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ADVERTISEMENT.

None but those who are just entering upon

the study of Mathematics need to be informed

of the high character of Euler's Algebra. It

has been allowed to hold the very first place

among elementary works upon this subject.

The autlsor was a man of genius. He did not, like

most writers, compile from others. He wrote

from his own reflections. He simplified and im-

proved what was known, and added much that

was new. He is particularly distinguished for tlie

clearness and comprehensiveness of his views.

He seems to have the subject of which he treats

present to his mind in all its relations and

bearings before he begins to write. The parts

of it are arranged in the most admirable order.

Each step is introduced by the preceding, and

leads to that which follows, and the whole taken

together constitutes an entire and connected

piece, like a highly wrought story.
This author is remarkable also for his illus-

trations. He teaches by instances. He presents
one example after another, each evident by
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itself, and each throwing some new light npon
the subject, till the reader begins to anticipate
for himself the truth to be inculcated.

Some opinion may be formed of the adapta-
tion of this treatise to learners, from the cir-

cumstances under which it was composed. It

was undertaken after the author became blind,

and was dictated to a young man entirely with-

out education, who by this means became an

expert algebraist, and was able to render the

author important services as an amanuensis.

It was written originally in German. It has

since been translated into Russian, French, and

English, with notes and additions.

The entire work, consists of two volumes

octavo, and contains many things intended for

the professed matlicmatician, rather than the

general student. It was thought that a selec-

tion of such parts as would form an easy intro-

duction to the science would be well received,

and tend to promote a taste for analysis among
the higher class of students, and to raise the

character of mathematical learning.

Notwithstanding the high estimation in which

this work has been held, it is scarcely to be met

with in the country, and is very little known in

England. On the continent of Europe this

author is the constant theme of eulogy. His

writings have the character of classics. They
are regarded at the same time as the most
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profound and the most perspicuous, and as

affording the finest models of analysis. They
furnish the germs of the most approved ele-

mentary works on the different branches of this

science. The constant reply of one of the first

mathematicians* of France to those who con-

sulted him upon the best method of studying
mathematics was,

"
study Euler.^^ " It is need-

less," said he,
' to accumulate books ;

true

lovers of mathematics will always read Euler
;

because in his writings every thing is clear,

distinct, and correct
; because they swarm with

excellent examples ;
and because it is always

necessary to have recourse to the fountain

head."

The selections here offered are from the first

English edition. A few errors have been cor-

rected and a few alterations made in the

phraseology. In the original no questions were

left to be performed by the learner. A collec-

tion was made by the English translator and

subjoined at the end with references to the

sections to whicli they relate. These have been

mostly retained, and some new ones have been

added.

Although this work is intended particularly

for the algebraical student, it will be found to

contain a clear and full explanation of the fun-

damental principles of arithmetic ; vulgar frac-

•
Lagrange.
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tions, the doctrine of roots and powers, of the

different kinds of proportion and progression,
are treated in a manner, that can hardly fail to

interest the learner and make him acquainted
T\ ith the reason of those rules which he has so

frequent occasion to apply.

A more extended work on Algebra formed

after the same model is now in the press and will

soon be published, This will be followed by
other treatises upon the diflPerent branches of

pure mathematics.
JOHN FARRAR,

Professor of :Mathematics and Natural Philosophy in the

§ UniTersity at Cambridge.

Cambridge^ February, 1818.
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INTRODUCTION

ELEMENTS OF ALGEBRA.

SECTION I.

OF THE DIFFERENT METHODS OF CALCULATING SIMPLE QUANTITIES.

CHAPTER I.

OJ Mathematics in generaU

ARTICIE I.

Whatever is capable of increase, or diminution, is called

magnitude or quantity.

A sum of money therefore is a quantity, since we may in-

crease it and diminish it. It is the same with a weight, and

other things of this nature.

2. From this definition, it is evident, that the different kinds

of magnitude must be so many as to render it difficult even to

enumerate them : and this is tlie origin of tlie different branches

of the Mathematics, each being employed on a particular kind

of magnitude. Mathematics, in general, is the science of quan-

tity ; or the science whicli investigates the means of measuring

quantity.

3. Now we cannot measure or determine any quantity,

except by considering some other quantity of the same kind

as known, and pointing out their mutual relation. If it were

proposed, for example, to determine the quantity of a sum of

money, we should take some known piece of money (as a louis,

a crown, a ducat, or some other coin,) and shew how many of

I
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these pieces are contained in the given sum. In the same man-

ner, if it were proposed to determine the quantity of a weight,

w^e should take a certain known weight ;
for example, a pound,

an ounce, &c. and then shew how many times one of these

weights is contained in that which we are endeavouring to

ascertain. If we wished to measure any length or extension,

•we should make use of some known length, such as a foot.

4. So that the determination, or the measure of magnitude of

all kinds, is reduced to this : fix at pleasure upon any one known

magnitude of the same species with that which is to be deter-

mined, and consider it as the measure or unit ; then, determine

the proportion of the proposed magnitude to this known mea-

sure. This proportion is always expressed by numbers; so

that a number is nothing but the proportion of one magnitude
to another arbitrarily assumed as the unit.

5. From this it appears, that all magnitudes may be expressed

by numbers ; and that the foundation of all the mathematical

sciences must be laid in a complete treatise on the science of

numbers, and in an accurate examination of the different pos-

sible methods of calculation.

This fundamental part of mathematics is called Analysis, or

Algebra, [l.p
6. In Algebra then we consider only numbers which repre-

sent quantities, without regarding the different kinds of quantity.

These are the subjects of other branches of the mathematics.

7. Arithmetic treats of numbers in particular, and is the

science of numbers properly so called ; but this science extends

only to certain methods of calculation which occur in common

practice ; Algebra, on the contrary, comprehends in general

all the cases which can exist in the doctrine, and calculation of

numbers.

* The numbers thus included in crotchets refer to notes at the

end of this introduction.
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^

CHAPTER II.

Explanation of the Signs + Plus and— Minus.

8. When we have to add one given number to another, this

is indicated by the sign + which is placed before the second

number, and is read plus, Tiius 5 -f 3 signifies that we must

add 3to the number 5, and every one knows that the result is

8 ; in the same manner 12 + 7 make 19 ; 25 -f 16 make 41 ; the

sum of 25 +41 is 66, &c.

9. We also make use of the same sign + plus, to connect

several numbers together ; for example, r + 5 + 9 signifies that

to the number 7 we must add 5 and also 9, which make 21.

The reader will therefore understand what is meant by
8 + 5 + 13 + 11+1 +3 + 10;

vi». the sum of all these numbers, which is 51.

10. All this is evident ;
and we have only to mention, that,

in Algebra, in order to generalize numbers, we represent them

by letters, as a, &, c, d, &c. Thus, the expression a + 6, signifies

the sum of two numbers, which we express by a and 6. and

these numbers may be eitlier very great or very small. In the

same manner, /+w + & + a?, signifies the sum of the numbers

represented by these four letters.

If we know therefore the numbers that are represented by

letters, we shall at all times be able to find by arithmetic, the

sum or value of similar expressions.

11. When it is required, on the contrary, to subtract one

given number from another, this operation is denoted by the

sign —, wliich signifies miiius, and is placed before the number

to be subtracted : thus 8— 5 signifies that the number 5 is to be

taken from the number 8 ; which being done, there remains 3.

In like manner 12— 7 is the same as 5 ; and 20— 14 is the same

as 6, &c.

12. Sometimes also we may have several numbers to subtract

from a single one ; as, for instance, 50— 1— 3—5—7—9. This

signifies, first, take 1 from 50, there remains 49 ; take 3 from

that remainder, there will remain 46 ; take away 5, 41 remains ;

take away 7, 34 remains ; lastly, from that take 9, and there
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remains 25 ; this last remainder is the value of the expression.

But as the numbers 1, 3, 5, 7, 9, are all to be subtracted, it is

the same thing if we subtract their sum, which is 25, at once

from 50, and the remainder will be 25 as before.

IS. It is also very easy to determine the value of similar

expressions, in which both the signs + phis and — minus are

found : for example ;

12 — 3 — 5 -f- 2— 1 is the same as 5.

We have only to collect separately the sum of the numbers that

have the sign -\- before them, and subtract from it the sum of

those that have the sign
—. The sum of 12 and 2 is 14

,•
that

of 3, 5 and 1, is 9 ; now 9 being taken from 14, there remains 5.

14. It will be perceived from these examples that the order

in which we write the numhers is quite indifferent and arbitrary^

provided the proper sign of each be preserved, AYe might with

equal propriety have arranged the expression in the preceding
article thus ; 12-f2— 5— 3— l,or2— 1— 3— 5-fl2, or2+
12— 3— 1 — 5, or in still different orders. It must be observed,

that in the expression proposed, the sign -|- is supposed to be

placed before the number 12.

15. It will not be attended with any more difficulty, if, in

order to generalize these operations, we make use of letters

instead of real numbers. It is evident, for example, that

(J — 6 — c+d — e,

signifies that we have numbers expressed by a and <Z, and that

from these numbers, or from their sum, we must subtract the

numbers expressed by the letters &, c, e, which have before them

the sign
—.

16. Hence it is absolutely necessary to consider what sign is

prefixed to each number : for in algebra, simple quantities are

numbers considered with regard to the signs which precede, or

affect them. Further, we call those positive quantities, before

which the sign -f is found ; and those are called negative quan-

titiesy which are affected with the sign
—.

17. The manner in which we generally calculate a person's

property, is a good illustration of what bas just been said. We
denote what a man really possesses by positive numbers, using,

or understanding the sign -f 5 whereas his debts are represent-
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ed by negative numbers, or by using the sign—. Thus, when
it is said of any one that he has 100 crowns, but owes 50, this

means that his property really amounts to 100— 50 ; or, which

is the same thing, -f 100 — 50, that is to say 50.

18. As negative numbers may be considered as debts, because

positive numbers represent real possessions, we may say that

negative numbers are less than nothing. Thus, when a man
has nothing in the world, and even owes 50 crowns, it is certain

that he has 50 crowns less than nothing ; for if any one were to

make him a present of 50 crowns to pay his debts, he would

still be only at the point nothing, though i^ally richer than

before.

19. In the same manner therefore as positive numbers are

incontestably greater than nothing, negative numbers are less

than nothing. Now we obtain positive numbers by adding 1 to

0, that is to say, to nothing ; and by continuing always to

increase thus from unity. This is the origin of the series of

numbers called natural numbers ; the following are the leading
terms of this series :

0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10,

and so on to infinity.

But if instead of continuing this series by successive additions,

we continued it in the opposite direction, by perpetually sub-

tracting unity, we should have the series of negative numbers :

0, — 1, — 2, — 3,^ 4, — 5, — 6,— 7,— 8, -^ 9, — 10,

and so on to infinity.

20. All these numbers, whether positive or negative, have the

known appellation of whole numbers, or integers, which conse-

quently are eitlier greater or less than nothing. We call them

integers, to distinguish them from fractions, and from several

other kinds of numbers of which we shall hereafter speak. For

instance, 50 being greater by an entire unit than 49, it is easy
to comprehend that there may be between 49 and 50 an infinity

of intermediate numbers, all greater than 49, and yet all less

than 50. We need only imagine two lines, one 50 feet, tlie

other 49 feet long, and it is evident that there may be drawn an

infinite number of lines all longer than 49 feet, and yet shorter

than 50.



& Mgehra. Sect. 1,

21. It is of the utmost importance throu8;h the whole of

Algebra, that a precise idea be formed of those negative quanti-
ties about whicli we liave been speaking. I shall content my-
self with remarking here that all such expressions, as

+ 1 — 1, 4-2 — 2, +3 —3, +4,-4, &c.

are equal to or nothing. And that

+ 2— 5 is equal to — 3 .

For if a person has 2 crowns, and owes 5, he has not only

nothing, but still owes S crowns : in the same manner

7— 12 is equal to — 5, and 25 — 40 is equal to— 15.

22. The same observations hold true, when, to make the

expression more general, letters are used instead of numbers :

0, or nothing will always be the value of -f a— a. If we wish to

know the value -fa — h two cases are to be considered.

The first is when a is greater than h; h must then be sub-

tracted from a, and the remainder, (before winch is placed or

understood to be placed the sign -{-,) shews the value sought.
Tlie second case is that in which a is less than h : here a is

to be subtracted from 6, and the remainder being made negative,

by placing before it the sign
—

, will be the value sought.

CHAPTER III.

Of the Multiplication of Simple Quantities,

23. When there are two or more equal numbers to be added

together, the expression of their sum may be abridged ; for

example,
a + a is the same with 2 x a>

a-fa-f-a 3Xflj

a-fa-f-a-ffl Ax a, and so on ; where x is the sign

of multiplication. In this manner we may form an idea of mul-

tiplication ; and it is to be observed that,

2 X a signifies 2 times, or twice a

3 X ft 3 times, or thrice a

4 X a 4 times a, &c.
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£4. If therefore a number expressed ly a letter is to he multiplied

by any other number, we simply put that riumber before the letter ;

thus,

a multipled by 20 is expressed by 20a, and

b multiplied by 30 gives 30&, &c.

It is evident also that c taken once, or Ic, is just c.

25. Further, it is extremely easy to multiply such products

again by other numbers ; for example :

2 times, or twice 3a makes 6a,

3 times, or thrice 4b makes 12&,

5 times 7x makes SScc,

and these products may be still multiplied by pther numbers at

pleasure.

26. When the number, by which we are to multiply, is also re-

presented by a letter, we place it immediately before the other letter ^
thus, in multiplying b by a, the product is written ab ; and pq^

will b6 the product of the multiplication of the number q by p>

If we multiply this pq again by a, we shall obtain apq,

27. It may be remarked here, that the order in which the letters

are joined together is indifferent ; that ab is the same thing as ba;

for b multiplied by a produces as much as a multiplied by &.

To understand this, we have only to substitute for a and 6

known numbers, as 3 and 4 ; and the truth will be self-evident i

for 3 times 4 is the same as 4 times 3.

28. It will not be difficult to perceive, that when you have to

put numbers, in the place of letters joined together, as we have

described, they cannot be written in the same manner by put-

ting them one after the other. For if we were to write 34 for

3 times 4, we should have 34 and not 12. When therefore it is

required to multiply common numbers, we must separate them

by the sign x, or points : thus, 3x4, or 3*4, signifies 3 times 4,

that is 12. So, 1 X 2 is equal to 2 ; and 1x2x3 makes 6. In

like manner Ix2x3x4x 56 makes 1344 ; and 1x2x3
X4x5x6x7x8x9xl0is equal to 362^800, &c.

29. In tlie same manner, we may discover the value of an

expression of this, form, 5*7*8' abed. It shews that 5 must be

multiplied by 7, and that this product is to be again multiplied

by 8 ; that we are then to multiply this product of the three



Jlhehra. Sect. 1*

numbers by a, next by 6, and then by c, and lastly by d. It may
be observed also, that instead of 5 x 7 X 8 we may write its value,

280; for we obtain this number when we multiply the product
of 5 by 7, or 35 by 8.

SO. The results which arise from the multiplication of two or

more numbers are called products ; and the numbers, or indivi-

dual letters, are called factors,

31. Hitherto we have considered only positive numbers, and

there can be no doubt, but that the products which we have

seen arise are positive also : viz. -}- a by + 6 must necessarily

give + ab. But we must separately examine what the multi-

plication of + a by .—
ft, and of— a by — 6, will produce.

32. Let us begin by multiplying
— a by 3 or -f- 3 ; now since

— a may be considered as a debt, it is evident that if we take

that debt three times, it must thus become three times greater,

and consequently the required produ'^t is — Sa. So if we multi-

ply
— a by -f &, we shall obtain— ha^ or, which is the same things— ah. Hence we conclude, that if a positive quantity be multi-

plied by a negative quantity, the product will be negative;

and lay it down as a rule, that 4- by + makes +, or pliis^ and

that on the contrary + by —, or— by + gives
—

, or minus,

33. It remains to resolve the case in which— is multiplied by
—

; or, for exami>le,
— a by — h. It is evident^ at first sight,

with regard to the letters, that the product will be ah; but it is

doubtful whether the sign -f-, or the sign
—

, is to be placed

before the product ; all we know is, that it must be one or the

other of these signs. Now I say that it cannot be the sign
— :

for — a by + & gives — a&, and — a by — h cannot produce the

same result as — a by + 6 ; but must produce a contrary result,

that is to say, + ah ; consequently we have the following rule ;

— multiplied by — produces +, in the same manner as + mul-

tiplied by +. [2.]

34. The rules which we have explained are expressed more

briefly as follows :

Like signs, multiplied together, give -f- ; unlike or contrary signs

give
— . Thus, when it is required to multiply the following

numbers ; -fa, — h, — c,-\-d; we have first + a multiplied by
— h, which makes—, ah ; this by — c, gives + ahc ; and this by

-f- d, gives 4- ahcd.
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Q5. The difficulties with respect to the signs heing removed,

we have only to slievv how to multiply numbers that are them-

selves products. If we were, for instance, to multiply the

number ab by the number cd, the pi-oduct w ould be abed, and it

is obtained by multiplying first ab by c, and then the result of

that multiplication by d. Or, if we had to multiply 36 by 12 ;

since 12 is equal to 3 times 4, we should only multiply 36 first

by 3, and then the product 108 by 4, in order to have the whole

product of the multiplication of 12 by 36, which is consequently
432.

36. But if we wished to multiply 5ah by 3cd, we might write

Serf X 5ab ; however, as in the present instance the order of the

numbers to be multiplied is indifferent, it will be better, as is

also the custom, to place the common numbers before the letters,

and to express the product thus : 5 x Sabcd, or I5abcd; since 5

times 3 is 15.

So if we had to multiply 12pqr by 7xij, we should ohtain

12 X Tpqrxy, or S4pqrxy.

CHAPTER IV.

Of the nature of whole JK^umbers or Integers, with respect to their

Factors.

sr. We have observed that a product is generated by the

multiplication of two or more numbers together, and that these

numbers are called factors. Thus the numbers a, b, c, d, are

the factors of the product abed.

38. If, therefore, we consider all whole numbers as products

of two or more numbers multiplied together, we shall soon find

that some cannot result from such a multiplication, and conse-

quently have not any factors ;
wiiile others may be the products

of two or more multiplied together, and may consequently have

two or more factors. Thus, 4 is produced by 2 x 2 ; 6 by 2 x
3

,•
8 by 2 X 2 X 2

;
or 27 by 3 X 3 x 3 ; and 10 by 2 X 5, &c.

39. But, on the other hand, the numbers, 2, 3, 5, 7, 11, 13,

17, &c. cannot be represented in the same manner by fiictors,

unless for that pui^jose we make use of unity, and represent 2,

2
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for instance, by 1 x 2. Now the numbers which are multiplied

by 1, remaining the same, it is not proper to reckon unity as a

factor.

All numbers therefore, such as 2, 3, 5, 7, 11, 13, 17, &c.

which cannot be represented by factors, are called simpUf or

prime numbers ; whereas others, as 4. 6, 8, 9, 10, 12, 14, 15, 16^

18, &c, which may be represented by factors, are called com-

pound numbers,

40. Simple or prime numbers deserve therefore particular

attention, since they do not result from the multiplication of two

or more numbers. It is particularly worthy of observation,

that if we write these numbei's in succession as they follow

each other, tlms ;

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,41, 43, 47, &c. [3.]

we can trace no regular order ; their increments are sometimes

greater, sometimes less ; and hitherto no one has been able to

discover whether they follow any certain law or not.

41. Ml compound numbers, which may be represented byfactors,

result from the prime numbers above mentioned ; that is to say, all

theirfactors are prime numbers. For, if we find a factor which

is not a prime number, it may always be decomposed and repre-

sented by two or more prime numbers. When we have repre-

sented, for instance, the number 30 hy 5 x 6, it is evident that 6

not being a prime number, but being produced by 2 x 3, we

might have represented 30 by 5 x 2 x 3, or by 2 x 3 x 5 ; that

is to say, by factors, which are all prime numbers.

42. If we now consider those compound numbers which may
be resolved into prime numbers, we shall observe a great differ-

ence among them
; we shall find that some have only two factors,

that others have three, and others a still greater number. We
have already seen, for example, that

4 is the same as 2x2,
8 2X2X2,

10 2X5,
14 2X7,
16 2X2X2X2,

43. Hence it is easy to find a method for analysing any num-

ber, or resolving it into its simple factors. Let there be pro-

6 is the same as 2x5,
9 3XS,
12 2x3x2,
15 3X5,
and so on.
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posed, for instance, the number 360 ; we shall represent it first

by 2 X 180. Now 180 is equal to 2 x 90, and

90-)
r2x45,

45 I is the same as -< 3x15, and lastly

15J (.3X5.

So that the number 360 may be represented by these simple

factors, 2x2x2x3x3x5; since all these numbers multiplied

together produce 360. [4.]

44. This shews, that the prime numbers cannot be divided by
other numbers, and on the other hand, that the simple factors of'

compound numbers are found, most conveniently and with the

greatest certainty, by seeking the simple, or prime numbers, by
which those compound numbers are divisible. But for this division

is necessary ; we shall therefore explain the rules of that opera*

tion in the following chapter.

CHAPTER V.

Of the Division of Simple Quantities,

45. When a number is to be separated into two, three, or

more equal parts, it is done by means o? division, which enables

us to determine the magnitude of one of those parts. When we

wish, for example, to separate the number 12 into three equal

parts, we find by division that each of those parts is equal to 4.

The following terms are made use of in this operation. The

number, which is to be decompounded or divided, is called the

dividend ; tlic number of equal parts sought is called the divisor;

the magnitude of one of those parts, determined by the division,

is called the quotient : thus, in the above example ;

12 is the dividend,

3 is tlie divisor, and

4 is the quotient.

46. It follows from this, that if we divide a number by 2, or

into two equal parts, one of those paints, or the quotient, taken

twice, makes exactly the number proposed ; and, in the same

manner, if we have a number to be divided by 3, the quotient

taken thrice must give the same number again. In general, the
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multiplication of the qmtient bij
the divisor must always reproduce

the dividend,

47. It is for this reason that division is said to be a rule,

which teaches us to find a number or quotient, whicli, being

multiplied by the divisor, will exactly produce the dividend.

For example, if 35 is to be divided by 5, we seek for a number

which, multiplied by 5, will produce 55, Now this number is

7, since 5 times 7 is 35, The manner of expression, em-

ployed in this reasoning, is ; 5 in 35, 7 times ; and 5 times 7

makes 35.

48. The dividend therefore may be considered as a product,

of which one of the factors is the divisor, and the other the

quotient. Thus, supposing we have 63 to divide by 7, we en-

deavour to find such a product, that taking 7 for one of its

factors, the other factor multiplied by this may exactly give 63.

Now 7 X 9 is such a product, and consequently 9 is the quotient

obtained when we divide 63 by 7.

49. In general, if we have to divide a number ab by a, it is

evident that the quotient will be b ; for a multiplied by b gives

the dividend ab. It is clear also, that if we had to divide ab by

h, the quotient would be a. And in all examples of division

that can be proposed, if we divide the dividend by the quotient,

we shall again obtain the divisor ;
for as 24 divided by 4 gives

6, so 24 divided by 6 will give 4.

50. As the whole opei'ation consists in representing the dividend

by two factors, of which one may be equal to the divisor, the other

to the quotient ; the following examples will be easily understood.

I say first, that the dividend abc, divided by a, gives be ; for a

multiplied by be, produces abc : in the same manner abc, being

divided by b, we shall have ac ; and abc, divided by ac, gives b,

I say also, that 12mn^ divided by 3m, gives 4n; for 5m, multi-

plied by 4n, makes 12mn, But if this same number 12mii had

been divided by 12, we should have obtained the quotient mn.

51. Since every number a may be expressed by la or one a, it

is evident that if we had to divide a or la by 1, the quotient

would be the same number a. But, on the contrary, if the same

number a, or la is to be divided by a, the quotient will be 1.
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52. It often happens that we cannot represent the dividend as

the product of two factors, of w hich one is equal to the divisor ;

and then the division cannot be performed in the manner we
have described.

When we have, for example, 24 to be divided by 7, it is at

first sight obvious, that tlie number 7 is not a factor of 24 ; for

the product of 7 X 3 is only 21, and consequently too small, and

7x4 makes 28, which is greater than 24. We discover however

from this, that the quotient must be greater than 3, and less than

4. In order therefore to determine it exactly, we employ anotlier

species of numbers, which are called fractions^ and which we
shall consider in one of the following chapters.

53. Until the use of fractions is considered, it is usual to rest

satisfied with the whole number which approaches nearest to

the true quotient, but at the same time paying attention to the

remainder which is left ; thus we say, 7 in 24, 3 times, and the

remainder is 3, because 3 times 7 produces only 21, which is 3

less than 24. We may consider the following examples in the

same manner :

6)34(5, that is to say the divisor is 6, the dividend 34,

30 the quotient 5, and the remainder 4.

4

9)41(4, here the divisor is 9, the dividend 41, the quo-
36 tient 4, and the remainder 5.

The following rule is to be observed in examples where there

is a remainder.

54. Ijxve multiply the divisor by the quotient, and to the product

add the remainder, we must obtain the dividend; this is the

method of proving the division, and of discovering whether the

calculation is right or not. Thus, in the first of the two last

examples, if we multiply 6 by 5, and to the product 30 add the

remainder 4, we obtain 34, or the dividend. And in the last

example, if we multiply the divisor 9 by the quotient 4, and to

the product 36 add the remainder 5, we obtain the dividend 41.
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55. Lastly, it is necessary to remark here, with regard to the

signs -f- plus and — minus, that if we divide -f a& by 4- a, the

quotient will be -f- ft, which is evident. But if we divide -}- ah

by— ttf the quotient will be— b ; because— a x — b gives -f ab.

If the dividend is — aft, and is to be divided by the divisor -f a,

the quotient will be — b; because it is <— b, which, multiplied

by + a, makes — ab. Lastly, if we have to divide the dividend

— ab by the divisor— a, the quotient will be + & ; for the divi-

dend — ab is the product of— a by + 6.

56. With regard therefore to the signs -f- and—, division admits

the same rides that we have seen applied in multiplication ; viz.

4- by 4- requires -f- ; -f by — requires — ;

— by -f- requires— ;
— by— requires -f- :

or in a few words, like signs give plus, unlike signs give minus,

57. Thus, when we divide ISpq by — Sjh the quotient is— 6q.

Farther ;— SOxy divided by -f- 6y gives — 5^, and
— 54abc divided by — 96 gives -|- 6ac ;

for in this last example, — 96 multiplied by + 6ac makes — 6x
9aJbc, or — 54abc. But we have said enough on the division of

simple quantities ; we shall therefore hasten to the explanation

of fractions, after having added some farther remarks on the

nature of numbers, with respect to their divisors.

CHAPTER VI.

Of the properties of Integers with respect to their Divisors.

58. As we have seen that some numbers are divisible by cer-

tain divisors, while others ar« not ; in order that we may
obtain a more particular knowledge of numbers, this difference

must be carefully observed, both by distinguishing the numbers

that are divisible by divisors from those which arc not, and by

considering the remainder that is left in the division of the

latter. For this purpose let us examine the divisors ;

2, 3, 4, 5, 6, r, 8, 9, 10, kc.

59. First, let the divisor be 2 ; the numbers divisible by it

are, 2,4, 6, 8, 10, 12, 14, 16, 18, 20, &c. which, it appears
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increase always by two. These numbers, as far as they can be

continued, are called even numbers. But there are other num*

bers, viz,

1, 3, 5, r, 9, 11, 13, 15, 17, 19, kc.

which are uniformly less or greater than the former by unity,

and which cannot be divided by 2, without the remainder 1 ;

these are called odd numbers.

The even numbers are all comprehended in the general expres-

sion 2fl ; for they are all obtained by successively substituting

for a the integers 1, 2, 3, 4, 5, 6, 7, &c. and hence it follows that

the odd numbers are all comprehended in the expression 2a -{- 1

because 2a + 1 is greater by unity than the even number 2a.

60. In the second place, let the number 3 be the divisor ; the

numbers divisible by it are,

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, and so on ; and these num-

bers may be represented by the expression 3a
,•

for 3a divided

by 3 gives the quotient a without a remainder. All other num-

bers, which we would divide by 3, will give 1 or 2 for a remain-

der, and are consequently of two kinds. Those, which after the

division leave tlie remainder 1, are ;

1,4,7,10,13, 16,19, &c.

and are contained in the expression 3a -f 1 ^ but the other kind,

where the numbers give the remainder 2, are ;

2,5,8,11, 14,17,20, &c,

and they may be generally expressed by Sa -f 2; so that all

numbers may be expressed either by 3a, or by 3a -f- 1, or by
3a -f- 2.

61. Let us now suppose that 4 is the divisor under considera-

tion : the numbers which it divides are ;

4, 8, 12, 16, 20,24, kc,

which increase uniformly by 4, and are comprehended in the

expression 4a. All other numbers, that is, those which are not

divisible by 4, may leave the remainder 1, or be greater than

the former by 1 : as

1,5,9, 13, 17, 21,25, &C.

and consequently may be comprehended in the expression 4a -f-

1 : or they may give the remainder 2 ; as

2, 6, 10, 14, 18, 22, 26, &c.
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and be expressed by 4a + 2
; or, lastly, they may give the

remainder 3 ; as

3, 7, 11, 15, 19, 23, 27, &,c.

and may be rejjresented by the expression 4a -f- 3.

AH possible integral numbers are therefore contained in one or

other of these four expressions ;

4a, 4a 4- 1, 4a + 2, 4a + 3.

62. It is nearly the same when the divisor is 5 ; for all num-
bers which can be divided by it are comprehended in the

expression Sa, and those which cannot be divided by 5, ai'e

reducible to one of the following expressions :

5a -f 1, 5a + 2, 5a + 3, 5a -f 4 ;

and we may go on in the same manner and consider the great-

/Cst divisors.

63. It is proper to recollect here what has been already said

on the resolution of numbers into their simple factors ; for every

number, among the factors of which is found,

2, or 3, or 4, or 5, or 7,

or any other number, will be divisible by those numbers. For

example ; 60 being equal to 2 x 2 x 3 x 5, it is evident that 60

is divisible by 2, and by 3, and by 5. [5.]

64. Farther, as the general expression ahcd is not only divi-

sible by a, and 6, and c, and d, but also by

abf ac, ad, he, bd, cd, and by

abCf abd, acd, bed, and lastly by

abed, that is to say, its own value;

it follows that 60, or 2 x 2 x 3 x 5, may be divided not only by

these simple numbers, but also by those which are composed of

two of them ; that is to say, by 4, 6, 10, 15 : and also by those

which are composed of three simple factors, that is to say, by

12, 20, 30, and lastly also, by 60 itself.

65. When, therefore, we have represented any number, assumed

at pleasure, by its simple factors, it will be very easy to shew all

the numbers by which it is divisible. For we luive only, first, to

take the simplefactors one by one, and then to multiply them togeth-

er two by two, three by three,four by four, ^c. till we arrive at

the number proposed.

66. It must here be particularly observed, that every number

is divisible by 1 ; and also that every number is divisible by
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itself; so that every nmnher lias at least two factors, or divisors,

the number itself and unity : but every number which has no

other divisor than these two, belongs to the class of numbers,

which we have before called simjjle, or prime numbers.

Except these, all other numbers have, beside unity and them-

selves, other divisors, as may be seen from the following table,

in w hich are placed under each number all its divisors.[6.]

TABLE.

1
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impossible to form an idea of that quotient. Only imagine a

line of 7 feet in length, nobody can doubt the possibility of

dividing this line into 3 equal parts, and of forming a notion of

the length of one of those parts.

69. Since therefore we may form a precise idea of the quo-
tient obtained in similar cases, though that quotient is not an

integral number, this leads us to consider a particular species of

numbers, called fractions, or broken numbers. The instance

adduced furnishes an illustration. If we have to divide 7 by 3,

we easily conceive the quotient which should result, and express

it by I ; placing the divisor under the dividend, and separating

the two numbers by a stroke, or line.

70. So, in general, when the number a is to be divided by the

number b, we represent the quotient by -|,
and call this form of

expression a fraction. We cannot therefore give a better idea of

a fraction
-|^,

than by saying that we thus express the quotient

resulting from the division of the upper number by the lower.

We must remember also, that in all fractions tlie lower num-

ber is called the denominator, and that above the line the nume-

rator,

71. In the above fraction, -J,
which we read seven thirds, 7 is

the numerator, and 3 tlie denominator. We must also read |, two

thirds ; |, three fourths ; 4, three eighths ; J^*^, twelve hun-

dredths ;
and

-J,
one half.

72. In order to obtain a more perfect knowledge of the

nature of fractions, we shall begin by considering the case in

which the numerator is equal to the denominator, as in —.

Now, since this expresses the quotient obtained by dividing a

by a, It is evident that this quotient is exactly unity, and that

consequently this fraction — is equal to ] , or one integer ; for

the same reason, all the following fractions,
2 3 4*678 Rrp
5» T' 4» T» 6-' T' ¥> ^^'

are equal to one another, each being equal to 1, or one integer.

73. We have seen that a fraction, whose numerator is equal to

tlie denominator, is equal to unity. All fractions therefore

wliosc numerators arc less than the denominators, have a value
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less than unity. For if I liave a number to be divided by ano-

ther which is greater, the result must necessarily be less than 1 ;

if we cut a line, for example, two feet long, into three parts, one

of those parts will undeniably be shorter than a foot : it is

evident then, that | is less than 1, for the same reason, that the

numerator 2 is less than the denominator 3.

74. If the numerator, on the contrary, be greater than the

denominator, the value of the fraction is greater than unity.

Thus I is greater than 1, for | is equal to | together with |.

Now I is exactly 1, consequently | is equal to 1 + |, that is, to

an integer and a half. In the same manner ^ is equal to
J-|, 4

to If, and
|-

to 2^. And in general, it is sufficient in such cases

to divide the upper number by the lower, and to add to the

quotient a fraction having the remainder for the numerator, and

the divisor for the denominator. If the given fraction were, for

example, :}|,
we should have for the quotient 3, and 7 for the

remainder ;
whence we should conclude that 4^ is the same as

73, Thus we see how fractions, whose numerators are greater

than the denominators, are resolved into two members ; one of

which is an integer, and the other a fractional number, having
the numerator less than the denominator. Such fractions as

contain one or niore integers,- are called improper fractions^ to

distinguish them from fractions properly so called, which, having
the numerator less than the denominator, are less than unity, or

than an integer.

76. The nature of fractions is frequently considered in an-

other way, which may throw additional light on the subject.

If we consider, for example, the fraction |, it is evident that it

is three times greater than
-J.

Now this fraction J means, that

if we divide 1 into 4 equal parts, this will be the value of one of

those parts ; it is obvious then, that by taking 3 of those parts,

we shall have the value of the fraction |.

In the same manner we may consider every other fraction ;

for example, -J^ ; if we divide unity into 12 equal parts, 7 of

those parts will be equal to the fraction proposed.
77. From this manner of considering fractions, tlie expres-

sions numerator and denominator arc derived. For, as in the
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preceding fraction
-^^^ the number under the line shews that 13

is the number of parts into which unity is to be divided ; and as

it may be said to denote, or name the parts, it has not impro-

perly been called the deiwininator.

Farther, as the upper number, viz. 7, shews that, in order to

have the value of the fraction, we must take, or collect 7 of

those parts, and therefore may be said to reckon, or number

them, it has been thought proper to call the number above the

line the numerator.

78. As it is easy to understand what | is, when we know the

signification of ^, we may consider the fractions whose nume-

rator is unity, as the foundation of all others. Such are the

fractions, iiiiiiiii 1 1 A-f
"5' 7' 4' T' r^ T> ¥» T^ T^» IT' Tf ' *^^*

and it is observable that these fractions go on continually dimin-

ishing : for the more you divide an integer, or the greater the

number of parts into which you distribute it, the less does each

of those parts become. Thus ^J^ is less than Jg^ ; ^/^^ is less

than ^1^ ; and ^^J^^ is less than ^^Vtt-

79. As we have seen, that the more we increase the denomi-

nator of such fractions, the less their values become ; it may be

asked, whether it is not possible to make the denominator so

great, that the fraction shall be reduced to nothing ? I answer,

no ; for into whatever number of parts unity (the length
of a foot for instance) is divided

; let those parts be ever so

small, they will still preserve a certain maeruitude, and there-

fore can never be absolutely reduced to nothing.

80. It is true, if we divide the length of a foot into 1000 parts ;

those parts will not easily fall under the cognizance of our

senses : but view them through a good microscope, and each of

them will appear large enough to be subdivided into 100 parts,

and more.

At present, however, we have nothing to do with what de-

pends on ourselves, or vy^ith what we are capable of performing,

and what our eyes can perceive ; the question is rather, what is

possible in itself. And, in this sense of the word, it is certain,

that however great we suppose the denominator, the fraction

will never entirely vanish, or become equal to 0.
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81. We never therefore arrive completely at nothing, how-

ever great the deuominator may be ; and those fractions always

preserving a certain quantity, we may continue the series of

fractions in the 78th article without interruption. This circum-

stance has introduced the expression, that the denominator must

be infinite, or infinitely great, in order that the fraction may be

reduced to 0, or to nothing ; and the word infinite in reality

signifies here, that we should never arrive at the end of the

series of the above mentioned fractions.

82. To express this idea, which is extremely well founded,

we make use of the sign oo , which consequently indicates a

number infinitely great ; and we may therefore say that this

fraction i is really nothing, for the very reason that a fraction

cannot be reduced to nothing, until the denominator has been

increased to infinity.

83. It is the more necessary to pay attention to this idea of

infinity, as it is derived from the first foundations of our know-

ledge, and as it will be of the greatest importance in the follow-

ing part of this treatise.

We may here deduce from it a few consequences, that are

extremely curious and worthy of attention. The fraction ^

represents the quotient resulting from the division of the divi-

dend 1 by the divisor oo. Now we know that if we divide

the dividend 1 by the quotient J, which is equal to 0, we obtain

again the divisor oo : hence we acquire a new idea of infinity ;

we learn that it arises from the division of 1 by ; and we are

therefore entitled to say, that 1 divided by expresses a number

infinitely great, or oo .

84. It may be necessary also in this place to correct the

mistake of those who assert, that a number infinitely great is

not susceptible of increase. This opinion is inconsistent with

the just principles which we have laid down ; for J signifying a

number infinitely great, and ^ being incontestably the double of

^9 it is evident tha^* a number, though infinitely great, may still

become two or more times greater. [7.]
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CHAPTER. VIII.

Of the propei'ties of Fractions,

85. We have already seen, that each of the fractions,
2 3 4 5 6 7 8 ;Brp
¥' T' "i* T' 7' T' "S"'

"''^*

makes an integer, and that consequently they are all equal to

one another. The same equality exists in the following frac-

tions,

2 46 8 10 13 Xrr

each of them making two integers ; for the numerator of each,

divided by its denominator, gives 2. So all the fractions

3 6 9 13 15 18 X^r
T' 5^' 7' "S 9 J ' T ' ^^'

are equal to one another, since 3 is their common value.

86. We may likewise represent the value of any fraction, in

an infinite variety of ways. For if we multiply both the nume-

rator and the denominator of afraction by the same number, which

may be assumed at pleasure, this fraction will still preserve the

same value. For this reason all the fractions

12S45 6 7 8 9 10 ArP
¥' 4> y» T' TIT' Tf ' T4' TT' TT' ^TT' *^^'

are equal, the value of each being |. Also
1334 5 6 7 8 910 Jirr
7' T' 7' TJ' TT» T7' fT' SS* aT' TSlf'

*^^*

are equal fractions, the value of each of which is ^. The frac-

tions

24 8 10 12 1416 Arp
S9 69 1^9 f-g9 T¥' ^T' Si:9 ^^'

have likewise all the same value : and lastly, we may conclude

in general, that the fraction ^ may be represented by the fol-

lowing expressions, each of which is equal to
-|^

; viz.

a 2a Sa 4a 5a 6a 7a'

T' 2b' W 46' 5&' 66' 76'
^*'-

87. To be convinced of this we have only to write for the

value of the fraction
-^

a certain letter c, representing by this

letter c the quotient of the division of a by 6 ; and to recollect

tbat the multiplication of the quotient c by the divisor 6, must give
the dividend. For since c multiplied by b gives a, it is evident that

c multiplied by 26 will give 2a, that c multiplied by 36 will give
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Sa, and that in general c multiplied by mb must give ma. Now

changing this into an example of division, and dividing the pro-

duct ma by mb, one of the factors, the quotient must be equal to

the other factor c ; but ma divided by mb gives also the fraction

-^, which is consequently equal to c ; and this is what was to
mb
be proved : for c having been assumed as the value of the frac-

tion A it is evident that this fraction is equal to the fraction

^, whatever be the value of m,
mo

88. We have seen that every fraction may be represented in an

infinite number of forms, each of which contains the same value ;

and it is evident that of all these forms, that which shall be

composed of the least numbers, will be most easily understood.

For example, we might substitute instead of | the following

fractions,

6' T' T5' TT' T"5''
*^^'

but of all these expressions | is that of which it is easiest to

form an idea. Here therefore a problem arises, how a fraction,

such as ^-j,
which is not expressed by the least possible numbers,

may be reduced to its simplest form, or to its least terms, that is

to say, in our present example, to |.

89. It will be easy to resolve this problem, if we consider that

a fraction still preserves its value, when we multiply both its

terms, or its numerator and denominator, by the same number*

For from this it follows also, that ifwe divide the numerator and

denominator of a fraction by the same number, the fraction still

preserves the same value. This is made more evident by means

of tlie general expression ^ ; for if we divide both the nume-

rator ma and the denominator mb by the number m, we obtain

the fraction -^, which, as was before proved, is equal to ^.
o mo

90. In order therefore to reduce a given fraction to its least

terms, it is required to find a number by which both the nume-
rator and denominator may be divided. Such a number is

called a common divisor, and so long as we can find a common
divisor to the numerator and the denominator, it is certain that

the fraction may be reduced to a lower form ; but, on the con-
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trary, when we see that except unity no other common divisor

can be found, this shews that the fraction is already in the

simplest form that is possible.

91. To make this more clear, let us consider the fraction

^Y^. We see immediately that both the terms are divisible by

2, and that there results the fraction |^. Then that it may
again be divided by 2, and reduced to ^|. ; and this also, having
2 for a common divisor, it is evident, may be reduced to

-^-g.

But now we easily perceive, that the numerator and denomina-

tor are still divisible by 3
', performing this division, therefore,

we obtain the fraction
|^,

which is equal to the fraction proposed^

and gives the simplest expression to which it can be reduced ;

for 2 and 5 have no common divisor but 1, which cannot dimin-

ish these numbers any farther.

92. This property of fractions preserving an invariable value,

whether we divide or multiply the numerator and denominator

by the same number, is of the greatest importance, and is the

principal foundation of the doctrine of fractions. For example,
we can scarcely add together two fractions, or subtract them

from each other, before we have, by means of this property,

reduced them to other forms, that is to say, to expressions whose

denominators are equal. Of this We shall treat in the following

chapter.

93. We conclude the present by remarking, that all integers

may also be represented by fractions. For example, 6 is the

same as 4? because 6 divided by 1 makes 6 ; and we may, in the

same manner, express the number 6 by the fractions y , >^, ^-},

y , and an infinite number of others which have the same value.

CHAPTER IX.

Of the Jlddition and Subtraction of Fractions.

94. When fractions have equal denominators, there is no

difficulty in adding and subtracting them ; for ^ -f- ^ is equal to

4, and 4— T is equal to f . In this case, either for addition or
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subtraction, we alter only the numerators, and place the com-

mon denominator under the line ; thus,

TJit + ^U— TA — tVV' -f TA' is <^^l»al to ih ' IJ — tV —
n +n i« equal to ||, or J| ^ |J —A — iJ + i4 is ^HiUal to

||, or I ; also 4 + 1 is equal to !• or 1, that is to say, an inte-

ger ; and |
— | -f- 1 is equal to ^that is to say, nothing, or 0.

95. But when fractions have not *eqnal denominatorSf we can

always change tJiem into otherfractions that have the same denomi-

nator. For example, when it is proposed to add together the

fractions ] and ^, we must consider that | is the same as |, and

that I is equivalent to J ; we have therefore, instead of the two

fractions proposed, these | -f- f , the sum of which is f . If the

two fractions were united by the sign minus, as |
—

4> we

should have | — f or |.

Another example : let the fractions proposed be | + | ; siiice

J is tlie same as |, thig value may be substituted for it, and we

may say | +| make Y, or 1 |.

Suppose farther, that the sum of ^ and i were required. 1

say that it is /^ ; for 4 makes y\, and i makes
^.^.

96. TFe may have a greater mimber offractions to be reduced to ft

common denominator ; for example, |, -f, |, |, |; in this case

the whole depends on finding a number which may be divisible by

all the denominators of those fractions. In this instance 60 is the

number which has that property, and which consequently

becomes the commpn denominator. We shall therefore have

|o instead of J ; |§ instead of | ; 44 instead of | ; *^ instead

of 4 ;
and ^ instead of f . Tf now it be required to add together

all these fractions |«, ^J, ||, ||, add | J ; we have only to add

aU the numerators, and under the sum place the common deiwmi-

nator 60; that is to say, we shall have V/, or three integers

and 1-3, or 3 Aj.
97. The whole of this operation consists, as we before stated,

in changing two fractions, w hose denominators are unequal, into

tw^o others, whose denominators are equal. In order therefore

to perform it generally, let
-^

and
-^

be the fractions propos-

ed. First, multiply the two terms of the first fraction by d, we

shall have the fraction
^^ equal to y ; next multiply tlie two

4 —
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terms of the second fraction by h, and we sliall have an equiva-

lent value of it expressed by 7^ ',
thus the two denominators

ai^e become equal. Now, if the sum of the two proposed frac-

tions be required, we may immediately answer that it is—Ti—- 5
bd

and if their difference be asked, we say that it is —"^—. If
bd

the fractions | and \, for example, were proposed, we should

obtain in their stead ^f and 4| ; of which the sum is ^V'*^*^^
the difference \\, [8.]

98. To this part of the subject belongs also the question, of

two proposed fractions, which is the greater or the less ; for, to

resolve this, we have only to reduce the two fractions to the

same denominator. Let us take, for example, the two fractions

I arid
|.

: when reduced to the same denominator, the first be-

comes |:J, and the second ^\, and it is evident that the second,

or f, is the greater, and exceeds the former by ^-^,

Again, let the two fractions | and * be proposed. We shall

have to substitute for them, |J and || ; whence we may con-

clude that I exceeds |, but only by ^^,

99. When it is required to subtract a fraction from an integer,

it is sufficient to change one of the unfts of that integer into a frac-

tion which has the same denominator as that which is to be sub-

tracted ; in the rest of the operation there is no difficulty. If it

be required, for example, to subtract | from 1, we write | in-

stead of 1, and say that | taken from | leaves the remainder
-J.

So -Z^,
subtracted from 1, leaves

-j^^.

If it were required to subtract | from 2, we should write 1

and ^ instead of 2, and we should immediately see that after the

subtraction there must remain l\,

100. It happens also sometimes, that having added two or

more fractions together, we obtain more than an integer ; that

is to say, a numerator greater than tlie denominator : this is a

case which has already occurred, and deserves attention.

We found, for example, article 96, that the sum of the five

fractions ^, f , |» y» and f was y/, and w^e remarked that the

value of this sum was 3 integers and ||, or JJ. Likewise | +
3, or

-^^ 4- ^^2
wi^^cs \l, or \^\, We have only to perform the
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actual division of the numerator by the denominator, to see how

many integers there are for the quotient, and to set down the

remainder. Nearly the same must be done to add together

numbers compounded of integers and fractions ; we first add

the fractions, and if their sum produces one or more integers,

these are added to the other integers. Let it be proposed, for

example, to add 3^ and 2| ; we first take the §um of | and |,

or of I and |. It is J or 1| ; then the sum total is 6^.

CHAPTER X.

Of the Multiplication and Division of Fractions,

101. The rulefor the multiplication of a fraction by an integer9

or whole number, is to multiphj the numerator only by the given

number, and not to change the denominator : thus,

2 times, or twice ^ makes |, or 1 integer ;

2 times, or twice ^ makes | ; and

3 times, or thrice i makes |, or ^ ;

4 times j\ makes 4| or
1-j?^,

or 1|.

But, instead of this rule, we may use that of dividing the denom-

inator by the given integer ; and this is preferable, when it can be

used, because it shortens the operation. Let it be required, for

example, to multiply |- by 3 ; if we multiply the numerator by

the given integer we obtain y', which product we must reduce

to |. But if we do not change the numerator, and divide the

denominator by the integer, we find immediately |, or 2 | for

the given product. Likewise ^| multiplied by 6 gives y , or 31.

102. In general, therefore, the product of the multiplication

of a fraction -7 by c is -7-; and it may be remarked, when the

integer is exactly equal to the denominator, that the product must

he equal to the numerator,

] I taken twice gives 1 ;

So that
[- 1 taken thrice gives 2 ;

J 1 taken 4 times gives 3.

And in general, if we multiply the fraction — by the number

h, the product must be a, as we have already shewn 5 for since
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—
expresses the quotient resulting from the division of the divi-

dend a hy the divisor b, and since it has been demonstrated that

the quotient multiplied by the divisor will give tlie dividend, it

is evident that ^ multiplied by b must produce a.

103. We have shewn how a fraction is to be multiplied by an

integer ; let us now consider also how a fraction is to he divided

by an integer ; this inquiry is necessary before we proceed to the

multiplication effractions by fractions. It is evident, if I have
to divide the fraction | by 2, that the result must be ^ ; and

that the quotient, of
|.

divided by 3 is ^. The rule therefore is,

to divide the numerator by the integer without changing the de-

nominator. Thus :

41 divided by 2 gives -^y ;

II divided by 3 gives ^\ ; and

II divided by 4 gives -^j ; kc.

104. This rule may be easily practised, provided the nume-

rator be divisible by the number proposed ; but very often it is

not : it must therefore be observed that a fraction may be trans-

formed into an infinite number of other expressions, and in that

number there must be some by which the numerator might be

divided by the given integer. If it were required, for example,
to divide | by 2, we should change the fraction into |, and then

dividing the numerator by 2, we should immediately have 4 for

the quotient sought.

In general, if it be proposed to divide the fraction -r by c, we

etc

change it into T-> and then dividing the numerator ac by c,

write
J-

for the quotient sought.

105. When therefore a fraction -r is to be divided by an integer

c, we have only to mnltiply the dercominator by that number, and

leave the numerator as it is. Thus | divided by 3 gives 3/^,
and

|-
divided by 5 gives -/^.

This operation becomes easier when the numerator itself is

divisible by the integer, as we have supposed in article 105.
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For example, -^^ divided by 3 would give, according to our last

rule, /^ ; but by the first rule, which is applicable here, we
obtain

-j^^,
an expression equivalent to ^\, but more simple.

106. AYe shall now be able to understand how one fraction -r

may be multiplied by another fraction -:. We have only to

consider that -7 means that c is divided by d ; and on this prin-

ciple, we shall first multiply the fraction -r by c, which pro-

duces the result -r ; after which we shall divide by d, which

which gives r-^.

Hence the following rule for multiplying fractions ; multiply

separately the numerators and the denominators.

Thus i by I gives the product f, or 4 ;

I by 4 makes ^-^ ;

I by ^% produces ||, or /^ ^ &c-

107. It remains to shew how owe fraction may be divided by

another. We remark first, that if the twofractious have the same

number for a denominator, the division takes place only with

respect to the numerators ; for it is evident, that ^^^ are contain-

ed as many times in -^^
as 3 in 9, that is to say, thrice ; and, in

the same manner, in order to divide -^^ by ^^, we have only to

divide 8 by 9, which gives |. We shall also have /^ in U, 3

times : ^J^ in ^%%, 7 times ; -^j in ^%, f ; &c.

108. But when the fractions have not equal denominators^ we

must have recourse to the method already mentioned for reduc-

inj^ them to a common denominator. Let there be, for exam-
a c

pie, the fraction -r to be divided by the fraction -z ; we first re-

duce them to the same denominator ; we have then
r-j

to be

cb
divided by ir; it is now evident, that the quotient must be

ad
represented simply by the division of ad by be ; which gives r-.
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Hence the following rule : Multiply the numerator of the divi-

dend by the denominator of the divisor, and the denominator of the

dividend by the nnmerator of the divisor ; the first product will be

the numerator of the quotient, and the second will be its denomi-

nator,

109. Applying this rule ts the division of 4 by |, we shall

have the quotient ^|^ ; the division of | by ^ will give f or | or

1 and I ; and i| by f will give »l«, or |.

110. This rule for division is often represented in a manner

more easily remembered, as follows : Invert the fraction which

is the divisor, so that the denominator may be in the place of the

numerator, and the latter be written under the line ; then multiply

the fraction, which is the dividend by this inverted fraction, and

the product will be the quotient sought. Thus | divided by J is

the same as | multiplied by ^, which makes |, or 1 |. Also 4
divided by | is the same as | multiplied by |, which is ^f ; or

51 divided by f gives the same || multiplied by |, the product
of which is ||§, or |.

We see then, in general, that to divide by the fraction -|,
is the

same as to multiply by ^, or 2 ; that division by -i amounts to mul-

iiplication by 4, or by 3, <^c,

111. The number 100 divided by | will give 200; and 1000

divided ^ will give 3000. FuHher, if it were required to divide

1 by -i/^^, the quotient would be 1000; and dividing 1 by

T^W^TT' t^® quotient is 100000. This enables us to conceive

that, when any number is divided by 0, the result must be a

number infinitely great ; for even the division of 1 by the small

fraction ^^--^^^^-^ gives for the quotient the very great num-

ber 1000000000.

112. Every number when divided by itself producing unity,

it is evident that a fraction divided by itself must also give 1 for

the quotient. The same follows from our rule : for, in order to

divide | by |, we must multiply | by 4, and we obtain if, or 1 ;

and if it be required to divide
-j by "r> we multiply -r by — ;

now the product . is equal to 1.
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113. We have still to explain an expression which is fre-

quently used. It may be asked, for example, what is the half

of I ; this means that we must multiply | by ^. So likewise, if

the value of | of | were required, we should multiply | by |,

which produces JJ ; and | of ^^ is the same as /^ multiplied by

|, which produces fj.

114. Lastly, we must here observe, with respect to the signs

-f and —, tlie same rules that we before laid down for integers.

Thus +1 multiplied by— 4, makes— | ; and— | multiplied by—
^, gives 4- ^%. Farther,— | divided by + |, makes — 4f ;

and — I divided by — |, makes + -Jf or + 1.

CHAPTER XI.

Of Square JVhimbers,

115. The product of a number^ when multiplied by itself, is

called a square ; and for this reason, the number, considered in

relation to such a product, is called a square root.

For example, when we multiply 12 by 12, the product 144 is

a square, of which the root is 12.

This term is derived from geometry, which teaches us, that

the contents of a square arc found by multiplying its side by
itself.

116. Square numbers are found therefore by multiplication ;

that is to say, by multiplying the root by itself. Thus 1 is the

square of 1, since 1 multiplied by 1 makes 1 ; likewise, 4 is the

square of 2 ; and 9 the square of 3
; 2 also is the root of 4, and

3 is the root of 9.

We shall begin by considering the squares of natural numbers,
and shall first give the following small table, on the first line of

wiiich several numbers, or roots, are ranged, and on the second

their squares.[9.]

Numbers.

Squares.
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lir. It will be readily perceived, that the series of square
numbers thus arranged has a singular property ; namely, that

if each of them be subtracted from that which immediately
follows, the remainders always increase by 2, and form this

series ;

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, &c.

118. The squares offractions are found in the same manner, by

multiplying any given fraction by itself For example, the square
isl.ofi

The square of
1 h^

1}
4,

-'

1 .

r >

4 .

•5- ?

1 .

IT '

We have only therefore to divide the square of the numerator

by the square of the denominator, and the fraction, which ex-

presses that division, must be the square of the given fraction.

Thusj II is the square of | ; and reciprocally, | is the root

nf 2*

119. When the square of a mixt number, or a number, com-

posed of an integer and a fraction, is required, we have only to

reduce it to a single fraction, and then take the square of that

fraction. Let it be required, for example, to find the square of

2| ; we first express this number by |, and taking the square
of that fraction, we have y, or 6 A, for the value of the square

of 2J. So to obtain the square of 31, we say 3^ is equal to y ;

therefore its square is equal to y/, or to 10 and
-f^.

The
'

squares of the numbers between 3 and 4, supposing them to

increase by one fourth, are as follows :

Numbers.

Squares.
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which shews that by doubling the root, the square becomes 4

times greater. So if the root be Scr, the square is 9aa
; and if

the root be 4a, the square is I6aa. But if the root be a6, the

square is aahb ; and if the root be ahc^ the square is aahhcc.

121. Thus when the root is composed of two, or more factors,

we multiply their squares together ; and reciprocally, if a square

be composed of two, or more factors, of which each is a square, we

have only to mvlliply together the roots of those squares, to obtain

the complete root of the square proposed. Thus, as 2304 is equal

to 4 X 16 X 36, the square root of it is 2 x 4x6, or 48
j
and

48 is found to be the true square root of 2304, because 48 x 48

gives 2304.

122. Let us now consider what must be observed on this sub-

ject with regard to the signs + and —. First, it is evident

that if the root has tlie sign -{-, that is to say, is a positive num-

ber, its square must necessarily be a positive number also,

because + by -f- makes + : the square of + a will be + aa.

But if the root be a negative number, as — a, the square is still

positive, for it is + aa ; we may therefore conclude, that -f aa

is the square both
q/* -f- a and of

— a, and that consequently every

square has two roots, one positive and the other negative. The

square root of 25, for example, is both + 5 and — 5, because

— 5 multiplied by — 5 gives 25, as well as + 5 by -f 5.

CHAPTER XII.

Of Square Roots, and of Irrational J^umbers resulting from them,

123. What we have said in tlie preceding chapter is chiefly

this : that the square root of a given number is nothing but a

number whose square is equal to the given number ; and that

we may put before those roots either the positive or the negative

sign.

124. So that when a square number is given, provided we
retain in our memory a sufficient number of square numbers, it

is easy to find its root. If 106, for example, be the given num-

ber, we know that its square root is 14.

5



54 Mgehru, Sect. 1.

Fractions likewise are easily managed : it is evident, for

example, that ^ is the square root of ff . To he convinced of

this, we have only to take the square root of the numerator, and
that of the denominator.

If the number proposed be a mixt number, as 121, we reduce

it to a single fraction, which here is Y> and we immediately

perceive that |, or 3|, must be the square root of 12|.
125. But when the given number is not a square, as 12 for

example, it is not possible to extract its square root ; or to find

a number, which, multiplied by itself, will give the product 12.

We know, however, that the square root of 12 must be greater
than 3, because 3x3 produces only 9 j and less than 4, because

4x4 produces 16, which is more than 12. We know also, that

this root is less than 3| ; for we have seen that the square of

S|, or J is 12A. Lastly, we may approach still nearer to this

root, by comparing it with 3yL ; for the square of 3-/^, or of 4|
is YfV' OJ' 12 ^l-g,

so that this fraction is still greater than the

root required ; but very little greater, as the difference of the

two squares is only ^^j,
126. We may suppose that as 3J and 3^^^ are numbers greater

than the root of 12, it might be possible to add to 3 a fraction a

little less than
-^j,

and precisely such, that the square of the

sum would be equal to 12.

Let us therefore try with S^, since 4 is a little less than ^j.

Now 3| is equal to y, the square of which is *^\^ , and conse-

quently less by || than 12, which may be expressed by ^^y.

It is therefore proved that 3^ is less, and that 3/^ is greater

than the root required. Let us then try a number a little greater

than 3^) but yet less than 5^^, for example, 3-^^, This number,

which is equal to 41, has for its square V/t'. Now, by reduc-

ing 12 to this denominator, we obtain W^^ ; which shews that

3^*y is still less than the root of 12. viz. by y|y. Let us there-

fore substitute for ^\ the fraction -f^, which is a little greater,

and see what will be the result of the comparison of the square of

5-^«y
with the proposed number 12. The square of 3^\ is Y// ;

now 12 reduced to the same denominator is ^y ; so that 3-/^ is

still too small, thougli only by y|^, whilst S^-g has been found

too great.



Chap. 12. Of Simple Quantities, 35

127. It is evident therefore, that whatever fraction be joined

to 3, the square of tliat sum must always contain a fraction, and

can never be exactly equal to the integer 12. Thus, although

we know tliat the square root of 12 is greater than 5-fj and less

than 3^\, yet we are unable to assign an intermediate fraction

between these two, which, at the same time, if added to 3, would

express exactly the square root of 12. Notwithstanding this,

we are not to assert that the square root of 12 is absolutely and

in itself indeterminate ; it only follows from what has been said,

that this root, though it necessarily has a determinate magni-
tude, cannot be expressed by fractions.

128. There is therefore a sort of numbers wkich cannot he

assigned by fractions, and which are nevertheless determinate

quantities; the square root of 12 furnishes an example. We
call this new species of numbers, irrational numbers ; they occur

whenever we endeavour to find the square root of a number
which is not a sc^uare. Thus, 2 not being a perfect square, the

square root of 2, or the number which, multiplied by itself,

would produce 2, is an irrational quantity. These numbers are

also called surd quantities, or incommensurables,

129. These irrational quantities, though they cannot be ex«

pressed by fractions, are nevertheless magnitudes, of which we

may form an accurate idea. For however concealed the square
root of 12, for example, may appear, we are not ignorant, that it

must be a number which, when multiplied by itself, would

exactly produce 12 ; and this property is sufficient to give us an
idea of the number, since it is in our power to approximate its

value continually.

130. As we are therefore sufficiently acquainted with the nature

of the irrational numbers, under our present consideration, a par-
ticular sign has been agreed on, to express the square roots of all

numbers that are not perfect squares. This sign is written

thus v> and is read square root. Thus, ^12 represents the

square root of 12, or the number which, multiplied by itself,

produces 12. So, ^^ represents the square root of 2 ; ^3" that

of 3 ; ^/| that of f ; and, in general, ^T represents the square
root of the mmber a. Whenever therefore we would express the

.-»%
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square root of a number which is not a square, we need only

make use of the mark v^ hy jilacing it before the number.

131. The explanation, which we have given of irrational num-

bers, will readily enable us to apply to them the known methods

of calculation. For knowing that the square root of 2, multi-

plied by itself, must produce 2
; we know also, that the multipli-

cation y^Y by x/T must necessarily produce 2
; that, in the same

manner, the multiplication \/T by y/T must give 3 ; that \/T by

\/T makes 5 ; that v| ^7 Vi makes | ; and, in general, that

\/T multiplied by ^T produces a.

132. But when it is required to multiply s/T by vtT the product

will be found to be y/jTb ; because we have shewn before, that if a

square has two or more factors, its root must be composed of

the roots of those factors. Wherefore we find the square root

of the product ab, which is v^^? hy multiplying the square root

of a or v^^ by the square root of b or \/T It is evident from

this, that if b were equal to a, we should have \/aa for the pro-

duct of \/^ by vZT Now v^ is evidently a, since aa is the

square of a.

133. In division, if it were required to divide \/^ for exam-

ple, by V67 we obtain ^±; and in this instance the irration-

ality may vanish in the quotient. Thus, having to divide x/Ts

by y/sT the quotient is vV' which is reduced to v/|> and conse-

quently to |, because | is the square of |.

134. When the number, before which we have placed the

radical sign >/, is itself a square, its root is expressed in the usual

way. Thus \/T is the same as 2 ; x/T the same as 3 ; V36 the

same as 6 ; and vi2-J- the same as J, or 3J. In these instances

the irrationality is only apparent, and vanishes of course.

135. It is easy also to multiply irrational numbers by ordi-

nary numbers. For example, 2 multiplied by \/T makes 2 x/T,

and 3 times ^2* makes 3 vsT In the second example, however,

as 3 is equal to x^g^ we may also express 3 times vF by x^W

multiplied by vsT or by v/i8. So 2 x^7 is the same as x/Ta, and

3 x/^ the same as V9^. And, in general, b v^ has the same

'value as the square root of bba, or v^bT; whence we infer recip-

rocally, that when the number which is preceded by the radical
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sign contains a square, we may take the root of that square and

put it before the sign, as we should do in writing b x/a' instead

of v^^oT After this, the following reductions will be easily

understood :

vs;
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138. We may observe lastly, that in order to distin.i^uish the

irrational numbers, we call all other numbers, both integral and

fractional, rational numbers.

So that, whenever \^e speak of rational numbers, we under-

stand integers or fractions.

CHAPTER. XIII.

Of Impossible or Imaginary Quantities, which arise from the

same source.

139. We have already seen that the squares of numbers,

negative as well as positive, are always positive, or affected

with the sign + ; having shewn that — a multiplied by — a

gives -f aa, the same as the product of -f- a by + a. Wherefore,
in the preceding chapter, we supposed that all the numbers, of

which it was required to extract the square roots, were positive.

140. When it is required therefore to extract the root of a

negative number, a very great difficulty arises ; since there is

no assignable number, the square of which would be a negative

quantity. Suppose, for example, that we wished to extract the

root of — 4 5 we require such a number, as when multiplied by

itself, would produce — 4 ; now this number is neither -f 2 nor

— 2, because the square, both of + 2 and of —-2, is -f- 4, and

not — 4.

141. We must therefore conclude, that the square root of a

iiegative number cannot be either a positive number, or a negative

numberf since the squares of negative immbers also take the sign

plus. Consequently the root in question must belong to an entirely

distinct species of numbers ; since it cannot be ranked either

among positive, or among negative numbers.

142. Now, we before remarked, that positive numbers are all

greater than nothing, or 0, and that negative numbers are all less

than nothing, or ; so that whatever exceeds 0, is expressed by

positive numbers, and whatever is less than 0, is expressed by

negative numbers. The square roots of negative numbers,

therefore, are neither greater nor less than nothing. We can-
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not say however, that they are ; for multiplied hy pro-

duces 0, and consequently does not give a negative number.

143. Now, since all numbers, which it is possible to conceive,

are either greater or less than 0, or are itself, it is evident

that we cannot rank the square root of a negative number

amongst possible numbers, and we must therefore say that it is

an impossible quantity. In this manner we are led to the idea

of numbers which from their nature are impossible. These num-

bers are usually called imaginartj quantitieSf because they exist

merely in the imagination.
144. All such expressions, as v/~l, V—2, V—3, V—4, &c.

are consequently impossible, or imaginary numbers, since they

represent roots of negative quantities : and of such numbers we

may truly assert, that they are neither nothing, nor greater tl»an

nothing, nor less than nothing ; which necessarily constitutes

them imaginary, or impossible.

145. But notwithstanding all this, these numbers present

themselves to the mind ; they exist in our imagination, and we
still have a sufficient idea of them ; since we know that by \/—4,

is meant a number which, multiplied by itself, produces — 4.

For this reason also, nothing prevents us from making use of

these imaginary numbers, and employing them in calculation.

146. The first idea that occurs on the present subject is, that

the square of V—3, for example, or the product of v/~3 hy

V—3, must be — 3 ; that the product of vZi by \/~i is — 1 ;

and, in general, that by multiplyingv—a by \/—a, or by taking
the square of \/^a, we obtain — a.

147. Now, as— a is equal to -f a multiplied by — 1, and as

the square root of a product is found by multiplying together
the roots of its factors, it follows that the root of a mul-

tiplied by — 1, or \/—a, is equal to ^'^ multiplied by yZ—l.
Now v/o" is a possible or real number, consequently the whole

impossibility of an imaginary quantity may be always reduced to

v/— 1. For this reason, \/—4 is equal to \/4~ multiplied by
V—1, and equal to 2 V—l, o» account of ^^ being equal to 2,

For the same reason, ^—g is reduced to ^g' x V^ ^^ ^

\/—.1 ; and v—is is equal to 4 \/Zi.
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148. Moreover, as \/'^ multiplied by \/T makes v/o*? we
shall have v/6~ for value ofv—2 multiplied by yCIs ;

and ^47 or

2, for the value of the product of '^—1 by V--4' We see, there-

fore^ that two imaginary numbers, multiplied together, produce a

real, or possible one.

But, on the contrary, a possible number, multiplied by an im-

possible number, gives always an imaginary product : thus, V—S
by X/+5 gives \/1^.

149. It is the same with regard to division ; for v'«~divided

by x/r making p, it is evident that v^ divided v~i will

make \/+4, or 2 5 that v+3 divided by >/Il3 will give \/.^

and that 1 divided by v/—l gives f
"^^

, or v—l ;
because 1 is

equal to v+i*
150. We have before observed, that the square root of any

number has always two values, one positive and the other

negative ; that \/4i for example, is both + 2 and — 2, and that,

in general, we must take— Vo" as well as + \/^ for the square

root of a. This remark applies also to imaginary numbers ;

the square root of
— a is both + v—a and <— \/—a; but we must

not confound the signs -f and —, which are before the radical sign

x/, with the sign which comes after it,

151. It remains for us to remove any doubt which may be

entertained concerning the utility of the numbers of which we
have been speaking; for those numbers being impossible, it

would not be surprising if any one should think them entirely

useless, and the subject only of idle speculation. This however is

not the case. The calculation of imaginary quantities is of the

greatest importance : questions frequently arise, of which we

cannot immediately say, whether they include any thing real

and possible, nor not. Now, when the solution of such a ques-

tion leads to imaginary numbers, we are certain that what is

required is impossible.

In order to illustrate wliat we have said by an example, sup-

pose it were proposed, to divide t]ie number 12 into two such

parts, that tlie product of those parts may be 40. If we resolve

this question by the ordinary rules, we find for the parts sought
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6 + v/~4 and 6— \/--4; but these numbers are imaginary : we

conclude therefore that it is impossible to resolve the question.

The difference will be easily perceived, if we suppose the

question had been to divide 12 into two parts which, multiplied

together, would produce 35 : for it is evident that those parts

must be 7 and 5.

CHAPTER XIV.

Of Cubic JSTumhers,

152. "When a number has been multiplied thrice by itself9 or,

which is the same thing, when the square of a number has been^

multiplied once more by that number, we obtain a product which is

called a cube, or a cubic number. Thus, the cube of a is aaa, since

it is the product obtained by multiplying a by itself, or by a, and

that square aa again by a.

The cubes of the natural numbers therefore succeed each

other in the following order.

Numbers.

Cubes.
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155. If it be required tojind the cube ofa miootnumberf we must

first reduce it to a single fraction, and then proceed in the manner

thai has been described. To find, for example, the cube of 1^,
we must take that of |, which is y , or 3 and |. So the cube

of 1^, or of the single fraction ^, is y/, or 1|| ; and the cube

of 31, or of y is «
J|^ or 34fl.

156. Since aaa is the cube of a, that of ab will be aaabbb ;

whence we see, that if a number has two or more factors, we

mayfind its cube by multiplying together the cubes of those factors.

For example, as 12 is equal to 3 x 4, we multiply the cube of 3,

which is 27, by the cube of 4, which is 64, and we obtain 1728,

the cube of 12. Further, the cube of 2a is Saaa, and conse-

quently 8 times greater than the cube of a ; and likewise, the

cube of Sa is 27aaa, that is to say, 27 times greater than the

cube of a,

157. Let us attend here also to the signs -f- and —. It is

evident that the cube of a positive number + a must also be

positive, that is + aaa. But if it be required to cube a negative

number— a, it is found by first taking the square, which is

-I- aa, and then multiplying, according to the rule, this square

by— a, which gives for the cube required — aaa. In this

respect, therefore, it is not the same with cubic numbers as with

squares, since the latter are always positive : whereas the cube of— 1 is — 1, that of
— 2 is — 8, that of

— 3 is — 27, and so on.

CHAPTER XV.

Of Cube Boots, and of Irrational Mimbers resulting from them.

158, As we can, in the manner already explained, find the

cube of a given number, so, when a number is proposed, we may
also reciprocally find a number, which, multiplied thrice by itself,

will produce that number. The number here sought is called,

with relation to the other, the cube root. So that the cube root of

a given number is the number whose cube is equal to that given

number.
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159. It is easy therefore to determine the cube root, when the

number proposed is a real cube, such as the examples in the last

chapter. For we easily perceive that the cube root of 1 is 1 ;

that of 8 is 2 ; that of 27 is 3 ; that of 64 is 4, and so on. And,
in the same manner, the cube root of— 27 is — 3 ; and that of
— 125 is — 5.

Farther, if the proposed number be a fraction, as
^»y,

the cube

root of it must be | ; and that of
j^-^\

is ^, Lastly, the cube

root of a mixt number 2|^ must be |, or 1^ ; because 2|^ is

equal to -|^.

160. But if the proposed number be not a cube, its cube root

cannot be expressed either in integers, or in fractional numbers.

For example, 43 is not a cubic number ; I say therefore that it

is impossible to assign any number, either integer or fractional,

whose cube shall be exactly 43. We may however affirm, that

tlie cube root of that number is greater than 3, since the cube

of 3 is only 27 ; and less than 4, because the cube of 4 is 64.

We know therefore, that the cube root required is necessarily
contained between the numbers 3 and 4.

161. Since the cube root of 43 is greater than 3, if we add a

fraction to 3, it is certain that we may approximate still nearer

and nearer to the true value of this root ; but we can never

assign the number which expresses that value exactly ; because

the cube of a mixt number can never be perfectly equal to an

integer, such as 43. If we were to suppose, for example, 3|, or

I to be the cube root required, the error would be
-J ; for the

cube of { is only ^i^, or 42|.

162. This therefore shews, that the cube root of 45 cannot he

expressed in any way, either hy integers or by fractions. How-

ever we have a distinct idea of the magnitude of this root ;

3

which induces us to use, in order to represent it, the sign ^,
which we place before the proposed number, and which is read

cube rootf to distinguish itfrom the square root, which is often called

3

simply the root. Thus v'43 means the cube root of 43, that is to

say, tlie number whose cube is 43, or which, multiplied thrice

by itself, produces 43.
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163. It is evident also, that such expressions cannot belong
to rational quantities, and that they rather form a particular

species of irrational quantities. They have nothing in common
with square roots, and it is not possible to express such a cube
root by a square root ; as, for example, by v^i2 ; for tlie square
of vr2 being 12, its cube will be 12 v/i2> consequently still irra-

tional, and such cannot be equal to 43.

164. If the proposed number be a real cube, our expressions

become rational ; v^r is equal to 1 ; ys" is equal to 2; ^^ is

equal to 3 ; and, generally, Vaaa is equal to a.

156. Ifit were proposed to multiphj one mbe root, ^/^ by another,

Vb, the product must be ^/ab ; for we know that the cube root of

a product ab is found by multiplying together the cube roots of
3 3

the factors. Hence, also, ij we divide ^a by ^V, the qu-otient

will be fi..

\b
3 a

166. We furtlier perceive, that 2 \/a, is equal to \/iZ, because
3 _ 3 _ 3 _ 3

2 is equivalent to x/8 -,

that 3 \/a is equal \/27a, and b ^a is
3

equal to \/abbb. So, reciprocally, if the number under the radi-

cal sign has a factor which is a cube, we may make it disappear

by placing its cube root before the sign. For example, instead
3_ 3_ '3_ 3

of \/64a we may write 4 \/a ;
and 5 \/a instead of \/i25a.

3 _ 3 _
Hence v^ie is equal to 2 \/2, because 16 is equal to 8 x 2.

167. When a number proposed is negative, its cube root is

not subject to the same difficulties that occurred in treating of

square roots. For, since the cubes of negative numbers are

negative, it follows that the cube roots of negative numbers are
3 3 _

only negative. Thus, v—^ i*5 equal to — 2, and V—27 to—• 3.
3 3 3_

It follows also, that v^—12 is the same as — vi2> and that \/—a
3

may be expressed by — \/a» Whence we see, that the sign
—

,

when it is found after the sign of the cube root, might also have

been placed before it. We are not therefore led here to impos-

sible, or imaginary numbers, which happened in considering the

square roots of negative numbers.
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CHAPTER XVI.

(ff Powers in general,

168. The product, which we obtain by multiplying a mimber

several times by itself,
is called a power. Thus, a square which

arises from the multiplication of a iiumher by itself, and a cube

which we obtain by multiplying a number thrice by itself, are

powers. TVe say also in theformer case, that the number is raised

to the second degree, or to tJie second power ; and in the latter, that

the number is raised to the third degree, or to the third power.

169. We distinguish those powers from one another by the

mimber of times that the given number has been multiplied by
itself. For example, a square is called the second power,

because a certain given number has been multiplied twice by
itself ;

and if a number has been multiplied thrice by itself, we

call the product the third power, which therefore means the

same as the cube. Multiply a number four times by itself, and

you will have its fourth power, or what is commonly called the

hi-quadrate. From what has been said it will be easy to under-

stand what is meant by the fifth, sixth, seventh, &c. power of a

number. I only add, that the names of these powers, after the

fourth degree, cease to have any other but these numeral dis-

tinctions.

170. To illustrate this still better, we may observe, in the

first place, that the powers of 1 remain always the same ; because,

whatever number of times we multiply 1 by itself, the product
is found to be always 1 . We shall therefore begin by repre-

senting the powers of 2 and of 3. They succeed in the following

order j
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Powers. Ofthe number 2.
'—-^— Of the number 3.

V i

2 3
4 9
8 27

16 81

32 243
64 729
128 2187
256 6561
512 19683

1024 59049
2048 177147
4096 531441
8192 1594323
16384 4782969
32768 14348907
65536 43046721
131072 129140163
262144 387420489

But the powers of the number 10 are the most remarkable ;

for on these powers the system of our arithmetic is founded, A
few of them ranged in order, and beginning with the first power,
are as follows :

I. 11. III. IV. V. VI.

10, 100, 1000, 10000, 100000, 1000000, 6lC.

171. In order to illustrate this subject, and to consider it in a

more general manner, we may observe, that the powers of any

number, a, succeed each other in the following order :

I. II. III. IV. V. VI.

a, aa, aaa, aaaa, aaaaa, aaaaaa, &c.

But we soon feel the inconvenience attending this manner of

writing the powers, which consists in the necessity of repeating

the same letter very often, to express high powers ; and the

reader also would have no less trouble, if he were obliged to

count all the letters, to know what power is intended to be

represented. The hundredth power, for example, could not be

conveniently written in this mariner ; and it would be still more

difficult to read it.

172. To avoid this inconvenience, a much more commodious

method of expressing such powers has been devised, which from
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its extensive use deserves to be caFefully explained; vi%. To

express, for example, the hundredth power, we simply write the

number 100 above the number whose hundredth power we would

express, and a little towards the right-hand; thus a* «« means

a raised to 100, and represents the hundreth power of a. It must

be observed, that the name exponent is given to the number writ-

ten above that whose power, or degree, it represents, and which in

the present instance is 100.

173. In the same manner, o^ signifies a raised to 2, or the

second power of a, which we i^present sometimes also by aa,

because both these expressions are written and understood with

equal facility. But to express the cube, or the third power aaa,

we write a^ according to the rule, that we may occupy less room.

So a* signifies the fourth, a* the fifth, and a« the sixth power
of a.

174. In a word, all the powers of a will be represented by a,

a^9 a^fa^, a*, a®, a'' , a®, a', a*°, &c. Whence we see that in

this manner, we might very properly have written a^ instead

of a for the first term, to shew the order of the series more

clearly. In fact a* is no more than a, as this unit shews that the

letter a is to be written only once. Such a series of powers is

called also a geometrical progression, because each term is

greater by one than the preceding.

175. As in this series of powers each term is found by multi-

plying the preceding term by a, which increases the exponent

by 1 ; so when any term is given, we may also find the preced-

ing one, if we divide by a, because this diminishes the exponent

by 1. This shews that the term which precedes the first term a*

must necessarily be —, or 1 ; now, if we proceed according to

the exponents, we immediately conclude, that the term which

precedes the first must be a^. Hence we deduce this remark-

able property ; that a° is constantly equal to 1, however great or

small the value of the number a may be, and even when a is noth-

ing ; that is to say, a^ is equal to 1.

176. We may continue our series of powers in a retrograde

order, and that in two different ways ; first, by dividing always

by a, and secondly by diminishing the exponent by unity. And
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it is evident that, whether we follow the one or the other, the

terms are still perfectly equal. This decreasing series is

represented, in both forms, in the following table, which must
be read backwards, or from right to left.

1
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We may observe, that those powers only become negative,

whose exponents are odd numbers, and that, on the contrary,

all the powers, which have an even number for the exponent,

are positive. So that, the third, fifth, seventh, ninth, &c.

powers have all the sign
—

; and the second, fourth, sixth,

eighth, &c. powers are affected with the sign +.

CHAPTER XVII.

Of the calculati{)n of Powers.

180. We have nothing in particular to observe with regard

to the addition and subtraction of powers ; for we only repre-

sent these operations by means of the signs -|- and —, when the

powers are different. For example, a' -f a* is the sum of the

second and third powers of a ; and a* — a^ is what remains

when we subtract thefourth power of Sifrom thefifth ; and neither

of these results can he abridged. When we have powers of the

same kind, or degree, it is evidently unnecessary to connect

them by signs ;
a^ + a* makes 2a 3, &c.

181. But, in the multiplication of powers, several things

require attention.

First, when it is required to multiply any power of a by a,

we obtain the succeeding power ; that is to say, the power whose

exponent is greater by one unit. Thus a*, multiplied by a,

produces a^ ; and a' multiplied by a, produces a*. And, in

the same manner, when it is required to multiply by a the

powers of that number which have negative exponents, we must

add 1 to the exponent. Thus, a~i multiplied by a produces a'* or

1
,•
which is made more evident by considering that a~* is equal

to —, and that the product of — by a being —, it is consequently

equal to 1. Likewise a"^ multiplied by a, produces a"^, or

—
; and a~^°, multiplied by a, gives a~^, and so on.

(*

182. Next, if it be required to multiply a power of a by aa,

or the second power, I say that the exponent becomes greater

by 2. Thus, the product of a* by a* is a* ; that of a* by a^ is

7
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ft* ; that of a* by a* is a® ; and, more generally a" multiplied

by a^ makes a"+2. With regard to negative exponents, we shall

have a*, or a^for the product of sr^ by 'd^ ; for a"^ being equal

to — , it is the same as if we had divided aa by a ; consequently

the product required is — , or a. So a"^, multiplied by a',

produces a<>, or 1 ; and a"^, midtiplied by a*, produces a""^.

183. It is no less evident that, to multiply any power of a by
G^, we must increase its exponent by three units ; and tliat

consequently the product of a" by a^ is a"+^. And whenevr it

is required to midtiply together two powers of a, the product xvill

he also a power of a, and a power wlwse exponent will be the sum

of those of the two given powers. For example, ft* multiplied by
a* will make a^, and a^ ^

multiplied by a'' will produce ft^ ®, kc»

184. From these considerations we may easily determine the

highest powers. To find, for instance, the twenty-fourth power
of 2, I multiply the twelfth power by the twelfth power, because

2*"* is equal to 2^2 >^ 2^*. Now we have already seen that

2** is 4096 ; I say therefore that the number 16777216, or the

product of 4096 by 4096, expresses the power required, 2^ *,

185. Let us proceed to division. We shall remark in the

first place, that to divide a power ojaby 2l, we must subtract 1

from tlie exponent, or diminish it by unity. Thus a*, divided by

ft, gives a^ ; ft0, or 1, divided by a, is equal to ft""* or — ; ft-^,

divided by a, gives ft"-*.

186. If we have to divide a given power of a by ft*, we must

diminish the exponent by 2 ; and if by a^, we must subtract

three units from the exponent of the power proposed. So, in

general, whatercer power of 2i it is required to divide by another

power 0^ a, the rule is always to subtract the exponent of the se<;o7id

from the exponent of the first of these powers. Thus a^^, divided

by ft% will give a^ ; ft®, divided by ft^, will give a~^ ; and a'^,

divided by ft'*, will give a~^.

187. From what has been said above, it is easy to understand

the method of finding the powers of powers, this being done by

multiplication. When we seek, for example, the square, or the

second power of a^, we find (i-^ ; and in the same manner we
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find a»* for the third power, or the cuhe of a*. To obtain the

square of a power, we have oidy to d&iible its exponent ; for its cuhe,

we must triple the expment; and so on. The square of a" is

a*"; the cube of a" is a^"; the seventh power of a" is a^", &c.

188. The square of a', or the square of the square of a,

being a^, we see why the fourtli power is called the bi-quadrate.

The square of a^ is a® ; the sixth power has therefore received

the name of the square-cubed.

Lastly, the cube of a^ being a^, we call the ninth power the

cuho-cuhe. No other denominations of this kind have been

introduced for powers, and indeed the two last are very little

used.

CHAPTER XVIII.

Of Roots with relation to Powers in general.

189. Since the square root of a given number is a number,
whose square is equal to that given number ; and since the cube

root of a given number is a number, whose cube is equal to that

given number ; it follows that any number whatever being given,
we may always indicate such roots of it, that their fourth, or

their fifth, or any other power, may be equal to the given num-
ber. To distinguish these diiferent kinds of roots better, we

shall call the square root, the second root ; and the cube root, the

third root; because according to this denomination, we may call

the fourth root^ that whose biquadrate is equal to a given num-

ber
; and thefifth root, that whose fifth power is equal to a given

number, &c.

190. As the square, or second root, is marked by the sign

v/, and the cubic or third root by the sign \^, so the fourth root

is represented by the sign \/ ;
the fifth root by the sign -v/ ; and

so on ; it is evident that according to this method of expression,
2

the sign of the square root ought to be \/. But as of all roots

this occurs most frequently, it has been agreed, for the sake of

brevity, to omit the number 2 in the sign of this root. So that
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when a radical sign has no number prefixed, this always shews
that the square root is to be understood,

191. To explain this matter still further, we shall here exhibit

the different roots of the number a, with their respective values :

Va
"I

fSd ^

3

V« 3d

V« r*
is the

<^ 4th

a,

a,

>root of
<^ a.

s

s/a J
So that conversely ;

The 2d

5th

6th

The 3d

The 4th

The 5th

3 _

> power of <

a, and so on.

a,

a.

s/a )>
is equal to -{ a,

a,

s _
\/a

Va J La,The 6th

and so on.

192. Whether the number a therefore be great or small, we
know what value to affix to all these roots of different degrees.

It must be remarked also, that if we substitute unity for a, all

those roots remain constantly 1 ; because all the powers of 1

have unity for their value. If the number a be greater than 1,

all its roots will also exceed unity. Lastly, if that number be

less than 1, all its roots will also be less than unity.

193. When the number a is positive, we know from what was

before said of the square and cube roots, that all the other roots

may also be determined, and will be real and possible numbers.

But if the number a is negative, its second, fourth, sixth, and

all even roots, become impossible, or imaginary numbers ;

because all the even powers, whether of positive, or of negative

numbers, are affected with the sign +. Whereas the third, fifth,

seventh, and all odd roots, become negative, but rational ; because

the odd powers of negative numbers, are also negative.
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194. We have here also an inexhaustible source of new kinds

of surd, or irrational quantities ; for whenever the number a is

not really such a power, as some one of the foregoing indices

represents, or seems to require, it is impossible to express

that root either in whole numbers or in fractions ; and conse-

quently it must be classed among the numbers which are called

irrational.

CHAPTER XIX.

Of the Method of representing Irrational J^umhers hy Fractional

Exponents,

195. We have shewn in the preceding chapter, that the square

of any power is found by doubling the exponent of that power,

and that in general the square, or the second power of a", is

a'". The converse follows, viz. that the square root of the power
a*° is fl", and that it is found hy taking half the exponent of that

power, or dividing it by 2.

196. Thus the square root of a^ is aM that of a"^ is a* .

that of a" is a^ ; and so on. And as this is general, the square
S 5

root of a^ must necessarily be a^ and that of a* d^. Con-

sequently we shall have in the same manner d^ for the square

root of a^ ; whence we" see that a^ is equal to ^a. ; and this

new method of representing the square root demands particular

attention.

197. We have also shown that, to find the cube of a power as

«", we must multiply its exponent by 3, and that consequently

that cube is a^".

So conversely, when it is required to find the third or cube

root, of the power a^", we have only to divide that exponent by

3, and may with certainty conclude, that the root required is a".

Consequently a^, or a, is the cube root of a* ; a* is that of a^ ;

a 3 is that of a^ ; and so on.

198. There is nothing to prevent us from applying the same

reasoning to those cases in which the exponent is not divisible
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by 3, and concluding that the cube root of a* is a^, and that the

cube root of a* is a^, or a^^. Consequently the third, or

cube root of a also, or o*, must be a'. Whence it appears that

a^ is equal to ^Z
199. It is the same with roots of a higher degree. The

fourth root of a will be a*, which expression has the same value
4 1

as v«. The fifth root of a will be a^, which is consequently

equivalent to -y/^; and the same observation may be extended

to all roots of a higher degree.

200. We might therefore entirely reject the radical signs at

present made use of, and employ in their stead the fractional

exponents which we have explained ; however, as we have been

long accumstomed to those signs, and meet with them in all

books of algebra, it would be wrong to banish them entirely
from calculation. But there is sufficient reason also to employ,
as is now frequently done, the other method of notation, because

it manifestly corresponds with the nature of the thing. In fact,

we see immediately that o^ is the square root of a, because we

know that the square of a', that is to say, a^ multiplied by

fl"*, is equal to a* or a,

201. What has now been said is sufficient to shew how we
are to understand all other fractional exponents that may occur.

4
If we have, for example, a^, this means that we must first

take the fourth power of a, and then extract its cube or third
4 S _

root; so that a"* is the same as the common expression, Va-*.
3

To find the value of a^, we must first take the cube, or the

third power of o, which is a^, and then extract the fourth root
3^ 4 4

of that power; so that a* is the same as v^as. So, aJ is

equal to \/^4., &c.

202. When the fraction which represents the exponent ex-

ceeds unity, we may express the value of the given quantity in
5

another way. Suppose it to be a^ ; this quantity is equivalent

to a ^, which is the product of a* by aJ, Now a^ being
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equal to \/a, it is evident that a^ is equal to a* \/a. So o ^ ,

31 3_ 15 33
or a ^ is equal to a^ \/a and a ^

, that is a ^, expresses

a^ V^. These examples are sufficient to illustrate the great

utility of fractional exponents.

203. Their use extends also to fractional numbers : let there

be given
—=, we know that this quantity is equal to -^ 5 now

we have seen already that a fraction of the form — may be ex-

pressed by a""" ; so instead of —t= we may use the expression
\/a

1 11
a~^. In the same manner, -— is equal to or^. Again, let

be propose
fl2

the quantity
-— be proposed ; let it be transformed into this.

3 /

"^f
which is the product of a' by a-* ; now this product is equi-

a*

valent to a"^, or to a ^, or lastly to \/a . Practice will ren-

der similar reductions easy.

204. We shall observe, in the last place, that each root may
be represented in a variety of ways. For >/^ being the same

1

as a^, and ^ being transformable into all these fractions, |, |,i,

tV» TS9 ^^' i* is evident that v/a is equal to ^as, and to ^/a^ and
8 _ 3 _

to v/a4 and so on. In the same manner y/a which is equal

to a^, will be equal to -v/as, and to v^^j and to \/a4>. And
we see also, that the number a, or aS might be represented by
the following radical expressions :

S_ 3_ 4_ 5__
\/a2j V*^' \/'a4>9 \/aSf &C.

205. This property is of great use in multiplication and
, 2 _ 3_

division : for if wc have, for example, to multiply \/a by \/a,
6 _ 3 6 3

we write ^as, for \/a, and \/a3 instead of >/«/ i^ this

manner we obtain the same radical sign for both, and the mul-
6

tiplication being now performed, gives the product \/as» The
111 1

same result is deduced from a^'^^, the product of n^ multi-
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plied by a^ ; for J + | is f, and consequently the product

required is a* or Va«.
9 1 3 1

If it were required to divide
-y/a, or a», by v^a, or a"^, we

I 1 3 _^ 2

should have for the quotient a* "^^ or a^ ^, that is to say

a^, or ^Z

CHAPTER XX.

Of the different Methods of Calculation, and of their mutual

Connexion,

206. Hitherto we have only explained the different methods

of calculation : addition, subtraction, multiplication, and divis-

ion ; the involution of powers, and the extraction of roots. It

will not be improper therefore, in this place, to trace back the

origin of these different methods, and to explain the connexion

which subsists among them ; in order that we may satisfy our-

selves whether it be possible or not for other operations of the

same kind to exist. This inquiry will throw new light on the

subjects which we have considered.

In prosecuting this design, we shall make use of a new cha-

racter, which may be employed instead of the expression that

has been so often repeated, is equal to ; this sign is =, and is

read is equal to. Thus, when I write a= b, this means that a

is equal to b : so, for example 3x5 = 15.

207. The first mode of calculation which presents itself to the

mind, is undoubtedly addition, by which we add two numbers

together and find their sum. Let a and b then be the two given

numbers, and let their sum be expressed by the letter c, we shall

have a -f- & = c. So that whe^i we know the two numbers a and

5, addition teaches us to find the number c,

208. Preserving this comparison a + b= c, let us reverse the

question by asking, how we are to find the number 6, when we

know the numbers a and c.

It is required therefore to know what number must be added

to a, in order that the sum may be the number c. Suppose, for

example, a = 3 and c = 8 ; so that we must have 3 -|- 6 = 8 ;
b
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will evidently be found by subtracting 3 from 8. So, in general,

to find bf we must subtract a from c, whence arises 6 = c— a;
for by adding a to both sides again, we have 6-|-a=c— a-fa,

that is to say = c, as we supposed.

Such then is the origin of subtraction.

209. Subtraction therefore takes place, when we invert the

question which gives rise to addition. Now the number which

it is required to subtract may happen to be greater than that

from which it is to be subtracted ; as, for example, if it were

required to subtract 9 from 5 : this instance therefore furnishes

us with the idea of a new kind of numbers, which we call nega-

tive numbers, because 5— 9 = —'4.

210. When several numbers are to be added together which

are all equal, their sum is found by multiplication, and is called

a product. Thus ab means the product arising from the multi-

plication of a by b, or from the addition of a number a to itself

b number of times. If we represent this product by the letter

c, we shall have ab =.c; and multiplication teaches us how to

determine the number c, when the numbers a and b are known.

211. Let us now propose the following question : the numbers

a and c being known, to find the number b, Supjjose for

example, a = 3 and c = 15, so that S& =15, w^e ask by what

number 3 must be multiplied, in order that the product may be

15 : for the question proposed is reduced to this. Now this is

division : the number required is found by dividing 15 by 3 ;

and therefore, in general, the number b is found by dividing c

by a ; from which results the equation 5 = —.

212. Now, as it frequently happens that the number c cannot

be really divided by the number «, while the letter b must how-

ever have a determinate value, another new kind of numbers

presents itself; these are fractions. For example, supposing
a = 4, c= 3, so that 46 = 3, it is evident that b cannot be an

integer, but a fraction, and that we shall have 6 = |.

213. We have seen that multiplication arises from addi-

tion, tliat is to say, from the addition of several equal

quantities. If we now proceed further, we shall perceive
that from the multiplication of several equal quantities to-
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gether powei*s ai'e derived. Those powers are represented in
a general manner by tlie expression a\ which signifies that the

number a must be multiplied as many times by itself as is

denoted by the number b. And we know from what has been

already said, that in the present instance a is called the root, b

the exponent, and a* the power.
214. Further, if we represent this power also by the letter c,

we have a* = c, an equation in which three letters a, b, c, are

found. Now we have shewn in treating of powers, how to find

the power itself, that is, the letter c, when a root a and its

exponent b are given. Suppose, for example, a =5, and 6=3,
so that cz=5^ ; it is evident that we must take the third power
of 5, which is 125, and that thus c= 125.

215. \Ye have seen how to determine the power c, by means
of the root a and the exponent 6; but if we wish to reverse the

question, we shall find that this may be done in two ways, and
that there are two different cases to be considered : for if two
of these three numbers a, &, c, were given, and it were required
to find the third, we should immediately perceive that this

question admits of tliree different suppositions^ and consequently
three solutions. We have considered the case in which a and 6

were the numbers given, we may therefore suppose further that

c and fl, or c and b are known, and that it is required to deter-

mine the third letter. Let us point out therefore, before we

proceed any further, a very essential distinction between invo-

lution and the two operations which lead to it. When in

addition we reversed the question, it could be done only in one

way ; it was a matter of indifference whether we took c and a,

or c and b, for the given numbers, because we might indiffer-

ently write a -f- 6, or & -f a. It was the same with multiplica-

tion ; we could at pleasure take the letters a and b for each

other, the equation ab = c being exactly the same as ba = c.

In the calculation of powers, on the contrary, the same thing

does not take place, and we can by no means write b° instead of

a*. A single example will be sufficient to illustrate this : let a

= 5, and 6 = 3; we have a!' z=z5^ =z 125. But 6« = 3* = 243 :

two very different results.



SECTION SECOND.

•F THE DIFFERENT METHODS OF CALCULATING COMPOUND QUANTITIEgv

CHAPTER I.

Of the Mdition of Compound ^antities. itAii

ARTICLE 216.

When two or more expressions, consisting of several terms,

are to be added together, the operation is frequently represented

merely by signs, placing each expression between two paren-

theses, and connecting it with the rest by means of tl\e sign +.

If it be required, for example, to add the expressions o + 6 -f c

and d -f- e +/, we represent the sum thus :

(a + 6 + c) + (fi + e +/
217. It is evident that this is not to perform addition, but only

to represent it. We see at the same time, however, that in

order to perform it actually, we have only to leave out the

parentheses ; for as the number d -f e +/ is to be added to the

other, we know that this is done by joining to it first -f rf,

then + e, and then +/; which therefore gives the sum a -^-h {-

The same method is to be observed, if any of the terms are

affected with the sign— ; they must be joined in the same way,
by means of their proper sign.

218. To make this more evident, we shall consider an exam-

ple in pure numbers. It is proposed to add the expression 15— 6 to 12— 8. If we begin by adding 15, we shall have 12
— 8-1-15; now this was adding too much, since we had only
to add 15 — 6, and it is evident that 6 is the number which we
have added too much. Let us therefore take this 6 away by
writing it with the negative sign, and we shall have the true

sum, 12 — 8 -f 15 —- 6,
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which sliews that the sums are found by writing all the terms,
each with its proper sign,

219. If it were required therefore to add the expression d— e—/ to c— 6 + c, we should express the sum thus :

a — 6 + c-frf — e — /,

remarking however that it is of no consequence in what order

we write these terms. Their place may be changed at pleasure,

provided tlieir signs be preserved. This sum might, for exam-

ple, be written thus :

c — e + a —/ -f rf — 6.

220. It frequently happens, that the sums represented in

this manner may be considerably abridged, as when two or

more terms destroy each other ; for example, if we find in the

same sum the terms -f- a — a, or 3a — 4a + a .• or when two

or more terms may be reduced to one. Examples of this second

reduction :

3a + 2a = 5fl ; 7b — Sb = + 4b ;— 6c 4- 10c = + 4c ;

5a— 8a = — 3a ;
— 7b + b=: — 6& ;— 5c — 4c = — 7c

2a — 5a -f- a = — 2a ; — S6 — 56 + 26 =— 6&.

Whenever two or more terms, therefore, are entirely the same with

regard to letters, their sum may be abridged : but those cases

must not be confounded with such as these, 2aa + 3a, or 26^

^— 6*, which admit of no abridgment.

221. Let us consider some more examples of reduction ; the

following will lead us immediately to an important truth. Sup-

pose it were required, to add together the expressions a + 6 and

a— b; our rule gives a -{-b -\- a — b; now a -f- a = 2a and b

— 6 = 0; the sum then is 2a .• consequently if we add together

the sum of two numbers (a 4- 6) and their difference (a— 6,)

we obtain the double of the greater of those two numbers.

Further examples :

3a — 26 — c

56 — 6c 4- a

4a + 36— 7c

a 3 — QdQjf 4. 2abb
— aa6 4- 2a66 — 6*

a3 — 3aa6 4. 4 a66— 6^
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CHAPTER. 11.

Of the Subtraction of Compound Quantities.

222. If we wish merely to represent subtraction, we Inclose

each expression within two parentheses, joining, by the sign—,

the expression which is to be subtracted to that from which we
have to subtract it.

When we subtract, for example, the expression d — e +/
from the expression a — 6 -f c, we write the remainder thus :

(-a
— b + cj-^fd-^e ^f) ;

and this method of representing it sufficiently shews, which of

the two expressions is to be subtracted from the other.

223. But if we wish to perform the actual subtraction, we
must observe, first, when we subtract a positive quantity -f b

from another quantity a, we obtain a — b : and secondly, when
we subtract a negative quantity — b from a, we obtain a -\-b ;

because to free a person from a debt is the same as to give him

something.

224. Suppose, now, it were required to subtract the expres-
sion b — d from the expression a'-^Cy we first take away b ;

which gives a — c — b. Now this was taking too much away
by the quantity d, since we had to subtract only b— d; we must

therefore restore the value of d, and shall then have

a — c— b -{• d;
whence it is evident, that the terms of the expression to be sub-

tracted must change their signs, and be joined, with the contrary

signs, to the terms of the other expression.

225. It is easy, therefore, by means of this rule, to perform

subtraction, since we have only to write the expression from

which we are to subtract, such as it is, and join the other to it

without any change beside that of the signs. Thus, in the first

example, where it was required to subtract the expression d— e

4-/ from a— 6 -f c, we obtain a— b -\- c— d-f-e —/.

An example in numbers will render this still more clear. If

we subtract 6 — 2 -|- 4 from 9 — 3 -f 2, we evidently obtain

9 — 3 -{- 2—• 6-f-2 — 4;
for 9 — 3 -f2 = 8 J also, 6 — 2+4 = 85 now 8 — 8 := 0.
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226. Subtraction being therefore subject to no difficulty, we
have only to remark, that, if there are found in the remainder

two, or more terms which are entirely similar with regard to

the letters, that remainder may be reduced to an abridged form,

by the same rules which we have given in addition.

227. Suppose we have to subtract from a -f &, or from the

sum of two quantities, their difference a— 6, we shall then have

a + b — a + 6 ; now a — a = 0, and 6 + 6 = 2& ; the remain-

der sought is therefore 2&, that is to say, the double of the less

of the two quantities.

228. The following examples will supply the place of further

illustrations :

aa-^-ah + 6&

hb -^ab— an
3a^-4& + 5c

26 4. 4c— 6a
a^ -f-3ao& -f 5abb -f b^

as — Saab -f Sabb— b^
V/a_-h2 V6_

2aa 9a— 6b + c. 6aab + Qb^. + 5V6

CHAPTER III.

Of the Multiplication of Compound ^antities.

S29. Whex it is only required to represent multiplication,

we put each of the expressions, that are to be multiplied together,

.within two parentheses, and join them to each other, sometimes

without any sign, and sometimes placing the sign x between

them. For example, to represent the product of the two expres-

sions a — b + c and d— e -|- /, when multiplied together, we
write

(^a^b + cjx Cd — e^f.J
This method of expressing products is much used, because it

immediately shews the factors of which they are composed.
230. But to shew how a multiplication is to be actually per-

formed, we may remark, in the first place, that in order to

multiply, for example, a quantity, such as a — b -^ c, by 2,

each term of it is sepai^ately multiplied by that number ; so that

the product is

2a— 2& -f. 2c.
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Now the same thing takes place with regard to all other

numbers. If d were the number, by which it was required to

multiply the same expression, we should obtain

ad — hd { cd,

231. We just now supposed that d was a positive number ; but

if the factor were a negative number, as — e, the rule formerly

given must be applied ; namely, that two contrary sigiis multi-

plied together produce —, mid that two like signSi give +.
We shall then have ;

— ae -i-be
— ce.

232. To shew how a quantity, A, is to be multiplied by a

compound quantity, d — e ; let us first consider an example in

common numbers, supposing that A is to be multiplied by 7— 3.

Now it is evident, that we are here required to take the quad-

ruple of A : for if we first take A seven times, it will then be

necessary to subtract 3A from that product.

In general, therefore, if it be required to multiply by d— e,

we multiply the quantity A first by d and then by e, and sub-

tract this last product from the first : whence results dA— eA.

Suppose now A = a— &, and that this is the quantity to be

multiplied by d— e; we shall have

dA =:. ad — hd

eA = ae— be

whence the product required = ad— bd— ae + be,

233. Since we know therefore the product (a— 6) X (cd
—

e,)

and cannot doubt of its accuracy, we shall exhibit the same

example of multiplication under the following form :

a— b

d— e

ad— bd— ae + be.

This shews, that we must multiply each term of the upper ex-

pression by each term of the lower^ and that, with regard to the

signs, we must strictly observe the rule before given ; a rulo^

which this would completely confirm, if it admitted of the least

doubt.
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234. It will be easy, according to this rule, to perform the

following example, which is, to multiply a + ft by a— b:

a+&
a— b

aa -f ab

— ab — bb

Product aa— bb.

235. Now we may substitute, for a and b, any determinate

numbers ; so that the above example will furnish the following

theorem ; viz. The product of the sum of two numbers, multU

plied by their difference, is equal to the difference of the squares of

those numbers. This theorem may be expressed thus :

(a + 6) X (a
— b)=zaa— bb.

And from this, another theorem may be derived ; namely.

The difference of two square numbers is alwaijs a product, and

divisible both by the sum and by the difference of the roots of those

two squares ; consequently the difference of two squares can never

be a prime number,

236. Let us now perform some other examples :

I.) 2a— 3

a +2

2aa— 5a

+ 4a

Qaa + a — 6.

II.) 4aa — 6a 4- 9

2a + 3

8a* — 12aa + 18a

4- 12aa— 18a + 27

8a3 4-27
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III.) 3aa— 2ab — bb

2a— 4b

6a 3 — 4aab — 2abb

— I2aab + Sabb + 46»

6fl3— iQaaf, ^ Qabb + 46«.

IV.) aa + 2ab + Qbb

aa— 2ab + 2bb

a* 4- Sa^ft + 2aabb

— 2a*6 — 4aabb — 4ab^

4- 2fla66 -f- 4ab^ + 4&*

a* + 464

V.) 2aa— 3a6— 4bb

3aa — 2«6 + bb

6a^— 9a3 — 12aabb

— 4aS6 + 6aabb + Safe^

+ 2aa66 — Sab^ — 46'*

6a4— 13^3^_ 4aabb + 5a6«— 46*

VI.) aa -{-bb -}. cc— ab— ac — be

a + 6 + c

a^ -^ abb -\- ace— aab— aac — abc

aab + 6^ ^ bcc — abb — abc— bbc

aac -f- bbc + c* — abc— ace— bee

a^ — 3a6c + 6^ + c^.

237. When we have more than two quantities to multiplij to-

gether, it xviU easily be understood that, after having multiplied

two of them together, we must then multiply that product by one

of those which remain, and so on. It is indifferent what order is

observed in those multiplications,

9
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Let it be proposed, for example, to find the value, or product,
of the four following factors, x'iz;.

L IL III. IV.

(a 4- 6) (aa + aft + hh) (a — b) (aa — ab -{- 56.)

We will first multiply the factors I. and II.

Ih aa ^ab + bb

I. a+ b

a^ + aab -f abb

-{- aab + abb -^ ¥

I. II. a^ + Qaab + 2abb -f- fe^.

Next let us multiply the factors III. and IV.

IV. aa— a6 + bb

III. a— &

O^ — a^b -f- abb

— a^b + abb — 6*

III. IV. a^ -- 2aab + Qabb— bK
It remains now to multiply the first product I. II. by this

second product III. IV :

a^ + 2aab + 2abb -f 6* I. II.

as — 2aab + ^abb — b^ III. IV.

a« + 2o«6 + 2a*&6 + a^b^

— 2a«6— 4a*6&— 4a3&' — 2fla6*

2a^bb + 4a363 -f 4afl6'* + Qab^

— a^b^ — 2aab* — 2fl6« — b^

a^ -—-b^

And this is the product required.

238. Let us resume the same example, but change the order

of it, first multiplying the fractions I. and III. and then II. and

IV. together.

I. a -f- &

III. a — 6

aa 4- ab

^ab^bb

I. III. z=:aa— bb.
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II. aa •}- ab + bb

IV. aa— ab -^bb

a* + a^b 4- aabb— a^lf— aabb — ab^

aahb + ab^ + ft*

II. IV. = a* -f- aabb -f 6*

Then multiplying the two products I. III. and II. IV.

II. IV. = a* -f- aabb + 6*

I. III. =zaa-^bb

a* 4- aHb + aab^

— a*bb— aab*

We have a* — 6«,

which is the product required.

239. We shall perforin this calculation in a still different

manner, first multiplying the P. factor hy the IV*^. and next

the II**. by the lU^.

IV. aa— db -f bb

I. a -\- b

a^ — aab -f- abb

abb— abb -^b^

I. IV. = a» + fe-

II. aa + aft -f- bb

III. a— &

a' -I- aab + abb

— aab --^ abb— 6*

II. III. = a^— feT

It remains to multiply the product I. IV. and II. III.

I. IV. =a3 +63
II. III. =a3 — 6'

a« + a^b^

and we stiU obtain a* — 6« as before.
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240. It will be proper to illustrate this example by a numeri-
cal application. Let us make a = 3 and & = 2, we shall have
a -f & = 5 and a— 6 = 1 ; further, aa = 9, ab = 6, 6&=4.

Therefore aa -f oft -f 56 = 19, and aa — ah -}.bbz= 7. So that

the product required is that of 5x19x1x7, which is 665.

Now a 6 = 729, add 6« = 64, consequently the product re»

quired is a® — b^ = 665, as we have already seen.

CHAPTER IV.

Cff the Division of Compound Quantities*

141. When we wish simply to represent division, we make
use of the usual mark of fractions, which is, to write the de-

nominator under the numerator, sepai^ating them by a line ; or

to inclose each quantity between parentheses, placing two points

between the divisor and dividend. If it w^ere required, for

example, to divide a -f- 6 by c -f- d we sliould represent the quo-

tient thus , according to the former method ; and thus,
c -y- d

(a -f 6) : (c + d) according to the latter. Each expression is

read a + 6 divided by c + d.

242. When it is required to divide a compound quantity by a

simple one, we divide each term separately. For example ; 6a— Sb

-f 4c divided by 2, gives 3a— 46 -f 2c ; and
(^aa
—

2a6) : (a)
= a — 26. In the same manner, (a^

— 2afl6 -f 3aa6) : (a) =
aa— 2a6 -f 366 ; (4aa6

— 6aac +- 8a6c) : (ea) = 2a6 — 3ac -f-

46c ; (9aabc — 12ahhc -f 15a6cc) : (3a6c) = 3a— 46 -f 5c, &c.

243. If it should happen that a term of the dividend is not

divisible by the divisor, the quotient is represented by a fraction,

as in the division of a -f 6 by a, which gives 1 -^
—. Likewise,

(aa
— a6 + 66) : (aa) = 1 — -

-f-
-

.

For the same reason, if we divide 2a -f 6 by 2, we obtain

a + •-
; and here it may be remarked, that we may write —6,
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instead of — , because— times b is equal to —. In the same

b 1 2b 2
manner — is the same as —b, and — the same as —6, &c.

244. But when the divisor is itself a compound quantity,

division becomes more difficult. Sometimes it occurs where we

least expect it ; but when it cannot be performed, we must con-

tent ourselves with representing the quotient by a fraction, in

the manner that we have already described. Let us begin by

considering some cases, in which actual division succeeds.

245. Suppose it were required to divide the dividend ac — be

by the divisor a— &, the quotient must then be such as, when

multiplied by the divisor a— b, will produce the dividend ac— be.

Now it is evident, that this quotient must include c, since with-

out it we could not obtain ac. In order, therefore, to try

whether c is the whole quotient, we have only to multiply it by
the divisor, and see if tliat multiplication produces the whole

dividend, or only part of it. In the present case, if we multiply

a — b by c, we have ac — 6c, which is exactly the dividend ;

so that c is the whole quotient. It is no less evident, that

(aa -^ ab) : (a + &) = a ; (3aa— Qab) : (3a
—

26) = a ; (6aa—
9ab) : (2a

—
36) = Sa, &c.

246. TVe cannotfailf in this way, tofind apart of the quotient ;

if therefore,
what we have found, when multiplied by the divisor,

does not yet exhaust the dividend, we have only to divide the

remainder again by the divisor, in order to obtain a second part of

the quotient ; and to continue the same method, until we havefound
the whole quotient.

Let us, as an example, divide aa -f 3a6 + 266 by a + 6 ; it is

evident, in the first place, that the quotient will include the term

o, since otherwiae we should not obtain aa» Now, from the

multiplication of the divisor a -f 6 by a, arises aa -j- ah ; whicli

quantity being subtracted from the dividend, leaves a remainder

2a6 4- 266. This remainder must also be divided by a + 6 ; and

it is evident that the quotient of this division must contain the

term 26. Now 26, multiplied by a -f 6, produces exactly 2a6 -|-

266; consequently a -|- 26 is the quotient required ,• whicij, mul-
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tiplied by the divisor a-\-h, ought to produce the dividend aa -f-

Sab + 2&&. See the whole operation :

a '\-b^ aa-\- Sab
-|-

9,bb (a + 2&

2a6 + 266

2a& + 266

0.

247. TMs operation will be facilitated if we choose one of the

terms of the divisor to be written first, and then, in arranging the

terms of the dividend, begin with the highest powers of that first

term of the divisor. This term in the preceding example was o;
the following examples will render the. operation more clear.

a— 6) a3 — Saab 4- Sabb -— 6* {m — 2a6 + 66

ft3 (ifiJj

2aab + 3a66

2aa6 -f 2a66

a66— b^

abb— 6»

a -f 6) oa
— 66 (a

-—

aa + ab
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a + b) a^ + 6* (aa
— ab + 66

a^ -f aab
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aa— 2a& -f 266) fl* + 46* {aa + 2r/6 + 266

2a 3 5 — 2aabb-{.4b^

^a^h — 4aa66 + 4^6^

2aa66— 4a63 + 46*

2aa66 — 4a63 ^ 46*

0.

1 — 2a; + xx) 1 — 5x -}- \Oxx — IQx^ + 5x^— x^

1— So? 4- 3^x— a?3) 1 — 9,x -^ XX

— 3x + 9xx— lOx^

3x0? — 7x^ + 5o?*

3a?a?— 6^3 + So;*

— x^ + 2x* — X*
— x3 + 2x* — X*

CHAPTER V.

Of the Resolution of Fractions into infinite Series,

248. When the dividend is not divisible by the divisor, the

quotient is expressed, as we have already observed, by a frac-

tion.

Thus, if we have to divide 1 by 1 — a, we obtain the fraction

——
. This, however, does not prevent us from attempting the

division, according to the rules that have been given, and con-

tinuing it as far as we please. We shall not fail to find the true

quotient, though under different forms.



Chap. 5. Of Compound Quantities. 75

249. To prove this, let us actually divide the dividend 1 by
the divisor 1 — a, thus :

1— «)1 (1+^; or,l— a)l (i + a+j-^
l—-a 1— a

remainder a a
a— aa

remainder aa

To find a greater number of forms, we have only to continue

dividing aa by 1 — a ;

a 3 /,4

1 — a) aa (aa + , then 1 — a) a^ (a^ +
aa— a^ a^ — a*

and again 1 — a) a* {a* +

a*, &

e

under all the following forms

£50. This shews that the fraction may be exhibited
1 — a

I-)l+r^; ll.)l+a + - aa
f

III.) 1 + o -f. aa + -^ ; IV.) 1 + a + aa + aS +-^ ;
1 — a ' ' '

1 — a

V.) 1 + a + aa + a3 -f a* + -^^—, &c.

Now, by considering the first of these exjjressions, which is

aa 1 __ rt

1 + YZIT,^ ^"^ remembering that 1 is the same as
:;

-, we

have

1 ,
a 1 — a a 1— a 4- a

1 -f -= - + — L„
1 — a 1 — a 1— a 1 — a 1— a*

If we follow the same process with regard to the second

expression 1 + a + j-^, that is to say, if we reduce the in-

10
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teger part 1 + a to the same denominator 1 — a we shall have

"~"^
, to which if we add + , we shall have -IZf^Xf?

1— a 1 — a 1— a

that is to say, .

1 — n

In the third expression, 1 -|- a + aa -{- , the integers

I , ^3
reduced to the denominator 1 — a make — ; and if we

1 — a

add to that the fraction , we have ; wherefore all
1 — a 1 — a

these expressions are equal in value to , the proposed

Fraction.

251. This being the case, we may continue,the series as far

as we please, without being under the necessity of performing

any more calculations. We shall therefore have

= 1 + a + aa + a' + a* + a* + a« -f a^ -f
-^—

;
1 —lO 1 — a

or we might continue this further, and still go on without end.

For this reason, it may be said, that the proposed fraction has

been resolved into an infinite series, which isl +a-faa-fa'
^.a* -f a« +a« -{. a"^ + a^ + a® +ai« +ai* +a*^5 &c. to

infinity. And there are sufficient grounds to maintain, that the

value of this infinite series is the same as that of the fraction

t

252, What we have said may, at first, appear surprising ;

but the consideration of some particular cases will make it easily

understood.

Let us suppose, in the first place, a= 1 ; our series will

become 1-fl + l + l + l + l + l, &c. The fraction ,

to which it must be equal, becomes —. Now, we before remark-

ed, that ~ is a number infinitely great ; which is, therefore,

here confirmed in a satisfactory manner.

i
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But if we suppose a = 2, our series becomes =1+2+4
+ 8 + 16 + 32 + 64, &c. to infinity, and its value must be -,

is to say = — 1
; which at first sight will appear ab-

surd. But it must be remarked, that if we wish to stop at any

term of the above series, we cannot do so without joining the

fraction which remains. Suppose, for example, we were to stop

at 64, after having written i + 2 + 4 + 8 + 16 + 32 + 64, we
128 128

must join the fraction -, or , or — 128 ; we shall
1 "~~ Z> "~~" 1

therefore have 127— 128, that is in fact — 1.

Were we to continue the series without intermission, the frac-

tion indeed would be no longer considered, but then the series

would still go on.

253. These are the considerations which are necessary, when

we assume for a numbers greater than unity. But if we sup-

pose a less than 1, the whole becomes more intelligible.

For example, let a = ^ ; we shall have = 7 =* * '
1 — a i — J

— = 2, which will be equal to the following series : 1+^+1
+ 1 + tV + 7f + A + T¥T» ^^- to infinity. Now, if we take

only two terms of this series, we have 1 + 1, and it wants |,

that it may be equal to = 2. If we take three terms, it
1 — a

wants 1
;
for the sum is 1|. If we take four terms we have

1|, and the deficiency is only -J.
We see, therefore, that the

more terms we take, the less the difference becomes , and that,

consequently, if we continue on to infinity, there will be no

difference at all between the sum of the series and 2, the value

of the fraction
1 —a

254. Let a=zl; our fraction will be =^, ^_^ j_.
s

= 1|, which, reduced to an infinite series, becomes 1 + ^ + ».

+ ^V + TT + ii^9 &c. and to which is consequently

equal.
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When we take two terms, we have 1|, and there wants |. If

we take three terms, we have 1^, and there will still he wanting

y\. Take four terms, we shall have 1|4, and the difference is

j?^. Since the error, therefore, always becomes three times less,

it must evidently vanish at last.

1 1
255. Suppose a = 4 ; we shall have = r-= 3, and^ 1— a 1 — I

the series 1 + 1 + | + ^s^ -f. |6 4. ^^^, &c. to infinity. Taking
first

1-|,
the error is

1-| ^ taking three terms, which make 2j,
the error is | ; taking four terms we have 2|4^, and the error
ic 16^ IT*

256. If a = 1, the fraction is
j-
= — = 1^ ; and the se-

ries becomes 1 + i + tV + tV + ^tt> ^c* '^^^ *wo first terms,

making 1 + ^, will give y\ for the error ; and taking one term

more, we have IJ-g,
that is to say, only an error of ^^,

257. In the same manner, we may resolve the fraction ,

into an infinite series by actually dividing the numerator 1 by
the denominator 1 -f a, as follows :

1 + a) 1 (1 — a ^aa — a^ -{• a^

l+a
f

a

a— da

aa

aa + a^

— a*, &c.

Whence it follows, that the fraction
t-jT^

^^ ®^"^^ *^ ^^^*

series,

1 — a + aa— a3 + a* — a« + a« — a% &c.
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258, If we make o = 1, we have this remarkahle comparison :

—i— — 1 = 1 — 1 + 1 — 1 -f 1 ^ 1 + 1 — 1, &c. to infinity.
1 -f a

This will appear rather contradictory ; for if we stop at— 1,

the series give ; and if we finish by + 1, it gives 1. But this

is precisely what solves the difficulty ; for since we must go on

to infinity without stopping either at — 1, or at -f 1, it is evi-

dent, that the sum can neither be nor 1, but that this result

must lie between these two, and therefore be = |.

259. Let us now make a = i, and our fraction will be" 1+^
= |, which must therefore express the value of the series 1 — J

+ i
—

T + tV — A + A' ^c* *^ infinity. If we take only

the two leading terms of this series, we have
|-,

which is too

small by \. If we take three terms, we have |, which is too

much by -^^.
If we take four terms, we have 4, which is too

small by -^^^ &c.

260. Suppose again fl =
-J ? ^^^ fraction will be =

= |, and to this the series 1 —- 4 -f |.
—

-\. + „i_. — ^1^ +
y|^, &c. continued to infinity, must be equal. Now, by con-

sidering only t\NO terms, we havef, which is too small by -j?^.

Three terms make
-J,

which is too much by ^^, Four terms

make |^, which is too small by ^J^, and so on.

261. The fraction -—
;

— may also be resolved into an infinite
1 + a ''

series another way ; namely, by dividing 1 by a -f 1, as follows :
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,1 11 1.1

^+4

1

a

a oa

J.
aa

i + -i
aa a"

JL
a"'

1 — i
a3 a*

_i^, &c.

Consequently, our fraction , is equal to the infinite

series i — I + i — -1 + i — i, &c. Let us make
a aa

^
a^ a^ a* a^

a = 1, and we shall have the series 1 — 1 + 1 — 1+1 — 1>

&c. = |, as before. And if we suppose a = 2, we shall have

the series J — J + | — ^V +A — A» &c. = f
262. In the same manner, by resolving the general fraction

—^—r into an infinite series, we shall have,
a +
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,v ^ Q be bbe 6'c
•^ ^ ^ a aa a^ a^
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1 — a + fl«)
I (1 + a ^ a^ — a* + a6 -f a', &c.

1 — a + aa

a — aa

a — aa + a^

—- a»

— a* + a* — a^

— a* 4- a*

— a^ + a* — a^

a''

a6 ^ a? + «»

a? — a8 4- a^

We have therefore the equation of = 1 + a — a^
1 •— a + ««

— a-* + a^ + a^ — a^ — a^<>, &c. Here, if we make a = 1,

we have 1 =1+1— 1 — 1+1 + 1 — 1 — 1 + 1 + 1, &c.

which series contains twice the series found above 1 — 1+1— 1+1, &c. Now, as we have found this =4? it is not

astonishing that we should find |, or 1, for the value of that

which we have just determined.

Make a = |j and we shall then have the equation
— =4 = 1

fi 1 1-Li4._i 1 Ik'rT- ? ¥ T 6- T^ •g-4 T^ T"?"? TT-J' *^'^'

Suppose a = A, we shall have the equation
~ = | = l+4—
5

A — TT + rlg^j ^c. If we take the four leading terms of this

series, we have VV> which is only y|y, less than ^.

Suppose again a = f? we shall have — = | = 1 + |
— ^\

-9— 14 + tVt* ^c* this series must therefore be equal to the pre-

ceding one ; and subtracting one from the other, -J
— /y

— 14 +
y«,*^,

must be = 0. These four terms added together make— /-j.

264. The method, which we have explained, serves to resolve,

generally, all fractions into infinite series 5 and, therefore, it is
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often found to be of the greatest utility. Furtlicr, it is remark-

able, that an infinite series, thoiigh it never ceases/may have a

determinate value. It may be added, tliat from this branch of

mathematics inventions of the utmost importance have been

derived, on wliich account the subject deserves to be studied

with the greatest attention.

CHAPTER VI.

Of the Squares of Compound Quantities,

£65. When it is required to find the square of a compound

quantity, we have only to multiply it by itself, and the product

will be the sqnare required.

For example, the square of a -^-h is found in the following

manner :

a \-b

a-\-h

aa + a6

ab + hb

aa -f 2ab -f- bb,

266. So that, when the root consists of two terms added together^

as a -t- bf the square comprehends, 1st tJie square of each term,

namely aa and bb ; Qdly twice the product of the two terms,

namely 2afe. So that the sum aa -f- 2ab -f bb is the square of

a -\-b. Let, for example, a = 10 and 6=3, that is to say, let

it be required to find the square of 13, we shall have 100 + 60

+ 9, or 169.

267. We may easily find, by means of this formula, the

squares of numbers, however great, if we divide them into two

parts. To find, for example, the square of 57, we consider that

this number is = 50 -f 7 ; whence we conclude that its square
is = 2=^00 + 700 +49 = 3249.

268. Hence it is evident, that the square of a + 1 will be aa

+ 2rt + 1 : now since the square of a is aa, we find the square

11



^t Msehra. Sect. 2."£>

a -f 1 by ailding to tliat 2a + 1 ; and it must be observed, that

this 2rt 4- 1 is the sum of the two roots a and a + 1.

Thus, as the square of 10 is 100, that of 11 will be 100 -f 21.

The square of 57 being 3249, that of 58 is 3249 + 115 = 3364.

The square of 59 = 3364 + 117 = 3481 ; the square of 60 =
3481 + 119 = 3600, &c.

269. Tlie square of a compound quantity, as a -f &, is repre-

sented in tins manner : (a -f. 6)2. We have then (a -f- H)^ = aa

+ 9.ab -f hh, whence we deduce the following equations :

(a + 1)' = fla + 2a -f 1 ; (a + 2)3 = aa + 4a + 4 ;

(a -f- 3)« = aa -f- 6a -f- 9 ; (a + 4)« = aa -i~ 8a + 16 ; Sec.

270. Tf the root is a — b, the square of it is aa — 2ab + bb,

which contains also the squares of the two terms, but in such a

manner that ive must take from their sum twice the product of

tliose two terms.

Let, for example, a = 10 and 6 = — 1, the square of 9 will

be found = 100 — 20 + 1 = 81.

271. Since wc have the equation (a
—

6)* = aa — 2a& -|-6&,

we shall have (a
— 1)* = aa — 2a + 1. The square of sl — 1

is found, therefore, by subtracting from aa the sum of the two

roots a and a— 1 namelij, 2a — 1. Let, for example, a = 50,

wc have aa = 2500, and a — 1 = 49 : then 49^ = 2500 — 99

= 2401.

272. What we have said may be also confirmed and illustrat-

ed by fractions. For if we take as the i^ot | + 1 (which make

1) the squares will be :

9 _i 4 _l12 — 25 fljaf IQ 1

Further, the square of J
-- ^ (or of i) will be | — 4 -hi

1

!. When the root consists of a greater number of terms,

the method of determining tlie square is the same. Let us find,

for example, the square of a + b + c.

a 4. & -f- c

a + 6 -f- c

aa -hab-h-ac + be

ab + ac + && -f- 6c -f- cc

aa -f- 2a& -|- 2ac -f && 4- 26c -f-
cc.

n
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We see that it IncludeSf first, the s^vure of each fenn of the rooty

and beside that, the double products of those terms multiplied two bij

two,

9.7A. To illustrate this by an example, let us divide tlie num-

ber 256 into three parts, 200 -f 50 + 6 ; its square will then be

composed of the following parts :

40000 256

2500 256

36

20000 1536

2400 1280

600 512

655S6 655S&

which is evidently equal to the product of 256 x 256.

275. When some terms of the root are negative, the square is

stiUfound hj the same nde ; but we must take care what signs we

pe^ix to the double products. Thus, the square of a— b — c

being aa + bb + cc — 2a6 — 2ac -|- 26c, if we represent the

number 256 by 300 — 40— 4, we shall have,

Positive Parts. Negative Parts.

V
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CHAPTER Yll.

Of lite Exiraclion of Roots applied to Compmind Quantities,

'276. Ix order to give a certain rule for this operation, we
must consider attentively the sijuare of the root a -j-b, wiiich is

aa + 2ab -|- bh, tliat we may reciprocally find the root of a

given square.

Q77, Vfe must consider therefore, first, that as the square au

-f Slab + bb is composed of several terms, it is certain that the

root also will comprize more than one term ; and that if we
write the square, in such a manner that the powers of one of the

letters, as a, may go on continually diminishing, the first term

will be the square of the first term of the root. And since, in

the present case, the first term of the square is aa, it is certain

that the first term of the root is a,

278. Having therefore found the first term of the root, that

is to say a, we must consider the rest of the square, namely
2ab -f bb, to see if we can derive from it the second part of the

root, which is b. Now this remainder 2ab -f bb may be repre-
sented by the product, (2a + b)b. Wherefore the remainder

having two factors 2a + & and b, it is evident that we shall find

the latter, b, which is the second part of the root, by dividing
tiic remainder 2a6 -f bb by 2a

-j^
b,

279. So that the quotient, arising from the division of the

above remainder by 2a -f 6, is the second term of the root re-

quired. Now, in this division we observe, that 2a is the double

of the first term a, which is already determined. So that

although the second term is yet unknown, and it is necessary,

for the present, to leave its place empty, we may nevertheless

attempt the division, since in it we attend only to the first term

'2a, But as soon as the quotient is found, which is here 6, we

must put it in the empty place, and thus render the division

Complete.

280. The calculation, therefore, by which we find the root of

the square aa -f Slab -f bb, may be represented thus :
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aa -^Qab -^bb {a +b
aa

2a + b) 2ab -^ bb

2ab -f bb

0.

281. We may, in the same manner, find the square root of

other compound quantities, provided they are squares, as the

following examples will shew.

aa + 6ab + 966 (a + 36

aa

2a + 36) 6fl6 -f 966

6ab -f 966

0.

4aa — 4ab + 66 (2a — 6

4aa

4a— 6)
— 4a6 + 66

— 4a6 + 66

0.

9pp + 24pq -f I6qq {3p + 4q

9pp

6p + 4^) 24;?^ + 16qq

9.4pq + I6qq

Q5xx — 60^ + 36 {Soc
— 6

lOx — 6)
— 60a; + 36

— 60x -f 36

0.
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£82. When there is a remainder after the division, it is a

proof that the root is composed of more than two terms. We
then consider the two terms already found as forming the first

part, and endeavour to derive the other from jthe remainder, in

the same manner as we found tlie second term of the root. The

following- examples will render this operation more clear.

aa -f 2ab— 2«c — 26c -f 66 -f. cc (a + 6— c

aa

2a + 6)
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a« — 6a«6-f 15a*56— 20a3 63 + I5aa6*— 6a6« +6^
a« (a

' — 3fl«5 -f 3a6&— ?»*

— 6a*6+ 9a*6&

2a3^ 6aab'\-5abb) 6aHb--.Wa^b^ + ISaab^

M^^6aab -{.6abb— b^) — Qa^b^+eaab"^— 6ab' -hb^

— Qa^b^ -{.6aab*
— 6ab^ -j-b^

0.

283. We easily deduce from the rule which we haVe explain-

ed, the method which is taught in books of arithmetic for tho

extraction of the square root. Some examples in numbers ;

529 (23
4
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284. But when there is a remainder after tlie whole operation,
it is a proof that the number proposed is not a square, and con-

sequently that its root cannot be assigned. In such cases, the

radical sign, which we before employed, is made use of. It is

written before tlie quantity, and the quantity itself is placed
between parentheses, or under a line. Thus, the square root of

aa + &6 is represented by V(aa+66,) or by \/aa-^bb ;
and v(i—aro:,)

or vi~a;a-, cxprcsscs the square root of 1 — xx. Instead of

this radical sign, we may use the fractional exponent \, and

represent the square root of aa -f lib, for instance by (aa -f ^6)2^,
1

or by aa+i6"l ^.

CHAPTER VIII.

Of the calculation oj Irrational Quantities,

285. Whex it is required to add together two or more irra-

tional quantities, this is done, according to the method before

laid down, by writing all the terms in succession, each with its

proper sign. And with regard to abbreviation, we must remark,

that instead oJ^^T + \/a7 for example, we write 2 a^T-, and that

Y^I"
— \/a~ = 0, because these two terms destroy one another.

Thus, the quantities 3 -f v/2~ a^^d 1 4- V27 o,d.ded together, make 4 -f

2 vsT or 4 -f- x/8~; the sum of 5 -f vs" and 4 — ^Ji is 9 ; and

that of 2 v/3" + 3 V2~ and V3~ — \/2" is 3 V3~ + 2 v/sT

286. Subtraction also is very easy, since we have only to add

the proposed numbers, changing first their signs : the following

example will shew this : let us subtract the lower number from

the upper.
4 — v/2~ + 2 V3~— 3 v/5" + 4 v/s"

1 -f 2 VS"— 2 v/r— 5 vr + 6 v/6"

3— 3 ^2" +4V3"+ 2V5" — 2 ^6"
^87. In multiplication we must recollect that Va" multiplied

hy ^r produces a ; and that if the numbers which follow the sign

\/ are different, as a and b, we have v/ab for the jjroduct of \/T

multiplied by v'b". After this it will be easy to perform the

following examples :
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1+V2" 2 — VS"

1 + V/2 8 + 4
V2_

1+2^2 +2 = 3-f2v'2 8— 4 = 4.

288. What we have said applies also to imaginary quantities ;

we shall only observe further, that x/HTmultiplied by ^Z—a P^o-

duces — a.

If it were required to find the cube of — I + V^^ we
should take the square of that number, and then multiply that

square by the same number : see the operation :

— 1 + V-3

1 —V—3

— V^^3" — 3

1 — 2 \/^^^— 3 = — 2 — 2 V^^— 1 + V=3"

2 + 2 V-3— 2 v=r + 6

2 + 6 = 8.

289. In the division of surds, we have only to express the pro-

posed quQ7itities in theform of afraction ; this may be then chang-
ed into another expression having a rational denominator. For if

the denominator be a + x/T^ for example, and we multiply both

it and the numerator by a— v^ the new denominator will be

aa— b, in which there is no radical sign. Let it be proposed

to divide 3+2 x/Y by 1 + v/jT; we shall first have ——l-i-.
1+ V2

Multiplying now the two terms of the fraction by 1 — v'sT w«
shall have for the numerator :

X2
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3 — 2 V2
S + 2 va"

9— 6v/2~

+ 6^2"

9— 8 = + 1.

Consequently the quotient will be 4 + VsT Tlie trutli of thi^

may be proved in the following manner :

4 + vF
3 — 2 ^2

12 + 3 v/2

—. 8 V2" — 4

12— 5 ^2 — 4 = 8 — 5 ^2

290. In the same manner, we may transform such fractions

into others, that have rational denominators. If we have, for

example, the fraction _, and multiply its numerator and
5 — 2 y/6

denominator by 5 + 2 ye, we transform it into this
5 +2 V6"

1

= 5 + 2 VS. ^^ like manner, the fraction =: as-— 1 + V—3

sumes this form, —^—-^-—^ = -J—L And ^
__ —— 4 — 2 v'6
— V5

114-2 4y30 _
becomes = —-i:—z.— = 11+2 v/so.

291. When the denominator contains several terms, 7ve may in

the same manner make the radical signs in it vanish one by one.

Let the fraction —== = =: be proposed ; we first mul-
VIO— V2 — V3

tiply these terms by v/iu + V^ -r V^T ^^^ obtain the fraction

~- . Then multiplvins: its numerator and denom-
5 — 2 v/6

i . &

inator by 3 + 2 ^67 we have 5 \/To + 1 1 V^ + 9 ^/T + 2 v/6a.



92 Algebra. Sect. 2.

CHAPTER IX.

Of Cubes, and of the Extraction of Cube Roots.

£92. To find the cube of a root a -f b, we only multiply its

square aa + 2a6 -f bb again by a -f 6, tbus,

aa -f 2ab -f bb

a -{-b

a^ -f- 2aab + abb

aab -f. 2a6& + 6^

and tbe cube will be =z a^ -f 3aa& -f- 5abb -f 6'.

It co^itains therefore the cubes of the two parts of the roots, and,

beside that, 3aab + Sabb, a quantity equal to (Safe) x (a + 6 ;)

that is, the triple product of the two parts, a and h, multiplied by
their sum,

293. So that whenever a root is composed of two lerms, it is

easy to find its cube by this rule. For example, the number

5 = 3 + 2 ; its cube is therefore 27 + 8 + 18x5 = 125.

Let 7 + 3 = 10 be the root ; the cube will be 343 + 27 + 63

X 10= 1000.

To find the cube of 36, let us suppose the root 36 = 30 -f 6,

and we have for the power required, 27000 -f 216 + 540 x 36

= 46656.

294. But if, on the other hand, the cube be given, namely,

a^ -\- Saab + Sabb -\-b^, and it be required to find its root, we

must premise the following remarks :

First, when the cube is arranged according to the powers of

one letter, we easily know by the first term a^, the first term a

of the root, since the cube of it is a* ; if, therefore, we subtract

that cube from the cube proposed, we obtain the remainder,

Saab + Sabb -f- 6^, which must furnish the second term of tbe

root.

295. But as we already know that the second term is -f b,

we have principally to discover how it may be derived from the

above remainder. Now that remainder may be expressed by

two factors, as {Saa -f- Sab -f bh) x (&) ; if? therefore, we divide
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by 3aa + 5ah + hb, we obtain the second part of the root + b,

which is required.

296. But as this second term is supposed to be unknown, the

divisor also is unknown ; nevertheless we have the first term of

that divisor, which is sufficient ; for it is 3aa, that is, thrice the

square of the first term already found ; and by means of this, it

is not difficult to find also the other part, 6, and then to complete
the divisor before we perform the division. For this purpose,
it will be necessary to join to 3aa thrice the product of the two

terms, or 3ab, and bb, or the square of the second term of the root.

297. Let us apply what we have said to two examples of other

given cubes.

I. a^ -I- ]2aa + 48a4-64 (a + 4

Saa-fl2a+l6) 12aa + 48a -|- 64

12aa -f 48a + 64

0.

II. a« — 6a« -f 15a* — 20a3 -|- 15^2 — 6a + 1

a« {aa— 2a + 1

Sa'* —. 6a3 4- 4aa)
— Sa'^ -f 15a* — 20a3

— 6as + 12a* — 8a3

Sa4— 12a3 + 12aa + 3a2 —. 6a -f 1) 3a*— I2a3 4. I5aa— 6a-f 1

3a* — 12a3 + 15aa— Ga 4. 1

0.

298. The analysis which we have given is the foundation of

the common rule for the extraction of the cube root in numbers.
An example of the operation in the number 2197 :

2197 (10 -f 3 = 13

1000

300 1197
90
9

399 1197
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Let us also extract the cube root of 54965783 :

Sect. 2.

34965783 (300 + 20 -f 7

2700''i000

270000
18000
400
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(a 4- 6)1
= a + 6

a + 6
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(a— &)i=a— 6

a— b
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302. An important question occurs in this place ; namely, how
we may find, without being obliged always to perform the same

calculation, all the powers either of a + 6, or a — b.

We must remark, in tlie first place, tliat if we can assign all

the powers of a + 6, those of a — b are also found, since we

have only to change the signs of the even terms, that is to say,

of the second, the fourth, the sixth, kc. The business then is

to establish a rule, by which any power o/"
a + b, however high,

may be determined without the necessity of calculating all the pre^

ceding ones.

303. Now, if from the powers which we have already deter-

mined we take away the numbers that precede each term, which

are called the coefficients^ we observe in all the terms a singular

order ; first, we see the first term a of the root raised to the power
which is required ; in tJiefollowing terms the powers of a diminish

continually by unity, and the powers of b increase in the same

proportion ; so that the sum of the exponents of a aud of b is

always the same, and always equal to the exponent of the power

required ; and, lastly, we find the term b by itself raised to the

same power. If, tlierefore, the tenth power of a -f & were

required, we arc certain that the terms, without their coefficients

would succeed each other in the following order; a^^, a^b,

a^b^, an^, a^h^, a«6S a*6S a^b"^, aH\ ab% b^\
304. It remains therefore to shew, how we are to determine

the coefficients which belong to those terms, or tlie numbers by
which they are to he multiplied. Now, with respect to the first

term, its coefficient is always unity ; and with regard to the

second, its coefficient is constantly (lie exponent of the power ; hut

with regard to the other terms, it is not so easy to observe any
order in their coefficients. However, if we continue those coeffi-

cients, we shall not fail to discover a law, by which we may
advance as far as we please. This the following table will

shew.
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Coefficients,

1>1

1, 2, 1

1, 3, 3, 1

1,4,6,4,1

1, 5, 10, 10, 5, 1

1, 6, 15, 20, 15, 6, J

1, 7, 21, 35, 35, 21, 7, 1

1, 8, 28, 56, 70, 5Q, 28, 8, 1

1, 9, 56, 84, 126, 126, 84, SQ, 9, 1

1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, &c.

We see then, that the tenth power of g -f 6 will be : a*° +
10a»6 -f A5a^hh-\. 120a'^b^ + QlOa^b'^ + 252a*6* + 210a466

+ 120a3ft7 ^ 45aa68 + lOafc^ + b^\
305. ?ri//i regard to the coefficients, it must be observed, thatfor

each power their sum must be equal to the number 2 raised to the

same power. Let a = 1 and 6=1, each term, without the

coefficients, will be = 1 ; consequently, the value of the power
will be simply the sum of the coefficients ; this sum, in the pre-

ceding example, is 1024, and accordingly (1 + 1)^0 = Q^^

= 1024.

It is the same with respect to other powers ; we have for the

I. 1 + 1 = 2 = 21,

II. 1 + 2 + 1 = 4 = 2%
III. 1 + 3 -f- 3 + 1 = 8 = 2S
IV. 1 + 4 + 6 + 4 + 1 = 16 = 2S
V. 1 + 5 + 10 -f 10 + 5 + 1 = 32 = 2^,

VI. 1 + 6 + 15 + 20 4- 15 -f 6 + 1 = 64 = 2«

VII. 1+7 + 21 + 35+35+21+7 + 1 = 128 =2% &c.

306, Anotl^er necessary remark, with regard to the coeffi-

cients, is, that they increase from the beginning to the middle,

and then decrease in the same order. In the even powers, the

greatest coefficient is exactly in the middle; but in the odd

powers, two coefficients, equal and greater tlian the others, are

found in the middle, belonging to tlie mean terms.

The order of the coefficients deserves particular attention;

for it is in tliis order that we discover the means of determining

tliem for any power whatever, without calculating all the pre-

I
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ceding powers. We shall explain this method, reserving the

demonstration however for the next chapter.

307. In order tofind the coefficients of any power proposed (the
seventh ffor example,) let us write the followingfractions onejafter

the other ;

7 5 4 3 S 1
19 %9 75 4> T> Si y.

In this arrangement we perceive tliat the numerators begin by the

exponent of the power required, and that they diminish successively

by unity ; while the denominatorsfoUow in the natural order of the

numbers, 1, 2, 3, 4, <SfC, Mw, thefirst coefficient being always 1,

the first fraction gives the second cofficient. The 2)roduct of the

twofirstfractions, nmltiplied together, represents the third
coefficient.

The product of the three first fractions represents the fourth coeffi-

cient, and so on.

So that the first coefficient = 1 ; the second =
JJ.
= 7 ; the

third = » X J
= 21 ;

the fourth = ^ X | x f = 35 ; the fifth

= T ^ ¥ X 4 X T = ^^ 5 the sixth =^XjX|xJx | =
21 ; the seventh = 21 X f = 7 ; the eighth = 7 X | = 1.

308. So that we have, for the second power, the two fractions

|, J ; whence it follows, that the first coefficient = 1 ; the second

= » = 2 ; and the third = 2x1 = 1.

The third power furnishes the fractions y, |. -J ; wherefore

the first coefficient = 1 ; the second = 1=3; the third = 3

X I = 3 ; the fourth = lx|X-| = l.

\Ve have for the fourth power, the fractions ±, |, |,
l

; con-

sequently the first coefficient = 1 ; the second ^ = 4 ; the third
* X I = 6 ; the fourth | X | X | = 4 ; and the fifth 4 x ^ X 4

xi = i.

309. This rule evidently renders it unnecessary for us to find

the preceding coefficients, and enahles us to discover imme-

diately the coefficients which belong to any power. Thus, for

the tenth power, we write the fi-actions \^, J, |, J, «, f, 4, |,

|, ^^, by means of which we find

the first coefficient = 1,

the second = ^ = 10,

the third = 10 x | = 45,

the fourth = 45 x 4 = 120,

the fifth = 120 X J - 210,
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the sixth = 210 x | = 252,

the seventh = 252xf = 210,

the eighth = 210 x ^ = 120,

the ninth = 120 x | = 45,

the tenth = 45 x f = 10,

the eleventh = 10 x -jV
= 1'

310. We may also write these fractions as they are, without

computing their value ; and in this way it is easy to express

any power of a -f 6, however high. Thus, the hundredth power

offl + ftwillhe (a 4-6)100 =za^^^ + ^^o x a^^6+ l^^iii^
\ i / T^ 1 '1x2

fg^afe.^
100X99X98 100x99x98x9r ,^ ^ 1X2x3 ^ 1X2X3X4 ^'

&c. whence the law of the succeeding terms may be easily

deduced.

CHAPTER XL

Of the Transposition of the Letters, on which the demonstration of
the preceding Rule is founded.

311. If we trace back the origin of the coefficients which we
have been considering, we shall find, that each term is presented,

as many times as it is possible to transpose the letters, of which

that term consists ; o}^ to express the same thing differently,

the coefficient of each terra is equal to the number of transposi-

tions that the letters admit, of which that term is composed. In

the second power, for example, the term ab is taken twice, that

is to say, its coefficient is 2 ; and in fact we may change the

order of the letters which compose that term twice, since we

may write ab and ba ; the term aa, on the contrary, is found

only once, because the order of the letters can undergo no

change, or transposition. In the third power of a + 6, the

term aab may be written in three different ways, aab, aba, baa ;

thus the coefficient is 3. Likewise, in the fourth power, the

term a^h or aaab, admits of four different arrangements, aaabf

aaba, abaa, baaa; therefore its coefficient is 4. The term aabb

admits of six transpositions, aabb, abha, baba, abab, bbaa, baab,

and its coefficient is 6, It is the same in all cases.

J^
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312. In fact, if we consider that the fourth power, for exam-

ple, of any root consisting of more than two terms, as (a + 6 +
c + d)'*, is found by multiplying the four factors, I. a + 6 -f c

4.d; II. fl-f& + c + rf; III. a + ft + c + d; IV. a-f-6 + c-|-

d ; we may easily see, that each letter of the first factor must

be multiplied by each letter of the second, then by each letter of

the third, and, lastly, by eacli letter of the fourth.

Each term must therefore not only be composed of four letters,

but also present itself, or enter into the sum, as many times as

those letters can be differently arranged with respect to each

other, whence arises its coefficient.

313. It is therefore of great importance to know, in how

many different ways a given number of letters may be arranged.

And, in this inquiry, we must particularly consider, whether

the letters in question are the same, or different. When they

are the same, there can be no transposition of them, and for this

reason the simple powers, as a^, a^, a*, &c. have all unity for

the coefficient.

314. Let us first suppose all the letters different ; and begin-

ning with the simplest case of two letters, or ah, we immedi-

ately discover that two transpositions may take place, namely,
ah and ha.

If we have three letters, ahc, to consider, we observe that

each of the three may take the first place, while the two others

will admit of two transpositions. For if a is the first letter, wo
have two arrangements ahc, ach ; if h is in the first place, we
have the arrangements hac, hca ; lastly, if o occupies the first

place, we have also two arrangements, namely, cah, cha. And

consequently the whole number of arrangements is 3 x 2 = 6.

If there are four letters, ahcd, each may occupy the first place ;

and in each case the three others may form six different ar-

rangements, as we have just seen. The whole number of

transpositions is therefore 4 x6= 24 = 4x3x2x1.
If tliere are five letters, ahcdc, each of the five must be the

first, and the four others will admit of twenty four transposi-

tions; so that the whole number of transpositions will be 5 x 24

= 120 = 5X4X3X2X1.
315. Consequently, however great the number of letters may

be, it is evident, provided they are all different, that we may
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easily determine the number of transpositions, and that we may
make use of the following table :

Number of Lettei^s. Number of Transpositions.
^^ ^ f y

-y.
/

I. 1=1.
II. 2X1=2.

III. 3X2X1 = 6.

IV. 4 X 3 X 2 X 1 = 24.

V. 5X4X3X2X1 = 120.

yi. 6X5X4X3X2X1 = 720.

Vll. 7X6X5X4X3X2X1 = 5040.

VIII. 8X7X6X5X4X3X2X1= 40320.

IX. 9'X 8X7X6X5X4X3X2X1 = 362880.

X. 10X9X8X7X6X5X4X3X2X1 = 3628800.

316. But, as we have intimated, the numbers in this table

can be made use of only when all the letters are different ; for

if two or more of them are alike, the number of transpositions

becomes much less ; and if all the letters are the same, we have

only one arrangement. We shall now see how the numbers in

the table are to be diminished, according to the number of letters

that are alike.

317. When two letters arc given, and those letters are the

same, the two arrangements are reduced to one, and conse-

quently the number, which we have found above, is reduced to

the half; that is to say, it must be divided by 2. If we have

three letters alike, the six transpositions are reduced to one ;

whence it follows that the numbers in the table must be divided

by 6 = 3x2x1. And for the same reason, if four letters are

alike, we must divide the numbers found by 24 or 4 x 3 x 2

X 1, &c.

It is easy therefore to determine how many transpositions the

letters aaabbc^ for example, may undergo. They are in number

6, and consequently, if they were all different, they would

admit of 6x5x4x3x2x1 transpositions. But since a is

found thrice in those letters, we must divide that number of

transpositions by 3 x 2 x 1 ; and since b occurs twice, we must

again divide it by 2 x 1 ? the number of transpositions required

Ml XI- p u 6 X 5 X 4 X "> X '^ X 1 ^ , . ,. ^ an
Will therefore be = -«-—-—-—-——- = 5x4x3 = 60.

3X^X1X2X1
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318. It will now be easy for us to determine the coefficients

of all the terms of any power. We shall give an example of the

seventh power (a + 6)'.

The first term is a^, which occurs only once ; and as all the

other terms have each seven letters, it follows that the number

of transpositions for each term would be 7x6x5x4x3x2
X 1> if all the letters were different. But since in the second

term, a^b, we find six letters alike, we must divide the above

product by 6x5x4x3x2x1, whence it follows that the

^ . ,. 7x6x5x4x3x2x1 -

coemcieBt js = — :: ;

—
;; ;
— = \.

., 6X5X4x3x2x1 '

*^1rn the third term a^bb, we find the same letter a five times,

and the same letter b twice; we must therefore divide that

number first by 5x4x3x2x1, and then also by 2 x 1
;

, ,. ., «, ..7x6x5x4x3x2x1 7x6
whence results the coethcient -— —

;
= -.5X4X3X2X1X^X1 1x2

The fourth term a^h^ contains the letter a four times, and the

letter b thrice ; consequently, the whole number of the transpo-

sitions of the seven letters, must be divided, in the first place,

by 4 X 3 X 2 X 1^ and, secondly, by 3 x 2 x 1, and the second

7 X 5 X 5 X 4 X 3 X ^' X I 7 X f^ X !>

coefficient becomes = 4X3X2X1X3X2X1 IX^iXo'

In the same manner, we find ——-—^ for the coefficient1X2X3X4
of the fifth term, and so of the rest ; by which the mle before

given is demonstrated.

319. These considerations carry us further, and shew us also,

how to find all the powers of roots composed of more than two

terms. We shall apply tliem to the third power of a -f 6 + c ;

the terms of which must be formed by all the possible combina-

tions of three letters, each term having for its coefficient the

number of its transpositions, as above.

"\>*ithout performing the multiplication, the third power of

(a -f. 6 4. c) will be a» + Saab + Saac -|- 3abb -f- 6abc -f 5acc +
63 4. 3hb -f- 3&cc-f- c».

Suppose a = 1, 6 = l, c = 1, the cube of 1 + 1 4- 1, or of 3,

will be l + a-fS-|-3-f.6 + 3-fl + SH-3 + l=:27.

This result Ls accurate, and confirms the rule.
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If we had supposed a = 1, 6 = 1, and c =— l, we should
have found for the cube of 1 +1 — I, that is of 1,

1 + 3— 3 + 3 — 6 + 3 + 1—.3 + 3— 1 = 1.

CHAPTER XII.

Of the expression of Irrational Powers hy Infinite Series,

320. As we have shewn the method of finding any power of

the root a + 6, however great the exponent, we are able to

expr-ess, generally, the power of a + 5, whose exponent is unde-

termined. It is evident that if w^e represent that exponent hy
71, wc shall have by the rule already given (art. 307 and the

following) :

n—2 „ o, , .
n n—1 n—2 n—^3 ,, ,__ a"-3ft3 +-X -^ X -g-X -^ a^^-^h^ + &c.

321. If the same power of the root a — h were required, we
should only change the signs of the second, fourth, sixth, &c.

terms, and should have (a— bY= a^ — — a"-^6 + — X ^^^ >
1

^
I
^

2

t, 91.9 '« ??— "1 ^—2 ^ ,j , .
n n—1 n—9 n—3

fl"-2&8 7 X —r X -^ a«^Z>3 ^ ^ ^ X—r12 3 12 3 4

322. These formulas are remarkably useful ; for they serve

also to express all kinds of radicals. AYe have shewn that all

irrational quantities may assume the form of powers whose
2 1 3 _ \

exponents are fractional, and that \/a = a^ ; ^a = a^, and
4 1

y/a = a*j &c. We have, therefore, also,

V (a + 6)
=

(a +6)S- V C« + ^) = (« +#
and y/ (fl + fc)

= (a + 6)*, &c.

Wherefore, if we wish to find the square root of o + &, we

have only to substitute for the exponent n the fraction |, in the

general formula, [art. 320,] and we shall have first, for the-

coefficients.
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•J
—

^V = IJ J *^6 square of this fraction, being WV> exceeds

the square of v^e" only by ^J^.
Now, making 6 = \%\^

—
^J^, so that c = |J and 6 = —

•jj^ ; and still taking only the two leading terms, we have ^6"

— 4 9 J_ 1 V — *^^ 4 9 1 V ^i^O^ 4 9 1 4 8 1—
If^ -r 5 A -7^ — SIT S ^ T9~ ^ 'SH 1T6-U — TTTTT'

Ti'5 20"

the square of which is «^yj*j.y^y. Now 6, when reduced to

the same denominator, is = y^-^gV/ » the error therefore is

only fT4TT15-Tr*

326. In the same manner, we may express the cube root of

3 1

a + h by an infinite series. For since v/ (« + ^) = (« + V)'^9

we shall have in the general formula w = ^, and for the coeffi-

cients,J^= i;'iZl}=-i;!!=.^ = _i; 'tr_5==Ji,.'
1 3

'
2 3' 3 9' 4 3'

—— = — —
, &c. and with regard to the powers of a, we shall

3 _ 3 _ 3 _
have a« = v^; a"-^ = :5^ ; a"-^ = :^

,•
a""^ = :^, &c. then

a aa a^

3 a 9 aa 81 a^

J^xb*y^, &c.
^43 a^

s_
327. If a therefore be a cube, or a = c^, we have \/a = c, and

the radical signs will vanish ; for we shall have
3

, ,
, ,. 1 b I bb 5 b^ 10

328. We have therefore arrived at a formula, which will

enable us to find by approximation, as it is called, the cube root

of any number ; since every number may be resolved into two

parts, as c^ -f 5, the first of which is a cube.

If we wish, for example, to determine the cube root of 2, we

represent 2 by 1 + 1, so that c = 1 and & = 1, consequently

^2" = I + -I
—

1^ + TT' ^^' ti^^ t^^^ leading terms of this
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series make 1^ =
-J

the cube of which |^ is too great by |4*

Let us then make 2 = |^
—

J^, wo have c = J and 6 = — ^
^,

and consequently ^2 = 4 + i >< -fr* These two terms give

4
—

/s = ^i, the cube of which is |f||U- Now, 2 = |^||||,
so that the error is ^|.|7

5
^^ jj, this way we might still approx-

imate, and the faster in proportion as we take a greater number

of terms.

CHAPTER XIII.

Of the resolution of JVlegative Powers.

329. We have already shewn, that we may express — by a~^ ;

we may therefore also express —- by {a -f 6)-^ ; so that the

fraction —— may be considered as a power of a -f 6, namely

that power whose exponent is — 1 ; and from this it follows,

that the series already found as the value of (a -f by extends

also to this case.

330. Since, therefore, —— ij^ the same as (a + 6)-i, let us

suppose, in the general formula, n = — 1 ; and we shall first

have for the coefficients —=— 1; ^^ =— 1 ;

^ ^ = i-
1 ^ 3

'

-— = — 1, &c. Then, for the powers of a; a" z= a~^ = ~;

a«-i = a-= = 4 ' «""' = ^ ' «"-' = A* &c. So that (a + h)-^

_ 1 1 b bb h^ h^ b' .
, X, . •—

-77.
= --

^ H -, -J. + -T -.9 occ. and this is

the same series that we found before by division.

331. Further, ^^—— being the same with (a + &)-2, let us

reduce this quantity also to an infinite series. For this purpose,
we must suppose n = — 2, and we shall first have for the coeffi-

%
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cients i^ = -^;!!Zl^=- i.!!Z? = _«^. !^3 _ _
1 1 ^ 2^ 3 S' 4

—

--, &c. Then, for the powers of a ; a" = -i
; a"-^ = — •

4 ft^ a^
'

a' ; a"~^ = —
, 6cc. "^e |,herefore obtain (a + fe)-^ =:=

^ ^
^^

+ 1 ^
-i

^
-i

^ 1 ^
a-^'

^^- ^^^^'' T = 2,.

-|X| = 3; fX|x4=4; 4x|x4xf = 5, 6cc. Conse-

1 1 b b^ b^ b^
qiiently, we have ,

,

,,, = - — 2- + 3- — 4- + 5--

332. Let us proceed and suppose n = — 3, and we shall have

a series expressing the value of -—
j—-, or of (a + fe)"~^. The

^ . . -ii . 3 3 n—1 4 n—2 5
coefficients will be — = : = ; = :

1 l' 2 2 S 3

.1^ = , &c. and the powers of a become, a" = — a""^ =

_: a"~^ = — , &c. which cives -—-p-- = — —
. + —

4^2 3 4 5&3 3 4^0^6fc4 ,

X-^rs
-

-1
^ ^ ^ 1 rl^

+ 1 ^ ^ ^
-^

^
4 ^-""^

4.454--, &c.

Let us now make 11= — 4 ; we shall have for the coefficients

n _ 4
,
n—1 _ 5

^
«—3 _ 6

^
n—3 _ ^

At

T
~"

1
' ~i ^ ' "i"

" ^ ' ~T — T
1 11 1

and for the powers, a" = — : a"~^ = —
; a"-^ — . ^n-s _ .

1 i 1 4 &
a"-^ = -r^ &c, whence we obtain ; ,

, ,, .
= —

7 X —.

46fc2 456 63 4067ft'*
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± b h^ b^ b* b^
and c= 1— 4- — 101- — 20-^ + 35% — 56^, +, &c.

333. The different cases that have been considereo enable us

to conclude, with certainty, that we shall have, generally, for

any negative power of a + 6 ;

1 1 m b
,
m

^ m+± ^
b^ m m+±=- 7 X -zri-. + -7 X —T— X -;:n:. r X —~—

3 a^-^^

And, by means of this formula, we may transform all such

fractions into infinite series, substituting fractions also, or

fractional exponents, for m, in order to express irrational quan-
tities.

334. The following considerations will illustrate this subject

further.

We have seen that,

If, therefore, we multiply this series by a + &, the product

ouglit to be = 1
;

and this is found to be true, as we shall see

by performing the multiplication :

1 b b^ b' b^ b^
, SL^

a + &
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1 26 366 463

aa a' a* a*



SECTION THIRD.

«F RATIOS AND PROPORTIONS.

CHAPTER. I.

Qf ^Arithmetical Ratio, or of the difference between two JSPumbers.

ARTICLE 3S7.

Two quantities are either equal to one another, or they are

not. In the latter case, where one is greater than the other,

we may consider their inequality in two different points of view :

we may ask, hoiv jtmch one of the quantities is greater than the

other ? Or, we may ask, how many times the one is greater

than the other ? The results, which constitute the answers to

these two questions, are both called relations, or ratios. We
usually call the former arithmetical ratio, and the latter geomet-

rical ratio, without however these denominations having any
connexion with the thing itself : they have been adopted arbi-

trarily.

338. It is evident, that the quantities of which we speak must

be of one and the same kind ; otherwise, we could not determine

any thing with regard to their equality, or inequality. It would

be absurd, for example, to ask if two pounds and three ells are

equal' quantities. So that in what follows, quantities of the

same kind only are to be considered ; and as they may always
be expressed by numbers, it is of numbers only, as was men-

tioned at the beginning, that we shall treat.

339. When of two given numbers, therefore, it is required to

find, liow much one is greater than tlie other, the answer to this

question determines the arithmetical ratio of the two numbers.

Now, since tliis answer consists in giving the difference of the
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two numbers, it follows, that an arithmetical ratio is nothing
but the difference between two numbers : and as tliis appears to

be a better expression, we sliall reserve the words ratio and

reMioiif to express geometrical ratios.

340. The difference between two numbers is found, we know,

by subtracting the less from the greater ; nothing therefore can

be easier than resolving the question, how much one is greater

than the other. So tliat when the numbers are equal, the dif-

ference being nothing, if it be inquired how much one of the

numbers is greater than the other, we answer, by nothing. For

example, 6 being = 2x3, the difference between 6 and 2 x 3 is 0.

341. But when the two numbers are not equal, as 5 and 3,

and it i . inquired how much 5 is greater than 3, the answer is,

2 ; and it is obtained by subtracting S from 5. Likewise 15 is

greater than 5 by 10 ; and 20 exceeds 8 by 12.

342. We have three things, therefore, to consider on this

subject ; 1st, the greater of the two numbers ; 2d, the less ; and

Sd, the difference. And these three quantities are connected

together in such a manner, that two of the three being given,

we may always determine the third.

Let the greater number = a, the less = 6, and the difference

= d ; the difference d will be found by subtracting h from a, so

that d = a — b ; whence we see how to find rf, when a and b are

given.

343. But if the difference and the less of the two numbers, or

bf are given, we can determine the greater number by adding

together the difference and the less number, which gives a = 6

+ d. For, if we take from b -\- d the less number b, there

remains d, which is the known difference. Let the less number

= 12, and the difference = 8 ; then the greater number will be

= 20.

344. Lastly, if beside the difference d, the greater number a

is given, the other number b is found by subtracting the differ-

ence from the greater number, whicli gives & = a — d. For, if

I take the number a— d from tlie greater number a, there

remains d, which is the given difference.

345. The connexion, therefore, among the numbers a, ft, tZ, is

of such a nature, as to give the three following results : P** d = a
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h; 2^ d = b -^d; 2^- b = a — d; and if one of these three

comparisons be just, the others must necessarily he so also.

Wherefore, generally, [{ % = x + y, it necessarily follows, that

y = % — X, and x = % — y.

346. \Vith regard to these arithmetical ratios we must remark,

that if we add to the two numbers a and b, a number c, assumed

at pleasure^ or subtract it from them, the difference remains the

same. That is to say, if d is the difference between a and b,

that number d will also he the difference between a -f. c and

b + c, and between a— c and b — c. For example, the differ-

ence between the numhers 20 and 12 being 8, that difference

will remain the same, whatever numher we add to the numhers

20 and 12, and whatever numbers we subtract from them.

347. The proof is evident ; for if a — b = d we have also

(a + c)
— (b -{-c) =:d; and also (a

—
c)
—

(b
—

c) = d.

348. Ifwe double the two numbers a and h, the difference will

also become double. Thus, when a— 6 = rf, we shall have 2a—
fift z= 2d; and, generally, na — nb = nd, whatever value we

give to n,

CHAPTER IL

Of Arithmetical Proportion.

349. When two arithmetical ratios, or relations, are equal,

this equality is called an arithmetical proportion.

Thus, when a — b=zd and p — q = d, so that the difference

is the same between the numbers p and q, as between the num-

bers a and b, we say that these four numbers form an arithmeti-

cal proportion ; which we write thus, a— b = p— g, expressing

clearly by this, that the difference between a and b is equal to

the difference between p and q.

350. An arithmetical proportion consists therefore of four

terms, which must be such, that if we subtract the second from

the first, the remainder is the same as when we subtract the

fourth from the third. Thus, the four numhers 12, 7, 9, 4, form

an arithmetical proportion, because 12 — 7=9 — 4. (*)

(•) To «hew tliat these terms make such a proportion, some write them
thus ; 12 . . 7 : : 9 . . 4.

15
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351. When we have an arithmetical proportionf as it — b = p
*—

q, we may make the second and third change places, writing
a— p = b — q ; and this equalitij will he no less true ; for, since

fit— b z=zp
—

q, add h to both sides, and we have a = h +p— q;
then subtract

j?
from both sides, and we have a —p z=zh — q.

In the same manner, as 12 — 7 = 9 — 4, so also 12 — 9 =
r — 4.

352. TFc may, in etery anthmetical proportion, put the second

term also in the place of the first, if we maJte the same transposi-
tion of the third and fourth. That is to say, if o — b =p — q^

we have also b — a = g— p. For b — a is the negative of

a — b, and q
—

j?
is also the negative of p — q. Thus, since

12 — 7 = 9 — 4, we have also, 7 — 12 = 4 — 9.

353. But the great property of every arithmetical proportion is

this ; that the sum of the second and third term is always equal to

the sum of the first and fourth. This property, which we must

particularly consider, is expressed also by saying that, the sum
of the means is equal to the sum of the extremes. Thus, since

12 — 7=9— 4, we have 7 + 9 = 12 + 4 ; and the sum we
find is 16 in both.

354. In order to demonstrate this principal property, let a —
b = p — q'y if we add to both b -{- q, we have a }- q = b -j- p ^

that is, the sum of the first and fourth terms is equal to the sum

of the second and third. And conversely, iffour numbers, a, b, p,

q, are such, that the sum of the second and third is equal to the sum

of the first and fourth, that is, if 6 -f- j?
= a + q, we conclude,

without a possibility of mistake, that these numbers are in arith-

metical proportion, and that a — b = p — q. For, since a -{- q

= & + ;?,
if we subtract from both sides & + g, we obtain a — b

= p—q.
Thus, the numbers 18, 13, 15, 10, being such, that the sum

of the means (13 -f- 15 = 28,) is equal to the sum of the ex-

tremes (18 + 10 = 28,) it is certain, that they also form an

arithmetical proportion; and, consequently, that 18 — 13 =
15 — 10.

S55, It is easy, by means of this property, to resolve the fol-

lowing question. The three first terms of an arithmetical pro-

portion being given to find the fourth ? Let a, b, p, be the three

\
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first terms, and let us express the fourth by </, which it is

required to determine, then a + g = 6 -f jJ ; by subtracting a

from both sides, we obtain q =z b -\- p — a.

Thus, thefourth term isfound by adding together the second and

third, and subtracting the first from that sum. Suppose, for ex-

ample, that 19, 28, 13, are the three first terms given, the sum

of the second and tliird is = 41 ; take from it tlie first, which is

19, there remains 22 for the fourth term sought, and the arith-

metical proportion will be represented by 19 — 28 = 13 — 22,

or, by 28 — 19 = 22 — 13, or, lastly, by 28 •— 22 = 19 — 13.

356, When in an arithmetical proportion, the second term is equal

to the third, we have only three numbers ; the property of w hich

is this, that the first, minus the second, is equal to the second,

minus the third ; or, that the difference betsveen the first and

the second number is equal to the difference between the second

and the third. The three numbers 19, 15, 11, are of this kind,

since 19— 15 = 15 — 11.

S57, Three such numbers are said to form a continued anlh-

metical proportion, which is sometimes written thus, 19 : 15 : 11.

Such proportions are also called arithmetical progressions, par-

ticularly if a greater number of terms follow each other according
to the same law.

An arithmetical progression may be either increasing, or

decreasing. The former distinction is applied when the terms

go on increasing, that is to say, when the second exceeds the

first, and the third exceeds the second by the same quantity ;

as in the numbers 4, 7, 10. The decreasing progression is that,

in wldch the terms go on always diminishing by the same quan-

tity, such as the numbers 9, 5, 1.

258. Let us suppose the numbers a, b, c, to be in arithmetical

progression; then a — b =zb— c, whence it follows, from the

equality between the sum of the extremes and that of the means,
that 2& = a + c ; and if we subtract a from both, we have c =
2& — a,

359. So that when the two first terms a, b, of an arithmetical

progression arc given, the third is found by taking the first from
twice the second. Let 1 and 3 be the two first terms of an arith-

metical progression, the third will be = 2x3 — 1 = 5. And
tltesc.tlu'ce numbers 1, 3, .5 give the proportion 1—3 = 3 — 5,
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560. Py following the same method, we may pursue the

arithmetical progression as far as we please ; we have only to

find thefourth by means of the second and third, in the same man-
ner as we determined the third by means of the first and second,

and so on. Let a be the first term, and h the second, the third

will be = 2b — a, the fourth = 46 — 2a — 6 = 36 — 2a, the

fifth 66 — 4a — 26 + a = 46 — Sa, the sixth = 86 — 6a —• 3&

-f 2a = 56 — 4a, the seventh = 106 — 8a — 46 + Sa = 66

-^ Soj &c.

CHAPTER III.

Of Arithmetical Progressions.

561, We have remarked already, that a series of numbers

composed of any number of terms, which always increase, or

decrease, by the same quantity, is called an arithmetical pro-

gressimu

Thus, the natural numbers written in their order, (as 1, 2, 3,

4, 5, 6, 7, 8, 9, 10, &c.) form an arithmetical progression,

because they constantly increase by unity ; and the series 25,

22, 19, 16, 13, 10, 7, 4, 1, &c. is also such a progression, since

the numbers constantly decrease by 3.

362. The number, or quantity, by which the terms of aii

arithmetical progression become greate^or less, is called the
dif-

ference. So that when the first term and the difference are

given, we may continue the arithmetical progression to any

length.

For example, let the first term = 2, and the difference = 3,

and we shall have the fojjowing increasing progression : 2, 5,

8, 11, 14, 17, 20, 23, 26, 29, &c. in which each term is found,

by adding the difference to the preceding term.
^

363. It is usual to write the natural numbers, 1, 2, 3, 4, 5, &c.

above the terms of ,<^uch an arithmetical progression, in order

that we may immediately perceive the rank which any term

holds in the progression. T'iiese numbers written above the
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terms, may be called indices ; and the above example is written

as follows :

Iiidices, 12345678910
Jrithm.Prog. 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, &c.

where we see that 29 is the tenth term.

364. Let a be the first term, and d the difference, the arith-

metical progression will go on in the following order :

12 3 4 5 6 7

a, a + d, a -^Qd, a + Sd, a + 4d, a -f Sd, a + 6d, &c,

whence it appears, that any term of the progression might be

easily found, without the necessity of finding all the preceding

ones, by means only of the first term a and the difference d.

For example, the tenth term will be = a + 9d, the hundredth

term = a + 99(/, and, generally, the term n will be = a -f.

(71— \y.
365. When we stop at any point of the progression, it is of

importance to attend to the first and the last term, since the

index of the last will represent the number of terms, /f, there-

fore, thefirst term = a, the difference = d, and the number ofterms

= n, we shall have the last term = a -f (n
—

1) d, which is con-

sequently found hj mtdtiplying the difference by the mimber of terms

minus one, and adding thefirst term to that product. Suppose, for

example, in an arithmetical progression of a hundred terms,
the first term is = 4, and the difference = 3 ; then the last term
will be = 99 X 3

-I- 4 = 301.

366. When we know the first term a and the last a, with the

number of terms n, we can find the difference d. For, since

the last term » = a -f (?i
—

±)d, if we subtract a from both sides,

we obtain z— a =
(?i
—

1) d. So that by subtracting the first

term from the last, we have the product of the difference multi-

plied by the number of terms mimis 1. \^'e have, therefore,

only to divide «; — ahy n — 1 to obtain the required value of

the difference d, which will be = ^^. This result furnishes thew—1

following rule : Subtract the first term from the last, divide tJie

remainder by the number of terms minus 1, and the quotient will

be the difference : by means of which we may write the whole

progression.
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ser. Suppose, for example, that we have an arithmetical

progjessioji of nine terms, whose first is = 2, and last = 26,

and that it is required to find the difference. We must subtract

the first term 2 from the last 26, and divide the remainder,

which is 24, by 9— 1, that is by 8 ; the quotient 3 will be equal

to the difference required, and the wliole progression will be :
"123456789

2, 5, 8, 11, 14, 17, 20, 23, 26.

To give another example, let us suppose that the first term

= 1, the last = 2, the number of terms = 10, and that the arith-

metical progression, answering to these suppositions, is requir-
^ I I

ed ; we shall immediately have for the difference, = —
,10—1 y

and thence conclude, that the progression is :123456789 10

1,* 1|, 1|, 1|, 1|, 1|, 1|, IJ, If, 2.

Another example. Let the first term = 2J, the last = 12|,

and the number of terms = 7 ; the difference will be -^IZISJ'
7—1

101. 61 ,25 , ., ,,=—1. = — = 1— , and consequently the progression :

O Ov) OD12 3 4 5 6 7
Ol 41 '^'^^. 7S Q"' 1029 lOl
-^S' %?"' ^T¥' ^T2' ^T9 ^^3 6-' -^^Sf

268. If now the first term a, the last term «, and the differ-

ence d, aie given, we may from them iind the number of terms

11. For, since a— a =
(?i
—

1) d, by dividing the two sides

~^ ft

by d, we have —
j-
= n — 1. Now, n being greater by 1

a

than n — 1, we have n ^ —
j- -f 1 ; consequently, the number

of terms isfound by dividing the difference between thefirst and the

last term, or z— a, btj
the difference of the progression, and adding

unity to the quotientf
—

j-
•

For example, let the first term = 4, the last = 100, and the

difference = 12, the number of terms will be —~ +1 = 9;

and these nine terms will be,123456789
4, 16, 28, 40, 52, 64, 76, 88, 100.
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If the first term = 2, the last = 6, and difference = 1^, the

4
number of terms will be — -f- 1 = 4 ; and these four terms

will be,

1 £ 3 4

2, 34, 4f, 6.

Again, let the first term = 3^, the last = 7|, and the difier-

7*—Si
ence = 1|, the number of terms will be = ^ ^ +1=45H
which are,

*^3' ^T' "9"' 'U"'

369. It must be observed however, that as the number of terms

is necessarily an integer, if we had not obtained such a number

for w, in the examples of tlie preceding article, the questions

would have been absurd.

Whenever we do not obtain an integer number for the value

of —7-9 it will be impossible to resolve the question ; and con-
a

sequently, in order that questions of this kind may be possible,

55 — a must be divisible by d,

370. From what has been said, it may be concluded, that we

have always four quantities, or things, to consider in an arith-

metical progression ;

I. The first term a,

II. The last term «.

III. The difference d.

IV. The number of terms n.

And the relations of these quantities to each other are such, that

if we know three of them, we are able to determine the fourth ;

for,

I. If a, d, and n are known, we have z = a -f- (n
—

IJd.

II. If z, d, and n are knowiif we have a = z — (n
—

l)d.

III. If a, z, and n are known, we have d = -^,.n— 1

IV. If a, z, a7i(kd are known, we have n = -^ -f 1.
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CHAPTER IV.

Of the Summation of Arithmetical Progressions.

S71. It is often necessary also to find the sum of an arith-

metical progression. This might be done by adding all the

terms together ; but as the addition would be very tedious, when
the progression consisted of a great number of terms, a rule has

been devised, by which the sum may be more readily obtained.

372. We shall first consider a particular given progression,
such that the first term = 2, the difference = 3, the last term
= 29, and the number of terras = 10

^123456789 10

2, 5, 8, 11, 14, 17, 20, 23, 26, 29.

We see, in this progression, that the sum of the first and the

last term = 31 ; the sum of the second and the last but one

= 31 5 the sum of the third arid the last but two = 31, and so

on; and thence w^e conclude, that the sum of any two terms

equally distant, the one from the first, and the other from the last

term, is always equal to the sum of the first and^tlic last term.

373. The reason of this may be easily traced, ^or, if we sup-

pose the first = a, the last = », and the difference = d, the sum
of the first and the last term is = a -f a ; and the second term

being = a -}- d, and the last but one = « — d, the sum of these

two terms is also = a -f ®. Further, the third term being a +
2(if and the last but two = « — 2d, it is evident that these two

terms also, when added together, make a -f ». The demon-

stration may be easily extended to all the rest.

374. To determine, therefore, the sum of the progression

proposed, let us write the same progression term by term,

inverted, and add the corresponding terms together, as follows :

2 -f. 5 + 8 4- 1 1 -f. 14 4- 17 -f 20 -f 23 -f. 26 -f 29

29 4- 26 -f- 23 + 20-f 17 -f- 14 -h 11 + 8 + 54-2.

31 4-31 -f-31 -f. 31 4-31 4- 31 4- 31 -f 31 4. 31 4. 31

This series of equal terms is evidently equal to twice the sum

of the given progression ; now the number of these equal terms

is 10, as in the progression, and their sum, consequently, = 10
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X 31 = 310. So that, since this sum is twice the sum of the

arithmetical progression, the sum required must be = 155.

375. If we proceed, in the same manner, with respect to any
arithmetical progression, the first term of which is = a, the last

= %, and the number of terms = n ; writing, under the given -

progression, the same progression inverted, and adding term to

term, we sliall have a series of n terms, each of which will be

= a -f- » ; the sum of tliis series will consequently be = w (a +«),
and it will be twice the sum of the proposed arithmetical pro-

gression ; wliich therefore will be = ^ '
.

376. This result furnishes an easy method of finding the sum

of any arithmetical progression ; and may be reduced to the

following rule :

Multiply the siim of the first and the last term by the mimber of

tenns, and half the product will be the sum of the whole progres-

sion.

Or, which amounts to the same, multiply the sum of the first

and the last term by half the number of terms.

Or, multiply half the sum of the first and the last term by the

whole number of terms. Both these enunciations of the rule

will give the sum of the progression.

377. It may be proper to illustrate this rule by some exam-

ples.

First, let it be required to find the sum of the progression of
the natural numbers, 1,-2, 3, &c. to 100. This will be, by the

first rule, =
^^^^^^^ = 50 x 101 = 5050.

2

If it were required to tell how many strokes a clock strikes

in twelve hours ; we must add together the numbers 1, 2, 3, as

12 X 1 *?

far as 12 ; now this sum is found immediately = . z= 6 x

13 = 78. If we wished to know the sum of the same progres-
sion continued to 1000, we should find it to be 500500 ; and the

sum of this progression continued to 10000, would be 50005000,
378. Another question. A person buys a horse, on condition

that for the first nail he shall pay 5 halfpence, for the second 8,

for the third 11, and so on, always increasing 3 halfpence more
16
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for each following one ; the horse having 32 nails, it is required
to tell how much he will cost the purchaser ?

In this question, it is required to find the sum of an arith-

metical progression, the first term of which is 5, the diiference

= 3, and the number of ter»ns = 32. We must therefore begin

by determining the last term ; we find it (by the rule in articles

365 and 370) = 5 + 31 x 3 = 98. After which tlie sum re-

103 X 32
quired is easily found = ^^^ = 103 x 16 ; whence we con-

elude, that the horse costs 1648 halfpence, or 3^ 8s. 8d,

379. Generally, let the first term be = a, the difference = d^

and the number of terms = n ; and let it be required to find, hy
means of these data, the sum of the whole progression. As the

last term must be = a + («
—

l)d, the sum of the first and last

will be = 2a -f- (n
—

l)d. Multiplying this sum by the number
of terms n, we have ^na -f- n

(ji
—

1) fi
; the sum required

therefore will be = na + ^H^ )
^^

2

This formula, if applied to the preceding example, or to a = 5,

d = 3, and n = 32, gives 5 x 32 -f-
-~^l—±- = 160 + 1488 =

1648
; the same sum that we obtained before.

380. If it be required to add together all the natural numbers
from 1 to n, we have, for finding this sum, the first term = 1,

the last term = n, and the number of terms = n ; wiierefore the

,, • 1 • nn-\-n n{n-\-V\
the sum required is = —

;-i—
= --^——^.

If we make n = 1766,; the sum of all the numbers, from 1 to

1766, will be = 883 X 1767 = 1560261.

381. Let the progression of uneven numbers he proposed, 1, 3, 5,

7, ^'c. continued to n terms, and let the sum of it be required :

Here the first terni is = 1, the difference = 2, the number of

terms = n • the last term will therefore be = 1 -f (n
—

1) 2 =
£re — 1, and consequently the sum required = nn.

The whole therefore consists in multiplying the number of

terms by itself. So that whatever numher of terms of this pro-

gression we add together, the sum will he always a square, 7iamely9

the square of the numher of terms. This we shall exemplify as

follows ;
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Indices, 1 2 3 4 5 6 7 8 9 10 &c.

Progress, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, &c.

Sum. 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, &c.

382. Let the first term be = 1, the difference = 3> and the

number of terms = n ; we shall have the progression 1, 4, 7,

10, 6cc. the last term of which will bel + (?i
— l)3=3ii^-2;

wherefore the sum of the first and the last term = 3?* — 1, and

consequently, the sum of this progression = —^^ '- = •

If we suppose n = 20, the sum will be = 10 x 59 = 590.

383. Again, let the first term = 1, the difference = d, and

the number of terms = n ; then the last term will be = 1 +
(n
—

l)d. Adding the first, we have 2 + (w
—

l) d, and mul-

tiplying by the number of terms, we have 2ti + n (n
—

i) d;

whence we deduce the sum of the progression = ti -f-
^^^ / .

We subjoin the following small table :

If rf = 1, the sum is = ?i + —^—^ = -~-
2 2

a = 2, = w -I ^—^ = nu

a = 4, = « -(
^^

' = 2nn — n

J ^ 5n(n—\) Snn—3n^22
d = 6, = 71 4 ^ ' = 37171 27«^

2

, _, 7n(n— 1\ 771W—5n
dz=7, = 71 H i^ ) =

rf = 8, z= 11 4 ^ ^ = 47171 — 371
2

(1 = 9, = 71 + —ii ^ =^2 2

rf = 10, =n -\
— ^^^ ^ = Snn— 4n
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CHAPTER V.

Of Geometrical Ratio,

384. The geometrical ratio of two numbers is found by resolv-

ing tbe question, how many times is one of those numbers

greater tlian ttie other ? This is done by dividing one by the

other ; and tlie quotient, therefore, expresses the ratio required.

385. We have here three things to consider ; 1st, the first of

the two given numbers, which is called the antecedent ; 2dly,

the other number, wliich is called the consequent; 3dly, the

ratio of the two numbers, or the quotient arising from the divis-

ion of the antecedent by the consequent. For example, if the

relation of the numbers 18 and 12 be required, 18 is the antece-

dent, 1^ is the consequent, and the ratio will be \^ = 1| ;

whence w^e see, that the antecedent contains the consequent once

and a half.

386. It is usual to represent geometrical relation by two

points, placed one above the other, between the antecedent and

the consequent. Thus a : h means the geometrical relation of

these two numbers, or the ratio of h to a.

We have already remarked, that this sign is employed to

represent division, and for this reason we make use of it here ;

because, in order to know the ratio, we must divide a by &.

The relation, expressed by this sign, is read simply, a is to &.

387. Relation therefore is expressed by a fraction, whose

numerator is the antecedent, and whose denominator is the con-

sequent. Perspicuity requires that this fraction should be

always reduced to its lowest terms ; which is done, as we have

already shewn, by dividing both the numerator and denominator

by their greatest common divisor. Thus, the fraction i| be-

comes |, by dividing both terms by 6.

388. So that relations only differ according as their ratios

are different ; and there are as many different kinds of geometri-

cal relations as we can conceive different ratios.

The first kind is undoubtedly that in which the ratio becomes

unity ; this case happens when the two numbers are equal, as

in 3 : 3 ; 4 : 4 ; a : a ; the ratio is here 1, and for this I'eason we

call it the relation of equality.
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Next follow those relations in which the ratio is another whole

number ;
in 4 : 2 the ratio is 2, and is called dmible ratio ; in 12 ^

4 the ratio is 3, and is called triple ratio ; in 24 : 6 the ratio is 4,

and is called quadruple ratio, &c.

We may next consider those relations whose ratios are expres-

sed by fractions, as 12 : 9, where the ratio is 4 or 14 ; 18 : 27,

were the ratio is |, &c. We may also distinj^uish tliose rela-

tions in which the consequent contains exactly twice, thrice, &c.

the antecedent ; such are the relations 6 : 12, 5 : 15, &c. the ra-

tio of which some call, subdMple, suhtriplef &c. ratios.

Further, we call that ratio rational, which is an expressible

number ; the antecedent and consequent being integei^, as in

11 : 7, 8 : 15, &c. and we call that an irrational or surd ratio,

which can neither be exactly expressed by integers, nor by frac-

tions, as in v/ 5 : 8, 4 : V 3.

389. Let a be the antecedent, h the consequent, and d the ra-

tio, we know already that a and b being given, we find d = 4.
b

If the consequent b were given with the ratio, we should find

the antecedent a = bd, because bd divided by b gives d. Lastly,

when the antecedent a is given, and the ratio d, we find the"

consequent b = —
; for, dividing the antecedent a by the conse-

(i

quent -^,
we obtain the quotient d, that is to say, the ratio.

390. Every relation a ; b remains the same, though we multi-

ply, or divide the antecedent and consequent by the same num-

ber, because the ratio is the same. Let d be the ratio of a : &^

we have dz=z —; now the ratio of the relation na : nb is also --
b

n h ft

= (Z, and that of the relation --
:
— is likewise — = d.

n n b

391. When a ratio has been reduced to its lowest terms, it is

easy to perceive and enunciate the relation. For example, when
CL 7)

the ratio -7 has been reduced to the fraction —
, we say a: b=:

b q

p : q, a:b::p: q, which is read, a is to 6 as p is to q. Thus,

the ratio of the relation 6 : 3 being |, or 2, we say 6:3=2:1.
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We have likewise 18 : 12 = 3 : 2, and 24 : 18 = 4 : 5, and 30 : 45
s= 2 : 3, &c. But if the ratio cannot he abridged, the relation

will not become more evident ; we do not simplify the relation

by saying 9:7 = 9:7.

392. On the other hand, we may sometimes change the rela-

tion of two very great numbers into one that shall be more

simple and evident, by reducing both to their lowest terms. For

example, we can say 28844 : 14422 = 2:1; or, 10566 : 7044

= 3:2; or, 57600 : 25200 =16:7.
393. In order, therefore, to express any relation in the clear-

est manner, it is necessary to reduce it to the smallest possible

numbers. This is easily done, by dividing the two terms of the

relation by their greatest common divisor. For example, to

reduce the relation 57600 : 25200 to that of 16 : 7, we have only
to perform the single operation of dividing the numbers 576 and

252 by 36, which is their greatest common divisor.

394. It is important, therefore, to know how to find the great-

est common divisor of two given numbers ; but this requires a

rule, which we shall explain in the following chapter.

CHAPTER VI.

Of the greatest Common Divisor of two given numbers^

395. There are some numbers which have no other common

divisor than unity, and when the numerator and denominator

of a fraction are of this nature, it cannot be reduced to a more

convenient form. The two numbers 48 and 35, for example,

have no common divisor, though each has its own divisors.

For this reason we cannot express the relation 48 : 35 more

simply, because the division of two numbers by 1 does not

diminish them.

396. But when the two numbers have a common divisor, it is

found by the following rule :

Divide the greater of the two numbers by the less ; nextf divide

the jjreceding divisor by the remaimler ; what remains in this

second division will afterwards become a divisorfor a third divis-

ion, in which the remainder of the preceding divisor will be the
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dividend. We must continue this operation, till we arrive at a

division that leaves no remainder ; the divisor of this division, and

consequently the last divisor, will be the greatest common divisor of

the two given numbers.

See this operation for the two numbers 576 and 252.

252) 576 (2
504

•^

72) 252 (3
216

36) 72 (2
72

0.

So that, in this instance, the greatest common divisor is 36,

397. It will be proper to illustrate this rule by some other

examples. Let the greatest common divisor of the numbers

504 and 312 be required.

312) 504 (1
312

192) 312 (1
192

120) 192(1
120

72) 120 (1
72

48)72 (1
48

24) 48 (2
48

0.

So that 24 is the greatest common divisor, and consequently
the relation 504 : 312 is reduced to the form 21 : 13.

398. Let the relation 625 : 529 be giMJn, and the greatest
common divisor of those two numbers be required.
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529)
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402. These three things being laid down, let us divide,

according to the rule, the greater number a by the less b ;

and let us suppose the quotient = n ; the remainder will be

a — nbf which must be less than &. Now, tbis remainder a— nh

having the same greatest common divisor with 6, as the given

iiumbei*s a and b, we have only to repeat the division, dividing

the preceding divisor b by the remainder a — nb; the new

remainder, which we obtain, will still-have, with the preceding

divisjr, the same greatest common divisor, and so on.

403. We proceed in the same manner, till we arrive at a

division without a remainder ; that is, in which the remainder

is nothing. Let p be the last divisor, contained exactly a cer-

tain number of times in its dividend ; this dividend will there-

lore be divisible by p, and will have the form mp ; so that the

numbers ];,
and tn_p, are both divisible by p ; and it is certain,

that they have no greater common divisor, because no number

can actually be divided by a number greater than itself. Con-

sequently, tliis last divisor is also tiie greatest common divisor

of the given numbers a and b, and the rule, w hich w^e laid down,
is demonstrated.

404. We may give another example of the same rule, requir-

ing the greatest common divisor of the numbers 1728 and 2304,

The operation is as follows :

1728) 2304 (1
1723

576) 1728 (3
1728

0.

From this it follows, that 576 is the greatest common divisor,

and that the relation 1728 : 2304 is reduced to 3 : 4 5 that is to

say, 1728 is to 2304 the same as 3 is to 4.

17
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CHAPTER VII.

Of Geometrical Proportions.

405. Two geometrical relations are equal, when their ratios

are equal. Tliis equality of two relations is called a geometrical

proportion ; and we write for example, a : 6 = c : (f, or a : 6 : : c
'

d, to indicate that the relation a : 6 is equal to the relation

c. d; but this is more simply expressed by saying, a is to & as

c to d. The following is such a proportion, 8:4=12:6; for

the ratio of the relation 8 : 4 is 4, and this is also the ratio of

the relation 12 : 6.

406. So that a : b = c : d being a geometrical proportion, the

ratio must be the same on both sides, and ~ = -j j and, recip-
b a

rocally, if the fractions — and ~ are equal, we have aib wed,

407. A geometrical proportion consists therefore of four terms,

such, that the first, divided by the second, gives the same quo-
tient as the third divided by the fourth. Hence we deduce an

important property, common to all geometrical proportion,
which is, that the product of the first and the last term is always

equal to the product of the second and third ; or, more simply, that

the product of the extremes is equal to the product of the means,

408. In order to demonstrate this property, let us take the

geometrical proportion a : 6 = c : J, so that —=--,. If we mul-

bc
tiply both these fractions by b, we obtain a =

-75
and multiply-

ing both sides further by d, we have ad = be. Now ad is the

product of the extreme terms, be is that of the means, and these

two products are found to be equal.

409. RedprocaUy, if the four numbers a, b, c, d, are such, that

the product of the two extremes a and d is equal to the product of

the two means b and c, we are certain that they form a geometri-

cal proportion. For, since ad = be, we have only to divide both

sides by bd, which gives us
-r^

= t-.? ov -t = -., and conse-

quently a : b = c : d.
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410. Thefmir terms of a geometrical proportion, as a : b = c : d,

may be transposed in different ways, without destroying the pro»

portion. For the rule being always, that the product of the eo?-

tremes is equal to the product of the means or ad= be, we may say :

1«^ b : a = d : c ; ^'"y- a : c = b : d ; 3«"y- d : b = c : a ; 4«Jy-

d : c = b : a.

411. Beside these four geometrical proportions, we may de-

duce some others from the same proportion, a i b = c : d. We

may say, the first term, plus the second, is to the first, as the third

4- thefourth is the third ; that is, a + b : a = c + d : c.

We may further say ; the first
— the second is to the first as

the third— thefourth is to the third, or a— b : a = c — die.

For, if we take the product of the extremes and the means,

we have ac — be = ac — ad, which evidently leads to the equal-

ity ad = be.

Lastly, it is easy to demonstrate, that a + b:bz=:c-^d:d;
and that a— b : b = c — d : d.

412. All the proportions which we have deduced from a : 6 =
c ; d, may be represented, generally, as follows :

ma -f- nb : pa -{- qb = mc -^ nd : pc -f qd.

For the product of tlie extreme terms is mpac + npbc + mqad
+ nqbd ; which, since ad = be, becomes mpac + npbc + mqbc -f

nqbd. Further, the product of the mean terms is mpac -f- viqbc

+ npad -f nqbd ; or, since ad = be, it is mpac -f mqbc + npbc -f

nqbd ; so that the two products are equal.

413. It is evident, therefore, that a geometrical proportion

being given, for example, 6 : 3 = 10 : 5, an infinite number of

others may be deduced from it. We shall give only a few :

3 : 6 = 5 : 10 ;
6 : 10 = 3 : 5 ; 9 : 6 = 15 : 10 ;

3:3 = 5: 5 ; 9 : 15 = 3 : 5 ; 9 : 3 = 15 : 5.

414. Since, in every geometrical proportion, the product of

the extremes is equal to the product of the means, we may,
when the three first terms are known, find the fourth from them.

Let the three first terms be 24 : 15 = 40 to .... as the product
of the means is here 600, the fourth term multiplied by the first,

that is by 24, must also make 600 ; consequently, by dividing
600 by 24, the quotient 25 will be the fourth term required, and
the whole proportion will b^ 24 : 15 = 40 : 25. In general.



1^ Algebra, Sect. 8.

therefore, if the thi*ee first terras are a : 6 = c : . . . . we put (i

for the unknown fourth letter ; and since ad = bcj we divide

be
both sides by a, and have d = — . So that the fourth term is

be= —
, and isfound by multiplying the second term by the third, and

dividing that product by the first term,

415. This is the foundation of the celebrated Rule of Three in

arithmetic ; for what is required in that rule ? We suppose three

numbers given, and seek a fourth, which may be in geometrical

proportion ; so that the first may be to the second, as the third

is to the fourth.

416. Some particular circumstances deserve attention here.

First, if in two proportions the first and the third terms arc the

same, ^s in a : b — c : d, and a :f=i c : g, I say that the two

second and the two fourth terms will also be in geometrical propor-

tion, and that b : d = f : g. For, the first proportion being
transformed into this, a : c = b i d, and the second into this,

a : c =zf : gf it follows that the relations b : d and/: g are equal,

since each of them is equal to the relation a : c. For example,
if 5 ; 100 = 2 : 40, and 5:15= 2:6, we must have 100 : 40

= 15 ; 6.

417. But if the two proportions are such, that the mean terms

are the same in both, I say that the first terms will be in an

inverse proportion to the fourth terms. That is to say, if a : &

=zc: d, and/: b = c : g, it follow^s that a :f= g : d. Let the

proportions be, for example, 24 : 8 = 9 : 3, and 6 : 8 = 9 : 12,

we have 24 : 6 = 12 : S. The reason is evident ; the first pro-

portion gives ad z=zbc; the second gives fg z=bc; therefore ad

:=:fg, and a :f=z g : d, or a:g: :/: d.

418. Two proportions being given, we may always produce

a new one, by sej)arately multiplying the first term of the one

by the first term of the other, the second by the second, and so

on, with respect to the other terms. Thus, the proportions a : h

= c: d and e:fz=g: h will furnish this, ae: bfz=z eg : dh. For

the first giving af! = be, and the second giving eh =/g", we have

also adch = bcfg. Now adeh is the product of the extremes, and

bcfg is the product of the means in the new proportion,* so that

the tw^o products being equal, the pi oportion is true.
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419. Let the two proportions be, for example, 6 : 4 = 15 : 10

and 9 : 12 = 15 : 20, their combination will give the proportion

6 X 9 : 4 X 12 = 15 X 15 : 10 X 20,

or 54 : 48 = 225 : 200,

or 9 : 8 = 9 : 8.

420. We shall observe lastly, that if two products are equal,

ad = be, we may reciprocally convert this equality into a geo-

metrical proportion ; for we shall always have one of the factors

of the first product, in the same proportion to one of tlie factors

of the second product, as the other factor of tlie second product

is to the other factor of the first product ; that is, in tlie present

case, a: c = b: d, or a : b = c : d. Let 3x8 = 4 x 6, and wc

may form from it this proportion, 8 : 4 = 6 : 3, or this, 3:4 =
6 : 8. Likewise, if 3 x 5 = 1 x 15, we sliall have 3:15=1 : 5,

or 5 : 1 = 15 : 3, or 3 : 1 = 15 : 5.

CHAPTER Vin.

Observations an the Rules of Proportion and their utility,

421. This theory is so useful in the occurrences of common

life, that scarcely any person can do without it. There is always
a proportion between prices and commodities ; and when differ-

ent kinds of money are the subject of exchange, the whole con-

sists in determining their mutual relations. The examples
furnished by these reflections, will be very proper for illustrating

the principles of proportion, and shewing their utility by the

application of them.

422. If wc wished to know, for example, the relation between

two kinds of money ; suppose an old louis d'or and a ducat ; we
must first know the value of those pieces, when compared to

others of the same kind. Thus, an old louis being, at Berlin,

worth 5 rix dollars* and 8 drachms, and a ducat being worth

3 rix dollars, we may reduce these two values to one denomina-

tion ; either to rix dollars, which gives the proportion 1 L : 1 D
* The rix dollar of Germany is valued at 92 cents 6 mills, and a drachm is

one twenty fourth part of a rix dollaF.

I
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= 54 R : 3 R, or = 16 : 9 ; or to drachms, in which case we
liave 1 L : 1 D = 128 ; 72 = 16 : 9. These proportions evi-

dently give the true relation of the old louis to the ducat ; for

the equality of the products of the extremes and the means gives^
in both, 9 louis = 16 ducats ; and, by means of this comparison,
we may change any sum of old louis into ducats, and vice versa.

Suppose it were required to tell how many ducats there are in

1000 old louis, we have this rule of three. If 9 louis are equal

to 16 ducats, what are 1000 louis equal to ? The answer will

be 1777^ ducats.

If, on the contrary, it were required to find how many old

louis d'or there ai^e in 1000 ducats, we have the following pro-

portion. If 16 ducats are equal to 9 louis; what are 1000

ducats equal to ? dnswer, 562| old louis d'or.

423. Here, (at Petersburgh,) the value of the ducat varies,

and depends on the course of exchange. This course determines

the value of the ruble in stivers, or Dutch half-pence, 105 of

which make a ducat.

So that when the exchange is at 45 stivers, we have this pro-

portion, 1 ruble : 1 ducat = 45 : 105 = 3:7; and hence this

equality, 7 rubles = 3 ducats.

By this we shall find the value of a ducat in rubles ; for 3

ducats : 7 rubles = 1 ducat : Jinswer, 2-J rubles.

If the exchange were at 50 stivers, we should have this pro-

portion, 1 ruble ; 1 ducat = 50 : 105 = 10 : 21, which would

give 21 rubles =10 ducats ; and we should have 1 ducat = 2-j^

rubles. Lastly, when the exchange is at 44 stivers, we have 1

ruble : 1 ducat = 44 : 105, and consequently 1 ducat = 2iJ
rubles = 2 rubles

38-j-^^ copecks.^

424. It follows from this, that we may also compare different

kinds of money, which we have frequently occasion to do in bills

of exchange. Suppose, for example, that a person of this place

has 1000 rubles to be paid to him at Berlin, and that he wishes

to know the value of this sum in ducats at Berlin.

The exchange is here at 47|, that is to say, one ruble makes

47^ stivers. In Holland, 20 stivers make a florin ; 2J Dutch

florins make a Dutch dollar. Further, the exchange of Holland

• A copeck is
^ig. part of a ruble, as is easily deduced froift the above.
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with Berlin is at 142, that is to say, for 100 Dutch dollars, 142

dollars are paid at Berlin. Lastly, the ducat is worth 3 dollars

at Berlin,

425. To resolve the questions proposed, let us proceed step

by step. Beginning therefore with the stivei-s, since 1 ruble =
471 stivers, or 2 rubles = 95 stivers, we shall have 2 rubles :

95 stivers = 1000 : . . . . Answer^ 47500 stivers. If we go fur-

ther and say 20 stivers : 1 florin = 47500stivers : .... we shall

have 2375 florins. Further, 2^ florins = 1 Dutch dollar, or 5

florins = 2 Dutch dollars ; we shall therefore have 5 florins :

2 Dutch dollars = 2375 florins : . . . . Answer, 950 Dutch dollars.

Then taking the dollars of Berlin, according to the exchange
at 142, we shall have 100 Dutch dollars : 142 dollars = 950 :

to the fourth term, 1349 dollars of Berlin. Let us, lastly, pass

to the ducats, and say 3 dollars : 1 ducat = 1349 dollars : . . , .

Answer, 449| ducats.

426. In order to render these calculations still more complete,
let us suppose that the Berlin banker refuses, under some pre-

text or other, to pay this sum, and to except the bill of exchange
without five per cent, discount ; that is, paying only 100 instead

of 105. In that case, we must make use of the following pro-

portion ; 105 ; 100 = 449| to a fourth term, which is 428||
ducats.

427# We have shewn that six operations are necessary, in

making use of the Rule of Three ; but we can greatly abridge
those calculations, by a rule, which is called the Ride of Reduc-

tion, To explain this rule, we shall first consider the two

antecedents of each of the six preceding operations :

I.
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results, by multiplying, at once, the sum proposed by the pro-
duct of all the second terms, and dividing by the product of all

the first terms. Or, which amounts to the same thing, that vvc

have only to make the following proportion ; as the product of

all the first terms is to the product of all the second terms, so is

the given number of rubles to the number of ducats payable at

Berlin,

428. This calculation is abridged still more, when amongst
the first terms some are found that have common divisors with

some of the second terms ; for, in this case, we destroy those

terms, and substitute the quotient arising from the division by
that common divisor. The preceding example will, in this

manner, assume the following form.=^

les^.
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430. Other examples arc added to facilitate the practice of

this calculation.

If ducats gain at Hamhurg 1 per cent, on two dollars hanco ;

that is to say, if 50 ducats are worth, not 100, hut 101 dollars

banco ;
and if the exchange between Hamburgh and Konigs-

berg is 119 drachms of Poland ; that is, if 1 dollar banco gives

119 Polish drachms, how many Polish florins will 1000 ducats

give ? '^

30 Polish drachms make 1 Polish florin.

Ducat 1 : ^ doll, B°. 1000 due.

/j0^, 50 : 101 doll. B°.

1 : 119 Pol. dr.

30 : 1 Pol. flor.

I5j^0 ; 12019= lOj^fj^duc.

5) 120190.

5) 40063 (I.

8012 (3. Answer, 8012 I p. fl,

431. We may abridge a little further, by writing the number,

which forms the third term, above tlie second row ; for tiien the

product of the second row, divided by the pmduct of the first

row, will give the answer sought.

Question, Ducats of Amsterdam are brought to Lejpsick,

having in the former city the value of 5 flor. 4 stivers current ;

that is to say, 1 ducat is worth 104 stivers, and 5 ducats are

worth 26 Dutch florins. If, therefore, the agio of the bank* at

Amsterdam is 5 per cent, that is, if 105 currency arc equal to

100 banco, and if the exchange from Leipsick to Amsterdam,
in bank money, is 1331 per cent, tliat is, if for 100 dollars wc

pay at Leipsick 133^ dollars ; lastly, 2 Dutch dollars making
5 Dutch florins ; it is required to find how many dollars we
must pay at Leipsick, according to these exchanges, for 1000

ducats ?

* The difference of value between bank money and current money.

18



IBS Algebra. Sect. 3,

/, X000 ducats.

Ducats
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Relations given,

12 : 25, 28 : 33, and 55 : 56,

/^,^2 : 5, i^.

^* : ^, Ji^.

2 : 5.

So that 2 : 5 is the compound relation required.

434. The same operation is to be performed, when it is re-

quired to calculate generally by letters ; and the most remark-

able case is that, in which each antecedent is equal to the

consequent of the preceding relation. If the given relations are

a : h

h'.G

c : d

d : e

e : a

the compound relation is 1 : 1.

435. The utility of these principles will be perceived, when

it is observed, that the relation between two square fields is

compounded of the relations of the lengths and the breadths.

Let the two fields, for example, be A and B ^ let A have 500

feet in length by 60 feet in breadth, and let the length of B be

360 feet, and its breadth 100 feet; the relation of the lengths

will be 500 : 360, and that of the breadths 60 : 100. So that

we have

i,5 : 6,^0^.

5 : 6

Wheixifore the field A is to the field B, as 5 to 6.

436. ,^nother examjjle. Let the field A be 720 feet long, 88

feet broad
,•

and let the field B be 660 feet long, and 90 feet

broad ; the relations will be compounded in the following man-

ner:

Relation of the lengths, /^JZ>, 8 : 15,i)/i,0f(ji

Relation of the breadths, |^, ^,
2 :

Relation of the fields A and B, 16 : 15.
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437'. Further, if it be required to compare two chambers with

respect to the space, or contents, we observe that that I'clation

is compounded of three relations ; namely, of tliat of the

len.^ths, that of the breadths, and that of the heights. Let there

be, for example, the chamber A, whose length = 36 feet, breadth

= 16 feet, and height = 14 feet, and the chamber B, whose

length = 42 feet, breadth = 24 feet, and height = 10 feet ; we
shall have these three relations :

For the length 0,0 : t, 0.
For the breadth /^, /, 2 : 0, ^^.

For the height U, 2 : 5, /0.

4 : 5

So that the contents of the chamber A : contents of the cham-

ber B, as 4 : 5.

438. When the relations, which we compound in this manner,
are equal, there result multiplicate relations. Namely, two

equal relations give a duplicate ratio, or ratio of the squares ';

three equal relations produce the triplicate ratio, or ratio of the

cubesf and so on. For example, the relations a : h and a : h give

the compound relation aa : lib; wherefore we say, that the

squares are in the duplicate ratio of their roots. And the ratio

a : b multiplied thrice, giving the ratio a* : 6^, we say that the

cubes are in the triplicate ratio of their roots.

439. Geometry teaches, that two circular spaces are in the

duplicate relation of their diameters; this means, that they are

to each other as the squares of their diameters;

Let A be a circular space, having the diameter = 45 feet, and

B another circular space, whose diameter = SO feet ; the first

space will be to the second as 45 x 45 to 30 x 30 ; or, com-

pounding these two equal relations,

//,J^, 3 : 2,0,0.
//,^, 3 :

2,/,X;2f.

9 : 4.

Wherefore the two areas are to each other as 9 to 4.

440. It is also demonstrated, that the solid contents of spheres

are in the ratio of the cubes of the diameters. Thus, the diame-
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ter of a globe A, being 1 foot, aad the diameter of a globe B,

being £ feet, the solid contents of A will be to those of B, as

13 : £3 ; or, as 1 to 8.

If, therefore, the spheres are formed of the same substance,

the sphere B will weigh 8 times as much as the spiiere A.

441. It is evident, that we may, in this manner, find the

weight of cannon balls, their diameters, and the weight of one,

being given. For example, let there be the ball A, whose

diameter = £ inches, and wei.i^ht = 5 pounds ; and, if the

weight of another ball be i-equired, whose diameter is 8 inches,

we have this proportion, 2^ : S^ = 5 to the fourth term, S20

pounds, which gives the weight of the ball B. For another ball

C, whose diameter = 15 inches, we should have,

9.^ : 15^ = 5 : . . . . Answer^ 2109| lb.

CL C
442. When the ratio of two fractions, as -r : -15 is requir-

ed, w^e may always express it in integer numbers ; for we have

only to multiply the two fractions by bd, in order to obtain tlio

ratio axl : be, which is equal to the other ; from w^hich results the

fl c

propoi-tion -7 :

-^
= ad : he. If, therefore, ad and be have com-

mon divisors, the ratio may be reduced to less terms. Thus,

It • If = 15 X 3^ : £4 X £5 = 9 : 10.

443. If we wished to know the ratio of the fractions — and -7,
a

it is e^ ident, that we should have — :
— = b : a; which is ex-

(i

pressed by saying, that two fraetions, whieh have unityfor their

numeratoTf are in the reciproeal, or inverse ratio of their denomi-

nators. The same may be said of two fractions, which have any
c c

common numerator ; for — :
~ =zb : a. But if twofractions have

A

their denominators equal, as — :
—

, they are in tJie direct ratio of

the numerators ; namely, as a : b. Thus, | : ^\ =1 ^^: j\ z= 6: S

= £ : 1, and V° : V = ^^ • 1^, or, = 2:3.

444. It is observed, that in the free descent of bodies, a body
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falls 16* feet in a second, that in two seconds of time it falls

from the height of 64 feet, and that in three seconds it falls 144

feet ; hence it is concluded, that the heights are to one another

as the squares of the times ; and that, reciprocally, the times

are in the subduplicate ratio of the heights, or as the square
roots of the heights.

If, therefore, it be required to find how long a stone must

take to fall from the height of 2304 feet ; we have 16 : 2304 = 1

to tiie square of the time sought. So that the square of the time

sought is 144 ; and, consequently, the time required is 12 seconds.

445. It is required to find how far, or through what height,

a stone will pass, by descending for the space of an hour ; that

is, 3600 seconds. We say, therefore, as the squares of the times,

that is, I* : 36002 ; so is the given height =16 feet, to the

height required.

1 : 12960000 t= 16 : . . . . 207360000 height required.

16

77760000

1296

207360000

If we now reckon 18000 feet for a league, we shall find this

height to be 10800 ; and, consequently, nearly four times greater

than tlie diameter of the earth.

446. It is the same with regard to the price of precious stones,

which are not sold in the proportion of their weight ; every

body knows that their prices follow a much greater ratio. The
rule for diamonds is, that the price is in the duplicate ratio of

the weight, that is to say, the ratio of the prices is equal to the

square of the ratio of the weights. The weight of diamonds is

expressed in carats, and a carat is equivalent to 4 grains ; if,

therefore, a diamond of one carat is worth 10 livres, a diamond

of 100 carats will be worth as many times 10 livres, as the

square of 100 contains 1 ; so that we shall have, according to

the rule of three,

* 15 is used in the orig-inal, as expressing- the descent in Paris feet. It is

here altered to English feet.
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12 : 100* = 10 livrcs,

or 1 : 10000 = 10 : . . . . Answer, 100000 livrcs.

There is a diamond in Portugal, which weighs 1680 carats; its

price will be found, therefore, hy making
12 ; 16802 = 10 liv: ....or

1 : 2822400 = 10 : 282M000 liv.

447. Th0 posts or mode of travelling in France, furnish exam-

ples of compound ratios, as the price is according to the com-

pound ratio of the number of horses, and the number of leagues,

or posts. For example, one horse costing 20 sous per post, it

is required to find how much is to be paid for 28 horses and 4|

posts.

We write first the ratio of the horses, 1 : 28,

Under this ratio we put that of the stages or posts, 2 : 9,

And, compounding the two ratios, we have 2 : 252,

Or, 1 : 126 = 1 livre to 126 francs or 42 crowns.

Another question. If I pay a ducat for eight horses, for 3

German miles, how much must I pay for thirty horses for four

miles ? The calculation is as follows :

I,/ : 5,//,^^,

1 : 5, = 1 ducat : the 4th term, which will be

5 ducats.

448. The same composition occurs, when workmen are to be

paid, since those payments generally follow the ratio compound-
ed of the number of workmen, and that of the days which they
have been employed.

If, for example, 25 sous per day be given to one mason, and

it is required to find what must be paid to 24 masons who liave

worked for 50 days ; we state this calculation ;

1 ; 24

1 : 50

1 : 1200 = 25 : 1500 francs,

25

20) 30000 (1506.
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As, in such examples, live things are given, the rule, which

serves to resolve them, is sometimes called, in books of aritlr-

metic The Rule of Five.

CHAPTER X.

Of Geometrical Progessions,

449. A SERIES of numbers, which are always becoming a

certain number of times greater, or less, is called a geometiical

progressioiif because each term is constantly to the following one in

the same geometrical ratio. And the number which expresses
how many times each term is greater than the preceding, is

called the exponent. Thus, when the first term is 1 and the

exponent = 2, the geometrical progression becomes.

Terms 123456789 &:c.

Prog, 1, 2, 4, 8, 16, 32, 64, 128, 256, &c.

The numbers 1, 2, 3, &c. always marking the place which each

term holds in the progression.

450. If we suppose, in general, the first term = a, and the

exponent = b, we have the following geometrical progression ;

1, 2, 3, 4, 5, 6, 7, 8 'n

Prog, fl, abi ab^, ah^, ab^^ ab^, ab^, ah'' .... ai"~^

So that, when this progression consists of n terms, the last

term is = a6"~^ We must remark here, that if the exponent &

be greater than unity, the terms increase continually ; if the ex-

ponent & = 1, the terms are all equal ; lastly, if the exponent b

be less than 1, or a fraction, the terms continually decrease.

Thus, when a = 1 and 6 = ^» we have this geometrical progres-
sion ]

1 1X11111 i.p

451. Here therefore we have to consider ;

I. The first term, which wo have called a,

II. The exponent, which wc call b.

III. The number of terms, which we have expressed by n,

IV. The last term, which we have found = at"~^

So that, when the three first of these are given, the last term is
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found, by multiplying the n - 1 power of b, or 6^-^ by tbe first

term a.
,.

If, therefore, the 50tli term of the geometrical progression 1,

2, 4, 8, &c. were required, we should have a = 1, 6 := 2, and n

= 50 ; consequently the 50th term= 2* \ Now 2» being ^ 512 ;

210 will ije
_ 1024. Wherefore the square of 2*% or 2«o, =

1048576, and the square of this number, or 1099511627776 =
2*0. Multiplying therefore this value of 2*° by 2^, or by 512,

we have 2*» equal to 562949953421312.

452. One of the principal questions, which occurs on this

subject, is to find the sum of all the terms of a geometrical pro-

gression ; we shall therefore explain the method of doing this.

Let there be given, first, the following progression, consisting of

ten terms ;

1, 2, 4, 8, 16, 32, 64, 128, 256, 512.

the sum of which we shall represent by s, so that, s = 1 -|- 2 +
4 4- 8 + 16 + 32 -f- 64 + 128 + 256 + 512 ; doubling both sides,

we shall have 2 s = 2 -f- 4 -f 8 + l6 + 32 + 64 + 128 + 256 +
512 -f 1024. Subtracting from this the progression represented

by s, there remains s = 1024 — 1 = 1023
;
wherefore the sum

required is 1023.

453. Suppose now, in the same progression, that the number

of terms is undetermined and = n, so that the sum in question,

or s, = 1 -f 2 -f 2* -f 2^ 4- 2* . . . . 2"~^ If we multiply by 2,

we have 28 = 2+2* +2^ +2* -...y, and subtracting from

this equation the preceding one, we have s = 2n— l. We see,

therefore, that tlie sum required is found, by multiplying the last

term, 2"-^ by the exponent 2, in order to have 2", and subtract-

ing unity from that product.

454. This is made still more evident by the following exam-

ples, in which we substitute successively, for n, the numbers 1,2,

3, 4, &c.

1=1; 1+2=3; 1+2+4 = 7; 1+2+4 + 8=15;
1+2+4 + 8 + 16 = 31; 1 + 2 +4 + 8 + 16 + 32 = 63, &c.

455. On this subject the following question is generally pro-

posed. A man offers to sell his horse by the nails in his shoes,

which are in number 32 ; he demands 1 liard for the first nail,

19
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2 for the second, 4 for the third, 8 for the fourth, and so on, de-

manding ^or each nail twice the price of tlie preceding. It is

required to find what would be the price of the horse ?

This question is evidently reduced to finding the sum of all

the terms of the geometrical progression 1, 2, 4, 8, 16, &c, con-

tinued to the 32d term. Now, this last term is 2^^ ^
; .and, as we

have already found 9.^^ = 1048576, and 2^° = 1024, we shall

have 2»o X 210 _ 230 equal to 1073741824 ; and multiplying

again by 2, the last term 2^* = 2147483648; doubling there-

fore this number, and subtracting unity from the product, the

sum required becomes 4294967295 liards. These liards make

10737418231 sous, and dividing by 20, we have 53687091 livrcs,

3 sous, 9 deniers for the sum requii-ed.

456. Let the exponent now be = 3, and let it be required to

find the sum of the geometrical progression 1, 3, 9, 27, 81, 243,

729, consisting of 7 terms. Suppose it = s, so that,

. s = 1 -I- 3 + 9 + 27 + 81 + 243 -I- 729.

we shall then have, multiplying by 3,

3s = 3 + 9 + 27 -f- 81 + 243 + 729 + 2187.

and subtracting the preceding series, we have 2s = 2187 — 1 =
2186. So that the double of the sum is 2186, and consequently

the sum required = 1093.

457. In the same progression, let the number ofterms = n, and

the sum = s ; so that s = 1 +3 + 3» + 3^ + 3^ + 3"-i.

If we multiply by 3, we have 3s = 3 + 3* + 3* -|- 3* + 3«.

Subtracting from this the value of s, as all the terms of it,

except the first, destroy all the terms of the value of 3s, except
3"— 1

the last, we shall have 2s = 3" — 1 ; therefore s = —-— So

that the sum required is found by multiplying the last term by

3, subtracting 1 from the product, and dividing the remainder

by 2. This will appear, also, from the following examples;

1 + 3 + 9 + 27 =
^^^^~

^ = 40 ; 1 + 3 + 9 + 27 + 81 =
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458. Let us now suppose, generally, the first term = a, the

exponent = 5, the number of terms = n, and their sum = s, sa

that,

s = a -f- aft 4- a&3 + aft^ + aft* + . . . . aZ>«"\

If we multiply by ft, we have

6s = fl6 -f a6* + aft* + oft* + oft* + . . . . a6", and subtract-

ing the above equation, there remains (6
—

1) s = a6» — fl ,

whence we easily deduce the sum required s = ——— . Catise-

qitently, the sum of any geometrical progression is founds by miUti-

plying tlie last term by the exponent of the progression, subtracting

thefirst term from the jn^oduct, and dividing the remainder by the

exponent minus unity,

459. Let thereby a geometrical progression of seven terms,

of which the hrst = 3 ; and let the exponent be = 2 ; we shall

then have a = S, 6 = 2, and n = 7 ; wherefore the last term =
3 X 2*, or 3 X 64 = 192 ; and the whole progression will be

3, 6, 12, 24, 48, 96, 192.

Further, if we multiply the last term 192 by the exponent 2,

we have 384; subtracting the first term, there remains 381;
and dividing this by 6 — 1, or by 1, we have 381 for the sum of

the whole progression.

460. Again, let there be a geometrical progression of six

terms ; let 4 be the first, and let the exponent be = |. The

progression is

4 f; Q 27 81 243

If we multiply this last term ^4^ by the exponent |, we shall

have \Y J t^6 subtraction of the first term 4 leaves the remain-

der \Y> which, divided by 6 — 1 = i, gives «|* = 83|.
461. When the exponent is less than 1, and consequently,

when the terms of the progression continually diminish, the sum
of such a decreasing progression, which would go on to infinity,

may be accurately expressed.
For example, let the first term =1, the exponent = |, and

the sum = s, so that

« = 1 + I + i +i + tV + A + tV + &c.

ad infinitum.
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If we multiply by 2, we have

ad infinitum.

And, subti'actinj^ the preceding progression, there remains

s = 2 for the sum of the proposed infinite progression,

4G2. If tlie first term = 1, the exponent = -|,
and the sum

= s i so that

5=1 + I 4-
1

-I- -1^ 4- _i_
-f. &c. ad infinitum.

Multiplying the whole by ^, we have

Ss = 3 -f 1 4-
1 + 1 + ^1^ -I- &c. ad infinitum ;

and subtracting the value of s, there remains 2s = S; wherefore

the sum s = i^.

463. Let there be a progression, whose sum = s, first term

= 2, and exponent = | ; so that s = 2 + | + 1 + |J + ^^g. +
&c. ad infinitum.

Multiplying by |, we have | s = | + 2 + | + | + || + ^V^

+ &c. ad infinitum. Subtracting now the progression s, there

remains ^ s = | ; wherefore the sum required = 8.

464. If we suppose, in general, the first term = a, and the

exponent of the progression = —
, so that this fraction may be

less than 1, and consequently c greater than b ; the sum of the

progression carried on, ad infinitum, will be found thus 5

Make s z= a -4 -4 — 4- dec.
c cc c^ c^

'

Multiplying by —, we shall have

b ab
.

ab^ ab^ ab"^ c j • /» w— s = —— H—— -4 r- 4- 6cc. ad infinitum.
c c

^
c^

^
c^

^
c'*'

^

And, subtracting this equation from the preceding, there re-

mains CI ) s = a.

a

Consequently s = 1— b,

c

If we multiply both terms of this fraction by c, we have

s = — . The sum of the infinite geometrical progression
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proposed is, therefore, found by dividing the first term a by 1

minus the exponent, or by multiplying the first term a by the

denominator of the exponent, and dividing the product by the

same denominator diminished by the numerator of the exponent.

465 In the same manner, we find the sums of progressions,

the terms of which are alternately affected by the signs -f- and

—. Let, for example,
ab

.
ab^ ab^ ah* „

Multiplying by —
, we have

b _ab ab^ ab^ ab* ^

And, adding this equation to the preceding, we obtain (1 ^- —)

s = a. Whence we deduce the sum required s = -, or ^ =
1 4- &

ac c

c -f 6'

466. We see, then, that if the first term a = |, and the expo-
nent = f , that is to say, 6 = 2 and cz=: 5, we shall find the sum
of the progression 34./-^+ ^\% + ^%\ + &c. = 1

; since, by

subtracting the exponent from 1, there remains |, and by divid-

ing the first term by that remainder, the quotient is 1.

Further, it is evident, if the terms be alternately positive and

negative, and the progression assume this form
;

3 6 1 12 24 iJ^pT IlJ ^ T2T 6 2T 4- **^*

the sum will be

1+11 7

c

467. »Brwther example. Let there be proposed the infinite

progression.

The first term is here j^, and the exponent is j\. Subtract-

ing this last from 1, there remains j%, and, if we divide the

first term by this fraction, we have ^ for the sum of the given

progi'ession. So that taking only one term of the progression,

namely, j%, the error would be ^V»
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Taking two terms, ^^^ + ^'^ ^ ^,j_^^ ^^levQ would stUl be

wanting ^^^ to make the sum = -l.

468. Mother example. Let there be given the infinite pro-

gression,

^ "^ TTT "f- T¥o + t/iTTT + To7"o 0" + &C.

The first term is 9, the exponent is ^V* So that 1, minus the

exponent, = -»^ ,•
and _l = 10, the sum required.

This series is expressed by a decimal fraction, thus 9,9999999,
&c.

CHAPTER XL

Of Infinite Decimal Fractions.

469. It will be very necessary to shew how a vulgar fraction

may be transformed into a decimal fraction ; and, conversely,
how we may express the value of a decimal fraction by a vulgar
fraction.

470. Let it be required^ in general, to change the fraction --, into

a decimal fraction ; as this fraction expresses the quotient of the

division of the numerator a by the denominator b, let us write,

instead of a, tJie quantity a,0000000, whose value does not at all

differ from that of a, since it contains neither tenth parts, nor huu'

dredth parts, S^c, Let us now divide this quantity by the number b,

according to the common rules of division, observing to put the point

in the proper place, which separates the decimal and the integers.

This is the whole operation, which we shall illustrate by some

examples.
Let there be given first the fraction ^, the division in deci-

mals, ,will assume this form,

2) 1,0000000 _ J.

0,5000000
~"

"2*

Hence it appears, that ^ is equal to 0,5000000 or to 0,5 ;

which is sufiicicntly evident, since this decimal fraction repre-

sents j\, which is equivalent to
^-.
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471. liCt
-I
be the given fraction, and we have,

3) 1,0000000 „ _ _1

0,3333333
*

3*

This shews, that the decimal fraction, whose value is = ^,

cannot, strictly, ever be discontinued, and that it goes on ad

infinitum, repeating always the number 3. And, for this reason,

it has been already shewn, that the fractions
-^^ -f- -|^ -f. ^/^^

^ -j^477 ^^' ^^ infinitum, added together, make 4.

The decimal fraction which expresses the value of |, is also

continued ad infinitum ; for we have,

3) 2.0000000 c _ 3

0,b6(5t)b66
^' ""

~3*

And besides, this is evident from what we have just said,

because | is the double of |.

472. If 1 be the fraction proposed, we have

4) 1,0000000 e __2
o^uoooo

• "" T
So that 1 is equal to 0,2500000, or to 0,25 ; and this is evi-

dent, since ^\ -f- -jJ^ = ^Vtt = i-

In like manner, we shoidd have for the fraction |,

4) 3,0000000 _ 3

0,7o00000
~

"i*

So that I = 0,75 ; and in fact ^\ + ^|^ = ^\% = |.

The fraction f is changed into a decimal fraction, by making

4) 5,0000000 _ 5

1,2500000 """i*

Now 1 + ^VV = I-

473. In the same manner, ^ will be found equal to 0,2 ; | =
= 0,4 ; I = 0,6 ; I = 0,8 ; I = 1 ; I = 1,2, &c.

When the denominator is 6, we find ^ = 0,1666666, &c. which

is equal to 0,666666 — 0,5. Now 0,666666 = | and 0,5 = |,

wherefore 0,1666666 = | — | = ^.

We find, also, | = 0,333333, &c. = ^ ; but | becomes

0,5000000 = i. Further, f = 0,833333 ;= 0,333333 -f 0,5,

that is to say, | -f-
i = a.

474. When the denominator is 7, the decimal fractions be-

come more complicated. For example, we find | = 0,142857,

however it must be observed, that these six figures are lepeated
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continually. To be convinced, therefore, that this decimal

fraction precisely expresses tbe value of ^, we may transform it

it into a geometrical progression, whose first term is =
y^-^^V/tto »

and the exponent = t<^^^(5^o77 ? ^"^' consequently, the sum
1 42857

(art. 464) = '^"""^^ (multiplying both terms by 1000000)

142^8 5 7 1—
9'5"9'5'9 9 T*

475. We may prove, in a manner still more easy, that the

decimal fraction which we have found is exactly = ^ ; for, sub-

stituting for its value the letter 5, we have

S = 0,142857142857142857, &C.

10 S = 1, 42857142857142857, &c.

100 S = 14, 2857142857142857, &c.

1000 s = 142, 857142857142857, &C.

10000 S = 1428, 57142857142857, &c.

100000 s = 14285, 7142857142857, &c.

1000000 s = 142857, 142857142857, &c.

Subtract s= 0, 142857142857, &c.

999999 s = 142857.

And, dividing by 999999, we have s = ||||fJ = 4-.
Where-

fore the decimal fraction, which was made = s, is = ^.

476. In the same manner f may be transformed into a deci-

mal fraction, which will be 0,28571428, &c. and this enables us

to find more easily the value of the decimal fraction which we
have supposed = s ; because 0,28571428 &c. must be the double

of it, and, consequently, = 2s. For we have seen that

100 S — 14,28571428571 &c.

So that subtracting 2 s = 0,28571428571 &c.

there remains 98 s =14
wherefore s = \-^

= ^,

We also find 4 = 0,42857142857 &c. which, according to our

supposition, must be = 3s ; now we have found that

10 S = 1,42857142857 &C.

So that subtracting 3 s= 0,42857142857 &c.

we have 7 s = 1, wherefore s =
-4.
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477. When a proposed fraction, therefore, has the denomina-

tor 7, the decimal fraction is infinite, and 6 figures are con-

tinually repeated. The reason is, as it is easy to perceive, that

when we continue the division we must return, sooner or hiter,

to a remainder which we have had already. Now, in this divi-

sion, 6 different numbers only can form the remainder, namely,

1, 2, 3, 4, 5, 6 ; so that, after the sixth division, at furthest, the

same figures must return
;
but when the denominator is such as

to lead to a division without remainder, these cases do not

happen.
478. Suppose, now, that 8 is the denominator of the fraction

proposed ; we shall find the following decimal fractions ;

-I
= 0,125 ; I = 0,25 ; | = 0,375 ; ^ = 0,5 ; | = 0,625 ; | =

0,75 ; I = 0,875 ; &c.

If the denominator be 9, we have | =0,111 &c. | = 0,222

6cc. I = 0,333 kc.

If the denominator be 10, we have j\ = 0,1 ; ^^ = 0,2 ; -^^
=

0,3. This is evident from the nature of tlie thing, as also that

^J^ = 0,01 ; that ^Vo = 0^37 ; that ^VoV = 0,256 ; that ^^%\^
=; 0,0024 &C.

479. If 11 be the denominator of the given fraction, we shall

have ri\
= 0,0909090 &c. Now, suppose it were required to

find the value of this decimal fraction ; let us call it s, we shall

have sz= 0,090909, and 10 s = 00,909090; further, 100 s =
9,09090. If, therefore, we subtract from the last the value of s,

we shall have 99 s = 9, and consequently s =
-§?g

=
-^l^.

We
shall have, also, ^\ = 0,181818 &c. -j\

= 0,272727 kc. j\ =
0,545454 &C.

480. There is a great number of decimal fractions, therefore,

in which one, two, or more figures constantly recur, and which
continue thus to infinity. Such fractions are curious, and we
shall shew how their values may be easily found.

Let us first suppose, that a single figure is constantly repeat-

ed, and let us represent it hy a, so that s = Ofaaaaaaa, We have

10 s = a^aaciaaaa
and subtracting s = Q,aaaaaaa

we have 9 s = a ; wherefore s = —.

20



154 Jlgehra, Sect. 3.

When two iigures are repeated, as ah, we have s = 0,abababa,

Therefore 100 s = ab^ababab ; and if we subtract s from it, there

/ih

remains 99s = ab ; consequently s = — .

When three figures, as abc, are found repeated, we have s =
0,abcabcabc ; consequently, 1000 s = abc^abcabc ; and subtract

s from it, there remains 999 s = abc ; wherefore s = -—
, and

yyy

so on.

Whenever, therefore, a decimal fraction of this kind occurs,

it is easy to find its value. Let there be given, for example,

0,296296, its value will be ||| = -^j, dividing both terms by 27*

This fraction ought to give again the decimal fraction pro-

posed ; and we may easily be convinced that this is the real

result, by dividing 8 by 9, and then that quotient by 3, because

27 = 3 X 9. We have

9^ 8,0000000

3) 0,8888888

0,2962962, &c.

which is the decimal fraction that was proposed.

481. We shall give a curious example, by changing the frac-

tion —
;
—-—-—-—-—-—

7, ~, into a decimal frac-
1 X2x3x4x5x6x7x8x9xl0

tion. The operation is as follows.

2) 1,00000000000000

3) 0,50000000000000

4) 0,16666666666666

5) 0,04166666666666

6) 0,00833333333333

7) 0,00138888888888
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8) 0,00019841269841

9) 0,00002480158730

10) 0,00000275573192

0,00000027557319.
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SEITlOiY FOUllTH.

OF ALGEBRAIC EQUATIONS, AND OF THE RESOLUTION OF THOSE EQUATIONS.

CHAPTER I.

Of the Solution of Problems in general,

ARTICLE 482.

The principal object of Algebra, as well as of all the parts

*of Mathematics, is to determine the value of quantities which

were before unknown. This is obtained by considering atten-

tively the conditions given, which are always expressed in

known numbers. For this reason Algebra has been defined.

The science which teaches how to determine unknown quantities by

means ofknown quantities,

483. The definition which we have now given agrees with all

that has been hitherto laid down. We have always seen the

knowledge of certain quantities lead to that of other quantities,

which before might have been considered as unknown.

Of this, addition will readily furnish an example. To find

the sum of two, or more given numbers, we had to seek for an

i^iknown number which should be equal to those known num-

bers taken together.

In subtraction, we sought for a number which should be equal

to the difference of two known numbers.

A multitude of other examples are presented by multiplica-

tion, division, tlie involution of powers, and the extraction of

roots. The question is always reduced to finding, by means

of known quantities, another quantity till then unknown.

484. In the last section also, different questions were resolved,

in which it was required to determine a number, that could not
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be deduced from the knowledge of other given numbers, except

imder certain conditions.

All those questions were reduced to finding, by the aid of

some given numbers, a new number which should have a certain

connexion with them ; and this connexion was determined by
certain conditions, or properties, which were to agree with the

quantity sought.

485. Wheji we have a question to resolve, we represent the num-

ber sought by mie of the last letters of the alphabet, and then consi-

der in what manner the given conditions can form an equality

between two quantities. This equality, wliich is represented by
a kind of formula, called an equation, enables us at last to deter-

mine the value of the number sought, and consequently to

resolve the question. Sometimes, several numbers aie sought ;

but they are found in the same manner by equations.

486. Let us endeavour to explain this further by an example.

Suppose the following question, or problem was proposed.

Twenty persons, men and women, dine at a tavern ; the share

of the reckoning for one man is 8 sous,* tliat for one woman is

r sous, and the whole reckoning amounts to 7 livres 5 sous ;

required, the number of men, and also of women ?

In order to resolve this question, let us suppose that the num-

ber of men is = ^ ; and now considering this number as known,
we shall proceed in the same manner as if we wished to try

whether it corresponded with the conditions of the question.

Now, the number of men being = x, and the men and women

making together twenty persons, it is easy to determine the

number of the women, having only to subtract tliat of the men
from 20, that is to say, the number of women = 20 — x, #

But each man spends 8 sous ; wherefore x men spend 8,x sous.

And, since each woman spends 7 sous, 20 — x women must

spend 140 — 7x sous.

So that adding together ^x and 140 — 7x, we see that the

whole 20 persons must spend 140 -f x sous. Now, we know

already how much they have spent ; namely, 7 livres 5 sous ;

or 145 sous ; there must be an equality therefore between 14Q

^ A sous is ^ of a livre ; a livre ^ of a crown or 17 cents 6 mills.
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-f X and 145 ; that is to say, we have the equation 140 + a; =
145, and thence we easily deduce a? = 5.

So that the company consisted of 5 men and 15 women.

487. Jlnother question of the same kind.

Twenty persons, men and women, go to a tavern ; the men

impend 24 florins, and the women as much ; but it is found that

each man has spent 1 florin more than each woman. Required,
the number of men and the number of women ?

Let the number of men = x.

That of the women will be = 20 — x,

Now these x men having spent 24 florins, the share of each

24
man is — florins.

Further, the 20 — x women having also spent 24 florins, the

"24
share of each woman is — florins.

20—^
But we know that the share of each woman is one florin less

than that of each man ; if, therefore, we subtract 1 from the

share of a man, we must obtain that of a woman ; and conse-

24 24
quently 1 = — . This, therefore, is the equation from

which we are to deduce the value of x. This value is not found

with the same ease as in the preceding question ; but we shall

soon see that a; = 8, which value corresponds to the equation ;

for \*
— 1 = 41 includes the equality 2 = 2.

488. It is evident how essential it is, in all problems, to con-

sider the circumstances of the question attentively, in order to

deduce from it an equation, that shall express by letters the

numbers sought or unknown. After that, the whole art consists

in resolving those equations, or deriving from them the values

of the unknown numbers
5
and this shall be the subject of the

present section.

489. We must remark, in the first place, the diversity which

subsists among the questions themselves. In some, we seek

only for one unknown quantity ; in others, we have to find two,

or more ; and it is to be observed, with regard to this last case,

that in order to determine them all, we must deduce from the

circumstances, or the conditions of the problem, as many equa-

tions as there arc unknown quantities.
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490. It must have already been perceived, that an equation
consists of two parts separated by the sign of equality^ =, to

shew that those two quantities are equal to one another. We
are often obliged to perform a great number of transformations on

those tw o parts, in order to deduce from them the value of the

unknown quantity ; but these transformations must be all found-

ed on the following principles ; that two quantities remain eqiud,

whether we add to them, or subtract from them equal quanti-

ties ; whether we multiply them, or divide them by the same num-
ber ; whether we raise them both to the same power, or extract

tlieir roots of the same degree.

491. The equations which are resolved most easily, are those

in which the unknown quantity does not exceed the first power,
after the terms of the equation having been properly arranged :

and we call them simple equations, or equations of thefirst degree.

But if, after having reduced and ordered an equation, we find in

it the square, or the second power of the unknown quantity, it

may be called an equation of the second degree, which is more

difficult to resolve.

CHAPTER II.

Of the Resolution of Simple Equations, or Equations of the first

degree,

492. When the number sought, or the unknown quantity, is

represented by the letter x, and the equation we have obtained

is such, that one side contains only that x, and the other simply
a known number, as for example, x = 25, the value of x is

already found. We must always endeavour, therefore, to

arrive at such a form, however complicated the equation may
be when first formed. We shall give, in the course of this

section, the rules which serve to facilitate these reductions.

493. Let us begin with the simplest cases, and suppose, first,

that we have arrived at the equation a; -f 9 = 16 ; we see imme-

diately that X =z 7, And, in general, if we have found x + a

= bf where a and b express any known numbers, we have only
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to subtract a from both sides, to obtain the equation x = h — a,

>vhich indicates the value of x.

494. If the equation which we have found is a?— a-=}), w^e

add a to both sides, and obtain the vahie of a; = 6 + a.
'

We proceed in the same manner, if the equation has this

form, X — a = aa + 1 ; for we shall have immediately a? = aa

+ « + !.

In this equation, x — 8a = 20 — Qa, we find ^ = 20 ^—^ 6fl

-f- 8a, or ^ = 20 + 2a.

And in this, ^ + 6a = 20 + Sa, we have a: = 20 + 3a— 6a,

or X = W — 3a.

495. If the original equation has this form, x — a -^-b =: c,

we may begin by adding a to both sides, which will give x -f-

h = c -j- a; and then subtracting b from both sides, we shall

find X = c -\- a— b. But we might also add -fa —^ 6 at once

to both sides ; by this we obtain immediately a; = c -f a— b.

So in the following examples,
If a? — 2a + 3& = 0, we have x = 9.a — 36.

\ix— Sa -f 26 = 25 + a + 26, we have a? = 25 + 4a.

If X — 9 -f 6a = 25 + 2a, we have a? = 34 — 4a.

496. When the equation which we have found has the form

ax = 6, we only divide the two sides by a, and we have x = —,
a

But if the equation has the form ax + b — c = d, we must first

make the terms tliat accompany ax vanish, by adding to both

sides — 6 -f c I and then dividing the new equation, ax = d —
^ + c, by a, we shall have x = .

We should have found the same value by subtracting -f 6 — c

from the given equation ; that is, we should have had, in the

same form, ax = d — 6 + c, and x = . Hence,

If 2a; + 5 = 17, we have 2x = 12, and x = 6,

If So:— 8 = 7, we have 3x = 15, and x = 5,

If 4^ — 5 — Sa = 15 -f 9a, we have 4a; = 20 -f- 12a, and,

consequently, x = 5 -\- 3a,

497. When the first equation has the form — = 6, we multiply

both sides by a, in order to have x = a6.
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But if we have '— +6 — c = d, we must first make — = a
a
^ a

— 6 + c ; after which, we find a? =(d — b +c) a z^ad-^

ab + ac.

Let i X— 3 = 4, we have | a? = 7, and x = 14.

Let ^x— 1 + 2a = 3 + a, we have j a? = 4 — a, and x =
12 — 3a.

Let 1 = a, we have — = a+ 1, and x = aa— 1.
a— 1 a— 1

498. When we have arrived at such an equation as y- = c,

we first multiply by b, in order to have ax = be, and then divid-

ing by a, we find x = —,

If — — c = (f, we begin by giving the equation this form -r

= d -f c, after which, w^e obtain the value of ax =zbd -{- be, and

tbatofx = *±!±.
a

Let us suppose ^ x— 4 = 1, we shall have ^ x = 5, and 2x

= 15 ; wherefore x = y , or 7i.

U ^ X -^ ^ =z 5, we have |ir=:5— i = |; wherefore 5x

= 18, and x = 6.

499. Let us now consider the case, whicli may frequently

occur, in which two, or more terms contain the letter x, either

on one side of the equation, or on both.

If those terms are all on the same side, as in the equation x -f

^x-f 5 = 11, we havex -^^ a? = 6, or 3a; = 12, and, lastly, a: =4.

Let X + 1 X + i = 44, and let the value of x be recjuired :

if we first multiply by 3, we have 4x -f | x = 132
,•
then multi-

plying by 2, we have llx = 264 ; wherefore x = 24. We might
have proceeded more shortly, beginning with the reduction of

the three terms which contain x, to the single term y x ; and

then dividing the equation y x = 44, by 11, we should have

had J X = 4, wherefore x = 24.

Let I X — ^ X -{-1 X = If we shall have, by reduction, ^^^
<^

= 1, and X = 2|.

.21
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Let, mw'e generally, ax— bx -j- ex = d ; this is tlie same as

(a
— b -}- c) X z=d9 whence we derive x =

a—6+c
*

500. "When there are terms containing x on both sides of the

equation, we begin by making such terms vanish from the side

from which it is most easily done ; that is to say, in which

there are fewest of them.

If we have, for example, the equation 5x +2 = a^ + 10, we
must first subtract x from both sides, which gives 2a?+ 2 = 10 ;

wherefore 2x = 8, and x = 4,

Let ^ -f 4 = 20 — X
; it is evident that 2^ + 4 = 20 ; and

consequently 2a? = 16, and x z= S.

Let a; -f 8 = 32 — Sx, we shall have 4a; -f 8 = 32 ; then 4x
= 24, and x= 6.

Let 15 — X = 20 —-. Qx, we shall have 15 -f- x = 20, and

X = 5.

Let 1 + X = 5— I a?, we shall have 1 -f | a? = 5 ; after that

f.T = 4; 3a? = 8 ; lastly, a? = | = 2|.

If I
— ix =z 1 — iXf we must add ^x, which gives ^ = 3^

-f. j\x; subtracting -i, there remains y^^x = i, and multiplying

by 12, we obtain a? = 2.

If 1|
—

|.x = I + |x, we add |a?, which gives 11 = l
-f- |^a7.

Subtracting i, we have 1^0:?= 1^, whence we deduce x = 1-^^^
=

^|, by multiplying by 6, and dividing by 7.

501. If we have an equation, in which the unknown number

X is a denominator, we must make the fraction vanish, by mul-

tiplying the whole equation by that denominator.

Suppose that we have found 8= 12, we first add 8, and
a?

have = 20 ; then multiplying by x, we have 100 = 20a? ;

and dividing by 20, we find x = 5,

Let —— = 7.
^— 1

If we multiply by a?— 1, we have 5x + 3 z=Tx— 7.

Subtracting 5x, there remains 3 = Qx — 7.

Adding 7, we have 2a? = 10. Wherefore x z=z 5,
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502. Sometimes, also, radical signs are found in equations of

the first degree. For example, a number x below 100 is re-

quired, and such, that the square root of 100 — x may be equal

to 8, or v/ (100
— x) = S ; the square of both sides will be 100

— X = 64, and adding x we have 100 = 64 -f- x; whence we

obtain or = 100 — 64 = 36.

Or, since 100 — a? = 64, we might have subtracted 100 from

both sides ; and we should then have had— x =— 36 ; whence

multiplying by— 1, x = 36.

CHAPTER III.

Of the Solution of Questions relating to the preceding chapter,

503. ^lestion I. To divide 7 into two such parts, that the

greater may exceed the less by 3.

Let the greater part = x, the less will be = 7 — x ; so that

X = 7 — X -}- 3, or X = 10— X ; adding x, we have 2x = 10 ;

and, dividing by 2, the result is ^t; = 5.

Answer. The greater part is therefore 5, and the less is 2.

Question II. It is required to divide a into two parts, so that

the greater may exceed the less by b.

Let the greater part = x, the other will be a— x ; so that

X :=. a — X + h ; adding x, we have 2.x = a+h; and dividing

by 2, 0;= -i-.

Another Solution. Let the greater part = x ; which as it ex-

ceeds the less by &, it is evident that the less is smaller than the

other by 6, and therefore must be = x — h. Now these two

parts, taken together, ought to make a ; so that 2x — bz= a;

adding b, we have Qx = a -f- 6, wherefore x = —^ , which is
At

the value of the greater part ; that of the less will be -— — &,
jt

a-\-h 2& a—b
or —

, or .
(

2 2 2

504. Question III. A father who has three sons, leaves them

1600 crowns. The will specifics, that the eldest shall have 200
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crowns more than the second, and that the second shall have

100 crowns more the youngest. Required, the share of each ?

Let the share of the tliird son = x ; then, that of the second

will be = 0? + 100, and that of the first = a? + SOO. Now,
these three shares make up together 1600 crowns. We have,

therefore,

^x -f 400 = 1600
3x = 1200

and X = 400.

Answei\ The share of the youngest is 400 crowns ; that of

the second is 500 crowns ; and that of the eldest is 700 crowns.

505. Question IV. A father leaves four sons, and 8600 livres ;

according to the will, the share of the eldest is to be double that

of the second, minus 100 livres ^ the second is to receive three

times as much as the thiid, minus 200 livres ; and the third is

to receive four times as much as the fourth, minus 300 livres.

Required, the respective portions of these four sons ?

Let us call x the portion of the youngest ; that of the third

son will be = 407— 300 ; that of the second =12x — 1100, and

that of the eldest = 24x— 2300. The sum of these four shares

must make 8600 livres. We have, therefore, the equation 41a;

— 3700 = 8600, or 41 a; = l-SSOO, and x = 300.

Answer. The youngest must have 300 livres, the third son

900, the second ^500, and the eldest 4900.

506. question V. A man leaves 11000 crowns to be divided

between his widow, two sons, and three daughters. He intends

that the mother should receive twice the share of a son, and each

son to receive twice as much as a daughter. Required, how

much each of them is to receive ?

Suppose the share of a daughter = a?, that of a son is conse-

quently = 2x, and that ofthe widows 4a? ; the whole inheritance

is therefore 307 + 4a^ + 4a^ ; so that Ux = 11000, and x = 1000.

Answer, Each daughter receives 1000 crowns,

So that the three receive in all 3000

Each son receives 2000 crowns.

So that both the sons receive 4000

And the mother receives . 4000

Sum 11000 crowns.
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507. Question VI. A father intends, by bis will, that his

three sons should share his property in the following manner ;

the eldest is to receive 1000 crowns less than half the whole for-

tune ;
tlie second is to receive 800 crowns less than the third of

the whole property ;
and the third is to have 600 crowns less

than the fourth of the property. Required, the sum of the whole

fortune, and the portion of each son ?

Let us express the fortune by x.

The share of the first son is ^x — 1000

That of the second i'^
—- 800

That of the third io; — 600.

So that the three sons receive iji all ^x -{- ^x -\- ^x — 2400,

and this sum must be equal to x.

We have, therefore, the equation i|ct?
— 2400 = x.

Subtracting x, there remains -j\x
— 2400 = 0.

Adding 2400, we have -^^x = 2400. Lastly multiplying by

12, the product is x equal to 28800.

Jinswer, The fortune consists of 28800 crowns, and

The eldest of the sons receives 13400 crowns

The second 8800

The youngest 6600

28800 crowns.

508. Question VII. A father leaves four sons, who share his

property in the following manner :

The first takes the half of the fortune, minus 3000 livres.

The second takes the third, minus lOOu livres.

The third takes exactly the fourth of the property.

The fourth takes 600 livres, and the fifth part of the property.

What was the whole fortune, and how much did each son

receive ?

Let the whole fortune be = a? ;

The eldest of the sons will have ^x— 3000

The second ^x— 1000

The third \x
The youngest ^x + 600.

The four will have received in all ^x + \x + |^ + \x—
3400, which must be equal to x.
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Whence results the equation JJo;
— 3400 = x ;

Subtracting Xy we have ^-Lx
— 3400 = ;

Adding 3400, we have \lx = 8400 ;

Dividing by 17, we have ^^x = 200 ;

Multiplying by 60, we have x = 12000.

Answer, The fortune consisted of 12000 livres.

The first son received 3000

The second 3000

The third 3000

The fourth 3000

509. Question VIII. To find a number such, that if we add

to it its half, the sum exceeds 60 by as much as the number itself

is less than 65.

Let the number = x, then x + ^x— 60 = 65 — x; that is

to say ^x — 60 = 65 — x^

Adding x, we have f.x
— 60 = 65

;

Adding 60, we have fa?
= 125 ;

Dividing by 5, we have i^c = 25 ;

Multiplying by 2, we have x = 50.

Answer, The number sought is 50.

510. Question IX. To divide 32 into two such parts, that if

the less be divided by 6, and the greater by 5, the two quotients

taken together may make 6.

Let the less of the two parts sought z= x ; the greater will be

X= 32 — x; the first, divided by 6, gives
—

; the second, divid-

ed by 5, gives
^

; now, — +
^

7" = 6. Sc^ that multiply-
D O

ing by 5, we have |a; -f 32 — a? = 30, or — Jo? -f 32 = 30.

Adding |x, we have 32 = 30 + ^x.

Subtracting 30, there remains 2 = ^x.

Multiplying by 6, we have a = 12.

Answer. The two parts are ; the less = 12, the greater = 20.

511. Question H, To find such a number that if multiplied

by 5, the product shall be as much less than 40, as the number

itself is less than 12.

Let us call this number x. It is less than 12 by 12 — x.

Taking tlie number x five times, we have Sx, which is loss than

40 by 40 — 5x, and this quantity must be equal to 12 — x.
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We have therefore 40— 5a; = 12— x.

Adding 5Xf we have 40 = 12 4. 4a?.

Subtractini^ 12, we have 28 = 4x.

Dividing by 4, we have x^:?, the number sought.

512. ^lestion XI. To divide 25 into two such parts, that the

greater may contain the less 49 times.

Let tlie less part be = x, then the greater will be = 25 — a?.

The latter divided by the former ought to give the quotient 49 ;

we have therefore =49.

Multiplying by x, we have 25 — a? = 49a?,

Adding x, 25 = 50a?.

And dividing by 50 x = |.

Answer. The less of the tw^o numbers sought is ^9 and the

greater is 24| ; dividing therefore the latter by -},
or multiplying

by 2, we obtain 49.

5i3. Question XII. To divide 48 into nine parts, so that

every part may be always i
gi-eater than the part which pre-

cedes it.

Let the first and least part = a?, the second will be = a? + |,

the third = a; + 1 &c.

Now these parts form an arithmetical progression, whose

first term = x ; therefore the ninth and last will be = a?
-f- 4.

Adding those two terms together, we have 2a? + 4 ; multiplying
this quantity by the number of terms, or by 9, we have ISo? -f

36 ; and dividing this product by 2, we obtain the sum of all

the nine parts = 9a? -f 18 ; which ought to be equal to 48. We
have, therefore^ 9a? + 18 = 48 ;

Subtracting 18, there remains 9a? = SO.

And dividing by 9, we have x = Si.

Jnswer. The first pait is 3^, and the nine parts succeed in

the following order :123456789
H + 3|f 41 + 4 J + 51 + 5| -hH + 6| + 7f

AYhich together make 48.

514. question. Xlll. To find an arithmetical progression,
whose first term = 5, last =10, and sum = 60,

Here, we know neither the difference, nor the number of

erms ; but we kn»\v that the first and the last term would cna-
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ble us to express the sum of the progression, provided only the

number of terms was given. We shall, therefore, suppose this

number = oCf and express the sum of the progression by ;

now we know also that this sum is 60 ; so that —— = 60
; ioj

= 4, and x = S.

Now, since the number of terms is 8, if we suppose the diifer-

cnce = %9 we have only to seek for the eighth term upon this

supposition, and to make it = 10. The second term is 5 -f 55,

the third is 5 + 2a, and the eighth is 5 + 7« ^
so tliat

5 + 7« = 10

7z= 5

and a = 4
Answer, The difference of the progression is 4, and the

number of terms is 8
,• consequently the progression is12345678

5 + 5f + 63 + 7^ + 7f + 8^ + 9| + 10,

The sum of which = 60.

515. Question XIV. To find such a number, that if 1 be

subtracted from its double, and the remainder be doubled, then

if 2 be subtracted, and the remainder divided by 4, the number

resulting from tliese operations shall be 1 less than the number

sought.

Suppose this number = cc ; the double is 9.x
; subtracting 1,

there remains 9,x— 1 ; doubling this, we have 4x— 2 ; sub-

tracting 2, there remains 4x — 4 ; dividing by 4, we have

x — 1 ; and this must be one less than x ; so that.

But this is what is called an identical equation ; and shews that

X is indeterminate ; or that any number whatever may be sub-

stituted for it.

516. Question XV. I bought some ells of cloth at the rate of

7 crowns for 5 ells, which I sold again at the rate of 11 crowns

for 7 ells, an-; I gained 100 crowns by the traffic. How much

cloth was there ?

Suppose that there were x ells of it ; we must first see how

much the cloth cost. This is found by the following proportion ;
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If five ells cost 7 crowns ; what do x ells cost ?

Answer, \x crowns.

This was my expenditure. Let iis now see my receipt : we

must make the following proportion ;
as 7 ells are to 11 crowns,

so are x ells to yx crowns.

This receipt ought to exceed the expenditure hy 100 crowns ;

we have, therefore, this equation.

\^x = \x + 100;

Subtracting ^a?, there remains -{-gX
= 100.

Wherefore 6x = 3500, and x = 583^.

Answer. There were 583| ells, which were bought for 816|

crowns, and sold again for 916| crowns, by which means the

profit was 1 00 crowns.

517. Question XVI. A person buys 12 pieces of cloth for 140

crowns. Two are white, three are black, and seven are blue.

A piece of the black cloth costs two crowns more than a piece of

the white, and a piece of blue clotli costs three crowns more than

a piece of black. Required the price of each kind ?

Let a white piece cost x crowns ; then the two pieces of this

kind will cost 2x, Further, a black piece costing x + 2, the

three pieces of this colour will cost 3x -f- 6. Lastly, a blue

piece costs x + 5 ; wherefore tlie seven blue pieces cost 7x -f

35. So that the twelve pieces amount in all to 12a; -f- 41.

Now, the actual and known price of these twelve pieces is

140 crowns ; we have, therefore, 12x + 41 = 140, and 12x =
99 ; wherefore x = S^ ;

So that a piece of white cloth costs 81 crowns ; apiece of black

cloth costs lOi crowns, and a piece of blue cloth costs 131 crowns.

518. ^estim X-YIh A man having bought some nutmegs,,

says that three nuts cost as much more than one sou as four cost

him more than ten liards : Required, the price of those nuts ?

We shall call x the excess of the price of three nuts above one

sou, or four liards, and shall say ; If three nuts cost x -\- 4t

liards, four will cost, by the condition of the question, a; + 10

liards. Now, the price of three nuts gives that of four nuts in

another Avay also, namely, by the rule of three. We make 3 : x

, A A a 4a-+16
4- 4 = 4 : Answer, i^

— .

3
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So that —^-
— = a; -f 10

^ or, 4a? + 16 = Sac? + 30 ; where-

fore a? + 16 = 30

and 0? = 14.

Jnsiver. Three nuts cost 18 liards, and four cost 6 sous;

wiiercforc each cost 6 liards.

519. Question XVIII. A certain person has two silver cups,

and only one cover for both. The first cup weighs 12 ounces^

and if the cover be put on it, it weighs twice as much as tlie

otiier cup ;
but if the other cup be covered, it weighs three times

as much as the first : Required, the weight of the second cup
and that of the cover ?

Suppose the weight of the cover = x ounces ; the first cup

being covered will weigh x -f 12 ounces. Now this weight

being double that of the second cup, this cup must weigh ^x +6.
If it be covered, it will weigh |x -f 6

;
and this weight ought to

be the triple of 12, that is, three times the weight of the first

cup. We shall therefore have the equation |a? -f 6 = 36, or |x
= 30 ; wherefore |x = 10 and x = 20.

Answer, The cover weighs 20 ounces, and the second cup

weighs 16 ounces.

520. Question XIX. A banker has two kinds of change ;

there must be a pieces of the first to make a crown ; and there

must be h pieces of the second to make the same sum. A per-

son wishes to have c pieces for a crown ; how many pieces of

each kind must the banker give him ?

Suppose the banker gives x pieces of the first kind
;

it is evi-

dent that he will give c— x pieces of the other kind. Now, the x

pieces of the first are worth — crown, by the proportion a : 1 =

X :
—

; and the c — x pieces of the second kind are worth
a CL

'^' C JC oc

crown, because we have h : 1 = c — x i —r- . So that, f-

iri^ =;: X ; or ^-^ -f c — ^ = 6 ; or hx -^ ac —ax = ah ; or,

ih—m
1 1 f^^—^^

rather, ox — ax z=z ab — ac ; whence we have x = -7-
—

9 01*
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rt(6—c) ^ ^1 ^ ^ bc—ab b{c'^a)X =^_I. Consequently, ^- a: =
-^_-

= -^A
Jinswer, The hanker will give ^^.^^^ pieces of the first kind.

and - ^'
pieces of the second kind.

b—a

Remark, These two nuinhers are easily found by the inile of

three, when it is required to apply the results which we have

obtained. To find the first we say 5 h — a-.h— cz=.a: "^^ \

The second number is found thus ; b — a : c — a=zb : \ K
b—a

It ought to be observed also, that a is less than 6, and that c

is also less than b ; but at the same time greater than a, as the

nature of the thing requires.

521. ^lestion XX. A banker has two kinds of change ; 10

pieces of one make a crown, and 20 pieces of the other make a

crown. Now, a person wishes to change a crown into If

pieces of money : How many of each must he have ?

We have here a = 10, 6 = 20, and c = 17 ; which furnishes

the following proportions ;

I. 10 : 3 = 10 : 3, so that the number af pieces of the first

kind is 3.

II. 10 : 7 = 20 : 14, and there are 14 pieces of the second

kind.

522. ^lestion XXI. A father leaves at his death several

children, who share his property in the following manner ;

The first receives a hundred crowns and the tenth part of tlie

remainder.

Tlie second receives two hundred crowns and the tenth part
of what remains.

The third takes three hundred crowns and the tenth part of

what remains.

The fourth takes four hundred crowns and the tenth part of

what then remains, and so on.

Now it is found at the end, that tlie property has been divid-

ed equally among all the children. Required, bow much it was,

how many children there were, and how much each received ?
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This question is riiiher of a singular nature, and therefore

deserres particular attention. In order to resolve it more easily,
we shall suppose the whole fortune = « crowns ; and since all

the children receive the same sum, let the share of each = x, by

which means the numher of children is expressed by —. This

being laid down, we may proceed to the solution of the question,
which w ill be as follows.

Sum, or pro-
perty to be
divided.
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Msnver, So that the number of children = 9 ; the fortune

left by the father = 8100 crowns; and the share of each child

= 900 crowns.

CHAPTER IV.

Of the Resolutions of two m- more Equations of the First Degree,

5^S, It frequently happens that we are obli<*ed to introduce

into algebraic calculations two or more unknown quantities,

represented by the letters x, y, % ; and if the question is deter-

minate, we are brought to the same number of equations ; from

which, it is then required, to deduce tiic unknown quantities.

As we consider, at present, those equations only, whi( h contain

no powers of an unknown quantity higher than the first, and no

products of two, or more unknown quantities, it is evident that

these equations will all have the form a% + by -^ cxz= d,

524. Beginning therefore with two equations, we shall en-

deavour to find from them the values of x and y. That we may
consider this case in a general manner, let the two equations be,

I. ax -\- by = c, and II. fx-}-gy = h, in which a, 6, c, and /, g,

h are known numbers. It is required, therefore, to obtain, from

these two equations, the two unknown quantities x and y,

525. The most natural method of proceeding will readily

present itself to the mind ; which is to determine, from both

equations, the value of one of the unknown quantities, x for

example, and to consider the equality of those two values ; for

then we shall have an equation, in which the unknown quantity

7/
will be found by itself, and may be determined by the rules

which we have already given. Knowing t/,
we have only to

substitute its value in one of the quantities that express x,

526. According to this rule, we obtain from the first equa-

tion, X = "^
'^

, and from the second, x = ~"^^
; stating

these two values equal to one another, we have this new equa-

tion :

c—by h—gy
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multiplying by a, the pi-oduct is c— hyz=
" ^"^"^V .

multiplying

by/, the product is/c
—

Jby = a/i— agy ; adding agy, we have

Jc
—fhy -f agy = a/i ; subtracting /c, there renjains —fhy +

agy =z ah—fc ; or (ag— If) y z=i ah —/c ; lastly, dividing by

ag — hf, we have w = ^ ^~"-^^
.

In order now to substitute this value of y in one of the two

values which we have found of x, as in the first, where x =
^"^ ^

9 we shall first have — hv = — ^
// ; whence c— hit

__ ahh-\-hcf ^ _ acg—bcf
—

abh-\-hcf acg—abh
^

and dividing hy a, x =—-^ = -^
^.

a ag^bf
527. Question I. To illustrate this method by examples, let

it be proposed to find two numbers, whose sum may be = 15,

and difference = 7.

Let us call the greater number x, and the less y. We shall

have,
h X -^y = 15, and II. a^ — V =^7.

The first equation gives x = 15 — y, and the second x =z 7

-f- y; whence results the new equation 15 — y = 7 -j- y. So

that 15 = 7 + 2y ; 2y =8, and y = 4 ; by which means we
find ^ = 11.

Jlnswer, The less number is 4, and the greater is 11.

528. Question II. We may also generalize the preceding

question, by requiring two numbers, whose sum may be = a,

and the difference = b.

Let the greater of the two be = x, and the less = y.

We shall have I. x -j- y := a^ and II. it? —
!/
= ^

?
the first

equation gives x = a — y ; and the second x = b -^y.

Wherefore a — y = b -^ y ; a= b -{- 2y ; 2y=za— b; lastly,

fl—& , ,, a-\-b a-\-b

y = , and consequently x = a —>

y z^a —. = ——-.

Answer. The greater number, or x, is = —-
, and the less,

or
1/, is = ——

, or which comes to the same, a; = |a -|- 15, and
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'tf
=

|fl
—

\h ; and hence we derive the following theorem.

TVhen the sum of any two numbers is a, and tlieir difference is b,

ihe greater of the two numbers will be equal to half the sum plus

fiaJf the difference ; and the less of tJie two numbers will be equal to

lialf the sum minus haff the difference.

529. We may also resolve the same question in the following

manner ;

Since the two equations are, oc -j- y = a, and x — y =z b ; if

we add one to the other, we have 2x =z a -j- b.

Wherefore x = .

2

Lastly, subtracting the same equation from the other, we have

2i/ = a — b; wherefore y = -^ .

530. Question III. A mule and an ass were carrying burdens

amounting to some hundred weight. The ass complained of his,

and said to the mule, I need only one hundred weight of your

load, to make mine twice as heavy as yours. The mule answer-

ed, Yes, but if you gave me a hundred weight of yours, I should

be loaded three times as much as you would be. How many
hundred weight did each carry ?

Suppose the mule^s load to be x hundred weight, and that of

the ass to be y hundred weight. If the mule gives one hundred

w ciglit to the ass, tlie one will have
«/ -f 1, and there will remain

for the other x— 1 ; and since, in this case, the ass is loaded

twice as much as the mule, we have y •}- 1 = 9.x — 2.

Further, if the ass gives a hundred weight to the mule, the

latter has a? -f 1, and the ass retains y— 1 ; but the burden of

the former being now three times that of the latter, we have

a? + 1 = 31/
— 3.

Our two equations will consequently be,

1. 1/ 4- 1 = 2x — 2, II. X -i-l = 5y
— 3.

The first gives x = -^^
, and the second gives x =: 5y

— 4 ;

whence we have the new equation ^i- =3^ — 4, which gives

y =z y , and also determines the value of x, which becomes 2|.

Jnswer. The mule carried 2| hundred weight, and the ass

carried 2i hundred weight.
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551. When there are three unknown numbers, and as many
equations ; as, for example, L x -{- y — ® = 8, II. x -|- a — y
= 9, III. 1/ + a — ;r = 10, we begin, as before, by deducing a

value of c€ from each, and we Iiave, from the P% a? = 8 -f a— y-
from the 11^, a' = 9 + y

— a ; and from the III^, x = y ^ ^
--10.

, Comparing the first of these values with the second, and after

that with the third also, we have the following equations ;

I. 8-f« — y =: 9 +y — «, II. 8+® — y z=y ^% — 10.

Now, the first gives 22;— 2^ = 1> and the second gives 2i/ =
18, or

7/
= 9 ; if therefore we substitute this value of

2/
in 9.% —

% = 1, we have £2^ — 18 = 1, and 2;i = 19, so that a = 9| ;

it remains therefore only to determine a?, which is easily found

Here it happens, that the letter « vanishes in tlie last equation,
and that the value of y is found immediately. If this had not

been the case, we should have had two equations between a and

y, to be resolved by the preceding rule.

532. Suppose we had found the three following equations.

I. Sx -{- 5y
— 4%; = 25, II. 5x— 2t/ -f 3» = 46,

III. 32/ -f 52i — a; = 62.

If we deduce from each the value of Xy we shall have

I. X = f^—, II. x=—
-3-|

III. ir = 3t/ + 5« —. 62.

Comparing these three values together, and first the third

25 5v -f-Az
with the first, we have Si/ -f- 5« — 62 = ^-^— ; multi-

plying by 3, 9y -^ 15% — 186 = 25 — 5y -j- 4% ; so that 9y +
15% = 211 — 5y -j. 4%, and 14y -f- 11a = 211 by the first and

tlie third. Comparing also the third with the second, we have

3^ 4. 52i — 62 = I5i^^n2f, or 46 + 2y -— S% z=z 15y + 25z

— 310, which when reduced is 356 = 151/ + QSz.

We shall now deduce, from these two new equati6ns, the value

of ^;
I. 211 = Hz/ -f. 11« ; wherefore I4y = 211 -— ll2^, and y =

211—11%
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11. 356= 13^+ 28»; wherefore 13i/ = 356 — 28«, and

356—282:

^=—13—
mu ^ 1 ^ XI r 211— U;:; 356—28;:;
These two values form the new equation ;

= — .

which becomes, 2743 — 143« = 4984 — 392«, or 249» = 2241,

whence « = 9.

This value being substituted in one of the two equations of y

and », we find y= 8
; and lastly a similar substitution in one of

the three values of x, will give a? = 7.

533, If there were more than three unknown quantities to be

determined, and as many equations to be resolved, we should

proceed in the same manner ; but the calculations would often

prove very tedious.
'

It is proper, therefore, to remark, that, in each particular

case, means may always be discovered of greatly facilitating its

resolution. Tiiese means consist in introducing into the calcu-

lation, beside the principal unknown quantities, a new unknown

quantity arbitrarily assumed, such as, for example, the sum of

all tlie rest ; and when a person is a little practised in such cal-

culations he easily perceives what it is most proper to do. The

following examples may serve to facilitate the application of

these artifices.

534. QiiestionTV, Three persons play together ; in the first

game, the first loses to each of the other two, as much money
as each of tliem has. In the next, the second person loses to

each of the other two, as much money as they have already.

Lastly, in the third game, the first and the second person gain

each, from the third, as much money as tliey had before. Tliey
then leave off, and find tliat they have all an equal sum, namely
24 louis each. Required, with how much money each sat down
to play ?

Suppose that the stake of the first person was x louis, that of

the second
i/,

and that of the third a. Further, let us make the

sum of all the stakes, or x -\- y -\- a, = s. Now, the first person

losing in the first game as much money as the other two have,

he loses s— x ; (for he himself having had x, the two others

23
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must have bad s— x) -,
wherefore there will remain to him 9.x

— s ; tlie second will have 2?/, and the third will have 2x>.

So that, after the first game, each will have as follows ;

the I. Qx— 5, the II.
Qtj, the III. 2».

In the second game, tlie second pei'son, who has now 2i/, loses

as much money as the other two have, that is to say s — 2?/ ; so

that he has left 4^ — s. With regard to the others, they will

each have double what they had
; so that after the second game^

the three persons have ;

the I. 4x — 2s, the II. 4?/
—

s, tlie IIL 4%.

In the third game, the third person, who has now 42i, is the

loser ; he loses to the first 4x — 2s, and to the second 4y — s
',

consequently after this game the three persons^will have ;

the I. Sx — 4s, the II. Sy
— 2s, the III. Sz — s.

Now, each having at the end of this game 24 louis, we hav©

three equations, the first of which immediately gives x, the

second i/,
and the third « ; further, s is known to he = 72, since

the three persons have in all 72 louis at the end of the last game ;

but it is not necessary to attend to this at first. We have

I. Sx — 4s = 24, or 8a? = 24 + 4s, or x = 3 + -Js ;

II. 8^
— 2s = 24, or 8i/ = 24 + 2s, or

i/
= 3 -f is 5

III. Sz— s = 24, or 82i = 24 -f s, or » = 3 + |s.

Adding these three values, we have

So that, since x -^ y + x> = s, we have s = 9 -f- |s ,*
wherefore

-1$
= 9, and s = 72.

If wc now substitute this value of s in the expressions which

we have found for x, y, and 2;, we sliall find that before they

began to play, the first person had 39 louis ; the second '21 louis ;

and the third 12 louis.

This solution shews, that by means of an expression for the

sum of the three nnknown quantities, we may overcome the

diHicultics which occur in the ordinary method.

535. Although the preceding question appears difiicult at first,

it may be resolved even without algebra. We have only to try

to do it imersely. Since tlje players, when they left off, had

each 24 louis, and, in the third game, the first and the second

doubled their money, they must have had before that last game :
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The I. 12, the II. 12, and the III. 48.

In the second game tlie first and the third douhled their

money ; so tliat before that game they had ;

The I. 6, the 11. 42, and the III. 24.

Lastly, in the first game, tlie second and the third gained

each as much money as they began with ; so that at first the

three persons had :

I. 59, 11.21, III. 12.

The same result as we obtained by the former solution.

536. (lucstion V. Two persons owe 29 pistoles ; they have

botli money, but neither of them enough (o enable him, singly to

discharge this common debt
; the first debtor says therefore to

the second, if you give me | of your money, I singly will imme-

diately pay the debt. The second answers, that he also could

discharge the debt, if the other would give him
|.

of his mohey.

Required, how many pistoles each had ?

Suppose that the first has x pistoles, and that the second has

y pistoles.

"NVe shall first have, x -f- f?/
= 29 ;

then also, ?/ -|- |.r = 29.

The first equation giVes x = 29 — ^y, and the second, x =

;
so that 29 — f !/

= —^^^^. From this equation,
3 3

w^e get y = 14i ; wherefore x = 19^.

Answer, The first debtor had 19-| pistoles, and the second

had 14-| pistoles.

537. Question VI. Three brothers bought a vineyard for a

hundred louis. The youngest says^ that he could pay for it

alone, if the second gave him half the money which he had ; the

second says, that if the eldest would give him only the third of

his money, he could pay for the vineyard singly ; lastly, the

eldest asks only a fourth part of the money of the youngest, to

pay for the vineyard himself. How much money had each ?

Suppose the first had x louis ; the second, y louis ; the third,

» louis ;
we shall then have the three following equations ;

I. 07 -f ii/ = 100. II. y \.\%= 100.

III. % -f ix = 100 ^ two of which only give the value of x,
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namely I. x = 100 — ^r/, III. x = 400 — 42J. So that we
have the equation,

100 — iy = 400 — 4«, or 4% — it( = 300, which must be

combined with the second, in order to determine y and %. Now,
the second equation was, t/ + -|«

= 100 ; we therefore deduce

from it
2/
= 100 — -Ja ; and the equation found last being 425^

—
|i/
= 300, we have y =.%% — 600. Consequently the final

equation is,

3 00 — i» = 82; — 600 ; so that
8-|z>

= 700, or y z; = 700,

and a = 84. Wherefore
2/
= 100 — ^8 = 72, and x = 64.

•Answer. The youngest had 64 louis, the second had 72 louis,

and the eldest had 84 louis.

538. As, in this example, each equation contains only two

unknown quantities, we may obtain the solution required in an

easier way.
The first equation gives y = 200 — 2a? ; so that y is deter-

mined by X ; and if we substitute this value in the second equa-

tion, we have 200 —'

9.x -\- ^% z=z 100 5 wherefore ^z> = 2x —
100, and ^ =z 6x— 300.

So that « is also determined by x ; and if we introduce this

value into the third equation, we obtain 6x— 300 4- ix = 100,

in which x stands alone, and which, when reduced to 25a? —
1600 = 0, gives x = 64. Consequently, 1/

= 200 — 128 = 72,

and % = 384 — 300 = 84.

539. We may follow the same method, when we have a greater

number of equations. Suppose, for example, that we have in

general ;

l,u^—=z n, II. a?
-f- -|

= n, III.
rj -^

= w,
u c

IV. « -f- -J
= ?i ; or, reducing the fractions,

I. au -{- X = an, II. hx -^ y = In, III. c^ 4- 2 = en,

IV. dx> -^u^ dn.

Here, the first equation gives immediately x = an — au,

and, this value being substituted in the second, we have abn —
ahu + 1/

= 6/1 ; so that y =. bn — abn 4- abu ; the substitution of

this value, in the third equation, gives ben — abcn -f abcu +« =
en ; wherefore % = en — ben -f- abcn — abm ; substituting this
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in the fourth equation, we Iiave cdn — hcdn -f dbcdii — ahcdu +
u = dn. So that dn — cdn -f- bcdn — abcdn = — abcdu -f w, or

(abed
—

1) it = abcdn — bcdn -f- cdn — dn ; whence we have

abcdn—bcdn+cdn—dn (abed
—hcd-\-cd—d)~"

abed— I

~~
abed— I

Consequently, we shall have,

abcdn—acdn-j-adn^an (ahcd-—acd-\-ad—a)X =
:

— n X 7
—

; ;
.

aoca—1 abed— 1

abcdn—abdn-\-abn—bn {abed—nbd-\-ab—&)
^ ~~

abed— 1
~"

ahed— 1

abcdn—abc7i-\-bcn—en (abed—nbc4-bc—c)
% =

, , ,
=71 X ^^

:

J- i.
abed—1 aucd— 1

abcdn—hcdn-\-cdn—dn {abed—bcd-\-cd—d)"~
abed— 1 abed— 1

540. Question VII. A captain has three companies, one of

Swiss, another of Swabians, and a third of Saxons. He wishes

to storm with part of these troops, and he promises a reward of

901 crowns, on the following* condition ;

Tliat each soldier of the company, which assaults, shall re-

ceive 1 crown, and that the rest of the money shall be equally
distributed among the two other companies.
Now it is found, that if the Swiss make the assault, each sol-

dier of the other comjianies receives half a crown ; that, if the

Swabians assault, each of the others receives j of a crown ;

lastly, that if the Saxons make the assault, each of the others

receives ^ of a crown. Required, the number of men in each

company ?

Let us suppose the number of Swiss = x, that of Swabians
=

If,
and that of Saxons = %. And let us also make x + 1/ -f- «

= s, because it is easy to see, that by this, we abridge the cal-

culation considerably. If, therefore, the Swiss make the assault,

their number being x, tiiat of the other will be 5— x ; now, the

former receive 1 crown, and the latter half a crown ; so that we
shall have,

2i -f Is— |a; = 901.

We find in the same manner, that if the Swabians make tlie

assault, we have,

1/ + -IS— 1|/
= 901.
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And lastly, that, if the Saxons mount to the assault, we have,
« + i-s

—
^25 = 901.

Each of these three equations will enable us to determine one
of the unknown quantities x, y, a ;

For the first gives x = 1802 — s,

the second gives 2y = 2703 — s,

the third gives 5x> = 3604 —'

s,

If we now take the values of 6x, 6y, and 6z, and write those

values one above the other, we shall have,

6x = 10812 — 65,

6y = 8109 — 3s,

625 = 7208 — 2s,

and adding; 6s = 26129 — lis, or 17s = 26129; so

that s = 1537 ; this is the whole number of soldiers, by which

means we find,

a; = 1802— 1537 = 265;

21/
= 2703 — 1537 = 1166, or

7/
= 583 ;

3^ = 3604 — 1537 = 2067, or a = 689.

Answer. The company of Swiss consists of 265 men ; that

of Swabians 583 ; and that of Saxons 689.

CHxiPTER Y.

Of the Resolution oj fiire Quadratic Equations.

541. Ax cquatimi is said to he ofthe second degree, when it contains

the square or tJie second jjower of the unknown quantity, without any

of its higher powers. An equation, containing likewise the third

power of the unknown quantity, belongs to cubic equations, and

its resolution requires particular rules. There are, therefore,

only three kinds of terms in an equation of the second degree.

1. The terms in which the unknown quantity is not found at

all, or which are composed only of known numbers.

2. The terms in which we find only the first power of tlie

unknown quaiiiity.

3. The terms which contain the square, or the second power

of the unknown quantity.
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So that X si^^r>ifying an unknown quantity, and the letters a,

h, c, d, &c. representing known numbers, tlie terms of the

first kind will have the form a, the terms of the second kind

will have the form bx, and the terms of the tiiird kind will have

the form cxx,

542. We have already seen, how two or more terms of the

same kind may be united togetlier, and considered as a single

term.

For example, we rtiay consider the formula axx — bxx +
cxx as a single term, representing it thus (a — 6 + c) xx ;

since, in fact, (a
— b -j- c) in a known quantity.

And also, when such terms are found on both sides of the

sign =, we have seen how they may be brought to one side, and

then reduced to a single term. Let us take, for example, the

equation,
2xx — 3ar + 4 = 5xx — 8a? -f 11 ;

We first subtract Qxx, and tliere remains

— 3x + 4 = Sxx— 8x 4- 11 5

then adding Sx, we obtain,

5a? -f 4 = Sxx -f 1 1 f

Lastly, subtracting 11, there remains Sxx = 5x — 7.

543. We may also bring all the terms to one side of the sign

=, so as to leave only on the other. It must be remembered,

however, that when terms ar*c transposed from one side to the

other, their signs must be changed.^

Thus, the above equation will assume this form, Sxx— 5x

4-7 = 0; and, for this reason also, thefoliowing geiieralformula

represents all equations of the second degree,

axx ± bx ± c = Of

in wliich the sign ± is read plus or mimes, and indicates that

such terms may be sometimes positive, and sometimes negaiive.

544. Whatever be the original form of a quadratic equation,
it may always be reduced to this formula of three terms. If wo

have, for example, the equation

ax-\-b BX'\'f

cjc-\-d ^x-\-li

* That is, the quantity thus transposed is added to or subtracted frotti each
side of the equation.
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we must, first, reduce the fractions ; multiplying, for this pur-

pose, by ex + (/, we have ax-\-b=: <^g-^'^^+cA-+e^/^4-//
^^^^^

.

gx + /i, we have agxx -f igx -f ahx + ft/t = cexx -f c/o; + edx

-f /(/, which is an equation of the second degree, and reducible

to the three following terms, which we shall transpose by ar-

ranging them in the usual manner :

= agxx 4- hgx -f ft/i,— cexx '\- ahx —/(Z,—
^foc,— edx.

We may exhibit this equation also in the following form,

which is slill more clear :

= {ag
—

ce) XX -f (pg -\- ah — cj
—

ed) x + hh—fd,
545. Equations of tlic second degree, in which all the three

kinds of terms are found, are called complete, and the resolution

of them is attended with greater difficulties ; for which reason

we shall first consider those, in which one of the terms is wanting.

Now, if the term xx were not found in the equation, it would

not be a quadratic, but would belong to those of which we have

already treated. If the term, which contains only known numbers,

tvere wanting, the eqnation would have thisform, axx ± bx = 0,

which heing divisible by x, may be reduced io ax ± b = 0, which

is likewise a simple equation, and belongs not to the present class,

546. But when the middle term, which contains the first power

of x, is wanting, the equation assiimes thisform, axx ± c = 0, or

axx = qp c
; as the sign of c may be eitiier positive or negative.

We shall call such an equation a jmre equation of the second

degree, since the resolution of it is attended with no difficulty ; for

c
we have only to divide by a, which gives xx = —

; and taking the
a

square root of both sides, wefind x = ^— ; by means of which the

eqnation is resolved,

54'. But there arc three cases to be considered here. In the

first, when — is a square number (of which we can therefore

really assign the root) 7ve obtain for the value of x a rational
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number which may be either integer or fractmial. For example,

the equation xx = 144, gives x = 12. And xx = ^\, gives
«. ^ 3
i«^ — 4.

The second variety is, wJien — is not a square, in which case
d

ive must therefore be contented with the sipi \/, If, for example,

XX = 12, we have x = v'Ts* the value of which may be deter-

mined by approximation, as we have already shewn.

TJie third case is tlmt in which — becomes a negative number ;

then the value of xis altogether impossible and imaginary ; and this

result proves that tlie question, which leads to such an equation, is

in itself impossible,

548. We shall also observe, before proceeding further, that

whenever it is required to extract tlie square root of a number,

that root, as we have already remarked, has always two values,,

the one positive and the other negative. Suppose we Jiave the

equation xx = 49, the value ofx will be not only + 7, but also — 7,

which is expressed 61/ x = ± 7. So that all those questions admit

of a double answer ;
but it will be easily perceived that in several

cases, in those, for example, w hich relate to a certain number

of men, the negative value cannot exist.

549. In such equations, also, as axx = bx, where the known

quantity c is wanting, there may be two values of x, though we

find only one if we divide by x. In the equation xx = Sx, for

example, in which it is required to assign such a value of x, tliat

XX may become equal to Sx, this is done by supposing x = 3,

a value which is found by dividing tlie equation by x ; but,

beside this value, there is also another, wliich is equally satis-

factory, namely x = ; for then xx = 0, and Sx = 0. Equa-
tions therefore of tlie second degree, in general, admit of two solu-

tions, whilst simple equations admit oidy of one.

We shall now illustrate, by some examples, what wc have

said with regard to pure equations of the second degree.

550. Question I. Required a number, the half of which mul-

tiplied by the third may produce 24.

Let this number = x ; \x, multiplied by ^x, must give 24 ;

w-e shall therefore have the equation \xx = 24.

24
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Multiplying by 6, we have xx = 144 ; and the extraction of

the root gives x = ± 12. AVe put ± ; for if x =
-|- 12, we

have ^x = 6, and |x = 4 : now the product of these two nuin-

hcrs is 24 ; and if x = — 12, we have ^x =— 6, and ^x =— 4,

the product of which is likewise 24.

551. Q^uestiaii II, Required a number such, that hy adding
5 to it, and subtracting 5 from it, the product of the sum by th«

difference would be 96.

Let this number be x, then ^ -f- 5, multiplied by x— 5, must

give 96 ; whence results the equation, xx — 25 = 96.

Adding 25, we have xx = 121 ; and extracting the root, w«
have X =. 11. Thus ^ -f 5 = 16, also x — 5 = 6; and lastly,

6 X 16 = 96.

552. Question III. Required a number such, that by adding
it to 10, and subtracting it from 10, the sum, multiplied by the

remainder, or difference, will give 51.

Let X be this number ; 10 -f x, multiplied by 10 — x, must

make 51, so that 100 — xx = 51. Adding xx, and subtracting

51, we have xx = 49, the square root of which gives x = 7.

553. ((uestion IV. Three persons, who had been playing,

leave off; the first, with as many times 7 crowns, as the second

has three crowns ; and the second, with as many times 17

crowns, as the third has 5 crowns. Further, if we multiply the

money of the first by the money of the second, and the money
of the second by the money of the third, and lastly, the money
of the third by that of the first, the sum of these three products

will be 3830|. How much money has each ?

Suppose that the first player has x crowns ; and since ^ e has

as many times 7 crowns, as tlie second has 3 crowns, we know

that his money is to that of the second, in the ratio of 7 : 3.

We shall therefore make 7 ; 3 = a:, to the money of the

second player, which is therefore |.x.

Further, as the money of the second player is to that of the

third in the ratio of 17 : 5, we shall say, 17 : 5 = fr to the

money of the third player, or to -^VV'^*

Multiplying x, or the money of the first player, by ^x? the

money of the scccmd, w^e have the produ ; ^xx. Then ^x, tlic

money of the second, multiplyed by the money of the third, or
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by jYgO:, gives ^-^-^xx. Lastly, tlie money of the third, or

-}-Y-^x multiplied by x, or the money of the first, gives -^^-^xx*

The sum of these three products is ^xx + //^-^x + jV?^^ > ^"^>

reducing these fractions to the same denominator, we find their

sum |0|xx, which must be equal to the number 3830|.

We have, therefore, |||xx = 3830|.

So that \%\^xx = 114y2, and I52\xx being equal to 9572836,

dividing by 1521, we havexo? = ^y/^V^ ? ^"^ taking its root,

we find X =
^||'*'.

This fraction is reducible to lower terms if

we divide by 13 ^ so that x = ^|^ = 79^ ;
and hence we con-

clude, that ^x= 34, and -^^ a; = 10.

Answer, The first player has 79-| crowns, the second has 34

crowns, and the third 10 crowns.

Remark, This calculation may be performed in an easier

manner
,- namely, by taking the factors of the numbers which

present themselves, and attending chiefly to the squares of those

factors.

It is evident, that 507 = 3 x 169, and that 169 is the square
'of 13 ; then, that 833 = 7 x 119, and 119 = 7 X 17. Now, we

3x169
have ——'-xxz=. S830|, and if we multiply by 3, we have

17X49 ,*....

9x169—— XX = 1H92. Let us resolve this number also into its

17x49
factors ; we readily perceive, that the first is 4, that is to say,

that 11492 = 4 X 2873 ; further, 2873 is divisible by 17, so that

2873 = 17 X 169. Consequently, our equation will assume the

9x 1 69
following form :

rj—j^^^
= 4 x 17 X 169, which, divided by

169,isreducedto-^:-—- xo? = 4 x 17 ; multiplying also by 17 X
1/ X4y

4x289x49
49, and dividing by 9, we have xx = , in which all

the factors are squares ; whence we have, without any further

calculation, the root x = —-—- = -^ = 794» as before.

554. Question V. A company of merchants appoint a factor

at Archangel. Each of them contributes for the trade, which

they have in view, ten times as many crowns as there are pstrt-



Iff Mgeh'd. Sect. 4.

ncrs. The profit of the factor is fixed at twice as many crowns,

per centt as there arc partners. Further, if we multiply the ^l^
part of his total gain hy 2|, the number of partners will be

found. Required, what is that number ?

Let it be = :j; ; and since, each partner has contributed lOx,
the whole capital is = 10a?x. Now, for every hundred crowns,

the factor gains 2a;, so that with the capital of 10:»a? his profit

will be inc^. The ^^^ part of this gain is -sJt^x*^ ; multiplying

by 2|. or by y^, we have 4yJo ^^' or g^yX^, and this must be

equal to the number of pai-tners, or x.

We have, therefore, the equation aij-^^ = a:, ora;^ = 225x;
which appears, at first, to be of the third degree ; but as we may
divide by cc, it is reduced to the quadratic xx = 2^5, whence

x=z 15.

Answer, There are fifteen partners, and each contributed

150 crowns.

CHAPTER VI.

Of the Resolution of Mixt Equations of the Second Degree,

555. An equation of the second degree is said to be mixt, or com-

plete,* when three kinds of terms are found in it, namely, that

which contains the square of the unknown quantity, as axx ; that,

in which the unknown quantity isfound oidy of thefirst power, as

bx ; lasUy, the kind of terms which is composed only of known

quantities. And since we may unite two or more terms of the

same kind into one, and bring all the terms to one side of the

sign =, the general form of a mixt equation of the second degree
will be

axx ^: hx ^:. c z=.0.

In this chapter, we shall shew, how the value of x is derived

from such equations. It will be seen, that there are two me-

thods of obtaining it.

55Q>, An equation of the kind that we are now considering,

may be reduced, by division, to such a form, that the first term

may contain only the square xx of the unknown qi'aii.*it^'
x We

• Sometimes called also affected.
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sliall leave the second term on the same side with or, and trans-

pose the known term to the other side of the sign =. By these

means our equation will assume the form xx ± px = ± q,

in wliich p and q represent any known numbers, positive or

negative ; and the whole is at present reduced to determining
the true value of x. We shall begin with remarking, that if xx

-\-p^ were a real square, the resolution would be attended with

no difficulty, because it would only be required to take the square

root of both sides.

557. But it is evident that xx 4- px cannot be a squai'e ;

since we have already seen, that if a root consists of two terms,

for example, x -f n, its square always contains three terms,

namelij, twice the product of the two parts, beside the sqiuire of each

part ; that is to say, the square o/"
x -f n is xx 4- 2nx -f- nn. Now,

we have already on one side xx +px ; we may, therefore, con-

sider XX as the square of the first part of the root, and in this case

px must represent twice the product of x, the first part of the root,

by the second part ; consequently, this second part must be
-|p, and

infact the square 0/*
x + ip, isfound to be xx + px -f -^pp.

558. JS^ow XX + px -f;^pp being a real square, which hasfor its

root X + ip, if we resume our equation xx -f- px = q, we have

only to add ^pp to both sides, which gives us xx + px -f ipp = q
4- ipp, thefirst side being actually a square, and the other contain-

ing only known quantities. If, therefore, we take the square root

of both sides, wefind x + ^p = >/ (| pp + q) ; and subtracting | p,

we obtain x = — ^P + V CiPP + q) J ^^^^> os every square root

may be taken either affirmatively or negatively, we shall have for
X two values expressed thus ;

^ = -4p* JtPP
+ 'i-

559. This formula contains the rule by which all quadratic

equations maybe resolved, and it will be proper to commit it to

memory, that it may not be necessary to repeat, every time, the

whole operation which we have gone through. We may always

arrange the equation, in such a manner, that the pure square
XX may be found on one side, and t!ie above equation have the

form XX =— px -\-q, where we see immediately that a?= -—
^p

\4pp -\-q.
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560. The general rule, therefore, which we deduce from this,

in order to resolve the equation xx = — px -{- q, ]s founded

on this consideration ;

That the unknown quantity x is equal to half tlie coefficient,

or multiplier of x on the other side of the equation, plus or minus

the square root of the square of this number, and the known

quantity which forms the third term of the equation.

Thus, if we had the equation xx = 6a? + 7, we should imme-

diately say, that x = 5 ± vsTr = 3 ± 4, whence we have

these two values of ^, T. ^ = 7 ; IL ^ = — 1. In the same

mariner, the equation xx = 10^ — 9, would ,^ive x = 5 ±
V/25— 9 = 5 ± 4, that is to say, the two values of x are 9 and 1.

561. This rule will be still better understood, by distinguish-

ing the following cases. I. when p is an even number ; II.

when p is an odd number; and III. when|) is a fractional

number.

I. Let p be an even number, and the equation such, that xx
= Qpx -f- q ; we shall, in this case, have x =p ± ^pp + q,

II. Let p be an odd number, and the equation xx = 2)x + q ;

we shall here have x = ^p ± ^-rPP + 9 > ^^^ since ipp + q =

JTJI-5, we may extract the square root of the denominator, and

write a; = Ap ±
^'""X'"

= E^imiL.

III. Lastly, if p be a fraction, the equation may be resolved

in the following manner ; let the equation be axx =zbx -\. c, or

XX = — +— 9 and we shall have, by the rule, x = — ±
a a 2a

fj^ I ^. Now, 1
— = , the denominator of

^U«a^ a 4aa^ a 4aa

which is a square ; so that x — L^^tiff.
2a

562. The other method of resolving mixt quadratic equations,

is to transform them into pure equations. This is done by sub-

stitution ; for example, in the equation xx z=z px -^ q, instead of

the unknown quantity a-, we may write another unknown quan-

tity y, such, that x =z
ij 4- Ip ; by which means, when we have

determined y, we may immediately find the value of x^
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If we make this substitution of
1/ + |/> instead of x, we have

XX = yy +ptj + Ijj^J,
and px —py -\- ^pp ; consequently, our

equation will become ytj -^ py ^ ipp = py -\- ^pp 4. q, which is

first reduced, by subtracting py, to yy + ^pp = ijrp + q ; and

then, by subtracting ipp, to yy = ^pp + ^. This is a pure

quadratic equation, which immediately gives y = ^
]—pp+ Q'

Now, since x=y -^ jp,we have x= ^p ± A-^p + (/,
as we

found it before. We have only, therefore, to illustrate this rule

by some examples.

563» Question I. There are two numbers ; one exceeds the

other by 6, and their product is 91. Wliat are those numbers ?

If the less is x, the other is x -f 6, and their product xx -|- 6x
= 91. Subtracting 607, there remains 0^07 = 91 — 6a?, and the

rule gives x = — 3 ± ^9 + 91= — 3 ± 10; so that x=7y
and X = — 13.

Answer, The question admits of two solutions
;

By one, the less number ;r is = 7, and the greater ^+6=13.
By the other, the less number x = — 13, and the greater

564. question II. To find a number such, that if 9 be taken

from its square, the remainder may be a number, as many units

greater than 100, as the number sought is less than 23.

Let the number sought = ^
; we know, that xx — 9 exceeds

100 by XX— 109. And since x is less than 23 by 23 — x, we
have this equation ;

xx— 109 = 23 — x.

Wherefore xx = — ^ + 132, and, by the rule, x = — | +

Ji + '32 -
-^
±J~ = - 4 ±f. So that ^ = 11, and

x = — 12.

Jinsxver, When only a positive number is required, that

number will be 11, the square of which minus 9 is 112, and

consequently greater than 100 by 12, in the same manner as 11

is less tlian 23 by 12.

565, Question III. To find a number such, that if we multi-

ply its half by its third, and to the product add half the number

required, the result will be 30,
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Suppose that number = ^, its half, multiplied by its third,
will make ^07^' ; so that ^xx -f ix = 30. Multiplying by 6,

we have xx + Sx = 180, or ^or =— 3x + 180, which gives

Consequently x is either = 12, or — 15.

566. Question IV. To find two numbers in a double ratio to

each other, and such that if we add their sum to their product,
we may obtain 90.

Let one of the numbers = .r, then the other will be = 9.x ;

their product also = ^.xx, and if we add to this 3x, or their sum,
the new sum ought to make 90. So that 9.xx -f 3^ = 90 ;

9.xx
— 90— 3^ ; XX z= — I 4- 45, whence we obtain a; = — | +

4 9
, ^r. 3 27— 4-45 = +— .

16
^ 4—4

Consequently x = 6, or —
7^-.

567. Question V. A horse dealer, who bought a horse for a

certain number of crowns, scels it again for 119 crowns, and his

profit is as much per cent, as the horse cost him. Required,
what he gave for it ?

Suppose tlie horse cost x crowns ; then as the horse dealer

gains a- per cent we shall say, if 100 give the profit ;r,* what

does X ffive ? Answer, ^-^, Since therefore he has gained -—
,*

100 ^
100'

and the horse originally cost him x crowns, he must have sold

it for X + ——
; wiierefore x ^ =119. Subtracting x,

we have —— = — x -{- 119 ; and multiplying by 100, we have

XX = — lOOx -f 11900. Applying the rule, we find x = —
50 + v/i^500 + 11900 =— 50 + VUioo" = — 50 ± 120.

Answer, The horse cost 70 crowns, and since the horse

dealer gained 70 per cent, when he sold it again, the profit must

have been 49 crowns. The horse must have been therefore

sold again for 70 +49, that is to say for 119 crowns.

568. Question VI. A person buys a certain number of pieces

of clotli : he pays, for the first, 2 crowns ; for the second, 4

crowns ; for the third, 6 crowns, and in the same manner always
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2 crowns more for each following piece. Now, all the pieces

together cost him 110. How many pieces had he ?

Let the number sought = x. By the question, the purchaser

paid for the different pieces of cloth in the following manner ;

for the 1, 2, 3, 4, 5 .... a;

he pays 2, 4, 6, 8, 10 .... 20? crowns.

It is therefore required to find tlie sum of the arithmetical

progression 24-4-f-6-f-8-fl0-f 2x, which consists of

X terms, that we may deduce from it the price of all the pieces

of cloth taken together. The rule which we have already given
for this operation, requires us to add the last term and the first;

the sum of which is 20? -f 2 ; if we multiply this sum by the

number of terms x, the product will be 9.xx -j- 2a; ;
if we lastly

divide by tlie difference 2, the quotient will be xx -f- x, which

is the sum of the progression ; so that we have xx -f a? = 110 ;

wherefore xx = — x -{- 1 10, and x= --f-\ — +110=—
i + i^ = 10.
2 2.
Answer. The number of pieces of cloth is 10.

569. Question VII. A person bought several pieces of cloth,

for 180 crowns. If he had received for the same sum 3 pieces

more, he would have paid three crowns less for each piece ?

How many pieces did he buy ?

Let us make the number sought = x
; tlicn each piece will

1 OQ
have cost him -— crowns. Now, if the purchaser had had a; -f 3

1 80
pieces for 180 crowns, eacli piece would have cost crowns :

and, since this price is less than the real price by three crowns,
we have this equation,

180 _180 ^

Multiplying by x, w^e have —~ =180 — 3.^; dividing by

60a?
3, we have - = 60 — x; multiplying by a? + 3 we have

60o: = 180 + 57X — XX ; adding xx, wc shall have xx + 60x
25
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= 180 + 57X*, subtracting 60a^, we shall have xx:=:. — Soj +
180.

The rule, consequently, gives

a- = — I + Vf + 180, or o: = — I +^ = 12.

Answer, He bought for 180 crowns 12 pieces of cloth at 15

crowns the piece, and if he had got 3 pieces more, namely 15

pieces for 180 crowns, each piece would have cost only 12

crowns, that is to say, 3 crowns less.

570. Question VIII. Two merchants enter into partnership

with a stock of 100 crowns ; one leaves his money in the part-

nership for three months, the other leaves his for two months,

and each takes out 99 crowns of capital and profit. What pro-

portion of the stock did each furnish ?

Suppose the first partner contributed x crowns, the other will

have contributed 100 — x. Now, the former receiving 99

crowns, his profit is 99 — x, which he has gained in three

months with the principal x ; and since the second receives also

99 crowns, his profit is a; — 1, wliich he has gained in two

months with the principal 100 — x ; it is evident also, that the

profit of this second partner would have been
' ""*

, if he had

remained three months in the partnership. Now, as the profits

gained in the same time are in proportion to the principals, we
3^—3

have the following proportion, a? : 99 — x= 100 — x : —-—
.

The equality of the product of the extremes to that of the

means, gives the equation,

5.T.V—S^
9900 — 199.T -f XX ;

2

Multiplying by 2, we have 5xx — 3a: = 19800 — 398x

4- Qxx ; subtracting 2xXf we have xx— 3x = 19800 — 398a;

adding 5x, we have xx = 19800 — 395a:.

Wherefore, by the rule,

S95
, Jl56025 ,

79^ _ __ 395 485 ^90^^^

Answer, The first partner contributed 45 crowns, and the

other 55 crowns. The first, having gained 54 crowns in three
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months, would have gained in one month 18 crowns ; and the

second having gained 44 crowns in two months, would have

gained 22 crowns in one month : now these profits agi'ee ; for,

if with 45 crowns 18 crowns are gained in one month, 22

crowns will be gained in t!ie same time with 55 crowns.

571. (fiiestion IX. Two girls carry 100 eggs to market ; one

had more than the other, and yet the sum which they hoth

received for them was the same. Tlie first says to the second,

if I had had your eggs, I should have received 1 5 sous. The

other answers, if I had had yours, I should have received 6|.

sous. How many eggs did each carry to market ?

Suppose the first had x eggs ; then the second must have had

100 — X.

Since therefore the former would have sold 100 — x eggs for

15 sous, we have the following proportion ;

i5x
100 — X : 15 = X .... to sous.

100—jc

Also, since the second would have sold x eggs for 6| sous, we
find how much she got for 100 — x eggs, by saying

20 ,^^ ^ 2000—2007
X :

— = 100— X .... to .

3 Sx

Now both the girls received the same money ; we have con-

15o7 2000 20JC

sequently the equation,
———- =

, which becomes

this,

25xx = 200000 — 4000X ;

and lastly this,

XX = — 160a: + 8000 ;

whence we obtain

X = — 80 + V6400 + 80U0 = — 80 + 120 = 40.

Answer, The first girl had 40 eggs, the second had 60, and
each received 10 sous.

572. ^uestmn X. Two merchants sell each a cei'tain quantity
of stuff; the second sells Sells more than the first, and they
received together 35 crowns. The first says to the second, I

should have got 24 crowns for your stuff; the other answers,
and I should have got for yours 12 crowns and a half. How
many ells had each ?

Suppose the first had x ells ; then the second must have had
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a: + S ells. Now, since the first would have sold a: + 3 ells for

^4 crowns, he must have received crowns for his x ells.
JT+S

And with regard to the second, since he would have sold x ells

for 12-1 crowns, he must have sold his a: 4- 3 ells for ^'^"'"^
;

so that the whole sum they received was f-
——— =35

crowns.

This equation becomes xx = QOx— 75, whence we have x
= 10 ± VIOO— 75 = 10 ± 5.

Answer. The question admits of two solutions : according to

the first, the first merchant had 15 ells, and the second had 18 ;

and since the former would have sold 18 ells for 24 crowns, he

must have sold his 15 ells for 20 crowns ; the second, who would

have sold 15 ells for 12 crowns and a half, must have sold his

18 ells for 15 crowns; so that they actually received 35 crowns

for their commodity.

According to the second solution, the first merchant had 5

ells, and the other 8 ells ; so that, since the first would have

sold 8 ells for 24 crowns, he must have received ] 5 crowns for

his 5 ells ; and since the second would have sold 5 ells for 12

crowns and a half, his 8 ells must have produced him 20 crowns.

The sum is, as before, 35 crowns.

CHAPTER VII.

Of the J^ature of Equations of the Second Degree,

573. "What we have already said sufficiently shews, that

equations of the second degree admit of two solutions ; and this

property ouglit to be examined in every point of view, because

the nature of equations of a higher degree will be very much

illustrated by such an examination. We shall therefore retrace,

with more attention, the reasons which render an equatiqn of

tlie second degree capable of a double solution ; since they un-

doubtedly will exhibit an essential property of those equations.
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574. We have already seen, it is true, that this double solu-

tion arises from the circumstance that the square root of any

number may be taiven either positively, or negatively ; however,

as this principle will not easily apply to equations of higher

degrees, it may be proper to illusti-ate it by a distinct analysis.

Taking, for an example, the quadratic equation, xx = 12x— 35,

we shall give a new reason for this equation being rcsolvible in

two ways, by admitting for x the values 5 and 7, both of which

satisfy the terms of the equation.

575. For this purpose it is most convenient to begin with

transposing the terms of the equation, so that one of the sides

may become ; this equation consequently takes the form xx
— IQx -f- 35 = ; and it is now required to find a number

such, that, if we substitute it for x, the quantity xx— 12x + 35

maybe really equal to nothing; after tliis, we shall have to

shew how this may be done in two ways.

576. Now, the whole of this consists in shewing clearly, that

a quttntity of the form xx — 12x + 35 may be considered as the

product of twofactors ; thus, in fact, the quantity of which we

speak is composed of the two factors (x — 5) x (x— 7). For,

since this quantity must become 0, we must also have the pro-

duct {x — 5) X
(.tr
—

7) = ; but fl product, of whatever 7i«m-

ber offactors it is composed, becomes = 0, only when one of those,

factors is reduced to ; this is a fundamental principle to which

we must pay particular attention, especially when equations of

several degrees ar'C treated of.

577. It is therefore easily understood, tliat the product (x
—

5)

X (x — 7) may become in two ways : one, wlien the firstfactor

X — 5 = 0; the other, wJien the secondfactor x — 7=0. In the

first case x = 5, in the other x = 7. TJje reason is therefore

very evident, why such an equation|3?x
— 12x + 35 = 0, ad-

mits of two solutions ; that is to say, why we can assign two

values of x, both of which equally satisfy the terms of the equa-

tion. This fundamental principle consists in this, that the

quantity xx— IQx -f- 35 may be represented by the product of

two factors.

578. The same circumstances are found in all equations of

the second degree. For, after having brought all the terms to
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one side, we always find an equation of the following form ccx— (WO -j-b =z 0, and this formula may be always considered as

the product of two factors, which we shall represent by {x— p)
X (x — q)f without concerning ourselves what numbers the

letters p and q represent. Now, as this product must be = 0,

from the nature of our equation it is evident that this may hap-

pen in two ways ; in the first place, when x = p ;
and in the

second place, when x = q; and these are the two values of x
which satisfy the terms of the equation.

579. Let us now consider the nature of these two factors, in

order that the multiplication of the one by the other may exactly

produce xx — ax -{- b. By actually multiplying them, we get
XX —

(^P -h Q) ^ -h pq y now this quantity must be the same as

XX — ax -\-bf wherefore we have evidently p -\. q = a, and pq
= b. So that we have deduced this very remarkable property,

that in every equation of the form xx — ax + b =0, the two

values of x are such, that their sum is equal to a, and their prodiict

equal to b ; whence it follows that, if we know one of the values,

the other also is easilyfound,
580. "We have considered the case in which the two values

of X are positive, and which requires the second term of the

equation to have the sign
—

, and the third term to have the

sign -f. Let us also consider the cases in whicli either one, or

both values of x become negative. The first takes place, when

the two factors of the equation give a product of this form

(x
—

Ji) X (pc -^ q) ; for then the two values of x are x = p,

and X = — q; the equation itself becomes xx -f (</
— p) x—

pqz=0 ; the second term has the sign -f, w hen q is greater than

p, and the sign
—

, when q is less than p ; lastly, the third term

is always negative.

The second case, in which both values of x are negative,

occurs, when the two factors are (x + p) x (^ + q) ; for w^e

shall then have x = — p and x =— q ; the equation itself be-

comes xx -f. (p -f- (/)
X -f 2?(/

= 0, in which both the second and

third terms are affected by the sign -f .

581. The signs of the second and tlie third term consequently

shew us tlie nature of the roots of any equation of the second

degree. Let the equation be xx . . . . aa^ . , . . & = 0, if the
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second and third terms have the sign +, the two values of x are

both negative ; it' the second term has the sign
—

, and tiie third

term has -f , both values are positive ; lastly, if the third term

also has the sign
—

, one of the values in question is positive.

But in all cases, whatever, the second term contains the sum

of the two values, and the third term contains their product.

582. After what has been said, it will be very easy to form

equations of the second degree containing any two given values.

Let there be required, for example, an equation such, that one

of the values of jc may be 7, and the other — 3. We first form

the simple equations jc = 7 and x = — 3 ; thence these, x — 7

= atid :r + 3 = 0, which give us, in this manner, the factors of

the equation required, which consequently becomes xx — 4^—
21 = 0. Applying here, also, the above rule, we find the two

given values of x ;' for if xx = Ax ^ 21, we have x = '2. ± \/25

= 2 ± 5, that is to say, x = 7i ov x = — S.

583. The values of x may also happen to be equal. Let there

be sought, for example, an equation, in which both values may
be = 5. The two factors will be {x — 5) x (^

—
5), and the

equation sought will be :r:c — 10^ -f- 25 = 0. In this equation,

X appears to have only one value ; but it is because x is twice

found = 5, as the common method of resolution shew^s ; for we
have XX z=lQx— 25 ; wherefore x = 5 ± v^o" = 5 ± 0, that

is to say, x is in two ways = 5.

584. A very remarkable case, in which both values of x be-

come imaginary, or impossible, sometimes occurs ; and it is

then wholly impossible to assign any value for 07, that would

satisfy the terms of the equation. Let it be proposed, for ex-

ample, to divide the number 10 into two paiis, such, that their

product may be SO. If we call one of those parts x, the other

will be = 10 — X, and their product will be 10 o?— xx = SO ;

wherefore xx-=. \0x — SO, and x = 5 ± v/^^ which being
an imaginary nnmber, shews that the question is impossible,

585. It is very important, therefore, to discover some sign,

by means of which we may immediately know, whether an

^nation of the second degree is possible, or not.

Let us resume the general equation ax — xx -f-
ft = 0,
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>\^e shall have xx == ax — b, and x = —a±\JLaa — b.

This shews, that if b is greater than Jaa, or 4b greater than aa^

the two values of x are always imaginary, since it would be

requii-ed to extract the scjuare root of a negative quantity ; on

the contrary, if b is less than ^aa, or even less than 0, that is to

say, is a negative number, both values will be possible or real.

But, whether
the^ be real or imaginary, it is no less true, that

they are still expressible, and always have this property, that

their sum is = a, and their product = 6. In the equation xx— 6^7 4- 1 = Oj for example, the sum of the two values of or must

be = 6, and the product of these two values must be = 10 j now
we find, I. a? = 3 + v^T] and 11, x = 3 — V^^ quantities
whose sum = 6, and the product =10.

586. The expression which we have just found, may be

represented in a manner more general, and so as to be applied
to equations of this fovmffxx ± gx -{- h = ; for this equation

^ives ^07 = ± ^^ — 4 andar= ± 4. ± V-^ — -' «r

oo = —j]_v SF—^A. whence we conclude, that the two values

are imaginary, and consequently the equation impossible, when

4fh is greater than gg ; that is to say, when, in the equation

fxx — g a7-f h =z Of four times the product of the first and the

last term exceeds the square of the second term : for tiie product
of the first and the last term, taken four times, is 4fhxXf and

the square of the middle term is ggxx ; now, if Ajhxx is greater
than ggxx, 4fh is also greater than gg, and, in that case, the

equation is evidently impossible. In all other cases the equa-
tion is possible, and two real values of x may be assigned.
It is true, they are often irrational ; but we have already seen,

that, in such cases, we may always find them by approxima-

tion,* whereas no approximations can take place with regard to

imaginary expressions, such as \/^^; for 100 is as far from

being the value of that root, as 1, or any other number.

58r. AYe have further to observe, that any. quantity of the

secoTul degree, xx ± ax ± b, miist always be resolvible into two

factors, such as (a; ± p) x (pc ± q). For, if we took three
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factors, such as these, we should come to a quantity of the third

degree, and taking only one such factor, we should not exceed

the first degree.

It is therefore certain that every equation of the second degree

necessarily ccndains two values of x, and that it can neither have

more nor less,

588. We have already seen, that when the two factors are

found, the two values of x are also known,, since each factor

gives one of those values, when it is supposed to he = 0. The

converse also is true, viz. that when we have found one value of

jCf we know also one of the factors of the equation ; for if a: = p

represents one of the values of j^, in any equation of the second

degree, x — p \s one of the factors of that equation ; that is to

say, all the terms having been brought to one side, the equation

is divisible by x — p ; and further, the quotient expresses the

other factor.

589. In order to illustrate what we have now said, let there

be given the equation .tjt -f 4.t — 21 = 0, in which we know
that J? = 3 is one of the values of :c, because 3x3^ + 4 x 3^— 21 = ; this shews, that x — 3 is one of the factors of the

equation, or that xx -\. Ax — 21 is divisible by ^ — 3, wliich

the actual division proves.

a:— 3) XX -f- Ax — 21 (x + 7

t/C*Ay ' ' ' Off/

7x— 21

7a:— 21

0.

So that the other factor is x -f 7, and our equation is repre-

sented by the product (x— 3) x (a; -f- 7) = ; whence the two

values of x immediately follow, the fii^t factor giving x = 3.

and the other x =. — 7.

26



QUESTIONS FOR PRACTICE.

Fractions,

3ECTI0X I. CHAPTER 8.

1. Reduce .
,

_— to its lowest terms. Ans, —.

2. Reduce , ."TT .\ to its lowest terms. Ans, f^,

3. Reduce "^^—- to its lowest terms. Ans,
^ — .

x^—h^x^ x^

4. Reduce —-—^ to its lowest terms. Ans, .

5. Reduce -:;
—-——- to its lowest terms. Ans, -—^ .

a^—a*a-—ax^-\-x^ 1

6. Reduce —, ! —I

^ to its lowest terms.
a^x-\-2a^x^-\-2ax^'\-x'^

Ans, — — 3.
a^x-\-ax^-\-x

SECTION I. CHAPTER 9.

2r b
7. Reduce -^— and — to a common denominator.

a c

^ 9cx J ab
Ans. and — .

ac ac

8. Reduce -? and -i- to a common denominator.
b c

^ ac , ah-\-h*
Ans, i— and —-— .

be be

^x Qb
9. Reduce ,

—
, and d to fractions having a common de-

2a 3c
^

. , ^ 9cx 4ab J 6acd
nominator. Ans, -—,

-— ana -—.

oac bac bac
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10. Reduce —,
—̂ and a +^ to a common denominator.

4 3 a

9a Sax , 1 -.a
»
4-24^7

Ans. , , and ,

12a 12a i'^a

11. Reduce --, — , and
^ —

> to a common denominator.
2 3 oe+a

3x-{-5a 2a2jH-2rt3 6.T»-f^g*

6a:4-6a' ixv-\-ba
'

6ji"+(ia

12. Reduce ,
—

, and — , to a common denominator.
2a2

'
2a a

2a^h 2a^c , 4a^d
Alls.—7 ,

—-
, and—-

,

4a* 4a*' 4a*

SECTION I, CHAPTER 10.

13. Required the product of^ and ^ . Ans, --.

rVJ 4^ 1 1? 4'IC "^

14. Required the product of-, -4-9 and --^. Aas. -1—.

15. Required the product of — and . Ans. —-^—.

a a-\-c a^-[-ac

16. Required the product of — and -r-. Ans. ^—-.

2x 3 v* 3t^
IT. Required the product of — and —— . Ans, -4—.

18. Required the product of — , , and ——. Ans, 9ax.^ '^ a c 9.b

19. Required the product of 6 4- — and —. Ans.
'^ *^ax X

20. Requii'ed the product of —r and
"

be b-{-c

Ans.
b^c-\-bc^

'

21. Required the product of x,
^"^

-
, and

a:—.1

a^-{-ab

22. Required the quotient of ~ divided by ^. Ans. ll.
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23. Required the quotient of^ divided by Ij. Jins. — .

b d 2bc

24. Required the quotient of
"^

, divided by
^^

.

Ans. -^-—rrs— .

25. Required the quotient of «— divided by -

Ans.

•4-0.

Ox

x^—ax -{-a*

26. Required the quotient of-^' divided by -. Ans.—.^
5 •'is 60

27. Required the quotient of divided by 5x. Ans. —
.

28. Required the quotient of ^^ divided by ^-. Ans. ^-^t} .

6 3 4a:

29. Required the quotient of—_f divided by ^. Ans. :^^.

SO. Required the quotient of —7^^ ,, divided by f!±^.

b*
Ans. x-i— .

X

Infinite Series.

SECTION II. CHAPTER 5.

31. Resolve —'— into an infinite series.a—a?

x^ x^ x^
Ans. X H—— + -^^ -f- -^^y kc.

32. Resolve —-- into an infinite series.
a-i-x

f-i X
^
X* -^"^

. • \

0%
33. Resolve— , into an infinite series,

or4-6

'34. Resolve -—— into an infinite series.
1—X

Ans, 1 4- %x + 2^* + 2^3 ^ 2^4^ ^^.^
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j8
35, Resolve

-; rs- into an infinite series

Ans, 1 ^ —
, &c.

Surds or Irrational Miinbers,

SECTION II. CHAPTER 8, &C.

36. Reduce 6 to the form of v^T ^ns. v/36.

37. Reduce a -f 6 to the form of v^Ac. *^fis. \/ (aa +2a6 + bV)

38. Reduce , ^— to the form of wT. •ins, \f -f^.
0\/c

^
bbc

3

39. Reduce o^ and ft to the common index —.

o

6]l 9]1
^iw. a p, and 6^p.

40. Reduce v'is to its simplest form. Am, 4 v'sT

41. Reduce \/{a^x— a^x^) to its simplest form.

^^15. a V(«x— xxy

42. Reduce A '?^ to its simplest form.

a Sab
Ms, - lJZ

43. Add v/6" to 2 x^e] and vF to y^so. •^'w. 3^/6"; and V98.

44. Add \/4a and v^IIe together. ,ins, (a + 2) v^^

6ft-f-cc
45. Add -

c

2 and together. ,^iis.

bs/bc
4

46. Subtract \/4a fmm v^as . .^^i<s. (a — 2) \/a.

47. Subtract 4* ^om -^. Jns. ^.tzS£ Jl.
61 c b

^
be

48. Multiply \jl±hy\j^, Ans,^~,
oc 2o C

3 3

49. Multiply i/d by ^ab» Jins,
^(^a^b^d^).
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50. Multiply 'v/(4a— Sx) by 2a. Ms. \/l(>a^^ i-M^x),

51. Multiply ^ \/(^^=r^) by (c
—

d) v^.
- ac—fltt

Alls.—^ ^{a^x^ajc^).

52. Multiply \/{^ VW^ \/3)) by V(I7 \/(T^ v/3)).

* i — i _* Wl—-w
53. Divide a^ by a* : and a" by a'\ Ans. a^^ and a .

54. Divide ?^^ VCa^^ — «^*) by ^ V("-^).

J. (c
— d) \/^x.

55. Divide a^ -^ ad — b -^ d \/T by a— y/dT

Ans. a + \/b — d*

56. What is the cube of v^Il .^ns. ^/sT
8 3

57. What is the square 3 v/^cil Ans. 9c \/b*V.

58. What is the fourth power of
|^ \f-^

?

.^ws.

464(c2—26c+62)
59. What is the square of 3 + ^5* ? -^ns. 14 + 6 v^T

j[ _
60. What is the square root of a^ ? Ans. a^ ;

or y/as.
1 3

61. What is the cube root of afe^ ? Jins. ahU^ ; or \/abb.

62. What is the cube root of \/{a^
—

a:^) ? Ans. \/{a^
— x^).

63. What is the cube root of a^ — \^{ax
— x^) ?

3

Ans.
^(^ax

— \/(ax '—x*)),

64. What multiplier will render a + ys" rational ?

Ans. a— v^sT

65. What multiplier will render ^/a— v'6~ rational ?

66. What multiplier will render the denominator of the frac-

tion —:=^-5—— rational ? Ans. wr^ v/sT
V7 + V3

67. Resolve \a^ -f x^ into an infinite series.

x^ x^
.

a:6 5Jf^ j.^
Jin., a +_-_+_- .^^^,

&c.
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68. Resolve Vl + 1 into an infinite series.

^„..l+^_i+_l__L^,&c.

69. Resolve \a^ — x^ into an infinite series.

Ans. a— ^
—-r —-, &c.

a

70. Resolve \ 1 — x^ into an infinite series.

^n*.l-- -- -_,&c.

71. Resolve V***
— ^* i"*^ ^" infinite series.

- j;2 X* x^ 5x8

72. Resolve • into an infinite series.

73. Resolve (a^
— ^*)^ into an infinite series.

\ ,, x^ 1x^ 6ar6
^ns. aT X (1 -^-^

- —
,
-

j^.
- &c.

74. Resolve ["^
"^ ^'

into an infinite series.
a« — J?*

^2 ir»4 <y«6

3

75. Resolve f

^^^ + -^^
into an infinite series.

V(a2 J^x^Y
1 , 2^:2 5j:* 40x«

Summation of Arithmetical Progressions.

SECTION III. CHAPTER 4.

76. Required the sura of an increasing arithmetical pro-

gression, having 3 for its first term, 2 for the common difference,

and the numher of terms 20. diis. 440.

77. Required the sum of a decreasing arithmetical progres-

sion, having 10 for its first term, -|
for the common difference,

and the number of terms 21. Jlns. 140.
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78. Required the number of all the strokes of a clock in

twelve hoursy that is, a complete revolution of the index.

Ans, 78.

79. The clocks of Italy go on to 24 hours 5 how many strokes

do they strike in a complete revolution of the index ? Jins, 300.

80. One hundred stones being placed on the ground, in a

straight line, at the distance of a yard from each other, how far

will a person travel who shall bring them one by one to a

basket, whicJi is placed one yard from the first stone ?

Jins, 5 miles and 1300 yards.

Summation of Geometrical Progressions,

SECTION III. CIIAPTEB 10.

81. A SERVANT agreed with a master to serve him eleven

years without any other reward for his service than the pro-

duce of one wheat corn for the first year ; and that product to

be sown the second year, and so on from year to year till the

end of the time, allowing the increase to be only in a tenfold

proportion. What was the sum of the whole produce ?

Jns, 111111111110 wheat corns.

N. B. It is further required, to reduce this number of corns

to the pro])er measures of capacity, and then by supposing an

average price of wheat to compute the value of the corns in

money.
82. A servant agreed with a gentleman to serve him twelve

months, provided he would give him a farthing for his first

month's sei^ice, a penny for the second, and 4(1, for the third,

&c. What did his wages amount to ? ,ins. 5825/. 8s. 5|rf.

83. Sessa, an Indiaiif having invented the game of chess,

shewed it to his prince, who was so delighted with it, that he

promised him any reward he should ask ; upon wliich Sessa

requested that he might be allowed one grain of wheat for the

first square on the chess board, two for the second, and so on,

doubling continually, to 64, the whole number of squares ; now

supposing a pint to contain 7680 of those grains, and one quarter

to be worth ll. 7s, 6d, it is required to compute the value of the

whole sura of grains. Jns. /.64481488296.
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Simple EqvMtioiis.

SECTION IV. CHAPTER 2.

84. If 0? — 4 + 6 = 8, then will x = 6.

85. If 4a? — 8 = Sx + 20, then will a> = 28.

86. l{ ax = ah — a, then will x =:h — 1.

87. If 2^ + 4 = 16, then will x = 6.

88. If ax + 26a= 3c», then will x = — 25.
«

89. If
|-
= 5 + 3, then wil a: = 16.

90. If ^ — 2 = 6 +4^ then will 2x— 6 = 18.
o

91. If a— — = c, then will x = .
:v a—c

92. If 5x — 15 = 2x + 6, then will x = 7.

93. If 40— 6X— 16 = 120 — Ux, then will X = 12.

94. If I
—
^ +^ = 10, then willoJ = 24.

95. If "^^ + - = 20 —.^iril^^ then will x = 23i.2^3 2 *

96. If aJI x + 5 = 7, then will x = 6.
o

97. If a: + Ja^ + x^ = ^""^

, then will x = a V--

98. If 3aa? + -I
— 3 = 6a?— a, then will x = ^^^"^

2 6a—:^6

99. If x/'n+lc, = 2 + v^ then will x = 4.

2ffo ., .„ 1
100. If

1/ + \/«^ + y^ = ^'^
^
, then will y = —a V3.

101. If
2(|1 + ?dL^ = 16 - .Y±3 ^^^^ ^.^j ^ ^ ^3^

102. If vT" -f- Va + oj = -^ , then will a: = — .

103. If \aa -\- XX z=. ^b-^ + a*, then will x = ^ ^^2
.

104. If 1/ = \/tt^ + \/u2 + x^ — a, then will a? = ^ — a.^ ^
. 4«

27
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105. If = -, then will x = 12.

106. If—, =— . then will x = S.

107 If —^ =-^ , then will ^ = 6.
2JC+S 4ar—a

108. If = then will x = 6.
o 4

109. If 615a;— 7x^ = 48a:, then will a? = 9.

SECTION IV. CHAPTER 3,

110. To find a number, to which if there be added a half, a

third, and a fourth of itself, the sum will be 50. ^m, 24.

111. A person being asked what his age was, replied that
1 of his age multiplied by -^\ of his age gives a product equal to

his age. What was his age ? Ms, 16.

112. The sum of 660/. was raised for a particular purpose by
four persons. A, B, C and D ; B advanced twice as murh as A ;

C as much as A and B togetlier ; and D as much as B and C.

What did each contribute ? Ans. 60/, 120/, ISO/, and 300/.

113. To find that number whose ^ part exceeds its l part

by 12. *ens, 144.

1 14. What sum of money is that whose
-| part,

i
part, and ^

part added togetlier, amounts to 94 pounds ? Jns, 120/.

115. In a mixture of copper, tin, and lead, one half of the

wliole — 16/6, was copper ; 4 of the whole — 12/6. tin ; and 1

of the wh de + 4/6. lead : what quantity of each was tfieie in the

composition ? Ans. 128/6. of copper, 84/6. of tin, and 76/6. of lead.

116. What number is that whose | part exceeds its | by 72 ?

Ms, 540.

117. To find two numbers in the proportion of 2 to 1, so that

if 4 be added to each, the two sums shall be in the proportion of

3 to 2. Ms. 4 and 8.

1 18. There are two numbers such that ^ of the greater add^
to i of the less is 13, and if i the less be taken from ^ of the

greater,
the remainder is nothing ; what are the numbers ?

Ms. 18 and 12.

119. In the composition of a certain quantity of gunpowder |
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of the whole phis 10 was nitre ; \ of the whole minus 4| was

sulphur, and the cfuircoal was | of the nitre — 2. How many

pounds of gunpowder were there ? *^ns. 69.

120. A person has a lease for 99 years ; and bcini^ asked

how much of it was already expired, answered, that two thirds

of the time past was equal to four fifths of the time to come :

required the time past. •Ans. 54 years.

121. It is required to divide the number 48 into two sut h

parts, that the one paii; may be three times as much above 20,

as the other wants of 20. Jins. SZ and 16.

1..2. A person rents 25 acres of land at 7 pounds 12 shillings

per annum ; this land consisting of tw o sorts, lie rents the better

sort at 8 shillings per acre, and the worse at 5 : required the

number of acres of tlie better sort. Ans, 9.

123. A certain cistern which would be filled in 12 minutes

by two pipes running into it, would be filled in 20 minutes by

one alone. Required, in what time it would be filled by the

other alone. Jins. 30 minutes.

124. Required two numbers, whose sum may be s, and their

proportion as a to ft. dns. ——— and

125. A privateer, running at the rate of 10 miles an hour,

discovers a ship 18 miles off making way at the rate of 8 miles

an hour ; it is demanded how many miles the ship can run be-

fore she will be overtaken ? Jns, 72.

126. A gentleman distributing money among some poor

people, found he wanted 1 Os. to be able to give 5s. to each ;

therefore he gives 45. only, and finds that he has 5s. left :

required the number of shillings and of poor people.

J)is, 15 poor people, and 65 shillings.

127. There are two numbers whose sura is the 6tli part of

their product, and the greater is to the less as 3 to 2. Required
those numbers. Jns. 15 and 10.

JV*. B. This question may be solved likewise by means of one

unknown letter.

128. To find three numbers, so that the first, with half the

other two, the second with one third of the other two, and the

third with one fourth of the other two, may be equal to 34.

Ms. 26, 22, and 10.
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129. To find a number consisting of three places, whose

digits are in ai'ithinetical progression ; if this number be divided

by tlie sum of its digits, the quotients will be 48 ; and if from
the number be subtracted 198, the digits will be inverted.

Arts. 432.

130. To find three numbers, such that | the first, ^ of the se-

cond, and 1 of the third, shall be equal to 62 ; | of the first, | of

the second, and | of the third, equal to 47 ; and \ of the first,

I of the second, and ^ of the third, equal to 38. Jins, 24, 60, 120,

131. To find three numbers such that the first with i of the

sum of the second and third shall be 120, the second with \ of

the difference of the third and first shall be 70, and | of the sum
of the three numbers shall be 95. Jlns, 50, 63, 75,

132. What is that fraction which will become equal to
-I,

if

an unit be added to the numerator ; but on the contrary, if an

unit be added to the denominator, it will be equal to i ?
Jlns,-^-^,

133. The dimensions of a certain rectangular floor are such,

that if it had been 2 feet broader, and 3 feet longer, it would

have been 64 square feet larger ; but if it had been 3 feet broader

and 2 feet longer, it would then have been 68 squai'e feet larger :

required the length and breadth of the floor.

Ans, Length 14 feet, and breadth 10 feet.

134. A person found that upon beginning the study of his

profession \ of his life hitherto had passed before he commenced

his education, | under a private teacher, and the same time at a

public school, and four years at the university. What was his

? Ans, 21 years.

135. To find a number such that whether it be divided into

two or three equal parts the continued product of the parts shall

be equal to the same quantity. Ms, 6|.

136. There is a certain number, consisting of two digits.

The sum of these digits is 5, and if 9 be added to the number

itself the digits will be invei-ted. What is the number ? Ms, 23.

137. What number is that to which if I add 20 and from f

this ,sum I subtract 12, the remainder shall be 10 ? Ms, 13*
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Quadratic Equations,

SECTION IV. CflAPTER 5.

138. To find that number to which 20 being added, and from

which 10 being subtracted, the square of the sum, added to

twice the square of the remainder, shall be 17475. Jins. 75.

139. What two numbers are those, which are to one another

in the ratio of 3 to 5, and whose squares, added togetlier, make
1666 ? Jltis, 21 and 35.

140. The sum 2a, and the sum of the squares 2b, of two num-

bers being given ; to find the numbers.

^ns. a — \/b — fl* and a + \/b — a*.

141. To divide the number 100 into two such parts, that the

sum of their square roots may be 14. •4?ts. 64 and 36.

142. To find three such numbers, tliat the sum of the fii*st

and second multiplied into the third, may be equal to 63 ; and

the sum of the second and third, multiplied into the first equal
to 28 ; also, that the sum of the first and third, multiplied into

the second, may be equal to 55. Jins, 2, 5, 9.

143. What two numbers are those, whose sum is to the

greater as 11 to 7 , the difference of their squares being 132 ?

»te. 14 and 8.



NOTES.

There are many notes subjoined to the Algebra of Euler by different editors^ but as they are mostly
intended for adepu in the science, only a few of them are retained in this introduction.

NOTE 1. p. 2.

Several matheinatical writers make a distinction between Analy-
sis and Mgebra, By the term Analysis, they understand the method

of finding those general rules which assist the understanding in all

mathematical investigations ; and by Mgebra, the instrument which,

this method employs for accomplishing that end.

2. p. 8.

Multiplication is the taking, or repeating of one given number as

many times, as the number by which it is to be multiplied contains

units. Thus, 9x3 means that 9 is to be taken 3 times, or that the

measure of multiplication is 3 ; again 9 x | means that 9 is to be

taken half a time, or that tlie measure of multiplication is | In mul-

tiplication there are two factors, which are sometimes called the

multiplicand and the multiplier. These, it is evident, may recipro-

cally change places, and the product will be still the same : for 9 x 3

= 3x9, and 9 x I — ^ X 9. Hence it appears, that numbers

may be diminished by multiplication, as well as increased, in any

given ratio, for 9 x J = 4|, 9 X |^
= 1, 9 X -^ = fJo> ^c. The

same will be found true with respect to algebraic quantities; a x b

= a6, — 9 X 3 =— 27, that is, 9 negative integers multiplied by 3,

or taken 3 times, are equal to — 27, because the measure of multi-

plication is 3. In the same manner, by inverting the factors, 3 posi-

tive integers multiplied by
—

9, or taken 9 times negatively, must

give the same result. Therefore a positive quantity taken negatively,

or a negative quantity taken positively, gives a negative product.

From these considerations, it will not be difficult to shew, that the

product of two negative quantities must be positive. First, algebraic

quantities may be considered as a series of numbers increasing in any

ratio, on each side of nothing, to infinity. Let us assume a small

part of such a series in which the ratio is unity, and let us multiply

every term of it by
— 2.
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5, 4, 3, 2, I, O,— !,— 2, — 3, — 4,-^5,— 2, ~ 2, — 2, — 2, — 2,— 2,
— 2, — 2, — 2,

—
2, — 2,

«- 10, -^ 3, — 6, — 4,
—

2, 0, + 2, -p 4, + 6, + 8, + 10,

Here, the series is inverted, and the ratio doubled. Further, in order

to illustrate the subject, we may consider the ratio of a series effrac-

tions between 1 and 0, as indefinitely small, till the last term being

multiplied by — 2, the product would be equal to 0, If, after this,

the multiplier having passed the middle term 0, be multiplied into

any nej^ative term, however small, between and — 1, on the other

side of the series, the product, it is evident, must be positive, other-

wise the series could not go on. Hence it appears, that the taking of

a negative quantity negatively destroys the very property of negation,

and is the conversion of negative into positive numbers. So that if

-f X — = —
5
it necessarily follows that — X — gives a contrary

product, that is, +.

3. p. 10.

All the prime numbers from 1 to 101000 are to be found in a Ger-

man work, entitled Thoughts on Algebra,

4. p. 11.

There is a table at the end of a German book of arithmetic, pub-

lished at Leipsic by Poetius in 1728, in which all the numbers from

1 to 10000 are represented in this manner by their simple factors.

5. p. 16.

There are some numbers with respect to which it is easy to per-

ceive whether they are divisors of a given number or not,

A given number is divisible by 2, if the last digit is even ; it is

divisible by 4, if the two last digits are divisible by 4 ; it is divisible

by 8, if the three last digits are divisible by 8; and, in general, it

is divisible by 2", if the n last digits are divisible by £".

A number is divisible by 3, if the sum of the digits is divisible by
3 ; it may be divided by 6, if, beside this, the last digit is even 5 it is

divisible by 9, if the sum of the digits may be divided by 9.

Every number, that has the last digit or 5, is divisible by 5,

A number is divisible by 1 1, when the sum of the first, third, fifth,

&c. digits is equal to the sum of the second, fourth, sixth, &c. digits.

It would be easy to explain the reason of these rules, and to extend

them to the products of the divisors which we have just now con-

sidered. Rules might be devised likewise for some other numbers,
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but the-application of them would in general be longer than an actual

trial of the division.

For example, I say, that the number 63704689213 is divisible by
7, because I find that the sum of the digits of the number 64004245433

is divisible by 7 ; and this secoiid number is formed, according to a

Tery simple rule, from the remainders found after dividing by 7.

Thus 53704689213 = 50000000000 + 3000000000 + 7u0000000

-f + 4000000 -f 600000 + 80000 -f 9000 + 200 + 10 -f S|

7) 50000000000

7142857142 6

7) 3000000000

428571428..... 4

7) 700000000

7) 00000000

7) 4000000

571428 4

7) 600000

85714 2

7) 80000

• 11428 4

7) 9000

1285 5

7)200

28 4

7) 10

1 3

7)3 3

Where the remainders form the number 64004245433, which is the

one given above.

If a, &, c, d, e, &c. be the digits composing any number, the num-

ber itself may be expressed universally thus; a + 106 + lO^c +
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lO^d 4- 10*e, &c, to 10.^ z; where it is easy to perceive that, if each

of the terms a, 106, 10* c, &c. be divisible by w, the number itself a +

106 + 10* c, &c. will also be divisible by n. And, if —, ,
——

>

&c. leave the remainders, p, q^ r, &c. it is obvious, that a -f- 106 -f

10* c, &c. will be divisible by w, when
/? + </ + r, is divisible by »;

which renders the principle of the rule sufficiently clear.

6. p. 17.

A similar table for all the divisors of the natural numbers, from I

to 10000, was published at Leyden in 1767.

r. p. 21.

Though any definite part of one infinite series may be the half,

the third, &c. of a definite part of another, yet stiU that pait bear*

no proportion to the whole, and the series can only be said, in that

case, to go on to infinity in a different ratio. But further, J. or any
other numerator, having for its denominator, is, when expanded,

precisely the same as J.

2 2...
Thus, — = ,, by division, becomes

2 — 2)2 (I 4- 1 4- 1, &c. ad infinitum

2 — 2

2

2—2

2, &c.

27
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8. p. 26.

The rule for reducing fractions to a common denominator, may be

more concisely expressed thus. Multiply the numerator of each

fraction into every denominator except its own, for a new numerator,
and all the denominators to^^ether for a common denominator. When
this operation has been performed, it will appear that the numerator

and denominator of each fraction have been multiplied by the same

quantity, and consequently retain the same value.

9. p. SI.

Complete tables of the squares of natural numbers, from 1 to

100000 have been constructed, i.i which are also to be found the pro-

ducts of any two numbers less than 100000.



ERRATA.

Page 20, tenth line from the top, dele which.

. 39, foui-th line from the bottom for y/— 4 read \/1I^.

• 40, for nor lead or,

. 169, fifth line and eighth line from the bottom for sou read sous.

. 192, seventeenth line from the top for seels read sells.












