normal-mode expansions and 

the role of the discrete and continuous spectrum, it provides 

a physical interpretation, describes the effect of both proper 

and improper or leaky modes, describes the differences arising 

from the branch-cut choices, and considers the effect of shear 

waves on the pressure field. 

Several working computer programs based on normal-mode theory 

are compared both by a general description of their capa- 

bilities and by their specific treatment of the discrete and 

continuous spectral contributions. 

BACKGROUND 

During World War II C. L. Pekeris became the first to apply 

normal-mode theory to problems in underwater acoustics. Since that 

time this technique has been employed to explain various acoustic 

phenomena. The elementary model used by Pekeris will be used here 

to describe some of the properties of normal-mode expansions. 

To apply normal-mode theory in underwater acoustics it is nec- 

essary to assume that the acoustic parameters depend on the depth 

coordinate alone. This means, in particular, that both the longi- 

tudinal and shear speeds and the density depend only on depth and 

that the ocean-surface and ocean-bottom interface are flat and 

orthogonal to the depth coordinate. Specifically, this excludes 

sound-speed profiles that depend upon either range or azimuth 
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STICKLER: NORMAL MODES IN OCEAN ACOUSTICS 

and environments involving sloping bottoms. Perturbation techniques 

can be used to extend normal-mode theory to less restrictive environ- 

ments. 

Fortunately, in many areas this is an adequate model, and normal- 

mode theory has proved successful in explaining various acoustic 

phenomena. In those environments where this is not true, other 

methods must be employed. All these alternative methods involve 

approximations, some of which cannot be listed directly. The validity 

of some of these approximations can be tested by comparison with the 

"exact" normal-mode representation. These comparisons are certainly 

necessary, and they usually yield considerable insight into the nature 

of the approximations as well as suggest methods for improving them. 

This paper has two points of focus: (1) the physical interpreta- 

tion of the concept and techniques of normal-mode expansions, and 

(2) the description of those features of the expansion that are the 

result of the assumption that the depth coordinate is semi-infinite. 

Expanding slightly on this second point, consider the case of an 

acoustic wave guide of finite cross section with perfectly reflecting 

walls. The normal-mode expansion of the pressure field for this case 

consists of an infinite, discrete sum of normal modes. If one of 

these wave-guide walls is moved to infinity, then the normal-mode 

expansion must be modified, depending upon the behavior of the sound 

speed at infinity. Physically, this modification accounts for the 

energy that can now be propagated to infinity in this new direction. 

The principal effect on the normal-mode expansion is that, in general, 

the representation consists of a sum of trapped or proper modes plus 

an integral superposition of modes. 

This feature depends on the nature of sound speed as the depth 

coordinate approaches infinity. If the sound speed is constant 

126 



STICKLER: NORMAL MODES IN OCEAN ACOUSTICS 

as the depth coordinate becomes infinite, then the representation 

consists of a finite sum of "trapped" modes (there may be none) plus 

an integral superposition which can sometimes be approximated by a 

sum of "leaky" modes. If the sound speed approaches zero sufficiently 

rapidly as the depth coordinate approaches infinity, there are no 

trapped modes, only an integral superposition that, as above, can be 

approximated in some situations as a sum of leaky modes. Finally, 

if the square of the index of refraction approaches minus infinity 

as the depth coordinate approaches infinity, then no energy can be 

propagated to infinity, and the representation is an infinite sum 

of trapped modes. 

Note that in the first two examples acoustic energy can be 

propagated to infinity. This is reflected in the fact that the con- 

tinuous superposition of modes is present, while in the last it is 

not. 

This paper attempts to develop a more precise meaning and to 

provide a physical interpretation for these terms. The basic point 

is that the nature of the representation depends on how the sound- 

speed profile is terminated. Furthermore, it should be pointed out 

that, while in some circumstances one termination is to be preferred 

over another, in general, each can be valid and useful. 

This paper consists of two parts: a general description of 

normal-mode expansions, and a brief summary of some of the programs 

in underwater acoustics. 
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NORMAL-MODE THEORY 

Integral Representation 

A typical sound-speed profile in the ocean, shown in Figure l, 

has the following special features: it shows the presence of shear 

in the bottom, and both the shear and sound-speed profiles in the 

bottom are terminated in isovelocity, constant-density half spaces. 

Some consequences of this choice for the termination of the sound 

profile will be discussed later. 

The Hankel transform, chosen for the initial representation of 

the pressure field, is useful for two reasons: (1) This approach was 

used by Pekeris (1948), Ewing, Jardetsky and Press (1957), and 

Brekhovskikh (1960) and, hence, should be familiar to most workers 

in underwater acoustics. The alternative representation, based on 

Titchmarsch (1946) and described by Labianca in his paper on surface 

ducts (1973) is another possibility and, indeed, many of the subtle 

analytical properties are best discussed by that method; and (2) 

several points about proper or trapped modes, improper or leaky modes 

and branch cut integrals, and the physical interpretation of these 

terms, seem to fit best in the context of the Hankel transform. 

The Hankel representation for the pressure field p at an observa- 

tion point (r, z) due to a point harmonic source at (0, Zz) is given 

by 

p (r,Z,2) = P (2,2 +k) J, (kr) kdk, (1) 

=O) 

where ae is the Beroen order Bessel function of the first kind, and 

P (2,2 7k) is the transform of p (r,2,Z,) with respect to r. This 
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representation is a cylindrical superposition of waves, and the inte- 

gration variable corresponds to the radial wave number. 

The integration contour can be taken along the real k-axis if 

loss is introduced; if not, it can be taken just below the real axis. 

The transform P(z,zZ0 1k) is determined by the sound-speed and density 

profiles, pressure-release condition at the ocean surface, continuity 

conditions at discontinuities in the acoustic properties, anda 

radiation condition. The determination of this function and the 

evaluation of this integral constitute the central practical problem 

in a normal-mode expansion. In a liquid region (with no shear) 

P(z,Z_,k) satisfies 

d al dap 
0 (z) mG p@) ae 

where p(z) is the density and k(z) = w/c(z). The presence of the 

2m factor is due to the cylindrical symmetry. 

A physical interpretation of the integration contour can be 

made in terms of incidence angles as shown in Figure 2. The polar 

transformation shown makes it possible to describe the pressure 

field as an integration over real and complex incidence angles or, 

alternatively, in terms of homogeneous and nonhomogeneous "plane" 

waves. The integration over (0, kj) in wavenumber space then 

corresponds to "real" incidence angles and the integration over 

(ky, co) to nonreal incidence angles. 

The discussion of normalemode expansions is simplified by 

transforming Equation 1 so that the integration contour is infinite 

and the standing-wave component J (kr) is replaced by an outward- 

going wave component ie (Gear the Hankel function. The repre- 

sentation is given in Equation 3 and the integration contour is 

shown in Figure 3. This technique is used by Brekhovskikh (1960). 

130 



NORMAL MODES IN OCEAN ACOUSTICS STICKLER: 

UNOLNOOD NOTLVYSALNI dO NOLILVLYaddaLNI TWOISAHd 

SATONY 
»SINATIINI. 

T
u
 

u 

N
g
 

A
 

C
/
 
#
 

u
 

°Z
 

e
a
n
b
t
a
 

131 



NORMAL MODES IN OCEAN ACOUSTICS STICKLER 

S
N
O
I
L
W
O
O
T
 

L
N
I
O
d
 

H
O
N
W
Y
d
 

G
N
V
 
Y
N
O
L
N
O
D
 

N
O
T
L
V
a
S
A
L
N
I
 

ANVId 
* 

°
¢
 
o
m
z
n
b
t
a
 

“ 

1132 



STICKLER: NORMAL MODES IN OCEAN ACOUSTICS 

i (5) P(xr,Z,2) te P(z,Z 1k) Hy (kr) kdk. (3) 

Cc 
fe) 

. ; ry eae =/ 
The integral contains two factors KS = ke and Kk” = 7 that 

introduce the branch point singularities in P(z,Z > /k). Their 

presence is due to the isovelocity termination of the longitudinal 

and shear sound speeds. 

Integral Evaluation 

The evaluation of the integral in Equation 3 can be performed in 

several ways. To obtain a normal-mode expansion, however, it is 

necessary to identify the singularities of P(Z,Z +k) as a function 

of k and to close the C integration contour around these singularities. 

For the class of sound-speed profiles described in Figure 1, the 

singularities of P(z,Z0,k) are of two types, an infinity of poles 

plus two pairs of branch points. 

In these ocean models the depth coordinate extends to infinity; 

therefore, the representation of the pressure field is always a finite 

sum of proper modes (which are defined below) plus a contribution of 

the continuous modes. For the profile described in Figure 1, the 

continuous modes are represented by an integration around the branch 

cuts mentioned above. For other terminations, this contribution can 

take a different form. This point will be discussed more completely 

below, but, roughly speaking, the continuous modes represent energy 

that does not remain ducted, and they will form part of the repre- 

sentation of the field when the sound-speed profile allows energy to 

be lost to infinity in the z direction. It is not a loss mechanism 

in the sense that acoustic energy is transformed to thermal energy 

but, rather, it represents acoustic energy radiated to infinity. 
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The residue contributions from the poles give rise to two types 

of modes: proper and improper. These will be described more 

completely below, after the role of the branch points has been 

discussed. 

Physically, the outward going wave condition in the high speed 

sound layer gives rise to one pair of branch points. The other pair 

is due to the outward-going wave condition in the isovelocity shear 

layer. Each pair of branch points gives rise to a single branch-line- 

integral contribution to the field. Furthermore, the choice of the 

branch cut influences which modes or pole singularities contribute 

to the acoustic field. This point is now discussed. 

To describe the differences arising from the choice of branch 

cut, it is convenient to examine the Pekeris model and to determine 

the differences in the representations that result from the two most 

common choices for the branch lines. The statements that will be 

made about this model apply, with little change, to the more general 

profile. 

The Pekeris model, shown in Figure 4, consists of an isovelocity 

layer over a high-speed isovelocity half space. There is no shear in 

this model. The two common choices for the branch cuts are shown in 

the two lower figures. The EJP branch on the left is the branch cut 

chosen by Brekhovskikh; on the right is the branch cut chosen by 

Pekeris. First, I will discuss the representation arising from the 

EJP (Ewing, Jardetsky, Press) branch. The EJP branch is chosen such 

that on this sheet Im V ing = ee 20. The negative root occurs on 

the second sheet. This means the residue contribution from any pole 

on this sheet will eventually decay exponentially with depth and will 

represent a mode with finite energy. For this reason, these residue 

contributions are called proper modes. 
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An analysis of the integrand for this model indicates only a 

finite number of such poles and that they lie between k and k- This 

result can be anticipated physically and is not restricted to this 

elementary model. Since no loss mechanisms are present, we expect 

these proper wavenumbers to be real, to give rise to a standing wave 

field in the depth coordinate in the ocean layer, and eventually to 

decay with depth. This leads directly to the condition ke < ko <kes 
il 

Note that these poles lie in the region of real incidence angles. 

These proper roots have, in addition, the following properties 

and physical interpretations (see Figure 5): the phase velocity ce 

satisfies at < ce < Chi that is, the phase velocity in the radial 

direction is faster than that in the ocean layer and slower than that 

in the bottom. 

These modes can also be thought of as being formed by a pair of 

plane waves traveling in the plus and minus z directions at an angle 

ae with respect to the z axis. This angle fa satisfies, through the 

simple polar transformation described earlier, 

peal, 
> = Y (C) sin c,/cy, 

Recall, further, that for such an incidence angle, the plane-wave 

reflection coefficient has a modulus equal to one. That is, at 

these angles, no energy is transmitted into the bottom — all of the 

energy is trapped in the ocean layer and the fields must, therefore, 

decay with depth into the bottom. This is the origin of the term 

trapped mode. 

Finally, the modes KO near k= (Gizes, ce near c_. or oe near 1/2) 
1 ill 

correspond to the low-order modes, while those kK = kh correspond to 

the high-order modes. The turning points for each of these trapped 

modes occur at the interface between the ocean and the bottom. 
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Finally, the representation for the EJP branch is given by the 

symbolic equation at the bottom of Figure 5: a finite sum of trapped 

or proper modes plus an integral around the EJP branch plus an integral 

around a semicircular contour at infinity. This latter integral can be 

shown for this branch to be arbitrarily small for all observation and 

source coordinates. 

The representation arising from the Pekeris branch (see Figure 4) 

can be thought of as being formed by pushing the EJP branch to a 

vertical position. When this is done, some of what had been on the 

second sheet of the EJP branch is exposed. That is, in the unshaded 

region the condition Im Vik - i < O. Any residue that arises from 

a pole in this shaded region will eventually grow exponentially with 

depth and, thus, will represent a mode with infinite energy. Such a 

mode will be called an improper mode. 

An infinity of these improper poles has been found and the 

reason will be clear later. Some of the properties of these improper 

modes are shown in Figure 6. For these modes, the real part of 

ko Ke satisfies kt < kh and their phase velocity in the radial 

direction is greater than the phase velocity in the high-speed bottom. 

They are sometimes called fast waves. In addition, for the plane- 

wave incidence-angle analogy, ee < oe For such angles the reflec- 

tion coefficient |R| < 1, and a plane-wave incident at such an angle 

will have some of its energy transmitted or leaked into the bottom. 

This is the origin of the term leaky mode. 

These leaky modes not only eventually grow exponentially with 

depth and, hence, do not represent fields with finite energy, they 

also have another rather unphysical property: they decay exponen- 

tially with range. This decay suggests physically that some absorp- 

tion mechanism rather than a radiation-type mechanism is present. 
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The pressure field representation for the Pekeris branch is thus 

described by the symbolic equation at the bottom of Figure 6. For 

this choice the integration at the contour at infinity can be shown 

to be zero only if r is sufficiently large or z sufficiently shallow. 

This can present serious practical as well as theoretical problems. 

In addition, when the contribution of the integral at infinity is not 

zero, the sum of the trapped modes is divergent. When this representa- 

tion is convergent, it can be used and, furthermore, when it does 

converge, we see that 

E (leaky) + ve Pekeris = e/ EJP. 

BR BR 

The foregoing analysis is, of course, not restricted to the 

Pekeris model. The simple plane-wave interpretations are model 

dependent, but the differences in representations due to the two 

choices of branch cut are not. There are two small differences: 

@ In the Pekeris model each mode has only one turning 

point and it occurs at the ocean-bottom interface. 

In a refracting ocean this is not the case. There 

may be more than one; however, as in the Pekeris 

model none can occur in the isovelocity half-space. 

@ The critical-angle concept depends on source loca- 

tion and the sound-speed profile, and it is defined 

by the grazing ray. 

General Comments 

In the next several paragraphs I will make several comments 

for general profiles, neglecting for the moment the effects of shear. 

It is convenient to return to a point discussed in the introduction, 

namely, the dependence of the representation on the termination of 

the sound-speed profile. If 67) > 0 sufficiently rapidly, then 
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there are no proper or trapped modes; this has been pointed out by 

Labianca (1973) in his study of a surface-duct model. The result 

follows directly from a theorem by Titchmarsch (1946). In this case 

there is only a continuous superposition of modes. This integral can 

be evaluated, when the range is sufficiently large or the z sufficiently 

small, by summing the leaky modes — as has been done by Pedersen and 

Gordon (1965). 

Tee ee >+- 7° as z>, then it is clear that no energy can propa- 

gate to infinity in the z direction. For this termination, Titch- 

marsch (1946) has shown that there are only trapped modes. Such a 

termination has been used by Fitzgerald (private communication). 

For the isovelocity termination, numerical examples show that 

the branch cut integrals can, in general, be expected to be important 

to a range of one water depth and sometimes more. Physically, they 

can be expected to be important when there is a constructive inter- 

ference of the lateral wave and proper modes. This occurs for a set 

of modes near cut-off. An example will be presented later to illus- 

trate this point. 

When convergence is not a problem, one can ask, "When does a 

finite set of the leaky modes offer a good approximation to the EJP 

branch?" Numerical experience shows that this sum is not always a 

good approximation. This point will also be illustrated in a later 

example. 

It can be established that the EJP branch decays roughly alge- 

braically with range and faster than Wx; thus, it is not surprising 

that the sum of leaky modes alone, which decay exponentially with 

range, is sometimes a poor approximation to the EJP branch. Returning 

to an earlier point, this also suggests why it takes an infinity of 
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these improper modes to approximate the algebraic decay associated 

with acoustic energy radiated to infinity. 

Finally, it is interesting to bring the virtual-mode concept of 

Labianca (1973) into this framework. For the profile in Figure l, 

the virtual-mode sum is obtained by an approximate integration of the 

EJP branch integral. This approximate integration accounts for the 

proximity of the leaky poles to the integrand of the branch line 

integral. 

Effects of Shear 

This section is concluded with the description of some of the 

effects that the presence of shear introduces into the representation 

for the pressure field. These effects are summarized in Figure 7 and, 

for completeness, the two corresponding cases neglecting shear are 

also included. These are at the top of Figure 7 with the case just 

considered being on the right. The case on the top left represents 

a case in which the "bottom" speed is less than water speed. It is 

not particularly useful since, in any model of the bottom, the sound 

speed eventually becomes greater than that in the water. However, for 

this case, there are no proper modes and, hence, the representation 

consists of either a single EJP-type branch integral or a Pekeris- 

type branch plus an infinite sum of improper modes. The convergence 

of the improper-mode sum can, again, be guaranteed only when z is 

sufficiently small or r is sufficiently large. 

Continuing to the cases where shear is present, it is quite 

straightforward to show that only when ce is larger than cy Sake 

possible to have trapped modes. In the other two cases, one is 

either faced with the evaluation of the EJP branches or of the Pekeris 

branch and determination of the leaky-wave modes. The convergence of 
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the leaky-wave modes still depends on the range and depth coordinate. 

When there is refraction in the model, the situation becomes more 

complicated. A discussion of the Stonely wave will not be given 

here (see Ewing, Jardetsky, and Press, 1957). 

A hybrid representation is, of course, possible. For example, 

the diagram at the bottom center of Figure 7 might be chosen to model 

a sedimentary layer (i.e., the longitudinal sound speed higher than 

the water speed but with the shear speed slower than the water speed.) 

As remarked above, for this geometry there are no trapped modes; hence, 

one representation would consist of two EJP branch integrals. However, 

if one chose an EJP branch for the longitudinal speed and a Pekeris 

branch for the shear speed, then the representation would consist of 

an infinity of leaky shear modes plus a Pekeris-type branch and an 

EJP-type branch. Some care must be exercised in this approach be- 

cause, while it may be possible to neglect the contribution of the 

Pekeris branch, we can expect the EJP branch to yield a contribution 

comparable to the sum of leaky shear modes. 

BRIEF DESCRIPTION OF EXISTING NORMAL-MODE PROGRAMS 

In this section, several working normal-mode programs are 

described. 

The first group includes programs constructed by Cybulski, by 

Kanabis, by Blatstein and Uberall, as reported by Spofford (1973), 

and by Newman and Ingenito (1972). These programs all involve a 

numerical integration of Equation 2 beginning at the ocean-bottom 

interface and using the pressure-release condition at the ocean sur- 

face to determine the characteristic wavenumbers KO and the wave 

functions P(z,z ,1). The proper modes are summed. 
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Bartberger (1973) uses the same numerical integration scheme, 

but he determines the proper as well as improper modes. He sums the 

proper modes plus a finite number of the improper modes. 

Pedersen and Gordon (1965) consider a profile in which re 

approaches zero as 1/z and, hence, as mentioned above, is one in which 

there are no proper modes. They partition the sound speed in the 

upper portion of the sound-speed profile into layers such that the 

square of the index of refraction can be approximated by a straight 

line and the density by a constant. They determine and sum a finite 

number of improper modes. 

Kutschale (1970) partitions the sound-speed profile into layers 

such that in each layer the sound speed and density can be approxi- 

mated by a constant. He allows for shear in any layer. He determines 

and sums the proper modes and evaluates the EJP branch integrals. 

Beisner (1974) uses a "shooting" technique to determine the 

proper modes and wavenumbers, and he sums the proper modes. 

Deavenport and Beard (see Spofford, 1973) model the profile as 

an Epstein layer. The depth function can then be expressed in terms 

of hypergeometric functions. They determine and sum the proper modes. 

Leiberger uses WKB techniques to determine the proper modes. 

This work is described briefly by Spofford (1973). 

Fitzgerald (see Spofford, 1973) partitions the sound-speed 

profile in layers in the same manner as Pedersen and Gordon, but he 

terminates in a layer in which EGE) >+--°% as z>%, He sums a 

finite number of the trapped modes. 

Stickler (1975) partitions the sound speed into layers such that 

in each layer the sound speed can be approximated by a straight line 
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and the density by a constant. He sums the proper modes and evaluates 

the EJP branch integral. 

Examples 

In this section two comparisons are made; they are chosen to 

illustrate the importance of the continuous modal contribution. 

Consider the profile shown in Figure 8; it is of the type considered 

in Figure 1. It is very interesting because, at 50 Hz, there is only 

one proper mode, and it is quite near cut-off. In Figure 9, the 

transmission loss is shown at 50 Hz for a source at a depth of 20 feet 

and a receiver at 40 feet. The lower solid curve represents the 

contribution of the single proper mode. Blatstein's calculation (see 

Spofford, 1973) for this one proper mode is in good agreement. Bart- 

berger (1973) has summed not only the one proper mode but several 

of the improper modes. However, for this case, it is seen that the 

leaky modes make virtually no contribution. Bartberger's calculation 

does not include the corresponding Pekeris-type branch. The upper 

solid curve is the sum of the one proper mode plus the EJP branch as 

calculated by Stickler (1975). The results of Kutschale (1970), who 

sums the proper modes and adds the EJP branch contribution, are seen 

to be in close agreement. 

This calculation shows two interesting points: 1) The contribu- 

tion of the continuous modes can be important to many water depths, 

and 2) the sum of the leaky modes is not always a good approximation 

to the EJP branch integral. 

Figure 10 shows a plot of transmission loss for the same geometry 

except now the frequency is 100 Hz. There is still only one proper 

mode, the smooth lower curve. The upper solid curve shows the contri- 

bution of the proper plus the EJP branch contribution, and the dots 
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SOUND SPEED (ft/sec) 

4950 5000 5050 

SOURCE (20 ft) 

RECEIVER (40 ft) es 
50 

DEPTH 

(ft) 

100 

BOTTOM 

150 

200 

Figure 8. SOUND-SPEED PROFILE IN SHALLOW WATER 
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indicate the sum of the proper plus a finite number of improper modes 

(neglecting the Pekeris branch). This example shows that sometimes 

the improper modes offer an excellent approximation to the EJP branch 

integral. 
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DISCUSSION 

Dr. F. D. Tappert (New York University): Have you examined the 

question of what happens to these branch cuts when you make the para- 

bolic approximation? 

Dr. Stickler: Not directly, but I think that your restriction 

of parabolic method to low angles of incidence roughly corresponds to 

reflecting the integration around the branches. Physically that can 

be interpreted as integration over the faster phase velocities, which 

in turn correspond to the higher modes. 

Dr. Tappert: The parabolic equation does have a continuous part 

to the spectrum and I wonder where it comes from? From the Helmholtz 

equation? It's not a proper mode so it must be either a branch-cut 

contribution or a leaky mode. 

Dr. Stickler: You mean the spectrum of your parabolic operation 

has a continuous mode? 

Dr. Tappert: Yes. It may be in the integration along the 

semicircular -- 

Dr. Stickler: I'm not sure there is a one-to-one correspondence. 

I don't know. 

Dr. R. R. Goodman (Naval Research Laboratory): When doing these 

computations one should be aware that the experimentalists can put more 

than one hydrophone in the water and one can do some interesting space 

and time correlations to look at some of the realities of these various 

contributions. I think this is an important point because one can then 

begin to design an experiment to look for the types of things you are 

talking about. 

Dr. F. M. Labianca (Bell Telephone Laboratories): I tend to 

agree that there is a continuous spectrum for the parabolic equation, 

but let me clarify one thing. Are you referring to the case where there 

is no range dependence in sound speed? In other words, where separa- 

tion of variables applies? 

152 



STICKLER: NORMAL MODES IN OCEAN ACOUSTICS 

Dr. Tappert: Yes. 

Dr. Labianca: I agree there is a continuous spectrum in that 

case because the depth dependence is going to be exactly the same, 

you know, just straight separation of variables on the Helmholtz 

equation. 

Mr. A. O. Sykes (Office of Naval Research): Would you clarify 

Figure 9 for me? There seem to be two groups of normal-mode models 

which give different results. Can you comment on that? 

Dr. Stickler: Typically, it is, of course, much easier to only 

sum the modes that are involved. Carrying out the numerical integra- 

tion for the branch-cut integral is a much more expensive proposition 

and so usually the branch-cut integrals are neglected or dismissed as 

not important at long range. Many times that is the case. 

If I had used calculated or summed proper modes, then I would 

have made the prediction labelled "ARL discrete." Bartberger summed 

the proper and a finite number of the improper modes. They fell on 

the other curve. 

When I added to the discrete contribution the contribution of 

the Ewing, Jardesky, Press type branch, then the transmission is 

given by the curve, "ARL discrete plus continuous." 

Mr. Sykes: Is the point that some of the improper modes have a 

finite contribution which really should be included and so you think 

that the upper curve is the better estimate? 

Dr. Stickler: Yes, the upper curve is a better estimate. 

Figure 9 illustrates several points. First, as I mentioned earlier, a 

sum of the improper modes is not always a good approximation to the 

Ewing, Jardesky, Press type branch. And it also illustrates that the 

Ewing, Jardesky, Press type branch cannot be neglected in some 

examples. 
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On the other hand, in Figure 10, which is the same case for 

100 Hz, the proper plus a finite sum of the improper modes is an ex- 

cellent approximation to the sum of the proper plus the Ewing, 

Jardesky, Press type branch. 

Dr. Goodman: In this case you have only one proper mode. 

Isn't that right? 

Dr. Stickler: This case only has one proper mode but it has, 

of course, an infinity of improper modes. 
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SELECTED APPLICATIONS OF THE PARABOLIC-EQUATION 

METHOD IN UNDERWATER ACOUSTICS 

Frederick Tappert 

Courant Institute of Mathematical Sciences 

New York University 

A review of the parabolic-equation method in underwater 

acoustics is presented. Applications of the parabolic- 

equation method discussed here include: 

e Short-range (several hundred nm) calculations of 

transmission loss 

e Calculations of transmission loss in environments 

with variable sound-speed profiles and bathymetry 

e Calculations of fluctuating acoustic fields in a time- 

dependent fluctuating ocean using a model for a random 

internal-wave field superimposed on Munk's canonical 

profile. 

The parabolic-equation method is also used as the start- 

ing point to derive theoretical expressions for fluctu- 

ations of acoustic fields in random oceans. Using the 

mathematical analogy with Schroedinger's wave equation, 

two such techniques are described: the first applies the 

wave kinetic equation approach to underwater acoustics; 

the second applies the Pauli master equation approach to 

the same problem. 

Theoretical and numerical studies and comparisons to 

field data lead one to believe that the parabolic-—wave 

equation adequately describes acoustic waves propagating 

in real oceans for frequencies between 5 and at least 

500 Hz out to ranges of at least 10,000 nm. 

BACKGROUND 

Leontovich and Fock (1946), two Soviet scientists, were the 

first to approximate an elliptic reduced wave equation by a parabolic 
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wave equation in the mid-1940s in connection with tropospheric radio- 

wave propagation problems. Since then this method has been rather 

widely used in radio physics and ionospheric physics (Fock, 1965; 

Malyuzhinets, 1959; Barabanenkov, et al., 1971). 

My first exposure to the parabolic-equation method was in work 

on radar systems involving the simulation of propagation of UHF radar 

pulses in a random ionosphere. My former colleague, Ron Hardin, and 

I developed computer codes based on the parabolic-equation method to 

simulate radar propagation. 

When we became involved in underwater acoustics, it was natural 

for us to apply these same methods to the subject of low-frequency, 

long-range acoustic propagation in oceans. These applications turned 

out to be quite fruitful and a number of results have been presented 

prior to this workshop (Hardin and Tappert, 1973; Tappert and 

Judice, 1972; Tappert, 1974a; Hasegawa and Tappert, 1973, 1974). 

Progress has been rapid (Tappert and Hardin, 1973; Tappert, 1974b; 

Tappert and Hardin, 1974), and other workers have continued to develop 

and apply these methods (Spofford, 1974; McDaniel, 1974; Benthien, et 

ai OTA) re 

A key factor in the success of the parabolic-equation method is 

the numerical technique used to obtain the solution. The parabolic-— 

wave equation is solved directly by the finite-difference split-up 

Fourier algorithm which makes use of Fast Fourier Transforms to 

achieve accuracy, efficiency, and unconditional stability. This 

yields a full-wave (all diffraction effects included), fully coupled 

(all mode-coupling effects included) solution for the acoustic field 

at all depths and ranges. Realistic ocean environments with depth- 

and range-dependent sound speed and volume loss, and layered 
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variable-depth bottom structure are readily included in the numerical 

calculations. Most recently, a randomly fluctuating (in depth, range, 

and time) component of the sound speed has been implemented without 

difficulty (Flatte and Tappert, 1974). 

OUTLINE OF THE PARABOLIC-EQUATION METHOD 

The starting point is the reduced elliptic wave equation for the 

pressure, p, given by Equation (1) in Figure 1, where r is the 

horizontal range, z is the depth, @ the azimuth angle, ko a reference 

wavenumber, and n the index of refraction. 

Equation (2) relates KS to the reference sound speed, Car and 

the angular frequency, w, and n to the variable sound speed, c. 

The basic idea behind the parabolic-equation method is expressed 

in Equation (3). The pressure is replaced by a slowly varying 

envelope function ~ and an outgoing wave represented by the Hankel 

function of zero order, Two approximations are then made: 

(1) that one 1s in the far field of the source (Equation 4), and 

(2) that the angles with respect to horizontal are small (Equation 5). 

These lead to a parabolic wave equation for the slowly varying 

envelope function , shown in Equation (6). The equation is para- 

bolic because only the first derivative with respect to r occurs, 

whereas two derivatives with respect to z occur. 

By further neglecting the coupling between azimuthal directions 

(that is, the derivatives with respect to the azimuthal angle 6), 

the two-dimensional parabolic wave Equation (7) is obtained. This is 

the basis for all the computer models of low-frequency acoustic 

propagation utilizing the parabolic approximation. 
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ELLIPTIC WAVE EQUATION: 

13 dp ap. dy Go eto : = — — += +a + = = ae oe ) + aa2 2 502 + ke ra (Graearts))) Lo (7 z),.0) sp @) 

WwW 
k = — = const, n = c,/c(r,z,9) 
fo) c fe) 

fe) 

pa (1) 
Let D(z onw) = b(r,2,8,0)H. (kK Y) 

Approximations: alee kor De Ak (far field) 

oy De ieee << kK |v (small angles) 

2 Piggt haadd hlr ge [n2(r,z,0)<1 + ia(r,z,0)] p = 0 

Neglect coupling between azimuths: 

als 3p 
or 

1 920 : 
+ — —> + > [n?(x,z,8)-1 + ia(r,z,9)] v= 0 

2k 922 
oO 

Figure 1. PARABOLIC EQUATION METHOD 

158 

(1) 

(2) 

(3) 

(4) 

(6) 

(7) 



TAPPERT: SELECTED APPLICATIONS OF THE PARABOLIC-EQUATION METHOD IN 

UNDERWATER ACOUSTICS 

From a more fundamental point of view a more rigorous derivation 

can be obtained by noting that the basic approximation is analogous 

to factoring the elliptic equation into incoming and outgoing waves. 

Such a factorization is, in fact, possible, resulting in a pair of 

coupled parabolic wave equations, one for the outgoing wave and 

one for the backscattered wave. Note that such a formulation could, 

in principle, include a description of reverberation. All of the 

numerical work to date, however, has been based on the outgoing-wave 

parabolic equation. 

Since the parabolic equation is not valid near the source, an 

asymptotic matching technique is required. Very near the source the 

exact acoustic field is known (especially, say, for an isotropic 

point source), and this interior solution must be matched to a solu- 

tion of the parabolic equation in the far field. 

One way to do this is indicated in Figure 2. Manipulation of 

Equations (8), (9), and (10) leads to an expression (Equation (11)) 

for the complex acoustic field at zero range which, when put into the 

parabolic wave equation as an initial condition, simulates in the 

far field a point source with unit pressure at a range of 1 yard. 

Finally, boundary conditions must be specified to solve the parabolic 

wave equation. To simulate the pressure release boundary condition 

at the surface, an image source, 180 degrees out of phase with the 

true source, is introduced (as shown in Figure 2). This forces the 

pressure to be identically zero at the surface. 

The lower boundary condition is treated by extending the cal- 

culation grid beyond the floor of the ocean, as indicated in 

Figure 2. In this "mud" region well below the actual seafloor, an 

outgoing wave boundary condition is needed. Rather than directly 
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SOURCE MODELING — ASYMPTOTIC MATCHING 

2 Zee 2 
: 2a 2 peg d = | O 

Exact: |p| Po ene Sore Gk eee) ~~ me i! : (8) 

Parabolic approximation: |p|? = + {y\2 (9) 

Apu ee 
Wiese re (10) 

a )2/w? Sas do 

e.g., Wi(zZ,0) = Ave ° = —— . je le) 

Vn w i 

BOUNDARY CONDITIONS: 

IMAGE BOTTOM 

IMAGE 

SOURCE 

SURFACE:  W=0 

SOURCE 

SEAMOUNT 

BOTTOM 

Figure 2. INITIAL AND BOUNDARY CONDITIONS 
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applying such a boundary condition, its equivalent is simulated by 

preventing waves that reach so far below the floor of the ocean from 

scattering back into the ocean. This is achieved by introducing a 

strong volume attenuation which absorbs all the acoustic waves that 

reach this subbottom layer, colloquially called mud. This isa 

numerical, artificial absorption introduced solely to remove reflected 

waves. There is, of course, a corresponding image mud in the upper 

ocean. 

While substantial analyses have been performed on the validity 

of this approximation, it is still a rather open subject and there 

have not yet been developed necessary and sufficient conditions for 

its validity. 

The best way, of course, is to compare it to field data, and 

this has been done in a number of cases by myself, and Spofford (1974) 

who also compared it with ray and normal-mode results. Such com- 

parisons are not conclusive, however, nor are they a replacement for 

precise analytical estimates for the conditions under which the 

parabolic approximation is valid. 

One such analytical approach is to begin with the geometrical 

acoustics approximation to the parabolic wave equation (Figure 3). 

The exact ray Equation (12) is shown for a two-dimensional stratified 

ocean, where z is the ray depth as a function of range r, and 6 is 

the vertical angle of the ray (rather than the azimuthal angle, as 

earlier). In the parabolic approximation, the corresponding ray 

equation is given in Equation (13) and is the same except for the 

factor 1/(n cos aie However, they both have as a first integral 

Snell's invariant as expressed in Equation (14). 
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RAY TRACING: 

Exact: d*z = a A ey edn 12 
- i dar2 (n cos@)2 2 dz (12) 

Parabolic approximation: atz = 1 an? 163 
PP ‘ dar2 2 dz (13) 

Both give: neacosGs = const (14) 

Rays are same except for range scale. 

NORMAL MODES EXPANSION: 

ivk? + yu 4x 
Exact: Pp =D 4,9, (ze fo) O, (15) 

a 

# lbs so : : ant ss A 
Parabolic approximation Pp uu ata (2 fe) 2k, (16) 

Normal modes are the same. 

iG 4 
Phase error % 8 Ko yr & 27m when r#X10 nm (17) 

fe) 

Figure 3. VALIDITY OF PARABOLIC APPROXIMATION 

(22D, Stratified Ocean) 
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Therefore, the rays which can be obtained from the parabolic 

wave equation are the same as the rays which can be obtained from the 

elliptic wave equation except for a shift in the range scale. This 

constant factor (or value of Snell's invariant) can be absorbed into 

the range for any one ray, but not for all rays. The approach used 

by AESD is to effectively make this change in range scale for those 

rays which tend to dominate the acoustic field. In this way, errors 

in the parabolic approximation can actually be reduced. 

Because the parabolic equation is a wave equation, in the case 

of a stratified ocean the solution can also be expanded in terms of 

normal modes, as shown in (15) and (16) for the elliptic and parabolic 

solutions, respectively. The parabolic equation also has a continuous 

part to its spectrum, and the summation implicitly implies an integra- 

tion over the continuous part of the spectrum as well. 

Both the normal mode eigenvalues, nee and eigenfunctions, Oe 

are the same for the elliptic and parabolic equations. However, the 

phase velocities (as reflected in the exponential factors in (15) and 

(16)) are different. By expanding the square root in (15) and 

retaining only the leading term in Uae the parabolic phase velocity 

is obtained. The error, therefore, for a single mode can be estimated 

by carrying the expansion to the quadratic term, as is shown in (17). 

At 100 Hertz for a typical mode in the sound channel, a phase error 

of 27 would be accumulated at a range of 10° nm. Hence, if no change 

is made in the range scale, as mentioned earlier, a range error of 

about 5 percent accumulates for a ray near 20 degrees. 

In Figure 4, the parabolic wave equation is rewritten in terms 

of a differential operator, A, and a multiplication operator, B, 

leading to (20). Note that both n and a are variable quantities 

and A and B do not commute. 
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k 
CU pga aon fie : Lgaree 2k nee aS n°“ (x,2,0) <1 + ia(r,z,0)| pp = oO (18) 

k 
pe 1 92 Es fe) 2 .a| 

Let A = ak Dae ; B = 5 Neal alo (19) 

fe) 

abe IN Lk ol. et i iAy + iB (20) 

a eee ney oe el Adr/z qiBAr QiAAr/2 Were) (21) 

aoe a tee iAAx ees 1 | oo ik? Ar/2k | | F vce 
(22) 

FEATURES: 

as Exponential accuracy in z 

PAG Second order accuracy in r 

3. Exactly energy conserving (when @ = 0) 

4. Unconditionally stable 

Bye Computationally efficient 

6. Readily implemented. 

Figure 4. SPLIT-STEP FOURIER ALGORITHM 
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The split-step Fourier algorithm is expressed in (21) as the 

solution at a new range, r + Ar, in terms of the solution at range r 

operated on by a product of three factors. A is a differential 

operator which, when carried in an exponent, is difficult to evaluate 

by direct methods. But in Fourier space the operator A is simply a 

multiplication and therefore this operator acting on a function of 

depth can be quickly and accurately evaluated by first Fourier- 

transforming the function of depth, then doing a multiplication by a 

precomputed and stored phase function, and finally inverting the 

Fourier transform (22). 

One can prove by the Trotter product theorem of functional 

analysis that in the limit as Ar goes to zero, the iterated version 

of this does converge in norm (that is, in the space of discrete 

functions or functions defined on a discrete grid) to the solution 

of the parabolic-wave equation. 

Some of the features of this algorithm are listed in Figure 4. 

The advantages of this method (listed in Figure 5) are that, without 

any extra effort or computation, it can treat range-dependent 

velocity profiles, range- and depth-dependent volume losses, and 

variable bathymetry (that is, the depth of the ocean can be an 

arbitrary function of range). It is easy to solve numerically 

by marching in range. 

The disadvantages (also Figure 5) are that for very large 

angles with respect to horizontal, which sometimes occur with steep 

slopes, there are inaccuracies. (Recently, methods have been de- 

veloped to reduce these inaccuracies.) Discontinuities require special 

treatment (essentially smoothing), but this can be done in a way that 

is consistent with the physics and mathematics of low-frequency 
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ADVANTAGES 

1. RANGE-DEPENDENT VELOCITY PROFILES INCLUDED 

Pes RANGE- AND DEPTH-DEPENDENT LOSSES INCLUDED 

305 VARIABLE BATHYMETRY INCLUDED 

4. EASY TO SOLVE NUMERICALLY BY MARCHING IN RANGE 

DISADVANTAGES 

lis STEEP SLOPES (LARGE ANGLES) CAUSE INACCURACIES 

Ro DISCONTINUITIES OF VELOCITY, DENSITY, AND VOLUME LOSS NEED TO 

BE SMOOTHED 

3% AZIMUTHAL COUPLING NEGLECTED. 

Figure 5. ADVANTAGES AND DISADVANTAGES OF THE 

PARABOLIC-EQUATION METHOD 
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acoustic propagation. Also, the neglect of azimuthal coupling can be 

remedied at the cost of greater computer running times. 

In summary, the technique treats a wave equation in an especially 

useful way by applying effective and very rapid computational methods 

to generate its solution. The basic program is easy to write because 

the algorithm is so simple and stable. For production runs on a daily 

basis, a highly optimized version of this program is needed, such as 

that developed at AESD by using machine language programming and 

sophisticated Fast Fourier Transform techniques. The AESD version 

has achieved enormous increases in speed over earlier versions. 

APPLICATIONS 

The following examples indicate the application of the parabolic- 

equation method to several problems in underwater acoustics. These 

are displayed in terms of iso-loss contours in range and depth from 

the effective "source" which may actually be the receiver. The top 

figure of each pair is the basic field contoured in 5-dB intervals. 

The lower figure represents a range-averaged field with only the 80- 

and 90-dB contours shown as light and heavy, respectively. The shaded 

regions are either less than 80-dB loss if inside the 80-dB contour, 

or greater than 90-dB loss when bordered by the 90-dB contour. 

The first example corresponds to a simple pressure-gradient, 

or linear, profile in water 16,000 feet deep over a high-loss bottom. 

The effective "source" depth is 8,000 feet. Figure 6 illustrates the 

field contours for a frequency of 50 Hz. Point C is the location of 

a cusped caustic, the two smooth branches of which are migrating 

toward the surface and bottom with increasing range. In ray-tracing 

programs, the fields in these regions must be found by using uniform 
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asymptotic expansions involving Pearcey functions for the cusp, and 

Airy functions for the smooth caustics. In the parabolic-equation 

method, such features are treated routinely. 

Figures 7 and 8 correspond to the same geometry for frequencies 

of 100 and 200 Hertz, respectively. As the frequency increases, the 

diffraction effects are reduced and the caustics are more pronounced. 

At 200 Hertz, the second cusp, at twice the distance of the first, 

is clearly present. It must be re-emphasized that these contours 

are not rays. The ray-like patterns correspond to interference be- 

tween up- and down-going rays near the surface, and between pairs 

of rays associated with smooth caustics. 

The preceding three figures correspond to a bottom with high 

volume attenuation so that essentially no energy is returned when 

it enters the bottom. Figure 9 is for the same case as Figure 8 

(200 Hertz) but with a low-loss bottom (simulated by a strong posi- 

tive sound-speed gradient and no volume attenuation). Here the 

bottom-reflected paths are spectrally reflected and interfere with 

the RSR paths distorting the field contours even around the cusps. 

The second example corresponds to the slightly more complicated 

environment of a bilinear profile. The ray trajectories for a source 

in the thermocline segment of the profile are shown in Figure 10, 

compliments of Richard Holford of Bell Labs. Note the formation 

of smooth and cusped caustics, RR caustics which effectively surface 

reflect, and the intersections of caustics. The correct ray treat- 

ments for these cases are extremely complex. 

Figures 11 through 14 illustrate the field contours generated 

by the parabolic-equation method (again using a high-loss bottom) 

for frequencies of 50, 100, 200, and 400 Hertz. At the lower 
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TSO-LOSS CONTOURS FOR BILINEAR PROFILE, HIGH-LOSS BOTTOM, 
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frequencies, the cusped and smooth caustics near the surface are com- 

plicated by surface image interference of the diffraction field. Note 

the high degree of correspondence between the field contours at 200 

Hertz and the illuminated regions according to the ray trajectories 

of Figure 10. 

The third example is for the so-called canonical sound-speed 

profile of Walter Munk (1974). In this case (Figure 15), the source 

is on the axis and a high-loss bottom is placed at the reciprocal 

depth of the surface to eliminate RSR paths. The two focal regions 

on the axis reflect the basic asymmetry of the profile. 

The fourth example illustrates effects associated with a range- 

dependent sound-speed profile. The entire field is shown in Figures 

16 and 17 for the first and second 80-mile segments, respectively. 

The profile at the source (again on the axis) persists for the first 

60 miles, at which point the axis is rapidly moved up, resulting in 

a concentration of energy near the surface. At a range of 120 miles, 

the profile rapidly changes back to the original profile, shifting 

the surface-concentrated energy deeper and leading to a continuous 

shadow-zone near the surface. Invoking acoustic reciprocity, for a 

shallow source moving away from an axis-depth receiver, the inter- 

mittent convergence-zone behavior of the signal would change to nearly 

continuous reception from 60 to 120 miles and then essentially no 

reception beyond. This behavior is a direct result of the strong 

horizontal gradients which an adiabatic normal-mode approach could 

not treat. 

The following examples illustrate effects associated with range- 

variable bathymetry. Figure 18 displays the field contours for a 

high-reflectivity shoaling bottom where initially refracted energy 

178 



SELECTED APPLICATIONS OF THE PARABOLIC-EQUATION METHOD IN 

UNDERWATER ACOUSTICS 
TAPPERT 

@
O
U
N
O
S
 

H
L
d
a
d
-
S
I
x
X
v
V
 
W
O
L
L
O
d
 

S
S
O
I
-
 

‘
a
T
I
1
d
O
U
d
 
I
V
O
I
N
O
N
V
D
 

S
,
M
N
A
W
 

Y
O
d
 

S
A
H
N
O
L
N
O
D
 

S
S
O
T
 
H
D
I
H
 

-
O
S
I
 

“ST 
eanbTa 

179 



TAPPERT: SELECTED APPLICATIONS OF THE PARABOLIC-EQUATION METHOD IN 

UNDERWATER ACOUSTICS 
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Figure 16. 
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is converted to SRBR and RBR leading to the so-called megaphone 

effect. Figures 19 and 20 illustrate the impact of a high-loss sea- 

mount on energy from an axial source and a near-surface source, 

respectively. In the first case, the source couples well to the 

near-axial modes which suffer little attenuation in passing the sea- 

mount. Hence, beyond the seamount, the high-angle modes are stripped 

away leaving the very distinct focal regions. For the shallow source 

which does not couple well with the axial modes, the seamount strips 

nearly all of the energy away. Figure 21 is for the shallow source 

where now the bottom is highly reflecting. Paths which before were 

annihilated by the seamount now steepen to SRBR going up the sea- 

mount and convert back to RSR and RR on the downslope. 

RANDOM OCEANS 

The final example of the use of the parabolic-equation method 

addresses the random ocean problem (Garrett and Munk, 1972; Munk, 

1974). The main advantage of the parabolic-equation method is that 

it can take into account rapid range variations in the ocean environ- 

ment. We now know that there are important random components in the 

acoustic sound speed due to internal-wave fluctuations and micro- 

fluctuations in the ocean temperature structure. 

The following work was begun this summer with Stan Flatté and 

Walter Munk. This discussion is merely an introduction to the work 

which is covered in detail in subsequent papers (reproduced in these 

Proceedings). 

The technique is summarized in Figure 22. By adding a time 

dependence to the sound speed (23), it can be expressed as a mean 

function of depth and range, and a fluctuating function of depth, 

range, and time. The refractive index (24) is then a sum of a 

deterministic part and a random part. 
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ISO-LOSS CONTOURS FOR HIGH-LOSS BOTTOM WITH SHALLOW SOURCE 

Figure 20. 
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c(z,r,t) = c(z,r) + 6éc(z,r,t), (23) 

where 6c is a random function of z,r,t 
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Figure 22. RANDOM OCEAN PROCEDURE 

187 



TAPPERT: SELECTED APPLICATIONS OF THE PARABOLIC-EQUATION METHOD IN 

UNDERWATER ACOUSTICS 

Using the quasi-static approximation in which the frequencies 

of the fluctuations are small compared to both the carrier frequency 

and the transit time of the acoustic waves over a horizontal correla- 

tion length Lo the parabolic wave equation for a random ocean with 

time-dependent fluctuations varying in both range and depth is ex- 

pressed in (25). 

The solution of this equation gives the pressure as a function 

of range and depth and time (26). It is a function of three vari- 

ables, represented in the form of a complex envelope and a carrier 

wave; wW is simply the complex-demodulated envelope which would be 

measured experimentally. Hence, w is a quantity that can be compared 

directly to experimental measurements of acoustic fluctuations in 

the ocean. Typical quantities of interest are correlations of the 

pressure at different ranges, depths, and times. This approach has 

been carried out numerically, and the results of that calculation 

are presented in subsequent workshop papers dealing with both theory and 

comparisons with experimental results. 

Two additional theories are being developed in connection with 

this problem of wave propagation in random oceans. Using the 

analogy with the Schroedinger equation, following Pauli, a Pauli 

master equation can be derived using normal modes (Figure 23) 

(Agarwal, 1973). The envelope y is represented as a sum of normal 

modes (28) with random coefficients ane A density matrix (29) is 

defined as the correlation between normal-mode amplitudes, and 

coupling coefficients (30) between normal modes are used to represent 

the effects of the randomly fluctuating component of the sound speed. 

Transition probabilities (31) are developed and finally a master 

equation (32) involving only the diagonal elements of the density 
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matrix is obtained. These elements are simply the squared amplitudes 

of the normal modes. 

Everything in Equation (32) is known and can be numerically 

obtained using computers. Comparisons are then possible between 

these normal-mode results and either numerical experiments (using 

the parabolic equation) or field data. 

Another approach, outlined in Figure 24, 1s based on the wave- 

kinetic equation, basically applying transport theory to acoustic 

propagation of random oceans. The Wigner phase-space distribution 

function f defined in (33) is introduced where f is quadratic in the 

complex demodulated signal y and hence depends on depth z and range 

r as well as vertical angle 6. The ensemble average F (36) satis- 

fies the integro-differential equation (37). This equation, which 

describes the evolution of the ensemble average Wigner distribution 

function (Tappert and Besieris, 1971; Besieris and Tappert, 1973), 

is essentially the covariance of the pressure. 

Again, everything in this equation is known in terms of the 

fluctuations. It has the form of a classical radiation transport 

equation and numerical techniques may be used to solve it. The 

virtue of this approach is that it leads directly to the ensemble- 

average acoustic field (and hence mean intensities) not just at one 

point but at two points. 

Figure 25 shows a simple example of this method, applying a 

diffusion approximation. The correlation function of pressure at 

two depths is obtained (41) as an exponential, and (42) gives the 

coherence length in depth as a function of range. This is a definite 

prediction of the theory that can be compared to either numerical 

experiments (for example, using the parabolic equation) or field data. 
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Wigner distribution: 
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DISCUSSION 

Dr. J. B. Hersey (Office of Naval Research): First of all, I 

think our speaker is to be congratulated on an absolutely brilliant 

performance. I have been very excited to see some of the nagging 

problems of ocean acoustics, not necessarily finally solved but yield- 

ing some very, very intriguing and encouraging results. Congratula- 

ELONS),» Sasi 

Dr. Tappert: Thank you. 

Mr. E. D. Garabed (Naval Air Development Center): You mentioned 

that in this parabolic-equation method there was a limitation on 

angles that it can be used for. Can you give me some idea as to what 

that angular limitation is, in degrees? 

Dr. Tappert: Roughly a 5 percent error at 20 degrees is intro- 

duced in the ray periods or modal phase velocities. The significance 

of this error really depends on what you want to measure, or what you 

want to get out of the calculation. Some things are computed more 

accurately than others. 
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For example, if you only want transmission loss, it doesn't 

really matter whether you have an error in the phase. But if you 

want to do beamforming with the complex signal, then you need accurate 

phase information as well. 

There is no universal simple answer to your question. We have to 

make more computer runs, compare with more data, and do more analysis 

before we fully understand all the limits of the method. It is a 

flexible method. It is not just one simple formula that you do once 

and for all. There are ways to improve and extend and refine this 

parabolic-equation method. 

Dr. H. Weinberg (New London Laboratory, Naval Underwater Systems 

Center): If I understand correctly, you use a virtual source to take 

into account the free surface. Would it be easy to take into account 

surface loss or its equivalent? 

Dr. Tappert: One would think so, and I have struggled hard to 

find a way to do it, but with the algorithm that I described it seems 

to be difficult to relax the flat-surface boundary condition. 

Dr. Weinberg: I don't see why it is more difficult for you to 

treat the free surface than some sort of boundary condition. Is that 

because of the algorithm you chose? 

Dr. Tappert: It is because of the Fast Fourier Transforms. With 

other algorithms it would be easier to introduce surface losses and 

surface scattering. And I really do encourage others to look into 

other algorithms. There is nothing magic about this one. I am con- 

vinced that it is unusually efficient and effective and accurate, but 

again it would be worth knowing just how much better it is than other 

possible numerical algorithms. 
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Dr. S. W. Marshall (Naval Research Laboratory): I am getting 

back to times for computation again. Can you tell me whether you 

use software or hardware FFTs and what your computation time in long 

runs is? 

Dr. Tappert: Yes. I use software FFTs, but coded in FORTRAN. 

At AESD they have a Compass-coded FFT. The difference is about 

50 percent. You can in principle achieve gains of an order of magni- 

tude by using hardware FFTs. 

On a machine like the UNIVAC 1108 or IBM 370/165, without the 

fluctuations in the ocean, it takes roughly the same amount of machine 

time to compute the acoustic field as it takes the acoustic field 

to advance, which is roughly one mile per second, so if you are going 

100 miles, it takes roughly 100 seconds. 

Dr. R. M. Fitzgerald (Naval Research Laboratory): Regarding the 

approximation in small angle for the parabolic-equation method, I 

think you can show that the approximation is one in which the angles 

are restricted to a small cone but the direction of the cone is 

arbitrary. 

Dr. Tappert: That is very true. Yes. 

Dr. Fitzgerald: And in that way you can overcome the limitation 

now that you cannot treat steep rays. You do it by using separate 

cones and linearly superimposing the results. 

Dr. Tappert: The problem I had in trying to work that out is 

how you superimpose. You certainly can take a cone of angles that 

is not oriented horizontally. For example, if you want to do the 

bottom bounce experiment, you take a cone going down and then it is 
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quite accurate within that cone. But I could never see a really good 

way to connect different cones without getting an interference pattern, 

a spurious interference pattern, where they connect. But if you have 

a way to do that, it would be quite an improvement. 

Dr. Fitzgerald: I do. 

Dr. Tappert: Good. 
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The signal received by a hydrophone in the ocean many kilometers from a steady sound source fluctuates 

dramatically due to variations of the speed of sound in sea water. By inserting an empirical model of 

internal-wave-generated sound-speed variations into an acoustic-transmission computer code, we have 

shown that internal waves cause significant variations in sound transmission at 100 Hz, comparable in size 

and frequency to the variations observed in field experiments. We have also studied the usefulness of 

vertical hydrophone arrays. 
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INTRODUCTION 

Acoustic transmission in the ocean is profoundly af- 

fected by the dependence of the speed of sound on ocean- 

ic depth, range, and time. The speed of sound, in turn, 

is determined by oceanographic quantities; pressure, 

temperature, and to a lesser extent, salinity. 

In a typical 4-km-deep ocean, the sound speed c has 

a minimum as a function of depth z at about 1 km, with 

a value close to 1500 m/sec. Values of c at the surface 

and bottom are a few percent higher than at the mini- 

mum, From an oceanographic point of view the mini- 

mum is due to the competition between the drop in tem- 

perature and the rise in pressure as one descends in 

the ocean. The minimum causes sound to be refrac- 

tively contained in the volume of the ocean, resulting 

in a “sound channel, ” and making possible sound trans- 

mission over thousands of kilometers at frequencies 

below 1kHz.! (Higher frequencies are absorbed. ) 

The sound-speed profile c(z) varies with geographic 

position. For example, the sound channel minimum 

rises as one moves toward colder Northern waters. In 

addition, the depth of the ocean changes due to the to- 

pography of the bottom of the sea. Hence any acoustic 

transmission experiment over hundreds of kilometers 

or more will be subject to a range-dependent sound- 

speed profile. A great deal of work has gone into map- 

ping the expected differences in transmission due to 

differences in geographical location.” 

The strongest time variation of c(z) occurs as a re- 

sult of seasonal changes in temperature. These long- 

term time variations have also received considerable 

attention, although in principle the changes between 

winter and summer are no more difficult to deal with 

than a significant change in geographical position. 

Any experimenter who has done a long-range acoustic 

transmission experiment can attest to the fact that con- 

siderable (5-—30-dB) variations in signal are observed 

over periods ranging from a few minutes to several 

days, with several hours being typical. When surface 

interactions are absent or have been filtered out, and 
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for fixed source and receiver, these fluctuations must 

be caused by variations in the sound-speed field through 

which the sound passes, and the sound-speed variations 

must have an oceanographic origin. Yet until now al- 

most no quantitative connection has been made between 

these “rapid” acoustic variations and any realistic 

oceanographic phenomenon. Over the years, however, 

there has been much speculation and order-of-magni- 

tude correlation with internal-wave motions. * 

The ocean contains a random field of internal waves, 

with periods ranging from 3; to 24h. The intensity of 

these waves has been estimated from measurements of 

temperature and current fluctuations in the ocean, and 

the associated effect on sound speed has been calcu- 

lated.**® The root-mean-square sound-speed fluctua- 

tions due to internal waves is at a level of 10%, two 

orders of magnitude below the variation which causes 

the sound channel. ° 

In this paper we demonstrate that the internal wave- 

field in the ocean causes significant fluctuations in 

long-range acoustic signals, comparable in size and 

period to those observed in field experiments. Our 

method of calculation involves a computer code (devel- 

oped by us) which propagates CW acoustic signals 

through a sound-speed field that depends on both depth 

and range. The code calculates the random part of the 

sound-speed field from an internal-wave spectrum, 

and simulates the time variation by stepping the inter- 

nal wavefield in time, and propagating the acoustic 

signal at each time.’ We have used a frequency of 100 

Hz. 

In this paper we also demonstrate the usefulness of 

a vertical array of hydrophones in reducing intensity 

fluctuations in long-range acoustic transmission. 

Other work relating acoustic fluctuations to internal 

waves has been in progress simultaneously with ours. 

DeFarrari considered only one internal wave, the in- 

ternal tide, rather than a full spectrum.® Porter ef al. 

considered a full spectrum of internal waves, but used 

a thin-layer model for internal waves as they affect 



acoustic signals.®° Their model cannot be complete as 

it fails for rays whose turning point occurs within the 

thin layer. We consider a full spectrum (excluding 

tides) and treat the acoustic—internal-wave interaction 

within the full volume of the ocean. 

The remainder of the paper is organized as follows: 

Section I describes the sound-speed field derived from 

the internal-wave spectrum, and its computer realiza- 

tion. Section II describes the acoustic propagation 

method (which depends on the parabolic equation ap- 

proximation) and its computer realization. Section III 

presents our quantitative results. Section IVis a sum- 

mary and conclusion. The Appendix describes our 

method of vertical beamforming. 

1. OCEAN SOUND-SPEED STRUCTURE 

A. Deterministic profile 

On the scale of the depth of the ocean (4 to 5 km) the 

sound speed as a function of depth z is determined by 

the gross behavior of the density, temperature, and 

salinity. We use the profile derived by Munk!” whose 
input is an exponentially decreasing density gradient. 

The resulting “canonical” profile is 

Cop(Z)=¢y{1 +e[e7"- (1- n) |} ) 

where 7=2(z—z,)/B. Note that ccp(z) has a minimum 
at z,, that the width of the minimum is B, and the de- 

viation of the sound speed from the minimum value c, 

is of the order «. 

Figure 1 shows Cop(z) for the typical (though not uni- 

versal) values we have chosen for the parameters: z, 

=1000 m, B=1000 m, €=0.57x10%, and c,=1500 m/ 
sec. 

DEPTH — km 

1.48 1.50 52, 1.54 1.56 1.58 

SOUND SPEED — km/s 

FIG, 1. Deterministic sound-speed profile as a function of 

ocean depth (Canonical Profile). The value of c at the mini- 

mum (z4=1000 m) is c(z4)=1500 m/sec. 
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One must point out that realistic ocean profiles in 

most cases have significantly different behavior from 

this general form. For example, within a few hundred 

meters of the surface a mixed layer usually results in 

a lowered sound-speed gradient. However, we ignore 

these details in our present treatment. 

B. Internal waves 

The density gradient in the ocean leads to the pos- 

sibility of waves traversing the volume of the ocean 

just as the density discontinuity at the surface leads to 

the possibility of surface waves. The density gradient 

is usually presented in the form 

be ~\ 1/2 
N(z)= SS =) 

Po 92 7 

where N(z) is called the local stability (Brunt—Vaisala) 

frequency. 

Following Garrett and Munk, ° we assume a stratified 

ocean with 

N(z)=N, 7/2, 

where N,=3 cycles/h. 

Let w(r, f) be the vertical component of fluid velocity 

at position r and time ¢. It can be shown" that w sat- 
isfies the equation 

2 a 
oF (v?w) +N?(z)V2w = On 

The eigenmodes of this equation can be found by taking 

w= Wi, k, z) eilkyxtkgy-w (i,k) t] F 

where k=(k%4+k3)/* is the horizontal wavenumber. 
Substituting and modifying our equation to account for 

the rotation of the earth, we find 

aw N 2(z) = w* 

—- +|—-—7—| #? w= 
az? +f w= wi Usa 

where w; = inertial frequency =(2 cycles/day) sin(lati- 

tude). We will use w;=1 cycle/day. Boundary condi- 

tions are W(z)=0 at surface and bottom (assumed 

flat). 1 

A particular mode, characterized by mode number 7 

and horizontal wave number k, will have a vertical ve- 

locity profile given by W(j, k, z) and a definite frequen- 

cy w(j,k). Because every fluid element moves with the 

same frequency, the vertical displacement ¢ of a fluid 

element from its equilibrium position for a single mode 

will also be proportional to W(j, k, z). The sound-speed 

fluctuation 5c is related to the displacement ¢ by° 

bc =Cy EN*2)E < N2(z)W(j, k, 2). 

Several examples of the sound-speed profiles due to 

particular modes are shown in Fig. 2. 

The sound-speed fluctuations caused by a full internal 

wavefield may be represented as a linear superposition 

of eigenmodes, leading to 

bees oe G(j, Ry, Re) N*(z) WJ, B, 2) ettnrtane 
IrR yy Ro 
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FIG. 2. Sound-speed profiles due to internal-wave modes, 

Realistic internal-wave spectra have significant intensities for 

horizontal wavenumber less than about 0.5 cycles/km. Note 

that the major internal-wave contributions to sound-speed 

fluctuations occur at depths less than 1 km, 

where the summation sign means integration over the 

continuous variables k, and k,. We normalize W(j, k, Zz) 

so that 

[™ nteywi, k,2)dz=1, 
9 

where Z,,, is the depth of the ocean. 

The numerical difficulty in projecting this three-di- 

mensional field onto the two-dimensional vertical plane 

used in the acoustic propagation code has caused us to 

consider a simplified version of the internal wavefield 

where internal waves propagate only in (or opposite to) 

the direction that the sound waves propagate. In addi- 

tion we combine real and imaginary parts to reduce 

fluctuations in the overall energy in the internal waves 
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as a function of time: 

5Cyw = (ReA +Im4A) 

and 

Re > AG, k)N2(z)W(j, k, 2) eter~e eB 

fk 

where * is the horizontal range. 

The A(j, k) are complex Gaussian random variables. 
From a synopsis of diverse oceanographic measure- 

ments, Garrett and Munk® have proposed the following 

model: 

(A(j, k)) =0 

(A(j, R)A*( 3’, R')) = 8 y;-5pn- X B7H( J) BC, Rk), 

where 

H(j)=6/(nj)’, 

B(j, k) = (2/1) kjk? /(k? +k3), 

ky =(1/B) (wi/No) 3 « 

The spectrum is normalized so that 

Dif HG)BG, #)dk=1 and { B(G, b)dk=1. 
F | ‘= = 

From the above equations it can be shown that 

(reser 
But Garrett and Munk® have shown that 

Hence 62 =y"B/3 where y is a measure of the fractional 
sound-speed fluctuations due to internal waves. From 

Ref. 4 we have y=4.8107. 

It is useful to point out a few properties of the dis- 

persion relation and the spectrum. The frequency 

w(j, k) varies between the inertial frequency (1 cycle/ 

day) and N, (3 cycles/h). Frequency increases with in- 

creasing values of k and decreasing values of j. 

For a fixed mode number j, the function B(j, k) gives 

the relative contribution from each value of k. The 

peak of the & distribution is at k,, The function H(j) 

gives the overall contribution from each mode number 

j; the gravest mode (j=1) has the largest contribution, 

with other modes decreasing as 1/j*. The relative in- 

tensities of the various modes are shown in Fig. 3. 

Note that the magnitude of the sound speed fluctua- 

tion due to internal waves is 6c/c~107', a factor of 100 

below the magnitude of the deterministic structure. 

Also the spatial behavior of the sound-speed variations 

due to internal waves is of the order of a few hundred 

meters vertically and several kilometers horizontally. 

Figure 4 shows some typical sound-speed profiles due 

to internal waves. 

C. Final expression for sound-speed structure 

c(r, t)=Cop(z) + 5c yy 
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FIG, 3. Internal-wave spectrum as a function of mode number 

j and horizontal wavenumber k. Although large mode numbers 

contribute very little to the overall spectrum, they are crucial 

to understanding acoustic effects, since their vertical struc- 

ture allows them to act as a scatterer of acoustic energy more 

readily than the relatively structureless low modes. 

D. Numerical realization of the internal-wave model 

M. Milder’s program (ZMODE)” was modifed to 
numerically generate the eigenfunctions W(j, k, z) and 

frequencies w(j,). Modes with 1=j< 24 were in- 

cluded. Values of k ranged from — 0.5 to 0.5 cycle/km 
in 254 equal steps. The 6096 different A(j, k) were 

generated according to a Rayleigh probability distribu- 

tion in amplitude, and variance given by the spectrum 

described in Part B. The phase angle of each A(j, k) 

is randomly generated in the region 0 to 27. Using the 

above equations, our code can then generate the sound 

speed at any point in space and time. 

Il. PROPAGATION OF ACOUSTIC SIGNALS USING 

THE PARABOLIC EQUATION METHOD 

A. Introduction 

The parabolic equation method was originally devel- 

oped by Leontovich and Fok in 1946 to study long- 

range propagation of radio waves in the tropospher 

This method was introduced into the field of underwater 

acoustics by Tappert in 1972 and a computer program 

based on this method was developed by Tappert and 

Hardin to solve acoustic propagation problems of inter- 

est to the Navy. 115 

e, 38 
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B. Approximations and ranges of validity 

The wave equation for acoutic pressure p(r, t) is 

92 
Vp - A a =0. 

Our knowledge that c varies from a constant only by 

very small amounts, and that the variations are slow 

compared with the acoustic frequency allows us to use 

the following expression in cylindrical coordinates for 

the pressure (far from the source): 

eilkor-wt) 

p(7, H=¥, (7, 2, 0) ; 

where the reduced wave function ¥ is labeled by the 

time ¢t, because the 5c/c structure of the ocean is dif- 

ferent for different times. Substituting in the full equa- 

(a) 
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FIG. 4. Sound-speed profiles induced by a full spectrum of 

internal waves at a particular instant of time. Let 7 be the 

range from some arbitrary point, then (a) r=0, (b) r=14 km, 

and (c) r=28 km. 



tion, neglecting time derivatives of V and terms of or- 

der 1/(k,r)*, we find 

ey 1 ev ath aw 5c 
; 2 = 

ore +P Ie tage + 2ikey — ako We=i0 

where k,=w/c,, and we have assumed that 6c/c <1, 

The key to the parabolic equation method involves the 

following additional physical approximations, based on 

the structure of 5c/c: 

if kjL, > 1, where L, is the vertical scale of sound- 

speed variations. This condition is equivalent to re- 

taining only relatively forward scattering, which re- 

sults in small changes in VW over an acoustic wave- 

length. It is valid if the objects off which the acoustic 

waves are scattering have sizes which are much larger 

than a wavelength; and 

ey 1 av aw 
<— 

Q az?’ 

which is true because the canonical profile, which has 

100 times the sound-speed fluctuation than the internal 

waves, affects the z coordinate only. More important- 

ly, however, the internal-wave gradients in the verti- 

cal are an order of magnitude greater than the horizon- 

tal. The approximate wave equation is therefore 

3 aw Sa ae (1) 

As a result of our approximations, we have neglected 

all azimuthal correlations. Thus we cannot study azi- 

muthal fluctuations. We can study fluctuations that 

can be observed in a single vertical plane, where azi- 

muthal correlations have a small effect. 

To summarize the approximations required for this 

parabolic equation to be valid we have the following 

quantities not yet defined: w,y=largest frequency in- 

volved in the internal wave spectrum, ~3 cycles/h; 

Ly =minimum horizontal scale of sound-speed fluctua- 

tions, ~ 1 km due to internal waves; Ly=minimum ver- 

tical scale of sound-speed fluctuations, ~ 200 m due to 

internal waves. Validity of the parabolic equation re- 

quires: wW>ww; kopy>> 1; Ly>Ly; andkLy>1. All 

conditions are well satisfied in our case, where w=100 

Hz. 

C. Numerical realization 

We solve Eq. 1 by the “split-step- Fourier” algorithm 

of Tappert and Hardin. !® Given W(r, z) we find the wave 
function at a new range from the following: 

W(r 4dr, 2) = Fe idar $e? Wr, z)]}, 

where B=-k,5c/c and A =(1/2k,)8?/az?.. Thus A and B 
are operators in z space (A being the Fourier transform 

of A) and S is a fast Fourier transform operation. 1” 

This algorithm is fast and very stable since the total 

acoustic energy J| ¥|*dz is exactly conserved as a 

function of range when absorption is absent. 

The FFT was used with 512 elements over a 4-km- 
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deep ocean, and the range step has been chosen as 0.5 

km, 

D. Acoustic source and boundary conditions 

The acoustic field may be started with any function 

of depth (0, z). A point source at z=1000 m (the depth 
of the sound channel) with unit strength at one yard has 

been modeled by an asymptotic matching technique 

which prescribes the appropriate initial value, 

The ocean surface has been treated as a perfect 

pressure-release boundary so that ¥(7,0)=0. This is 

accomplished through the use of a fast sine transform?® 

for the operation 5. 

In order to model a completely absorbing ocean bot- 

tom, a gradual loss of amplitude is imposed on ¥(z) as 

Zz nears the ocean bottom. The functional form of the 

imposed loss at each step is the factor 

& — Zmax 2 L(z)=exp| — a dr exp- Gras 

with a=0.05/m and B=0. 04 Zmax. 

This form effectively stops any acoustic energy from 

penetrating below about 500 m above the bottom. Even 

this attempt at acoustic impedance matching does cause 

some reflection off the bottom at an extremely low in- 

tensity level. 

Il. RESULTS 

When an explosion is detonated deep in the ocean, a 

series of sharp reports are heard at ranges up to sev- 

eral thousand kilometers. The fact that each separate 

sound arrives without being dispersed in time implies 

that a geometrical-optics view of sound transmission 

in the ocean must have a great deal of merit. Ray 

tracing is a well-established technique for determining 

the character of oceanic sound transmisssion, 

Figure 5 shows the ray paths where the sound speed 

\ ZL 
ath U7 
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FIG. 5, Ray paths for the canonical sound-speed profile given 

in Fig. 1, with a source on the sound-channel axis, 
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is given by the canonical profile!° and the source is on 

the sound axis (z,=1000 m), It is apparent that after a 

few tens of kilometers the sound arriving at various 

points has a complicated directional character due to 

multiple paths. For example, at 60 km on the axis 

sound should arrive from three well-separated direc- 

tions. Note also that our absorbing bottom at 3.5-km 

depth prevents any surface or bottom reflected energy 

from propagating beyond about 20 km. 

It is possible that some of our results for acoustic 

signals traveling through internal waves may be under- 

stood in terms of internal-wave effects on individual 

rays. It will be well to remember, however, that be- 

yond the 20-km range a single hydrophone will in most 

cases receive more than one ray from the source. 

This multipath effect is crucial to understanding long- 

range fluctuations. 

Figure 6 shows the computed transmission loss as a 

function of time at several ranges for 100-Hz acoustic 

signals traveling through the internal wavefield. The 

point source is at a depth of 1000 m. Each row shows 

results for a particular ray which has been followed 

from the source by integrating Snell’s law (e.g:, the 

hydrophone at 100-km range for the 6° ray is at the 

depth corresponding to the 6° ray at that range). The 

1-h time steps clearly undersample the fluctuations, 

but the general character of the series is clear. We 

see that internal wave sound-speed fluctuations cause 

5-30-dB fluctuations in received intensity, comparable 

in size to those observed in field experiments. * 
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We have used a vertical beamformer (see Appendix) 

to separate the different ray arrivals at various ranges 

and depths. Figure 7 shows a time history of one 

beamformer output. A single hydrophone would co- 

herently add the many rays, each of which are seen in 

Fig. 7 to vary in direction and intensity. If the peak of 

the ray of interest is chosen at each time, then a time 

series for the intensity of that ray can be plotted. 

Figure 8 shows time series for the particular rays 

corresonding to the single hydrophone results in Fig. 

6. It is evident that the fluctuations of a single ray are 

considerably muted compared with those of a single 

hydrophone which is subjected to a coherent addition 

of all rays. 

Figure 9 shows the rms intensity variation as a func- 

tion of range for four rays. {[{(10log/)*) — (10 log1)?|!/? 
is plotted. } Both single hydrophone and ray-peak re- 

sults are plotted. The reduction in fluctuation that re- 

sults from selecting a ray peak is clear. In addition, 

the smoothness of the rms value as a function of range 

for the ray peak gives grounds for hope that a simple 

single-ray theory might be used to predict the range 

dependence of the fluctuations. 

IV. SUMMARY AND CONCLUSIONS 

We have developed a parabolic-equation acoustic 

propagation code which sends CW sound signals 

through a time-dependent random internal wavefield 

superimposed on a deterministic sound channel.’ The 

output is the complex pressure field as a function of 
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cal arrival angle determined by a 700-m 

vertical array of hydrophones (Gaussian o 

=180 m) centered on the sound-channel 

axis (depth 1 km) at a range of 250 km 
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range, depth, and time. Results at 100 Hz show that 

intensity fluctuations due to internal waves are signifi- 

cant and comparable in size (5-30 dB) to those ob- 

served in field experiments. Use of vertical beam- 

formers as detectors has given insight into internal- 

wave effects on the sound energy, and will probably 

lead to a sensitive probe of the internal-wave spectrum, 

In addition, selection of vertical arrival angle by use 
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of a beamformer significantly reduces fluctuations over 

the single-hydrophone result. 

We have presented only a small amount of data avail- 

able from our computer simulation. In the future we 

expect to present results on phase fluctuations, fre- 

quency spectra of fluctuations, sensitivity to internal- 

wave parameters, and comparison with simpler calcu- 
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FIG. 9, Intensity fluctuations as a function of range for sever- 

al rays. The solid line indicates the fluctuations from a single 

hydrophone placed at various ranges along the way. The rapid 

oscillations in the solid line are due to the rapidly changing 

multipath environment, It is interesting to note that the rms 

fluctuation from a large number of paths with random phases 

is expected to be 5.6 dB. ‘9 The dashed line indicates the fluc- 

tuations observed in the ray peak determined from a 700-m 

vertical array (Gaussian g=180 m). The result of selecting a 

single path is seen to be a reduction in fluctuations and a 

smoother dependence of these fluctuations on range. 

lations of internal-wave effects on acoustic transmis- 

sion. ® 
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APPENDIX A: VERTICAL BEAMFORMING 

The code we are using propagates sound waves from 

a point source along a vertical plane in an ocean with 

internal waves. In order to determine the directional 

character of the arriving signal at some position down- 

range from the source, we have formed a vertical ar- 

ray of receivers and combined the Signals with phase 

delays to amplify the waves coming from particular 

directions. 

Suppose ¥(z;) are the wave amplitudes at a set of N 

points at a particular range spaced equally in depth z. 

The N points span the ocean depth z,,,, so that z,., 

= Nd where d is the spacing of the grid of receivers (d 

is 15.6 m in our case), 

We define the amplitude arriving from a particular 

direction @ at a depth z as 

Zz o(0)= D¥edexp~ 3S 
2 Zz ; : 

= ) exp|[—ik,(z; -— z)sin@], 

where o is a measure of the vertical aperture of the 

Gaussian array and &, is the acoustic wavenumber. 

We have chosen o=180 m so that the angular resolu- 

tion of the array is 0.5° at 100 Hz and the expected in- 

crease in intensity for a plane wave arrival, due to the 

large number of hydrophones being summed, is 14.6 

dB. Also note that sidelobes of the receiving array are 

eliminated by the use of Gaussian shading—a practice 

that is easy to implement in our numerical experiments 

but inefficient in a field experiment. 
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We have derived expressions for the mean-square phase and intensity fluctuations and their spectra for cw 

sound propagating through a channeled fluctuating ocean. The “‘supereikonal” approximation reduces to 

the geometric optics (eikonal) limit for short acoustic wavelengths: A€27 L},/R and A<Lj,/(R tan’@), where 

L, and Ly are horizontal and vertical correlation lengths of the fluctuations, R is range, and tan@ is the 

ray slope, replacing the traditional (and much more severe) Fresnel condition A<27 L’/R for a 

homogeneous isotropic ocean. The results can be expressed in closed form for an exponentially stratified 

ocean model and associated “‘canonical sound channel,” with superimposed fluctuations from an internal 

wave model spectrum based on oceanographic observations. The parameters are the stratification scale B, 

the inertial and buoyancy frequencies wi, and n(z), the scale js of internal wave mode numbers, and the 

internal wave energy per unit area. The results are in reasonable agreement with numerical experiments 

based on the parabolic wave equation. For the “‘singlepath”’ 4-kHz transmission over Cobb Seamount the 

observed and computed rms fluctuations in phase are 1.6 and 2.5 cycles, respectively; in intensity these are 

5.5 and 2.2 dB, respectively, with anomalous intensities measured at high frequencies (“‘sporadic”’ 

multipathing?). For the multipath 406-Hz MIMI transmission, we obtain 4 10~* and 5 107? sec~', 

respectively, for the experimentally determined and the computed rms phase rates. 

Subject Classification: [43] 30.20, [43] 30.40; [43] 20.15. 

LIST OF SYMBOLS 

C(x), 6C(x) sound velocity and fluctuations 

GE): 16 Geac mean velocity profile (z upwards); C at surface z =0 (ignoring mixed layer), 
at channel axis Z=—h, at ray apex 2 

rms (6C/C))=4.9%107* fractional surface fluctuation 

n(z); No 2, 2 buoyancy (Brunt-Vdisdld) frequency 

p(x, y) -(@ sc covariance of fractional fluctuations 

V =2q?5C/C perturbation “potential” 

0, q N=20/q frequency and wave number of sound signal; wavelength 

w, k; Re =k? +k, k,=k, frequency and wave number of internal waves (H horizontal, V vertical) 

p(x, t) expli(qx - ot)] sound pressure 

XGTU log pressure, intensity, and phase 

G(x), G(k) Green’s function and Fourier transform 

ll perpendicular and parallel to ray path 

V(rx, Ty) dimensions of ray tubes: 

Jo Gis, 16.2) correlation lengths 

n=(z-Z)/zB dimensionless distance above ray axis z2(=—1 km); B(=1 km) is stratification 

scale 

€=5.7x10° perturbation coefficient [Eq. (84)] 

RAR Rak ERoe ranges of upper, lower and combined ray loops; axial ray loop 

Oy) Sm ORR OV enor arc distances of upper, lower, and combined ray loops 

6 =R* d®S*"/d(R*")? ray parameter [Eq. (86)] 

6, 6 ray inclination, axial ray inclination 

R radius of curvature of ray 
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Spreps 
Jie Ge 

ihe Eq. (90), usually j, =3 

(71) =0. 435 Eq. (95) for j, =3 

F(w,3;z), G(w), H(j) internal wave spectra 

E,(w), E,(w) 

Oea7e3xX100> secr 

w? = 09, +n? tan’@ frequency limit 

@=w/2n, n=n/2n, etc. 

3,,=24 cph, %=3 cph, 7=1.10 cph 

summation over ray path7, internal wave mode j, ray loop k 

acoustic phase and intensity spectra 

inertial frequency at 30° latitude 

cyclical frequencies (usually in cycles per hour, cph) 

A =ntané/w,, Eq. (99) 

a, y, B=ay Eq. (107) 

&(B; j,) Eq. (109) 

Bae Bs ify ify Eqs. (96), (98), (102), (104) 

INTRODUCTION 

Sound scintillations in the sea may be regarded as the 

result of weak scattering. The fluctuations in sound 

velocity are small, typically 5C/C=5%x10" in the upper 
layers, 3x10 at abyssal depths. But the range of 

propagation can be very long, and the cumulative effect 

pronounced. The fluctuations impose the ultimate limit 

to the acoustic resolution of objects, similar to the 

resolution limit of ground-based telescopes due to 

“atmospheric seeing.” 

Our purpose is to contribute toward a quantitative 

connection between two observational programs that 

have paid scant and reluctant attention to one another. 

Measurements and analysis of the fluctuating sound 

transmission have viewed the ocean as a transmission 

channel and described its properties by certain corre- 

lation functions that are not readily identified with known 

physical processes. Oceanographers have studied 

ocean variability with emphasis on the associated fluxes 

of momentum, energy, salt, etc. Starting from an 

idealized (but not absurd) model of ocean variability, our 

goal is to compute certain quantities of experimental in- 

terest, such as the mean square phase and intensity 

fluctuations of received sound pressure, and to compare 

these with measured values, 

The procedure is to derive a formalism for which 

the geometric optics limit valid for short ranges is 

transparent, and the transition to larger ranges is easi- 

ly visualized. Section I gives the solution for a homo- 

geneous ocean, with the geometric optics limit subject 

to a Fresnel condition [Eqs. (35) and (39)]. But the 
real ocean is not homogeneous, nor is it isotropic. In 

Secs, II and III the solutions are generalized to apply to 

an inhomogeneous ocean [Eqs. (57) and (62)] and to the 
special case of a vertically channeled ocean [Eqs. (66) 

and (76)], respectively. The range of validity of geo- 
metric optics is now actually extended, and in addition 

we are able to obtain rather simple analytic expres- 

sions for quantities of experimental interest both within 
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and beyond the geometric optics regime. 

We next introduce a specific gross sound velocity 

profile C(z) with perturbation 6C due to vertical strain- 

ing of the gross structure from internal wave activity: 

C(x, y, 2, t) = C(z)+6C(x, y,2, t)+- sacar 

The effect of horizontal flow associated with internal 

waves is smaller than that of vertical straining. We 

also ignore intrusive and other forms of fine structure 

which, apart from their intrinsic temporal evolution, 

are carried around by currents and internal wave mo- 

tion. 

There are two immediate questions: are internal 

waves and internal tides (in constast to turbulence, 

planetary waves, ... ) the principal source of fluctua- 

tions? Do we have an adequate statistical model of 

internal wave activity? 

To the first question the answer is yes within a fre- 

quency interval between cycles per day and cycles per 

hour. Vertical displacements by internal waves are 

typically tens of meters and swamp other sources of 

fluctuations. The oceanographically more important 

planetary waves (related to the variability in ocean cur- 

rents) are associated predominantly with horizontal dis- 

placements and are therefore of less consequence to the 

sound field; their frequency range is typically cycles 

per month to cycles per week. But in special frontal 

zones (e.g., near the Gulf Stream) the long-period 

changes in sound transmission are probably planetary 

wave related. Small-scale turbulence takes over below 

the Richardson length’ (¢€/n’)!/?=order (1 m), But for 
intermediary scales the buoyancy effects are predomi- 

nant and the fluctuations are internal wave related. 

Reliance on laboratory concepts of homogeneous iso- 

tropic turbulence, though fashionable, seem to us to be 

entirely misplaced. 

The answer to the second question is no. We shall 

apply the internal wave models by Garrett and Munk 



(henceforth GM72 and GM75) with subsequent modifica- 
tions.” The model is contrived, andnotthe result of the 

kind of the three-dimensional array measurements that 

are really needed. Information with respect to the high 

wave-number cutoff is particularly lacking. Still, there 

is sufficient evidence now to make the present exer- 

cise rewarding. And where evidence is lacking it points 

toward the inverse method of using acoustic observa- 

tions to improve the description of internal waves. 

We shall take an exponential stratification scale of 

1 km. This same ocean model underlies both the in- 

homogeneity of the sound field [e.g., the “canonical 
sound channel C(z)’’] and the anisotropy of the 5C fluc- 

tuations (the ratio of vertical to horizontal scale is 

typically 1:10). The solutions are now in simple form 

and require at most a single numerical integration; 

even this can be avoided in most applications by evaluat- 

ing the integral near the ray apex. 

Objections will be raised to the application of a model 

ocean. There are, of course, large geographic varia- 

tions of the water column (acoustic experiments invari- 

ably fall into “anomalous” regions), Our position is 

that the geographic factor in sound transmission needs 

to be (and is in fact) taken seriously; but what is even 

more needed are explicit solutions that permit compari- 

son with experiment and provide an insight into the role 

played by various ocean parameters, provided the un- 

derlying model, though idealized, has the fundamental 

properties of the world oceans. 

|. HOMOGENEOUS OCEAN 

The problem is to evaluate the pressure 

Re[p(x) exp(- iat)] (1) 

at a point x produced by a point source at the origin of 

frequency o and wave number gq (for convenience we 

take the source to have unit strength). We then write 

p = exp(iqx) (p; + ip) =| p| explid) = poe* , 
: (2) X=X,+iX; , 

where po(x) = exp(iq! x! )/47| Xl = exp(iqx)/4nx is the re- 
corded pressure amplitude in the absence of any fluc- 

tuations, but allowing for geometric spreading. Hence 

o=X, is phase, and 

t=log,|p|?=(+)+2X,, (t)=log,| po (3) 
is intensity (multiply by 10/log,10 to obtain dB; from 

now on we write log for log,). 

We assume the 6C fluctuations, and hence within the 

approximation we shall use, the X fluctuations, to be 

Gaussian, so that (X)=0, (e*)=exp(3(X*)). Some of 
the interesting observables are given by 

(ce?) = ((log| p|?)®) = (c)? + 4(X?) , (4 ) 
T=log (|p|?) =(e) +2(x2) , (5) 
log| (p)|2 =u) + (x2) = (x2) , (6) 
(2) =(x2), (be) =2(X,X), (7) 

2 

(?) = | Pol? [exp(2(X? )) + exp(2(x** )) 

+2 exp(2(X;))], (8) 

where 

‘x2 

(*1)=4|x]?)¢Re(x2)), (X,X,)=41Im(X*). (9) 

Let us begin our discussion by neglecting the effects 

of the sound channel. The problem of sound propagation 

in the presence of fluctuations superimposed on a homo- 

geneous isotropic background is easier to set up and to 

visualize than the problem involving an inhomogeneous 

background, so it is conceptually advantageous to work 

out this case first. Later, when the inhomogeneous 

background representing the soundchannel is introduced, 

the analysis Can be carried out very much as in the 

homogeneous case, and the resulting formulae, while 

geometrically more complex, are entirely analogous 

to those obtained in the simpler example. 

Our analysis will be based on the supereikonal ap- 

proximation, and it will be convenient at this point to 

give a brief review of an earlier report of this method. ° 

The sound propagation from the source to the point x 

is through an isotropic homogeneous ocean, in which 

the sound speed is C, on which is superimposed a fluc- 

tuation in sound speed 5C(x) which is, of course, very 

small compared to C. Mathematically, then, the 

pressure satisfies the wave equation 

(V7 + q?)p(x) = VR)p(X) , il 
where q=o/C for a source emitting sound of frequency 

o, and where 

V(x) =2¢ 6C(x)/C . (11) 

{For the inhomogeneous case we shall simply replace 

C by C(x), and, accordingly, g by ¢/C(x).] The bound- 

ary condition associated with Eq. (10) is that as x—0, 

p(x)—1/4rx. (12) 

Equation (10) may be cast into integral form through 

the use of the outgoing wave Green’s function 

(v2 +g?) G(x -y) =55(x-Yy); (13) 

explicitly, we have 

G(x) = expligx)/4rx . (14) 

Then we may write, in place of Eq. (10), 

p®)=6@)+) aFCR-DVGpW - (15) 

Iteration of this integral equation generates the pertur- 

bation series for p(x), which is more conveniently writ- 

ten in Fourier-transformed form as follows: 

rs ae ma ph) +6@\ Ge VEeR-k,) 
37, 3 wa ee 

: cm f an j on v(k,)G(k -k,) 

x V(k,)Gk -k, -Kk,) +--+, (16) 

where 

G(k) =(F - Gi +iey , (17) 

and, of course, where 
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p(R)=[ dRemp(-ik- DG) « (18) 

The supereikonal approximation now consists of ne- 

glecting all momentum transfer correlations in the per- 

turbation series. That is, we approximate (k- k 

—-k-+++—k,)’- qi tie by P—2k: (+ ko t-++ +h,) 
+he+ +++. +h-q tie, and neglect all terms of the 
form k, . k, when i#j. Note that the first approximation 

occurs in the second-order term in V. Once this sim- 

plification is made, the perturbation series can be 

summed exactly, and one obtains the result 

1/2 r2 a 

p(x)= ce reer (eat gs +206, %) ie) , (19) 
0 

where 

I(B, X) = jo @n)3 Eval ds exp[+i(sk + X+Bs(1—s)k?)] . 

(20) 
This expression constitutes the supereikonal approxima- 

tion to the pressure. The conditions under which it is 

valid are 

qx>1, qL>1, 

and 

x <(1/q?L) (C/6C? (21) 

(the last condition may in fact be too stringent). 

Here L is the correlation length of the sound speed 

fluctuations—i.e., the correlation function p(x — y) 

=(V(x)V(¥)) /4q* vanishes when |x -y|2L 

It is worth noting that if in Eq. (20) the Bs(1-s)¥ 

term is omitted from the exponent, we obtain 

p®=7— exp [ie +
f V(sx) as) "| 

which is the conventional WKB, or eikonal, or geomet- 

rical optics, approximation to the pressure. The pri- 

mary virtue of the supereikonal form, therefore, is 

that it contains as limiting cases both the conventional 

eikonal and the complete first-order perturbation-theory 

approximations. 

(22) 

While Eqs. (14) and (20) do constitute a closed-form 

solution for the pressure, the expressions are still a bit 

unwieldy, and further simplification is useful. To this 

end, let us evaluate the integral in Eq. (19) by station- 

ary phase, keeping in mind that x and q are both large. 

The stationary phase point is By, where 

3 a - ) = 2 . = qd - ae z+ i(Box) + Bo ap 1(B, X) ery eet) p 

From Eq. (20), we may estimate that 

- og 6C 
Bo 5g M6 ®)),, LC * Bo. 

Hence, if 

x<qL?C/6C , (23) 

the stationary phase point is accurately given by the 

solution of the simpler equation 

G - 7/4 = 

PRAUS) 

and is located at By)=x/2q. Thus we find 

hae exp(iqx) 
re exp[(ix/2q) I(x/2q, x)] . (24) 

To approximately evaluate the integral J in this expres- 

sion, we return to Eq. (19) and now expand in powers 

of the potential V in order to obtain the first-order con- 

tribution to the pressure: 

nt" frenllbe- ds) 
x [iB log/(B, x)] . 

We may evaluate this integral by stationary phase as 

well; under the condition (23) the stationary phase point 

is again at B)=x/2q, and we obtain, in analogy to (24), 

the expression 

+, expligx) [. x aa 
py(x) = ree i 24 logs (> .3)| ° 

But we also know that 

pi(x) = j oR G(x - x’) V&)GR’) . 

Thus we may eliminate I(x/2q, x) from (24) to obtain 

p(x) = G(X) explX(x)] , (25) 

where 

_+ Ser =e pet} ap x@)=5¢ ) a Gk - x’) V(x)G(x’) . (26) 

This is known as Rytov’s approximation to the pressure. 

A direct derivation of it may be made by replacing the 

wave equation (10) by an equation for log[ p(x)/G(x)] and 

solving this to first order in V.* However the justifica- 

tion for the approximation is somewhat obscure in this 

direct derivation; in the approach via the supereikonal 

technique what is being left out is more clearly visual- 

ized. 

In any event, depending on the validity of the criterion 

[Eq. (23)], one may use either the superikonal expres- 

sion [Eq. (19)] or the Rytov expression [Eqs. (25) and 

(26)] to proceed further. We shall use Eqs. (25) and 

(26). 

The Green’s function G is given by Eq. (14); hence 

we may write for the quantity X the expression 

X(X)= 4 ~~ | ay eaT explig(y + |¥-¥F| - x)] VV) 

(27) 

Let us first comment on the geometrical optics limit 

of this expression. This limit results from an evalua- 

tion of X(X) by the method of stationary phase. Provided 

that the Fresnel condition 

x< ql? 

is met, the stationary phase path in Eq. (27) is the 

straight line joining 0 to X, and the stationary phase 

value of X(x) is just 

X(x, 0, 0) = FA ax! V(x’, 0,0) , (28) 

which is immediately recognized as the correct geo- 



metrical optics expression for the phase. The analogous 

expression for the amplitude in geometrical optics is 

obtained by keeping the second-order transverse deriva- 

tives in V as well. 

Returning to the general expression [Eq. (27)], let 

us first evaluate (|X(X) 17). For convenience, we shall 
choose X to lie along the x axis, so that X=(x,0,0). We 

evidently have 

1 2 
va Vie ale 3S d3¥. = => > «| x(®) |?) GY a9, Ye WIR —F, vel —Te | 

-¥2) expliq(y, +|®-J,| — x)| x4q'p Gi 

xexp[- igy2+|¥-Fe| - x], (29) 
where we have introduced the correlation function 

- Jo) =(V(¥,) V(¥e)) « (30) 

We assume p to be independent of 

of a homogeneous background. 

4q‘p(¥, 

3(¥,+¥2) for the case 

It is convenient in Eq. (29) to shift to relative and 

center-of-mass coordinates. We define 

¥=¥i-Yo, ¥ =2(¥i 432) - (31) 

Then, if we assume that p(¥) cuts off for values of y 

2L, where L<x, we may expand in y/Y, Thus Eq. 

(29) becomes 

xp(y) exp\(igy)- [Y-(x- ¥)] , (32) 

where Yand x- ¥ stand for unit vectors in the direction 

of ¥ and x Ve respectively, and we have written 

|\Y4391=Y and |k-Y+4¥| = |X-¥1 in the geometrical 
factors multiplying the exponentials. This approxima- 

tion introduces a negligible error. 

The integral over d°Y may now be evaluated by sta- 

tionary phase. The stationary phase path is the straight 

line joining 0 to X, and the result is 

(| XC) |?) = qPx f dy, p(y, , 0) ’ (33) 

where y, refers to the component ¥ in the direction 

parallel to x, 

Introducing the Fourier transform of the correlation 

function 

pm) =| aFexp(—iK- How), (34) 

permits us to rewrite Eq. (33) in the sometimes more 

convenient form 

(|X 2) = 23 { aR plo, K,) (35) 

where “1” refers to the directions perpendicular to x. 

= i a (X®), We now h instead of X(x)|2)=4 j 3 a j at Next let us turn to . We now have, instead o 
(| x05) |?) 4n? a YY —xl? u/ Eq. (29), the expression 

ee ee ee ee | 

x 2 3 = = : ss] _ ; o 2|_ 
(X(X)*) = pant d fa Ve 1X —F,1 y1%—Jel p(¥, —F2)explig(y, + |*¥-F, | x)} exp[ig(v.+|X-¥F2| —x)] . (36) 

We again shift to the variables ¥ and ¥, and appeal to the vanishing of p(¥) for y2 L to justify expanding in y/Y and 

y/|X-¥|. We obtain 

4 

(xt) )= gh [ a°Y se 
As before, we may evaluate the integral over d°Y by stationary phase. 

(x(k pi (" as { dy, ( d*¥ip Ov) jem |E(F+ 

“) 
where, again, ” and “1” refer to directions parallel 

and eat to x. 

At this point it is convenient to express p(y,, ¥,) in 

terms of its Fourier transform, as given by Eq. (34). 

The integral over dy, d*¥, can then be carried out, and 

we finally obtain the relatively simple expression 

2y2\ _ ¢ Zr r Ps (x) )-- Gf aK, (0, ral as 

x exp[i(k?/q)(s — x) s/x] . (39) 

Equations (35) and (39) constitute our central results. 

They express the quantities of interest as integrals 

along unperturbed ray paths (in this case straight lines) 

of the Fourier transform of the correlation function 

p(k) times rather simple geometrical factors. As we 

shall see later, entirely parallel expressions obtain in 
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a expliq(¥+|2-¥| - x] | d 5y ply) exp if ( . y- F- ¥P 
1x-¥I 

=1E-G-HIY) en 
This yields 

: ) sf], (38) 
Mi eS: 

—-SSS 

the more difficult case of an inhomogeneous background 

medium. 

The expression for (| X(x)|®), Eq. (35), is precisely 
the same result for this quantity obtained by using geo- 

metrical optics to compute X(X) itself, and then calcu- 
lating (| X(x)|?) from this. [This is easily seen by re- 

ferring back to Eq. (28).] In contrast, Eq. (39) is not 

what one obtains for ( X(x)*) from geometrical optics. 
Geometrical optics for this quantity is recovered if one 

expands the exponential in Eq. (39), a procedure that 

evidently is valid only if 

KE (s— x)s 
q =x 

<<] 

Since k,~1/L and s, x-—s~x, this condition can be more 

familiarly written 



x<qL? ; 

which we recognize as the Fresnel condition under which 

the geometrical optics approximation for X(x) itself was 

valid in the first place. 

Thus Eq. (39) constitutes an improvement over geo- 

metrical optics, while Eq. (35) coincides with geometri- 

cal optics. Conversely, geometrical optics for ibe) 

is valid out to a very large range, while geometrical 

optics for (X*) is valid only within the range x< Glen 

It is of interest to study Eq. (39) in the limit of very 

long range. As x~~, the integral over ds can be ap- 

proximately evaluated, and we find* 

(X?(X) ) =[ig’p(0)/27] (y+ log4qx—im)~ilogr, (40) 

where y=0.577... is Euler’s constant, while for small 

x, satisfying the Fresnel condition, we have the geome- 

tric optics limit 

2 «12 

(x40) =— ff a? 510, (x- Bee) (41) 
4n 

Between these limits Eq. (39) provides a smooth transi- 

tion. In contrast to Eq. (40) we have from Eq. (35) the 

result 

(|X|? )~x 

for both large and small x. 

Il. INHOMOGENEOUS OCEAN 

Now let us turn to the effects of the sound channel. 

That is, we must replace the nonfluctuating sound speed 

C in the homogeneous case by a (specified) function of 

position C(x). 

The wave equation for the pressure, which is our 

starting point, now becomes altered from Eq. (10) to 

the equation 

[v2 +4°(%)] p(X) = V (RAR), 9(%) =0/ CR) , 
still with the same boundary condition Eq. (12). 

(42) 

We must first study the nonfluctuating part of the 

problem, to evaluate the Green’s function in the pres- 

ence of the sound channel. This satisfies 

[v? +4°(x)] G(X, ) = 6°(%-F). 
Note that G is no longer a function only of ¥-¥ as it 
was in the homogeneous case. We shall assume that 

geometrical optics provides a good approximation to 

the nonfluctuating sound channel problem. This means 

that we can represent G(x, ¥) as a sum of contributions 
from each ray joining x and y. To be specific, we may 

write 

(43) 

n(& 9) 

G(x, y) = 7 G; (x, y) ’ (44) 
i= 

where n(x, ¥) is the number of rays and G, is the contri- 

bution of the ith ray. We have, in particular, for rays 

joining the origin and x, 

Z 
G,(%, 0) = K, (%, odexr(i| as ql%(s))), eerie 

0 
(45) 

where ds is an element of path length along the ray, 

%,(s) is the ith ray joining 0 to X, and K, is a normaliza- 

tion factor. 

Now when the fluctuations are turned on, the signals 

traveling on each of the rays joining the origin to the 

point of observation X are subject to small-angle scat- 

terings by the perturbing potential V(x). The signals 

are thus deflected slightly from the undisturbed rays by 

each interaction with V. The repeated action of V thus 

produces, on each ray, a sort of random walk of the 

signal away from the original ray. When we average 

over an ensemble of perturbations V, the disturbed sig- 

nals will fill up a tube surrounding the undisturbed ray. 

Provided that these tubes around each of the original 

rays do not overlap, the received pressure will be a 

sum of contributions from each ray tube, (Such tubes 

exist, of course, in the homogeneous case as well, but 

there they never overlap. ) 

We may estimate the radius of a ray tube as follows. 

The mean free path d between interactions of the signal 

traveling along a given ray with the perturbing potential 

V is of the order of 6C/kC. Hence over a range x the 

number of scatterings is n=x/d. The average deflec- 

tion angle due to each scattering is of order 1/kL, ver- 

tically and 1/kL, horizontally, where Ly and L, are the 

vertical and horizontal correlation lengths of the sound 

speed fluctuations. Since the process is a random 

walk, the net dispacement due to n collisions (when n is 

large) is proportional to vn, and hence the vertical and 

horizontal extents of the tube are, roughly, 

_ (xv? oe ee a ae 

ng G) qly \6C} 7° * ay ql, \6C/ * 

Let us assume that the vertical extent of the tubes is 

small enough so that the tubes remain distinct. Then 

the pressure at x is the sum of contributions from each 

tube 

(46) 

where n(x) is the number of unperturbed rays joining the 
source to the point X. We shall be interested in p,(X). 

We note that p,(X) is the pressure that would be re- 

ceived at X if the source were not isotropic, but rather 

emitted all its energy in the direction of the 7th unper- 

turbed ray. Thus p,(x) must satisfy the wave equation 

(42) but with an anisotropic boundary condition which it- 

self depends on X. To make this more precise, let us 

define p, (¥; X) to be the pressure at ¥ from a source at 
the origin which emits only within a small solid angle, 5 

around the direction of the ith perturbed ray joining the 

origin to X. Thus p,(x)=p,(x; xX), and furthermore 
p;(¥; X) vanishes unless j¥ is inside the ith ray tube. 

Then 

[ve+q7°H)]oi Fs = VHF; *), t=1,..., 2%). (47) 
In analogy with this definition of p,(¥; Xx), we may also 

define an “unperturbed” Green’s function G,(¥; x, 0), 
i=1,...,n(x), to satisfy 
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[v3 +42] C.F %, 0)=0 if F40, 
(48) 

G(%, 0) = 2 G,(% %, 0), 
1 

again with the same boundary condition. This function, 

also, will vanish except when ¥ is near ith unperturbed 

ray. 

We may now directly derive the analog of Eq. (25) by 

computing the quantity logp,(¥; X)/G,(¥; X, 0) in pertur- 
bation theory, and using Eq. (43). We find, setting ¥ 

=k, that 

pi(®)= 6,8, 0) ex (Se. x, on a! 

x G(x, y) VIV)G, (9; *,0)) - (49) 

Finally, we note that the presence of the function 

G,(¥; X,0) in Eq. (49) will restrict the integral over d°¥ 
to a region surrounding the ith ray from 0 to x; since 

inside this ray tube G=G,, we can write 

Ee 1 pi(®) = G, (&, 0) exp (; ——_— Gey. 

i(X, Thee tube 

x GR HVGHCG, 0)) . (50) 

We have here replaced G,(x; x, 0) simply by G,(x, 0). 
Equation (50) is evidently the generalization of the Rytov 

formula (25) to the situation of an inhomogeneous back- 

ground and many rays. The expression clearly fails if 

the range is so large that the ray tubes overlap; other- 

wise the validity conditions are the same as those in the 

homogeneous background case. 

We shall now use Eq. (50) to calculate the various 

averages of interest for the contribution of a single ray 

tube to the pressure in the presence of the sound chan- 

nel. We shall, for simplicity, drop the index i, though 

we should keep in mind that when there are several un- 

perturbed ray paths their contributions are to be added 

to obtain the total pressure, Our interest, then, will 

ee eee ee ee 

( K(x, 0) 

and we must keep in mind that we are to integrate only. 

over the ray tube surrounding the unperturbed ray of in- 

terest. In the homogeneous background case we ex- 

panded the exponent in powers of y, because p(y) van- 
ished for large ly]. We may do the same here. Thus 

( x@)|*)=4¢" | °F SE DEE ON as5og, ¥) 

xexp(iq{¥-V,[s&, ¥)+S(¥, 0)]}). (56) 

The integral on d*¥ is again to be evaluated by station- 
ary phase. The stationary phase path is evidently the 

unperturbed ray joining the origin to the observation 

point X. Hence we may write 

be in the statistical fluctuations of the contributions of 

a single ray, or rather a single ray tube. 

As in the homogeneous case, we define 

wos RS eS EES XD-E__ | CICRNMHCG, 0), (51) 
and we wish to compute (.X®) and (|. X|®). We recall that 
assuming geometrical optics tobe a valid approximation 

for the nonfluctuating background permits us to write 

the Green’s function 

K(X, 9) expligs(&, 9] , (52) 
where 

ast, D=(" ds afX€(s)1, (53) 

and where the normalization factor is 

1/2 

) . (64) 
%=¥,=0 

Here 1 refers to directions perpendicular to the ray. 

[An excellent approximation to this, for our purposes, 

is to write simply K(x, y)=(471X-y|)", as in the homo- 
geneous ocean case; we need to be careful about devia- 

tions from homogeneity only in the phase.] In Eq. (53) 

the line integral is along the ray of interest joining the 

points X and y, 

- > 1 8 te) 
KR H)=g- (aet == e am, ay S(x, y) 

ty 

To repeat our earlier calculations requires us to in- 

troduce the correlation function p(¥,, ¥2). In the homo- 
geneous case, this quantity depended only on the separa- 

tion Y=y¥,;—Y2. Now, however, because of the back- 
ground inhomogeneities, it will also depend on ¥ 

=4(¥,;+Yz) (actually it will depend only on the mean depth 
3(z, + 22) because the inhomogeneities depend only on 
depth). Thus we must now define the correlation func- 

tion by 

4q* ply, Y)=(V(¥1)V(V2)) . 

As before, let us look first at (|X1°). We have 

= ae Y z = ap ete a 1> ma Tics = > 
xG)|*)=4¢' {ae (“SEO j d'¥ p(y, Y)exp{iq[S&, Y+ zy)- Sik, Y- 29) + S(¥+ 2y, 0) - S(Y-3Y, 0)]}, (55) 

ee 

(|x@)|*)= [asf a°R, 6) HRs), Fis), 7 
in complete parallel to the homogeneous case. Here 

the line integral on ds is along the unperturbed ray, 

k, (s) refers to the component of K perpendicular to the 

ray at s, Y(s) is a point on the ray at s, and 

p(k, %) =( dy exp(—- ik.) p(y, Y) . (58) 

Next we turn to (X*): 

K(&, Y) K(¥, 0) 
K(x, 0) 

xexp {ig S(X, ¥ +3) + S(X, ¥ - 29) 

(X(x)?) =4q4( a’¥ j d°¥ ply, ¥) 
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+ S(¥ +44, 0) +S(¥ —4y, 0) - 25(x, 0)]} . (59) 

Now when we expand the exponent in powers of y the lin- 

ear terms vanish, so that we have 

3 KG, K(¥, 0) (x@P)=4g"f a°¥ Get, 

x exp{2ig[ S&x, ¥) + S(¥, 0) - S(X, 0)), 

xf dF 0G, DexpltianyAyH], (60) 
where we define 

A, (¥) = S(x, ¥)+S(¥, 0)] . (61) qf ae ay|s ] 

Evaluation of the integral on a’y by stationary phase 

again selects as the stationary phase path the - unper - 

turbed ray joining 0 to xX. The integral on d*y can then 

be done by introducing the Fourier transform p(k, Y) as 

in Eq. (58). Finally we obtain 

(x@)=-G fj as a%% (6) ARIF) 
0 

x exp (i/q)ki, (s)ki,(s)A*(¥(s)),5] « (62) 

The notation is as in Eq. (57), and the result is again 

in complete analogy to the homogeneous case, 

Most of the comments we made in Sec. I concerning 

the results in the homogeneous background apply here 

as well. The expression for (|.X|*) is again just that 

obtained in the geometrical optics approximation, but 

that for (X®) is not. Geometrical optics for (X*) is 
valid provided that 

(1/q),(s)ki ,(s)A 

This is the analog of the Fresnel condition. 

(¥(s))yy «1. (63) 

Il. CHANNELED OCEAN 

Let us next apply our general results, Eqs. (57) and 

(62), to the specific case of a channeled ocean with its 

associated cylindrical symmetry. We shall choose the 

z axis as the vertical with z positive upward. We shall 

choose the unperturbed ray of interest to lie in the x, z 

plane, and we shall confine ourselves to situations in 

which the source and receiver lie at the same depth. 

Thus the source is at the point (x, y, z)=(0, 0, 0) and the 

receiver is at the point (R, 0, 0) where R is the range. 

The unperturbed ray path joining these two points will 

be denoted z(x); thus z(0)=0, z(R)=0 and 

(x) =tan™ i) 

is the angle the ray makes with the horizontal at the 

point x. The element of path length along the ray is 

then given by 

ds =([1+tan@(x)]}/? dx. 

The expressions (57) and (60) for (|X17) and (x?) 
both involve integrals of the Fourier components of the 

correlation function over a plane perpendicular to the 

ray path at each point along the ray. With our geome- 

try, the wave number K(s) perpendicular to the ray has 

825 

x, y, and z components 

K(s) =(- 

and the element of surface area perpendicular to the 

ray is 

k,tan®, k,, Re), 

ak, (s) 

Thus Eq. 

= dk, dk, /Cosé . 

(57) becomes 

R co) cd 

(ixl)=% j dx sec’@ i as, dk, 
0 Ls oe 

xp([—- k, tan(x), ky, Re], 2(x)) « (64) 

Now it turns out to be more convenient to express the 

correlation function p in terms of the variables w and j, 

the frequency and mode number of the internal waves, 

rather than the wave numbers k, and k,. The transfor- 

mation to these new coordinates is accomplished as fol- 

lows: horizontal and vertical components of wave num- 

ber 

=(Ktan?o+#)/? , 

have the approximate dispersion relations [Eq. (92)] 

V8 /n, 

Then we note the definition 

ky =k, 

ky =j7B(w? - w? ky =j7B™ n/n « 

ack == 1 3 J Gp 2)= 2 [ha dln f de Ble he 2) 

“Lf ta Ploy jz), (65) 

where F(w, j) is the eater of 6C/C, and 

we =we, tn’ tan’. 

The internal wave vector kK has an inclination ky / Ry; 

group velocity is at right angles, with inclination ky/ky, 

and its component in the plane of sound propagation is 

kh, /ky< ky / Ry. At w=wz,, ky /ky = we —wi,)'/?/n=tand; 
lesser frequencies have k,/ky<tan@, and are excluded 

from consideration in the stationary phase approxima- 

tion. 

Thus Eq. (64) may be replaced by 

R n 

(|x|?) = 2 "¢PngB { dxsec?@), nf dw 
0 J w L 

X (w? = w2)t/? Fw, jj 2) « (66) 

In this expression z, n,-and 6 are of course functions of 

x, to be evaluated at each point along the unperturbed 

ray as x varies from source to receiver. 

A similar transformation may be carried out for Gey 

the other quantity of interest. The only complication 

here is that it is necessary to evaluate the matrix A,,, 

introduced in Eq. (61), at each point along the ray. 
The symmetry associated with a channeled ocean makes 

this relatively easy to do, as follows. First, in the 

horizontal plane the unperturbed sound speed is con- 

stant. Hence the optical path between any two points 

(19121) and (xpy2Z2) can be written 

= y1)?/2(xp - ™) 

+ S'(xe2e, 121) ) (67) 

S(x2V2223 X19121) = x2 — 
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provided that x,- x, >v2—-1, Z2-2,. Therefore the 

matrix A,; has the form 

! 

Ay. 0 Ay, 

Ay=| 0 R/x(R-x) 0 ; (68) 

Ae 0 A xz ae 

at an intermediate point x along the ray joining source 

to receiver, where the 2x2 matrix Aj, now is defined in 

the vertical xz plane only. 

The matrix Aj, has the form 

tan’?@ —tané sae ae), tandé 1 

it has one zero eigenvalue, associated with an eigen- 

vector parallel to the ray, and one nonzero eigenvalue 

A! with eigenvector k, =(-k,tan@, k,) perpendicular to 

vn ray. The quantity hykiy(A'*),, is just R/Aj. Since 

=(1+tan’@)Aj,, we have B/A/=#/A,,=K/A,, 
= a k, bre Thus computing any matrix element of AVG 

is sufficient to allow us to obtain the quantity we need. 

At this point we shall drop the primes. 

There are a few regimes where Aj) may be obtained 

without specific assumptions regarding the form of the 

sound channel. 

First, for very deep rays, the sound channel varies 

nearly linearly with depth, and the rays are nearly arcs 

of circles. For this case, to first order in the radius 

of curvature, the quantity A,, has the same value as in 

a homogeneous ocean: 

Aji=x(R-x)/R. 

Second, for near axis rays, the sound channel is 

nearly a parabolic function of depth, so that the rays 

are nearly sinusoidal. Then we find 

Aj = (1/K) sinKx sinK(R — x)/sinKR , 

where 27/K is the wavelength of the sinusoidal ray. 

Thus 7/K~R, the range of an axis loop. Note that this 

approximation to Aj} becomes infinite when the receiver 
is located at axis crossings of the ray. These points 

are caustics for sinusoidal rays. Caustics are, in gen- 

eral, points at which Aj} diverges, that is, where A,, 

=0. When this occurs, the matrix A,, takes the simple 

form 

0 0 0 

Ay=| 0 R/x(R-x) 0 5 

0 0 0 

so that the passage from Eq. (60) to Eq. (62) becomes 

altered, because the second-order term in the trans- 

eee See ee eee 

verse derivative of the optical path no longer dominates. 

To calculate (X*) correctly in this region, we would 
have to keep anaes derivatives of S(&, Y) +S(Y, 0) 

[cf. Eqs. (59)—(61)]. As we shall see in Sec. VIII, the 
effect of caustics on our theoretical predictions is to 

introduce false narrow spikes in (X*) at the caustic 

positions, Presumably, there is in fact some unusual 

structure at these points due to the different behavior 

of the integral in Eq. (59), but our theory, to the level 

to which we have carried it, cannot correctly describe 

this structure, 

A third regime in which we can obtain Aj! without 

knowledge of the details of the sound channel is that of 

very long ranges, in which the rays contain a large num- 

ber of loops. In this case, the optical path length S, in 

the vertical plane from the origin to a point (x, z), plus 

the optical path length S, from (x, z) to the receiver at 

(R, 0), can be written 

S=S,((x, z), (0, 0)) + S.((R, 0), (x, 2)) 

See peel Poa ee z), (69) 

where m;,. are the number of double loops in the first 

(second) path, Sf”, is the optical path length. of one 

double loop, Rj, is the range of one double loop, and 

AS, 2(x, z) is the remaining path length from the end of 

the last double loop to the point (x, z). Evidently 

x=mRy+4x,, R-—x=n,Rz +Ax , 

with 4x, ,.<«<x, R-xand 4S, ,<Sj',. Thus we may ap- 

proximately write 

S=n Sf (x/m) +ngSz(R— x/nz) . (70) 

Therefore 

as 

BE: 
Since n,+n.=R/R*, and since n, =x/R*; n.=(R—-x)/R*, 
we have 

«x = [R/x(R—- x)]65 , 

EL Nida S naa) 
are unperturbed ray ‘ Ne 

6=R*d’s*/d(R*) , (72) 

and therefore 

Az, = (tan?6/5) x(R—x)/R. 

Other than in these cases, Aj} depends on the sound 

channel, and we shall defer further discussion of it to 

Sec. IV. 

Let us now return to Eq. (62). Once we have obtained 

Ags we can write the exponent in the integrand of Eq. 

ae 

7 Ru (s)Ruy (SA 1% (ds =2 (e HB) (73) 
R A 

Hence, using the dispersion relations for horizontal and 

vertical components of wave numbers, we find 

R 2 2 2 

(x) =2g4aIngB | dxsecté 51" du (w* = wt)? ? Flu, j; ayexr| | (2) é e x) w oa 3 )| : (74) 
0 ty wr No No gg 

Geometrical optics is valid when the exponent in this 

equation is much less than one; this is the analogue 

of the Fresnel condition in the channeled ocean. 

ee 

Except when the receiver is in the vicinity of a caus- 

tic, it is in general the case that the ke term in the ex- 

ponent, which is associated with horizontal spreading, 
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is much smaller than the term with Aj. This is be- 
cause, as we shall see below, the spectrum F(w, j; z) 

tends to weigh small values of w much more heavily. 

Thus for most purposes we can ignore this term, and 

replace Eq. (74) by the much simpler expression 

R 

(X®) =— 2q?n ngB { dxsec’6 me - exp (ipj*) 
0 uy 

x dw 

ar 

F(w, Jj; 2) 
(w*- wy) /*’ 9) 

where 

B=(1/B)* (n/n) 1/gA,, (76) 

Using the special expressions for A,, derived above ap- 

plicable to specific regimes; we can write, for single 

loop downward rays, 

pera SY ge 
for near axis rays 

Aa TY (/n¥ 1 sinkxesinK(R- x) . 
ACB) ON in) KG sinKR ; 

and for the long-range many- loop situation, 

_({1rV¥ (ni x(R- x) tan?6 
p=Pm= (3) le ) Rye aGi 7 0 q 

Equations (66) and (75) are as far as we can go toward 

computing the quantities of interest without committing 

ourselves to a particular spectrum F, and a particular 

sound channel and associated ray paths. It therefore 

now becomes necessary to turn to a discussion of these, 

and Secs. IV-VI will be devoted thereto, 

IV. CANONICAL SOUND CHANNEL 

Let T(z), S(z), P(z) designate the undisturbed distri- 

butions of temperature, salinity, and pressure. The 

velocity of sound is a known empirical function of these 

variables, C(z)=C(T7, S, P), having typically a minimum 

value C=C at some depth z=— hand increasing by a few 

percent towards top and bottom. The (fractional) veloc- 

ity gradient can be written 

C10,C=a+ ,T+B- 8,S+y: 9,P, (77) 

with 

(a, B, y)=C™+ (87, 25, Ap)C. 
The temperature gradient is the sum of potential and 

adiabatic gradients, 6,T=9,Tp+9,T,, so that 

C18,C,=a+ 8,7, +7 8,P=(-0.03-1,.11)x10% km™ 

=-1,14x10"% km?=-y, (78) 

is the fractional velocity gradient in an adiabatic iso- 

haline ocean. In analogy, we define a potential velocity 

gradient such that 

a,C = yp Ts a,C, = 8,Cp a Cr, ’ 

and write the potential gradient in terms of the buoyancy 

frequency n(z): 

C71a,C= (u/g)n?(z)— v4 , (79) 

22 

n°(z)=— gp 8, pp = g(a9,Tp — b8,S) = ga2,Tp(1 — Tu) , 

(80) 
where the “Turner number 

ba_S pay dS? tana 

oe ao,Tp 

gives the relative contributions of salt and (potential) 

temperature to the potential density stratification. In 

Eq. (79) 

u=(a/a)s(Tu), a/a=24.5, 

s(Tu)=(1+cTu)/(l— Tu), c=aB/ab=0.049 , 

using the numerical values 

O=3. 19x10 (Cr, 

B=0.96X107* (%)7 , 

y=1.11X10 km. 

a=0.13x10°5 (°c)? , 

b=0. 80107 (%)7 , 

The a value is typical of conditions in the sound channel 

(it may vary by as much as 50% between surface and 

bottom). In shallow water the n? term dominates, and 

the velocity increases upwards; in deep water n?—0 and 

the velocity increases downwards at the rate y,. At the 

axis of the sound channel 6,C=0, hence 

n(z=-h)=n=(gy,/p)”? . (81) 

An exponential stratification model 

n=ne/?, B=1km, 

(82) ng=5.2X10° sec? (= 3 cph), 

gives a reasonable fit to the oceans beneath the thermo- 

cline® (we ignore the surface mixed layer and interpret 

No as a surface extrapolated value). The sound axis is 

at a depth 

— Z=h= Blog(no/n)=0.89 km+4Blogs , (83) 

compared to typically observed values 0. 7—1.5 km. 

Geographic variations in the sound axis are associated 

with the temperature dependence of » through the a pa- 

rameter, and with the salinity dependence of s(Tu). We 

take h=1 km. In terms of a dimensionless distance 7 

above the sound axis, the velocity profile can be simply 

written 

C=C[1l+e(e"=n-1)], €=} By, =5.7x105, 

n=(z-2Z)/zB. 

The coefficient € is readily interpreted as the fractional 

adiabatic velocity increase over a scale depth. Equa- 

tion (84) is a reasonable description of an oceanic sound 

channel (Fig. 1), given in terms of physical constants 

of seawater and the stratification parameters no, B, Tu. 

We require certain geometric properties of the sound 

channel. Let z(x) denote a ray with inclination dz/dx 

=tan@ and curvature d?z/dx =sec’@: dé/dx. From 
Snell’s law cosé = C/G: where C is the velocity at the 

(84) 

ray apex. Hence 

ppndnz dé 2€C 
1 = Vo sabes ——— — 7) -e" R Sage oe () ae tan@ Be sec6(1- e")=y,(1-e") . 

(85) 
The range of a double loop® is 
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FIG, 1. Canonical sound channel (left) and the corresponding rays for 6 =12.7° (surface limited), 5.2°, and 0° (axial ray). The 

contribution to F; from various parts along the three ray paths is indicated by the vertical extent of the shaded band (plotted loga- 

rithmically). Fy, is plotted separately at the bottom of the figure for the surface limited ray, together with F, and F;—ReG,, thus 

indicating the relative apex contributions toward mean-square phase, rate of phase, and intensity, (F,—ReG, applies only toa 

source at x=0 of a receiver at R*.) 

RY =Rt+R =7Bet/? (1+4¢7+---) : 

where ¢?=(C-—C)/(eC), and the “optical” path length 
equals 

Sah den Ben’?2G (1 +heb24. ere) ie 

We will require 

dest 6=R™ pie =~ 1e(L ++). (86) 

Finally, we can (laboriously) compute Aj} for a com- 

plete loop. We find 

At 7 3B 1 ¢? ( & ¥2- oY 

MGA 2e 6 3 ¢ 

2 $°(¢? - $*) @ 41 ¢) a5 oe (\-5%5 sin 5) | 

It will also be of interest to have the value of this quan- 

tity at the apex of a ray. This is 

Fees) al al g? V2 5) 
1 = —_ 

Au=q ie rates 3 9) - 

For upward rays, Aj}~xnear x=0 and Aj) = R*— x near 
x=R* (Fig. 2), and Aj has zeros at the caustics of rays 
propagating to the right from x=0 and to the left from 
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1.0 km 

FIG, 2, Aj) for a 5, 2° upward loop (top) and downward loop 

(bottom), with the +5, 2° ray itself shown in the center, all 

plotted as functions of horizontal distance x, 



x=R*. For downward rays, ie is reasonably well ap- 

proximated simply by x(R—-x)/R. 

V. FLUCTUATIONS IN SOUND VELOCITY 

In the presence of an internal wave field with vertical 

displacements ¢, a particle momentarily at z comes 

from a rest height z—¢. The resulting velocity fluc- 

tuation at a fixed depth z is 

6C/C=5C/C=a5T+B5S+y5P , 

where 

5T=-98,T,, 69=£-9,S, 5P=pgt- Ap/p 

are the internal wave-produced fluctuations in T, S, P. 

The wave-induced pressure fluctuations at a fixed depth 

are reduced by a factor Ap/p(~10°8) over the pressure 

fluctuation pgé experienced by a fixed water particle. 

Henceforth the effect on 6C of the internal wave associ- 

ated pressure fluctuations will be neglected, and so 

8C=£(8,C—8,C,)=£8,Cp ; (87) 

e.g., the internal waves convect the potential velocity 

gradient as defined in Eq. (79): 

6C/C=n"(z)ut/g. (88) 

The rms vertical displacement is given by (GM72) 

“1/2 rms(¢)=rms(£q)(n/n9) » rms(f))=7.3m, 

relative to its near-surface value, and so increases 

with depth as n7™\/?; accordingly 

rms(6C/C)=rms(5C/C)9(n/n)/? , 

with (89) 
rms(5C/C),= unsrms(f,)/z , 

decreases exponentially with depth with a scale 7B 

=0.67 km. For orientation, set s=1 and u=24.5; typi- 

cal values are given in Table I. In very deep water 

5C/C is of order 10°, and accordingly the rms fluctua- 

tions in sound velocity are a few cm/sec. The rms 

horizontal velocity components associated with internal 

waves are (GM72) 

rms(u)=rms(u9)(2/n9) , ug =4.7 cm/sec , 

leading to the values in the last column. The last two 

columns give relative perturbations in sound propaga- 

tion associated with vertical displacement and horizon- 

tal particle velocity, respectively. The latter effect is 

much smaller (except in very deep water), and will be 
ignored subsequently. On the other hand, the w effects 

dominate at and below inertial frequencies, so that 
planetary waves with their quasihorizontal particle mo- 
tions affect sound transmission by Mach refraction. 

TABLE I. Typical values with s=1 and w=24,5, 

2 n n rms ¢ 

(km) (cph) (rad/sec) (m) rms 6C/C_ rms u/C 

thermocline 2z)=0 3200, 5;2x10% 753)  “4y9xio © “3.1xi07 

sound axis Z=-1.9 1,10 1.9x1075 12.0 1.1104 1,1*107% 

bottom z=-4.5 0,094 1.7x104 41.2 2,8x10% 1,0x10-6 
Te Oi. —-s# lO ———WooOowuOWDaan— 

Vi. INTERNAL WAVE MODEL 

Fluctuations in the vertical structure of temperature 

and salinity were discovered by Petterson, Helland- 

Hansen, and Nansen soon after the turn of the century. 

Since that time there has been a vast literature on the 

subject (over 500 references were compiled by Roberts’) 

consisting mostly of reports on temperature and current 

fluctuations at moored instruments, and of a few hori- 

zontal temperature profiles from tows behind ships. In 

the past three years, the technology of continuous ver- 

tical profiling of currents with freely dropped instru- 

ments has been developed, providing additional infor- 

mation. A three-dimensional trimooring (IWEX) was 

installed in 1973 off the American east coast, and we 

may expect some very useful additional results. 

On the basis of this myriad of observations, Garrett 

and Munk have contrived successive models’ (GM72, 

GM75) of internal wave spectra. They placed particular 

emphasis on multiple recordings, separated vertically 

on the same mooring or horizontally on neighboring 

moorings, which had shown that fluctuations of frequen- 

cies as low as 1 cph were uncorrelated for vertical 

separations exceeding a few hundred meters, and for 

horizontal separations exceeding a few kilometers. 

These coherences were interpreted as a measure of 

reciprocal bandwidth: for separations larger than the 

reciprocal bandwidth, different wave numbers interfere 

destructively, and coherence is lost. The following con- 

clusions were reached: (i) Observations can be recon- 

ciled with the dispersion law and wave functions of lin- 

ear internal wave theory. (ii) Towed records are in- 

sensitive to the ship’s course, and moored records are 

similar for the two velocity components, thus indicating 

some degree of horizontal isotropy; the evidence is 

certainly incompatible with internal waves propagating 

along narrow horizontal beams. (iii) Coherences are 

incompatible with a model consisting of just the gravest 

one or two vertical modes (except at tidal frequencies). 

The GM72 model had equal contributions from modes 1 

to 20, and none beyond mode 20, But this is too broad; 

recent measurements by Cairns® are consistent with a 

mode weighting according to (j*+j%)* with j, ~3. 
(iv) The myriad of observations, taken over the years 

at many depths off the American west and east coasts, 

Hawaii, near Bermuda and Gibraltar, in the Bay of 

Biscay, and the Mediterranean, agree to within an or- 

der of magnitude. This suggests some universality in 

the internal wave spectrum, perhaps due to saturation 

effects such as those limiting surface waves of high 

frequency. 

We use the GM75 spectrum, somewhat modified for 

the Cairns observations: 

na = 

(2%(2)) =f “do Feluni2) 

in 

Fylw, j; 2) =(¢7(z)) Gw) HCY) 

4 2_ 2 \1/2 nie) 
GWw) == yal" = wi) , Glw) dw=1, 

1 w Be 
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Hi) = (+81 2+, 

SE AG)=1;, 
at 

between the inertial frequency w,,=2 sin(latitude) cpd 

and the buoyancy frequency n(z)>>w,,, and zero other- 

wise, where 

Do (+H) eh IP (nie 1) for j,21. 
1 

Similarly for the spectrum of 6C/C 

Fe jo (w, 5; 2) = ((6C/C)?) G(w)H( 5) 

=((6C/C)%) (n/no)® Gw) Hj) . 

For w not too close to n(z), the dispersion relations 

fo ee ee ee 

(91) 

§Sj F(k) cosk,xdk = a awl Gly FUbq » w) (20) da cos(ky cosaX) -{ 
in oa 

n(z) 

are 

Rey = jn BB ngt(w? — w2,)'/? , ky (z)=jnB'n(z)/no (92) 

for the horizontal and vertical components of wave num- 

ber. The spectrum in k,,7 space is accordingly 

d : ., dw 
Fye po (ay 9) = Fee sc (w 3) dky 

acy’ 4(w4, /no) BT Kj H(3) = = 93 (CC) etGetoc mre 9) 
for 0< ky< ky =j7B'n(z)/ng. Equations (90)-(93) are 
essentially WKB approximations, and they fail near the 

boundaries and the turning depths (GM72). 

Coherence scales can be estimated from the Fourier 

transforms: 

n(g) 

dw | dky F(Ry, w)Jo(Ryx) 
a 0 on 

=| dws Glo) H(j)Jo(yx) ~1 — 81747, (wy, /no) [log n/ws,) - 3] | x|/B , 
in 

yy H(j) coskyz =1- (nj, - 1) (n/np)|2|/B, 

which suggest the coherence scales 

es (no /w4,)B L _Bno/n 

* 8j,{log(n/wy,)-2]? ” } Te 

Setting w,,=7.3x10"° sec” (30° latitude), m)=5.3x10% 
sec, B=1 km, gives the values in Table II. (The 

near-bottom value of Ly is meaningless.) The assump- 

tion of spherical symmetry (so popular to scattering 

theoriests) is useless to oceanographic application. 

(94) 

Vil. FLUCTUATIONS IN MODEL OCEAN 

Armed with the specific ocean model described in 

Secs. IV-VI, we can now proceed with the evaluations 

of the general expressions (66) and (75) for the quanti- 

ties (|X|?) and (X?), Let us first look at (|X1?). 

Substitution of the spectrum (91) into (66) yields 

(|X|?) =((6C/O)) (77)? BRF,(R) , 
8 w,, 1 ie 5 Me dw (S25 ee 

= 6 Z a R pee cce n bona ust ae 

(95) 

F,(R) 

TABLE II, Typical values for w,,=7. 3x10 sec (30° Lattitude), 

ny=5.2%107% sect, and B=1km, The near-bottom value of 
Iy is meaningless. 

z n Ly Ly 
(km) (rad/sec) (km) (km) 

thermocline -0.1 5.210% Pb} 0.12 

sound axis -1.3 1.9x10% 3.4 0, 32 

bottom —4,5 1.7105" 27.0 (3, 63) 

Ase lee ones esa dxsec?6 n5f,(A) , (96) 
T WiaNo R Jo 

and 

1 a? (A? +1)'/? +1 
AA)“ BeT aR Tele (yi (ON) 

with 

A=(n/w,,)tané . (98) 

F,(R) as here defined is a dimensionless number of or- 

der one when R is of the order of R, the range of a loop 

(R=4Bre*/?=20.8km), It is for this reason that the 

factor R has been explicitly separated out in Eq. (95). 

The quantity (j"!) represents the average of Gu 

weighted by the internal wave spectrum H(j). We have 

GL tar) ye > (FA) 

= 0.730, 0. 647, 0.519, 0.435, 0.379,0.340 (99) 

for j,=0,1,...,5. An approximate expression is 

log (47% +1)/(nj, - 1). 

For axial rays, 6=A4=0, f,(0)=1, and n=n is a con- 
stant. Hence F,(R) becomes simply proportional to R; 

we have 

4 nv R R= 
F, = ==, =e A 100 i(R) = mah 436 5 F,(R) (100) 

For upward rays turning near the surface, the major 

contribution to the integral defining F,(R) comes from 

the ray apex (Fig. 1); here the equation of the ray is, 

approximately, 

z(x) 2 — (1/2R)(x- x) , 

and 
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~16° “14° aizs 

lower loop upper loop 

FIG. 3. Plots of F,(y) from a numerical integration of Eq. (113), Re F;(y) is proportional to the loop contributions towards (X2), 

Re F,(0)=F} corresponds to Eq. (96) for a single upward (6 positive) or downward (6 negative) loop, The short-dashed curve 

gives the apex approximation [Eq. (101)] to Fj. 

A=n(x— %)/w 4 R , 

where (%, 2) is the position of the apex and ® is the ray 

curvature at the apex. 

ly with increasing 4, and therefore we can write, ap- 

proximately, 

F(R) = F(R) -4, LE ( payar-2™ =~ aor 
Lee ee) T wing R jf * Rn 

times the number of upward loops. 

For a single complete upward (downward) loop with 

range R*(R’) we denote F,(R*) simply by F?. Then for 

a complete double loop, with range R*, we have 

Fy =F,(R*)=Fi+F]. 

If the double loop has an apex near the surface, then 

Fj~F, and F;~0; thus 

Fy F, . 

The results of a numerical evaluation of Fj and Fy 

as a function of ray angle @ are shown in Fig. 3, as is 

the apex approximation Fi which is seen to be an ex- 

cellent approximation for 62 5°. The largest value of 

The function f,(4) cuts off rapid- 

) 

Fj occurs at a ray angle @ near 2°, and a corresponding 
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apex depth of 750 m; deeper rays are reduced by the 

smaller value of n°, rays of shallower apex are reduced 

by a smaller radius of curvature R, 

We shall also need the variance of X = dX/dt; this is 

found by inserting w? in Eq. (66) under the integral sign. 

The result is 

(|X|) =wyano( (5C/CR) (77) PBRF? , (102) 

where 

= te n 
RF, =87°°ng? | dx sec’ noe (J ) fla) (103) 

0 Jin 

and 

Ta Be N= BUA 2 SU rman 
Fal ) (ioe Win 2 10g 4 

1 1 (VAS) a es 
ao + A272 og (a +A?) P24 Hi og Win 

(104) 

For the axial ray (where f,=1) and near surface rays 

we have, respectively, 

Fy = 817 (2/ng)*(R/R) logn/w,, =0.132R/R , 

F3=812(2 7)! /? (Bl QI )t/? (R)7 (/n9)8 log (/w4n) - 

(105) 

(106) 



upper loop lower loop (2) 

FIG. 4, Plots of F,(y), proportional to the loop contributions 

towards (X*), See Fig. 3. 

F, is less peaked at the apex than F, and decreases 

monotonically with apex depth (Fig. 4). 

Let us next turn to the quantity (X°). From Eqs. (75) 
and (91) we find 

(X?)=— ((5C/C)%) (j*) @?BRG,(R) , (107) 

where 

Alpe : Gy(R)= a RL dvsecten'h(alelAs i.) - (108) 

Here we have defined 

iyi 1 
bal =) = Soe iBi") , 109 &(B, 5, F ds Pap ey) (109) 

and we recall from Eq. (76) that 

B= (1/BY (n/m! 1/qAg, « 
Note that as 8-0, g(8,j,)—1 and thus G,— F, and hence 

(X?)——-(1X1?), 

An approximate analytic expression for g(8, j,) is 

. \_Lexp(- ifj%) Ei(ip Gs +4)) — EilG-8)] 
818, jg) = log (472 +1) 

Thus for small 8, we have 

2 j 28, 5*)=- FPHeagoay lel tees 

and hence for small £, 

iil ie 1 wife 
G,(R) = F(R) - = a = 
Wades tes.) t (j*) mj,-1 wae Ry Le 

xsec’@n5f,(A)| Bl +++. 

For very long ranges where many loops are involved, 

we may simplify the integral in Eq. (108) as follows. 
First replace 8 by the many loop long range value By;: 

Bur, = (1/B)* (n/no)* [x(R - x)/qR] tan?0/5 = ayyy(x) , 

(111) 
where 

y(x)=x(R-x)/B’Rq . (112) 

Next note that y varies rather little over one loop. 

Then the integral from 0 to R may be broken up into a 

sum of integrals over each of the loops. In any given 

loop, say the kth one, y has very nearly the value »(x,) 

=y,, where x, is the position of the midpoint of the 

loop. Thus we may write, in place of Eq. (108), 

+ K~ 

Gi so Firs) +2 Fily,) ; 
R=1 R= 

where A* is the number of 22%, 

4 1 il XptR*/2 Tee 
i(%) T wyane R 

loops, and where 

dx 
xp R*/2 

x sec”On°f, (A )e(B, , i ,) ? (113) 

with 

By = 7° (n/n9)* (tan?0/5)y» « 

Here x,+R*/2 are the positions of the two ends of the 

loop. We note that as y,~0, Fi(},)— Fj as defined 

earlier. 

The variation of Fj(y) with y is shown in Fig. 3. 

Large deviations from Fj begin to become apparent 

when y is of order one. The maximum y that occurs 

over a range R is R/4B°q; thus G, is not very different 

from F, until ranges of order 4B’q. 

All of the foregoing results and definitions may be 

summarized in the following relation: 

SO GC, 

+( |x|?) 5CY F, 
_([(5L 1 a 

= (xX?) -(( ai) GER WiaMoGe | * ne 

+(|X|?) WyNoF2 

The quantities of actual interest to us are not quite 

(x?) and (|X|*), but rather the mean-square phase and 
intensity fluctuations. These, we recall from Eqs. (4), 

(6), and (9), are related to (X*) and (|X|?) through 

(7) =3((| X|?) - Re(X?)) (115) 

and 

(?)—(e)? =2((| X|?)+Re(X?)). (116) 

Thus we find 

OG = ((5C/C)) Gj) q BR(? (F,+ReG,) . 

(as e (117) 



For small 8, ReG,— Fy, so that 

(6?) = ((8C/C)R) (77) @ BRE; ; (118) 

this is simply the conventional geometrical optics ex- 

pression for phase fluctuations. Intensity fluctuations, 

however, depend on the difference between F, and ReG,, 

4 1 alae 3 ; 
ee ChE oa at dxsec’6 nf, (4)(1 - g(8, j,)) 

(119) 

and thus vanish in the small 6 limit. Indeed, for small 

B, using Eq. (110), we find 

BN ante cy \ ik q ‘ 
een? -4n(C), our. a 

1 2 5 A xsec*dn°f, (4) a (120) 
ae 

and this does not coincide with any geometrical optics 

expression. 

It is also of interest to compute the spectra of phase 

and intensity fluctuations. For this purpose, we return 

to Eqs. (66) and (75), and to Eq. (91), but we do not now 

carry out the integral over dw. Fora given value of w, 

we integrate over a ray path, keeping in mind that there 

is a complicated set of forbidden ray sections, depend- 

ing on the value of w relative tow,, # , and #* (Fig. 5). 

For very low frequencies the ray is too steep to permit 

“stationary-phase interaction” with internal waves. 

For the high frequencies w may exceed n(z) along some 

portions of the ray, and internal wave solutions do not 

exist. The phase and intensity spectra are given by 

ere] - A (S2))(2) 48g [esc 
wee wt tl? 

x (—H) H(n-w)H(w- w,) 
L 

ea a ie: (121) 
2(1 — Reg(8, jx)) 

For the important range w, <w<mn the entire integra- 
3 

tion path is permitted and the spectra vary as w~. 

Vill. COMPARISON WITH NUMERICAL 

EXPERIMENTS 

As afirst application, and test, of the results we have 

obtained we shall make a comparison with a set of 

“numerical experiments.” ° These consist of numerical 

solutions of the parabolic wave equation in the same 

sound channel we have discussed here, and with a se- 

quence of internal wave realizations from a two-dimen- 

sional projection of the spectrum described in Sec. vie? 

The “numerical experiments” use an acoustic fre- 

quency of 100 Hz, and propagate sound up to ranges of 

100 km; the remaining parameters are the “standard 

ones” listed in Secs. IV-VI. In all cases the acoustic 

transmitter is located on the sound axis, at a depth of 

1000 m. The receiver consists of a vertical array of 

hydrophones, 700 m long, centered on the ray in ques- 

tion, which allows an angular resolution of 13°. 
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I 

(Wi)max< W< a 

FIG. 5. Internal wave contributions toward frequency spectra 

of acoustic phase and intensity come from “permitted” sec- 

tions of the ray path (heavy lines), There are no internal 

wave contributions to frequencies less than the inertial fre- 

quency (I) and larger than the apex bouyancy frequency (V) be- 

cause no such internal waves exist. The entire ray contributes 

toward the central band III between (wy)max (typically 10 «,,) 

and the buoyancy frequency at the lower turning point (for deep 

rays III does not exist). For lower frequencies, the upper 

sections of the ray are too steep to permit “stationary-phase 

interaction” (II), and high frequencies exceed the buoyancy 

frequency of the deep ray section (IV). 

A. Phase fluctuations 

Solid lines in Fig. 6 show the results of the “numeri- 

cal experiment” for 128 realizations (to which one may 

assign a statistical error of perhaps +20°). The dotted 

lines are the predictions of the theory outlined in Sec. 

VII, and specifically of Eq. (118). Evidently the agree- 

ment is satisfactory. Overall magnitudes differ be- 

tween theory and experiment by about (20-30)% (except 

for the —1° ray) and the general shapes coincide as well. 

For the steep rays (+9° and to a lesser extent +5°) the 



FIG. 6. Comparison of cal- 

culated (dotted lines) and 

“experimental” (solid lines) 

rms phase fluctuations at 

100 Hz as function of range 

for six rays with inclinations 

on the axis ranging between 

+9°, Lines connect calcu- 

lated values, with no attempt 

at interpolation. 

rms cycles 

rms phase is nearly a step function of range, reflecting 

the fact that the major contribution to the integral in 

Eq. (96) comes when the rays cross an apex, and that 

there is little contribution while the ray is deep. The 

near axis rays (+1°), on the other hand, vary much 

more smoothly with range (nearly like Ri!) 

B. Intensity fluctuations 

Table III shows the rms intensity fluctuations for the 

same six rays, at various ranges. Since the numerical 

experiment makes use of a vertical beam former rather 

than a single hydrophone to select different rays, the 

theoretical calculations described in Sec. VII must be 

somewhat modified. There intensity fluctuations were 

calculated for a fixed receiver position; here we must 

calculate fluctuations for a fixed receiver angle but hav- 

ing a variable vertical position. This amounts to re- 

placing the quantity A in Eq. (120) by a different geo- 
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metrical factor Bjy, defined to be the second derivative 
with respect to z of the optical path length from the 

transmitter to a receiver located at a fixed range and 

seeing a fixed vertical angle, rather than one located at 

a fixed range and height. This quantity has been eval- 

uated numerically, and then Eq. (120) has been used, 

in order to obtain the theoretical values shown in the 

table. 

The quantity Be can be evaluated analytically for lin- 

ear and quadratic sound channels (with circular and 

sinusoidal rays) which approximate the real sound chan- 

nel for deep and near-axial rays, respectively. We 

find 

x 4 1 sinKxcosK(R-— x) re & 
Beas Bier cosKR (122) 

for deep and near-axial rays, respectively, where 27/K 

is the wavelength of the sinusoidal rays, so that 7/K is 

the range of one loop. We remind the reader that 

a _x(R- x) 
zen R ? 

. _1 sinKxsink(R- x) 
7K) ysinkR A A 

are the corresponding quantities for a fixed-point re- 

ceiver. Thus, for near-axial rays, Bz, becomes in- 
finite when the receiver is located at the turning point 

of the rays. It is here that all rays are parallel; this 

is the analogue of a caustic for a beam former receiver. 

As we have already remarked in Sec. III, when the re- 

ceiver is placed near a caustic, our approximate expres- 

sions [Eq. (75)] fail; to correct it would require keep- 
ing the effect of horizontal spreading in Eq. (74). We 

are therefore able to compare our calculated values 

with the “experimental” ones only if we avoid placing 

the receiver near a (beam former type of) caustic. For 

near-axis rays, where we can use Eq. (122), these caus- 

tics occur at ranges R= (n+3)n/K; since 1/K= R=20 km 
for near-axis rays, there are caustics of ranges of 10, 

30, 50,...km. For off-axis rays, the positions of caus- 

tics must be determined numerically. The entries in 

Table III are made by avoiding these. 

The agreement between theory and “experiment” is 

TABLE III. RMS intensity fluctuations in dB, The upper 

(lower) number in each entry is the theoretical (“experimental”) 
value, 

Range (km) 

Ray angle 20 30 40 50 60 80 100 

+9° 1.00 1,21 1.34 

(0.73) (0.82) (1. 20) 

ee 110) oe 1512) 91,89) ast 
(0. 44) (0.50) (0.62) (0.64) 

AE 0:79) 108) 1.3L) ot, 57 eedeeO 
(0. 34) (0. 41) (0.60) (0.74) (0.95) 

ae 0.66 || TOL ans 1539) 1701 2520 
(0. 30) (0, 43) (0.61) (0.56) (0,46) 

ug (OHS8iaem 0940 ke 1.19 1.29 
(0. 41) (0, 61) (1,02) (0, 84) 

ce (Os09)) JO.disiay (0129) Bae re 0.78 
(0.06) (0.07) (0,31) (0, 63) 
5 
—CCCc—uwnaounQqQqQqqueeeeeeeeeeeee—eeeeeeSSsSsSsSsSsS oom 



TABLE IV. The measured rms values of 

travel time and intensity, 

Frequency (nominal) 4 kHz 8 kHz 

Travel time 0.384 0.374 msec 

Intensity 5.2 5.7 dB 

satisfactory for the off-axis rays but for near-axis rays 

the theory seems to overestimate the size of the fluctua- 

tions; in particular, the +1° rays are predicted to have 

fluctuations that are larger by a factor of two to three 

than the “experiment” shows. This discrepancy is pos- 

sibly related to the fact that we use the linear approxi- 

mation to the dispersion [Eq. (92)], or that the WKB ap- 
proximation underlying the theory does not allow the re- 

duction in vertical displacement near the boundaries, 

or to the two-dimensional character of the “experi- 

ment,” or, finally, to the failure of the expansion in 

power of acoustic wavelength over the vertical correla- 

tion length of the fluctuations at this wavelength. 

IX. SINGLEPATH EXPERIMENT ON COBB 
SEAMOUNT 

Ewart!! has measured amplitude and phase (transit 

time) fluctuations between a fixed transmitter and re- 

ceiver on Cobb Seamount (46°46' N, 130°47' W). The 

sound axis is shallow, 400 m, as is characteristic of 

high latitude, Setting z=— 0.4 km in Eq. (84), we con- 

struct a ray path through source and receiver (both at 

1000 m depth) separated by 17.2 km, with a lower turn- 

ing point at a depth of 1350 m, in agreement with ray 

tracing based on locally measured sound profiles (Fig. 

4, Ewart), Further, the measured n(z) is very close 

to our experimental model [Eq. (82)]. Ewart obtained 

144.5 h or records (with minor gaps) based on 8-cycle 

pulses at 4166 Hz and 16-cycle pulses at 8333 Hz trans- 

mitted alternately every 15.7 sec. The measured rms 

variations are given in Table IV. 

Ewart remarks on the strong tidal contribution to the 

travel time spectra, and on the important effect on in- 

tensity by sporadic multipaths associated with sound 

velocity fine structure. We note that the results are 

similar gt the two frequencies (as expected); the rms 

phase at 4 kHz is 3. 84x10 sec x4166 Hz=1. 60 cycles. 

The maximum value of 8 is 10° (7 km from turning 
point), so geometric optics applies, and according to 

Eq. (118) 

(6?) =((6C/C)R) (77) g?BR F,(0) =251.7 rad? 

for rms (6C/C))=4.9x10%, (j71)=0,435, q=1.745 
x10* radkm” (for 4166 Hz), B=1km, R=20.8km, ng 
=5.2x10 sec™, w,,=1.06*10% sec™ (46. 75° latitude), 
and F,(0)=0.38 (from a numerical integration), Thus 

rms $=2.53 cycles, compared to 1,60 measured. 

Similarly the intensities are found from Eq. (120), 

using Aj} = x(R - x)/R which is appropriate for a single 
lower loop. The result is (c?)—()*=0.245, or 

(10/log10) (0, 245)'/? =2. 15 dB, 

229 

TABLE V, Variation with model parameter j,. 

observed ip j,=4 ea) 

rms ¢ in cycles 1.6 2.5 202 2.0 

5.5 2.2 2.3 3.4 rms tin dB 5 ° A 

as compared to the observed rms value of 5.5 dB. (A 

more accurate form for Aj} will increase the calculated 

value slightly. ) Observations and computation of both 

phase and intensity are roughly within a factor of 2 and 

can be brought into better accord by increasing the 

model parameter j, (Table V). 

A more sensitive test consists of comparing com- 

puted!* and observed spectra (Fig. 7). The computed 

phase spectrum is high, as expected from the rms val- 

ues, but in the principal band between inertial and 

buoyancy frequencies the computed w~° slope is reason- 

ably consistent with the observed spectral slope. The 

observed phase spectrum continues smoothly beyond the 

computed n cutoff. Computed intensities completely 

fail to account for the observed high frequencies, 

Dashen (private communication) has demonstrated that 

the high-frequency phases and intensities are due to in- 

terference between “sporadic multipaths.” (Ewart has 

remarked on the occasional arrival of multiple pulses. ) 

A discussion goes beyond the scope of this paper. *® 

xX. MULTIPATH EXPERIMENT MIMI 

The most persistent measurements of ocean propaga- 

tion are the 406-Hz transmission of MIMI"! between 

Eleuthera (Bahamas) and Bermuda. The measured ¢(f) 

and c(t) are completely dominated by the effects of mul- 

tipath interference, and are not simply related to the 

o,(t) and c,(t) along any singlepath 7 with which our pa- 

per is concerned. However, it is possible to use the 

measured multipath spectra to infer rms , for a typi- 

cal singlepath.’® Results are given in Table VI. 

For a “back-of-the-envelope” comparison (after two 

years) with our results we uSe the axial approximation 

(105) in Eq. (102): 

($6?) =((6C/C)R) (77+) G? BR wignoF 2 

= Bn? ((6C/C)ea45) GG?) @?BRw gM lOgn/wy, + 
(123) 

Using g=1701 radkm™ for 406 Hz, rms(6C/C))=4.9 
x1o+, (j77)=0.435, B=1 km, w,,=7.3x10° sec", ng 
=5.2x10°% sec?, 7=1.9x10°% sec! and Eq. (89), this 
simple expression leads to excellent agreement with the 

measurements (Table VI). For the surface limited ray 

we use the apex approximation (106) with #=m) and a 

radius of curvature R=13.7 km [Eq. (85)] to obtain 

($?) = 80? (2 n)/? ((8C/CR) (57 FP BR? 

X Wao LOg (129/ wn) 

per double loop, leading to somewhat larger values. 

Table VII summarizes a more precise calculation, 

allowing for the proper “ray mix.” From Eqs. (102) 

and (103) 
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FIG. 7. Computed (smooth curves) and observed spectra of phase (left) and intensity (right) at Cobb Seamount, 

results are shown for phase; at 8 kHz computed and observed values both are higher by 6 dB. 

Only the 4-kHz 

(Bi) = ((E),) G2) PBR are sah, Ke 

x 20 I[FHO)+F4,)] - 
k 

The summation 7 extends over 34 rays in the order of 

decreasing inclination 9, of the axial source. For even 

numbers of loops, values of +6; pair with precisely the 

same Statistics, but for odd numbers of loops there is 

an extra upper loop for positive 6 and an extra down- 

ward loop for negative @. Each ray is weighted accord- 

ing to the difference Ad, between adjoining rays, and 

this emphasizes the near axial rays. 

The number of loops varies from 60 (K*=30, K~ =30) 

for the near-axial rays (@=+1°) to 44 (K*=22) for the 
surface-limited rays. The largest y, is at the central 

loop, +=3R, y=R/4B’q=0.184 and even then the differ- 
ence between F,(y) and F2(0) is slight. We may then 

use the geometric optics formula 

Gn-(E]) Genta 3 

x[K*F3(0)+K7F3(0)] . 

The sumand (last column of Table VII) is fairly uni- 

formly distributed among all contributing rays. 

The agreement between computed and measured val- 

ues of (6?) is rather too good. 

TABLE VI. Measured and computed MIMI parameters, 

Midstation Bermuda 

Range 550 km (nominal) 1250 km 

Number of paths 14 34 

Number of double loops 

Surface limited ray (SLR) 10 22 

Near axial ray 13 30 

rms ¢$, inferred from MIMI 2,8x10™ sec* 

rms 6, computed 

Axial ray 

Apex approximation, SLR 

Weighted average 

2.9*10% sec"! 
4.610% sec?! 
3.5107 sect 

4.0x10° sec? 

4,4x 107 sec 
6.8107 sec* 

5.2107 sec? 
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TABLE VI. Calculations of ($3) for Bermuda. 4; are the 

inclinations at the axial source of all possible rays to an axial 

receiver at 1250-km range, consisting of K* upper loops of 

range R* and R™ lower loops of range R™ (see Fig. 1). F3(0) 

are the dimensionless contributions per ray loop to (4) as 

read from Fig. 4, leading to the dimensionless weighted sum 

(A0/ZA0)(K*F3 + K-F2). 

6, Ke R K R- Ae Fy F; Sumand 

12.7, 22 12.8 22 44.0 0.60 0.703 0,011 0. 362 

12.3 23 Poesy 22 43.3 0,60 0,680 0,012 0, 367 

11,5 23 13,2 23 41,2 0.60 0,630 0, 014 0,342 

11,2 24 13.4 23 40,4 0.55 0,614 0,015 0,319 

10,3 24 13,7 24 38.4 0.55 0,560 0,018 0.293 

10.0 25 13.9 24 BIA 0.55 0,545 0.019 0,298 

9.2 25 14,2 25 35.8 0,55 0.500 0,021 0,276 

9.0 26 14,4 25 35.0 0.55 0.490 0,022 0, 281 

8.1 26 14,8 26 33.3 0.60 0,448 0,028 0, 286 

7.8 27 15,1 26 32,4 0.60 0.435 0,029 0,288 

6.9 27 15.5 27 30.8 0,60 0,395 0,035 0. 268 

6.5 28 15,9 27 29.8 0,65 0,375 0,038 0,288 

5.7 28 16,4 28 28.2 0,70 0, 343 0.045 0.292 

5.1 29 16.7 28 27,4 0,85 0,315 0,050 0.344 

4.0 29 Wy BY 29 25.6 1,05 0,274 0,062 0,394 

3.0 30 18.2 29 24.3 1.50 0.235 0.073 0,529 

1.0 30 19.8 30 21.9 2,00 0,165 0,107 0.628 

-1,0 30 19.8 30 21.9 1, 80 0.165 0.107 0,628 

-2.6 29 18.5 30 23.8 1.50 0,219 0,078 0,501 

-4.0 29 17.5 29 25.6 110) 0,274 0, 062 0.394 

-4.8 28 16.8 29 26.9 0,85 0, 300 0,054 0, 326 

-5.7 28 16.4 28 28,2 0.70 0,343 0,045 0. 292 

-6,.2 27 16.0 28 29,2 0.65 0.365 0,040 0,274 

-6.9 27 15.5 27 30.8 0.60 0,395 0.035 0, 268 

-7.4 26 15.3 aul 31.6 0,60 0,418 0,031 0,270 

-8.1 26 14,8 26 33.3 0.55 0,448 0,028 0,286 

-8.5 25 14.7 26 33.9 0.55 0.469 0,025 0. 262 

-9,2 25 14.2 25 35.8 0.55 0.500 0,021 0,276 

-9.6 24 14.0 25 36.6 0.55 0,512 0.020 0,271 

-10.3 24 13.7 24 38.4 0.55 0,560 0,018 0,293 

-10,6 23 13.6 24 39.0 0.55 0.585 0,016 0, 293 

-11.5 23 13,2 23 41,2 0.60 0.630 0,014 0,342 

-11.8 22 USL 23 41.8 0,60 0,652 0,013 0,338 

-12.7 22 12,8 22 44.0 0.60 0,703 0,011 0, 362 

XI. CONCLUDING REMARKS 

We end up, after lengthy derivations, with quite sim- 

ple and transparent formulae for the acoustical fluctua- 

tions. The formulae make explicit the dependence of the 

various oceanographic and acoustic parameters. The 
need is to apply these results to a variety of experimen- 

tal situations. 

For Project MIMI the measured acoustical fluctua- 

tions are dominated by the statistics of multipath inter- 

ference. The observations yield but one parameter 

which is sensitive to the ocean model: (¢? ). Values at 

midstation and Bermuda are close to those computed for 

an internal wave model based entirely on oceanographi- 

cal observations. (There are no free factors in this 

comparison, ) The agreement could be made even closer 

by a reasonable adjustment of internal wave param- 

eters. We conclude that internal waves play an impor- 

tant and probably dominant role in producing the acous- 

tic fluctuations. 

The MIMI transmissions are characterized by many 

deterministic multipaths as determined by the gross 

profile C(z); the statistical results are not affected by 

the additional sporadic multipaths resulting from a fine- 

structure 6C. In contrast, the Cobb Seamount experi- 

ment has a single deterministic path, but because of the 

high acoustic frequency, sporadic multipaths play an 

important role in producing high-frequency fluctuations 

of intensity and phase. Dashen (private communication) 

has shown that an extension of the present analysis, 

based on the same ocean model, can account quantita- 

tively for the high frequencies in terms of sporadic 

multipathing, but this goes beyond the scope of our pa- 

per. The mean-square quantities, in contrast, are 

dominated by low frequencies and can be estimated 

from singlepath theory. We find measured and computed 

rms fluctuations to be within a factor of 2. 
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Rate-of-phase and intensity spectra due to time-varying multipath interference depend essentially on a 

single parameter v* which can be interpreted as the mean-square rate-of-phase for any typical single path. 

MIMI 406-Hz phase and intensities are consistent with v_' = 270 and 357 sec for Eleuthera to Bermuda and 

Eleuthera to midstation transmissions, respectively, compared to 192 and 286 sec from a ray-geometric 

calculation using an internal wave model based on oceanographic observations. Internal tides play a 

significant but not dominant role. 

Subject Classification: [43] 30.20,[43] 30.35. 

INTRODUCTION 

The purpose of this paper is to compare some statis- 

tical properties of random vector fields with measured 

cw transmissions of MIMI! between Eleuthera (Baha- 

mas) and Bermuda. (Among the previous analyses we 

refer particularly to the work of Clark; Dyer; DeFer- 

rari; and Jacobsen.*) The observational material, gen- 

erously made available to us by John G. Clark, con- 

sists of intensity J(t) (decibels, arbitrary reference) 

and phase &() (in cycles), as presented by the top two 

curves of Fig. 1, a selected portion is shown point by 

point in Fig. 2. The observed acoustic pressure fluc- 

tuations (frequency o=406 Hz) relative to some (refer- 

ence) scale fg can be written 

P(t)/po = x(t) cosot +y(¢) sinot, 

where x, y are slowly varying (compared to o) ampli- 

tudes.*° The original measurements consist of the 5- 

min averages‘ of amplitudes 

6t 

x)= f at= RU) cospts) , 
0 

(1) 
Y(t)=R(¢) sing(t) , 

which are related to the plotted time series (as fur- 

nished to us) according to 

I= 20 logR , 

6=¢/2r. 
(2) 

We have then reconverted to 

X=10!/*° cos276, 
(3) 

Y=10!/° sindro 

For statistical theory, it is convenient to refer to 

1n10 = aie 

fee aro Ties (4) 

A suitable intensity reference is 

tg =1n(R2) or Ip=10 log(R?) . 

|. MEASURED VARIANCE IN MULTIPATH PHASE 

AND INTENSITY 

Only fractional cycles are measured, and there is an 

ambiguity concerning the integer number of cycles. 

Normally this can be resolved by the continuity of the 

time series. Phase difference over the sampling in- 

terval 6¢=5”" has an rms value of 56=0.24 cycles, at 

Bermuda, and the (Gaussian) probability for |56| to 

exceed 3 cycle is 4% (8% were observed). A restric- 

tion to |5@| = 5 cycle (which can be attained by adding 

and subtracting integer cycles) is not realistic. We 

have edited the observations to remove phase “kinks, ” 
replacing the reported value @ by 6+1, 6+2,... cy- 

cles when required to make the adjusted phase differ- 

ence 66,=,,, —®, subject to the restriction 

|66, —4(56,,,+5,_,)| = 4 cycles. 1 
This is essentially placing an upper limit on second dif- 

ferences in phase; 5% of the Bermuda observations and 

1.5% for the midstation were adjusted accordingly. 

Figure 3 shows a sample of 5@ before and after adjust - 

ment, and Fig. 4 the reconstituted 6=)5@, Midstation 

phases are not severely altered by phase adjustments. 

At Bermuda the low (week-to-week) frequencies bear 

no resemblance to the midstation trend and are con- 

Siderably altered by the phase adjustment; however, 

the high-passed records (tidal frequencies and higher) 
are not significantly altered. We conclude that sam- 

pling was adequate for midstation phases and high-fre- 

quency Bermuda phases, but that sampling was not ade- 

quate to obtain low-frequency trends at Bermuda. Ad- 

justed mean-square phases and phase differences are 

given in Table I, 

Multipath intensities are characterized by occasional 

deep fades (Figs. 1 and 2). They are censored for a 

subsequent analysis of fade statistics, by replacing the 

recorded values of J by J) — F whenever I[<I)—F, but 

otherwise leave J unchanged; censored X and Y are sub- 

sequently computed according to Eq. (3). Accordingly 

the three columns in Table I refer to the removal of 

fades exceeding F=~, 20, 10 dB (the first column then 
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FIG. 1. Plots of measured inten- 

sity J, phase 4, and high-passed 

phase, and of the components X 

and Y (in arbitrary pressure units) 

of acoustic pressure at Bermuda, 

22 Sept.—-17 Oct. 1973. 
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refers to the uncensored record). A typical signal-to- multipath statistics. 

noise ratio is 27 dB [Ted Birdsall (personal communi- 
cation)], and a removal of deeper fades (say F= 30 dB) The crucial importance of sampling needs to be 
would be associated with noise statistics rather than stressed. From a numerical experiment (Sec. VII) we 
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FIG. 2. A 14-h sample of intensity J and phase @ drawn on an enlarged scale, 
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FIG. 3. Bermuda phase differences 6@ before (top) and after adjustment (bottom), 

learn that sampling at 3-min intervals would have 

avoided all ambiguities. As it is, the 5-min averaging 

suppresses the high frequencies, and the phase ambig- 

uities dominate the low frequencies. 

Il. THE STATISTICAL MODEL 

We shall compare the observed data with a crude 

statistical model of a multipath acoustic signal. In the 

model, the components of the signal are 

n 

Dee Xin, 
Fi (5) 
n 

Y= Sey, , 
isl 

resulting from the superposition of n single-path com- 

ponents 

X,=R,cosd; , 

Y,;=R; Sind; 

(6) 

The amplitudes R; and phases ¢, of the single-path com- 

ponents are independent random variables. We use the 

notation ( ) to indicate a statistical average over all sin- 

gle path signals simultaneously, while ( ),; denotes an 

average over the A; and ¢; in one Single path. We 

make three further assumptions concerning the single- 

path signals: 

(1) Fluctuations in phase are more important than 

fluctuations in amplitude, or in symbols (with dot ac- 

cent designating d/dt) 

(R32); <«K (RD; (63); (7) 

(2) The time scale (¢,) for a phase ¢; to change by 
1 rad is on the average short compared with the time 

scale ($,/¢,) for the phase variation to change direc- 
tion, or in Symbols 

($3); = ($4; (8) 

(3) Each phase velocity o; is a Gaussian random vari- 

able, so that 

($3)1= 36)? - (9) 
In Appendix A it is verified that property (2) holds for 
the single-path phases predicted by the ocean model 

which we describe in Sec. IV. Properties (1) and (3) 
also hold in the same model. We suppose that the fre- 
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FIG. 4. Bermuda and midstation phases before and after ad- 

justment. 
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TABLE I. Adjusted phase and intensity statistics at 406 Hz for data interval 6t=5.0394 min. 

The columns marked ~, 20, 10 correspond to the suppression of fades exceeding ~ (no 

change), 20, 10 dB, respectively. X, Y, R=(x?+Y°)!/* in arbitrary pressureunits; to cor- 
rect to absolute level (dB/uB), subtract 169.0 dB for midstation and 173.0 dB for Bermuda. 

Midstation Bermuda 

1250 Range from Eleuthera (km) 550 (nominal) 

Record length 8255 terms= 29.0 days 7366 terms= 25.8 days 

(@2), ((64)2) (cycles?) 548, 0.029 110, 0.060 

F (dB) cc 20 10 co 20 10 

Number of terms replaced 0 114 1076 0 if) 746 

(x?) («x 1078) 8.73 8.73 8.79 0.668 0.667 0.671 
cy?) (x 1074) 8.70 8.70 8.76 0.655 0.655 0.659 

((6X)2) (« 10748) 6.08 6.08 6.14 0.797 0.797 0.806 
((6¥)?) &« 107!) 5.92 5.92 5.98 0.790 0.791 0.799 

(R*) (x 1074) 17.43 17.43 17.55 1.323 1.322 1.330 

ly (dB) 142 see 131. 22 : tee 
(I) (dB) 139.22 139.27 139.82 128.61 128.65 129.06 
(P)-(1)* (dB?) 38.79 35.87 23.37 31.84 30.18 22.52 
(6?) (dB?) 24.10 21.77 13.09 48.17 45.31 30.34 
(| 6l-66|) (dBcycles) 0.55 0.52 0.38 1.15 113 0.92 

quency v defined by Feel) = (21) */? (u2/v) exp(= $w?/v?) ; (16) 
Ze neNe 

v= (9: (10) and similarly for Fy(w). The advantage of the Car- 

is the same for every Single-path signal. The root- tesian spectra over the more traditional polar coordi- 

mean-square multipath signal amplitude py is defined by 

pr=D_ (RD, . 
1 

It turns out that all important statistical properties of the 

multipath signals are determined by the parameter v. 

(11) 

Ill. CARTESIAN STATISTICS 

The statistical model of Sec. Il predicts a covariance 

function for the multipath signal X which is a sum of 

contributions from the single-path components, namely, 

(X(t) X(¢+7)) = > (R?), (cos@ ,(t) cosd (t +7); (12) 
i 

Now we assume that for each single-path the root- 

mean-square phase fluctuations are of the order of one 

cycle or larger, that is to say 

(Lo, (é)]?), > (2)? 

This is not really an additional assumption but is al- 

ready implied by (8). [The ocean model (Sec. IV) gives 

rms $, =87 for Bermuda.] We are also assuming that 

the single-path phase differences [¢ ;(¢) —@,(¢+7)] are 
Gaussian random variables, with a variance 

(Lo s(t) — o Mt +7)P); Sere, (14) 

according to Eq. (10). Putting together Eqs. (12), (11), 

and (14), we find 

(X(t) X(t +7)) =4 pw? exp(- 4v?7?
) 

(13) 

(15) 

The Fourier transform of this quantity is the spectrum 

of X(t), namely, 

nate representation involving intensity and phase (to be 

discussed later) is that the Cartesian multipath and 

singlepath spectra are simply related. It is disappoint- 

ing that the inequality (13) applies, so that the Carte- 
sian statistics (single path or multipath) provide only 

such limited information about the ocean medium, 

namely, the two parameters yp andy. (This limitation 

would not apply at short ranges or low frequencies. ) 

Figure 5 shows the Cartesian spectra with plots of 

Eq. (16) drawn for indicated values of vy, An alterna- 
tive method for estimating the value of v is to use the 

formula 

ry (x?) +(¥?) 

ass) oe 
The values so inferred are summarized in the first two 

lines of Table I. 

IV. INTERNAL WAVES 

These values can be compared with those derived 

from a theory of sound propagation through a fluctuat- 

ing stratified ocean, Starting with a spectrum of inter- 

nal waves® empirically derived from various oceano~ 

graphic measurements, Munk and Zachariasen® obtain 

($9; = 87 a ((6 C/O)zis) q?BRw in/Zo In(taxis /w tn) Gi) (18) 

for a ray along the sound axis. Here m, Mais are val- 

ues of the buoyancy frequency at the surface and sound 

axis, and 6C/C is the sound velocity perturbation due 
to internal waves, q is acoustic wavenumber, B the 

scale depth of stratification (dn/dz=—z/B), R is range, 

wi, is inertial frequency, andj is the internal wave 

238 



cycles per day 

sal 10 100 
10° 

MID-STATION 
Nf 

x rae SASS 
wan 

VA y \h 

10" 

42k 
= 
jo} 
ne} v 

o 
a 

BERMUDA 
ss x 
2 — ¥ 
za Y Sea : 
wo LV, 

2 iy : =f VA \ 

10" NS HF 

art ary 
1 ae \ 

tor, . - 
10 10 10 

Hz 

FIG. 5. Spectra of the Cartesian pressure components X, Y 

(in arbitrary units) per bandwidth 2.58=10"° Hz. The com- 

puted curves are drawn for indicated values of v~! in seconds. 

mode number. An internal-wave-weighted average of 

7? equals (j*)=0.44, 0.34 for a mode scale number 
jy =3, 5, respectively. The values so computed are in 

very close agreement to those inferred from the acous- 

tic observations (Table II). A detailed calculation al- 

lowing for the proper ray mix leads to somewhat larg- 

er values. 

The important feature is that there are no free pa- 

rameters in this comparison between observed and 

computed values. We conclude that internal waves con- 

sistent with oceanographic observations can account for 

the measured acoustic fluctuations. Considering the 

idealization of the ocean model the agreement is rather 

too close. In particular, the assumed exponential strat- 

ification and resulting canonical sound channel fail to 

allow for the important intrusion of Mediterranean wa- 

ter. For further detail we refer to the original paper. 

V. PHASE AND INTENSITY STATISTICS 

The observed data (for example, Figs. 1 and 2) are 

customarily plotted in terms of intensity and phase. 

We are therefore interested in calculating the statisti- 

cal behavior of « and ¢ predicted by our model, these 

quantities being related to the Cartesian amplitudes by 

Eqs. (6)—(8). The statistical behavior of « and ¢ is 

dominated by the effects of “fade outs,” which are brief 
periods during which both X and Y are small and ¢ is 

rapidly changing. It is convenient to define a fade-out 

precisely as a time interval in which 

R<eu , (19) 
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where € is an arbitrarily chosen threshold fraction, and 

p. is the root-mean-square value of R according to Eq. 

(11). (The multipath intensity drop F= 20 log;)e dB, 
so €=0.1 corresponds to a 20-dB fade-out.) If the num- 
ber n of single-path signals is large enough, we expect 

to find the statistical behavior of the multipath fade- 

outs to be independent of the details of the single-path 

components. We conjecture that “large enough” means 
only that (1) n=3, and (2) no one singlepath component 
dominates the others. The conditions appear to be am- 

ply fulfilled®: »=14, 34 for midstation and Bermuda, 

respectively, and the relative contributions among these 

paths varies by less than a factor of two. 

We assume that » is “large enough” so that the multi- 

path components X and Y and their rates-of-change Ne 

and Y are independent Gaussian random variables. We 

then have two numerical predictions for the behavior 

of cand @. The statistical variance of : is 

(0?) — (0)? = 97/6 , (20) 

and so rms J=767/? 10/In10=5.57 dB as compared to 
the measured values 6, 2 and 5.6 dB for midstation and 

Bermuda, respectively. The correlation between the 

rates of change of ¢ and ¢ is 

(cll) 2 
Cayigayyre °° 83» i 

as compared to 0.66 and 0.68 for midstation and Ber- 

muda. The relations (20) and (21) are independent of 

the details of the fade-outs, but to obtain further infor- 

mation about the behavior of ¢ and ¢ we must examine 

the fade-outs more closely. The model predicts the 

following statistical properties of fade-outs. 

(1) The fraction of time occupied by fade-outs is 

ple)=e? . (22) 

(2) The average duration of a fade-out is 

tates , (23) 

(3) The average interval between fade-outs is 

T=[7/ple)|=20° ev) . (24) 
To form an easily visualizable picture of the fade-out 

process, we suppose that the signal components (X, Y) 
drift past zero at uniform speed during the fade-out in- 

terval. For this uniform-drift picture to be approxi- 

mately valid, we require that the change in the speed 

TABLE II. Comparison between mea- 

sured and computed values of v=rms 

oy. 

v (sec™?) 

Midstation Bermuda 

Acoustic measurements (MIMI) 

Fig. 5 2.8x10° 4,0x1073 
Eq. (17) DEBnel Ogo mead On 

Theory based on internal wave model° 

Eq. (18) for jx=3 2.9x107 4.4x1073 

Ray mix for jx=3 3.510 5.2107 



TABLE III. Computed fade-out statistics, 

Midstation, v!=5.9 min Bermuda, v!=4,2 min 

F=0, 20, 10 dB F=~%, 20, 10 dB 

Fractional time (Eq. 22 0 LO 10m 0 11072) don! 
Duration (Eq. 23) 0 1.6 5.3 min 0 a 3.7 min 

Interval (Eq. 24) % 165 53 min oo 111 37 min 

x during the interval be less than X itself. In terms of 

statistical averages, we require 

TRE) (Xe) F (25) 
Now our assumptions (7), (8), (9) imply 

(P)=S ns Oe)= 2 ny? (26) 

and therefore the condition (25) becomes 

gme<1 (27) 

The condition is barely satisfied with €=0.1, and so 

we assume in the following discussion that €=0.1 

(F= 20 GB). 

The computed fade-out statistics (Table II) for 10- 
dB fades do not satisfy this condition. Further, the 5- 

min averages in the observations will suppress most 

of the 20 dB and a good fraction of the 10-dB fade-outs. 

Thus, there is little left for a quantitative comparison. 

The computed durations are consistent with the observa- 

tion that for midstation 92% (61%) and for Bermuda 100% 

(90%) of the 20- (10-) dB fade-outs consist of single 

terms, that is, the duration is less than 5 min. We ex- 

pect to miss most of the 20-dB fade-outs, and many of 

the 10-dB fade-outs, particularly at Bermuda. In fact, 

97 (567) were observed at midstation compared to 275 

(860) computed, and 34 (375) at Bermuda compared to 

371 (1125) computed. All one can say is that the re- 

sults do not contradict the computations, but for ade- 

quate studies one will need to sample at least once per 

minute. 

Vi. RANDOM WALK AND SPECTRA 

We picture the movement of the multipath signal 

(X, Y) as a two-dimensional zig-zag random walk, 

shown schematically in Fig. 6. The track is composed 

of discrete straight segments of mean duration ¢, (to be 

estimated). We assume that the motion in each segment 

is uniform and that the tracks in different segments are 

uncorrelated. .Then the behavior of the multipath phase 

¢ is defined if we assign a probability distribution 

Q(6)d@ for finding a phase change A¢ in the range [@, 
6+d6] in a given segment of track. Values of Ag close 

to +7 are associated with fade-outs. 

The zig-zag walk model is not intended as a quantita- 

tive representation of reality but only as a guide to the 

analysis of observations. In particular, it does not 

make sense to try to compute the distribution function 

Q(6@) exactly. We have two pieces of information about 

Q(6). 

(1) The probability of a fade-out in any one segment 

of the track is 
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4en/? O(n) =(t,/T) » (28) 

where T is the interval between fade-outs given by Eq. 

(24). We thus obtain the estimate 

Q(7)= (20?) vt, . 

(2) The average phase change per segment is related 

to the mean value of |@| which we obtain from Eqs. (11) 

and (26): 

(29) 

(ao)= { | ¢| Q(0)de=(|b|)t,=vt, (30) 

We assume for Q(6) the simple form 

Q(6)=(27)*(1+b cosé@) , (31) 

and use the two conditions (29) and (30) to determine 

the two parameters ¢, and). The result is 

b=72(20? — 4) 74=0.63 , 
(32) 

vt,=m(1—b)=1.17 

The mean-square phase change per Segment is 

(ag) = f 6° Q(6)d6= 51? ~ 2b= 2. 04 ; (33) 

This means that the root-mean-square phase change 

per segment of track is 1.43 rad or 82°. Over a time 

t long compared with ¢, the mean-square phase wander 

is 

(oe (t) - (0) ) =avt, 

_ (dg?) _ 2a(7? -5) 
a Da, 3r* -12 

(34) 
=1.74 . 

The model is of course very crude; from a numerical 

experiment (Sec. VII) we find 

(((t) — (0) }?) =2. 78 vt . 

Over a month’s duration the expected random phase walk 

4X 

Y< 

FIG. 6. Random-walk model of multipath signal in the (X, Y) 

plane. A fade-out occurs when the track crosses the small 

circle of radius ey, 
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FIG. 7. Spectra of phase difference and intensity (bandwidth 

0.915 cpd). The computed curves are drawn for indicated val- 

ues of v=! in seconds. The area under the intensity spectra 

(e.g., the mean-square fluctuations) is independent of v. 

is by (2.78 vt)'/?/27 = 20-30 cycles (for comparison, see 
Fig. 4). 

We next obtain from the random walk model pre- 

dicted spectra for the quantities : and @. The spectrum 

of the Cartesian components X, Y was already given by 

(13) in Sec. ID. 

The high-frequency spectra of . and ¢ are dominated 

by the fade-outs. Each fade-out is approximated by a 

segment of track in which the Cartesian components 

(X, Y) move linearly, so that 

c(t)=In[ V(t =¢,,)? +R?) , 

p(t)=arctan[V(t—-2,,)/R]+const , 

where V, R and?,, are random variables. Taking 

Fourier transforms of Eqs. (35) and (36) and averaging 
over the variables V, R, ¢,,, we find the spectra 

F,(w) =4F, (w) =3v?w (37) 

valid at high frequencies when w>v . In performing 

these averages we used the probability distribution of 

(35) 

(36) 
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fade-outs given by Eqs. (22) and (24). 

The spectrum at low frequencies will be dominated 

by the phase-wandering described by Eq. (34). The 
Fourier transform of Eq. (34) gives 

Fy(w) = (av/t)w™ , (38) 

for w<v . Inthe case of «, we expect F (w) to be finite 

at low frequencies since :(¢) does not wander but re- 

mains bounded as /~~, We know the total variance of 

«from Eq. (20), so that 

fo Flo) da =(n?/6) (39) 
0 

Spectra consistent with Eqs. (37)-(39) are 

15,2927, 02, 2 27)-1/2 Fy(w) =20?w?[w? + cp?]-1/2 , (40) 

F.(w) = 2v7[w? +120 y?]3/2 

where c=37a‘=0.90. Both spectra show the expected 

transitionfrom low- to high-frequency behavior at w= v. 

We cannot expect this crude model to give exact quan- 

titative information about the spectra. Accordingly we 

modify Eqs. (38) and (37) to the form 

F,lw)=aXavTtw? , 

Fy(o)=4F (wo) =pxov7w™ , 
(41) 

for low and high frequencies, respectively. A numeri- 

cal experiment (Sec. VII) can be fitted to 

a= i 6, B = Zs 0 ’ 

which gives 

F,(w) =v? (wu? 41.27 v2)-1/2 | 

F (wy) = 4v?(w? + 2.43 v?)73/2 | 

Figure 7 shows the comparison between the computed 

spectra (42) and the observed spectra.” The overall 
agreement is not good. The high phase values at the 

lowest frequency band (over and above random walk) 

could be the result of coherent modulation by large- 

scale ocean features; some of it might be due to tides 

(Sec. VII). The predicted w! and w~ rolloffs for rate- 

of-phase and intensity spectra are borne out at midsta- 

tion, The high-frequency Bermuda intensities are 

aliased from undersampling. 

(42) 

Computed mean-square variations are 

phe ror uey 
@)e [~ F (w) dw = 2v? [sinha - a(1+@)1/7] , (43) 

0 

a= (1/23 )w'/v, 
and these become logarithmically infinite as w’—+. 

The upper limit is set by the integration time 6¢, and 

crudely w’=27/5t. Results are given in Table IV. 

TABLE IV. Root-mean-square phases and intensities (w’ 

=0.0208 sec"), 
oO 

Mid station, v!=357sec Bermuda, v~!=250seo 

rms 66 rms 6/ 

Computed (Eq. 43) 0.19 cycles 7.0dB 0.26 cycles 8.9dB 
Observed (Table I) 0.17 4.9 0.25 6.9 
S06—\=e—NuNiNVNVNVQVQ0"”"0?*awx0T€=0—sa00S oeoa=oaoO=$q$q$qaDmom9SS ee”: 

rms 56 rms 6/ 
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FIG. 8. Computer simulation of multipath statistics. The 

curves labeled Fy (w) give the average spectra of the random 

single-path input functions dy (t); solid: a bandlimited (2—24 

cpd) uniform spectrum, and dashed: a w* spectrum above 2 

epd. For both cases (dj) =1/(5 min)*. The resulting spectra 
of the multipath Cartesian components X(¢) and Y(t) (solid for 

w, dashed for w~*) are in good accord with the predicted 

Gaussian behavior [Eq. (16)]. At high frequencies the com- 

puted spectra are too wiggly to be plotted, they fall within the 

limits of the shaded band. 

Vil. NUMERICAL EXPERIMENT 

Figures 8 and 9 show the results of numerical ex- 

periments. The singlepath series 5¢,(t) were gener- 

ated from random numbers for two cases: (1) a band- 

limited (2-24 cpd) white spectrum and (2) an w~® spec- 

trum for w >2 cpd (computed by accumulating random 

5°o,). The singlepath phase series are formed by $,(¢) 
=)'.95,(¢), and the multipath according to 

10 

X(t) = ah coso¢;=Rcos¢ , 
ial 

and similarly for Y(¢), with R; arbitrarily set to 0.1. 
Spectra were computed for X, Y, ¢,2. This computa- 

tion was repeated ten times (using, of course, different 

random noise series), and an average of the spectra so 

obtained has been plotted. The results are essentially 

the same for the w°’ and w~ spectra of }; (which bracket 

the theoretical w+ spectrum®), as expected. 

For both cases we have taken v?= (6%) =1/(5 min)’, 
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representative of MIMI. The input series consist of 

2880 terms each, interpreted as a one-day record at 

5-min intervals. This sampling rate 6/ was chosen by 

trial and error to avoid ambiguities in multipath phase 

during occasional fade-outs. It would thus appear that 

vbt= yy would give adequate sampling for a field exper- 

iment. 

Figure 8 shows the average of the 100 input spectra, 

and the associated Cartesian spectra according to Eq. 

(16); these provide a check on the numerical experi- 

ment. The spectra F.(w) and F3(w)=w*F,(w) in Fig. 
9 have been fitted by Eqs. (42). 

VII. TIDES 

The tidal contribution to the acoustic fluctuations has 

been emphasized in the literature, ® perhaps because of 

a superficial resemblance of the phase fluctuation ¢(t) 

to tidal records (Fig. 4). Our conclusion is that tides 

play a significant but not dominant role. We shall dis- 

cuss three hypotheses: a coherent modulation of the 

acoustic transmission by surface tides; a coherent 

modulation*by internal tides at the terminals; an inco- 

herent modulation by internal tides along the entire 

transmission path. Unfortunately, the evidence does 

not lead to a clear-cut decision. 

For orientation we have put together an order-of- 

magnitude summary (Table V) of amplitudes of tides 
and internal waves (a rash extrapolation of recent com- 

eq. 42 
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FIG. 9. Spectra of multipath intensity and rate of phase from 

the numerical experiment, corresponding to Fy ,(w) ~ w? (solid) 
and w~* (dashed), respectively. 



1 

1 

= (=o 

te 
a 
a+ 

I 

sk 

FIG. 10. Profiles of vertical displacement ¢ (left) and hori- 

zontal velocity u (right) for surface (mode 0) and internal 

(1,2) tides. Scale is arbitrary. 

pilations’), For the internal continuum estimates are 

based on a recent version of the GM75 model.°® All 

phases are considered random, and so the totals are 

summations in squared amplitudes. Actual values de- 

pend on the local temperature and salinity prpfiles, and 

vary considerably from place to place. Mode numbers 

refer tothe number of zero crossings of the horizontal 

current u(z) (Fig. 10). Here we distinguish between sur- 

face tides (mode 0) with a uniform current from top to 

bottom, and internal waves and tides (modes 1, 2,...). 

Surface tides have wave lengths of 3000 km, internal 

tides 100, 60 km for modes 1, 2. Surface tides are 

known to be sharply peaked at M, frequency; internal 

tides are intermittent and broadened. 

The sound velocity is perturbed by both vertical dis- 

placement and horizontal currents: 

5C/Cx=(10, 1, 0.01)x10% 

for ¢=1m, at depths of 0.1, 1, 4km , 

5C/Cx0.7xX10°%, for w=1 cm/sec, at all depths 

For surface tides it would appear that for a typical ray 

path the w effect dominates, but for internal waves and 

tides the ¢ effect clearly dominates except at abyssal 

depths. Further, most of the w energy (but only a frac- 
tion of the ¢ -energy) is at inertial frequencies, yet we 

will show that there is no discernible inertial peak in 

the acoustical spectra. 

To study tidal and inertial effects we need to analyze 

the acoustic records at high resolution. Accordingly 

the records were divided into the initial and final one- 

half months (somewhat overlapping for Bermuda), and 

the spectra computed for each harmonic. In this way 

the spectra are computed at precisely the frequencies 

of major tidal constituents. The two spectra are com- 

bined for obtaining the average power in each band, 

The statistical reliability is manifestly poor; there are 

only two degrees of freedom in the fortnightly analysis, 

and somewhat less than four degrees in the combined 

analysis. Phase spectra (Table V) show a significant 
semidiurnal tidal peak, Cartesian spectra (Table VII) 
do not. (spectra likewise have no tidal peak.) We 

estimate 2.5 square cycles (subtracting background) in 

the semidiurnal ® peak at Bermuda, as compared to a 

total variance of 35 square cycles (excluding subinertial 

drift), For the important 566 spectrum, tides account 
for 4x10 square cycles out of a total of 60x 10° 
square cycles. 

The simplest interpretation is that the current asso- 

ciated with surface tides (wavelength 3000 km) co- 

herently modulates phase along all paths. The travel 

time R/C is modified by a fraction u/C, and 

46 = 270(R/C) (u/C)= 2.3 cycles, 

for 270= 406 Hz, R=1250 km, u=1 cm/sec, C=1.5 km/ 

sec. Asa model of coherent phase modulation, set 

TABLE V. Representative magnitudes in the Northwest Atlantic for the vertical displacement ¢ and horizontal 

velocity u of tides and internal waves at thermocline, sound channel and abyssal depths (h=0.1, 1, 4 km). See 

text. 

Designation (mode) surface (0) internal (1) 
ea 

internal (2) internal 
I 

€(m) u(cm/sec) h(km) é(m) u(em/sec) €(m) —u(em/sec) t(m) —u(em/sec) 

Diurnal tides 

0.1 0.1 0.2 

1 0.08 0.2 20%—30% of semidiurnals 

4 0.02 0.2 

Semidiurnal 

0.1 0.5 1 1.4 0.9 1250.8 3 2 

al 0.4 1 2.3 0.3 2 0.2 5 10, 

4 (el 1 4.6 0.2 4 0.2 10 5 

Inertial cusp (wy <w< 2u,) 

0.1 1.8 2.8 1.6 2,4 4 6 

al small elace lat} Zo LG ve 4 

4 15 0.5 13 0.4 33 ul: 

Total continuum (including cusp) 

0.1 3.2 3.2 2.8 2.8 7 7 

1 no estimate bbe ed 458) | 16 12 4 

4 23 0.5 20 0.4 50 1 
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TABLE VI. Spectra of phase difference 64 and phase 4 in cycles? per band (band width is 0.072 cpd=2/month). The spectra of 

phase difference are given separately for the first and second fortnight. 

Bermuda Midstation 

5b & 5b $ 
epd 1st. 2nd Comb. Comb. 1st 2nd Comb. Comb. 

Subinertials 

0.07 0.05 1078 0-10 1078 0.07x 107° 54.38 0.07x 1073 0.011079 0.04x10° 46.65 
0.14 0.08 0.05 0.07 7,40 0.04 0.00 0.02 14.81 
0.21 0.07 0.00 0.04 1.86 0.04 0.01 0.02 6.83 
0.29 0.03 0.04 0.03 3.94 0.01 0.01 0.01 4,29 

0.36 0.06 0.12 0.09 POH 0.08 0.00 0.04 as 
0.43 0.02 0.08 0.05 1.49 0.07 0.01 0.04 ae 
0.50 0.09 0.01 0.05 0.99 0.01 0,01 0.01 rai 
0.57 0.01 0.04 0.02 0.69 0.01 0.02 0.02 z 

0.64 0.06 0.02 0.04 0.27 00 0.02 0.01 0.26 
0.72 0.11 0.04 0.08 0.77 01 0.01 0.01 0.45 
0.79 0.06 0.00 0.03 0.32 202 0.03 0.02 0.35 

0.57 x1078 74,32 0.24x10° 80.45 

Diurnals 

0.86 0.021078 0.111079 0.06 107° 0.29 0.01* 1078 0.001078 0.01™ 1079 0.30 
: 0.93(0,) 0.07 0,03 0.05 0.15 0.05 0.00 0.03 0.30 

Inertials ‘s 
1.00(K;) 0.04 0.23 0.14 0.22 0.02 0.03 0.03 0.16 
1.07 0.12 0.04 0.08 0.12 0.08 0.01 0.05 0.23 

1.14 0.10 0.08 0.09 0.30 0.09 203 0.06 0.26 
2 0.06 0.16 0.11 0.36 0.03 03 0.03 0.35 
1,29 0.20 0.02 0.11 0.29 0.10 06 0.08 0.21 
1.36 0.17 0.10 0.14 0.13 0.00 .02 0.01 0.12 

0.78% 10° 1.86 0.30%10° 1.93 

Semidiurnals 

1.60 0.271078 0.13 1073 0.20107 0.28 0.031078 0.10 107° 0.061078 0.06 
1.66 0.05 0.31 0.18 0.24 0.14 0.22 0.18 0.04 
TLS) 0.81 0.40 0.61 0.34 0.04 0.05 0.04 0.20 
1.80 0.23 0.21 0.22 0.25 0.01 0.29 Owls 0.14 

1. 86 3.44 1.83 2.63 1.84 0.13 0.89 0.51 0.16 
1.93(M)) 0.87 1.91 1.39 0.86 3.08 1.62 2.35 1.64 
2..00(S.) 1.88 0.17 102 0.53 0.64 Bal2 1.38 0.79 
2.06 0.71 0.42 0.57 0.32 0.01 0.24 0.13 0.24 

2,13 0.19 0.30 0. 24 0.17 0.01 0.06 0.03 0.03 
2.19 0.44 0.13 0.29 0.08 0.01 0.06 0.04 0.10 

7,35%10° 4,91 4,87x10% 3.40 

Total Variance, !° all frequencies 

Fortnight 60x 1075 60x 107° 60x 1075 90 31x 1073 27x 1078 29x 1078 98 
Total 60x 1078 110 291078 548 

Rei =) R,ei%its®) = 18°F Rieiti, j=y=1 , (44) 
i i 

and so the multipath phase is rotated by the single-path 

phase shift A®. The measured 2.5 square cycles in 

the semidiurnal tidal peak of multipath phase corre- 

sponds to an amplitude of /2X2.5=2.2 cycles, in close 
agreement with the computed 2.3 cycles for a typical 

tidal current. But for the Cartesian multipath, the tidal 

energy peak is reduced by the number of paths (n= 34 

for Bermuda) and should no longer be discernible. So 

the hypothesis is in very satisfactory agreement with 

observations. 

But it turns out that the MIMI propagation path runs 

through the MODE expedition area, ‘ the only place 

where a grid of deep-sea tidal pressure measurements 

have ever been taken (Fig. 11). Currents can be com- 

puted from the pressure gradients. M, tidal currents 

have amplitude close to 1 cm/sec, but the MIMI path is 

almost at right angles to the major axis of the tidal el- 

lipse, and the MIMI component is small and poorly de- 

termined (Table VIII). (A computer model of tides” 
has the minor axis in opposite phase.) We expect the 
tidal phase (Greenwich epoch °G) of maximum current 

towards Bermuda to coincide with minimum acoustic 

phase; i.e., 180°+°G for &(t) should be about 180° to 

agree with MODE measurements. In fact, phases vary 

from fortnight to fortnight; there is no resemblance be- 

tween midstation and Bermuda. 

The variability from fortnight to fortnight of a 



TABLE VII. Power per band (bandwidth is 0.072 cpd=2/month of Fy(w)+Fy(w) for the first and second fortnight, and for the 

combined record. 
EEE 

Bermuda Midstation 

cpd 1st 2nd Comb. 1st 2nd Comb. 

Subinertials 

0.07 0.34x 101! 0. 24x 101! 0.29x 101 0.51~ 10!* 0.14 10” 0.32x10!? 
0.14 0.12 0.22 0.17 0.12 0.60 0.36 

0.21 0,22 0.07 (0,25 0.65 0.43 0.54 
0.29 0.12 0.08 0.10 0.10 0,24 (pay? 

0.36 0,02 0.17 0.08 0.43 0.07 0.24 

0.43 0.23 0.19 0,21 0.06 0.37 0,22 

0.50 0.12 0.04 0.08 0.46 0.10 0.28 

0.57 0.08 0.18 0.13 0.37 0.30 0.33 

0.64 0.17 0.16 0.16 0.16 0.29 0.22 

0.72 0,15 0.04 0,09 0.08 0.17 0.13 

0.79 0.13 0.53 0.33 0.36 0.44 0.40 

SY AY ion 1.80 3,28 3.17 3,23 

Diurnals 

0.86 0.27% 101! e240! 0.25% 104 0.2410! 0.1510! 0. 20x 101? 
Inertial ~0.93(0;) 0.06 .16 0.11 0.57 0,10 0.34 

at 1. 00(K;) 0.08 seul 0.15 0.15 0.72 0.44 
1.07 0.29 12 Oa 20 0.82 0.47 0.64 

1,14 0.04 03 0.04 0.24 0.20 0.22 

L 2k 0.17 07 0.12 0.36 0.64 0.50 

1,29 0.10 malat 0.10 0.26 0.10 0.18 

1.36 0.36 08 0,22 0.13 0.25 0.19 

CY 1.02 1.19 2.78 2.63 2.71 

Semidiurnals 

1.60 0.32x10!! 0.14101! 0.23104 0.22x 101? 0.06 101° 0.14x10!? 
1,66 0.13 0,12 0.13 0.07 0.19 0.13 

1.73 0.21 0,16 0.18 0.24 0.09 0.16 

1.80 0.04 0.08 0.06 0.27 0.05 0.16 

1.86 0.23 0.10 0,17 0.42 0.09 0.25 

1.93 (M,) 0.01 0,22 0.11 0.43 0.04 0.23 

2.00 (So) 0.07 0.14 0.10 0.39 0,19 0.29 

2.06 0.19 0.01 0.10 Witsts) 0.30 0.59 

2,13 0,29 0.04 0.11 0.13 0.05 0,09 

Zid 0.18 0.13 0.16 0.39 0.11 0.25 

1,57 1,14 1.35 3.45 1.16 2.31 

Total variance, all frequencies 

Fortnightly 132x101! 174x 10!” 

broadened semidiurnal phase-peak is in line with the This suggests that the location of the acoustic source 

known character of internal tides. (At Bermuda the and receiver in the generating area of internal tides 

spectral peak occurs at one harmonic below M, fre- may be a Significant factor. 

quency.) Internal tides have wavelengths short com- 

pared to the acoustic paths, and one would expect them 

to produce an incoherent phase modulation. An excep- 
F . é ; TABLE VIII. M, component of tidal current and acoustic 

tion might be the terminal effects. Internal tides are 

generated by conversion from surface to internal modes aaa 

in regions of prominent bottom topography, which is Tidal current, azimuth 55° Amplitude °G 

just where the hydrophones are located. In such re- MODE GNoReGhononte Onstcmn/scommao 

gions the internal tides may dominate, whereas in the DarlkeeHonderehotimodel 0.5 20 

open sea internal tides typically have 10% of the internal 

wave energy. Take a large vertical tidal displacement Acoustic phase &(t) Amplitude 180°+°G 

¢=10 m, corresponding to 6C/C =10"* at 1-km depth; TWiastion datiortaight === @eyeles, 0760, 
then in a near zone of radius R=)/27, with A=100 km 2nd fortnight 1.1 260 
for the wavelength of the lowest internal tide mode, we ' 
neve Bermuda Ist fortnight 0.3 105 

2nd fortnight 1.3 179 

AG = 270(R/C) (5C/C) = 2.6 cycles. 
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Finally, there is the possibility of incoherent phase 

modulation by internal tides along the entire path. This 

is then analogous to the incoherent modulation by inter- 

nal waves in general. Internal tides have typically one- 

third the amplitude of the internal waves (Table V), and 

so contribute 10% to (62). If this were the only contri- 
bution, then because of the periodic input at tidal fre- 

quencies w,, the multipath spectra would be concen- 

trated at w,, 2W,, 3w,, ..., and the local energy density 

would be high. In the presence of internal waves there 

is interaction with all frequencies, but some remnant of 

the tidal line spectrum can be expected to remain. The 

problem needs further consideration. 

ACKNOWLEDGMENTS 

John Clark and his associates have furnished the 

acoustic records on which this analysis is based. 

Flicki Dormer and Betty Ma have carried out the data 

reduction. Discussions with Ted Birdsall have been 

most helpful. 

APPENDIX A. 

Equation (10) can be written 

e n 

G2 =v?=v5 [ widw=vélns , 
Win 

where s=n/w;>1. Hence 

cr) n 

G=v0f wdy ~$n* v2 
Win 

and 

OD. at -20/b 
a? Op liswee ae 

for n=nge*/, ng=5.2X10° sect, v?=3.2x10° sec®, 

APPENDIX B. 

In some oceanic models we may have a relation 

(64 ,=0(63),? , (9’) 
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FIG. 11. 

Greenwich epochs. 

My tidal currents in MODE 

area between Eleuthera and Bermuda, 

The arrow toward 0°G refers to the 

current vector (scale below) when the 

Moon passes over the Greenwich merid- 

ian; 30°G, 60°G,..., refers to other 

The upper ellipse 

refers to a computer model by Parke 

and Hendershott, the lower ellipse is 

based on deep-sea tide measurements. 

with a coefficient f replacing the 3 which appears in 

Eq. (9). In this case the following changes need to be 

made in the results of Secs. Il and III: 
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Q(m) = (20?) £32 

(ag)=f7? , 
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a=(n/3) + (12/8) (nft/? —1)4 

(26’) 

(27’) 

(28’) 

(29) 

(30’) 

(33’) 

(34’) 

For example, if f=9, a=1.19 and c=7/2a=1.32 in 
Eq. (40’). 
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with the j contributions as before. 
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Research Institute, supported by the Advanced Research 

Projects Agency. Subsequent analysis has been supported by 

the Office of Naval Research. 
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ACOUSTIC PROPERTIES OF THE SEA FLOOR 

John Ewing 

Lamont-Doherty Geological Observatory 

Columbia University 

Palisades, New York 

Studies of the reflection and refraction of sound by the 

ocean bottom and sub-bottom have provided the basis for 

characterizing geographical regions (provinces) in terms 

of sound velocity versus depth functions. Velocity gradi- 

ents vary appreciably from province to province in response 

to variations in sediment type and in mode and rate of 

deposition. When the gradient is expressed as V = V_ + KT 

(where T is one-way travel time) the value of K geneYally 

lies between 0.5 and 1 sec ~. These values represent 

average gradients in 1 km or more of sedimentary section. 

Recent analysis of two data sets from the Hatteras abyssal 

plain has provided an opportunity to examine local varia- 

tions in the velocity versus depth function and to investi- 

gate energy distribution among the various reflected and 

refracted paths. The region can be characterized reason- 

ably well by two linear velocity versus depth functions: 

vV = 1.5 + 2T for the upper 400-500 meters and V=1.9+T 

for the lower part of the sedimentary section. Standard 

deviations of sound velocity in the two data sets are be- 

tween 50 and 100 meters per second. 

For frequencies in the range of 60 Hz and lower, the signal 

amplitudes associated with rays penetrating to a reflector 

500 meters deep in the sediments are, in a substantial range 

of grazing angles, 6 to 10 decibels higher than amplitudes 

associated with rays reflecting from the sea floor and 

shallow interfaces. Comparably high signal amplitudes are 

received at discreet ranges from still deeper levels, down 

to the top of the igneous basement. Some variations in 

signal level can be related to multipath interference and 

geometrical focusing effects, as well as to change in co- 

efficient of reflectivity associated with incident angle. 

The following is a brief summary of work we have been doing in 

the marine seismology group at Lamont on ocean bottom acoustics. We 
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have been looking at bottom effects through the use of expendable 

sonobuoys and air gun sound sources and have recorded a large number 

of variable-angle reflection profiles. Since our ships travel around 

the earth widely, this has given us a chance to look at the bottom of 

the ocean in many places and to compare the behavior in one place 

with that in another. 

Although not completely satisfied with the quality of each of 

our measurements, I do think that our total data bank is starting 

to give meaningful information about what is going on, particularly 

at low frequencies, when sound encounters the bottom. 

Figure 1 is an example of an airgun-sonobuoy reflection pro- 

file, the ordinate representing reflection time and the abscissa 

representing distance. At these low frequencies (about 20 to 60 Hz), 

several reflectors appear quite clearly as a distinct reflection 

hyperbolic curve. The sea floor reflection intercepts the ordinate 

at about 6.2 seconds and prominent reflections from within the 

sedimentary section have intercepts of about 7.2 and 8.2 seconds. 

The intercept at about 9 seconds corresponds to igneous basement. 

It is quite clear at ranges between about 12 and 16 km (corresponding 

to grazing angles on the bottom of 30 degrees or so) that a lot of 

these reflection curves are starting to run together. When they do, 

we get some interference patterns showing up and the signal levels 

observed in that part of the profile vary extremely widely over 

(I would guess) something like 20 dB. 

Even before we get to these moderately small grazing angles, 

at frequencies in the vicinity of 20 Hz, we are already getting a 

lot of energy from the sub-bottom interfaces. By the time the grazing 

angle reaches 45 degrees, in many places we get at least as much low- 

frequency energy from reflectors at depths of 500 meters or more as 

250 



ACOUSTIC PROPERTIES OF THE SEA FLOOR EWING 

SAIN YS wade 

au
Os
S 

pu
e 

S
T
P
A
T
I
I
e
 

(
a
A
e
K
 

a
y
 

WO
LF
 

SA
AE
M 

P
A
D
I
T
 

FA
I 

pu
e 

(S
9U
TT
 

W
Y
S
T
e
I
S
)
 

9A
VM
 

J
I
S
L
T
P
 

a
d
e
F
i
n
s
 

B
u
r
m
o
y
s
 

a
 

e
e
 

e
e
 

e
e
 

e
s
 

7) 

yy 

d
I
I
d
O
u
d
 

A
O
N
A
O
N
O
S
 

- 
N
N
O
Y
I
Y
W
 

“T
 

e
a
n
b
t
y
 

‘weisetTp 
ay} 

FO 
W
Y
I
T
A
 

L
O
M
O
T
 

ut 
i
v
e
d
d
e
 

s
T
e
A
T
I
I
e
 

PpseYdaTjfei 
a
[
B
u
e
-
a
p
t
m
 

p
e
s
y
)
 

p
a
q
d
e
r
j
y
a
y
 

‘
(
s
a
a
i
n
o
 

DT 
T
O
q
I
a
c
d
y
)
 

s
S
a
d
e
F
1
o
z
U
T
 

wo 
O
G
-
q
n
s
 

p
u
e
 

I
O
O
T
F
 

vas 
S
T
T
F
O
L
 

-
u
n
d
i
t
y
 

a
n
 

S
t
e
e
r
.
 

S 
. 

. 
oe 

B
e
s
 

s e OSDP Value 

ZO km. 

ce 

~ 

Ni ae 

Wieck ears 

251 



EWING: ACOUSTIC PROPERTIES OF THE SEA FLOOR 

we get from the sea bottom. That says at least two things to me: 

That many sub-bottom interfaces have rather high reflectivity and, 

probably to nobody's surprise, that the attenuation in these moder- 

ately soft sediments is certainly not very high for frequencies in 

the 20 Hz range. 

We see this low attenuation demonstrated in a slightly different 

way as we travel along almost any ocean basin where the igneous rock 

surface of the earth's crust is covered by a variable thickness of 

sediment. As you cross such a bottom and make a low-frequency echo 

sounding record, you can see little difference in the intensity of 

the reflections from the basement surface whether it is covered by 

a few tens of meters or a few hundreds of meters of sediment. 

We have recently made several airgun-sonobuoy measurements in 

the Hatteras abyssal plain in connection with some joint work with 

NUSC. I was particularly interested in the Hatteras abyssal plain 

because I remember from some of the early work in bottom loss 

measurements made at 3.5 kHz that the Hatteras abyssal plain was con- 

sidered to be about as good a reflecting bottom as we knew. We knew 

from piston coring and some of the Glomar Challenger work that this 

abyssal plain had quite a lot of sand and silt in it, so it ought to 

be a good reflecting bottom. We also knew there was another reflector 

about 500 meters below bottom, one that we observed very broadly over 

the North Atlantic Ocean, and we knew that it corresponded to some 

closely spaced layers of chert (flint) in otherwise soft sediment. 

I was quite interested to see how the reflectivity of the sea floor 

in this nice, smooth abyssal plain would compare with the reflector 

about 500 meters below the sea floor that I knew had some fairly 

hard rock associated with it. 
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Sure enough, in all of the profiles there, by the time we were 

out to grazing angles of 30 degrees, we consistently had signal 

levels coming from this subsurface reflector anywhere from 6 to 10 dB 

higher than signal levels from the sea bottom. In some places, 

usually at grazing angles of 30 to 45 degrees, it was common for the 

largest signal received in any part of the signal train to be coming 

from even deeper than the 500-meter level, sometimes coming from the 

top of the igneous rock itself, 1,000 meters or more below bottom. 

One thing more. Notice in Figure 1 that at these farther ranges 

some signals are arriving appreciably ahead of the reflected signals. 

These are head waves coming from some of the deeper, high-velocity 

layers. Although they are interesting and important to us in geo- 

physics, they do not carry much energy. They may appear to be rather 

energetic in the figure, but that is because this particular buoy is 

an SSQ41 buoy with AGC. 

To summarize this part of my talk — there are large areas of 

the sea floor where, at frequencies below 100 Hz, appreciably more 

energy is returned to the surface by reflection from interfaces well 

below the bottom (hundreds of meters) than is returned from the sea 

floor itself. 

We also get velocity information from the airgun-sonobuoy pro- 

files. The technique that we have been using is rather standard, 

developed for geophysicists by Dix many years agc. It is known as the 

x? - 7p? method and is a purely geometrical treatment of the problem 

that depends on the fact that the shot point and receiving point 

separate during the experiment. 

These measurements are easy to make. From them we can calculate 

interval velocities for each layer that is bounded by distinct 
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interfaces. If in one province we get enough such measurements, we 

can construct a plot of interval velocity versus depth in the sedi- 

mentary column. 

We usually plot the depth function in one-way travel time, in 

seconds. The inset in Figure 1 shows a velocity/depth plot for the 

western North Atlantic rise. Here, as in most other places, we find 

that we can fit these data with a function that is linear in time 

although not quite linear in depth. If we express V = Nes + kT, where 

T is one-way travel time vertically through the sedimentary section, 

k in this equation is in units of jen/see Most physicists, I think, 

tend to think of sound-speed gradients in depth rather than time, 

which are typically expressed in terms of kilometers per second per 

kilometer or just in Seconcemae In most of the velocity range that 

we are dealing with in soft marine sediments, these two types of 

gradients turn out to be only about a factor of two apart. In other 

words, a gradient of about one per second corresponds to a k of 

approximately two kilometers per second per second. 

In a lot of our measurements of this type from around the world, 

we characterize different areas in terms of this value, k, which, in 

fact, is characterizing the sea bottom in terms of velocity gradient 

in the sediment. Before I summarize these measurements, refer again 

to the inset in Figure 1. I pointed out that there is quite a lot 

of scatter in these data. The reason we can get this many data 

points is that the geology changes even in a rather local region. At 

one place we may see a reflector at some depth below the sea bottom; 

in other places we may be measuring it at half that depth or twice 

that depth. So if we make enough measurements, we get a fairly good 

distribution of layer thicknesses,and, therefore, we get several 

values of T. For each value of T, which is a measure of depth in the 

section, we calculate interval velocity so we can get a good distribu- 

tion of velocities versus depth. 
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In the areas that we characterize by certain values of k, we 

notice that typically the standard deviation in velocity determina- 

tion is about 100 meters per second. I have not been satisfied with 

that value; I thought we could probably do better. One of the 

reasons we wanted to do the set of measurements in the Hatteras 

abyssal plain was it gave us a chance to go to a localized area and 

do several of these experiments to see how much the scatter in deter- 

mining velocity resulted from real geological change and how much, 

perhaps, resulted from some shortcoming in our method. 

It turned out that in the closely grouped measurements in the 

Hatteras abyssal plain the velocity scatter did not appreciably change 

over what we had derived from 30 or 40 measurements over the whole 

Hatteras abyssal plain and part of the lower continental rise. This 

result caused us to consider whether our treatment of these data SES 

paying enough attention to the details of the structure in the water 

column. 

We had initially treated the water column in the x? - 7 calcu- 

lations as though it were a constant velocity layer, figuring that 

we were working mainly with rather steep ray paths for which the 

constant velocity assumption should produce only a small error. In 

our first attempt to improve this model, we divided the water layer 

into several layers, but this did not seem to reduce the scatter in 

the velocity versus depth determinations. A better water model 

shifted the average somewhat, not surprisingly, but it didn't really 

take the scatter out of these data. 

A scheme proposed by George Bryan and representing an effort 

to escape the water layer model is demonstrated in Figure 2. It is 

a very simple two-layer model, water and sediment with a reflector 

at the bottom of each layer. The reflection curves and ray paths are 

shown. 
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Figure 2. DIAGRAM (FROM BRYAN, 1974) SHOWING RELATIONSHIP 
OF BOTTOM-REFLECTED AND SUB-BOTTOM-REFLECTED 
RAYS WITH DERIVATIVES OF TIME VERSUS DISTANCE 
CURVES 
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As you can see from the model, it is possible to take pairs of 

rays in which the rays from the bottom reflection and from the sub- 

bottom reflection are parallel to each other in the water column. If 

we differentiate these reflection curves, the derivative tells us 

the slope of the curve, of course, and, physically, the inclination 

of the ray at the sea surface at that point. In effect, if we go 

along these reflection curves and find pairs of derivatives that are 

the same, we are finding pairs of rays (of which one is a bottom 

reflection and one is a sub-bottom reflection) that have traveled 

parallel, and presumably equal, time paths through the water. Thus, 

each pair of common derivatives gives us a AX and a AT associated 

with the path through the sediment layer, as shown in the diagram. 

We then carry out this procedure over a wide range of AXs and ATs, 

plot an x? - 0 profile and get a value of interval velocity for the 

sediment layer. 

We treated a substantial amount of our data in this way and we 

still have a lot of scatter — more than I like. This treatment 

should take account of the water structure, but, of course, it only 

takes account of a fixed water structure. No matter how you analyze 

these data, the water layer is a part of the model and if it changes 

significantly during the course of the experiment, you still have 

a problem. 

We plan to put our entire experiment on the bottom of the ocean 

as one way to answer the question for certain whether our scatter in 

velocities versus depth results from the water column or from geology. 

I'd be very surprised and disappointed if there were no geological 

effect. But I have yet to be convinced that all of the variations 

are geological ones. 
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Figure 3 shows the distribution of our sonobuoy wide-angle 

reflection measurements on a world basis. The boxes indicate areas 

where we seem to have enough measurements in a geologically definable 

province to characterize it. Figure 4 shows a valne of k (gradient) 

for each of these same areas. 

Do not pay any attention to the central equatorial Pacific area. 

It indicates a very high value of gradient with a k value of 3.9. 

Although the value is correct, it represents a special case of some 

very thin, low-velocity sediments on top and some very high-velocity 

limestone at the bottom. It more properly ought to be treated as 

a two-layer case. The other numbers are the best values we can pro- 

duce at present. Remember that the numbers represent k in the linear 

expression V = Nis adie 

Our methods of measuring from the surface are just not good 

enough to determine with precision the uppermost sediment velocity 

(< 100 meters thickness), but some characteristics of these data 

give us very good reason to believe that in the uppermost 100 meters 

or so is a considerably steeper gradient than the value listed for 

the entire section. 

I want to discuss now the distribution of sediments. This is 

important because if negative bottom loss is a reality, it is be- 

cause velocity gradients (and good sub-bottom reflectors) form, in 

effect, an acoustic lens at certain ranges. The more sediment we 

have, the more possibilities we have for acoustic lenses of various 

characteristics, to say nothing of the smoothing effects of sub- 

stantial thicknesses of sediments. So it is of some interest to us, 

I think, to know the distribution of sediments around the world. 

Figure 5 gives the distribution for the Atlantic. Although you 

cannot see the thickness contours, you can see the hatched region in 
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Figure 5. SEDIMENT DISTRIBUTION IN THE ATLANTIC OCEAN 
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the middle of the ocean where there are less than 100 meters of sedi- 

ment. The stippled area on either side has more than a kilometer of 

sediment. Close to the continental margins on either side are as 

much as 5 or 6 kilometers of sediment. 

Figure 6 is a similar display for the North Pacific Ocean. In 

this area, and in several other localized areas, we now have more 

detailed charts but this shows the general distribution. As in the 

Atlantic, we find little sediment, less than 100 meters, in broad 

areas. Sediments in the northeastern part are much thicker because 

of a great addition of turbidite sediments (detrital sediments). 

There is a nice thick belt of sediments along the equator caused by 

upwelling of deep water and high biogenic productivity. In the 

western Pacific, we find a distinct case of a two-layer situation 

with a thin layer of soft sediment overlying a much thicker layer of 

very hard sediment, the hard sediment being a cherty limestone. 

Figure 7 shows the results of one of the JOIDES holes in the 

western Pacific where we paid particularly close attention to several 

factors. The reflection profile is traced on the right and next to 

it are shown interval velocities. The lithologic section that was 

cored is in the middle. This is a hole about 1,200 meters deep. 

The heavy trace on the left is a plot of the age of the sediment 

down the hole in millions of years. The dashed trace is the drilling 

record in terms of drilling time in minutes per meter. 

We got nice correlations in the drilling record with the reflec- 

tors at about 600 meters and 800 meters. Most of the upper 600 meters 

of the section is just ooze, a microfossil ooze. At 600 meters, an 

exceedingly sharp interface occurs where chert (flint) layers have 

developed. This interface represents the rather abrupt transition 

between soft sediment, that you can make a mud ball out of, and these 

very hard chert layers that you can make arrowheads out of. 
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Below the 600-meter interface is reasonably firm sediment down 

to about 800 meters where calcium carbonate chalk turns to limestone, 

really hard limestone. This transition also produces a very good 

reflection and a very sharp drilling break. At 1,200 meters we hit 

basalt under the limestone. 

We now have several such holes from the JOIDES program that are 

well enough cored and geophysically examined so that we are starting 

to know what causes a lot of our reflectors. I think you can under- 

stand that it is not only interesting to us in a geological sense to 

identify the reflectors, but that the identification also permits us 

to use geological reasoning to interpolate between data points and 

gradually to build up a more complete geoacoustic model. 

Figure 8, a section based on seismic data and drilling in the 

Atlantic, is the southern part of the Hatteras abyssal plain. We 

have identified some friendly Atlantic reflectors here. We have an 

interface in the sediments, fairly shallow in some places, deeper in 

others, labeled "A" which we now know is a series of chert beds, 

nearly the same age as those in the Pacific. A thick layer of clay 

is underneath, then again nice hard limestones (8) near the base of 

the section, and then the basalt (B). 
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\ i 

Figure 8. BLOCK DIAGRAM SHOWING PRINCIPAL REFLECTORS AND 

SEDIMENT LITHOSTRATIGRAPHIC UNITS IN THE WESTERN 

PART OF THE NORTH ATLANTIC 
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DISCUSSION 

DR. W. H. MUNK (Institute of Geophysics and Planetary Physics, 

University of California at San Diego): Is the scatter on Figure 1 

oceanographic or geological? Also, are there any measurements on 

land in sediments that could give a clue as to whether the order of 

scattering there is consistent or not with geologic inhomogeneities? 

MR. EWING: We have some data that really made me suspect most 

strongly that it was the water column that was causing this. For 

example, in the Hatteras abyssal plain which our seismic data indi- 

cates to be a nicely layered section of sediment, the individual 

reflectors can be followed for hundreds of miles. The bottom seems 

to be just a beautiful cake of sediment. The data scatter represents 

a standard deviation of a hundred meters per second. 

We can move up onto the continental shelf where from a geologi- 

cal point of view I would expect a bigger variation in geology, and 

there we get maybe half of that standard deviation. I think that is 

because we removed a lot of the water problem by going to shallow 

water. 

DR. H. WEINBERG (New London Laboratory, Naval Underwater Systems 

Center): It seems to me that you are using ray theory at low fre- 

quencies and shallow grazing angles, and we have seen that this is 

one case when ray theory can really get you into a lot of trouble. 

Have you every tried to incorporate a better theory than regular ray 

theory; what would happen if you treated the propagation loss 

directly? 

MR. EWING: We are concentrating primarily at the moment on 

developing the best model we can for velocity gradient. Working at 

appropriate incidence angles keeps you away from ray theory problems. 
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DR. WEINBERG: I found that the grazing angle can be 10 degrees. 

For example, if you go to the extreme case, the ray that grazes the 

ocean bottom has an infinite propagation loss, and that would tell 

you that you had a negative infinity bottom loss. 

DR. M. SCHULKIN (Naval Oceanographic Office): If you 

consider the bottom in terms of velocity gradient and absorption, 

that is, consider it was an extension of the water medium, you do get 

convergence zone type propagation from very steep velocity gradients. 

It is possible to get an effect of negative bottom loss in the first 

bottom bounce region. Of course, beyond that it goes off as 3 dB per 

distance doubled as far as the loss goes. So that you only get this 

apparent gain in that first zone. But the rays penetrate the bottom 

and you just carry the ray tracing procedure through with the 

correction for the convergence effects. 

DR. WEINBERG: That is a possible explanation, but there is 

another one. If you just take the velocity gradient in deep water 

and you have a positive velocity gradient going down, instead of 

using plane waves use Airy function solutions and you may do away 

with the negative bottom loss. 

MR. W. H. GEDDES (Naval Oceanographic Office): There are a 

number of alternative explanations. I wouldn't want to hold out for 

the ray trace solution without saying that the negative loss is a 

flag indicating that the model (used in this way) is going to produce 

some strange answers. What I really want to hold out for is an 

appreciable amount of energy being refracted through the bottom and 

that it may not be a reflection arrival at all. I don't hold for 

the negative losses is what I'm saying. 
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DR. J. S. HANNA (Office of Naval Research, AESD): I didn't want 

to say too much right at this point about these problems with negative 

reflectivity because I had some comments I was expecting to give this 

evening in my discussion which are germane to some of the shortcomings 

or deficiencies in the transmission loss model used to reduce these 

data. 

There are several effects one needs to worry about — the kinds 

that were mentioned here earlier as well as the implications of third- 

octave band processing with regard to whether you are adding these 

arrivals coherently or incoherently. 

The particular model that was used here assumed that the four 

arrivals added without regard to phase. This is not strictly speaking 

true at low frequencies with third-octave processing. 

DR. S. M. FLATTE (University of California, College at Santa 

Cruz): I wanted to ask Ewing a question. When you are comparing two 

paths where you try to cancel out the effect of the water column, 

there are of necessity still two paths which go through different 

parts of the water column. What is the typical difference in travel 

time that would have been assumed equal that would cause your 

scatter in points on the velocity determination? 

DR. EWING: Which are the other two paths, Stan, that you are 

talking about? 

DR. FLATTE: The direct path goes through a different part of 

the water than the one which has traversed the bottom layer. 

MR. EWING: It goes through a different part of the water, yes, 

and our only assumption was that if there is no horizontal variation, 

then we should have eliminated most of the problems with the water 

column. The fact that we did not eliminate most of the problems led 
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us to suspect that we do have to worry quite a lot more about the 

horiziontal changes. 

DR. FLATTE: Right. And my question is a quantitative one. 

What horizontal difference does there have to be in order for you to 

get the scatter you observed? 

MR. EWING: I'm not sure I can answer you without a little 

thinking. 

DR. FLATTE: If it's a hundred meters — If it's a fifteenth of 

a second — I'm not really sure that it is though because you have to 

determine velocity and depth of layer at the same time. But if it is 

a fifteenth of a second — what model could you make of the water 

column that would do that? Because internal waves can't do it I'm 

-4 
sure, at the expected level of 10 for 6c/c. 

MR. EWING: It does not take a very big change. You see, the 

derivative of the reflection curves gives us the angle of the ray at 

the sea surface. If this ray has encountered very much of a perturba- 

tion anywhere near the surface it works on an awful long lever to 

change the angle of incidence on the bottom, and the angle of inci- 

dence on the bottom in our kind of analysis is very critical. A 

rather small angle change near the surface makes a big change in 

AX. versus AT in the bottom layer. 

DR. FLATTE: Might it be milliseconds' difference in travel time 

that could be the effect? 

MR. EWING: It's more the effect of changing the direction of 

the ray, of course, than it is of anything else. 

DR. FLATTE: Yes, but your experimental data are just travel time. 

MR. EWING: Yes. 
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DR. FLATTE: And so the question is whether it is difference in 

travel time you might have observed. 

MR. EWING: I would need to do a little arithmetic before I 

could answer you for sure. I don't know what the scale is. 

MR. R. L. MARTIN (New London Laboratory, Naval Underwater 

Systems Center): Santanello and Berstein at NUSC have also done 

several measurements of bottom loss, and they have observed this 

negative bottom loss below 10 degrees grazing. They approach the 

analysis quite differently. They took the broadband signal and 

isolated the direct and the first bottom-reflected pulse, and then 

ran the filtering after that; rather than taking the propagation 

model over the entire path, they just took the differences in the 

propagation over the path increment differences of the direct and 

bottom-reflected arrivals. 

I would guess that this illuminates two questions that arise 

in processing these data and coming up with negative bottom loss. 

One is sensitivity of it to the particular propagation model used, 

and the other is the coherent effect through narrowband filters. So 

negative bottom loss has been observed using different analysis 

methods. 

DR. A. O. SYKES (Office of Naval Research): Does sedi- 

mentary ooze act more like a fluid or like a solid? 

MR. EWING: More like a fluid. 

DR. HANNA: Referring to the comment that was just made here by 

Bob Martin, if you are taking the difference in transmission loss 

along those two paths it still presumes that your model for trans- 

mission loss in the water is sufficiently good to get both of those 

right. If the path interacts with either boundary, there are still 

the influences of caustic shadows on the field and things of that 
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sort which seem to be present every time you get to the geometry 

corresponding to low grazing angles. 

So there are still possible complications I think that need to 

be properly considered even if you tried to improve the experimental 

range. 

DR. J. L. WORZEL (Marine Science Institute Geophysics Laboratory) : 

I think John Ewing's answer to Al Sykes' question needs a little mod- 

ification. The oozes on the bottom act like a liquid when they have 

high porosity, but as they get buried deeper the porosity is reduced 

and then they no longer act like that. 

DR. SCHULKIN: One of the questions is: What is the sound speed 

and absorption as a function of porosity? Also, how does porosity 

vary with depth beneath the surface of the bottom? When do shear 

waves start in? 

MR. EWING: Well, we know very low velocity shear waves can be 

developed in very short sediments. We have observed them. 

DR. HANNA: I have a question related back to the problem of 

the scatter of the data you referred to. Just to make sure that I 

didn't misinterpret some of the things that you said before, I would 

like to go back and refresh myself. 

I thought I understood you to say that if G is of the order 1 

per second then K is of the order of 2? 

MR. EWING: More or less, yes. 

DR. HANNA: Then the question I have refers to the accuracy of 

the resolution in time that you can achieve for the one-way travel 

time. 
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If I understood you properly, I believe the records showed a 

pass band from 20 to 40 Hertz or something of that sort. It would 

seem to me that, just very crudely speaking, the time resolution 

implied by that pass band might be of the order of tens of milli- 

seconds. I wonder what possible influence that resolution might have 

on the scatter of the data that you plotted here. Using your value 

of 2 for K, this resolution would translate into something like 50 

or 100 meters per second scatter. 

MR. EWING: I guess the answer comes in two parts. How 

accurately can we time an arrival? The question I guess then is 

what does that arrival really mean particularly if you are ina 

region where you are having an interference of two low frequency 

signals? I completely agree that this is a possible source of our 

problem. 

The kind of data we are normally using, a reflection arrival 

for instance, we usually just pick on the basis of like phase but 

not precisely like phase. I mean whether it's positive or negative. 

In very low frequency situations, of course, that gives potentially 

a rise of big timing errors. I'm aware of that. 

We are trying to stay with arrivals that are separated enough 

in time. I guess another part of my sidestepping your direct question 

is the answer I gave to Walter Munk. We do the same thing when we 

work with the sediments on the continental shelf. We treat that 

data in exactly the same way. Yet we get a much smaller distribution, 

much tighter distribution. 

In other words, if we go to a rather localized area and shoot a 

dozen sonobuoys in this fashion and plot them up this way with diff- 

erent filter settings, we can pick different levels in the sediment 

usually because some level will be reflective for one frequency, 

another level will be more reflective for another frequency. 
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So we divide up the sediment column and calculate one of 

the regression curves. By doing this we get a lot of statistical 

leverage in a shallow area. We always wind up with a much tighter 

regression plot than we do in the deep water. 

There is maybe one exception to that, and that is the Bering 

Sea. There we have 50 or 60 measurements distributed sort of all 

over the whole basin and they group in quite tightly around regression 

curves. Whether it's because the Bering Sea is a little more stable 

oceanographically, I don't know. We're still struggling. 

MR. C. W. SPOFFORD (Office of Naval Research): On these 

phase differences, John, is the bottom flat enough that you can con- 

sider those two rays to be identical in the water column? That is, 

one ray doesn't spend another 10 meters or so in the bottom in depth 

which could give you some huge differences here I would think? Is 

the bottom flat enough to ignore this effect? 

MR. EWING: I think in the Hatteras abyssal plain it is. Those 

abyssal plains are the flattest things known in nature as far as I 

know. We cannot measure the slope with an echo sounding system that 

measures to plus or minus a fathom. 

DR. HERSEY: The grades are typically one in five thousand in 

the central portion of abyssal plain. 
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THE EFFECT OF ROUGH INTERFACES ON SIGNALS 

THAT PENETRATE THE BOTTOM 

GC. W. Hoston, Sr. 

Applied Research Laboratories 

The University of Texas at Austin 

R. J. Urick (1973) stressed the importance of sound trans- 

mission through the ocean floor in the computation of re- 

flection loss at the ocean bottom. Strong sub-bottom 

reflecting layers are not necessary since the wave is 

refracted upwards when there is a strong velocity gradient, 

as in sedimentary layers with the properties described by 

E. Hamilton (1974) for the abyssal plain in the northern 

Pacific Ocean. The Green's function for a point source in 

a liquid with a linear velocity gradient was derived by 

C. L. Pekeris (1946) and D. H. Wood (1969). This function 

is used in the Helmholtz integral for the inhomogeneous 

medium to calculate the properties of the sound beam that 

enters the bottom, is refracted in a circular arc, and 

returns to the water column. The effects of roughness at 

the interface are introduced using the analytical techniques 

pioneered by Eckart (1953). The amplitude of the coherent 

wave and the statistics of phase and amplitude fluctuations 

will be discussed. Of particular interest are turbidite 

layers since the acoustic velocity is less than that of 

water and the normal reflection coefficient may be very 

small. 

This paper addresses the effects of bottom roughness on sound 

which refracts in the ocean bottom. The analysis involved a number 

of simplifying approximations which can be refined in later work. 

Figure 1 displays the environmental parameters of concern to 

the problem of rays that enter the bottom and are refracted back 

into the water column. For numerical examples, values obtained by 

Hamilton (1974) in the Japan Sea abyssal plain will be used. The 

linearization of the square of the refractive index (Equation 1) 

permits the solution to be expressed in terms of Airy functions, and 

PIPES 



HORTON: THE EFFECT OF ROUGH INTERFACES ON SIGNALS 

THAT PENETRATE THE BOTTOM 

VELOCITY 

1480 m/sec 

DEPTH 
SEDIMENT 

GRADIENT 

Tle steven 

JAPAN SEA ABYSSAL PLAIN 

HAMILTON (1974) 

2 
n? (2) = rich | =a = "ad (1) 

v(O) + 5 av(0) (2) tt V(Z) 

lfa ~ 750m 

Figure 1. ENVIRONMENTAL PARAMETERS 
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the parameter "a" can be related to the gradient in the sediment via 

the approximation (Equation 2). Given a narrow beam impinging on 

the bottom, the refracted path in the bottom will be as shown in 

Figure 2 with subsequent multiple reflections. A phase shift of 1/2 

occurs at each turning point in the sediment. 

Two papers treat this problem. One is by Morris (1970) in which 

reflection bottom-loss curves are computed for the linear gradiant 

using the refracting layer plus an additional semi-infinite layer 

below the sediment. In the second, Brekhovskikh (1960) treats the 

case of a continuous velocity value across the interface (that is, 

without the step discontinuity shown in Figure 1), Both papers treat 

plane waves and obtain a complex reflection coefficient. Brekhovskikh 

(Equation 3) assumes no losses in the bottom and, hence, the reflection 

coefficient has unity magnitude. Morris (1970) adds attenuation in 

the bottom, and the refracting waves have less than unity magnitude. 

A major point of this paper is that if the problem is actually 

for narrow beams, the result should be similar to a Rayleigh-type 

plane-wave reflection coefficient, expandable in an infinite series 

corresponding to the multiple bounces. This is analogous to the 

treatment of a transmission line where the transmission loss through 

it is calculated using a continuous wave but it can be expressed 

as an infinite series of multiple reflections from the two ends 

of the transmission line. When the result in Equation 3 is expanded 

properly, it should become a reflection coefficient for the surface 

with separate amplitudes for the successive waves corresponding to 

the refracted and reflected paths in the bottom. 

Brekhovskikh analyzes the case where there are no losses in the 

bottom and the velocity is continuous from the water into the bottom. 

207 



THE EFFECT OF ROUGH INTERFACES ON SIGNALS 

THAT PENETRATE THE BOTTOM 

HORTON : 

N
O
T
L
O
W
U
A
S
Y
 

W
O
L
L
O
G
 

GNVY 
N
O
I
L
O
A
T
A
G
Y
 

A
I
d
I
L
I
A
W
 

d
O
 
O
I
L
L
W
W
H
H
O
S
 

°7 
e
r
n
b
T
t
 
A 

*
S
H
O
N
N
O
G
 

A
I
d
I
L
I
N
W
 

J
O
 
S
H
I
M
H
S
 

A
L
I
N
I
A
N
I
 

S
W
 
C
N
W
d
x
d
 

f
e
7
t
—
 a,
 €
/
U
 |e
 

E/G 
e
e
n
)
 

S
N
e
 

e
e
 

S
E
S
S
 

=
 

A
 

(€) 
(&/T- 54 

E
/
T
)
 
7 

5 
€/% 

p_£/C- 
|
 

‘T 
= 

(O)uU 
CNW 

‘
S
H
A
V
M
 

A
N
V
I
d
 
Y
O
 

C/o 

L
H
I
H
S
 

A
S
v
H
d
 

L
O
O
K
 

E
S
C
 
S
E
L
 
S
S
 

<
7
 

© 
© 

278 



HORTON: THE EFFECT OF ROUGH INTERFACES ON SIGNALS 

THAT PENETRATE THE BOTTOM 

He obtains the curve shown in Figure 3 for the dimensionless displace- 

ment, u, of the wave that is refracted in the bottom as a function of 

the dimensionless grazing angle, 8. A is the actual displacement, and 

ao the grazing angle. For the model from Hamilton's paper, numerical 

values are shown for the grazing angle in degrees and the horizontal 

displacement in meters on the beam between entry and reemergence. 

Brekhovskikh shows that the wave theory and the ray theory give 

good agreement beyond 8 = 1. The subsequent discussion will be 

restricted to grazing angles for which ray theory can be employed in 

the bottom with some safety. 

When there is attenuation in the bottom (Figure 4), there will be 

losses on the refracted path and presumably the subsequent reflec- 

tions will be of minor importance. In Morris's paper, the plane wave 

reflection coefficient is used and the interference between the returned 

paths after successive bounces is extremely sensitive to the grazing 

angle. Hence, the resulting bottom-loss curves have a strong ripple 

associated with the interference. If the interference is removed by 

separating Paths 1 and 2, either in space or in time, (or if there is 

an intromission condition with a very small reflection coefficient 

for Path 1), then Path 2 should dominate the field. 

The theory in which the velocity is strictly a linear function 

of depth (rather than no linear as above) has been developed exten- 

sively in a paper by Pekeris (1946) who solved the Green's function 

for a point source in a linear gradient medium, and in a later paper 

by D. H. Wood (1969). The Green's function is given by Equation (4) 

in Figure 5 for a source at the origin of the coordinate system where 

z is the depth and r is the distance from the source. 
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This particular form of the Green's function is not genuinely 

symmetric in source and receiver as a Green's function should be. 

The source is singled out by being placed at the origin leading to 

the asymmetry in z which is the location of the field point. In 

some subsequent expansions, the order of the z term will be switched 

because of this asymmetry and this can be easily justified by 

appealing to physical intuition. As is well known, in the linear 

velocity medium rays are circles whose centers lie on the plane where 

the velocity goes to zero. R, as seen in Figure 6, is the distance 

from the "image" source a distance z above this plane to the observa- 

tion point. 

The view being taken of the bottom is shown in the middle portion 

of Figure 6, where the ray enters in the first region, is refracted 

downward, and emerges at the exit region through a different patch of 

the ocean floor. It may also have reflected one or more times in the 

middle region. A set of local coordinate systems is introduced in 

the lower portion of Figure 6, where it is assumed that the ocean may 

have a mean displacement in the entry region referred to the mean value 

of the sea floor in the reflection region, and the exit region may 

have yet another mean displacement. Hence, there will be phase 

differences involved in the travel paths in the bottom associated 

with these mean displacements. The phases can be given additional 

statistical fluctuations associated with roughness in the local areas 

where the sound enters the bottom, reflects, and emerges. The distance 

L between the coordinate origins at the entry and exit regions is the 

horizontal distance of the refracted beam in the bottom. 

At this point, it is convenient to make a number of assumptions. 

First, the regions should be well separated, that is, they should have 

small linear dimensions compared to L. When L is large compared to 
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the size of the entry area, it will be shown that the Green's function 

can be expanded about the origin, O,, and will be locally a plane wave 

emerging at the surface. 

The approximations used are listed in Figure 7. The increments 

éx, dy, 6z, relate to the differences between the variable points in 

the two little areas, and the z coordinate then contains the difference 

in the local mean depths, SD. Expanding all quantities to linear 

terms in 6x, dy, 6z, and 5p, the Green's function reduces to Equation 

(6) in Figure 8, where the phase consists of two terms. a is the 

phase length between 0, and O,, and o contains local departures 
2 

from a associated with entry and exit points (x), z1) and (x,, Zo)s 

respectively. ® is quite accurately approximated by a local plane 

wave (Equation 9) of emergent angle oo 

Note that % is not symmetric in (x)7 z,) and (xo, Z5)- This is 

the point alluded to earlier. If the field point (xo¢ Zz.) is taken 

as a new source, then the behavior near the origin has the wrong 

sign. To remedy this, the first term is always the field point 

and the second term is always the source coordinate. 

This result is summarized in Figure 9. A source ray enters the 

bottom at point Q at some angle Oe emerging at point P at the same 

angle. The variable phase delays associated with roughness at points 

Q and P can then be added to the geometric phase delay via - 

The Helmholtz formula (Equation 11) in Figure 10 is used to 

calculate the field at the point P integrated over the area of 

insonification. For the Green's function, the linear approximation 

is used which simplifies the normal gradient in the integral leading 

to Equation 12. 
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The variable displacement of the surface in Figure 1l, at the 

point of entry, produces a variable phase delay 6 (Equation 13). 

To the simplest approximation it is actually a difference of the 

slant path in the water associated with the entry angle and the 

slant path in the sediment associated with the refracted angle. 

This makes the effect much smaller than in scattering, say, froma 

free surface or from a reflecting bottom. That is, only the differ- 

ence in the acoustic delays in the two media accumulates, so that a 

large surface displacement actually produces a relatively small 

change in the phase. Hence, Equation (13) is the variable phase 

to be inserted across the area of integration, being the random 

displacement of the surface. Again assuming that the normal gradient 

of the field in the bottom is the vertical gradient, there are two 

final approximations: first, that the angle oe in the Green's 

function is the same as the refracted angle o. of the wave entering 

the bottom; and second, that the wavenumber k, for the refracted 

wave and Ko for the Green's function are the same. With this 

approximation the field (P) is expressed in Equation (14) as the 

integral over the insonified region of the refracted wave incident 

on the bottom times the Green's function integrated over the insoni- 

fied area. 

Hence, the wave impinging on the bottom is refracted in the 

bottom yielding >. There is a phase variation with xX across the area 

of insonification, but the Green's function to the linear approxima- 

tion used here has exactly the same phase variation because of the 

agreement of phase at the boundary. That is, the X variation of phase 

in the one function is exactly canceled by the variation in the 

Green's function, leaving only the variable phase delay associated 

with roughness. 
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The integral is performed in Figure 12 where m designates the 

phase delay per unit displacement. By introducing plane-wave 

approximations, the field » at the point P just under the emergent 

area is given by the integral shown in Equation (15) over the area 

of insonification. 

The last factor in Equation (15) represents the local plane 

wave about the field point P, emerging at the exit region. 

The integral is a stochastic integral and, if the insonified 

area is large compared to the correlation distance of the displace- 

ment, C, the exponential can be expanded in a convergent series 

(Equation 16). <> is the average value of the displacement and 

since the local origin is on the mean surface, <> = 0. 

Hence, there is no phase shift associated with entry into the 

bottom. <t2> is the mean square displacement and results in a loss 

{2 
of amplitude. For abyssal plains (<z2>)4 is of the order of 3 to 

10 centimeters and there is very small loss of amplitude associated 

with entry into the bottom. Hence, there is a coherent wave 

arriving at the exit region with very little loss. 

The same type of analysis can be repeated almost word for word 

for the emergent ray, resulting in a second slight loss of amplitude 

associated with the mean square displacement at exit region. 

Typically, the entry and exit regions are far enough apart (several 

hundred meters) that there is no statistical correlation between 

<t*> at point Q. 

In summary, it appears that moderate roughness at the bottom- 

water interface will produce essentially no loss of amplitude on 

entering or leaving the bottom, and the strength of the refracted 
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path will depend on the reflection coefficient at the interface and 

the attenuation the path receives in the sediment. 
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DISCUSSION 

DR. IRA DYER (Department of Ocean Engineering, Massachusetts 

Institute of Technology): I understand your conclusion to be that 

moderate roughness does not substantially affect the computations of 

refracted paths in the bottom sediments. 

DR. C. W. HORTON, SR.: Yes. 

DR. DYER: Does this include the effect of scattering of this 

energy outside the angles at which you might expect to receive these 

bottom refracted paths? 

DR. HORTON: I should have mentioned in my discussion and didn't 

that this refraction path is essentially unique. That is to say, for 

one configuration of source and receiver in the water there will be 

only one path through the bottom that gives you the travel time that 

you will see. This is borne out by the experimental data. 

The loss of amplitude I referred to represents, I believe, all 

the data that is scattered in directions other than the refracted path. 

So they are essentially refracted out of this acoustic bundle and don't 

arrive at the emerging point. 

DR. DYER: And nonetheless small? 

DR. HORTON: Nonetheless small for the moderate amplitudes. 
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Loss of acoustical energy propagating to long ranges in the 

ocean is predicted with computerized mathematical models 

(propagation models), many of which treat the ocean bottom 

as either a reflecting interface or as part of the propaga- 

tion path (a penetrable boundary). In many models, the 

bottom is included as an interface which is characterized 

by a plane-wave amplitude reflection coefficient. The 

reflection coefficient (or bottom loss) is obtained either 

from bottom-loss measurements or from calculations using 

mathematical models of the bottom as an acoustical reflec- 

tor (bottom loss models). Bottom-loss models require, as 

input, detailed information on the physical properties and 

layering of the bottom material. This presentation relates 

the topics of bottom-loss measurements and models, bottom 

physical properties and topography to long-range propaga- 

tion. Sensitivity of propagation loss to bottom parameters 

is discussed. 

INTRODUCTION 

The ocean bottom is one of the boundaries with which a propagating 

underwater sound wave may interact. In some cases our present tech- 

niques for including bottom interaction in propagation models do not 

allow accurate prediction of propagation when bottom interaction is 

significant. Perhaps this is because our input information is in- 

complete, or perhaps our method of including the bottom influence 

should be refined. 

Several topics are of interest in the bottom interaction problem. 

These include: 
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@ Models of bottom interaction presently used in propaga- 

tion models 

e Models that allow the inclusion of bottom effects: bottom- 

loss models and geoacoustic models. 

e The order of magnitude of observed and predicted bottom 

loss values 

e Measurement techniques and presently available data for 

acoustical and other physical properties of the bottom 

e The sensitivity of bottom loss to variations of the input 

sediment parameters 

e The sensitivity of propagation predictions to variations 

in the bottom information. 

Unresolved issues concerning bottom properties for long-range 

propagation include the following questions: 

@ What is the sensitivity of predicted long-range, low- 

frequency propagation loss to variations in the sediment, 

either bottom loss or physical parameters? 

e What is the sensitivity of bottom loss to sediment param- 

eter variation? 

e To what depth and in what detail do we need sediment 

information to predict bottom loss? 

@ What information do we now have and what techniques need 

further measurement? 

Two general techniques treat mathematical propagation problems. 

These are, of course, ray theory and wave theory. Each technique may 

treat the bottom as a reflecting surface or as part of the propagation 

path. 

For example, in the ray-theory models we identify eigenrays by 

searching through ray families until we find two that bracket a 
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receiving point and then converge on an eigenray. Once the eigenrays 

are identified, one way of treating the influence of the boundaries 

and in particular the bottom is through an interface reflection co- 

efficient, a Rayleigh plane-wave reflection coefficient. 

Either method of treating the bottom requires more detailed in- 

formation about the physical properties of the bottom sediments. These 

physical properties include acoustical properties such as speed of 

propagation and attenuation and are combined in what Hamilton (1974) 

calls a geoacoustic model. 

In some cases when the boundary is treated as a reflecting inter- 

face, we can go through an intermediate model, feeding the geoacoustic 

model information into a mathematical model for computing bottom loss. 

An alternative is to structure the measurements of bottom loss into an 

empirical model. 

BOTTOM-LOSS MODELS 

Figure 1 illustrates some of the bottom-loss models. Standard 

empirical bottom-loss models consist of tables of bottom loss versus 

grazing angle. Probably the earliest of these came from the AMOS 

program, another set was developed at Fleet Numerical Weather Central 

based on the MGS data, and some have been based on the FASOR data. 

NAVOCEANO also has a set. Other measurement programs have produced 

what can be considered as empirical bottom-loss models at various 

frequencies. 

Mathematical models progress through a series of increasing 

complexity using plane interfaces, plane layers, plane waves. Models 

with liquid layers can progress to layered models that support shear 

waves. More complex models may have gradients of the acoustical 
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A. MEASUREMENTS (EMPIRICAL MODELS) 

1. "STANDARD" TABLES AMOS 

MGS 

FASOR 

2. SPECTALIZED 

B. MATHEMATICAL MODELS 

1. PLANE INTERFACE 

2. ROUGH INTERFACE 

3. PENETRABLE ROUGH INTERFACE 

4. SEDIMENT PARAMETERS» GEOACOUSTIC MODEL 

Figure 1. BOTTOM-LOSS MODELS 
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parameters with depth. Effects of rough interfaces have been studied 

by Horton (1976). All of these require some type of geoacoustic model. 

GEOACOUSTIC MODEL 

A geoacoustic model may be described as a quantitative descrip- 

tion of the pertinent sediment and water parameters, particularly the 

former. This description includes at least the following: 

e Layering that exists and depths of these layers 

e Compressional-wave speed and attentuation 

e Shear-wave speed and attenuation 

@® Density 

e Gradients, if they exist, of speed and density 

@ Bottom topography. 

BOTTOM- LOSS VALUES 

Figure 2, an example of an empirical model, shows the low- 

frequency bottom loss versus grazing angle model. There are several 

notable features of these curves. For the lower three curves, the 

bottom loss goes to zero between 10 and 20 degrees. This feature 

indicates a critical angle effect which implies no attenuation in the 

sediments. But when you put attenuation in, you don't see this zero 

bottom loss except at zero grazing angle. For the two higher bottom 

loss curves, we see that the loss does not go to zero even at zero 

grazing angle and this implies considerable influence of topography 

in these two classes of the empirical model. 

Figure 3 is a mean bottom-loss curve (Urick, 1974). Observe 

some differences from numbers in Figure 2. 
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Figure 4 presents a comparison (Bucker, 1974) with data anda 

computation with a linear-gradient model of Morris. The data are for 

one-third octave at 50 Hz and the theory (solid line) is for con- 

tinuous wave. 

BOTTOM PHYSICAL PARAMETERS 

There are essentially three depth intervals into which sediment 

can be broken for measurement techniques: surficial sediments, corer- 

depth sediments, and deeper sediments. 

In the surficial sediments, acoustical properties have been 

measured fairly extensively, especially the compressional-wave speed 

at higher frequencies. The surficial sediment includes about the 

first meter. These have been probed by everything from divers to the 

diving saucer, with various types of probes, and with self-operating 

units. Considerable information is available in the literature about 

some of the parameters. Physical properties have also been studied 

extensively using grab samples and cores. 

Corer-depth sediments extend from the one-meter depth to perhaps 

30 or 40 meters for the very long cores. Acoustical information is 

available to this depth from high-resolution sub-bottom profiling in 

some regions. Core sediment samples are measured in the laboratory 

and these values are then extrapolated to in situ values. Compres- 

sional wave speed and attenuation are studied, especially again at 

high frequencies. 

Recently, a different technique was instituted for corer-depth 

sediments by ARL/Austin. It is a device called a profilometer which 

projects a pulse across the diameter of the corer as the core is be- 

ing taken and measures compressional-wave speed and attenuation in 

the sediment at a carrier frequency of 200 kHz. 
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Measurement information on the deeper sediments comes from sub- 

bottom profiling of one kind or another; e.g., reflection and refrac- 

tion profiling. Most of the information concerns the speed of 

propagation of compressional waves which is converted into information 

about depths to sub-bottom reflectors. 

Physical information comes from drilled samples. Considerable 

information is being compiled by the Deep Sea Drilling Project. An 

interesting idea might be velocity-logging these holes. 

Most available data on the bottom physical and acoustical param- 

eter values are for high frequencies and compressional-wave speed. 

In surface sediments, Hamilton (1974) has added to our knowledge 

of in situ values of surficial sediment speed and of techniques for 

extrapolating laboratory measurements to in situ values. 

Figure 5 represents something like 3,000 measurements of speed 

of propagation of compressional waves, and they are plotted as a ratio 

of speed of propagation in the sediment to that in the water. They 

show the well known, somewhat well defined relationship between speed 

of compressional-wave propagation in sediments and porosity. These 

are high-frequency values. 

The values go from something like 0.95 or about 5 percent lower 

than the value in bottom water to almost 30 percent higher than the 

value in bottom water. Sound-speed values outside this range of 

variation are anomalous for unconsolidated sediments. Such values are 

usually associated with gas in the sediment in some form. In shallow 

water sediments, gas will exist as a phase, a gaseous phase, and it 

will decrease the value of speed of propagation. In deeper water, it 

is more likely to exist as a gas hydrate or clathrate, and it will 
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Figure 5. RELATIVE SOUND SPEED (RATIO OF SPEED IN 
SEDIMENT TO SPEED IN WATER) VS SEDIMENT 
POROSITY (AFTER AKAL, 1972) 
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greatly increase the speed of propagation. In the latter case, the 

sediment essentially looks like it is partially lithified. 

Figure 6 shows the interval velocity for a region and Hamilton's 

estimate of the best fit line to the instantaneous velocity data. In 

this example, the instantaneous velocity, which is the one that would 

go into a propagation model, is nonlinear over an extended depth 

interval. However, the interval velocity, which is the average 

velocity over the measured depth interval, remains somewhat linear. 

Compressional-wave attenuation is another important parameter. 

Figure 7 is a compilation from a large number of sources of data for 

acoustical attenuation in dB per meter versus frequency. These re- 

sults are for measurements which were made in clays and silts. It 

is a presentation which is similar to what Hamilton uses. 

Several things can be seen. One is the order of magnitude of 

the attenuation. Another is the absence of any data for anything 

below 1 kHz. 

Another observation is that over short frequency intervals in 

any given sediment the attenuation may not vary linearly with fre- 

quency. But if we take the overall behavior as we go down the graph, 

attenuation varies linearly with frequency. If this is true, and 

certainly these data seem to indicate that it is, then it suggests 

a way to get a number for the attenuation at low frequencies. We 

must decide what value we are going to accept for attenuation at 

some high frequency and extrapolate linearly downward to a lower 

frequency of interest. We hope to improve upon this extrapolation 

in the future. 

If we accept that attenuation is described as a linear function 

of frequency — that is, the attenuation coefficient is equal to 
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some K' times frequency to the first power — and we examine data that 

Hamilton (1974) has presented on attenuation for Pacific sediments and 

data that Smith has presented for attenuation in Atlantic sediments, 

then we find that we can plot the values of the coefficient K' versus 

the mean grain size of the sediment, Figure 8. The resulting rela- 

tionship will help us select the K' to be extrapolated as a linear 

function of frequency. 

Other bottom parameters in the geoacoustic model include bulk 

wet density, which is usually measured with samples, and shear-wave 

speed which has been measured only in a very limited manner. Bucker 

(1974) appears to be one of the few who has actually made these 

measurements. He measured Stonely waves and interpreted them in terms 

of velocity of propagation of shear waves. 

The answer to the question raised earlier about whether these 

sediments behave as liquids or as solids depends on what you mean by 

the question. If the question is "Do shear waves propagate?" the 

answer depends on whether there is a finite value of dynamic shear 

modulus. Values of dynamic shear modulus have been measured in most 

ocean sediments somewhere on the order of 10° to 107 dynes per square 

centimeter. Propagation speeds of the shear waves are something on 

the order of a tenth of the value of propagation speeds for the longi- 

tudinal waves. 

In near-shore sediments, very high porosity sediments, harbors 

and lagoons, we find even lower values of shear modulus. The lowest 

values of dynamic shear modulus are exhibited by freshly mixed, pure 

laboratory clays like Kaolinite, for which values of less than 10 

meters per second are predicted for shear-wave speeds from measured 

values of dynamic shear modulus. 
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Shear wave attenuation measurements are few. Some measurements 

of the complex dynamic shear modulus allow prediction of a shear wave 

attenuation. 

What does all this have to do with bottom loss and with propaga- 

tion loss at low frequencies? What is the sensitivity of this thing 

we call bottom loss (which is an input to ray-theory models) to 

variations in sediment parameters? 

The simplest reflection models, using a liquid layer without any 

attenuation, a single layer overlain by water, can fit some of the 

things that we see in Figure 9. Judicious selection of the sound- 

speed ratio can make the critical angles fit, and juggling the density 

ratio can cause the bottom-loss values at normal incidence to fit. 

Unfortunately, when this is done, the grazing-angle segment just above 

the critical angle does not fit these data. This seems to indicate 

that the single bottom layer is far too simple a model. Disagreement 

is not as bad as one might expect. The important thing is that this 

shows realistic values of speed of propagation and of density for 

bottom sediments. One problem, however, is that some of the bottom 

loss obviously is going to be contributed by topographic effects which 

are not included here. 

Figure 10 shows the results for a water layer overlying a two- 

layer bottom. This three-layer model, with a clay overlying sand in 

the bottom, is shown merely to indicate the type of variation that 

is shown at 100 Hz for a value of attenuation obtained by the extrapo- 

lation process mentioned earlier. The sound speeds are 1,501 meters 

per second in the water, 1,531 meters per second in the clay, and 

1,657 in the silty sand, with realistic values for density and with 

a 100-meter thickness for the clay layer. 
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We see the indicated interference structure in the variation of 

bottom loss with grazing angle. Why do this? If we extend the depth 

of the layer, we will see to what depth we must go before we begin to 

lose the effect of the clay/sand interface. 

Figure 11 shows the results when the intermediate layer is 200 

meters thick. The interference structure is reduced, but still 

present. Figure 12 shows results for a layer thickness of 500 meters. 

Figure 13 is for 1,000 meters. The interference structure is gone. 

Thus, for a layer of this thickness and the assumed attenuation, the 

Rayleigh reflection-coefficient model indicates that the lower interface 

with a sand layer does not influence the bottom loss. 

Doing this for the same type of clay overlying basalt, where we 

have a considerable impedance contrast between the clay and the basalt, 

the following results are calculated. 

In Figure 14, the highly variable curve is for 70 meters of clay 

overlying basalt. The smooth curve is for a 1,000-meter thick clay 

layer over basalt. 

These results indicate that if the reflection model used here 

were valid for bottom regions described by the parameters assumed 

here for the clay layer, and if we knew the information about the 

sediment column to 1,000 meters depth, we wouldn't have to know 

anything about it from there on down. 

Also, we have seen instances where there is considerable energy 

return from 2 to 3 kilometers. The result described above is critic-—- 

ally dependent on the value of attenuation that is used for the layer. 

Also, the model used for the calculations does not include gradients 

in the layers. This work is being extended to include gradients in 

the bottom. 
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DISCUSSION 

Mr. Charles Spofford (Office of Naval Research): What value do 

you get by extrapolating Figure 7 to 100 Hz? 

Dr. A. L. Anderson: About 0.026 dB per meter, something like 

that. 

Mr. Spofford: We have seen data in certain areas where there is 

a very thick unconsolidated sediment. Assuming a 20-degree ray and a 

refracting gradient of one in the bottom, the ray spends about 1,000 

meters in the bottom per bounce. 

We have seen data where essentially that ray appears to have 

bounced up to about 10 or 20 times even out to 200, 250, and 300 miles 

without suffering appreciable loss. Figure 7 would lead to about 

20 dB in 200 miles. I would say if it has lost anything it might be 

about 2 dB. It is that little. 
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Dr. A. L. Anderson: I think there are two significant points. 

One is, as I pointed out, this calculation was made for a model with- 

out gradients, so we need to remember that, although it is not 

particularly germane to your point, Also, I think that you may very 

well have a good, if not the only, way of actually measuring attenu- 

ation at a given frequency in the sediments. 

Dr. D. C. Stickler (Applied Research Laboratory, Pennsylvania 

State University): I would like to point out that in your models of 

plane-wave reflection coefficients, your layer media, that some of 

those same effects can be observed even without the layering. 

If you consider the full effect of a point source in the iso- 

velocity halfspace and higher speed bottom, you can observe some of 

these oscillations away from the grazing angle and the breakaway from 

the O dB loss above the line. 

Dr. A. L. Anderson: Precisely, which says you must consider 

something other than a plane-wave reflection coefficient. 

Dr. D. C. Stickler: Yes. If you do the full-wave solution for 

a point source in isovelocity halfspace over a higher speed iso- 

velocity halfspace and examine just the reflected field, then these 

oscillations above grazing are present and the breakaway from the 

zero reflection coefficient is also observed and is not related to 

layering at all and is also frequency-dependent. 

Dr. W. H. Munk (Institute of Geophysics and Planetary Physics, 

University of California at San Diego): Question based on ignorance. 

Are there good statistical models of the sea bottom? And, I mean it 

in the sense of existing statistical models of the sea surface that 

I am familiar with which have indicated that scattering from an 

angle of incidence steeper than the root mean square slope behaves 
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entirely differently than scattering at angles of incidence much less 

than the root mean square slope. One region is specular and in 

another case it is backscattering. Are there similar kinds of con- 

siderations for sea-floor scattering? 

Dr. M. Schulkin (Naval Oceanographic Office): Not quite, but 

there is a spectrum of the sea floor bottom that has been proposed — 

Reo 

Dr. Munk: Is that taken seriously? 

Dr. Schulkin: Well, until there is something to replace it, 

it is semi-serious. 

Dr. Munk: It goes down to what short wave length? Two hundred 

meters? 

Dr. Schulkin: Yes. 

Dr. Donald Ross (Tetra Tech, Inc.): May I make a comment on 

some model work? We are closely associated with the work that is go- 

ing on at Naval Undersea Center in which a computer model for propa- 

gation, FACT model and FACT extended, is being compared with hundreds 

of experimental measurements in the low-frequency regions and we are 

finding that the models do well in the region in which you have 

refracted rays and that they are extremely sensitive to bottom loss 

in the region in which the bottom is involved, that the bottom loss 

is apparently averaging of the order of 1 dB, and that a quarter of 

a GB difference in the loss per bottom bounce makes a significant 

difference in the results that you get when you are comparing the 

experiment and the propagation model. 
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In all of your graphs it is very hard to see a quarter of a 

dB and in order to make significant calculations, we need bottom loss 

to a quarter dB. 

I think that this may mean that the way to get it is to make 

measurements of propagation and deduce backwards what the bottom 

loss must have been rather than to try to calculate it or make direct 

measurements of bottom loss. 
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FORWARD SCATTERED LOW-FREQUENCY SOUND 

FROM THE SEA SURFACE 

W. I. Roderick 

Naval Underwater Systems Center 

New London Laboratory 

New London, Connecticut 

Low-frequency propagation over long ranges can have propa- 

gation paths that interact with the time-varying sea 

surface. Theoretical predictions and experimental obser- 

vations of specularly reflected CW acoustic signals indicate 

that the long gravity waves on the sea surface modulate the 

amplitude and phase of the incident signal. The Doppler 

spectrum of the modulated signal consists of a discrete 

frequency component centered at the carrier and a continuous 

spectrum that is positioned symmetrically about the carrier. 

The continuous spectrum consists of energy that has been 

scattered close to the specular direction and that, when 

summed with the specularly reflected signal produces 

amplitude and phase modulation. A review is given of 

important contributions to our understanding of the forward 

scattered Doppler spectrum and its functional relationship 

to geometrical, acoustical, and sea surface parameters. 

This paper is an informal review of one particular aspect of 

forward scattered sound from the sea surface and that is the Doppler 

spectrum that would be received in the specular direction. The 

Doppler spectrum is the spectrum resulting from amplitude and phase 

modulation of an acoustic signal reflected and scattered from a time 

varying surface. 

About 1965, Wysor Marsh looked at two separate aspects of 

scattering, one of which was the Doppler spectrum (Marsh and Kuo, 

1965). It is interesting to look at that report written 9 years 

ago and at a time when there had been no prior direct measurement of 

the Doppler spectrum in the specular direction. Wysor observed in 
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some low-frequency, long-range propagation data, published by Ken 

Mackenzie (1962), that the envelope of the signals had periods on the 

order of ocean swell waves and the spectrum looked narrowband. Based 

on a resonance scattering theory he developed in the early 60s, he 

derived the Dopler spectrum which was good to first order effects and 

included multiple-bounce surface interactions. Remarkable intuitive 

reasoning at that time put the theoretical prediction of the Doppler 

spectrum ahead of the experimental evidence. 

What criterion do we use to distinguish between a rough and smooth 

surface? Lord Rayleigh took a simple approach (Beckmann and Spizzi- 

chino, 1963), pictured in Figure 1. He simply considered the phase 

difference between rays reflected from an uneven surface. For the 

wave shown, the crest to trough height is h, the grazing of the 

acoustic rays is $¢, and the acoustic wave length is A — Walter Munk 

might say here that this does not look like a sea surface wave, but 

he must consider that the wave was measured on the east coast of the 

United States. 

Very simply, Rayleigh reasoned that if the phase difference is 

near zero, then the surface isn't very rough, that is, the path- 

length difference is small. As the phase difference approaches T 

there will be cancellation of energy in that direction and hence the 

energy must have been scattered elsewhere — this would constitute a 

rough surface. A criterion to separate smooth and rough surfaces is 

to choose a point midway between zero and 7, say T/2. As you can see, 

the wave length, grazing angle, and wave height must be specified to 

define the roughness. These three parameters crop up again with the 

same relationship in more elaborate scattering models. As an example 

of the above, consider long-range propagation with a 5-degree grazing 

angle at the surface and an rms wave height of 2 feet — this 
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condition would require an acoustic frequency of less than 1,000 Hz to 

constitute a low-roughness surface. 

About 1966, Allen Ellinthorpe published an article (Ellinthorpe, 

1966) on sea-surface induced frequency smear. It should be noted that 

Doppler spectrum, frequency smear, and frequency spread all have the 

same meaning. Ellinthorpe was interested in determining the integra- 

tion time for a communication system and performed a surface scattering 

experiment in Bermuda. To compare the experimental results, he derived 

the Doppler spectrum of the forward scattered sound based on a phase 

modulation technique. Assumptions were made that the surface scattered 

signal was only phase modulated, the surface wave height h was a 

Gaussian random variable, and the power spectral density of the surface 

waves was given by a Bretschneider spectrum. With these assumptions, 

he uses an equation derived by Middleton to determine the power 

spectral density of a signal that is phase modulated by a random vari- 

able that has a known power spectral density. The phase modulation 

index is given by a. 

Ellinthorpe compares the theoretical results that were derived, 

based on the Middleton equation, to experimental data measured off 

the coast of Bermuda. In Figure 2, I have selected a comparison 

made at two frequencies. You can see that the agreement is close 

in the spectral peaks, but the spectral width of the predicted is 

narrower than the measured. In general, this is true of all his 

predictions. The predictions do not give an absolute value of the 

energy in the carrier and sidebands, and the predictions were obtained 

by varying the parameters to obtain a best fit. No oceanographic data 

were available. There is something of interest that will come up 

later — the sidebands of the measured spectrum are asymmetrical as 

shown for the carrier frequency of 856 Hz. 
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Figure 2. DOPPLER SPECTRUM AT TWO FREQUENCIES 

(from Ellinthorpe, 1966) 
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In 1967 B. E. Parkins of BTL published an article (Parkins, 1967) 

on the Doppler spectrum of scattered sound from a slightly rough and a 

very rough sea surface. He used what is termed a physical optics 

approach in his derivation, which is based on the Helmholtz Integral. 

The approach is based on some fundamental concepts introduced by Carl 

Eckart in 1953 on scattering from the sea surface (Eckart, 1953). 

Eckart's approach is one of the most elegant treatments you will find 

on surface scattering and before discussing Parkins derivation, we will 

review some of these concepts. 

The evaluation of the Helmholtz Integral 

oP, exp (ikr)) 9 exp (ikr)) 

oie eg iece|| roe pal diame oermemeas foo 

requires knowledge of two boundary conditions — the value of the re- 

radiated pressure PL on the surface and the value of the derivative of 

the reradiated pressure dP, /9v on the surface with respect to the 

surface normal. By assuming that the sea surface is pressure release, 

the reradiated pressure is set equal to the incident pressure with a 

180-degree phase shift. 

P +P = Oons (2) 
fe) all 

To find the value of the derivative of the reradiated pressure with 

respect to the normal to the surface, Eckart assumes that the slope 

of the surface irregularities is small and finds the derivative with 

respect to the normal to the plane surface on which the gentle undu- 

lations are superimposed. 

— =| SS on S (3) 
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There are certain inherent assumptions with these boundary condi- 

tions and further approximations were generally made to obtain tractable 

solutions. One is the Kirchhoff method — that the acoustic field at 

any point on the surface can be approximated by the field that would 

be on a plane tangent to that point on the surface. Another is the 

Fraunhofer phase approximation — in the expansion of the phase of an 

exponential only the linear terms in the spatial coordinate system 

are retained. Claude Horton has shown the necessity in certain geo- 

metrical situations where also quadratic terms should be retained to 

yield the familiar Fresnel approximation (Melton and Horton, 1970). 

Inherent in Eckart's approximation for the normal derivative of the 

reradiated pressure is the implication of a surface with zero slope. 

It is also inherently assumed that there is no shadowing such that each 

facet on the sea surface is completely insonified. Brekhovskikh 

(1952) has given some restrictions on angle of incidence, surface 

curvature, and acoustic wavelength for complete insonifications of 

the surface irregularities. Research, both theoretical and experi- 

mental, at the Applied Research Laboratory, University of Texas, into 

the validity of the above approximations and assumptions has been 

extremely useful to other investigators in surface scattering. 

We can take the same approach used by Eckart and solve the re- 

sulting equation for a traveling sinusoidal surface given by 

G (xpyv,e) 5= kh cos las - kx cos a - ky sin a] (4) 

With the proviso that the surface slopes are small and other geometric 

approximations are met, the solution can be compared to experimental 

results. Roderick (1968, 1969) conducted small-scale tank experiments 

in which acoustic waves were scattered from a traveling sinusoidal 

surface created by an electrical-mechanical wave generator. Wave 

heights and surface wave lengths were accurately measured over the 
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insonified area, and conditions could be generated that modeled low- 

frequency sound propagation interacting with the gravity waves of the 

sea surface. Predictions were made for the normalized pressare re- 

flected and scattered from a traveling sinusoidal surface of angular 

frequency Woe wave height h, and wave number k. The wave is propagating 

in a direction that makes an angle @ with a vertical plan containing 

the angle of incidence and reflection. 

An interesting result is observed for the scattered sound: the 

spectrum of the reradiation contains upper and lower sidebands posi- 

tioned symmetrically about the transmitted frequency w and displaced 

from w by multiples of the surface frequency. The amplitudes of the 

frequency components are given by Bessel functions of the first kind 

and of order n. The argument of the Bessel functions are dependent 

on the angles of incidence and scatter, wave height, and acoustic wave 

number. These relationships are summarized in the following equation: 

When the surface wave length is much larger than the acoustic 

wave length, most of the acoustic energy is scattered close to the 

specular direction, and it is not possible to resolve the specularly 

scattered signal (see Figure 3). The acoustic energy is scattered 

in space in selected directions determined by the familiar diffraction- 

grating equation of order n. (This same equation appeared in Flatté's 

talk (these Proceedings) during the discussion of the interaction of 

internal waves and acoustic fields.) The carrier frequency is 
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reflected specularly and for small acoustic-—to-surface wavelength 

ratios the energy is scattered in space symmetrically about the 

specular direction. For the direction of surface wave propagation 

shown, you would receive a down-Doppler in the backscatter direction. 

On the other side of the specular direction you would receive an up- 

Doppler. Reversing the direction of surface wave propagation, you 

would also reverse the directions of the Doppler shifts, e.g., an up- 

Doppler would be received in the backscatter direction. 

: : 3 th : : 
The scattering directions of the n order sidebands are given 

by the angles 8, and 943 

A 
n a 

8, i oil ~ cos 6 A aa ee) 
1 s 

vA 
0, = e-n ia a (7p) 

where 8. is the angle measured from the normal to the surface and is 

an angle of elevation, and o, is an azimuthal angle measured from the 

vertical plane containing the angle of incidence and reflection. The 

directions in which the energy is scattered are functions of the ratio 

of the acoustic-to-surface wavelength, the angle of incidence, and the 

direction of surface wave propagation. 

The effect on the azimuthal scattering angle 8, by the direction 

of surface wave propagation and the acoustic-to-surface wavelength 

ratio is shown in Figure 4. For small ratios the scattering is close 

to the specular direction, and it is not possible to resolve only the 

specular component at the transmitted frequency. The Doppler fre- 

quencies are scattered on each side of the specular direction. 
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As mentioned previously, low-amplitude sinusoidal waves were 

created on the water surface of an anechoic tank. A micrometer was 

supported above the surface and lowered to measure the wave height. 

The surface wavelength was measured from two wave-height sensors and 

the results compared well to the dispersion equation for gravity 

waves. With knowledge of acoustic parameters and geometry, predic- 

tions can be made for the scattered field. The spectrum on the upper 

left of Figure 5 is the amplitude frequency spectrum of an acoustic 

signal reflected from a calm surface. The other three spectra are 

the returns, measured in the specular direction, from a surface of 

4.5 Hz with waves propagating in directions equivalent to up-wind, 

down-wind, and cross-wind. The wave heights for the three cases 

were the same. Note that in each spectrum the sideband frequencies 

are symmetrical about the carrier and displaced from the carrier by 

the surface frequency, 4.5 Hz. The sideband frequencies for the 4.5- 

Hz surface waves were scattered within 3 degrees of the specular 

direction and the energies in the sideband frequencies are identical 

regardless of the direction of surface wave propagation. 

Looking only in the specular direction, it is not possible to 

observe the effects of the spatial scattering of the sidebands (see 

Figure 6). Placing a hydrophone 10 degrees off specular and toward 

the backscatter direction, the Doppler shift was measured at a sur- 

face frequency of 6.0 Hz. The surface waves were propagating ina 

direction equivalent to up-wind and, as expected, an up-Doppler was 

obtained. There are no lower sideband frequencies and the spectrum 

consists of the first- and second-order sidebands. Reversing the 

direction of the surface waves, we obtain a down-Doppler, as shown 

in the bottom spectrum. The received signal consists of just the 

lower sidebands. The wave heights for these two cases were not the 

same. 
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As mentioned previously, Parkins predicted the Doppler spectrum 

of an acoustic signal reradiated from the ocean surface using physical- 

optics techniques. He uses basically the same formulation of the Helm- 

holtz Integral as Eckart, but also includes a slope correction term 

originally formulated by Brekhovskikh and Isakovich (1952). The 

Doppler spectrum is obtained through the Fourier transform of the 

reradiated autocovariance function. For low frequencies, the Doppler 

spectrum consists of a specularly reflected component at the fre- 

quency of the incident radiation and two scattered components that 

are Doppler shifted symmetrically about the incident frequency. The 

magnitude of the deviation of the sideband frequencies is the same 

and depends on the angles of incidence and observation relative to 

the wind direction and also on the incident frequency. 

In 1970, Ben Cron and I did some experimental measurements 

(Roderick and Cron, 1970) of the Doppler spectrum. An acoustic path 

that included a surface reflection at a grazing angle of 7 degrees 

was used between the DOSS array and the TVA. The DOSS array consists 

of two magnetostrictive scrolls which generate 750 and 1,500 Hertz 

in the water. The TVA consists of 40 hydrophones positioned in a 

vertical array and was used to beamform to receive the surface 

reflected signals and minimize undesirable multipaths. The spectrum 

in the upper left of Figure 7 represents the spectrum of the signal 

incident on the surface. Before we go any further, the analysis was 

done on a real-time spectrum analyzer in a frequency range of zero to 

five Hertz. The acoustic signals were bandshifted to a center fre- 

quency of 2.5 Hertz. On the upper right of Figure 7 is a spectrum 

of the wave height measured at Argus Island using a resistive wave 

staff. The wave height was measured at the same time as the acoustic 

reflections from the surface and at a location which was 30 miles west 

of the isonified area. The spectrum in the lower left is from the 
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750 Hertz transmitted signal. Note that the sidebands are displaced 

equally from the carrier. The spectrum obtained at the transmitted 

frequency of 1,500 Hertz shows significantly more energy in the side- 

band frequencies. (All vertical scales are 5 dB per division.) 

The spectra shown in Figure 8 are for two consecutive pulses 

reflected from the surface and separated in time by 3 minutes. Note 

again that the sideband frequencies are displaced symmetrically about 

the carrier and peaked at the frequency of maximum energy on the 

surface. 

For a wind speed of 35 knots, the reflected spectra (Figure 9) 

have their first-order sidebands peaking at approximately 0.07 Hertz. 

It can be seen that the carrier frequency is suppressed for the 1,500- 

Hertz case; thus, almost all the received energy is contained in the 

scattered frequency components. The ocean spectra recorded for this 

wind speed of 35 knots are also peaked at 0.07 Hertz. 

In a recent JASA article, Vertner Brown and George Frisk (1974) 

reported on Doppler spectrum measurements conducted in the open 

ocean in the frequency range of 100 to 500 Hertz. The statistics of 

the sea surface were measured simultaneously with acoustic data by 

a surface-sensing buoy. The acoustic spectra are compared with the 

surface-wave spectra at each of the transmitted frequencies in Figure 

10. For small surface roughness, the acoustic spectra contain the 

discrete carrier frequency component with sidebands symmetrically 

positioned about the carrier. For moderate roughness, marked 

asymmetry in the acoustic spectra and strong spectral components 

that are not prominent in the surface spectra are found. 

Harry DeFerrari and Nghiem-Phu (1974) published the scattering 

functions of various acoustic arrivals over a propagation path of 
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7 nautical miles. The scattering function, as shown in Figure ll, is 

a three-dimensional description of the transmission in terms of the 

intensity, frequency, and delayed time of arrival. For surface- 

reflected-bottom-reflected arrivals, the Doppler spectrum has side- 

band frequencies at surface-wave frequencies. The scattering func- 

tion was measured during typical summer conditions with onshore winds 

of 10 to 15 knots. Asymmetrical sidebands were observed in some of 

the scattering functions. 

Asymmetrical sidebands can result when scattering occurs from 

a multi-frequency surface (see Figure 12). Consider the case of a 

two-frequency surface: the magnitude of each frequency component 

is proportional to the product of two Bessel functions and the side- 

band frequencies represent all possible combinations of the carrier 

and multiples of each surface frequency. If the surface frequencies 

are commensurable, then each sideband frequency is made up of a 

vector summation of the individual terms. In general, this will 

result in asymmetrical sidebands. The spectrum shown for surface 

frequencies of 4 and 6 Hertz has asymmetrical sidebands at a dif- 

ference frequency of 2 Hertz from the carrier. 

The AFAR range has also been used (O'Brien, et al., 1974) to 

measure the Doppler spectrum at different transmitted center fre- 

quencies. At 600 Hertz (see Figure 13), the received energy is 

coherent and predominately in the carrier frequency. As the fre- 

quency increases, the Doppler spectrum consists of more and more 

incoherent scattered acoustic energy. The sea state was 0.45 meters 

rms. 

In terms of the Doppler spectrum, we want to know what has been 

done; where we are; and what needs to be done. I have tried to 

illustrate the state of these affairs. We have made enough 
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measurements of the relative energy in the Doppler spectrum with 

supporting oceanographic data. You could fill a bookcase with the 

various theoretical models that are available in predicting scattered 

sound from the sea surface. However, I cannot determine whether the 

present models are adequate enough to produce the absolute value of 

the coherent as well as incoherent energy of the Doppler spectrum. 

To my knowledge, there has not been any deep ocean measurement of 

the absolute value of the Doppler spectrum. Lastly, there are 

measured asymmetrical sidebands obtained by various experimentalists — 

theoretical predictions should be made to compare to these results. 

In the remaining time, I would like to give a brief overview of 

an experimental program in measuring bistatic reverberation from the 

sea surface presently being conducted in the Block Island-Fishers 

Island Range. A parametric source (Figure 14) is being used to 

generate a narrow beam of acoustic energy incident on the sea surface. 

The source characteristics of wide bandwidth, narrow beam width, and 

no sidelobes result from the array of virtual sources created by 

the nonlinear interaction of the acoustic waves in the water medium. 

The reverberation from the surface is received on the vertical array 

of transducers and the information is cabled to shore. As you may be 

aware, the reverberation Doppler spectrum is a function of the sea- 

surface directional wave spectrum. To obtain an estimate of this 

spectrum, an array of five upward-looking transducers is used to 

measure the wave height as a function of time. The near-field 

characteristics of the transducers are used to isonify a small spot 

on the surface. The transducers are positioned to obtain equi- 

spaced cross-power spectral-density functions. 

A typical beampattern of the parametric source measured at a 

difference frequency of 7 kHz is shown in Figure 15. Note the absence 
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of sidelobes, and the narrow beamwidth of the major lobe. A 10-inch 

diameter piston transducer operating at a reasonable frequency of 

approximately 250 kHz was used as a source. 

Figure 16 displays recordings of wave height versus time measured 

at five discrete points on the sea surface. The sensors are posi- 

tioned in a line array and, if you look closely, you can see the phase 

relationship as the surface waves propagate across the array. 
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DISCUSSION 

Dr. P. W. Smith (Bolt, Beranek, and Newman, Inc.): The example 

or the explanation you gave of the asymmetrical sidebands suggested to 

me that they were a peculiarity of the signal reflection that would 

not result if you averaged over many reflections. 

Mr. Roderick: The spectrum I showed was a single time record 

with only 2 degrees of freedom. In other spectra that have been 

ensemble-averaged (including Brown's, DeFerrari's, and some results as 

seen on the BIFI range), one sideband can be down perhaps 5 or 6 GB. 

You have a good statistical confidence in the spectrum due to the 

large number of degrees of freedom. 

Dr. Ira Dyer (Department of Ocean Engineering, Massachusetts 

Institute of Technology): Bill, what hope would you hold out in using 

an acoustic system for getting the wave spectra, wave number spectra as 

well, of the ocean surface or any other rough scatterer? 

Mr. Roderick: I think this can be done — with some qualifica- 

tions. Bob Williams did his Ph.D. thesis on measuring the gravity 

wave spectrum based on acoustic results. 

Unfortunately, he had a horrendous problem. His acoustic path 

involved many surface reflections and he had very poor control over 

geometry. I think he only got fair results, mostly because of the 

experimental setup. I think it can be done. 
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Dr. Walter W. Munk (Institute of Geophysics and Planetary Physics, 

University of California at San Diego): The corresponding electro- 

magnetic scattering problem which is very similar has recently been 

attempted — a real comparison between the backscattered energy with 

the backscattering geometry, and that computed from wave measurements. 

Even an absolute comparison was attempted, and it came out 2 or 3 dB 

off on the absolute comparison, but quite well on the relative. 
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COHERENCE 
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My theme is that much of the randomness in underwater 

acoustics is not "inherent" randomness, but rather is the 

manifestation of complicated deterministic phenomena. 

INTRODUCTION 

What is "coherence" and, more important, what good is "coherence?" 

Definitions can be "Sticky." The pun is intentional. Coherent means 

to consist of parts that stick together, that are logically consistent. 

In various disciplines coherence has taken on special meanings, 

often related to techniques of quantifying (measuring) the degree of 

coherence. Quantification is necessary, but it can carry hidden 

assumptions that can confuse and even impede progress. For example, 

a correlation coefficient and its decay in time or space is most 

appropriate for first order Markov processes. The more sophisticated 

"coherence function" is most useful for wide-sense stationary 

Gaussian random processes. 

This paper is concerned with underwater acoustic propagation, 

with "coherence" meaning the consistency of reception across time, 

frequency, and space. The viewpoint is that of a signal processor, 

concerned with extracting information from acoustic receptions. This 

means information about propagation, or extracting operational infor- 

mation about targets or false targets. 

Signal coherence is most important in weak signal situations; 

that is, when the signal power is small compared to the noise power 

or the signal's own reverberation power. The sub-discipline known as 
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"signal detection theory" is a study of precisely how uncertainty 

about signal waveform and uncertainty about the noise characteristics, 

together with interfering power, affect signal-processing design. Per- 

haps more important, it studies how uncertainty and noise combine to 

limit ultimate performance in signal detection and information extrac- 

tion. The theoretical results are complicated, but there are some guid- 

ing general principles. 

One such general principle is that the effective signal-to-noise 

ratio after processing will fall off sharply at low signal-to-noise 

inputs. Just where this 'suppression effect' cuts in depends on the 

degree of uncertainty about the signal and noise characteristics. When 

the input is well above the 'knee' most reasonable processors work 

about equally well, and signal uncertainty is not very important. The 

other side of the coin is that processors can be designed to dig infor- 

mation out of weak receptions only if there is substantial knowledge 

of signal characteristics and this knowledge is used. Said again, if 

detailed signal knowledge is available and is used, it may mean tens- 

of-dBs of processing gain. 

BRIEF HISTORICAL REVIEW 

Twenty years ago many U.S. propagation people doubted that there 

was sufficient stability in signals propagated over long distances to 

support detailed signal knowledge. There were notable exceptions. 

Project Artemis of Hudson Labs was a courageous step forward in investi- 

gating propagation stability as seen at a very large receiving array. 

One must qualify all experimental results as being specific to the areas 

and frequencies studied. For Artemis that means for the Atlantic area 

south of Bermuda and in the neighborhood of 400 Hz. Artemis established 

the predominance of RSR (refracted, surface-reflected) paths for long- 

range propagation, and the importance of the bottom topography and 

local internal waves in the neighborhood of a slope mounted array. 
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The measures of space coherence were primarily (1) pulse time of arrival, 

and (2) the linear correlation coefficient estimated from clipped pro- 

cessing. That correlation would drop sharply to one-half, and then fall 

off slowly as the spacing increased. Tracking and prediction of non- 

plane wave fronts was limited by the speed and size of the available 

computers. 

In the same time frame the NEL studies with pseudo-noise trans- 

missions, controlled transmissions that covered over one-third of an 

octave, showed substantial waveform repeatability. 

Almost all experiments over long ranges involve at least one moving 

platform. Great care has been taken to reduce the fluctuation of the 

platform, through using submarines and drifting ships. This care is 

influenced by the experimenter's opinion of the stability of the medium. 

There is little to be gained by reducing the platform instability effects 

far below the effects that will be caused by the medium. As instrumen- 

tation improves we often repeat the old experiments and get different 

results. In a drifting-ship to bottomed-receiver experiment in 1963, 

using CW (a 420 Hz tone), across the Straits of Florida, a frequency 

stability of 4 millihertz was observed. That stability was comparable 

to the frequency source stability and to the ship station keeping. 

Subsequent fixed-site experiments with improved sources confirmed this 

stability in the Straits of Florida and over the old Artemis range in 

the Atlantic. 

This millihertz frequency stability is a nice example of the com- 

plexity of 'coherence'. It does not mean that the received signal looks 

like a pure tone. The signal shows substantial amplitude fluctuations 

and some phase fluctuations, which are now recognized as the effect of 

forward scattered surface reverberation. Mother Nature thoughtfully 

arranged for this reverb to lie in frequency sidebands some 50 to 500 
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millihertz to either side of the carrier frequency. That reverberation 

is part of the 'incoherent' part of the reception; its lack of struc- 

ture makes it much less useful than the stable signal line. Measure 

its power and then filter it out; once removed the remainder is the 

signal that possesses the millihertz stability. That is lesson number 

one: partially coherent signals may sometimes be separated into coherent 

and incoherent parts. The separation increases our understanding of 

propagation. The coherent part is operationally much more effective 

at low signal-to-noise for detection and identification, and worthy of 

further study. 

Studies of the isolated stable line showed that life is really not 

simple. In a multipath situation - and that is the usual situation 

for many of us - it is common for the amplitude of the line to vary 

substantially, while the phase of the line (or its instantaneous fre- 

quency) has such slow variations that it reflects tidal and internal- 

wave behavior. If one models 'paths' as slowly and independently vary- 

ing, the model disagrees. However, if one models 'paths' as slowly 

and dependently varying, reacting to the same global temperature 

variations, then the model begins to fit. That brings in lesson num- 

ber two: the propagation may be coherent, that is, complicated but 

logically consistent and dependent of the same variations, and yet 

yield some measurements that appear to be incoherent. It is up to the 

scientist and the sonar designer to seek, recognize, and capitalize on 

whatever 'coherence' nature provides. 

NON-MARKOV COHERENCE 

There is a natural tendency to believe that 'coherence' should 

behave in a Markov fashion in all dimensions. We seek coherence dis- 

tances, coherence time constants, coherence bandwidths. We ask ‘how 

far apart do receptions have to be before coherence drops tO one-over-e?' 

as if that just has to be an intelligent question. 
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Does the consistency of propagation break down as signal frequen- 

cies are separated? It is common to experience different fades at sig- 

nals just a few Hertz apart. I would like to cite just one study to 

indicate that the behavior in frequency is more coherent, and more 

complicated, than a Markov process. Single-path loss measurements were 

made at 61 frequencies spaced 5/6 Hz apart, covering the regime from 

395 Hz to 445 Hz over a period of 7 hours. The transmission was over 

43 miles across the Straits of Florida. The loss contours as a func- 

tion of frequency and time show a lot of pattern; I hope enough to 

encourage studies that go after the whole surface, and enough to dis- 

courage attempts at determining a correlation bandwidth. The frequency 

deviation plot for the same data shows major peaks of the order of 

one millihertz wide. Low-magnitude broadband ripples and changes 

slide across frequencies in time; however, the entire band has a rea- 

sonable unity. Of course it is only about one-sixth of an octave, but 

that is all many sonars (active) cover. Incidentally, these data were 

taken with nine-foot seas overhead. 

Correlation time-constants for multipath propagation are another 

popular concept. In some locations it may be a valid description of 

multipath behavior. Again, I would like to cite one study to indi- 

cate that multipath propagation may be more coherent than suspected, 

but that much careful work will have to be done to discover the 

coherent parts and to use them. The data spans one day, and used a 

continuous transmission designed to yield the same time resolution as 

a 20 millisecond pulse repeated every 1.2 seconds (but with 18 dB more 

processing potential). The data taken in November 1971 show a dominant 

30-millisecond arrival alternately merging and contrasting with a 

following weaker arrival. This routine structure shows a dramatic 

change both in the duration of the arrival and in the phase pattern. 
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The arrival frequency shifted 0.5 millihertz and 12 hours later changed 

again by 0.8 millihertz. Even the weak trailing arrivals show re- 

peatable phase often lasting for hours. There is strong evidence of 

consistence and pattern, but it is complicated, and one time-constant 

does not describe this type of data. 

HALF-TIME SUMMARY 

Coherence is a complicated subject, but worth pursuing because of 

the potential gain in apt signal processing at low signal-to-noise 

ratios. Coherent propagation may lead to complex receptions which must 

be sorted out, and some physical measurements will appear to be much 

more coherent than others. The lack of regularity in one class of 

measurement does not imply incoherent propagation, and simple measure- 

ments of correlation may be deceptively uninformative. 

In the second half of this paper a model of propagation from a 

submerged moving source will be presented to show how a complicated 

and apparently incoherent signal may be received even though the pro- 

pagation itself is totally coherent, totally deterministic. The model 

agrees well with measurements in many respects, but I beg your in- 

dulgence for leaving that to another paper. The purpose of this pre- 

sentation is to emphasize my theme: Much of the randomness in under- 

water acoustics is not inherent randomness, but is rather a manifesta- 

tion of complicated deterministic phenomena. 

AN EXAMPLE MODEL 

Picture a deep ocean with a single classical sound speed profile 

that applies everywhere, and a fixed source at 150 meters depth and 

600 km from a deep receiver. The numbers are purely for example 

sake. This source emits a steady pure tone, let us say at 250 Hz. 
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All this is said to formulate a multipath situation. Paths will appear 

in pairs, with one path of each pair leaving the source at some de- 

pression angle, and the other path of the pair leaving the source at 

an elevation angle of almost equal magnitude. The difference in the 

absolute value of the angles is quite small, of the order of .1 degree. 

At the assumed long range there will be several such pairs, and the 

reception will be the vector sum over all paths with their travel times 

and losses; it will be a 250 Hz signal. 

Now let the source open range at 6 knots. Grossly speaking this 

will cause a 0.5-Hz Doppler shift. Speaking more carefully, there will 

be a 0.5*cos(angle) shift. Consider one pair of paths. If their 

angles differ by 0.1 degree, their Doppler shifts will differ by 0.152 

millihertz. That's not much, but therein lies the key number in this 

model. Since the difference is so small no current receiver will 

separate them, and their sum will appear as a single frequency, with 

an apparent fade rate of 109 minutes. (Of course I am thinking about 

much shorter observation times than 109 minutes.) The conclusion is 

that the 'insignificant' differential Doppler will have almost no effect 

on the measured frequency, but has a substantial effect on the measured 

amplitude. 

There will be a number of ray-path pairs. For simplicity assume 

that a hypothetical analyzer can isolate two pairs in one narrow filter 

with relative frequencies and amplitudes as listed below: 

rel. freq. -.0100 =.0092 O -0005 

rel. amp. (dB) Pal P-3 P P-2 

The amplitude, linear with pressure, will show rapid fluctuations 

with a period of 100 seconds separating deep fades about every 13 

minutes. A phase tracker shows the instantaneous frequency of the 

reception fluctuating wildly at the 100-second rate, but using the 
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phase tracker's average slope yields frequency estimates which have a 

"capture' behavior, locking onto the frequency of the momentarily 

largest line pair. 

This example was based on only 2 path pairs, and the 2.7 km range 

change was ignored in the calculations to emphasize the simple beat. 

Add a few more path pairs, take into account the opening range and 

the attendant path and angle changes, and you will obtain a complica- 

ted fade pattern, and a frequency estimate that hops around. Is that 

bad? No, that's good! It's a basic part of propagation, and it occurs 

in every test and every operational situation with a moving source at 

long range and not on the surface. The fluctuations were coherent. 

There was no randomness in the example. 

That concludes coherence lesson number three: not everything 

that varies is a random variable, nor do fluctuating receptions imply 

incoherent propagation. 

APOLOGY 

My brief history omitted reference to almost everyone, and I owe 

an apology both to the researchers and to this audience if they were 

expecting a scholarly review. 
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The study of fluctuations is hampered by a diversity of 

definitions and language. I propose that theories and 

experiments be distinguished as to 1) Averaging Algo- 

rithms, 2) Source/Receiver Motion, and 3) Ocean Dynamics. 

Confusions in the interpretation or comparison of recent 

results can be reduced thereby. Several results are 

discussed within this framework. 

More particularly, a format for studying short-time- 

averaged amplitude (envelope) fluctuations is proposed. 

Envelope statistics for phase random processes are well 

known for sample sets with fixed mean; these statistics 

change significantly for sample sets with varying mean, 

as is often the case for sets extending over time dura- 

tions and spatial extents involved in detection by typical 

sonars. The format includes metrics such as the fluctu- 

ation (fading) period, the fluctuation (interference) 

scale, and more generally their corresponding spectra. 

Some recent results are discussed in these terms. 

There is no clear, accepted way to distinguish between various 

categories of fluctuations. This paper addresses, therefore, the 

question of time series that may be observed in the ocean; 

equally to spatial series that may also be observed in the 

the study of coherence. Figure 1 defines certain terms of 

to time series; a comparable set of definitions exists for 

spatial series. 

it applies 

ocean in 

importance 

the 

Two quantities are typically of interest: the amplitude, which 

may be the decibel level, A (or the intensity, I, or the RMS value, 

|p|), and the phase, 0, which could just as well be the tilt angle 

or the bearing angle. 
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The time series, A(t), has a probability density, P(A), anda 

spread, AA(Q) called the fading range. This can be defined in terms 

of the cumulative probability distribution, and in the subsequent 

results it will correspond to the fading range where 2.5 percent of 

the lowest levels and 2.5 percent of the highest levels are dis- 

carded. 

Similarly, a period, Ths can be defined as the time between 

crossings of a level Ns going in the same direction. The period is, 

in fact, a function of that level. 

The crossing period T is therefore related to the crossing 

rate T1 
A 

of the slope of the curve times the joint probability density of 

which is given by the integral of the absolute magnitude 

that particular level which it crosses and the slope itself. In the 

subsequent results, the periods will correspond to the crossing level 

that is the mean of the time series. In case of phase, for example, 

that mean will often be zero. 

A third measure, the autocorrelation, p, is defined in the usual 

way, and the time, t, will correspond to the 1/e point on that auto- 

correlation function. 

Figure 2 summarizes some of the knowledge acquired by those 

working on the Eleuthera-Bermuda experiment. There are several 

fading types. The very fast fading type extends from an averaging 

time of perhaps ten times the period of the sound wave itself up to 

approximately 15 seconds. A fading in this domain of averaging time 

and record time — that is, the length of time we look at a record — 

is usually incorporated within scattering theories and scattering 

experiments. 
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At the other extreme are very slow fades which have been 

described as seasonal fluctuations. Perhaps the record time for 

these is as long as 1 year and averaging times of 1 month or more 

might be used. 

Between these obvious extremes are other kinds of fading, per- 

haps three or more, worth distinguishing between because they appear 

to be associated with separate mechanisms. For example, fast fading 

fluctuations tend to have a fading range of 20 dB in amplitude, a 

period of about 25 minutes, and a decorrelation time of about 5 

minutes. The phase, on the other hand, typically ranges over 5 cycles 

with a 60- to 80-minute period, and perhaps a 25-minute decorrelation 

time. 

The intermediate fades yield rather different numbers. It should 

be emphasized that this particular set of experiments is for one 

frequency with fixed source and receiver locations. Hence, the only 

motion that does occur is, in fact, the motion of the ocean. For the 

intermediate fades, there is a definite period of 12.4 hours, with a 

somewhat reduced fading range on amplitude and an increased fading 

range on phase. 

Figure 3 illustrates a possible mechanism for the fast-fading 

case which leads to the general result that the fading period on 

amplitude is related to the fading period on phase by the simple 

ratio 1/90 * 
rms 

The argument proceeds from a modal interference picture which 

treats the mean square pressure as a sum of sinusoids. Whenever the 

phase difference between pairs of modes approaches twice the average 

phase, an amplitude beat is generated. Hence, that amplitude beat 

is given whenever the average phase is of the order of 1. Typical 
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amplitude periods are then on the order of 1.5 divided by the number 

of fade cycles. Referring back to Figure 2, for fast fading, T,/A6 ad 

16 minutes, which is approximately two-thirds of the observed T, 

of 25 minutes. The agreement for the decorrelation times is not as 

good but still in the right ballpark. This argument does not seem 

to work for the other fading types which suggests that for this partic- 

ular frequency range and these particular choices of averaging times 

and record lengths the underlying mechanisms may be different. The 

intermediate fading rates may, in fact, be related closely to the 

modal interference that is caused by internal-wave motion, and the 

slow rates may be caused by planetary waves that have a different 

kind of behavior with respect to the fading process. 

The results of Figure 2 should not imply that a simple reduction 

of experiments to a single number table is, in fact, possible. 

Figure 4 displays results obtained by Stanford (1974), where two 

amplitude time series are spatially separated by only 40 meters 

vertically and 80 meters horizontally. The periods of fade, Dae 

differ by a factor of 2, although the amplitude fade range is about 

the same. 

Figure 5 illustrates results obtained by Spindel et al. (1974), 

and the experiment differs in two respects from that reported pre- 

viously: the range is somewhat different; and, perhaps more sig- 

nificantly, there is a drift velocity of about a third of a knot, 

rather than a zero range rate. (Nonetheless, as will be shown sub- 

sequently, this drift rate may he not too significant.) More impor- 

tantly, these results show a tremendous depth dependence to the 

fading. The fading range on phase is of the order of 26 cycles with 

a period of 140 minutes for the deep receiver. For the shallow 

receiver above the main sound channel, the fading range is 10 cycles 

with a fading period of 64 minutes. 
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These results indicate that it is impossible to state ona 

single-number basis what the fading parameters are. Nonetheless, it 

is possible to discuss trends in these data and to try to understand 

why changes such as these occur. 

Figure 6 shows results taken under more or less comparable con- 

ditions, where the decorrelation time for amplitude, TA, is plotted 

versus the carrier frequency. There were three experiments: one by 

Nichols and Young (1968) at about 270 Hertz, DeFerrari's (1974) 

(which was included in Figure 2) at about 400 Hertz, and Webb and 

Tucker (1970) at about 800 Hertz. The decorrelation time seems to be 

reasonably described by something that is intuitively appealing — 

namely, that the frequency times time is a constant approximated by 

1800 (when the frequency is in Hertz and the decorrelation time is in 

minutes). This suggests, for example, that at 100 Hertz the decorre- 

lation time may be as long as 18 minutes. 

The previous results have been attributed to effects of ocean 

dynamics. Figure 7 addresses the question: What about making 

measurements with moving platforms? For moving platforms, the notion 

of a spatial scan is introduced. There are spatial fluctuations in 

the acoustic field if the ocean is considered completely stationary 

or "frozen." These fluctuations are described in terms of a correla- 

tion coefficient relating changes in range and changes in depth. A 

rangewise scale, hos and a depthwise scale, Lo are then defined in 

terms of the 1/e points in the correlation coefficient. 

Preston Smith proposed a theory which may have a direct bear- 

ing on these measures. In the second case of an isogradient duct, 

the radial or the rangewise scale was found to be proportional to 

the wavelength divided by the square of an angle, @,. This angle 
Q 

is, in fact, the angle that encloses all the refracted rays that are 

374 



min 

TEIN 

a) 

ZN 

Figure 6. 

DYER: FLUCTUATIONS: AN OVERVIEW 

1000 

Nichols and Young 

DeFerrari 

Webb and Tucker 

DECORRELATION TIME AND CARRIER FREQUENCY 

FAST FADING (Ocean Dynamics) 



AN OVERVIEW FLUCTUATIONS: DYER: 

(
s
u
o
T
z
e
n
q
z
o
n
T
y
 

u
e
e
o
Q
 

uezolz,4) 

A
Y
N
L
O
N
U
L
S
 

G
I
A
I
A
 

G
N
N
O
S
 

J
O
 
S
N
O
I
L
V
I
Y
V
A
 

I
V
I
L
V
d
S
 

"
2
 
e
m
n
b
t
a
 

V
y
 

< 
V
e
 
P
a
o
 

= 
V
i
 

:
p
o
t
i
e
d
 

o
s
t
e
 

oT A
 

Soa, 
T
o
h
 

% 

(ueess0 
uezorzz 

e 
H
u
T
u
U
e
d
S
 

UT) 
A
W
I
L
 

N
O
I
L
W
I
S
Y
Y
O
O
R
A
a
 

2
9
 

b
e
 

. 
a 

aad 
y°O 

1% 
% 

L
o
a
d
 

LNATAGWYSOSsI 
e
e
e
 

(PTETF 
p
u
n
o
s
 

L
e
 

pextu 
Uae Tet. 

Sab 
mii 

ae 
-TT2eM) 

>
U
3
T
W
S
 

a
 

= 
2
5
 
e
a
e
 

= 
L
o
n
d
 

a
d
a
a
d
S
O
S
I
 

“l= 
= 

(oor 
=
 

Z
 

4
 

2
a
 

(EG S.2.0,).0 

e/T 
= 

(0’ 
%)9 

(zy 
‘ay) 

9 

376 



DYER: FLUCTUATIONS: AN OVERVIEW 

trapped in the duct. The constant of proportionality involves param- 

eters such as the depth of the receiver, z and the depth of the ae 

uct. «Di 

Using this scale, or whatever scale is appropriate to the problem 

of interest, the decorrelation time is determined by the scale length 

and the range rate. When making measurements with a moving platform, 

the impact of this time on the measurements must be addressed. 

Notice that the decorrelation time for platform motion and ocean 

dynamics is proportional to the wavelength, as shown in Figure 6. 

Hence, there should be a particular value of range rate which makes 

the two decorrelation times equal. This speed depends on the path 

geometry but for this case appears to be on the order of 3 to 5 knots. 

That is, if the ocean is scanned at speeds substantially in excess of 

3 to 5 knots, the fluctuation time scale will be governed by the 

structure that exists in the ocean as if the ocean were standing 

still and didn't have, say, internal waves. On the other hand, if 

the ocean were scanned at speeds significantly less than a few knots 

(for example, the one-third of a knot in drift used by Spindel et al. 

(1974), the time scales may well be those associated with internal 

waves or other ocean dynamics. 

Some evidence for this is indicated by the NRL experiments where 

range rates were 7 knots and horizontal scale lengths of 65 kilometers 

were measured corresponding to the convergence zone spacings. A 

closer examination of their spectral decomposition in wave number 

(really interference scales) shows at 14 Hertz about a 9 kilometers 

interference length which is roughly consistent with the results in 

Figure 7. 

The transmission-loss data shown in Figure 8 were supplied by 

Earl Hays and are a good example of the effects of platform motion. 
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The experimental geometry consisted of a fixed string of receivers at 

the depths indicated and a source closing from a range of 7 miles to 

a closest-point-of-approach of 2 miles and continuing on out to about 

7 miles. The source frequency is 130 Hertz and the source speed is 

6 knots. 

Notice that for the shallow (300-meter) receivers, periodicity 

is about 10 minutes, whereas for the deeper receivers, between 2,000 

and 3,000 meters, the periodicity is of the order of one or two 

minutes. These time scales are consistent with the spatial scales 

that exist in the ocean, as sampled by the various source-receiver 

geometries. The temporal scales associated with internal-wave motion 

in this geometry would lead to periods of 40 to 50 minutes for this 

frequency. This is a good example of an experiment which yields 

time scales that result from the structure of the acoustic field in 

the ocean and not from the ocean dynamics. 

The conclusions these various results suggest are that the ocean 

can move and hence give some structure to received-signal fluctuations 

and, also, the platforms can move resulting in additional fluctuation 

structure. Both of these possibilities must be considered. In fact, 

in many practical circumstances there are sources moving near 6 knots 

and a technique is needed to combine situations where fluctuations 

due to platform motion and ocean dynamics are comparable. No theory 

adequately takes both into account. In fact, no theories adequately 

treat either of the two separate mechanisms. 

Figure 9 addresses a few more facets of the fluctuation problem. 

In a data record which addresses fast fading but is also long enough 

to include, for example, intermediate fading, variations appear in 

the mean, of the individual fast-fade processes. Uae 
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In many cases the probability density for amplitude, P(A), for 

fast fading results from a phase random process and for the intensity 

is exponential, while for the rms pressure it is Rayleigh. These are 

equivalent statements and for the logarithmic distributions, the mean 

is depressed by 2.5 decibels and the standard deviation is 5.6 deci- 

bels. This result assumes enough paths (10 or more) to justify an 

asymptotic limit. 

For this distribution, the fading range (throwing away 5 percent 

of the extremes) is about 21 dB, which is consistent with short 

observation periods (under 2 hours) for the frequency of 400 Hertz. 

The next step (Figure 10) is to describe the amplitude statistics 

for a longer period of time than that which just corresponds to each 

of the fast-fading segments. 

If the probability densities of the individual processes are 

known, the final probability density is found by averaging P(A) over 

the variation of the mean itself, P(u,)- For example, for fast fading 

alone, the probability density of the mean is a delta function, yield- 

ing back the phase random process. For predominantly slow fading, 

variations in the mean may be reasonably given by a Gaussian process 

which generates a sufficiently large spread in the mean that the 

probability density of the logarithmic amplitudes approach a Gaussian 

distribution. There is evidence that, in fact, this occurs when data 

are included from experiments over time periods of 30 to 40 days. 

In the intermediate fading-rate case, the results are not so 

easily described. Figure 11 shows results obtained by John Clark (1974) 

and his colleagues last year, where the signal histograms (essentially 

the probability densities) are plotted as a function of time. Each 
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probability density represents data taken over 2 days. The individual 

densities are somewhat skewed as expected, but the individual densities 

change with time. While the probability density of either entire 

group has not been generated, the supposition is that it may approach 

in and of itself a Gaussian distribution. Note that the means of the 

distributions change with time as do the standard deviations. 

The final figure (Figure 12) shows one possible way to treat 

this. The solid curve corresponds to a single population consisting 

of phase-random multipaths. It is skewed with the 2.5-dB depression 

in the mean. (That is, the most probable value is 2.5 dB higher than 

the mean value.) If seven such processes are added, uniformly spaced 

with a spread in means of 6 dB, the resulting distribution is easily 

integrated (since it consists of a sum of delta functions) and leads 

to the dashed curve in Figure 12. Two things have happened: First, 

the standard deviation has increased beyond 5.6 dB (the dotted curve 

is broader than the solid curve); and, second, there is less skew and 

peakedness in the distribution. In general, as the spread becomes 

larger, the dashed curve becomes more and more GausSian in nature. 

SUMMARY 

In conclusion, there are many measures of fading. It is going 

to be important to recognize various regimes of time for time series 

and space for space series. It is equally important to indicate which 

fluctuations are averaged out and which are included through the 

length of the record. 

The understanding of the sub-processes is quite far along; how- 

ever, it is difficult if not impossible to include everything that 

is observed. A more likely approach is to formulate very clear 

statements about the particular process being investigated at a 

particular time, recognizing the diverse underlying mechanisms. 
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SOUND PROPAGATION IN A RANDOM MEDIUM 

Robert H. Mellen 

New London Laboratory 

Naval Underwater Systems Center 

New London, Connecticut 

For more than a decade we have been trying to identify 

and measure the various factors within the water column 

that contribute to the low-frequency attenuation in sound 

channels. Experiments have been carried out in a number of 

bodies of water, including fresh-water lakes, to study ef- 

fects of temperature, salinity, and other environmental 

factors. The results show an anomalous attenuation in sea- 

water below 1 kHz in excess of the magnesium-sulfate relax- 

ation contribution. A new relaxation mechanism involving 

boron has been identified by Fisher and Yaeger. A second 

anomaly is frequency-independent over considerable ranges 

and is thought to arise from scattering by random vari- 

ations in refractive index. Comparison of the scatter loss 

estimated from random variations in sound-speed profiles 

shows order-of-magnitude agreement with a wide range of 

experimental results. Effects of the random component 

of sound speed on spatial and temporal coherence within 

the channel are discussed. 

INTRODUCTION 

For more than a decade we have been trying to identify the 

sources and behavior of the various components within the water column 

that contribute to the attenuation of low-frequency sound in the sea. 

In 1967 we began a series of experiments designed to study the dif- 

ferences in various bodies of water, both fresh and saline, of 

different temperatures and other environmental factors. The map 

in Figure 1 shows the regions that were studied and I would like to 

discuss the results of these experiments (Browning and Thorp, 1972). 
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Our technique was designed for simplicity of data analysis and 

is represented pictorially in Figure 2. To eliminate boundary effects, 

we made the experiments during the period when the surface tempera- 

tures were sufficiently high to form a sound channel. SUS charges were 

detonated on the channel axis as the transmitting ship opened range. 

The signals were received by a hydrophone located on the channel axis 

and recorded for later analysis. 

Analysis was accomplished by using 1/3-octave filters and 

measuring the total received energy arriving through refractive 

paths. This is no problem since arrivals reflected at the boundaries 

can usually be separated in time. If not, they can be ignored since 

they are more severely attenuated at least at the frequencies of 

interest. The results are plotted in decibels (corrected for cylin- 

drical spreading vs range) for each of the filter frequencies. An 

example is shown in Figure 3. Then by linear regression analysis, 

we obtain the attenuation coefficient. The validity of the cylindrical- 

spreading approximation and the neglect of bottom loss above a critical 

frequency were checked by DiNapoli (1971) in his Fast Field Program 

and will be discussed later by Browning (in these Proceedings). 

ATTENUATION EXPERIMENTS 

The saltwater results shown in Figure 4 together with earlier 

work supported the conclusion of Thorp (1965) that the coefficients 

below 1 kHz were anomalously high. The dashed line is the Marsh- 

Schulkin curve that includes the MgSO, relaxation absorption. The 

excess absorption below 1 kHz is greater than predicted by roughly 

a factor of 10. Thorp fitted the anomaly to a relaxation formula 

with a relaxation frequency of 1 kHz. 
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The resulting attenuation shown in Figure 5 is a three-component 

model consisting of: 

e The fresh water viscous component 

e The MgSO, relaxation component 

e The anomaly which has recently been identified as a 

second relaxation involving the boron content in sea- 

water (Yaeger et al., 1973). 

Thus, we may now say that all three components are absorptive and do 

not involve scattering or other anomalies. 

Several of the experiments do not follow the three-component 

absorption model very well at all and Hudson Bay (Browning, 1971) is 

one of those cases (see Figure 6). Since we have no reason to suspect 

either the experiment or the absorption model, it is plausible that 

the excess arises from some other mechanism. If we subtract the 

theoretical from the experimental, we find that the excess attenu- 

ation coefficient is a constant '0.04 dB/kyd over the frequency range. 

This might suggest another relaxation below 100 Hz; however, this 

hypothesis must be rejected for other reasons. A more likely cause 

is forward scatter from inhomogeneities within the water columns. 

As a first attempt to test this forward scattering hypothesis, 

we have investigated the turbulent cell model of Chernov (1962). In 

Figure 7 we see a plane wave progressing through a perturbed medium 

where the refractive-index inhomogeneities are random, roughly 

spherical, and have a scale size ao: The wavefront becomes corrugated 

and the ray angles become randomly distributed. Energy is conserved. 

In a sound channel, energy is normally trapped for all angles 

less than some critical angle, Ona and leaks out for larger angles 

(see Figure 8). Because of the diffusion by the inhomogeneities, 
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VISCOUS ABSORPTION 

Mg SO, 
RELAXATION 

ANOMALY ATTENUATION COEFFICIENT a@ (DB/KYD) 

FREQUENCY (kHz) 

Figure 5. ATTENUATION OF SOUND IN SEAWATER 
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Figure 8. 
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the angular distribution of normally trapped rays increases so that 

energy is continuously lost from the channel. The sound channel 

attenuation model includes absorption, diffusion loss (Mellen et al., 

1974), and diffraction loss. Here the diffraction component is for 

the first normal mode only and assumes an infinitely lossy bottom. 

These data can be fitted empirically, as -shown in Figure 9, by 

adding an extra loss independent of frequency. For the Hudson Bay 

experiment, the excess is 0.04 dB/kyd while for the Gulf of Aden 

(Browning et al., 1973) value, it is 0.02 dB/kyd. The MgSO , component 

was corrected for temperature, -1.5°C for Hudson Bay and +15°C for 

the Gulf of Aden. The most significant difference between the two 

experiments is that the Thorp coefficient for the Gulf of Aden is 

only 0.6 that for Hudson Bay, which suggests differences in boron 

chemistry of the two bodies of water. 

Once the possibility of a constant diffusion loss independent 

of frequency was accepted, the results of Lake Superior (Browning 

et al., 1968), shown in Figure 10, became clear. At first we had 

guessed that the Thorp relaxation was common to both salt- and fresh 

water, with only the MgSO, component missing in Lake Superior. It 
4 

was later found that the necessary boron content did not exist in 

Superior which gave strong support to the scattering hypothesis. 

We have used the term "independent of frequency" to describe 

diffusion which is, of course, a large ka. approximation. For 

ka <<l, we expect the loss to fall off. There may be a hint of 

reduced scatter at 630 Hz which would make the scale size a = 0.5 mi. 

Further support to the scattering hypothesis was given by the 

experiments in the South Pacific (Bannister, 1976) which show an 

excess absorption of 0.002 dB/kyd (see Figure 11). Like the North 
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T = THORP 

HUDSON BAY 
T+.04 dB/kyd 
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Figure 9. SOUND-CHANNEL ATTENUATION (EXPERIMENTAL) 
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Central Atlantic, the North Central Pacific waters show no measurable 

scatter. The Thorp coefficient is estimated to be 0.5 in both cases. 

Another experiment, shown in Figure 12, was done much earlier in 

the Gulf of Maine* and shows excess absorption similar to that for 

Hudson Bay. In fact, the two are almost identical except for the 

lower frequency points which are lacking in Hudson Bay. The dif- 

fraction curve was based on infinitely lossy bottom as before and, 

while the attenuation increases with decreasing frequency, the rate 

is slower than predicted, probably because of finite bottom loss. 

Any fall-off of diffusion loss at lower frequencies is obscured by 

diffraction, however. 

The latest experiment was done in Baffin Bay (Browning et al., 

1974) in 1974. The results in Figure 13 also show a constant loss 

of 0.02 dB/kyd above 200 Hz with a rapid fall-off below that fre- 

quency. Since Baffin Bay is much deeper than Hudson Bay or the 

Gulf of Maine, the low frequency values are not obscured by dif- 

fraction. The Be dependence below 200 Hz suggests Rayleigh scatter 

from globs of scale size ay = 3 m with a = 2 x 10’. 

From ray diffusion theory we have devised a simple formula, 

shown in Figure 14, for the sound-channel diffusion attenuation in- 

volving ah the variance of index of refraction, aor the scale size, 

and Az, the depth from the channel axis to the bottom. Using the 

values W? = 10° and an = 15 m obtained from analysis of the SVP in 

Hudson Bay and the Mediterranean, we see that the values predicted 

for shallow channels (Az = 100 m) and the deep channels (Az = 2,000 m) 

are in reasonably good agreement with experimental values. If a_ is 

* Unpublished BBN data. 
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Figure 13. ATTENUATION COEFFICIENT IN BAFFIN BAY 
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DIFFUSION ATTENUATION 
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Figure 14. ATTENUATION INDUCED BY DIFFUSION 



MELLEN: SOUND PROPAGATION IN A RANDOM MEDIUM 

changed to 3 m, as predicted from Rayleigh scatter in Baffin Bay, 

the result is 0.03 dB/km and agrees very well. It thus appears 

that while most of the variability of scattering loss depends on the 

strength of the channel, the smaller scale size is responsible for 

the large value for Baffin Bay. 

Although the values of scattering loss may or may not be impor- 

tant to a sonar problem since it can be very small, the information 

about what is happening to signal coherence within the channel cer- 

tainly should be valuable. For example, we can see in Figure 15 the 

effect of scatter on 400 Hz signal fluctuation for two hydrophones 

separated by 100 m. In this experiment done by Stanford (1974) in 

Bermuda, the time fluctuations are quite incoherent and seem to have 

two scales, the longer one probably related to internal waves and a 

shorter scale that may be related to turbulence. 

The spectrum of the time fluctuations (Figure 16) definitely 

shows a break above 10 cycles/hour which varies with the seasonal 

thermocline. The latter scale size compares to that associated with 

scatter loss if the ocean currents are one- or two-tenths of a knot. 

The effect of scatter on spatial coherence is also important. 

Kennedy (1969) at Bermuda varied the vertical separation of two 

hydrophones and measured the CW signal correlation between them. 

The correlation distance appears to be close to our estimated value 

based on as = 15 m (Figure 17). 

SUMMARY 

Our results are summarized in Figure 18; we have observed both 

the Thorp (boron) relaxation and also what we believe to be forward 

scatter loss in a number of sound channels throughout the world. The 

coefficient of the Thorp term is unity in the North Atlantic water 
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but only 0.6 in the Gulf of Aden and 0.5 in the Pacific, suggesting 

possible differences in the boron chemistry of these waters. The 

regions where large amounts of scattering occur suggest turbulence 

induced by current shear. In the North Central Pacific and North 

Central Atlantic and Red Sea, there is no measurable scatter at all. 

(The point of division between moderate and severe scatter is taken 

as Ufa, = Mena rather than the magnitude of scatter loss since 

the latter depends strongly on the channel strength.) 
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DISCUSSION 

Dr. D. C. Stickler (APL, Pennsylvania State University) : 

Referring to Figure 17, what was the difference between the correlation 

that fell off rapidly and those that didn't? 

Dr. Mellen: Two hydrophones at Bermuda were separated in the 

vertical. The correlation between the two of them was measured as 

a function of the separation distance. The dashed curves are from 

Chernoff estimating at 100-feet and 200-feet correlation distance. 

Dr. P. W. Smith (Bolt, Beranek, & Newman, Inc.): You picked out 

my favorite example of something I completely fail to understand. 

They have here a single path going up which may be significant on a 

ray picture vertexing 124 feet, I think it was, below the surface, 

then going down to the bottom, coming in at very shallow grazing 

angle. And what I completely fail to understand is how they can get 

such high correlation in the arrivals -- in the phase or arrival 

times -- over their separation between the transducer pairs and this 

very short correlation interval in the amplitudes. Does anyone have 

any guesses? 

Dr. Mellen: I can't answer that question. I only used this to 

illustrate the correlation distances to compare with the 15 meters 

that we measure in the Mediterranean and the Hudson Bay. 

Dr. Smith: I don't think that the behavior of the time and 

amplitude would be consistent with the theory with which it is being 

compared. 

Dr. Walter H. Munk (Institute of Geophysics and Planetary Physics, 

Univ. of Calif., San Diego): There is something else I completely 

don't understand, and other non-acousticians who have looked at your 

results are equally confused. Figure 16 has power spectral densities 

in dB, and I don't understand those units. Spectral density is units 
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of something per unit frequency band. 

Dr. Ira Dyer (Massachusetts Institute of Technology) : 

That's mislabeled actually. 

Dr. R. R. Goodman (Naval Research Laboratory): On your last 

picture (Figure 18) where you showed the areas of anomalously high 

absorption, with the exception of the Gulf of Aden, they are all 

shallow water results, aren't they? 

Dr. Mellen: Baffin Bay is also deep water. 

Dr. Goodman: How deep is it? 

Dr. Mellen: About 2,000 meters. 

Dr. Goodman: One thing I would like to point out with respect 

to the Hudson Bay results and perhaps Lake Superior as well as any 

shallow water. You are putting a tremendous amount of faith in the 

shallow-water propagation loss that you are taking out of these data. 

If you are talking about shallow-water propagation over a hundred miles 

you are talking about an accuracy out to a hundred miles of 5 decibels 

in the model, and that's better than any model I know today for 

shallow water. 

Dr. Mellen: Again, all we do is linear regression to the data. 

We don't worry about absolute values or how it got there. We start 

at very long distances. For instance, in Baffin Bay we measure only 

from 100 kilometers to 400 kilometers in that region. And the 

propagation is extremely well behaved, and you really believe the 

results. 

Dr. Goodman: You're subtracting off a transmission loss term. 

You have to be. 

Dr. Mellen: Subtracting out cyclindrical spreading. 

Dr. Goodman: Right. Do you have faith in cyclindrical spread- 
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ing to that accuracy? 

Dr. Mellen: Absolutely. 

Dr. Goodman: That's curious, because I don't. 

Mr. P. H. Lindop (Admiralty Research Laboratory): We have some 

unpublished results for sound channels in the Western Mediterranean, 

Eastern North Atlantic, and the Southern Norwegian Sea. Looking at 

these rough results we don't see anything anomalous. We take out 

cylindrical spreading and we don't see anything of the order that 

you have seen. 

Dr. Mellen: In the Mediterranean? 

Mr. Lindop: In the Western Mediterranean and the Eastern North 

Atlantic. 

Dr. Mellen: I'm not quite sure where these results came from. 

These were taken from Bill Thorp's notes, and were part of the JOAST 

experiment. Two areas, one in the Tyrrhenian Sea and the other east of 

Malta, were both measured. Now, if this was east of Malta, there is a 

very strong ocean front which could be responsible for the relatively 

large amounts of scatter that were observed. 

Mr. Charles W. Spofford (Office of Naval Research): In the Hudson 

Bay and Baffin Bay, were you using 1/3-octave filtering? 

Dr. Mellen: Yes. All the experiments are 1/3-octave filters. 

We haven't progressed to the sophistication of FFT. 

Mr. Spofford: Have you taken your mode model or FFP and run it 

to simulate the 1/3-octave filter to convince yourself that the spread- 

ing is cyclindrical when viewed through the 1/3-octave filters? 

Dr. Mellen: Dave Browning is going to talk about that tomorrow. 

Dr. F. D. Tappert (Courant Institute of Mathematical Sciences, 

New York University): Your shallow-water results have been criticized, 
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and I'd like to take issue with the deep-water results. It's very 

difficult over long ranges to accurately compute the transmission loss, 

and it's known not to be simple cyclindrical spreading in general. 

Dr. Mellen: You're talking about the PARKA results now? 

Dr. Tappert: PARKA and the South Pacific results. And you 

showed some results for the Atlantic, deep water. 

Dr. Mellen: Right. That was Thorp's original data set for the 

North Atlantic. The North Central Atlantic didn't show any scattering. 

In Thorp's original compilation, there is no scattering at all except 

maybe a very, very tiny bit at the extremely low frequencies. 

But on the ATOE experiment there was strong evidence of scatter- 

ing. We can do two experiments. In one experiment we see lots of 

scattering, and in the other experiment we don't. And it's real. 

Dr. Tappert: I'm sure the effect is real. But whether we can 

measure it quantitatively and make agreements with theory is another 

issue. 

Dr. Mellen: Well, let's say using this technique we found the 

boron relaxation -- which nobody believed at that time. So now we 

are finding something else besides the boron relaxation. We're talk- 

ing about finding scatter. 

Dr. Smith: I have a comment which stems from our treatment of 

some of the Gulf of Maine shallow water data. I thought I'd try some 

curve-matching to the data. The water was roughly 200 meters deep. 

We had transmission loss data in third-octave bands at ranges from 

something like 2 kilometers to 150. I thought I'd match the curve 

for 1 kHz with the equation 

i CN logan 1OuR 

for values of N equal to 10, 15, and 20, choosing C and @ in each case 
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to get a best match. Obviously, I was going to select either 10, 15 or 

20 depending on the standard deviation of the data points from the 

trend curve. However, the standard deviation for those three values 

of N ranged only from 1.1 to 1.4 dB. I decided that was not a very 

sensitive test. There was a more sensitive test: The match for N=20 

had a negative value of Qa! 

If one is going to use 10 log R + QR as a transmission loss law, 

you'd better be sure that all significant components of the energy are 

being attenuated at the same rate, because that is a fundamental 

assumption behind the law. A good example where it fails is the 

classical shallow-water, isospeed theory where the modal attenuated 

coefficient is quadratic in the mode number; this leads to transmission 

loss varying as 15 log R+ QR. This example illustrates the fact that 

the slope of transmission loss curve with range is strongly affected 

by differential attenuation of the different components. 

In our massaging of the data in the Gulf of Maine at 1 kHz we 

found that this kind of differentially attenuated energy was at least 

as important as the ducted energy out to ranges of something like 40 

kyd. That was the transition range where they were about equally 

important. 

Now, the trouble is, if you start out at 40 kyd in order to be 

sure that most of the energy is ducted and not differentially attenua- 

ted, you've got only a factor of four on range before you start 

running into noise or land as the case might be. You can't make a 

very sensitive test of scope with the available data given the normal 

scatter of points from any trend curve. Based on my personal experi- 

ence I would be very skeptical about assuming 10 log R in cases 

such as that. 

Dr. Mellen: We have an initial spherical spreading region 

while the sound channel is being set up. After that we have a mode 
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stripping region through which we progress into a region of one mode 

propagation. 

For example, in Baffin Bay, the smallest range was 100 kilometers, 

the largest one was 400. The sound channel filled up in mode strip 

much before that. So we had no problems there from say 50 kilometers 

on to 400. 

Dr. M. Schulkin (Naval Oceanographic Office): I don't consider 

it using the same attenuation behavior if you have to take a half of 

Thorp or six-tenths of Thorp or 0.75 of Thorp. You're not really 

tying things down. 

Dr. Mellen: No, of course not, but these are things now that 

can be examined. If it turns out that the Thorp coefficient is con- 

stant in the Pacific and the Gulf of Aden and so forth, the same as 

it is in the North Atlantic, then we are going to have a check that 

there is something wrong with our experiments. 

Right now I say that for some reason or other there is less boron 

absorption in the Pacific than there is in the Atlantic. I don't 

know why. 

Dr. Schulkin: It's a hypothesis. 

Dr. Mellen: Yes. 

Dr. Schulkin: But let me check one more point. The parabolic 

equation requires 5 log R. Is this true? The intensity varies as 

1 over R? 

Dr. Tappert: No, there is cyclindrical spreading built in but 

on top of that you have all other attenuation mechanisms that may 

exist. 

Dr. Weinberg: In all of these experiments the source and the 

receiver were very carefully placed in a well defined channel and 
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were already beyond the region where the bottom is important. What 

other mechanism is there if there isn't cylindrical spreading? 

Dr. Smith: Well, I agree with you if you accept conventional 

wisdom that the bottom strips everything off and there are no contri- 

butions left and if then you accept that the ocean is homogeneous 

you're going to get cylindrical spreading. There are situations 

where I know some of those assumptions are not right. 

Dr. Weinberg: Right, but we are not talking about those 

situations. We are talking about very carefully planned experiments 

where we are sure to put things right on the axis or as close as 

possible. 

Dr. Smith: Gulf of Maine may not be one of those you want to 

point at then. 

Dr. Tappert: One problem. The very theory that explains this 

scattering attenuation predicts that the fluctuations will also fill 

in modes as they are stripped off. As some are stripped off, others 

are filled in by the random fluctuations. So you are not left with 

just the single mode. Therefore, the attenuation without the 

scattering will not be purely cylindrical. 

Dr. Goodman: We are talking about a very tiny effect ona 

large propagation, and what we really have to do is determine the 

confidence limits we have on what is left over. I think the only way 

this will ever become convincing to anyone is to have a very careful 

analysis of all of the elements that contribute to the total loss and 

some sort of error analysis on how well you can trust your models. 

Most of us don't have that kind of faith in our models. I think 

it's up to you to put down some numbers so that the confidence limits 

are valid for taking a guess. We would certainly like to see something 

like boron. It's an interesting problem. But the question really 
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is: have we seen evidence that is statistically significant after 

we have subtracted off all of these things? 

Dr. Mellen: You still don't believe the boron? 

Dr. Goodman: I haven't seen any error analysis. 

Dr. Smith: I want to suggest in that same vein that it is very 

difficult to establish confidence. We need all the measurements we 

can get, not just total integrated transmission loss. An experiment 

should be planned to make other measurements of transmission, whether 

it be signal envelope, coherence, directionality, or whatever. By 

using that information as well as the transmission loss and testing 

the results against a model for the physics of the situation, one's 

confidence would be increased. 

Mr. R. L. Martin (New London Laboratory, Naval Underwater 

Systems Center): I believe that the original work that Bill Thorp 

did at least prior to 1968 did not use total energy at all. He looked 

at the peak envelope of the classic SOFAR arrival, and he was just 

concerned with the amplitude of that envelope and how that changed 

with range. 

He did not use the total energy, but he did make a comparison 

of the two methods in the PARKA exercise and they came out with the 

same results. 

I just bring up that point to indicate he initially dealt only 

with those rays that were very close to the axis. 

Dr. smien: Some of his work I thought he time-gated and then 

got the energy in what he thought was ducted. 

Mr. Martin: Not his initial work though. 

Dr. Mellen: All the later stuff was total energy in the window. 
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Mr. Martin: When he did that work in the PARKA exercise he did 

find he didn't get any difference. 

Mr. Smith: Of course, those are two experiments which are parti- 

cularly well designed in nice deep water, good channels and good 

Measurement positions. Also, we want to remember the recent work 

that was interpreted as showing negative bottom reflection losses. 

We have got to bring all our information about the physics together, 

it seems to me, and make a consistent whole of it. 

Mr. Pedersen: There is a problem with using peaks of convergence 

zones to do this because if you include the diffraction correction, 

the loss drops off as ee 

Mr. Martin: But it isn't a convergence zone. It's the SOFAR 

shape. While there is a lot of rays in there that are adding coher- 

ently and somewhat incoherently, you're doing regression analysis to 

get rid of the incoherent. 

Mr. Pedersen: If you look at one caustic in the convergenze 

zone and you identify it in the first one and second one, and so on, 

that level drops off as mele 

Dr. Hersey: I think I'll make one attempt to bring the wrath 

of everybody down on my head because this particular controversy has 

been bubbling in our community for some time and it has seemed to me 

that as we have talked about it and as new results have become avail- 

able from various parts of the world, some very imaginative choices 

have been made of experimental locations, and there is an excellent 

body of data available from just the group at New London that has 

done so much of this work, and there are other data samples like the 

PARKA set that they participated in, all of which are sufficiently 

well documented to see what the attenuation coefficient is as a 

function of the data analysis model. 
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We now have the parabolic equation model. We have some rather 

sophisticated ray models. 

It sounds to me offhand as though it might be feasible to make 

that kind of a study and see whether the attenuation coefficient re- 

sults are highly dependent on the model used to reduce the data. Be- 

cause the data are bound to be good data. 

Dr. Mellen: We rely mostly on the agreement with the FFP, al- 

though I don't know whether we have used CONGRATS 5 or anything like 

that yet. 

Dr. Hersey: That, you see, you have right in your own group. 

But here's a case where we have an excellent data bank. The fact that 

the work was concentrated in one place is perhaps a strong argument 

for consistency in the way the work was done. And if we as a 

community would manage to make use of our several model designs to see 

how sensitive the reduction of the data is to models, we would at 

least have a basis for answering some of the worries that were expressed 

here this afternoon. 

When that has been done we would all have a basis for making an 

estimate of what we ought to do next. Is it a critical experiment? 

Or a critical series of experiments? Or are we beginning to approach 

understanding? 

Dr. S. M. Flatte (University of California, College of Santa Cruz): 

I wanted to mention that last summer our group made some parabolic 

equation runs which attempted to indicate what the scattering in the 

sound channel would be from internal wave models. I would emphasize 

that you have to have a model of everything that is happening in the 

ocean to decide what the scattering is. 

However, it would be at this point rather easy for us to propagate 

any number of modes through internal waves and find out what the 

scattering due to that would be. 
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Dr. Mellen: From your data, presented last night, I made an 

estimate it would be not measurable. 

Dr. Flatte: You mean because of the range? 

Dr. Mellen: No, because of the large scale size of the internal 

waves. In other words, I think we're dealing with a smaller scale size 

which increases the scattering loss. 

Dr. Flatte: If you really have to go down 15 meters, then you're 

right. Internal waves will not explain it. 

Dr. Mellen: It isn't that far off though, because even though 

your scale size for the horizontal is much larger, your vertical 

scale size is smaller because of the ellipticity in the internal 

wave inhomogeneity. 

Dr. Flatte: The vertical scale size is what I'm talking about. 

The vertical scale size in the internal waves is like 200 meters. 

Dr. Mellen: The scattering will depend upon the diffusion 

constant which goes as Wa, (see Figure 14) in the geometrical 

acoustics limit. But if these inhomogeneities are not spherical as 

we said, then they are multiplied by the ratio of the horizontal major 

axis to the vertical minor axis. You get that much more diffusion if 

the things are lenticular. 

Dr. Flatte: Then we're going to multiply your 15 meters by a 

factor of approximately 10 to account for the ellipticity, which 

makes it very close to internal waves. 

Dr. Mellen: Right. Yes. 
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PHASE FLUCTUATIONS, COHERENCE AND INTERNAL WAVES 

R. C. Spindel 

Woods Hole Oceanographic Institute 

Woods Hole, Massachusetts 

Observations of low-frequency, long-range acoustic 

transmissions have revealed a correspondence between 

acoustic phase variations and internal oceanic effects 

such as tidal cycles, transport phenomena, geostrophic 

flow and internal gravity waves. For periods less than 

the local inertial period and greater than the local 

bouyancy (Brunt-Vaisala) period, internal waves appear 

to be the predominant cause of acoustic phase fluctuations 

(in the absence of severe multipath). Measurements of 

220 Hz and 406 Hz transmissions at ranges from 200 to 

1200 km using free-drifting receivers of varying depth 

have substantiated this conjecture. The empirical acoustic 

phase spectrum is proportional to a theoretical phase 

spectrum constructed by using a simple ray theory in con- 

junction with a hypothesized internal wave spectrum (Garrett 

and Munk). Furthermore, a predicted dependence of fluctu- 

ation energy on depth is observed in these data. 

These measurements have been used to determine a 

mixed space-time coherence function as a function of range 

which establishes the oceanic limit of array resolution. 

The simple ray-internal wave theory predicts coherence 

parameters that compare favorably with data. Data collected 

to date have suggested several important areas for future 

consideration. 

INTRODUCTION 

Recent observations of low-frequency, long-range acoustic trans- 

missions have revealed a correspondence between acoustic phase vari- 

ations and internal oceanic effects such as tidal cycles, transport 

phenomena, geostrophic flow and internal Rossby and gravity waves 

(Steinberg, et al., 1973; Weinberg, et al., 1974; DeFarrari, 1974; 

Baer and Jacobson, 1974; Franchi and Jacobson, 1973; Spindel, et al., 

1974; Porter, et al., 1976; and Stanford, 1974). From a physical 
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oceanographic standpoint the causal relationships between ocean param- 

eter variability and acoustic phase variability suggest techniques for 

measuring oceanographic phenomena. From an operational viewpoint, the 

performance of detecting and tracking systems is strongly dependent 

on the phase stability of the ocean transmission path. In both cases 

the connection between ocean parameters and acoustic phase must be 

understood. 

Fixed system studies (in which source and receiver are rigidly 

attached to the ocean floor) conducted in the 200 to 800 Hz region 

of the spectrum have shown that for periods less than the local 

inertial period and greater than the local bouyancy period, internal 

gravity waves appear to be the predominant cause of acoustic phase 

fluctuations. These periods range from about 5 minutes to 1 day at 

a latitude of 30°. Time scales of this order are of utmost interest 

in array tracking and detection applications. 

PHASE FLUCTUATIONS 

Phase fluctuation data collected at Woods Hole exhibit most of 

the features found in data obtained by the Institute for Acoustic 

Research in Miami, the New London Laboratory of the Naval Underwater 

System Center, the Bell Telephone Laboratories, and others. The 

experiments conducted at Woods Hole, however, have significant 

differences, and this is reflected in some of the observations we 

have made. Woods Hole data are not obtained with a fixed system. 

The acoustic source is moored at varying depth, and receivers are 

either free-drifting, towed, or moored. Receivers are suspended in 

mid-ocean at depths varying from 300 to 1500 meters. Receiving 

hydrophones sweep out synthetic spatial and temporal apertures 

several kilometers in length and several hours in duration. 
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The technique used to form these apertures and to compensate 

them for motion of the receiving hydrophone has been reported in a 

previous paper (Porter, Spindel and Jaffee, 1973). In brief, receiving 

hydrophones are suspended within range of a bottom moored navigation 

net consisting of three acoustic sources emitting continuous tones in 

the 12 to 13 kHz region. Receiver motion is manifest as Doppler shifts 

in these tones. Doppler shifts are translated into equivalent motion. 

With the current version of the system, receiver motion is tracked to 

within 1/4 wavelength at 12 kHz, about 3 centimeters. Long-range 

acoustic transmissions at 220 and 406 Hz are simultaneously received 

by the moving hydrophone. Doppler shifts due to receiver motion are 

resolved into equivalent phase shift at 220 and 406 Hz. This shift 

is subtracted from total accumulated phase leaving a residual phase 

variation in the long-range transmission resulting solely from 

variations in the intervening water mass. 

Figure 1 shows the deployment of a typical navigation net and the 

generation of five distinct apertures labelled 130, 131, 132, 133, 135 

from 3 to 8 km in length. The time span of each aperture is indicated 

by time in minutes along each drift path. 

Figure 2 is a schematic illustration of received low-frequency 

transmission. The carrier at 220 or 406 Hz is received at frequency 

te displaced from - by the Doppler shift due to receiver drift. 

Spread about f. results from variation in drift rate, and from vari- 

ations in the transmission medium. When scattering from the sea 

surface is significant, it appears as sideband energy about the 

carrier with peaks at multiples of the peak frequency of the surface 

wave spectrum. The Doppler correction scheme removes variations fa: 

The signal is then heterodyned down to dc, and variations resulting 

from surface scatter are removed by filtering around the carrier. 
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The result of this processing is a signal at dc, the fluctuations of 

which are due to fluctuations in the ocean transmission path. 

Figure 3 illustrates the ray path geometry between the point of 

signal transmission and a receiver located about 210 km away. Typical 

samples of received acoustic phase are shown in Figure 4 for a receiver 

at a depth of 300 meters. Over an approximate 3-hour interval spanning 

an aperture of 3.5 km, peak-to-peak phase fluctuations are about 7 

cycles. Two more examples of raw phase fluctuations are shown in 

Figures 5 and 6. Here we have compared fluctuations at two frequencies 

approximately an octave apart. Both frequencies were recorded and 

processed simultaneously. Careful examination of these figures 

indicates that observed phase fluctuations are approximately twice 

as great in the 406 Hz data. This suggests that the scale of 

inhomogeneities encountered by the acoustic transmission is large 

compared to a wavelength. Thus, the transmissions are affected 

independently, and notions of simple frequency scaling appear to hold. 

One implication is that large-scale phenomena, internal waves 

for example, are primarily responsible for fluctuations in this 

frequency range. 

INTERNAL WAVES AND PHASE FLUCTUATIONS 

Some rather simple theoretical ideas contribute strongly to our 

assumption that internal waves are the predominant factor in generating 

phase fluctuations at these acoustic frequencies and ranges. The 

frequency of internal wave oscillation is bounded at the lower end 

by the local inertial frequency and at the upper end by the local 

bouyancy frequency, n(z), a function of depth. Figure 7 illustrates 

the relationship between sound velocity variations and internal wave 

parameters. Sound velocity fluctuations are proportional to the 
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Depth = 305 m 

Range = 200 km 

406 Hz 

CYCLES. 
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Figure 5. PHASE FLUCTUATIONS COMPARED FOR 220 AND 406 Hz 
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Depth = 305 m 

Range = 200 km 
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Figure 6. PHASE FLUCTUATIONS COMPARED FOR 220 AND 406 Hz 
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amplitude of the internal wave 6 and the temperature gradient ee 

which in turn is proportional to the bouyancy frequency. Thus, 

maximum variations in sound speed due to internal wave action occur 

at the depth where n(z) is greatest. This is usually near the main 

thermocline as illustrated by the sample bouyancy frequency profile 

shown. 

On the basis of this analysis, the internal wave field is modeled 

as affecting a traveling acoustic wave only in a thin layer at thermo- 

cline depth as shown in Figure 8. A ray passing through the layer 

will experience a phase advancement or retardation depending upon 

whether the immediate sound velocity of the layer is greater or less 

than the average sound velocity. Figures 9 and 10 outline the 

theoretical analysis necessary to complete the internal wave-acoustic 

wave interaction model. The internal wave field is modeled as a random 

superposition of waves concentrated in a layer of thickness n. The 

field is characterized by a frequency-wavenumber spectrum proportional 

to the internal wave model proposed by Garrett and Munk (1972). 

The phase change A@ of an acoustic signal due to a single passage 

through the internal wave layer is proportional to acoustic frequency, 

the angle with which the ray enters the layer at and the internal wave 

spectrum. The spectrum of the resulting acoustic phase variations 

Eve, is proportional to the number of times the ray has passed through 

the layer, M, and the square of the acoustic frequency. It is also 

a function of the inertial frequency Ws and cuts off at the local 

bouyancy frequency no: 

Figure 11 shows a plot of this theoretical spectrum as a heavy 

solid line together with measured phase spectra for receivers at two 

different depths. The light solid line represents data at 1500 m, 

the dashed line at 305 m. Transmission range was about 200 km. These 
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data fall off with a slope of approximately of -2 as predicted by the 

model, and in this respect these data lend credence to the model. Data 

taken at greater depth show more rms phase fluctuation which supports 

the notion of an equivalent internal wave layer. Rays to the deeper 

phone have spent a greater fraction of their travel time in or about 

the layer. There is no cut-off at the bouyancy frequency, contrary 

to the model prediction. This result has appeared in the work of 

others, Stanford (1974) for example. At present we attribute this 

lack of abrupt fall-off to the contaminating effects of microstructure 

which may begin to dominate at higher frequencies. We shall return 

to this point below. 

It seems safe at this juncture in our current understanding of 

phase fluctuations to assert that internal waves are the dominant 

cause of fluctuations at these acoustic frequencies and that such 

fluctuations range in period from several minutes to a day. It is 

important to appreciate that the term "internal waves" can cover a 

host of phenomena, including tidal waves, Rossby waves, more classic 

internal waves, and wavelike behavior of microstructure. 

COHERENCE 

Oceanic induced phase fluctuations establish limits on array 

performance. Upper bounds on coherent array processing gains are only 

approached when the signal received across the array is phase coherent 

from array element to element. The pointing accuracy or resolving 

power of an array is critically dependent on the phase coherence of 

the acoustic transmission path. Figure 12 illustrates these ideas. 

A simple two-element array of length L receiving energy from a distant 

acoustic source (point source) is said to be working at the utmost 

limit of its resolving power when the random phase difference along 

the two paths is less than 1/2 cycle. This phase difference is 
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equivalent to a path length variation of A/2 meters. The beamwidth of 

the array at this limit is A/2L radians. Fluctuations in phase re- 

sulting from the ocean environment must therefore be less than 1/2 

cycle or A/2 meters for the array to achieve its diffraction limit. 

If the phase fluctuations are greater than 1/2 cycle, the resolving 

power of the array is said to be environmentally limited. 

The acoustic-internal wave theory outlined above predicts an 

rms path length change that is proportional to f and to the number of 

times the ray crosses the internal wave layer, i.e., distance. It 

predicts that rms phase fluctuations will reach a limit at some 

separation of sensors, and that the magnitude of fluctuation at this 

separation is proportional to distance. It is interesting to note that 

the performance of an environmentally limited array continues to 

increase linearly with array length since R, = P/L, and P becomes 

constant. 

Figure 13 shows phase fluctuation data at 406 Hz and two ranges, 

200 and 1200 km, as a function of array length. Both curves rise to 

a plateau, about 13 meters of equivalent rms path length change at 

200 km and 40 meters at 1200 km. Theory predicts values of about 

15 and 45 meters, respectively. The environmental limit at 200 km 

would thus be avoided for all A/2 > 13m, or f£f < 50 Hz. At 1200 km, 

f < 20 Hz ensures diffraction rather than environmental limited per- 

formance. These curves were computed from data gathered during 

synthetic aperture formation and therefore represent a limit imposed 

by temporal as well as spatial variations. In that sense, they can 

serve as an upper bound on coherent array performance. It is expected 

that actual performance of a fixed spatial array will be somewhat 

better. 
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CONCLUSIONS, PROBLEMS, AND RECOMMENDATIONS 

This paper has presented some illustrative data and theoretical 

notions that summarize much of our current appreciation for the phase 

fluctuation problem in long-range acoustic transmissions. We have 

restricted our presentation to Woods Hole data because we feel that 

they illustrate the major effects of internal waves on phase stability, 

and its consequences regarding array performance. Some large data 

sets obtained by other researchers support our notions, while others 

give us pause. Longer time series illustrate effects not seen in our 

data, such as tidal cycles and variations resulting from seasonal 

changes. These are important, too, and critically so if acoustics 

is to be used as a tool for studying large-scale oceanographic 

phenomena. 

An example of the type of behavior we do not fully understand 

is shown in Figures 14A and 14B.* It shows the amplitude and phase 

spectra of a 367 Hz tone transmitted between Eleuthera and Bermuda. 

The phase spectrum falls off as eo with no apparent cut-off at the 

local buoyancy frequency. The amplitude spectrum, however, falls 

rapidly at the buoyancy frequency. Our feeling has been that environ- 

mental effects would be most visible in the acoustic phase, and that 

multipath effects would so distort the amplitude fluctuations as to 

make environmental-acoustic amplitude comparisons difficult indeed. 

Apparently this is not the case for data such as these have been 

obtained by the Institute for Acoustical Research and others. A 

similar spectrum of amplitude fluctuations calculated at Woods Hole 

using transmissions from free-drifting SOFAR floats at 270 Hz anda 

range of 600 miles is shown in Figure 15.** Again the buoyancy 

* Reproduced from a paper by G. Stanford (1974). 

AX bagure V5 courtesy. of i. Baxter Til. 
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Figure 15. SPECTRUM OF AMPLITUDE FLUCTUATIONS 

FROM SOFAR FLOAT 
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frequency cut-off is quite clear and dramatic. This is only one illus- 

tration of our present lack of understanding and consequent inability 

to predict and forecast. 

A firm connection between oceanographic effects and acoustic 

effects must be established to allow the most effective exploitation 

of ocean transmission paths. Well controlled experiments are necessary 

to sort out the host of contributing factors such as microstructure, 

internal waves, cyclonic and anti-cyclonic eddies. Experiments must 

be conducted in a variety of locations to learn whether results at 

one point can be extrapolated to another. Similarly, experiments 

must be conducted at a variety of frequencies and ranges to establish 

the scaling laws so necessary for accurate prediction. Perhaps most 

important of all, however, is the need to coordinate acoustic experi- 

ments with strong physical oceanographic programs, so we can signifi- 

cantly increase our understanding of acoustic variability. 
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DISCUSSION 

Dr. S. M. Flatte (University of California College at Santa Cruz): 

I think there is a difficulty in the way you treated the effect of 

internal waves on the phase fluctuations. Before I describe the 

difficulty, let me say that I believe that treating it properly 

will not change your qualitative result, with which I agree whole- 

heartedly — that is, that internal waves cause the type of fluctua- 

tions we are observing. But I think it will change the quantitative 

comparisons. 

If you take a source and a receiver which are connected by a path 

such as shown in Figure 8, then the question is: What is the region 

of this path where the internal waves make the biggest effect? 

You suggested that there was a fixed depth. The fluctuation 

: : : , 2 
formula which you gave (in Figure 10) for Foe. varied as l/sinw@ 

where re is the angle the ray makes with respect to the internal wave 
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layer. You immediately see that there is a problem when We Se Ol. 

That is, Fae? blows up. 

Dr. R. C. Spindel: We are quite aware of that. 

Dr. Flatte: Right. I am sure you are. The result of this, of 

course, is if this layer happens to occur at the horizontal turning 

point of the ray, then this does not apply any more because the ray 

is actually curved. The point is, though, that the path does spend a 

great deal more time in the layer near its turning point than in any 

other layer that it is traversing. 

Dr. ‘Spindel: Yes. 

Dr. Flatte: From our studies, at least in the type of profile 

we were working with, which was quite different from considering a 

particular layer, a factor-of-10 more time is spent in the region 

near the upper turning point than in any other region. 

So I would be surprised if your profile was such that the effect 

at the turning point, which has a factor-of-10 enhancement due to the 

flatness of the ray, was unimportant compared to the region of your 

fixed depth. 

Dr. Spindel: Yes. We're quite aware of the limitations of the 

ray theory, and that is basically — 

Dr. Flatte: This is not a limitation of the ray theory. That 

is, I think you could apply the ray theory with this except that the 

result would be you would get most of your contribution from the 

region where the ray is flat. 

Dr. Spindel: Yes, if that is the region where the internal waves 

have their largest effect. I think they do in that portion of the 

water column. 
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Dr. blatte: That ais sight. 

Dr. Spindel: That is true. We are aware of that. We are also 

aware of the sensitivity of the model to selection of that angle, 6 

Even if you were to assume that that layer were not in a particularly 

difficult area (where the rays turn, for example) but were lower, the 

model is quite sensitive. Angles are quite shallow at which rays 

enter and leave the layer. 

We are not really propounding the theory as one which explains 

all the interactions between internal waves and acoustics. But what 

we wanted to point out was that the environmental effects of internal 

waves are mirrored in the acoustic phase. And I think we can do that 

although we cannot predict absolute levels, which is basically what 

that factor is. 

Dr. Flatte: I agree with you completely and that, in fact, 

the results do show the internal waves compare quite favorably with 

these data. I would like to make one more comment that has to do 

with the one I made last night about the difficulty with computer 

codes. 

Roger Dashen and Walter Munk did an integral over the ray path 

and found that in fact for our case the main contribution came from 

the turning point. 

The theoretical prediction which was given to me to compare with 

what came out of the computer code was that if you plot the rms phase 

fluctuation, as a function of range, you expect rather small fluctu- 

ations before the turning point. And as soon as you reach the area 

of the turning point, there should be a rather sharp jump. When I 

looked at the computer code, I did see a reasonably small fluctuation 

up until the turning point, although the quantitative agreement has 
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yet to be established. At the turning point I also observed a sharp 

rise, but I can't tell how much because it was above a cycle. And 

at that point we are stuck, whereas your data are fine enough that 

you can follow the phase through several cycles and find out what is 

happening. 

Dr. R. P. Porter (Woods Hold Oceanographic Institute): I want 

to reinforce your comment. We attribute the depth dependence we see 

in our phase fluctuations precisely to that turning point argument, 

coupled with the fact that the layer of nearly constant sound 

velocity occurs right near the region where the internal wave 

activity appears to be the greatest. 

We feel it is a qualitative conclusion that we really can't test 

accurately because of the breakdown of the ray theory in that region. 

But we have come to that same conclusion. 

Dr. Flatte: Why do you think the ray theory has broken down? 

Why not just integrate the true path through that region? You know 

the length. 

Dr. Porter: Because it is a caustic. I do not think it is 

valid — 

Dr. H. A. DeFerrari (Rosenstiel School of Marine and Atmospheric 

Science, University of Miami): We do not know where the ray turns. 

There is an ambiguity. As the grazing angle becomes small, any 

slight perturbation to the sound-speed profile causes a turn. So 

if you want to integrate through there, you may not be on the same 

ray that strikes your receiver. 

Dr. Porter: Put it another way. In that ray you have diffrac- 

tion effects. 
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Dr. Flatte: The integral converges. There are certain regions 

where you have to worry about it breaking up and causing a completely 

new ray. But you can also form criteria for that not happening. We 

have done some work in that respect, too. 

Dr. DeFerrari: This is a problem that was in the Acoustical 

Society several years back. Whether or not one added in a phase 

shift of “1/4 at that point or not. This 1s pant of that integral 

you are talking about. I don't know whether it was ever really 

settled or not. 

Dr. P. W. Smith (Bolt, Beranek, and Newman, Inc.): Yes, it was 

NOE. (Laughter ) 

Dr. Flatte: I have another question concerning the quantitative 

comparison that you made of the phase fluctuations. How did you 

treat the combination of several rays? There were several rays going 

from source to receiver. Right? 

Dr. Spindel: Four rays. 

Dr. Flatte: How do you treat the combination in order to get a 

total phase prediction for the model? 

Dr. Spindel: The total field at the receiver is simply a 

summation of the effects of those four rays. We have computed the 

phase at the receiving point for each of the four rays, we sum that, 

and separate that resulting equation into an amplitude and a phase 

factor and that is the phase. 

Dr. Flatte: So the internal wave model predicts the phase 

fluctuation of each ray and to compare with data you perform a 

summation of those rays? 
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Dr. Spindel: Yes. 

Dr. Flatte: But in a random way? 

Dr. Spindel: The randomness comes in because of the randomness 

of that layer. That layer is a superposition really of many internal 

waves. 

Dr. Flatte: But the internal wave predicts the average fluctu- 

ation in one ray or another. It does not predict how the combination 

will occur unless you assume you know the amplitude of fluctuations 

and their distribution and then form some kind of a statistical 

combination. 

Dr. J. G. Clark (Institute for Acoustical Research): You did 

not describe internal wave field statistics? 

Dr. Spindel: Yes, and the resulting received signal is really 

just a superposition, that is, a linear combination of all the rays. 

Dr. Flatte: You assumed equal amplitude? 

Dr. Spindel: Yes. 

Mr. C. W. Spofford (AESD, Office of Naval Research): I have 

here three figures that are the results of a numerical experiment 

which I think bears on these phase statistics. It was stimulated 

by a question I asked Bob Porter about a year or so ago at an 

Acoustical Society meeting when I first heard of the technique of the 

drifting floats, because I was concerned that he was taking out the 

phase assuming that it was essentially linear in range. And I think 

we have seen ample evidence today it is not. 

I actually made a numerical calculation using the parabolic- 

equation program extracting the phase as a function of range at 
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selected depths. Wewent out one convergence zone, using a frequency 

of only 50 Hz because such computations are too expensive at 400 Hz. 

A Bermuda-type profile was used over a high-loss bottom with a source 

on the axis. Figure D-l shows the transmission loss and phase 

variations as a function of range. The phase has been de-meaned 

over the 50-mile interval and the residual variations are plotted 

in cycles. Note that in this case of axis~to-axis propagation, 

the phase varies from linear only by about one quarter of a cycle. 

But here is the propagation loss going along. I don't know if I 

am willing to multiply it by 8 to scale it up to 400 Hz or not. 

One of the phase flip questions occurred to me when examining 

the results near 22 nautical miles. There was a particularly deep 

null in transmission loss, and the phase changes by nearly 180 

degrees; actually, it is about 135 degrees. 

We ran this case again with very fine resolution in range and 

the phase was totally continuous through there. There were no 

discontinuities. I concede that if you are measuring the phase near 

such a point, and the signal level has dipped down into noise there 

is no way to track the phase. But there is no reason, no physical 

reason, for the phase to be discontinuous. 

Figure D-2 corresponds to the same source but to receiver depth 

of 300 feet. Here the phase and loss curves overlap. Note that the 

phase-variation scale has been compressed to handle the 14-cycle 

variation over the entire range. 

As you come up into the convergence zone, some fairly dramatic 

things are happening in terms of phase. 

Figure D-3 is for a 1000-foot receiver depth where the up-and- 

down-going convergence zones overlap more. Here the phase scale is 

changed again. 
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The point I wanted to raise is that phase, even in a frozen 

deterministic ocean, is not linear in range. And I am concerned with 

techniques which remove a linear phase trend and assume that the 

residual fluctuations are due to internal waves or other random- 

ocean effects. 

In summary, there is a natural non-linearity in phase in the 

ocean. 

Mr. M. A. Pedersen (Naval Undersea Center): You took out a 

constant velocity, didn't you? 

Mr. Spofford: I accumulated a phase for the entire range. 

Mr. Pedersen: Yes, but you removed it by taking out a constant 

phase velocity? 

Mr. Spofford: Yes. Essentially. 

Mr. Pedersen: And as you move into different parts of the con- 

vergence zones you have different phase velocities because you have 

different vertical angles. 

Mr. Spofford: Absolutely. 

Mr. Pedersen: So it will progress this way. 

Mr. Spofford: I was expecting to get phase variations. The 

question I was not sure of was how quickly they might change with 

range. 

Now, his measurement only went over a fraction of a mile, I think, 

in range. So I do not think it is driving the problem in terms of the 

kinds of things he measured. I think it will introduce a variation 

or non-linearity in phase on the order of about one cycle at 400 Hz. 
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Dr. Clark: Over what? 

Mr. Spofford: Over the fraction of a mile. There is a ripple 

on the order of a cycle in phase. 

Dr. Clark: You took a linear phase trail out of this? 

Mr. Spofford: I went back and looked at half-mile regions, 

removing the linear trend, and still ended up with residual fluctu- 

ations of about a cycle in phase extrapolated to 400 Hz. 

Dr. Clark: You made a comment on that last slide that you did 

not see any reason for a phase flip in the deep fade. Is that right? 

Mr. Spofford: No, I did not say that. I said the phase flip 

is continuous in the model at least. Such physics does not have 

discontinuous phase. The problem is, it is always at these nulls in 

transmission where you are probably looking at noise. 

Dr. Clark: Right. 

Dr. M. Schulkin (Naval Oceanographic Office): One remark on 

the last slide that Dr. DeFerrarri showed. Were those Doppler shifts 

measured? 

Dr. DeFerrari: No. 

Dr. Schulkin: Was it just coincidence that you chose 8 seconds? 

Dr. DeFerrari: I started at 8 and then on down. 

Dr. Schulkin: They are as close to sinusoidal effects as you 

are going to get in the ocean. You are apt to pick up an 8-second 

swell by measurement, and I just wondered if you did. 
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Dr. DeFerrari: No, the first one was measured and it probably 

was 8 seconds. They are typically 8 to 10 seconds. 

Dr. Schulkin: It was measured? 

Dr. DeFerrari: Yes. The first set of a few. Yes. ‘That iis 

what it looks like. The swell comes in very strong. The wind-driven 

waves are much less compared to the real spectrum. I have done that 

with surface data at the same time and compared the spectra and it 

looks just about like the wave spectra, that the wind waves fall 

out much more rapidly than the actual spectrum. 

I have also done it as a function of frequency and a number of 

other things. 

Dr. R. M. Fitzgerald (Naval Research Laboratory): I wanted to 

make a quick comment on the physical nature of discontinuous phase 

jumps. What we have is a physical field, a pressure field. When 

you decompose that field into phase and amplitude, that is unphysical, 

if you like. 

However, when the amplitude vanishes, the phase is not deter- 

mined. So when the amplitude truly vanishes, the phase can change 

discontinuously in the physical pressure field. 

Dr. T. G. Birdsall (Cooley Electronics Laboratory): Some people 

have had a lot of experience trying to read data through those 

points, because it is the nastiest point in the world. The nicest 

thing is to run three frequencies through it, you know, an epsilon 

apart on either side — 

Mr. Spofford: I would argue in a deterministic physical model 

like this that the amplitude probably cannot vanish. 
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Dr. Flatte: The chances of it vanishing are zero. 

Dr. Birdsall: But it happens, though. That's the trouble with 

probability zero. It always keeps happening. 

Dr. S. W. Marshall (Naval Research Laboratory): This question 

is to Bob Spindel. Bob, you made a statement that beyond the limit 

that the environment places on the array you can expect to get gain 

from that array. Please clarify that. 

Dr. Spindel: You can continue to get increased resolution by 

increasing the size of your array. This is simply a consequence of 

the fact that as you separate sensors, the phase fluctuations between 

the two sensors appear to saturate at a particular level. They do 

not increase beyond that level. 

So your angular resolution is determined by that phase fluctu- 

ation divided by the length of the array. So that you can do better 

and better by making your array longer and longer. It does not mean 

that you should do that. You might be buying very little. Asa 

matter of fact, you do buy very little every time you double a long 

array in terms of the expense of doing it. 

Dr. W. H. Munk (University of California at San Diego): May 

I make two comments? One, to those of us who are pushing internal 

waves as a cause of acoustic fluctuations, it certainly is dis- 

concerting, to say the least, that acoustic spectra seem to pay no 

attention to the high frequency cutoff of internal waves. Spectra 

merrily go by without change in slope. I don't like it. 

But I do want to point out something kind of interesting. The 

same happened to be the case for measurements of the up and down 

motion of the internal waves. All of such measurements before 
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January 1974 did not show any effect of the Vaisala frequency, and 

all measurements since January 1974 have shown sharp cutoffs. Very 

curious discontinuity. 

There at least we do know the answer other than people finding 

what is fashionable at the moment. Those before were moored measure- 

ments, and the whole field was convected past the fixed transducers, 

so that to some extent you got a mixture of the spatial as well as 

the temporal variation. And there is no cutoff in the spatial vari- 

ation at high wave number. 

So you might think of that as a Doppler shift or a Doppler smear 

cutoff. If the tides convect your whole field by variable speed, it 

is certainly going to blur and maybe even eliminate the cutoff. 

When people went to other kinds of instrumentations, like 

capsules that yo-yoed but stayed with the water column, then all of 

a sudden the cutoff did, thank heaven, appear. It was a 20 dB cutoff 

and was very pretty. 

And I am hoping against hope somehow that in some future experi- 

ments in acoustics suddenly a sharp Vaisala cutoff will appear. I 

do not know how. 

Dr. Clark: Where would you expect that, Walter? 

Dr. Munk: At the local Vaisala — I don't know. That is a good 

point. There is, of course, great smearing if you have rays which 

have gone through the whole water column. I hadn't thought of that. 

And that really in a way changes the situation from the internal 

wave experiment I mentioned. 

Dr. Clark: In that data that I gave you, you will find a knee 

at about one cycle per hour. 
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Dr. Munk: That is a very good point, John. For those acoustic 

measurements which sample a large depth of water column you would, 

in fact, have a good excuse for not seeing a sharp cutoff. 

Dr. Clark: It is not sharp but there is a definite knee there 

so you can see that. 

Dr. Munk: The other point is more serious. I have an impression 

that these phase and intensity fluctuations are very model-dependent 

that no matter what kind of a model you put into the ocean, as long 

as it is not complete nonsense, you are going to find excellent agree- 

ment with observations. 

I have seen this now at least in four or five different models. 

Jacobsen puts in planetary waves, and by cooking them up a little 

they show a record that he says looks like precisely the record 

that you obtained. 

Other people like us have put in internal wave observations and 

they look lovely. So does your group. 

And, finally, you, to make it even worse, show that under certain 

conditions you don't need any disturbance at all. You just need 

interference. 

I think there is a lesson to be learned there one snould face — 

that when it comes to multipath, the statistics you get are probably 

highly dependent on path interference and very unsensitive to the 

Ocean model itself which is good if you are an acoustician, because 

you might get some good results without having to study the ocean. 

It is bad for us oceanographers because we are probably not going 

to be able to use that kind of statistics ever to learn anything 

sensible about the ocean. 
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Dr. Clark: Can I make a comment, Walter? On that first model 

study I did in the Straits of Florida, I tried to predict some 

statistical characteristics of the amplitude rather than the phase. 

This is a more significant comparison, I believe. As we know, 

amplitude is a non-linear function of the environment. So, if you 

can predict the frequency content of that thing, then you have done 

something. 

Let's hope if we go ahead and do the complete job, that every- 

thing will smear out. 

Dr. Birdsall: I hope the ability of all the models to predict 

it means that we do have to get more quantitative and perhaps richer 

experiments where we measure more than just one kind of thing so 

that we can start to split across the various types of models. 
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FIXED-SYSTEM MEASUREMENTS OF TIME-VARYING 

MULTIPATH AND DOPPLER SPREADING 

H. A. DeFerrari 

Rosenstiel School of Marine and Atmospheric Science 

Signals transmitted through ocean channels will be spread in 

time because of multipath and spread in frequency because of 

scatter from the ocean wave surface. Fixed-system measure- 

ments in the Florida Straits and between Eleuthera and Bermuda 

make possible the observation of time-varying multipath inter- 

ference and Doppler spectra. Results are summarized for 

several short experiments using CW (420 Hz) and pulse CW trans- 

missions. 

Fully coherent ray models are used to interpret experimental 

results. These models predict the transmission loss and travel 

time along all paths with sufficient accuracy to allow the co- 

herent addition of arrivals at the receiver. Time-varying CW 

multipath interference is simulated by introducing perturbations 

to the sound-speed field and generating time series of phase 

and transmission-loss fluctuations for comparisons with experi- 

mental results. Model computations show that horizontally in- 

variant internal waves produce sound-speed perturbations that 

cannot cause both the phase and transmission loss fluctuations 

which are consistent with experiment. When horizontal fluctua- 

tions are introduced to the sound-speed perturbations, statis- 

tics of CW transmission fluctuations match experimental results. 

Pulsed CW transmission can also be simulated by coherent addi- 

tion of received pulses. Broadband characteristics of received 

signals exhibit selective fading. The frequency of the fade 

is sensitive to small perturbations of sound speed while the 

fade bandwidth depends on average characteristics of the pro- 

pagation channel and is relatively insensitive to the typically 

observed fluctuations of sound speed. 

Doppler spectra and scattering functions are presented and dis- 

cussed. Combined propagation and scattering models show that 

unsymmetric surface-scatter sidebands can result from bottom 

interactions. 
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This paper consists of the presentation and. discussion of some re- 

sults from fixed-system measurements. Basically three types of pheno- 

mena are described: 

e Time-varying multipath for CW signals 

e Time-varying multipath for broadband signals 

e Doppler spreading 

Before presenting these data I would like to discuss a model used 

for their interpretation. The basic model is a bilinear profile with 

quasi-static fluctuations. A surface scattering model is included on 

each path, and the paths are added coherently. 

Figure 1 shows typical range-averaged profile between Eleuthera 

and Bermuda and a bilinear fit to it. We don't have any experimental 

data of the sound speed fluctuations there, so for perturbations of this 

profile we use a calculation made by Dr. Moore at the University of 

Miami of the first-mode internal wave for an internal tide of wavelength 

150 kilometers. Figure 2 shows the resulting perturbed profiles, and 

Figure 3 shows the bilinear approximations to them. The perturbations 

can then be described in terms of two parameters: the depth D of the 

axis and the bilinear angle a. This model can be mode range-dependent, 

as shown in Figure 4. The sound-speed profile becomes a function of 

range by segmenting it and allowing the profile to change with range 

and also with time. Figure 5 shows the bilinear fit to some actual 

sound-speed measurements made about mid-range in the Florida Straits. 

One profile was obtained every two hours for four days. If you look at 

the sequence closely, you can see the effects of a tide. The gradients 

change and the knee rises and falls by the tidal periodicity. 

The bottom sketch in Figure 6 is the surface scatter model we will 

use. There is a specular reflection, unshifted in frequency, from the 

surface waves, and Doppler-shifted sidebands separated in frequency 

from the carrier by multiples of the surface-wave frequency. We have 
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Figure 2. PERTURBED PROFILES FOR FIRST MODE INTERNAL WAVE 

468 



DEFERRARI: FIXED-SYSTEM MEASUREMENTS OF TIME-VARYING MULTIPATH AND 

DOPPLER SPREADING 

SOUND SPEED (m/sec) 
l480 I500 [S20 I540 

O 

a 

{2 X« 

iS 2 ) 
a 
jb 

Q 
LJ 
Q > 

4 

5 
Figure 3. BILINEAR FITS TO PERTURBED PROFILES 
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TYPES OF RAY PATHS 
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Figure 6. RAY PATHS AND SURFACE SCATTER MODEL 
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algorithms that can track rays incident on the surface all along the 

propagation path and find those scattered rays which hit the receiver. 

Thus, multiple scattering along the path can be accounted for. 

The types of ray paths that can be expected in the Florida Straits 

are shown in the other diagrams on Figure 6. The downward refracting 

profile leads to rays which are refracted bottom-reflected (RBR) and 

surface-reflected bottom-reflected (SRBR). The SRBR rays can be 

surface scattered (as in the illustration) after any number of specular 

bounces. This happens to be a ray which reflects specularly twice, 

then upscatters and reflects specularly as its new angle before reach- 

ing the receiver. The model does all the bookkeeping for these paths. 

We will now discuss the data. Figure 7 shows CW propagation loss 

for the 700-mile range between Eleuthera and Bermuda over a 48-hour 

period; typical multipath deep fades (30 dB or so) are shown with their 

associated phase shifts. If the fades are very deep the phase shift 

appear to be 180 degrees. Most of the phase fluctuations are quasi- 

periodic, varying with the tidal component. 

It's interesting to compare these sorts of fluctuations with what 

we see at other ranges. Figure 8 compares propagation-loss and phase 

data for the 700 nautical mile range to Bermuda, the 300-mile range 

to Eleuthera and the 7-mile range in the Florida Straits. They all 

have the characteristic dropouts in signal level due to multipath 

influence. The principal difference between them is that for the 

longer ranges the fades are more rapid than for the shorter ranges. 

However, the fades tend to have the same magnitude, typically 15 to 

30 dB for deep-fading events. The phase has similar characteristics, 

with smooth variations (showing a strong tidal periodicity in the 

Eleuthera data) plus a number of rapid shifts of 180 degrees associated 

with deep fades. 
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Figure 8. TRANSMISSION LOSS AND PHASE FOR THREE RANGES 
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Histograms for each of the above time series are shown in Figure 9. 

They are all about the same with a standard deviation of about 5.5 GB. 

The essential difference in the three cases is the autocorrelation 

function. In Figure 10 it is seen that the Bermuda series decorrelates 

more rapidly than the other two. It appears more noiselike. If we 

take the decorrelation time to be that value at which the normalized 

autocorrelation function falls to 1/e, then we get about 4-1/2 minutes 

for the Bermuda range, 8-1/2 for Eleuthera and 18 in the Florida Straits. 

Another measure is the mean square bandwidth (defined at the top 

of Figure 11) of the power spectrum of the transmission-loss time 

series. Figure 11 shows that the more noiselike Bermuda time series 

has a broader bandwidth. 

Now, the characteristics that we have tooked at so far are ones 

which are really consistent from day to day over long periods. But we 

must be able to differentiate between the fast fading events and the 

intermediate ones. Figure 12 is a sequence of histograms for a time 

series of 63 days. Each time series is high pass filtered with a 

cutoff of 4 cycles/day so the periods of variation are less than 6 

hours. All the longer periodicities are removed. Note the spectra 

day after day are consistent and formally speaking appear to be 

wide-sense stationary. Figure 13 shows the corresponding autocorrela- 

tion functions, again for 63 days. Again these are consistent one 

after another. 

In the above figures, the longer term trends were filtered out. 

Figure 14 shows variations for periods longer than 5 hours which are 

significant and I don't think are related to multipath. I can't think 

of any mechanism for them offhand other than it may just be a complete 

change in the whole propagation regime. It appears that there are 
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different paths so we may be looking at, say, a twentieth convergence 

zone Sliding back and forth relative to the receiver. There are also 

significant variations {20-dB or so) on the order of a day which have 

been omitted for the time being from the study. I don't think they are 

multipath either. 

Figure 15 shows the Bermuda phase record again. The phase has 

long-term trends in it as well as the tidal component. I have chosen 

to differentiate this record to look at the rate of change of phase as 

another variable for comparison. Figure 16 shows these results. Long- 

term trends have very slow rates of change so they don't contribute 

very much. One thing that stands out is the large tidal component for 

both the Eleuthera and the Bermuda ranges. They have about the same 

average rate of change of phase 6, and they have about three or four 

cycles of change per tidal period. This appears to be a good place to 

start on some model comparisons. 

The first thing that we do with the bilinear profile (shown at 

the top of Figure 17) is to take a perturbation which is constant 

with range but varied in time. That is, let the whole profile rise and 

fall like the first-mode internal tide. The next thing is to adjust 

the amplitude of the fluctuation so that it gives the right amount of 

phase shift. However, when we do that, we don't get enough interference. 

The fades don't come as frequently as they do in the experiment. In 

fact, there doesn't seem to be any way that you can adjust this profile 

in this manner to get anything else but the kind of variations shown. 

The fluctuations that yield large shifts in phase don't give enough 

amplitude interference, and they decorrelate in about a half hour in- 

stead of the four minutes typical of the experiment. This also seems 

to be true for fluctuations which have a scale larger than the cycle dis- 

tances of the SOFAR rays. We have tried using an internal tide starting 
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on the shore and dissipating while propagating seaward. The effect was 

the same as taking the perturbations and distributing them evenly over 

the whole range. Basically it provides enough phase shift but not 

enough interference. 

However, using the tidal frequencies and adding a little bit more 

perturbation to the system we can get the same amount of interference 

that we see in the experiments. Figure 18 illustrates the procedure 

where a 4-meter random internal-wave component is added to the decay- 

ing tide. It adds no significant contribution to the phase (see middle 

graph) other than the same jitter. However, the jitter introduces 

more fades (bottom graph). Each ray basically interacts with fluctua- 

tion components of comparable cycle distances. Hence they select the 

appropriate component from the internal-wave spectrum. 

There are a lot of other modes that could be added to the pertur- 

bation but all I have put in are tidal-like frequencies. I have broken 

it up spatially, and it seems to be enough. 

The fades that we see are not strictly continuous wave -- that 

is they have some bandwidth associated with them. One way to measure 

it is to transmit a broadband signal, a pulse and look at the received 

time series. Figure 19 illustrates the result of transmitting a 20 

millisecond pulse. The signal that arrived was about 100 milliseconds 

wide representing the superposition of many pulses with slightly 

different travel times corresponding to different RBR rays. Alsoa 

lower level group is seen which appears from the model studies to be 

an SRBR arrival. 

Figure 20 illustrates the behavior of such pulses during the time 

that a CW signal is fading. The top figure shows the CW amplitude 
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which exhibits a deep fade. The phase of the signal (shown below) 

goes through a 180-degree phase jump at the fade. For the pulse (bottom 

figure) a small notch forms on the right side of the pulse which 

slides across the pulse with increasing time. Precisely in the middle 

of the CW fade the pulse power is also very low. Traveling with the 

notch is a 180-degree phase jump. 

What this says about the CW fade is that at the instant of the 

deepest part of the fade, the energy is equally split into two components 

which are 180 degrees out of phase with each other and hence cancel. 

On the other side of the fade the resultant vector shows up 180 degrees 

reversed from before the fade. The only way this can happen is if 

the perturbation that's causing it is causing all the arrivals -- 

there are 15 arrivals in the pulse -- to slide relative to each other. 

So it appears to be a broad-scale process rather than a localized 

fluctuation. 

Figure 21 shows a model simulation where the gradient shifts slow- 

ly with time. The pulse response is in the left column and the phase 

is in the right colum. A small notch forms in the pulse and slides 

across the pulse, notching it out. Traveling with the notch is a 

180-degree phase shift. These results contain 15 arrivals each with 

slightly different travel times. 

An alternate representation of this fading is shown in Figure 22 

in terms of a series of measured power spectra of successive pulses. 

The carrier is the center line at 420 Hz. What happens here in time 

is that we are going through a CW fade. Transmission is falling off 

and coming back up again on the carrier. For the full spectrum it is 

apparent that the fade slides across the band resulting in selective 

fading. 
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Figure 23 illustrates a modeled case for a typical sound-speed 

profile measured in the Florida Straits with a small perturbation added 

to it. On the left is an amplitude-frequency-time plot and on the 

right is a phase-frequency-time plot. Note the two fades at early 

times. As time goes on they slide across the band. Traveling with 

the deep fade is a 180-degree fade shift. The other fade isn't quite 

as deep and its phase shift is somewhat less than 180 degrees. 

While no one would claim to be able to predict when these fades 

will occur, certain features are predictable, notably the bandwidth. 

The bandwidth depends on average characteristics, not on the detailed 

fluctuations in the sound-speed profile. The precise time of the fade 

is determined by extremely small changes in the profile and hence is 

not predictable. 

The models not only predict the frequency response but can also 

simulate spatial processing; for example, a coherent summation at several 

points. The modeled fade cells as shown in Figure 24 are small and 

isolated at 100 Hz. One of the few advantages of ray theory is once 

you make this computation you can change the frequency and easily 

consider several frequencies. Figure 25 is the same kind of plot for 

200 Hz. (Note: there's a scaling of a hundred to one from range to 

depth so these contours are actually very elongated. The contour in- 

terval is 5 dB.) Figure 26 is the same thing at 420 Hz. 

I would now like to present some Doppler-spread data. Figure 27 

is a typical Doppler spectrum I measured in the Florida Straits. The 

carrier line at 420 Hz has been suppressed to emphasize the sidebands. 

The sidebands are characteristically asymmetric and differ by 3 to 6 GB 

almost always. The spectrum appears to be a replica of the surface- 

wave spectrum. 
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One of the things I wanted to do in the model work was to include 

all possible scattered arrivals as well as the specular paths and to 

look at the resulting distribution for a pulse both in time and fre- 

quency. Figure 28 shows the modeled results for levels as a function 

of time. The top line represents the RBR rays with their characteris- 

tic buildup as they stay closer and closer to the bottom. Successive 

arrivals have one additional bounce. SRBR arrivals (second line) tend 

to spread out because they are traveling up and down and each order has 

a significantly greater travel time. They have a little spreading-loss 

anomaly in the beginning, and then drop in amplitude as a result of 

the surface interactions. 

The model predicts that the Doppler-shifted energy is going to 

come in and peak out somewhere behind the main RBR group. The first 

SRBR doesn't have any arrivals that get there at about the same time. 

The later ones have one or two. Then they peak out with four or five. 

The surface bounces then start to take over. 

Figure 29 is a measurement of this process. The Doppler spectrum 

has been measured for each successive part of the received signal for 

a transmitted pulse. Repetitive pulses are actually used to obtain 

these data. They come in just the way the model says at about the 

right intensity. 

These computations gave me enough confidence in the model to 

attempt the deep ocean case. Figure 30 corresponds to the 700-nautical- 

mile case. The bottom line shows the refracted-refracted (RR) rays 

coming in with various intensities. The top two lines show the RBR 

rays and SRBR arrivals. The third and fourth lines show the up- and 

down-Doppler scattered arrivals, respectively. Our model keeps track 

of all these arrivals, and the Doppler spectrum is predicted to be 

asymmetric. 
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I would like to go back now and look at one specular arrival and 

the family of scattered arrivals that have the same number of 

surface interactions. Figure 31 illustrates the SRBR structure plotted 

in terms of the intensity versus arrival time for the same total 

number of surface reflections (25). The number next to each arrival 

indicates the number of specular bounces it had made prior to emitting 

the scattered ray which happens to hit the receiver. The one marked 

"24" made 24 specular bounces before it emitted the ray. Note that 

the rays which scatter at the ends (either near the source or near the 

receiver) suffer the least loss. 

The same information can be expressed in terms of the grazing 

angle that the arrivals make with the bottom after scattering (Figure 32). 

All the arrivals that interact in the last half of the received pulse 

have a significantly lower grazing angle, about 5 to 10 degrees, than 

all those that are in the first half. Also the first half are all 

upscattered, whereas the second half are all downscattered. The 

difference in the bottom loss with these different grazing angles is 

enough to cause the consistent 3 to 6 dB sideband asymmetry. 

Figure 33 is the predicted Doppler spectrum (or more properly the 

transfer function which must be multiplied by the surface-wave spectrum 

to get the Doppler spectrum). Note the 3 dB difference in the side 

bands. The scattering event itself is symmetric. Because of the 

differences caused by: (1) the angle at which the ray is emitted from 

the surface and (2) the requirement that the ray hit the receiver, 

the upscattered paths have significantly less loss than the down- 

scattered paths. These results are quite consistent with what is 

observed in measured data. 
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DESIGN OF TRANSMISSION LOSS EXPERIMENTS 

J. S. Hanna 

Office of Naval Research 

Code AESD 

The conceptual design of transmission loss measurements is 

discussed. The concern here is not with the hardware 

implementation of a desired measurement, but with the 

definition of what is to be measured given everything we 

know about the medium, the acoustic sources, and the 

available processing techniques. 

The cyclical effort of the past in which models were used 

to interpret data, and the data in turn used to refine 

models, is drawn upon to illustrate some general proper- 

ties of the impulse response of the ocean. Given these 

general properties, the following topics are addressed: 

1) The nature of sound sources (impulsive and continuous 

wave) and the limitations each imposes upon our 

ability to measure the spectrum of the ocean's 

impulse response 

2) The selection of a signal processing scheme (analog 

or digital), given the expected nature of the impulse 

response and the properties of the sound sources 

3) Examples of measurements which, in some cases have 

and in others have not permitted meaningful interpre- 

tation of the results; these examples illustrate 

common problems and the way they can be avoided. 

INTRODUCTION 

The objective of any transmission loss experiment is to measure 

a particular property of the ocean environment, namely its effect on 

the transmission of an arbitrary signal between two points. This 

seemingly obvious statement is worth making because some measurements 

have been conducted in a way which has inextricably confused the 

properties of our measurement system (source and signal processor) 

with those of the medium. 
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If one could determine the impulse response of the ocean between 

any two points, then, in principle, one can predict what will happen 

to any signal which propagates between these two points. Asa 

practical matter, however, one can only aspire to measure a band- 

limited version of this impulse response. If it is furthermore 

realized that the modelers are interested in not just an experimental 

determination of the impulse response, but in its interpretation 

through physical properties of the environment, it becomes clear 

that measurement planning must consider: 1) the expected properties 

of the impulse response, and 2) the limitations imposed by signal 

sources and processors upon the measurement of this impulse response. 

In the course of this paper, both these topics will be considered. 

THE IMPULSE RESPONSE 

For the purpose of illustrating some properties of the impulse 

response, it will be assumed that the medium is not dispersive 

(that is, the medium simply attenuates the amplitude equally at all 

frequencies and introduces at most a phase reversal upon reflection 

from the ocean surface). Consider, then, the hypothetical, idealized 

impulse response of Figure 1 which consists of four arrivals time- 

delayed according to the history in the upper right-hand corner. 

There are two pairs of arrivals separated by a time At. The total 

history is assumed to correspond to the four arrivals of a single 

order for some source-receiver geometry. For the sake of example 

the two time differences and amplitudes were selected as shown and 

the spectrum of the resulting impulse response displayed in the 

figure. 

By way of interpretation, the 40 Hz periodicity corresponds to 

the time delay At while the 2 Hz periodicity corresponds to the time 

delay AT. For a more complicated arrival structure there will be a 
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periodicity in the spectrum corresponding to each pairwise time delay 

in the time history. (It will become apparent shortly that, depending 

upon the desired characterization of the transmission loss, it is 

necessary to anticipate the relative time history of arrivals and, 

thereby, the general structure of the spectrum of the impulse 

response.) Further elaboration of the model to include such features 

as frequency dependent absorption and frequency .independent phase 

shifts (such as produced by caustics) will cause details of the 

spectrum to change; however, the basic periodicities induced by the 

travel-time differences will remain. It is these periodicities which 

will drive our later concerns. 

SOME COMPLICATIONS 

Limitations of Impulsive Sources 

The desire to measure the spectrum of the impulse response be- 

tween any two points runs rapidly into some practical difficulties. 

To measure a spectrum, such as shown in Figure 1, requires a source 

of energy with a flat, featureless spectrum over the frequency domain 

of interest. In general, such sources can only be approximated, 

often poorly. The most widely used impulsive source in Navy measure- 

ment work is the explosive charge. However, because of the presence 

of bubble pulses, these explosives themselves have a rich spectrum 

which may rival that of the ocean's impulse response. 

Examples of these spectra for 1.8-pound charges of TNT detonated 

at 60 and 800 feet are shown in Figures 2 and 3, respectively. In 

Figure 2 the rapid (6 Hz) variation is the bubble pulse frequency 

while the slower (vV80 Hz) variation is caused by the surface-reflected 

arrival. (Both spectra shown in Figures 2 and 3 are low-pass filtered 

at 300 Hz.) It is quite possible to produce a 6 Hz period in the 

Bae 



IN dB 

RELATIVE POWER SPECTRUM 

HANNA: 

-20 

-30 

-40 

-50 

-60 

-70 

-80 50 

Figure 2. 

DESIGN OF TRANSMISSION LOSS EXPERIMENTS 

100 150 200 250 300 350 400 450 

FREQUENCY IN Hz 

SPECTRUM OF THE DIRECT ARRIVAL AND SUR- 

FACE REFLECTION FROM A 1.8-POUND CHARGE 

DETONATED AT 60 FEET 

500 



RELATIVE SPECTRUM LEVEL IN dB 

| i) Oo 

! 7S (e) 

| o (eo) 

-80 

HANNA: DESIGN OF TRANSMISSION LOSS EXPERIMENTS 

100 200 300 400 500 

FREQUENCY IN Hz 

FIGURE 3. SPECTRUM OF A 1.8-POUND CHARGE 

DETONATED AT 800 FEET 

600 



HANNA: DESIGN OF TRANSMISSION LOSS EXPERIMENTS 

spectrum of the impulse response discussed earlier, with an appro- 

priate choice of receiver depth (about 800 feet in this case), which 

would be indistinguishable from that caused by the bubble pulse of 

the source at 60 feet. Similarly, referring now to Figure 3, the 

source at 800 feet has a bubble pulse frequency of approximately 

50 Hz (the surface reflected path has been gated out in the time 

domain) and, again, a particular receiver depth could induce a com- 

parable periodicity in the spectrum of the impulse response. 

The first point to be made, then, regarding measurement of the 

impulse response of the ocean is the nature of the limitation in- 

duced by our attempt to produce a source with a flat spectrum. The 

rule of thumb which follows from this point is that a source should 

be chosen (or tailored) such that its distinct spectral features are 

very different from those features of interest in the spectrum of 

the impulse response. 

A second potential difficulty may arise in the choice of a signal 

processing scheme. If it is desired to measure the spectrum of the 

impulse response in detail over a wide band, then a natural choice of 

processing is digitization of the data and FFT spectrum analysis. 

Even though this processing permits very narrowband analysis, some 

frequency average of the spectrum will be desirable for at least one 

of two reasons: 1) it may be necessary to average over spectral 

variations of the source which are not strictly repeatable from event 

to event (such as the 6 Hz variation in Figure 2), and 2) it may be 

necessary to average over certain fine structure of the spectrum of 

the impulse response itself which is known (or expected) to change 

rapidly from measurement to measurement. These factors are further 

explored by Hanna and Parkins (1974). This frequency average can be 

selected only with knowledge of the detailed structure of both the 

source and impulse response spectra. 
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For reasons of economy, or for the sake of real-time processing, 

it may be desirable to do the necessary frequency average by band- 

pass filtering the received signal before processing. The factors 

affecting this choice are the same as those mentioned above. However, 

the penalty for error is higher in this case: in the absence of 

permanent broadband recordings, the measurement cannot be redone. 

An example of an experiment in which the source and signal 

processing choices proved well matched to the desired measurement 

concerns the measured spectrum of an impulse response as shown in 

Figure 4. The event was a 3-pound charge dropped at a range of 

300 nm and detonated at a depth of 60 feet. At this range the total 

received signal consisted of the arrivals from a single convergence 

zone. The 5 to 6 Hz variation is caused by the bubble pulses of the 

shot and the 220 Hz variation by the interference of the direct and 

surface-reflected paths at the source. The received signals were 

filtered through 1/3-octave filters at 25, 50 and 100 Hz; these 

filters were wide enough to average out the bubble pulse effect, but 

narrow enough to properly sample the surface image effect. 

It is clear from Figure 4 that the received level will be about 

10 dB lower (and, thus, the transmission loss will be 10 dB higher) 

at 25 Hz than at 100 Hz. This expectation is borne out in Figure 5 

which compares the measured transmission losses at these two fre- 

quencies over the 500 nm range of the event. 

Limitations of CE Sources 

So far the discussion has been limited to the consideration of 

broadband sources; these sources are well suited to measuring the 
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impulse response spectrum for discrete source-receiver geometries. 

There is much interest, however, in the behavior of a CW signal 

radiated by a continuously moving source; the behavior is deter- 

mined most directly by the use of towed CW projectors. In this 

case, the spectrum of the impulse response is sampled at a single 

frequency (with some narrowband resolution) as a function of the 

changing source-receiver geometry. Even though the narrowband 

sampling may be produced continuously in time (as, say, the output 

of an analog filter), the practical question arises as to how often 

{in time] should this output be sampled to give transmission loss 

as a function of changing geometry. The answer is simple and obvious: 

often enough to adequately represent the underlying continuous curve. 

If, however, one must set up an automatic sampling system, it is 

necessary to estimate in advance the character of the transmission 

loss as a function of changing geometry, just as in the case of 

impulsive sources it is necessary to estimate the spectrum of the 

impulse response. 

This point is illustrated in the next two figures. First, in 

Figure 6 are shown an estimated transmission loss curve and its 

experimentally determined counterpart for nearly axis-to-axis 

propagation in the Mediterranean. The calculation was performed 

using the parabolic equation program as implemented at the Acoustic 

Environmental Support Detachment; this calculation was carried out 

with a range resolution of 0.1 nm which was adequate to sample the 

rapid variations of the loss with range. The data were taken at 

approximately 5 nm intervals using a time average equivalent to a 

range interval of 0.05 nm. Although the data are not inconsistent 

with the calculation (and, thus, suggest that the real-world trans- 

mission loss has character comparable to that of the estimated loss), 

it is clear that the dependence of the actual transmission loss on 
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range is grossly underdetermined. Second, consider the comparison of 

Figure 7 which also presents both measured CW data and a parabolic 

equation calculation. In this case the calculation was done with a 

resolution of 150 feet in range while the data were taken with a 

time average corresponding to a range interval of 30 feet. Although 

different in detail, both curves have comparable structure; the 

important point is not the level of agreement or disagreement between 

the curves, but that both represent adequate spatial sampling of the 

underlying transmission loss and that the model calculation could 

have been used to set the experimental sampling intervals. 

The chief advantage of a CW source is that it permits experi- 

mental determination of the behavior of narrowband signals. A 

significant disadvantage is that it seldom permits a path-by-path 

analysis of the transmission loss. When properly used, the CW and 

impulsive sources can provide information on complementary questions 

regarding the nature of propagation. The impulsive source is suited 

for measurements of the spectrum of the impulse response of the 

medium for fixed source and receiver locations (with a frequency 

average imposed by the nature of the source and, perhaps, even the 

medium). The CW source is suited for measurements of the spectrum 

of the impulse response at one frequency for continuously varying 

source and receiver locations. 

The Message 

The central point in the above discussion is that proper design 

of a transmission loss experiment demands a priori estimation of the 

nature of the loss characteristic to be measured. The present state 

of acoustic models, both ray and wave, certainly permits making these 

estimates with high confidence in many cases. Historical precedent 

is no longer a sufficient (or even necessary) reason for using any 

signal source or processing technique. 
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A CASE HISTORY: THE CRITIQUE OF A BOTTOM LOSS MEASUREMENT 

Introduction 

The Naval Oceanographic Office (NOO) and the Naval Air Develop- 

ment Center (NADC) have conducted many measurements over the past 

several years aimed at determining the bottom reflection loss at 

low frequencies (less than 1,000 Hz). Although different in detail, 

the two programs have employed similar experimental techniques. They 

both tend to use sources and receivers within some hundreds of feet 

of the ocean surface; in this geometry transmission loss is measured, 

compared with estimates of the spreading loss through the water, and 

bottom loss is inferred. A consistent, and surprising, result of 

most of those measurements is the apparent evidence of negative 

losses at low frequencies for low grazing angles. This result has 

serious implications for predicted transmission loss using present 

models; in the remainder of this discussion the experimental design 

employed in these measurements will be examined, along with its impact 

upon the inferred reflectivity. 

An Example 

The case study here assumes a Pacific profile for the water 

column and a sound velocity gradient in the upper few hundred feet 

of bottom sediment of 1.0 ser (see Figure 8). This assumed velocity 

structure for the unconsolidated sediment of the bottom is supported 

by numerous independent experiments including those being considered 

here. No discontinuity of the sound velocity into the bottom has 

been assumed, although there is evidence that a discontinuity of a 

few percent often exists. Its absence here is of no material conse- 

quence for the points to be developed. 
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The schematic ray trace of Figure 9 shows a typical source- 

receiver geometry and the four ray-paths belonging to the family of 

rays having one bottom interaction. Explosive charges are used as 

sources and the experimental design assumes that these four paths 

are isolated by the signal processing. The basic analysis uses the 

following relationship applied to these paths: 

RL = SL —- TL - BL 

where RL = received level, 

SL = source level, 

TL = transmission loss, 

BL = bottom loss. 

The received level and source level are measured, the transmission 

loss (excluding bottom loss) for the paths is estimated and bottom 

loss is subsequently inferred. For the moment, it will be assumed 

that there is no uncertainty in the measured received level or source 

level (although the problem of source level measurements will be 

touched upon later). 

Transmission Loss Estimates 

Bottom-refracted Paths 

The examination here begins with the assumed transmission loss 

model. In their data reduction, both organizations have assumed that 

1) all four paths are of equal intensity at all ranges, and 2) the 

contributions from all four paths combine on a power basis to yield 

the total intensity. Based upon these assumptions, the total 

spreading loss along the four paths is just 6 dB less than the loss 

along any single path. Assumption 1) above is acceptable except for 

ranges corresponding to small grazing angles on the bottom; at these 
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ranges the paths begin to drop off in intensity at significantly dif- 

ferent rates. Thus, the total loss estimated from a signle path will 

be different at low grazing angles, depending upon which of the four 

paths is used. 

The second assumption above can lead to more serious difficulties than 

the first. Based upon the earlier considerations of this paper, whether 

any set of paths is combined in the signal processing on an rms basis 

or not depends upon the details of the processing. In the experiments 

of interest here the received signal was filtered in a 1/3-octave band 

at several center frequencies. To assess whether assumption 2) is 

reasonable, estimates of the spectrum of the impulse response for the 

four paths of Figure 9 were made; these estimates were based upon the 

computed amplitudes and arrival times for the paths. The relative 

arrival times as a function of range are shown in Figure 10 for the 

paths which refract through the sedimentary layer in the sound speed 

profile shown earlier. (The minimum range corresponds to a path 

incident upon the bottom at an angle of 20° with respect to the 

horizontal.) Figure 11 shows the computed spectrum for a range of 

14 nm; the 9 Hz variation is caused by the up-and-down-going pair of 

paths at 800 feet, while the 27 Hz variation is caused by the up-and- 

down-going pair of paths at 300 feet. At 35 Hz, for example, a 1/3- 

octave filter is about 8 Hz wide at its 3 dB down points; a filter of 

this width clearly will not yield the rms sum of the features of this 

figure. Figure 12 shows the computed spectrum at a range of 29.5 nm; 

all the travel time differences have decreased with corresponding 

increases in the frequencies of the variations in the spectrum. Again, 

the filter at 35 Hz will not yield the rms sum of these variations. 

Figure 13 compares the transmission loss for these four paths 

based upon 1) the rms sum, 2) a 1/3-octave result at 35 Hz, and 

3) a 1/3-octave result at 100 Hz. In the portion of the figure above 
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the transmission loss, the inferred reflectivity is plotted assuming 

that the measured loss is either the 35 or 100 Hz filtered result 

while the computed loss is the rms sum. There are two important 

points to be made here: 1) the inaccurate transmission loss model 

(viz., the rms sum) induces spurious character into the inferred 

reflectivity which is not only frequency dependent, but source- 

receiver geometry dependent; 2) the inferred reflectivity loss is 

consistently negative for angles less than 6 to 7 degrees. 

Water-refracted Paths 

Up to this point is has been assumed that the four bottom- 

interacting paths can be resolved from all other paths in the problem. 

This is not always the case for ranges corresponding to low grazing 

angles. To demonstrate this fact, consider first the ray plot of 

Figure 14 where are shown the rays from a source at 800 feet which 

arrive in the range-depth window from 25 to 35 nm and O to 300 meters. 

Those paths which reflect from the surface are distinguished according 

to whether they interact with the bottom or belong to the RSR family; 

also shown are the RR rays. Consider the rays which intersect the 

receiver depth at 300 feet: the last bottom-interacting path arrives 

at a range of 31 nm, yet even the ray-trace shows non-bottom- 

interacting paths arriving in the overlapping range from 29.5 to 31 

nm. In reality, however, the refracting paths make their influence 

felt before 29.5 nm in the form of the shadow zone field of the RR 

caustic. The relative travel time between the refracted field and 

the bottom interacting field is sufficiently small so as to not be 

resolved by 1/3-octave processing at low frequencies. Thus, attempts 

to measure the bottom-interacting field at these ranges may be 

thwarted by the additional influence of the refracting field. 
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To estimate this effect, a wave model which properly treats 

caustic fields (the parabolic equation model mentioned earlier) was 

run, including both the bottom-interacting and refracted fields, 

and averaged in frequency over 1/3-octave at 35 Hz. The results of 

these calculations are shown in Figure 15 with the rms sum, again, as 

the estimated transmission loss. The inferred reflectivity is shown 

at the top of the figure; it follows the earlier 35 Hz curve down to 

about 5 degrees, below which it goes even further into negative values 

than before. The significant point here is that even if the proper 

summation of the bottom-interacting paths were used as the estimated 

transmission loss, negative reflectivity losses would be obtained at 

low grazing angles because of the refracted contribution to the field. 

The effect of the refracted field will depend upon frequency, geometry 

and depth excess. 

To summarize the analysis at this point, it has been shown that 

certain features of the low frequency bottom loss measurements made 

by NOO and NADC, especially apparent negative bottom losses, could 

be induced by 1) an over-simplified transmission loss model, and 

2) inseparable bottom-interacting and refracted fields at ranges 

corresponding to low grazing angles. 

Bottom- reflected paths 

So far the attention has focused on the model for propagation in 

the water. Consider for a moment the diagram of Figure 16 which shows 

not only a path refracting through the bottom, but one reflecting from 

the boundary as well (some of the NOO data show the presence of both 

paths). In general, if the incident amplitude is A and that of the 

reflected path is aA, then the amplitude of the reflected path is 

(1 - a)A (neglecting reflection back into the bottom of the emerging 

refracted ray). When these paths recombine in the water, their 
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Figure 16. INTENSITY OF RECOMBINED SPLIT PATH 
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amplitude can be at most A (neglecting spreading losses) and, thus, 

will not exceed the energy of a path for the case where only one of 

these two is present. Such a mechanism, then, cannot give rise to 

negative reflectivity. 

While the above argument concludes that the presence of both 

bottom-refracted and bottom-reflected paths cannot produce apparent 

negative reflectivities, their simultaneous presence will certainly 

produce interference patterns in the reflectivity as a function of 

frequency. Figure 17 shows the relative arrival time structure for 

the bottom-refracted and bottom-reflected paths for the case being 

discussed here. Note that the reflected counterpart of each 

refracted path arrives earlier; the fact that these paths arrive 

simultaneously at maximum range is a direct consequence of no velocity 

discontinuity at the bottom. The maximum travel-time difference 

between these paths is about 15 msec for the geometry considered here; 

the period of the corresponding variation with frequency of the 

reflectivity will be 66 Hz or greater. Thus, the 1/3-octave filters 

discussed above will give essentially the coherent combination of 

these paths. 

Finally, note that the need for dealing with four inseparable 

paths could be avoided by getting the source and receiver away from 

the ocean boundaries, but this in general will increase the inter- 

ference of refracting fields. Conversely, the influence of the 

refracting fields diminishes near the ocean surface, but the need 

to deal with the four paths increases. This qualitative trade-off 

suggests that low grazing angle measurements may always pose a 

significant problem. 
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Source Level Errors 

Errors in the calibration of the source will directly affect the 

inferred reflectivity. Worse, variations in the spectrum level of 

the source from event to event will induce point-to-point errors in 

the estimates of reflectivity. When pressing to get meaningful values 

of reflectivity to accuracies of a few dB, it is obvious that all 

measured or estimated qualities entering the computations must be 

known to accuracies consistent with that desired in the result. Con- 

cerns expressed elsewhere in these proceedings regarding measured 

source levels for explosives have serious implications for measure- 

ments, such as those here, which rely on absolute source levels. 

CONCLUSION 

This paper has attempted to develop a particular approach to the 

design of transmission loss measurements based upon the use of exist- 

ing acoustic models to estimate the nature of the loss in advance. 

Examples were presented to illustrate common pitfalls which can be 

avoided with this approach. 
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DISCUSSION 

Dr. J. S. Hanna (Office of Naval Research): What I have here 

(in Figure 16) is a schematic representation of a path which refracts 

through the bottom and one which is reflected from the interface. What 

I intended to have these paths correspond to is essentially what is back 

at the source and again at the receiver. 

The point that I wanted to make here is that even if both of 

those paths are present in the data, the only thing that they can do 

to you is produce structure in the bottom reflectivity that you would 

infer, but they cannot give you reflectivities which are greater 

than one. 

The reason why, I believe, is that if these two paths have ampli- 

tude A and they reach this boundary, the reflected path will have 

some amplitude less than A which I have indicated by oA here. That 

means that the energy, which is remaining to travel along this path, 

is essentially 1 - a times the original amplitude, and the most that 

can happen when these two recombine is that you get A back, but not 

more than that and, in general, perhaps less than that. 

So that I don't believe in principle that the combination of 

those two paths is the problem. 

Mr. M. A. Pedersen (Naval Undersea Center): No, that's not 

quite true, because you have a slope discontinuity there, you are 

bound to have a caustic down in that bottom medium. There is a slope 
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discontinuity at the interface because they have different velocity 

gradients and it bends the right way to cause a caustic. 

Dr. Hanna: The implication of that is what? 

Mr. Pedersen: Well, that the intensity can be much larger for 

this one that goes down into the bottom there than that other one. 

Say, if the original energy that goes into the bottom is less than 

the reflected ray, you could still get certain convergence regions 

for that path that goes down next to bottom. 

Dr. Hanna: Are you essentially saying that if I began with an 

amplitude of A incident on the bottom and ran this path through the 

problem and back out again — well, let me try to simplify the problem 

just a little by ignoring the reflected path. 

Let's say there is no reflection at the boundary and the only 

thing that happens is that this path goes down, gets refracted and 

comes out again. 

Are you saying, essentially, that if I go to the surface here 

where the path originates and terminates that I should expect to see 

a received intensity for this path which may be higher than what 

corresponds to simply keeping track of spreading loss along that path? 

Mr. Pedersen: There is at least one more path. The point of 

it is whenever you have one gradient, and then you have another 

slope discontinuity to a steeper gradient, you always get a caustic, 

if you increase the angle to a steep enough angle. 

Mr. C. W. Spofford (Office of Naval Research): Yes, but, Mel, 

that caustic is occurring way back in range in this problem. John is 

talking of 5 or 10 degrees, and the caustic was around 25 or 30 degrees. 
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Mr. J. I. Ewing (Lamont-Doherty Geological Observatory of 

Columbia University): That's right, too. There is a critical 

distance involved. In this situation there is a single ray path, 

but beyond this distance there are two families. At an increased 

range one family dives deeper into the bottom than the critical ray 

does, and the other family goes shallower than the other ray does. 

Beyond that critical distance you have two distinct paths. 

One thing I object to is the neglect of sub-bottom reflections 

in your treatment. Beyond the low grazing angle you are likely to 

have rays reflecting off of sub-bottom interfaces at very favorable 

angles of incidence to return the amount of energy. 

Dr. Hanna: Okay, I should make it clear at this point that I 

have, indeed, not included those possibilities in the problem and I 

am not suggesting for a moment that they aren't out there in some 

real case of interest to us. 

Mr. Ewing: I agree when you are out there near the 30-mile 

range you probably only have one refracting ray. The deeper ones 

have probably already been intersected by either some sedimentary 

reflector or by the basement rock. 

Mr. Pedersen: It depends on where you cut off this positive 

gradient layer there with your sedimentary bottom. But if you just 

imagine continuing that on indefinitely, you see that branch has to 

come back out again in range. 

Dr. Hanna: That sounds like almost an academic thing to do, 

though. That is to say, this sedimentary layer already als} X00) 5 15) 5\0) 

fathoms deep and, in any event, I think it is unlikely that any 

energy that penetrates this deeply, if there is any absorption in 

the problem, is going to come back to haunt me again, anyway. 
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Mr. Ewing: Why was the reflected path from that sub-bottom inter- 

face terminated where it was? I don't understand that. 

Dr. Hanna: I'm sorry, which reflected path? You are talking 

about the one which reflects at the interface itself? 

Mr. Ewing: No, that reflects at the deeper interface. 

Dr. Hanna: Oh, down here. 

Mr. Ewing: Yes. 

Dr. Hanna: In this particular case, they have simply come down 

reflected and they do return into the problem, but way back in here. 

Mr. Ewing: And then what? 

Dr. Hanna: Well, for me, and then nothing, because I was inter- 

ested in these ranges here and those correspond to the very short 

ranges which I wasn't really discussing at this point. 

Let me try to remember another one of Will's slides. 

He showed measured transmission loss as a function of range for, 

I guess it was — wasn't it — the Caribbean? 

Mr. W. H. Geddes (Naval Oceanographic Office): That was the 

Caribbean. 

Dr. Hanna: Yes. And if you remember, going from long range 

into decreasing range there was a very abrupt transition in trans- 

mission loss at around — I don't know, it was around this range 

right here, if I remember correctly, 24, 28 kiloyards, something 

like that, where the transmission loss abruptly dropped and went on 

back to the ranges corresponding to this part of the problem here 
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and there wasn't — at least the way I would read it — any indication 

of contributions from these paths that might have reflected, let's 

say, in that deep interface at all. 

Dr. C. W. Horton, Sr. (Applied Research Laboratory of the 

University of Texas at Austin): I think the point is that whether 

there are two or more rays, your point is still proven. You are 

wanting to show that you cannot get positive bottom-loss values, 

and the total reflection, if there is no loss at the bottom, is 

unity. So where there are two or three rays that add together, 

you still would only get a total amplitude of unity if they are in 

base. That is all you set out to establish. 

Dr. Hanna: Yes, that's exactly right. It sounds like I have 

convinced at least one person. 

The point I wanted to make is, even if one improved this picture 

to include for low grazing angles the possibility that some of the 

incident energy is reflected and not refracted through this layer, 

that you take that incident energy and send part of it along one path 

and the remainder along the other path, and that some place in the 

problem they may come together again. But the most that you can do 

is get back to the original intensity of that path, less the spread- 

ing loss. 

Dr. J. B. Hersey (Office of Naval Research): John, have you 

experimented with nonlinear gradients in the sediment? If there is 

a second derivative to the gradient, I believe that caustic is 

guaranteed, right? I can assure you this kind of intensification is 

seen experimentally and it is very striking indeed. Its explanation 

is illusive. 
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Suppose we have two rays that bend together repeatedly, you 

know, successive rays forming a caustic, there can be intensifica- 

tions without any violation or conservation of energy or anything 

like that. It's commonly known as focusing. 

All along, you see, we have had experimental evidence for years 

that there is a strong intensification of an arrival that has to pass 

through the bottom in some manner and arrive at ranges of the order 

of 12-14 miles plus, and it continues strong for quite a few miles. 

This is the experimental reason why I have believed in the 

possibility of negative bottom loss. But I have been left very 

hungry by these various ray analyses, because always it was carefully 

explained to me that the velocity gradient in the bottom was linear. 

Mr. Spofford: I think the point is we are after the plane wave 

reflection coefficient of the bottom. This is what the models need, 

this is why we are supposed to be out there measuring reflectivity. 

If you go to a range where you think you are observing a 5 degree 

grazing angle on the bottom and you are really seeing a reflected 

angle at 5 degrees, plus an angle which is going into the bottom at 

20 degrees, transiting through the sediment, and coming up again 

with a strong focus (which is certainly possible if the sediment is 

deep enough and the curvature is strong enough) you are not measuring 

the reflectivity at 5 degrees, you are measuring transmission loss at 

that point in range. 

The point I think John and I are trying to get to is, there is 

a specific mission in mind for these measurements which is bottom 

reflectivity. If you put plane waves into the bottom at various 

angles, you don't observe reflectivities greater than one. 
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Talking from a very parochial point of view, from the modeling 

point of view, if you take a negative reflectivity and put it into a 

propagation model and you go out a few hundred miles, adding in 2 or 

3 dB increases of intensity per bounce for the grazing rays, you can 

get your intensity to arbitrary levels at great range. They are 

easy to do. 

Dr. S. M. Flatte (University of California College of Santz Cruz): 

Why can't you focus a plane wave? 

Mr. Spofford: It will be focused on the bottom, but won't be 

focused up above. 

Dr. Flatte: No, it can be focused up above the bottom. It just 

won't happen the next time. If you try and say it will do it many 

times, it won't. But it can be focused the first time. 

Mr. Spofford: The definition of the reflection coefficient 

assumes that in a homogeneous medium we have an incident plane wave 

of unit amplitude. Now, no matter what you put in the bottom, when 

it comes out again, if you haven't put any absorption in the bottom, 

it comes out with unit amplitude. 

Dr. Hanna: JI have the same concern that Chuck has which is 

that negative reflectivities are rather difficult for me to accommo- 

date in any of the models I now have. That is not to say those models 

should not learn how to accommodate to whatever those negative reflec- 

tivities are trying to tell us. 

The point that I want to make is that there are potential arti- 

facts in some of those inferred bottom reflectivities produced by 

the assumed transmission loss along the paths involved. I will feel 

a lot more comfortable about debating the negative reflectivities and 
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after I think I have done as well as I possibly can toward modeling 

the part of the propagation that is alledged to take place in the 

water itself. 

Mr. R. L. Martin (Naval Underwater Systems Center,New London 

Laboratory): In the Labrador Basin, Stan Della has made some measure- 

ments of an area of little interest to the Navy for bottom loss be- 

cause there is so much depth excess, but he has been very careful to 

separate out a direct path and a bottom reflected path. He has been 

able to do this successfully down to angles of almost 5 degrees 

grazing, and starting at 10 degrees he has observed what we call 

"negative" bottom loss. 

Even when you are very careful about your experimental procedure, 

using shots that are detonated deep in the water column, the receiver 

deep in the water column, and other factors, you still make that 

observation of negative bottom loss. 

The way models are used today, you can't throw that into a model 

because every time the ray intersects the bottom, the negative loss is 

put into that ray. But it does indicate that in those areas where we 

make thet type of observation, that you perhaps have to include the 

bottom into your model, because it is going to be a function of the 

point in the water column where you make the measurement. 

Dr. H. Weinberg (Naval Underwater Systems Center New London 

Laboratory): Why don't we just simplify the problem and forget that 

you even have a bottom. Just consider the ray that goes into a 

little bottom region with a strong but positive gradient. By changing 

that gradient, you can get just about any type of answer you want. 

Clearly, by making that gradient strong enough, you can focus the 

energy enough to get an increase in the power of its intensity. 
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I think you are just arguing whether or not you interpret that 

increase as a negative bottom loss or focusing. 

It really doesn't matter what you call it, but it is possible 

to get the same effect. 

Dr. Hanna: The computations of intensity, that is, the rms sum 

of those four paths that I showed, were made using a ray tracing 

program which had that strong negative gradient in it. That is how 

the rays were traced. It was not assumed that the rays reflected 

from that bottom boundary, they refracted through it in that calcu- 

lation. 

Dr. Weinberg: Maybe in the particular example that you looked 

at, what you are saying is exactly right. But it's easy enough to 

construct another example where you can get focusing into that 

bottom region. 

Mr. Ewing: The way I look at it is that you have a gradient in 

the water, and maybe you change the value of the gradient in the 

sediment, but I think it can still even be linear, Brackett. The 

simplest case is not to assume a discontinuity there. Consider an 

infinitely thick section of sediment that just has a gradient, and 

for the moment, let's forget about any possibility of reflection here. 

I believe it is proper to say that you don't hear anything at 

your receiver until you get to some critical distance from the 

source, at which the value of the gradient permits a ray to be bent 

around and get back to the surface. That happens at some specific 

depth below the interface. 

Then, if you imagine just one step beyond that, what you get 

is one limiting ray that does not get quite as deep as the first one 
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did, and you get another ray that goes quite a lot deeper than that, 

but coming to the same path. 

I believe this is, in effect, your lens. When you also intro- 

duce reflectors in the sub-bottom, you can, at the right angle of 

incidence, produce, almost, unit reflectivity. 

Dr. P. W. Smith (Bolt, Beranek, and Newman, Inc.): What we are 

after is tabulated bottom losses for prediction of changes in the 

environment which are independent of the bottom. We do not want 

those changes in the environment independent of the bottom to change 

the parameters by which we classify the bottom. This particular 

focusing feature is peculiar to the environment. We want a charac- 

terization of bottom reflection that will be useful for sampling. 

The problem is a very complex one. How do we take this apart and get 

a number that we can usefully use for transmission loss prediction. 

Mr. Ewing: I fail to see how the energy that is returned from 

the sediment is not part of the problem, because it is energy 

returned into the water. A very large amount of it is returned to 

the water. 

Dr. I. Dyer (Department of Ocean Engineering of Massachusetts 

Institute of Technology): The analogy might be that if for some 

reason the model makers forced us to neglect the lower 2,000 meters 

of the water column, and replaced the lower 2,000 meters of the water 

column by an effective bottom water reflectivity and we find we have 

convergent zones and we say, "Ooops! A negative reflection loss." 

It seems to me that the problem here is no different. The 

bottom is part of the column, and any attempt to put an artificial 

line there and describe it by a simple number in this frequency 

range is bound to fail. 
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So, the model makers are going to have to adjust. We can't 

change the ocean. 

Dr. Weinstein: John (Dr. Hanna), concerning another point, you 

started out by saying, let's assume the source levels are properly 

taken care of, but in fact they are not, because the measurement of 

the source level is made at a relatively short range when you are 

doing this kind of work. 

At these ranges you are still in the shock wave region and not in 

the pseudo-acoustic region. You find that the pressure-time curve 

changes with range in such a fashion that there is a transfer of 

energy from the high frequencies to the lows. 

This, in itself, would give you an apparent negative bottom loss 

if you apply spherical spreading as your means of correction, or if 

you calculate the propagation loss assuming that you have a caustic 

source. 

Dr. Hanna: It is true that the analysis performed on this data 

is more complicated than only worrying about the estimated loss that 

you are going to compare to the measured transmission loss. 

There is the whole problem of source level. I am not sure that 

I would agree at this point that it is a mechanism for getting nega- 

tive reflectivities except if the source level is too high or too 

low, whichever way it has to be to make that happen. 

I would like to make just one more comment about the particular 

sound velocity structure that I used here and what rays are and are 

not present at certain ranges in the problem for that particular 

geometry. 
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One thing I can say with absolute certainty is that, setting 

aside for the moment the question of whether you think the constant 

gradient that I chose in the bottom is at all realistic, if you 

accept the sound velocity structure, that I outlined above, to trace 

rays, I can promise that in that particular case for the ranges from 

14 to 30 miles, roughly, there is only one path which refracts in 

that strong gradient then comes back at those ranges. 

Now, the thing that I would certainly admit to the possibility 

of is the following: It may be that for more complicated sound 

velocity structures and for different values of, say, this initial 

gradient, and the way that behaves with depth, that you can indeed 

construct the kind of situations that you mentioned. That is, that 

at the ranges I considered, you have steeper paths which come back 

into the problem. 

I would not quarrel with the possibility of doing that. The 

only thing that I would maintain is that with this particular specific 

example there is only that one path for those ranges. 

What that may be telling us is that this example is not really 

representative of most of the cases that you had in your experience. 

Dr. M. Schulkin (Naval Oceanographic Office): You don't have a 

negative bottom loss going continually out in range. It's just the 

first one where there is an apparent gain over inverse square 

spreading, because you have a convergence zone there. Like the other 

convergent zones that you take for granted in the water column, you 

have a 3 dB loss the distance level from there on, because you have 

10 log R spreading as you continue down the path. 

It is no violation of the conservation of energy. If you focus 

your energy at some points, you lose it at other points in the vertical 

column, say at that range. 
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You don't deny this in regard to the series of convergent zones 

systems? 

Dr. Hanna: No. I think the only point I would make here is that 

the caustic of this convergent zone occurs in the sediment, not back 

up at the surface. 

Dr. Schulkin: No, no. Just like your regular convergent zone. 

You have got focusing near the surface of the regular convergent zone. 

Dr. Hanna: Let me make just one further statement. Whatever 

focusing is accomplished by this sound velocity structure should be 

reflected in the ray tracing calculation; that is, the essence of 

that calculation is to compute the spreading loss along that ray 

along with whatever focusing the environment creates. 

The curves that I showed you were made based on those kinds of 

computations. So, in my construction, if there is any focusing along 

that ray from whatever mechanism, it is in the computation. 

It is in the curve that I call the rms sum of intensities which 

was constructed from the computed intensity along each of those paths. 

Dr. Schulkin: Phasing is very important and this rms combination 

of your four rays — that's not what Will does anyway, as far as the 

analysis goes, except for individual arrivais. I don't know why you 

did that. The rms summation before arrival is not what Will analyzes 

in his data. 

Dr. Hanna: That is a very important point. 

Dr. Hersey: I am going to take a chairman's privilege and 

suggest that John go on to his next point and say that we have pin- 

pointed a problem with which we had better deal. 
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Dr. Hanna: JI have two things I want to say. 

First, the main point that I was really trying to develop through- 

out this whole discussion — not focusing on this specific example of 

a kind of transmission loss measurement — is that when you make a 

measurement of transmission loss and come back with a set of numbers, 

in the processing of those data you need to think consciously about 

what it is you believe you are measuring. 

I can show examples where that kind of consideration has not 

been given to the processing of the data, and the inferences drawn 

from those data are, in fact, quite misleading. That is really the 

essence of the point that I want to make. It certainly is not pro- 

found to ask anybody who is doing something to think about what it 

is they are doing. 

Second, at this particular point, I am reminded of a story which 

I think summarizes how I feel. 

The way the story goes, a chicken and pig were riding in the 

back of a farmer's truck. The truck was being driven through town. 

The farmer hit a pothole in the road and the chicken and the pig 

bounded out into the street. The truck went on, leaving them to 

their own devices. 

The chicken and the pig were strolling down the street at that 

point and they passed a restaurant with the menu in the window: the 

menu said, "Ham and eggs, $1.50." 

The chicken looked at the sign, swelled up a bit with pride and 

said to the pig, "Isn't it marvelous the contribution we make to 

mankind." The pig looked at the chicken and said, "For you a 

contribution, for me a personal sacrifice." 
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Dr. Flatte: I want to tell Chuck that you can't focus a plane 

wave, you are right. 

Mr. Spofford: Thank you. 

Mr. Pedersen: I have a few comments to make on the measurement 

of bottom loss that might help resolve some of these ambiguous 

situations. 

When we make bottom-loss measurements, we perhaps run typically 

out to the second or third convergent zone. We compare the loss per 

bounce that we got by way of one bottom bounce, two bottom bounces, 

and three bottom bounces. 

That is, reduce all the data to a common base and then, if 

these don't agree, you have a self-consistency check right on the 

spot. That is, you don't have to come back another time to measure 

to see if it was consistent to the extent that the bottom is uniform 

over this distance. 

You can make these comparisons and any errors in source level 

always show up as a fixed displacement. That is, sometimes instead 

of measuring the loss directly, you measure the difference between 

the second bounce and the third bounce, or something like this. There 

are certain fixed errors that can be removed in this fashion. 

The second point about this is the problem of measuring loss at 

the low angles as you approach the convergent zone. The relationship 

of where the bottom reflected angle is intersected by the zone doesn't 

stay constant from zone to zone. Generally speaking, if you have a 

case where you just have surface reflected rays, I believe that you 

can penetrate down to lower angles by going into the, say, third 

convergent zone than by going into the second zone. 
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Dr. Hanna: Following on that point, is it not true that Officer, 

for example, applied exactly that kind of analysis to some of his low 

frequency bottom reflectivity measurements? 

Dr. Hersey: Several reflectivity measurements were made that 

way. 

I think they have a distinct fault, though. I have a funny 

feeling in my stomach that they simply don't measure bottom loss, 

and this has been growing on me through the evening. We did it 

that way for several years. 

Dr. Dyer: John, it may be a little late to come back to an 

opening philosophical point that John made. 

You said the motivation for measurements is to better understand 

the ocean — I applaud that view. You said, also, the motivation for 

measurement is to better build models — I applaud that view. 

Who is going to speak for those poor guys who have to design 

systems? It's a rather different kind of motivation. And how do 

you design programs to meet those kinds of needs? 

Dr. Hersey: Actually, Ira, I am somewhat disappointed that in 

the main this first transient of our workshop hasn't addressed that 

problem more than it has. 

There is no question, however, that models based on a rational 

consideration of the influence of the environment on acoustic propa- 

gation and the shaping of the noise field have been applied to 

estimating the performance of systems that have not been built on 

analysis of performance of systems that have been built. The results 

of the latter are very weak in resolving power because of the nature 

of an operation exercise. 
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But those models have been able to account accurately — and by 

accurately I mean the mean discrepancy of the order of a dB — 

using the type of model we have been talking about so far in the 

workshop. 

However, I have to say that I have no evidence that we have done 

justice to the systems designer. I guess he is going to have to tell 

us precisely where he thinks we have fallen down, because we haven't 

been able to account for the performance of this system. 

Mr. Geddes: Regardless of how we process the data, we scale 

these records. We find an arrival on the records the amplitude of 

which is the largest thing on the record. It's there, record after 

record after record. 

So that, regardless of the explanation for it, I still have the 

situation of looking at an arrival which I can look at on the records, 

I can listen to it, and I can measure its amplitude. 

Dr. Hersey: There is only one problem with what you just said, 

Will. That is what is known as a disallowed area of concern. I 

disallowed it about 15 minutes ago. 

Dr. G. B. Morris (Marine Physical Laboratory, Scripps Institution 

of Oceanography): I think use of models in planning experiments and 

comparisons of the models with the experimental data have to be done. 

Some of the examples that were shown are sort of extremes in that 

you compare model data which have a very, very fine resolution with 

experimental data which have a very long averaging time to very poor 

resolution. It's the type of example that even experimentalists would 

not think of doing, comparing a propagation curve that has, say, 

values every few hundred yards, with another one that might have values 

every few miles, except in a very gross manner. 
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I think one thing that we might want to do is to apply some 

common filter functions to propagation loss models, so that the time 

averaging used in the experimental data would correspond, say, fairly 

closely to some sort of averaging in the model of propagation curves. 

Dr. Hanna: I don't disagree with what Gerry said, I just make 

the observation that for the two examples of CW data and CW calcula- 

tions that I showed, the resolution in range, if you like, was com- 

parable between the data and the calculation in both of those cases. 

The first case that I showed represented a problem, if you like, 

only because there were not enough experimental points with that 

resolution. If those points had, say, been taken with an equivalent 

range average of a mile or so, the model could have been run that 

way and an interesting comparison made. But, unfortunately, given 

the apparent underlying structure, you are faced with an under-sampled 

curve and there wasn't a lot which you could do with it. 

I don't mean to cast negatively on the experimentalists at that 

particular point, but just to show that as an example of the kind 

of difficulty that can arise without anticipating what the function 

looks like that you are trying to measure. 

Dr. Hersey: I should amend my comments, Ira, by saying, of course, 

the models that we are talking about become considerably modified by 

the addition to them of the punitive system characteristic. But we 

have done that. 

Dr. Dyer: We haven't talked much about that. 

Dr. Hersey: You are dead right, and I am disappointed. 
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One observation, for example, we do most of our propagation 

studies — not all, but most — with explosives. We have yet, I 

think I am right, John — we have yet to model a single explosive 

transmission event; isn't that correct? Don't we always make a CW 

model and then sort of imagine that the CW model is like the 

explosive? 

Mr. Spofford: We are doing that. 

Dr. Hersey: We have had this as a dream, I know. 

Mr. Spofford: Of course with the ray models we can put in the 

shot characteristics. So I would say at the moment we are a little 

hard-pressed to come up with them exactly; this is the problem. 

There is a linearity of something we do with shots. 
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