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PREFACE
Many workers in the biological sciences—physiologists, psycholo-

gists, sociologists
—are interested in cybernetics and would like to

apply its methods and techniques to their own speciality. Many
have, however, been prevented from taking up the subject by an

impression that its use must be preceded by a long study of elec-

tronics and advanced pure mathematics; for they have formed the

impression that cybernetics and these subjects are inseparable.

The author is convinced, however, that this impression is false.

The basic ideas of cybernetics can be treated without reference to

electronics, and they are fundamentally simple; so although advanced

techniques may be necessary for advanced applications, a great deal

can be done, especially in the biological sciences, by the use of quite

simple techniques, provided they are used with a clear and deep

understanding of the principles involved. It is the author's belief

that if the subject is founded in the common-place and well under-

stood, and is then built up carefully, step by step, there is no reason

why the worker with only elementary mathematical knowledge
should not achieve a complete understanding of its basic principles.

With such an understanding he will then be able to see exactly what

further techniques he will have to learn if he is to proceed further;

and, what is particularly useful, he will be able to see what techniques

he can safely ignore as being irrelevant to his purpose.

The book is intended to provide such an introduction. It starts

from common-place and well-understood concepts, and proceeds,

step by step, to show how these concepts can be made exact, and

how they can be developed until they lead into such subjects as

feedback, stability, regulation, ultrastability, information, coding,

noise, and other cybernetic topics. Throughout the book no

knowledge of mathematics is required beyond elementary algebra;

in particular, the arguments nowhere depend on the calculus (the

few references to it can be ignored without harm, for they are

intended only to show how the calculus joins on to the subjects

discussed, if it should be used). The illustrations and examples are

mostly taken from the biological, rather than the physical, sciences.

Its overlap with Designfor a Brain is small, so that the two books are

almost independent. They are, however, intimately related, and

are best treated as complementary; each will help to illuminate

the other.
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It is divided into three parts.

Part I deals with the principles of Mechanism, treating such

matters as its representation by a transformation, what is meant by
"stability", what is meant by "feedback", the various forms of

independence that can exist within a mechanism, and how mechan-
isms can be coupled. It introduces the principles that must be

followed when the system is so large and complex (e.g. brain or

society) that it can be treated only statistically. It introduces also

the case when the system is such that not all of it is accessible to

direct observation—the so-called Black Box theory.
Part II uses the methods developed in Part I to study what is

meant by "information", and how it is coded when it passes through
a mechanism. It applies these methods to various problems in

biology and tries to show something of the wealth of possible

applications. It leads into Shannon's theory; so after reading this

Part the reader will be able to proceed without difficulty to the study
of Shannon's own work.

Part III deals with mechanism and information as they are used in

biological systems for regulation and control, both in the inborn

systems studied in physiology and in the acquired systems studied in

psychology. It shows how hierarchies of such regulators and
controllers can be built, and how an amplification of regulation is

thereby made possible. It gives a new and altogether simpler
account of the principle of ultrastability. It lays the foundation

for a general theory of complex regulating systems, developing
further the ideas of Design for a Brain. Thus, on the one hand it

provides an explanation of the outstanding powers of regulation

possessed by the brain, and on the other hand it provides the

principles by which a designer may build machines of like power.

Though the book is intended to be an easy introduction, it is not

intended to be merely a chat about cybernetics
—it is written for those

who want to work themselves into it, for those who want to achieve

an actual working mastery of the subject. It therefore contains

abundant easy exercises, carefully graded, with hints and explanatory

answers, so that the reader, as he progresses, can test his grasp of

what he has read, and can exercise his new intellectual muscles. A
few exercises that need a special technique have been marked thus:

*Ex. Their omission will not affect the reader's progress.

For convenience of reference, the matter has been divided into

sections; all references are to the section, and as these numbers are

shown at the top of every page, finding a section is as simple and

direct as finding a page. The section is shown thus: S.9/14
—

indicating the fourteenth section in Chapter 9. Figures, Tables, and

vi
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Exercises have been numbered within their own sections; thus

Fig. 9/14/2 is the second figure in S.9/14. A simple reference, e.g.

Ex. 4, is used for reference within the same section. Whenever a

word is formally defined it is printed in bold-faced type.

I would like to express my indebtedness to Michael B, Sporn, who
checked all the Answers. I would also like to take this opportunity

to express my deep gratitude to the Governors of Barnwood House

and to Dr. G. W. T. H. Fleming for the generous support that made

these researches possible. Though the book covers many topics,

these are but means; the end has been throughout to make clear

what principles must be followed when one attempts to restore

normal function to a sick organism that is, as a human patient, of

fearful complexity. It is my faith that the new understanding may
lead to new and effective treatments, for the need is great.

Barnwood House W. Ross Ashby

Gloucester

vu
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Chapter

WHAT IS NEW

1/1. Cybernetics was defined by Wiener as "the science of control

and conununication, in the animal and the machine"—in a

word, as the art of steermanship, and it is to this aspect that the

book will be addressed. Co-ordination, regulation and control

will be its themes, for these are of the greatest biological and practical

interest.

We must, therefore, make a study of mechanism; but some
introduction is advisable, for cybernetics treats the subject from a

new, and therefore unusual, angle. Without introduction. Chapter
2 might well seem to be seriously at fault. The new point of view

should be clearly understood, for any unconscious vacillation be-

tween the old and the new is apt to lead to confusion.

1/2. The peculiarities of cybernetics. Many a book has borne the

title "Theory of Machines", but it usually contains information

about mechanical things, about levers and cogs. Cybernetics, too,

is a "theory of machines", but it treats, not things but ways of

behaving. It does not ask "what is this thing?" but ''what does it

do?" Thus it is very interested in such a statement as "this variable

is undergoing a simple harmonic oscillation", and is much less

concerned with whether the variable is the position of a point on a

wheel, or a potential in an electric circuit. It is thus essentially

functional and behaviouristic.

Cybernetics started by being closely associated in many ways with

physics, but it depends in no essential way on the laws of physics or

on the properties of matter. Cybernetics deals with all forms of

behaviour in so far as they are regular, or determinate, or repro-
ducible. The materiahty is irrelevant, and so is the holding or not

of the ordinary laws of physics. (The example given in S.4/15 will

make this statement clear.) The truths of cybernetics are not

conditional on their being derivedfrom some other branch of science.

Cybernetics has its own foundations. It is partly the aim of this

book to display them clearly.

1 1



1/3 AN INTRODUCTION TO CYBERNETICS

1/3. Cybernetics stands to the real machine—electronic, mechani-

cal, neural, or economic—much as geometry stands to a real object

in our terrestrial space. There was a time when "geometry"
meant such relationships as could be demonstrated on three-

dimensional objects or in two-dimensional diagrams. The forms

provided by the earth—animal, vegetable, and mineral—were larger

in number and richer in properties than could be provided by ele-

mentary geometry. In those days a form which was suggested by

geometry but which could not be demonstrated in ordinary space
was suspect or inacceptable. Ordinary space dominated geometry.

Today the position is quite different. Geometry exists in its own

right, and by its own strength. It can now treat accurately and

coherently a range of forms and spaces that far exceeds anything
that terrestrial space can provide. Today it is geometry that con-

tains the terrestrial forms, and not vice versa, for the terrestrial

forms are merely special cases in an all-embracing geometry.
The gain achieved by geometry's development hardly needs to be

pointed out. Geometry now acts as a framework on which all

terrestrial forms can find their natural place, with the relations

between the various forms readily appreciable. With this increased

understanding goes a correspondingly increased power of control.

Cybernetics is similar in its relation to the actual machine. It

takes as its subject-matter the domain of "all possible machines",

and is only secondarily interested if informed that some of them have

not yet been made, either by Man or by Nature. What cybernetics

offers is the framework on which all individual machines may be

ordered, related and understood.

1/4. Cybernetics, then, is indifferent to the criticism that some of

the machines it considers are not represented among the machines

found among us. In this it follows the path already followed with

obvious success by mathematical physics. This science has long

given prominence to the study of systems that are well known to be

non-existent—springs without mass, particles that have mass but no

volume, gases that behave perfectly, and so on. To say that these

entities do not exist is true; but their non-existence does not mean
that mathematical physics is mere fantasy; nor does it make the

physicist throw away his treatise on the Theory of the Massless

Spring, for this theory is invaluable to him in his practical work.

The fact is that the massless spring, though it has no physical

representation, has certain properties that make it of the highest

importance to him if he is to understand a system even as simple

as a watch.
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The biologist knows and uses the same principle when he gives
to Amphioxus, or to some extinct form, a detailed study quite out

of proportion lo its present-day ecological or economic importance.
In the same way, cybernetics marks out certain types of mechan-

ism (S.3/3) as being of particular importance in the general theory;
and ii does this with no regard for whether terrestrial machines

happen to make this form common. Only after the study has

surveyed adequately the possible relations between machine and
machine does it turn to consider the forms actually found in some

particular branch of science.

1/5. In keeping with this method, which works primarily with the

comprehensive and general, cybernetics typically treats any given,

particular, machine by asking not "whai individual act will it

produce here and now?" but "what are all the possible behaviours

that it can produce ?"

It is in tliis way that information theory comes to play an essential

part in the subject ;
for information theory is characterised essentially

by its dealing always with a set of possibilities; both its primary
data and its final statements are almost always about the set as

such, and not about some individual element in the set.

This new point of view leads to the consideration of new types of

problem. The older point of view saw, say, an ovum grow into a

rabbit and asked "why does it do this ?—why does it not just stay
an ovum?" The attempts to answer this question led to the study
of energetics and to the discovery of many reasons why the ovum
should change—it can oxidise its fat, and fat provides free energy;
it has phosphorylating enzymes, and can pass its metabolites around
a Krebs' cycle; and so on. In these studies the concept of energy
was fundamental.

Quite different, though equally valid, is the point of view of

cybernetics. It takes for granted that the ovum has abundant free

energy, and that it is so delicately poised metabolically as to be, in a

sense, explosive. Growth of some form there will be; cybernetics
asks "why should the changes be to the rabbit-form, and not to a

dog-form, a fish-form, or even to a teratoma-form ?" Cybernetics

envisages a set of possibilities much wider than the actual, and then

asks why the particular case should conform to its usual particular
restriction. In this discussion, questions of energy play almost no

part
—the energy is simply taken for granted. Even whether the

system is closed to energy or open is often irrelevant; what is

important is the extent to which the system is subject to determining
and controlling factors. So no information or signal or determining

3



1/6 AN INTRODUCTION TO CYBERNETICS

factor may pass from part to part without its being recorded as a

significant event. Cybernetics might, in fact, be defined as the

study of systems that are open to energy hut closed to information and

control—systems that are "information-tight" (S.9/19.).

1/6. The uses of cybernetics. After this bird's-eye view of cyber-

netics we can turn to consider some of the ways in which it promises
to be of assistance. I shall confine my attention to the applications

that promise most in the biological sciences. The review can only

be brief and very general. Many applications have aheady been

made and are too well known to need description here; more will

doubtless be developed in the future. There are, however, two

peculiar scientific virtues of cybernetics that are worth explicit

mention.

One is that it offers a single vocabulary and a single set of concepts

suitable for representing the most diverse types of system. Until

recently, any attempt to relate the many facts known about, say,

servo-mechanisms to what was known about the cerebellum was

made unnecessarily difficult by the fact that the properties of servo-

mechanisms were described in words redolent of the automatic

pilot, or the radio set, or the hydraulic brake, while those of the

cerebellum were described in words redolent of the dissecting room
and the bedside—aspects that are irrelevant to the similarities

between a servo-mechanism and a cerebellar reflex. Cybernetics

offers one set of concepts that, by having exact correspondences
with each branch of science, can thereby bring them into exact

relation with one other.

It has been found repeatedly in science that the discovery that

two branches are related leads to each branch helping in the develop-

ment of the other. (Compare S.6/8.) The result is often a markedly
accelerated growth of both. The infinitesimal calculus and astro-

nomy, the virus and the protein molecule, the chromosomes and

heredity are examples that come to mind. Neither, of course, can

give proofs about the laws of the other, but each can give suggestions

that may be of the greatest assistance and fruitfulness. The subject

is returned to in S.6/8. Here I need only mention the fact that

cybernetics is likely to reveal a great number of interesting and

suggestive parallelisms between machine and brain and society.

And it can provide the common language by which discoveries in

one branch can readily be made use of in the others.

1/7. The complex system. The second peculiar virtue of cyber-

netics is that it offers a method for the scientific treatment of the
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system in which complexity is outstanding and too important to be

ignored. Such systems are, as we well know, only too common in

the biological world !

In the simpler systems, the methods of cybernetics sometimes

show no obvious advantage over those that have long been known.

It is chiefly when the systems become complex that the new methods

reveal their power.
Science stands today on something of a divide. For two centuries

it has been exploring systems that are either intrinsically simple

or that are capable of being analysed into simple components. The

fact that such a dogma as "vary the factors one at a time" could be

accepted for a century, shows that scientists were largely concerned

in investigating such systems as allowed this method; for this method

is often fundamentally impossible in the complex systems. Not

until Sir Ronald Fisher's work in the '20s, with experiments con-

ducted on agricukural soils, did it become clearly recognised that

there are complex systems that just do not allow the varying of only

one factor at a time—they are so dynamic and interconnected that

the alteration of one factor immediately acts as cause to evoke

alterations in others, perhaps in a great many others. Until recently,

science tended to evade the study of such systems, focusing its

attention on those that were simple and, especially, reducible (8.4/ 14).

In the study of some systems, however, the complexity could not

be wholly evaded. The cerebral cortex of the free-living organism,

the ant-hill as a functioning society, and the human economic system

were outstanding both in their practical importance and in their

intractability by the older methods. So today we see psychoses

untreated, societies dechning, and economic systems fahering, the

scientist being able to do little more than to appreciate the full

complexity of the subject he is studying. But science today is also

taking the first steps towards studying "complexity" as a subject

in its own right.

Prominent among the methods for dealing with complexity is

cybernetics. It rejects the vaguely intuitive ideas that we pick up
from handling such simple machines as the alarm clock and the

bicycle, and sets to work to build up a rigorous discipline of the

subject. For a time (as the first few chapters of this book will show)
it seems rather to deal whh truisms and platitudes, but this is merely

because the foundations are built to be broad and strong. They
are built so that cybernetics can be developed vigorously, without

the primary vagueness that has infected most past attempts to

grapple with, in particular, the complexities of the brain in action.

Cybernetics offers the hope of providing effective methods for the

5
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Study, and control, of systems that are intrinsically extremely

complex. It will do this by first marking out what is achievable (for

probably many of the investigations of the past attempted the

impossible), and then providing generalised strategies, of demon-
strable value, that can be used uniformly in a variety of special cases.

In this way it offers the hope of providing the essential methods by
which to attack the ills—psychological, social, economic—which at

present are defeating us by their intrinsic complexity. Part III of

this book does not pretend to offer such methods perfected, but it

attempts to offer a foundation on which such methods can be

constructed, and a start in the right direction.



PART ONE
MECHANISM

The properties commonly ascribed to any object

are, in last analysis, names for its behavior.

(Herrick)





Chapter

CHANGE

2/1. The most fundamental concept in cybernetics is that of

"difference", either that two things are recognisably different or that

one thing has changed with time. Its range of application need not

be described now, for the subsequent chapters will illustrate the

range abundantly. All the changes that may occur with time are

naturally included, for when plants grow and planets age and

machines move some change from one state to another is implicit.

So our first task will be to develop this concept of "change", not

only making it more precise but making it richer, converting it to a

form that experience has shown to be necessary if significant develop-

ments are to be made.

Often a change occurs continuously, that is, by infinitesimal steps,

as when the earth moves through space, or a sunbather's skin

darkens under exposure. The consideration of steps that are

infinitesimal, however, raises a number of purely mathematical

difficulties, so we shall avoid their consideration entirely. Instead,

we shall assume in all cases that the changes occur by finite steps in

time and that any difference is also finite. We shall assume that the

change occurs by a measurable jump, as the money in a bank account

changes by at least a penny. Though this supposition may seem

artificial in a world in which continuity is common, it has great

advantages in an Introduction and is not as artificial as it seems.

When the differences are finite, all the important questions, as we
shall see later, can be decided by simple counting, so that it is easy to

be quite sure whether we are right or not. Were we to consider

continuous changes we would often have to compare infinitesimal

against infinitesimal, or to consider what we would have after adding

together an infinite number of infinitesimals—questions by nc

means easy to answer.

As a simple trick, the discrete can often be carried over into the

continuous, in a way suitable for practical purposes, by making a

graph of the discrete, with the values shown as separate points. It is

9
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then easy to see the form that the changes will take if the points
were to become infinitely numerous and close together.

In fact, however, by keeping the discussion to the case of the finite

difference we lose nothing. For having established with certainty
what happens when the differences have a particular size we can
consider the case when they are rather smaller. When this case is

known with certainty we can consider what happens when they are

smaller still. We can progress in this way, each step being well

established, until we perceive the trend
; then we can say what is the

limit as the difference tends to zero. This, in fact, is the method
that the mathematician always does use if he wants to be really sure

of what happens when the changes are continuous.

Thus, consideration of the case in which all differences are finite

loses nothing; it gives a clear and simple foundation; and it can

always be converted to the continuous form if that is desired.

The subject is taken up again in S.3/3.

2/2. Next, a few words that will have to be used repeatedly.
Consider the simple example in which, under the influence of sun-

shine, pale skin changes to dark skin. Something, the pale skin,

is acted on by a factor, the sunshine, and is changed to dark skin.

That which is acted on, the pale skin, will be called the operand,
the factor will be called the operator, and what the operand is

changed to will be called the transform. The change that occurs,

which we can represent unambiguously by

pale skin -^ dark skin

is the transition.

The transition is specified by the two states and the indication of

which changed to which.

TRANSFORMATION

2/3. The single transition is, however, too simple. Experience has

shown that if the concept of "change" is to be useful it must be

enlarged to the case in which the operator can act on more than one

operand, inducing a characteristic transition in each. Thus the

operator "exposure to sunshine" will induce a number of transitions,

among which are:

cold soil -> warm soil

unexposed photographic plate -^ exposed plate
coloured pigment -^ bleached pigment

Such a set of transitions, on a set of operands, is a transformation.

10
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Another example of a transformation is given by the simple coding

that turns each letter of a message to the one that follows it in the

alphabet, Z being turned to ^; so CAT would become DBU. The

transformation is defined by the table:

Y->Z
Z^A

Notice that the transformation is defined, not by any reference to

what it "really" is, nor by reference to any physical cause of the

change, but by the giving of a set of operands and a statement of

what each is changed to. The transformation is concerned with

what happens, not with why it happens. Similarly, though we may
sometimes know something of the operator as a thing in itself (as

we know something of sunlight), this knowledge is often not essen-

tial; what we must know is how it acts on the operands; that is, we

must know the transformation that it effects.

For convenience of printing, such a transformation can also be

expressed thus:

,

A B ... Y Z
^ B C ... Z A

We shall use this form as standard.

2/4. Closure. When an operator acts on a set of operands it may
happen that the set of transforms obtained contains no element that

is not already present in the set of operands, i.e. the transformation

creates no new element. Thus, in the transformation

I

A B ... Y Z
^ B C ... Z A

every element in the lower line occurs also in the upper. When this

occurs, the set of operands is closed under the transformation. The

property of "closure" is a relation between a transformation and a

particular set of operands; if either is ahered the closure may alter.

It will be noticed that the test for closure is made, not by reference

to whatever may be the cause of the transformation but by reference

to the details of the transformation itself. It can therefore be applied

even when we know nothing of the cause responsible for the changes.

11



2/5 AN INTRODUCTION TO CYBERNETICS

Ex. 1 : If the operands are the positive integers 1, 2, 3, and 4, and the operator
is "add three to it", the transformation is:

I

1 2 3 4
^4567

Is it closed?

Ex. 2: The operands are those EngUsh letters that have Greek equivalents (i.e.

excluding J, q, etc.), and the operator is "turn each EngUsh letter to its

Greek equivalent". Is the transformation closed ?

^A . 3 : Are the following transformations closed or not :

^: j
" * ^ ^ B:\^^P'I^ a a a a g J q P

^'•^
g f q

^'- ^
g f

Ex. 4: Write down, in the form of Ex. 3, a transformation that has only one

operand and is closed.

Ex. 5 : Mr. C, of the Eccentrics' Chess Club, has a system of play that rigidly

prescribes, for every possible position, both for White and Black (except
for those positions in which the player is already mated) what is the player's
best next move. The theory thus defines a transformation from position
to position. On being assured that the transformation was a closed one,
and that C always plays by this system, Mr. D. at once offered to play C
for a large stake. Was D wise?

2/5. A transformation may have an infinite number of discrete

operands; such would be the transformation

I

1 2 3 4 ...
^ 4 5 6 7 ...

where the dots simply mean that the list goes on similarly without

end. Infinite sets can lead to difficulties, but in this book we shall

consider only the simple and clear. Whether such a transformation

is closed or not is determined by whether one cannot, or can

(respectively) find some particular, namable, transform that does

not occur among the operands. In the example given above, each

particular transform, 142857 for instance, will obviously be found

among the operands. So that particular infinite transformation is

closed.

Ex. I : In ^ the operands are the even numbers from 2 onwards, and the trans-

forms are their squares :

A-i^ 4 6...
• ^ 4 16 36...

Is A closed?

Ex. 2: In transformation B the operands are all the positive integers 1, 2, 3,

. . . and each one's transform is its right-hand digit, so that, for instance,

127 ^ 7, and 6493 -> 3. Is B closed?

12
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2/6. Notation. Many transformations become inconveniently

lengthy if written out in extenso. Already, in S.2/3, we have been

forced to use dots ... to represent operands ihat were not given

individually. For merely practical reasons we shall have to develop

a more compact method for writing down our transformations,

though it is to be understood that, whatever abbreviation is used,

the transformation is basically specified as in S.2/3. Several

abbreviations will now be described. It is to be understood that

they are a mere shorthand, and that they imply nothing more than

has already been stated expHcitly in the last few sections.

Often the specification of a transformation is made simple by
some simple relation that links all the operands to their respective

transforms. Thus the transformation of Ex. 2/4/1 can be replaced by
the single line

Operand
—> operand plus three.

The whole transformation can thus be specified by the general rule,

written more compactly,

Op.-^Op. + 3,

together with a statement that the operands are the numbers 1, 2,

3 and 4. And commonly the representation can be made even

briefer, the two letters being reduced to one:

«^rt + 3 (« = 1,2, 3, 4)

The word "operand" above, or the letter n (which means exactly

the same thing), may seem somewhat ambiguous. If we are thinking

of how, say, 2 is transformed, then "«" means the number 2 and

nothing else, and the expression tells us that it will change to 5. The
same expression, however, can also be used with n not given any

particular value. It then represents the whole transformation. It

will be found that this ambiguity leads to no confusion in practice,

for the context will always indicate which meaning is intended.

Ex. 1 : Condense into one line the transformation

I

1 2 3
^

II 12 13

E.X. 2 : Condense similarly the transformations :

rl-> 7 fl-^l f'-^l
a:<^2-^14 b:<^2->4 c:<^2-^l/2

13-^21 l3^9 l3^1/3

i->io fi-^i r^-^1
2-^9 e:

^
2->l f:

{
2 -> 2

.3-^ 8 l3->l l3->3

13
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We shall often require a symbol to represent the transform of such
a symbol as n. It can be obtained conveniently by adding a

prime to the operand, so that, whatever n may be, n -> n . Thus, .

if the operands of Ex. 1 are «, then the transformation can be written

as«' = « + 10 (« = 1,2,3).

Ex. 3 : Write out in full the transformation in which the operands are the three

numbers 5, 6 and 7, and in which //' = « — 3. Is it closed?

Ex. 4: Write out in full the transformations in which:

Ci)n' = 5n {n = 5,6,7);

in)n' = 2«2 (« = -
1,0, 1).

Ex. 5: If the operands are all the numbers (fractional included) between and 1,

and «' = ^ti, is the transformation closed? (Hint: try some representative
values for /?: |, |, i, 001, 0-99; try till you become sure of the answer.)

Ex. 6: (Continued) With the same operands, is the transformation closed if

n' = l/(« + D?

2/7. The transformations mentioned so far have all been character-

ised by being "single-valued". A transformation is single-valued
if it converts each operand to only one transform. (Other types
are also possible and important, as will be seen in S.9/2 and 12/8.)

Thus the transformation

. A B C D
^B A A D

is single-valued; but the transformation

, A B CD
^ Box D A Box C D

is not single-valued.

J

2/8. Of the single-valued transformations, a type of some import-
ance in special cases is that which is one-one. In this case the trans-

forms are all different from one another. Thus not only does each

operand give a unique transform (from the single-valuedness) but

each transform indicates (inversely) a unique operand. Such a

transformation is

.ABCDEFGH
^ F H K L G J E M

This example is one-one but not closed.

On the other hand, the transformation of Ex. 2/6/2(e) is not one-one,
for the transform "1" does not indicate a unique operand. A

14
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transformation that is single-valued but not one-one will be referred

to as many-one.

Ex. 1: The operands are the ten digits 0, 1, ... 9; the transform is the third

decimal digit of logio («+4). (For instance, if the operand is 3, we find

in succession, 7, logio?, 0-8451, and 5; so 3-^5.) Is the transformation

one-one or many-one? (Hint: find the transforms of 0, 1, and so on in

succession ; use four-figure tables.)

2/9. The identity. An important transformation, apt to be

dismissed by the beginner as a nullity, is the identical transformation,

in which no change occurs, in which each transform is the same as

its operand. If the operands are all different it is necessarily one-

one. An example is/ in Ex. 2/6/2. In condensed notation n'=n.

Ex. 1 : At the opening of a shop's cash register, the transformation to be made

on its contained money is, in some machines, shown by a flag. What flag

shows at the identical transformation ?

Ex. 2 : In cricket, the runs made during an over transform the side's score from

one value to another. Each distinct number of runs defines a distinct

transformation : thus if eight runs are scored in the over, the transformation

is specified by ii' = n + S. What is the cricketer's name for the identical

transformation ?

2/10. Representation by matrix. All these transformations can

be represented in a single schema, which shows clearly their mutual

relations. (The method will become particularly useful in Chapter
9 and subsequently.)

Write the operands in a horizontal row, and the possible transforms

in a column below and to the left, so that they form two sides of a

rectangle. Given a particular transformation, put a "-)-" at the

intersection of a row and column if the operand at the head of the

column is transformed to the element at the left-hand side; otherwise

insert a zero. Thus the transformation

would be shown as

ABC
A C C

i



2/11 AN INTRODUCTION TO CYBERNETICS

If the transformation is large, dots can be used in the matrix if

their meaning is unambiguous. Thus the matrix of the transforma-
tion in which n' = n -\- 2, and in which the operands are the positive
integers from 1 onwards, could be shown as

(The symbols in the main diagonal, from the top
have been given in bold type to make clear the pos

left-hand corner,
tional relations.)

Ex. 1 : How are the +'s distributed in the matrix of an identical transformation?

Ex. 2: Of the three transformations, which is (a) one-one, (b) single-valued but
not one-one, (c) not single-valued ?

(i) (ii) (iii)

i
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The generation and properties of such a series must now be

considered.

Suppose the second transformation of S.2/3 (call it Alpha) has

been used to turn an English message into code. Suppose the coded

message to be again so encoded by Alpha
—what effect will this have ?

The effect can be traced letter by letter. Thus at the first coding A
became B, which, at the second coding, becomes C; so over the

double procedure A has become C, or in the usual notation A-^ C.

Similarly B-^ D; and so on to Y-^A and Z^B. Thus the

double application o^ Alpha causes changes that are exactly the same
as those produced by a single application of the transformation

,A B ... Y Z
^ C D ... A B

Thus, from each closed transformation we can obtain another

closed transformation whose effect, if applied once, is identical with

the first one's effect if applied twice. The second is said to be the

"square" of the first, and to be one of its "powers" (S.2/14). If the

first one was represented by T, the second will be represented by T^;

which is to be regarded for the moment as simply a clear and

convenient label for the new transformation.

Ex.\:\fA:\'^
^

^whatis/42?^
c c a

Ex. 2: Write down some identity transformation; what is its square?

Ex. 3 : (See Ex. 2/4/3.) What is A^l

Ex. 4: What transformation is obtained when the transformation n' = n + \

is appUed twice to the positive integers? Write the answer in abbreviated

form, as «' = ... . (Hint: try writing the transformation out in full as

in S.2/4.)

Ex. 5: What transformation is obtained when the transformation «' = In

is applied twice to the positive integers ?

Ex. 6 : If A^ is the transformation

;
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2/12. The trial in the previous exercise will make clear the import-
ance of closure. An unclosed transformation such as W cannot be

apphed twice; for although it changes h to k, its effect on k is

undefined, so it can go no further. The unclosed transformation is

thus like a machine that takes one step and then jams.

2/13. Elimination. When a transformation is given in abbreviated

form, such as «' = // + 1, the result of its double application must
be found, if only the methods described so far are used, by re-writing
the transformation to show every operand, performing the double

application, and then re-abbreviating. There is, however, a quicker
method. To demonstrate and explain it, let us write out in full

the transformation T: n' — n + 1, on the positive integers, showing
the results of its double application and, underneath, the general

symbol for what lies above :

r: j
1 2 3 ...... .

2 3 4 ... n' ...
^'- h 4 5 ... n" . . .

n" is used as a natural symbol for the transform of n', just as n' is

the transform of n.

Now we are given that n' = n + 1. As we apply the same
transformation again it follows that n" must be 1 more than /;'.

Thus«" = n + 1.

To specify the single transformation T^ we want an equation that

will show directly what the transform n" is in terms of the operand
n. Finding the equation is simply a matter of algebraic elimination:

from the two equations n" = n' + 1 and n' = n -\- \, eliminate n'.

Substituting for n' in the first equation we get (with brackets to show
the derivation) n" = (n + 1) + 1, i.e. n" = n -\- 2.

This equation gives correctly the relation between operand {n)

and transform {n") when T- is applied, and in that way T^ is specified.
For uniformity of notation the equation should now be re-written

as m' = m + 2. This is the transformation, in standard notation,
whose single application (hence the single prime on m) causes the

same change as the double application of T. (The change from
n to w is a mere change of name, made to avoid confusion.)
The rule is quite general. Thus, if the transformation is

n' = 2n — 3, then a second application will give second transforms

n" that are related to the first by n" = 2n' — 3. Substitute for n\
using brackets freely:

//" = 2(2/2
-

3)
- 3

= 4« - 9.

18
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So the double application causes the same change as a single

application of the transformation m' = 4ni — 9.

2/14. Higher powers. Higher powers are found simply by adding

symbols for higher transforms, n'", etc., and eliminating the symbols
for the intermediate transforms. Thus, find the transformation

caused by three applications of «' = 2// — 3. Set up the equations

relating step to step:

n' =2/2 - 3

n" = 2n' — 3

;,'" = 2n" - 3

Take the last equation and substitute for n", getting

n'" = 2(2//
-

3)
- 3

= 4//' - 9.

Now substitute for «' :

n'" = 4(2/7
-

3)
- 9

= 8/; - 21.

So the triple application causes the same changes as would be

caused by a single application of in' = Sm — 21. If the original

was T, this is T^.

Ex. 1 : Eliminate n' from n" = 3n' and //' = 3//. Form the transformation

corresponding to the result and verify that two applications of n' = 3n

gives the same result.

Ex. 2: Eliminate a' from a" = a' + S and a' = a + S.

Ex. 3: Eliminate a" and a' from a'" = la", a" = la', and a' = la.

Ex. 4: Eliminate k' from k" ^ - W + 2, k' = - 3k + 2. Verify as in

Ex. 1.

Ex. 5: Eliminate tti' from m" = log /;;', m' = log ?n,

Ex. 6 : Eliminate p' from p"= (p')'^, p'=p^
Ex. 7: Find the transformations that are equivalent to double applications, on

all the positive numbers greater than 1, of:

(i)/;' = 2« + 3;

(ii) n' = II- + n;

(Hi) n' = I + 2 log n.

Ex. 8: Find the transformation that is equivalent to a triple application of

//' = — 3a/ — 1 to the positive and negative integers and zero. Verify
as in Ex. 1 .

Ex. 9: Find the transformations equivalent to the second, third, and further

applications of the transformation //' = 1/(1 + n). (Note: the series

discovered by Fibonacci in the 12th century, 1, 1, 2, 3, 5, 8, 13, ... is

extended by taking as next term the sum of the previous two; thus, 3 + 5

= 8, 5 + 8 = 13, 8 + 13 = . . ., etc.)

19
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Ex. 10: What is the result of applying the transformation n' = 1/n twice,

when the operands are all the positive rational numbers (i.e. all the frac-

tions) ?

Ex. 1 1 : Here is a geometrical transformation. Draw a straight line on paper
and mark its ends A and B. This line, in its length and position, is the

operand. Obtain its transform, with ends A' and B', by the transformation-

rule R: A' is midway between A and B; B' is found by rotating the line

A'B about A' through a right angle anticlockwise. Draw such a line,

apply R repeatedly, and satisfy yourself about how the system behaves.

*Ex. 12: (Continued). If familiar with analytical geometry, let A start at

(0,0) and B at (0,1), and find the limiting position. (Hint: Build up A's

final AT-co-ordinate as a series, and sum; similarly for A's j-co-ordinate.)

2/15. Notation. The notation that indicates the transform by the

addition of a prime (') is convenient if only one transformation is

under consideration; but if several transformations might act on

«, the symbol n' does not show which one has acted. For this

reason, another symbol is sometimes used: if « is the operand, and

transformation T is applied, the transform is represented by T{n).

The four pieces of type, two letters and two parentheses, represent

one quantity, a fact that is apt to be confusing until one is used to it.

T{n), really n' in disguise, can be transformed again, and would be

written T{T(n)) if the notation were consistent; actually the outer

brackets are usually ehminated and the T's combined, so that n"

is written as T-(n). The exercises are intended to make this notation

familiar, for the change is only one of notation.

1 2 3
Ex. 1 : If/: i T 1 2

whatis/(3)?/(l)?/2(3)?

Ex. 2: Write out in full the transformation g on the operands, 6, 7, 8, if ^(6) = 8,

^(7) = 7, ^(8) = 8.

Ex. 3 : Write out in full the transformation h on the operands a, p, y, S, if h(a)
= y, fi2(a)

=
j3, /j3(a)

=
§, /i4(a)

= „.

Ex. 4: If A{n) is n + 2, what is /i(I5)?

Ex. 5: If/(/0 is -//2 + 4, what is/(2)?

Ex. 6: If Tin) is 3n, what is T'^Ui)'] (Hint: if uncertain, write out T in extenso.)

Ex. 7: If / is an identity transformation, and / one of its operands, what is /(O?

2/16. Product. We have just seen that after a transformation T
has been applied to an operand n, the transform T(n) can be treated

as an operand by T again, getting T(T(n)), which is written T^in).

In exactly the same way Tin) may perhaps become operand to a

20
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transformation U, which will give a transform U{T{n)). Thus,

if they are

_ , a b c d ,
, a b c d

T: i and U: i
b d a b d c d b

then T{b) is d, and V{T{b)) is U{d), which is b. Tand U appHed in

that order, thus define a new transformation, V, which is easily

found to be

^
c b d c

V is said to be the product or composition of T and U. It gives

simply the result of T and U being applied in succession, in that

order, one step each.

If U is apphed first, then U{b) is, in the example above, c, and

T{c) is a; so T{U(b)) is a, not the same as U(T(b)). The product,

when U and T are applied in the other order is

'^

b a b d

For convenience, V can be written as UT, and IV as TU. It must

always be remembered that a change of the order in the product may
change the transformation.

(It will be noticed that Kmay be impossible, i.e. not exist, if some

of r's transforms are not operands for U.)

Ex. 1 : Write out in full the transformation U^T.

Ex. 2: Write out in full: UTU.

*Ex. 3 : Represent T and U by matrices and then multiply these two matrices

in the usual way (rows into columns), letting the product and sum of +'s

be + ; call the resulting matrix Mi. Represent K by a matrix; call it M2.

Compare Mi and M2.

2/17. Kinematic graph. So far we have studied each transforma-

tion chiefly by observing its effect, in a single action, on all its

possible operands (e.g. S.2/3). Another method (applicable only

when the transformation is closed) is to study its effect on a single

operand over many, repeated, applications. The method corres-

ponds, in the study of a dynamic system, to setting it at some initial

state and then allowing it to go on, without further interference,

through such a series of changes as its inner nature determines.

Thus, in an automatic telephone system we might observe all the

changes that follow the dialHng of a number, or in an ants' colony
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2/17 AN INTRODUCTION TO CYBERNETICS

we might observe all the changes that follow the placing of a piece
of meat near-by.

Suppose, for definiteness, we have the transformation

v.l^
•" ^ " ^

^ D A E D D

If U is applied to C, then to U{C), then to U\C), then to U\C)
and so on,- there results the series: C, E, D, D, D, . . . and so on,

with D continuing for ever. If U is applied similarly to A there

results the series A, D, D, D, . . . with D continuing again.

These results can be shown graphically, thereby displaying to the

glance results that otherwise can be apprehended only after detailed

study. To form the kinematic graph of a transformation, the set of

operands is written down, each in any convenient place, and the

elements joined by arrows with the rule that an arrow goes from A
to B if and only if A is transformed in one step to B. Thus U gives

the kinematic graph

C^E^D^A<-B
(Whether D has a re-entrant arrow attached to itself is optional
if no misunderstanding is likely to occur.)

If the graph consisted of buttons (the operands) tied together
with string (the transitions) it could, as a network, be pulled into

different shapes :

C-^E B-^A
\
D or

/
B-^A D^E<-C

and so on. These different shapes are not regarded as different

graphs, provided the internal connexions are identical.

The elements that occur when C is transformed cumulatively by
U (the series C, E, D, D, . . .) and the states encountered by a point
in the kinematic graph that starts at C and moves over only one

arrow at a step, always moving in the direction of the arrow, are

obviously always in correspondence. Since we can often follow the

movement of a point along a line very much more easily than we
can compute U(C), U-{C), etc., especially if the transformation is

complicated, the graph is often a most convenient representation
of the transformation in pictorial form. The moving point will

be called the representative point.
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When the transformation becomes more complex an important
feature begins to show. Thus suppose the transformation is

, ABCDEFGHIJKLMNPQ^ D H D I QGQHAEENBA N E

Its kinematic graph is:

P C M~^B^H
\ /
N->A -^D K

L I Ez^Q^G^F
/

J

By starting at any state and following the chain of arrows we can

verify that, under repeated transformation, the representative point

always moves either to some state at which it stops, or to some cycle

around which it circulates indefinitely. Such a graph is like a map
of a country's water drainage, showing, if a drop of water or a

representative point starts at any place, to what region it will come

eventually. These separate regions are the graph's basins. These

matters obviously have some relation to what is meant by "stability",

to which we shall come in Chapter 5.

Ex. 1 : Draw the kinematic graphs of the transformations of A and B in Ex. 2/4/3.

Ex. 2: How can the graph of an identical transformation be recognised at a

glance ?

Ex. 3 : Draw the graphs of some simple closed one-one transformations. What
is their characteristic feature ?

Ex. 4: Draw the graph of the transformation Fin which n' is the third decimal

digit of logio(A? + 20) and the operands are the ten digits 0, 1, . . ., 9.

Ex. 5: (Continued). From the graph of Kread off at once what is F(8), F2(4),

F4(6), F84(5).

Ex. 6: If the transformation is one-one, can two arrows come to a single point?

Ex. 1 : If the transformation is many-one, can two arrows come to a single point ?

Ex. 8: Form some closed single-valued transformations like T, draw their

kinematic graphs, and notice their characteristic features.

Ex. 9: If the transformation is single-valued, can one basin contain two cycles?
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Chapter

THE DETERMINATE MACHINE

3/1. Having now established a clear set of ideas about transforma-

tions, we can turn to their first application : the establishment of an

exact parallelism between the properties of transformations, as

developed here, and the properties of machines and dynamic systems,
as found in the real world.

About the best definition of "machine" there could of course be

much dispute. A determinate machine is defined as that which

behaves in the same way as does a closed single-valued trans-

formation. The justification is simply that the definition works—
that it gives us what we want, and nowhere runs grossly counter

to what we feel intuitively to be reasonable. The real justification

does not consist of what is said in this section, but of what follows

in the remainder of the book, and, perhaps, in further developments.
It should be noticed that the definition refers to a way of behaving,

not to a material thing. We are concerned in this book with those

aspects of systems that are determinate—that follow regular and

reproducible courses. It is the determinateness that we shall study,

not the material substance. (The matter has been referred to before

in Chapter 1.)

Throughout Part I, we shall consider determinate machines, and

the transformations to be related to them will all be single-valued.

Not until S.9/2 shall we consider the more general type that is

determinate only in a statistical sense.

As a second restriction, this Chapter will deal only with the

machine in isolation—the machine to which nothing actively is

being done.

As a simple and typical example of a determinate machine,
consider a heavy iron frame that contains a number of heavy beads

joined to each other and to the frame by springs. If the circum-

stances are constant, and the beads are repeatedly forced to some
defined position and then released, the beads' movements will on

each occasion be the same, i.e. follow the same path. The whole
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system, started at a given "state", will thus repeatedly pass through

the same succession of states.

By a state of a system is meant any well-defined condition or

property that can be recognised if it occurs again. Every system

will naturally have many possible states.

When the beads are released, their positions (P) undergo a series

of changes, Pq, Pi, P2 -
',
this point of view at once relates the

system to a transformation:

\
Po Pi P2 P3

Pi Pi P3 P4

Clearly, the operands of the transformation correspond to the

states of the system.

The series of positions taken by the system in time clearly corres-

ponds to the series of elements generated by the successive powers

of the transformation (S.2/14). Such a sequence of states defines a

trajectory or line of behaviour.

Next, the fact that a determinate machine, from one state, cannot

proceed to both of two different states corresponds, in the trans-

formation, to the restriction that each transform is single-valued.

Let us now, merely to get started, take some further examples,

taking the complications as they come.

A bacteriological culture that has just been inoculated will increase

in "number of organisms present" from hour to hour. If at first

the numbers double in each hour, the number in the culture will

change in the same way hour by hour as n is changed in successive

powers of the transformation n' = 2«.

If the organism is somewhat capricious in its growth, the system's

behaviour, i.e. what state will follow a given state, becomes somewhat

indeterminate. So "determinateness" in the real system evidently

corresponds, in the transformation, to the transform of a given

operand being single-valued.

Next consider a clock, in good order and wound, whose hands,

pointing now to a certain place on the dial, will point to some deter-

minate place after the lapse of a given time. The positions of its

hands correspond to the transformation's elements. A single

transformation corresponds to the progress over a unit interval of

time; it will obviously be of the form n' = n + k.

In this case, the "operator" at work is essentially undefinable,

for it has no clear or natural bounds. It includes everything that

makes the clock go: the mainspring (or gravity), the stiffness of the
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brass in the wheels, the oil on the pivots, the properties of steel, the

interactions between atoms of iron, and so on with no definite limit.

As we said in S.2/3, the "operator" is often poorly defined and some-
what arbitrary

—a concept of little scientific use. The transformation,

however, is perfectly well defined, for it refers only to the facts of

the changes, not to more or less hypothetical reasons for them.

A series of changes as regular as those of the clock are not readily

found in the biological world, but the regular courses of some diseases

show something of the same features. Thus in the days before the

sulphonamides, the lung in lobar pneumonia passed typically

through the series of states: Infection—^ consolidations red

hepatisation -> grey hepatisation -^ resolution -> health. Such a

series of states corresponds to a transformation that is well defined,

though not numerical.

Next consider an iron casting that has been heated so that its

various parts are at various but determinate temperatures. If its

circumstances are fixed, these temperatures will change in a deter-

minate way with time. The casting's state at any one moment will

be a set of temperatures (a vector, S.3/5), and the passage from state

to state, iSo
->

5*1
-^ 5'2

—> . . ., will correspond to the operation of a

transformation, converting operand Sq successively to T{S^,

TKSo), THSo), . . ., etc.

A more complex example, emphasising that transformations do
not have to be numerical to be well defined, is given by certain forms

of reflex animal behaviour. Thus the male and female three-

spined stickleback form, with certain parts of their environment, a

determinate dynamic system. Tinbergen (in his Study of Instinct)

describes the system's successive states as follows: "Each reaction

of either male or female is released by the preceding reaction of the

partner. Each arrow (in the diagram below) represents a causal

relation that by means of dummy tests has actually been proved to

exist. The male's first reaction, the zigzag dance, is dependent on a

visual stimulus from the female, in which the sign stimuli "swollen

abdomen" and the special movements play a part. The female

reacts to the red colour of the male and to his zigzag dance by swim-

ming right towards him. This movement induces the male to turn

round and to swim rapidly to the nest. This, in turn, entices the

female to follow him, thereby stimulating the male to point its head

into the entrance. His behaviour now releases the female's next

reaction: she enters the nest. . , . This again releases the quivering
reaction in the male which induces spawning. The presence of

fresh eggs in the nest makes the male fertilise them." Tinbergen
summarises the succession of states as follows:
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Appearsx^

/
Courts/"

Female <
Follows\

Enters
nest\^

Spawns

Zigzag dance

Leads

Shows nest entrance

Trembles

Fertilises

Male

He thus describes a typical trajectory.

Further examples are hardly necessary, for the various branches

of science to which cybernetics is applied will provide an abun-

dance, and each reader should supply examples to suit his own

speciality.

By relating machine and transformation we enter the discipline

that relates the behaviours of real physical systems to the properties

of symbolic expressions, written with pen on paper. The whole

subject of "mathematical physics" is a part of this discipline. The

methods used in this book are however somewhat broader in scope,

for mathematical physics tends to treat chiefly systems that are

continuous and linear (S.3/7). The restriction makes its methods

hardly applicable to biological subjects, for in biology the systems

are almost always non-Hnear, often non-continuous, and in many
cases not even metrical, i.e. expressible in number. The exercises

below (S.3/4) are arranged as a sequence, to show the gradation

from the very general methods used in this book to those commonly
used in mathematical physics. The exercises are also important as

illustrations of the correspondences between transformations and

real systems.
To summarise: Every machine or dynamic system has many

distinguishable states. If it is a determinate machine, fixing its

circumstances and the state it is at will determine, i.e. make unique,

the state it next moves to. These transitions of state correspond

to those of a transformation on operands, each state corresponding

to a particular operand. Each state that the machine next moves to

corresponds to that operand's transform. The successive powers
of the transformation correspond, in the machine, to allowing

double, treble, etc., the unit time-interval to elapse before recording

the next state. And since a determinate machine cannot go to two

states at once, the corresponding transformation must be single-

valued.
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Ex. : Name two states that are related as operand and transform, with

time as the operator, taking the dynamic system from :

(a) Cooking ; (b) Lighting a fire ; (c) The petrol engine ; (d) Embryo-
logical development ; (e) Meteorology ; (/) Endocrinology ; (g) Econ-
omics ; (h) Animal behaviour ; (/) Cosmology. (Meticulous accuracy is

not required.)

3/2. Closure. Another reason for the importance of closure can

now be seen. The typical machine can always be allowed to go on

in lime for a little longer, simply by the experimenter doing nothing!
This means that no particular limit exists to the power that the

transformation can be raised to. Only the closed transformations

allow, in general, this raising to any power. Thus the transforma-

tion T
a b c d e f g

e b m f g c f

is not closed. T\a) is c and T\a) is /;/. But T{m) is not defined,

so T\a) is not defined. With a as initial state, this transformation

does not define what happens after five steps. Thus the transforma-

tion that represents a machine must be closed. The full significance

of this fact will appear in S.10/4.

3/3. The discrete machine. At this point it may be objected that

most machines, whether man-made or natural, are smooth-working,
while the transformations that have been discussed so far change by
discrete jumps. These discrete transformations are, however, the

best introduction to the subject. Their great advantage is their

absolute freedom from subtlety and vagueness, for every one of their

properties is unambiguously either present or absent. This sim-

plicity makes possible a security of deduction that is essential if

further developments are to be reliable. The subject was touched

on in S.2/1.

In any case the discrepancy is of no real importance. The discrete

change has only to become small enough in its jump to approximate
as closely as is desired to the continuous change. It must further

be remembered that in natural phenomena the observations are

almost invariably made at discrete intervals; the "continuity"

ascribed to natural events has often been put there by the observer's

imagination, not by actual observation at each of an infinite number

of points. Thus the real truth is that the natural system is observed

at discrete points, and our transformation represents it at discrete

points. There can, therefore, be no real incompatibility.

28



THE DETERMINATE MACHINE 3/4

3/4. Machine and transformation. The parallelism between
machine and transformation is shown most obviously when we

compare the machine's behaviour, as state succeeds state, with the

kinematic graph (S.2/17), as the arrows lead from element to element.

If a particular machine and a particular graph show full corres-

pondence it will be found that:

(1) Each possible state of the machine corresponds uniquely to a

particular element in the graph, and vice versa. The correspondence
is one-one.

(2) Each succession of states that the machine passes through
because of its inner dynamic nature corresponds to an unbroken
chain of arrows through the corresponding elements.

(3) If the machine goes to a state and remains there (a state of

equiUbrium, S.5/3) the element that corresponds to the state will

have no arrow leaving it (or a re-entrant one, S.2/17).

(4) If the machine passes into a regularly recurring cycle of states,

the graph will show a circuit of arrows passing through the corres-

ponding elements.

(5) The stopping of a machine by the experimenter, and its re-

starting from some new, arbitrarily selected, state corresponds, in

the graph, to a movement of the representative point from one
element to another when the movement is due to the arbitrary
action of the mathematician and not to an arrow.

When a real machine and a transformation are so related, the

transformation is the canonical representation of the machine, and
the machine is said to embody the transformation.

Ex. 1 : A culture medium is inoculated with a thousand bacteria; their number
doubles in each half-hour. Write down the corresponding transformation.

Ex. 2: (Continued.) Find n after the 1st, 2nd, 3rd, . . ., 6th steps.

Ex. 3 : (Continued.) (i) Draw the ordinary graph, with two axes, showing the

culture's changes in number with time, (ii) Draw the kinematic graph of
the system's changes of state.

Ex. 4: A culture medium contains 10^ bacteria and a disinfectant that, in each

minute, kills 20 per cent of the survivors. Express the change in the number
of survivors as a transformation.

Ex. 5 : (Continued.) (i) Find the numbers of survivors after 1 , 2, 3, 4, 5 minutes.

(ii) To what limit does the number tend as time goes on indefinitely?

Ex. 6: Draw the kinematic graph of the transformation in which n' is, in a table

of four-figure logarithms, the rounded-off right-hand digit of logio(/J + 70).

What would be the behaviour of a corresponding machine ?

Ex. 7 : (Continued, but with 70 changed to 90.)

Ex. 8: (Continued, but with 70 changed to 10.) How many basins has this

graph ?
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Ex. 9: In each decade a country's population diminishes by 10 per cent, but in

the same interval a million immigrants are added. Express the change from

decade to decade as a transformation, assuming that the changes occur

in finite steps.

Ex. 10: (Continued.) If the country at one moment has twenty million in-

habitants, find what the population will be at the next three decades.

Ex. 1 1 : (Continued.) Find, in any way you can, at what number the population
will remain stationary. (Hint: when the population is "stationary" what

relation exists between the numbers at the beginning and at the end of the

decade?—what relation between operand and transform?)

Ex. 12: A growing tadpole increases in length each day by 1-2 mm. Express
this as a transformation.

Ex. 13: Bacteria are growing in a culture by an assumed simple conversion of

food to bacterium; so if there was initially enough food for 10* bacteria

and the bacteria now number n, then the remaining food is proportional to

108 _ „. If the law of mass action holds, the bacteria will increase in each

interval by a number proportional to the product : (number of bacteria) x

(amount of remaining food). In this particular culture the bacteria are

increasing, in each hour, by 10 8/j (108
_

n). Express the changes from

hour to hour by a transformation.

Ex. 14: (Continued.) If the culture now has 10,000,000 bacteria, find what the

number will be after 1, 2, . . ., 5 hours.

Ex. 1 5 : (Continued.) Draw an ordinary graph with two axes showing how the

number of bacteria will change with time.

VECTORS

3/5. In the previous sections a machine's "state" has been regarded

as something that is known as a whole, not requiring more detailed

specification. States of this type are particularly common in

biological systems where, for instance, characteristic postures or

expressions or patterns can be recognised with confidence though
no analysis of their components has been made. The states des-

cribed by Tinbergen in S.3/1 are of this type. So are the types of

cloud recognised by the meteorologist. The earher sections of this

chapter will have made clear that a theory of such unanalysed states

can be rigorous.

Nevertheless, systems often have states whose specification

demands (for whatever reason) further analysis. Thus suppose a

news item over the radio were to give us the "state", at a certain

hour, of a Marathon race now being run; it would proceed to give,

for each runner, his position on the road at that hour. These

positions, as a set, specify the "state" of the race. So the "state" of

the race as a whole is given by the various states (positions) of the

various runners, taken simultaneously. Such "compound" states

are extremely common, and the rest of the book will be much
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concerned with them. It should be noticed that we are now

beginning to consider the relation, most important in machinery,
that exists between the whole and the parts. Thus, it often happens
that the state of the whole is given by a list of the states taken, at

that moment, by each of the parts.

Such a quantity is a vector, which is defined as a compound entity,

having a definite number of components. It is conveniently written

thus: (fli, a^, . . ., a„), which means that the first component has the

particular value a^, the second the value 02, and so on.

A vector is essentially a sort of variable, but more complex than

the ordinary numerical variable met with in elementary mathematics.

It is a natural generalisation of "variable", and is of extreme

importance, especially in the subjects considered in this book.

The reader is advised to make himself as familiar as possible with

it, applying it incessantly in his everyday life, until it has become as

ordinary and well understood as the idea of a variable. It is not

too much to say that his famiharity with vectors will largely deter-

mine his success with the rest of the book.

Here are some well-known examples.

(1) A ship's "position" at any moment cannot be described by a

single number; two numbers are necessary: its latitude and its

longitude. "Position" is thus a vector with two components.
One ship's position might, for instance, be given by the vector

(58°N, 17'W). In 24 hours, this position might undergo the

transition (58"N, 17°W)^ (59°N, 20°W).

(2) "The weather at Kew" cannot be specified by a single number,
but can be specified to any desired completeness by our taking
sufficient components. An approximation would be the vector:

(height of barometer, temperature, cloudiness, humidity), and a

particular state might be (998 mbars, 56-2°F, 8, 72%). A weather

prophet is accurate if he can predict correctly what state this present
state will change to.

(3) Most of the administrative "forms" that have to be filled in

are really intended to define some vector. Thus the form that the

motorist has to fill in:

Age of car : . ,

Horse-power:
Colour: ,

is merely a vector written vertically.

Two vectors are considered equal only if each component of the
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one is equal to the corresponding component of the other. Thus if

there is a vector (w,x,y,z), in which each component is some number,
and if two particular vectors are (4,3,8,2) and (4,3,8,1), then these

two particular vectors are unequal; for, in the fourth component,
2 is not equal to 1. (If they have different components, e.g. (4,3,8,2)

and {H,T), then they are simply not comparable.)
When such a vector is transformed, the operation is in no way

different from any other transformation, provided we remember

that the operand is the vector as a whole, not the individual com-

ponents (though how they are to change is, of course, an essential

part of the transformation's definition). Suppose, for instance, the

"system" consists of two coins, each of which may show either

Head or Tail. The system has four states, which are

(//,//) {H,T) {T,H) and (r,T).

Suppose now my small niece does not like seeing two heads up,
but always alters that to {T,H), and has various other preferences.

It might be found that she always acted as the transformation

^.
, {H,H) {H,T) {T,H) {T,T)

' ^
(T,H) iT,T) {T,H) (H,H)

As a transformation on four elements, A'^ differs in no way from those

considered in the earlier sections.

There is no reason why a transformation on a set of vectors

should not be wholly arbitrary, but often in natural science the

transformation has some simplicity. Often the components change
in some way that is describable by a more or less simple rule. Thus
if M were :

^.
, iH,H) (H,T) (T,H) {T,T)
^

{T,H) {T,T) iH,H) {H,T)

it could be described by saying that the first component always

changes while the second always remains unchanged.

Finally, nothing said so far excludes the possibility that some or

all of the components may themselves be vectors ! (E.g. S.6/3.) But
we shall avoid such complications if possible.

Ex. I : Using /IBCas first operand, find the transformation generated by repeated

application of the operator "move the left-hand letter to the right" (e.g.

ABC-^BCA).
Ex. 2: (Continued.) Express the transformation as a kinematic graph.

Ex. 3: Using (1,-1) as first operand, find the other elements generated by
repeated application of the operator "interchange the two numbers and then

multiply the new left-hand number by minus one ".
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Ex. 4: (Continued.) Express the transformation as a kinematic graph.

Ex. 5: The first operand, .v, is the vector (0,1,1); the operator Fis defined thus:

(i) the left-hand number of the transform is the same as the middle number
of the operand ;

(ii) the middle number of the transform is the same as the right-hand

number of the operand;

(iii) the right-hand number of the transform is the sum of the operand's
middle and right-hand numbers.

Thus, F{x) is ( 1 , 1 ,2), and F\x) is (1 ,2,3). Find F\x), F\x), F\x). (Hint :

compare Ex. 2/14/9.)

3/6. Notation. The last exercise will have shown the clumsiness

of trying to persist in verbal descriptions. The transformation F
is in fact made up of three sub-transformations that are applied

simultaneously, i.e. always in step. Thus one sub-transformation

acts on the left-hand number, changing it successively through

0^1^1-^2-^3-^5, etc. If we call the three components
a, b, and c, then F, operating on the vector {a, b, c), is equivalent
to the simultaneous action of the three sub-transformations, each

acting on one component only:

fa'
= ^

F:^b' = c

Ic' =b + c

Thus, a' = b says that the new value of a, the left-hand number in

the transform, is the same as the middle number in the operand;
and so on. Let us try some illustrations of this new method; no
new idea is involved, only a new manipulation of symbols. (The
reader is advised to work through all the exercises, since many
important features appear, and they are not referred to elsewhere.)

Ex. 1 : If the operands are of the form (a,b), and one of them is (i,2), find the

vectors produced by repeated application to it of the transformation T:

a' = b

b' = - a

(Hint: find r(i2),r2(i,2), etc.)

Ex. 2: If the operands are vectors of the form {v,w,x,y,z) and U is

f v' = w

\w'
= v

uUx' = X
y =z

find Via), where a = (2,1,0,2,2).

Ex. 3 : (Continued.) Draw the kinematic graph of U if its only operands are

a, Uia), U\a\ etc.
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Ex. 4: (Continued.) How would the graph alter if further operands were
added?

Ex. 5: Find the transform of (3,-2,1) by A if the general form is (^,A,y) and
the transformation is

[g' = 2g-h
A:^h'= h-j

ir = g + h

Ex. 6: Arthur and Bill agree to have a gamble. Each is to divide his money
into two equal parts, and at the umpire's signal each is to pass one part
over to the other player. Each is then again to divide his new wealth

into two equal parts and at a signal to pass a half to the other; and so on.

Arthur started with 8/- and Bill with 4/-. Represent the initial operand
by the vector (8,4). Find, in any way you can, all its subsequent transforms.

Ex. 7: (Continued.) Express the transformation by equations as in Ex. 5

above.

Ex. 8: (Continued.) Charles and David decide to play a similar game except
that each will hand over a sum equal to a half of what the other possesses.
If they start with 30/- and 34/- respectively, what will happen to these

quantities?

Ex. 9: (Continued.) Express the transformation by equations as in Ex. 5.

Ex. 10: If, in Ex. 8, other sums of money had been started with, who in general
would be the winner?

Ex. 11 : In an aquarium two species of animalcule are prey and predator. In

each day, each predator destroys one prey, and also divides to become two

predators. If today the aquarium has m prey and // predators, express
their changes as a transformation.

Ex. 12: (Continued.) What is the operand of this transformation?

Ex. 13: (Continued.) If the state was initially (150,10), find how it changed
over the first four days.

Ex. 14: A certain pendulum swings approximately in accordance with the

transformation x' — \(x — y), y' — \{x + ;'), where x is its angular
deviation from the vertical and y is its angular velocity; x' and y' are

their values one second later. It starts from the state (10,10); find how its

angular deviation changes from second to second over the first eight

seconds. (Hint: find x', x", x'", etc.; can they be found without cal-

culating y', y", etc?)

Ex. 1 5 : (Continued.) Draw an ordinary graph (with axes for x and /) showing
how .v's value changed with time. Is the pendulum frictionless ?

Ex. 16: In a certain economic system a new law enacts that at each yearly

readjustment the wages shall be raised by as many shillings as the price

index exceeds 100 in points. The economic effect of wages on the price

index is such that at the end of any year the price index has become equal
to the wage rate at the beginning of the year. Express the changes of

wage-level and price-index over the year as a transformation.

Ex. 17: (Continued.) If this year starts with the wages at 110 and the price

index at 1 10, find what their values will be over the next ten years.

Ex. 18: (Continued.) Draw an ordinary graph to show how prices and wages
will change. Is the law satisfactory?
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Ex. 19: (Continued.) The system is next changed so that its transformation

becomes .v' = j(x + y), y' — j(x — y) + 100. It starts with wages and

prices both at 110. Calculate what will happen over the next ten years.

Ex. 20: (Continued.) Draw an ordinary graph to show how prices and wages
will change.

Ex. 21: Compare the graphs of Exs. 18 and 20. How would the distinction

be described in the vocabulary of economics?

Ex. 22: If the system of Ex. 19 were suddenly disturbed so that wages fell to

80 and prices rose to 120, and then left undisturbed, what would happen
over the next ten years? (Hint: use (80,120) as operand.)

Ex. 23 : (Continued.) Draw an ordinary graph to show how wages and prices
would change after the disturbance.

Ex. 24: Is transformation Tone-one between the vectors (xi, ^2) and the vectors

(xi',X2V

J. fx\'
=

2.V1 + X2

\X2 =
A"! + X2

(Hint: If (.vi,a-2) is given, is (.vi',.Y2') uniquely determined? And vice

versa ?)

*Ex. 25: Draw the kinematic graph of the 9-state system whose components
are residues:

x' = X + y

How many basins has it?

3/7. (This section may be omitted.) The previous section is of

fundamental importance, for it is an introduction to the methods of

mathematical physics, as they are applied to dynamic systems. The
reader is therefore strongly advised to work through all the exercises,

for only in this way can a real grasp of the principles be obtained.

If he has done this, he will be better equipped to appreciate the

meaning of this section, which summarises the method.
The physicist starts by naming his variables—Xj, X2, . . . x„. The

basic equations of the transformation can then always be obtained

by the following fundamental method:—
(l)Take the first variable, x^, and consider what state it will

change to next. If it changes by finite steps the next state will be

Xi', if continuously the next state will be .Vj + ^Vj. (In the latter

case he may, equivalently, consider the value of dxjdt.)

(2) Use what is known about the system, and the laws of physics,
to express the value of .Yj', or clxjdt (i.e. what x^ will be) in terms

of the values that .Yj, . . ., x„ (and any other necessary factors) have
now. In this way some equation such as

X,' = 2a.Yj
—

.Y3 or dxjch = 4k sin X3

is obtained.
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(3) Repeat the process for each variable in turn until the whole

transformation is written down.

The set of equations so obtained—giving, for each variable in the

system, what it will be as a function of the present values of the

variables and of any other necessary factors—is the canonical

representation of the system. // is a standard form to which all

descriptions of a determinate dynamic system may be brought.

If the functions in the canonical representation are all linear, the

system is said to be linear.

Given an initial state, the trajectory or line of behaviour may now
be computed by finding the powers of the transformation, as in

S.3/9.

*Ex. 1 : Convert the transformation (now in canonical form)

dxidt = y
dyjdt = z

dzjdt = z + 2xy — x"^

to a differential equation of the third order in one variable, x. (Hint:
Eliminate y and z and their derivatives.)

*Ex. 2: The equation of the simple harmonic oscillator is often written

d2x

dr2+--
= ^

Convert this to canonical form in two independent variables. (Hint:
Invert the process used in Ex. 1.)

*Ex. 3 : Convert the equation

d2x dx 2

to canonical form in two variables.

3/8. After this discussion of differential equations, the reader who
is used to them may feel that he has now arrived at the "proper"

way of representing the effects of time, the arbitrary and discrete

tabular form of S.2/3 looking somewhat improper at first sight. He
should notice, however, that the algebraic way is a restricted way,

applicable only when the phenomena show the special property of

continuity (S.7/20). The tabular form, on the other hand, can be

used always; for the tabular form includes the algebraic. This is

of some importance to the biologist, who often has to deal with

phenomena that will not fit naturally into the algebraic form. When
this happens, he should remember that the tabular form can always

provide the generality, and the rigour, that he needs. The rest

of this book will illustrate in many ways how naturally and easily

the tabular form can be used to represent biological systems.
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3/9. ''Unsolvable'" equations. The exercises to S.3/6 will have

shown beyond question that if a closed and single-valued trans-

formation is given, and also an initial state, then the trajectory from
that state is both determined (i.e. single-valued) and can be found

by computation. For if the initial state is x and the transformation

T, then the successive values (the trajectory) of x is the series

X, T{x), T2(x), T^ix), T\x), and so on.

This process, of deducing a trajectory when given a transforma-

tion and an initial state, is, mathematically, called "integrating" the

transformation. (The word is used especially when the transforma-

tion is a set of differential equations, as in S.3/7; the process is then

also called "solving" the equations.)
If the reader has worked all through S.3/6, he is probably already

satisfied that, given a transformation and an initial state, he can

always obtain the trajectory. He will not therefore be discouraged
if he hears certain differential equations referred to as "non-

integrable" or "unsolvable". These words have a purely technical

meaning, and mean only that the trajectory cannot be obtained

if one is restricted to certain defined mathematical operations.
Tustin's Mechanism of Economic Systems shows clearly how the

economist may want to study systems and equations that are of the

type called "unsolvable"; and he shows how the economist can, in

practice, get what he wants.

3/10. Phase space. When the components ofa vector are numerical

variables, the transformation can be shown in geometric form; and
this form sometimes shows certain properties far more clearly and

obviously than the algebraic forms that have been considered so far.

As example of the method, consider the transformation

y' = ^x + iy

of Ex. 3/6/7. If we take axes x and y, we can represent each

particular vector, such as (8,4), by the point whose x-co-ordinate

is 8 and whose j-co-ordinate is 4. The state of the system is thus

represented initially by the point P in Fig. 3/10/1 (I).

The transformation changes the vector to (6,6), and thus changes
the system's state to P'. The movement is, of course, none other

than the change drawn in the kinematic graph of S.2/17, now drawn
in a plane with rectangular axes which contain numerical scales.

This two-dimensional space, in which the operands and transforms

can be represented by points, is called the phase-space of the system.

(The "button and string" freedom of S.2/17 is no longer possible.)
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In II of the same figure are shown enough arrows to specify

generally what happens when any point is transformed. Here the

arrows show the other changes that would have occurred had other

states been taken as the operands. It is easy to see, and to prove
geometrically, that all the arrows in this case are given by one rule:

with any given point as operand, run the arrow at 45° up and to the

left (or down and to the right) till it meets the diagonal represented

by the line y = x.

Fig. 3/10/1

The usefulness of the phase-space (II) can now be seen, for the

whole range of trajectories in the system can be seen at a glance,

frozen, as it were, into a single display. In this way it often happens
that some property may be displayed, or some thesis proved, with

the greatest ease, where the algebraic form would have been obscure.

Such a representation in a plane is possible only when the vector

has two components. When it has three, a representation by a

three-dimensional model, or a perspective drawing, is often still

useful. When the number of components exceeds three, actual

representation is no longer possible, but the principle remains, and a

sketch representing such a higher-dimensional structure may still

be most useful, especially when what is significant are the general

topological, rather than the detailed, properties.

(The words "phase space" are sometimes used to refer to the

empty space before the arrows have been inserted, i.e. the space
into which any set of arrows may be inserted, or the diagram, such

as II above, containing the set of arrows appropriate to a particular
transformation. The context usually makes obvious which is

intended.)
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Ex.: Sketch the phase-spaces, with detail merely sufficient to show the main

features, of some of the systems in S.3/4 and 6.

3/11. What is a ''system'"? In S.3/1 it was stated that every real

determinate machine or dynamic system corresponds to a closed,

single-valued transformation; and the intervening sections have

illustrated the thesis with many examples. It does not, however,
follow that the correspondence is always obvious; on the contrary,

any attempt to apply the thesis generally will soon encounter certain

difficulties, which must now be considered.

Suppose we have before us a particular real dynamic system
—a

swinging pendulum, or a growing culture of bacteria, or an auto-

matic pilot, or a native village, or a heart-lung preparation
—and

we want to discover the corresponding transformation, starting

from the beginning and working from first principles. Suppose it is

actually a simple pendulum, 40 cm long. We provide a suitable

recorder, draw the pendulum through 30° to one side, let it go, and
record its position every quarter-second. We find the successive

deviations to be 30° (initially), 10°, and —24° (on the other side).

So our first estimate of the transformation, under the given condi-

tions, is

I

30° 10°

Y
10° -24°

Next, as good scientists, we check that transition from 10°: we draw
the pendulum aside to 10°, let it go, and find that, a quarter-second

later, it is at +3°! Evidently the change from 10° is not single-

valued—the system is contradicting itself. What are we to do now ?

Our difficulty is typical in scientific investigation and is funda-

mental: we want the transformation to be single-valued but it will

not come so. We cannot give up the demand for singleness, for

to do so would be to give up the hope of making single-valued

predictions. Fortunately, experience has long since shown what
is to be done: the system must be re-defined.

At this point we must be clear about how a "system" is to be

defined. Our first impulse is to point at the pendulum and to

say "the system is that thing there". This method, however, has a

fundamental disadvantage: every material object contains no less

than an infinity of variables and therefore of possible systems. The
real pendulum, for instance, has not only length and position; it

has also mass, temperature, electric conductivity, crystalline structure,

chemical impurities, some radio-activity, velocity, reflecting power,
tensile strength, a surface film of moisture, bacterial contamination,
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an optical absorption, elasticity, shape, specific gravity, and so on
and on. Any suggestion that we should study "all" the facts is

unrealistic, and actually the attempt is never made. What is

necessary is that we should pick out and study the facts that are

relevant to some main interest that is already given.

The truth is that in the world around us only certain sets of facts

are capable of yielding transformations that are closed and single-

valued. The discovery of these sets is sometimes easy, sometimes

difficult. The history of science, and even of any single investiga-

tion, abounds in examples. Usually the discovery involves the

other method for the defining of a system, that of listing the variables

that are to be taken into account. The system now means, not a

thing, but a list of variables. This list can be varied, and the

experimenter's commonest task is that of varying the list ("taking
other variables into account") until he finds a set of variables that

gives the required singleness. Thus we first considered the pendulum
as if it consisted solely of the variable "angular deviation from the

vertical"; we found that the system so defined did not give singleness.

If we were to go on we would next try other definitions, for instance

the vector:

(angular deviation, mass of bob),

which would also be found to fail. Eventually we would try the

vector:

(angular deviation, angular velocity)

and then we would find that these states, defined in this way, would

give the desired singleness (cf. Ex. 3/6/14).

Some of these discoveries, of the missing variables, have been of

major scientific importance, as when Newton discovered the import-
ance of momentum, or when Gowland Hopkins discovered the

importance of vitamins (the behaviour of rats on diets was not

single-valued until they were identified). Sometimes the discovery
is scientifically trivial, as when single-valued results are obtained

only after an impurity has been removed from the water-supply, or

a loose screw tightened; but the singleness is always essential.

(Sometimes what is wanted is that certain probabilities shall be

single-valued. This more subtle aim is referred to in S.7/4 and 9/2.

It is not incompatible with what has just been said: it merely means
that it is the probability that is the important variable, not the

variable that is giving the probability. Thus, if I study a roulette-

wheel scientifically I may be interested in the variable ''probability of

the next throw being Red", which is a variable that has numerical

values in the range between and 1, rather than in the variable
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''colour of the next throw", which is a variable that has only two

values: Red and Black. A system that includes the latter variable

is almost certainly not predictable, whereas one that includes the

former (the probability) may well be predictable, for the probability

has a constant value, of about a half.)

The "absolute" system described and used in Design for a Brain

is just such a set of variables.

It is now clear why it can be said that every determinate dynamic

system corresponds to a single-valued transformation (in spite of

the fact that we dare not dogmatise about what the real world

contains, for it is full of surprises). We can make the statement

simply because science refuses to study the other types, such as the

one-variable pendulum above, dismissing them as "chaotic" or

"non-sensical". It is we who decide, ultimately, what we will accept
as "machine-like" and what we will reject. (The subject is resumed

in S.6/3.)
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Chapter 4

THE MACHINE WITH INPUT

4/1. In the previous chapter we studied the relation between

transformation and machine, regarding the latter simply as a unit.

We now proceed to find, in the world of transformations, what

corresponds to the fact that every ordinary machine can be acted

on by various conditions, and thereby made to change its behaviour,
as a crane can be controlled by a driver or a muscle controlled by a

nerve. For this study to be made, a proper understanding must be
had of what is meant by a "parameter".

So far, each transformation has been considered by itself; we
must now extend our view so as to consider the relation between one

transformation and another. Experience has shown that just the

same methods (as S.2/3) applied again will suffice; for the change
from transformation A to transformation B is nothing but the

transition A-> B. (In S.2/3 it was implied that the elements of a

transformation may be anything that can be clearly defined: there

is therefore no reason why the elements should not themselves be

transformations.) Thus, if Tj, T2, and Ti, are three transformations,
there is no reason why we should not define the transformation U:

U: i
^' ^^ ^'

^
T2 T2 Ti

All that is necessary for the avoidance of confusion is that the

changes induced by the transformation T^ should not be allowed to

become confused with those induced by U\ by whatever method is

appropriate in the particular case the two sets of changes must
be kept conceptually distinct.

An actual example of a transformation such as U occurs when a

boy has a toy-machine T^, built of interchangeable parts, and then

dismantles it to form a new toy-machine T2. (In this case the

changes that occur when Ti goes from one of its states to the next

(i.e. when Ti "works") are clearly distinguishable from the change
that occurs when Tj changes to T2.)

Changes from transformation to transformation may, in general,
be wholly arbitrary. We shall, however, be more concerned with
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the special case in which the several transformations act on the

same set of operands. Thus, if the four common operands are

a, b, c, and d, there might be three transformations, R^, R2, and R^:

.abed .abed .abed
e d d b bade d c d b

These can be written more compactly as

^'
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A real machine whose behaviour can be represented by such a set

of closed single-valued transformations will be called a transducer

or a machine with input (according to the convenience of the context).
The set of transformations is its canonical representation. The

parameter, as something that can vary, is its input.

Ex. I: US is I I
*

b a,

how many other closed and single-valued transformations can be formed
on the same two operands ?

Ex. 2: Draw the three kinematic graphs of the transformations Ry, Ri, Ri
above. Does change of parameter-value change the graph ?

Ex. 3: With R (above) at /?i, the representative point is started at c and allowed
to move two steps (to RiHc)); then, with the representative point at this

new state, the transformation is changed to Rz and the point allowed to

move two more steps. Where is it now ?

Ex. 4: Find a sequence of R's that will take the representative point (i) from d
to a, (ii) from c to a.

Ex. 5: What change in the transformation corresponds to a machine having
one of its variables fixed? What transformation would be obtained if the

system
x'= — X + 2y

y'= X - y

were to have its variable x fixed at the value 4?

Ex. 6 : Form a table of transformations affected by a parameter, to show that a

parameter, though present, may in fact have no actual eff'ect.

4/2. We can now consider the algebraic way of representing a

transducer.

The three transformations

Ri:n' = n+\ R2: n = n + 2 Ry. n' = n + 3

can obviously be written more compactly as

R^: n = n + a,

and this shows us how to proceed. In this expression it must be

noticed that the relations of n and a to the transducer are quite

different, and the distinction must on no account be lost sight of.

n is operand and is changed by the transformation; the fact that it is

an operand is shown by the occurrence of n' . a is parameter and
determines which transformation shall be applied to n. a must
therefore be specified in value before w's change can be found.

When the expressions in the canonical representation become
more complex, the distinction between variable and parameter can

be made by remembering that the symbols representing the operands
will appear, in some form, on the left, as x' or dxjdt; for the trans-
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formation must tell what they are to be changed to. So all quan-
tities that appear on the right, but not on the left, must be parameters.
The examples below will clarify the facts.

Ex. 1 : What are the three transformations obtained by giving parameter a the

values — 1, 0, or +1 in 7"^:

jg'
=

{\ -a)g + {a- \)h

«•[/?'= 2^+ lah.

Ex. 2: What are the two transformations given when the parameter a takes the

value or I in 5?:

h' = (\
-

a)J + log (1 + a + sin ah)

j' = (1 + sin ay>(°-')/(.

Ex. 3: The transducer n' = n + a^, in which a and n can take only positive

integral values, is started at « = 10. (i) At what value should a be kept if,

in spite of repeated transformations, n is to remain at 10? (ii) At what
value should a be kept if n is to advance in steps of 4 at a time (i.e. 10, 14,

18, . . .)? (iii) What values of a, chosen anew at each step, will make n

follow the series 10, 11, 15, 16, 20, 21, 25, 26, . . ., in which the differences

are alternately 1 and 4? (iv) What values of a will make n advance by unit

steps to 100 and then jump directly to 200?

Ex. 4: If a transducer has n operands and also a parameter that can take n

values, the set shows a triunique correspondence between the values of oper-

and, transform, and parameter if (1) for given parameter value the trans-

formation is one-one, and (2) for given operand the correspondence between

parameter-value and transform is one-one. Such a set is

1
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4/3. When the expression for a transducer contains more than one

parameter, the number of distinct transformations may be as large

as the number of combinations of values possible to the parameters

(for each combination may define a distinct transformation), but

can never exceed it.

Ex. 1 : Find all the transformations in the transducer f/,,^ when a can take the

values 0, 1, or 2, and b the values or 1.

J J j s' = {\
— a)s + abt

^'^b-
[/'

=
(] +b)t + {b- \)a.

How many transformations does the set contain ?

Ex. 2: (Continued.) If the vector ia,b) could take only the values (0,1), (1,1),

and (2,0), how many transformations would the transducer contain?

Ex. 3 : The transducer T^b, with variables p and q :

J, .
( p' = ap + bq

^"f'-
\q' = bp + aq

is started at (3,5). What values should be given to the parameters a and
b if {p,q) is to move, at one step, to (4,6) ? (Hint : the expression for 7^;,

can be regarded as a simultaneous equation.)

Ex. 4: (Continued.) Next find a value for (a,b) that will make the system move,
in one step, back from (4,6) to (3,5).

Ex. 5 : The transducer n' = abn has parameters a and b, each of which can take

any of the values 0, 1, and 2. How many distinct transformations are

there? (Such indistinguishable cases are said to be "degenerate"; the

rule given at the beginning of this section refers to the maximal number of

transformations that are possible; the maximal number need not always be

achieved).

4/4. Input and output. The word "transducer" is used by the

physicist, and especially by the electrical engineer, to describe any
determinate physical system that has certain defined places of input,

at which the experimenter may enforce changes that affect its

behaviour, and certain defined places of output, at which he observes

the changes of certain variables, either directly or through suitable

instruments. It will now be clear that the mathematical system
described in S.4/1 is the natural representation of such a material

system. It will also be clear that the machine's "input" corresponds
to the set of states provided by its parameters; for as the parameters
or input are altered so is the machine's or transducer's behaviour

affected.

With an electrical system, the input is usually obvious and

restricted to a few terminals. In biological systems, however, the

number of parameters is commonly very large and the whole set of

them is by no means obvious. It is, in fact, co-extensive with the set

of "all variables whose change directly affects the organism". The
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parameters thus include the conditions in which the organism hves.

In the chapters that follow, the reader must therefore be prepared
to interpret the word "input" to mean either the few parameters

appropriate to a simple mechanism or the many parameters appro-

priate to the free-living organism in a complex environment. (The
increase in the number of parameters does not necessarily imply any
diminution in the rigour of the argument, for all the quantities
concerned can be measured with an accuracy that is bounded only

by the experimenter's resources of time and money.)

Ex. 1 : An electrical machine that receives potentials on its two input-terminals
is altered by having the two terminals joined permanently by a wire. To
what alteration in T^b would this correspond if the machine were represented
as in Ex. 4/3/3 ?

Ex. 2: "When an organism interacts with its environment, its muscles are the

environment's input and its sensory organs are the environment's output."
Do you agree ?

4/5. Transient. The electrical engineer and the biologist tend to

test their systems by rather different methods. The engineer often

investigates the nature of some unknown system by submitting it

to an incessant regular change at its input while observing its output.

Thus, in Fourier analysis, he submits it to prolonged stimulation

by a regular sinusoidal potential of a selected frequency, and he

observes certain characteristics in the output; then he repeats the

test with another frequency, and so on; eventually he deduces

something of the system's properties from the relations between the

input-frequencies and the corresponding output-characteristics.

During this testing, the machine is being disturbed incessantly.
The biologist often uses a method that disturbs the system not at

all, after the initial establishment of the conditions. Thus he may
put a piece of meat near an ants' colony and then make no further

change whatever—keeping the conditions, the parameters, constant—while watching the whole evolution of the complex patterns of

behaviour, individual and social, that develop subsequently.

Contrary to what is observed in living systems, the behaviour

of mechanical and electrical systems often settles to some uniformity

fairly quickly from the moment when incessant change at the input

stops. The response shown by the machine after some disturbance,
the input being subsequently held constant, is called a transient. It

is important to appreciate that, to the engineer, the complex sequence
of events at the ants' nest is a transient. It may be defined in more

general terms as the sequence of states produced by a transducer in

constant conditions before the sequence starts repeating itself.
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To talk about the transient, as distinct from the repetitive part
that follows, it is convenient to be able to mark, unambiguously,
its end. If the transformation is discrete, the following method

gives its length rigorously: Let the sequence of states go on till

repetition becomes evident, thus

ABCDCDCDCDC.orHEFGGGGGGG...
Then, coming in from the right, make the mark "1" as soon as the

sequence departs from the cycle, thus

ABiCDCDCDCDC.orHEFiGGGGGGG...
Next add the mark "2", to the right of 1, to include one complete

cycle, thus

ABiCD2CDCDCDC...orHEFiG2GGGGGGG...
Then the transient is defined as the sequence of states from the

initial state to the mark 2 : A B C D , or H E F G.

Rigorous form can now be given to the intuitive impression that

complex systems can produce, in constant conditions, more complex
forms of behaviour than can the simple. By drawing an arbitrary

kinematic graph on N states it is easy to satisfy oneself that if a

closed single-valued transformation with A'^ operands is apphed

repeatedly, then the length of transient cannot exceed N states.

Ex. 1 : What property must the graph have if the onset of a recurrence is to be

postponed as long as possible ?

Ex. 2: What is the transient of the system of Ex. 3/6/6, started from the state

(8,5)?

COUPLING SYSTEMS

4/6. A fundamental property of machines is that they can be

coupled. Two or more whole machines can be coupled to form

one machine; and any one machine can be regarded as formed by
the coupling of its parts, which can themselves be thought of as

small, sub-, machines. The coupling is of profound importance
in science, for when the experimenter runs an experiment he is

coupling himself temporarily to the system that he is studying. To
what does this process, the joining of machine to machine or of

part to part, correspond in the symbolic form of transformations ?

Of what does the operation of "coupling" consist ?

Before proceeding to the answer we must notice that there is

more than one answer. One way is to force them roughly together,

48



THE MACHINE WITH INPUT 4/7

SO that they become "coupled" as two automobiles may be locked

together after an accident. This form, however, is of little interest

to us, for the automobiles are too much changed by the process.
What we want is a way of coupling that does no violence to each

machine's inner working, so that after the coupling each machine
is still the same machine that it was before.

For this to be so, the coupHng must be arranged so that, in prin-

ciple, each machine affects the other only by affecting its conditions,

i.e. by affecting its input. Thus, if the machines are to retain their

individual natures after being coupled to form a whole, the coupling
must be between the (given) inputs and outputs, other parts being
left alone no matter how readily accessible they may be.

4/7. Now trace the operation in detail. Suppose a machine

(transducer) P is to be joined to another, R. For simplicity,
assume that P is going to affect R, without R affecting P, as when a

microphone is joined to an amplifier, or a motor nerve grows down
to supply an embryonic muscle. We must couple P's output to /?'s

input. Evidently i^'s behaviour, or more precisely the transforma-

tion that describes Rs, changes of state, will depend on, and change
with, the state of P. It follows that R must have parameters, for

input, and the values of these parameters must be at each moment
some function of the state of P. Suppose for definiteness that the

machine or transducer R has the three transformations shown in

S.4/1, i.e.
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under the control of whoever arranges the couphng.) Let us further

suppose
—this is essential to the orderliness of the coupling

—that the

two machines P and R work on a common time-scale, so that their

changes keep in step.

It will now be found that the two machines form a new machine

of completely determined behaviour. Thus, suppose the whole is

started with R ni a and P at /. Because P is at /, the 7?-transforma-

tion will be R2 (by Z). This will turn a to b; P's i will turn to k;

so the states a and / have changed determinately to b and k. The

argument can now be repeated. With P at k, the /^-transformation

will again (by Z) be R2; so b will turn (under R2) to a, and k will

turn (under P) to /. This happens to bring the whole system back

to the initial state of (a,i), so the whole will evidently go on in-

definitely round this cycle.

The behaviour of the whole machine becomes more obvious if

we use the method of S.3/5 and recognise that the state of the whole

machine is simply a vector with two components (x,y), where x
is one of a, b, c, d and y is one of /, j, k. The whole machine thus

has twelve states, and it was shown above that the state (a,i) under-

goes the transitions

(a,i)
—^ (b,k) -^ {a,i) -^ etc.

Ex. 1 : If Q is the transformation of the whole machine, of the twelve states

{x,y), complete Q.

Ex. 2: Draw Q's kinematic graph. How many basins has it?

Ex. 3 : Join P and R by using the transformation Y

y. J state of P:
I

/ j k
'

\ value of « . 1 2 3

What happens when this machine is started from {a,i) ?

Ex. 4: If two machines are joined to form a whole, does the behaviour of the

whole depend on the manner of coupling? (Hint: use the previous Ex.)

Ex. 5 : If two machines of n\ and «2 states respectively are joined together, what

is the maximal length of transient that the whole can produce?

Ex. 6: If machine M has a maximal length of transient of // states, what will be

the maximal length of transient if a machine is formed by joining three M's

together ?

Ex. 7: Take many parts {A, B, C, . . .) each with transformation

a

y

1 2

2

1 1 1

2 2 2
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and join them into a single long chain

4/8

input etc.,

so that A affects B, B affects C, and so on, by Z:

1 2
Z: I « ^ r

If the input to A is kept at a, what happens to the states down the chain ?

Ex. 8: (Continued.) What happens if the input is now changed for one step

to ^ and then returned to a, where it is held?

4/8. Coupling with feedback. In the previous section, P was

coupled to R so that P's changes affected, or determined in some

way, what 7?'s changes would be, but P's changes did not depend
on what state R was at. Two machines can, however, be coupled
so that each affects the other.

For this to be possible, each must have an input, i.e. parameters.
P had no parameters, so this double coupling cannot be made

directly on the machines of the previous section. Suppose, then,

that we are going to couple R (as before) to S, given below:
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4/9. Algebraic coupling. The process of the previous sections,

by treating the changes that each state and parameter undergo

individually, shows the relations that are involved in "coupling"
with perfect clarity and generality. Various modifications can

be developed without any loss of this clarity.

Thus suppose the machines are specified, as is common, in terms

of vectors with numerical components; then the rule for couphng
remains unaltered : each machine must have one or more parameters,
and the coupling is done by specifying whatfunction these parameters
are to be of the other machine's variables. Thus the machines

Afand A'^

j^, J
u — ^ -\- pb C c' = rsc -{ ud^

'

\b' = —
qa N: <

e = uce
qa N: < d' = 2tue

might be joined by the transformations U and V:

r = a -{- b

"<"--%
s = a — b

t = — a

u = b'~

1/ is a shorthand way of writing a whole set of transitions from a

value of (c,d,e) to a value of (p,q), e.g.

jj. I

(0,0,0) (0,0,1) (1,3,5) (2,2,4)
"^ • ^

(0,0) (0,0) (2,75) (4,32)

Similarly for V, a transformation from (a,b) to {r,s,t,u), which

includes, e.g. (5,7) -> (12,-2,-5,49) (and compare P of S.6/9).

The result of the coupling is the five-variable system with repre-

sentation:

a' = fl2 + 2bc

b' = — ade'^

c' = (a2
_

b^)c + /,2^2

d'= - lab^e

e' = bh-e

(Illustrations of the same process with differential equations have

been given in Design for a Brain, S.21/6.)

Ex. 1. : Which are the parameters in M? Which in A'^?

Ex. 2.: Join M and N hy W and X, and find what state (1, 0, 0, 1, 0), a

value of (a, b, c, d, e), will change to :

{r=
H^: •< '^

~
'j.
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4/10. Ex. 4/7/4 has already shown that parts can, in general, be

coupled in different ways to form a whole. The defining of the

component parts does not determine the way of coupling.

From this follows an important corollary. That a whole machine
should be built of parts of given behaviour is not sufficient to deter-

mine its behaviour as a whole: only when the details of coupling are

added does the whole's behaviour become determinate.

FEEDBACK

4/11. In S.4/7, P and R were joined so that P affected R while

R had no effect on P. P is said to dominate R, and (to anticipate

S.4/12) we may represent the relation between the parts by

R

(The arrow cannot be confused with that used to represent a transi-

tion (S.2/2), for the latter always relates two states, whereas the

arrow above relates two parts. In the diagrams to come, parts
will always be shown boxed.)

Cybernetics is, however, specially interested in the case of S.4/8,

where each affects the other, a relation that may be represented by

p
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for x's change does not now depend on y's value; x dominates y,

and the action is one way only.

On the other side stand the practical experimenters and con-

structors, who want to use the word to refer, when some forward

effect from P to R can be taken for granted, to the deliberate con-

duction of some effect back from 7? to P by some connexion that is

physically or materially evident. They object to the mathematician's

definition, pointing out that this would force them to say that feed-

back was present in the ordinary pendulum (see Ex. 3/6/14) between

its position and its momentum—a "feedback" that, from the prac-
tical point of view, is somewhat mystical. To this the mathematician

retorts that if feedback is to be considered present only when there

is an actual wire or nerve to represent it, then the theory becomes

chaotic and riddled with irrelevancies.

In fact, there need be no dispute, for the exact definition of

"feedback" is nowhere important. The fact is that the concept of

"feedback", so simple and natural in certain elementary cases,

becomes artificial and of little use when the interconnexions between

the parts become more complex. When there are only two parts

joined so that each affects the other, the properties of the feedback

give important and useful information about the properties of the

whole. But when the parts rise to even as few as four, if every one

affects the other three, then twenty circuits can be traced through

them; and knowing the properties of all the twenty circuits does not

give complete information about the system. Such complex sys-

tems cannot be treated as an interlaced set of more or less indepen-
dent feedback circuits, but only as a whole.

For understanding the general principles of dynamic systems,

therefore, the concept of feedback is inadequate in itself. What is

important is that complex systems, richly cross-connected internally,

have complex behaviours, and that these behaviours can be goal-

seeking in complex patterns.

Ex. 1 : Trace twenty circuits in the diagram of Fig. 4/11/1 :

Fig. 4/11/1
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Ex. 2 : A machine with input a, has the transformation

( x' = y — az

T:iy= Iz

i^z'
= .Y + «

What machine (as transformation) resuhs if its input « is coupled to its

output z, by a = — z?

Ex. 3: (Continued.) Will this second machine behave differently from the

first one when the first has a. held permanently at — 1 ?

Ex. 4: A machine has, among its inputs, a photoelectric cell; among its outputs
a lamp of variable brightness. In Condition 1 there is no connexion from

lamp to cell, either electrical or optical. In Condition 2 a mirror is placed
so that variations in the lamp's brightness cause variations in the cell's

potential (i.e. so that the machine can "see itself"). Would you expect
the behaviours in Conditions 1 and 2 to difter? (Hint: compare with Ex. 3.)

INDEPENDENCE WITHIN A WHOLE

4/12. In the last few sections the concept of one machine or part
or variable "having an effect on" another machine or part or variable

has been used repeatedly. It must now be made precise, for it is

of profound importance. What does it mean in terms of actual

operations on a given machine? The process is as follows.

Suppose we are testing whether part or variable / has an immediate
effect on part or variable j. Roughly, we let the system show its

behaviour, and we notice whether the behaviour of party is changed
when part /'s value is changed. If part /'s behaviour is just the same,
whatever /'s value, then we say, in general, that / has no effect ony.
To be more precise, we pick on some one state S (of the whole

system) first. With / at some value we notice the transition that

occurs in part j (ignoring those of other variables). We compare
this transition with those that occur when states 5*1, ^'2, etc.^—other

than S—are used, in which 5*1, S^, etc. differ from 5" only in the value

of the i-th component. If Si, S2, etc., give the same transition in

part j as S, then we say that / has no immediate effect on j, and vice

versa. ("Immediate" effect because we are considering y's values

over only one step of time.)

Next consider what the concept means in a transformation.

Suppose its elements are vectors with four components {u,x,y,z),

and that the third line of the canonical equations reads

y' = 2uy — z.

This tells us that if y is at some value now, the particular value it

will be at at the next step will depend on what values 11 and z have,
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but will not depend on what value x has. The variables u and z are

said to have an immediate effect on y.

It should be noticed, if the rigour is to be maintained, that the

presence or absence of an immediate effect, of u on ; say, can be

stated primarily only for two given states, which must have the same
values in their x, y, and z-components and must differ in their

M-components. For an immediate effect at one pair of states does

not, in general, restrict the possibilities at another pair of states.

Thus, the transformation mentioned above gives the transitions:

(0,0,0,0) -^( , ,0, )

(1,0,0,0)-^ ( , ,0, )

(0,0,l,0)->( , ,0, )

(l,0,l,0)->( , ,2, )

(where irrelevant values have been omitted). The first two show that

in one region of space u does not have an immediate effect on y,

and the second two show that in another region it does. Strictly,

therefore, the question "what is the immediate effect of u on y'V
can be answered only for a given pair of states. Often, in simple

systems, the same answer is given over the whole phase space; if this

should happen we can then describe the immediate effect of u on v

unconditionally. Thus in the example above, u has an immediate

effect on v at all points but a particular few.

This test, for «'s immediate effect on y, simply does in symbols
what the experimenter does when he wishes to test whether one

variable has an immediate effect on another: he fixes all variables

except this pair, and compares how one behaves when the other has

a value Uy with how it behaves when the other has the value W2-

The same method is, in fact, used generally in everyday life. Thus,

if we go into a strange room and wish to turn on the light, and find

there are three switches, our problem is to find which switches are

and which are not having an effect on the light's behaviour. We
change one of the switches and observe whether this is followed by
a change in the light's behaviour. In this way we discover on which

switch the light is dependent.
The test thus accords with common sense and has the advantage

of being applicable and interpretable even when we know nothing
of the real physical or other factors at work. It should be noticed

that the test requires no knowledge of extraneous factors: the result

is deduced directly from the system's observed behaviour, and

depends only on what the system does, not on why it does it.

It was noticed above that a transducer may show any degree of
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arbitrariness in the distribution of the immediate effects over the

phase space. Often, however, the distribution shows continuity, so

that over some appreciable region, the variable u, say, has an

immediate effect on y while over the same region x has none. When
this occurs, a diagram can often usefully be drawn showing these

relations as they hold over the region (which may sometimes be the

whole phase-space). An arrow is drawn from u to y if and only if

u has an immediate effect on y. Such a diagram will be called the

diagram of immediate effects.

Such diagrams are already of common occurrence. They are

often used in physiology to show how a related set of variables (such

as blood pressure, pulse rate, secretion of adrenaline, and activity

at the carotid sinus) act on one another. In the design of computing
machines and servomechanisms they are known as "control-flow

charts". They are also used in some large businesses to show the

relations of control and information existing between the various

departments.
The arrow used in such a diagram is, of course, profoundly

different in meaning from the arrow used to show change in a

transition (S.2/2). In the latter case it means simply that one state

changes to another; but the arrow in the diagram of immediate

effects has a much more complex meaning. In this case, an arrow

from A to B says that if, over a series of tests, A has a variety of

different values—B and all other conditions starting with the same

value throughout
—then the values that B changes to over the series

will also be found to show variety. We shall see later (S.8/1 1) that

this is simply to say that a channel of communication goes from A
to B.

When a transducer is given, either in algebraic or real material

form, we can examine the immediate effects within the system and

thus deduce something of its internal organisation and structure.

In this study we must distinguish carefully between "immediate"

and "ultimate" effects. In the test given above, the effect of x on y
was considered over a single step only, and this restriction is neces-

sary in the basic theory, x was found to have no immediate effect

on ;^ ; it may however happen that x has an immediate effect

on u and that u has an immediate effect on y; then x does have some

effect on v, shown after a delay of one extra step. Such an effect,

and those that work through even longer chains of variables and

with longer delay, will be referred to as ultimate effects. A diagram
of ultimate effects can be constructed by drawing an arrow from A
to B if and only if A has an ultimate effect on B. The two diagrams
are simply related, for the diagram of immediate effects, if altered
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by the addition of another arrow wherever tiiere are two joined
head to tail, turning

u u

/ \ to /
y y

and continuing this process until no further additions are possible,

gives the diagram of ultimate effects.

If a variable or part has no ultimate effect on another, then the

second is said to be independent of the first.

Both the diagrams, as later examples will show, have features

corresponding to important and well-known features of the system

they represent.

Ex. 1 : Draw the diagrams of immediate effects of the following absolute systems ;

and notice the peculiarity of each:

(i) x' = xy, y' = 2y.

(ii) X' = y, y' = z + 3,z' = x^.

(iii) // = 2 + iix, v' = V — y, x' = u + x, y' = ;- + v2.

(iv) //' = 4u — I, x' = iix, y' = xy -\- I, z' — yz.

(v) ii' = » + y, x' = I
—

y, y' = log y, z' = z + yz.

(vi) ;/' = sin 2», x' = x^, y' — y + 1, z' = xy + u.

Ex. 2: If y' = luy — z, under what conditions does // have no immediate
effect on y ?

Ex. 3 : Find examples of real machines whose parts are related as in the diagrams
of immediate effects of Ex. 1.

Ex. 4: (Continued.) Similarly find examples in social and economic systems.

Ex. 5: Draw up a table to show all possible ways in which the kinematic graph
and the diagram of immediate effects are different.

4/13. In the discussion of the previous section, the system was

given by algebraic representation; when described in this form, the

deduction of the diagram of immediate effects is easy. It should

be noticed, however, that the diagram can also be deduced directly

from the transformation, even when this is given simply as a set of

transitions.

Suppose, for instance that a system has two variables, x and y,
each of which can take the values 0, 1 or 2, and that its (.Y,;^)-states

behave as follows (parentheses being omitted for brevity):

I
00 01 02 10 11 12 20 21 22

01 00 11 11 00 21
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What of v's transitions? We can rc-classify them, with x as

parameter, by representing, e.g. "00-^01" as "when x = 0, y goes
from to 1". This gives the table

X I

2

y
1

1 1

1 1

1 1

It shows at once that y's transitions do not depend on the value

of X. So X has no immediate effect on )'.

Now classify .v's transitions similarly. We get:

^ '



4/15 AN INTRODUCTION TO CYBERNETICS

In this case the whole is less richly connected internally, for one of

the actions, or channels, is now missing.

The lessening can continue. We may find that the diagram of

immediate effects is simply
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At this minute of writing, the Laughter and Singing are

both sounding. Please tell ine what manipulations of incense

and organ I should make to get the house quiet, and to keep
it so.

(Hint: Compare Ex. 4/1/4.)

Ex. 2 : (Continued.) Does the Singing have an immediate effect on the Laughter ?

Ex. 3: (Continued.) Does the incense have an immediate effect on the Singing?

Ex. 4: (Continued.) Deduce the diagram of immediate effects of this machine

with input (with two parameters and two variables).

THE VERY LARGE SYSTEM

4/16. Up till now, the systems considered have all seemed fairly

simple, and it has been assumed that at all times we have understood

them in all detail. Cybernetics, however, looks forward to being
able to handle systems of vastly greater complexity

—computing
machines, nervous systems, societies. Let us, then, consider how
the methods developed so far are to be used or modified when the

system is very large.

4/17. What is meant by its "size" needs clarification, for we are

not here concerned with mere mass. The sun and the earth form

only a "small" system to us, for astronomically they have only
twelve degrees of freedom. Rather, we refer to the system's

complexity. But what does that mean here? If our dynamic

system were a native family of five persons, would we regard it

as made of 5 parts, and therefore simple, or as of lO^^ atoms, and
therefore very complex ?

In the concepts of cybernetics, a system's "largeness" must refer

to the number of distinctions made: either to the number of states

available or, if its states are defined by a vector, to the number of

components in the vector (i.e. to the number of its variables or of its

degrees of freedom, S.7/13). The two measures are correlated, for

if other things are equal, the addition of extra variables will make

possible extra states. A system may also be made larger from our

functional point of view if, the number of variables being fixed, each

is measured more precisely, so as to make it show more distinguish-

able states. We shall not, however, be much interested in any exact

measure of largeness on some particular definition ; rather we shall

refer to a relation between the system and some definite, given,

observer who is going to try to study or control it. In this book I
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shall use the words "very large" to imply that some definite observer

is given, with definite resources and techniques, and that the system

is, in some practical way, too large for him ; so that he cannot observe

it completely, or control it completely, or carry out the calculations

for prediction completely. In other words, he says the system is

"very large" if in some way it beats him by its richness and complexity.
Such systems are common enough. A classic case occurred when

the theoretical physicist of the nineteenth century tried to use

Newtonian mechanics to calculate how a gas would behave. The
number of particles in an ordinary volume of gas is so vast that no

practical observation could record the system's state, and no practical

calculation could predict its future. Such a system was "very

large" in relation to the nineteenth century physicist.

The stock-breeder faces a "very large" system in the genes he is

trying to mould to a new pattern. Their number and the com-

plexities of their interactions makes a detailed control of them by
him impossible in practice.

Such systems, in relation to our present resources for observation

and control, are very common in the biological world, and in its

social and econoiTiic relatives. They are certainly common in the

brain, though for many years the essential complexity was given only

grudging recognition. It is now coming to be recognised, however,
that this complexity is something that can be ignored no longer.

"Even the simplest bit of behavior", says Lashley, "requires the

integrated action of millions of neurons. ... I have come to believe

that almost every nerve cell in the cerebral cortex may be excited

in every activity. . . . The same neurons which maintain the

memory traces and participate in the revival of a memory are also

involved, in different combinations, in thousands of other memories
and acts." And von Neumann: "The number of neurons in the

central nervous system is somewhere of the order of lO^o. We have

absolutely no past experience with systems of this degree of com-

plexity. All artificial automata made by man have numbers of parts
which by any comparably schematic count are of the order 10^ to

10^." {Cerebral Mechanisms in Behavior.)

4/18. It should be noticed that largeness /J^r se in no way invalidates

the principles, arguments, and theorems of the previous chapters.

Though the examples have been confined to systems with only a

few states or a few variables, this restriction was solely for the

author's and reader's convenience: the arguments remain valid

without any restriction on the number of states or variables in the

system. It is a peculiar advantage of the method of arguing about
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states, rather than the more usual variables, that it requires no

explicit mention of the system's number of pans; and theorems once

proved true are true for systems of all sizes (provided, of course, that

the systems conform to the suppositions made in the argument).
What remains valid is, of course, the truth of the mathematical

deductions about the mathematically defined things. What may
change, as the system becomes very large, is the apphcability of these

theorems to some real material system. The applicability, however,
can be discussed only in relation to particular cases. For the

moment, therefore, we can notice that size by itself does not invali-

date the reasonings that have been used so far.

4/19. Random coupling. Suppose now that the observer faces a

system thai, for him, is very large. How is he to proceed? Many
questions arise, too many to be treated here in detail, so I shall

select only a few topics, letting them serve as pattern for the rest.

(See S.6/19 and Chapter 13.) First, how is the system to be

specified ?

By definition, the observer can specify it only incompletely. This
is synonymous with saying that he must specify it "statistically",
for statistics is the art of saying things that refer only to some aspect
or portion of the whole, the whole truth being too bulky for direct

use. If it has too many parts for their specification individually,

they must be specified by a manageable number of rules, each of
which apphes to many parts. The parts specified by one rule need
not be identical; generahty can be retained by assuming that each
rule specifies a set statistically. This means that the rule specifies a
distribution of parts and a way in which it shall be sampled. The
particular details of the individual outcome are thus determined not

by the observer but by the process of sampling (as two people might
leave a decision to the spin of a coin).
The same method must be used for specification of the coupling.

If the specification for coupling is not complete it must in some way
be supplemented, for ultimately some individual and single coupling
must actually occur between the parts. Thus the couphng must
contain a "random" element. What does this mean?
To make the discussion definite, suppose an experimenter has

before him a large number of identical boxes, electrical in nature,
each with three input and three output terminals. He wishes to

form an extensive network, coupled "at random", to see what its

properties will be. He takes up some connecting wires and then
realises that to say "couple them at random" is quite insufficient as
a definition of the way of coupling; all sorts of "couplings at
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random" are possible. Thus he might, if there are n boxes, label

6« cards with numbers from 1 to 6/?, label the terminals similarly,

shuffle the cards and then draw two cards to nominate the two
terminals that shall be joined with the first wire. A second pair of

cards will name the terminals joined by the second wire; and so on.

A decision would have to be made whether the first two drawn cards

were to be replaced or not before the next shuffling and drawing. The
decision is important, for replacement allows some terminals to

have no wire and others to have several, while non-replacement
forces every terminal to have one wire and one only. This dis-

tinction would probably be significant in the characteristics of the

network, and would therefore require specification. Again, the

method just mentioned has the property of allowing output to be

joined to output. If this were undesirable a new method would
have to be defined; such might be: "Label the inputs 1 to 3« and also

the outputs 1 to 3« ;
label 3« cards with numbers 1 to 3// ; join a wire to

input 1 and draw a card to find which output to connect it to; go on

similarly through inputs 2, . , ,, 3«". Here again replacement of the

card means that one output may go to several inputs, or to none;

non-replacement would give one output to each input.

Enough has probably been said to show how essential an accurate

definition of the mode of sampling can be. Sometimes, as when the

experimenter takes a sample of oxygen to study the gas laws in it,

he need not specify how he obtained the sample, for almost all

samples will have similar properties (though even here the possibility

of exact definition may be important, as Rayleigh and Ramsay
found when some specimens of nitrogen gave persistently different

atomic weights from others).

This "statistical" method of specifying a system
— by specification

of distributions with samphng methods—should not be thought of as

essentially different from other methods. It includes the case of

the system that is exactly specified, for the exact specification is

simply one in which each distribution has shrunk till its scatter is

zero, and in which, therefore, "sampling" leads to one inevitable

result. What is new about the statistical system is that the specifica-

tion allows a number of machines, not identical, to qualify for

inclusion. The statistical "machine" should therefore be thought
of as a set of machines rather than as one machine. For this

chapter, however, this aspect will be ignored (it is taken up fully in

Chapter 7).

It will now be seen, therefore, that it is, in a sense, possible for an

observer to specify a system that is too large for him to specify!

The method is simple in principle : he must specify broadly, and must
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specify a general method by which the details shall be specified by
some source other than himself. In the examples above, it was
a pack of cards that made the final decision. A final, unique
system can thus be arrived at provided his specification is supple-
mented. (The subject is developed more thoroughly in S. 13/1 8.)

Ex. 1 : Define a method (using dice, cards, random numbers, etc.) that will

bring the closed single-valued transformation T:

Si S2 Si S4 S5 Sq
T:l 9 7 7 7 9?

to some particular form, so that the final particular form is selected by the

method and not by the reader.

Ex. 2: (Continued.) Define a method so that the transformation shall be one-

one, but not otherwise restricted.

Ex. 3: (Continued.) Define a method so that no even-numbered state shall

transform to an odd-numbered state.

Ex. 4: (Continued.) Define a method so that any state shall transform only to a

state adjacent to it in number.

Ex. 5: Define a method to imitate the network that would be obtained if parts
were coupled by the following rule: In two dimensions, with the parts

placed in a regular pattern thus :

extending indefinitely in all directions in the plane, each part either has an
immediate effect on its neighbour directly above it or does not, with equal
probability; and similarly for its three neighbours to right and left and
below. Construct a sample network.

4/20. Richness of connexion. The simplest system of given

largeness is one whose parts are all identical, mere replicates of one

another, and between whose parts the couplings are of zero degree

(e.g. Ex. 4/1/6). Such parts are in fact independent of each other,

which makes the whole a "system" only in a nominal sense, for it is

totally reducible. Nevertheless this type of system must be con-

sidered seriously, for it provides an important basic form from
which modifications can be made in various ways. Approximate
examples of this type of system are the gas whose atoms collide

only rarely, the neurons in the deeply narcotised cortex (if they can
be assumed to be approximately similar to one another) and a

species of animals when the density of population is so low that they

hardly ever meet or compete. In most cases the properties of this

basic type of system are fairly easily deducible.

The first modification to be considered is obviously that by which
a small amount of coupling is allowed between the parts, so that
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some coherence is introduced into the whole. Suppose then that

into the system's diagram of immediate effects some actions, i.e.

some arrows, are added, but only enough to give coherency to the

set of parts. The least possible number of arrows, if there are n

parts, is n — 1
;
but this gives only a simple long chain. A small

amount of coupling would occur if the number of arrows were

rather more than this but not so many as n^ — n (which would give

every part an iimnediate effect on every other part).

Smallness of the amount of interaction may thus be due to small-

ness in the number of immediate effects. Another way, important
because of its commonness, occurs when one part or variable affects

another only under certain conditions, so that the immediate effect

is present for much of the time only in a nominal sense. Such

temporary and conditional couplings occur if the variable, for any
reason, spends an appreciable proportion of its time not varying

(the "part-function"). One common cause of this is the existence

of a threshold, so that the variable shows no change except when the

disturbance coming to it exceeds some definite value. Such are

the voltage below which an arc will not jump across a given gap, and
the damage that a citizen will sustain before he thinks it worth

while going to law. In the nervous system the phenomenon of

threshold is, of course, ubiquitous.
The existence of threshold induces a state of affairs that can be

regarded as a cutting of the whole into temporarily isolated sub-

systems; for a variable, so long as it stays constant, cannot, by

S.4/12, have an effect on another; neither can it be affected by another.

In the diagram of immediate effects it will lose both the arrows that

go from it and those that come to it. The action is shown dia-

grammatically in Fig. 4/20/1.

The left square shows a basic network, a diagram of immediate

effects, as it might have been produced by the method of Ex. 4/19/5.

The middle square shows what remains if thirty per cent of the

variables remain constant (by the disturbances that are coming to

them being below threshold). The right square shows what remains

if the proportion constant rises to fifty per cent. Such changes,
from left to right, might be induced by a rising threshold. It will

be seen that the reacting sub-systems tend to grow smaller and

smaller, the rising threshold having the effect, functionally, of cutting
the whole network into smaller and smaller parts.

Thus there exist factors, such as "height of threshold" or "pro-

portion of variables constant", which can vary a large system con-

tinuously along the whole range that has at one end the totally-joined

form., in which every variable has an immediate effect on every other
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variable, and at the other end the totally-unjoined form, in which

every variable is independent of every other. Systems can thus

show more or less of "wholeness". Thus the degree may be specifi-

able statistically even though the system is far too large for the details

to be specified individually.

Ex.: Can a disturbance at A (Fig. AjlOIV) affect B in the left-hand system? In

the other two?

4/21. Local properties. Large systems with much repetition in the

parts, few immediate effects, and slight couplings, can commonly
show some property in a localised form, so that it occurs in only a

few variables, and so that its occurrence (or not) in the few variables

does not determine whether or not the same property can occur in

other sets of a few variables. Such localisable properties are usually

of great importance in such systems, and the remainder of this

chapter will be given to their consideration. Here are some

examples.
In simple chemistry

—the reaction of silver nitrate in solution with

sodium chloride for instance—the component parts number about

1022, ti^us constituting a very large system. The parts (atoms, ions,

etc.) are largely repetitive, for they consist of only a dozen or so

types. In addition, each part has an immediate effect on only a

minute fraction of the totaUty of parts. So the coupling (or not)

of one silver ion to a chloride ion has no effect on the great majority
of other pairs of ions. As a result, the property "coupled to form

AgCl" can exist over and over again in recognisable form throughout
the system. Contrast this possibility of repetition with what happens
in a well coupled system, in a thermostat for instance. In the

thermostat, such a localised property can hardly exist, and can

certainly not be repeated independently elsewhere in the system ;
for

the existence of any property at one point is decisive in determining
what shall happen at the other points.

The change from the chemistry of the solution in a test tube to

that of protoplasm is probably of the same type, the protoplasm, as

a chemically dynamic system, being too richly interconnected in its

parts to allow much local independence in the occurrence of some

property.
Another example is given by the biological world itself, regarded

as a system of many parts. This system, composed ultimately of

the atoms of the earth's surface, is made of parts that are largely

repetitive, both at a low level in that all carbon atoms are chemically

alike, and at a high level in that all members of a species are more or
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less alike. In this system various properties, if they exist in one

place, can also exist in other places. It follows that the basic

properties of the biological world will be of the types to be described
in the following sections.

4/22. Self-locking properties. It is a general property of these

systems that their behaviour in time is much affected by whether
there can, or cannot, develop properties within them such that the

property, once developed, becomes inaccessible to the factors that

would "undevelop" it. Consider, for instance, a colony of oysters.
Each oyster can freely receive signals of danger and can shut close;
once shut, however, it cannot receive the signals of safety that would

re-open it. Were these the only factors at work we could predict
that in time the colony of oysters would pass entirely into the shut

condition—an important fact in the colony's history!
In many other systems the same principle can be traced more

seriously, and in almost all it is important. Consider, for instance,
a solution of reacting molecules that can form various compounds,
some of which can react again but one of which is insoluble, so that

molecules in that form are unreactive. The property of "being the

insoluble compound" is now one which can be taken by part after

part but which, after the insolubility has taken the substance out of

solution, cannot be reversed. The existence of this property is

decisive in the history of the system, a fact well known in chemistry,
where it has innumerable applications.
Too little is known about the dynamics of the cerebral cortex for

us to be able to say much about what happens there. We can
however see that if the nerve cells belong to only a few types, and if

the immediate effects between them are sparse, then if any such

"self-locking" property can exist among them it is almost certain

to be important—to play a major part in determining the cortex's

behaviour, especially when this continues over a long time. Such
would occur, for instance, if the cells had some chance of getting
into closed circuits that reverberated too strongly for suppression
by inhibition. Other possibilities doubtless deserve consideration.

Here we can only glance at them.

The same principle would also apply in an economic system if

workers in some unpleasant industry became unemployed from time
to time, and during their absence discovered that more pleasant
forms of employment were available. The fact that they would pass

readily from the unpleasant to the pleasant industry, but would
refuse to go back, would clearly be a matter of high importance in

the future of the industry.
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In general, therefore, changes that are self-locking are usually of

high importance in determining the eventual state of the system.

4/23. Properties that breed. It should be noticed that in the

previous section we considered, in each example, two different

systems. For though each example was based on only one material

entity, it was used to provide two sets of variables, and these sets

form, by S. 3/11, two systems. The first was the obvious set, very

large in number, provided by the parts; the second was the system
with one variable: ''number of parts showing the property". The

examples showed cases in which this variable could not diminish

with time. In other words it behaved according to the trans-

formation (if the number is n)\

n > n.

This transformation is one of the many that may be found when
the changes of the second system (number of parts showing the

property) is considered. It often happens that the existence of the

property at some place in the system affects the probability that it

will exist, one time-interval later, at another place. Thus, if the

basic system consists of a trail of gunpowder along a hne 12 inches

long, the existence of the property "being on fire" now at the fourth

inch makes it highly probable that, at an interval later, the same

property will hold at the third and fifth inches. Again, if a car has

an attractive appearance, its being sold to one house is likely to

increase its chance of being sold to adjacent houses. And if a

species is short of food, the existence of one member decreases the

chance of the continued, later existence of another member.

Sometimes these effects are of great complexity; sometimes how-

ever the change of the variable "number having the property" can

be expressed sufficiently well by the simple transformation n' = kn,

where k is positive and independent of n.

When this is so, the history of the system is often acutely dependent
on the value of k, particularly in its relation to + 1 . The equation
has as solution, if t measures the number of time-intervals that have

elapsed since ? = 0, and if /7o was the initial value:

n = n^e^^'^''^

Three cases are distinguishable.

(1)^<1. In this case the number showing the property falls

steadily, and the density of parts having the property decreases. It

70



THE MACHINE WITH INPUT 4/24

is shown, for instance, in a piece of pitchblende, by the number of

atoms that are of radium. It is also shown by the number in a

species when the species is tending to extinction.

(2) k = \. In this case the number tends to stay constant. An
example is given by the number of molecules dissociated when the

percentage dissociated is at the equilibrial value for the conditions

obtaining. (Since the slightest deviation of k from 1 will take the

system into one of the other two cases it is of httle interest.)

(3) /: >> 1 . This case is of great interest and profound importance.
The property is one whose presence increases the chance of its

further occurrence elsewhere. The property "breeds", and the

system is, in this respect, potentially explosive, either dramatically,
as in an atom bomb, or insidiously, as in a growing epidemic. A
well known example is autocatalysis. Thus if ethyl acetate has

been mixed with water, the chance that a particular molecule of

ethyl acetate will turn, in the next interval, to water and acetic acid

depends on how many acetate molecules already have the property
of being in the acid form. Other examples are commonly given by
combustion, by the spread of a fashion, the growth of an avalanche,
and the breeding of rabbits.

It is at this point that the majestic development of life by Dar-
winian evolution shows its relation to the theory developed here of

dynamic systems. The biological world, as noticed in S.4/21, is a

system with something like the homogeneity and the fewness of

immediate effects considered in this chapter. In the early days of
the world there were various properties with various ^''s. Some
had k less than 1

—
they disappeared steadily. Some had k equal

to 1—they would have remained. And there were some with k

greater than 1—they developed like an avalanche, came into

conflict with one another, commenced the interaction we call

"competition", and generated a process that dominated all other

events in the world and that still goes on.

Whether such properties, with k greater than 1, exist or can exist

in the cerebral cortex is unknown. We can be sure, however, that

if such do exist they will be of importance, imposing outstanding
characteristics on the cortex's behaviour. It is important to notice

that this prediction can be made without any reference to the par-
ticular details of what happens in the mammalian brain, for it is

true of all systems of the type described.

4/24. The remarks made in the last few sections can only illustrate,

in the briefest way, the main properties of the very large system.

Enough has been said, however, to show that the very large system
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is not wholly different from the systems considered in the earlier

chapters, and to show that the construction of a really adequate

theory of systems in general is more a question of time and labour

than of any profound or peculiar difficulty.

The subject of the very large system is taken up again in S.6/14.
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Chapter
'

STABILITY

5/1. The word "stability" is apt to occur frequently in discussions

of machines, but is not always used with precision. Bellman refers

to it as ". . . stability, that much overburdened word with an un-

stabilised definition". Since the ideas behind the word are of great

practical importance, we shall examine the subject with some care,

distinguishing the various types that occur.

Today's terminology is unsatisfactory and confused; I shall not

attempt to establish a better. Rather I shall focus attention on the

actual facts to which the various words apply, so that the reader will

tend to think of the facts rather than the words. So far as the words

used are concerned, I shall try only to do no violence to established

usages, and to be consistent within the book. Each word used will

be carefully defined, and the defined meaning will be adhered to.

5/2. Invariant. Through all the meanings runs the basic idea of

an "invariant" : that although the system is passing through a series

of changes, there is some aspect that is unchanging; so some state-

ment can be made that, in spite of the incessant changing, is true

unchangingly. Thus, if we take a cube that is resting on one face

and tilt it by 5 degrees and let it go, a whole series of changes of

position follow. A statement such as "its tilt is 1°" may be true at

one moment but it is false at the next. On the other hand, the

statement "its tilt does not exceed 6°" remains true permanently.
This truth is invariant for the system. Next consider a cone stood

on its point and released, like the cube, from a tilt of 5°. The state-

ment "its tilt does not exceed 6°" is soon falsified, and (if we exclude

reference to other subjects) so are the statements with wider limits.

This inability to put a bound to the system's states along some

trajectory corresponds to "instability".

These are the basic ideas. To make them incapable of ambiguity
we must go back to first principles.

5/3. State of equilibrium. The simplest case occurs when a state

and a transformation are so related that the transformation does
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not cause the state to change. Algebraically it occurs when T(x) = x.

Thus if T is

. a b c d e f g h

dbhaefbe
then since T(b) = b, the state b is a state of equilibrium under T.

So also are e and/.
If the states are defined by vectors, then, for a vector to be un-

changed, each component must be unchanged (by S.3/5). Thus if

the state is a vector (x,y), and the transformation is

^
fx' = 2x-y + 2

[y' =x + j; + 3

then, at a state of equilibrium (x',y') must equal (.v,;), and values

for X and ;' must satisfy the equations

r X = 2.x- - y + 2

\y = X + y + 3

i.e. f X — y = — 2

[x = - 3

So this system has only one state of equilibrium, at (— 3,
—

1).

Had the equations not been linear there might have been more.

Exactly the same state, of course, is obtained by using the fact

that at a state of equihbrium each component's change must be

zero, giving x' — x = 0, y'
— y = 0; which leads to the same

equations as before.

If the equations are in differential form, then the statement that

X is to be unchanged with time is equivalent to saying that dx/cit

must be zero. So in the system

dx/dt = 2x - >'2

dyfdt = xy — ^

the state (|,1) is one of equilibrium, because when x and y have

these values all the derivatives become zero, i.e. the system stops

moving.

Ex. 1 : Verify that U transforms (-3,-1) to (-3,-1).

Ex. 2: Has the system (of the last paragraph) any state of equilibrium other than

(i,l)?

Ex. 3: Find all the states of equilibrium of the transformation:

x' = e^^ sin .y, y'
= x-.
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Ex. 4: Find all the states of equilibrium of the transformation:

dxidt = e^*' sin x, cly/dt
= x^.

Ex. 5: If .x' = 2x — > + j\ y' = x + y + A, find values for j and k that will

give a state of equilibrium at (1,1). (Hint: First modify the equations to

represent the state of equilibriimi.)

Ex. 6: If T{b) = b, must T2{b), T\b\ etc., all also equal bl

Ex. 7: Can an absolute system have more states of equilibrium than it has

basins ?

Ex. 8 : What is the characteristic appearance of the kinematic graph of a trans-

formation whose states are all equihbrial?

Ex. 9: (Continued.) What special name was such a transformation given in

an earlier chapter?

Ex. 10: If the transformation is changed (the set of operands remaining the

same) are the states of equilibrium changed?

Ex. 1 1 : If a machine's input is changed, do its states of equilibrium change ?

(Hint: See Ex.5.)

5/4. Cycle. Related to the states of equilibrium is the cycle, a

sequence of states such that repeated application of the transforma-

tion takes the representative point repeatedly round the sequence.

Thus if T is

J. \abcdefgh
c h b h a c c g

then, from a, T generates the trajectory

a c b h g c b h g c b . . .

and the representative point repeatedly traverses the cycle

c -^ b

t I

g ^ h

Ex. 1 : Write down a transformation that contains two distinct cycles and
three states of equilibrium.

Ex. 2: (Continued.) Draw its kinematic graph.

Ex. 3 : Can a state of equilibrium occur in a cycle ?

Ex. 4: Can an absolute system have more cycles than it has basins?

Ex. 5: Can one basin contain two cycles?

*Ex. 6: Has the system dx/dt = y, dy/dt = — x a cycle?

*Ex. 7: If the transformation has a finite number of states and is closed and

single-valued, can a trajectory end in any way other than at a state of

equilibrium or in a cycle?
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5/5. Stable region. If a is a state of equilibrium, T{a) is, as we
saw in S.5/3, simply a. Thus the operation of T on a has generated
no new state.

The same phenomenon may occur with a set of states. Thus,

suppose T is the (unclosed) transformation

abcdefgh
p g b f a a b ni

It has no state of equilibrium; but the set composed of b and g has

the pecuUarity that it transforms thus

b g

T:\

T-.i,
g b

i.e. the operation of T on this set has generated no new state. Such a

set is stable with respect to T.

Fig. 5/5/1

This relation between a set of states and a transformation is, of

course, identical with that described earlier (S.2/4) as "closure".

(The words "stable set" could have been used from there onwards,
but they might have been confusing before the concept of stability

was made clear; and this could not be done until other matters had

been explained first.)

If the transformation is continuous, the set of states may He in a

connected region . Thus in Fig. 5/5/ 1
,
the region within the boundary

A is stable; but that within B is not, for there are points within the

region, such as P, which are taken outside the region.

The concept of closure, of a stable set of states, is of fundamental

importance in our studies. Some reasons were given in S.3/2,
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where it was pointed out that only when the set is stable can the

transformation proceed to all its higher powers unrestrictedly.

Another reason is discussed more fully in S.10/4, where it is

shown that such stabiUty is intimately related to the idea of some

entity "surviving" some operation.

Ex. 1 : What other sets are stable with respect to T1

Ex. 2 : Is the set of states in a basin always stable ?

Ex. 3 : Is the set of states in a cycle always stable ?

Ex. 4: If a set of states is stable under T, and also under U, is it necessarily
stable under UTl

DISTURBANCE
5/6. In the cases considered so far, the equilibrium or stability

has been examined only at the particular state or states concerned.

Nothing has been said, or implied, about the behaviour at neighbour-

ing states.

The elementary examples of equilibrium
—a cube resting on its

face, a bilhard ball on a table, and a cone exactly balanced on its

point
—all show a state that is one of equilibrium. Yet the cone is

obviously different, and in an important way, from the cube. The
difference is shown as soon as the two systems are displaced by
disturbance from their states of equilibrium to a neighbouring state.

How is this displacement, and its outcome, to be represented

generally ?

A "disturbance" is simply that which displaces, that which
moves a system from one state to another. So, if defined accurately,
it will be represented by a transformation having the system's states

as operands. Suppose now that our dynamic system has transforma-

tion T, that a is a state of equilibrium under T, and that D is a given

displacement-operator. In plain English we say: "Displace the

system from its state of equilibrium and then let the system follow

its own laws for some time and see whether the system does or does

not come back to the same state". In algebraic form, we start

with a state of equilibrium a, displace the system to state D{a), and
then find TD{a), T~D(a), T^D{a), and so on; and we notice whether
this succession of states does or does not finish a.s a, a, a, ....

More compactly: the state of equilibrium a in the system with

transformation Tis stable under displacement D if and only if

lim T"D(a) = a.

n—>- CO

Try this formulation with the three standard examples. With
the cube, a is the state with angle of tilt = 0". D displaces this
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to, say, 5°; and T eventually will bring this back to 0°. With the

cone (having transformation U, say) D can be the same displace-

ment, but the limit, whatever it is, of U"D{a) is certainly not a tilt

of 0°; the equiHbrium is unstable. With the bilhard ball, at position

a, the dynamic laws will not bring it back to a after displacement, so

it is not stable by the definition given here. It has the peculiarity,

however, that the limit is D{a); i.e. it retains the displacement,
neither annulling it nor exaggerating it. This is the case of neutral

equilibrium.

(It will be noticed that this study of what happens after the system
has been displaced from a is worth making only if a is a state of

equiHbrium.)

Ex. 1: Is the state of equilibrium c stable to T under the displacement Z) if T
and D are given by:

a b c d e

T c d c a e

D h a d e d

Ex. 2: (Continued.) What if the state of equilibrium is e?

Ex. 3: The region composed of the set of states b, c and d is stable under U:

, a b c d e f
U d c b b c a

E b e f f f d

What is the effect of displacement E, followed by repeated action of t/?

(Hint: Consider all three possibilities.)

5/7. When the dynamic system can vary continuously, small

disturbances are, in practice, usually acting on it incessantly.

Electronic systems are disturbed by thermal agitation, mechanical

systems by vibration, and biological systems by a host of minor

disturbances. For this reason the only states of equilibrium that

can, in practice, persist are those that are stable in the sense of the

previous section. States of unstable equilibrium are of small

practical importance in the continuous system (though they may be

of importance in the system that can change only by a discrete

jump).
The concept of unstable equiHbrium is, however, of some theoreti-

cal importance. For if we are working with the theory of some

mechanism, the algebraic manipulations (S.5/3) will give us all the

states of equiHbrium—stable, neutral, and unstable—and a good deal

of elimination may be necessary if this set is to be reduced to the set

of those states that have a real chance of persistence.

Ex. : Make up a transformation with two states of equilibrium, a and b, and two

disturbances, D and E, so that a is stable to D but not to E, and b is stable

to E but not to D.
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5/8. In general, the results of repeated application of a trans-

formation to a state depend on what that state is. The outcome of
the test of finding what is

lim T"(x)
n—> CO

will thus depend in general on which state is .r. Thus if there are

two disturbances available, D and E, and D takes a to b, while E
takes a to c (no order being implied between a, b and c) the Hmits

of T"D{a) and T"E(a) may be different.

Thus the result of a test for stability, carried out in the manner
of S.5/6, may give different results according to whether the displace-
ment is D or E. The distinction is by no means physically un-

reasonable. Thus a pencil, balanced on its square-cut base, may
be stable to D, if Z) is a displacement of 1° from the vertical, but

may be unstable to E, if £" is a displacement of 5°.

The representation given in S.5/6 thus accords with common
practice. A system can be said to be in stable equilibrium only if

some sufficiently definite set of displacements D is specified. If the

specification is explicit, then D is fully defined. Often D is not

given explicitly but is understood; thus if a radio circuit is said to

be "stable", one understands that D means any of the commonly
occurring voltage fluctuations, but it would usually be understood
to exclude the stroke of lightning. Often the system is understood
to be stable provided the disturbance hes within a certain range.
What is important here is that in unusual cases, in biological systems
for instance, precise specification of the disturbances D, and of the

state of equilibrium under discussion a, may be necessary if the dis-

cussion is to have exactness.

5/9. The continuous system. In the previous sections, the states

considered were usually arbitrary. Real systems, however, often

show some continuity, so that the states have the natural relationship

amongst themselves (quite apart from any transformation imposed
by their belonging to a transducer) that two states can be "near" or

"far from" one another.

With such systems, and a state of equilibrium a, D is usually
defined to be a displacement, from a, to one of the states "near" a.

If the states are defined by vectors with numerical components, i.e.

based on measurements, then D often has the effect of adding small

numerical quantities Si, §2^ • , S,„ to the components, so that the

vector (xi, . . ., .y„) becomes the vector (.Yj + S,, . . ., .y„ + 8„).

In this form, more specialised tests for stability become possible.
An introduction to the subject has been given in Design .... The
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subject soon becomes somewhat mathematical; here it is sufficient

to notice that these questions are always capable of being answered,

at least in principle, by the process of actually tracing the changes as

the system moves successively through the states D(a), TD{a),

T^D{a), etc. (Compare S.3/9.) The sole objection to this simple,

fundamental, and reliable method is that it is apt to become ex-

ceedingly laborious in the complicated cases. It is, however, capable

of giving an answer in cases to which the more specialised methods

are inapplicable. In biological material, the methods described in

this chapter are likely to prove more useful than the more specialised ;

for the latter often are applicable only when the system is continuous

and linear, whereas the methods of this chapter are applicable

always.
A specially simple and well known case occurs when the system

consists of parts between which there is feedback, and when this

has the very simple form of a single loop. A simple test for stability

(from a state of equilibrium assumed) is to consider the sequence of

changes that follow a small displacement, as it travels round the

loop. If the displacement ultimately arrives back at its place of

origin with size and sign so that, when added algebraically to the

initial displacement, the initial displacement is diminished, i.e.

brought nearer the state of equilibrium, then the system, around that

state of equilibrium, is (commonly) stable. The feedback, in this

case, is said to be "negative" (for it causes an eventual subtraction

from the initial displacement).

The test is simple and convenient, and can often be carried out

mentally; but in the presence of any complications it is unreliable if

carried out in the simple form described above. The next section

gives an example of one way in which the rule may break down if

applied crudely.

Ex. I : Identify a, D and T in Ex. 3/6/17. Is this system stable to this displace-

ment?

Ex. 2: (Continued.) Contrast Ex. 3/6/19.

Ex. 3 : Identify a and Tin Ex. 2/14/1 1 . Is it stable if D is any displacement from

«?

Ex. 4: Take a child's train (one that runs on the floor, not on rails) and put the

line of carriages slightly out of straight. Let M be the set of states in which

the deviations from straightness nowhere exceed 5 '. Let T be the operation

of drawing it along by the locomotive. Is M stable under T?

Ex. 5: (Continued.) Let U be the operation of pushing it backwards by the

locomotive. Is M stable under C/?

Ex. 6 : Why do trains have their locomotives in front ?
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Ex. 1 : A bus service starts with its buses equally spaced along the route. If a

bus is delayed, extra passengers collect at the stopping points, so it has to

take up, and set down, more passengers than usual. The bus that follows

it, being closer than usual, has fewer passengers to handle and is delayed
less than usual. Are irregularities of spacing self-correcting or self-

aggravating ?

Ex. 8 : What would happen if an increase of carbon dioxide in the blood made
the respiratory centre less active?

Ex. 9: Is the system x' = ^y, y' = \x stable around (0,0)?

5/10. Positive feedback. The system described in the last exercise

deserves closer attention.

From (10,10) it goes to (5,5)

„ (10,12),, „ ,,(6,5);

so an increase in y (from 10 to 12) leads to an increase in .v (from
5 to 6). (Compare S.4/13.) Similarly,

from (10,10) it goes to (5,5)

„ (12,10),, „ ,,(5,6)

so an increase in x (from 10 to 12) leads to an increase in v (from
5 to 6). Each variable is thus having a positive effect on the other

and if the system were discussed in plain words these facts might be

used to "prove" that it is unstable, for a vicious circle seems to be

acting.

The system's behaviour, by converging back to (0,0), declares

indisputably that the system is stable around this state of equilibrium.
It shows clearly that arguments based on some short cut, e.g. by

showing that the feedback is positive, may not be rehable. (It

shows also that feedback can be positive and yet leave the system

stable; yet another example of how unsuitable is the concept of

feedback outside its particular range of applicability.)

5/11. Undesirable stability. Stability is commonly thought of as

desirable, for its presence enables the system to combine something
of flexibility and activity in performance with something of per-

manence. Behaviour that is goal-seeking is an example of behaviour

that is stable around a state of equilibrium. Nevertheless, stability

is not always good, for a system may persist in returning to some
state that, for other reasons, is considered undesirable. Once petrol

is lit it stays in the lit state, returning to it after disturbance has

changed it to "half-lit"—a highly undesirable stabihty to a fireman.

Another example is given by the suggestion that as the more

intelligent members of the community are not reproducing their
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kind as freely as are the less intelligent, the Intelligence Quotient
of the community will fall. Clearly it cannot fall very low, because

the feebleminded can reproduce better than the idiot. So if these

were the only factors in the situation, the I.Q. would be stable at

about 90. Stability at this figure would be regarded by most people
as undesirable.

An interesting example of stability occurs in the condition known
as "causalgia", in which severe pain, without visible cause, occurs

in a nerve which has previously been partly divided. Granit has

shown that it is almost certainly due to conduction, at the site of

injury, of impulses from the motor (outgoing) to the sensory (in-

coming) nerves, allowing the formation of a regenerative circuit via

the reflex centres in the spinal cord. Such a circuit has two states

of equilibrium, each stable: conducting few impulses or conducting
the maximal number. It is like a top-heavy see-saw, that will rest

in either of two extreme conditions but will not rest in between.

The patient is well aware that "stability" can be either good or bad,
for of the two stable states one is comfortable and the other extremely

painful.

EQUILIBRIUM IN PART AND WHOLE

5/12. We can now notice a relation between couphng and equilib-

rium that will be wanted later (S.12/14 and 13/19), for it has import-
ant applications.

Suppose some whole system is composed of two parts A and B,

which have been coupled together:

B

and suppose the whole is at a state of equilibrium.
This means that the whole's state is unchanging in time. But

the whole's state is a vector with two components: that of y4's state

and that of 5's. It follows that A, regarded as a sub-system, is also

unchanging; and so is B.

Not only is A''s state unchanging but so is the value of ^'s input;
for this value is determined by B's state (S.4/7), which is unchanging.
Thus ^ is at a state of equilibrium in the conditions provided by B.

(Cf. Ex. 5/3/11.) The similar property holds for B. Thus, if the

whole is at a state of equilibrium, each part must be in a state of

equilibrium in the conditions provided by the other.

The argument can also be reversed. Suppose A and B are at

states of equilibrium, and that each state provides, for the other
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system, an input-value that makes the other's state to be one of

equiHbrium. Then neither can change, and the whole cannot

change; and thus the whole must be at a state of equilibrium.

Thus each implies the other. Formally: the whole is at a state of

equilibrium if and only if each part is at a state of equilibrium in the

conditions provided by the other part. (If there are several parts the

last word is merely changed to "parts".)

5/13. Power of veto. The same thesis can be stated more vividly,

making it more useful conceptually. Suppose A and B are coupled
and suppose we are interested only in the occurrence of a state of

equilibrium (not of cycles). When the whole is started from some

initial state, and goes along some trajectory, A and B will pass through
various states. Suppose it happens that at some moment 5's state

provides conditions that make ^'s present state one of equilibrium.

A will not change during the next step. If B is not itself at a state of

equilibrium in the conditions provided by ^, it will move to a new

state, y^'s conditions will thereby be changed, its states of equilib-

rium will probably be changed, and the state it is at will probably
no longer be one of equilibrium. So A will start moving again.

Picturesquely, we can say that A proposed a state of equilibrium

(for A was willing to stop), but B refused to accept the proposal, or

vetoed the state. We can thus regard each part as having, as it

were, a power of veto over the states of equilibrium of the whole.

No state {of the whole) can be a state of equilibrium unless it is accept-

able to every one of the component parts, each acting in the conditions

given by the others.

Ex.: Three one-variable systems, with Greek-letter parameters, are:

x' = - X + a, y' = Ifiy + 3, z' = - yz + S.

Can they be coupled so as to have a state of equilibrium at (0,0,0) ? (Hint :

What value would jS have to have?)

5/14. The homeostat. This principle provides a simple way of

looking at the homeostat and of understanding its working. It

can be regarded as a part A coupled to a part B (Fig. 5/14/1).

Part A consists essentially of the four needles (with ancillary coils,

potentiometers, etc.) acting on one another to form a four-variable

system to which 5's values are input. y4's state is specified by the

positions of the four needles. Depending on the conditions and

input, A may have states of equilibrium with the needles either

central or at the extreme deviation.

Part B consists essentially of a relay, which can be energised or
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not, and four stepping-switches, each of which can be in any one

of 25 positions (not shown accurately in the Figure). Each position
carries a resistor of some value. So B has 2 x 25 x25 x 25 x 25,

i.e. 781250, states. To this system yi is input, fi has been built so

that, with the relay energised, none of 5's states is equilibrial (i.e. the

switches keep moving), while, with the relay not energised, all are

equilibrial (i.e. all switches stay where they are).

Finally, B has been coupled to A so that the relay is non-energised
when and only when A is stable at the central positions.

When a problem is set (by a change of value at some input to A
not shown formally in the Figure), A has a variety of possible states

of equilibrium, some with the needles at the central positions, some
with the needles fully diverged. The whole will go to some state of

equilibrium. An equilibrium of the whole implies that B must be

A B

ti^

U

• • • a' - •

Fig. 5/14/1

in equilibrium, by the principle of the previous section. But B has

been made so that this occurs only when the relay is non-energised.
And B has been coupled to A so that the relay is non-energised only
when yi's needles are at or near the centres. Thus the attachment

of B vetoes all of ^'s equilibria except such as have the needles at

the centre.

It will now be seen that every graph shown in Design . . . could

have been summed up by one description: "trajectory of a system

running to a state of equilibrium". The homeostat, in a sense, does

nothing more than run to a state of equilibrium. What Design . . .

showed was that this simple phrase may cover many intricate and

interesting ways of behaving, many of them of high interest in

physiology and psychology.

(The subject of "stability" recurs frequently, especially in S.9/6,

10/4, 12/1 1
;
that of the homeostat is taken up again in S. 12/15.)
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5/15. The complex of ideas involved in "stability" can now be

summarised.

First there is the state of equilibrium
—the state that is unchanged

by the transformation. Then the state may become multiple, and

we get the stable set of states, of which the cycle and basin are

examples.
Given such a state or set of states and some particular disturbance

we can ask whether, after a disturbance, the system will return to its

initial region. And if the system is continuous, we can ask whether

it is stable against all disturbances within a certain range of values.

Clearly, the concept of stabiUty is essentially a compound one.

Only when every aspect of it has been specified can it be apphed
unambiguously to a particular case. Then if its use calls for so

much care, why should it be used at all? Its advantage is that, in

the suitable case, it can sum up various more or less intricate

possibilities briefly. As shorthand, when the phenomena are

suitably simple, words such as equilibrium and stability are of

great value and convenience. Nevertheless, it should be always
borne in mind that they are mere shorthand, and that the phenomena
will not always have the simplicity that these words presuppose. At
all times the user should be prepared to delete them and to substitute

the acutal facts, in terms of states and transformations and

trajectories, to which they refer.

It is of interest to notice, to anticipate S.6/19, that the attempt to

say what is significant about a system by a reference to its stability

is an example of the "topological" method for describing a large

system. The question "what will this system do?", applied to, say,

an economic system, may require a full description of every detail

of its future behaviour, but it may be adequately answered by the

much simpler statement "It will return to its usual state" (or perhaps
"it will show ever increasing divergence"). Thus our treatment in

this chapter has been of the type required when dealing with the

very large system.
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Chapter 6

THE BLACK BOX

6/1. The methods developed in the previous chapters now enable

us to undertake a study of the Problem of the Black Box; and the

study will provide an excellent example of the use of the methods.

The Problem of the Black Box arose in electrical engineering.

The engineer is given a sealed box that has terminals for input, to

which he may bring any voltages, shocks, or other disturbances he

pleases, and terminals for output, from which he may observe what

he can. He is to deduce what he can of its contents.

Sometimes the problem arose literally, when a secret and sealed

bomb-sight became defective and a decision had to be made, without

opening the box, whether it was worth returning for repair or whether

it should be scrapped. Sometimes the problem arose practically, as

when a telephone engineer considered a complicated set of relations

between tests applied and results observed, in the middle of a mass

of functioning machinery that was not to be dismantled for insuffi-

cient reason.

Though the problem arose in purely electrical form, its range of

apphcation is far wider. The chnician studying a patient with brain

damage and aphasia may be trying, by means of tests given and

speech observed, to deduce something of the mechanisms that are

involved. And the psychologist who is studying a rat in a maze

may act on the rat with various stimuli and may observe the rat's

various behaviours; and by putting t-he facts together he may try to

deduce something about the neuronic mechanism that he cannot

observe. I need not give further examples as they are to be found

everywhere (S.6/17).

Black Box theory is, however, even wider in application than these

professional studies. The child who tries to open a door has to

manipulate the handle (the input) so as to produce the desired

movement at the latch (the output); and he has to learn how to

control the one by the other without being able to see the internal

mechanism that links them. In our daily lives we are confronted

at every turn with systems whose internal mechanisms are not fully

open to inspection, and which must be treated by the methods

appropriate to the Black Box.

86



THE BLACK BOX 6/2

The experimenter who is not interested in Black Box theory

usually regards any casing as merely a nuisance, for it delays his

answering the question "what is in this Box?" We, however, shall

be considering such larger questions as

"How should an experimenter proceed when faced with a Black

Box?"
"What properties of the Box's contents are discoverable and what

are fundamentally not discoverable?"

"What methods should be used if the Box is to be investigated

efficiently?"

Proper attention can be given to these questions only by our accept-

ing the existence, at least temporarily, of a casing, and proceeding

accordingly. Then, and only then, can we develop a scientific

epistemology.

6/2. To start with, let us make no assumptions at all about the

nature of the Box and its contents, which might be something, say,

that has just fallen from a Flying Saucer. We assume, though, that

the experimenter has certain given resources for acting on it (e.g.

prodding it, shining a hght on it) and certain given resources for

observing its behaviour (e.g. photographing it, recording its tempera-

ture). By thus acting on the Box, and by allowing the Box to affect

him and his recording apparatus, the experimenter is coupling

himself to the Box, so that the two together form a system with

feedback :

Box Experimenter

For the coupling to be made in some defined and reproducible

way, the Box's "input" must be specified, if only arbitrarily and

provisionally. Every real system has an indefinitely large number of

possible inputs
—of possible means by which the experimenter may

exert some action on the Box. Equally, it has an indefinitely large

number of possible outputs
—of ways by which it may affect the

experimenter, perhaps through recording instruments. If the

investigation is to be orderly, the set of inputs to be used and of

outputs to be observed must be decided on, at least provisionally.

Let us assume, then, that this has been done.

The situation that we (author and reader) are considering can be

made clearer by the introduction of two harmless conventions. Let

it be assumed that the inputs, whatever their real nature, are replaced

by, or represented by, a set of levers or pointers
—^like the controls to

a domestic cooking oven. We can then be quite clear as to what is
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meant by the input "being in a certain state"—it is the state that would

be shown on a snapshot of the controls. Also let us assume that

the output consists of a set of dials, attached to the Box and affected

by the mechanism inside, so that the pointers on the dials show, by
their positions at any particular moment, the state of the output.
We now see the experimenter much like the engineer in a ship,

who sits before a set of levers and telegraphs by which he may act

on the engines, and who can observe the results on a row of dials.

The representation, though it may seem unnatural, is in fact, of

course, capable of representing the great majority of natural systems,

even if biological or economic.

6/3. The Investigation. A man cannot step twice into the same

river; neither can he twice conduct the same experiment. What
he can do is to perform another experiment which differs from the

first only in some way that is agreed to be negligible.

The same fact applies to an examination of the Black Box. The
basic data will always be of the form :

Time
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and /S, and possible output states /, g, h and j, a typical protocol

might read (and be yet another transformation!):

Time: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

State: ag aj af af af j3/ ^h jS/z ah aj ^f ah )8/ j3/ ah pj «/

(Parentheses have been omitted for brevity.)

This form, though it may seem artificial and unnatural, is in fact

typical and general. It will represent anything from the investiga-

tion of an electrical network by putting in a sinusoidal voltage and

observing the output, to a psychiatric interview at which questions

a, /3 were put and answers g,f, h,j ehcited.

Thus, the primary data ofany investigation of a Black Box consists

ofa sequence of values of the vector with two components:

(input state, output state).

(The possibility is not excluded that each component may itself

be a vector (S.3/5).)

From this there follows the fundamental deduction that all

knowledge obtainable from a Black Box {of given input and output)

is such as can be obtained by re-coding the protocol; all that, and

nothing more.

Ex.: Tabulate the transitions observed in the system that started at ag. Find
some regularities in them.

6/4. It will be noticed that nothing has been said about the skill of

the experimenter in manipulating the input. The omission was

deliberate, for no skill is called for! We are assuming, remember,
that nothing is known about the Box, and when this is so the method
of making merely random variations (e.g. guided by throws of a die)

on the input-switches is as defensible as any other method; for no
facts yet exist that could be appealed to as justification for preferring

any particular method. With terrestrial machinery—industrial,

biological, neuronic—-the experimenter has often had previous

experiences with Boxes of the same class. When this is so he may
be able to use a method that explores what he does not know about

the present Box more efficiently than some other method. (These

matters, of exploring a partly known system, lead into questions of

altogether more advanced type, and their consideration must be

postponed; a little is said on the subject in S.13/5 and onwards.)

6/5. Absoluteness. When a generous length of record has been

obtained, the experimenter will look for regularities, for repetitive-

ness in the behaviour (S.7/19). He may notice, for instance, in
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Ex. 6/3/1, that ay is always followed by either a/or /S/^that although
the a's transition is not single-valued, that of they is.

So he examines the record. Usually his first concern is to see

whether the Box is absolute if the input state is given. He does

this by collecting:

(i) all the transitions that followed the input state a, sorting
them into what g went to, what // went to, and so on through
all the output states;

(ii) the same for input j8;

(iii) and so on through all the observed input states.

What he tries, in other words, is to fill in a set of transformations

like those of S.4/1, and he examines what he gets to see if they are

single-valued.

Thus, if the given protocol is tested, and if every one of the 16

transforms is recorded, there results:

1
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One way is to alter the set of inputs and outputs
—to take more

variables into account—and then to see if the new system (equivalent

to a new Box, S.3/11) is determinate. Thus a chemist may find

that a system's behaviour is at first not determinate, but that when
the presence of traces of chloride is taken into account it becomes

determinate. A great deal of research consists of such searches for

a suitable set of variables.

A second way is to abandon the attempt to find strict determinacy
and to look for statistical determinacy, i.e. determinacy in averages,

etc. The experimenter, with extensive records available, then studies

them in long sections, to see whether, if the details are not pre-

dictable from step to step, the averages (or similar statistics) are

predictable from section to section. He may find that the records

show the statistical determinateness of the Markov chain; (but

discussion of this will be left to Chapter 9, for until then we shall be

concerned only with machines that are determinate from step to

step).

To summarise : once the protocol has been obtained, the system's

determinateness can be tested, and (if found determinate) its

canonical representation can be deduced.

Ex. 1 : Deduce the kinematic graph for input at « directly from the protocol of

the system of S.6/3.

Ex. 2 : (Continued.) and for input at p.

Ex. 3 : A system with only one input state gave the following sequence of states

as output:DGAHCLHCLHCF C...

Is it absolute?

Ex. 4: A system has two variables, .v and y, each of which can take the values

0, 1 or 2. The input can take two values, a or /3. The protocol gave :

Time:
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Ex. 7: Two Black Boxes are of identical external appearance, and each has a

single input a and a single output x, each a numerical variable. They were

labelled I and II, and their canonical representations were found to be

I: a;' = X + 1
- a

II: A-' = (1 + a)x - 2 + a.

Unfortunately the labels "I" and "11" have since become detached and it is

now not known which is which. Suggest a simple test that will re-identify

them.

6/6. Inaccessible states. Examination of the transformations

V '
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connexions" is not unique. The radio set, for instance, has one

diagram of connexions if considered electrically and another if

considered mechanically. An insulator, in fact, is just such a

component as will give firm mechanical connexion while giving no

electrical connexion. Which pattern of connexions will be found

depends on which set of inputs and outputs is used.

Even if the diagram of immediate effects is unique, it does not

indicate a unique pattern of connexions within the Box. Thus

suppose a Black Box has an output of two dials, x and y; and

suppose it has been found that .y dominates y. The diagram of

immediate effects is thus

X

(in which the two boxes are parts of the whole Box). This relation-

ship can be given by an infinity of possible internal mechanisms. A
particular example occurs in the case in which relays open or close

switches in order to give a particular network of connexions. It

has been shown by Shannon that any given behaviour can be pro-

A p-

B P-—X-

C P^V- T.

^n

-X-

Fig. 6/7/1

l_f _1

duced by an indefinitely large number of possible networks. Thus,
let X represent a contact that will be closed when the relay X is

energised, and let x represent one that will be opened. Suppose
similarly that another relay Y has similar contacts y and y. Suppose
that the network is to conduct from p to q when and only when
both X and Y are energised. The network A of Fig. 6/7/1, in

which X and y are connected in series, will show the required be-

haviour. So also will B, and C, and an indefinitely large number
of other networks.

The behaviour does not specify the connexions uniquely.

Ex. : (Ex. 6/5/4 continued.) Deduce the diagram of immediate effects when the

input is fixed at a. (Hint : S.4/ 1 3 .)
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ISOMORPHIC MACHINES

6/8. Study of a Black Box can thus give the experimenter informa-

tion up to a certain amount; and, if the inputs and outputs are given,

cannot possibly be made to give more. How much information

will be discussed in S.13/I5 (especially its last Ex.). Here it is

sufficient if we notice that the canonical representation specifies

or identifies the mechanism "up to an isomorphism".

"Isomorphic" means, roughly, "similar in pattern". It is a

concept of the widest range and of the utmost importance to all who
would treat accurately of matters in which "pattern" plays a part.

Let us consider first a few examples merely to illustrate the basic ideas.

A photographic negative and the print from it are, so far as the

pattern of the picture is concerned, isomorphic. Squares in the

negative appear as squares in the print; circles appear as circles;

parallel lines in the one stay as parallel lines in the other. Thus

certain relations between the parts within the negative appear as

the same relations in the print, though the appearances so far as

brightness is concerned are different, exactly opposite in fact. Thus

the operation of changing from negative to print leaves these

relations unaltered (compare S.5/2).

A map and the countryside that it represents are isomorphic

(if the map is accurate !). Relationships in the country, such as that

towns A, B and C form an equilateral triangle, occur unchanged
on the map, where the representative dots for A, B and C also

form an equilateral triangle.

The patterns need not be visual. If a stone is thrown vertically

upwards with an initial velocity of 50 ft. per second, there is an

isomorphism between the set of points in the air such that at time

/ the stone was h feet up and the set of those points on a graph that

satisfy the equation

y = 50x - 16.v2.

The lines along which air flows (at sub-sonic speeds) past an

aerofoil form a pattern that is identical with the lines along which

electric current flows in a conducting liquid past a non-conductor

of the same shape as the aerofoil. The two patterns are the same,

though the physical bases are different.

Another isomorphism is worth consideration in more detail.

Fig. 6/8/1 shows two dynamic systems, each with an input and an

output. In the upper one, the left-hand axle / is the input; it can

be rotated to any position, shown on the dial u. It is connected

94



THE BLACK BOX 6/8

through a spring -S to a heavy wheel M, which is rigidly connected
to the output shaft O. O's degree of rotation is shown on the dial

V, which is its output. The wheel dips into a trough with liquid F,

which applies a frictional force to the wheel, proportional to the

wheel's velocity. If now, starting from given conditions, the input
u is taken through some sequence of values, so will the output v

pass through some determinate sequence of values, the particular

sequence depending on v's initial value, on v's rate of change at

that moment, and on the sequence used for the input at u.

Fig. 6/8/1

The lower system is electrical. Its input is a potentiometer, or
other device, 7, that emits the voltage shown on the scale .y. In
series are an inductance L, a resistance R, and a capacitance C.
P is a current meter (such as is used in domestic supplies) recording
the sum of the currents that have passed through it. The sum is

shown on the scale y, which is its output.
If now the values of L, R and C are adjusted to match the stiffness

of the spring, inertia of the wheel, and friction at F (though not

respectively), then the two systems can show a remarkable functional

identity. Let them both start from rest. Apply any input-sequence
of values at u, however long and arbitrary, and get an output-
sequence at V, of equal length: if the same sequence of values is

given at x, the output at y will be identical, along its whole length,
with that at v. Try another input sequence to u and record what
appears at v : the same input given to x will result in an output at
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y that copies that at v. Cover the central parts of the mechanism
and the two machines are indistinguishable throughout an infinite

number of tests applied. Machines can thus show the profoundest
similarities in behaviour while being, from other points of view,

utterly dissimilar.

Nor is this all. Well known to mathematicians are equations of

the type

d^z dz

^^ + ^^ + ^^~ = ^

by which, if a graph is given showing how w varied with time {t),

the changes induced in z can be found. Thus w can be regarded
as an "input" to the equation and z an "output". If now a, b, and
c are given values suitably related to L, R, S, etc., the relation between

w and z becomes identical with those between ii and v, and between

A' and >'. All three systems are isomorphic.
The great practical value of isomorphisms is now becoming

apparent. Suppose the problem has arisen how the mechanical

system will behave under certain conditions. Given the input u,

the behaviour v is required. The real mechanical system may be

awkward for direct testing: it may be too massive, or not readily

accessible, or even not yet made! If, however, a mathematician is

available, the answer can be found quickly and easily by finding

the output z of the differential equation under input w. It would be

said, in the usual terms, that a problem in mathematical physics
had been solved. What should be noticed, however, is that the

process is essentially that of using a map—of using a convenient

isomorphic representation rather than the inconvenient reahty.

It may happen that no mathematician is available but that an

electrician is. In that case, the same principle can be used again.

The electrical system is assembled, the input given to x, and the

answer read off at y. This is more commonly described as "building
an electrical model".

Clearly no one of the three systems has priority; any can sub-

stitute for the others. Thus if an engineer wants to solve the differ-

ential equation, he may find the answer more quickly by building

the electrical system and reading the solutions at y. He is then

usually said to have "built an analogue computer". The mechanical

system might, in other circumstances, be found a more convenient

form for the computer. The big general-purpose digital computer
is remarkable precisely because it can be programmed to become

isomorphic with any dynamic system whatever.

The use of isomorphic systems is thus common and important.
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It is important because most systems have both difficult and easy

patches in their properties. When an experimenter comes to a

difficult patch in the particular system he is investigating he may,
if an isomorphic form exists, find that the corresponding patch in

the other form is much easier to understand or control or investigate.

And experience has shown that the ability to change to an isomorphic

form, though it does not give absolutely trustworthy evidence (for

an isomorphism may hold only over a certain range), is nevertheless

a most useful and practical help to the experimenter. In science it

is used ubiquitously.

6/9. It must now be shown that this concept of isomorphism, vast

though its range of applicability, is capable of exact and objective

oc p

i
d^^C

a==bb

cl=^c I J

i\
k^

Fig. 6/9/1

definition. The most fundamental definition has been given by
Bourbaki; here we need only the form suitable for dynamic systems.
It applies quite straightforwardly once two machines have been

reduced to their canonical representations.

Consider, for instance, the two simple machines M and TV, with

canonical representations

M:

I
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output) of the one machine into those of the other can convert

the one representation to the other.

Thus, in the example given, apply the one-one transformation P

S € g h j k
P:\

,5
a a b d

to A^'s table, applying it to the borders as well as to the body. The
result is

i



THE BLACK BOX 6/10

The transformation P:

y -^

is a shorthand way of describing the one-one transformation that

pairs off states in S and R thus:

in S, (2,3) against (-3,2) in R

(1,0) „ (0,1) „ „

(4,5) „ (-5,4) „ „

„ „ (-3,0) „ (0,-3) „ „

i.e. „ „ {u,v) „ {—v,u) „ „

(Compare U of S.4/9.) Apply P to all the description of S; the

result is

r y = -y + X

I -A-' = -y - X

which is algebraically identical with R. So R and ^S' are isomorphic.

Ex. 1 : What one-one transformation will show these absolute systems to be

isomorphic?

y, a b c d e y.pqrst
' ^

c c d d b
' ^

r q q p r

(Hint: Try to identify some characteristic feature, such as a state of

equilibrium.)

£.Y. 2: How many one-one transformations are there that will show these

absolute systems to be isomorphic?

A:\l^
'

B:\P ^ '
* b c a *

r p q

*Ex. 3: Write the canonical equations of the two systems of Fig. 6/8/1 and show
that they are isomorphic. (Hint: How many variables are necessary if

the system is to be a machine with input?)

^.v. 4: Find a re-labelling of variables that will show the absolute systems A
and B to be isomorphic.

Cx' = -A-2 + y fu'= )V2 -f «

A: {y' = -x2-y B:
-{

v' = -v2+ w

[_Z'
=

J'2 + Z lw'= -1-2- Vt'

(Hint: On the right side of A one variable is mentioned only once; the

same is true of B. Also, in A, only one of the variables depends on itself

quadratically, i.e. if of the form a' = ± a2 . . . ; the same is true of B.)

6/10. The previous section showed that two machines are iso-

morphic if one can be made identical to the other by simple re-

labelling. The "re-labelling", however, can have various degrees
of complexity, as we will now see.
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The system that is specified only by states, as in the previous

section, contains no direct reference either to parts or to variables.

In such a case, "re-labelling" can mean only "re-labelling the

states". A system with parts or variables, however, can also be

re-labelled at its variables—by no means the same thing. Re-

labelling the variables, in effect, re-labels the states but in a way
subject to considerable constraint (S.7/8), whereas the re-labelhng

of states can be as arbitrary as we please. So a re-labelHng of the

states is more general than a re-labelling of the variables.

Thus suppose a system has nine states; an arbitrary re-labeUing

of eight of the states does not restrict what label shall be given to

the ninth. Now suppose that the system has two variables, x and

y, and that each can take three values: Xj, X2, Xt, and >'i, y2, j'3.

Nine states are possible, of which two are (^2,J3) and (X2,yi). Suppose
this system is re-labelled in its variables, thus

^
I V

If now {x2,yi) is transformed to some state {a,^), and iXi,yi) is trans-

formed to (y,S), then, for consistency, the state (x2,yi) must transform

to («,S). (Draw the phase spaces and identify the values on the ^

and 17 axes.) Thus the nine states now cannot be transformed

arbitrarily and independently. A re-labelling of the variables offers

less scope for change than a re-labelling of states.

As a result, certain features that are destroyed by a re-labelling

of states are preserved by a re-labelling of variables. Among them
is the diagram of immediate effects.

The system described by its states has, of course, no such diagram,
for it has in effect only one variable. A system with variables,

however, has a diagram of immediate effects. The phase-space
now has axes; and it is easily seen, after a few trials, that a one-one

transformation that re-labels the variables, changes the diagram of

immediate effects only to the extent of a "button and string" change;

turning, say, A into B:
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Ex. 1 : (Ex. 6/9/4 continued.) Compare the diagram of immediate etTects of

A and B.

Ex. 2: Mark the following properties of an absolute system as changed or

unchanged by a re-labelling of its states: (i) The number of basins in its

phase-space; (ii) whether it is reducible; (iii) its number of states of equili-

brium; (iv) whether feedback is present; (v) the number of cycles in its

phase-space.

Ex. 3 : (Continued.) How would they be affected by a re-labelling of variables?

6/11. The subject of isomorphism is extensive, and only an intro-

duction to the subject can be given here. Before we leave it, however,

we should notice that transformations more complex than a simple

re-labelling of variables can change the diagram of immediate

effects. Thus the systems

B:

are isomorphic under the one-one transformation

— u

V -\- v^

P:

Yet A's diagram is

while B's diagram is

X
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HOMOMORPHIC MACHINES

6/12. The definition given for isomorphism defines "equahty"
in the strictest sense—it allows that two machines (or two Black

Boxes) are "equal" only when they are so alike that an accidental

interchange of them would be subsequently indetectable, at least

by any test applied to their behaviours.

There are, however, lesser degrees of resemblance. Thus two
pendulums, one beating seconds and the other half-seconds, are

obviously similar, yet they are not isomorphic in the strict sense.

There is, however, some similarity, which is shown by the fact that

they become isomorphic if they are measured on separate time-

scales, the one having half the values of the other.

Two machines may also be related by a "homomorphism." This
occurs when a many-one transformation, apphed to the more complex,
can reduce it to a form that is isomorphic with the simpler. Thus
the two machines M and N

g h

\
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It will be found that the repetitions do not contradict one another,

and that the table can equally well be given as

^ ''
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does not observe all the many detailed processes going on in the

individual members. The biologist thus usually studies only a

small fraction of the system that faces him. Any statement he
makes is only a half-truth, a simplification. To what extent can

systems justifiably be simplified? Can a scientist work properly
with half-truths?

The practical man, of course, has never doubted it. Let us see

whether we can make the position clear and exact.

Knowledge can certainly be partial and yet complete in itself.

Perhaps the most clear-cut example occurs in connexion with

ordinary multiplication. The complete truth about multiplication

is, of course, very extensive, for it includes the facts about all

possible pairs, including such items as that

14792 X 4,183584 = 61883,574528.

There is, however, a much smaller portion of the whole which
consists simply in the facts that

Even X Even = Even
Even X Odd = Even
Odd X Even = Even
Odd X Odd = Odd

What is important here is that though this knowledge is only an
infinitesimal fraction of the whole it is complete within itself. (It

was, in fact, the first homomorphism considered in mathematics.)
Contrast this completeness, in respect of Even and Odd, with the

incompleteness shown by
2x2 = 4

2x4-8
4x2= 8

4x4=16
which leaves unmentioned what is 4 x 8, etc. Thus it is perfectly

possible for some knowledge, though partial in respect of some

larger system, to be complete within itself, complete so far as it

goes.

Homomorphisms may, as we have seen, exist between two different

machines. They may also exist within one machine: between the

various possible simplifications of it that still retain the character-

istic property of being machine-like (S.3/1). Suppose, for instance,

that the machine were A:

,
. a b c d e

A: i
e b a b e
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This is the machine as seen by the first observer (call him One).

Suppose now that another observer (call him Two) was unable to

distinguish states a and d, and also unable to distinguish h and e.

Let us give the states new names for clarity :

a d c h e

K L M
The second observer, seeing states K,Lov M would find the machine's

behaviour determinate. Thus when at K (really a or d) it would

always go to M (either b or e), and so on. He would say that it

behaved according to the closed transformation

K L M
^ M K M

and that this was single-valued, and thus determinate.

The new system has been formed simply by grouping together

certain states that were previously distinct, but it does not follow

that any arbitrary grouping will give a homomorphism. Thus suppose

yet another observer Three could distinguish only two states:

a b c d e

P Q
He would find that P changed sometimes to Q (when P was really

at a) and sometimes to P (when P was really at b or c). The change

from P is thus not single-valued, and Three would say that the

machine (with states P and Q) was not determinate. He would

be dissatisfied with the measurements that led to the distinction

between P and Q and would try to become more discriminating,

so as to remove the unpredictability.

A machine can thus be simplified to a new form when its states are

compounded suitably. Scientific treatment of a complex system

does not demand that every possible distinction be made.

Ex. 1 : What homomorphism combines Odd and Even by the operation of

addition?

Ex. 2: Find all possible simplifications of the four-state system

.abed
^ b b d c

which leaves the result still a determinate machine.

Ex. 3 : What simplification is possible in

lx'=-y
\y =x^ + y,

if the result is still to be a determinate machine?
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6/14. The deliberate refusal to attempt all possible distinctions,

and the deliberate restriction of the study of a dynamic system to

some homomorphism of the whole, become justified, and in fact

almost unavoidable, when the experimenter is confronted with the

system of biological origin.

We usually assumed, in the earher chapters, that the observer

knew, at each moment, just what state the system was in. It was

assumed, in other words, that at every moment his information

about the system was complete. There comes a stage, however, as

the system becomes larger and larger, when the reception of all

the information is impossible by reason of its sheer bulk. Either

the recording channels cannot carry all the information, or the

observer, presented with it all, is overwhelmed. When this occurs,

what is he to do ? The answer is clear : he must give up any ambition

to know the whole system. His aim must be to achieve a partial

knowledge that, though partial over the whole, is none the less

complete within itself, and is sufficient for his ultimate practical

purpose.
These facts emphasise an important matter of principle in the

study of the very large system. Faced with such a system, the

observer must be cautious in referring to "the system", for the term

will probably be ambiguous, perhaps highly so. '"The system" may
refer to the whole system quite apart from any observer to study it—
the thing as it is in itself; or it may refer to the set of variables (or

states) with which some given observer is concerned. Though the

former sounds more imposing philosophically, the practical worker

inevitably finds the second more important. Then the second

meaning can itself be ambiguous if the particular observer is not

specified, for the system may be any one of the many sub-machines

provided by homomorphism. Why all these meanings should be

distinguished is because different sub-machines can have different

properties; so that although both sub-machines may be abstracted

from the same real "thing", a statement that is true of one may be

false of another.

It follows that there can be no such thing as the (unique) behaviour

of a very large system, apart from a given observer. For there can

legitimately be as many sub-machines as observers, and therefore

as many behaviours, which may actually be so different as to be

incompatible if they occurred in one system. Thus the 5-state

system with kinematic graph

has two basins, and always ends in a cycle. The homomorphic
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sub-machine (with states / and s) given by the transformation

h j k I in

I
^

y
' ^

r s

has graph s *
r, with one basin and no cycle. Both statements are

equally true, and are compatible because they refer to different

systems (as defined in S.3/11).

The point of view taken here is that science (as represented by the

observer's discoveries) is not immediately concerned with discovering
what the system "really" is, but with co-ordinating the various

observers' discoveries, each of which is only a portion, or an aspect,

of the whole truth.

Were the engineer to treat bridgebuilding by a consideration of

every atom he would find the task impossible by its very size. He
therefore ignores the fact that his girders and blocks are really

composite, made of atoms, and treats them as his units. As it

happens, the nature of girders permits this simplification, and the

engineer's work becomes a practical possibility. It will be seen

therefore that the method of studying very large systems by studying

only carefully selected aspects of them is simply what is always
done in practice. Here we intend to follow the process more

rigorously and consciously.

6/15. The lattice. The various simplifications of a machine have

exact relations to one another. Thus, the six forms of the system
of Ex. 6/13/2 are:

(1) a, b, c, d

(2) a + b, c, d

(3) a, b, c -{- d

(4) a + b, c + d

(5) a,b + c-^d
(6) a + b + c + d

where, e.g. "a -\- b" means that a and b are no longer distinguished.

Now (4) can be obtained from (3) by a merging of a and b. But

(5) cannot be obtained from (4) by a simple merging; for (5) uses a

distinction between a and b that has been lost in (4). Thus it is

soon verified that simphfication can give:

from (1)
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The various simplifications are thus related as in the diagram, in

which a descending line connects the simpler form (below) with the

form from which it can be directly obtained (above):

1

2 3

This diagram is of a type known as a lattice—a structure much
studied in modern mathematics. What is of interest in this Intro-

duction is that this ordering makes precise many ideas about

systems, ideas that have hitherto been considered only intuitively.

Every lattice has a single element at the top (like 1) and a single

element at the bottom (like 6). When the lattice represents the

possible simplifications of a machine, the element at the top

corresponds to the machine with every state distinguished; it corres-

ponds to the knowledge of the experimenter who takes note of every

distinction available in its states. The element at the bottom

corresponds to a machine with every state merged; if this state is

called Z the machine has as transformation only

Z

This transformation is closed, so something persists (S.10/4), and

the observer who sees only at this level of discrimination can say

of the machine : "it persists", and can say no more. This persistance

is, of course, the most rudimentary property of a machine, distin-

guishing it from the merely evanescent. (The importance of

"closure", emphasised in the early chapters, can now be appreciated—it corresponds to the intuitive idea that, to be a machine, an

entity must at least persist.)

Between these extremes lie the various simplifications, in their

natural and exact order. Near the top lie those that differ from the

full truth only in some trifling matter. Those that lie near the bottom

are the simplifications of the grossest type. Near the bottom hes

such a simplification as would reduce a whole economic system
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with a vast number of interacting parts, going through a trade

cycle, to the simple form of two states:

I i

Boom Slump
i I

Thus, the various simplifications of a dynamic system can be

ordered and related.

6/16. Models. We can now see much more clearly what is meant

by a "model". The subject was touched on in S.6/8, where three

systems were found to be isomorphic and therefore capable of

being used as representations of each other. The subject is of

some importance to those who work with biological systems, for

in many cases the use of a model is helpful, either to help the worker

think about the subject or to act as a form of analogue computer.
The model will seldom be womorphic with the biological system :

usually it will be a homomorphism of it. But the model itself is

seldom regarded in all its practical detail: usually it is only some

aspect of the model that is related to the biological system; thus the

tin mouse may be a satisfactory model of a living mouse—provided
one ignores the tinniness of the one and the proteinness of the other.

Thus what usually happens is that the two systems, biological and

model, are so related that a homomorphism of the one is isomorphic
with a homomorphism of the other. (This relation is symmetric,
so either may justifiably be said to be a "model" of the other.)

The higher the homomorphisms are on their lattices, the better or

more reahstic will be the model.

At this point this Introduction must leave the subject of Homo-

morphisms. Enough has been said to show the foundations of the

subject and to indicate the main lines for its development. But

these developments belong to the future.

Ex. ] : What would be the case when it was the two top-most elements of the

two lattices that were isomorphic?

Ex. 2: To what degree is the Rock of Gibraltar a model of the brain?

Ex. 3 : To what extent can the machine

I

P Q r
^
q r r

provide models for the system of Ex. 6113121

THE VERY LARGE BOX
6/17. The previous sections have shown how the properties that

are usually ascribed to machines can also be ascribed to Black
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Boxes. We do in fact work, in our daily lives, much more with

Black Boxes than we are apt to think. At first we are apt to think,

for instance, that a bicycle is not a Black Box, for we can see every

connecting link. We delude ourselves, however. The ultimate

links between pedal and wheel are those interatomic forces that

hold the particles of metal together; of these we see nothing, and
the child who learns to ride can become competent merely with the

knowledge that pressure on the pedals makes the wheels go round.

To emphasise that the theory of Black Boxes is practically co-

extensive with that of everyday life, let us notice that if a set of

Black Boxes has been studied by an observer, he is in a position to

couple them together to form designed machinery. The method is

straightforward: as the examination of each Box has given its

canonical representation (S.6/5), so can they be coupled, inputs to

outputs, to form new systems exactly as described in S.4/8.

What is being suggested now is not that Black Boxes behave

somewhat like real objects but that the real objects are in fact all

Black Boxes, and that we have in fact been operating with Black

Boxes all our lives. The theory of the Black Box is merely the

theory of real objects or systems, when close attention is given to

the question, relating object and observer, about what information

comes from the object, and how it is obtained. Thus the theory
of the Black Box is simply the study of the relations between the

experimenter and his environment, when special attention is given
to the flow of information. "A study of the real world thus becomes
a study of transducers." (Goldman, Information theory.)

6/18. Before we go further, the question of "emergent" properties
should be clarified.

First let one fact be established. If a number of Black Boxes

are given, and each is studied in isolation until its canonical repre-
sentation is established, and if they are coupled in a known pattern

by known linkages, then it follows (S.4/8) that the behaviour of

the whole is determinate, and can be predicted. Thus an assembly
of Black Boxes, in these conditions, will show no "emergent"

properties; i.e. no properties that could not have been predicted from

knowledge of the parts and their couplings.
The concept of "emergence" has never been defined with precision,

but the following examples will probably suffice as a basis for dis-

cussion:

(1) Ammonia is a gas, and so is hydrogen chloride. When the

two gases are mixed, the result is a solid—a property not possessed

by either reactant.
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(2) Carbon, hydrogen and oxygen are all practically tasteless,

yet the particular compound "sugar" has a characteristic taste

possessed by none of them.

(3) The twenty (or so) amino-acids in a bacterium have none of

them the property of being "self-reproducing", yet the whole, with

some other substances, has this property.

If these examples are compared in detail with the processes of

study and coupling of Black Boxes, it is soon seen that the examples

postulate much less knowledge of their parts than is postulated of

the Black Boxes. Thus the prediction in regard to ammonia and

hydrogen chloride is based on no more knowledge of each substance

than that it is a gas. Similarly, of the twenty amino-acids all that

is asked is "is it self-reproducing?" Were each amino-acid treated

as a Black Box the examination would be far more searching. The

input to a molecule is the set of electrical and mechanical forces, in

all distributions and combinations, that can affect it; and its output
is the set of all states, electrical and mechanical, that it can be in.

Were this complete knowledge available, then the method of S.4/8
shows how the behaviour of many coupled amino-acids could be

predicted; and among the predicted behaviours would be that of

self-reproduction of the whole.

It will be seen that prediction of the whole's behaviour can be

based on complete or on incomplete knowledge of the parts. If

the knowledge is complete, then the case is that of the Black Box
whose canonical representation is known, the inputs or circumstances

being all those that may be given by the other Boxes to which it is

to be coupled. When the knowledge of the parts is so complete,
the prediction can also be complete, and no extra properties can

emerge.

Often, however, the knowledge is not, for whatever reason,

complete. Then the prediction has to be undertaken on incomplete

knowledge, and may prove mistaken. Sometimes all that is known
of the parts is that every one has a certain characteristic. There

may be no better way of predicting than to use simple extrapolation—to predict that the whole will have it. Sometimes this proves

justified ; thus, if a whole is of three parts, each of pure copper, then

we shall be correct if we predict that the whole is of pure copper.
But often the method fails, and a new property can, if we please,
be said to "emerge".

It does in fact very commonly happen that when the system be-

comes large, so that the range of size from part to whole is very

large, the properties of the whole are very different from those of

111



6/19 AN INTRODUCTION TO CYBERNETICS

the parts. Biological systems are thus particularly likely to show
the difference. We must therefore be on guard against expecting
the properties of the whole to reproduce the properties of the parts,
and vice versa.

The examples of ammonium chloride and sugar mentioned above
are simple examples, but more complex cases occur. Consider, for

instance, the concept of "localisation" of some function in a system.
It may well happen that the view taken when the matter is examined
in the small is quite different from that taken in the large. Thus
suppose it is asked whether the brewing industry in England is

localised. The Exciseman, knowing of every building in his district

whether it is or is not part of the brewing trade, will say that brewing
is undoubtedly "locahsed". On the other hand, the map-maker of

England, being unable to mark any particular county as being the
seat of brewing, will say that it is not localised. Each, of course, is

correct. What allows the contradiction is that when the range of
size is great, what is true at one end of the scale may be false at the
other.

Another example showing how contradictory may be the proper-
ties in the small and the large is given by an ordinary piece of elastic.

For years physical chemists searched for what made the molecule
contractile. They have since discovered that they were making
exactly the mistake that this section is attempting to prevent. It is

now known that the rubber molecule has no inherent contractility:
stretch one out and let it go, and nothing happens! Why then does
rubber contract? The point is that "stretching rubber" is not

"stretching one . . ."; the molecules, when there are more than one,
jostle each other and thereby force the majority to take lengths less

than their maxima. The result is that a shortening occurs, just as

if, on a crowded beach, a rope fifty feet long is drawn out straight:
after a few minutes the ends will be less than fifty feet apart!

Further examples are hardly necessary, for the point to be made
is the merely negative one that in a large system there is no a priori

necessity for the properties of the whole to be a simple copy of those
of the parts. (S.7/3 adds some further examples.)

6/19. As the system becomes larger, so does the fundamental
method of study (S.6/3) become more laborious in application.
Eventually the amount of labour necessary becomes prohibitive.
What then is the observer to do ? The question is of great import-
ance in the biological sciences, whether zoological or sociological,
for the size and complexity of the systems is great indeed.
The same difficulty has occurred in other sciences. Thus although
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the Newtonian theory has, in principle, solved all gravitational

problems, yet its application to three bodies is most complex, and

its application to half a dozen is prohibitively laborious. Yet

astrophysicists want to ask questions about the behaviour of star

clusters with 20,000 members! What is to be done?

Experience has shown that in such cases the scientist must be

very careful about what questions he asks. He must ask for what
he really wants to know, and not for what he thinks he wants. Thus
the beginner will say simply that he wants to know what the cluster

will do, i.e. he wants the trajectories of the components. If this

knowledge, however, could be given to him, it would take the form
of many volumes filled with numerical tables, and he would then

reahse that he did not really want all that. In fact, it usually

happens that the significant question is something simple, such as

"will the cluster contract to a ball, or will it spread out into a disc?"

The physicists, led originally by Poincare, have now a well

developed method for dealing with such matters—that of topology.

By its means, unambiguous answers can be given to simple questions,
so that the intricacies that would overwhelm the observer are never

encountered.

A similar method, applied to complicated differential equations,
enables the main important features of the solutions to be deduced
in cases where the full solutions would be unmanageably complicated.
This is the so-called "stabihty" theory of these equations.
What is important for us here is that these methods exist. They

suggest that if a Black Box (such as a brain) has far too many
variables for a study in every detail to be practical then it should

be possible for the cybernetically-minded psychologist to devise a

"topological" approach that shall enable him to get what informa-

tion he really wants (not what he thinks he wants!) without his

being overwhelmed with useless detail. Lewin attempted such a

psychology; but in the '30s topology was not yet developed to be a

useful tool. In the '50s, however, it is much better developed,

especially in the form published under the pseudonym of Nicholas

Bourbaki, by the French School. At last we have before us the

possibility of a psychology that shall be at once rigorous and

practical.

THE INCOMPLETELY OBSERVABLE BOX

6/20. So far, in this chapter, we have assumed that the observer

of the Black Box has the necessary means for observing all that

pertains to the Box's state, so that he is Uke a Ship's Engineer (S.6/2)
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who faces a complete set of dials. Often, however, this is not so—
some of the dials are hidden, or missing

—and an important part of

Black Box theory is concerned with making clear what peculiarities

appear when the observer can observe only certain components of

the whole state.

The theoretical developments are large, and little explored. They
will almost certainly be of importance in psychology; for, to the

psychologist, the individual subject, whether a neurotic person or a

rat in a maze, is largely a system that is not wholly observable; for

the events in the subject's brain are not directly observable at the

clinical or experimental session.

It should be noticed that as soon as some of a system's variables

become unobservable, the "system" represented by the remainder

may develop remarkable, even miraculous, properties. A common-

place illustration is given by conjuring, which achieves (apparently)

the miraculous, simply because not all the significant variables are

observable. It is possible that some of the brain's "miraculous"

properties
—of showing "foresight", "intelligence", etc.—are miracu-

lous only because we have not so far been able to observe the events

in all the significant variables.

6/21. As an example of the profound change that may occur in

the observer's opinion about a mechanism if part of it becomes

inaccessible to direct observation, consider the following example.

The observer is assumed to be studying a Black Box which consists

of two interacting parts, A and Z. Both are affected by the common

input I. (Notice that ^'s inputs are / and Z.)
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Observer One can see, like us, the values of both A and Z. He
studies the various combinations that may lead to the appearance
of B, and he reports that B appears whenever the whole shows a

state with Z at y and the input at a. Thus, given that the input
is at a, he relates the occurrence of B to whether Z is at j now.

Observer Two is handicapped—he can see only / and A, not Z.

He will find that knowledge of ^'s state and of /'s state is not suffi-

cient to enable him to predict reliably whether B will be shown;
(for sometimes Z will be at y and sometimes at some other state).

If however Two turns his attention to earlier events at / he finds he

can predict 5's appearance accurately. For if / has in succession

the values
/u.,

a then behaviour B will appear, and not otherwise.

Thus, given that the input is at a, he relates the occurrence of B
to whether / did have the value

ju.
earlier.

Thus Two, being unable to observe Z directly, can none the less

make the whole predictable by taking into account earlier values of
what he can observe. The reason is, the existence of the corres-

pondence:

/ at
ju,

earlier <-^Z a.t y now
/ not at fi earlier <-^ Z not at y now.

As this correspondence is one-one, information about /'s state a step
earlier and information about Z's state now are equivalent, and each

can substitute for the other; for to know one is to know the other.

If One and Two are quarrelsome, they can now fall into a dispute.
One can maintain that the system shows no "memory", i.e. its

behaviour requires no reference to the past, because the appearance of

behaviour B can be fully accounted for by the system's present state

(at 7, A and Z). Two can deny this, and can point out that the

system of I and A can be shown as determinate only when past
values of /are taken into account, i.e. when some form of "memory"
is appealed to.

Clearly, we need not take sides. One and Two are talking of

different systems (of / -f ^ + Z or of 7 -f A), so it is not surprising
that they can make differing statements. What we must notice here

is that Two is using the appeal to "memory" as a substitute for his

inability to observe Z.

Thus we obtain the general rule : If a determinate system is only

partly observable, and thereby becomes (for that observer) not

predictable, the observer may be able to restore predictability by
taking the system's past history into account, i.e. by assuming the

existence within it of some form of ''memory''.
The argument is clearly general, and can be applied equally well
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if the special, earlier, event (/x) occurred not one step earlier, but

many. Thus in general, if earlier events E^, E2, -, Ek leave traces

Ti, T2, • ; T^ respectively, which persist; and if later the remainder

of the system produces behaviours Bi, B2, . . ., B^. corresponding to

the value of T, then the various behaviours may be related to, or

explained by, either

(1) the present value of T, in which case there is no need for the

invocation of any "memory", or

(2) the past value of E, in which case the observer is compelled
to postulate some form of "memory" in the system.

Thus the possession of ''memory" is not a wholly objective property of
a system

—it is a relation between a system and an observer; and the

property will alter with variations in the channel of communication
between them.

Thus to invoke "memory" in a system as an explanation of its

behaviour is equivalent to declaring that one cannot observe the

system completely. The properties of "memory" are not those of

the simple "thing" but the more subtle "coding".

*Ex. 1 : Prove the statement (Design . . S. 19/22) that in an absolute system we
can avoid direct reference to some of the variables provided we use deri-

vatives of the remaining variables to replace them.

*Ex. 2 : Prove the same statement about equations in finite differences.

*Ex. 3 : Show that if the system has n degrees of freedom we must, in general,

always have at least // observations, each of the type "at time if variable Xf
had value Xi' if the subsequent behaviour is to be predictable.

6/22. A clear example showing how the presence of "memory" is

related to the observability of a part is given by the digital calculator

with a magnetic tape. Suppose, for simplicity, that at a certain

moment the calculator will produce a 1 or a 2 according to whether

the tape, at a certain point, is magnetised + or —
, respectively; the

act of magnetisation occurred, say, ten minutes ago, and whether
it was magnetised + or — depended on whether the operator did or

did not, respectively, close a switch. There is thus the corres-

pondence:
switch closed <-^ + «-> 1

switch open <- > - <-^ 2

An observer who can see the magnetic tape now can argue that

any reference to the past is unnecessary, for he can account for the

machine's behaviour (i.e. whether it will produce a 1 or a 2) by its

state now, by examining what the tape carries now. Thus to know
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that it carries a + now is sufficient to allow prediction that the

machine's next state will be a 1.

On the other hand, an observer who cannot observe the tape
can predict its behaviour only by reference to what was done to

the switch ten minutes ago. He will insist that the machine has

"memory".
The two observers are not really in conflict, as we can see at once

when we reahse that they are talking of two "machines" that are not

identical. To the first observer, "the machine" means "calculator

+ tape + switch"; to the second it means "calculator + switch".

They are talking about different systems. (Again it must be em-

phasised that in complex systems a mere reference to the material

object is often not sufficient to define adequately the system under

discussion.) (Compare S.6/14, 12/9.)

Essentially the same difference can occur in a more biological

system. Thus, suppose I am in a friend's house and, as a car goes

past outside, his dog rushes to a corner of the room and cringes.

To me the behaviour is causeless and inexplicable. Then my friend

says, "He was run over by a car six months ago." The behaviour

is now accounted for by reference to an event of six months ago.
If we say that the dog shows "memory" we refer to much the same
fact—that his behaviour can be explained, not by reference to his

state now but to what his state was six months ago. If one is not

careful one says that the dog "has" memory, and then thinks of the

dog as having something, as he might have a patch of black hair.

One may then be tempted to start looking for the thing; and one

may discover that this "thing" has some very curious properties.

Clearly, "memory" is not an objective something that a system
either does or does not possess; it is a concept that the observer

invokes to fill in the gap caused when part of the system is un-

observable. The fewer the observable variables, the more will the

observer be forced to regard events of the past as playing a part in

the system's behaviour. Thus "memory" in the brain is only

partly objective. No wonder its properties have sometimes been

found to be unusual or even paradoxical. Clearly the subject

requires thorough re-examination from first principles.
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PART TWO
VARIETY

Now the soldier realised what a capital tinder-box this was.

If he struck it once, the dog came who sat upon the chest of

copper money; if he struck it twice, the dog came who had

the silver ; and if he struck it three times, then appeared the

dog who had the gold.

("The Tinder-Box")





Chapter 7

QUANTITY OF VARIETY

7/1. In Part I we considered the main properties of the machine,

usually with the assumption that we had before us the actual thing,

about which we would make some definite statement, with reference

to what it is doing here and now. To progress in cybernetics,

however, we shall have to extend our range of consideration. The

fundamental questions in regulation and control can be answered

only when we are able to consider the broader set of what it might

do, when "might" is given some exact specification.

Throughout Part II, therefore, we shall be considering always

a set of possibilities. The study will lead us into the subjects of

information and communication, and how they are coded in their

passages through mechanism. This study is essential for the

thorough understanding of regulation and control. We shall start

from the most elementary or basic considerations possible.

7/2. A second reason for considering a set of possibilities is that

science is little interested in some fact that is valid only for a single

experiment, conducted on a single day; it seeks always for generalisa-

tions, statements that shall be true for all of a set of experiments,

conducted in a variety of laboratories and on a variety of occasions.

Galileo's discovery of the law of the pendulum would have been of

little interest had it been valid only for that pendulum on that after-

noon. Its great importance is due precisely to the fact that it is

true over a great range of space and time and materials. Science

looks for the repetitive (S.7/15).

7/3. This fact, that it is the set that science refers to, is often ob-

scured by a manner of speech. "The chloride ion . . .", says the

lecturer, when clearly he means his statement to apply to all chloride

ions. So we get references to the petrol engine, the growing child,

the chronic drunkard, and to other objects in the singular, when the

reference is in fact to the set of all such objects.

121



7/4 AN INTRODUCTION TO CYBERNETICS

Sometimes it happens that a statement is equally true of the indi-

vidual and the set: "the elephant eats with its trunk", for instance.

But the commonness of such a double application should not make
us overlook the fact that some types of statement are applicable

only to the set (or only to the individual) and become misleading
and a source of confusion if applied to the other. Thus a gramme of

hot hydrogen iodide gas, at some particular moment, may well be

37 per cent ionised; yet this statement must not be applied to the

individual molecules, which are all either wholly ionised or not at

all; what is true of the set is false of the individuals. Again, the

Conservative M.P.s have, at the moment, a majority in Parliament;
the statement is meaningless if applied to an individual member.

Again, a tyre on a motor-car may well be travelling due west at

50 m.p.h. when considered as a whole; yet the portion in contact

with the road is motionless, that at the top is travelling due west

at 100 m.p.h., and in fact not a single particle in the tyre is behaving
as the whole is behaving.

Again, twenty million women may well have thirty million children,

but only by a dangerous distortion of language can we say that Mrs.

Everyman has one and a half children. The statement can some-
times be made without confusion only because those who have to

take action, those who have to provide schools for the children, for

instance, know that the half-child is not a freak but a set of a million

children.

Let us then accept it as basic that a statement about a set

may be either trueor false (or perhaps meaningless) if applied to the

elements in the set.

Ex. : The following statements apply to "The Cat", either to the species Felis

chmestica or to the cat next door. Consider the applicability of each

statement to (i) the species, (ii) the individual:

1 . It is a million years old,

2. It is male,
3. Today it is in every continent,
4. It fights its brothers,
5. About a half of it is female,
6. It is closely related to the Ursidae.

7/4. Probability. The exercise just given illustrates the confusion

and nonsense that can occur when a concept that belongs properly
to the set (or individual) is improperly applied to the other. An
outstanding example of this occurs when, of the whole set, some

fraction of the elements has a particular property. Thus, of

100 men in a village 82 may be married. The fraction 0-82 is
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clearly relevant to the set, but has little meaning for any individual,

each of whom either is or is not married. Examine each man as

closely as you please, you will find nothing of "0-82" about him;

and if he moves to another village this figure may change to another

without his having changed at all. Evidently, the ''0-82" is

a property of the village, not of the individual.

Nevertheless, it is sometimes found convenient to pretend that

the fraction has a meaning for the individual, and it may be said

that any one person has a "probability" 0-82 of being married. This

form of words is harmless provided it is borne in mind that the

statement, in spite of its apparent reference to the individual, is

really a statement about the village. Let this be forgotten and a

host of "paradoxes" arise, as meaningless and silly as that of attempt-

ing to teach the "half"-child. Later (in Chapter 9) we shall have

to use the concept of probability in conjunction with that of

machine; the origin and real nature of the concept should be borne

in mind perpetually.

7/5. Communication. Another subject in which the concept of a

set plays an essential part is that of "communication", especially

in the theory developed by Shannon and Wiener. At first, when one

thinks of, say, a telegram arriving, one notices only the singleness

of one telegram. Nevertheless, the act of "communication"

necessarily implies the existence of a set of possibilities, i.e. more

than one, as the following example will show.

A prisoner is to be visited by his wife, who is not to be allowed to

send him any message however simple. It is understood that they

may have agreed, before his capture, on some simple code. At her

visit, she asks to be allowed to send him a cup of coffee ; assuming

the beverage is not forbidden, how is the warder to ensure that no

coded message is transmitted by it? He knows that she is anxious

to let her husband know whether or not a confederate has yet been

caught.
The warder will cogitate with reasonings that will go somewhat

as follows: "She might have arranged to let him know by whether

the coffee goes in sweetened or not—I can stop that simply by adding

lots of sugar and then telling him I have done so. She might have

arranged to let him know by whether or not she sends a spoon—I

can stop that by taking away any spoon and then telling him that

Regulations forbid a spoon anyway. She might do it by sending

tea rather than coffee—no, that's stopped because, as they know,

the canteen will only supply coffee at this time of day." So his

cogitations go on; what is noteworthy is that at each possibihty
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he intuitively attempts to stop the communication by enforcing a

reduction of the possibiHties to one—always sweetened, never a

spoon, coffee only, and so on. As soon as the possibilities shrink

to one, so soon is communication blocked, and the beverage robbed

of its power of transmitting information. The transmission (and

storage) of information is thus essentially related to the existence of a

set of possibilities. The example may make this statement plausible ;

in fact it is also supported by all the work in the modern theory of

communication, which has shown abundantly how essential, and
how fruitful, is the concept of the set of possibilities.

Communication thus necessarily demands a set of messages. Not

only is this so, but the information carried by a particular message

depends on the set it comes from. The information conveyed is not

an intrinsic property of the individual message. That this is so can

be seen by considering the following example. Two soldiers are

taken prisoner by two enemy countries A and B, one by each; and
their two wives later each receive the brief message "I am well". It

is known, however, that country A allows the prisoner a choice from

I am well,

I am slightly ill,

I am seriously ill,

while country B allows only the message

/ am well

meaning 'T am alive'\ (Also in the set is the possibility of
"
no

message".) The two wives will certainly be aware that though
each has received the same phrase, the informations that they have

received are by no means identical.

From these considerations it follows that, in this book, we must

give up thinking, as we do as individuals, about "this message".
We must become scientists, detach ourselves, and think about

"people receiving messages". And this means that we must turn

our attention from any individual message to the set of all the

possibilities.

VARIETY

7/6. Throughout this Part we shall be much concerned with the

question, given a set, of how many distinguishable elements it

contains. Thus, if the order of occurrence is ignored, the set

'c, b, c, a, c, c, a, b, c, b, b, a
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which contains twelve elements, contains only three distinct elements
—

a, b and c. Such a set will be said to have a variety of three ele-

ments. (A qualification is added in the next section.)

Though this counting may seem simple, care is needed. Thus

the two-armed semaphore can place each arm, independently of

the other, in any of eight positions; so the two arms provide 64

combinations. At a distance, however, the arms have no indi-

viduality
—"arm A up and arm B down" cannot be distinguished

from "arm A down and arm B up"—so to the distant observer only
36 positions can be distinguished, and the variety is 36, not 64. It

will be noticed that a set's variety is not an intrinsic property of the

set: the observer and his powers of discrimination may have to be

specified if the variety is well defined.

Ex. 1 : With 26 letters to choose from, how many 3-letter combinations are

available for motor registration numbers ?

Ex. 2: If a farmer can distinguish 8 breeds of chicks, but camiot sex them, while

his wife can sex them but knows nothing of breeds, how many distinct classes

of chicks can they distinguish when working together ?

Ex. 3 : A spy in a house with four windows arranged rectangularly is to signal

out to sea at night by each window showing, or not showing, a light. How
many forms can be shown if, in the darkness, the position of the lights

relative to the house cannot be perceived?

Ex. 4: Bacteria of different species differ in their ability to metabolise various

substances: thus lactose is destroyed by E. coli but not by E. typhi. If a

bacteriologist has available ten substances, each of which may be destroyed
or not by a given species, what is the maximal number of species that he

can distinguish?

Ex. 5 : If each Personality Test can distinguish five grades of its own character-

istic, what is the least number of such tests necessary to distinguish the

2,000,000,000 individuals of the world's population?

Ex. 6: In a well-known card trick, the conjurer identifies a card thus: He shows
21 cards to a by-stander, who selects, mentally, one of them without re-

vealing his choice. The conjurer then deals the 21 cards face upwards
into three equal heaps, with the by-stander seeing the faces, and asks him
to say which heap contains the selected card. He then takes up the cards,

again deals them into three equal heaps, and again asks which heap contains

the selected card; and similarly for a third deal. The conjurer then names
the selected card. What variety is there in (i) the by-stander's indications,

(ii) the conjurer's final selection ?

Ex. 7: (Continued.) 21 cards is not, in fact, the maximal number that could

be used. What is the maximum, if the other conditions are unaltered ?

Ex. 8: (Continued.) How many times would the by-stander have to indicate

which of three heaps held the selected card if the conjurer were finally to

be able to identify the correct card out of the full pack of 52 ?

Ex. 9: If a child's blood group is O and its mother's group is O, how much
variety is there in the groups of its possible fathers ?
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7/7. It will have been noticed that many of the exercises involved

the finding of products and high powers. Such computations are

often made easier by the use of logarithms. It is assumed that the

reader is familiar with their basic properties, but one formula will

be given for reference. If only logarithms to base a are available

and we want to find the logarithm to the base b of some number

TV, then

In particular, log^A''
= 3-322 logioA''.

The word variety, in relation to a set of distinguishable elements,

will be used to mean either (i) the number of distinct elements, or

(ii) the logarithm to the base 2 of the number, the context indicating

the sense used. When variety is measured in the logarithmic form
its unit is the "bit", a contraction of "Binary digiT". Thus the

variety of the sexes is 1 bit, and the variety of the 52 playing cards

is 5-7 bits, because logj 52 = 3-322 logjo 52 = 3-322 x 1-7160 = 5-7.

The chief advantage of this way of reckoning is that multiplicative
combinations now combine by simple addition. Thus in Ex. 7/6/2
the farmer can distinguish a variety of 3 bits, his wife 1 bit, and the

two together 3+1 bits, i.e. 4 bits.

To say that a set has "no" variety, that the elements are all of one

type, is, of course, to measure the variety logarithmically; for the

logarithm of 1 is 0.

Ex. 1 : In Ex. 7/6/4 how much variety, in bits, does each substance distinguish?

Ex. 2: In Ex. 7/6/5: (i) how much variety in bits does each test distinguish?

(ii) What is the variety in bits of 2,000,000,000 distinguishable individuals?

From these two varieties check your previous answer.

Ex. 3 : What is the variety in bits of the 26 letters of the alphabet ?

Ex. 4: (Continued.) What is the variety, in bits, of a block of five letters (not
restricted to forming a word) ? Check the answer by finding the number of
such blocks, and then the variety.

Ex. 5 : A question can be answered only by Yes or No
; (i) what variety is in the

answer? (ii) In twenty such answers made independently?

Ex. 6: (Continued.) How many objects can be distinguished by twenty ques-

tions, each of which can be answered only by Yes or No?
Ex. 7: A closed and single-valued transformation is to be considered on six

states :

. a b c d e f
'''??????

in which each question mark has to be replaced by a letter. If the replace-
ments are otherwise unrestricted, what variety (logarithmic) is there in the

set of all possible such transformations?
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£".v. 8: (Continued.) If the closed transformation had n states what variety
is there?

Ex. 9: If the Enghsh vocabulary has variety of 10 bits per word, what is the

storage capacity of 10 minutes' speech on a gramophone record, assuming
the speech is at 120 words per minute?

Ex. 10: (Continued.) How does this compare with the capacity of a printed

page of newspaper (approximately) ?

Ex. 11: (Continued.) If a pamphlet takes 10 minutes to be read aloud, how
does its variety compare with that of the gramophone record ?

Ex. 12: What set is the previous Ex. referring to?

Ex. 13: Can a merely negative event—a light not being lit, a neuron not being
excited, a telegram not arriving

—be used as a contribution to variety ?

CONSTRAINT

7/8. A most important concept, with which we shall be much
concerned later, is that of constraint. It is a relation between two

sets, and occurs when the variety that exists under one condition

is less than the variety that exists under another. Thus, the variety
in the human sexes is 1 bit

;
if a certain school takes only boys, the

variety in the sexes within the school is zero; so as is less than 1,

constraint exists.

Another well-known example is given by the British traffic hghts,
which have three lamps and which go through the sequence (where
"+" means lit and "0" unlit):

(1) (2) (3) (4) (1) ...

Red: + + +
Yellow: + +
Green : +

Four combinations are thus used. It will be noticed that Red is,

at various times, both ht and unht; so is Yellow; and so is Green.

So if the three lights could vary independently, eight combinations
could appear. In fact, only four are used; so as four is less than

eight, constraint is present.

7/9. A constraint may be slight or severe. Suppose, for instance,
that a squad of soldiers is to be drawn up in a single rank, and that

"independence" means that they may stand in any order they please.
Various constraints might be placed on the order of standing, and
these constraints may differ in their degree of restriction. Thus, if

the order were given that no man may stand next a man whose

birthday falls on the same day, the constraint would be slight, for

of all the possible arrangements few would be excluded. If,
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however, the order were given that no man was to stand at the left

of a man who was taller than himself, the constraint would be

severe; for it would, in fact, allow only one order of standing

(unless two men were of exactly the same height). The intensity

of the constraint is thus shown by the reduction it causes in the

number of possible arrangements.

7/lOi It seems that constraints cannot be classified in any simple

way, for they include all cases in which a set, for any reason, is

smaller than it might be. Here I can discuss only certain types of

outstanding commonness and importance, leaving the reader to add

further types if his special interests should lead him to them.

7/11. Constraint in vectors. Sometimes the elements of a set are

vectors, and have components. Thus the traffic signal of S.7/8

was a vector of three components, each of which could take two

values. In such cases a common and important constraint occurs

if the actual number of vectors that occurs under defined conditions

is fewer than the total number of vectors possible without conditions

(i.e. when each component takes its full range of values indepen-

dently of the values taken by the other components). Thus, in the

case of the traffic Hghts, when Red and Yellow are both lit, only

Green unlit occurs, the vector with Green ht being absent.

It should be noticed that a set of vectors provides several varieties,

which must be identified individually if confusion is not to occur.

Consider, for instance, the vector of S.3/5:

(Age of car, Horse-power, Colour).

The first component will have some definite variety, and so will

the second component, and the third. The three varieties need

not be equal. And the variety in the set of vectors will be diff"erent

again.

The variety in the set of vectors has, however, one invariable

relation to the varieties of the components—it cannot exceed their

sum (if we think in logarithms, as is more convenient here). Thus,

if a car may have any one of 10 ages, of 8 horse-powers, and of 12

colours, then the variety in the types of car cannot exceed 3-3 + 3-0

+ 3-6 bits, i.e. 9-9 bits.

7/12. The components are independent when the variety in the

whole of some given set of vectors equals the sum of the (logarithmic)

varieties in the individual components. If it were found, for instance,

that all 960 types of car could be observed within some defined set
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of cars, then the three components would be said to be "'indepen-

dent", or to "vary independently", within this defined set.

It should be noticed that such a statement refers essentially to

what is observed to occur within the set; it need contain no reference

to any supposed cause for the independence (or for the constraint).

Ex. 1 : When Pantagruel and his circle debated whether or not the time had
come for Panurge to marry, they took advisers, who were introduced thus:

". . . Rondibilis, is married now, who before was not—Hippothadeus was
not before, nor is yet

—Bridlegoose was married once, but is not now—and
Trouillogan is married now, who wedded was to another wife before."
Does this set of vectors show constraint?

Ex. 2: If each component can be Head (H) or Tail {T), does the set of four
vectors {H,H,H)AT,T,H), (H,T,T), {T,H,T) show constraint in relation to the

set showing independence ?

7/13. Degrees offreedom. When a set of vectors does not show
the full range of possibilities made available by the components
(S.7/1 1), the range that remains can sometimes usefully be measured

by saying how many components with independence would give
the same variety. This number of components is called the degrees
of freedom of the set of vectors. Thus the traffic lights (S.7/8) show
a variety of four. If the components continued to have two states

apiece, two components with independence could give the same

variety (of four). So the constraint on the lights can be expressed

by saying that the three components, not independent, give the same

variety as two would if independent; i.e. the three lights have two

degrees of freedom.

If all combinations are possible, then the number of degrees of
freedom is equal to the number of components. If only one combin-
ation is possible, the degrees of freedom are zero.

It will be appreciated that this way of measuring what is left

free of constraint is applicable only in certain favourable cases.

Thus, were the traffic lights to show three, or five combinations, the

equivalence would no longer be representable by a simple, whole,
number. The concept is of importance chiefly when the components
vary continuously, so that each has available an infinite number of

values. A reckoning by degrees of freedom may then still be

possible, though the states cannot be counted.

Ex. 1 : If a dealer in second-hand cars boasts that his stock covers a range of
10 ages, 8 horse powers, and 12 colours, in all combinations, how many
degrees of freedom has his stock?

Ex. 2 : The angular positions of the two hands on a clock are the two compo-
nents of a vector. Has the set of vectors (in ordinary working round the
12 hours) a constraint if the angles are measured precisely?
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Ex. 3: (Continued.) How many degrees of freedom has the vector? (Hint:

Would removal of the minute-hand cause an essential loss?)

Ex. 4: As the two eyes move, pointing the axes in various directions, they define

a vector with four components: the upward and lateral deviations of the

right and left eyes. Man has binocular vision; the chameleon moves his

two eyes independently, each side searching for food on its own side of the

body. How many degrees of freedom have the chameleon's eyes ? Man's ?

Ex. 5: An arrow, of fixed length, lying in a plane, has three degrees of freedom

for position (for two co-ordinates will fix the position of its centre, say, and

then one angle will determine its direction). How many degrees of freedom

has it if we add the restriction that it must always point in the direction of a

given point P?

Ex. 6: r is a given closed and single-valued transformation, and a any of its

operands. Consider the set of vectors, each of three components,

{a, T{a), T2{a)),

with a given all its possible values in turn. How many degrees of freedom

has the set?

Ex. 7: In what way does the ordinary graph, of >' on x, show constraint?

Ex. 8 : How many degrees of freedom has an ordinary body—a chair say—in

three dimensional space?

IMPORTANCE OF CONSTRAINT
7/14. Constraints are of high importance in cybernetics, and will

be given prominence through the remainder of this book, because

when a constraint exists advantage can usually be taken of it.

Shannon's work, discussed chiefly in Chapter 9, displays this

thesis clearly. Most of it is directed to estimating the variety that

would exist if full independence occurred, showing that constraints

(there called "redundancy") exist, and showing how their existence

makes possible a more efficient use of the channel.

The next few sections will also show something of the wide

applicability and great importance of the concept.

7/15. Laws of Nature. First we can notice that the existence of

any invariant over a set of phenomena implies a constraint, for its

existence implies that the full range of variety does not occur. The

general theory of invariants is thus a part of the theory of constraints.

Further, as every law of nature implies the existence ofan invariant,

it follows that every law of nature is a constraint. Thus, the New-
tonian law says that, of the vectors of planetary positions and

velocities which might occur, e.g. written on paper (the larger set),

only a smaller set will actually occur in the heavens; and the law

specifies what values the elements will have. From our point of view,

what is important is that the law excludes many positions and

velocities, predicting that they will never be found to occur.
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Science looks for laws; it is therefore much concerned with looking
for constraints. (Here the larger set is composed of what might

happen if the behaviour were free and chaotic, and the smaller set

is composed of what does actually happen.)
This point of view, it will be noticed, conforms to what was

said in S.1/5. Cybernetics looks at the totality, in all its possible

richness, and then asks why the actualities should be restricted to

some portion of the total possibilities.

Ex. 1 : How is the chemist's Law of Simple Proportions a constraint?

Ex. 2: How is the Law of Conservation of Energy a constraint?

7/16. Object as constraint. Constraints are exceedingly common
in the world around us, and many of our basic concepts make use

of it in an essential way. Consider as example the basic concept
of a "thing" or "object", as something handled in daily life. A
chair is a thing because it has coherence, because we can put it on

this side of a table or that, because we can carry it around or sit

on it. The chair is also a collection of parts.

Now any free object in our three dimensional world has six

degrees of freedom for movement. Were the parts of the chair

unconnected each would have its own six degrees of freedom
;
and

this is in fact the amount of mobility available to the parts in the

workshop before they are assembled. Thus the four legs, when

separate, have 24 degrees of freedom. After they are joined, how-

ever, they have only the six degrees of freedom of the single object.

That there is a constraint is obvious when one realises that if the

positions of three legs of an assembled chair are known, then that

of the fourth follows necessarily
—it has no freedom.

Thus the change from four separate and free legs to one chair

corresponds precisely to the change from the set's having 24 degrees

of freedom to its having only 6. Thus the essence of the chair's

being a "thing", a unity, rather than a collection of independent

parts corresponds to the presence of the constraint.

7/17. Seen from this point of view, the world around us is extremely
rich in constraints. We are so familiar with them that we take

most of them for granted, and are often not even aware that they

exist. To see what the world would be hke without its usual

constraints we have to turn to fairy tales or to a "crazy" film, and

even these remove only a fraction of all the constraints.

A world without constraints would be totally chaotic. The

turbulent river below Niagara might be such a world (though the

131



7/18 AN INTRODUCTION TO CYBERNETICS

physicist would still find some constraint here). Our terrestrial

world, to which the living organism is adapted, is far from presenting
such a chaos. Later (S.13/5) it will be suggested that the organism
can adapt just so far as the real world is constrained, and no further.

Ex. : Attempt to count, during the next one minute, all the constraints that are

operating in your surroundings.

7/18. Prediction and constraint. That something is "predictable"

implies that there exists a constraint. If an aircraft, for instance,

were able to move, second by second, from any one point in the sky
to any other point, then the best anti-aircraft prediction would be

helpless and useless. The latter can give useful information only
because an aircraft cannot so move, but must move subject to

several constraints. There is that due to continuity
—an aircraft

cannot suddenly jump, either in position or speed or direction.

There is the constraint due to the aircraft's individuality of design,
which makes this aircraft behave like an A- 10 and that one behave

like a Z-20. There is the constraint due to the pilot's individuality;

and so on. An aircraft's future position is thus always somewhat

constrained, and it is to just this extent that a predictor can be useful.

7/19. Machine as constraint. It will now be appreciated that the

concept of a "machine", as developed from the inspection of a

protocol (S.6/5), comes froin recognising that the sequence in the

protocol shows a particular form of constraint. Were the protocol
to show no constraint, the observer would say it was chaotic or

unpredictable, like a roulette-wheel.

When it shows the characteristic form of constraint, the observer

can take advantage of the fact. He does this by re-coding the whole

protocol into a more compact form, containing only:

(i) a statement of the transformation

and (ii) a statement of the actual input given.

Subsequently, instead of the discussion being conducted in terms of a

lengthy protocol, it is conducted compactly in terms of a succinct

transformation ;
as we did throughout Part I.

Thus, use of the transformation is one example of how one can

turn to advantage the characteristic constraint on behaviour imposed

by its being "machine-like".

Ex. : If a protocol shows the constraint characteristic of a machine, what does the

constraint exclude?
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7/20. Within the set of determinate machines further constraints

may be appHed. Thus the set can be restricted to those that have

a certain set of states as operands, or to those that have only one

basin, or to those that are not reducible.

A common and very powerful constraint is that of continuity.

It is a constraint because whereas the function that changes arbi-

trarily can undergo any change, the continuous function can change,
at each step, only to a neighbouring value. Exercise 4 gives but a

feeble impression of the severity of this constraint.

Ex. 1 : The set of closed single-valued transformations (absolute systems) on
three states «, b, c has 27 members (compare Ex. 7/7/7). How many
members remain if we add the restriction that the absolute system is to

have no state of equihbrium?

Ex. 2: (Continued.) Similarly, but the restriction is that there must be only
one basin.

Ex. 3 : (Continued.) Similarly, but the restriction is that the transitions a ^ b

and 6 -> c may not occur.

Ex. 4: A vector has ten components, each of which can take one of the values:

1, 2, 3, 4. How much variety has the set of vectors if (i) the components
vary independently (S.7/I2); (ii) under the rule that no two adjacent compo-
nents may differ in value by more than one unit?

7/21. Learning and constraint. For the psychologist, an important

example of constraint occurs in learning. Pavlov, for instance, in

one experiment gave both thermal and tactile stimuli, as well as

reinforcement by meat powder, in the following combinations:
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The subject might then be given a sequence such as A2, B5, C3, B5,

C3, A2, A2, C3, and so on.

Now this sequence, as a sequence of vectors with two components,
shows constraint; and if learning is to occur the constraint is neces-

sary; for without constraint A would be followed equally by 2, 3

or 5
;
and the subject would be unable to form any specific associa-

tions. Thus learning is possible only to the extent that the sequence
shows constraint.

The same is true of learning a maze. For this to occur the maze
must retain the same pattern from day to day during the period of

learning. Were the maze to show no constraint, the animal would

be unable to develop the particular (and appropriate) way of be-

having. Thus, learning is worth while only when the environment

shows constraint. (The subject is taken up again in S.13/7.)

VARIETY IN MACHINES

7/22. We can now turn to considering how variety is affected by a

machine's activities, making our way towards an understanding of

what happens to information when it is handled by a machine.

First, let us notice a fundamental peculiarity of the single-valued

transformation in its relation to variety.

Consider for instance the single-valued transformation

^ B C C

and apply it to some set of the operands, e.g.

BBACCCAABA
The result is CCBCCCBBCB
What is important is that the variety in the set has fallen from 3 to

2. A further transformation by Z leads to all C's, with a variety

of 1.

The reader can easily satisfy himself that such a set, operated on

by a single-valued transformation, can never increase in variety,

and usually falls. The reason for the fall can readily be identified.

In the graph, a confluence of arrows ^ can occur, but a

divergence <^
is impossible. Whenever the transformation

makes two states change to one, variety is lost; and there is no

contrary process to replace the loss.
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It is not necessary that the transformation should be closed.

Thus if the same set of ten letters is transformed by Y:

P il P

giving q q p p p p p p q p, the variety falls. It is easy to see that

only when the transformation is one-one (over the letters that

actually occur in the set to be transformed) is the set's variety

unchanged; and this is a very special type of transformation.

Ex. 1 : Write the letters ^ to Z in a row; under it, letter by letter, write the first

26 letters of some well known phrase. The transition from upper row to

lower now defines a single-valued transformation (u). Write your name
in full, find the variety among its letters, transform by // (i.e. "code" it)

and find the variety in the new set of letters How has the variety changed ?

Apply u repeatedly; draw a graph of how the variety changes step by step.

Ex. 2: In a certain genus of parasite, each species feeds off" only one species of

host. If the varieties (in our sense) of parasites' species and hosts' species
are unequal, which is the larger?

Ex. 3: "A multiplicity of genotypes may show the same phenotypic feature."

If the change from each genotype to its corresponding phenotype is a

transformation V, what change in variety does F cause?

Ex. 4: When a tea-taster tastes a cup of tea, he can be regarded as responsible
for a transformation Kconverting "sample of leaf" as operand to "opinion"
as transform. If the taster is perfect, Y will be one-one. How would he

be described if Y were many-one ?

Ex. 5 : When read to the nearest degree on each of seven occasions, the tempera-
tures of the room and of a thermostatically-controlled water-bath were

found to be

Room: 65, 62, 68, 63, 62, 59, 61.

Water-bath: 97, 97, 98, 97, 97, 97, 97.

How much variety is shown (i) by the room's temperatures, (ii) by those

of the bath? What would have been said had the variety in (i)

exceeded that of (ii)?

*£'.v. 6: If the transformation has been formed by letting each state go to one
state selected at random from all the states (independently and with equal

probabilities), show that if the number of states is large, the variety will

fall at the first step, in the ratio of 1 to 1
—

Xje, i.e. to about two-thirds.

(Hint: The problem is equivalent (for a single step) to the following: n

hunters come suddenly on a herd of n deer. Each fires one shot at a deer

chosen at random. Each bullet kills one and only one animal. How many
deer will, on the average, be hit? And to what does the average tend as

// tends to infinity?)

7/23. Set and machine. We must now be clear about how a set

of states can be associated with a machine, for no real machine

can, at one time, be in more than one state. A set of states can be

considered for several reasons.
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We may, in fact, not really be considering one machine, however
much we speak in the singular (S.7/3), but may really be considering
a set of replicates, as one might speak of "the Model T Ford", or

"the anterior horn cell", or "the white rat". When this is so we can

consider all the replicates together, one in one state and one in

another; thus we get a set of states for one transformation to act on.

A set of states can also arise even if the machine is unique. For
we may wish to consider not only what it may do at one time from

one state but also what it may do at another time from another

state. So its various possible behaviours at a set of times are

naturally related to a set of states as operands.

Finally, a set may be created by the fiat of a theoretician who, not

knowing which state a particular machine is at, wants to trace out

the consequences of all the possibilities. The set now is not the

set of what does exist, but the set of what may exist (so far as the

theoretician is concerned). This method is typically cybernetic, for

it considers the actual in relation to the wider set of the possible
or the conceivable (S.1/3).

7/24. Decay of variety. Having, for one of these reasons, a set

of states and one single-valued transformation, we can now, using
the result of S.7/22, predict that as time progresses the variety in the

set camiot increase and will usually diminish.

This fact may be seen from several points of view.

In the first place it gives precision to the often made remark that

any system, left to itself, runs to some equilibrium. Usually the

remark is based on a vague appeal to experience, but this is un-

satisfactory, for the conditions are not properly defined. Sometimes
the second law of thermodynamics is appealed to, but this is often

irrelevant to the systems discussed here (S.1/2). The new formula-

tion shows just what is essential.

In the second place it shows that if an observer has an absolute

system, whose transformation he knows but whose states cannot,
for any reason, be observed, then as time goes on his uncertainty

about its state can only diminish. For initially it might be at any
one of all its states, and as time goes on so does the number of its

possible states diminish. Thus, in the extreme case in which it has

only one basin and a state of equilibrium, he can, if initially

uncertain, ultimately say with certainty, without making any further

observation, at which state it is.

The diminution can be seen from yet another point of view. If

the variety in the possible states is associated with information, so

that the machine's being at some particular state conveys some
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particular message, then as time goes on the amount of information

it stores can only diminish. Thus one of three messages might be

carried to a prisoner by a cup of coffee, the message depending on
whether it was hot, tepid, or cold. This method would work

satisfactorily if the time between despatch and receipt was short,

but not if it were long; for whichever of the three states were selected

originally, the states after a short time would be either "tepid" or

"cold", and after a long time, "cold" only. Thus the longer the

time between despatch and receipt, the less is the system's capacity
for carrying information, so far as this depends on its being at a

particular state.

Ex. 1 : If a ball will rest in any one of three differently coloured basins, how much
variety can be stored ?

Ex. 2 : (Continued.) If in addition another ball of another colour can be placed,

by how much is the variety increased?

Ex. 3: That a one-one transformation causes no loss of variety is sometimes
used as a parlour trick. A member of the audience is asked to think of two

digits. He is then asked to multiply one of them by 5, add 7, double the

the result, and add the other number. The result is told to the conjurer
who then names the original digits. Show that this transformation retains

the original amount of variety. (Hint: Subtract 14 from the final quantity.)

Ex. 4: (Continued.) What is the set for the first measure of variety?

Ex. 5: (Another trick.) A member of the audience writes down a two-digit

number, whose digits differ by at least 2. He finds the difference between
this number and the number formed by the same digits in reverse order.

To the difference he adds the number formed by reversing the digits of the

difference. How much variety survives this transformation?

Ex. 6: If a circuit of neurons can carry memory by either reverberating or not,

how much variety can the circuit carry? What is the set having the variety?

£'.v. 7: Ten machines, identical in structure,, have run past their transients and
now have variety constant at zero. Are they necessarily at a state of

equilibrium?

7/25. Law of Experience. The previous section showed that the

variety in a machine (a set being given and understood) can never

increase and usually decreases. It was assumed there that the

machine was isolated, so that the changes in state were due only
to the inner activities of the machine; we will now consider what

happens to the variety when the system is a machine with input.

Consider first the simplest case, that of a machine with one para-
meter P that changes only at long intervals. Suppose, for clarity,

that the machine has many replicates, identical in their transforma-

tions but differing in which state each is at; and that we are observing
the set of states provided at each moment by the set of machines.

Let P be kept at the same value for all and held at that value while
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the machines change step by step. The conditions are now as in

the previous section, and if we measure the variety in state over the

set of repHcates, and observe how the variety changes with time, we
shall see it fall to some minimum. When the variety has reached

its minimum under this input-value (Pi), let P be changed to some
new value (P2), the change being made uniformly and simultaneously
over the whole set of replicates. The change in value will change
the machine's graph from one form to another, as for example (if

the machine has states A, B, .
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correspondence. This point of view would be more appropriate

if we were studying some very complex transducer, making fresh

experiments on it each day. If it contained great numbers of rather

inaccessible parts, there might be difficulty in bringing it each morn-

ing back to some standardised state ready for the next experiment.

The theorem says that if its input is taken, in the early morning,

through some standardised routine, then the longer the routine, the

more certain is it that the machine will be brought, ready for the

experimenter, to some standard state. The experimenter may not

be able to name the state, but he can be confident that it tends to

be reproducible.
It should be noticed that mere equality of the set's parameter at

each step of the sequence is not sufficient; if the effect is to be more

than merely nominal (i.e. null) the parameters must undergo actual,

non-zero, change.
The theorem is in no way dependent for its truth on the size of

the system. Very large systems are exactly as subject to it as small,

and may often be expected to show the effect more smoothly and

regularly (by the statistical effect of largeness). It may therefore

be usefully applicable to the brain and to the social and economic

system.

Examples that may correspond to this process are very common.

Perhaps something of this sort occurs when it is found that a number

of boys of marked individuality, having all been through the same

school, develop ways that are more characteristic of the school they

attended than of their original individualities. The extent to which

this tendency to uniformity in behaviour is due to this property of

transducers must be left for further research.

Some name is necessary by which this phenomenon can be referred

to. I shall call it the law of Experience. It can be described more

vividly by the statement that information put in by change at a

parameter tends to destroy and replace information about the

system's initial state.
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Chapter 8

TRANSMISSION OF VARIETY

8/1. The previous chapter has introduced the concept of "variety",

a concept inseparable from that of "information", and we have

seen how important it is, in some problems, to recognise that we are

dealing with a set of possibihties.

In the present chapter we shall study how such possibilities are

transmitted through a machine, in the sense of studying the relation

that exists between the set that occurs at the input and the consequent
set that occurs, usually in somewhat coded form, at the output.
We shall see that the transmission is, if the machine is determinate,

perfectly orderly and capable of rigorous treatment. Our aim will

be to work towards an understanding good enough to serve as a

basis for considering the extremely complex codings used by the

brain.

8/2. Ubiquity of coding. To get a picture of the amount of coding
that goes on during the ordinary interaction between organism
and environment, let us consider, in some detail, the comparatively

simple sequence of events that occurs when a "Gale warning" is

broadcast. It starts as some patterned process in the nerve cells

of the meteorologist, and then becomes a pattern of muscle-move-

ments as he writes or types it, thereby making it a pattern of ink

marks on paper. From here it becomes a pattern of light and dark

on the announcer's retina, then a pattern of retinal excitation, then

a pattern of nerve impulses in the optic nerve, and so on through
his nervous system. It emerges, while he is reading the warning,
as a pattern of lip and tongue movements, and then travels as a

pattern of waves in the air. Reaching the microphone it becomes

a pattern of variations of electrical potential, and then goes through
further changes as it is amplified, modulated, and broadcast. Now
it is a pattern of waves in the ether, and next a pattern in the receiving

set. Back again to the pattern of waves in the air, it then becomes a

pattern of vibrations traversing the listener's ear-drums, ossicles,

cochlea, and then becomes a pattern of nerve-impulses moving up
the auditory nerve. Here we can leave it, merely noticing that this
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very brief account mentions no less than sixteen major transforma-

tions through all of which something has been preserved, though
the superficial appearances have changed almost out of recognition.

8/3. Complexity of coding. When considering such repeated

codings the observer may easily over-estimate the amount of com-

plexity that has been introduced. It not uncommonly happens that

the amount of complexity is nothing like as large as a first impression

might suggest.

A simple example, showing how a complex coding may have

hidden simplicities, occurs when a simple one-one coding of the

alphabet is applied first to the message, then to the first coded form

to give a second (doubly-) coded form, then to the second coded

form, and so on for many codings. The final form might be thought
to be extremely mixed, and to need for its decoding as many opera-

tions backwards as were used forwards; in fact, as can easily be

verified, it differs from the original message only by as much as is

caused by a single application of some one-one coding. The final

message can thus be turned back to the original by a single operation.

Ex. : Arrange the cards of a pack in order, and place it on the table face down-
wards. Cut. Cut again. Cut again and again until you are satisfied

that the original order is lost totally. Now pick the pack up and examine its

order
;
how much order has been lost ?

8/4. De-coding. The general study of codings is best introduced

by noticing some of the features of military codings.

We must be careful from the beginning not to interpret "code"

too narrowly. At first we tend to think only of those methods
that turn each letter of the message to some other letter, but this

class is too restricted, for there are many other methods. Thus
the "Playfair" code operates on the letters in pairs, turning each

pair (a vector with two components ) to some other pair. Other

codes put the letters into some new arrangement, while others are

wholly arbitrary, turning, for instance, "two divisions will arrive"

to "Arthur". These considerations make it clear that if the coding
is a transformation, the operand is the whole message rather than a

letter (though the latter possibility is not excluded). The trans-

formation is therefore essentially of the form

^
, Ml M2 M3 ...

^i Q Q • • •

where Mi, M2, . . are the various messages and Q, C2, . . . are their

coded forms. A coding, then, is specified by a transformation.
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Often the method uses a "key-word" or some other factor that is

capable of changing the code from one form to another. Such a

factor corresponds, of course, to a parameter, giving as many
particular codings (or transformations) t/j, U2, as there are

values to the factor.

"Decoding" means applying such a transformation to the trans-

form C,-
as will restore the original message M,:

V- i
^^ ^' ^^ '"

^
Ml M2 M3 ...

Such a transformation V is said to be the inverse of U; it may then

be written as t/"i. In general, only one-one transformations have

single-valued inverses.

If the original message M^ is to be recoverable from the coded

form C,-,
whatever value / may have, then both U and t/^ must be

one-one; for if both M, and M, were to be transformed to one form

Q, then the receiver of Q could not tell which of the M's had been

sent originally, and Q cannot be decoded with certainty.

Next suppose that a set of messages, having variety v, is sent

coded by a one-one transformation U. The variety in the set of

coded forms will also be v. Variety is not altered after coding by a

one-one transformation.

It follows that if messages of variety v are to pass through several

codes in succession, and are to be uniquely restorable to their

original forms, then the process must be one that preserves the variety

in the set at every stage.

Ex. 1 : Is the transformation x' = logio x, applied to positive numbers, a one-

one coding? What is "decoding" it usually called?

£.v. 2: Is the transformation .v' = sin a-, applied to the positive numbers, a

one-one coding?

Ex. 3: What transformation results from the application of, first, a one-one

transformation and then its inverse ?

Ex. 4 : What transformation is the inverse of a?' = « + 7 ?

Ex. 5: What transformation is the inverse of x' = 2x + y, y' = x + v?

Ex. 6: If the coded form consists of three English letters, e.g. JNB, what is the

variety of the possible coded forms (measured logarithmically)?

Ex. 1 : (Continued.) How many distinct messages can be sent through such a

code, used once?

Ex. 8: Eight horses are running in a race, and a telegram will tell Mr. A. which

came first and which second. What variety is there in the set of possible

messages ?

Ex. 9: (Continued.) Could the set be coded into a single letter, printed either

as capital or as lower case (small letters)?
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Ex. 10: The concentrations "high" or "low" of sex-hormone in the blood of a

certain animal determines whether it will, or will not, go through a ritual

of courtship. If the sex-hormone is very complicated chemically and the

ritual very complicated ethnologically, and if the variable "behaviour" is

regarded as a coded form of the variable "concentration", how much
variety is there in the set of messages?

8/5. Coding by machine. Next we can consider what happens
when a message becomes coded by being passed through a machine.

That such questions are of importance in the study of the brain

needs no elaboration. Among their other appUcations are those

pertaining to "instrumentation"—the science of getting information

from some more or less inaccessible variable or place, such as the

interior of a furnace or of a working heart, to the observer. The
transmission of such information almost always involves some
intermediate stage of coding, and this must be selected suitably.

Until recently, each such instrument was designed simply on the

principles peculiar to the particular branch of science; today,

however, it is known, after the pioneer work of Shannon and Wiener,
that certain general laws hold over all such instruments. What they
are will be described below.

A "machine" was defined in S.3/4 as any set of states whose

changes in time corresponded to a closed single-valued transforma-

tion. This definition applies to the machine that is totally isolated,

i.e. in constant conditions; it is identical with the absolute system
defined in Design. ... In S.4/1 the machine with input was defined

as a system that has a closed single-valued transformation for each

one of the possible states of a set of parameters. This is identical

with the "transducer" of Shannon, which is defined as a system whose
next state is determined by its present state and the present values

of its parameters. (He also assumes that it can have a finite internal

memory, but we shall ignore this for the moment, returning to it in

S.9/8.)

Assume then that we have before us a transducer M that can be

in some one of the states 5*1, S2, ., S„, which will be assumed here

to be finite in number. It has one or more parameters that can

take, at each moment, some one of a set of values P^, Pi, . . ., Pi^.

Each of these values will define a transformation of the 5"s. We
now find that such a system can accept a message, can code it, and
can emit the coded form. By "message" I shall mean simply some
succession of states that is, by the coupling between two systems, at

once the output of one system and the input of the other. Often

the state will be a vector. I shall omit consideration of any "mean-
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ing" to be attached to the message and shall consider simply what
will happen in these determinate systems.

For simplicity in the example, suppose that M can take any one
of four states: A, B, C, and D; that the parameters provide three

states Q, R, and S. These suppositions can be shown in tabular

form, which shows the essentials of the "transducer" (as in S.4/1):
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Ex. 6: Pass the message "314159 . . ." (the digits of tt) through the transducer

n' = n -{ a — 5, starting the transducer at « = 10.

Ex. 7: If a and b are parameters, so that the vector {a,b) defines a parameter-

state, and if the transducer has states defined by the vector {,x,y) and trans-

formation
'

x' = ax -\- by

y =x + (a
-

b)y,

complete the trajectory in the table :

a
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and these correspond to Mi, M2, . . ., Mg of U. Suppose the trans-

ducer is always started atA;ii is easy to verify that the corresponding
nine outputs will be (if we ignore the initial and invariable A) :

CA, CB, CC, AC, AA, AB, BC, BC, BB.

These are the Q, C2 . . .,Cgof U. Now the coding performed by the

transducer is not one-one, and there has been some loss of variety,

for there are now only eight distinguishable elements, BC being

duplicated. This transducer therefore fails to provide the possibility

for complete and exact decoding; for if BC arrives, there is no way
of telling whether the original message was SQ or SR.

In this connexion it must be appreciated that an inability to

decode may be due to one of two very diiferent reasons. It may
be due simply to the fact that the decoder, which exists, is not at

hand. This occurs when a military message finds a signaller without

the code-book, or when a listener has a gramophone record (as a

coded form of the voice) but no gramophone to play it on. Quite
different is the inability when it is due to the fact that two distinct

messages may result in the same output, as when the output BC
comes from the transducer above. All that it indicates is that the

original message might have been SQ or SR, and the decoder that

might distinguish between them does not exist.

It is easy to see that if, in each column of the table, every state had
been different then every transition would have indicated a unique
value of the parameter; so we would thus have been able to decode

any sequence of states emitted by the transducer. The converse

is also true; for if we can decode any sequence of states, each

transition must determine a unique value of the parameter, and thus

the states in a column must be all different. We have thus identified

the characteristic in the transducer that corresponds to its being a

perfect coder.

Ex. 1 : In a certain transducer, which has 100 states, the parameters can take

108 combinations of values; can its output always be decoded? (Hint:

Try simple examples in which the number of transformations exceeds that

of the states.)

Ex. 2: (To emphasise the distinction between the two transformations.) If

a transducer's input has 5 states, its output 7, and the message consists of

some sequence of 12, (i) how many operands has the transducer's trans-

formation, and (ii) how many has the coding transformation (/?

Ex. 3: If a machine is continuous, what does "observing a transition" corres-

pond to in terms of actual instrumentation ?

*Ex. 4: If the transducer has the transformation dx/dt = ax, where a is the

input, can its output always be decoded? (Hint: Solve for a.)
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8/7. Designing an inverter. The previous section showed that,

provided the transducer did not lose distinctions in transmission

from input to output, the coded message given as output could

always be decoded. In this section we shall show that the same

process can be done automatically, i.e. given a machine that does not

lose distinctions, it is always possible to build another machine that,

receiving the first's output as input, will emit the original message
as its own output.

We are now adopting a rather different point of view from that

of the previous section. There we were interested in the possibility

of a message being decoded and in whether the decoding could be

done or not—by whom did not matter. We are now turning to the

question of how a mechanism can be built, by us, so that the mechan-
ism shall do the decoding automatically. We seek, not a restored

message but a machine. How shall it be built ? What we require
for its specification, of course, is the usual set of transformations

(S.4/1).

A possible method, the one to be used here, is simply to convert

the process we followed in the preceding section into mechanistic

form, using the fact that each transition gives information about the

parameter-value under which it occurred. We want a machine,
therefore, that will accept a transition as input and give the original

parameter value as output. Now to know which transition has

occurred, i.e. what are the values of / and j in "l',-^ X/\ is clearly

equivalent to knowing what is the value of the vector (i,j); for a

transition can also be thought of as a vector having two components.
We can therefore feed the transitions into an inverter if the inverter

has an input of two parameters, one to take the value of the earlier

state and the other to take the value of the later.

Only one difficulty remains : the transition involves two states that

do not exist at the same moment of time, so one of the inverter's

inputs must behave now according to what the transducer's output
was. A simple device, however, will get over this difficulty.

Consider the transducer
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in series will repeat the message two steps later, and so on.

there is no difficulty in principle in getting delay.

Suppose that the first transducer, the coder, is:

Clearly

•'f
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The inverter will now emit the same sequence as was put into the

coder. Thus suppose Q was put in and caused the transitionA^ D
in the coder. This imphes that the inverter will be receiving at this

step, D directly from the coder (for the coder is at D), and a from
the delayer (for the coder was at A the step before). With input

{a,D), the inverter goes to state Q, which is the state we supposed.
And similarly for the other possible states put in.

Thus, given a transducer that does not lose distinctions, an

automatic inverter can always be built. The importance of the

demonstration is that it makes no reference to the transducer's actual

material—it does not matter whether it is mechanical, or electronic,

or neuronic, or hydraulic
—the possibility of inversion exists. What

is necessary is the determinateness of the coder's actions, and its

maintenance of all distinctions.

Ex. I : Why cannot the Coder of S.8/5 be used as example?
Ex. 2: Complete the specification of the inverter just given.

Ex. 3 : Specify a two-step delayer in tabular form.

8/8. (This section may be omitted at first reading.) Now that the

construction of the inverter has been identified in the most general

form, we can examine its construction when the transducer is less

general and more Hke the machines of every-day life. The next

step is to examine the construction of the inverter when the trans-

formations, of transducer and inverter, are given, not in the abstract

form of a table but by some mathematical function.

As a preliminary, consider building an inverter for the transducer

with input a, variable n, and transformation n' = n -{ a. A suitable

device for delay would be the transducer with parameter «, variable

p, and transformation p' = n. It is now easily verified that, given
the input a as shown, n (if started at 3) and p (if started at 1) will

change as :

a:
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Examination of these in detail, to find how the transform follows

from the operand, shows that in all cases

m' = n — p

It is easily verified that the whole system will now emit the values that

the original input had two steps earlier,

(The reader might be tempted to say that as n' = n + a, therefore

a = n' — n, and the code is solved. This statement is true, but it

does not meet our purpose, which is to build a machine (see para.

2 of S.8/7). It enables us to decode the message but it is not the

specification of a machine. The building or specification requires

the complications of the previous paragraph, which finishes with

/;/ = «—/?, a specification for a machine with input.)

The general rule is now clear. We start with the transducer's

equation, n' = n -{ a, and solve it for the parameter: a = n' — n.

The delaying device has the transformation p' = n. The trans-

formation for the inverter is formed by the rules, applied to the

equation a = n' — n:

1 : replace a by the new transducer's symbol m';

2: replace n' by a parameter c;

3 : replace « by a parameter d.

Then, if this inverter is joined to the original transducer by putting

d = n, and to the delayer by c = p, it will have the required proper-

ties.

If the original transducer has more than one variable, the process

needs only suitable expansion. An example, without explanation,

will be sufficient. Suppose the original transducer has parameters

ai and 02, variables x^ and X2, and transformation

Xi = 2^1 + aiX2

X2 = 2^2 + aia2

Solving for the parameters gives

«i = C^i'
-

2xi)lx2

ai = •V2(-^'2'
-

2x2)/Cvi'
-

2xi)

A delayer for x^ is p^' = Xi, and one for X2 is p2 = X2. The

equations of the inverter are formed from those for Cj and ^2 by

applying the rules:

1 : replace each a^ by a new symbol: a^
= nii, Ui = ^2',

2: replace each x/ by a parameter c,-: x^ =
Ci, x{ = C2;

3: replace each x^ by a parameter d^'. Xi = d^, X2 = ^2^
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There results the transducer

m^ =
(ci
—

2di)/d2

m2 = d2ic2
-

2d2)l{ci
-

2d{).

If now this transducer is joined to the original transducer by

d^ = .x'l, fi?2
=

-^'2» 'iJid to the delayers by C]
=

Pi, C2 = P2, then Wj
and /W2 will give, respectively, the values that ai and ^2 had two

steps earlier.

Ex. I : Build an inverter for the transducer n' = an.

Ex. 2: Similarly for n' = 11
— 2a + 4.

Ex. 3 : Similarly for x' = ax — by, y' = ax + by.

Ex. 4: Try to build an inverter for the transducer n' = n -\- a + b; why can
it not be done?

*Ex. 5 : Build an inverter for the transducer

dx\jdt = OlXlA'2 + 02

dxzldt = (oi
—

l).Yi + 02x2.

Ex. 6: Why, in the section, does M have to transform (7,3) to 4, and not to

—2, as the table a few lines higher might suggest?

8/9. Size of the inverter. With the facts of the previous sections,

it is now possible to make some estimate of how much mechanism
is necessary to invert the output of some given transducer. S.8/7
makes clear that if the original transducer is not to lose distinctions

it must have at least as many output values as the input has distinct

values. Similarly the inverter must have at least as many, but need

not necessarily have more. The delayers will require little, for they
are simple. It seems, therefore, that if the inverter is made of

similar components to the original transducer then, whatever the

complexity or size of the original transducer, the inverter will have a

complexity and size of the same order.

The importance of this observation is that one sometimes feels,

when thinking of the complexities in the cerebral cortex or in an

ecological system, that any effect transmitted through the system
must almost at once become so tangled as to be beyond all possible

unravelling. Evidently this is not so; the complications of coding
added by one transducer are often or usually within the decoding

powers of another transducer of similar size.

TRANSMISSION FROM SYSTEM TO SYSTEM
8/10. "'Transmitting" variety. It may be as well at this point to

clarify a matter on which there has been some confusion. Though
it is tempting to think of variety (or information) as passing through
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a transducer, or variety passing from one transducer to another,

yet the phrase is dangerously misleading. Though an envelope can

contain a message, the single message, being unique, cannot show

variety; so an envelope, though it can contain a message, cannot

contain variety: only a set of envelopes can do that. Similarly,

variety cannot exist in a transducer (at any given moment), for a

particular transducer at a particular moment is in one, and only one,

state. A transducer therefore cannot "contain" variety. What
can happen is that a number of transducers (possibly of identical

construction), at some given moment, can show variety in the states

occupied ;
and similarly one transducer, on a number of occasions,

can show variety in the states it occupied on the various occasions.

(What is said here repeats something of what was said in S.7/5,

but the matter can hardly be over-emphasised.)
It must be remembered always that the concepts of "variety",

as used in this book, and that of "information", as used in com-

munication theory, imply reference to some set, not to an individual.

Any attempt to treat variety or information as a thing that can exist

in another thing is likely to lead to difficult "problems" that should

never have arisen.

8/11. Transmission at one step. Having considered how variety

changes in a single transducer, we can now consider how it passes

from one system to another, from TXo U say, where T is an absolute

system and [/ is a transducer.

T
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that has all its representative points at the same state can thus, under

the effect of T's variety, change to a set with its points scattered over

not more than Uj- states. There are «y such sets of C/'s, each capable
of being scattered over not more than rij states, so the total scattering

cannot, after one step, be greater than over rij-Uu states. If variety
is measured logarithmically, then the variety in U after one step
cannot exceed the sum of those initially in U and T. In other words,
the U's cannot gain in variety at one step by more than the variety

present in the T's.

This is the fundamental law of the transmission of variety from

system to system. It will be used frequently in the rest of the book.

Ex. 1: A system has states (t,ii) and transformation t' = 2t, u' = u + t, so t

dominates u. Eight such systems are started at the states (0,9), (2,5),

(0,5), (1,9), (1,5), (2,5), (0,9), (1,9) respectively. How much variety is in

the/'s? How much in the m's ?

Ex. 2: (Continued.) Find the states at the next step. How much variety has

/now? Predict an upper limit to «'s variety. How much has » now ?

Ex. 3 : In another system, T has two variables, ti and t2, and U has two, «i

and «2- The whole has states (ti, (2, iiu "2), and transformation ti'
=

tit2,

t2 = tu III
= Ml + tiui, U2 = t\U2, so that T dominates U. Three replicas

are started from the initial states (0,0,0,1), (0,0,1,1) and (1,0,0,1). What is

r's variety ? What is t/'s ?

Ex. 4: (Continued.) Find the three states one step later. What is f/'s variety
now?

8/12. Transmission at second step. We have just seen that, at the

first step, U may gain in variety by an amount up to that in T; what
will happen at the second step? T may still have some variety:
will this too pass to U, increasing its variety still further?

Take a simple example. Suppose that every member of the whole
set of replicates was at one of the six states {Ti,U^), (_Ti,Ui), (Ti,U^),

{Tj,Uk), (Tj,U,), {Tj,UJ, so that the T's were all at either
T,-

or
Tj

and the U's were all at
C/;^, Ui or U^. Now the system as a whole is

absolute; so all those at, say {7^,1},^, while they may change from
state to state, will all change similarly, visiting the various states

together. The same argument holds for those at each of the other

five states. It follows that the set's variety in state cannot exceed

six, however many replicates there may be in the set, or however

many states there may be in Tand U, or for however long the changes
may continue. From this it follows that the t/'s can never show
more variety than six t/-states. Thus, once U has increased in

variety by the amount in T, all further increase must cease. If

U receives the whole amount in one step (as above) then U receives
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no further increase at the second step, even though T still has some

variety.

It will be noticed how important in the argument are the pairings
between the states of T and the states of U, i.e. which value of T
and which of U occur in the same machine. Evidently merely

knowing the quantities of variety in T and in U (over the set of

replicates) is not sufficient for the prediction of how they will

change.

8/13. Transmission through a channel. We can now consider how
variety, or information, is transmitted through a small intermediate

transducer—a "channel"—where "small" refers to its number of

possible states. Suppose that two large transducers Q and S are

connected by a small transducer R, so that Q dominates R, and R
dominates S.

Q R

As usual, let there be a great number of replicates of the whole

triple system. Let i?'s number of possible states be r. Put log2r

equal to p. Assume that, at the initial state, the Q's have a variety
much larger than r states, and that the 7?'s and 5"s, for simplicity,

have none. (Had they some variety, S.8/11 shows that the new

variety, gained from Q, would merely add, logarithmically, to what

they possess already.)

Application of S. 8/11 to i? and S shows that, at the first step, 5"s

variety will not increase at all. So if the three initial varieties,

measured logarithmically, were respectively A'^, and 0, then after

the first step they may be as large as jV, p, and 0, but cannot be larger.

At the next step, R cannot gain further in variety (by S.8/12), but

S can gain in variety from R (as is easily verified by considering
an actual example such as Ex. 2). So after the second step the

varieties may be as large as N, p and p. Similarly, after the third

step they may be as large as A'^, p and 2p\ and so on. 5"s variety

can thus increase with time as fast as the terms of the series, 0, p,

2p, 3p, . . ., but not faster. The rule is now obvious: a transducer

that cannot take more than r states cannot transmit variety at more
than Iog2T bits per step. This is what is meant, essentially, by diff"erent

transducers having different "capacities" for transmission.

Conversely, as 5"s variety mounts step by step we can see that

the amount of variety that a transducer (such as R) can transmit is

proportional to the product of its capacity, in bits, and the number of

steps taken. From this comes the important corollary, which will

154



TRANSMISSION OF VARIETY 8/14

be used repeatedly later: given long enough, any transducer can

transmit any amount of variety.

An important aspect of this theorem is its extreme generality.
What sort of a machine it is that is acting as intermediate transducer,
as channel, is quite irrelevant: it may be a tapping-key that has

only the two states "open" and "closed", or an electric potential
that can take many values, or a whole neural ganglion, or a news-

paper
—all are ruled by the theorem. With its aid, quantitative

accuracy can be given to the intuitive feeling that some restriction

in the rate of communication is imphed if the communication has

to take place through a small intermediate transducer, such as

when the information from retina to visual cortex has to pass through
the lateral geniculate body, or when information about the move-
ments of a predator have to be passed to the herd through a solitary
scout.

£.v. 1 : An absolute system, of three parts, Q, R and S, has states {q,r,s) and
transformation

q: ,123456789
^': ^466565888

, _ r 0, if ^ + / is even,

\ 1,„ „ „ odd.

s' = 2s — r.

Q thus dominates R, and R dominates S. What is R's capacity as a
channel ?

Ex.2: (Continued.) Nine replicates were started at the initial states (1,0,0),

(2,0,0), . . ., (9,0,0), so that only Q had any initial variety, (i) How did the

variety of the Q's change over the first five steps? (ii) How did that of
the R's ? (iii) That of the 5's ?

Ex. 3: (Continued.) Had the answer to Ex..2(iii) been given as "5':1, 1,4,5,5",

why would it have been obviously wrong, without calculation of the actual

trajectories ?

8/14. The exercise just given will have shown that when Q, R and
S form a chain, 5* can gain in variety step by step from R even though
R can gain no more variety after the first step (S.8/12). The reason
is that the output of R, taken step by step as a sequence, forms a

vector (S.9/9), and the variety in a vector can exceed that in a com-

ponent. And if the number of components in a vector can be
increased without limit then the variety in the vector can also be
increased without limit, even though that in each component remains
bounded. Thus a sequence of ten coin-spins can have variety up to

1024 values, though each component is restricted to two. Similarly
/?'s values, though restricted in the exercises to two, can provide a

sequence that has variety of more than two. As the process of
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transmission goes on, S is affected (and its variety increased) by the

whole sequence, by the whole vector, and thus a variety of much
more than two can pass through R. A shrinkage in the capacity
of a channel can thus be compensated for (to keep the total variety
transmitted constant) by an increase in the length of the sequence—
a fact already noticed in the previous section, and one that will be
used frequently later.

Ex. 1 : An absolute system rdominates a chain of transducers Ai, A2, A3, A4, . . .:

A4

A set of replicates commences with variety in T but with none in Ai, nor
in A2, etc. Show that after k steps the varieties in Ai, A2, . . ., Aj^ may be
non-zero but that those in ^k+i, Ak+2, • • must still be zero (i.e. that T's

variety "cannot have spread farther than A^'\).

Ex. 2: Of 27 coins, identical in appearance, one is known to be counterfeit

and to be light in weight. A balance is available and the counterfeit coin

is to be identified by a series of balancings, as few as possible. Without

finding the method—by regarding the balance as a transducer carrying
information from the coins to the observer—give a number below which
the number of balancings cannot fall. (Hint: What is the variety at a

single balancing if the results can be only: equality, left pan heavier, right

pan heavier?)

8/15. Delay. The arrangement of the system of S.8/13:

Q R

can also be viewed as

in which Q and R have been regarded as forming a single system
T which is, of course, absolute. If now an observer studies the

transfer of variety from T to S, with exactly the same events as those

of S.8/13 actually occurring, he will find that the variety is moving
across in small quantities, step by step, unUke the transfer of S.8/11,

which was complete in one step.

The reason for the distinction is simply that in S.8/11 the whole

of the dominating system (T) had an immediate effect on the dom-
inated {U), while in S.8/13 T contained a part Q which had no
immediate effect on the receiver S. Q's effect had to be exerted

through R, and was thereby delayed.
This more time-consuming transfer is common in real systems

simply because many of them are built of parts not all of which have

an immediate effect on the receiving system. Thus if the cerebral

cortex, as receiver, is affected by the environment (which has no
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immediate effect on the cortex) the action has to take place through
a chain of systems : the sense organs, the sensory nerves, the sensory

nuclei, and so on; and some delay is thereby imposed. Even within

one such part some transfer has to take place from point to point,

thereby delaying its transfer to the next part.

Conversely, if a system such as T is found on testing to transmit

its variety to another system only over a number of steps, then it

may be predicted that T, if examined in detail, will be found to

consist of sub-systems coupled so that not all of T's variables have

an immediate effect on S.

Ex. 1 : If r consists of the sub-systems A, . . ., F joined to each other and to

S as shown in the diagram of immediate effects :

A ^
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What was important in the argument about t/'s feedback to T
is that what U feeds back to T is highly correlated with what is in T,

for each U feeds back into the particular T that acted on it a step

earlier, and no other. The argument thus demands an accurate

treatment of the correspondences between the various T's and t/'s.

The arguments of the previous few sections have shown that

though the matter can be treated in words in the simple cases (those

just considered), the attempt to handle complex cases in the verbal

form is likely to lead to intolerable complexities. What is wanted is

a symbolic machinery, an algebra, which will enable the relations

to be handled more or less mechanically, with the rules of the

symbolic manipulation looking after the complexities. It seems

likely that the theory of sets, especially as developed by Bourbaki

and Riguet, will provide the technique. But further research is

needed into these questions.

8/17. Interference. If acid and alkali are passed along the same

pipe they destroy each other; what will happen if two messages
are passed along the same channel?—will they interfere with, and

destroy, each other?

Simple examples are quite sufficient to establish that the same

physical channel may well carry more than one message without

interference, each message travelling as if the others did not exist.

Suppose, for instance, that a sender wanted to let a recipient know

daily, by an advertisement in the personal column of a newspaper,
which of 26 different events was being referred to, and suppose he

arranged to print a single letter as the coded form. The same
channel of "one printed letter" could simultaneously be used to

carry other messages, of variety two, by letting the letter be printed
as lower case or capital. The two messages would then be trans-

mitted with as little interference as if they were on separate pages.

Thus, if ten successive messages were sent, NKeSztyZwm
would transmit both nkesztyzwm and 1 10 10 10

completely. It is thus possible for two messages to pass through the

same physical thing without mutual destruction.

As an example of rather different type, consider the transformation

of Ex. 2/14/11, and regard the position of, say. A'" as a coded form

of that of A (with B'" similarly as the coded form of B). Thus
treasure might be buried at A and weapons at B, with recording
marks left at A'" and B". Now a change in the position of B
leads to a change of A'", so 5's value plays an essential part in the

coding o^ A to A'" (and conversely of /I on B"')\ so the two messages
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interact. Nevertheless the interaction is not destructive to the

information about where the treasure and the weapons are, for,

given the positions of A'" and B'", those of A and B can always be

reconstructed, i.e. the messages are still capable of being exactly

decoded.

The conditions necessary that two messages should not interfere

destructively can be found by considering the basic fact of coding
—

that a set of messages are converted to a set of transforms (S.8/4)—and by using the fact that any two messages of different type can be

laid side by side and considered as components of one "vector"

message, just as any two variables can always be regarded as com-

ponents of one vector. Thus if, in the example of the printed letter,

X represents the variable "which message of the 26" and y represents
the variable "which of the two", then the printed symbol is a coding
of the single message {x,y).

Suppose it is given that the two messages x and y do not interfere

destructively. This implies that both x's and j^'s values are recon-

structible from the received form. It follows that if two primary

messages are distinct, then their coded forms must be distinct

(for otherwise unique decoding would not be possible). From this

it follows that, if the interaction is to be non-destructive, the variety

in the received forms must be not less than that in the original.

This condition holds in the example of the printed letter, for both

the original messages and the printed form have variety of 26 x 2.

The fact that chaos does not necessarily occur when two messages
meet in the same channel is of great importance in neuro-physiology,

especially in that of the cerebral cortex. Here the richness of

connexion is so great that much mixing of messages must inevitably

occur, if only from the lack of any method for keeping them apart.
Thus a stream of impulses coming from the auditory cortex and

carrying information relevant to one reaction may meet a stream of

impulses coming from the visual cortex carrying information relevant

to some other reaction. It has been an outstanding problem in

neurophysiology to know how destructive interaction and chaos is

avoided.

The discussion of this section has shown, however, that the prob-
lem is badly stated. Chaos does not necessarily occur when two

messages meet, even though each affects the same physical set of

variables. Through all the changes, provided that no variety is

lost and that the mechanism is determinate in its details, the two

messages can continue to exist, passing merely from one coding to

another. All that is necessary for their recovery is a suitable inverter;

and, as S.8/7 showed, its construction is always possible.
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Ex. 1 : (See Ex. 2/14/1 1.) If A'" is at the point (0,0) and B" at (0,1), reconstruct

the position oi A.

Ex. 2: A transducer has two parameters: a (which can take the values a or A)
and j8 (which can take the values b or B). Its states—W,X, Y,Z—are trans-

formed according to :

I



Chapter

INCESSANT TRANSMISSION

9/1. The present chapter will continue the theme of the previous,

and will study variety and its transmission, but will be concerned

rather with the special case of the transmission that is sustained for

an indefinitely long time. This is the case of the sciatic nerve, or the

telephone cable, that goes on incessantly carrying messages, unlike

the transmissions of the previous chapter, which were studied for

only a few steps in time.

Incessant transmission has been specially studied by Shannon, and

this chapter will, in fact, be devoted chiefly to introducing his

Mathematical Theory of Communication, with special emphasis on

how it is related to the other topics in this Introduction.

What is given in this chapter is, however, a series of notes,

intended to supplement Shannon's masterly work, rather than a

description that is complete in itself. Shannon's book must be

regarded as the primary source, and should be consulted first. I

assume that the reader has it available.

9/2. The non-determinate transformation. If the transmission is to

go on for an indefinitely long time, the variety must be sustained,

and therefore not like the case studied in S.8/11, in which T's

transmission of variety stopped after the first step. Now any
determinate system of finite size cannot have a trajectory that is

infinitely long (S.4/5). We must therefore now consider a more

comprehensive form of machine and transformation—the non-

determinate.

So far all our transformations have been single-valued, and have

thus represented the machine that is determinate. An extension

was hinted at in S.2/10, and we can now explore the possibility of

an operand having more than one transform. Some supplementary

restriction, however, is required, so as to keep the possibilities within

bounds and subject to some law. It must not become completely
chaotic. A case that has been found to have many applications is

that in which each operand state, instead of being transformed to a
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particular new state, may go to some one of the possible states, the

selection of the particular state being made by some method or

process that gives each state a constant probability of being the

transform. It is the unchangingness of the probability that

provides the law or orderliness on which definite statements can

be based.

Such a transformation would be the following: x' = x + a,

where the value of a is found by spinning a coin and using the rule

Head: a = 1
;
Tail: a = 0. Thus, if the initial value of .t is 4, and

the coin gives the sequence TTHHHTHTTH, the trajectory
will be 4, 4, 4, 5, 6, 7, 7, 8, 8, 8, 9. If the coin gives HTHHTTT
HTT, the trajectory will be 4, 5, 5, 6, 7, 7, 7, 7, 8, 8, 8. Thus the

transformation and the initial state are not sufficient to define a

unique trajectory, as was the case in S.2/17; they define only a set of

trajectories. The definition given here is supplemented by instruc-

tions from the coin (compare S.4/19), so that a single trajectory is

arrived at.

The transformation could be represented (uniformly with the

previously used representations) as:

3 4 5

3 4 4 5 5 6

where the ^ means that from state 3 the system will change

with probability ^ to state 3,

snd ,, ,, ,, ,, ,, 4.

Such a transformation, and especially the set of trajectories that

it may produce, is called "stochastic", to distinguish it from the

single-valued and determinate.

Such a representation soon becomes unmanageable if many
transitions are possible from each state. A more convenient, and

fundamentally suitable, method is that by matrix, similar to that of

S.2/10. A matrix is constructed by writing the possible operands
in a row across the top, and the possible transforms in a column

down the left side; then, at the intersection of column / with

row 7, is put the probability that the system, if at state /, will go to

state/
As example, consider the transformation just described. If the

system was at state 4, and if the coin has a probability ^ of giving
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Head, then the probability of its going to state 5 is ^ ; and so would

be its probability of staying at 4.

^ '
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estimate. He might go on to collect third and fourth estimates.

If these several estimates proved seriously discrepant he would say
that rain at Manchester had no constant probability. If however

they agreed, he could, if he pleased, say that the fraction at which

they agreed was the constant probability. Thus an event, in a very

long sequence, has a "constant" probability of occurring at each

step if every long portion of the sequence shows it occurring with

about the same relative frequency.
These words can be stated more accurately in mathematical terms.

What is important here is that throughout this book any phrases
about "probability" have objective meanings whose vahdity can

be checked by experiment. They do not depend on any subjective

estimate.

Ex. 1 : Take the five playing cards Ace, 2, 3, 4, 5. Shuffle them, and lay them
in a row to replace the asterisks in the transformation T:

rj.,
, Ace 2 3 4 5

Is the particular transformation so obtained determinate or not? (Hint:

Is it single-valued or not?)

Ex. 2: What rule must hold over the numbers that appear in each column of a

matrix of transition probabilities?

Ex. 3: Does any rule like that of Ex. 2 hold over the numbers in each row?

Ex. 4: If the transformation defined in this section starts at 4 and goes on for

10 steps, how many trajectories occur in the set so defined?

Ex. 5: How does the kinematic graph of the stochastic transformation differ

from that of the determinate ?

9/3. The stochastic transformation is simply an extension of the

determinate (or single valued). Thus, suppose the matrix of transi-

tion probabilities of a three-state system were :

\
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of the type we have considered throughout the book till now. The

single-valued, determinate, transformation is thus simply a special,

extreme, case of the stochastic. It is the stochastic in which all the

probabilities have become or 1 . This essential unity should not be

obscured by the fact that it is convenient to talk sometimes of the

determinate type and sometimes of the types in which the important

aspect is the fractionality of the probabilities. Throughout Part III

the essential unity of the two types will play an important part in

giving unity to the various types of regulation.

The word "stochastic" can be used in two senses. It can be used

to mean "all types (with constant matrix of transition probabilities),

the determinate included as a special case", or it can mean "all

types other than the determinate". Both meanings can be used; but

as they are incompatible, care must be taken that the context shows

which is implied.

THE MARKOV CHAIN

9/4. After eight chapters, we now know something about how a

system changes if its transitions correspond to those of a single-

valued transformation. What about the behaviour of a system
whose transitions correspond to those of a stochastic transformation?

What would such a system look like if we met one actually working?

Suppose an insect lives in and about a shallow pool
—sometimes

in the water (W), sometimes under pebbles (P), and sometimes on the

bank (B). Suppose that, over each unit interval of time, there is a

constant probability that, being under a pebble, it will go up on the

bank; and similarly for the other possible transitions. (We can

assume, if we please, that its actual behaviour at any instant is

determined by minor details and events in its environment.) Thus a

protocol of its positions might read :

WBWBWPWBWBWBWPWBBWBWPWBWPW
BWBWBBWBWBWBWPPWPWBWBBBW
Suppose, for definiteness, that the transition probabihties are

\ B W P

B
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the probabilities. Such a table would be, in essence, a summary of

actual past behaviour, extracted from the protocol.

Such a sequence of states, in which, over various long stretches,

the probability of each transition is the same, is known as a Markov

chain, from the name of the mathematician who first made an

extensive study of their properties. (Only during the last decade

or so has their great importance been recognised. The mathematical

books give various types of Markov chain and add various qualifi-

cations. The type defined above will give us all we want and will

not clash with the other definitions, but an important qualification

is mentioned in S.9/7.)

The term "Markov chain" is sometimes applied to a particular

trajectory produced by a system (e.g. the trajectory given in Ex. 1)

and sometimes to the system (defined by its matrix) which is capable

of producing many trajectories. Reference to the context must show

which is implied.

Ex. 1 : A system of two states gave the protocol (of 50 transitions):

ABABBBABAABABABABBBBABAABABBAAB
ABBABAAABABBAABBABBA.
Draw up an estimate of its matrix of transition probabilities.

Ex. 2: Use the method of S.9/2 (with the coin) to construct several trajectories,

so as to estabUsh that one matrix can give rise to many different trajectories.

Ex. 3: Use a table of random numbers to generate a Markov chain on two

states A and B by the rule :

If

r

Present state



INCESSANT TRANSMISSION 9/6

He can deduce that if it is in water it will not stay there, for W^ W
has probability zero, but will go usually to the bank, for W-^ B
has the highest probability in the column. From the bank it will

probably go to the water, and then back to the bank. If under a

pebble it also tends to go to the water. So clearly it spends much
of its time oscillating between bank and water. Time spent under

the pebbles will be small. The protocol given, which was constructed

with a table of random numbers, shows these properties.

Thus the matrix contains information about any particular

system's probable behaviour.

Ex. 1 : Had the P-column of the matrix a 1 in the lowest cell and zero elsewhere,

what could be deduced about the insect's mode of life ?

Ex. 2: A fly wanders round a room between positions A, B, C, and D, with

transition probabilities:

I A B C D

A
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composed of three populations (if large enough to be free from

sampling irregularities) is determiuate, although the individual

insects behave only with certain probabilities.

To follow the process in detail let us suppose that we start an

experiment by forcing 100 of them under the pebbles and then

watching what happens. The initial vector of the three populations

{dg, dyy, dp) wIll thus be (0, 0, 100). What the numbers will be at

the next step will be subject to the vagaries of random sampling;
for it is not impossible that each of the hundred might stay under

the pebbles. On the average, however (i.e. the average if the whole

100 were tested over and over again) only about 12-5 would remain

lOO

Ol Z-5456789 <^

TUiic (step)

Fig. 9/6/1

there, the remainder going to the bank (12-5 also) and to the water

(75). Thus, after the first step the population will have shown
the change (0, 0, 100) -> (12-5, 75, 12-5).

In this way the average numbers in the three populations may be

found, step by step, using the process of S.3/6. The next state is

thus found to be (60-9, 18-8, 20-3), and the trajectory of this system

(of three degrees of freedom—not a hundred ) is shown in Fig. 9/6/1.

It will be seen that the populations tend, through dying oscillations,

to a state of equUibrium, at (44-9, 42-9, 12-2), at which the system
will remain indefinitely. Here "the system" means, of course,

these three variables.

It is worth noticing that when the system has settled down, and is

practically at its terminal populations, there will be a sharp contrast

between the populations, which are unchanging, and the insects,

which are moving incessantly. The same pond can thus provide
two very different meanings to the one word "system". ("Equili-

brium" here corresponds to what the physicist calls a "steady state".)
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The equilibria! values of a Markov chain are readily computed.

At equilibrium the values are unchanging, so dg\ say, is equal to

dg. So the first line of the equation becomes

^B =^ 4"b + ^.^w + 8"P

i.e. 0= -1^5+ t^p^+ i^/>

The other lines are treated similarly. The lines are not all independ-

ent, however, for the three populations must, in this example, sum

to 100; one line (any one) is therefore struck out and replaced by

dB+ d^-^ dp= 100.

The equations then become, e.g.,

-¥B+ld^-^yp=
ds + dyy -\- dp= 100

-1/^ — If] —

which can be solved in the usual way. In this example the equilibrial

values are (44-9, 42-9, 12-2); as S.9/5 predicted, any individual

insect does not spend much time under the pebbles.

Ex. 1 : Find the populations that would follow the initial state of putting all

the insects on the bank.

Ex. 2: Verify the equilibrial values.

Ex. 3 : A six-sided die was heavily biased by a weight hidden in face .y. When

placed in a box with face / upwards and given a thorough shaking, the

probability that it would change to face g was found, over prolonged

testing, to be:

\

1

2

3

g 4

5

6

Which is X ? (Hint : Beware !)

Ex.A:K compound AB is dissolved in water. In each small interval of time

each molecule has a 1% chance of dissociating, and each dissociated A
has an 0-1% chance of becoming combined again. What is the matrix

of transition probabilities of a molecule, the two states being "dissociated"

and "not dissociated"? (Hint: Can the number of 5's dissociated be

ignored ?)

Ex. 5 : (Continued.) What is the equilibrial value of the percentage dissociated?

Ex. 6: Write out the transformations of (i) the individual insect's transitions,

and (ii) the population's transitions. How are they related?

Ex. 7: How many states appear in the insect's transitions? How many in the

system of populations ?

169

1



9/7 AN INTRODUCTION TO CYBERNETICS

*Ex. 8: If Z) is the column vector of the populations in the various states, D'
the vector one step later, and M the matrix of transition probabilities,
show that, in ordinary matrix algebra,

D' = MD, D" = M2Z), and /)<"> = M^D.

(This simple and natural relation is lost if the matrix is written in trans-

posed form. Compare Ex. 2/16/3 and 12/8/4.)

9/7. Dependence on earlier values. The definition of a Markov
chain, given in S.9/4, omitted an important qualification : the proba-
bilities of transition must not depend on states earlier than the operand.
Thus if the insect behaves as a Markov chain it will be found that

when on the bank it will go to the water in 75% of the cases, whether
before being on the bank it was at bank, water, or pebbles. One
would test the fact experimentally by collecting the three corres-

ponding percentages and then seeing if they were all equal at 75%.
Here is a protocol in which the independence does not hold:

AABBABBAABBABBABBABBAABBABBABABA
The transitions, on a direct count, are

\
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These dependencies are characteristic in language, which contains

many of them. They range from the simple linkages of the type

just mentioned to the long range linkages that make the ending
". . . of Kantian transcendentalism" more probable in a book that

starts "The university of the eighteenth century . . ." than in one that

starts "The modern racehorse . . .".

Ex.: How are the four transitions C -^ C, C-^D, D->C, and D -> D,
affected in frequency of occurrence by the state that immediately pre-

ceded each operand, in the protocol:

DDCCDCCDDCCDCCDDCCDCCDDCCDDDDCC
DDDDCCDDDCCDCCDC?
(Hint : Classify the observed transitions.)

9/8. Re-coding to Markov form. When a system is found to pro-

duce trajectories in which the transition probabilities depend in a

constant way on what states preceded each operand, the system,

though not Markovian, can be made so by a method that is more

important than may at first seem—one re-defines the system.

Thus suppose that the system is like that of Ex. 9/7/1 (the pre-

ceding), and suppose that the transitions are such that after the two-

state sequence . . . CC it always goes to D, regardless of what occurred

earlier, that after . . . DC it always goes to C, that after . . . CD it

goes equally frequently in the long run to C and D, and similarly

after . . . DD. We now simply define new states that are vectors,

having two components—the earlier state as first component and the

later one as second. Thus if the original system has just produced
a trajectory ending . . . DC, we say that the new system is at the

state (Z),C). If the original then moves on to state C, so that its

trajectory is now . . . DCC, we say that the new system has gone on

to the state {C,C). So the new system has undergone the transition

(D,C) -> {C,C). These new states do form a Markov chain, for their

probabilities (as assumed here) do not depend on earlier states : and

in fact the matrix is

Y
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If, in another system, the transition probabiUties depend on

values occurring n steps back, then the new states must be defined

as vectors over n consecutive states.

The method of re-defining may seem artificial and pointless.

Actually it is of fundamental importance, for it moves our attention

from a system that is not state-determined to one that is. The
new system is better predictable, for its "state" takes account of the

original system's past history. Thus, with the original form, to know
that the system was at state C did not allow one to say more than

that it might go to either C or D. With the second form, to know
that it was at the state (D,C) enabled one to predict its behaviour

with certainty, just as with the original form one could predict with

certainty when one knew what had happened earlier. What is

important is that the method shows that the two methods of

"knowing" a system
—by its present state or by its past history

—
have an exact relation. The theory of the system that is not com-

pletely observable (S.6/21) made use of this fact in essentially the

same way. We are thus led again to the conclusion that the

existence of "memory" in a real system is not an intrinsic property of

the system—we hypothesise its existence when our powers of observa-

tion are limited. Thus, to say "that system seems to me to have

memory" is equivalent to saying "my powers of observation do not

permit me to make a valid prediction on the basis of one observation,

but I can make a valid prediction after a sequence of observations".

9/9. Sequence as vector. In the earlier chapters we have often

used vectors, and so far they have always had a finite and definite

number of components. It is possible, however, for a vector to

have an infinite, or indefinitely large number of components. Pro-

vided one is cautious, the complication need cause little danger.
Thus a sequence can be regarded as a vector whose first component

is the first value in the sequence, and so on to the n-th component,
which is the 77-th value. Thus if I spin a coin five times, the result,

taken as a whole, might be the vector with five components (H, T,

T, H, T). Such vectors are common in the theory of probabihty,
where they may be generated by repeated sampling.

If such a vector is formed by sampling with replacement, it has

only the slight peculiarity that each value comes from the same

component set, whereas a more general type, that of S.3/5 for

instance, can have a different set for each component.

9/10. Constraint in a set of sequences. A set of such sequences
can show constraint, just as a set of vectors can (S.7/11), by not

having the full range that the range of components, if they were
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independent, would make possible. If the sequence is of finite

length, e.g. five spins of a coin, as in the previous paragraph, the

constraint can be identified and treated exactly as in S.7/1 1 . When,

however, it is indefinitely long, as is often the case with sequences

(whose termination is often arbitrary and irrelevant) we must use

some other method, without, however, changing what is essential.

What the method is can be found by considering how an infinitely

long vector can be specified. Clearly such a vector cannot be

wholly arbitrary, in components and values, as was the vector in

S.3/5, for an infinity of time and paper would be necessary for its

writing down. Usually such indefinitely long vectors are specified

by some process. First the value of the initial component is given,

and then a specified process (a transformation) is applied to generate

the further components in succession (like the "integration" of S. 3/9).

We can now deduce what is necessary if a set of such vectors is

to show no constraint. Suppose we build up the set of "no con-

straint", and proceed component by component. By S.7/1 2, the

first component must take its full range of values; then each of these

values must be combined with each of the second component's

possible values; and each of these pairs must be combined with each

of the third component's possible values
;
and so on. The rule is that

as each new component is added, all its possible values must occur.

It will now be seen that the set of vectors with no constraint corres-

ponds to the Markov chain that, at each transition, has all the transitions

equallyprobable. (When the probability becomes an actual frequency,

lots of chains will occur, thus providing the set of sequences.) Thus,

if there are three states possible to each component, the sequences
of no constraint will be the set generated by the matrix

1
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ENTROPY
9/11. We have seen throughout S.7/5 and Chapter 8 how information
cannot be transmitted in larger quantity than the quantity of variety
allows. We have seen how constraint can lessen some potential

quantity of variety. And we have just seen, in the previous section,
how a source of variety such as a Markov chain has zero constraint

when all its transitions are equally probable. It follows that this

condition (of zero constraint) is the one that enables the information

source, if it behaves as a Markov chain, to transmit the maximal

quantity of information (in given time).

Shannon has devised a measure for the quantity of variety shown

by a Markov chain at each step
—the entropy

—that has proved of

fundamental importance in many questions relating to incessant

transmission. This measure is developed in the following way.
If a set has variety, and we take a sample of one item from the

set, by some defined sampling process, then the various possible
results of the drawing will be associated with various, corresponding

probabilities. Thus if the traffic lights have variety four, showing
the combinations

1 Red
2 Red and Yellow

3 Green
4 Yellow,

and if they are on for durations of 25, 5, 25 and 5 seconds respectively,
then if a motorist turns up suddenly at irregular times he would
find the lights in the various states with frequencies of about 42, 8,

42 and 8% respectively. As probabilities these become 0-42, 0-08,
0-42 and 0-08. Thus the state "Green" has (if this particular
method of samphng be used) a probabiUty of 0-42; and similarly
for the others.

Conversely, any set of probabihties
—any set of positive fractions

that adds up to 1
—can be regarded as corresponding to some set

whose members show variety. Shannon's calculation proceeds
from the probabilities by the calculation, if the probabilities are

Pl, P2, . . .
, Pn, of

-P\ log;?!
- P2^ogp2- . . .

-
p„ log/?,,,

a quantity which he calls the entropy of the set of probabilities and
which he denotes by H. Thus if we take logs to the base 10, the

entropy of the set associated with the traffic lights is

-0-42 logio 0-42
- 0-08 logioO-08

-
0-421ogioO-42

-
0-081ogioO-08

which equals 0-492. (Notice that logio 0-42 = T-6232 = -1-0000
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+ 0-6232 = -0-3768; so the first term is (-0-42)(-0-3768), which

is + 0-158; and similarly for the other terms.) Had the logs been

taken to the base 2 (S.7/7) the result would have been 1 -63 bits.

The word "entropy" will be used in this book solely as it is used

by Shannon, any broader concept being referred to as "variety"

or in some other way.

Ex. 1 : On 80 occasions when I arrived at a certain level-crossing it was closed

on 14. What is the entropy of the set of probabilities?

Ex. 2: From a shuffled pack of cards one is drawn. Three events are dis-

tinguished :

El : the drawing of the King of Clubs,

E2: the drawing of any Spade,

£3: the drawing of any other card.

What is the entropy of the variety of the distinguishable events ?

Ex. 3 : What is the entropy of the variety in one throw of an unbiased die ?

Ex. 4: What is the entropy in the variety of the set of possibilities of the out-

comes (with their order preserved) of two successive throws of an unbiased

die?

Ex. 5 : (Continued.) What is the entropy of n successive throws ?

*Ex. 6 : What is the Umit of —p log p asp tends to zero ?

9/12. The entropy so calculated has several important properties.

First, it is maximal, for a given number (n) of probabilities, when the

probabiHties are all equal. H is then equal to log n, precisely the

measure of variety defined in S.7/7. (Equality of the probabilities,

in each column, was noticed in S.9/10 to be necessary for the

constraint to be minimal, i.e. for the variety to be maximal.)

Secondly, different //'s derived from different sets can, with suitable

qualifications, be combined to yield an average entropy.

Such a combination is used to find the entropy appropriate to a

Markov chain. Each column (or row if written in the transposed

form) has a set of probabilities that sum to 1 . Each can therefore

provide an entropy. Shannon defines the entropy (of one step of

the chain) as the average of these entropies, each being weighted by
the proportion in which that state, corresponding to the column,
occurs when the sequence has settled to its equilibrium (S.9/6). Thus

the transition probabilities of that section, with corresponding

entropies and equilibrial proportions shown below, are

Equilibrial proportion

175
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Then the average entropy (per step in the sequence) is

0-449 X 0-811 + 0-429 X 0-811 + 0-122 x 1-061 = 0-842 bits.

A coin spun repeatedly produces a series with entropy, at each spin,

of 1 bit. So the series of locations taken by one of the insects as

time goes on is not quite so variable as the series produced by a spun

coin, for 0-842 is less than 1-00. In this way Shannon's measure

enables different degrees of variety to be compared.
The reason for taking a weighted average is that we start by

finding three entropies: 0-811, 0-811, and 1-061
;
and from them we

want one. Were they all the same we would obviously just use that

value, but they are not. We can, however, argue thus: When the

system has reached equilibrium, 45% of the insects will be at state B,

4?>% at W, and 12% at P. This is equivalent, as the insects circulate

between all the states, to saying that each insect spends 45% of its

time at B, 43% at W, and 12% at P. In other words, 45% of its

transitions will be from B, 43% from W, and 12% from P. Thus

45% of its transitions will be with entropy, or variety, of 0-811,

43% also with 0-811, and 12% with 1-061. Thus, transitions with an

entropy of 0-811 will be frequent (and the value "0-811" should

count heavily) and those with an entropy of 1 -061 will be rather rare

(and the value "1-061" should count little). So the average is

weighted: 88% in favour of 0-811 and 12% in favour of 1-061, i.e.

45 X 0-811 + 43 X 0-811 + 12 x 1-061

weighted average = 45 4. 43 ^ 12

which is, effectively, what was used above.

Ex. 1 : Show that the series of //"s and T's produced by a spun coin has an average

entropy of 1 bit per spin. (Hint: Construct the matrix of transition pro-

babilities.)

Ex. 2: (Continued.) What happens to the entropy if the coin is biased? (Hint:

Try the effect of changing the probabilities.)

9/13. Before developing the subject further, it is as well to notice

that Shannon's measure, and the various important theorems that

use it, make certain assumptions. These are commonly fulfilled in

telephone engineering but are by no means so commonly fulfilled

in biological work, and in the topics discussed in this book. His

measure and theorems must therefore be applied cautiously. His

main assumptions are as follows.

(1) If applied to a set of probabihties, the various fractions must

add up to 1
;
the entropy cannot be calculated over an incomplete

set of possibilities.
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(2) If applied to an information source, with several sets of proba-

bilities, the matrix of transition probabilities must he Markovian;
that is to say, the probabihty of each transition must depend only
on the state the system is at (the operand) and not on the states it

was at earlier (S.9/7). If necessary, the states of the source should

first be re-defined, as in S.9/8, so that it becomes Markovian.

(3) The several entropies of the several columns are averaged

(S.9/12) using the proportions of the terminal equilibrium (S.9/6).

It follows that the theorems assume that the system, however it was

started, has been allowed to go on for a long time so that the states

have reached their equilibrial densities.

Shannon's results must therefore be appHed to biological material

only after a detailed check on their applicability has been made.

A similar warning may be given before any attempt is made to

play loosely, and on a merely verbal level, with the two entropies of

Shannon and of statistical mechanics. Arguments in these subjects

need great care, for a very slight change in the conditions or assump-
tions may make a statement change from rigorously true to ridicu-

lously false. Moving in these regions is like moving in a jungle full

of pitfalls. Those who know most about the subject are usually
the most cautious in speaking about it.

Ex. 1 : Work out mentally the entropy of the matrix with transition probabilities

;
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uncertainty", and both measure it by tiie amount of uncertainty it

removes. Both further are concerned basically with the gain or

increase in information that occurs when a message arrives—the

absolute quantities present before or after being of minor interest.

Now it is clear that when the probabilities are well spread, as in A
of Fig. 9/14/1, the uncertainty is greater than when they are compact,

as in B.

ElvenXs Eve.uts>

Fig. 9/14/1

So the receipt of a message that makes the recipient revise his

estimate, of what will happen, from distribution A to distribution B,

contains a positive amount of information. Now ^p log p (where

S means "the sum of"), if applied to A, will give a more negative

number than if applied to B; both will be negative but A"s will be the

larger in absolute value. Thus A might give —20 for the sum and

B might give —3. If we use S/» log p multiplied by plus 1 as

amount of information to be associated with each distribution, i.e.

with each set of probabiUties, then as, in general,

Gain (of anything) = Final quantity minus initial quantity

so the gain of information will be

(-3) -(-20)
which is + 17, a positive quantity, which is what we want. Thus,

looked at from this point of view, which is Wiener's, Y>p\ogp
should be multiplied by plus 1, i.e. left unchanged; then we calculate

the gain.

Shannon, however, is concerned throughout his book with the

special case in which the received message is known with certainty.

So the probabilities are all zero except for a single 1 . Over such a set

^p log/; is just zero; so the final quantity is zero, and the gain of

information is

—
(initial quantity).

In other words, the information in the message, which equals the

gain in information, is S/? log/7 calculated over the initial distribu-

tion, multiplied by minus 1, which gives Shannon's measure.
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Thus the two measures are no more discrepant than are the two

ways of measuring "how far is point Q to the right of point /*"

shown in Fig. 9/14/2.

V
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introduced when one considers how fast in time the chain is being

produced by some real physical process. So far this aspect has

been ignored, the sole graduation being in terms of the chain's own

steps. The new scale requires only a simple rule of proportion for

its introduction. Thus if (as in S.9/12) the insects' "unit time" for

one step is twenty seconds, then as each 20 seconds produces 0-84

bits, 60 seconds will produce (60/20)0-84 bits; so each insect is

producing variety of location at the rate of 2-53 h\ts per minute.

Such a rate is the most natural way of measuring the capacity of a

channel, which is simply anything that can be driven by its input to

take, at each moment, one of a variety of states, and which can

transmit that state to some receiver. The rate at which it can trans-

mit depends both on how fast the steps can succeed one another and
on the variety available at each step.

It should be noticed that a "channel" is defined in cybernetics

purely in terms of certain behavioural relations between two points;
if two points are so related then a "channel" exists between them,

quite independently of whether any material connexion can be seen

between them. (Consider, for instance, Exs. 4/15/2, 6/7/1.)

Because of this fact the channels that the cyberneticist sees may be

very different from those seen by one trained in another science.

In elementary cases this is obvious enough. No one denies the

reality of some functional connexion from magnet to magnet,

though no experiment has yet demonstrated any intermediate

structure.

Sometimes the channel may follow an unusual path. Thus the

brain requires information about what happens after it has emitted

"commands" to an organ, and usually there is a sensory nerve from

organ to brain that carries the "monitoring" information. Monitor-

ing the vocal cords, therefore, may be done by a sensory nerve

from cords to brain. An effective monitoring, however, can also

be achieved without any nerve in the neck by use of the sound

waves, which travel through the air, linking vocal cords and brain,

via the ear. To the anatomist this is not a channel, to the com-
munication engineer it is. Here we need simply appreciate that

each is right within his own branch of science.

More complex applications of this principle exist. Suppose we
ask someone whether 287 times 419 is 118213; he is likely to reply

"I can't do it in my head—give me pencil and paper". Holding
the numbers 287 and 419, together with the operation "multiply",
as parameters he will then generate a process (a transient in the

terminology of S.4/5) which will set up a series of impulses passing
down the nerves of his arm, generating a series of pencil marks on
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the paper, then the marks will affect his retina and so on to his

brain where an interaction will occur with the trace (whatever that

may be) of "118213"; he will then give a final answer. What we
must notice here is that this process, from brain, through motor

cortex, arm, pencil, marks, light rays, retina, and visual cortex back

to brain, is, to the communication engineer, a typical "channel",

linking "transmitter" to "receiver". To the cyberneticist, therefore,

the white matter, and similar fibres, are not the only channels of

communication available to the brain : some of the communication

between part and part may take place through the environment.

9/16. Redundancy. In S.7/14 it was stated that when a constraint

exists, advantage can usually be taken of it. An illustration of this

thesis occurs when the transmission is incessant.

For simplicity, reconsider the traffic lights
—Red, Yellow, and

Green—that show only the combinations

(1) Red

(2) Red and Yellow

(3) Green

(4) Yellow.

Each component (each lamp or colour) can be either fit or unfit,

so the total variety possible, if the components were independent,
would be 8 states. In fact, only 4 combinations are used, so the

set shows constraint.

Now reconsider these facts after recognising that a variety of four

signals is necessary:

(i) Stop

(ii) Prepare to go

(iii) Go
(iv) Prepare to stop.

If we have components that can each take two values, + or — , we
can ask how many components will be necessary to give this variety.

The answer is obviously two; and by a suitable re-coding, such as

+ + = Stop
H— = Prepare to go-- = Go—h = Prepare to stop

the same variety can be achieved with a vector of only two compo-
nents. The fact that the number of components can be reduced

(from three to two) without loss of variety can be expressed by
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saying that the first set of vectors shows redundancy, here of one

lamp.
The constraint could clearly be taken advantage of. Thus, if

electric lights were very expensive, the cost of the signals, when
re-coded to the new form, would be reduced to two-thirds.

Exactly the same lights may also show quite a different redundancy
if regarded as the generators of a different set of vectors. Suppose
that the lights are clock-operated, rather than traffic-operated, so

that they go through the regular cycle of states (as numbered above)

3 4 1
'' 3 4 1 2 3

The sequence that it will produce (regarded as a vector, S.9/9) can

only be one of the four vectors :

(i) (1, 2, 3, 4, 1,2,.. .)

(ii)(2, 3, 4, 1, 2, 3, ...)

(iii)(3, 4, 1, 2, 3, 4, ...)

(iv)(4, 1, 2, 3, 4, 1, ...)

Were there independence at each step, as one might get from a

four-sided die, and n components, the variety would be 4"; in fact

it is only 4. To make the matter quite clear, notice that the same

variety could be obtained by vectors with only one component:

(i) (1)

(ii) (2)

(iii) (3)

(iv) (4)

all the components after the first being omitted; so all the later

components are redundant.

Thus a sequence can show redundancy if at each step the next

value has not complete independence of the earher steps. (Compare

S.9/10.) If the sequence is a Markov chain, redundancy will be

shown by its entropy having a value less than the maximum.
The fact that the one set of trafllic lights provides two grossly

different sets of vectors illustrates yet again that great care is

necessary when applying these concepts to some object, for the object

often provides a great richness of sets for discussion. Thus the

question "Do traffic lights show redundancy?" is not admissible;

for it fails to indicate which of the sets of vectors is being considered ;

and the answer may vary grossly from set to set.

This injunction is particularly necessary in a book addressed to

workers in biological subjects, for here the sets of vectors are often

definable only with some difficulty, helped out perhaps with some
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arbitrariness. (Compare S.6/I4.) There is therefore every tempta-

tion to let one's grasp of the set under discussion be intuitive and

vague rather than expHcit and exact. The reader may often find

that some intractable contradiction between two arguments will be

resolved if a more accurate definition of the set under discussion is

achieved; for often the contradiction is due to the fact that the two

arguments are really referring to two distinct sets, both closely

associated with the same object or organism.

Ex. 1 : In a Table for the identification of bacteria by their power to ferment

sugars, 62 species are noted as producing "acid", "acid and gas", or

"nothing" from each of 14 sugars. Each species thus corresponds to a

vector of 14 components, each of which can take one of three values. Is

the set redundant ? To how many components might the vector be reduced ?

Ex. 2: If a Markov chain has no redundancy, how may its matrix be recognised

at a glance?

9/17. It is now possible to state what is perhaps the most funda-

mental of the theorems introduced by Shannon. Let us suppose
that we want to transmit a message with H bits per step, as we might
want to report on the movements of a single insect in the pool. H
is here 0-84 bits per step (S.9/12), or, as the telegraphist would say,

per symbol, thinking of such a series as ...PWBWBBBWP
P P W B W P W . . . . Suppose, for definiteness, that 20 seconds

elapse between step and step. Since the time-rate of these events

is now given, /f can also be stated as 2-53 bits per minute. Shannon's

theorem then says that any channel with this capacity can carry the

report, and that it cannot be carried by any channel with less than

this capacity. It also says that a coding always exists by which

the channel can be so used.

It was, perhaps, obvious enough that high-speed channels could

report more than slow; what is important about this theorem is, first,

its great generality (for it makes no reference to any specific

machinery, and therefore applies to telegraphs, nerve-fibres, con-

versation, equally) and secondly its quantitative rigour. Thus, if

the pond were far in the hills, the question might occur whether

smoke signals could carry the report. Suppose a distinct puff could

be either sent or not sent in each quarter-minute, but not faster.

The entropy per symbol is here 1 bit, and the channel's capacity

is therefore 4 bits per minute. Since 4 is greater than 2-53, the

channel can do the reporting, and a code can be found, turning

positions to puffs, that will carry the information.

Shannon has himself constructed an example which shows

exquisitely the exactness of this quantitative law. Suppose a source
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is producing letters A, B, C, D with frequencies in the ratio of 4, 2,

1, 1 respectively, the successive symbols being independent. A
typical portion of the sequence would be ...BAABDAAAA
BCABAADA.... At equilibrium the relative frequencies of

A, B, C, D would be |, I, |, | respectively, and the entropy is \l

bits per step (i.e. per letter).

Now a channel that could produce, at each step, any one of four

states without constraint would have a capacity of 2 bits per step.

Shannon's theorem says that there must exist a coding that will

enable the latter channel (of capacity 2 bits per step) to transmit

such a sequence (with entropy If bits per step) so that any long

message requires fewer steps in the ratio of 2 to 1|, i.e. of 8 to 7.

The coding, devised by Shannon, that achieves this is as follows.

First code the message by

A B C D
'

'''

10 110 111

e.g. the message above,

.B. AAB. D . . AAAAB. C . . AB . AAD. . A

MOOOlOlllOOOOlOllOO ^10001110
Now divide the lower line into pairs and re-code into a new set of

letters by

00 01 10 11

^ E F G H

These codes convert any message in "A to D" into the letters "£ to

//", and conversely, without ambiguity. What is remarkable is

that if we take a typical set of eight of the original letters (each

represented with its typical frequency) we find that they can be

transmitted as seven of the new:

AAAAB.
j 1

E . E . G

thus demonstrating the possibihty of the compression, a compression

that was predicted quantitatively by the entropy of the original

message!

Ex. 1 : Show that the coding gives a one-one correspondence between message

sent and message received (except for a possible ambiguity in the first letter).
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Ex. 2: Printed English has an entropy of about 10 bits per word. We can read

about 200 words per minute. Give a lower bound to the channel capacity

of the optic nerve.

Ex. 3 : If a pianist can put each of ten fingers on any one of three notes, and can

do this 300 times a minute, find a lower bound to the channel capacity of

the nerves to the upper limbs.

Ex. 4: A bank's records, consisting of an endless sequence of apparently random

digits, to 9, are to be encoded into Braille for storage. If 10,000 digits are

to be stored per hour, how fast must the Braille be printed if optimal coding

is used? (Hint: There are 64 symbols in the Braille "alphabet".)

9/18. One more example will be given, to show the astonishing

power that Shannon's method has of grasping the essentials in

communication. Consider the system, of states a, b, c, d, with

transition probabiUties
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probabilities of X, 20/35; Z?, 9/35; c, 6/35 and entropies of Ex,
1-173; ///,, 0-971; //^, 0. So the entropy of the new series is 0-92

bits per letter—exactly the same as before !

This fact says uncompromisingly that no information was lost

when the (7's and a's were merged to A"s. It says, therefore, that

there must be some way of restoring the original four-letter message
from the three, of telling which of the Z's were a's and which were
^'s. Closer examination shows that this can be done, strikingly

verifying the rather surprising prediction.

Ex. : How is

bbbcXbcXbbcXXXcXXbcXcXXXXXXXbb
to be de-coded to its original form?

NOISE

9/19. It may happen that the whole input to a transducer can be

divided into two or more components, and we wish to consider the

components individually. This happened in Ex. 8/17/3, where the

two messages were sent simultaneously through the same transducer

and recovered separately at the output. Sometimes, however, the

two inputs are not both completely deducible from the output. If

we are interested solely in one of the input components, as a source

of variety, regarding the other as merely an unavoidable nuisance,
then the situation is commonly described as that of a "message
corrupted by noise".

It must be noticed that noise is in no intrinsic way distinguishable

from any other form of variety. Only when some recipient is given,
who will state which of the two is important to him, is a distinction

between message and noise possible. Thus suppose that over a wire

is coming both some conversation and some effects from a cathode
that is emitting irregularly. To someone who wants to hear the

conversation, the variations at the cathode are "noise"; but to the

engineer who is trying to make accurate measurements of what is

going on at the cathode, the conversation is "noise". "Noise"
is thus purely relative to some given recipient, who must say which
information he wants to ignore.

The point is worth emphasis because, as one of the commonest
sources of uninteresting variety in electronic systems is the thermal

dance (Brownian movement) of the molecules and electrons, elec-

tronic engineers tend to use the word "noise" without qualification
to mean this particular source. Within their speciality they will

probably continue to use the word in this sense, but workers in

186



INCESSANT TRANSMISSION 9/19

Other sciences need not follow suit. In biology especially "noise"

will seldom refer to this particular source; more commonly, the

"noise" in one system will be due to some other macroscopic system
from which the system under study cannot be completely isolated.

Should the two (or more) messages be completely and simul-

taneously recoverable, by de-coding of the output, the concept of

noise is of little use. Chiefly it is wanted when the two messages

(one wanted, one unwanted) interact with some mutual destruction,

making the coding not fully reversible. To see this occur let us go
back to the fundamental processes. The irreversibility must mean
that the variety is not sustained (S.8/6), and that distinct elements at

the inputs-are represented at the output by one element. Consider

the case in which the input is a vector with two components,

the first having possible values of ^, B or C
second ,, ,, ,, ,, E, F or G.

,, .JV,WVHV» ,,

iE
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Ex. 1 : What is the coding, of first input to output, if the second output is kept
constant (i) at F; (ii) at G?

Ex.2: \ system of three states—P, Q, R—is to transmit changes at two inputs,
a and ^, each of which can take two states. The states of the inputs and of
the system change in step. Is noise-free transmission possible ?

9/20. Distortion. It should be noticed that falsification of a

message is not necessarily identical with the effect of noise. "If a

particular transmitted signal always produces the same received

signal, i.e. the received signal is a definite function of the transmitted

signal, then the effect may be called distortion. If this function has

an inverse—no two transmitted signals producing the same received

signal
—distortion may be corrected, at least in principle, by merely

performing the inverse functional operation on the received signal."

(Shannon.)

Ex. 1 : Is the change by which the erect object falls on to the retina inverted a
distortion or a corruption ?

Ex. 2: A tension applied to a muscle evokes a steady stream of impulses whose
frequency is not proportional to the tension. Is the deviation from pro-
portionality a distortion or a corruption?

Ex. 3 : (Continued.) If the nerve carrying the impulses is subjected to alcohol

vapour of sufficient strength it will cease to conduct for all tensions. Is

this a distortion or a corruption ?

9/21. Equivocation. A suitable measure for the degree of corrup-
tion has not, so far as I am aware, been developed for use in the

basic cases. In the case of the channel that transmits incessantly,

however, Shannon has developed the appropriate measure.

It is assumed first that both the original signals and the received

signals form Markov chains of the type defined in S.9/4. The data

of the messages can then be presented in a form which shows the

frequencies (or probabilities) with which all the possible combinations
of the vector (symbol sent, symbol received) occur. Thus, to use

an example of Shannon's suppose O's and I's are being sent, and that

the probabilities (here relative frequencies) of the symbols being
received are:

Symbol sent 11
Symbol received 10 1

Probability 0-495 0-005 0-005 0-495

Of every thousand symbols sent, ten arrive in the wrong form, an
error of one per cent.

At first sight this "one per cent wrong" might seem the natural
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measure for the amount of information lost, but this interpretation
leads to nonsense. Thus if, in the same transmission, the line were

actually cut and the recipient simply tossed a coin to get a "message"
he would get about a half of the symbols right, yet no information

whatever would have been transmitted. Shannon has shown

conclusively that the natural measure is the equivocation, which is

calculated as follows.

First find the entropy over all possible classes:

-0-495 log 0-495 -0-005 log 0-005

-0-005 log 0-005 -0-495 log 0-495

Call this Hi; it is 1-081 bits per symbol. Next collect together the

received signals, and their probabilities; this gives the table

Symbol received 1

Probabihty 0-5 0-5

Find its entropy:

-0-5 log 0-5 -0-5 log 0-5

Call this H2. It is 1 000 bits per symbol. Then the equivocation
is Hi — H2: 0-081 bits per symbol.
The actual rate at which information is being transmitted, allow-

ance being made for the effect of noise, is the entropy of the source,
less the equivocation. The source here has entropy 1 -000 bits per

symbol, as follows from:

Symbol sent 1

Probabihty 0-5 0-5

So the original amount supphed is 1-000 bits per symbol. Of this

0-919 gets through and 0-081 is destroyed by noise.

Ex. I : What is the equivocation of the transmission of S.9/19, if all nine combina-
tions of letters occur, in the long run, with equal frequency ?

Ex. 2: (Continued.) What happens to the equivocation if the first input uses

only the symbols B and C, so that the combinations BE, BF, BG, CE,
CF, CG occur with equal frequencies? Is the answer reasonable?

*Ex. 3: Prove the following rules, which are useful when we want to find the

value of the expression —p \ogaP, and p is either very small or very near
to 1:

(i) If /J
= xy,

- plogaP = -
xyiloga x + log,, y);

mifp = io-',-piogaP =
^^ ^° '

logio a

P =
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(iii) Ifjj is very close to l,put \

— p — q,and — p logaP = (q
—
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Ex.4: Find -plogz P when p is 000025. (Hint: Write p as 2-5 x 10"4

and use (i)).

Ex. 5 : During a blood count, lymphocytes and monocytes are being examined

under the microscope and discriminated by the haematologist. If he

mistakes one in every hundred lymphocytes for a monocyte, and one in

every two hundred monocytes for a lymphocyte, and if these cells occur

in the blood in the ratio of 19 lymphocytes to 1 monocyte, what is his

equivocation ? (Hint : Use the results of the previous two exercises.)

9/22. Error-free transmission. We now come to Shannon's

fundamental theorem on the transmission of information in the

presence of noise (i.e. when other, irrelevant, inputs are active).

It might be thought that when messages are sent through a channel

that subjects each message to a definite chance of being altered at

random, then the possibiUty of receiving a message that is correct

with certainty would be impossible. Shannon however has shown

conclusively that this view, however plausible, is mistaken. Reliable

messages can be transmitted over an unreliable channel. The
reader who finds this incredible must go to Shannon's book for the

proof; here I state only the result.

Let the information to be transmitted be of quantity H, and sup-

pose the equivocation to be E, so that information of amount H — E
is received. (It is assumed, as in all Shannon's book, that the

transmission is incessant.) What the theorem says is that if the

channel capacity be increased by an amount not less than E—by
the provision perhaps of another channel in parallel

—then it is

possible so to encode the messages that the fraction of errors still

persisting may be brought as near zero as one pleases. (The price

of a very small fraction of errors is delay in the transmission ; for

enough message-symbols must accumulate to make the average of

the accumulated material approach the value of the average over all

time.)

Conversely, with less delay, one can still make the errors as

few as one pleases by increasing the channel capacity beyond the

minimal quantity E.

The importance of this theorem can hardly be overestimated in

its contribution to our understanding of how an intricately connected

system such as the cerebral cortex can conduct messages without

each message gradually becoming so corrupted by error and inter-

ference as to be useless. What the theorem says is that if plenty of

channel capacity is available then the errors may be kept down to

any level desired. Now in the brain, and especially in the cortex,
there is little restriction in channel capacity, for more can usually be
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obtained simply by the taking of more fibres, whether by growth in

embryogeny or by some functional taking-over in learning.

The full impact of this theorem on neuropsychology has yet to be

felt. Its power lies not so much in its ability to solve the problem
"How does the brain overcome the ever-increasing corruption of

its internal messages?" as in its showing that the problem hardly

arises, or that it is a minor, rather than a major, one.

The theorem illustrates another way in which cybernetics can be

useful in biology. Cybernetic methods may be decisive in the

treatment of certain difficult problems not by a direct winning of the

solution but by a demonstration that the problem is wrongly con-

ceived, or based on an erroneous assumption.
Some of today's outstanding problems about the brain and

behaviour come to us from mediaeval and earlier times, when the

basic assumptions were very different and often, by today's stand-

ards, ludicrously false. Some of these problems are probably

wrongly put, and are on a par with the problem, classic in mediaeval

medicine : what are the relations between the four elements and the

four humours ? This problem, be it noticed, was never solved—what

happened was that when chemists and pathologists got to know more
about the body they realised that they must ignore it.

Some of our classic problems in the brain—perhaps some of those

relating to localisation, causation, and learning
—may well be found

to be of this type. It seems likely that the new insight given by

cybernetics may enable us to advance to a better discrimination; if

this happens, it will dispose of some questions by a clear demonstra-

tion that they should not be asked.
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PART THREE
REGULATION AND CONTROL

The foundation of all physiology must be the physiology of
permanence.

(Darlington)
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Chapter 10

REGULATION IN BIOLOGICAL
SYSTEMS

10/1. The two previous Parts have treated of Mechanism (and the

processes within the system) and Variety (and the processes of com-
munication between system and system). These two subjects had
to be studied first, as they are fundamental. Now we shall use them,
and in Part III we shall study what is the central theme of cybernetics—

regulation and control.

This first chapter reviews the place of regulation in biology,
and shows briefly why it is of fundamental importance. It shows
how regulation is essentially related to the flow of variety. The
next chapter (11) studies this relation in more detail, and displays
a quantitative law—that the quantity of regulation that can be

achieved is bounded by the quantity of information that can be

transmitted in a certain channel. The next chapter (12) takes up
the question of how the abstract principles of chapter 1 1 are to be

embodied—what sort of machinery can perform what is wanted.

This chapter introduces a new sort of machine, the Markovian,
which extends the possibihties considered in Part I. The remaining

chapters consider the achievement of regulation and control as the

difficulties increase, particularly those that arise when the system
becomes very large.

At first, in Part III, we will assume that the regulator is already

provided, either by being inborn, by being specially made by a

manufacturer, or by some other means. The question of what made
the regulator, of how the regulator, which does such useful things,

came itself to be made will be taken up at S. 13/10.

10/2. The present chapter aims primarily at supplying motive to

the reader, by showing that the subjects discussed in the later chapters

(11 onwards) are of fundamental importance in biology. The

subject of regulation in biology is so vast that no single chapter can

do it justice. Cannon's Wisdom of the Body treated it adequately
so far as internal, vegetative activities are concerned, but there has
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yet to be written the book, much larger in size, that shall show how
all the organism's exteriorly-directed activities—its "higher"

activities—are all similarly regulatory, i.e. homeostatic. In this

chapter I have had to leave much of this to the reader's imagination,

trusting that, as a biologist, he will probably already be sufficiently

familiar with the thesis. The thesis in any case has been discussed

to some extent in Design for a Brain.

The chief purpose of this chapter is to tie together the concepts

of regulation, information, and survival, to show how intimately

they are related, and to show how all three can be treated by a

method that is entirely uniform with what has gone before in the

book, and that can be made as rigorous, objective, and unambiguous
as one pleases.

10/3. The foundation. Let us start at the beginning. The most

basic facts in biology are that this earth is now two thousand

million years old, and that the biologist studies mostly that which

exists today. From these two facts follow a well-known deduction,

which I would hke to restate in our terms.

We saw in S.4/23 that if a dynamic system is large and composed
of parts with much repetition, and if it contains any property that is

autocatalytic, i.e. whose occurrence at one point increases the

probability that it will occur again at another point, then such a

system is, so far as that property is concerned, essentially unstable

in its absence. This earth contained carbon and other necessary

elements, and it is a fact that many combinations of carbon, nitrogen,

and a few others are self-reproducing. It follows that though the

state of "being lifeless" is almost a state of equilibrium, yet this

equilibrium is unstable (S.5/6), a single deviation from it being
sufficient to start a trajectory that deviates more and more from the

"hfeless" state. What we see today in the biological world are these

"autocatalytic" processes showing all the pecuHarities that have

been imposed on them by two thousand million years of elimination

of those forms that cannot survive.

The organisms we see today are deeply marked by the selective

action of two thousand miUion years' attrition. Any form in any

way defective in its power of survival has been ehminated ;
and today

the features of almost every form bear the marks of being adapted
to ensure survival rather than any other possible outcome. Eyes,

roots, cilia, shells and claws are so fashioned as to maximise the

chance of survival. And when we study the brain we are again

studying a means to survival.
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SURVIVAL
10/4. What has just been said is well enough known. It enables

us, however, to join these facts on to the ideas developed in this

book and to show the connexion exactly.

For consider what is meant, in general, by "survival". Suppose
a mouse is trying to escape from a cat, so that the survival of the

mouse is in question. As a dynamic system, the mouse can be in a

variety of states; thus it can be in various postures, its head can be

turned this way or that, its temperature can have various values, it

may have two ears or one. These different states may occur during
its attempt to escape and it may still be said to have survived. On
the other hand if the mouse changes to the state in which it is in

four separated pieces, or has lost its head, or has become a solution

of amino-acids circulating in the cat's blood then we do not consider

its arrival at one of these states as corresponding to "survival".

The concept of "survival" can thus be translated into perfectly

rigorous terms, similar to those used throughout the book. The

various states (M for Mouse) that the mouse may be in initially and

that it may pass into after the affair with the cat is a set M^, M2, . .,

M;., . . ., M„. We decide that, for various reasons of what is

practical and convenient, we shall restrict the words ''living mouse"

to mean the mouse in one of the states in some subset of these

possibilities, in M^ to My^ say. If now some operation C (for cat)

acts on the mouse in state M,-, and C{Mi) gives, say, M2, then we

may say that M has "survived" the operation of C, for Mz is in

the set Ml, . . ., A/'y^.

If now a particular mouse is very skilled and always survives the

operation C, then all the states C(A/i), CiMj), . . ., C{M,^, are

contained in the set Mi, . . ., M,^. We now see that this repre-

sentation of survival is identical with that of the "stability" of a

set (S.5/5). Thus the concepts of "survival" and "stabihty" can

be brought into an exact relationship; and facts and theorems about

either can be used with the other, provided the exactness is sustained.

The states M are often defined in terms of variables. The states

Ml, . . ., M,^, that correspond to the living organism are then those

states in which certain essential variables are kept within assigned

("physiological") limits.

Ex. 1 : If « is 10 and k is 5, what would the operation C{M-i) = M9 correspond
to?

Ex. 2: (Continued.) What would the operation CCMg) = M4 correspond to?

Ex. 3: What would be an appropriate definition of "lethal", if C's attack were

invariably fatal to M?
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10/5. What is it survives, over the ages? Not the individual

organism, but certain peculiarly well compounded gene-patterns,

particularly those that lead to the production of an individual that

carries the gene-pattern well protected within itself, and that, within

the span of one generation, can look after itself.

What this means is that those gene-patterns are specially likely

to survive (and therefore to exist today) that cause to grow, between
themselves and the dangerous world, some more or less elaborate

mechanism for defence. So the genes in Testudo cause the growth
of a shell

;
and the genes in Homo cause the growth of a brain. (The

genes that did not cause such growths have long since been elim-

inated.)

Now regard the system as one of parts in communication. In

the previous section the diagram of immediate effects (of cat and

mouse) was (or could be regarded as)
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regulatory machinery. F, by its action, tends to lessen the effect

of D on E.

(2) The automatic pilot. £" is a vector with three components—
yaw, pitch, and roll—and

iq
is the set of positions in which these

three are all within certain limits. D is the set of disturbances that

may affect these variables, such as gusts of wind, movements of the

passengers in the plane, and irregularities in the thrusts of the engines.
Fis the whole machinery—pilot, ailerons, rudder, etc.—whose action

determines how D shall affect E.

(3) The bicycle rider. E is chiefly his angle with the vertical.

q is the set of small permissible deviations. D is the set of those

disturbances that threaten to make the deviation become large. F
is the whole machinery^

—mechanical, anatomical, neuronic—that

determines what the effect of D is on E.

Many other examples will occur later. Meanwhile we can sum-
marise by saying that natural selection favours those gene-patterns
that get, in whatever way, a regulator F between the disturbances D
and the essential variables E. Other things being equal, the better F
is as a regulator, the larger the organism's chance of survival.

Ex. : What variables are kept within limits by the following regulatory mech-
anisms: (i) the air-conditioner; (ii) the climber's oxygen supply; (iii) the

windscreen-wiper; (iv) the headlights of a car; (v) the kitchen refrigerator;

(vi) the phototaxic plant; (vii) sun-glasses; (viii) the flexion reflex (a quick

lifting of the foot evoked by treading on a sharp stone) ; (ix) blinking when
an object approaches the eye quickly ; (x) predictor for anti-aircraft gunfire.

10/6. Regulation blocks the flow of variety. On what scale can

any particular mechanism F be measured for its value or success

as a regulator? The perfect thermostat would be one that, in spite

of disturbance, kept the temperature constant at the desired level.

In general, there are two characteristics required: the maintenance

of the temperature within close limits, and the correspondence of

this range with the desired one. What we must notice in particular
is that the set of permissible values, 17, has less variety than the set

of all possible values in E; for
17

is some set selected from the states

of E. If F is a regulator, the insertion of F between D and E lessens

the variety that is transmitted from D to E. Thus an essential

function of Fas a regulator is that it shall block the transmission of

variety from disturbance to essential variable.

Since this characteristic also implies that the regulator's function

is to block the flow of information, let us look at the thesis more

closely to see whether it is reasonable.

Suppose that two water-baths are offered me, and I want to decide
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which to buy. I test each for a day against similar disturbances

and then look at the records of the temperatures; they are as in

Fig. 10/6/1:

Tltiie

Fig. 10/6/1

There is no doubt that Model B is the better; and I decide this pre-

cisely because its record gives me no information, as does A's, about

what disturbances, of heat or cold, came to it. The thermometer

and water in bath B have been unable, as it were, to see anything of

the disturbances D.

The same argument will apply, with obvious modifications, to the

automatic pilot. If it is a good regulator the passengers will have

a smooth flight whatever the gustiness outside. They will, in short,

be preventedfrom knowing whether or not it is gusty outside. Thus

a good pilot acts as a barrier against the transmission of that

information.

The same argument applies to an air-condition©r. If I live in an

air-conditioned room, and can tell, by the hotness of the room,
that it is getting hot outside, then that conditioner is failing as a

regulator. If it is really good, and the blinds are drawn, I shall

be unable to form any idea of what the outside weather is like. The

good conditioner blocks the flow inwards of information about the

weather.

The same thesis applies to the higher regulations achieved by such

activities as hunting for food, and earning one's daily bread. Thus

while the unskilled hunter or earner, in difficult times, will starve

and will force his liver and tissues (the essential variables) to extreme

and perhaps unphysiological states, the skilled hunter or earner

will go through the same difficult times with his liver and tissues

never taken to extremes. In other words, his skill as a regulator

is shown by the fact, among others, that it prevents information
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about the times reaching the essential variables. In the same way,

the skilled provider for a family may go through difficult times

without his family reahsing that anything unusual has happened.

The family of an unskilled provider would have discovered it.

In general, then, an essential feature of the good regulator is that

it blocks the flow of varietyfrom disturbances to essential variables.

10/7. The blocking may take place in a variety of ways, which

prove, however, on closer examination to be fundamentally the

same. Two extreme forms will illustrate the range.

One way of blocking the flow (from the source of disturbance D
to the essential variable E) is to interpose something that acts as a

simple passive block to the disturbances. Such is the tortoise's

shell, which reduces a variety of impacts, blows, bites, etc. to a

negligible disturbance of the sensitive tissues within. In the same

class are the tree's bark, the seal's coat of blubber, and the human
skull.

At the other extreme from this static defence is the defence by
skilled counter-action—the defence that gets information about the

disturbance to come, prepares for its arrival, and then meets the

disturbance, which may be complex and mobile, with a defence that

is equally complex and mobile. This is the defence of the fencer,

in some deadly duel, who wears no armour and who trusts to his

skill in parrying. This is the defence used mostly by the higher

organisms, who have developed a nervous system precisely for the

carrying out of this method.

When considering this second form we should be careful to notice

the part played by information and variety in the process. The

fencer must watch his opponent closely, and he must gain informa-

tion in all ways possible if he is to survive. For this purpose he is

born with eyes, and for this purpose he learns how to use them.

Nevertheless, the end result of this skill, if successful, is shown by his

essential variables, such as his blood-volume, remaining within

normal limits, much as if the duel had not occurred. Information

flows freely to the non-essential variables, but the variety in the

distinction "duel or no-duel" has been prevented from reaching the

essential variables.

Through the remaining chapters we shall be considering this type

of active defence, asking such questions as: what principles must

govern it? What mechanisms can achieve it? And, what is to be

done when the regulation is very difficult?
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Chapter 11

REQUISITE VARIETY

11/1. In the previous chapter we considered regulation from the

biological point of view, taking it as something sufficiently well

understood. In this chapter we shall examine the process of regula-

tion itself, with the aim of finding out exactly what is involved and

implied. In particular we shall develop ways of measuring the

amount or degree of regulation achieved, and we shall show that

this amount has an upper limit.

11/2. The subject of regulation is very wide in its applications,

covering as it does most of the activities in physiology, sociology,

ecology, economics, and much of the activities in almost every

branch of science and life. Further, the types of regulator that exist

are almost bewildering in their variety. One way of treating the

subject would be to deal seriatim with the various types; and chapter
12 will, in fact, indicate them. In this chapter, however, we shall be

attempting to get at the core of the subject
—to find what is common

to all.

What is common to all regulators, however, is not, at first sight,

much like any particular form. We will therefore start anew in the

next section, making no explicit reference to what has gone before.

Only after the new subject has been sufficiently developed will we

begin to consider any relation it may have to regulation.

11/3. Play and outcome. Let us therefore forget all about regula-

tion and simply suppose that we are watching two players, R and D,
who are engaged in a game. We shall follow the fortunes of R, who
is attempting to score an a. The rules are as follows. They have

before them Table 11/3/1, which can be seen by both:
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D must play first, by selecting a number, and thus a particular row,

R, knowing this number, then selects a Greek letter, and thus a

particular column. The italic letter specified by the intersection

of the row and column is the outcome. If it is an a, R wins; if not,

R loses.

Examination of the table soon shows that with this particular

table R can win always. Whatever value D selects first, R can always
select a Greek letter that will give the desired outcome. Thus if D
selects 1, R selects )S; if i) selects 2, R selects a; and so on. In fact,

if R acts according to the transformation

,12 3

^ « y

then he can always force the outcome to be a.

R's position, with this particular table, is peculiarly favourable,

for not only can R always force a as the outcome, but he can as

readily force, if desired, Z) or c as the outcome. R has, in fact,

complete control of the outcome.

Ex. 1 : What transformation should R use to force c as outcome ?

Ex. 2: If both i?'s and Z)'s values are integers, and the outcome E is also an

integer, given by
E = R-2D,

find an expression to give R in terms of D when the desired outcome is 37.

Ex. 3: A car's back wheels are skidding. D is the variable "Side to which the

tail is moving", with two values, Right and Left. R is the driver's action

"Direction in which he turns the steering wheel", with two values, Right and

Left. Form the 2 x 2 table and fill in the outcomes.

£,v. 4: If i?'s play is determined by Z)'s in accordance with the transformation

I

1 2 3
^

y P a

and many games are observed, what will be the variety in the many outcomes ?

Ex. 5: Has R complete control of the outcome if the table is triunique?

11/4. The Table used above is, of course, peculiarly favourable

to R. Other Tables are, however, possible. Thus, suppose D and

R, playing on the same rules, are now given Table 11/4/1 in which

D now has a choice of five, and R a choice of four moves.

If a is the target, R can always win. In fact, if D selects 3, R
has several ays of winning. As every row has at least one a, R
can always force the appearance of a as the outcome. On the other

hand, if the target is b he cannot always win. For if D selects 3,

there is no move by R that will give b as the outcome. And if the

target is c, R is quite helpless, for D wins always.
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It will be seen that diflferent arrangements within the table, and
different numbers of states available to D and R, can give rise to a

variety of situations from the point of view of R.

Table 11/4/1
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Table 11/5/1
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elements as small as possible (ignoring for the moment any idea of a

target). He marks an element in the first row. In the second row
he must change to a new column if he is not to increase the variety

by adding a new, different, element; for in the initially selected

column the elements are all different, by hypothesis. To keep the

variety down to one element he must change to a new column at

each row. (This is the best he can do; it may be that change from

column to column is not sufficient to keep the variety down to one

element, but this is irrelevant, for we are interested only in what is

the least possible variety, assuming that everything falls as favourably
as possible). So if R has n moves available (three in the example),
at the /7-th row all the columns are used, so one of the columns

must be used again for the next row, and a new outcome must be

allowed into the set of outcomes. Thus in Table 11/5/1, selection

of the A:'s in the first three rows will enable the variety to be kept to

one element, but at the fourth row a second element must be allowed

into the set of outcomes.

In general: If no two elements in the same column are equal, and
if a set of outcomes is selected by R, one from each row, and if the

table has r rows and c columns, then the variety in the selected set

of outcomes cannot be fewer than rjc.

THE LAW OF REQUISITE VARIETY

11/6. We can now look at this game (still with the restriction that

no element may be repeated in a column) from a slightly different

point of view. If i?'s move is unvarying, so that he produces the

same move, whatever i)'s move, then the variety in the outcomes will

be as large as the variety in D's moves. D now is, as it were, exerting

full control over the outcomes.

If next R uses, or has available, two moves, then the variety of

the outcomes can be reduced to a half (but not lower). If R has

three moves, it can be reduced to a third (but not lower); and so on.

Thus if the variety in the outcomes is to be reduced to some assigned

number, or assigned fraction of Z)'s variety, i?'s variety must be

increased to at least the appropriate minimum. Only variety in R's

moves can force down the variety in the outcomes.

11/7. If the varieties are measured logarithmically (as is almost

always convenient), and if the same conditions hold, then the theorem

takes a very simple form. Let V^ be the variety of D, Vj^ that of R,

and Vq that of the outcome (all measured logarithmically). Then
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the previous section has proved that Vq cannot be less, numerically,

than the value of V^j
—

K^. Thus K^'s minimum is Vj)
—

Vj^.

If Vj) is given and fixed, V^ — Vj^ can be lessened only by a

corresponding increase in Vj^. Thus the variety in the outcomes,

if minimal, can be decreasedfurther only by a corresponding increase

in that of R. (A more general statement is given in S.11/9.)

This is the law of Requisite Variety. To put it more picturesquely :

only variety in R can force down the variety due to D; only variety can

destroy variety.

This thesis is so fundamental in the general theory of regulation

that I shall give some further illustrations and proofs before turning

to consider its actual apphcation.

11/8. (This section can be omitted at first reading.) The law is of

very general applicabihty, and by no means just a trivial outcome of

the tabular form. To show that this is so, what is essentially the

same theorem will be proved in the case when the variety is spread
out in time and the fluctuation incessant—the case specially con-

sidered by Shannon. (The notation and concepts in this section

are those of Shannon's book.)
Let D, R, and E be three variables, such that each is an informa-

tion source, though "source" here is not to imply that they are acting

independently. Without any regard for how they are related

causally, a variety of entropies can be calculated, or measured

empirically. There is H{D,R,E), the entropy of the vector that has

the three as components; there is Hd{E), the uncertainty in E when
Z)'s state is known; there is H^J^R), the uncertainty in R when both

E and D are known; and so on.

The condition introduced in S.11/5 (that no element shall occur

twice in a column) here corresponds to the condition that if R is

fixed, or given, the entropy of E (corresponding to that of the out-

come) is not to be less than that of D, i.e.

H^{E) > H^{D).

Now whatever the causal or other relations between D, R and E,

algebraic necessity requires that their entropies must be related so

that

H{D) + H^{R) = H{R) + Hj,{D),

for each side of the equation equals H{R,D). Substitute Hg_{E)
for Hji{D), and we get

H(D) + H^{R) < H(R) + H^{E)
< H{R,E). f^
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But always, by algebraic necessity,

H{R,E) < H{R) + H{E)

so H{D) + Hj,{R) < H{R) + H{E)

i.e. H{E) > H{D) + Hj,{R)
- H{R).

Thus the entropy of the £"s has a certain minimum. If this minimum

is to be affected by a relation between the D- and i?-sources, it can

be made least when H^iR) = 0, i.e. when R is a determinate function

of D. When this is so, then //(£)'s minimum is H(D) - H{R), a

deduction similar to that of the previous section. It says simply

that the minimal value of £"s entropy can be forced down below

that of D only by an equal increase in that of R.

11/9. The theorems just established can easily be modified to give

a worth-while extension.

Consider the case when, even when R does nothing (i.e. produces

the same move whatever D does) the variety of outcome is less than

that of D. This is the case in Table 11/4/1. Thus if R gives the

reply a to all D's moves, then the outcomes are a, b or J—a variety

of three, less than Z)'s variety of five. To get a manageable calcula-

tion, suppose that within each column each element is now repeated

k times (instead of the "once only" of S. 11/5). The same argument

as before, modified in that kn rows may provide only one outcome,

leads to the theorem that

Fo>K^-log/v'- V,,,

in which the varieties are measured logarithmically.

An exactly similar modification may be made to the theorem in

terms of entropies, by supposing, not as in S.l 1/8 that

Hr(E) > Hr{D), but that

HAE) > H^{D) - K.

H{Eys minimum then becomes

HiD) - K- H(R),

with a similar interpretation.

11/10. The law states that certain events are impossible. It is

important that we should be clear as to the origin of the impossibility.

Thus, what has the statement to fear from experiment?

It has nothing to do with the properties of matter. So if the law

is stated in the form "No machine can . . .", it is not to be overthrown
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by the invention of some new device or some new electronic circuit,

or the discovery of some new element. It does not even have any-

thing to do with the properties of the machine in the general sense

of Chapter 4; for it comes from the Table, such as that of S. 11/4; this

Table says simply that certain D-R combinations lead to certain

outcomes, but is quite independent of whatever it is that determines

the outcome. Experiments can only provide such tables.

The theorem is primarily a statement about possible arrangements
in a rectangular table. It says that certain types of arrangement
cannot be made. It is thus no more dependent on special properties
of machines than is, say, the "theorem" that four objects can be

arranged to form a square while three can not. The law therefore

owes nothing to experiment.

11/11. Regulation again. We can now take up again the subject
of regulation, ignored since the beginning of this chapter, for the

law of Requisite Variety enables us to apply a measure to regulation.
Let us go back and reconsider what is meant, essentially, by
"regulation".

There is first a set of disturbances D, that start in the world outside

the organism, often far from it, and that threaten, if the regulator
R does nothing, to drive the essential variables E outside their

proper range of values. The values of E correspond to the "out-

comes" of the previous sections. Of all these £'-values only a few

{rj) are compatible with the organism's life, or are unobjectionable,
so that the regulator R, to be successful, must take its value in a

way so related to that of D that the outcome is, if possible, always
within the acceptable set t], i.e. within physiological limits. Regula-
tion is thus related fundamentally to the game of S.11/4. Let us

trace the relation in more detail.

The Table T is first assumed to be given. It is the hard external

world, or those internal matters that the would-be regulator has to

take for granted. Now starts a process. D takes an arbitrary value,
R takes some value determined by Z)'s value, the Table determines

an outcome, and this either is or is not in
tj. Usually the process

is repeated, as when a water-bath deals, during the day, with various

disturbances. Then another value is taken by D, another by R,
another outcome occurs, and this also may be either in

t] or not.

And so on. If i? is a well-made regulator
—one that works success-

fully
—then R is such a transformation of D that all the outcomes

fall within 17. In this case R and T together are acting as the barrier

F(S.10/5.)
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We can now show these relations by the diagram of immediate
effects :

T

D

R

The arrows represent actual channels of communication. For the

variety in D determines the variety in R\ and that in Tis determined

by that in both D and R. If R and T are in fact actual machines,
then R has an input from D, and Thas two inputs.

(When R and T are embodied in actual machines, care must be
taken that we are clear about what we are referring to. If some
machine is providing the basis for T, it will have (by S.4/1) a set of

states that occur step by step. These states, and these steps, are

essentially independent of the discrete steps that we have considered

to be taken by D, R, and T in this chapter. Thus, T gives the out-

come, and any particular outcome may be compared with another,
as unit with unit. Each individual outcome may, however, in

another context, be analysed more finely. Thus a thirsty organism
may follow trajectory 1 and get relief, or trajectory 2 and die of thirst.

For some purposes the two outcomes can be treated as units,

particularly if they are to be contrasted. If however we want to

investigate the behaviour in more detail, we can regard trajectory 1

as composed of a sequence of states, separated by steps in time that

are of quite a different order of size from those between successive

regulatory acts to successive disturbances.)
We can now interpret the general phenomenon of regulation in

terms of communication. If R does nothing, i.e. keeps to one value,
then the variety in D threatens to go through T to E, contrary to

what is wanted. It may happen that T, without change by R, will

block some of the variety (S.11/9), and occasionally this blocking

may give sufficient constancy at E for survival. More commonly, a

further suppression at £ is necessary; it can be achieved, as we saw
in S.11/6, only by further variety at R.

We can now select a portion of the diagram, and focus attention

on i? as a transmitter :

D R
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The law of Requisite Variety says that R\s capacity as a regulator

cannot exceed R\'i capacity as a channel of communication.

In the form just given, the law of Requisite Variety can be shown

in exact relation to Shannon's Theorem 10, which says that if noise

appears in a message, the amount of noise that can be removed by

a correction channel is limited to the amount of information that

can be carried by that channel.

Thus, his "noise" corresponds to our "disturbance", his

"correction channel" to our "regulator R", and his "message of

entropy H" becomes, in our case, a message of entropy zero, for

it is constancy that is to be "transmitted". Thus the use of a

regulator to achieve homeostasis and the use of a correction channel

to suppress noise are homologous.

Ex. 1 : A certain insect has an optic nerve of a hundred fibres, each of which

can carry twenty bits per second; is this sufficient to enable it to defend

itself against ten distinct dangers, each of which may, or may not, indepen-

dently, be present in each second ?

Ex. 2: A ship's telegraph from bridge to engine-room can determine one of

nine speeds not oftener than one signal in five seconds, and the wheel can

determine one of fifty rudder-positions in each second. Since experience

has shown that this means of control is normally sufficient for full regulation,

estimate a normal upper limit for the disturbances (gusts, traffic, shoals, etc.)

that threaten the ship's safety.

Ex. 3 : A general is opposed by an army of ten divisions, each of which may
manoeuvre with a variety of 10^ bits in each day. His intelligence comes

through 10 signallers, each of whom can transmit 60 letters per minute for

8 hours in each day, in a code that transmits 2 bits per letter. Is his in-

telligence-channel sufficient for him to be able to achieve complete regulation?

Ex. 4: (Continued.) The general can dictate orders at 500 bits/minute for 12

hours/day. If his Intelligence were complete, would this verbal channel

be sufficient for complete regulation?

11/12. The diagram of immediate effects given in the previous

section is clearly related to the formulation for "directive correla-

tion" given by Sommerhoff, who, in his Analytical Biology, uses the

diagram

K
/ \
\ .

to h h
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If I am not misinterpreting him, his concepts and those used here are

equivalent thus :

Coenetic variable (CVq) <-> Disturbance (D)

Response (R,) <-^ Response (R)

Environmental circumstances (E,) *^ Table (T)

Subsequent occurrence (G,J *^ Outcome (E)

A reading of his book may thus help to extend much of the theory

given in this Part, for he discusses the subject extensively.

11/13. The law now enables us to see the relations existing between

the various types of variety and information that affect the living

organism.
A species continues to exist (S.10/4) primarily because its members

can block the flow of variety (thought of as disturbance) to the gene-

pattern (S.10/6), and this blockage is the species' most fundamental

need. Natural selection has shown the advantage to be gained by

taking a large amount of variety (as information) partly into the

system (so that it does not reach the gene-pattern) and then using
this information so that the flow via R blocks the flow through
the environment T.

This point of view enables us to resolve what might at first seem

a paradox—that the higher organisms have sensitive skins, responsive
nervous systems, and often an instinct that impels them, in play or

curiosity, to bring more variety to the system than is immediately

necessary. Would not their chance of survival be improved by an

avoidance of this variety ?

The discussion in this chapter has shown that variety (whether
information or disturbance) comes to the organism in two forms.

There is that which threatens the survival of the gene-pattern
—the

direct transmission by T from D to E. This part must be blocked

at all costs. And there is that which, while it may threaten the

gene-pattern, can be transformed (or re-coded) through the regulator
R and used to block the effect of the remainder (in T). This infor-

mation is useful, and should (if the regulator can be provided) be

made as large as possible; for, by the law of Requisite Variety, the

amount of disturbance that reaches the gene-pattern can be dimin-

ished only by the amount of information so transmitted. That is

the importance of the law in biology.
It is also of importance to us as we make our way towards the last

chapter. In its elementary forms the law is intuitively obvious and

hardly deserving statement. If, for instance, a press photographer
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would deal with twenty subjects that are (for exposure and distance)

distinct, then his camera must obviously be capable of at least twenty
distinct settings if all the negatives are to be brought to a uniform

density and sharpness. Where the law, in its quantitative form,

develops its power is when we come to consider the system in which

these matters are not so obvious, and particularly when it is very

large. Thus, by how much can a dictator control a country? It

is commonly said that Hitler's control over Germany was total.

So far as his power of regulation (in the sense of S.10/6) was con-

cerned, the law says that his control amounted to just 1 man-power,
and no more. (Whether this statement is true must be tested by the

future; its chief virtue now is that it is exact and uncompromising.)
Thus the law, though trite in the simple cases, can give real guidance
in those cases that are much too complex to be handled by unaided

intuition.

CONTROL

11/14. The formulations given in this chapter have already

suggested that regulation and control are intimately related. Thus,
in S.l 1/3, Table 11/3/1 enables JR not only to achieve a as outcome in

spite of all D's variations; but equally to achieve 6 or c at will.

We can look at the situation in another way. Suppose the decision

of what outcome is to be the target is made by some controller, C,

whom R must obey. C's decision will affect i?'s choice of a, ^ or

y ;
so the diagram of immediate effects is

D

R

Thus the whole represents a system with two independent inputs,

C and D.

Suppose now that i? is a perfect regulator. If C sets a as the

target, then (through i?'s agency) E will take the value a, whatever

value D may take. Similarly, if C sets b as target, b will appear as

outcome whatever value D may take. And so on. And if C sets a

particular sequence—a, b, a, c, c, a, say
—as sequential or compound

target, then that sequence will be produced, regardless of jD's values

during the sequence. (It is assumed for convenience that the

components move in step.) Thus the fact that R is a perfect
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regulator gives C complete control over the output, in spite of the

entrance of disturbing effects by way of D. Thus, perfect regulation

of the outcome by R makes possible a complete control over the out-

come by C.

We can see the same facts from yet another point of view. If

an attempt at control, by C over E:

C E

is disturbed or made noisy by another, independent, input D, so

that the connexions are

D
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11/15. In our treatment of regulation the emphasis has fallen on

its property of reducing the variety in the outcome; without regula-

tion the variety is large
—with regulation it is small. The limit of

this reduction is the regulation that holds the outcome rigorously

constant. This point of view is undoubtedly valid, but at first it

may seem to contrast sharply with the naive view that living organ-

isms are, in general, anything but immobile. A few words, in

addition to what was said in S. 11/1 3, may be useful.

It should be appreciated that the distinction between "constant"

and "varying" often depends on the exact definition of what is

being referred to. Thus if a searchlight follows an aircraft accurately

we may notice either that the searchlight moved through a great

range of angles (angles in relation to the earth) or that the angle

it made with the aircraft remained constant at zero. Obviously

both points of view are valid; there is no real contradiction in this

example between "great range" and "constant", for they refer to

different variables.

Again, the driver who steers a car accurately from one town to

another along a winding lane can be regarded either as one who has

caused the steering wheel to show much activity and change or as

one who, throughout the trip, has kept the distance between car and

verge almost constant.

Many of the activities of living organisms permit this double aspect.

On the one hand the observer can notice the great deal of actual

movement and change that occurs, and on the other hand he can

observe that throughout these activities, so far as they are co-

ordinated or homeostatic, there are invariants and constancies that

show the degree of regulation that is being achieved.

Many variations are possible on the same theme. Thus if variable

X is always doing just the same as variable y, then the quantity

X — y is constant at zero. So if j's values are given by some outside

factor, any regulator that acts on x so as to keep x — y constant

at zero is in fact forcing x to vary, copying y. Similarly, "making
X do the opposite to y" corresponds to "keeping x + j^ at some

constant value". And "make the variable u^ change so that it is

always just twice as large as v's (fluctuating) rate of change" corres-

ponds to "keep the quantity h' — 2dv/dt constant".

It is a great convenience in exposition and in the processes of

general theory to be able to treat all "targets" as if they were of the

form "keep the outcome constant at a". The reader must, however,

not be misled into thinking that the theory treats only of immobility;

he must accustom himself to interchanging the corresponding con-

cepts freely.
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SOME VARIATIONS

11/16. In S.11/4 the essential facts implied by regulation were

shown as a simple rectangular table, as if it were a game between two

players D and R. The reader may feel that this formulation is

much too simple and that there are well known regulations that it is

insufficient to represent. The formulation, however, is really much
more general than it seems, and in the remaining sections of this

chapter we shall examine various complications that prove, on

closer examination, to be really included in the basic formulation

of S.11/4.

11/17. Compound disturbance. The basic formulation of S.11/4

included only one source of disturbance D, and thus seems, at first

sight, not to include all those cases, innumerable in the biological

world, in which the regulation has to be conducted against several

disturbances coming simultaneously by several channels. Thus, a

cyclist often has to deal both with obstructions due to traffic and

with disequilibrations due to gusts.

In fact, however, this case is included; for nothing in this chapter

excludes the possibility that D may be a vector, with any number of

components. A vectorial D is thus able to represent all such

compound disturbances within the basic formulation.

11/18. Noise. A related case occurs when T is "noisy"
—when T

has an extra input that is affected by some disturbance that interferes

with it. This might be the case if T were an electrical machine,

somewhat disturbed by variations in the mains' voltage. At first

sight this case seems to be not represented in the basic formulation.

It must be appreciated that D, T, E, etc. were defined in S.11/3

in purely functional form. Thus "i)" is "that which disturbs".

Given any real system some care may be necessary in deciding what

corresponds to D, what to T, and so on. Further, a boundary
drawn provisionally between D and T (and the other boundaries)

may, on second thoughts, require moving. Thus one set of boun-

daries on the real system may give a system that purports to be of

D, T, etc. yet does not agree with the basic formulation of S.11/4.

Then it may be found that a shifting of the boundaries, to give a

new D. T, etc., gives a set that does agree with the formulation.

If a preliminary placing of the boundaries shows that this (pro-

visional) T is noisy, then the boundaries should be re-drawn so as

to get r's input of noise (S.9/19) included as a component in D. D
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is now "that which disturbs", and T has no third input; so the

formulation agrees with that of S.l 1/4.

There is, of course, no suggestion here that the noise, as a distur-

bance, can be allowed for magically by merely thinking differently

about it. The suggestion is that if we start again from the beginning,

and re-define D and T then some new transformation of D may be

able to restore regulation. The new transformation will, of course,

have to be more complex than the old, for D will have more

components.

11/19. Initial states. A related case occurs when T is some machine

that shows its behaviour by a trajectory, with the outcome E
depending on the properties of T's trajectory. The outcomes will

then usually be affected by which of T's states is the initial one.

How does r's initial state come into the basic formulation of S.l 1/4?

If the initial state can be controlled, so that the trajectory can be

started always from some standardised state, then no difficulty

arises. (In this connexion the method of S.7/25 may be useful.)

It may however happen, especially if the system is very large, that

r's initial state cannot be standardised. Does the basic formulation

include this case?

It does; for D, as a vector, can be re-defined to include T's initial

state. Then the variety brought to E by the variety in T's initial

state is allotted its proper place in the formulation.

11/20. Compound target. It may happen that the acceptable

states rjdii E may have more than one condition. Thus of a thermo-

stat it might be demanded that

(i) it shall usually stay between 36° and 37°C;

(ii) if displaced by ±10" it shall return to the allowed range within

one minute.

This difficulty can be dealt with by the same method as in S. 11/17,

by recognising that E may be a vector, with more than one compo-

nent, and that what is acceptable (-17) may be given in the form of

separate specifications for each component.

Thus, by allowing E to become a vector, the basic formulation of

S.11/4 can be made to include all cases in which the target is complex,

or conditional, or qualified.

11/21. Internal complexities. As a last example, showing how

comprehensive the basic formulation really is, consider the case in

which the major problem seems to be not so much a regulation as an

217



11/21 AN INTRODUCTION TO CYBERNETICS

interaction between several regulations. Thus a signalman may
have to handle several trains coming to his section simultaneously.

To handle any one by itself would be straightforward, but here the

problem is the control of them as a complex whole pattern.

This case is in fact still covered by the basic formulation. For

nothing in that formulation prevents the quantities or states or

elements in D, R, T, or E from being made of parts, and the parts

interrelated. The fact that "i)" is a single letter in no way implies

that what it represents must be internally simple or unitary.

The signalman's "disturbance" D is the particular set of trains

arriving in some particular pattern over space and time. Other

arrangements would provide other values for D, which must, of

course, be a vector. The outcomes E will be various complex

patterns of trains moving in relation to one another and moving

away from his section. The acceptable set
17

will certainly include a

component "no collision" and will probably include others as well.

His responses R will include a variety of patterns of movements of

signals and points. T is what is given
—the basic matters of geo-

graphy, mechanics, signalling techniques, etc., that lead determinately

from the situation that has arisen and his reaction pattern to outcome.

It will be seen therefore that the basic formulation is capable, in

principle, of including cases of any degree of internal complexity.
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Chapter 12

THE ERROR-CONTROLLED
REGULATOR

12/1. In the previous chapter we studied the nature of regulation,
and showed that certain relations and laws must hold if regulation
is to be achieved. There we assumed that regulation was achieved,
and then studied what was necessary. This point of view, however,

though useful, hardly corresponds with that commonly used in

practice. Let us change to a new point of view.

In practice, the question of regulation usually arises in this way:
The essential variables E are given, and also given is the set of states

T] in which they must be maintained if the organism is to survive (or
the industrial plant to run satisfactorily). These two must be given
before all else. Before any regulation can be undertaken or even

discussed, we must know what is important and what is wanted. Any
particular species has its requirements given

—the cat must keep itself

dry, the fish must keep itself wet. A servo-mechanism has its aim

given by other considerations—one must keep an incubating room
hot, another must keep a refrigerating room cold. Throughout
this book it is assumed that outside considerations have already
determined what is to be the goal, i.e. what are the acceptable
states

7]. Our concern, within the book, is solely with the problem
of how to achieve the goal in spite of disturbances and difficulties.

The disturbances D threaten to drive E outside the set
rj. If D

acts through some dynamic system (an environment) T, then the

diagram of immediate effects is initially

D

The organism (or whoever is interested in E), however, has some

power of forming another dynamic system R (e.g. a brain or a servo-

mechanism) which can be coupled to T and which, if properly

made, will form with T a whole, F, so that the diagram of immediate

effects becomes

D
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and such that F blocks the flow of variety from D to E, so that E
stays within

t].

T is usually given. It is the environment which the organism is

facing together with those parts of the organism that have to be
taken as given in the regulation. It cannot just be abolished, but
can usually be manipulated. The problem of regulation is then,
in general :

Given E, 17, T, and D, to form the mechanism R so that R and T,

coupled, act to keep E within
rj.

From now to the end of the book we shall be studying how various

types of data (E, 7], T, and D) can specify the form of machine with

input (R) that will give regulation. We want to deduce the form
ofR.
Were the situation always as simple as it was in Table 11/3/1, the

subject would soon be exhausted. As it is, many deviations from
that form are possible, so we shall proceed to examine various

deviations, as they put various difficulties in the way of the design
or specification of the regulator R.

We can now assume, in discussing some particular regulation, that

full use has been made of the possibihties of redefining (S. 11/16)
so that the formulation is either like that of S.11/3, which gave
perfect regulation and control, or like those in S.11/4, in which such

perfection was impossible. The remainder of the book will be
concerned essentially with those cases in which perfect regulation
is not possible but in which we wish the regulation to be as good as

is possible in the conditions given.

12/2. Sensory and motor restriction. A simple introduction to the

real difficulties is that given when i?'s capacity, as a channel for

transmitting variety or information from D to T, becomes insufficient,

according to the law of Requisite Variety, to reduce the variety in E
to that in

rj. When this happens, the regulation is necessarily

imperfect.

Examples of the phenomenon are myriad. First are all the cases

of sensory restriction, of deafness, of the driver who cannot see

clearly through a rain-obscured windscreen. There are the organ-
isms that cannot see ultra-violet light, and the tabetic who cannot
feel where his feet are. These are restrictions in the channel from
D to R.

Then there are the restrictions in the channel from R to T, those
on the effector side of R. There is the man who has lost an arm,
the insect that cannot fly, the salivary gland that cannot secrete, and
the rudder that is stuck.
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A similar restriction of R's capacity may occur in those cases

where R's effect on T is vectorial, i.e. effected through more than

one channel or component to T, and some diminution has occurred

in the number of T's parameters accessible to R. (Compare S.7/12.)

Thus a failure at one of the controls on the dashboard may impair
the driver's abihty to keep the car running well.

The case when R cannot receive full information about T's

initial state (discussed in S. 11/19) is really included in the cases

mentioned above. Such a difficulty occurs to a railway signalman
in a fog. He is well informed that a disturbance "fog" has arrived,

but he often has difficulty in ascertaining the present state of the

system he is controUing, i.e. the present positions of the trains in

his sector. With this restriction in the flow of information from

T to R goes the difficulty, or even impossibility, of maintaining full

regulation.

12/3. The basic formulation of S.11/4 assumed that the process of

regulation went through its successive stages in the following order:

(1) a particular disturbance threatens at D;

(2) it acts on R, which transforms it to a response ;

(3) the two values, of D and R, act on T simultaneously to produce
r's outcome ;

(4) the outcome is a state in E, or affects E.

Thus (3) supposes that if R is an actual material system, it performs
all its work before T starts to move. We assumed, in other words,

that the regulator R moved at a higher order of speed than T.

This sequence does actually occur in many cases. When the cat

approaches, the mouse may react so as to get to its hole before the

cat's claws actually strike. We say in general that the organism
has reacted to the threat (at D) rather than to the disaster itself (at E),

and has thus forestalled the disaster. The formulation is thus

properly representative of many important regulations.

On the other hand, there are many important cases in which this

anticipation is not possible
—in which R's action cannot be completed

before the outcome (at T) starts to be determined. (An example is

given in the next section.) In such cases the regulation envisaged in

S.l 1/3 is impossible. What then is to be done?

One method, of course, is to speed up the transmission of informa-

tion from D to R; and many regulating systems have various devices

specially to this end. Primitive nerve fibres develop myelin sheaths,

so that the passage to the brain may be faster. Some organisms

develop a sense of smell, so that the appropriate response may be
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prepared in time for the actual bodily encounter. And economic

systems send messages by cable rather than by messenger so that

the arrival in port of a ship with a perishable cargo can be prepared
for.

Sometimes, however, the available resources do not include a

speeding-up of the transmission through R; i?'s reaction cannot be

got to T before the outcome commences. In that case, the best

that can be done is that the imperfect regulation should at least be

as good as it can be made in the circumstances. The succeeding
sections will discuss how this can be done.

12/4. Regulation by error. A well-known regulator that cannot

react directly to the original disturbance D is the thermostat-

controlled water-bath, which is unable to say "I see someone coming
with a cold flask that is to be immersed in me—I must act now".
On the contrary, the regulator gets no information about the disturb-

ance until the temperature of the water (E) actually begins to drop.
And the same limitation applies to the other possible disturbances,

such as the approach of a patch of sunlight that will warm it, or the

leaving open of a door that will bring a draught to cool it.

The same limitation holds over many important regulators.

There is, for instance, a mechanism that helps to keep constant

the oxygen supply to the tissues : any long-continued lack of oxygen
causes eventually an increase in the number of red corpuscles
contained in the blood. So people with certain types of heart

disease, and those living at high altitudes, where the air is thin,

tend to develop such an increase. This regulation draws its informa-

tion from the harmful eff"ect (the lack of oxygen) itself, not from the

cause (D) of the heart disease, or from the decision to live at a higher
altitude.

From the point of view of communication, the new phenomena
are easily related to those of the old. The difference is simply that

now the information from D to R (which must pass if the regulator
R is to play any useful part whatever) comes through T. Instead of
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and the information available for regulatory purposes is whatever

survives the coding imposed by its passage through T (S.8/5).

Sometimes the information available to R is forced to take an even

longer route, so that R is affected only by the actual effect at E.

The diagram of immediate effects is then

D



12/6 AN INTRODUCTION TO CYBERNETICS

through rand E. Suppose R is somehow regulating successfully;

then this would imply that the variety at E is reduced below that of

D—perhaps even reduced to zero. This very reduction makes the

channel

D
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in industrial machinery but of the commonest occurrence and highest

importance in biological systems. The subject is returned to in

S. 12/11. Meanwhile we must turn aside to see what is involved

in this idea of a "non-determinate" machine.

THE MARKOVIAN MACHINE

12/8. We are now going to consider a class of machine more general

than that considered in Parts I and II. (Logically, the subject

should have been considered earlier, but so much of those Parts

was concerned with the determinate machine (i.e. one whose trans-

formations are single-valued) that an account of a more general

type might have been confusing.)

A "machine" is essentially a system whose behaviour is sufficiently

law-abiding or repetitive for us to be able to make some prediction

about what it will do (S.7/19). If a prediction can be made, the

prediction may be in one of a variety of forms. Of one machine we

may be able to predict its next state—we then say it is "determinate"

and is one of the machines treated in Part I. Of another machine

we may be unable to predict its next state, but we may be able to

predict that, if the conditions are repeated many times, thefrequencies

of the various states will be found to have certain values. This

possible constancy in the frequencies has already been noticed in

S.9/2. It is the characteristic of the Markov chain.

We can therefore consider a new class of absolute system : it is one

whose states change with time not by a single-valued transformation

but by a matrix of transition probabihties. For it to remain the

same absolute system the values of tlie probabilities must be un-

changing.
In S.2/10 it was shown that a single-valued transformation could

be specified by a matrix of transitions, with O's or I's in the cells

(there given for simplicity as O's or -t-'s). In S.9/4 a Markov chain

was specified by a similar matrix containing fractions. Thus a

determinate absolute system is a special case of a Markovian

machine; it is the extreme form of a Markovian machine in which all

the probabilities have become either or I. (Compare S.9/3.)

A "machine with input" was a set of absolute systems, distin-

guished by a parameter. A Markovian machine with input must

similarly be a set of Markovian machines, specified by a set of

matrices, with a parameter and its values to indicate which matrix

is to be used at any particular step.

The idea of a Markovian machine is a natural extension of the
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idea of the ordinary, determinate machine—the type considered

throughout Part I. If the probabihties are all or 1 then the two
are identical. If the probabilities are all very near to or 1

, we get a

machine that is almost determinate in its behaviour but that

occasionally does the unusual thing. As the probabilities deviate

further and further from and 1, so does the behaviour at each

step become less and less determinate, and more and more hke

that of one of the insects considered in S.9/4.

It should be noticed that the definition, while allowing some

indeterminacy, is still absolutely strict in certain respects. If the

machine, when at state x, goes on 90% of occasions to y and on 10%
of occasions to z, then those percentages must be constant (in the

sense that the relative frequencies must tend to those percentages
as the sequence is made longer; and the limits must be unchanging
as sequence follows sequence). What this means in practice is that

the conditions that determine the percentages must remain constant.

The exercises that follow will enable the reader to gain some

familiarity with the idea.

Ex. 1 : A metronome-pendulum oscillates steadily between its two extreme

states, R and L, but when at the right (R) it has a 1% chance of sticking

there at that step. What is its matrix of transition probabihties?

Ex. 2 : A determinate machine a has the transformation

i
A B C D
B D D D

A Markovian machine ^ has the matrix of transition probabilities

1
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*Ex. 4: (Continued.) What general rule, using matrix multiplication, allows

the answer to be written down algebraically? (Hint: Ex. 9/6/8.)

^.v. 5: Couple the Markovian machine (with states a, b, c and input-states

«, iS)

I
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Real objects may provide a variety of equally plausible "systems",

which may differ from one another grossly in those properties we are

interested in here; and the answer to a particular question may

depend grossly on which system it happens to be apphed to.)

(Compare S.6/22.)

12/10. The close relation between the Markovian machine and

the determinate can also be shown by the existence of mixed forms.

Thus, suppose a rat has partly learned the maze, of nine cells, shown

in Fig. 12/10/1,

m
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formation is not single-valued, more than one arrow can go from

each state. Thus the Markovian machine

1
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of S.2/17, a system at C will arrive at D in exactly two steps. If the

system is Markovian, however, it does not take a unique number of

steps; and the duration of the trajectory can be predicted only on

the average. Thus suppose the Markovian machine is

Y
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Another example of regulation, of a low order of efficiency, would
be shown by a rat with serious brain damage who cannot remember

anything of a maze, but who can recognise food when encountered

and who then stops to eat. (Contrast his behaviour with that of a

rat who does not stop at the food.) His progression would be

largely at random, probably with some errors repeated; nevertheless

his behaviour shows a rudimentary form of regulation, for having
found the food he will stop to eat it, and will live, while the other rat

will keep moving and starve,

Ex. ] : A married couple decide to have children till they have a boy and then

to stop, (i) Is the process regulatory? (ii) What is the matrix of transition

probabilities ?

Ex. 2: Is the game "Heads, I win; Tails, we toss again" regulatory?

12/13. So far we have considered only the way in which a

Markovian machine moves to its goal. In principle, its sole

difference from a determinate machine is that its trajectory is not

unique. Provided we bear this difference in mind, regulation by the

Markovian machine can have applied to it all the concepts we have

developed in the earlier chapters of this Part.

(The warning given in S. 11/11 (para. 5) must be borne in mind.

The steps that take a Markovian machine along its trajectory are of

a smaller order of magnitude than the steps that separate one act

of regulation (one "move" in the sense of S.11/3) from another.

The latter steps correspond to change from one trajectory to another
—

quite different to the change from one point to the next along one

trajectory.)

Thus the basic formulation of S.11/4 is compatible with either

determinate or Markovian machines in T and R to provide the

actual outcome. No difference in principle exists, though if we
describe their behaviour in psychological or anthropomorphic terms

the descriptions may seem very different. Thus if R is required (for

given disturbance) to show its regulatory power by going to some

state, then a determinate R will go to it directly, as if it knows what
it wants, while a Markovian R will appear to search for it.

The Markovian machine can be used, hke the determinate, as a

means to control; for the arguments of S. 11/14 apply to both (they
were concerned only with which outcomes were obtained, not with

how they were obtained.) So used, it has the disadvantage of being
uncertain in its trajectory, but it has the advantage of being easily

designed.
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12/14. Regulation by vetoer. The basic formulation of S.11/4 is

of extremely wide applicability. Perhaps its most important par-

ticular case occurs when both T and R are machines (determinate or

Markovian) and when the values of E depend on the various states

of equilibrium that T may come to, with
17

as some state (or states)

that have some appropriate or desired property. Most physical

regulators are of this type. If R and T are Markovian machines,

the bringing of T to a desired state of equilibrium tj by the action of

R can readily be achieved if advantage is taken of the fundamental

fact that if two machines (such as T and R are now assumed to be)

are coupled, the whole can be at a state of equilibrium only when

each part is itself at a state of equilibrium, in the conditions provided

by the other. The thesis was stated in S.5/13 for the determinate

machine, but it is just as true for the Markovian.

Let the regulator R be built as follows. Let it have an input

that can take two values, ^ and y. When its input is j8 (for "bad")

let }io state be one of equilibrium, and when its input is y (for "good")
let them all be equilibrial. Now couple it to T so that all the states

in
7]
are transformed, at i?'s input, to the value y, and all others to the

value jS. Let the whole follow some trajectory. The only states of

equilibrium the whole can go to are those that have i? at a state of

equilibrium (by S.5/13); but this implies that i?'s input must be at

y, and this implies that T's state must be at one of rj.
Thus the

construction of R makes it a vetoer of all states of equilibrium in T
save those in

-q.
The whole is thus regulatory; and as T and R are

here Markovian, the whole will seem to be hunting for a "desirable"

state, and will stick to it when found. R might be regarded as

"directing" T's hunting.

(The possibility that T and R may become trapped in a stable

region that contains states not in
77

can be made as small as we

please by making R large, i.e. by giving it plenty of states, and by

seeing that its /3-matrix is richly connected, so that from any state it

has some non-zero probability of moving to any other state.)

Ex. 1 : What, briefly, must characterise the matrix y, and what jS ?

*Ex. 2: Show that the thesis of S.5/13 is equally true for the Markovian machine.

12/15. The homeostat. In this form we can get another point of

view on the homeostat. In S.5/14 (which the reader should read

again) we considered it as a whole which moved to an equilibrium,

but there we considered the values on the stepping-switches to be

soldered on, given, and known. Thus fi's behaviour was deter-

minate. We can, however, re-define the homeostat to include the
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process by which the values in Fisher and Yates' Table of Random

Numbers acted as determinants (as they certainly did). If now we

ignore (i.e. take for granted) the resistors on the switches, then we

can regard part B (of S.5/14) as being composed of a relay and a

channel only, to which comes values from the Table. We now regard

B as having two inputs.

Relay

Channel

B

Table

5's state is still a vector of two components—a value provided by the

Table and the state of the relay (whether energised or not). To an

Observer who cannot observe the Table, B is Markovian (compare

S.12/9). Its input from A has two states, ^ and y; and it has been

built so that at ^3 no state is equilibrial, and at y every state is.

Finally it is coupled as in S.5/14.

The whole is now Markovian (so long as the Table is not observed).

It goes to an equilibrium (as in S.5/14), but will now seem, to this

Observer, to proceed to it by the process of hunt and stick, searching

apparently at random for what it wants, and retaining it when it

gets it.

It is worth noticing that while the relay's input is at ^, variety

in the Table is transmitted to A ;
but when the input comes to y, the

transmission is stopped. The relay thus acts as a "tap" to the flow

of variety from the Table to A. The whole moves to a state of

equilibrium, which must be one in which the entry of variety from

the Table is blocked. It has now gone to a state such that the entry

of variety from the Table (which would displace it from the state) is

prevented. Thus the whole is, as it were, self-locking in this condi-

tion. (It thus exemplifies the thesis of S.4/22.)

12/16. The example of the previous section showed regulation

occurring in a system that is part determinate (the interactions

between the magnets in A) and part Markovian (the values taken

by the channel in part B). The example shows the essential

uniformity and generality of the concepts used. Later we shall want
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to use this generality freely, so that often we shall not need to make
the distinction between determinate and Markovian.

Another example of regulation by a Markovian system is worth

considering as it is so well known. Children play a game called

"Hot or Cold?" One player (call him Tom for T) is blindfolded.

The others then place some object in one of a variety of places, and

thus initiate the disturbance D. Tom can use his hands to find the

object, and tries to find it, but the outcome is apt to be failure. The

process is usually made regulatory by the partnership of Rob (for

R), who sees where the object is (input from D) and who can give

information to Tom. He does this with the convention that the

object is emitting heat, and he informs Tom of how this would be

felt by Tom: "You're freezing; still freezing; getting a little warmer;

no, you're getting cold again; . . .". And the children (if young) are

delighted to find that this process is actually regulatory, in that Tom
is always brought finally to the goal.

Here, of course, it is Tom who is Markovian, for he wanders, at

each next step, somewhat at random. Rob's behaviour is more

determinate, for he aims at giving an accurate coding of the relative

position.

Regulation that uses Markovian machinery can therefore now be

regarded as familiar and ordinary.

DETERMINATE REGULATION

12/17. Having treated the case in which T and R are embodied in

machines, and considered that in which the machinery is Markovian,

we can now take up again the thread dropped in S.12/7, and can

specialise further and consider the case in which the probabilities

have all become or 1 (S.12/8), so that the machinery is determinate.

We continue with the regulator that is error-controlled. In order, as

biologists, to explore thoroughly the more primitive forms of regula-

tion, let us consider the case in which the feedback has a variety of

only two states.

An example of such a system occurs in the telephone exchange

when a selector starts to hunt for a disengaged line. The selector

tries each in turn, in a determinate order, gets from each in turn the

information "engaged" or "disengaged", and stops moving (arrives

at a state of equilibrium) at the first disengaged line. The set of

disturbances here is the set of possible distributions of "engaged" or

"disengaged" among the lines. The system is regulatory because,

whatever the disturbance, the outcome is always connexion with a

disengaged line.
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The mechanism is known to be error-controlled, for the informa-

tion that determines whether it shall move on or stick comes from
the line itself.

This case is so simple as to be somewhat degenerate. If we pay
no attention to the internal actions between R and T, so that they
fuse to form the F of S.10/5, then the case becomes simply that of a

determinate system which, when the initial state is given, runs along
a determinate trajectory to a state of equilibrium. Thus every
basin with a state of equilibrium in

rj
can be said to show a simple

form of regulation; for it acts so as to reduce the variety in the

initial states (as disturbance D) to the smaller variety in the terminal

state.

Much the same can be said of the rat that knows its way about a

warehouse; for wherever it gets to it can make its way back to the

nest. As much can be said for the computer that is programmed to

work by a method of successive approximation; for, at whatever

value it is started, the successive values are moved determinately to

the goal, which is its only state of equilibrium.

Ex. : A card is to be found in a shuffled pack of 52 by examination of them one

by one. How many will have to be examined, on the average, if (i) the

cards are examined seriatim, (ii) if one is drawn, examined, returned if

not wanted, the pack shuffled, a card drawn, and so on? (Systematic
versus random searching.)

12/18. When the machinery is all determinate, the problem of

S. 1 2/ 1 4 may arise—that of getting Tto go to some state of equilibrium
that has some desired property. When this is so, the solution given
there for the Markovian machine is, of course, still valid : one couples
on a vetoer.

12/19. Continuous variation. After these primitive forms, we
arrive at the regulators whose variables can vary continuously. (It

must be remembered that the continuous is a special case of the

discrete, by S.2/1.) Of the great numbers that exist I can take only
one or two for mention, for we are interested here only in their

general principles.

Typical is the gas-heated incubator. It contains a capsule which
swells as the temperature rises. The mechanism is arranged so that

the swelling of the capsule cuts down the size of the gas flame (or of

the amount of hot air coming to the incubator) ;
an undue rise of

temperature is thus prevented.
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The diagram of immediate effects is specially worth noting. It is

Disturbances
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Systems shows how closely their properties are related to those dis-

cussed here.

Ex. 1 : Draw the diagram of immediate effects of any regulator known to you.

Ex. 2: (Continued.) Think of some other parameters whose change would

affect the regulator's working ;
add them to the diagram.

12/20. A variant of this class, worth mention for the sake of

completeness, is that in which the regulating mechanism becomes

active only intermittently.

A reservoir tank, for instance, may have the level of fluid in it

kept between two given levels by a siphon which has its inner opening
at the lower level and its bend at the upper level. If the supply is

usually greater than the demand, the siphon, by coming into action

when the fluid reaches the upper level and by stopping its action

when it reaches the lower, will keep the level within the desired range.

Many physiological regulators act intermittently. The reaction

to cold by shivering is such a case. This particular reaction is of

special interest to us (compare S.12/4) in that activity in the regulator

can be evoked either by an actual fall in the bodily temperature

(error-control, from E) or, before the body has had time to cool,

by the sight of things that will bring cold (control from D).

THE POWER AMPLIFIER

12/21. The fact that the discussion in this chapter has usually

referred to the output E as being constant must not be allowed to

obscure the fact that this form can cover a very great number of cases

that, at first sight, have no element of constancy in them. The

subject was referred to in S. 11/15. Here we shall consider an

apphcation that is important in many ways already, and that will

be needed for reference when we come to Chapter 14. I refer to

those regulators and controllers that amplify power.
Power amplifiers exist in many forms. Here I shall describe only

one, selecting a form that is simple and clear (Fig. 12/21/1).

Compressed air is supplied freely at A and makes its way past the

constriction C before either going into the bellows B or escaping

at the valve V. The pressure at A is much higher than the usual

working pressure in B, and the aperture at C is small, so air flows

past C at a fairly constant rate. It must then either escape at V or

accumulate in B, driving up the pressure z. How fast the air escapes

at V, where a hole is obstructed to some degree by a cone, depends
on the movement up or down (x) of the cone, which is attached
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to one end of a light stiff rod/, which can turn on a pivot K. Thus

if K is unmoving, a movement down at the other end L will lift the

cone, will allow air to escape, and will cause a fall of the pressure

z inside B; conversely, a movement up at L will make -
rise.

The air pressure in B works in opposition to a heavy weight P,

which is continued upwards as a pillar, the whole weight being

able to move only up or down. The pillar carries two pivots, K and

Fig. 12/21/1

M. M is pivot for a strong bar G, which is fixed at one end, F.

Thus if P moves upwards, M must move upwards by the same

amount, and G's free end H must move upwards by twice the distance.

Now let us see what happens ifL is moved. Suppose the operator

lifts L by one inch. The other end (K) falls at once by one inch,

the valve is more obstructed, less air escapes, and more accumulates

in B, sending up the pressure. The increased pressure will lift /*, and

thus M and H. Thus H's movements tend simply to copy Us. (We
can notice that the upward movement of P (L being fixed after its

one inch rise) will make the valve V open, so the response of the

whole system to L's movement will be self-limiting, for the feedback

is negative; subject to certain quantitative details, which would
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require exact treatment in any particular embodiment, the system
is thus stable at a state of equilibrium whose position is determined

by L's position.)

The whole can thus also be regarded as a stable system that acts

so that, while a movement of, say, one inch at L would tend to cause,
at V, a movement of one inch also, the reaction of the system annuls

this. So the system can also be regarded as one that acts so as to

keep the position ofY constant.

We can now see how it can become a power ampUfier, and be

used as a crane.

The designer takes care to see that the lever / is light, and that the

valve is shaped so that the escaping air, or the pressure z, has little

effect on the force required at L. He also takes care that B shall

have a large area of action on P, and that the average working
pressure z shall be high (with the pressure at A higher still). If he

is successful, a small force at L, raising it through one inch, will be

suflBcient to evoke a large force at H sufficient to raise a heavy mass

through the same distance. Thus a force of 1 lb. moving through
one inch at L may result in a force of 1000 lbs. moving through one

inch at H. It is thus a work- (or power-) amphfier.
So far it has given merely a simple and clear exemplification of the

principles of regulation and control described earlier. Later

(S.14/1) we shall return to it, for we shall have to be clear about how
we can have, simultaneously, a law saying that energy cannot be

created, and also a powev-aniplifier.

Ex. 1 : How many degrees of freedom for movement have the three bodies,

P,J, G?

Ex. 2: Modify the arrangement so as to make H move oppositely to L while

keeping the equilibrium stable.

Ex. 3 : Modify the arrangement so that the equilibrium is unstable.

GAMES AND STRATEGIES

12/22. The subjects of regulation and control are extremely

extensive, and what has been said so far only begins to open up the

subject. Another large branch of the subject arises when D and R
are vectors, and when the compounding that leads eventually to

the outcome in T or £ is so distributed in time that the components
of D and R occur alternately. In this case the whole disturbance

presented and the whole response evoked each consists of a sequence
of sub-disturbances and sub-responses.
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This, for instance, may be the case in wild hfe when a prey

attempts to regulate against an attack by a predator, when the

whole struggle progresses through alternating stages of threat and

parry. Here the predator's whole attack consists of a sequence of

actions Dj, D2, D^ . . ., each of which evokes a response, so that

the whole response is also a sequence, Ri, Rj, R2, . . . . The whole

struggle thus consists of the double sequence

Di, Ri, D2, i?2» ^3» ^3j • • •

The outcome will depend on some relation between the predator's

whole attack and the prey's whole response.

We are now considering an even more complex interpretation of

the basic formulation of S.11/4. It is common enough in the bio-

logical world however. In its real form it is the Battle of Life; in

its mathematical form it is the Theory of Games and Strategies.

Thus in a game of chess the outcome depends on what particular

sequence of moves by White and Black

W„ Bi, W2, B2, Wi, 53, . . .

has been produced. (What was called a "move" in S.11/4 corres-

ponds, of course, to a play here.)

This theory, well founded by von Neumann in the '30s, though
not yet fully developed, is already too extensive for more than

mention here. We should, however, take care to notice its close

and exact relation to the subject in this book. It will undoubtedly
be of great scientific importance in biology; for the inborn character-

istics of living organisms are simply the strategies that have been

found satisfactory over centuries of competition, and built into the

young animal so as to be ready for use at the first demand. Just

as many players have found "P—Q4" a good way of opening the

game of Chess, so have many species found "Grow teeth" to be a

good way of opening the Battle of Life.

The relation between the theory of games and the subjects treated

in this book can be shown precisely.

The first fact is that the basic formulation of S.l 1/4
—the Table of

Outcomes, on which the theory of regulation and control has been

based—is identical with the "Pay-off matrix" that is fundamental in

thetheory of games. By using this common concept, the two theories

can readily be made to show their exact relation in special cases.

The second fact is that the theory of games, as formulated by von

Neumann and Morgenstern, is isomorphic with that of certain

machines with input. Let us consider the machine that is equivalent

to his generahsed game (Fig. 12/22/1). (In the Figure, the letters
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correspond with those used by von Neumann in his Chapter 2,

which should be consuhed ;
his 7"s do not correspond to the usage

in this book.)
There is a machine M with input. Its internal structure (its

transformations) is known to the players, T,-.
It has three types of

input: r, V, and T. A parameter F, a switch perhaps, determines

which structure it shall have, i.e. which game is to be played. Other

inputs K,- allow random moves to be made (e.g. effects from a

roulette wheel or pack of shuffled cards to be injected; cf. S. 12/15).

Each player, T,-,
is a determinate dynamic system, coupled to M

34r

Fig. 12/22/1

both ways. He receives information from M by specified channels

/,•
and then acts determinately on M. The site of connexion of the

/'s is defined by F. Effects from each T, together with those of the

other r's and the F's, exert, through M, complex controls over the

dials G. When the play, i.e. trajectory, is completed, the umpire
^ reads the G's and then makes corresponding payments to the

r's.

What we have here is evidently the case of several regulators, each

trying to achieve a goal in G, working simultaneously, and interacting

competitively within M. (The possibility of competition between

regulators has not been considered explicitly in these chapters till

now.)
If the system is ultrastable, each T's behaviour will be determined

by parameters, behaving as step-functions. If a particular player is

"satisfied" by the payment from ^6, his parameters will retain their
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values and his strategy will be unchanged; but if dissatisfied (i.e. if

the payment falls below some critical value) the step-functions will

change value, and the loser, at the next play, will use a new strategy.

A related subject is the theory of military codings and de-codings.

Shannon's Communication theory of secrecy systems has shown how

intimately related are these various subjects. Almost any advance

in our knowledge of one throws light on the others.

More than this cannot be said at present, for the relationships

have yet to be explored and developed. It seems to be clear that

the theory of regulation (which includes many of the outstanding

problems of organisation in brain and society) and the theory of

games will have much to learn from each other. If the reader feels

that these studies are somewhat abstract and devoid of applications,

he should reflect on the fact that the theories of games and cyber-

netics are simply the foundations of the theory of How to get your
Own Way. Few subjects can be richer in applications than that!

12/23. We are now at the end of the chapter, and the biologist

may feel somewhat dissatisfied, for this chapter has treated only of

systems that were sufficiently small and manageable to be under-

stood. What happens, he may ask, when regulation and control are

attempted in systems of biological size and complexity? What

happens, for instance, when regulation and control are attempted
in the brain or in a human society ?

Discussion of this question will occupy the remaining chapters.
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Chapter 13

REGULATING THE VERY LARGE
SYSTEM

13/1. Regulation and control in the very large system is of peculiar
interest to the worker in any of the biological sciences, for most of

the systems he deals with are complex and composed of almost

uncountably many parts. The ecologist may want to regulate the

incidence of an infection in a biological system of great size and

complexity, with climate, soil, host's reactions, predators, competi-

tors, and many other factors playing a part. The economist may want
to regulate against a tendency to slump in a system in which prices,

availability of labour, consumer's demands, costs of raw materials,

are only a few of the factors that play some part. The sociologist
faces a similar situation. And the psychotherapist attempts to

regulate the working of a sick brain that is of the same order of

size as his own, and of fearful complexity. These regulations are

obviously very different from those considered in the simple mech-
anisms of the previous chapter. At first sight they look so different

that one may well wonder whether what has been said so far is not

essentially inapplicable.

13/2. This, however, is not so. To repeat what was said in S.4/ 18,

many of the propositions established earher are stated in a form
that leaves the size of the system irrelevant. (Sometimes the number
of states or the number of variables may be involved, but in such

a way that the proposition remains true whatever the actual

number.)

Regulation in biological systems certainly raises difficult problems—that can be admitted freely. But let us be careful, in admitting

this, not to attribute the difficulty to the wrong source. Largeness
in itself is not the source; it tends to be so regarded partly because

its obviousness makes it catch the eye and partly because variations

in size tend to be correlated with variations in the source of the real

difficulty. What is usually the main cause of difficulty is the variety

in the disturbances that must be regulated against.

The size of the dynamic system that embodies T tends to be
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correlated with the variety in D for several reasons. If T is made

of many parts, and there is uncertainty about the initial state of any

part, then that variety will be allocated to D (S.l 1/19); so in general,

other things being equal, the greater the number of parts the greater

the variety in D. Secondly, if each part is not completely isolated

from the world around, each part's input will contribute some variety

which will be allocated to D; so in general, the greater the number of

parts the greater the number of components in D; and therefore,

if the components have some independence, the greater the variety

in D. (There may be other reasons as well but these will suffice.)

Thus, when the effects of size are distinguished from those that

affect the variety in D, it will usually be found that the former is,

in itself, irrelevant, and that what matters is the latter.

It now follows that when the system T is very large and the regu-

lator R very much smaller (a common case in biology), the law of

Requisite Variety is hkely to play a dominating part. Its importance
is that, if R is fixed in its channel capacity, the law places an absolute

limit to the amount of regulation (or control) that can be achieved

by R, no matter how R is re-arranged internally, or how great the

opportunity in T. Thus the ecologist, if his capacity as a channel is

unchangeable, may be able at best only to achieve a fraction of what

he would hke to do. This fraction may be disposed in various ways—he may decide to control outbreaks rather than extensions, or

virus infections rather than bacillary
—but the quantity of control

that he can exert is still bounded. So too the economist may have

to decide to what aspect he shall devote his powers, and the psycho-

therapist may have to decide what symptoms shall be neglected and

what controlled.

The change in the point of view suggested here is not unUke that

introduced into statistics by the work of Sir Ronald Fisher. Before

him, it was taken for granted that, however clever the statistician, a

cleverer could get more information out of the data. Then he

showed that any given extraction of information had a maximum,
and that the statistician's duty was simply to get near the maximum—
beyond that no man could go. Similarly, before Shannon's work it

was thought that any channel, with a little more skill, could be

modified to carry a little more information. He showed that the

engineer's duty is to get reasonably near the maximum, for beyond
it no-one can go. The law of Requisite Variety enforces a similar

strategy on the would-be regulator and controller: he should try

to get near his maximum—^beyond that he cannot go. Let us

therefore approach the very large system with no extravagant ideas

of what is achievable.
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13/3. Before we proceed we should notice that when the system is

very large the distinction between D, the source of the disturbances,
and T, the system that yields the outcome, may be somewhat vague,
in the sense that the boundary can often be drawn in a variety of

ways that are equally satisfactory.

This flexibihty is particularly well-marked among the systems that

occur on this earth (for the terrestrial systems tend markedly to have
certain general characteristics). On this earth, the whole dynamic
biological and ecological system tends to consist of many sub-

systems loosely coupled (S.4/20); and the sub-systems themselves

tend to consist of yet smaller systems, again more closely coupled

internally yet less closely coupled between one another; and so on.

Thus in a herd of cattle, the coupling between members is much
looser than the couplings within one member and between its parts

(e.g. between its four limbs); and the four limbs are not coupled as

closely to one another as are the molecules within one bone. Thus
if some portion of the totaUty is marked out as T, the chief source

D of disturbance is often other systems that are loosely coupled to

r, and often sufficiently similar to those in T that they might equally

reasonably have been included in it. In the discussion that follows,

through the rest of the book, this fact must be borne in mind : that

sometimes an equally reasonable demarcation of 7"and D might have

drawn the boundary differently, without the final conclusions being
affected significantly. Arbitrary or not, however, some boundary
must always be drawn, at least in practical scientific work, for

otherwise no definite statement can be made.

13/4. When the system T is very large
—when the organism as

regulator faces a very large and complex environment with limited

resources—there are various ways that may make regulation possible.

(If regulation is not possible, the organism perishes
—an extremely

common outcome that must not be forgotten ; but this case needs no
detailed consideration.)

Sometimes regulation may be made possible by a re-defining of

what is to be regarded as acceptable
—by a lowering of standards.

This is a somewhat trivial solution, though not to be forgotten as a

possibility.

Another possibility is to increase the scope and power of R, until

7?'s capacity is made adequate. This method must obviously never

be forgotten; but we shall give it no detailed consideration. Let

us consider more fully the interesting case in which the regulation,

apparently most difficult or impossible, is actually possible.
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13/5. Constraints. What this means, by the law of Requisite

Variety, is that the variety in the disturbances D is not really as

large as it seems; in other words, by S.7;8, the disturbances show a

constraint.

Thus the case we are led to is the following: D has many compo-

nents, each of which shows variety. The first estimate of D's

variety puts it too high, and we are in danger of deducing (if the

regulator's capacity is given) that regulation of £" to a certain degree

is not possible. Further examination of D may, however, show that

the components are not independent, that constraint exists, and

that the real variety in D is much lower than the first estimate. It

may be found that, with Ws capacity given, this smaller variety can

be regulated against, and full regulation or control achieved at E.

Thus the discovery of a constraint may convert "regulation impos-

sible" to "regulation possible". If Ks capacity is fixed, it is the

only way.
We are thus led again to the importance and usefulness of dis-

covering constraints, and to yet another example of the thesis that

when a constraint exists it can be turned to use (S.7/14).

Let us then consider the question of what constraints may occur

in the disturbances that affect very large systems, and how they may
be turned to use. The question is of major practical importance,

for if i?'s capacity is not easily increased and the other methods are

not possible, then the law of Requisite Variety says that the discovery

of a constraint is the would-be regulator's only hope.

13/6. As was said in S.7/10, constraints do not fall into a few

simply-described classes. Having indicated some of the more

interesting possibihties in Chapter 7, I can only continue to mention

those classes that are of peculiar interest to us now. With this

brief reference I shall pass by a vast subject, that comprises a major

part of all human activity.

Accordingly we shall study one particular form of constraint. It

is of great interest in itself, it will illustrate the thesis of the last

chapter, and it is of considerable practical importance in the regula-

tion of the very large system.

REPETITIVE DISTURBANCE

13/7. Though little reference has been made to the fact in the last

few chapters, many disturbances (and the corresponding regulatory

responses) are repetitive, especially if the system is viewed over a

long time. The cough reflex is regulatory and useful not merely
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because it removes this particle of dust but because, in a lifetime,

it removes particles again and again—as many times as are necessary.
Most of the physiological regulators act again and again, as often

as is necessary. And the coastal lifeboat saves lives not once but

again and again. If, in the last few chapters, we have spoken of

"the regulatory response" in the singular, this is only because the

single action is typical of the set, not because the set necessarily has

only one element.

So many of the well-known regulations are repetitive that it is

difficult to find a regulation that acts once only. A possible example
is given by an observatory making plans so as to have everything

ready in case a supernova should occur, an event not likely to occur

twice in the director's lifetime. Various possibilities would have

to be considered—in which part of the sky it might appear, whether

during day or night, the spectral and other peculiarities which would
determine what particular type of plate and filter should be used in

photogi-aphing it, and so on. In making his plans, the director

would, in fact, draw up a table like that of S.11/4, showing the

uncertainties (D) to be feared, the resources {R) available, and the

outcomes {E). Inspection of the table, as in Ex. 11/4/4, would then

enable him to decide whether, in all cases, he would get what he

wanted.

There are, therefore, cases in which the regulation has to be

exerted against a non-repetitive disturbance, but they are uncommon.
From here on we shall consider the case in which the disturbance,

and the regulatory response, occur more than once; for such cases

show constraint, of which advantage can be taken.

13/8. The constraint occurs in the following way.
The basic formulation of the regulatory process referred to a set

of disturbances but assumed only that the separate elements in the

set were distinct, nothing more. Like any other quantity, a disturb-

ance may be simple or a vector. In the latter case, at least two main

types are distinguishable.

The first type was discussed in S. 11/17: the several components of

the disturbance act simultaneously; as an air-conditioner might, at

each moment, regulate both temperature and humidity.
The second type is well shown by the thermostatically-controlled

water bath; it can be regarded as a regulator, over either short or

long intervals of time. Over the short interval, "the disturbance"

means such an event as "the immersion of this flask", and "its

response" means "what happens over the next minute". Its

behaviour can be judged good or bad according to what happened
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in that minute. There is also the long interval. After it has worked

for a year someone may ask me whether it has proved a good regula-

tor over the year. While deciding the reply, I think of the whole

year's disturbance as a sort of Grand Disturbance (made up of many
individual disturbances, with a small d), to which it has produced a

Grand Response (made up of many individual responses, with a

small r). According to some standard of what a bath should do

over a year (e.g. never fail badly once, or have an average deviation

of less than -J", etc.) I form an opinion about the Grand Outcome—
whether it was Good or Bad—and answer the question accordingly.

It should be noticed that what is "Good" in the Grand Outcome

does not follow necessarily from what is "good" (tj) in the individual

outcomes; it must be defined anew. Thus, if I go in for a lottery

and have three tickets, a win on one (and consequent loss on the

other two) naturally counts as "Good" in the Grand Outcome; so

here I good + 2 bad = Good. On the other hand, if I am tried

three times for murder and am found not guilty for one, the indi-

vidual results are still I good + 2 bad, but in this case the Grand

Outcome must naturally count as Bad. In the case when the indi-

vidual disturbances each threaten the organism with death. Good
in the Grand Outcome must naturally correspond to "good in

every one of the individual outcomes".

These Grand Disturbances are vectors whose components are the

individual disturbances that came hour by hour. These vectors

show a form of constraint. Thus, go back to the very first example
of a vector (S.3/5). It was A ; contrast it with B:

A B

Age of car: Age of Jack's car:

Horsepower: ,, ,, Jill's ,,

Colour: „ „ Tom's ,,

Obviously B is restricted in a way that A is not. For the variety

in the left-hand words in ^'s three rows is three; in 5's three rows it

is one.

Vectors like B are common in the theory of probability, where

they occur under the heading "sampling with replacement". Thus,

the spin of a coin can give only two results, H or T. A coin spun
six times in succession, however, can give results such as (//, //, T,

H, T, H), or (T, T, H, H, T, H), and so on for 64 possibilities.

(Compare S.9/9.)

What is important here is that, in such a set of vectors (in those

whose components all come from the same basic class, as in B),
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two varieties can be distinguished : there is (i) the variety within the

basic class (2 for the coin, the number of distinct possible ages in B),

and (ii) the variety built up by using the basic class n times over (if

the vector has n components). In the example of the coin, the two

varieties are 2 and 64. In general, if the variety within the basic

class is k, and the vector has n components, each a member of the

class, then the two varieties are, at most, k, and k". In particular

it should be noticed that if the variety in the basic class has some

limit, then a suitably large value of n will enable the second variety

to be made larger than the limit.

13/9. These considerations are applicable in many cases of regula-

tion. Suppose, for definiteness, that the water bath may be affected

in each minute by one of the three individual disturbances :

(a) a draught of air cooHng it,

(b) sunshine warming it,

(c) a cold object being immersed in it.

The variety is three, but this number is hardly representative of the

variety that will actually occur over a long time. Over a year, say,

the Grand Disturbance is a long vector, with perhaps some hundreds

of components. Thus one Grand Disturbance might be the vector

(i.e. the sequence) with 400 components:

(a, b, a, b, b, a, c, b, b, c, c, b, b, . . . c, b, a, b).

And if the individually correct responses are, respectively a, ^, and

y, then the Grand Response appropriate to this particular Disturb-

ance would be the vector (i.e. sequence)

(a, ^, a, ^, p, a, y, ^, ^, y, y, ^, ^, . . . y, ^, a, ^).

If there is no constraint in the Disturbance from component to

component as one goes from left to right, the whole set of possible

Disturbances has variety of S^oo; and the Grand Response must

have at least as much if full regulation is to be obtained.

We now come to the point: the double sequence, as it occurred

in time, shows the characteristic constraint of a machine, i.e. it

defines a machine up to an isomorphism. Thus, in the example

just given, the events occurred in the order, from left to right:

ababbacbbcc ..., etc.

aj3aj^^ayl3^yy..., etc.

(though not necessarily at equal time-intervals). It is now easily
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verified that this sequence, as a protocol, defines the machine with

input:

i
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Our treatment of it, while losing nothing in precision, must be

very broad—that is to say, abstract—for, as biologists, we want to

consider machines of far wider type than those of steel and brass.

Within the formula

Entity Q designs machine M
we want to include such cases as

(1) The genes determining the formation of the heart.

(2) A mechanic making a bicycle.

(3) One part of the brain determining the internal connexions in a

nerve-net.

(4) A works-manager laying out a factory to get production going

along certain lines.

(5) A mathematician programming an automatic computer to

behave in a certain way.

What we shall be concerned with, if we hold to the cybernetic

point of view, is not the more obvious processes of shaping or

assembling pieces of matter, but with the less obvious questions of

what determines the final model, of how it comes to be selected.

We are interested in tracing long chains of cause and effect, so that

we can relate a set of possible initial causes to a set of final machines

issuing as consequence; as a telephone mechanic, with a cable of a

hundred wires, relates each one going in at one end to some one

coming out at the other. By treating the matter in this way we shall

find that certain quantitative relations must hold; on them we can

base the ideas of the last chapter. Throughout, we shall be exempli-

fying the thesis of D. M. MacKay: that quantity of information, as

measured here, always corresponds to some quantity, i.e. intensity,

of selection, either actual or imaginable.
The concepts of selecting, designing, constructing, building (briefly,

in any way being responsible for the eventual appearance of) an

actual machine share a common property, when one identifies

and measures the varieties concerned in the process. What might
turn up as M has variety

—an embryo might produce any one of

many forms of muscular blood-pump. In fact, the gene-pattern in

Lumbricus leads to the production of an earthworm's heart, the

gene-pattern in Rana leads to the production of a frog's heart, and

that in Homo to a man's heart. Control, by the gene-pattern over

the heart, is clearly involved. So too is regulation, for in whatever

state the molecules in Lumbricus happen to be initially (there being

variety in the possibilities), under the action of the gene-pattern the

variety disappears, and a heart of standard worm's form appears.
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It will be noticed that the concepts of design or construction are

essentially applicable to sets, in spite of the common linguistic use

of the singular. (Compare S.7I3.) Thus "the gene-pattern deter-

mines the form of the heart" is a shorthand way of saying that

elements in the set of gene-patterns among different species can be

put into correspondence with those in the set of possible hearts in

the various species, like the wires at the two ends of a telephone
cable. Thus the act of ''designing" or "making" a machine is

essentially an act of communication from Maker to Made, and the

principles of communication theory apply to it. In particular the

measures that were developed for treating the case in which various

possible messages are reduced to one message can now be applied

to the case when various possible machines are reduced to one

machine.

A useful conceptual device for forcing this aspect into prominence
is to imagine that the act of designing has to take place through the

telephone, or by some other specific channel. The quantities of

variety can then readily be identified by identification of the actual

quantity of information that will have to be transmitted.

13/12. When a designer selects the final form of the machine, what

does "selecting" the machine mean in terms of the general concepts
of this book? Consider the following sequence of examples, in

which the final machine is a radio receiver.

The first is the case of the buyer who has three machines before

him, and he selects one. The second case, equivalent to the first

from the abstract point of view, occurs when the designer of a radio

set, wavering between three possible circuits, finally selects one.

The third case, abstractly equivalent to the previous two, occurs

when the owner of a radio set that has three circuits built into it,

moves a switch to one of three positions and thereby selects which

circuit shall actually be used. Thus, from the abstract point of

view, selecting one machine from three is equivalent to selecting

one value from three at a parameter. For example, suppose the

choice is to be between the three machines a, j8, and y (each on the

states a and b);

. a b ^ ,

a b . a b

a:\ ^:| y:|
b a a a b b

Suppose ^ is selected and the selector finishes with the machine

I

a b
Y

a a
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Abstractly this selection is identical with having initially a machine

with three-valued input :

^ '
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(In the transformation, dots represent values that do not matter.)
If now ju is chosen, one part gives the machine

I

a b

b a

the other components being ignored; while if v is chosen, the other

part gives

r q r

Thus the initial formulation is really quite general.

13/14. Design in a Black Box. It will be noticed that the operation
of "design", as understood here, can be carried out within a Black

Box, if it has an input. In fact, the owner of the radio set (S.13/12),
if he knows nothing of its contents, but does know how the output
is affected by the switch, does perform the act of "design in a Black

Box" when he sets the switch and gets the desired behaviour.

Other examples extend the range of the same theme. The Black

Box, or the radio set, may be dominated by another machine, whose
activities and values determine the switch's position. If so, we can

say (provided we remember the sense in which we are using the

words) that the dominating machine, when it sets the switch at a

particular position, "designs" the radio set. What is important is

that the dominating machine shows to the radio set those properties
that are objectively shown by the behaviour of a designer.
The same point of view may be applied to the brain, and we can

see how one part of a brain can show towards another part the

objective behavioural relationship of designer to machine. We can

begin to see how one part
—a basal structure perhaps

—can act as

"designer" towards a part it dominates, towards a neural network,

say.

Thus the idea of one machine designing another can be stated in

exact and general terms—exact in the sense that experiment can be

used to show objectively whether or not this relationship holds.

QUANTITY OF SELECTION

13/15. This aspect of design
—of the reduction in numbers that

occurs when the many initial possibilities are reduced to the final

few or one—can easily be measured. We can use the same scales
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as are used for measuring variety and information (S.7/7 and 9/11)
and they can be measured either directly or logarithmically.
The measure, besides being convenient, has the natural property

that it specifies the capacity that the channel C must have

Designer Machine
C

if the transmission of the necessary variety or information from

Designer to Machine is to be possible.

It will be noticed that this method does nothing to answer the

question "how much design is there in this machine (without
reference to what it might have been)?" for the measure exists only
over the set of possibilities. It apphes, not to the thing that results,

but to the act of conummication (S. 13/11).

The exercises will help to give reality to the somewhat abstract

arguments, and will show that they agree satisfactorily with what is

evident intuitively.

Ex. 1 : At one stage in the design of a certain electrical machine, three distinct

ohmic resistances must have their values decided on. Each may have any
one of the values 10, 15, 22, 33, 47, 67 or 100 ohms independently. How
much variety must the designer supply (by the law of Requisite Variety)
if the possibilities are to be reduced to one?

Ex. 2: (Continued. A similar three is to have its resistances selected to the

nearest ohm, i.e. from the set 10, 11, 12, . . ., 99, 100. How much variety
must the designer now supply ?

Ex. 3 : Three resistances can each have the value of 10, 20 or 30 ohms. If

they are connected in parallel, how much variety must the designer supply
if the possible electrical properties are to be reduced to one ?

Ex. 4 : How much design is needed if the decision lies between the two machines,
both with states a, b, c, d:

abed abed
j and I ?babe c b c a

Ex. 5 : How much design goes to the production of a penny stamp, (i) as con-

sisting of 15,000 half-tone dots each of which may be at any one of 10

intensities? (ii) as the final form selected by Her Majesty from three sub-

mitted forms ? Explain the lack of agreement.

Ex. 6 : How much variety must be supplied to reduce to one the possible machines
on a given n states? (Hint: Ex. Ijlji.)

Ex. 1: (Continued.) Similarly when the machine's states number n and the

input's states (after design) number /.
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13/16. Exactly the same measure may be applied to the design of a

Markovian machine. Thus the variety between the two Markovian
machines

Y

i.
4
1

2

J,
4

and

I
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which excludes all single-valued transformations that include the

transitions a^> a or a—^ d. A machine can thus be selected in

stages, and the stages may be defined in various ways.
What is fundamental quantitatively is that the overall selection

achieved cannot be more than the sum (if measured logarithmically)

of the separate selections. (Selection is measured by the fall in

variety.) Thus if a pack of cards is taken, and a 2-bit selection is

made and then a 3-bit, a unique card cannot be indicated unless a

further selection of at least 0-7 bits is made, for log2 52 is 5-7. The
limitation is absolute, and has nothing to do (if a machine is selected)

with the type of machine or with the mode of selection used.

Ex. 1 : How many possibilities are removed when, to the closed, single-valued

transformation on a, b and c with all 27 forms initially possible, the re-

striction is added "It must have no state of equilibrium"?
Ex. 2: (Continued.) When the restriction is "It must have three states of

equilibrium"?

Ex. 3: In logarithmic measure, how much selection was exerted in Ex. 1 ?

*Ex. 4: How much selection is exerted on an absolute system of n states, oi,

02, • • -, Cny with all transformations initially possible, if the restriction is

added "It must contain no state of equilibrium?" (Hint: To how many
states may oi now transform, instead of to the n previously?) (Cf. Ex. 1.)

*Ex. 5: (Continued.) To what does this quantity tend as n tends to infinity?

(Hint: Calculate it for n = 10, 100, 1000.) (This estimation can be

applied to the machine of S.12/15.)

*Ex. 6: If, as described in this section, the cards of a shuffled pack are searched

(without further shuffling) one by one in succession for a particular card,

how much information is gained, on the average, as the first, second,

third, etc., cards are examined? (Systematic searching.)

*Ex. 7: (Continued.) How much if, after each failure, the wrong card is

replaced and the pack shuffled before the next card is drawn? (Random
searching.)

13/18. Supplementation of selection. The fact that selection can

often be achieved by stages carries with it the implication that the

whole selection can often be carried out by more than one selector,

so that the action of one selector can be supplemented by the action

of others.

An example would occur if a husband, selecting a new car from

the available models, first decided that it must cost less than £1000,

and then allowed his wife to make the remainder of the selection.

It would occur again if the wife, having reduced the number to two

models, appealed to the spin of a coin to make the final decision.

Examples are ubiquitous. (Those that follow show supplementa-
tion by random factors, as we shall be interested in them in the next

chapter.) At Bridge, the state of the game at the moment when the
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first card is led has been selected partly by the bids of the players and

partly by chance—by the outcome of the statistically standardised

act of shuffling
—which has selected the distribution of the cards.

(Compare Fig. 12/22/1.) The Rules of Bridge ensure, in fact, that a

definite part of the whole determination shall be assigned to chance,
i.e. to shuffling carried out in a prescribed way. Such an appeal to

chance was frequently used in the past as a method for supplementing
selection. The Roman general, for instance, after having made

many decisions, would often leave the remainder to be determined

by some other factor such as the flight of the next flock of birds, or

the configurations shown in the entrails of a freshly-killed sheep.

(Supplementation was used earlier in this book in S.4/19 and 12/15.)

In scientific work the first deliberate use of wholly uncorrelated

selectors to provide "random" determination to complete the selec-

tion imposed by the experimenter, was made apparently by Sir

Ronald Fisher; for he first appreciated its fundamental importance
and usefulness.

(By saying a factor is random, I do not refer to what the factor

is in itself, but to the relation it has with the main system. Thus

the successive digits of u are as determinate as any numbers can be,

yet a block of a thousand of them might serve quite well as random
numbers for agricultural experiments, not because they are random
but because they are probably uncorrelated with the peculiarities of a

particular set of plots. Supplementation by "chance" thus means

(apart from minor, special requirements) supplementation by taking

effects (or variety) from a system whose behaviour is uncorrelated

with that of the main system. An example was given in S.12/15.

Thus if a chance variable were required, yesterday's price of a gold-

share might be suitable if the main system under study was a rat in a

maze, but it would not be suitable if the main system were a portion
of the financial-economic system.)

SELECTION AND MACHINERY

13/19. Selection by machine. In the preceding sections we have

considered the questions of communication involved when a

machine is to be selected. Whatever does the selecting is, however,

on general cybernetic principles, also to be considered as a mech-

anism. Thus, having considered the system

L



13/20 AN INTRODUCTION TO CYBERNETICS

How can a machine select ? The answer must, of course, be given
in terms compatible with those already used in this Part.

Perhaps the simplest process of selection occurs when a machine

goes along a particular trajectory, so that after state / (say) it goes
to statey (say) and not to any other of its states. This is the ordinary
selection that a machine makes when its "message" (the protocol
from it) says that the machine has this transformation and no other.

Another process of selection shown by a machine is that noticed

in S.7/24: every determinate machine shows selection as it reduces

the variety in its possible states from the maximum initially to the

number of its basins finally.

Another process of selection was treated in S.5/13, when one part
of a whole can select from states of equilibrium in the other part

by "vetoing" some of them. Tliis is perhaps the most obvious form
of selection, for, as the two are watched, the imaginative observer

can almost hear the vetoing part say ". . . no good, still no good, I

won't have it, still no good, Hold It!—yes, we'll keep that per-

manently." If a machine is to be built as a selector (perhaps to carry
out the programme hinted at in the final section) it will, so far as I

can see, have to be built to act in this way. It is the way of the

second-order feedback in Fig. 5/14/1 (supplemented in S.12/15).

There are doubtless other methods, but these will suffice for illus-

tration, and they are sufficient to give definiteness to the idea of a

machine "selecting"; (though special consideration is hardly

necessary, for in Shannon's theory every act of communication is

also one of selection—that by which the particular message is

caused to appear).

13/20. Duration of selection. At this point a word should be said

about how long a given act of selection may take, for when actual

cases are examined, the time taken may, at first estimate, seem too

long for any practical achievement. The question becomes specially

important when the regulator is to be developed for regulation of a

very large system. Approximate calculation of the amount of

selection likely to be necessary may suggest that it will take a time

far surpassing the cosmological; and one may jump to the conclusion

that the time taken in actually achieving the selection would have to

be equally long. This is far from being the case, however.

The basic principles have been made clear by Shannon, especially
in his Communication theory of secrecy systems. He has shown that

if a particular selection is wanted, of 1 from A'", and if the selector

can indicate (or otherwise act appropriately) only as to whether the

required element is or is not in a given set, then the method that
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achieves the whole selection in the fewest steps is selection by
successive dichotomies, so that the early selections are between

group and group, not between elements. This method is much
faster than the method of examining the A^ one by one, seriatim.

And if A'^ becomes very large, the method of selecting among groups
becomes almost incomparably faster. Lack of space prohibits an

adequate treatment of this important subject, but it should not be

left until I have given an example to show something of how

enormously faster the dichotomising method is.

Let us consider a really big selection. Suppose that, somewhere
in the universe (as visible to the astronomer) there is a unique atom;
the selector wants to find it. The visible universe contains about

100,000000 galaxies, each of which contains about 100000,000000
suns and their systems; each solar system contains about 300000

bodies like the earth, and the earth contains about 1,000000,000000

cubic miles. A cubic mile contains about 1000,000000,000000,000000
dust particles, each of wliich contains about 10000,000000,000000
atoms. He wants to find a particular one!

Let us take this as a unit of very large-scale selection, and call it

1 mega-pick; it is about 1 from 10 ''3. How long will the finding

of the particular atom take ?

Two methods are worth comparing. By the first, the atoms are

examined one at a time, and a high-speed electronic tester is used

to examine a million in each second. Simple calculation shows that

the number of centuries it would take to find the atom would require

more than the width of this page to write down. Thus, following

this method dooms the selection to failure (for all practical purposes).

In the second method he uses (assuming it possible) the method of

dichotomy, asking first: is the atom in this half or that? Then,

taking what is indicated, is it in this half or that?. And so on.

Suppose this could be done only at one step in each second. How
long would this method take? The answer is: just over four

minutes! With this method, success has become possible.

This illustration may help to give conviction to the statement that

the method of selection by groups is very much faster than the

method of searching item by item. Further, it is precisely when the

time of searching item by item becomes excessively long that the

method of searching by groups really shows its power of keeping
the time short.

13/21. Selection and reducibility. What does this mean when a

particular machine is to be selected? Suppose, for definiteness

that it has 50 inputs, that each input can take any one of 25 values,
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and that a particular one of the possible forms is sought. This

selection is just about 1 megapick, and we know that the attempt
to select seriatim is hopeless. Can the selection be made by groups?
We can if there can be found some practical way of grouping the

input-states.

A particular case, of great practical importance, occurs when the

whole machine is reducible (S.4/14) and when the inputs go separately
to the various sub-systems. Then the sequence: select the right

value for part 1, on part I's input; select the right value for part 2,

on part 2's input; and so on—corresponds to the selection being
conducted by groups, by the fast method. Thus, if the machine

is reducible the fast method of selection can be used.

In fact, reducibihty is extremely common in our terrestrial

systems. It is so common that we usually take it for granted, but

he who would learn how to regulate the very large system must

become fully aware of it.

To get some idea of how much the world we live in shows re-

ducibihty, compare its ordinary behaviour with what would happen
if, suddenly, the reducibihty were lost, i.e. if every variable had an

effect, immediate or delayed, on every other variable. The turning
over of a page of this book, instead of being just that and nothing

more, might cause the lights to change, the table to start moving, the

clock to change its rate, and so on throughout the room. Were the

world really to be irreducible, regulation would be so difficult as to

be impossible, and no organised form of life could persist (S.7/17).

The subject must be left now, but what was said in Design ... on

"Iterated systems", and in the chapters that followed, expands the

thesis. Meanwhile we can draw the conclusion that if a responsible

entity Q (S. 13/10) is to design (i.e. select) a machine to act as

regulator to a very large system, so that the regulator itself is

somewhat large, the achieving of the necessary selection within a

reasonably short time is likely to depend much on whether the

regulator can be made in reducible form.

13/22. Whence the Regulator"} Now at last we can answer the

question that has been latent throughout Part III: how is the desired

regulator to be brought into being? The question was raised in

S. 13/10, but since then we have explored a variety of topics, which

had to be discussed before the threads could be pulled together.

Let us now survey the position.

The process of arriving eventually at a particular machine with

desired properties implies selection, and it also implies that the
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responsible entity Q (of S.13/10) has worked successfully to a goal.

With whatever variety the components were initially available, and

with whatever variety the designs (i.e. input values) might have varied

from the final appropriate form, the maker Q acted in relation to the

goal so as to achieve it. He therefore acted as a regulator. Thus,

the making of a machine of desired properties (in the sense of getting

it rather than one with undesired properties) is an act of regulation.

Suppose now that this machine of desired properties is the

regulator discussed throughout Part III—how is it to be made?

The answer is inescapable: by another regulator.

Is this a reductio ad absurdum of our whole position? I think

not. For the obvious question "where does it all start?" is readily

answered. As biologists, our fundamental fact (S.10/3) is that the

earth has now existed for a long time, that selection has acted

throughout this time, and that selection favours the appearance of

regulators (S.10/5). These facts alone are sufficient to account for

the presence on the earth today of many good regulators. And no

further explanation is necessary if it should be found that some of

these regulators have as goal the bringing of some mechanism to

standard form, even if the standard form is that of a regulator (with

goal, of course, distinct from that of the first). The scientist would

merely be mildly curious as to why something that could be done

directly, in one stage, is actually done indirectly, in two.

We can thus answer this section's question by saying that a regu-

lator can be selected from some general set of mechanisms (many

non-regulatory) only by being either the survivor of some process

of natural selection or by being made (another process of selection)

by another regulator.

13/23. Is not this making of the desired regulator by two stages

wasteful? That it should be arrived at in two stages suggests that

the problem of getting a regulator always has to be solved before

it can be tackled !

Again, what does this imply when the very large system to be

regulated is the social and economic world and the responsible

entity Q is some set, of sociologists perhaps, whose capacity, as a

regulator, is limited to that available to the members of the species

Homol Does this imply that no advance in regulation is possible

(for the regulator will have to be built by members of the species)?

It does not; for when regulation is achieved in stages
—when a

regulator Ri acts so as to bring into existence a regulator R2—the

capacity of R2 is not bounded by that of Rj. The possibility arises
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that R2 may be of capacity greater than Rj, so that an amplification

occurs. This possibiUty is studied in the next chapter, where we
shall see that, far from being necessarily wasteful, the method of

regulation by stages opens up some remarkable possibiUties.
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Chapter 14

AMPLIFYING REGULATION

14/1. What is an amplifier? An amplifier, in general, is a device

that, if given a little of something, will emit a lot of it. A sound-

amplifier, if given a Httle sound (into a microphone) will emit a lot

of sound. A power-amplifier, such as the one described in S. 12/21,

if given a little power (enough to move L) will emit a lot of power

(from H). And a money-amphfier would be a device that, if given

a little money, would emit a lot.

Such devices work by having available a generous reservoir of

what is to be emitted, and then using the input to act as controller

to the flow from the reservoir. Rarely an amphfier acts by directly

magnifying the input, as does the cine-projectionist's lens; but more

commonly it works by supplementation. Thus the power-amplifier
has some source that will provide power abundantly (the compressed
air at A in Fig. 12/21/1), and it is this source that provides most of

the power in the output, the input contributing httle or nothing
towards the output. Similarly, the work performed by the crane-

driver on the control-handle does nothing directly towards lifting

the main weight, for the whole of his work is expended in moving
electrical or other switch gear.

It will be seen that in the power amplifier (e.g. that of Fig. 12/21/1)

the whole process
—that of hfting a heavy weight at H, by a force at

L—goes in two stages, by two coupled systems. It is this separation

into two stages that makes power-amplification possible, for other-

wise, i.e. in one stage, the law of conservation of energy would make

any simple and direct amplification of power impossible. Stage 1

consists of the movement, by the operator, of the point L against

the friction at K and the pressure at V; over this stage energy, or

power, is conserved strictly. Stage 2 consists of the movement of

compressed air into or out of B and the lifting of P, G and H; over

this stage, also, energy is conserved; for the energy used when the

weight at // is lifted is derived from the expansion of the compressed
air. Thus the whole system can be regarded as composed of two

systems, within each of which energy is conserved strictly, and so

coupled that forces of 0, 1,2... dynes at L correspond respectively

to forces of 0, 1000, 2000, . . . dynes (or some other multiple) at H.
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14/2 AN INTRODUCTION TO CYBERNETICS

// is the division into two stages that enables a power-amplifier to

be built in spite of the law of conservation of energy, the point being
that the energy suppHed to the input in stage 1 can be supplemented
to give the output in stage 2.

Sometimes the proportionahty is important, as in the radio

amplifier. Then the machine has to be made so that the ratio

has the same value all along the scale. In other cases the exact

value of the ratio is of little importance, as in the crane, the essential

point in it being that the input values shall all be within some given
limit (that set by the strength of the crane driver's arm) and that the

output shall be supplemented generously, so that it much exceeds the

value of the input.

Ex. : Design a
"
water-amplifier ", i.e. a device that, if water is pumped into

the input at x ml/sec will emit, from its output, water at IOOj: ml/sec.

14/2. The process of amplification can thus be looked at from two

very different points of view, which are apt to lead to two very
diff'erent opinions about whether amplification does or does not

occur.

On the one side stands the theoretician—a designer of cranes,

perhaps, who must understand the inner nature of the process if he

is to make the crane effective. To him there is no real amplification :

the power emitted does not exceed the (total) power supplied. He
knows that the operator at the control is successful simply because

the operator can, as it were, rob other sources of energy (coal, oil,

etc.) to achieve his end. Had Nature not provided the coal as a

generous source of supplementation, the operator would not be able

to lift the heavy load. The operator gets "amplification" simply

by caUing in King Coal to help him. So the basic type of amplifier

is the boy who can lift big weights
—because his father is willing

to lift them for him!

All this is true; yet on the other side stands the practical man who
wants to use the thing, the man who decides what machinery to

install at the quay-side, say. If he has access to an abundant

source of cheap power, then for him "amplification" becomes very
real and practical. It means the difference between the ships being
loaded quickly and easily by movements of a control handle, or

slowly and laboriously by hand. When the load is larger, a loco-

motive for instance, the non-availability of a power-amplifier might
mean that the job could not be done at all. Thus, to the practical

man the possibility of such an apparent amplification is of great

importance.
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Obviously, both points of view are right. Designers of cranes

should be well aware that they are not really amplifiers, but the

users of them should think of them as if they were.

14/3. We can now see how we should view the question of amplify-

ing regulation. During the designing (in this chapter) we shall have

to be clearly aware that the designer is really achieving only a

supplementation, by robbing some easily available and abundant

source of it. When he comes to use it, however (a matter for the

future), he should forget the fact, and should know only that he is

now like a workman equipped with power-operated tools, able to

achieve tasks impossible to the unaided workman.

14/4. Regulation and selection. In S. 13/ 10 we started to consider

what would get the regulator (previously assumed to be given) into

actual existence, either as a formula for behaving, contained within

the organism {Q) that wants the regulation, or as a material machine

built by the organism to act for him. We saw that the quantity of

design that goes to it can be measured (by the amount of selection

necessary) and we saw (S.13/18) that selection can, in a sense, be

amplified. To make the matter clearer, let us consider more directly

the relation between regulation and selection, especially so far as

the quantities of variety or information are concerned. If the dia-

gram of immediate effects is

Designer Regulator
' C

we want to know how much variety or information the channel

between them will have to carry.

To get a regulator made, selection is essential. Here are three

examples :

The first regulator we discussed (S.11/3) led to our identifying

it as

1 2 3

pay
and this particular transformation (the regulatory) had to be selected

from the set of all transformations possible, which numbered, in this

case, 27 (cf. Ex. 7/7/8). Here the regulator is "made" by being

unambiguously specified, i.e. distinguished from the others.

In S. 13/ 12 another method was used, and a machine, which might
be a regulator, was "designed" by a particular value being selected

from the set of possible input-values.
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A third method for getting a regulator made is to assemble it in

hardware, as a mechanic makes a water bath. Again selection is

necessary: components have to be selected (distinguished) from other

possible objects, and the mode of assembling and coupling has to be

selected from the other, incorrect, modes. The quantity of selection

used can be measured ;
and any dispute about the measurement can

be resolved by the method of S.13/11 (final paragraph).

It follows from S.13/18 that if the final regulator can be arrived

at by stages (the whole selection occurring in stages) the possibility

exists that the provision of a small regulator at the first stage may
lead to the final establishment of a much bigger regulator (i.e. one of

larger capacity) so that the process shows amplification.

This is the sense in which "amplifying" regulation is to be under-

stood. The law of Requisite Variety, hke the law of Conservation

of Energy, absolutely prohibits any direct and simple magnification

but it does not prohibit supplementation.

14/5. Let us consider some examples which will actually show such

ampUfication of regulation.

Suppose the disturbances are fluctuations in the mains' voltage,

which come to an apparatus owned by Q at the rate of hundreds a

second, and threaten to disturb it. Assume that the variety per

second provided by these disturbances far exceeds his capacity as a

channel, so it is impossible for him to regulate against them by direct

personal action. However, he has available a manufacturer's

catalogue, which shows three items :

1 : Television set,

2: Mains stabihser,

3 : Frequency changer.

Assume that it is within his capacity for him to make a suitable

selection of one from three; if now he performs the appropriate

selection, the end result will be that the mains' supply to his apparatus

will become stabilised. Thus his three possible primary selections

can be put into correspondence with three outcomes, one of which

is "mains' voltage stabilised".

The latter regulation (over, say, a year) involves far more selection

than of one from three; so over the whole transaction an undoubted

amplification has occurred.

In this example the supplementation is so obvious, and his

dependence on the manufacturer's power as a designer so blatant,

that the reader may be tempted to dismiss this "amplification" as
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not worth serious consideration. (It is not, however, more blatant

than the crane-driver's dependence on a suitable power supply.)

This case, however, is only somewhat extreme (having been selected

to show one end of the scale). Other cases he further along the

scale, and are of more general interest. The principle, however,
remains unaltered.

Next consider the case in which Q wants a water bath to be restored

to a certain temperature; restorations will be required 100 times in

each day and over a whole year. This means that on 36,500

occasions the temperature must be corrected by a raising or a lower-

ing
—a one-bit selection, say. The whole Grand Disturbance

(S.13/8) thus has variety of 2-^6^0° possibilities. Q probably could

transmit this in the year, but finds it inconvenient. If then his

resources are such that he can make a thermostat at a cost of, say,

1000 bits, then by using the fact that the Grand Disturbance is

repetitive (S.13/9), the act of selecting appropriately from 1000 bits

has as consequence the correct selection from 36,500 bits. So an

amphfication of about x36 (if measured on the logarithmic scale)

has occurred.

This second example is more ordinary than the first. The fact

that its method is widely used in practice shows whether or not the

practical man thinks it worth while.

There is, of course, not necessarily any amplification; and the

practical man, before he builds a machine to do a job, always makes
at least an intuitive assessment of the balance:

Cost (in some sense) of making
the machine which will do the

job.

Cost incurred by doing it

himself.

What this chapter deals with are the actual quantities involved,
when our interest is centred on the amount of communication and
selection that is required.

Finally let us consider an example in which the possibility of

amphfication is obvious and of practical use. Suppose twenty
men are given the task of keeping two thousand rooms constant in

temperature and humidity. If some means of control exists in each

room, the twenty may yet find the task beyond their capacity if

they try to compensate for all the atmospheric variations by manipu-
lation of the controls directly. It may happen, however, that

machines are available such that if the men become mechanics and
act as regulators to the machines, the machines can be made into

air-conditioners and maintained as such. And it may further

happen that the amount of regulation that the mechanics can supply
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to the conditioners is sufficient to keep the conditioners effectively in

control of the two thousand rooms. Thus the regulation that could

not be done in one stage may, if the conditions are suitable, be

possible in two.

The quantities of communication (the channel capacities) involved

in these regulations could be measured to any desired accuracy,
and the exact degree of any amplification ascertained. Thus if

amplification had actually occurred, the reality of the fact could be

demonstrated beyond dispute.

Whence (in the last example) comes the supplementation? In

general, from whatever supplies the other inputs. In the example

just given, these include the other factors that contributed to the

machines' design and manufacture, and also the environment itself,

which communicates to the conditioner, and not to the mechanic,
what is the temperature and humidity at each moment. As a

result, these sources of information play a part in the total regulation,

without using the mechanic as a channel.

The example just given shows two levels of regulation, but there is

no reason why the number should stop at two. A doctor who
looks after the set of mechanics and keeps them healthy and able to

work might claim, so far as the rooms were concerned, to be a regu-

lator at the third level. The matter need not be pursued further

once the principle is clear, especially since many cases will probably
not show the various regulators arranged in a simple hierarchy.

14/6. Amplification in the brain. We can now understand

quantitatively why this indirect method has proved superior
—why

it is the method used by those organisms that have the most powerful
resources for regulation

—it allows amphfication.
The gene-pattern, as a store or channel for variety, has limited

capacity. Survival goes especially to those species that use the

capacity efficiently. It can be used directly or indirectly.

The direct use occurs when the gene-pattern is used directly to

specify the regulator. The regulator is made (in the embryo) and

the organism passes its life responding to each disturbance as the

gene-pattern has determined. Amplification does not occur (from
our present point of view, though some advantage is gained (S.13/9)

if the disturbances recur frequently in the organism's lifetime).

The indirect use occurs when the gene-pattern builds a regulator

(i?i) whose action is to build the main regulator (R2), especially if

this process is raised through several orders or levels. By achieving

the ultimate regulation through stages, the possibility of large-scale

supplementation occurs, and thus the possibility of an ultimate
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regulation far greater than could be achieved by the gene-pattern

directly.

A clear example of how one regulator can act so as to cause the

development of another occurred in S. 12/1 5. Part B of the homeo-
stat was built and thus became the primary regulator R^. Coupled
to Part A, it acts so as to cause A to become stable with its needles at

the centre. When this is achieved, A acts as a regulator {R2) towards

disturbances coming to it that would make the needles diverge.

Though the R2 of this particular example is extremely simple,

nothing in principle separates this case from those in which the

regulator R2 is of any degree of complexity.
The method of achieving regulation in two stages, by which the

gene-pattern makes Ri, and Ry makes R2, is the method of the

mammals, whose gene-pattern is used, in its action on the embryo
brain, to determine the development at birth of some fundamental

regulators (R^) whose action is not immediately to the organism's

advantage. From birth onwards, however, they act towards the

cerebral cortex so as to develop in it a vast regulatory mechanism

{R2) that, by the time adulthood arrives, is a much better regulator

(i.e. of larger capacity) than could have been produced by the action

of the gene-pattern directly.

Whence comes the supplementation? From random sources as

in S.12/15 and from the environment itself! For it is the environ-

ment that is forced to provide much of the determination about

how the organism shall act. Thus gene-pattern and environment

both contribute to the shaping of the fully developed adult, and in

this way the quantity of design supplied by the gene-pattern is

supplemented by design (as variety and information) coming from
the environment. Thus the adult eventually shows more regulatory

capacity than could have been determined by the gene-pattern alone.

The amplification of regulation is thus no new thing, for the higher

animals, those that adapt by learning, discovered the method long

ago.

May it not be possible that the amplification can be increased

even further? If so, is there not a possibility that we can use our

present powers of regulation to form a more highly developed

regulator, of much more than human capacity, that can regulate

the various ills that occur in society, which, in relation to us, is a

very large system?

14/7. Amplifying intelligence. This book is intended to be an

Introduction, and for twelve chapters it has kept to its purpose.
The last two chapters, however, have developed the subject somewhat
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speculatively, partly to give the reader practice in applying the earlier

methods, and partly to show what lies ahead, for the prospects are

exciting.

In S. 13/ 18 we saw that selection can be amplified. Now "problem
solving" is largely, perhaps entirely, a matter of appropriate selection.

Take, for instance, any popular book of problems and puzzles.
Almost every one can be reduced to the form: out of a certain set,

indicate one element. Thus of all possible numbers of apples
that John might have in his sack we are asked to find a certain one;
or of all possible pencil fines drawn through a given pattern of dots,

a certain one is wanted; or of all possible distributions of letters into

a given set of spaces, a certain one is wanted. It is, in fact, difficult

to think of a problem, either playful or serious, that does not ulti-

mately require an appropriate selection as necessary and sufficient

for its solution.

It is also clear that many of the tests used for measuring "intelli-

gence" are scored essentially according to the candidate's power
of appropriate selection. Thus one test shows the child a common
object and asks its name : out of all words the child must select the

proper one. Another test asks the child how it would find a ball in

a field: out of all the possible paths the child must select one of the

suitable few. Thus it is not impossible that what is commonly
referred to as "intellectual power" may be equivalent to "power of

appropriate selection". Indeed, if a talking Black Box were to show

high power of appropriate selection in such matters—so that, when

given difficult problems it persistently gave correct answers—we
could hardly deny that it was showing the behavioral equivalent of

"high intelligence".

If this is so, and as we know that power of selection can be ampli-

fied, it seems to follow that intellectual power, like physical power,
can be amplified. Let no one say that it cannot be done, for the

gene-patterns do it every time they form a brain that grows up to be

something better than the gene-pattern could have specified in detail.

What is new is that we can now do it synthetically, consciously,

deliberately.

But this book must stop ;
these are not matters for an Introduction,
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ANSWERS TO THE EXERCISES

2/4. l:No. 2: No. 3: ^, yes; 5, yes; C, no; Z), yes. 4: It must be of the

form a->a. 5: Yes; a position with a player mated can have no

transform, for no further legal move exists; if C's transformation is

closed, every position his move creates can be followed by another, so

his transformation can contain no mating moves.

2/5. 1 : Yes. 2: No; some operands, e.g. 40, end in and will transform to

0, which is not in the set of operands.

2/6. l:n' =n + 10 {n = 1,2,3). 2: a, «' = 7« (m = 1, 2, 3, understoodfor

all) ;h,n' = n^;c,n' — l/n;d,n' = 11 — n;e,n' = 1 ; f, «' = n.

-,,5 6 7^, . r^ \

^ 6 7 ,.., ,-101
3: j 2 3 4^°- "^'-^'^ ^ 25 30 35

^"^ ^ 2 2

5: Yes. 6: Yes.

2/8. 1: Many-one; both 1 and 8 are changed to 9.

2/9. 1: No Sale. 2: Maiden over.

2/10. 1: The main diagonal consists exclusively of I's, and the rest are all

zeros. 2: a: ii; b: iii; c: i. 3: a: Yes; b: No. 4: The distributions are

the same, the one being merely a reflection of the other. 6:16. 7:4.

2/11. I: A^: i
" ^

2: The same as the transformation. 3: A. 4:
' ^ a a c

n' = « + 2 (« = 1, 2, . . .). 5: n = 49n (n = 1,2,.. .).

6: I +
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c

2/17. l:(i) I {ii)f:^gp<^q. 2: It contains no arrows, just

b^- a^r- d

isolated points. 3: Each is composed solely of isolated points and/or

simple rings without branches.

4: 9^2 5^6
t I

4->0->l<-7^-8 if 4-figure logs are used

t

3

5:7,1,2,2. 6: No. 7: Yes. 9: No.

3/1. 1: Possible answers are: (a) soft-boiled egg -^ hard-boiled ; (b) log ->

ash; (c) cylinder full of vapour and air -> full of flame; (d) unicellular

ovum -> two-celled; (e) cumulus cloud -> thunder storm; (f) oestrus ->

pregnancy; (g) low price (with short supply) ^ high price; (h) cat

seeing mouse -^ cat chasing mouse; (i) nebulae close -> nebulae

dispersed.

3/4. l:n' = 2n. 2:2,4,8,16,32,64x103. 3: Graph (ii): 1000 -> 2000 ^
4000^... 4: «'= 0-8/7. 5: (i) 800, 640, 510, 410, 330 x 10^;

(ii) Zero. 6: It would run to state 3 at which it remains; 3 is the only
state it can stop at. 7 : It runs to a cycle of states 2 and 8, between which

it oscillates incessantly. 8: Four; two with a state of equilibrium and

two with a cycle. 9: «' = 0-9/; + 1,000,000. 10: 20, 19, 181, 17-3,

X 106. 11: 10,000,000. 12: If / is its length, its change of length over

one interval of time is /'
—

/; so /'
— / = 1 -2, and the transformation is

/' = /+l-2. 13: The increase in number (not the next number)
is n' — n; so n' — n = 10"8//(108

—
n), and the transformation is

n' = n + 10-8/2(108
-

/;). 14: 19, 34, 57, 81, 97 x lO^.

. , {ABC) (BCA) {CAB)
*• ^

{BCA) {CAB) {ABC)
2: {ABC)

/ \
{CAB) <- {BCA)

3: (1,-1), (1,1), (-1,1), (-1,-1). 4: A cycle of four elements.

5: (2,3,5), (3,5,8), (5,8,13).

3/6. 1: (i,2), (2,-i), (-i,-2), (-2,1), (i,2), etc. 2: (1,2,0,2,2,).

3:(2,1,0,2,2,) :^ (1,2,0,2,2,). 4: Further cycles of two elements each,

and not connected, would be added. 5: (8,
—

3,1). 6: (8,4) transforms

to (6,6), at which the system remains. 7: If the operand is {a,b),

a' = ^a + ^b, b' = ia + ib. 8: (30,34) -> (28,36) -> (24,40) -^ (16,48)

-^ (0,64) -^ ? What happens next cannot be decided until the per-

missibility of borrowing is decided. 9:a' = ^{3a
—

b), b' = i(36
—

a).

10: Whoever started with most money. 11: m' = m —
n, n' = 2n.

12: The vector {m,n). 13: (150,10) -> (140,20) ->...-> (0,160), after

which the algebraic events no longer parallel the zoological . 14 : .v = 1 0,

0, -5, -5, -2i, 0, U, U, I; no. 15: It is heavily damped. 16: If

wages are represented by x, and the price index by ;', then the first

statement says that x' — x = y — 100, and the second says that

y' = x; so the transformation is x' = x + y — \00, y' = x.

17: (110,1 10) -> (120,1 10) -> (130,120) ^...->(1540,990). 18: No, the

system is caught in a "vicious spiral". 19: (110,110) ^ (110,100)
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-^. ..-> (100^6,100^). 20: Each is converging to 100. 21: One

system is stable; the other shows self-aggravating inflation. 22:

(80,120) -^(100,80) -^(90,1 10) ->...^(99f,100i). 24: Yes. 25:3.

dix d2.x dx , „
3/^- ^=^-;^-2^^ + ^" = ^-

2: dxidt = y, dyjdt = — ax.

^ dx dy y 2

^'-jt=>'dt=^^-''%-Mr+y'y
4/1. 1: Three. 2: Yes. 3: Under i?i it goes c -^ <3^^Z>; then under /?2 it

goes 6 -> fl -> Z); so it is at 6. 4: (i) Ri and then Rj would do; (ii) Ru
Ri, Rz would do. 5: It would become x' = 4, y' = 4 — y; notice that

the equation of the first line, belonging to x, is made actually untrue;

the fixing forces the machine to behave differently. 6: Within each

column the states must be the same.

4/2. l:{i)g' = 2g-2h,h' = 2g - 2h;(n) g' = g - h, h' = 2g;(iii)g' =0,
h' = 2g + 2h. 2: (i) ft' =j, r = e"; (ii) h' = log (2 + sin h),

j'
= \ + siny. 3: (i) 0; (ii) 2; (iii) alternately 1 and 2; (iv) a = 1 for

90 steps and then a = 10. 5: PF=10; yes, approximately. 6:

n' = n + fl2. 7: Yes; each jump is n' — n, and this measures 3a.

4/3. l:ab=00 01 10 11 20 21

s' = s s t -s -s+2t
t' = t 2t t-\ 2t t-2 2t

2: 3. 3: fl = 9/8, b = 1/8. 4: a - 9/10, b = -
1/10. 5: Four

(fli
= 0, l,2or4).

4/4. 1: Putting a and b always equal, i.e. making the transducer effectively

p' =a(p + q), q'
= a(p + q).

4/5. 1: The graph must consist of a single chain that passes through all

states. 2: The sequence (8,4), (6,6).

4/7. 1 and 2: (omitting brackets) four basins:

ai :^ bk dj -> bi^ ak bj -> ci :^ dk

aj
—^ di '^ ck

t

cj

3:ai-^ck-^di->bk->ci^dk:^bi. 4: Yes. 5: «i«2. 6: n^

7: Each part in succession goes to state 0. 8: The change

. . . 0,0,1,2,0,0, . . . occurs in each part in turn, somewhat as an impulse

passes along a nerve.

4/8. 1: ce

I

ae -> df:^ bf

\ 3: In Z put all the values of jS

af-^ cf<- be <- de the same.

4/9. 1: p,q; r,s,t,u. 2: (1,0,1,0,0).

4/11. 1: Between six pairs, such as AB, there are 6; around four triples, such

as ABC, taken in either direction, there are 8; and around all four

iABCD, ABDC, ACBD, ACDB, ADBC, ADCB), there are 6. 2:

x' = y + 22, y' = 2z, z' = X — z. 3: Yes; the other transformation is

x' = y + z, y' = 2z, z' = X - 1. 4: Yes.
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4/12. 1: (with boxes omitted for simplicity) : (i) >" ^- x; y dominates x;

(ii) V a system with feedback;

/\
X -^ z

(iii)M^A: v:^:^;'; the "whole" actually consists of two unconnected

parts; (iv) ii -^ x -^ y -^ z; a chain of action;

u

/
(v) V -> x\ \ dominates all the other three;'

\
z

u

\
(vi) X -^ z; z is dominated by the other three. 2: When y is zero.

/
y

4/13. 1 : z dominates x, y is independent of both.

4/14. 1 : (iii) only.

4/15. 1 : If the variables are S = Singing, L = Laughter, X = Organ-

playing, Y = Incense-burning, and each take the values or 1 for

inactive or active respectively, then the machine with input is soon

found to be

;



5/7 ANSWERS TO THE EXERCISES

5/7. 1 : A possible set of transformations is:

I
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6/11. 1: Think of .y as the price of butter and y as the price of sugar; their

difference now is .v — v; tomorrow's difference is (x — y)'; and this is

the same as tomorrow's price of butter less tomorrow's price of sugar,
x' - y'.

6/12. 1: It is if the one-one transformation is regarded as simply an extreme

case of the many-one.

6/13. 1: Even -|- Even = Even, E+0 = 0,0 + E=0, + 0=E.
2: (Let "x + >" mean "merge x and .v"). The systems are: (i) a + b,

(ii) c + d, (ill) a + b and c + d, (iv) b + c -\- d, {v) a -\- b -\- c -\- d, and

(vi) (ex officio) the original system with none merged. 3: The states

(a-,.v') and (— x,.v) can be merged, for the change of x's sign does not

alter the next state {x',y'); thus, to be told only that the present state is

( ±4,-2), without specification of x's sign, is still sufficient to show that

the next state must be the single one of (+2,-1-14).

6/16. 1: System and model would be indistinguishable. 2: It persists, so

does the brain; they are isomorphic at the lowest level. 3: (i) a,b+c+d
is isomorphic with p,q+r; (ii) a+b+c+d is isomorphic withp + q + r.

7/6. 1: 26 X 26 X 26, which is 17,576. 2: 16. 3: 11. 4: 2 x 2 x 2 . . .

ten times, i.e. 1024. 5: S'^ must be not less than 2 x 10^ so, taking

logs to any convenient base (10 will do):

xlogS > log 2 + 9 log 10

.-. X > (log 2 + 9 log 10)/Iog 5

> 13-3;

so at least 14 such tests would be necessary. 6: (i) 27, (ii) 21. 7: 27.

8: 33 = 27 and 3^ = 81
; so, to select one from 52, four indications would

be necessary. 9: None, the father's group can only be O.

7/7. 1: One bit. 2: (i) 2-32 bits, (ii) 30-9 bits. 3: 4-7 bits. 4:5x4-7 =
23-5 bits. 5: (i) 1 bit, (ii) 20 bits. 6: 220, i.e. 1,048576. 7: The re-

placement of each question mark has variety of log26 bits, so the whole
has variety of 6 log2 6 bits, i.e. 15-5 bits. 8: n \0g2n bits. 9: 12000

bits. 10: A page of 5000 words would carry about 50,000 bits—more
than the record. 11: Other things being equal the varieties must be

equal. 12: That of "all possible pamphlets that are printed in Enghsh
and that take ten minutes in the reading". The variety belongs not to

the pamphlet but to this set. 13: Certainly; it has only to be distinct

from the other possibilities.

7/12. 1: No, for all combinations of past marital state and present marital

state are included. 2: Yes; four possibilities are missing.

7/13. 1: Three, so far as the quantities mentioned are concerned. 2: Yes,
if the hands are accurately set; thus the hour-hand being midway
between two numbers implies that the minute-hand is at the "half-past".
3: One; for the information given by the minute hand is implied by that

given by the hour-hand. 4: The chameleon's have four; Man has a

little more than two, for his eyes can move with slight independence.
5: Two. 6: One, for its variety cannot exceed that of a; it would still

be 1 however many components the vector had. 7: Before the graph
is given, y might, for given x, have any value over >''s range; but after

the graph is drawn /s value, for given x, is limited to some one value.

8: Six.
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7/15. 1 : It says that of all the possible rational numbers (infinite in number),
the combining proportions will always be found in a small subset

(numbering perhaps a few dozen). 2: Of all geometrically possible

trajectories, and all possible heat changes, etc., it allows only a few.

7/19. 1 : Of the transitions (e.g.) a -> o, a-^ b,a->c, etc. all are excluded but

one, for the transition from a must be single-valued; similarly from b, etc.

7/20. 1:8. 2: 17. 3: 12. 4: (i) 1,048,576; (ii) 21,892.

7/22. 2: The parasites'; evidently some hosts are food to more than one

species of parasite. 3: Fis many-one, and causes a fall. 4: As lacking

in discrimination. 5: (i) 6 states, (ii) 2 states. "The bath is out of

order". 6: The chance that a particular state Si will be the transform

of a particular state Sj is l/«. The chance that Sj will not be the trans-

form of Sj is 1
—

1//7. The chance that Si will not be the transform

of Sk will also be 1 — 1///. So the chance that St will not be the

transform of any state is (1
—

l/«)". This gives the fraction of the

operands that disappear after the transformation. As n tends to in-

finity it tends to l/e. So the fraction that remains, to give the variety,

is 1 - lie.

7/24. 1: 3 states, = 1-58 bits. 2: By another 1-58 bits. 3: "a and 6"

becomes, in succession, 5a, 5a + 1, lOa -1- 14, \0a -f Z> -t- 14. If 14

is subtracted, 10a -1- 6 is left. Thus the hundred combinations of a

and b (if and is allowed) is transformed one-one, after subtraction

of 14, to the hundred numbers from to 99. The variety is 100 states

or 6-64 bits. 4: All the two-number combinations that are suggested

on such occasions. 5: Zero. 6: 2 states, 1 bit; either various circuits

or one circuit at various times. 7: No. They may be going together

round the same cycle. Distinguish between (i) equality of state between

machine and machine considered at one instant, and (ii) equality of

state between time and time considered in one machine.

8/3. 1 : By no more than one cut can do.

8/4. 1: Yes; "taking the antilog". 2: No; the same value for x' is given

by many values of x. 3: The identical transformation. 4: n' = n — 1.

5: x' = X - V, y' = - x + ly. 6: 3 loga 26 bits, i.e. 14-1 bits. 7:

263=17576. 8: log2 8 -|- logz 7, i.e. 5-8 bits. 9: Not quite: the

variety would be 5-7 bits, which is insufficient (loga 52 < log2 56).

10: 1 bit; the messages are "courting" and "not-courting", and there

are two of them. The complexities of molecule and ritual are irrelevant

here.

8/5. \\ AACBD DBCBCCB. 2: acdbdcd. 3: b d c d b a d. 4:

Yes. 5:10,8,7,10,11,9,8. 6:10,8,4,3,-1,-1,3,0,1,1,-1,...
7: X = 2, 1, 2, -11, 11, -2, 16, . . . and y = I, 4, -11, 13, -24,

-13, -93, 8: X = exp (-4/ - sin /)• 9: x = K^ ' + te-^

—cos /). 10: X chases a, and follows it closer and closer.

8/6. 1: No; in the table of transformations there must be'108 rows, so each

column must have 108 elements; as only 100 are available, there must

be repetitions. 2: (i) 7, (ii) 512. 3: Fitting some device such as a

speedometer or tachometer that emits a number proportional to the

time-derivative. 4: No; for if the output is steady at zero (as will

happen if it is started at zero) a's values cannot be deduced from x's

transitions, which are -> for all a.
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8/7. 1: It does not maintain all distinctions; a perfect inverter is fundamen-

tally impossible with it.

R R R
S S S
(will not occur)
S S S
R R R
(will not occur)

Q Q Q
(will not occur)

Q Q Q
R R
S S

immediate effects m -> x -> .v, with y
X may be of the form

2: (h,B)

(h,C)

(b,D)

ic,A)

(c,B)

(c,C)

(c,D)

UhA)
{d,B)

id,C)

id,D)

3: It must have diagram of

emitting »'s values two steps later.

R
S

\
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simply not there. 5: The inverter requires speedometers to give .vi

and X2 as outputs. Then any machine that forms the functions

JriA-2
—

A-2
—

-Vl
—

.^1 + Jf2->^2 + XlX2

xi(xh - 1) xh- I

will emit the original input. If an actual transformation is required,
then (the functions of iri, etc. above being represented by A\ and Ai)
the transformation a'l = k{A\ — a\), a'z — k{A2 ~ az) will give the

required behaviour as closely as is desired if k is made positive and

large enough (Ex. 8/5/10). 6: —2 has no particular relation to (7,3),

whereas 4 has, as the construction of the table showed.

8/11. 1: / has 3 states; u has 2. 2: / has 3 states; u cannot have more than 6;

II actually has 5. 3: Thas 2 states; so has U. 4: 3 states. They are

(0,0,0,0), (0,0,1,0) and (0,1,0,1).

8/13. 1 : One bit per step, for r has two states only. 2 : The numbers of distinct

states occupied, at successive states, were: Q: 9,4,3,3,3; R: 1,2,2,2,2;

S: 1,1,2,3,5. 3: Because the jump from 1 to 4 would have implied a

gain in variety of 3, whereas R can supply only 2 at most.

8/14. 2: The number of balancings cannot, whatever the method, be fewer

than three. For the variety to be transmitted is log2 27 bits, and the

transmitter can carry only logi 3 bits per step.

8/15. 1: Four; the variety from A takes longest. 2: Four steps; (the answer

rtuist be the same as to Ex. 1, for the two questions are really identical).

3: Three; that from y takes longest. 4: Two steps.

8/17. 1: A was at (3,2). (Hint: A" was at (-1,0) and B" was at (1,0).)

2: Yes; the output enables the sequence of input-vectors to be deduced,
of which the sequence of first components is the a-message. 3: No;
y's movement is simply A's with half the amplitude. 4: If the letters

a, b, etc. indicate the respective movements o{ A, B, etc., to right and
left from suitable zeros, with common scale, then / = ^(a

—
h),

n = i(a + b), y = \(l + «), and z = i(
—

/ + n), from which / and n

are readily eliminated. "Decoding" corresponds to solving these

simultaneous equations for a and b, the unknowns, in terms of j and z,

the knowns.

9/2. 1: The transformation so obtained is determinate; how it was obtained

is irrelevant. 2 : Since each state must go to some state, the probabilities,

and the numbers in each column, must add up to 1. 3: No. 4: 2'",

i.e. 1024. 5: More than one arrow may leave each point.

9/4. 1 : The actual transition frequencies are

\ A B

'a 6 17

B 17 10

As each column's probabilities must add to 1, the first column must be

divided by 23 and the second by 27. The estimated probabilities are

thus

±
A
B

A B

\
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9/5. 1: Once under a pebble it would stay there. 2: B must be the paper
(where the fly sticks), and D the stove (where it never stops). 3: From
protocol to matrix; the protocol gives a unique matrix, but the matrix
can give only a set of protocols. Or, if the matrix is lost it can
be restored from the protocol, but a lost protocol cannot be restored

from the matrix.

9/6. 1: (100,0,0), (25,75,0), (62,19,19), (32,61,7), etc., if taken to the nearest

unit. 3: Face 3 tends to come up, face 4 is tending to go down; there-

fore X = 4. 4: Consider 100 molecules, and let x of the 100 /4's be
dissociated. Ignore the 5's. Each A has two possible states, dissociated

or not, and in each interval of time has the probabilities of staying in its

state or changing:

j Dissociated Not Dissociated

Dissociated

Not Dissociated

0999 0-01

0001 0-99

5: If X and y are the numbers dissociated and not, respectively, then for

equilibrium:
X = 0-999X + OOlj

100 = X + y;

Therefore, x = 90it. 7: Each insect can be only in one of 3; if there

are n insects, the number of distinct populations is \{n +2)(« + 1).

9/7. 1: i
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9/19. 1: (i) [ 4 () 7
<") 1 2 1 5

2: Only if the combinations of « and /? are restricted to some three of

the four possible.

9/20. 1 : A distortion, for a second inversion will restore the original without

loss. 2: A distortion if each tension evokes a distinct frequency.

3: A corruption, for various tensions evoke the same (zero) output.

9/21. 1 : /fi is log29. H2 is found from:

Symbol received: 123456789
ProbabiUty: I I I i i i i i

and is 2-948 ;
so the equivocation is 0-222 bits per symbol. 2: Equivo-

cation = 0; yes, the new messages are transmitted unambiguously.

4: 0-00299. 5: The table of events and probabilities is :

Actual cell :
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11/11. 1 : Yes. D has a variety of 10 bits/sec, the optic nerve can transmit 200
times this. 2: The capacity available for regulation is 0-63 bits/sec

by telegraph and 5-64 bits/sec by the wheel. So evidently D does not

usually emit more than 6-3 bits/sec. 3: No, it is grossly insufficient.

D provides lO"? bits in each day, and the variety transmitted to the general
is at most one-seventeenth of this. 4: No, he can emit only 3-6 x 105

bits/day.

11/14. 1: \



12/10 ANSWERS TO THE EXERCISES

12/10. 1: A possible matrix is :

12/14.

12/17.

12/21.

13/15.

13/17.

i 1
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1

5: 1-4 bits; more accurately it is (1 +-j- + . . .) log2 c. 6: Examina-

tion of the kth card in a pack of n gives information, or has entropy,

1 1 n— k n — k~
n- k + I

'°^
« - A; + 1

~
n- k + I

^^ n- k + I

if the drawing occurs. If success has occurred earUer the entropy is 0.

These two events (and their entropies) have probabilities (n
— k + 1)1it

and {k — l)/n. So the weighted average entropy is

1 / 1 n - k \
log 1——. + (n-k) log 1——:

n \ n — k + I n — k + 1/

which is
-[(/?

- k + l)log(n - k + I) -(n -
k) log {n

-
Ar)|.

7: At each drawing the entropy is the same—that of the probabilities

1 //
-

1— and , and the average information
n n

-(« log n - {n
-

1) log {n
—

1)).

14/1. 1: An adequate supplementary input of water is, of course, necessary.

The output comes from this, through a tap, which is controlled by the

input. A possible method is to use piston or bellows so that the pressure
set up when 0, 1 or 2 ml/sec are forced through a narrow orifice will

move the tap to the appropriate position.
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Absolute system, 41, 89

Absorbing state, 229

Aerofoil, 94

Air-conditioner, 200

Altitude, 222

Amino-acid, 111, 197

Ammonia, 110

Amphioxus, 3

Amplifier, of power, 238
— of regulation, 265
— of intelligence, 271

Andersen, H., 119

Aphasia, 86

Argon, 64

Arrow, 130

Ashby, W. Ross, 273

Association, 133

Asterisk, vi

Atom, 261

Auspices, 259

Autocatalysis, 71, 196

Automatic pilot, 199, 200

Avalanche, 71

Averages, 91

Bacteria, 29, 30, 125, 183

Balancing, 156

Basin, 23
— as selector, 260

Battle of Life, 241

Behaviour, line of, 25
—

, change of, 43

Behaviourism, 1

Bellman, R., 73, 273

Beverage, 123

Bicycle, 199

Binary digit, 126

Bit, 126

Black Box, 86, 255

Blood count, 190

Blood group, 125

Bomb-sight, 86

Boom and slump, 109

19

Borrowed knowledge, 90

Bourbaki, N., 97, 113, 158, 273

Boyle's law, 45

Braille, 185

Breeding, 70

Brewing, 112

Bridge, 258

Brownian movement, 78, 186

Buses, aggregation, 81

Button and string, 22, 100

Cannon, W. B., 195, 273

Canonical representation, 29, 36

, deduction of, 90

Capacity, 179

Car, 215, 257—
skidding, 203

Carbon dioxide, 81, 237

Card, identifying, 125—
cutting, 141

Cash register, 1 5

Casting, 26

Cat, 122, 197

Causalgia, 82

Chain, Markov, 165

Chair, 131

Chameleon, 130

Change of state, 9— of input, 43

Channel, 130, 154—
capacity, 179

Chaos, 131

Chasing, 145

Chess, 12, 241

Clock, 25

Closure, 11, 28, 76, 108

Cloud, 30

Codmg, 140, 243—
, alphabetic, 11— in brain, 140

Coenetic variable, 212

Coffee, 123, 137

Coin, 156, 232
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Cold, 238

Commander, 211

Communication, 123

Complex system, 4

Component, 31

Composition, 21

Compound, 216, 217

Computer, 96, 1 16

Conditioned reflex, 133

Cone, 73

Confidence, 163

Confluence, 134

Conjuring, 114, 125, 137

Connexion, 65
—

, deducing, 92

Conservation of energy, 131, 265

Constant, 215

Constraint, 100, 127, 173, 247

Continuity, 9, 28
— as constraint, 133

Control, 193, 213

flow chart, 57
— by error, 219
—

panel, 88

Convergence, 134

Cooling, 26, 137

Correction, 211

Corruption, 186

Cough, 247

Counterfeit coin, 156

Coupling, 48
—

, random, 63
— and equiUbrium, 82
— Markovian machines, 227

Crane, 240

Cricket, 15

Criterion, 257

Cube, 73

Culture medium, 29, 30

Cutting pack, 141

Cybernetics defined, 1

Cycle, 75

Darlington, C. D., 193

Death, 197

Decay of variety, 136

De-coding, 141

Definition, vii

Degeneracy, 46

Degree of confidence, 1 63

Degrees of freedom, 129

Delay, 156

Delayer, 148

Derivative, 1 16

Design, 251

Design for a Brain, v, 41, 52, 79, 84,

116, 143, 196, 262, 273

Determinacy, search for, 91— in Bridge, 259

Determinate machine, 24, 225

Diagonal, 16

Diagram of immediate eff'ects, 57

, deduction of, 92

Diagram of ultimate eff'ects, 57

Dichotomy, 261

Dictator, 213

Die, 169

Difference, 9

Differential equation, 35, 96— —
, stability theory, 113

Discrete change, 9, 28

Discrimination, 103

Displacement, 77

Dissociation, 169

Distinction, 103

Distortion, 188

Disturbance, 77, 198—
, repetitive, 247

Divergence, 134

Dominance, 53

Door, 86

Duel, 201

Duration of selection, 260

Earth, constraints on, 131—
, age of, 196—
, reducibility on, 262

Economic system, 37

Effect, immediate, 56
—

, ultimate, 57

Effector, 220

Elastic, 112

Electro-mechanical analogy, 96

Element, 122, 191

Elimination, 18

Embody, 29

Emergent property, 110

Energy, 3, 131, 240, 265

English, 170

Entropy (of communication theory),

174, 207

Entropy (of thermodynamics), 112

136, 177

Environment, 271
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Epistemology, 87

Equality of vectors, 31

Equations, differential, 35—
, unsolvable, 37

Equilibrium, 74—
, stable, 77—
, unstable, 78—
, neutral, 78— and coupling, 82— in Markov chain, 167, 229—
, absent, 258

Equivocation, 189

Error, 190, 219
Essential variables, 197

Ethyl acetate, 71

Even and odd, 104

Everyman, 122

Evolution, 196

Exercises, vi

Experience, law of, 137

Experimentation, 89

Exponential growth, 70—
series, 173

Expression, 30

Eyes, 130

Factor, 5

Feedback, 51, 53, 237— and stability, 80— and variety, 1 57

Felis, ni
Fencer, 201

Fermentation, 125, 183

Fibonacci, 19

Fisher, Sir Ronald, 5, 245, 259— and F. Yates, 234, 273

Fluxion, 74

Fly-paper, 167, 229

Flying Saucer, 87

Form, 31

Fourier analysis, 47

Frequency, 47, 163

Gale warning, 140

Galileo, 121

Game, 202, 240
Gas law, 45, 62

Gene-pattern, 62, 198, 270

General, 211

Geometry, 2

Ghosts, 60

Goal, 81, 219, 230

Goldman, S., 110,273
Golfer, 231

Grand Disturbance, 249— Response, 249

Granit, R., 82, 273

Graph, 94—
, kinematic, 22

— as constraint, 130

Guest, 204

Gunpowder, 70

Half-truth, 104

Haunted house, 60

Heart, 252

History of system, 115, 170

Hitler, A., 213

Homeostasis, 81, 196

Homeostat, 83, 233, 260, 271

Homo, 198, 252

Homomorphism, 103

Hot or cold ?, 235

House lights, 125

Humours, 191

Hunt and stick, 230

Hunter, 200

Hunting, 236

Hydrogen chloride, 110—
iodide, 122

Identity, 15

Immediate effect, 56

, diagram, 57

Inaccessible, 92

Incense, 60

Incessant transmission, 161

Incomplete observation, 113

Incubator, 236

Independence in behaviour, 58— in variety, 128

Infinitesimal, 9

Information, 123, 245— theory, 3—
, gain of, 178

Initial state as noise, 217

Input, 44, 87
— and design, 254

Insect, 165

Insolubility, 69

Instinct, 26

Instrumentation, 143

Insulator, 93

Integration, 37, 173
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Intelligence, 82, 271

Interference, 158

Invariant, 73, 121, 130,215

Inverse, 142

Inversion, 145

Inverter, 147

lonisation, 122

I.Q., 272

Isomorphism, 92, 97

Iterated systems, 262

Joining, 48
— and equilibrium, 82

Jump, 9, 28

Key, 142

Kinematic graph, 22

Lactose, 125

Laplace transform, 145

Large system : see Very
Lashley, K. S., 62, 273

Lattice, 107

Laughter, 60

Law of Nature, 130
— of Experience, 137— of Requisite Variety, 206

Learning, 92, 133, 271

Lethal, 197

Lewin, K., 113,273

Lights, house, 125—
, traffic, 127

Limit, 197
— of regulation, 211

Line, transformation of, 20— of behaviour, 25

Linear system, 36

Localisation, 68, 112

Locomotive, 80

Logarithm to new base, 126

Lumbricus, 252

Machine, theory of, 1—
, determinate, 24

— with input, 44
— seeing itself, 55—

,
test for, 90— as constraint, 132— set of states, 135—

, Markovian, 225— as regulator, 251— as selector, 259

MacKay, D. M., 252, 273

Magnetic tape, 116

Maiden over, 15

Main diagonal, 16

Manipulation, 92

Manoeuvre, 211

Many-one, 15

Map, 94

Markov chain, 91, 166

Markovian machine, 225

Massless spring, 2

Materiality, 60

Mathematical physics, 2, 27, 96

Matrix, 15
— transition probabilities, 163
—

, pay-off, 241

Matter, laws of, 60

Maze, 86, 114, 134,228

Meaning, 143

Mechanism, 24

Mega-pick, 261

Memory, 115, 170

Message, 123

Mine, 92

Mode, 101

Model, 96, lOS

Momentum, 40

Monitoring, 180

Morgenstem, O., 241, 273

Motor channel, 220

Mouse, 197

Multiplication, 104
—

, mental, 180

Myelin, 221

Natural selection, 196

Nature, law of, 1 30

Neighbourhood, 77

Negative feedback, 80

Network, 66, 93, 160, 252

Neumann, J. von, 62, 241, 273

Neurons, 252
—

,
number of, 62

—
, circuit of, 82, 137

Neutral equilibrium, 78

Nitrogen, 64

Noise, 186, 216
—

,
correction of, 211

Noises, ghostly, 60

Non-determinate, 161

Normal co-ordinates, 101

Notation, 13, 20, 33
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Object, 131

Observation, incomplete, 113

Odd and even, 104

Omen, 259

One-one, 14

Operand, 10

Operator, 10
— of clock, 25

Organ-playing, 60

Oscillation, 168

Oscillator, 36

Outcome, 203

Output, 46, 88

Ovum, 3

Oxygen, 222

Oyster, 69

Pantagruel, 129

Parameter, 43

Parry, 201, 241

Part, 100, 112
— and equilibrium, 82

Part-function, 66

Pattern, 30, 94

Pavlov, I. P., 133, 273

Pay-off matrix, 241

Pendulum, 34, 39, 121

—
,
feedback within, 54

Permanence, 193

Persistence, 108, 193

Personality Test, 125

Petrol, 81

pH, 237

Phase space, 37

Photograph, 94

Physiological limits, 197

Physiology, 193

77,259

Pilot, 211
—

, automatic, 199, 200

Playfair, 141

Pneumatic amplifier, 238

Pneumonia, 26

Poincare, H., 113

Point, representative, 22

Pool, 165

Population, 29, 30, 167

Position, 31

Positive feedback, 81

Posture, 30

Power amplifier, 238

Power of transformation, 16, 170

Predator, 241

Prediction, 132

Pre-fabrication, 268

Pressure, 45

Prey, 241

Prices, 34

Prisoner, 123, 124

Probability, 122— as variable, 40
—

, constant, 162

Problem-solving, 272

Product, 21

Programming, 252

Properties, breeding, 70

Protocol, 88
—

, constraint in, 132

Protoplasm, 68

Provider, 201

Psychology, topological, 113

Puzzle, 272

Radio designing, 253

Rana, 252

Random, 63, 259
— numbers, 234— searching, 236, 258

Rayleigh, Lord, 64

Receptor, 220
Red corpuscles, 222

Reducibility, 60
— and selection, 261

Redundancy, 130, 182
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Regulation, 193
—

, limit of, 211
—

, automatic, 251
—

, amplifying, 265

Reinforcement, 133

Re-labelling, 97

Relay, 84, 93

Repetition, 89, 121, 247

Replicates, 136

Representation, canonical, 29

Representative point, 22

Requisite Variety, law of, 206, 245

Reservoir, 238

Residues, 35

Resistances, 256

Respiratory centre, 81
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Rods, 160
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Searching, 236, 258

Secrecy system, 141, 243, 273
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, quantity of, 255— by machine, 259
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— and machine, 135
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Speech, 127
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Stamp, 256
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—
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—
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—
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—
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—
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—
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—
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Tinbergen, N., 26, 273
Tinder Box, 119

Topology, 85. 113
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Train, 80

Trajectory, 25, 94— of Markovian machine, 229
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Unsolvable equations, 37
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Variable, 31, 100— in system, 40—
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—
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constraint, 128—
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, variety in, 249
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, regulating the, 244
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, regulation by, 233, 260
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Water-bath, 135, 198, 249
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Whole, 112
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Wholeness, degree of, 68
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Work amplifier, 240
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—

entropy, message of, 211
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