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PREFACE
THE study of differential equations began with Newton and Leibnitz,

and most of the elementary methods of solution were discovered in

the course of the eighteenth century. Where a problem could not be

solved in finite terms, expansions in power-series were tentatively em-

ployed by Newton. But the theory was not placed on a satisfactory

logical basis until about a century ago, when Cauchy distinguished

between analytic and npn-analytic systems, and constructed rigorous

existence-theorems appropriate to each type.

Ordinary linear equations, with"which this book deals, have always

attracted particular attention by their comparative tractability and

their numerous practical applications. Extensive monographs have

been devoted to many separate branches of the theory, such as

spherical and cylindrical harmonics, expansions in series of ortho-

gonal functions, oscillation and comparison theorems, the Heaviside

calculus, polyhedral, elliptic modular and automorphic functions.

While some branches arose out of physical problems, others were

created by the progress of the theory of functions and of the theory
of groups. Many important ideas were first worked out in connexion

with the hypergeometric equation by Euler, Gauss, Kummer, Rie-

mann, or Schwarz, and were then generalized by Fuchs, Klein,

Poincare, and many other writers of the highest distinction.

The present Introduction is based on lectures to senior under-

graduates at Oxford, and is designed for students who have already
taken an elementary course of differential equations, but have not

yet specialized in one of the more advanced branches. It is not a

compendium of this vast subject (to which no single author could

do justice), but a selection of investigations of moderate length and

difficulty, illustrating those aspects of it which are most familiar

to myself. The first five chapters deal with properties common to

wide classes of equations, and the last five are devoted to a more

detailed examination of the hypergeometric equation, Laplace's
linear equation, and the equations of Lame and Mathieu. I have not

discussed systematically the equations of Legendre and Bessel, as

there are so many admirable accounts of them in English suitable

for students of every grade. On the other hand, I have thought it

well to devote a chapter to equations with constant coefficients. I find
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that candidates in university examinations have great difficulty in

constructing the solution of such equations which takes assigned
initial values, even when they can write down the complete primitive.

A very slight sketch of Heaviside's method should enable them to

make short work of this problem, which is of great practical impor-
tance. Again, the theory of simultaneous equations with constant

coefficients gives an excellent opportunity of introducing in an easy
context the notion of invariant factors, which is of fundamental

importance in the Fuchsian theory.

The short bibliography and the footnotes serve both to acknow-

ledge my debt to the authorities and to guide the more ambitious

reader. Besides some ofthe great classical memoirs and the systematic
treatises of Forsyth, Heffter, and Schlesinger, the books from which I

have learnt most are Klein's lectures on the icosahedroii and on

the hypergeometric function, the masterly summaries of the general

theory in the works of Goursat, Jordan, and Picard, and the studies

of particular equations in Whittaker and Watson's Modern Analysis.
Those ^vho wish to learn more about existence-theorems should con-

sult the recent work ofKamke.
While I am solely responsible for the shortcomings of this book, I

gladly avail myself of this opportunity of expressing my profound
indebtedness to my former tutor, Mr. C. H. Thompson, whose lectures

at Queen's College first aroused my interest in differential equations,

and later to Professor A. E. H. Love, who inspired and directed my
first efforts at research. My interest in everything connected with

conformal representation and Schwarz's equation was greatly stimu-

lated by discussions with Mr. J. Hodgkinson. I have received

valuable references and information on particular points from

Mr. W. L. Ferrar, Dr. F. B. Pidduck, Professor G. Polya, Professor

G. N. Watson, and Professor E. T. Whittaker, not to mention many
others who have courteously sent me offprints of their papers. My
pupil, Mr. G. D. N, Worswick, Scholar of New College, has been of

great assistance to me in reading the proofs. Last but not least,

I desire to thank the Delegates of the Clarendon Press for accepting
the book, and the Staff for their unfailing skill and courtesy in

printing it. E Q Q p
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EXISTENCE THEOREMS. LINEARLY INDEPENDENT
SOLUTIONS

1. The Method of Successive Approximations

Standard Forms. AN ordinary differential equation is said to be in

the canonical form when the highest derivative of the unknown
function is given by an explicit formula

j^)= F(x;y,y\y(,...,y(-V). (1)

This is evidently equivalent to a system of n simultaneous equations
of the first order

('= 1.2 ..... n-i),

Dyn
= F(x; yi,yz,...,yn ) (D = d/dx).

More generally, it may be shown that every well-determined system
of simultaneous differential equations is equivalent to a normal

canonical system

Dyt
= Fifoy^,...^) (*'

- l,2,...,w). (3)

Consider, for example, three equations O^ = (i 1,2,3), in

three unknowns (u, v, w) and their derivatives up to (u^\ v(

&, uW). In

a domain where the Jacobian

0(0^,*,)
(

.-^ ' w
the equations can be solved for the three highest derivatives and

written in the canonical form

and, on introducing auxiliary variables as in (1), we obtain a normal

canonical system of order (ot+p+y). If, however, J = 0, the three

relations connecting (u
(
*\ v(

P\ w/^) are not algebraically independent,

and can be replaced by two equations involving the highest deriva-

tives, and one where they do not appear, say Q = 0. We then have

three possible cases.

(i) IfD = 0, the system is indeterminate, the three given equations

being algebraically equivalent to not more than two.

(ii) If Q does not vanish identically, but does not involve any of
4064 B



2 EXISTENCE THEOREMS Chap. I, 1

the unknowns or their derivatives, the system is incompatible, or

else the problem is incorrectly formulated.

(iii) If D involves the unknowns and their derivatives of order

not higher than (u
(OL
~K

\ v$~"\ trf?-**), suppose u(OL
~K^ is actually present.

Differentiating K times the relation O = 0, we may eliminate all

derivatives of u above u^"^ from the system, without introducing

any new derivatives above v& or w&\ The apparent order of the

system will thus be reduced by K, and the process may be repeated

if necessary until a well-determined system has been obtained.

Real Linear Systems. The most general normal canonical system
which is linear in the unknowns may be written in the standard form

(8n ) Dy, = f ,,(*)%+/*(*) ('
= ]

>
2""> )

j=i

the coefficients (a^) and (/7 ) being any functions of a:.

We shall assume in the first instance that the independent variable

x is essentially real; the coefficients and the unknowns may be com-

plex; but, if they are, we ca"h separate real and imaginary parts and

obtairi a purely real system of order 2n-, accordingly we may assume

them to be real also, without essential loss ofgenerality. The following

fundamental theorem is a particular case of Cauchy's general exis-

tence theorem for non-linear systems.

THEOREM. If the coefficients of the real linear system (Sn ) are con-

tinuous in the finite interval (x
f ^ x ^C x"), the system is identically

satisfied byfunctions with continuous derivatives

y< = &(*) (=l,2,...,w),

which are uniquely determined by the arbitrary initial values

&() = i?i (*
= l,2,...,w)

at a point x = f of the interval.

The simplest proof of Cauchy's existence theorem for the most

general system is by Picard's method of successive approximations,
which is particularly suitable for linear systems. It is closely con-

nected with methods used by Liouville (1837) and Caque (1864), and

with the 'calculus of integral matrices' developed by Peano, Baker,

and Schlesinger.f

We take as a first approximation

$(*) = ,, (i=l,2,...,n), (6)

f L. Schlesinger, Vorlesungen uber lineare Differentialgleichungen (1908).



Chap. I, 1 LINEARLY INDEPENDENT SOLUTIONS

and construct further sets of functions according to the rule

We shall show that the required solution is

h(x) = lira $() (
=

1, 2,...,n).
k-K*>

To examine these limits, let us write them as infinite series

where

(8)

(9)

(10)

Since (77^) are constants, and since the coefficients of the system

(Sn ) are continuous, we can choose positive numbers A and M such

that

(ii)

in the interval (x
f ^ x ^ a;"). Now {(/^(a;)} are defined successively

as integrals of continuous functions, and are therefore themselves

continuous; and (10) and (11) give

\UV>(x)\ ^ MnA \x\ (x' ^ x ^ x").

Suppose that, for a certain positive integer k, we have

\U((x)\ ^ MnkAk\x-\ k
/kl

Then the recurrence formulae (10) give the inequalities

(12)

(13)

3-1

JU

J
A.MnkAk

\t-\
k
dt/k\

(14)

and since (13) is true for k = 1, it is true in general, by induction.

We now have uniformly in the entire interval

| U<f>(x) | < MnkAk
(x"-x')

k
/k !

; (15)

and so the terms of the series (9) are dominated by those of a series

of positive constantsM exip[nA(x"~ x')], which is convergent. Hence
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the series {^(x)} converge uniformly in the interval and their sums

are continuous. Making k -> oo in (7), we have

= -m+ J [ .

By putting x
,
we verify the initial values <^-()

=
77^; and,

because the integrands (16) are continuous, we may differentiate

and so verify that yi
= ^(x) is a solution of the system (Sn ).

Uniqueness. If there were two sets of functions satisfying all

the conditions, their differences <&i(x) ^ &(#)<*(#) (* 1? 2,...,n)

would satisfy the relations

.1 J

Since {^(a?)} are continuous, we can find an upper bound

|O,(aO|< (s'<z<aO. (18)

By the same argument as in (14) we can then prove by induction

that
\Q>i(x)\ < BnkAk\x-\k

lk\ < BnkAk
(x"-x')

k
/kl (19)

for all positive integers k. By making k -> oo we have |O^(^)| < e,

uniformly in the interval, where is an arbitrarily small constant.

Hence ^(x) = 0, or the two solutions are identical.

2. Solutions in Power-Series

Analytic Linear Systems. The system (Sn ) is said to be analytic

if the coefficients (a^) and (ft )
are analytic functions of a real or

complex variable x, in the sense of Cauchy. A point x = g where

every coefficient is holomorphic is called an ordinary point; all other

points are called singular. At an ordinary point the coefficients can

be expanded as Taylor series:

which are convergent when \x \
< d($), where d() is the shortest

distance between x = and the nearest singular point.

The following existence theorem consists of a particular case of

Cauchy's existence theorem for analytic non-linear systems, together
with a rider by Fuchs specifying the radius of convergence of the

solution, when the system is linear.
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THEOREM. At an ordinary point x = the analytic linear system

(Sn ) is identically satisfied by n power-series

yf
= &(*) = i<f>(*-)* (i

=
l,2,...,n), (2)

fc=

which are uniquely determined by the initial values <f>i()
=

-rj^
These

series are convergent when \x\ < d(), where d() is the shortest

distance between x and the nearest singular point.

To obtain a formal solution we substitute the power-series (2) in

the initial conditions and in the system ($J, and equate coefficients

of like powers of (x f) on both sides. The initial conditions give^
cj> = % (i

= l,2,...,n), (3)

and then we have

(*+l)cJ*+ = I I atf->cj+/[ (i
=

1, 2,...,n; k = 0, 1, 2,...). (4)
^ = 1 s=o

It is evident, by induction with respect to k, that every coefficient

is uniquely determined.

Let x be any point where \x f |

r < d() = d, and let

72 = i(r -\-d) < c?. The series (1) for the coefficients are absolutely

convergent when \x\ ^ E\ so that we can choose a positive

number M such that

I#W \ff>\R
k <M. (5)

The relations (4) then yield the inequalities

(6)

If we put c(k) = 2 Icj^l,
we obtain from (6) by adding

(Jfc+ \}&+v ^ nMR~k
\ 2 J8^>+ ll (7)
Ls== o J

We shall clearly obtain a dominant power-series

gcF(x-tV ^c<\x-t)* <gCP>(x-W (8)

if we put (7<> = c<>, and then

(4+ 1)C<
A+1> = nJfJB-*f 2 jR8C^+ ll. (9)

L-o *

But this gives

(10)
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r rand hence lim ^ = hm y^-ry^r
= '

fc->oo C(lc)
&->oo|_ (tf-f-l)./t J jft;

Hence the dominant series 2 C(k\xg)k
and, a fortiori, the r& series

(2) are absolutely convergent if \x\ = r < R < d. The series

2 <7(A:)
(a; f)* is determined by the differential equation

DY = nJfi--+l), (12)

and the initial value Y = c(0)
, when x . By separation of the

variables we have the solution

A~l~w3fJB

and this explains the binomial recurrence formula (10).

Tins investigation shows that the solutions of a linear analytic

system are holomorphic at all finite points of the plane where the

coefficients are holomorphic. Accordingly the singularities of the

solutions are known a priori by inspection of the coefficients. This

fundamental property was pointed out by Fuchs.

/

3. Linearly Independent Solutions

Combination of Solutions. If yi
=

<f>i(x)
an(l Vi

=
4>t(x)

are any
two solutions of the linear system ($), then yi <f>i(x) </>*(%) is a

solution of the corresponding homogeneous system

(SJ) Dyi
=

We therefore require only one particular integral of (Sn ), together

with the complete primitive of ($*).

If we have m solutions of the homogeneous system ($*)

yi
= fajW (*

== l,2,...,w; j/
- l,2,...,m), (1)

another solution is

m
<
= 2>^(*) (=l,2,...,n), (2)

J = l

where
(c^)

are any constants. The solutions (1) are said to be linearly

connected if constants (not all zero) exist such that

m
.I<V<M*) = (=1,2,...,). (3)

THEOREM. The necessary and sufficient condition that m solutions

(1) of the homogeneous system (S*) should be linearly connected is that

the rank of the matrix (^(x)) should be less than m.
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The condition is necessary; for, if the relations (3) hold, every

w-rowed determinant of the matrix vanishes. Suppose now that the

condition is satisfied and that the rank is k (k < w, k ^ n). We can

number the variables and solutions so that the determinant

A*H= |<M*)I^O (*J=l,2,...,i). (4)

Corresponding to any solution y i
=

<f>is(x) of the set, we can find a

unique set of multipliers (Uj8) such that

k

<t>is(
x

) =2, u
js<l>ij(

x ) (*'
= l,2,...,n; s = l,2,...,m), (5)

j-i

these relations being compatible, because every determinant of

(fc-f 1) rows of the matrix vanishes. On introducing this solution in

($*), the terms multiplied by (Uj8 ) cancel, leaving

-0
(
= 1, 2,..., n); (6)

and, because A^ ^ 0, we must have

DUjS
= 0, Uj8

= constant, (7)

so that the condition is sufficient.

At an ordinary point x we can construct n solutions, taking

arbitrary initial values such that the determinant A() l^() I 7^ 0,

and these solutions are necessarily linearly independent. Since k ^ n,

every other solution can be written in the form

Vi
=
J>^w (*) (i

- 1,2,. ..,n), (8)

where
(GJ)

are constants. Any such system of n linearly independent
solutions is called a fundamental system.

Jacobi's Determinant. The determinant A = |^#(#)| f any n
solutions of the homogeneous system ($*) can be evaluated by means

of an auxiliary differential equation. In an interval or domain where

{a>ij(x)}
are continuous we have

aA
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If we introduce the Kronecker deltas

8 - 1, 80 - (i ^j\ (10)

and use the property that a determinant with two identical rows

vanishes, we may write

(11)

This is integrated by separating the variables and gives Jacobi's

result x

A(z) - A()exp[ V f au (t) dt\ (12)

L<-i/ J

Hence, either A (a;) = 0, and the n solutions are linearly connected;

or else A(#) ^ in the entire interval of continuity, the exponential

factor being neither zero nor infinite. Thus the necessary and

sufficient condition for a fundamental system is that A(f ) 7^ at

any on^ point of the interval.

Method of Variation of Parameters. If a fundamental system
of solutions of the homogeneous system ($*) is known, the non-

homogeneous system (Sn ) is soluble by quadratures. Since

A =
\<f>ij(%)\ 7^ 0, a set of multipliers (u^)

is uniquely determined

by the relations

^=.I%^W (<=1,2,...,). (13)

On substituting these expressions in (Sn ) and cancelling terms multi-

plied by (Uj) 9 there remain the relations

/<(*) (i
=

l,2,...,n), (14)
j 1

which give uniquely

For the principal solution yt
= ^(a;;^), determined by the condi-

tions yi
= at x =

,
we must have also u^

= at x |; and

(15) accordingly gives
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and (13) now becomes, with a change of suffixes,

yk = 0,(x; fl = 7 V f Jfi ^#<*)/<
,4liy

A() 8ft,

We can write this in the form

(k= l,2,...,n), (18)

where #w(*;0 = T T,, *) (,* = M,-,*)- (19)

If t is regarded as a constant, yk = (j>ki(x\t) is a solution of the

homogeneous system ($*), taking at a; = t the values
<f)ki(t\t)

= 3ki .

Since the determinant of these values is unity, the solutions

Mb = tfrkifa'ft) (i, k = 1,2,...,%) are a fundamental system, which

can be constructed directly from the initial conditions at x = t and

then introduced in (18).

The method can also be used to reduce by m the order of the

homogeneous system (8%), when m linearly independent solutions

are known. Let the variables be numbered so that the determinant

Am ==
\</>ij(x)\ ^ (i,j

= 1, 2,...,ra), and let us put

These relations give (Uj) and (1^) uniquely. Substitutuig, and can-

celling the terms in
(uj)>

we have

aik(x)Yk (t=l,2,...,m),*-+!
n

= 2 a.(a;)yfc (i
j A:=m4-l

The first set gives, since A/n 7^ 0,

1 PA
(22)

and when these values are substituted in the second set, we get
a homogeneous system of order (nm) of the type

Z>J
f
= i A ik(x)Yk (i

= m+ !,...,). (23)
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If this system can be solved, (uj)
can then be obtained from (22) by

quadratures.

4. Wronskian Determinants

Linearly Connected Functions. The functions
{<f>t(x)} are said to

be linearly connected if constants (ct )
not all zero exist such that

^Ci<l>i(x)
= 0. If there are n functions, which are differentiate

(nl) times, we have the relations

and on eliminating (ct )
we obtain the determinantal relation

= 0. (2)

The vanishing of this expression, which is called a Wronskian

determinant, is thus a necessary condition for the functions to be

linearly connected. The converse is true only with qualifications.

We suppose that W(<j>i, $&..., <f>n )
= 0, and that there is no sub-set

of (n 1) functions whose Wronskian vanishes identically. For, if

there were, we could reason on the sub-set. We can then prove the

following

THEOREM. // n functions {(/>i(x)}
are differentiate (nl) times,

and if W(<f>v <f>2,...,<l>n )
= 0, but TF^i^-^n-i) ^ in a certain

interval, then the functions are connected by a linear relation with

constant coefficients, which is valid in the entire interval.

We can determine uniquely multipliers (ut )
such that

^-tynfr) =*|V^-W*) (3
= 1, 2,..., n). (3)

By combining the jth relation with the derivative of the (j l)th,

we have n_ 1

o O'=i.2,...,-i); (4)

and because ^F(^i,^2.->^i*-i) ^ ^^ we mus^ have Du
t 0, and so

n-l

<l>n(
x

)
= 2 c^i(^) (

c
i
= constant). (5)

i= l

The relation can be extended to any interval where the derivatives

exist and where all the Wronskians of sub-sets of (nl) functions
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nowhere vanish simultaneously. The necessity for the condition

was indicated by Peano, and may be simply illustrated. Consider

two functions with continuous derivatives defined as follows:

Then ^(x) = 2<f>2(x) (x > 0), but ^(x) = %(/>2(x) (x < 0). The

theorem is inapplicable to any interval containing x 0, because

<^1(0)
= = <

2(0)> so that the subsidiary condition is not satisfied,

although W (<f>v </>2 )
EZ 0. If, however, the functions are analytic, and

if 2 c
i<t>i(

x
)
== in any finite interval, the relation holds everywhere,

by the principle of analytical continuation.

The General Linear Homogeneous Equation. If the n functions

(</>i(x)}
are differentiable n times, and if W^,^%,..., <f)n ) ^ in a

certain interval or domain, then the expression y = 2 c
i <l>i(

x )> where

(c^) are constants, must satisfy the relation

=
^ >

The form of this relation is unchanged if
{(/>i(x)}

are replaced by n

linearly independent combinations with constant coefficients

*<(*) = I cM*) ('
= l

> 2,...,n), (8)
j = l

where the determinant \c tj \ ^ 0. For, by the rule for multiplying

determinants, we have

and hence

,...,^n ,y)
( '

Conversely, consider any homogeneous equation

(E*) Dy+Pl(x)D-iy+...+pn(x)y = 0, (11)

and suppose that {<f>i(x)} are n known linearly independent solutions,

so that W((f)v (/>2f^t^n ) 7^ in a certain interval.

Eliminating {pr(x)} from (11) and the equations satisfied by

{&(*)}, we have
JFWl,^,...,^,y) = 0; (12)

and, since we assumed that T^(^i,^2>---^n) ^ ^> Wronski's theorem
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shows that the most general solution of (11) is of the form
n

y J Cifafe), where (ct ) are constants.

Every solution of (E%) is accordingly expressible in terms of any
set of n linearly independent solutions, which are called a funda-
mental system.

5. The General Linear Equation

The Complete Primitive. We shall now specialize some of the

preceding results for the particular system

%* = y*u (*'= 1,2,...,% 1),
]

} (1)

which is equivalent to the general linear equation

(En ) D"y+Pl(x)D-iy+...+pn(x)y - f(x).

If x is real and all the coefficients are continuous in the interval

(x
r ^ x < x"), there is a solution with n continuous derivatives,

which, is uniquely determined by the arbitrary initial values

D l

y T)
(V>

(i
= 0, 1,..., n 1) at any point x = g of the interval. If

x is real or complex and the coefficients are analytic, the solution is

analytic and has no singularities in the finite part of the plane,

except at singularities of the coefficients.

The difference of any two solutions of (En ), say y = (f>(x) <f>*(x),

satisfies the corresponding homogeneous equation

(E*) D"y+Pi(x)D
n -1

y+...+pn(x)y - o.

We therefore require only one particular integral of (En ), together

with a complementary function which is the complete primitive of

The Abel-Liouville Formula. The analogue of Jacobi's deter-

minant for the system (1) is the Wronskian W(^i,^z,.-->^) of anY
n solutions of the homogeneous equation (E*). By a double applica-

tion of the rule that determinants with two rows identical vanish,

we have

3W
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= -P^W. (2)

Separating the variables and integrating, we have

0)

a result due to Abel for n 2 and to Liouville in general. In a finite

domain where PI(X) is continuous, J^(<i,< 2 > ><) vanishes either

identically or not at all. The necessary and sufficient condition that

n solutions {&(%)} should form a fundamental system of solutions of

(E*) is that their Wronskian should not vanish at one point x =
,

chosen at random in the domain.

Method of Variation of Parameters. To solve the non-homogeneous

equation (E tl ), knowing a fundamental system of solutions of (E*),

we put w

W- l

y - I UtDI-ifaW (j
-

1, 2,..., w). (4)
t -i

These relations give unique values for (?^), since W
(</>!,

< 2v > <l>n) ^ 0-

By combining (4) and their derivatives we now find

= ^Du.D^^x) (j
=- 1,2,..., 7i-l), (5)

1-1

and Dy^utD^ t(x)+Du t D-^i (x)]. (6)

When the expressions (4) and (6) for the unknown and its deriva-

tives are substituted in (En ), terms multiplied by (uf ) cancel, leaving

From (5) and (7) we now get

If the principal solution at x = f , say ?/
= O(a;;|), is determined by

the conditions D^-^y = (j
=

1, 2,...,n) when # =
,
we find that
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Ui = (i
=

1, 2,...,tt) when x = f . Hence

If /is a constant, the expression

is that solution of the homogeneous equation ($*), which is deter-

mined by the initial values

Dl-iy - 0, when x = t (j
=

1, 2,...,n-l);
j (12)

Dn~l
y = 1, when # . I

With this definition of
</>(x; t) we obtain a formula of great impor-

tance for the principal solution, which is due to Cauchy, namely,

*(*;) =
jt(x;t)f(t)dt.

(13)

*

We can also apply the method of variation of parameters to reduce

a homogeneous equation (E%), when we know m independent solu-

tions (m < ri)] a simpler method will be given later, so that the

details will be left as an exercise. If TF^,^,...,^) ^ 0, we write

in the normal canonical system (1), where now /(a:) EZ- 0.

We have (n1) relations

m

2 DUfDl-VAz) = (j
=

1, 2,...,m-l),

and also the relation

(16)
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From (14), (16), and (E*) we find

n nm
2 Lu{D*-V1(x)+DYn+ 2 Pr(*)Yn+1-r = 0. (17)
i-1 r=l

On eliminating (Du^) between (15) and (17), we have a canonical

system of order (nm) in
(Yj),

which can be replaced by a single

homogeneous equation of order (nm) for Ym+1 ; while (14) gives

V - l"->n no\
*m+l W/JL JL

"

A \
' * '^ (<PV 92 > ,9m)

so that 1^+! (regarded as an expression in y) is the left-hand side of

the equation of order m admitting the given solutions.

EXAMPLES. I

1. Reduce to canonical systems the pairs of equations

[D 3y+D*z+y = 1, D*yD*zz =
0].

2. The system

Dy = t\(x, y, z), D z
y = JF

2(x, y, z, Dy, Dz)

is in general of the second order. Show by examples that it may be (i) indeter-

minate, (n) incompatible, or (hi) of order lower than the second.

3. Show by the method of successive approximations that the equation

Dy = a(x}y is satisfied by

y -

and that the equation Dy =
ct(x}y-\-f(x} is satisfied by

x x _

= f/(s)exp f a(t)dt Ids.

4. Solve from first principles the systems:

(i) Dy ~- xy; y = 1, when x = 0.

(li) Dy = ay/(l+x); y 1, when x ~ 0.

(iii) Dy = z, Dz = y; y A, z = B, when x 0.

(iv) Du ~ v, Dv = w, Dw = u; u = A, v = B, w = C, when a; 0.

5. If y{
~

c/>ij(x)
is a set of m solutions (m < n) of the homogeneous system

), and if constants
(c,)

riot all zero exist such that

for a particular value , then 2 Cj</>q(x)
^ 0.

.7
= 1

6. If (^w (a^)) is a matrix of n2
arbitrary differentiate functions, whose

determinant does not vanish identically, then there is a unique homogeneous

system (S%) admitting the n solutions yi
=

^^(x] (i,j l,2,...,n). If the

determinant vanishes identically, the system (S$) does not exist unless the



16 EXISTENCE THEOREMS Chap.I,Exs.

functions are connected by relations with constant coefficients

.2e,#(*)-0 (*= l>2,...,n).

If the rank of the matrix is k, any (k -hi) solutions must be connected by rela-

tions with constant coefficients. When these conditions are satisfied, the system

(S%) is indeterminate.

7. The homogeneous system ($*) cannot admit m linearly independent
re-

solutions yi
=

<y(#) and also a solution y^ 2j^v(aO, wnere (ui)
aro n t

3^1
constants.

8. If (y% )
is a solution of the homogeneous system (S%) and the dotormiiiant

n

\oLij(x)\ -7^ Q, then Y
}
s= 2 ay(^)2/ satisfy another homogeneous system of
t=i

?&

order n. The expression Y ^- 2 c^M^ with coefficients difTcrcntiable n times,
i-l

satisfies a linear homogeneous equation of order n or less.

9. SYSTEMS WITH CERTAIN KNOWN SOLUTIONS. If the homogeneous system

(S%) has (n 1) known solutions y^
=

<j>y(x),
which are linearly independent,

show that for any other solution

2/l 2/2' > #n

(f>n , ^21 , ..., ^ wl
i \an(t}dt\
i=ii J

Complete the solution of the system by quadratures, using the method of

variation of parameters.

10. The homogeneous equation (E%) has (nl) known independent solu-

tions. Show that any other solution satisfies the equation of order (nl)

--

Ccxp[

which is soluble by quadratures.

11. If
</>i(.r)

is a known solution of the homogeneous equation (J*) show
that the equation can be simplified by d'Alembert's substitution y ^>^x]u\
and that it is reduced to an equation of order (nl) by Fuchs's substitution

y = &() J * dx -

12. REMOVAL or A TERM. If the equation (E*) is transformed by writing

y wexp --
I pi(x) dx\, the equation satisfied by u has no term in Dn~ l u.

If in (J^*) we take a now independent variable z = ^(^), determined by the

relation n(n l)i/j"(x)-{-2p1(x)i/j'(x)
~ 0, the new equation satisfied by y has

no term in dn~i
y/dz

n~ 1
.

13. Every solution of the non-homogeneous equation (En ) satisfies the

homogeneous equation of order (n+1)

*y+...+p'n y]-

-f(x)[D
ny+p 1Dn-1

y+...+pn y'\
= 0.
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14. Solve xD2
y (2x-{-l)Dy-\-(x-{-l}y = 0, given that the quotient of two

particular integrals is x2
.

15. Solve (x*+x*)Dzy -\-xDy (x-\-l)*y = 0, given that the product of two

particular integrals is constant.

1 6. CAUCHY 's FORMULA FOB A REPEATED INTEGRAL. Show that the principal

solution ofDny =f(x), determined by the conditionsDl~ l
y = (i 1, 2,..., n)

when x , is x

Hence obtain Cauchy's form of the remainder in Taylor's theorem

17. If FQ(x) -~f(x), Fn (x)
-

J F^t) dt, prove by integration by parts that

o

18. Give another proof of Cauchy's formula by moans of the relation

J dt, J
cfta ...

| f(tn )
dtn

-=
|
d*n J

^n_! ...

ff(tn
) d^.



II

EQUATIONS WITH CONSTANT COEFFICIENTS

6. Heaviside's Solution of Cauchy's Problemf
Introduction. THE simplest class of linear differential equations are

those with constant coefficients, which can be solved with the aid

of elementary functions. But the systems occurring in mechanical

and electrical problems may be very complicated, and give scope for

labour-saving symbolical methods. Ifwe require a particular solution

taking assigned initial values, the operational calculus of Heaviside

affords the most appropriate shorthand for the method of successive

approximations. If we require the complete primitive with the

arbitrary constants of integration displayed in the simplest form, but

without reference to any particular set of initial values, the most

effective method is the symbolical calculus of Boole.

Solution in Power-Series. The homogeneous system with constant

coefficients n

% (t=l,2,...,n) (1)

is analytic and free from singularities in the finite part of the plane.

In the neighbourhood of a typical point x the solutions can be

expanded in power-series, which will converge for all finite values of

x. Let us write these in the form

Then the solution taking the values yi
=

7] t
at x is given by the

relations n

cf>
= n, #+ =

i
lcf>. (3)

Let (a$) be the kth power of the matrix (a^), and let
(affi) denote the

unit matrix (8^), whose elements are Kronecker deltas. By the multi-

plication rule we have

f J. R. Carson, Electrical Circuit Theory and the Operational Calculus (New York,

1926); H. Jeffreys, Operational Methods in Mathematical Physics (Cambridge, 1927);
E. J. Berg, Recknung mit Operatoren (Munich and Berlin, 1932); P. Humbert, Le
calcul symbolique (Paris, 1934).
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Then the relations (3) give

(=l,2,...,n;t = 0,l,... > oo); (5)

and

m"
s*>k<

7-x /t-0

where yi
=

(f>a(x)
is the solution with the initial values <^-(0)

=
8^-

at

the origin.

If every element of the matrix (a^) has the upper bound \a^\ ^ A,

then \of$\ ^ nk~lA k for positive integers k. Hence the series (6) are

absolutely convergent for all finite values ofx, and at least as rapidly

as $xp(nAx). To solve the non-homogeneous system

Dyi ^ fyji/j+f^x) (^ 1,2,..., w), (7)

we observe that yi
=

<f>^(x t) is the solution of the homogeneous

system (1) which takes the initial values yi
=

8^-
at any given point

x t. Applying the method of variation of parameters as in 3, we

see that x

yi. s I T"ii\^~~~ )Ji\ I V^
1 ~~~~

> > > / \ /

7 =s 1 J

is the principal solution of (7), given by y i
= when a; = 0.

Heaviside Operators. To confirm these results by the method of

successive approximations, we introduce the notation

f(x) = J/()
*. (9)"

By Cauchy's formula for a repeated integral, we have, for positive

integers m, , x ti

o

Iff(x)
~

1, we may omit the operand and write simply

- s .

P
m ml
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Proceeding exactly as in 1, we write the solution as a uniformly con-
00

vergent series yi 77^+ ]T Ui(x )> where

(12)

Since the operation of integration is commutative with that of multi-

plication by a constant, we find that (12) are satisfied by

and the solution is

Using the rules (10) and (11) to interpret these operators, wo find,

exactly as in (6) and (8),

^ I M^i+ I <t> l3 (x-t)fj(t) dt. (15)
*-i ^-i^

Summation of the Series. Consider the auxiliary series

which are certainly convergent if |A| > nA. By reason of (3), these

are found to satisfy the relations

X(wi rfi)=Jf

a
ii
w

t (j= l,2,...,w), (17)il
which may be written

2 (ASy,-a^K = A% y - 1, 2,...,n). (18)
i=0

If A(A)
=

|AS^a^| is the determinant of this system of linear

algebraic equations and A^(A) the minor of the element [AS^ o^],

we have n

' =l..-..,). (10)
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We can now write (14) symbolically in the form

Since &(p) is of degree n and {A^(p)} are at most of degree (n 1), the

operators can be expanded formally in negative integral powers of

p and interpreted term by term.

Heaviside's Partial-Fraction Rule. The expansions of the operators

may be found by resolving {^j i(p)/j\(p)} into partial fractions, which

are interpreted as follows.

p ^ (m+r~ 1)1 of

(poc)
m

Z^(ml)\r\p
m+r-1

* x
__.

x
_ eocx. /2i)

X
rv _

__ _______ /VA dt
Jlv / rvr(T_ /\m+r-ly ^__Jl_______

ZJ (m-l)!H

(x-tr-
(m-f)!

o

(22)

]f A^^!^) is the H.C.F. of all the first minors (A^(^)}, and if

&(p)/&n-i(p) is divisible by (p a)
r

,
then the solution involves terms

of the types xse*x (s
= 0, 1, 2,...,r 1).

Non-Commutative Operators. The operator p, of which only nega-

tive integral powers have been defined, is not identical with D, nor

are the two operators commutative. For we have
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ift")
= =/(*) <w>m )

(24)p

<26)

= Dm~nf(x) (m>n);

--^-^/""-"(O); (25)

Summary. The practical rule for solving the system (7) with given
initial values is first to integrate between the limits and x, and

write

(=l,2,...,n). (27)

This is a system of integral equations equivalent to the given differ-

ential equations plus the given initial conditions. We now solve (27)

formally} as linear equations in
(yj),

as though p were a number. This

gives the formulae (20), which are to be interpreted by Heaviside's

partial-fraction rule.

7. Operators in D and 8

Linear Operators. If we write

F(D)y ~ \ I a, />-*] y
= | a,D-<y, (1)

H=0 J 1=0

where (a^) are constants, the expression F(D) is called a linear operator

with constant coefficients. Since the differential operator D is commu-

tative with constants, we have

F(D)G(D)y =

= G(D)F(D)y, by symmetry. (2)

Hence such operators are commutative with one another.
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Again, by Leibnitz's theorem, we have

23

= V l\
=* \ T '

>

w
y, (3)

and so, for any polynomial in D,

F(D)[e*
x
y]
= e iX

F(D+oi)y. (4)

Homogeneous Equations. The algebraic equation F(X) = is called

the cfiaracteristic equation of the differential equation F(D)y == 0. If

its roots are known, we may write F(D) EE aQ JJ(Z> AJ, with the

factors in any order. If A = A is a root of multiplicity %, we may
write the equation as

F(D)y =
and this is certainly satisfied if

or if

= 0, (5)

(6)

(7)

A particular integral with n
t arbitrary constants is therefore

y = e**
xF*nt- l)

(x), where P(n^- l
\x) is an arbitrary polynomial of degree

(Ti^1). Taking all the roots in turn, we have a solution with n arbi-

trary constants = y eA a:P^- 1)
(a;). (8)

(0
l

We can prove that this is the complete primitive by evaluating the

Wronskian determinant of the n solutions corresponding to the n

constants; if this is not zero, the solutions must be linearly inde-

pendent. In the first place we have11.1

which is an identity in (AJ as well as in x. This expression does not

vanish if (At-) are all unequal.

If we differentiate with respect to A2 ,
and then put A2

= A1} we have

XJ*. JJ (Ar-AJ. (10)
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If we now differentiate twice with respect to A3 ,
and then put A3 = A1?

we have

and the Wronskian corresponding to any combination of equal roots

of the characteristic equation may be evaluated in the same way.

Non-Homogeneous Equations. To solve F(D)y f(x), we construct

the algebraic partial fraction identity

i
nt n(r)

-:=y y -^
. (12)EI/\\ / / (\ \ \r

v

jP (A) 4J 4S (A A:)
(i) r=l

This gives an identity between operator polynomials

or
, l-=2Jl(fl)0,(D) say, (13)

(0

where {jPt(Z))} are defined as in (5). We can accordingly write

/(*)
= 2 F,(D)^(D)f(x) = I ^(^(a?) ; (14)

<i) (0

and the equation F(D)y ~ f(x) can now be satisfied by putting

y = lyt ,
where

F(D)yi = Fi(D)fi(x)> (16)

or ^.(^[(^-Ai)"'^-/^*)] = 0- (16)

These relations are certainly satisfied if

and so the problem is reduced to the solution of 'simple equations'

of the type (17).

To solve (D\)k
y = f(x), we write it as

Dk
[e~

Xx
y]
= e-Xxf(x). (18)

The solution is now given by k integrations, which may be reduced

to a single integration by Cauchy's formula, if we ignore constants

of integration. The latter yield only terms duplicated in the com-

plementary function. We write symbolically

~
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The practical rule derived from this discussion is to resolve formally
into partial fractions the inverse operator

M' (20)

and to interpret each symbolical fraction by the rule given in (19).

Equations Soluble without Quadratures. For many important appli-

cations the right-hand side is of the form

*^(s), (21)

where
(/^-) may be complex, and where

{tf*j(x)}
are polynomials. It is

sufficient to solve the typical equation

F(D)y = e^(x). (22)

If ifj(x)
is of degree (m 1), the right-hand side is annihilated by

(D~ ju,)

w
;
and so the solution of (22) is included in that of

(D-^F(D)y = 0. (23)

If we write down the complete primitive of (23), and then omit terms

annihilated by F(D), we find that there is a particular integral of the

form y e^xfe), where %(x) is a polynomial of degree (m 1), if

F(IJL) 7^ 0, or of degree (m+k 1), if A -

ju,
is a fc-tuple root of

F(\) - 0.

We could, of course, find x(x ) by ^ne method of indeterminate

coefficients; but this is unnecessarily tedious. The required particular

integral is to satisfy both the equations

F(D)y -^
e^iff(x) 9 (D {j,)

m +ky = 0. (24)

If F(D) = (Dp)*G(D), let us construct by the H.C.F. process the

identity between polynomials

A(D)Q(D)+ B(D)(D-p,)>*
~

1, (25)

where A(D) is of degree (ra 1) in />. If we operate with A(D) on the

first of the equations (24) and with B(D) on the second and add, we
find

, (26)

so that, if y = e^xx(x), we get

D*x(x)
= A(D+p,W(x). (27)

The operator A(D+fi) can be found without calculating B(D)\ for
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the identity (25) corresponds to a relation between rational functions:

(28)

Hence A (p+h) is identical with the first m terms of the Taylor expan-
sion of l/6r(/x+/0 in ascending powers of h. Since A Q l/G(fJi) is

neither zero nor infinite, the expression

[A +A l D+AsD*+...+Am_iD*-*]t(x) = +*(x) (29)

is a polynomial of the same degree (m 1) as 0(#). The required poly-

nomial %(x)
~ D~k

i()*(x) may be written down by inspection, or as

the result of k successive integrations. The constants of integration

correspond to terms already accounted for in the complementary
function. The practical rule for solving (22), where if/(x) is a poly-

nomial, is to write

v = -m^^x^ ^fi^^x) ' (30)

and to ;expand the operator in ascending powers of D, omitting all

terms which annihilate /(#),

(*) = 0). (31)

Euler's Homogeneous Equation. The equation

aQ x
nDy+alx-lDn- l

y+...+an y =/(*), (32)

where (a{ ) are constants, can be reduced to an equation with constant

coefficients by putting x = ef. If 8 = d/dt
=

xd/dx, we can prove by
induction the well-known identity

xmDmy = 8(8 l)...(8w+l)y; (33)

and so (32) can be transformed into

bQ Z"y+bl$-l
y+...+bn y =/(*). (34)

Corresponding to (4), we have the rule F^x^y) x^Ffi+aty.
If (8 c^-)

71* is a factor of the operator with constant coefficients

jP(S), then a solution of F(8)y = is given by y = x^Pfr-VfLogx),
where Pfr~

l)
(logx) is an arbitrary polynomial of degree (^1) in

logrr.f

t The reader should investigate directly the Wronskian determinant of the solu-

tions of F(8)y = 0.
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As an exercise in these operators, we observe that the equation

D^y
__

^j.) may aiso be written in the form

8(8-l)...(8-n+l)y - **f(x). (35)

By resolving into partial fractions the expression

f(x) (36)

and interpreting the inverse operators, we obtain another proof of

Cauchy's formula for a repeated integral
X

j
/ /x_ s)

71"1

J(x)
= ~-

T\r/(*)
ds + a polynomial of degree (nl). (37)

JJ J (ft i)-

8. Simultaneous Equations. Invariant Factorsf

Characteristic Equation. Consider the homogeneous system

(=l,2,...,n), (1)
J 1

where (F^(D)) is a matrix of linear operators with constant coefficients

whose determinant A(Z>)
=

\F^(D)\ is of degree N. If we add the

results of operating on the equations with the minors of the elements

of the kill column of the determinant, we eliminate all the unknowns

except one, which is found to satisfy the equation

&(D)yk = (*=l,2,...,n). (2)

The corresponding algebraic equation A (A)
= is called the charac-

teristic equation of the system. Suppose first that the roots (A,.) are

unequal. Then we must have

9* = Zc*r** (i=l,2,...,n), (3)
r=l

and, on substituting these expressions in (1), we get

f fi^A)c
;>l

e^ = (=l,2,...,n). (4)
r^lLj^i J

The coefficients of (e*
rX

)
must vanish separately, since these functions

are linearly independent; and so we have for each root n relations

I^Uc^O (i
=

l,2,...,n). (5)
3
= 1

These are compatible and determine uniquely the ratios (clr : c2r : . . . : cnr ) ;

for we have, on the one hand, A(Ar )
=

|jP^(Ar)|
= 0; while, on the

t C. Jordan, Coura d'anctlyse, 3, 175-9 ; M. Bdcher, Higher Algebra, 262-78 ; H. W.
Turnbull and A. C. Aitken, Canonical Matrices, 19-31, 176-8.
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other hand, at least one first minor of the determinant is not zero.

For suppose that every first minor of A(A) were divisible by (A A,.);

0A(A)
then the reciprocal determinant == AW- X

(A) would be divisible

by (A Ar )", and so A = Ar could not be merely a simple root of

A(A) 0. Thus each root of the characteristic equation gives a

solution with one arbitrary constant. Solutions of the type y i
c

l
e^x

,

where the unknowns remain in a fixed ratio to one another, are called

in dynamics normal solutions.

The reader should now verify, by the method of 1, that the

system (1) is equivalent to a normal canonical system whose order is

equal to the degree of A(D). If the determinant vanishes identically,

the system may be replaced by a smaller number of equations and so

is indeterminate.

The method of indeterminate coefficients is equally applicable

when the characteristic equation has equal roots, but the discussion

of the linear equations corresponding to (5) becomes very laborious.

In certain cases the equation (2) can be simplified; for if A
/,_ 1 (/>) is

the H.O.P. of all the first minors of A(D) -
\F13 (D)\, we may divide

those minors by ^ n _ 1(D) before we operate on (1), and so we have

r,~-0 (i=l,2,...,w). (6)

But the problem can be very much more clearly treated by

simplifying the given system (1). The process is a direct application

of H. J. S. Smith's canonical reduction of a matrix of polynomials.

Equivalent Systems. We employ two kinds of transformations,

both of which are reversible. We may replace two equations

((|>a
= o O^) by an equivalent pair {Oa+J^(/>)O^

=
^}, where

F(D] is any linear operator with constant coefficients, since either

pair implies the other. This process is called reduction by rows of the

matrix {F^ (D)}. Or we may replace two variables (ya , y^} by

since either pair can be written in terms of the other. This is called

reduction by columns.

Our object is to reduce the system to be solved to as few equations
as possible, and, failing this, to reduce to a minimum the degree of

the lowest operator in the matrix. If any operator is a constant other

than zero, the accompanying variable can be explicitly written in
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terms of the others and eliminated from the system. Every such

opportunity of elimination and reduction of the system is to be

seized. Suppose now that every operator actually involves D. We
pick out the operator of lowest degree, and look for another operator

in the same column not exactly divisible by it. For example, if

FU(D) is the lowest operator and F2l
^ QFU+ ^*i where F^(D) is of

lower degree than Fn(D), but not identically zero, we replace O 2
=

by [^>2 Q(D)^> 1 ]
= 0; the new matrix will have at least one operator

of lower order than before. If the lowest operator is a factor of every

operator in its column, we make all of them identical and obtain a

system of the type

Al(D)yi+Jo

G
l](D)yj

=
(i
= l,2,...,n), (7)

where no operator is of lower order than M(D).

Suppose now that one of the operators is not exactly divisible by

M(D), say G12(D) = M(D)Q(D)+ Gf2(D), where *>(>) is of lower

degree than M(D) but not identically zero. Then the matrix can be

reduced by columns on taking [2/i+$(%2]
as a ncw variable instead

of yv If, however, every operator in (7) is divisible by M(D), we
eliminate yl from all equations except the first and write

- 0, \

I (8)=
(
= 2,3,...,n).

j-2

The first equation need not again be disturbed. The remaining set

may be reduced in the same manner as before, and we shall finally

obtain a system of the type

El(D)z l
- 0, E2(D)z2

- 0, ..., E
tt (D)zn - 0, (9)

where each operator Ek(D] is divisible by the one preceding it. The

old variables (y^ can be expressed in terms of the new variables

(z t )
and vice versa. If k ofthe original unknowns have been eliminated,

the number of equations in the system (9) will be only (n k}\ or we

may suppose that E
t(D) = 1 (i 1, 2,..., k), so that the first k

equations give the explicit formulae for the eliminated variables.

We have now only to write down the complete primitives of the

equations (9) for (z{ )
and to introduce these expressions in the

formulae giving (yt ]
in terms of (zt ).

The method of indeterminate

coefficients is not required.
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Invariant Factors. At each step of the reduction, we have merely

added to one row or column of the matrix (F^D)) a certain multiple

of another. This leaves invariant the determinant A(D) = |^(Z))|;

but much more than this is true.

Let AA.(Z)) be a polynomial in D (with the highest coefficient unity)

defined as the H.C.F. of all &-rowed determinants of the matrix

(F{j(D)). If A*(Z>) is the corresponding H.C.F. after an elementary

transformation, it is easily seen that every new A:-rowed determinant

is divisible by A
fc(Z>); hence A*(Z>) is divisible by A^(/>). But the

process is reversible, so that A
A.(Z>) is divisible by A(jD), and therefore

A(D) == AA.(Z)) (k = l,2,...,7i). But these invariants (AA.(/>)} can

be written down by inspection of the reduced canonical matrix

^(D) ... \

E(D) ... \
. (10)

... En(D)l

Since
^i+l(D)

is divisible by E^(D], every Arrowed minor which
k

does not vanish identically is divisible by JJ E{(D). If the highest

coefficients in (E^D)} are reduced to unity, we have therefore

A
fc(Z>)

= El(D)E2(D)...Ek(D)
= ^k_^(D)Ek(D). (11)

Hence {Ek(D)} are likewise invariants of the original matrix; these

expressions (Ek(D)} are called its invariant factors. They can be

found by rational operations, without solving the characteristic

equation A(A) = 0.

EXAMPLES. 11

1. HEAVISIDE OPEBATORS. Verify the formulae

P * P 2 np____ = einx t
__* __

cosn.r, -----
9

--

^fW -
\cwn(x-t)f(t)dl,n J

o

2. (i) The solution of F(D}y --- determined by the initial conditions

y = 0, Dy = 0, ..., Dn~2
y - 0, D^-^ - 1,

when x = 0, is y =
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(ii) The solution of F(D)y = f(x) determined by the initial conditions

y = 0, Dy = 0, ..., Dn~l
y = 0,

when x = 0, is y -77

3. The solution of F(D)y determined by the initial conditions

.D^ -_-
^(), when x -

(*
= 0, l,...,n 1),

where P^)

4. Verify that

a; a;

= ( f(s)da (<b(x

where

and also that

5. Express as integrals

i _ _!

i
. i

6. If l-t(p) is a rational function, whose denominator is of degree not lower

than the numerator, show that

Hence prove by induction that

<2n-l)!p _ _ sin2 n-ir
(?+ l 2

)(p
2+ 3 a

)...{^+ (2n-l)2}

(2n)!___ ______ _ v _ __ _____ ___ _~
aiii-''.^;

(p*+ 2*)(p*+ 4*)...{p*+ (2n)*}

'

[H. V. Lowry, Phil. Mag. (7) 13 (1932), 1033-48, 1144-63.]

7. Verify Lowry's formulae by showing that y = sin271" 1^ satisfies the

equation
(I>

2+l 2
)(^

2+ 3 2
)...{X>H(2/i-l)

2
}2/
- 0,

with the conditions

D{
y = (*

= 0, l,...,2n-2), Z)^-1
^ = (2/i 1)!,

when = 0.
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8. A sequence of Legendre trigonometric polynomials is defined by the

relations P (cosa:) = 1, P^cosa;) = cos#,

(n -f- 1 )Pn+1(cos x) (
2n+ 1 )eos a?Pw(cos a?) -fnPn_x(cos x)

= 0.

Verify the formulae

p , . __^ 2 4
H-I* >

fB. van dor Pol, Phil. Mag. (7) 7 (1929), 1153-62; 8 (1929), 861-98.]

9. BOBEL'S RELATION. If tho Hoaviside operators (FJip)}, generating

ordinary power-series {f%(jc)} t
are connected by the relation

then f^x) - J/ifc

10. Show that

? sin 2w r
fPaw{cos(a? 0}sin

2w-^<tt = -^ '. [LowRY.J
o

2n

11. CAUCHY'S METHOD. If F(z), G(z) are polynomials of degree n, m re-

spectivel^ (m < n), and if C is a contour enclosing all the zeros of F(z), show

[A. L. Cauchy, (Euvres (2) 6, 252-5, 7, 40-54, 255-66; C. Hermite,
Bulletin des sc. math. (2) 3 (1879), 311-25.]

12. Solve tho simultaneous equations

(1) D~u -- 2uvw
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9. Linear Operators

Operators with Variable Coefficients. IF we write

F(x,D)y = [lo
Pr(x)D

n-r
]y
=
J>r(z)-D'

l-r
2A (1)

the expression F(x, D) is called an ordinary linear differential operator.

If {(f>i(x)}
arc functions of x, differentiate sufficiently often, and (c^

are constants, we have 21 2 '

[
(^)

By combining such relations, we have for any operator F = F(x,D)
of the type (1) ^/ /

,
,

^
^ p, _L^ )

^(Tc.^o -=" ycFct*

2 '

I
(3)

But it is not in general true that ^(7<^ is the same as (rF(f>, for distinct

linear operators F, G.

Division and Factors. Operator polynomials in D have many
analogies with ordinary polynomials in a variable. Consider two

operators F _ po (
x)D +pl (x)D-i+...+p(x),

(4)
G = - '

where m ^C n. Let us form the expression

fy-[A tl(x)D*-<+A 1(x)D*^-
1+...+A H_m(x)]Gy, (5)

and let ns determine successively

(6)

so that the expression (5) shall have no term in (D
n
y t
DH- l

y,...,D
m
y).

We see that {A^(x)} are uniquely determined, and we have a relation

Fy - QGy+Ry, (7)

where Q = J ^
t
Dn-m~i

.
>
and 7? is an operator of order not exceeding

(m 1). These are analogous to the ordinary quotient and remainder

of two polynomials.
4064
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If we know m (< n) linearly independent solutions of Fy = 0, let

the equation satisfied by them be

/8 \

l ;

If we construct the identity (7) and substitute for y the solutions

(0!, ^2,. ..,^J, we have

Rfa
= B D-i<j> l +...+Bm_1 <j>i

==
(i
= l,2,...,m); (9)

and since TF(<i,^2 -"^w) 7^ 0, these give

.B, HZ (i
= 0,1,..., w 1).

Hence the relation becomes

Fy = QGy, (10)

so that G is an tuner or right-hand factor of the operator F. We can

thus break up the equation into the pair

Qz^O, Gy = z. (11)

The first equation is of order (n m); and, when it is solved, the

second is soluble by quadratures, by the method of variation of

parameters.

Highest Common Factor. To discover whether two given equations

have any common solutions, we use a process of Brassine analogous
to the extraction of the H.C.F. of two polynomials. Let (Flt F2 )

be

two given operators, of which the former is of the higher order; we
construct a sequence of operators (Ft ) of steadily decreasing order

% > n2 > n3 > ... > nk ,
in accordance with the scheme

After a finite number of steps we must have Fk+l ^E 0; and the last

operator which docs not vanish identically is an inner factor of all

the preceding ones, since

**-! = *-!**. J*- = (ft-2^-1+1)^... (13)

But, on the other hand, each of these operators can be written as

J; for we have

From the identity

(15)
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we see that every solution common to (Ft y =. 0, F2 y 0) must also

satisfy Fk y = 0. Hence Fk is the highest common inner factor of

(V2 ).

Consider now two non-homogeneous equations

*\y==Mx)> F*y=f*(*)-

This system is in all respects equivalent to the pair

^x) =fB(x), say, (17)

where jP3 (FiQiF2 )
as ^n U^); for we can deduce either pair from

the other. Thus the original system can be replaced successively by
the pairs

f
ty=ft (x), ^y =/!(*) (

=
2,3,...,i). (is)

But, since Fk+l is identically zero, the last equation necessitates that

fk+i(x )
should be identically zero, for otherwise the equations are in-

compatible. This means that

fk+1(x) - A-+i/i(*)+ *+i/2(*) = 0, (19)

is a necessary condition for the compatibility of the system. The

condition is sufficient; for, in the kth equivalent pair (18), one equation
is merely = 0, so that the system is effectively equivalent to the

single condition
I\y = fk(x). (20)

Least Common Multiple. Let the operators (F19 F2 )
have no common

inner factor; and let us expand ay linear homogeneous functions of

(D
l

y) the (n^n.y+2) expressions

(j-0,l,...,%). (21)

These (nl
jrn2

jr 2) linear forms, homogeneous in (^1+^2+ ^) quantities

(y y Dy,..., DHl \

~n
*y), must be connected by an identity

My == f a
t(x)DV\ y = f ^(x) ZW, y, (22)

--4=0

or My = ^Fiy = %Ft y, (23)

where (Tj^,^) are operators of order (n^n^ respectively.

The equation My = is satisfied by any solution of either F
l y =

or F
2 y = 0; so that the operator M is analogous to the least common

multiple of two polynomials. The relation (23) is equivalent to the

one expressing that the last remainder in the H.C.F. process is
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Again, if the H.C.F. of (1\, F2 )
is of order nk = v > 0, we have

\

where the operators (Gl9 G2 ) are of order (nl v,n* v). By the same

method, we now obtain an equationMy 0, oforder only (n l+n2 v),

which is satisfied by every solution of either equation. Conversely,

if we have an identity (23), where (^,
X
K) are only of order (n2 v,

n^v), the given equations have v common solutions. For let

{$i(x)}
be T&I linearly independent solutions of F

l y ~- 0. We have

then V2[ â^)] = (1=1,2,...,^), (25)

and so {F2 <f>i(x)} are all solutions of an equation of order (n^v}. Since

not more than (n^v) of the expressions can be linearly independent,

we must have v relations of the type

*i&(*)= 2 cJW*) ('=l,2,...,i'), (20)
j- 1> M

where (c <;-)
are constants. Hence the simultaneous equations

(Fy ~ t

O = F2 y) have v common solutions

-*/(*)- I c .^(-r) (i=l,2,...,v). (27)
J = V+ 1

If we erase the last (i>+l) derivatives in each set (21), we have

(nl -\-n2~2v) expressions linear and homogeneous in z ^ Fk y and

its first (n1 -{-n2
~ 2v~ 1) derivatives. If these expressions are not

linearly independent, we can construct an identity showing that

(G^z = ~ G%z) have a common solution other than zero, contrary
to our hypothesis that Fk is the H.C.F. of the given operators.

We can therefore solve for z from the (n l -\-n2 ^v) linear expressions,

and write z ^ Ak o^z+Bk G2 z, (28)

where the operators (A k ,
Bk )

are of order not higher than (n 2 v-l,
n

1L-vl). This is equivalent to the identity (15), and indicates the

order of the operators concerned.

10. Adjoint Equations!

Equations of the First Order. We can readily solve the equation

Dy+p(x)y = f(x) (1)

by an appropriate use of the identity

D(yz)
= z[Dy+p(x)y}+y[Dz-p(x)z\. (2)

f G. Darboux, Thtorie gtndrale des surfaces, 2, 112-34; M. B6cher, Lemons sur lev

mtthodes de Sturm, 22-42 ; F. B. Pidduck, Proc. lioyal Soc. A, 117 (1927), 201-8.
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Let y be indeterminate, but let z be chosen so that

Dz = p(x)z, or z
exp| j

p(x) dx\ = eW say.

Then we have, on multiplying (1) by z,

D[^(^y] - e"Wf(x), (3)

and so em(x)y = ( emMf(x) dx + C. (4)

But, conversely, we may leave z indeterminate, and choose y, so that

Dy p(x)y, or y = e-m(x>. We can then solve any equation of the

form
Dz~p(x)z = g(x) 9 (5)

by writing it as D[e-
mM

z]
~ e- OT(<r)

</(#), (
6

)

so that e~m^z = ( e~w(x^(x) dx +C'. (7)

There is complete reciprocity between the pair of equations

Dy+p(x)y = 0, Dz-p(x)s - 0, (8)

the solutions of either being integrating factors of the other. Such

equations are said to be mutually adjoint.

Adjoint Canonical Systems. The more general identity

D
\ i>.*<]

~- i 4Dyt- i "
ti(x)yi]+ I yt \Dzt+ % a^z,], (9)

L i-=l J 1 = 1 L j--l J i-l L
7 = 1 J

suggests a similar reciprocal relationship between the two homo-

geneous systems

If (^.) are indeterminate, but (s ) satisfy (2*), the first group of terms

on the right in (9) becomes an exact derivative; conversely, if (z t )
are

indeterminate, but
(?/,-) satisfy ($*)> ^ne second group becomes an

exact derivative.

Lagrange's Adjoint Equation. Consider the identity

-
z[p Dy lt+Pl yn

n-l

(10)
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Let us write yi
r=~ D l~l

y (i
=

1, 2,...,n) and also put

so that only y and z remain indeterminate. If we put

Fy ~ p*D'
ny+p l

D n
-iy+ ...+pn y, (12)

the operators F, F* are said to be adjoint to one another, and we

find the identity

zFy-yF*z = DY(y,z), (14)

where x
F(y, 2;)

is the bilinear concomitant

22)+-+ (-)
ll-1^B-1

(Po2)]y- (IB)

The same method of interpretation shows that every solution of

F*z = is an integrating factor of Fy 0, and vice versa. To show

that F**, the operator constructed from F* by the same rule as F*
was formed from F, is identical with F, we need only write down the

identities zfy-yl*z ^ ,,

which show that

z(Fy-F**y) = D[Y(y,2)+Y*(2,y)] (17)

is an exact derivative, identically in y and 2. But this is impossible

unless both sides vanish identically.

Composite Operators. If (F^F*) and (F2 , F*) are pairs of adjoint

operators, we have

hence z(F1+F2)y-y(F*-{- F*)z = D[ 1̂(y,z)+ 2̂(y,z)]. (19)

Thus the operators (J^+J^, Ff+F$) are also adjoint to one another,

and similarly for the sum of any number of operators.

Again, write Fs y instead of y in the first identity, and F*z instead
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of z in the second identity of (18); adding the results, we have the

identity

zF^y-yFSFfz == D[^(F2 ij,z)+ ^(y,FJz)l (20)

showing that the products (F^^F^Ff), with the factors reversed,

are adjoint operators; and similarly for any number of factors.

When two equations (F^y = 0, F2 y = 0) admit v linearly inde-

pendent common integrating factors, their adjoints have v common
solutions

;
hence they can be written

Ff z = G*H*z = 0, F*z :
- G*H*z = 0, (21)

where H* is of order v. The original equations are therefore

(HGl y = 0, HG2 y = 0). By a process parallel to Brassine's, it

would be possible to extract directly the highest outer common factor

of two operators.

11. Simultaneous Equations with Variable Coefficients

Reduction to a Diagonal System. The procedure of 8 can be

applied to the reduction of systems with variable coefficients, pro-

vided that we take account of the presence of non-commutative

operators. Consider the system

*< = i*
T

,,.y;-- (t=l,2,...,w), (1)
j=i

where (Ffj)
arc operators of the type

F ~ ai(x)D"+a1(x)D"-*+...+am(x), (2)

whose coefficients are difTerentiable as often as may be necessary in

the course of the reduction. Our object is to reduce the system to be

solved to as few equations as possible. If there is any operator F^
which does not involve D and is not identically zero, we can solve

<E>a = for yp and eliminate yp from the remaining equations. It will

be assumed that every opportunity of thus reducing the system is to

be taken.

If every operator present involves D, we pick out the one of lowest

degree, say Fn , and look for any operator in the same column which

does not admit Fn as an inner or right-hand factor. Suppose
F21 ^^ QFn+F&y where F2l is of lower degree than Fn but not identi-

cally zero. Then on replacing O2 by [O2 QOx] = 0, the matrix

will be reduced by rows to one having an operator of lower degree in

D. If every operator in the first column is divisible on the right by
F1V we look for any operator in the first row which does not admit
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Fn as an outer or left-hand factor . Suppose F12
= Fn Q+J?*2 , where

F*2 is of lower degree than Fu but not identically zero. Then on

taking [j/i+Qf/o] as a new variable instead of yly the matrix will be

reduced by columns to one having an operator of lower degree. If an

operator of degree zero appears at any stage, we at once eliminate

a variable.

If the lowest operator is an inner factor of every operator in its

column and an outer factor of every operator in its row, the system
is of the type

(3)

=
(
= 2, 3,..., ).

The first equation may be written as Fn zl
= 0; and we can eliminate

yl from the others by taking the combinations

<D.-
t
<D1=:0 (i= 2, 3,. ..,T?,).

Proceeding with the reduction of the latter set, we ultimately obtain

a diagonal system

lZl =0, 2 *a
= 0, ..., Gn zn = 0, (4)

where the old variables (?/,)
are expressible in terms of the new

variables (z f ) and vice versa.

Analogues of the Invariant Factors. The reduction (4) is not so

complete as that of a system with constant coefficients to the

canonical form. But it forms a convenient intermediate stage, after

which the equations may be examined two at a time. Any pair

(Q1 z
l
= = G2 z2 ) can be further reduced, unless the lower operator

G is both an inner and an outer factor ofG2 , or unless

this need not imply that G2
is of the form G^HG^ as is obvious by

considering operators with constant coefficients.

If Gl is not an outer factor of G2 ,
we can write

1 21+G2 22 -0, G2 z2
= 0; (5)

this system is reducible by columns.

If G-L is not an inner factor of (7
2 ,
we can write z2 _ z^z*, and the

system Q^ = ^ O^+O^ - 0, (6)

will be reducible by rows.

After a finite number of steps and eliminations we must arrive at
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a system where every pair of operators fulfils the conditions. Arrang-

ing the operators in order of ascending degree, the system will be of

the type

^^ = 0, #
2w2 -0, ..., Hnwn = 0, (7)

where Hk+l == U^Hk
-= HkH^ In other words, the (+l)th

equation is satisfied by every solution of the kth, and admits every

integrating factor of the kth equation.

Generally speaking, two equations taken at random would have

no common solution. We could then construct the H.C.F. identity

[K^G-^K^G^ ^ 1, and the equation satisfied by any solution of

either equation, Lz = 0, where L =^ f\Gl ^ P2G2 . The general

solution of Lz = is z = Zi+z2 >
where G1 z1

= and G2 z2 0. But

we can also express zl
and z2

in terms of z, for we have

*i
= (K^+KM^z, = KM.Zi - K.G^+z.) - K2 G2 z, (8)

and similarly z2
Kl

G z.

Conclusion. In certain investigations there is a gain in symmetry
and clarity in considering a normal canonical system; and we have

seen in 1 how every equation or system can be reduced to that form.

But in studying the permutations of the solutions of an analytic

system, it is obviously simpler to consider a set ofn analytic functions

(and as many derivatives as we please) than an array of n2
functions,

the former being a fundamental system of solutions of a single

equation, and the latter that of a normal canonical system, both

of the same order n. Knowing how to replace any analytic system

by single equations, each involving one unknown, we need only
examine directly the properties of the solutions of a single typical

equation with analytic coefficients.

EXAMPLES. Ill

1. WRONSKIAN DETERMINANTS. If
<f>,(x)

= <7M

2. If A is any function of #, provo that

Wx(X^\^...^ n )
-

Hence show that, if
(j) l ^ 0,
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3. If m <n and Gy = Dmy+qiDm~ ly+- + qm y> show that the elements

of a column of W(<j>lt <f>2 ,...,<) may be replaced by

show that

W(4v <f>t ,...,<l>H,y)
=

W(<f> 1 ,<f> 2 ,...,<f>m)W(G<f>nH.v G<f>m+2 ,..., <tyw> Gy).

4. SYMBOLIC FACTOKS OF FROBENIUS. (i) By considering the minors of the

determinant W(^i^2> ^n>2/)> show that

(ii) If wj,
-=

^i(:r), 7i r
- - TFrTI^^i x

deduce from the above that

_
.

j
- 71 n J

2-9> n n-1 2 1

(iii) Show that the equation

_L.olj>...!0 = o
<Xn+i n 2 aA

admits the solutions
a- jra a-r-t

J ^r() = i(-
r

) | ^2(^2) ^2 J ^3(^3) ^3 J OrfaY) ^V-

(iv) Verify that W^,^,...,^) aJaS-
l
...a

/t ,

^ ,J
ar

^.i
~

L

5 - lf
^^^L^ID...!!)^

ar+1 ar a2 atj

/ \r I i ^

JF*2 = ( }
Z> -- D...D~,

an r-fl
a

-r-f-2
a an+l

show that Fn y --- and F*z ~ are adjoint equations, and that their bi-

linear concomitant is w_jm S) = 2 (Fn-r-iy}(F* *). [DABBOUX.J
=

6. A self-adjoint equation of even order may be written

Vl V2 Yn Yn+l Y>n

and one of odd order

[FKOBENIUS; DAEBOUX.J

7. Verify that the following equations are self-adjoint (except as regards

sign) 1

j

(i) T.Dj = 0, (ii) Dn/Dn
y = 0,
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(iii) DnfDn+1y+Dn+l/Dn
y = 0, (iv) FyF*y = 0,

(v) FfF*y = 0, (vi) FfDfF*y = 0,

where (<,/) are functions of #, and (F,F*) are adjoint operators.

8. If *F(y,2) is the bilinear concomitant of a self-adjoint equation of order

n, Fy 0, then *(y,y) 0, if w is even, and Y(2/, 2/)
= ZyFy, if ft is odd. By

writing (y+Az) for y, show that, if yFy is an exact derivative, n is odd and

Fy is self-adjoint. [DAiiuoux.J

9. If Fy -=P D2n
yi-p 1

E>2n
- 1

y-}-...-{-p2n y = is self-adjoint, p^ -- nDpQ ,

and [Fy Dnp Dn
y] is also self-adjoint. Hence show that the most

general self-adjoint equation of even order is of the form

Dn
*ljQ
Dny+D n-^1Dn- l

y-\-...+il,n y = 0,

and that of odd order is of the form

2 [Dn- i

i/fi
Dn-i+ l

y-}-D
H- i+l

i/ji
Dn

-''y]
= 0.

1=0
[JACOBI; DAKBOUX.]

10. If F - 2 KjcfiD^^and^*
- 2 f?)^,^^-* are adjoint operators, show

i-O^/ '4-U^* 7

that _

11. If 2A
= ^(^) (z.y

= l,2,...,w) is a fundamental system of solutions

of a normal canonical homogeneous system, and A =
|^ tj(^)! then a funda-

mental system of solutions of the adjoint system is z
t
= O

i3(x) p , andA
^<pi;

there is complete reciprocity between the two systems.

12. If
{<f>%(x)} is a fundamental system of solutions of a homogeneous equa-

tion of order n, and \V W(^ lt ^ 2,...,^ M ),thon0t(.*;)
- ~ -

7^-^
are integrating

factors. Verify the relations

2 OMD'hW -----

0'
= 0, l,...,n-2), 2 OMD^-^x) -= 1,

i=l i=l

and by means of these and their derivatives prove that

and hence that (O^x)} are linearly independent.

13. Show how the order of a system or of an equation can be depressed by
w, when m independent solutions of its adjoint are known.

71

14. In a self-adjoint normal system, ^^(x^-l-aj^x) - 0, and 2 2/i
== con '

i= I

stant, for all solutions.

15. Solve by means of an integrating factor

x(l~xz)D
2
y-\-(2-5x*)Dy-4xy - 0.

10. If /3,A are constants, show that the equation

A0(a:)]y
- 0,
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with the initial conditions y = A, Dy -~ B, when x = 0, is equivalent to the

integral equation x
j-i )i r

y = Acospx-\- sin/xE-}-
-

I smp(xt)i/j(t)y(t)dt.
P r J

lf\ifj(x) is continuous and small compared with p in the interval (0 < x < X),
show that the equation can bo satisfied by a series

?/
= U (x)+Xu1(x)i-\

2U2(x)
J
r ... . [LlOUVILLE.]

17. APPELL'S THEOREM. If {^(x)} is a fundamental system of solutions of

a homogeneous equation, any polynomial in (D^^x)} which is merely multi-

plied by a constant, when {^(x)} is replaced by any other fundamental system,
is of the form [Wfy^^ %,..., <f>n )]

kP, where P is a function of the coefficients of

the equation and their derivatives.

[E. Picard, Traite d'analyse, 3, 541; L. Schlesinger, Handbuch, 1, 40.]



IV

EQUATIONS WITH UNIFORM ANALYTIC COEFFICIENTS

12. Group of the Equation

Analytical Continuation. Let us now suppose that the coefficients

of the equation

(E*) D-y+p^(x}D^y+...+pn(x)y -
are uniform analytic functions, having only isolated singularities in

the complex plane. By 2, every solution y = <f>(x) is analytic, and
its only singularities in the finite part of the plane are at singularities

of the coefficients; but
<f>(x)

is not in general single-valued.

To examine this question, we draw any closed circuit F of finite

length, beginning and ending at an ordinary point x
,
and not

passing through any singularity. We can apply the process of ana-

lytical continuation simultaneously to the coefficients and to the

solution
</>(x), which will continue to satisfy (-"*) identically. For if

we expand the solution and the coefficients in Taylor series of powers
of (x ), convergent in a circle C, and if x = '

is any point in C, we
can rewrite <f>(x) and [pi(x)} as Taylor series in powers of (x '), con-

vergent in a circle C'. In the region common to the circles (C, C')

the two sets of expansions take the same values at every point, so

that the second set of power-series satisfy (E*) identically; and they
will continue to satisfy the equation in the entire circle of convergence

C", which will in general extend beyond C.

After completing the circuit, the coefficients [Pi(x)} resume their

original forms as power-series in (x ), being by hypothesis uniform

functions; but c/)(x) need not resume its original form, though it will

be some solution, <D(#) say, of the equation. To trace these changes,

the process of analytical continuation must be simultaneously applied
to all the solutions of a fundamental system {<f>t(x)},

which assume

the new forms

*<(*) = iW*) (=l,2,...,n), (1)
J = l

where (a^) are constants.

Determinant of the Transformation. The determinant A = \ai} \

cannot vanish; for this would imply a linear relation ^ ctt(x )
=

between the new forms; and, on returning along the same path, we
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should have 2 C;^(X ) > contrary to the hypothesis that {^(#)}

are linearly independent. The determinant A was evaluated by
Poincare. We obtain from (1) by differentiation

.
('
=

1, 2,..., n), (2)

so that the derivatives of the set {<^(#)} undergo cogredient transfor-

mations. By the multiplication of determinants, we now have

W(^v^...^n )
= AW(^^...^J. (3)

But Liouville's formula gives

W(x) - fF(< l3 >,..., )
-

W)exp|~- j Pl (t) dt\ (4)

and after a complete circuit W(x) is multiplied by

A
expj jpi(#)e?#|, (5)

the contour integral being taken once round F. If Pi(x) is holo-

morphic inside the contour, we have A = 1 .

Group of the Equation. Let 1^ and F2 be two closed circuits start-

ing from )the same base-point x =
;
and let (a^) and (by) be the

matrices of their respective transformations, for the same initial set

of functions {^(x)}. If the functions are continued around the com-

bined circuit in the order P
x !!>, the matrix of the new transformation

is the product (c,-), where
n

C
tj

r-~- 2 a ik bkj (*,j
=

1, 2,...,7i). (6)
fc=i

This product of matrices is not commutative, for we must take the

rows of the matrix belonging to the first circuit with the columns

of that of the second. All the linear transformations belonging to

every possible closed circuit form a group, called the group of the

differential equation.

If there are m winding points in the finite part of the plane, every
closed circuit can be deformed without crossing a singularity into a

sequence of standard loops, each starting from the base-point and

encircling one singularity. The m transformations belonging to these

loops are a set of generating operations of the group, in terms of

which every matrix can be expressed.

Riemann's Converse Theorems. A set of n linearly independent

analytic functions with isolated singularities, which admit a group
of linear transformations with constant coefficients for all closed
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circuits, must be a fundamental system of solutions of a linear

differential equation with uniform coefficients. For by virtue of (1)

and (2), every ?i-rowed determinant of the array

fa, Dfa, ..., Dfa

fa, Dfa, ..., D-fa
is multiplied by the same constant A ^ 0, after continuation about

a closed circuit. Hence quotients of these determinants are uniform

functions of x. But in the equation formally satisfied by the given

W(fa,fa,...,fa,y)- ~
functions

every coefficient is a quotient of this kind; so that the coefficients of

the equation (8) are in fact uniform.

Every set of functions {^(#)} which undergo cogredient transforma-

tions with the set {^(x)} for all closed circuits can be written in the

form

where (u t )
are uniform analytic functions. For since we assume that

{(/>i(x)} are linearly independent, we have

except at isolated points. Hence (u t )
are uniquely determined by the

equations (9), each of them being the quotient of two ?i-rowed deter-

minants of the array

fa, Dfa, ..., D'^fa, v

,, Dfa, ..., D'^fa, v-a

(u)

p Dfa, ..., D'^fa, fa

By hypothesis, the elements of every column of this array are co-

gredient; and so each n-rowed determinant is multiplied by the same

factor A ^ 0, corresponding to a given circuit; therefore the quotients

(u t )
are uniform analytic functions.

13. Canonical Transformations

Characteristic Determinant. With a view to simplifying the trans-

formation n

A
i

ij j
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corresponding to any selected circuit F, we may look for solutions

V = Cl<t>l(x)+ C
2<i>2(

x
)+ ~'+ Cn<t>n(X )> (

2
)

which are merely multiplied by a constant. Since we are to have

ff ***<(*)]
=

A[2c, &(*)], (3)
-i~l J Li=l J

we find from (1) and (3) the identity

[1 i<6(*)]-A[icy 0,(*)l; (4)
Ll=lj-=l J Lj=l J

and, because {$,(#)} are linearly independent, this implies that

Ao; (j=l,2,...,). (5)

If this system of equations for
(GJ)

is compatible, A must satisfy the

equation

A,, (A) = (6)

which is called the characteristic equation of the matrix (a^).

Evidently no root can be zero; for we saw in 12 that the deter-

minant A \atj\ 7^ in the present problem. Each root gives at

least one linear form (2), and k such forms (y\,y^"^yk) belonging

respectively to unequal roots (Xi,X2 ,...,Xk) are linearly independent.
For suppose they were connected by a linear relation

(8)

(9)

After s complete circuits this relation is transformed into

CiA
8
1 y1+c2 A|y2+-..+cA:A^fc

==
(
= 1,2,...,*-!).

But since (Xt )
arc unequal, we have

1, 1, -., 1

A2 ,

k-l \k-l
\! ,

/\2 , ...,

A,

so that the relations are incompatible and so the coefficients (c t )
are

all zero.

Accordingly, when the characteristic equation has n distinct roots
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we get n linearly independent combinations of {<^(#)}, forming
a new fundamental system, which undergoes the canonical trans-

formation
r<
= A,y, (t=l,2,...,n). (10)

Invariants. The numbers (At-) must be independent of the choice

of the original fundamental system {<^(#)}. For a canonical solution

y.f
has the same multiplier A,,-,

whether it is expressed in terms of

{(f>i(x)}
or of some other fundamental system {&(%)}, which under-

goes the transformation

TO = iW) (i=l,2,...,n). (11)
J-l

Hence A
;

- must be a root of the characteristic equation of the matrix

(bij )
also.

To prove this algebraically, let us suppose that the two systems
are connected by the relations

h(*)=2<>ij<l>,W (=l,2,...,w), (12)
2
= 1

whose determinant C =
\c^\ ^ 0. In terms of the first system,

(11) may be written

j=*l j = l fc-1

and by (1) we have

s-*<iM*)
^ i

j=l

These n relations between the independent functions
{<f>k(x)} must

be identically satisfied, and so

a
jk
=

J,b{j
c
jk (i, fc = 1

, 2, . . .
, w) . (15)

Thus the matrices
(a^-), (6^.), (c^) are connected by the relations

Let us write the two characteristic determinants in the forms

ll = I-ASI, (17)

\ Vii \

=
|6y-A8y|, (18)
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with the usual notation for the Kronecker deltas. Using (15), we

write n

tf
j = l

(19)

We thus have () =
(cy)( )

=
( )(cw ). (20)

Now the determinant of the product of two matrices is equal to the

product of their determinants; so we have

Kl = |c| - || =
\v,j\

. \ct} \,
where \c tj \ J= 0; (21)

hence
|

-A8W |

= An (A)
=

|6 -A8W |. (22)

Again, each s-rowed minor of |^.| is a linear homogeneous function

of the s-rowed minors of
\u^\,

or of
\v^\,

and vice versa. For instance,

(23)
1 n

^
n

and the method of proof is general. The converse follows from the

relations

where
(c^-)

is the inverse matrix. The elements of a row in
(c^) are

proportional to the first minors of those of a column in
(c^); and we

have the relations

c =
7^ F~> where C ^

l

c
'v

(25)

From the relations (23), the H.C.F. of all s-rowed minors of

A
rt(A)

=
\Uy\ divides every 5-rowed minor of \Wy\\ hence the H.C.F.
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of all s-rowed minors of \w^\ is also divisible by that of all s-rowed

minors of \utj \. But, from the converse relations (24), we see that

the H.C.F. of all s-rowed minors of \u^\ is divisible by the H.C.F. of

all s-rowed minors of
\w^\. Hence the two expressions are identical.

But a similar connexion holds between \v{j \

and \w^\. If therefore

AS(A) is the H.C.F. of all s-rowed minors of the characteristic deter-

minant AJA), it has the same form, whether it is calculated from

|a# A8y| or from \b^ A8y |.

It is obvious that AS(A) must be divisible by AS_1(A), the corre-

sponding H.C.F. of the (s l)-rowed minors. We have already met
with the rational invariant factors

ES(X)
= A.W/A^A) (s

=
1, 2,..., n), (26)

in connexion with systems of simultaneous equations with constant

coefficients. These can be found by elementary algebraic operations

without solving the characteristic equation. If, however, the roots

of A^(A) are known, and we write

^(A) = (A-A,)(A-A;)4.., (27)

where (As,Ag,...) are unequal, the irrational invariants {(A Xs )
e
*}

are

called elementary divisors ofA
7i (A).

Following a less complete reduction by Jacobi, Jordan reduced

the most general linear transformation to a canonical form, which

is the analogue of Weierstrass's reduction of a pair of quadratic forms.

The canonical variables are divided into sets
;
each set is transformed

independently of the others, and corresponds to one elementary
divisor of A,? (A).

Jordan's Canonical Form. Every linear transformation (whose
determinant is not zero) is equivalent to one or more mutually inde-

pendent ones of the type

(28)

where A
t

is a root of the characteristic equation and (A A
x )
a an

elementary divisor.

If there is only one variable, we must have Yl
= \l y1 as the only

possible type of transformation, and the theorem is true. Assuming
its truth for n variables, we will prove it for (n-\-l). Consider the

transformation

(29)
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and let A' be any root of A
7l(A) 0. We can construct a linear form

z == 2 c ;2/i> such that ^ = A'z. Without loss of generality, let us

suppose that cn+l ^ 0. We may then eliminate yn+l and obtain an

equivalent transformation in the independent variables (z, y^ y
r

2 ,..., yn )

Z = A'z, \

(30)

If we ignore z and apply the theorem, assumed true for n variables,

to the (i/i), we obtain a number of sets of the type

(31)

Now let

so that

(i
= 1,2,. ..,<*), (32)

(33)

(i) If A
7

7^ A15
we can choose (^jj^g,...,^^ in turn so that z shall

disappear from these formulae (33). The set (U^) is then of the

canonical type.

(ii) If A' A
1?
A a does not appear in (33); but since, of course,

A
r

z 0, we can choose (A l)
A

2,...,A OL
_l )

so that z appears only once, in

the first equation of the set, whose form is now

U'2 =

(iii) If, by chance, % 0, the set (34) is canonical and no further

reduction is needed.

(iv) If there is just one set with the multiplier A' and a
v ^ 0, we

put a^z
=

A'^o, and adjoin u'Q to the set, which is now canonical in

(a+1) variables

[), ..., Uy = A'^^+^a). (35)
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(v) If there are several sets with the multiplier A', where the

coefficient corresponding to a is not zero, we select the one with the

greatest number of variables and reduce it to the canonical form (35).

If ft ^ a and another such set is (after eliminating z) of the form

Fi = A'(l+61 tii). F; = AX+i), ..., F =
A'(/J-i+i8). (36)

we have only to write

vl-vl-b^ (=1,2,...,/S) (37)

to obtain the canonical set of ]8 variables

F; = AX, F; = A'K+tS), .... ^ =
A'(^_X+^). (38)

We have thus completed the reduction for (n+1) variables, and the

theorem follows by induction.

14. Hamburger Sets of Solutions

Euler's Homogeneous Equation. The interchange of solutions

around a circuit is well illustrated by Euler's equation

= o (S = *z>), (i)

which has an isolated singularity at x 0, and which is soluble by

elementary methods. If all the (pr )
are unequal, a fundamental system

of solutions is given by yr
= xPr

(r
=

1, 2,...,n). After a simple

positive circuit about the origin, these undergo the canonical trans-

formation Yr ^\r yr {\r
= exp(2^r )}. (2)

IfF(8) has a multiple linear factor, (8p^ say, the corresponding

solutions are known to be

x?1
,
x? 1

log x,..., xP^log x)
71!-1

. (3)

These solutions are linearly transformed among themselves, but the

transformation is not of Jordan's canonical type. But we can easily

write down an equivalent system which does undergo a canonical

transformation. For this purpose let us introduce the notations

r ...
, / _L T _L(L-\)L = l ' LI

=
i?

' L* ^
2

' -' L

After the circuit, L becomes (L-\- 1) and the polynomials Ls ,
whose

form is suggested by the calculus of finite differences, become

(L+l).= i.-i+^. (6)

as is immediately verified. Since (L ,
L

lt ..., Ls ) arc respectively of
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degree (0, !,...,$) in L, they are linearly independent; and the set of

solutions (3) may be replaced by the equivalent set

ys
= xP*Ls^ (8=1,2,...,^). (6)

These undergo the canonical Jordan transformation

Such a set of solutions is called a Hamburger set.

Solutions at an Isolated Singularity. Let x = be a typical isolated

singular point of a linear differential equation, whose coefficients are

uniform analytic functions; and let P be a simple positive circuit

enclosing only this singular point. We shall suppose that the corre-

sponding linear transformation of the solutions has been reduced

to the canonical form, and that one of the canonical sets undergoes
the transformation (7).

Let p1 be any finite root of the equation exp(2^7rp1 ) A
t ,
and let

us put yr
= xPl zr (r

=
1, 2,...,7i1 ). Then the corresponding trans-

formation of the (zr ) takes the form

Z
l
= z

1 ,
Z

2
= z

l +z.2 , ..., Z
tti

'--= z
tli

._l+zfh
. (8)

Now we ''can write down n
v
sets of functions which are transformed

in this manner, namely

LQ ,
Lv L

2 , ..., Zf
/?i
_ 1

0, 0, 0, ..., LQ.

Since the determinant of this system is L%1
1, we can find n

L

functions (ivr ) satisfying the equations

z =

If we substitute these forms in (8) and use (5), we find the relations

which are equivalent to

(H)

(12)
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and imply that (wr) are single-valued in the neighbourhood of x = 0.

They can be expanded as Laurent series

w
r =IIr(x)= | c

rs
x* ^=1,2,...,^) (13)

K~ 00

converging in a ring (0 < e < \x\ < R), whose inner radius is as

small as we please.f The solutions of a canonical Hamburger set can

therefore always be expressed in the form

yr
= x*. fLni

_s I1
s(x) (r

- l,2,..., Wl ), (14)
s=l

where (IIs (a;)} ai'e locally uniform near the isolated singular point
x -- 0.

Regular Solutions. It may happen that each of the Laurent series

has only a finite number of negative powers of .r, which can be re-

moved by an adjustment of the value chosen for p^ the auxiliary

functions {ll r(#)} will then be holomorphic. A solution of this type is

said to be regular, and a singular point where all the solutions are of

this type is called a regular singularity.

15. Fuchs's Conditions for a Regular Singularity

THEOREM. The necessary and sufficient conditions that an isolated

singularity, say x 0, of the, homogeneous equation (E*) should be

regular are that it should be at most a pole of order r of the coefficient

pr (x) of J)n
~r
y, in the canonical form where the highest coefficient is

Po(x) = 1.

Following Thome, we proceed by induction. If the equation of the

first order \ * / 1 \

)y
= U (1)

has the regular solution

y = fax) - Ax[l+c 1 x+w*+...] 9 (2)

where 2 cn x>l converges when \x\ ^ R
l9 say, then we have

^ p l I'c 1+2c2 a;+3c3 a;
2

+...1X
[^

1 ~y~ C-t X ~i~Co X ~Y~ , . . J

- -^-V-&i*~&2*2
-> (3)

X

f The same method can be applied if the coefficients of the differential equation
are single-valued and holomorphic in a ring (r < \x\ < R) whose inner boundary is

finite and encloses several singularities, and if P is a circuit enclosing the inner

boundary.
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where 2 bn x
n
converges in some circle \x\ ^ jR

2 >
where < E2 < Rv

Hence PI(X) has at most a pole of the first order.

Conversely, if the coefficient^^) of (1) is of the form (3) the solu-

tion exp[ J Pi(x) dx] is regular and has an expansion of the form (2).

Thus Fuchs's theorem holds for equations of the first order.

Now the general equation witli uniform coefficients (E%) has at

least one solution, which is merely multiplied by a constant after a

circuit about the origin. Let this be chosen as the first solution of a

certain fundamental system, which undergoes the transformation

- f

*

(4)

whose determinant is not zero. Then the expressions

undergo a corresponding transformation with a determinant not equal

to zero : / n

They therefore satisfy an equation of order (n 1), whose coefficients

are uniform at x = 0,

W(ta> t...,h,z) = .

IK^^,,...,^)
' { '

or Z)-12+ ?1(a;)7)"-22+...+? ,t
_ 1 (

a
;)
2 = 0. (8)

We can pass from the given equation (E*) to (8) by putting

y = fax) J
z dx, (9)

and the coefficients are connected by the relations

(10)

-Vl , /W
A
+

i
0i \

l
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to which we may add the identity

i+ ...+Pn(x), (11)
<Pi 9i

expressing that (E*) is satisfied by ^(x).

First, suppose that the solutions
(<f>r(x)} are all regular. Then the

expansion of the leading solution ^(x) is of the form (2); its reciprocal

has a regular expansion

l/<f>i(x)
= x~P^+c(x+c^+...l (12)

and so (->
r
<i)/<i has at most a pole of order r at the origin. Moreover,

the (n 1) functions
{*j*r (x)} will also be regular; if the conditions are

assumed to be necessary for equations of order (n 1), the coefficients

{qr(x}} of (8) will have respectively poles of order r at most at x = 0.

The relations (10) and (11) taken in turn then show that (pr(x)} will

have respectively poles of order r at most at x = 0. Thus the condi-

tions will also be necessary for equations of order n. But we know
them to be necessary for equations of the first order, and so it follows

by induction that they are necessary in general.

Conversely, suppose that {pr(x)} have respectively poles of order

r at most at x = 0. We shall see in the next chapter how to construct

a fundamental system of n regular solutions; but let us assume pro-

visionally that there is one regular solution </>i(x) of the form (2).

Then the relations (10) show that {qr(x)} have respectively poles of

order r at most at x = 0. If the conditions are assumed to be

sufficient for equations of order (n 1), all the solutions
{*/ir(x)} of (8)

will be regular. By (9), we then see that all the solutions
{<f>r(x)} of

(E*) will be regular; hence the conditions will also be sufficient for

equations of order n. But we know them to be sufficient for equations
of the first order, and so it follows by induction that they are sufficient

in general.

Alternative Method.f A direct proof of the sufficiency of the con-

ditions has been given by Birkhoff, on the lines of an investigation by

Liapounoff . If the conditions are satisfied, we may write the equation
in the normal form

xDy+**-*P1(x)D-*y+...+Pn (x)y = 0, (13)

where {Pr(x)} are holomorphic at x = 0. If we put

yi
= xt-W-iy (i

= 1, 2,...,), (14)

f G. D. Birkhoff, Trans. American Math. Soc. 11 (1910), 199-202.

40G4 j
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this equation is equivalent to the system

This is a system of the type

Chap. IV, 15

(15)

x)yj (i
= l,2,...,n), (16)

where {A^x)} are holomorphic and admit an upper bound

\Ajj(x)\ < M in the circle \x\ ^ R (say).

Now the equation (13) has at least one solution, which is merely

multiplied by a constant after a circuit about the origin; and this

GO

can be written in the form x?l

H(x), where 11 (x)
= 2 cm xm a
m~ -co

Laurent series convergent in a ring (e ^ \x\ ^ R), whose inner radius

may be as small as we please. The system (15) will have a correspond-

ing solution yi
= xf)1 ll

i(x) (i
= 1,2,..., n). On the circumference

\x\
= r of a circle lying within the ring, 11 (a:) or (ll^a:)} are single-

valued and bounded. If we can find a real number K such that

|IJ t (#)|
= Q(\x

~K
)
as x -> along a fixed radius vector, we can show

that cm = 0, if m < K. For if P is the inner boundary of the ring,

we have by Cauchy's integral

I

^~ I (17)

and, if (K+W) is negative, this tends to zero as e is made arbitrarily

small.

Since (y t )
are analytic functions of x, or of logo:, we have

x-j
~ r

-j~*
where r = \x\. Hence (16) gives

dr

(18)

If (yi) are complex numbers conjugate to (y t ),
let

then we have from (18)

r-
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(19)

Along a fixed radius vector (r > r > 0), we have by integration

Iogrlogr
2nMi

and so, as r -> 0,
S(f) = 0(r

^
nM)> (21)

provided that $(r ) is bounded. Now, if p1
is complex, the factor

xPi can become infinitely large as am(#) increases or decreases in-

definitely. But, if am(o;) is bounded, $(r ) remains bounded; we then

have, a fortiori, \y^\ 0(r~
nM

)
as r -> 0. After removing the factor

x?i, we can choose K so that we have uniformly

H(x), ll
t (x)

= 0(r-) (\x\
= r->0). (22)

It then follows from (17) that the number of negative powers of # in

these Laurent series is limited. The particular solution ^(x) is thus

regular and the proof may be completed by induction as before.

EXAMPLES. IV

1. JACOBI'S FORM. Show that every linear transformation is equivalent to

one of the form

2, ELKMENTAKY DIVISORS, (i) If A
g(A) is the H.C.F. of all 5-rowed minors

of A n(A), show by differentiation that every root of A^^A) = is a root of

higher multiplicity of A n(A) 0.

(ii) If A^(A1 )
= 0, Ag_ 1(A 1 ) -/= 0, tlien A -- A r

is a root of multiplicity (n s-\- 1
)

n
at least of A W (A)

= 0; and the system 2 (
(t

tj ~-^i$ij)c i U =- l,2,...,?i) has
1-1

exactly (n $
\ 1) linearly indeponcl(nt solutions (M).

3. Show that the elementary divisors of the canonical characteristic deter

mimmfc
A,, o, o..... o
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4. If tho characteristic determinant is of the form

where (A, J5, (7,...) are canonical subdetcrminants belonging to the elementary

divisors {(A AJ)*, (A A2 )^, (A A3 )
v
,...} and where tho asterisks represent blocks

of zeros, show that:

(i) There is a first minor Aj~
1A n(A)/(A Aj)

01

,

a second minor A- 1
A?-

1A n(A)/(A-A1 )'XA-A2 )^, etc.

(ii) If (A Aj)* is tho only elementary divisor belonging to the root A - X lt

it is a factor in En(X).

(iii) If (A Ai)*, (A A^
01

', (A Ai)**,..., all belong to tho same root and

a: > <x
f > a* > ..., then (A A].)* is a factor in En(X) 9 (A AJ)' is a factor in

-&
7

/t_i(A), (A Xi)*" is a factor in En_z(X), etc.

(iv) Show that En(X) is divisible by AVi(A), E n_^(X) by E^X), etc.

[Cf. M. Bocher, Higher Algebra, 262-78; H. Hilton, Linear Substitutions,

1-33, 50-9; H. W. Turnbull and A. C. Aitken, Canonical Matrices,

64-73.]

5. Two LIMITING CASES, (i) An analytic function has singular points at

x -- o
1,a2 ,...,am , oo, and it is merely multiplied by a constant after any closed

circuit. Show that its logarithmic derivative is a uniform function, and that

it is of the form

f(x) == (x-a 1)Pi(x-aJp*...(x-am )

where ll(x) is uniform.

(ii) An analytic function has singular points at x = 0, oo only, and has n

linearly independent branches undergoing an arbitrarily assigned linear trans-

formation after a circuit about x = 0. Show that its branches are cogredient
with those of an equation of Euler's type F($}y = (S = xD).

6. By repeated use of Fuchs's substitution, show that a fundamental system

{<f>r(x)} at a regular singularity can bo written in the form

X

) J

where (ot^x)} are regular and free from logaritluns. Discuss how logarithms
make their appearance in the solutions.

7. LINEARLY INDEPENDENT SOLUTIONS. If (Xp ) are unequal, ifA vq are con-

stants, and if tho expression

tw =f i^Aj^
V-l -0

vanishes when x = 1, 2, 3, ..., show that

Apg
= (p ~ l,2,...,m; q -= 0, l,...,n).
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8. If (pp ) do not differ by integers, and if (H^x)} are single-valued near the

origin, show that if the expression

F(x) = f 2 o^log^n^')
p-i a=o

vanishes identically, then {Hpq(x)} all vanish identically.

[Consider the form of F(x) after s complete circuits about the origin.]

9. If {Tl^x)} are single-valued near x = 0, and if x? 2 (k>%x )

%N-M satisfies a
i-o

linear equation with uniform coefficients, then so does the coefficient of each

power ofA in the expression xp 2 (A H-log-)*Ut(#)'
t=o

1 0. If [nv (a;)} are single-valued near x -- 0, and (pj do riot differ by integers,

show that if an equation with uniform coefficients is satisfied by

it is satisfied by each group of terms
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16. Formal Solutions in Power-Series

Indicial Equation and Recurrence Formulae. LET x be a typical

singularity where Fuchs's conditions are satisfied. To expand the

solutions we use the normal form of Fuchs and Frobenius

*Dy+Pl(x)ar-iD-*y+...+Pn(x)y = 0, (1)

where {Pt (x)} are holomorphic at x = 0. Let 8 EE xD, so that

xmDm ~ 3(8 1)...(8 ra+1), and let (1) be written in the form

F(x 9 8)y
= 8*y+Ql(x)8-*y+...+ Qn(x)y

= 0. (2)

The coefficients (PJ and (Qt )
are mutually expressible as linear func-

tions of one another with constant coefficients, so that both sets are

holomorphic together. We now expand the coefficients in Taylor
series oo

I G<(s) = 2C3' (<=l,2,...,n), (3)
j=o

and write

/n
(4)

...,, J
..

The equation may now be written

and on substituting as a trial regular solution

y = xf[cQ+c1 x+c2 x*+...], (6)

we have m m

= 0. (7)

This vanishes identically if each coefficient is zero, or if (c t ) satisfy the

relations k

I**-<(H-)e<=0 (i = 0,l,2,...). (8)
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In particular, if c ^ 0, p must be a root of the equation

F (P )
= p*+Qw p*-

1+...+Qn0 = 0. (9)

This is called the indicial equation and its roots are called the expo-

nents of the given singularity.

Sets of Exponents. The number of linearly independent regular

solutions (6) cannot exceed the number of distinct roots of the

indicial equation and may fall short of it. For if two independent

solutions belong to the same exponent p, we can form by subtraction

a solution belonging to a higher exponent p', which must itself satisfy

the indicial equation. Thus one distinct power-series (6) at the most

is associated with each distinct exponent.

If FQ(p)
= 0, F (p+k) ^ (k

=
1,2,...), we may choose c ^ 0,

and every subsequent coefficient (ck )
is then uniquely determined,

But if several exponents differ by integers, the relations (8) may or

may not be compatible, and the number of distinct series may be

smaller than the number of distinct exponents.

Whenever there is a shortage of regular solutions of the type (6), on

account of multiple roots of the indicial equation or roots differing by

integers, the deficiency is supplied by solutions involving logarithms.

In practice these may be constructed either by a direct method, which

has been fully worked out by Heffter,f or by an artifice such as the

method of Frobenius.J We shall give modified versions of both

methods in this chapter.

Let all the roots of the indicial equation which differ by integers be

collected in sets, and let each set be arranged in order of ascending

real parts. We shall show how to construct all the solutions corre-

sponding to a typical set of h distinct exponents (/o t-)
of multiplicity

(/^). All these solutions are associated with the same multiplier

A = exp(2i7r/>), which is a root of multiplicity ]T Ki of the character-

istic equation belonging to a circuit about the origin.

Heffter's procedure consists in arranging the solution as a poly-

nomial in log x of degree less than n, with coefficients which are

regular series of the type (6); he constructs first all solutions not

involving log x, then those of the first degree, and so on. Instead of

this we assume at once a trial solution of the form

y = xp[uQ+UlX+U2 X
2
+...] 1 (10)

f L. Heffter, Einleitung in die Theorie der linearen Differentialgleichungen (Leipzig,

1894), 20-34, 104-32.

t G. Frobenius, Crelle'a J.fur Math. 76 (1873), 214-33.
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where (ut )
are polynomials in logo: of degree less than n. We then

have co oo

**(*,% = 2 2
t=0 j=

=
J,

(11)

which vanishes identically if (w ) satisfy the relations

2^(8+/)+X =
(i = 0,l,2,...). (12)

1=

This may be regarded as a system of linear differential equations with

constant coefficients in the independent variable t = logo:. We do

not require the complete primitive, but only the most general solu-

tion in polynomials. We can accordingly simplify the system as

follows.

The Auxiliary Systems. The first equation may be written

Ffo)K+^oW 8X+- = o, (13)

and is the generalized indicial equation. If u is a polynomial in t not

identically zero, this expression is a polynomial of the same degree

unless F (p)
= 0. For an effective solution, p must satisfy the

indicial equation; and if we identify it with the lowest root of the

set p pl9 the series belonging to the higher roots will appear in

due course. Since ^J)(8+pi)t* = Gf

1(S)8
lfxw

,
where 6^(0) ^ 0, the

polynomial UQ must satisfy the reduced equation

S*IMO
= 0. (14)

Again, suppose that the polynomials (uQ9 ul9 ...
9
uk^1 ) have been

found. IfF (p1 -\-k) ^ 0, uk is uniquely given as a polynomial, whose

degree does not exceed the highest degree of any earlier coefficient,

by the symbolic formula
, k-l

i=0

= Lk(u ,ul ,... 9
uk_l ). (15)

But if k PIPI, we have

F9(8+Pl+k) = Ftf+Pt) = Gi(*P {GiW^O}, (16)
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and then we have instead of (15) the relation

The structure of the solution is completely determined by the first

(N-\-l) relations, where N is the difference between the highest and

lowest exponents of the set. For every subsequent relation can be

reduced to the standard form (15). We may distinguish the h critical

polynomials U
t
=: u

p p >
and express all the others explicitly in

where (U^ satisfy a system of equations of the form

8*0; - 0,

:

=
>

Invariant Factors. Hamburger Sets. To each exponent p of multi-

plicity K correspond solutions beginning with

xP'(logx) (*
= 0,l,...,*c'-l),

which may involve higher powers of logo: in the later terms. To
resolve the aggregate of solutions into Hamburger sets, we have only
to eliminate as many (UJ as we can express explicitly in terms of

the rest, and to replace the reduced system of equations by an

equivalent diagonal system exhibiting the invariant factors of the

matrix of operators (19),

SejF._o (
= 1,2,..., A' < h', 2>* = 2*i)- (

2
)

The (%) are explicit linear functions of (Ut )
and their derivatives,

and vice versa; neither set can contain a polynomial of higher degree
than all the other set. Hence each invariant factor 8e

'

yields a solution

whose degree in logo; is (e
r

1). If we take this as the highest solution

of a Hamburger set, the other solutions of the set are constructed by

taking successive differences. Two different invariant factors yield

distinct solutions. For we cannot make (ut )
all identically zero unless

(Ut )
and (PJ) are also zero, and so no combination of (Ify yields a

nul solution except (yt
~

0).

17. Convergence

Rearrangement of the Series. When the critical terms at the

beginning of the series have been found and the degree s of the solu-

tion in logo; has been determined, we can calculate as many more
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coefficients as we require by means of recurrence formulae. We shall

suppose that the lowest exponent of the set has been made zero, by

putting y = xPiy*, to simplify the notation. We introduce binomial

coefficients and write

, (I)

where u
t N| .

j
c^(log )-', ^ = J c^a'. (2)

j=o ^' i~

By Leibnitz's theorem, we have

(3)

and hence, for any linear operator F = ^(a;, 8) of order TI,

F[uv]
= V i{jp(%}8^, (4)

i =

where ^^ is an operator of order (n i), formally defined by differen-

tiation as though 8 were a variable

=^0(35, 8)
= ^,8). (5)

Now F, = l

= 22

We must therefore have

F,
= (4 = 0,1,...,*); (7)

and, by re-combining these relations, where s does not appear expli-

citly, we find that the expressions

7
, Klogs+rj, [7 (loga;)

2+271(log a;)+72], etc., (8)

are each a solution of Jfy = 0.
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We now arrange (7) in powers of x, and find

Sinoe each coefficient vanishes, we have

(* = 0,1,...,*; ?==0,l,...,oo), (10)

and in particular, for q = 0,

= (4 = 0,1,...,*); (11)

*
/4\

these relations are compatible because [J^(0)]*
+1 = 0, since zero is a

root of the indicial equation.

If p = N is the highest exponent of the set, we assume that

coefficients of all powers of x up to XN have been determined by the

methods of 16. If q > N, FQ(q) ^ 0, and the coefficients of xq are

uniquely given by (10) in terms of the earlier coefficients.

Convergence. Let d be the shortest distance between x = and any
other singularity. Then the series {(2*0*0} are all convergent when

\x\ < d\ the convergence of
(Yj) may then be proved by means of the

following lemma. Let 2 bk x
k be any series convergent when \x\ < d,

and such that the equation

f 6t ** (12)

is formally satisfied by a power-series Y = ^ck x
k

\ then that power-
series is convergent when \x\ < d.

Assuming for a moment the truth of this lemma, we first establish

the convergence ofYQ) by putting zero on the right-hand side of (12).

Then, if we have proved the convergence of (lo>^if"'5V-i) we can

reduce the equation (7) giving 7^ to the above form (12); and another

application of the lemma establishes the convergence of Yk . The

convergence of the complete set of power-series follows by induction

with respect to k.
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Now (12) gives the recurrence formulae

Chap. V, 17

bk (i = 0,l,2,...), (13)

which are (by hypothesis) algebraically compatible. Let x be any
number such that \x\

= r < d\ and let R = \(r-\-d) < d. Then

because ^ Qtk xk an(^ 2 bk x
k are absolutely convergent when \x\ R,

their terms have upper bounds

\Qik \R*, \bk\R<M. (14)

Hence, for positive integers j, we have

(15)

1, we can

(16)

(k > N). (17)

ck x
k
by putting

(18)

Again, since -F (&) 7^ (& > N), and since
fe-

find a positive 6 such that

^(fc) > ^~
(Jfc > JV

From (13), (14), (16) we get the inequality

Okn \ck \

We now construct a dominant series

= 0(k-l)
nEk-lCk_l+Mkn-lRk-lCk_l (k >

Since lim (C
r

A./(7A._1 ) 1/jR < 1/r, the dominant series

(19)

absolutely convergent for the value of x in question, and a fortiori

the series 2 ck xk - The lemma has accordingly been proved; and the

convergence of all the series
(Y^)

follows.

18. Apparent Singularities

Example. Consider the equation

xD*y-(l+x)Dy+y = 0, (1)

which has a regular singularity at x = 0. If we substitute

y
~ 2 cn %p+n > we have the indicial equation and recurrence formulae

P(p-2)c =
0,

(p+-2)[(p+w)cn-cn_1]
= (n = 1, 2,...).
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As the exponents (0, 2) differ by an integer, we must examine whether

the solution belonging to the lower exponent is free from logarithms.

In fact, on putting p = 0, we find that c and c2 are both arbitrary,

and that _ >

Cl
~ C

'

(3)=
<>n-i (w = 3,4,...). /

The solution is y = A(l+x)+Bex )
as may easily be seen by elemen-

tary methods. Now this is always holomorphic at x = 0, so that we
are led to ask why this should be a singular point. The reason is that,

when x = 0, we have (y
~ A-\-B, Dy = A-\-B], so that arbitrary

values cannot be assigned to y and Dy at the origin.

Conditions for an Apparent Singularity. A singular point where

the complete primitive of the differential equation is holomorphic is

called an apparent singularity. If x = is an apparent singularity of

an equation of order n, there are n linearly independent ordinary

power-series (yt ) satisfying the equation, and we can arrange by sub-

traction that no two of them shall belong to the same exponent.

Accordingly the exponents of the singularity are n unequal non-

negative integers (p t ). Now the Wronskian determinant

is also regular, and belongs to the exponent

a = Pi+Pz+'"+Pn \n(n 1). (4)

This exponent cr is a positive integer for every admissible set of ex-

ponents except (0, 1,2,..., n 1), when we have a = 0. We then have,

by Liouville's formula,

= --+b +blx+b2 x*+.... (5)
x

If a = 0, PI(X) has a pole at x and the point cannot be an ordinary

point. But if a = and if, as we are assuming, every solution is

holomorphic, every coefficient of the equation

2 ,...,yn9 y) = Q m
...

9 yn )

{ }

is holomorphic at x = 0, and the point is an ordinary point of the

equation.

We can of course have a singular point where the exponents are

(0, 1,2,. ..,7i 1), but in that case the solution involves logarithms.
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As an example, the reader may examine the equation

xD*y-y - 0. (7)

If the roots of the indicial equation at x = are unequal non-negative

integers, we must examine the most general holomorphic solution

y 2 cn x
n

. If N ~
(pn pi) is the difference between the highest

and lowest exponents, we must examine the compatibility of the

(N+I) recurrence formulae satisfied by the coefficients of (o^
1

,

x^1+1,...,^n). The necessary and sufficient condition that the point

should be an apparent singularity is that the n critical coefficients of

the powers (x^) should be arbitrary, or that the rank of the system
should be (N n+I). We can always write the coefficients of the

non-critical powers of x explicitly in terms of these n critical ones,

and obtain a reduced system of relations between the latter only :

= 0,
(8)

The necessary and sufficient condition for an apparent singularity

is that all the coefficients (A fJ )
should vanish. Further details of the

procedure will be found in HefTter's treatise.f

It may happen that all the exponents at a regular singularity are

unequal, but differ only by integers, and that the solution is found

to be free from logarithms. In that case the solutions are rendered

holomorphic by a transformation of the type y = (x)Pl

y*, and the

point is said to be reducible to an apparent singularity.

19. The Method of Frobenius

D'Alembert's Method. Suppose we know that Euler's equation

F($)y = is satisfied by y = 2 C^o^, where (pr ) are the roots of the

indicial equation F(p) = 0. If the roots are unequal, this solution is

the complete primitive; but if there are multiple roots, fresh solutions

of a different type must be found. The latter can be obtained by

evaluating the limits of such expressions as

o o

pi

Pi

1

P2

1

P3

I

P\

Pi

I

Pi

P2

1 I

(1)

f Loc. cit. 20-34.
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when P! -> p2
-> p3 . The required solutions are, as we know, of the

type xP^logx, xP*(logx)
2

, etc., when pl is a double or triple root.

D'Alembert's method consists in introducing a parameter into the

equation, and studying the behaviour of the complete primitive as

that parameter approaches some critical value. Frobenius has

elaborated a method of this kind for obtaining all the solutions of a

linear equation at a regular singularity, when the exponents become

equal or differ by integers. We retain the same notation as before.

The Auxiliary Equation. Frobenius's plan is to consider an equa-

tionoftheform
F(x,8)y == f(a)x, (2)

where a is a parameter at our disposal. We shall choose /(a) slightly

differently from Frobenius, so that the coefficients of the solution

shall be integral functions of a. If the indicial polynomial at x = is

tfo(p) = (p~Pl}(p~~P^-"(p~~Pn)y (3)

we write x
F(z)

= T(zpl}Y(z~p2}...r(zpn }, (4)

1
r/ \ -i

where - - - = &zz 1 T (l+-)e~
2!/r

, (5)
1 \Z) 1 JL I \ Ti I

v ' r=l L v ' J

and y is Euler's constant. We now consider the equation

whose right-hand side vanishes when a = p^ m, where m is zero or

any positive integer.

We substitute formally

and obtain the relations

(+)c,() = (4=1,2,3,...).
i=0 /

Since we know that

r(z+i) = zr(z), Y(Z+I) = F9(zye(z), (9)

we find that c (a)
=

l/
l
F(cx+l), (10)

and we observe that cQ(ph ) ^ 0, if a = ph is the highest of a set of

roots differing by integers of the indicial equation j^ (a)
= 0. We

have further

c (a} =_ - _ -
t , .

fcV '
-

( '
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by (9) and (10), where hk(a.) stands for the determinant

...

(12)

**-s(+2) - FQ(*+k-l)

^fc(a ) Fk-\

**() =

Since this is a polynomial in a and l/\F(a++l) is an integral func-

tion, ck (oi) is an integral function, for which we require a uniform

upper bound in a circle |a| < K. To obtain a dominant polynomial
for Afc(a), we use the relations 17, (15),

'i(a) < o^+Mfa+I) 71-1 an +(/>((*) say, \

^(a) < R-vMfa+I) 11-1 =
R-v</>(oc) (q > 0), /

(13)

where E is any fixed number smaller than the distance from x =
to any other singularity, andM depends only on E. We now observe

that in the expansion of the determinant

an ,
615 0, ...,

(14)

every term is positive. Hence

(+l), -,

Now we can choose a positive number A such that

hence we have, uniformly in the circle || ^ K,

(15)

(16)

(17)
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Again, when 2 a = 2 & we nave> fr m tne definition (5) of F(z)

as a product,

J

Hence, as Jc -> oo, we have

l '

From (11), (17), and (19) we have now, when |a| ^ K,

\ck(oi)\ < R-k
H(K)r(2nK+B+k)/r(k), (20)

where H(K) does not depend on Jc.

The integral functions (c/c(a)} may be differentiated as often as we

please; and upper bounds for the derivatives when |a| < K' < K
are given by Cauchy's integral

<21i-

taken around the circle |z|
= IT; we have accordingly

\-f*-
-L\-

)
1 \fC f

The expressions (20) and (22) suggest dominant series of the type
x\-2nK-B- -

J

for 2 ck(oi)x
k and its derivatives with respect to a.

Since R is any number we please smaller than d and K is any finite

constant, the series ]T c$(oi)x
k
converge uniformly with respect to

a in any finite domain, provided that \x\ ^ d e <C d. The solution

(f>(x, a) is given by multiplying this series by #a
,
which is an integral

function of a for any value of x ^ 0.

Solutions given by a Set of Exponents. In a circle \x x
\
< 77,

which lies entirely within \x\ < d but excludes the point x = 0, the

relation , ^ ^ ^^(o,) (23)

is an identity between integral functions of a, which may be differen-

tiated as often as we please. If ph is the exponent with the highest

real part in our typical set of exponents differing by integers, we see

from the definition (4) that a = ph is a zero of multiplicity Kh of the
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right-hand side; but from (10) we know that cQ(ph ) ^ 0. We can thus

obtain Kh solutions of F(x, 8)y from the relations

-
(a
= 0,1,...,^-!). (24)

PA

These solutions are necessarily independent, since they are respec-

tively of degree (0, 1,...,*:^ 1) in logx, which appears when we

differentiate #a .

The second highest exponent of the set ph_t is a zero of multiplicity

(Kh-i~i~Kh) f khe right-hand side of (23), and yields (^_i+^)
solutions

=
(s
= Q, 1,..., **_!+**-- !) (25)

But a = ph_1 is also a zero of multiplicity KH of c (o:), so that the first

Kh of the solutions (25) turn out to belong to the exponent ph and to

be combinations of the solutions already given by (24). The last

Kh _1 solutions are new and linearly independent.

In the same way, the third exponent yields (

solutions

of which the first (/c^^+ic/J are combinations of the solutions (24)

and (25) and the last /c^_2 are new, and so on. Every solution can

thus be deduced from the expression (f>(x, a) by suitable operations.

20. The Point at Infinity. Equations of the Fuchsian Class

Change of the Independent Variable. If the equation (E*) has m
isolated singularities (x al9 a2,...,am )

in the finite part of the plane,

they can all be enclosed in a circle \x\ R, outside of which the

coefficients are holomorphic, except at x oo, which is an isolated

singular point or an ordinary point. To examine its character, we

put x = 1/2, and we say that x = oo is an ordinary, regular, or

irregular point (as the case may be) of the given equation, according
as z = is an ordinary, regular, or irregular point of the transformed

equation. Thus x = oo is placed on exactly the same footing as any
other point; this is graphically illustrated when we make a stereo-

graphic projection of the plane of the complex variable x (in the

usual Argand diagram) upon the surface of Neumann's sphere.
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A convergent series of the form

+... (c ^0) (i)

is said to belong to the exponent p at infinity.

Conditions for a Regular Singularity. If we use the form

x)y = o, (2)

and put x = ~, 8' = 2- #- = 8, (3)
2 dz do:

we have at once

= o. (4)

The necessary and sufficient conditions that 2 = (or # oo) should

be regular are that {$;(oo)} should be finite. In the canonical form,

this means that {x'pi(x)} must remain finite as x -> oo, or that

fl(x)
= 0(x~i).

Conditions for an Ordinary Point. To transform the canonical form

(E*), we put

Dk
y ~ x-kS(S-l)...(S~

= (-)
kzk+lD'k (z

k~ l
y); (5)

We now put k (n s) and change the order of summation,
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The leading term here is ()nz2nD'ny t
so that the canonical form

corresponding to the independent variable z is

F*y = D'y+p*(z)D'^y+...+p*(z}y, (8)

where

.. \n-s)(n-s-l)\ 'W
{9)

P*(Z) = (-)"Z-
Z
"Pnh

Now z is an ordinary point of the new equation, if all these

expressions are holomorphic; hence the necessary and sufficient

conditions that x = oo should be an ordinary point of the original

equation (.#*) are that the analytic functions

--r~l)! (8-12 n-l]X Pr() I*- 1 ' 2'""" l
>>

and (-Y&npn (x) (Po(x) = 1},

should remain finite there.

The Indicial Equation. If infinity is a regular singularity, we find,

on introducing an expansion of the form (1), that the coefficient of

the dominant term gives us the indicial equation in either of the

forms
/,_Q1(00)p-i+Q,(oo)p--...+ (-) n(oo) = 0,

or

+(-)Pn(oo) = 0,

(11)
where Pr(x)

~ xrpr(x) as before.

Equations of the Fuchsian Class. If the only singularities are m
isolated regular singularities in the finite part of the plane and a

regular singularity at infinity, the equation is said to be of the

Fuchsian class. If we put

ifj(x)
EEE (xa1)(xa2)...(xam ), (.12)

where (at )
are the affixes of the singularities at a finite distance from

the origin, the necessary and sufficient conditions that these should

be regular are that {$
rpr(x)} should be holomorphic for all finite

values of x. These expressions are accordingly integral functions of

x\ but (x
rpr(x)} are finite at infinity, so that we have

WWfPrW = n(m_1)r(z) (r
=

1, 2,...,n), (13)

where n a(#) means a polynomial of degree a.
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We can now write the equation in the form

^D-y+Em_1^-1D>^y+...+Umn_,l y = 0, (14)

with polynomial coefficients', the advantage of working with this form

in practice, in preference to the canonical one, is that the recurrence

formulae have only a finite number of terms.

Fuchs's Relation between the Exponents. If we put

>-< - sr
the indicial equation at x a

t
takes the form

... = 0, (16)

so that the sum of the exponents at x = a
t
is [\n(n 1) A

t].
The

indicial equation at infinity is

p(p+l)...(p+n^l)-(ZA t)p(p+l)...(p+n-2)+... =-- 0; (17)

so that the sum of the exponents at infinity is [J^ |w(ft 1)].

Hence we have the result that the sum of all the (ra+ l)n exponents is

Equations of the Second Order. The most general equation of the

Fuchsian class and of the second order is

Sy = 0, (19)

{m
A \ / m T) in s~i \

Y-^MAH- V -- ,+V 2/
= o, (20)

Z^-a,)/
J^\2

l
(x-a l)*^2

l
(x-at )l

y V ;

where 2, C t

~
0, as we see by expanding the last coefficient in

descending powers of x. Now, at x = a
t ,

the indicial equation is

p(p l)-{-A i p-\-Bi
= 0. If the roots of this are p pt

and p ~ p'it

we have
A i =l-Pt-p'i , B

i
= piP

'

i (i
= l,2,...,m), (21)

which gives the canonical form

= 0. (22)

{
x-i

The indicial equation at infinity is

(m
\ m

2^]P+I(St+C(
a

t)^0, (23)
i==l ; t = l
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and Fuchs's relation (18) may be written in the easily remembered

form m
(24)

If infinity is an ordinary point of the equation of the second order,

we find from (10) that

or, with the form (20) of the coefficients,

m m m m
2 A

t
= 2; 2 Ct

= 0; 2 (Bi+Ct a,)
= 0; (25,0,+ C; a?) = 0. (26)

i=l i1 i 1 i = l

Reduced Forms. If we put y = <f>(x)u, we have

) + ) . = 0. (27)

We can choose <j>(x) in 2m ways, so as to reduce to zero one exponent
at every singularity in the finite part of the plane ;

one choice is

I

ftx) = IT (x-a t)f, (28)
t-1

and the others are obtained by interchanging (p^ />'J.
If we introduce

the exponent-differences 8^
=

(p^ p t ),
we find that (27) takes the

form

u = 0, (29)

exhibiting the exponent-differences (8 t ).
We may call this the first

reduced form.
We can also choose <j>(x) so as to make the middle term of (27) dis-

appear; this requires that

<f>(x)
- exp[-| J Pl(x) dx], (30)

and leads to the second reduced form

D2u+Iu=Q, (31)

where / is the invariant

)-\{Pl(x)}\ (32)

/ s = + .. (33)
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The necessary and sufficient condition that the equations

)y
- 0,

(34)
D*z+ qi(x)Dz+q2(x)z

= 0,

should be transformable into one another by putting y zx(x) is

that they should have the same invariant, or that

p2-lDPl-lpl = / = q,-\Dq^lq\. (35)

EXAMPLES. V

1. BESSEL'S EQUATION. If v is not an integer, the solution of

xzDz
y -\~xDij-\- (x*-v*)y =

is y AJv(x)-\-BJ_v(x), where

r/r \ _
Jv(x] ~

m~0
2. BesseFs equation of order zero

xD*y+Dy+xy =
OO

can be satisfied by y = 2 Uzmx2m > where (u2m ) are polynomials of the first
m

degree in log x, determined by the relations

3X - 0, (S-l~2m)Xm+w2w_2
= o.

The reduced equations for polynomials are of the form

1

The solution J (^) corresponds to w 1. If we put u ^ 2 log( jx) -f- 2y,

where y is Euler's constant, we have Hankel's function

(ml

Since \jj(m-\-l)
~ logm, the series converges for all finite values of x, except

x = Q.

3. If n is a positive integer, Jn(x) = ( )

nJ^n(x). The second solution

[00

T

2 M
2TO a?

i

wnere (w2m) are polynomials of the first degree in logo:,
m=o J
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is determined by the relations

,

= 0, (S-f 2n)8w2n-fwaw_2 0,

2n)u2k -\-u2k_2 (k =7^ 0,n).

Show that the equation is satisfied by
w-i

(n w-

2/
Y

^n\\

4. KUMMEB'S EQUATIONS. The doubly confluent hypergeometric equation

xD*y+cDy-y =
is satisfied, when c is not an integer, by

y^A^(
where ^F^c^x) ^ ]

Show that the equation is connected with Bessel's by the relation

5. The simply confluent hypergeometric equation
' xD2y+(c~x)Dyay =

is satisfied, when c is not an integer, by

y = A 1
F

1(a;c;x)-\-Bx
l~c

1
Fl(a~c-}-I;2c;x),

where i^i(a >
c > )

=== l~f~; #4- *~n
1^2

-f-"-

If c is an integer, the condition that the solution should bo free from

logarithms is

(i) c> 1, (a-c+l)(a-c+2)...(a-l) = 0,

or (ii) c < 1, a(a-j-l)(a-f 2)...(a c)
= 0.

6. If c = 1, the logarithmic solution is in general

m

Examine the form when a is a negative integer or zero.

7. If c is an integer greater than unity, the solution involving logarithms is

in general

c-2
c_m

y = 2 ^"^r^ x*-*+

y[logcc+0(a-fw) i/j(c-}-m)~ 0(m-|-l)].

m^b

By putting y xl~c
y

f
or otherwise, obtain the corresponding form when c is

an integer less than unity.
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8. HYPEBGEOMETBIC EQUATION. If c is not an integer, the equation

x(l x)D 2y+[c-(a+b+ l)x]Dyaby =
is satisfied by

y =

i *> N T , ,where F(a,b;c;x) ,, 1 + *+-

9. If c is a positive integer, the equation is in general satisfied by
c-2

_ ^V / \

ml

~^p^^

10. If c is an integer less than unity, the equation is in general satisfied by

= V (_)o+ I
Z-i m<

11. (i) Tho exponents of the hypergeometric equation at x = are (0, 1 c).

If c is an integer other than unity, the singularity will bo free from logarithms if

c-i
c > I and n [(a- r)(b r)]

= 0,
r^l

or c < 1 and fl [(<*+*)(*> +r)] = 0.

r=

(ii) The exponents at x = 1 are (0, c a 6). If (c ab) is an integer

other than zero, the singularity will be free from logarithms if

a+b-c
(a+ b c) > and ff [(a r)(b r)] = 0,

r= l

c a 61
or (a+ 6 c) < and H [(a+0(6+r)] = 0.

r=

(iii) The exponents at x = oo are (a, 6). If (a 6) is an integer other than

zero, the singularity will be free from logarithms if

a-6-l
a > 6 and YI [(b+r)(b c+r)] = 0,

r=

6-a-l
or a <b and J3 [(a+r)(a c+r)] = 0.

r=

12. Examine the singularities of the associated Legendre equation

- 0.

4064
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13. Show that Laplace's tidal equation

has regular singularities at x = 1, apparent singularities at x = i/, and an

irregular singularity at a; = oo.

[It is simplest to use Prof. A. E. H. Love's transformation

=_
(f*-x*)dx

9 py dx

which gives (1 xz
)D*z+p(f

2
x*)z = 0.

See H. Lamb, Hydrodynamics (5th ed.), 313.]

14. Construct a linear differential equation of the second order satisfied

by y = (x l)
p and y = (cc-fl) . If p ^ q, show that there are regular

singularities at x = 1, oo, and an apparent singularity at x = (p+q)/(qp)-

15. Show that the exponents of an equation of the Fuchsian class are un-

changed by a linear transformation x' (Ax+B)/(Cx-\-D). Hence show that

the most general equation with only one regular singularity can be trans-

formed into Dn
y 0, and that with two into Euler's homogeneous equation

**(% = 0.

16. Verify the expansions in the preceding examples by the method of

Frobenius, where it is applicable.



VI

THE HYPERGEOMETRIC EQUATION

21. Riemann's P-Functionf
Definition. THE most celebrated equation of the Fuchsian class is the

hypergeometric equation, and it is instructive to begin by showing
how it is determined by certain quite general properties of the solu-

tion. Following Riemann, we denote by

a b c

any branch of a certain many-valued analytic function of x with the

following properties.

(i) Every branch is finite and holomorphic, except at the three

singular points x = a, 6, c.

(ii) Any three branches are linearly connected.

(iii) At x = a there are two principal branches (P<
a)

,
P<a

')) which

are 'regular' and belong to the exponents (a, a')- Similarly there are

two regular branches (P(
>, P(

'>) belonging to the exponents (ft, ft')

at x 6, and (P(y)
, PW) belonging to the exponents (y,y') at x = c.

(iv) The exponent-differences (a' a), (ft' ft), (y' y) are not

integers; and the six exponents are always connected by the relation

<*+<*'+ft+ft'+7+y' = I. (I)

It is evident that the meaning of the P-symbol is unaltered if we

permute the first three columns, or if we exchange the two exponents

(a, a') in the same column, and similarly (ft, ft') or (y, y').

Linear Transformation. If we put

-BC^O), (2)

we obtain a P-function of the new independent variable x', with

singularities at the points x' = a', 6', c', corresponding to x = a, 6, c,

and with the same exponents, so that

(abc\ fa' b
f

c' \

ft y
a[
= P ft y x'\. (3)

ft' y } U P V )

f B. Riemann, Mathematiwhe Werke (1892), 66-83,
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In particular, we can make the singularities coincide with x' = 0, oo, 1

by putting _ (x-a)(b-e)_~
(x-b)(a-c)'

and we observe that this is one of the anharmonic ratios of the set of

numbers (a, b,c,x). For the P-function with the singularities in the

standard position we may write more simply

R \

''
Q' '

p y

By permuting (a, 6, c) the transformation (4) may be effected in six

different ways, the new variables being connected by the relations

/
. 1 1 x x~-l /t .

x' = x, 1x, -, --
,
--, - . (6)

x lx xl x

The same function is represented by six schemes with different

independent variables

y 1

P
\y

'

P \

^ '
x
r }

Change of Exponents. It also follows from the definition that

(7)

4
)

and similarly

^.-j-rf-,
'

",
.)

-
p(+

8

s^- >+' A M
\a p y } \OL +6 ft b y +e /

We can thus assign arbitrary values to two exponents at two distinct

singularities, without introducing a new singularity or disturbing the

relation (1). These transformations leave invariant the exponent-
differences (a' a), (jS'jS), (y' y); we may therefore write

P(oLoL,j$
r

p,y
f

--y,x) for the family of functions

, 4I
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The Differential Equation. After describing any closed circuit, two

linearly independent branches (yv y2 )
of the P-function are trans-

formed into branches of the form (#n2/i+ai22/2> #2 1 2/1+^222/2)* where

(an a22 al2 a2l ) ^ 0. Hence the determinants

y, Z)?/, D2
y*ui Ji yi

(10 j

are each multiplied by (an a22 a12 a21 ), and so any other branch

satisfies an equation of the second order with uniform coefficients

W(yl) y2 )

-

This has regular singularities at x 0, oo, 1
; any other singularities

must be apparent, since the solutions are holomorphic. But apparent

singularities are excluded by the condition (1). For consider the

Wronskian of any two independent solutions W(yv y2 ); in the neigh-

bourhood of x = this may be written as a numerical multiple of

the Wronskian of the principal branches W(P^\ P(a/)
), which is

regular and belongs to the exponent (a+a'l). Hence and by
similar reasoning

W(Vi> 2/2)
^ 0(+'-1

) as x -> 0,
'

= Ofa-P-P-
1
) asa;->oo, (12)

^ 0{(lx)Y+y-
1
} as x -> 1.

Accordingly the expression

#(*) = xi--'(l-xY-y-YW(yi,yz) (13)

is holomorphic for all finite values of x\ and, as x -> oo, we find from

(12) that

<l>(x)
= 0(x^-'W-y-y^l+^) - 0(1), (14)

on account of the relation (1). By Liouville's theorem <f)(x) is a con-

stant; and so W(ylt y2 ) cannot vanish for any finite value of # other

than zero or unity, and hence there are no apparent singularities, for

the reasons explained in 18.

The differential equation is now found to be uniquely determined

by its singularities and exponents, by the method of 20, (20)-(23),

in the form
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For the general scheme, Papperitz obtained the elegant canonical form

(xa) \(x-a)(x-b)(x-c)
*

' 16
'

Reduced Forms. We can reduce one exponent to zero at each of

the singularities x = 0, 1, in accordance with (9), by putting

'a B v \ / oL-4-BA-v \P 7
x

}
= x(lxpP\

^^7 x \
(
1? )

,a' j8' y' / \a'-a a+j8'+y y'-y /

By interchanging (a, a') or (y, y') we can effect the reduction in four

ways; and since the method is applicable to each of the six schemes

(7), we obtain altogether twenty-four reduced forms in six different

independent variables.

If we introduce the exponent-differences

A = a' a, ju,
=

j3' j8,
v = y'-y, (18)

we find from (1) that

and so the reduced scheme (17) may be written

/O 4(1 A u v) \P 2V ^ ' A (20)I \ 1/1 ^k I

\ I x '

and on inserting these values in (15) we have the reduced equation

V
W<>. (21)

The other reduced forms are found by changing the signs of A or v.

The second reduced form, or invariant form, is found by removing
the middle term of the equation. We must therefore make the sum
of the exponents unity at x = and x = 1, and this can only be done

in one way for a given scheme. The new scheme is

\i

/

and corresponds to the differential equation

2~ -
(23)~

' ( }

which involves only the squares of the exponent-differences.

The Hypergeometric Equation. While Riemann's equation clearly
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exhibits the exponents, it is not the most convenient form for

numerical calculations. We identify (21) with the standard hyper-

geometric equation

x(l-x)D*y+[c-(a+b+I)x]Dy-aby = 0, (24)

by writing

X=lc, /* =(a&), v = cab, \
} (

25
)

The scheme of the hypergeometric equation (24) is therefore

/ a \

P\ x],
\lc b cab I

and we observe that the condition (1) is automatically satisfied.

22. Rummer's Twenty-four Series

Solutions at the Origin. To construct the regular solutions of the

type y = xP ^ cn x
n

,
we use the form

8(8+c-l)y-*(8+a)(8+&)y = (8 = xD), (1)

and obtain the indicial equation

p(p-\-c 1) = 0, (2)

and the recurrence formulae

(n+p+l)(n+p+c)cn+l = (n+p+a)(n+p+b)cn . (3)

If c is not an integer, the principal branches are

p() == F(a,b;c'9 x), P(a/) xl~c
F(a c+l,6~c+l;2 c\x), (4)

with the usual notation for the hypergeometric series

From (3) we have lim (cn+1/cn ) 1, so that the solutions are conver-
n -oo

gent when \x\ < 1. The first series reduces to a polynomial if a or 6,

the second if (a c+1) or (b c+1), is zero or a negative integer.

Prom the four equivalent Riemann schemes

nt a \ /, x fc / a \
P( a;), (lx)c-a-b

P( x],
\lc b cab / \lc cb a+bc /

l-c c-b b-a x-

l__c c-a a-6 a;-!

(6)
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we can write down four equivalent expansions of the branch P(a)
,

which is holomorphic at x == 0, namely

F(a,b;c',x), (I-x)
c-a ~b

F(c-a,c-b;c',x), \

The expansions in powers of# converge when |

x
\
< 1

;
those in powers

of xj(x 1) in the half-plane \x\ < \x 1|. In the same way, by a

linear transformation of the Riemann scheme, each of the six prin-

cipal branches can be expanded in four ways, in ascending or descend-

ing powers of x, (lx), or x/(x 1). The domains of convergence of

the various series are the interior or exterior of the circles \x\
= 1 or

\lx\ = 1, or the half-planes bounded by the line \x\
= \xl\.

These series, which were obtained by Kummer, are given in the

following table.

Table of Kummer's Series

23. Group of Riemann's Equation

Invariants. The principal branches of a Riemann function (whose

exponent-differences are not integers) are single-valued in the upper
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half-plane, and are connected by the relations

otfr
PW =

a; PW+oy PV>.

The mutual ratios :

a
l' : i :

V
(2)

j8
'

<*y <Y

are independent of the choice of the constant multiplier belonging to

each branch, and were determined by Riemann as follows.

Let us consider the effect upon the two solutions (1) of a simple

positive circuit, beginning and ending at a point of the upper half-

plane, and enclosing x = and x = 1. We may regard this as a

sequence of two positive loops, first about x = and then about

x = 1, or else as a negative loop about x oo. The new branches

obtained from (1) can therefore be expressed in the two alternative

forms

We may take the first equation of each pair (1) and (3) and solve for

(P$\ P$'>), and we may do the same with the second equation of each

pair. On eliminating (P(
$\ P^), we have two linear relations between

(P(
y\ PW) which are identically satisfied for all values of the latter;

this will give four relations between the coefficients. Thus the two

expressions for P(& are

(4)

+oye^
a'+

and from these and the corresponding forms for P(P"> we get the

relations

<y e<7rflcsin ?r(cx+^+y')
'

+ aye^

^T?
7^' sin TT(OC'

These relations are compatible, because 2<x=l. If we write
4064 N
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(A,/z,v) for the exponent-differences (a'- a, )8' /?,)/ y), we have

sin7r(a:+j8+y) = cos|7r(A+At+^), etc. The relations then become

= cos j7r(A+ju,+v)cosi7r(A /
a
y

(6)

The coefficients will be evaluated below in 26.

Exceptional Cases. If we have cos ln(X+fjL+v) 0, we must also

have
(ap>

=
oy)

or else (a = = OL'
Y ). We can then arrange the

notation and the constant multipliers of the principal branches so

that the relations (1) become

p(a) _. p(0)

The first solution is merely multiplied by a constant after any closed

circuit; and, since it is regular at infinity, its form can only be

P
1
= x (l x)y [a polynomial]. (8)

Similarly, there is a solution expressible in finite terms whenever

cos j7r(A/Ltv) 0. In the hypergeometric form, we find that

A/iv - (l-c)(b-a)(a+b-c) (9)

must be an odd integer. Hence one of the numbers (a,b,ac,bc)
must be an integer. We shall see that these cases are soluble by

elementary methods. When the hypergeometric equation is satisfied

by a polynomial, its group is generated by the transformations

corresponding to circuits about x and x 1 respectively, where

yl is the polynomial and y2 the other principal branch at # 0.

General Case. If cos %TT(XIJLV) ^ 0, we can reduce the relations

between the solutions at x and x 1 to the form

p(a<) = p(y)+ /cp(y')
>

where K = = ^--^-v^
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The generating transformations expressed in terms of the principal

branches at the origin are

Y
'

(13)

The latter is obtained by expressing the transformation in terms of

(P(y\ p(/)) and eliminating (JW, P</>) by means of (11). It is evident

that K ^ 0, oo; and it may be verified that K ^ 1, because

sin ?rA sin Try 7^ 0. Thus the relations (13) are well determined.

Associated P-Functions. In the relations (5) the exponents appear

only through the multipliers (e
2/;7Ta

), so that P-functions with the

same multipliers have the same group. Consider three functions

(14)/V f
~~

I \ 4* ~~l>
~

' \~ -} > "/7 \ /

Pi 7i

whose respective exponents are congruent modulo 1. If (Xt ,^ vt ) are

the exponent-differences (aj a^,^ ft, y^ y^), we have, on account

of the relations T a,-
= 1,

(15)

and so A^ A
;-+/^

-

/>t;-+^ ^ ~ an even integer. (16)

We may restrict ourselves to the reduced forms

/o KI-A,-^-^) o

where the necessity of the condition (10) is apparent, if the multipliers

at infinity arc equal. We suppose the branches so chosen that the

coefficients in (1) arc the same for i 1,2,3; and we consider the

expression

(18)

This belongs to the lower of the exponents (c^+aj, 0^+0^-) at a; 0,

(&+$} $4~$/) at ^ = oo, (yi+yj>y^+y/) at cc = 1, and these may be

written
au
~

L
a<~^ aj'~r ati~t~ (X

./~~l
/l*"~~ /VU

(19)
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Thus x-^(x IJ-w/S^ belongs at infinity to the exponent

and is holomorphic for all finite values of x, so that it is a poly-

nomial of degree

Nti
=

t[|A<
-A

/ |+ l/^-^l+ |v<-vy |-2] > (20)

which is an integer because of (16).

Three corresponding branches of the three functions are of the

form 'PW (i=l,2,3), (21)

with the same coefficients (A, A'). These are connected by the relation

Pi &>3+^2 #31+^3 Sia
= 0. (22)

If (a,y) are the lowest exponents of the triads
(oc^)

and (y^)

differing among themselves by integers, we can remove a factor

#a
(l x)* and find a relation

^1X1+^2X2+^3X3^0, (23)

where xi is a polynomial of degree (<*23 a+y23 y-fA^), and so on.

24. Recurrence Formulae. Hypergeometric Polynomials

Contiguous Series. We can illustrate Rieniann's theorems on
associated hypergeometric functions by means of Gauss's relations

between contiguous functions. The six functions

F(al,b'9 C]x), F(a,bl'9 cix), F(a 9
b-

9
cl-

9 x)

are said to be contiguous to F ==
F(a,b\c\x), and are denoted by

Fa+ , etc. Each of them can be simply expressed in terms of F and

DF, and on eliminating the latter we get fifteen relations between
F and any two contiguous series, which were given by Gauss. To pass
from F to Fa+ ,

we must multiply the coefficient of x 11

by (a+n) and
remove the factor a\ this is readily effected by the operator (8+a),
where 8 = xD. We thus have at once three of the required formulae

<+ = (&+a)F, (1)

bFb+ = (8+6)JF, (2)

(c-l)lJ. = (8+c-l)JP. (3)

We next write the equation for Fa_ in the form

[8(8+c-l)-(8+o-l)(8+6)]^ --=
0,

or



Chap. VI, 24 THE HYPERGEOMETRIC EQUATION 93

on using (1), with (a 1) written for a, we now get

(c-a)Fa_ = [(8+c-a)-*(8+6)]J,

i.e. (c-a)Fa_ = (I-x)$F+(c-a-bx)F, (4)

and (c-b)Fb_ = (I-x)SF+(c-b-ax)F. (5)

Finally we have the equation

[8(8+c)-*(8+a)(8+6)K+ - 0,

i.e. [8-jc(8+a+6-c)](8+c)Jc+ - (c-a)(c-&)sJFc+>

which gives by means of (3)

(c-a)(c-b)Fc+ = c[(lx)DF+(c-a-b)F]. (6)

Our six formulae may now be arranged as follows:

xDF = a(Fa+~F), (!')

= b(Fb+-F), (2')

(c--l)(^_-n (3')

x(l~x)DF = (c a)jpa_+(a c+6x)^, (4')

c(l a;)!)^ = (c~a)(c-b)Fc++c(a+b-c)F. (6')

Gauss's fifteen relations now follow by equating two values ofDF.

Associated Series. Gauss showed, by constructing chains of conti-

guous functions, that any three series F(a-{-l,b-\-m',c-{-n:> x), where

/, m, n are integers, are connected by a linear homogeneous relation

with polynomial coefficients. By differentiating the hypergeometric

equation a certain number of times and eliminating intermediate

derivatives, we can show that this is true for any three derivatives of

F(a,b\c\x). Any other associated series can be expressed in terms

of F and DF ~
(ablc)F(a+l,b+l',c+l-x)

by repeated use of the operations (l)-(6), the results being very
similar to a celebrated formula of Jacobi given below.

If A; is a positive integer, we have from (1)

akF(a+k ) b'J c-) x) = (S+a)(S+a+l)...(S+a+fc-l) JF

= xl-aDk
[x

a+k-l
F(a, 6; c; x)] 9 (7)

where ak = a(a-\-\),..(a-}-k 1).

Similarly from (3),

(ck)kF(a, b\ cfc; x) = xl-*+kDk
[tf-

l
F(a9 6; c; x)]. (8)
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Again, we may write (4) in the form

(c a)x

and hence we have

(c a)k x*-
a+k

(l x)
a+b~c-k F(a k,b;c;x)

=
(z

2
Z>)*|>'-( 1- x)

a+b~c
F(a, b

;
c

; x)].

But (x*D)
k = (x$)

k

= x8(8 I)...(S-

= xk+*Dkxk-*, (9)

and so we find that

(ca)kF(ak, b\c\x)

^xa-c+\lx)c-a-b+kDk
[x^~

a+k-\lx)a+b-c
F(a,b\c\x)]. (10)

In the same way we have

(c a)k(c b)k F(a, b\ c-\-k; x)

= ck(l-x)
(;
-a-b+kDk

[(l~x)
a+b-cF(a ) b',cix)]. (11)

Jacobi's Formulae.f If M == xc- l
(l x)

a+b~c
)
the hypergeometric

equation may be written in the form

D[x(l-x)MDy] = ah My. (12)

Similarly, we may differentiate the hypergeometric equation (& 1)

times and write

D[x
k(l-x)kMDk

y]
= (a+k-l)(b+k~l)xk-1(l-x)k-lMDk-l

^/ ) (13)

whence we have the recurrence formula

Dk
[x

k
(l-x)

kMDk
y]
- (a+k-I)(b+k-l)Dk-l

[x
k~l

(l-x)
k-lMDk-l

y]

- <*k bk My. (14)

This is true for every solution of the hypergeometric equation. If we

put, in particular, y = F(a,b\c\x), and so

we may remove the factors ak bk , provided that F is not a polynomial
of degree less than k, and we then have

Dk
[x

k(lx)k
MF(a+k,b+k',c+k;x)] = ck MF(a,b\c\x). (15)

If b = 7i is a negative integer, so that F is a polynomial of degree n,

t C. G. J. Jacobi, Werke, 6, 184r-202.
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F(a+n, b-{-n\c-\-n\x) is unity, and then we have a finite expression

for the hypergeometric polynomial

cn F(a, n\c\x) = a;
1-c

(la:)
n+c-fl

J[)
w
[a*+

w-1
(l )-]. (16)

Again, if b = n, we have on differentiating n times the hyper-

geometric equation the relation

x(l x)Dn
+*y+[(c+n) (a+n+l)x]Dn+1y = 0. (17)

For the polynomial (16) we have Dn+1y 0; and for the general

solution
&+n(i-x)a-+ij)n

+iy = constant, (18)

Dn
y = C ( x-c-(lx)c-a-1 dx. (19)

In the general formula (14) we may put k = n and introduce this

expression for Dn
y\ the second solution is then expressed in a finite

form involving a single quadrature

My ADn \xn(lx)nM f x^-^lx) -^1 dx\. (20)

By expanding in descending powers of x, we see that this is the

solution belonging to the exponent a at x oo. We give among the

exercises formulae showing that the hypergeometric equation is

soluble in finite terms, if any of the numbers (a,6,c a, c b) is an

integer.

Another Notation.f To exhibit the polynomials of Legendre and

Tschebyscheff as particular cases of Jacobi's, it is convenient to

place the singularities of the hypergeometric function at x = il, oo,

and to modify the exponents. We write

D"[(x- !)+(*+ 1)^], (21)

and find from (16) after a little manipulation

1, -n; + 1
; , (22)

the scheme of the differential equation being

'-1 oo 1

P -n x. (23)

-ft (ot+p+n+1) -OL

Thus P(

%>$(x) is a solution of

= 0, (24)

f G. P61ya and G. Szogo, Aufgaben und Lehrsdtze . . ., 1, 127; 2, 93. R. Courant
and D. Hilbert, Methoden der mathematischen Physik, 1, 66-9, 72-5.
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and a second solution is

xDn
\(x

l)+(a?+l)0+ J (x-l)-*-
n
-*(x+l)-P-

n~i
dx].

(25)

Generating Function. If </>(z) is holomorphic at z = x and cf>(x) ^ 0,

andif
(26)

then an analytic function which is holomorphic at z = x can be ex-

panded by Lagrange's formula

}- (27)

If we differentiate with respect to w and afterwards write /(z) instead

of<f>(z)f'(z), we find the expansion

Let us here write

= 1/^.2 i\ ffv\ = //*._iw/*a_njB ^

(29)
z = x+lw(z*-l).

The root which tends to x as w tends to zero is

z = w~l
[l (l-2xw+w2

)*], (30)

and (21) and (28) together give

| w(x- l)(
n =

___ [I w(l 2xw+
"~

^a
+^(l-2a;w;+^

2
)*

_ (a-l)(o:+l)[l-w+(l-2;EW^"~

(I~2xw+w2
)*

(31)

Hence P(

>$(x) is the coefficient of wn in the expansion of

y o,nP(a,ftra: ^ ^ [l-^+(l-2^+^)^[l+^+(l-2^+^)i]-^
n
2

o

^ fn P(x)
-

.

(32)

If a = j8
= 0, we have the well-known formulae for the Legendre

polynomials
~, .CO _

n(^-\Y. (33)
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Orthogonal Relations. If u EE= P(

>&(x) and v == P^^(x), we have

by cross-multiplying the differential equations the relation

=
(TI m)(n+m+a+p+l)(I x)*(l+x)&uv. (34)

If the real parts of a,/? are greater than 1 and if m ^ n, we may
integrate between the limits i 1> and we have

*. =
J (l-xni+xP%P>(x)P%>P>(x) dx = (m^ n). (35)

-1

To evaluate the integral when m n, we write

i

..
=
J |=^[D"{(i-*)

+
"(i+a;

J
(i )

25. Quadratic and Cubic Transformations

Quadratic Transformation. There arc many known cases of the

transformation of one hypergeometric equation into another by rela-

tionsofthetype tf = ftx ), y' = wy, (1)

and their systematic enumeration was begun by Kummer| and com-

pleted by Goursat.J The only possible transformations of the equa-
tion with three arbitrary exponent-differences are linear; and those

of the equation with two unrestricted exponent-differences are at

most quadratic. The higher transformations are connected with the

theory of the polyhedral functions and apply to equations having

only one free parameter or none.

t E. E. Kummer, J.fur Math. 15 (1836), 39-83, 127-72.

i Soe particularly: E. Goursat, Annales de Vficole Normale, (2) 10 (1881), Suppl.
3-142 ; Acta Soc. Sc. Fennicae, 15 (1884-8), 45-127.
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The quadratic transformation is most clearly expressed by Rie-

mann's scheme

(2)

where (j8+j8'+y+y') = i- It is applicable whenever one exponent-
difference is , or when two are equal. The canonical form of the

equation with two equal exponent-differences is that of the associated

Legendre equation

(lx2
)D2

y2xDy-{-\ n(n+l) ^ \y
= 0, (3)

whose scheme is

1-1

oo 1

\m Ti+1 lm x W
\m ~-n \m ,

If we put x cos in (4), we have the relations

P(
n

cos2

<9|

(5)

We thus obtain Olbricht's 72 hypergeometric seriesf in ascending or

descending powers of

(6)

Whipple's Formula.J We can also write (5) in the equivalent form

t E. W. Hobson, Spherical and Ellipsoidal Harmonics (1031), 284-8.

j F. J. W. Whipple, Proc. London Math. Soc. (2), 16 (1917), 301-14; Hobson,
loc. cit. 245.

cos2
0, sin2

^, cot2
^,
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\

cosh a

-I co I

= sinh~*aP< iw+J \+m \n+l cotha). (7)

{ In I \~m \n \

Since the formula is symmetrical in (^+i), we may assume that

the real part of (n+l) is positive. We then obtain two alternative

expressions for the branch belonging to the exponent (n-\-l) at

cosh a oo or coth a = 1. We have by definition, at x co,

X

and so

m -\-n-\-
,.

Again, we have by definition, at x = 1,

and so

Pr-i-\(ooth) = -J- e-(+Wi+OT, i-*;n+|;
1~ thtt

)

On introducing the expressions (9) and (11) on the left and right of

the relation (7), we obtain Whipple's formula, which was originally

established by transforming contour integrals, namely

.,. (12)

Cubic Transformation. When two exponent-differences are
-J-,

or when all three are equal to one another, we can apply the
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transformation

(0 oo

x (13)= p
{ y y y v

y y

where (y+y') = \ and w = exp(2^?r/3). We can also apply the

quadratic transformation to either of the two expressions (13), and

Riemann thus obtains six equivalent P-functions

P(V ,
V,v,x3 ), P(v,\V,l,xt ), Pdv.to.faxJ,

I
P/l i, i. <v \ P/l lu 1 /v I P/JLw 2 1.. . \ I

* '

* \$>*
/
> a'j'M/j * \a> 2 r? fj^s/j -Ma^? F> 2 v>^6/> /

where T

2
= 4a?8(l ar8 )

=

(15)

To each of these we can apply the general linear transformation.

Repeated Quadratic Transformation. If one exponent-difference

is J and the other two are equal, we have the equivalent schemes given

by Riemann p( , , p( 9
,

\ *^2/

If two exponent-differences are |, we have an elementary function,

P
(?

'
_*Iv

X2
)

= P
{-1 1 -I (^1)

since

000

26. Continuation of the Hypergeometric Series

Convergence on the Unit Circle. The simple ratio test suffices to

prove the convergence of F(a, 6; c; x)
= 2 c ^n in ^ne interior of the

unit circle, but fails on the circumference. Now we have

c a I= 1

(a+n)(b+n)
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and
'n+I

(1)n

hence, by Raabe's test or by direct comparison with
]

n~k
,
the

series is absolutely convergent on the unit circle if R(cab) > 0.

We observe the significant role of the exponent-difference at x = 1
;

for if R(c~-ab) > 0, both the principal branches remain bounded

as x -> 1, with any fixed amplitude of (x 1).

If R(c~a b) ^ 1, the general term does not tend to zero, so that

the series is definitely divergent. A still more delicate test is required

in the doubtful range of values ^ R(cab) > 1. We observe

that in this case |cj -> 0; provided that x ^ 1, we may make the

transformation

aw\ V r VH< / _1_ V (/> n \<*n O\
%) 2, cn x C0~T 2* \

cn cn-l)x > \*l

and this is expressible in terms of two contiguous series

c(l-x)F = x(b-c)Fc++c^, (3)

both of which are absolutely convergent. Hence the series converges

(though not absolutely) at all points of the unit circle except x = 1,

when ^ R(cab) > 1.

To consider F(a,b\c\ 1), we use the gamma product

ff r (a+r)(6+r) i _ r(C)r(a+6-c)r miH [ (c+r)(a+b-c+r)\ f(a)f(b) [
^

\n)\'
V ;

which enables us to compare the series with one involving binomial

coefficients

The series of error terms is absolutely convergent, by Raabe's test,

if R(cab) > 1. The sum of the first (n+l) coefficients of the

series (1 x)
c~a~b is the coefficient ofxn in the series (1 a;)

c~a~6- 1
,
and

this can be verified by elementary methods. This tends to infinity,

and so F(a,b\c\ 1) diverges, when R(c-ab) < 0. If (cab) = 0,

both sides of (4) become infinite. But we can remove the unwanted

factor (a+bc) in the denominator, and so obtain the logarithmic

comparison series 2 %n /n, from which the same result follows.

Gauss's Evaluation of F(a, b\c\ 1). Consider the relation between

contiguous series

(c-a)(c-b)xFc
,+-c(c-a-b)xF = c(cl)(lx)(Fc_F). (6)

If R(cab) > 0, both F and Fc+ converge absolutely in the closed
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interval (0 ^ x ^ 1). The series Fc_ need not converge at x 1; but

at any rate its coefficients tend to zero. If we apply to it the trans-

formation (2) and put a; = 1, the sum of the series on the right is

limcn = 0; by Abel's theorem on the continuity of a power-series
n >oo

we have therefore lim[(l x)Fc_] 0, and hence

c(cab)F(a,b;c;l) = (c-a)(c-6)^(a,6;c+l; 1), (7)

and accordingly --
l

F(a,b;c+n;l) (c+r)(c-a-b+r)

If a, 6, c are fixed, the series F(a, 6; c-\-n\ 1) converges uniformly with

respect to n, when n > n say; since each term except the first tends

to zero, we have

limF(a,b',c+n]l) = 1. (9)
?l >oo

The terms grouped in square brackets in the product (8) give an

expression of the type 1+ 01
J

;
so that the product converges,

and may be evaluated like (4) by means of gamma functions. We
thus have finally

-">-{Si&
It is convenient, even when the hypergeometric series is divergent,

to write *-,, Nri/ , x

This remains finite unless the argument ofone of the gamma functions

is zero or a negative integer.

Kummer's Continuation Formulae. We can now evaluate directly

the coefficients of the continuation formulae in 23; but we must first

remove all ambiguity regarding the branches of the hypergeometric
function. We shall make a cut along the entire real axis from

x = -co to x co, and consider the branches defined in the upper

half-plane by the foliowhig conditions.

(asz->0),

(12)

< am(a;) < TT, TT ^ am(l x) < 0.
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The coefficients of the formulae

will be found by making x -> 1 and x -> 0.

(i) IfR(c a b) > 0, the first expansions in the table ofRummer's

series give, when x -> 1,

P<*> -> $a, 6, c), PM -> <f>(a-c+l, 6-c+ 1, 2-c),
(14)

and hence

(ii) If R(cab) < 0, the second Kummer series of each function

gives, as x -> 1,

p(a')^ (l_ :r)c-a-6^( 1_ aj !__^ 2 C), 1 (16)
I

and hence

a , =
(f)(c a, c 6, c), ay/

= <(! ^, 1 6, 2 c). (15 b)

(iii) If R(l c) > 0, we have also, as x -> 0,

The relations now give

a^^(a,6,a+6c+l)+ay^(c---a,c--6,c--a--6+l)= 1,
|

.

Jg
,

oL
y (f>(a,b,a-}-b c-\-l)-\-oLy<j>(c a,c~b,c a b+l) = 0. /

(iv) If .#(1 c) < 0, we have, as x -> 0,

' xl~c
(f>(a c+1,6 c+l,a+6 c+1), } (19)

and these now give

-M-6,c-a-6+l)-0,
(18b)

In any particular case, two coefficients are given directly by (15 a) or

(15b), and the others are found from (18 a) or (18b). But it is easy
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to verify, by means of the definition (11) and of the relation

r(z)r(l z) = TrcosecTrz,

that all the eight relations are consistent. The connexion between

the solutions at x = and x = oo are similarly obtained from the

expansions in powers of x/(x 1) and of 1/(1 x). We thus have

always

<t>(a>b, c) <f>(c a) cb,c) \

<f>(a-c+l,b-c+l,2~c) <(i_ a? i_& ? 2-c) /

<f>(a,cb,c) #6,c a,c) \

e^ l -c
ty(a-c+l, 1-b, 2-c) e^-^b-c+l, l~~a

} 2-c)j

(20)
27. Hypergeometric Integrals f

Euler's Transformation. An effective method of continuing the

hypergeometric series beyond its circle of convergence is to represent
it by a definite integral, where the variable x appears as a parameter.
The oldest method of representation is due to Euler and has been

developed by many writers. Euler's integral was transformed by
WirtingerJ into one involving theta functions, but we shall confine

ourselves to the classical form. Equivalent results were obtained by
Pincherle, Mellin and Barnes||, using integrals with gamma functions;
but we shall omit these, as they are well known and readily accessible

to English students.

A linear differential equation of order n, whose coefficients are

polynomials of degree m, can in general be satisfied by integrals of

the type -

y = j(u-x)f-^(u)du 9 (1)
c

along a suitable path (7, where is a constant to be determined and
where the auxiliary function

(f>(u) satisfies a differential equation of

order (m-\-ri). If, however, the coefficient pr(x) of l)n
~r
y is of degree

(nr), the equation for <^(u) is of order n; and in a very special case

it is only of the first order, so that the equation becomes soluble by

t B. Riemann, Werke, 81-3; (Nachtrdye) 69-75; 0. Jordan, Count d'analyse, 3,

251-63; F. Klein, Hypergeometrische Funktion (1933), 88-111 ; L. Srhlesinger, Hand-
buch, 2(1), 405-524.

J W. Wirtinger, Wiener Berichte, 3 (1902), 894-900; A. L. Dixon, Quart. J. of
Math. (Oxford), 1 (1930), 175-8.

||
E. W. Barnes, Proc. London Math. Soc. (2), 6 (1907), 141-77; E. T. Whittaker

and G. N. Watson, Modern Analysis, 280-5.
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quadratures. Let Q(x) and R(x) be polynomials of degree n and

(n 1) respectively, and consider the equation

2 (

W

7*)
r
\x)Dn

-ry~ y
1

1"",

~~ 1

)^
(r)
(^)^

n-r-1
2/
= 0. (2)

r=0 * ' r=0 * '

On introducing the expression (1) for y and removing the constant

factors (n l)(n 2)...(1 ), we find

(n-fl
J (*-*)*--*[J ^

==r==0

-
J (-*)*-[2

(M^#r)
(*)W)^ = 0, (3)

G

or, by Taylor's theorem,

J [(n g)(ux)t-n
-lQ(u)(ux)t-n

Il(u)]<f>(u) du = 0. (4)

The integrand is an exact derivative, if </>(u) is so chosen that

[QMftu)] = R(u)^(u} y (5)

We then complete the integration and determine the path C from the

condition
[(-*)f-Q( W )]

= 0. (7)

Hypergeometric Integrals. To identify the hypergeometric equation
with the standard form (2), we must have

Q(x) - x(l-x),

(8)

On eliminating the polynomials, we have a quadratic for the para-

meter
, namely

tf+a-l)(f+&-l) = 0, (9)

and the root ^ (1 a) gives

E(x) =- (ac+l) (ab+ l)x. (10)

From (6) we now get

<f>(u)
= Aua-c

(l-u)
c-b-1

, (11)

and the path must be chosen so that

[u-*+i(l--u)
e
-*(u--x)--*] = 0, (12)

4064 p
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with corresponding results for the second root (16). The inte-

grand of the expression

y == A f ua
-(l u)

c-b-l
(u x)'

a du (13)

has in general four singularities u = 0, oo, 1, x.

It may be shown that the six pairs of singularities each yield a

solution corresponding to one of the six principal branches of the

hypergeometric function (any three being of course linearly con-

nected). If the expression (12) vanishes at both the critical points,

an ordinary integral between these limits may be taken; such integrals

were considered by Jacobi and by Goursat. In the most unfavourable

circumstances it is necessary to consider double-loop integrals inter-

lacing each pair of singularities; these were introduced by Jordan

and afterwards rediscovered by Pochhammer. Let P be any con-

venient point in the w-plane, and let a definite initial value be assigned

to the integrand. The three simple loop integrals about the three

finite singularities may be denoted by
(0+ ) (l-f)

Ln
=

J , L, = / ,
Lx
=

J
. (14)

P P P

A positive loop about u = oo is topographically equivalent to a

sequence of negative loops about u = 0, I, x (taken in the proper

order).

If the integrand is holomorpMc at one of the points u 0, 1, x,

the simple loop integral vanishes, but the point can be taken as an

end point of an ordinary line integral or of a simple loop integral

about one of the other singularities. If it is a pole of the integrand,

the simple loop satisfies the condition (12) and furnishes a solution.

In general, the expressions (14) are not themselves solutions; but any
double loop circuit satisfies the condition (12) and the corresponding

integral can be written in terms of the simple loop integrals (14), for

example

(o+,i-f,o-,l-) (o-f) (l-f) (o-) (1-)

f
_|_ g2tV(a-c)

f \. e2in(a-b) f I e2i7r(c-b) f

P P P P
(O-f) (l-f) (0+) (l-f)

= f
_J_ c

2iir(a-c) f _ 62i7r(c-6) f f

P P P P

. (15)
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The Forty-eight Eulerian Forms. If we put u = l/t, we obtain

Euler's own forms

(16)

These are respectively valid if (b y
c b) or (a, c a) have positive real

parts and ifx has any value not lying in the real interval 1 ^ x ^ oo;

when the conditions are not satisfied, an appropriate double or simple

loop contour must be substituted.

Each of the integrals (16) belongs to a set of twenty-four, obtain-

able by linear transformations of the integrand interchanging the

points (t 0, oo, 1, l/x) in all possible ways. For example, the

involutions
xtt'-t-t'+ l = 0,

(17)

interchange the points in pairs and give four forms equivalent to the

first of the pair (16), namely
i

J
t
b
-*(l-t)

c-b-l
(l-xt)~

a
dt,

(1 a;)c-a-b J V~b-l(l-t)l>-l(l-xt)-
c
dt,

o

00

xl-c
(l-x)

c-a~b
t-(t-iy-

c
(xt-l)*>-

1
dt,

OO

xi~c f
t
a-c

(t I)-
a
(xt i )'-&-! dt.

(18)

The other transformations lead to Eulerian integrals where x is

replaced by one of the expressions

* x / 1 f\\

, --. (19)
x xl

But it was pointed out by Biemann that there is no elementary
method of transforming the two integrals (16) into one another; he

suggested that both could be derived from the same multiple integral,

* i *

-, 1x, ~,
x lx
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evaluated in different ways, and the required integral was afterwards

found by Wirtinger.

Deformation of Contours. An expression for the hypergeometric
function which is valid in the entire plane, cut along the real axis

from x = I to x = +00, is given by

J
t
b
-\l-t)

c -*>-l
(l-xt)-

a dt

F(a 9 b;c;x) - C
- -

.

----------- ------ (20)1

The contour C is in general a double loop interlacing t = and t 1
;

but in special circumstances it may be replaced by a simple loop,

or a figure of eight, or an ordinary line of integration between the

critical points.

Suppose now that the point x crosses the cut in the plane of x, and

describes a complete circuit about x 1. In the plane of /, the

ningular point t = l/x describes a circuit in the same sense about

t = 1. The new form of the solution (20) is found by deforming the

contour of integration so that it never passes through a singular

point of the integrand. To fix ideas, let the starting-point P lie on

the real axis in the interval (0 < t < 1), and let the initial amplitudes

of t, (I/), and (1 xt) all tend to zero, as t -> in that interval. We
consider the contour integral

(1 + ,0+ ,1-,0-) (l-f) (0+ )

J
= [1-e

2
^] J -[l-e

2
>^>] J

. (21)

p p p

After the point t = l/x has described a circuit counter-clockwise

(0+ )

about t = 1, the simple loop integral J is unchanged. But the

deformation of the contour of the other integral is indicated by the

figure

o ? b a01
Fia. 1

and the new value of the integral is

(l-f ,!/ + , l-Kl/sc-,!-) (1-f)

f = f +ea*r(c-&> . (22)

p p p



Chap. VI, 27 THE HYPERGEOMETRIC EQUATION 109

Hence the integral (21) becomes

(l-i-,0+,1-,0-) (l/a?+,l+,l/a:-,l-)

J + [e
2MC-&)_ e2*Vc] J

, (23)

P P
and the second double loop integral may be shown to be a multiple

EXAMPLES. VI
1. Verify that

log(l+.T) xF(l, 1;2; x). [GAUSS.]

2. Verify that H (] { r)n _ Iim2jp(~n,6; 26; -x),
b->0

ex --= limF(l,b;I;x/b),

cosh a? = lim F(a, b; J;#
2
/4a&),

a, &~>oo

sirihtf = lim xF(a,b;$;x
2
/4ab). [GAUSS.]

3. Verify that .^u,.^^ J"'
6->oo

o^cja;) = lim F(a,b;c;x/ab). [KuMMEB.]
a.5->oo

4. By means of the equation D^y-^-n^y = 0, show that

( i^+ i i^+ l;i; tan2
.r),

= cos~n
~ lx F(^n -{- J, \n -j- 1

; f ; tan2
#),

and obtain corresponding forms for cosnx. [GAUSS.]

5. By making n > in the above, show that

= sin # cos # .F( 1 , 1;f;sin
2
o;),

= tan x F(, 1 ; 1 ; tan2
a;). [GAUSS.]

6. Obtain another solution of the hypergeometric equation satisfied by

F(a, b; 1; x) by evaluating

li-
lr

-

7. Show that

= D[x*- l
( l-x)b~c+l

F(a, b; c; x)]. [T. W. CHAUNDY.]
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8. HYPERGEOMETKIC POLYNOMIALS, (i) If a is a positive integer,

(2-c)a_ 1
JP

T

(l~a,l-6;2-c;a?) =

(ii) If (a c) is a positive integer,

ca_c F(c-a,c-b;c;x) -- xl

(iii) If (ca) is a positive integer,

9. LEGENDRE POLYNOMIALS, (i) If n is a jjositive integer, the equation

(l x*)D*y 2xDy+n(n+})y ---

is satisfied by Pn(a;) = Dn
(x*~ l)/2"n!.

(ii) By operating with (xD n-\-2) or (arZ)-|-w+ 3) on

^P^-tajD+n+lK^-nJP^a?) - 0,

show that

(2n+ 1 )P(^)
- DP

(iii) Obtain by integration the relations

Jtn+l)Pn+1(a:)
- (2n+l)a;Pn(a ;)H-nPfl_1(a ;

)
- 0.

Verify that these agree with the recurrence formulae of P|f>0)
(

10. (i) If n is an integer, Legendre's equation is satisfied by

(ii) By examining the partial fractions corresponding to the zeros of Pn(x),
sliow that

where T î_ 1(a*) is a polynomial expressible in the form

11. If n is a positive integer, show that

PM(.*)= ^(n-fl,-n;l;i

PM- (2n)! X-F(
n x "na n -Px " X ^~ ~ "~n

;)+wgn_1(a:)
- 0.

12. ASSOCIATED LEGENDBE EQUATION. By means of the scheme of 25, (4),

show that the associated Legendre equation is soluble in finite terms if n or
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(mn) is an integer; by the quadratic transformation show that it is also

soluble if (m-f ) is an integer.

13. (i) RODRIGUES'S LEMMA. If (n^m) are positive integers, show that the

associated Legendro equation is satisfied by the equivalent expressions

J ._.
(n-f-w)! (n m}\

(ii) SCHKNDEL'S LEMMA. If n is a positive integer, show that the associated

Legendre equation is satisfied by the equivalent expressions

(r_J.J/~~

14. TSCHEBYSCHEFF'S POLYNOMIALS. If Tw(cos#) ^ cosn^, show that

+n*Tn(x) = 0,

15. JACOBI'S RELATIONS. If C7
/t(cos ^) = - -.,- , show that

sin u

n

(n+D

16. If n is a positive integer and (01 -\-fi-\-n-\-\)
--- 0, show that

17. RECURRENCE FORMULAE. Show that

by eliminating DPfr(x) t obtain a recurrence formula connecting three succes-

sive Jacobi polynomials.
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18. KUMMER'S QUADRATIC TRANSFORMATIONS. Show that

19. Showthbt

8;a+j8;4(*3-a;)V{(l-^^

20. DIHEDRAL EQUATIONS. If
//, ^ 0, show that

/O LL/O i^t

H -
1

= l/i Vj+V(a;-l)-

(x = cos2
^).

If two exponent-differencos are halves of odd integers, the P-function can be
written in terms of P(J,/i, J,a?) and its derivatives.
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21. Ifp is an integer, Elliot's limiting form of Lamp's equation

d^U

555
+ [k

z -p(p+l)cosee*e]u -

has the finite solutions

The associated Logendro equation can bo reduced to the above by either of

the transformations

(i) x = icotO, y u, m2 == k2
, n p;

[Z. V. Elliot, A eta Mathematica, 2 (1883), 233-60. See also Journal

London Math. Soc. 5 (1930), 189-91.]
22. (i) Show that

satisfies the equation

and obtain other solutions by interchanging (m, 1 m) or (n, \ n).

(ii) Ifumn is a general solution, verify the recurrence formulae

d

m.l

(iii) If A; 7^ 0, show that

wm>n
=

where F(z] is a rational fiuiction of the type

F(Z) - Aw_1^-1+^m_ 2
^- 2+...+^ +...+^ 2_n 22-w+^ 1-n^-^

[G. Darboux, Theorie generale des surfaces, ii. 207-13.]

23. If the exponent-differences at x and x = 1 are halves of odd

integers, the hypergeometric function has two solutions whoso product is a

rational function of x. If in addition the exponent-difference at x = oo is

rational and has the denominator N, there are N solutions whose product is

merely multiplied by a constant after any closed circuit.

[Transform to Darboux 's equation and consider the expressions

^(cot B)F( - cot 6), elNkoF*(cot 9) e-*NkeFX( - cot 0).]

24. If the hypergeometric function has two distinct branches whose product
is merely multiplied by a constant after any closed circuit, the branches become

multiples of themselves or of one another after any circuit. Deduce that

either (i) there are two branches expressible in a finite form, or (ii) two of the

exponent-differences are halves of odd integers.

[A. A. Markoff, Math. Ann. 28 (1887), 586-93; 29 (1887), 247-58;

40(1892), 313-16. Comptes rendus, 114 (1892), 54-5. E. B. van Vleck,

American J. of Math. 21 (1899), 126-67. E. G. C. Poole, Quart. J. of

Math. (Oxford), 1 (1930), 108-15; 2 (1931), 90-6.]
4064 Q
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26. (i) Show, by means of the relation 2 = 1, that Riemann's equation

cannot have two solutions expressible in finite terms ifthe exponent-differences

are not integers.

(ii) If a, 6 are integers of opposite sign and c is not an integer, verify that

the finite expressions F(a,b;c;x) and xl~c
(l x)

c-a-bF(l~a, 1 -b;2-c;x) are

branches belonging to the same exponent at infinity.

(iii) If a, 6, c are integers and > a > c > 6, the complete primitive is a

polynomial. Show that any solution vanishing at x and x -~ 1 must

vanish identically. Examine the equation

#(1 x)D*y (3-lx)Dy 12y = 0.

26. LOGARITHMIC SINGULARITIES. Show by the methods of 26 that

27. GROUP OF LEGENDRE'S EQUATION, (i) When n is not an integer, two

independent solutions of Legendre's equation are

Vl = Pn(x) =

(ii) lim

(iii) The transformations corresponding to positive circuits about x =b 1 are

1
^--

2/i \
Yi
^

2/i+ (2iin7r/i)2/2 ,

2
= (2isin7rn)2/1+ 2/2 , / 2̂

==
2/2 -Y2

(iv) The transformation corresponding to a negative circuit about x oo,

or to positive circuits about x = 1 and a; = 1 in turn, is

(v) The characteristic equation is

1 A, 2ishi7m _
2i sin Tin, 1 4sin27m A

and the multipliers A = exp( =t2i7rn) are unequal unless n is half an odd

integer; in that case the invariant factors are [(A-j-l)
2

j 1] and the singularity

x oo is logarithmic.

(vi) From the formulae of Ex. 10 above, write down the corresponding
transformations of two linearly independent solutions, when n is an integer.

28. SCHLAFLI'S INTEGRALS. Solve Legendre's equation by means of Euler's

transformation, and hence show that, when 1

1 x\ < 2, Pn(x) can be expressed
in either of the forms

U+.a+)

/
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where P is a point t = t > 1 on the real axis and initially |am(
-
x)\ < TT.

Show that the integrals can be evaluated as residues when n is an integer,

and deduce Rodrigues's formula.

29. If R(n-\-l) > Oand \x\ > 1, show that

/n+1 n+ 2 1

30. If Pn(x) is defined by the first integral in Ex. 28, show that, after x
<l+ .as+ )

has described a positive circuit about x = 1
, the integral J becomes

p
(l + .aj+ .-l + .as+ .-l-.z-)

J ; and show that the latter gives the value
p

o

in agreement with Ex. 27.

3 1 . ASSOCIATED LEGENDRE EQUATION. Show that branches of the associated

Lcgondre function are represented by the Eulerian integrals along suitable

contours
(*- !)*/ J (_ \)(t-xr*--* dt,

(x-\-l)
m

l2(x~l)-
m

l
2

J (t- l}
n+m(t+ \}

n-m
(t-x)-

n~l dt.

c

Show that alternative forms are obtained by interchanging (n+1, n) or

(m, m). When can these be evaluated as residues in finite terms ?

[Cf. E. W. Hobson, Spherical and Ellipsoidal Harmonics (1931), ch. v.]

32. COMPLETE ELLIPTIC INTEGRALS. If A/2 = (1 k2
), show that the com-

plete elliptic integrals of the first kind

wa
K ---

J ( 1
- &asin2

0)-* dO -

i7r^(i, i; 1 ; k2
),

o

K' -
jV-A^sin^-'etf- \irF(^ i; l;Aj

/a
),

o

are both branches of PI
![

&2
1. Show that this is equivalent to a

Logendre function of order J. By putting t
2 ~ sin2

0-f A;~2cos2
^, show that

ilk

K' =
J
(-l)-*(l
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33. The complete elliptic integrals of the second kind are given by
77/2

E =
J (l-Fsin2

0)* dO

o

W2
E' =

f (l-fc
/2
sin0)* dS =

By means of the relations between contiguous functions, show that

E = kk'*^ -f fc'
2K, #' = k'k*~

ak dh

By means of Abel's relation, show that the expression

EK'+E'K-KK' =

where x = k2
, is a numerical constant. By examining the asymptotic form

of K, K? as x -> 1, show that

Hence obtain Logendre's relation

EK'+E'K-KK' = ITT.

34. (i) Two independent solutions of the equation of the periods in elliptic

functions
, x(l-x)D*y+(l-2x)Dy-~y =

are yl =f(x) = K and y2
=

if(I x) = iK' t

i

where K = $ J
H( 1- )-*(! -a*)-* *.

o

17*

i

(ii) Show, both by the method of power-series and by the method of de-

formation of contours, that the transformations corresponding to positive

circuits about x and x I are

(iii) If z =z:
1/2/i/i, show that after any closed circuit z undergoes a trans-

formation of the modular group

z^ +b
cz-\-d

where a, d are odd and 6, c even integers, and (ad be) = 1.

[J. Tannery and J. Molk, Fonctions elliptiques, iii. 188-214; E. Picard,
Traite d'analyse, iii. 358-64.]

35. LOGABITHMIC SINGULARITIES, (i) Any hypergeometric function with
a logarithmic singularity at x is expressible in terms of the derivatives of

x\
o b 1-0-6

x
r
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(ii) The branch F(a, 6; 1 ; x) is a multiple of the Eulerian integrals

(0+,aH-)

p

(0\.x+)

or
J

ub
-*(l u)~

a
(u x)~

b du.

(oi-.iuo-.i-)

(iii) The integrals f or their degenerate forms (when they vanish

p

identically) give the branches

x-aF(a,a-,a 6; l/x) and x~b
F(b,b ',b-a; l/x).

[Cf. W. L. Ferrar, Proc. Edinburgh Math. Soc. 43 (1925), 39-47. The
notation has been altered to conform with the text.]



VII

CONFORMAL REPRESENTATION

28. Schwarz's Problemf
P-Functions whose Group is Finite. THE cases where the hyper-

geometric function is algebraic, or has only a finite number of

branches, were enumerated by Schwarz in 1873. His methods and

some of his results had been anticipated by Riemann in his lectures

in 1858-9, but these remained unpublished until 1902.

If only a particular branch is algebraic, the complete primitive

being transcendental, that branch must be merely multiplied by a

constant after any closed circuit; for otherwise we should have two

independent algebraic branches and the complete primitive would

be algebraic. The particular branch is accordingly the product of

#a
(l X)Y and a hypergeometric polynomial, and the equation can

be solved completely in finite terms by means of one quadrature, in

accordance with Jacobi's formula.

If every branch is algebraic, the exponents must be rational. For

after m circuits about x = 0, say, any branch

transformed into {Ae
2i7TmoiPM+A'ezi7TmOL

'PM}', and, if (a, ex') were

irrational, the number of distinct determinations would be infinite.

We can easily dispose of cases where one of the exponent-differences

is an integer. For we know how to determine whether the correspond-

ing singularity does or does not involve logarithms. If it does, the

solution is certainly transcendental; if it does not, we can make a

transformation of the Riemann equation which reduces the singu-

larity at x = 1 (say) to an apparent singularity, where every branch

is holomorphic. The two principal branches at x either resume

their initial values, or are multiplied by constants, after any closed

circuit (supposing that (a' a) is not also an integer). Accordingly
each of them is the product of a power of x and a hypergeometric

polynomial. If two exponent-differences are integers and the solution

is free from logarithms, we can arrange that x = and x 1 shall

both be apparent singularities, and the complete primitive will then

be a rational integral function.

t H. A. Schwarz, Gesammelte mathematische Abhandlungen, ii. 211-59 ( J. fur
Math. 75 (1873), 292-335) ;

B. Riemann, Oesammelte mathematische Werke (Nachtrage),

Leipzig (1902), 67-93.



Chap. VII, 28 CONFORMAL REPRESENTATION 119

Reduced Sets of Exponents. Let A, p, v be any real rational numbers,

but not integers; and let Z, m, n be any integers whose sum is even.

Then we saw in 23 that all the Riemann functions

have the same group. To pick out the simplest function of the group,
we first choose exponents satisfying the conditions

A! A, ui = a, v^~v (mod 2), )
...

-KA^, !/!<!; /

(

and, because P(iA1} i^i, i"ij#) a^ have the same group, we may
arrange without loss of generality that

0<A1 ,/,1,v1 <l, (2)

integer values being excluded. We now consider the four associated

functions p,^ ^

P(X,.l-u,.I-vv x),

and we can readily verify that at least one satisfies the conditions

0< A ,/x ,v < 1,

j ^
A set of exponent-differences satisfying these more stringent condi-

tions is called a reduced set.

We can reduce all the associated P-functions to hypergeometric
functions in such a manner that the branches whose exponents are

zero at x and at x == 1 shall correspond to one another. If

F(a, b\ c; x) is the hypergeometric function with the reduced exponent-

differences, all the others can be expressed linearly in terms of

branches of F(a, b \c\x) and DF = (ab/c)F(a+ 1, 6+ l;c+l; x), multi-

plied by rational functions of x.

Quotients of Solutions. Let us now consider the function defined

by the quotient of two branches of a given P-function, together with

its inverse function

After the description of any closed circuit, z is transformed into

(ad-bc*o), (6)
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where (a, 6, c, d) are certain constants, while the inverse function has

the automorphic property

for the same sets ofconstants. The relations expressing the periodicity

of the circular and elliptic functions are particular cases of such

automorphisms .

If(Z,z) are connected by a linear relation with constant coefficients

of the form (6), we have

(adbc)Dz

___ 2cDz

DZ
""
7te~~"

, .

and hence

rin f , /0 ,The expression {2;, }
= _--11 (8)

was called by Cayley the Schwarzian derivative. As Schwarz pointed

out, it had been used by Lagrange and Kummer, and it appears also

in Riemann's lectures.

The property (7) may be written

=' -, (9)
CZ~\~CL j

and we have in particular

(10)

Any function z = <f>(x), which undergoes a linear transformation

with constant coefficients when x describes any closed circuit,

satisfies an equation of the form
{z, x} F(x), whose right-hand side

is a uniform function of x. Moreover, if we put (ad be) 1, we

can write the relations between Z --~ and z in Riemann's form

Z(DZ)-i = - ( '
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these show that (Dz)~* and z(Dz)~* undergo a homogeneous linear

transformation after any circuit, and therefore satisfy an equation of

the second order with uniform coefficients.

The Schwarzian Equation. Before considering the quotient of two

solutions of D2
y-\-p l Dy-\-p2 y 0, it is convenient to reduce the

equation to the invariant form D2
y-\-ly = (/ ^ p^^P\~\P\)

by putting y yexp[ J J Pi(x) dx\. We shall suppose this to have

been done. This implies that Riemann's scheme must be taken in

the form
H(l-A) -1(1+M ) 1(1-,) \

\i(l+A) -Kl-ii.) i(l+v) /'

with the equation

Now if we have

z - ?i, IK/i+Ii/i = (t
=

1, 2), (14)

we find Dz (y^y\y\Dy^)\y\, (15)

which reduces, by Abel's relation, to

Dz = Cy^
2

. (16)

Hence (Dz)~* is a solution of (14), and so we have

or
{z, x] -27, (18)

as is easily verified.

We can solve completely the equation D2
y-\-Iy = 0, if we know

any solution of (18). The case 7 = being trivial, the solution z can-

not be a constant; hence, using (9), we see that z~l is a distinct

solution, and so we have two solutions of (14) given by

which are evidently linearly independent.

Change of Variables. If we put in D2y+Iy the forms

we get the equation

^+/* = 0, (21)

where 7* =

4064
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Since z ~ y^y^ = u^u^ we have

{z,x}
= 21, {z,t}

= 21*, (23)

and so, from (22) and (23), we have the relation

(24)

This identity was given explicitly by Cayley, but was used implicitly
in Kummer's investigation of the transformation of the hyper-

geometric equation. By putting t ^ z in (24), we have

(25)

By means of (24), we can prove that, if z is a particular solution of

{z, x} 27, then the most general solution is

Z = (az+b)l(cz+d) (ad-bc ^ 0),

the solution suggested by (9). For we have the relations

(26)

(

{Z,*} = 2/ =
{
Z,*}; j

hence {Z, z}
= 0,

or ' = 0; (27)
dz*\dz)

v '

hence _ = (cz+d)~
2
, (28)dz

and so Z = a
~ (ad-bc = 1). (29)CZ~

j
(Ji

From these relations and (19) we see that the solution of the equations

D^y+Iy = and {z, x} = 21 are equivalent problems.

Every equation of the second order is formally equivalent to

dz
w/dz

2 = 0; for if
{(/>i(x), <f>2(x)} are known independent solutions, we

have only to put y = ^(xjw and z = ^2 (
a?)/^i(a?)-

29. The Reduced Curvilinear Triangle
Conformal Representation. We shall now examine the mapping

of the upper half-plane of # by the quotient of two distinct branches

(i) If the exponents are subject only to the general condition
==

1, we can prove that the relation between z and x is locally
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one-to-one (schlicht), except at the points (x 0, oo, 1). For the

branches [y^x), yz(x)]
are holomorphic and have at most a simple

zero at any ordinary point, and they cannot vanish together. Thus

either z or l/z is holomorphic; without loss of generality, let us

suppose that y2 ^ 0, so that z is holomorphic. Then, by the Abel-

Liouville formula, we have

Hence, at an ordinary point (x
=

, z = )
we have, by the implicit

function theorem,

*--Ci(z-)+c2(z-0 2
+... (2/2^0), (2 a)

or else, when z has a pole,

S-f =C1/3+ C2/3+... (2/2
= 0). (2b)

(ii) We next restrict the exponents to real values, and consider

more particularly the points corresponding to real values of x other

than the singular points. In the typical interval (0 < x < 1) the

principal branches are expressions of the type Ax^l x)yF, where

F is a real hypergeometric series, and we can select two branches

(2/i > 2/2) which remain real in the entire interval. Thus z is also real,

and the formula (1) shows that it is monotonic (say increasing). If

the denominator vanishes at any point, z passes discontinuously

from oo to oo and begins to increase again as x increases, and it

must pass through the value z before it can again become infinite,

so that the zeros of (yl9 y2 ) must separate one another.

This particular quotient z therefore travels steadily along the real

axis of the z-plane, but it may pass over the same point more than

once; the general form Z = (az-\-b)/(cz-{-d) gives a point which travels

steadily around a circle, but the arc corresponding to the interval

(0 < x < 1) may overlap itself.

(iii) At the typical singularity x 0, wo have in particular

= Mx*[l+c1 x+c2 x*+...]. (3)

If (A,jz,v) are real, and x is real and sufficiently small, the series in

brackets converges and takes real values. Hence as x describes the

segments oo < x < and < x < 1 of the boundary of the

upper half-plane of x, the quotient z
{}
describes segments of two
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straight lines enclosing an interior angle TT\. The most general form

of quotient z = y^y^ thus maps the upper half-plane of x upon a

domain bounded by three arcs of circles (which may overlap them-

selves) enclosing interior angles (TT\ TT/Z, TIT) at the points correspond-

ing to x = 0,oo, 1.

Reduced Exponent-Differences. When we have

0<A,/*,v<l, \

< p+v, v+A, A+/I < 1,1 (4)

< A+^+r < f, J

the parameters of the hypergeometric series

a = Kl-A-^-v), b = i(l-A+/x-v), r, = (l-A) (5)

are found to satisfy the corresponding conditions

-K<i 0<b,c-b<l. (6)

Following Wirtinger,f we choose as denominator the branch

i

F(a,b;c;x) =
r(b^-b) J

^-^-'(l-a*)- dt, (7)

'

and we show that this does not vanish in the interval (0 < x < 1),

nor in the plane of x, cut from x I to x -\-co. For the integral

converges when the value of x is not real and greater than unity. If

we determine the amplitude of (1 xt)~
a in the cut plane by assigning

the value zero at x 0, we have, in the upper half-plane either

< am(l xt)~
a < |TT (0 < a < i),

or > a,m(lxi)-
a ^ \n (0 ^ a > J).

In either case the real and imaginary parts of the integrand (7) do

not change sign, and so y2
~ F(a,b\c\ x) ^ 0. Hence the arcs corre-

sponding to the segments (
oo < x < 0) and (0 < x < 1) do not

overlap themselves; and, by considering another special case, we can

show that the arc corresponding to (1 < x < oo) does not overlap

itself either. Thus as x describes the real axis from oo to oo, with

indentations above the singularities x = Q,l,z describes once counter-

clockwise the boundary of a curvilinear triangle with interior angles

(TrA, TTyz,
TTV

),
whose sides do not overlap. We can now prove, by a

classical argument, that there is one-to-one correspondence of the

f Summarized by O. Haupt in his new edition of F. Klein, Hypergeomelrische
Funktion (1933), 326-30.
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two domains. For consider the increment of

(27r)-iam(3-) = (2ir)-iam{/(a)-}, (9)

as the points z and x each describe once counter-clockwise the boun-

daries of their respective domains.

The expression on the left increases by unity or zero, according as

does or does not lie within the triangle. The function f(x)
=

y^\y^

has no poles in the upper half-plane, on account of the way in which

the denominator has been chosen; hence the increment of the expres-

sion on the right is equal to the number of zeros of {/(#) } in the

upper half-plane. Accordingly it has exactly one zero when lies

within the triangle, and none when it lies outside.

The Rectilinear Triangle. If (A+ju,+y) = 1, we have a 0, and

then Riemann's equation is soluble by quadratures,

= A ( x*-l(l-xy~l dx+B. (10)
J

The branch ?/2
~ 1 fulfils the condition of not vanishing in the upper

half-plane of x\ and the quotient

~l(lx) v- 1 dx (11)

is the ordinary Schwarz-Christoffel formula giving the conformal

representation of the upper half-plane ofx upon a triangle (vrA, 777*, TTV}.

30. Symmetrical Continuationf

Schwarz's Principle of Symmetry. If an analytic function z = f(x)

is holomorphic in a domain intersected by the real axis of x and real

along the segment of the axis, it takes conjugate complex values

z, z at conjugate points x, x in the domain. If we make linear trans-

formations of both planes

az+6 _a'x+b' m& r~7J -^ --
/ T~J/> V

1
/

cz-\-d c x-\-d

we find that iff(x) is holomorphic in a domain intersected by a circle,

and if points on the circumference lying in the domain correspond to

points lying on a circle in the z-plane, then inverse points with respect

to the circle in the a:-plane correspond to inverse points with respect

to the circle in the z-plane. This is obvious if we remember that

inverse points are common points of a family of circles orthogonal

t H. A. Schwarz, Ge#. math. Abhandlungen, ii. 65-83; or J. Jur Math. 70 (1869),

105-20. See, for example, E. C. Titchmarsh, Theory of Functions (1932), 155.
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to a given circle, and that the transformations (1) convert circles or

straight lines into circles or straight lines.

Now the function z /(#), which maps the upper half-plane of x

on a triangle of circular arcs ABC, is holomorphic except at the

points x = 0, oo, 1 corresponding to the corners. Hence continuation

into the lower half-plane across the segment (
oo < x < 0) gives a

new triangle of circular arcs ABC', by inversion in AB\ and a return

to the upper half-plane across (0 < x < 1), which completes a posi-

tive circuit about x 0, gives a fresh triangle AB"C' by inversion

in AC'. The two successive inversions give a linear transformation

Z = (az+b)/(cz+d).

1

a-plane

z-piano

FIG. 2. Dihedral configuration (n 3).

Similarly, if we had left the original domain across (0 < x < 1) or

(1 < x < oo), we should have found different representations AB'C
or A'BC of the lower half-plane, by inversion with respect to CA or

EC respectively. Continuing this process, we obtain a pattern of

(say) black and white triangles, corresponding respectively to the

upper and lower half-planes of x. The pattern may or may not over-

lap; it may cover the whole or only part of the z-plane; and in certain

cases the number of triangles may be finite.

Types of Reduced Triangles. The circles EC, CA, AB have a

unique radical centre (which may lie at infinity if the centres are

collinear). If O is exterior to the three circles, they have a real

common orthogonal circle with as centre. The reduced triangle

ABC is found to lie wholly on one side of this orthogonal circle. We
may invert AB, AC into straight lines, and then the arc EC will be

convex to A, and the sum of the angles is less than two right angles,
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that is to say (X+p+v) < 1. We now find that all the successive

images are in the interior of the fixed orthogonal circle, which can

never be filled by any finite number of repetitions. Since the number

of values of z corresponding to any given x is infinite, the relation

z = f(x) cannot be algebraic.

Similarly, if (A+/^+^) = 1> the triangle can be inverted into a

rectilinear one, having an infinite number of distinct repetitions.

A necessary condition for a finite number of repetitions is accord-

ingly that (A+/x+v) > 1. In this case the radical centre O is interior

to the circles. The pattern can be more easily visualized by an

inversion in three dimensions converting BC, CA, AB into great

circles on a sphere. The centre of inversion V must lie on the normal

at to the plane of the figure, and OF2 must be the power of the

radical centre with respect to each circle, so that OF is the geometric
mean of the segments of any chord through 0. It can then be shown

by elementary geometry that the circles EG, CA, AB are inverted

into great circles on a sphere passing through F. Inverse points with

respect to the circle BC, in the plane figure, are common points of

a family of circles orthogonal to BC. They therefore become the

common points of a family of small circles cutting orthogonally the

great circle BC, in the corresponding spherical figure. The operation

of inversion in the plane thus corresponds to reflection in the plane of

the great circle of the sphere.

Steiner's Problem. We must now find all spherical triangles having

only a finite number of distinct repetitions on the sphere. Every side

lies in a plane of symmetry, and the number of such planes must

be finite, because two different planes of symmetry give different

reflections ofa figure. These planes cut out a finite number ofspherical

triangles. Let PQR be a triangle of minimum area. If the angle

at P is 770, and 6 is irrational, the number of planes of symmetry

passing through the diameter at P is infinite. If is a fraction in its

lowest terms 6 = p'/p, there are p such planes passing through the

diameter at P; and if p' > 1 we can choose one of them cutting off

a spherical triangle of smaller area than PQR. For a triangle of

minimum area with a finite set of repetitions the angles must be

aliquot parts of TT, say (nip, Tr/q, 7r/r), where (p,q,r) are integers

greater than unity, and +-
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The number of solutions is limited, and each solution gives the planes

of symmetry of a regular solid. Arranging the numbers in ascending

order, we find the following sets.

Bipyramid:

Tetrahedron:

Cube and Octahedron:

Dodecahedron and Icosahedron:

(2, 2, r arbitrary)

(2, 3, 3)

(2, 3, 4)

(2, 3, 5)

(3)

By picking out all the reduced triangles cut out by the planes of

each configuration, Schwarz enumerated fifteen cases.

Table of Schwarz 's Reduced Triangles

Uniform Schwarzian Functions. In general, when z is the quotient

of two branches of P(\,IJL,V,X), the pattern of triangles covers the

2-domain with an overlapping Biemann surface of many sheets.

A given complex number z corresponds to points differently situated

in different overlapping triangles; and so the inverse function

x
(f)(z)

is many-valued. If, however, A is the reciprocal ofan integer,

equal numbers of black and white triangles fit exactly around the

points corresponding to corners TrA, and a unique value of x corre-

sponds to I/A values of z near such a point, so that x =
<f>(z)

is locally

uniform. If (A, ^, v) are all reciprocals of integers, x =
(f>(z)

will be

uniform everywhere. There are a limited number of cases where

(A+/i+v) ^ 1, giving the polyhedral triangles and space-filling recti-
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linear triangles, covering the entire z-plane. There are an infinite

number of uniform Schwarzian functions where (A+^+v) < 1, the

example (J, J, J) being illustrated in Schwarz's memoir. In these

cases the sides of every triangle are orthogonal to a fixed circle or

line, forming a natural boundary beyond which continuation is

impossible.

31. Some Special Cases

The Dihedral Equation. If the reduced exponent-differences are

reciprocals of integers, and their sum is also greater than unity, the

function x =
</)(z) is both uniform and algebraic, and therefore is a

rational function. These are the cases I, II, IV, VI of Schwarz's

table.

The first case Pi -,-,-, x] is soluble by elementary methods; for
\2 2 n )

the quadratic transformation

oo

= P-

oo

. o v*

1

1_

271

2n

(1)

gives an equation with only two regular singularities, which is equi-

valent to Euler's homogeneous equation. The general solution being

i, (
2

)

we can choose the quotient

giving the inverse function

The 2;-sphere is divided by the equator and n complete meridians

into 2n pairs of triangles, whose corners form a bipyramid. In
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general, 2n distinct values of z correspond to each value of x\ but

these become united in pairs at the corners \TT, along the equator, as

x -> or x -> oo
;
and as x -> 1 they are united in two sets of n at

the poles.

The Octahedral Equation. A cube and a regular octahedron are

inscribed in a unit sphere, so that the edges of the cube are parallel

to the diagonals of the octahedron. If the pole of coordinates is at

a vertex of the octahedron, the point z = e^ cot |0 is the stereo-

graphic projection on the plane of the complex variable z of the

point (9, </>)
on the unit sphere. The corners of the octahedron are

then given by 2 = 0,oo,l,t. (5)

At the corners of the cube cos# = :tl/V3, and their stereographic

projections are found to satisfy the equation

z8+14z4+l - 0. (6)

The middle points of the edges correspond to the affixes

(z
4
+l)(z

4-tan4
7T/8)(z

4-COt4
7r/8)

=
or (z

4
+l)(z

4
-17+12V2)(z

4-17-12V2) = 0,

or (z
12-33z8-33z4+l) = 0. (7)

The three fundamental polynomials satisfy the identity

108z4
(z

4-l)4
-(z

8+1424
-|-l)

3
+(z

12-33z8-332;4+l) 2 ^ 0. (8)

Consider the function x =
<f>(z) defined by the hypergeometric

equation with exponent-differences (-J-, |, J). The fundamental spheri-

cal triangle with angles (^TT, ITT, |TT) is one-sixth of an octant, or one

forty-eighth of a sphere, and is bounded by planes of symmetry of

the octahedral configuration. Since each half-plane ofx is represented
on twenty-four different triangles, the equation x

<j>(z) is of degree
24 in z. When x 0, the points on the sphere are united in threes at

the corners of the cube; when x = oo, they are united in pairs at the

middle points of the edges; when x = 1, they are united in fours at

the corners of the octahedron. Hence we must have

In order that this may have the root z = when x = 1, we have to

put .4 = 1, and then the identity (8) shows that we can write

(z
8+14z4+l)3

(s
ia-3338-3324+l) a 108z4

(z
4-l)4-_- __- ____
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The Tetrahedral Equation. Two adjacent octahedral triangles

(^77, |-77, 77) joined along the sides opposite to the angles 77, make

up one tetrahedral triangle (77, 77, ^77). There are twenty-four such

triangles on the sphere, each of which gives a complete representation

of the #-plane in the octahedral relation (10), but only half of the

plane of xl corresponding to the tetrahedral relation with exponent-
differences (J, \ 9 \). Two adjacent tetrahedral triangles contain four

complete octahedral triangles, and give a single representation of the

plane of x
l9
and a double representation of the plane of x. Thus to

every value ofx there correspond two values ofxl9 and it is found that

we can pass to the tetrahedral equation by putting

*/(*-!) = 4^(1-^). (11)

The transformation of Biemann's equation is as follows

(0

oo 1 \ (1 oo 1

?., x, \
= P| f, 2^-1!

-i *

(2^-1)

4^(1-.^) (12)

From (10), we have algebraically

(13)1= (2X1 1)'
1 = -

21Z 3328 3324+l'

and on taking the upper sign, we get the tetrahedral relation

(24_|_2^V3z
2+l)3

(z
4 2&V322+1)3 12W3s2

(2
4

I)
2

xl
x1

l 1

We have the identity

(14)

(15)

which corresponds to the division of the vertices of the cube into

those of two desmic regular tetrahedra, whose edges are the diagonals

of the faces of the cube. The corners of one tetrahedron correspond

to the centres of the faces of the other, and the middle points of the

edges of either lie at the corners of the octahedron. When x = 0,

the twelve roots of the tetrahedral equation xl
=

<f>i(z) are united in
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threes at the corners of one tetrahedron; when xl
= 1, they are

united in threes at the corners of the other; when x1
= oo, they are

united in pairs at the middle points of the edges. The algebraic

identity corresponding to (10) is

(24+2tV3z2+l)3Hz4-2W3z2+l)3 12tV3z2
(z

4-l)2 == 0. (16)

The Icosahedral Equation. The triangle (TT, JTT, ITT) corresponds to

the sixth of a face of the regular icosahedron, and to the tenth of a

face of the regular dodecahedron. As there are 120 such triangles on

the sphere, the equation x =
</>(z)

is of degree 60 in z, with quintuple

roots at the corners of the icosahedron (say x oo), triple roots at

those of the dodecahedron (say x = 0), and double roots at the mid-

points of the edges. With a suitable orientation of the figure, the

equation may be written

1728z5
(z

10+llz5-l) 5
(Z

20-228z15+494z10
-f228z5+l)3

1 x

(z
30+ 522z25- 10005z20- 10005z10- 522z5+ 1

)

2

(17)l-x

For full details, reference should be made to Schwarz's memoir or

the writings of Klein,f

Composite and Associated Triangles. The remaining cases of re-

duced triangles giving algebraic functions can be solved by the

method of adjunction of domains, used above to obtain the tetra-

hedral function from the octahedral. The method was used in Rie-

mann's lectures (posthumously published in 1902), but the funda-

mental theorem was more explicitly established by Burns!de; J it has

been applied in numerous problems by Hodgkinson.|| When the

reduced equation is solved, it is possible to solve the associated non-

reduced equations having the same group.

The Modular Function. The limiting case P(0, 0, 0, x) gives a

uniform transcendental Schwarzian function x = <(z), which is

obtained by inverting the quotient of the elliptic integrals z iK'/K,
where x = k2

. The initial triangle is bounded by two parallel lines

f F. Klein, Vorlesungen uber das Ikosaeder (1884); Vorlesungen uber die hyper-

geometrische Funktion (reprint 1933, edited by O. Haupt). See also A. R. Forsyth,

Theory of Functions, ch. xx; Theory of Differential Equations, iv. 174-90.

| W. Burnside, Proc. London Math. Soc. (1) 24 (1893), 187-206.

||
J. Hodgkinson, ibid. (2) 15 (1916), 166-81; 17 (1918), 17-24; 18 (1920), 268-73;

24 (1926), 71-82.
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perpendicular to the real axis of z and a semicircle touching them on

the axis. The generating transformations of the modular group

correspond to circuits about x and x = 1. The function </>(z)
has

an automorphic property analogous to those of the simply and doubly

periodic functions,

for all linear transformations with integer coefficients such that

(ad be) = 1 and a^=d~l,b^EC~Q (mod 2). The function is

the subject of a large literature.f

EXAMPLES. VII

1. CIRCLES ON A SPHERE, (i) If two circles on a sphere cut orthogonally,
their planes are conj ugate with respect to the sphere.

(ii) Families of planes through two fixed lines in space, which are conjugate
with respect to a sphere, cut the sphere in two families of orthogonal circles,

and conversely.

(iii) If two points of a sphere are collinoar with the pole of a circle on the

sphere, their stereographic projections are mutually inverse with respect to

the storeographic projection of the circle.

2. ROTATION. If the stereographic projection of points on a sphere is given

by the relation z = e^cot^O, show that the linear transformation

corresponds to a rotation of the sphere.

3. KLEIN'S PARAMETERS, (i) The above rotation may be written

, _ (d+ic)z (6 id)

where

(a:b:c:d) = (sinj^sinflcos^: sin0sin0sin<: sinj^cosfl: cosje/r).

(ii) The rotation (a, 6, c, d) followed by the rotation (a', &', c', d') is equivalent
to the rotation (A, B, <?,>), where

A ad'-\-a'd'bc
f
-\-l>'c>

B = bd'+b'd ca'+c'a,

C = cd'+c'd ab'+a'b,

D = aa' W cc'+dd'.

t See, for instance, W. Burnside, Theory of Groups (1911), 372-427; H. Weber,

Algebra (1908), iii; F. Klein and R. Fricke, Elliptische Modulfunktionen (1890-2), i-ii.
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(iii) Verify that the resultant rotation is given by the quaternion product

Ai+Bj+Ck+D = (a'i+b'j+c'k+d')(ai+bj+ck+d),

where ij
~ k ji, jk i = kj, ki j ik.

4. RECTILINEAR SPACE-FILLING TRIANGLES. The only rectilinear triangles

whose symmetric repetitions fill the plane without overlapping are those with

angles (^,^,0), (fafafr), (!*,}*, JTT), (fafalir).

The triangle with angles (TT, i?r, JTT) gives a double covering of the plane.

[SCHWARZ.]

5. (i) The relation z arcsinrr xF( t ;f;x
2
) maps each quadrant of the

07-plane conformally on a semi-infinite rectangular strip of breadth JTT.

(ii) By the method of symmetric continuation, show that x = sinz is a

uniform analytic function, and obtain geometrically the relations

sin(z-fTr) = sin 2, sin( z) = sinz.

6. The conformal representation of an isosceles right-angled triangle on a

half-plane is effected by the relation

X

z =
f[4x(l-xfi~*dx.

This is equivalent to the relation

4x(l-x) = l/p
2
(z),

where $p(z) is the Weierstrassian elliptic function satisfying the equation
'

The relations [p()-e]* =
G *~ 0}

*.
(a = i, 2, 3)

show that x is a uniform function of z.

[A. E. H. Love, American J. of Mathematics, 11 (1889), 158-71.]

7. The triangle (|7r, JTT, JTT) is conformally represented on a half-plane by
the relation x

This is satisfied by putting

x ^ 1/[1 P3
(z)], where p /2

(z)
= 4p3

(z)-4. [LovE.]

8. Obtain the representation of the equilateral triangle from the above by
putting x x\, or x =

2i/$o'(z). Obtain the representation of the isosceles

triangle with a vertical angle 2?r/3 by putting x 1 x\, and verify that

x2 2p*(z)/p
x

(z) is not a uniform function. Obtain also the Schwarz-Chris -

toffel formulae expressing z in terms of xl and x2
. [LovE.]

9. REGULAR POLYGON, (i) The triangle whose angles are {?r/2, 7r/n,

7r(n 2)/2n} is conformally represented on a half-plane by the relation

z=
cJar*({c-l)<

1-")/n dte.

(ii) The representation of the same triangle on a semicircle is given by
putting x = (l-}-t)*/(l t)

2
, or

-
!)-*/ eft.= C' f
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(iii) The representation of the interior of the regular polygon with n sides on

a circle is given by putting t = wn
, or

z s= C"
J (w

n
-l)-*l

n dw.

[H. A. Schwarz, Gesammelte tnathematische Abhandlungen, ii. 65-83

(=; J.filr Math. 70 (1869), 105-20).]

10. THE ICOSAHEDRAL TRIANGLE. In tho equilateral spherical triangle with

angles 2;r/5, show that

tana = 2, tan# = 3-V5, sin2r = f, tanp = J(V5-j-l),

3 V6.

The angles a and 2r arc those subtended at the centre by edges of the regular

icosahedron and dodecahedron.

11. Verify that tana --- 2cos2?r/5 = (V5- 1)/2. Hence show that tho

corners of the regular icosahedron can bo stereographically projected into the

points s = o, oo, e"(6+ e
4
), e^eH e

3
) (v = 0, 1, 2, 3, 4),

where exp(2wr/5). Verify that these values (except 200) satisfy the

Cation Z(z"+ns -l)--0.

12. Verify by spherical trigonometry the expressions given for the stereo -

graphic projections of the corners of the regular dodecahedron and for the

middle points of the edges.



VIII

LAPLACE'S TRANSFORMATION

32. Laplace's Linear Equationf

Form and Singularities. THE equation

[P(D)+xQ(D)]y = I (ar+brx)D-ry = (1)
r=

is a generalization of the equation with constant coefficients, and is

completely soluble by an artifice of Laplace. If 6 0, we may take

unity as the coefficient ofDn
y, and the only singular point is seen to

be x = oo, which is irregular. If 6 ^ 0, we shift the origin and write

xD*t/+(al+b1 x)D*-*y+...+ (an+bn x)y - 0. (2)

The equation now has one regular singularity at x = and one

irregular one at x = oo. The exponents at x = are

(0, l,2,...,w 2,?& 1
fl^).

If a is not an integer, we find (nl) holomorphic solutions forming
one Hamburger set, and one regular solution belonging to the

exponent (n 1 a
) forming another. If % is an integer, all the

exponents belong to the same set. It is easily verified that there are

always at least (nl) solutions which are free from logarithms and

holomorphic. Since there is only one winding point in the finite

part of the plane, and since (nl) independent solutions are uniform,

the group properties of the equation are trivial. The feature of

interest is the behaviour of the solutions at the irregular singu-

larity x oo.

Laplace's equation furnishes a simple illustration of an interesting,

but difficult, theorem due to Perron. If p (x) is a polynomial of

degree s < n, and {pr(x)} are integral functions of x, the equation

Po(x)Dy+pI(x)D-*y+...+pn(x)y = (3)

has at least (n s) linearly independent solutions, which are integral

functions of x.

Solution by Definite Integrals. Laplace uses the transformation

y =
je*f(t)dt, (4)

c

t C. Jordan, Cours ^analyse, iii. 251-65; E. Picard, Traitt &analyse, iii. 394-402.

% O. Perron, Math. Ann. 70 (1911), 1-32.
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which may be regarded as a limiting form of the Eulerian trans-

formation of 27 as -> oo. The equation

je*[P(t)+xQ(t)]f(t)dt
=

(5)

c

can be integrated exactly iff(t) is chosen so that

or

We must now find n contours giving linearly independent solutions

and satisfying the condition

Suppose first that 6 7^ 0, so that we can use the form (2), where

Q(t) is of degree n and P(t) of degree (n 1). We have in general, if

the roots
(J3r ) are unequal,

(9)
QW)

Let / denote a point at infinity, taken in such a direction that xt is

real and negative. Then the condition (8) is satisfied by the simple

loop integrals
( +)

f(t)dt (r=l,2,...,n). (10)

If ar is a positive integer, Z>r EEE 0; but the condition is then satisfied

by the definite integral ^
L* =

fef(t)dt. (11)

/

If oir is zero or a negative integer, am[/()] returns to its initial value

and the contour may be shrunk to a small circle about t = /?r . The

integral can be evaluated as a Cauchy residue. If we expand f(t) and

ext _ exprex(t-pr) m ascending powers of (tj3r ) and evaluate, we
obtain an integral function which is the product of ex$r and a poly-

nomial.

If x is very large and if the contour consists of a small circle about

t =
j8r , together with a straight line to infinity described twice, it

may be shown that the dominant term in the integral is given by the
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portion of the contour near t
f!r . Thus we find Lr

~
and since (fir ) are supposed unequal, the n solutions are linearly

independent.

If ar ,
a.8 are not integers, consider the double-loop integral

Lr9
=

e**f(t)dt

i

=
(l e2iw^)Lr (1 e2*^)^ (12)

Since the double circuit restores the initial amplitude of/(), we may
contract this path to a finite contour interlacing t = j8r , $,, and clear

of all singularities of the integrand. Since f(t) is bounded and the

contour is of finite length, we can expand exi and evaluate term

by term; the resulting expression is a power-series converging for

all finite values of a?, i.e. an integral function. Putting r = 1,

8 = 2, 3,...,n, we have (n1) independent integral functions.

If ar
or ois is a positive integer, Lrs

EE 0; but we can then satisfy the

conditions by a simple loop from one singularity about the other, or

by an ordinary definite integral between t =
f$r and t =

j$s .

For the last solution, we take an infinite simple loop O enclosing
all the singularities t =

j$r . If we enlarge the loop sufficiently, we can

write along the contour

/(O = **-" 2 ^U-*, (13)
r-O

since 2 r
= av We now integrate term by term, using Hankel's

integral (0+)

and find the solution

dt = 2ni f ^ r o:
n+r-cti-1/r(w+r-a1 ). (15)f

If ax is not an integer, this is regular and belongs to the exponent

(n^l) at the origin.

The expression (15) cannot give a solution belonging to a negative

integral exponent, nor a solution of logarithmic type. In fact the

method fails when 04 is an integer, because the set of solutions (12)

and (15) are not linearly independent. But we may retain one

simple loop integral (10), or one definite integral (11), and the logarith-

mic property can be exhibited by deformation of the path as am(o;)
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increases by 2?r. It appears that the integral in question is augmented

by a multiple of the solution (15).

Exceptional Cases. The appropriate paths when Q(t) is of lower

degree than P(t), or when it has multiple zeros, have been indicated

by Jordan. If Q(t) is of degree (nX), we have
\ 71-A

(16)

The space at t = oo is divided into (2A+2) sectors where f(t) is

alternately very large and very small. We can make a festoon of

(A+l) paths, beginning and ending in sectors where f(t) is small and

crossing the intervening sectors in the finite part of the plane. These

and the (n A 1) double loop circuits interlacing (/3r ) make up the

n required paths.

Similarly, if t = j8 is a zero of multiplicity A, we have

B(t-)*-\ as t -> 8.

The space about t =
ft

is now divided into (2A 2) sectors where

f(t) is alternately large and small. We can construct small loops

entering and leaving t =
]8

in sectors where f(t) is small, and crossing

at a finite distance the intervening ones where it is large. This set of

(A 1) loops just compensates for the loss of (A 1) simple zeros of

GW-

33. The Confluent Hypergeometric Equationf

Canonical Forms. Just as Biemann's equation can be transformed

in twenty-four ways into a hypergeometric one, so the equation

ieDy+(A +A 1x)xDy+(B +B1x+Bt a*)y = (1)

can be transformed in four ways into Rummer's first confluent hyper-

geometric equation xD,y+ (c
_x)Dy_ay = . (2)

We write y = x?ePxy', x' == (' /?)#, (3)

where p is either root of the indicial equation

0, (4)

t E. T. Whittaker and G. N. Watson, Modern Analysis, ch. xvi; G. N. Watson,
Bessd Functions (1922), 100-5, 188-93; H. Bateman, Differential Equations (1918),

75-9, 110-15.
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and (/?,/$') are the roots of

If jg
=

j8' 9
we obtain similarly Rummer's second equation

xD*y+cDy-y = 0, (6)

or an elementary one of Euler's homogeneous type. The typical

solutions of (2) and (6) are respectively

q(q+l) 2 ,

2!c(c+l)
~2

Again, the equation

i>a
y+(-4 +^i)^+(5 +51 ar+^a

*a
)y - (8)

can be reduced by putting

y = ePx+^y, x' = &Z+Z, (9)

to one of the forms

D*y+(2n+l-x*)y - 0, (10)

, D*y-9xy - 0, (11)

or to an elementary equation with constant coefficients. The equa-

tion (10) was found by Weber on transforming the equation of the

potential V 2F ~ to parabolic cylindrical coordinates

It is reduced to Hermite's equation

D2y2xDy+2ny (12)

by putting y = e~^xZy
f

;
and then to an equation of Rummer's first

by the change of variable z x2
.

The equation (11) is satisfied by a definite integral considered by

Airy, and on changing the variable to z x3 it is reduced to Rummer's
second type 9 ,

Finally, Rummer's second equation is transformed by the change of

variable z = 4Vr and the substitution y e^z
y' into one of his

first type ,

z + (2c-l-z)-~(c-\)y = 0. (15)
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The equations (2), (6), (11), (12) are soluble as they stand by

Laplace's method, and their solutions can also be expressed in terms

of the standard power-series (7). But it is convenient to regard (2)

as the ultimate canonical form. The analogue of Schwarz's form of

the hypergeometric equation is obtained by removing the middle

term. We thus find Whittaker''s equation

exhibiting the exponents (im) at the origin. The solutions of (16) are

written Mktm(x), where

MkfM(x)
= x*+me-*x LF1[%+m--k\ 2m+l;x). (17)

If fc 0, the equation is invariant when x is replaced by x and is

reducible to Rummer's second form.

Solutions in Power-Series.f Rummer's first equation (2) is trans-

formed into another of the same type by putting

y = e?y
f

,
x = x', a = c'a', c = c

f

;
\

or y e^-'V, x = x', a = 1 a', c = 2 c'. J

From the standard solution (7) we can write down two alternative

expressions of each principal branch, when c is not an integer. We
thus have Rummer's linear transformation

These four expressions correspond to Rummer's twenty-four hyper-

geometric series; and the relation is the limiting form of Euler's

identity

F(a,b;cix)
== (lx)c-a-bF(ca,cb;2c;x), (20)

when x is replaced by x/b, and b -> oo.

The principal solutions of (6) are

when c is not an integer. Rummer's transformation of (6) into (15) is

the analogue of Riemann's quadratic transformation and gives the

identities

; -2), (22)

where p = (c J).

f Cf. Ex. V, 4-7.
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Bessel's Equation. If A = Bv the equation (1) is invariant

when x is replaced by x. It may then be reduced to Bessel's

equation x*D*y+xDy+(x*-k*)y = 0, (23)

or to an elementary equation of Euler's homogeneous type. This

property is analogous to the symmetry of the associated Legendre

equation

p] [ i-l-j

' =
' (24)

with the scheme
oo 1

Ti+1 \m fi (25)

n |ra

If we write
/z.
= m/ix and let ra -> oo, we get an equation

x*^+[x*-n(n+l)]w = 0, (26)
d/x

having a regular singularity at x with exponents (n+l,n)
and an irregular singularity at infinity. If we now put w = xty, the

equation is reduced to Bessel's equation of order k = (n-{- J), with

the exponents k at the regular singularity x = 0.

When k is not an integer, the solutions of Bessel's equation are

Jk(x) and J-k(x), where

(27)

Let n be positive and let m tend to infinity by real positive values.

We have with Hobson's notation

_ e^ r(n+ro+l)r(j)-

As m -> oo, we have by Stirling's formula F(7i+m+l) rw mn+1
P(m),

where S= Jim
, ; + } ;

-
(30)

m->oo \ Z J W/
The series being convergent uniformly with respect to m for a fixed
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value of x, we may evaluate the limit term by term and so get

Hence, with k = (ft+i), we have finally

Urn
[e--e(|)/r

(

m)]
=
.(^*W). (31)

Finite Solutions. From Rummer's relations (19), we see that one

of the four series is finite, if a or (a c) is an integer. As a typical

case, let a n. As in the proof of Jacobi's formula in 24, we
find for any solution of (2) the relation

Dk
\tf+

k-le~xDk
y\
= ak xr-

le-xy, (32)

where ak
~ a(a+ 1 )...(+ k I).

In particular, if y ^ ^(ajcjrr), we get

Z>fc[2^-VVl(0+*; c+&; x)]
= ck^-l

e-\F^(a\ c; a?). (33)

If now n is a positive integer, and a n, k n, we get the

expression

cn iFi(n\c\x) = x*-cexD[x^ n- le-x
]. (34)

The standard polynomials of this class are known as Sonine poly-

nomials.

34. Integral Representations of Rummer's Series

Standard Forms. To solve Rummer's first equation, we write in

32,(4)-(8),

P(t)
= ct-a, Q(t) = t*-t,

and obtain the expression

y = J
c^-i(l<)c~a"1 M, (

2
)

c

where the contour C must satisfy the condition

ty-]c =0. (3)

Independent solutions are in general given by the simple loop
(o+) (i-f)

integrals L =
f and L J , where / is the point xt -co. From
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these we construct the combinations

(o-Ki+,0-,1-)

J
=

J
4> I

f <V+ )

J
-

J
- LQ+e****Ll9

n I

(4)

which are linearly independent, provided that e2tVc ^ 1 and that

I/o, L do not vanish identically.

The contour <D may be deformed into a fixed double loop inter-

lacing t = 0,1, and lying entirely in the finite part of the plane. On

expanding ext under the integral sign and evaluating term by term,

we get
/* r
gxtia-in iY~

a~ l dt = -,FJ((t\CyX) I t
a~H\ t)

c~a~1 dt
y (5)

J J
<t> *

the integral on the right being a generalized beta function.

The contour D may be enlarged so that
\t\ > 1 everywhere; on

expanding f(t) in descending powers of t, and evaluating term by
term by means of Hankel's integral for the gamma function, we
have

(o-f)

X
J

6 U
J

1
J

du
J \ ui

"" (0+ )

-*) ?l

J
c tt

tt
c- a-w

-c;x). (6)
&

If a or (c a) is an integer, the contours must be modified. If a is a

positive integer, LQ EEE 0; but t may now be taken as a limit of

integration. The holomorphic solution is obtained as in (5), except
that the double loop is replaced by a simple one from t about

t 1. The other solution is

J
extta

-l
(t-l)

c-a'1 dt - JDa-1!"^
J e*'-^-!)'-"-! dt I,

n '- n J

r (0 + )
-j^a-lLa^a-c

J
e^c-a-l^ 1

L
f

J

9^
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= rr~^x^F(a-c+ l;2-c;x),
L (4C)

=
p^^f

l-CeXF
(
l-a

>
2- C^X^ (

7
)

as may be verified by elementary methods.

If a is zero or a negative integer, LQ can be evaluated as a finite

series of Cauchy residues, and the contour <D gives a numerical

multiple of LQ .

(0+ ) -a (0+ )J^j A rv>n r

J-4 72,1 I

n-0 ' ^

Similar considerations apply to j^ when (c a) is an integer, and so

we obtain integral representations of the Sonine polynomials. When
a, (ca) are integers of the same sign, x = is an apparent singu-

larity or reducible thereto, and there are two solutions expressible

in finite terms.

If c is any integer and a not one of the integers lying between zero

and c, x is a logarithmic singularity, and the solutions (4) are not

independent, because e2i7TC = 1. A simple circuit enclosing t ~ and

t 1, and lying in the finite part of the plane, gives the holomor-

phic solution yl
=

(Jv -[-e
2l7m

-i). The solution y2
~ is logarithmic.

FIG. 3.

For as am(x) increases from zero to 2?r, am(Z) at / decreases from

TT to TT. As the path of integration swings round and bends to

avoid the singularities, we get the new branch

72 =

K-l)yv (9)

whose form shows the presence of a logarithmic term.
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Alternative Forms. According as we operate on Kummer's equa-
tion as it stands or on one of the equivalent forms, we have the four

Laplace integrals
*

(A)

e*
J

e-**F-a
-l
(l-t)

a-1
dt, (B)

(10)

(C)

exxl-c
I

e,-a*t-a(l t)
a-c

dt, (D)

which correspond to the four Eulerian hypergeometric integrals

1

f
(
1_

! Hx

(11)

xl~c
(l-x)

c-a~b
\ (l-xt)

b~lt-a(l-t)
a-c dt. (D)

I/as

The latter all converge and give multiples of F(a,b\c\x), if

1 > c > a > 0. In each set, the pairs (AB) and (CD) belong to the

same sets. Kummer's linear relations 33 (19) are given by putting
t' (lt) in (10); and Euler's relation 33 (20) is similarly given by

putting t' = (lt)l(lxt) in (11).

There is in general a curious reciprocity of paths between the two

pairs. The branch yl is given by the double loop O in (AB) and by
the infinite loop Q, in (CD), and the paths are interchanged for the

branch y%. There is an exception, however, in the logarithmic case,

where we saw that O and D both reduce to the same branch. In that

case only, the two types can be transformed into one another by

elementary methods, so that the same path gives the same branch

for each. Without loss of generality, we suppose that c is a positive

integer. We take the representation (A) and integrate by parts (c 1)

times, the integrated parts vanishing around any admissible contour,

f f

O
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Now in Jacob!
'

s identity

(13)

let us write a = (ac),/3 = a,n (c1); then we have

and so

Hence

f exi
ta-i(i__ t)c-a-i dt ^ !

(-a;)!-*
f

la c+1 Jl(a c+1)

Both sides vanish around any closed contour if

(a_l)(a_2)...(a-c+l) = 0, (16)

these values of a giving an apparent singularity when c is a positive

integer.

Kummer's Second Equation. The equation of 33 (6), which is

satisfied by ^(c; x), also admits two alternative solutions ofLaplace's

(17)

But these can be transformed into one another by putting t' = l/xt.

The most interesting feature of this solution is the choice of contours.

One solution is given by a loop from xt = -co about t 0, and

another by a small heart-shaped Jordan loop entering and leaving

the origin on the side where E(t) is negative, so that the condition

[crf+i//F]c
= (18)

is satisfied. The infinite contour and the small loop are interchanged
when we pass from one representation to the other.

35. Bessel's Equationf

Integrals of Poisson's Type. Bessel's equation

SVK*2~*% = o (i)

is reduced to an auxiliary equation of Laplace's type

xD*w+(2k+l)Dw+xw = (2)

t G.N.Watson, Bessel Functions (1922).
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by the substitution y = xkw. On solving by the usual rule, we find

(l-*
2
)*-* dt, (3)

where the contour C must satisfy the condition

[e<*(l-*
a
)*+*] =0. (4)

There is an alternative solution where k is everywhere replaced by
k. If k is half an odd integer, the solutions can be evaluated in

an elementary form; in the one case they are given as residues by
small circuits about t 1, and in the other as elementary definite

integrals between limits t 1, ixt = oo.

In general, an infinite loop from ixt oo enclosing t = ^1 and

a figure of eight interlacing these points give independent solutions

Jk(x) and J-k(x) [cf. 33 (27)]. But when k is an integer,

*(*)
= (- )*(*).

Except when 2k is an odd positive integer, independent solutions

are always given by Hankel's simple loop integrals

i+

f
J
I

(-1-)

J

(5)

the phases of these integrands being so adjusted that

Jk(x) = #HP(X)+HP(X)} = -|^p J
eW(<- 1)*-* ctt.

7
(6)

If we choose /<; with the real part positive, these expressions may be

replaced by convergent definite integrals. For example, if x is real

and positive, we can show by putting t
(

1
J

that

/ 2 \ig-<(3-lfcw-j7r) f / 97/\fc-l=
s) V+ir J

-"M
(

1

-) dM -

(7)
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Asymptotic Expansions. From Hankel's integrals we obtain

approximate values of the Bessel functions, when x is large with a

given amplitude. We shall take x and k both real and positive.

Then, using Cauchy's form of the remainder in Taylor's series, we
write in (7)

(8)
Tx

-
r(*-r+ f)H \2x

p ' ( '

where

Ifp>k,
ivti k~v-

< 1, since u9/2x is real and positive. Hence
2x

the remainder is numerically smaller than the first term neglected.

On integrating term by term, we have the asymptotic representations

/
2 \W-***V r(t+r+i)/,-y

(1)V*
\irx)

The series continued to infinity would be divergent, the ratio of two

successive terms being T /
-

\ > which tends to infinity.

But when x is large the terms at the beginning of the series decrease

very rapidly, and the error committed by keeping p terms is numeri-

cally smaller than the (p+ l)th. A very general theory of asymptotic
solutions was developed by Poincare.f

BessePs Integral. Another way of using Laplace's transformation

is to write z = x2 in (2) and so obtain the auxiliary equation

. CO
This is satisfied by / / l \w= explzt~\tk-l

dt, (12)

c

along a contour chosen as for Rummer's second equation so that

=0. (13)

t H. PoincarS, American J. of Math. 7 (1885), 203-58; Acta Math. 8 (1886),

295-344.
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If we restore y = xnw, z = x2 and put xt = \uy we have the forms

=
Jexp |L--|L^-

1 ^,

which can be obtained from one another by putting uf =
1/u.

Loops from infinity give distinct solutions, except when k is an

integer; we can then use a path from u = to u = oo, if we approach
the limits in such directions that the integrand tends to zero.

For integer values of fc, we have

Jk(x) = (~)
kJk(-x) =^ J

^P-"'*-1 du
>

and so we find the generating function

On putting u = eie in (15), we have
27T

1 jk(x) = JL f
exp(ia;8infl-i*tf) dO, (17)

27T J

and on putting 6' = (27T6) and adding, we have Bessel's integral
27T

Jk(x) = f coa(xBin6k0) dO. (18)
2?r J

o

EXAMPLES. VIII

1. RECURRENCE FORMULAE. If F ==
^(ajcja;), show that

2. Show that Bessel's equation may be written in either of the forms

Hence prove that
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2k

3. If A; is a positive integer, show that

4. Show that

/ 2 \* / 2 \*=W **nx> J-*(X) =W COSa;'

5. Show that, if k is a positive integer

-1

I, j
/ 1^,\ Jfc i '/*^
V 2 *"

/ I

6. Deduce Mehler's expression JQ(x) Km PJ cos -I from Laplace's
n_^oo \ n/

integral w

Pn(cos^) = - f(cos^-f ismdcos</>)
n

d<l>.

o

7. If R(k+ 1) > 0, show that

= pxJk(ocx)J'k(px)--ctxJk((XK)Jk(px) f

o

2 jxJk(ccx) dx = (^
2-

~) J|(
o

a

If a ^j3 and Jk(a.)lotJ'(ct) - Jk(P)lpJ'dp), show that

o

8. If A; is a positive integer, prove that Poisson's integral
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can be transformed into Bessel's integral

277

Jk(x) = - f exp(ixaind-ik6) dd

o

by integrating by parts and using Jacobi's formula, Ex. VI, 15. [JACOBI.]

9. If a?, a, (a c -f- 1) are all positive, show that

.a?

f
j

du V = 11 ;S.
1 (c)

oo

Show that the alternative representations of iF-^a; c; x) as integrals of Laplace's

type are obtained by evaluating the double integral in two ways.

10. SCHEBK'S EQUATION. Show that the equation

Dny-xy =
CO

n r r tn^ i
by y =^Cr

\ expL/otf-- dt,
r=o J * n-f-lJ

is satisfied

r=o
o

where o> = exp[2^7r/(M + l)] and 2^=0-
r-=0

[H.F. Scherk, J./wr 3fa^. 10 (1832), 92-7; C. G. J. Jacobi, Werke, iv. 33-4.]

11. HEEMITE'P EQUATION. Show that the equation

D*y 2xDy -\-2ny =
is satisfied by

; i; -a;2
),

Obtain integral representations, along appropriate contours, of the types

J
62-irn-l^

J e^^-l-Jnjj.^^J+Jn rf5> x
J

e*"--( !-*)* rf5 .

[C. Hermite, (Euvres, ii. 293-308; E. T. Whittaker and G. N. Watson,
Modern Analysis, 341-5; R. Courant and D. Hilbert, Methoden der

mathematischen Physik, 76-7, 261, 294.]

12. HEBMITE'S POLYNOMIALS, (i) Prove by Jaeobi's method that the equa-
tion is satisfied, when n is a positive integer, by the polynomial

and by extH_n_1(ix), when n is a negative integer.

(ii) Show that

(iii) Prove the orthogonal relations

?
Bl /

= (m ^ n),

J \ 2nnl^7r (m n).
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oo

(iv) Show that </>(x,t)
= e2*'-*' = ^ .Hn(x),

and verify tho above formulae from the relations

13. LAGTJERRE'S POLYNOMIALS, (i) Find tho integral representations of the

polynomials ^ = n ,^.^ 1;!r)-

(ii) Show that

(iii) By means of Lagrange's series, show that

and hence or otherwise prove that

in+i(a;)~(2n+l-.a;)L fl(a;)+n2Zrfl-1(a;)
- 0.

(iv) Show that

DmLm+n(x) =

n!

[Courant-Hilbert, loc. cit., 77-9; see also E. Schrodinger, Abhandlungen
zur Wellenmechanik (1928), 131-6.]

14. SONINE POLYNOMIALS. A set of polynomials (</>n(x)} are denned by the

generating function
r_ ,

(l-t;)-i-*expU-T = 2 *#(*).Li VJ WC= Q

Show that

(i) (k+nty^x) = n^n(rc)-o;0;(a;);

(ii)

(iii)

;:::;:

[N. J. Sonino, Ma^. ^4nw. 16 (1880), 1-80; H. Bateman, Partial

Differential Equations of Mathematical Physics (1932), 451-9; G. P61ya
and G. Szego, Aufgaben und Lehrsatze, ii. 94, 293-4.]
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LAMP'S EQUATION

36. Lam6 Functionsf

Ellipsoidal Harmonics. A SYSTEM of confocal quadrics being given by

where ei+e2+e3
=

(et > e2 > e3 ),

the analogy of spherical harmonics makes us look for polynomials
in the Cartesian coordinates satisfying Laplace's equation V2F = 0,

whose nodal surfaces belong to the confocal system. Since even and

odd terms must satisfy V2F separately, we expect to find eight

types of polynomials

*l #2*3 }

!^..^ (2)

where 0^ is an expression of the form (1) with i written for 6.

For any assigned point (o^, x2 ,
x3 ), the equation (1) in 9 has three

real roots (A, jz, v) lying in the intervals

e1 > A > e2 > n > e3 > v. (3)

These correspond respectively to the hyperboloid of two sheets, the

hyperboloid of one sheet, and the ellipsoid of the system passing

through the point, and are called its confocal coordinates. From the

identity 3

a V *i
T
_ (flU - Z e.-O
~

(ei

we have by partial fractions

--,etc. (5)

On substituting the expressions (4) and (5) for the several factors of

V in (2), the expression V breaks up into a product of three similar

factors y _ CE(\)E(n)E(v), (6)

f G. H. Halphen, Fonctions elliptiques, ii. 457-531 ; E. T. Whittaker and G. N.

Watson, Modern Analysis, 536-78; E. W. Hobson, Spherical and Ellipsoidal

Harmonics, 45496; P. Humbert, Memorial des sciences mathe^matiques, x (1926);
M. J. O. Strutt, Ergebnisse der Mathematik, I, 3 (1932).
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P(e)
=

(e
_

gi)(e-et)...(e-9j.

We now make the well-known transformation of Laplace's equa-
tion to confocal coordinates,

2^= <*L+j , *!, (8)

y
4(A-c1)(A-ea)(A-c3 j

This implies that we can find (A, B) to satisfy the relations

Lf(WA) = AX+B!

where /(ff)
= ^-eJ^-Cj)^-^) = 4S*-gi O-ga . (11)

On dividing by F, we get from V2F = the equation

(13)

The last two equations show that (^4,-B) cannot depend on A; and

similarly they cannot depend on
JJL, v, so that they are numerical

constants. Thus E(Q) satisfies a linear differential equation of the

second order

f(0)E'
r

(0)+tf'(e)E'(0)-(A6+B)E(0) = 0, (14)

which is called Lame's equation.
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This is an equation of the Fuchsian class having four regular

singularities. At 9 et the exponents are (0, |), while at 6 oo the

indicial equation is

4p(p+l)-6p-4-0. (15)

But, if n is the degree in the Cartesian coordinates of the expression

V in (2), the corresponding solution (7) belongs to the exponent

\n at infinity; and since this must satisfy (15), we must have

A=n(n+l), (16)

where n is a positive integer.

If n is even, E(9) must be a function of the first or third types,

having (K^ all zero or two of them equal to i; if n is odd, E(B) must

be of the second or fourth types, having one or three of (/c^) equal to f .

In each case it is convenient (following Crawford)f to expand the

polynomial P(6) in descending powers of (0 e2 ).

Solutions of the First Type. The solution belonging to the exponent
00

\n at 6 oo can always be written E(Q) = 2 cr(Q~ ezfi
n~r

\ but
r^O

this will not jbe a polynomial unless n is an even integer and B is

properly chosen. We write the equation in the form

+ 12e2(6-e2 )
2E"+l2e2(d-e2)E'[B+n(n+l)e2]E+

+f(e2)[(0-e2)E''+$E'] = 0, (17)

and obtain the recurrence formulae

2(2n-l)cl+[B+n(l-2n)e2]c ()

= 0,
^

(2r+2)(2n-2r-l)cr+1+[B+n(l-2n)e2+ (18)

+ I2r(n-r)e2]cr-lf'(e2)(n-2r+l)(n-2r+2)cr^ - 0. J

The necessary and sufficient condition for E(6) to be a polynomial
of degree m = \n is cm+1 0. For this automatically gives cm+z 0,

cm+3 = 0, etc. Now if c =
1, cr is a polynomial of degree r in B;

and so B must satisfy an algebraic equation of degree (m+ 1). It was

proved by Lam6, and then more simply by Liouville, that the values

of B are real and unequal. For the relations (18), where f'(e2 ) < 0,

show that (cr )
is a Sturm sequence of polynomials in B, and that

cr_j and cr+1 take opposite signs when cr
= 0. No changes of sign

are lost in the sequence as B varies, except when B passes through

t L. Crawford, Quart. J. of Math. 27 (1895), 93-8, 29 (1898), 196-201.
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a zero of the last polynomial cm+1 of the set considered. But since

the highest term of cr is a positive numerical multiple of
( )

rBr
,

we see by putting B = i o that cm+l must change sign for (ra+1)

real values of B.

Other Types of Solutions. If an expression of the form (7) is sub-

stituted for E(0) in Lame's equation, the equation satisfied by P(6)

takes the form

4(6-e2)*P"+(4n-8m+6)(6-e2)*P
r

-2m(2n-2m+l)(e-e2)P+

+ 12e2(0-e2 )
2

P''+[(8rc-16m+12^^

+f(e*)[(0-e2)P'+Q+2K2)P']
= 0, (19)

where m (^nKl K2 /c3 ) and

B* = B+n(n+l)e2+(2K2+2K3+8K2
K3)(e2-el )+

e3 ). (20)

If we expand in a descending series P(0) = ]T cr(9 e2 )
m~r

, we get
r=0

the recurrence formulae

(21)

As before, cm+l is the necessary and sufficient condition for

P(B) to reduce to a polynomial, and this is satisfied for (ra+1)
distinct real values of B.

The Lame functions of any given order and type, corresponding
to distinct parameters (Br ), are linearly independent. For if we had

2 A r Er(0) = 0> we should obtain also

[3 -i

jS*+ra(4ra 8n)e2 8m % /^eJc = 0,

(2r+2)(2n~2r-l)cr+l+[B*+(m-r)(m-4r--8n)e2
-

-8(m-r) 2 /c.

for all positive integers Tc\ and this would imply A r
= 0.

If n is even, we have %(n+2) independent solutions of the first

type and \n of the third; if n is odd, we have |(n+l) solutions of

the second type and \(n 1) of the fourth. This gives in either

case (2r&+l) ellipsoidal harmonics, which is the same as the number
of independent spherical harmonics of order n. These ellipsoidal
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harmonics are themselves linearly independent. For if we had an

identity ]T Cr Vr
~

0, we could write it in the form

2 CrEr(X)Er(n)Er (v) EE 0;

and, if
/i,

v are fixed, this is an identity between Lame functions

2 A r Er(X), which has been proved to be impossible.

We note that the same value of B cannot give two Lame functions

of distinct types and of the same order n. For they would have to

be independent principal branches, belonging to distinct exponents

(/ct-)
and (J K

t )
at each of the points 6 = e

t \
and in the one case the

positive integer n would be even, and in the other odd.

Zeros of Lam6 Functions.! The polynomial P(9) cannot have a

double zero; for otherwise the differential equation would show that

it must vanish identically. Accordingly, if P(6r ) 0, we have

P'(6r ) ^ 0; and so (19) can be written

If P(6) SB (d-er)Qr(6) y
we have

1

P'(0r ) _ 2Q'r(6r ) v 2
.'~ ~

and so (23) becomes

2 7 2
If any of the roots (6r ) are complex, let 91 be the one with the

numerically greatest imaginary part (say positive). Then every term

of the relation (25) corresponding to r = 1 would have an imaginary

part with the same sign (say negative); and, since this is impossible,

none of the roots can be imaginary.

Again, suppose any of the roots are greater than e
x ;

if 8 now
denotes the greatest root, every term of the relation corresponding
to r 1 would be positive; and, since this is impossible, no root can

be greater than ev and similarly none can be less than e3 .

We shall show that, for each value k = 0, l,2,...,m, there is one

polynomial P(6) whose roots are distributed in the following manner

e1 >6l >62 > ... >6k >e2 > 6k+l > ... >6m > e3 . (26)

t E. Heine, Kugelfunktionen (1878), 382; F. Klein, Math. Ann. 18 (1881), 237-46;
T. J. Stieltjes, Acta Math. 6 (1885), 321-6; G. Polya and G. Szego, Aufgaben und
Lehrsbtze (1926), ii. 57-9, 243-5.
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For as (Or) vary in the intervals (26), the expression

is bounded and continuoiis. It therefore has a maximum, at which

the conditions (25) are satisfied. The polynomial

(28)

then vanishes at every zero of P(0), and so must be of the form

(A6-{-B)P(6), and we get a Lame function.

Stieltjes interprets (25) as the conditions of equilibrium of a system
of collinear particles. Three of these have masses (i+/ct-)

and fixed

coordinates (et-), and m have unit mass and variable coordinates

(9r ). If they repel one another directly as their masses and inversely

as their distances apart, there will clearly be a position of equili-

brium where k of the movable particles lie in one interval and (m k)

in the other.

37. Introduction of Elliptic Functions

Uniformization. We may now drop the physical interpretation,

and consider as a purely analytical problem the solution of Lam6's

equation

(1)

f-^l
' 2 3 i J

Further progress depends on the introduction of elliptic functions,

and we use the Weierstrassian form defined by
00

f dx
x = #(), u =

J
/f

_
7
_

rJ7__^__v (2)

Suppose first that (et ) are real (e1 > e2 > e3 ). Then (2) is the Schwarz-

Christoffel formula giving the conformal representation of the upper

half-plane of x upon a rectangle in the plane of u. We construct a

Biemann surface covering the ^-domain, with winding points at

x = ev e
2 ,

e3 ,
oo. When x describes a circuit about one of these points,

the analytical continuation of u = u(x) is given by the principle of

symmetry. We thus obtain a pattern of rectangles covering the

-w-plane without overlapping. The path in the w-plane corresponding
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to any given closed circuit in the #-plane can be determined without

ambiguity; and, conversely, each value of u gives a unique value of

x, so that x = @(u) is a uniform analytic function. We make the

I

FIG. 4.

domains correspond as in the figure, wl and eo3 being the positive real

and positive imaginary semi-periods of the elliptic functions, and

(w1+a>2+a>3 )
= 0. We have >(c^)

= e
it
and from (2) we have

u ~ or* (x -> oo), u Wi = O^xe^] (x -> et ). (3)

Thus u = is a double pole of fr>(u), and u = t^ is a double zero of

{$p(u)~ e
i}- We can express the radicals (x e^ as uniform functions

of u by the well-known formulae

"\w/
v

\
wl/

These relations still hold when (e^ are complex.f Each period

parallelogram of sides (2a)v 2o>3) contains two complete pictures of

Fia. 5.

the a>plane. The triangle (0, 2coly 2co3 )
contains one complete repre-

sentation of the plane bounded by three curvilinear cuts from

x = 6i to x = oo. If we take any value of x and an initial value of

u within this triangle, then when x describes a circuit about e
l9 c2 ,

or e3 ,
u is transformed into (2a} u), (

2co2 -i*), or (2^3 u), the

reflections of the initial point in the mid-points of the sides of the

triangle.

t For a detailed study see C. Jordan, Coura d?analyse, ii. 413-29.
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Lame's equation now takes the form

= 0. (5)

The singularities x = e
t ,
with exponent-difference |, have become

ordinary points, by virtue of the relations (4). The point x = oo

corresponds to singularities at the lattice-points u = (modulis

2o)l5 2o>3 ). At u = 0, we have )(u) ~ u~2
i the indicial equation is

now (p-}-n)(p n 1) = 0, the exponents being doubled. If n is an

integer, the exponent-difference (2n-\-l) is also an integer. But since

(5) is invariant when we change the sign of u, one solution contains

only odd and the other only even powers of u. Thus the complete

primitive of (5) is free from logarithms everywhere and is a uniform

analytic function of u.

Special Cases. Suppose first that B has a special value giving the

Lame function

3 ifYi
__

x
,. __

I I

e
-J

7
^* *" Ŵ

I! cr^-i-^jcr^ WJ I

,^v
I 1 cr(w)cr(a>v ) J I I

I V2
(u)cr

2
(ur )

i_-i
L \ / \ t/ J

r = 1
L v y v r; j

where A:^
= or J

This is a uniform function of u having w-tuple poles at the lattice-

points u ^ and n zeros in each period-parallelogram. The eight

types are distinguished by whether they do or do not vanish at

u o>f, or by whether (2a^.) are full periods or semi-periods. In all

cases
(f)

2
(u) is an even doubly-periodic function with periods (2col5 2o>3 ).

The second solution is now given by the usual formula

y = tf)(u) \ [^(^)]~
2 du. (7)

To effect the integration, we must resolve the integrand into its

principal parts at the poles. Let u = a be any zero of <f>(u), so that

u = a is also a zero. We must have </>'(a)
= 0, or (f>(u) would

vanish identically; and the differential equation (5) gives <f>"(a)
= 0.

From this it readily follows that the residue of
[<f>(u)]-

2 is zero; and

since [^(0)]~
2 we get the expression

(8)
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summed over the n poles in a period-parallelogram. We now obtain

by integration

There are m pairs of identical terms arising from poles other than

U = O)p

As in the case of Legendre's equation, we know in general the

coefficients of the Lame function, but not its factors. But the second

solution can be found by the method of undetermined coefficients,

without knowing the roots of the first. For the expression (9) is of

the form

V =

}, (10)

where P is a known polynomial of degree m, and Q an unknown one

of degree (n m 1), and where L, M are constants. Ifwe substitute

the expression (10) in Lame's equation and remove the factors

IT {$) (
u)~ ei}*~

Kt
> we have a polynomial of degree (nm) which must

vanish identically. This gives (n m+ 1) conditions determining the

ratios of L,M and the coefficients of Q.

Halphen's Transformation. Every Lame function is an elliptic

function of u, admitting (2a>i, 2o>3 ) either as full periods or as semi-

periods. If we put u = 20, it is an elliptic function of v with periods

(2^, 2cu3 ) and is rationally expressible in terms of $)(v) and $>'(v).

In fact the irrationals (x es)* are removed by means of the identities

of the type

[p(2t;)- Cl]
= [p

a()-2e1 p()-e?-c ]l e,]/p'(). (11)

The Lame function y = (j>(u)
=

<(20) is either an even or an odd

function of v, according as n is even or odd. It has four poles of

order n in each period-parallelogram, at the lattice-points v ==
0,

coj, a)2 , o>3 . If we multiply it by [$>'(v)]
n

, three of the poles are can-

celled, and we have in all cases an even function of v with poles of

order n at the lattice-points 0^0. The resulting function must

therefore be a polynomial of degree 2n in p(v).

Accordingly Halphen puts in (4)

u - 20, y = [p'(v)]-2, (12)
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and obtains for z the equation

= 4[n(n+l)p(2)+B>. (13)
But we know that

and so (13) becomes

S-* $ +<[<*"- W">-*]' = o. (is)

If now we put = p(), we have (with our previous notation)

This is an equation of the Fuchsian class with four singularities; the

exponents are (0,%+J) at each of the points f; el9 e2,e3 ,
and

( 2n,^ n) at oo. Following Crawford's procedure, we may
expand the solution belonging to the exponent 2n at = oo in

the form

and obtain the recurrence formulae

B*CO = o, \

(18)

rKw+J-r^^O (r=l,2,...),

where 5* = +^(1 2n)e2 .

The necessary and sufficient condition that z should be a poly-

nomial is c2n+l
= 0, which entails cr

=
(r > 2n). If c = 1, cr is a

polynomial in B of degree r, so that there are (2n-{-l) special values

of B corresponding to the Lame functions of different types. If

< r < 2w+l, and cr for some value of B, then cr_j and

cr+1 have opposite signs, except when r n, when c
/l
_1 and cn+1 have

the same sign. A Sturm sequence of polynomials is, however, formed

by the set

+ C0> 4~ cl> + C2>'"> + c
>i>

c +l> + Cw+2> cn+3'"> ( )
?l+ C2n-fl (^^)

and we can prove that the values of B are real and distinct.

Brioschi's Solutions. If n is half an odd integer, the exponent-
difference (n-\-\) is an integer and the solution is in general logarith-

mic. But for certain special values of B we have algebraic solutions;
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these were discovered by Brioschi, but are most simply exhibited

by the analysis of Halphen and Crawford. Putting n = (ra+ 1) in

(18), we have the recurrence formulae

(r+I)(m-r)cr+1+[B*+3r(2m+l-r)e2]cr
-

(20)

where B* B w(2m+l)e2 .

The critical equation of the set is

[B*+3m(m+l)e2]cm-tf'(e2)(m+2)cm_l
= 0, (21)

where cm+l does not appear. If the solution is free from logarithms,

the first (m+1) equations must be compatible, so that B satisfies

an equation of order (m+ 1). When this is the case, c and cm+l may
be arbitrarily assigned, and it turns out (owing to the vanishing of

a certain determinant) that cr (r > 2m+l), so that the solu-

tion is a polynomial. The explanation of this is the fact that, if

<f>(u) is a solution of (4), then <j>(u-{-2w>1 )
is another solution. In terms

of v, these solutions are respectively

(23)

If we put cr
= (ez-e^^-e^c^^ (r < 2m+ 1),

cr (r>2m+l),
in (20), it is found that the formulae for (c'r )

are of the same form

as those for (cr ). Thus the one condition satisfied by B gives two finite

and compatible sets of equations for (c ,c1 ,...,c2m+ i), and then

38. Oscillation and Comparison Theorems

A General Orthogonal Property. If Vv V2 are distinct solid ellip-

soidal harmonics, we have by Green's theorem

-*
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the integral being over an ellipsoid of the confocal system and the

derivatives along the outward normal. In confocal coordinates

we have therefore

and on expressing the ellipsoidal harmonics as products of Lame

functions, we get (on the ellipsoid v constant)

JJ(
00 - = o. (3)

If we now put (A,/z,,v)
=

($)(u), fi(v), $)(w)} y
we have w = constant

on the ellipsoid. The factor depending on w does not vanish identi-

cally unless E^v) ^ E
2 (v), which is excluded. Hence we have the

relation

/ J [#()-#()]&()&()&()&() dvdv = 0, (4)

fc>! a 3

between any two distinct Lame functions. On a fixed ellipsoid we

have e > @(u) > e2 > (p(v) > e3 ,
and @(u), @(v) will be real if we

assign to u a fixed real part wl and to v a fixed imaginary part a>3 .

The range of integration covers the entire surface twice.

Functions of the Same Order. If the functions are of the same

order n, but belong to unequal parameters Bv B2 ,
we have

and hence by cross-multiplication

b

a

Since Lame* functions of all types admit the periods (4^, 4o>3 ), we

I
(j>i(u)<j)2(u) du ^^ (BI T2^ B2 ). (7)

a

The eight types of Lame functions are characterized by three

boundary conditions of the form
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according as they do or do not vanish at the lattice-points u *= o^.

For two functions of the same order and the same type, we have

from (6) the relation

J ^(u)^(u) du = Q (i,j =1,2, 3). (9)

Wi

From this we infer that the critical values of B are real (as has

been otherwise proved already). For if the two functions corre-

sponded to conjugate imaginary values of J5, their product would

not change sign on the segment parallel to the real axis joining w3

and (^3+wj); and the relation (9) would be impossible.

Oscillation Theorems.*)* Upper and lower bounds for the critical

values of B, and further information about the zeros of the Lame
functions can be obtained very simply and directly by the methods

of Sturm and Liouville. The parameters fa) being real and 2 e
t
= 0,

let </>(u) be any Lam6 function and B the corresponding critical value

of the parameter. We can choose a coefficient c so that Y c</>(u)

shall be real in the interval {e3 < @(u) < e2}, where the imaginary

part of u reinains fixed and equal to a half-period, say I(u o>3 )
= 0;

we put X = (u o>3 )
and consider the graph of a point whose

Cartesian coordinates are (X, Y). If d2
Y/dX

2 and Y have the same

sign, the curve is convex towards the axis of X\ in any interval

where [n(n-\-l)@(u)+B] remains positive, the curve cannot cross

the axis more than once, after which Y, dY/dX, d2
Y/dX

2
all retain

the same sign and the curve moves steadily away from the axis.

Such a curve cannot represent a real periodic function with the period

4:0)v and so the minimum values of the expression in the interval

must be negative, i.e. [n(n-\-l)e3+B] < 0. But similar reasoning

applied to the real curve traced by the point [i(u o^), c'<j>(u)\
in the

interval {e2 < (p(u) < ej shows that [n(%+ 1)^+1?] > 0. Hence all

the critical values lie in the interval

w(w+l)(ea+es ) < B < n(n+l)(e1+e2 ). (10)

Now let B
i > Bj be two of the (2^+1) critical values, and

[<f>i(u),</>j(u)}
the corresponding Lam6 functions. By means of (6)

we can prove that the zeros of
<f>j(u) separate those of ^(u) in the

interval {e2 > fi)(u) > e3}, the situation being reversed in the interval

t M. Bocher, Lea M&hodes de Sturm (1917) ; Die Reihenentwickelungen der Potential-

theorie (1894); F. Klein, Oesammelte matheniatische Abhandlungen, ii. 512-600.
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(el > @(u) > e
2}.

For let u = a, b be adjacent zeros of
<f>i(u)

in the

range

< a w3 < ba)3 < col9 e3 < g)(a) < $(b) < e2 . (11)

We can make <f>i(u) real and positive on this segment, and let us

suppose (if possible) that
<t>j(u)

does not change sign in the interval,

say (f>j(u) > 0. Then the relation

(u)(u) du =

gives a contradiction. For the left-hand side is positive; but at

the end-points $(a) > 0, $(&) < 0, <^.(a) > 0, <f>j(b) > 0, so that

the right-hand side is negative. Thus
<j>j(u)

must have a zero in the

interval, and a similar argument applies to the segment where

{e2 < 0(co) < ej.

By considering the two segments, we can arrange in order the

(2n-\-l) Lame functions corresponding to the sequence

(B, >BZ > ... > B2n+1 ).

For example, if n 2, we find two functions of the first type

[p(^)ifc^] } where 6 is the positive root of (120
2

g2)
= 0, and three

of the third type \{$(u} ej{p(w) fy}]*,
and the sequence is

(13)

The zeros of solutions of Lame's equation for other than critical

values of B have been considered by other methods by Hodgkinson.f

39. The General Equation of Integral OrderJ

Multiplicative Solutions. We saw in 37 that, if n is a positive

integer but B is unrestricted, every solution of

jg_[n(+l)f)(tt)+B]y
= (1)

is a uniform analytic function of u. When u increases by the period
2a>v the equation resumes its initial form; hence if/(^) is a solution,

then /(w+2o>1),/(^+4a>1 ),... are also solutions. If they are not all

multiples of the same solution, any three of them must be linearly

t J. Hodgkinson, J. of London Math. Soc. 5 (1930), 296-306.

j C. Hermite, (Euvres, iii. 118-22, 266-83, 374-9, 475-8; iv. 8-18; F. Brioschi,

Comptes rendus t 86 (1878), 313-15.
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connected; and so we have an identity

f(u+4a>1)+2f(u+2a>l)+Pf(u) = 0. (2)

Now we have j8
= 1; for when u is changed to (u+2a)^, the Wron-

skian W[f(u+2a>1 ),f(u)] becomes

TT[/(tt+4ci1),/(tt+2ci 1 )]
= pW]J(u+2uj^f(u)}. (3)

But we know that its value is constant, and so the multiplier ft
= 1 .

(i) If a2
9^ 1, the equation (A

2+2aA+l) = has unequal roots

(^,/Lt"
1
); and (2) can be written

or

Thus [f(u-\-2a)l)ijr
1
f(u)] and [/(^+2o>1 ) pf(u)\ are linearly inde-

pendent solutions admitting the multipliers O^,/*"
1
) respectively for

the period 2^. If one is called <f)(u), the other must be a multiple of

(f>( u); for if c/)(u-{-2a)l ) p^>(u) t
then <f)(u-2a)l )

= ^-^(u).
Now consider the solution ^(w+2o>3 ); we must be able to express

this in the form
</>(u+2a>z )

=
a<t>(u)+b<t>(-u), (5)

and we no^ have two alternative expressions for

Since this is a single-valued function and /*
2 ^ 1, we must have

6 = 0; hence ^(^+2ct>3 )
=

v(f>(u) say, and so <f>(u)
admits the multi-

pliers (/it, v), and $( u) the multipliers (/*"~
1
,v~

1
)

for the periods

(2a>1? 2o*3 ).

(ii) If a2 =
1, we can find at least owe solution such that

=
</>(u).

If we repeat the argument with ^(u),^(^+2o>3 ),

), we obtain either two distinct solutions with unequal multi-

pliers (v,v~
l
)

for the period 2o>3 and the same multiplier for the

period 2ca1? or at least one solution with multipliers (l 5 dzl) for

the two periods. This is a doubly-periodic function with periods

(40)!, 4co3 ), in the least favourable case, and so is a Lame function,

which we know how to construct.

There cannot be two independent doubly-periodic solutions. For

then every solution would admit (2o) x ,
2o>3 )

as full periods or semi-

periods. In particular, the solution belonging to the exponent (n-\~ 1)

at u = would be everywhere bounded, and therefore constant, by
Liouville's theorem; and this is absurd.
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In general <f>(u) is a doubly-periodic function of the second kind,

and a method for constructing it was published by Hermite. An
easier method, which we here follow, was given in Hermite 's lectures

and independently published by Brioschi.

Product of Solutions. If (y^y^) are any solutions of (1), their

product Y = y\y<i *s found to be a solution of an equation of the

third order

)Y = 0, (7)

or, if x = $)(u), f(x) == 4#3
g2 x g,3 ,

v/ .dY

4[n(n+l)x+B]^-2n(n+l)Y = 0. (8)
ttX

This has four regular singularities, three with exponents (0, 1, 1) at

x = e
t
and one with exponents (n-{- 1, J, n) at x = co. Now suppose

in particular that Y is the solution <f>(u)<f>(u)\ this is an even doubly-

periodic function having poles of order 2n at the lattice-points

u ==
0, and so it is a polynomial of degree n in x $(u), and must

be of the form v

Y = ii
cr(x-e^-r. (9)

r=0

We now rewrite (8) in the form

4(x-e2)*Y'"+lS(x-e2)*Y"+[12-n(n+l)](x-e2)Y'-^

+ I2e2(x e2 )
2Y"'+36e2(x e2)Y" 4[B+n(n+l)e2]Y'+

+f'(e2)[(x-e2)Y'"+%Y"]^0 ) (10)

and find the recurrence formulae

2 n 3)e2 B]cQ
= 0, \

l+^r-n)[(2n
2-n-3)e2+ (11)

'

(e2)(r-n)(r-n-^(r-n-l)^ = 0. J

These evidently give cn+l
= cn+2 ... 0, and we have the required

polynomial; on resolving it into factors we have

The solution <f>(u) of (1) cannot have a double zero without vanishing
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identically; and <f>(u)
and <f>(u) cannot have a common zero unless

they are multiples of one another; each would then have the multi-

pliers (1, 1) and would be a Lame function, a case which is here

excluded as it has been more simply discussed already.

The Invariant. To complete the solution we require the Wronskian,

which is a numerical constant

W{t(-u),<l>(u)} == <f>(-u}<j>'(u)+<}>(uW(-u) = C. (13)

We observe that

V(u) = i(-uW(u)-<l>(u)<l>
f

(-u), (14)

and ifwe choose the notation in (12) so that
</>(-{-

ur )
= 0,<f>(ur ) ^ 0,

we find
<t>'(+Ur )

= -V(-ur )
= <t>(-urW(ur)

= C. (15)

The 2n zeros of O(it) lying in a period-parallelogram can thus be

divided into two sets, according as they give Q>'(u)
=

(7; and the

zeros of the one set belong to (f>(u) and those of the other to
</>( u).

We now have VW J>'(-u) _C_
'

( )

The expression on the right is an even elliptic function with 2n poles

in each parallelogram and zeros of order 2n at the lattice-points

u ~ 0.

From (15) we see that the residues are
(+ !,!) at (ur ,

u
r )

respectively, and so we must have

We now integrate and fix the constant of integration by putting
u = 0, which gives

and on combining this with (12) we have the required solution

= (-)-/Wi ft \

Q(^\e^l
1^1 [a(u)a(ur ) J

(19)

40. Equations of Picard's Typef
Commutative Linear Transformations. We now consider more

generally an equation

t E. Picard, J.fiir Math.9Q (1880), 281-302 ; Trailed'analyse, iii. 437-53 ; G. Floquet,
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whose coefficients are uniform doubly-periodic functions. Suppose
that each singularity in a fundamental parallelogram has been

examined, and that every solution has been found to be uniform.

If
{</>i(u)}

is any fundamental system of solutions, then

is another, (p,q) being any integers and (26ol5 2o>3 )
a pair of funda-

mental periods. In terms of the original system we shall have

(S): h(u+toi) = ay^(tt) (i
=

1,2,...,*),

(T):

and because
{</>i(u)}

are single-valued, the alternative forms of

{^(w+2co1+2co3)} given by ST and T$ are identical.

Hence the product of the matrices may be written in either of the

forms
c
ij
= 2 *A* = 2 bik akj (i,j

-
1, 2,..., w). (3)

A: - 1 & - 1
n

If we choose a different fundamental system ^ =

matrices corresponding to (a^) and (6^) will be (d^a^d^)-
1 and

(dij)(b ij)(dij)-'
L

,
which are also commutative. If (^) are the roots of

the characteristic equation A(A) = |^j"A8^.| 0, we may suppose
$ reduced to the Jacobian semi-diagonal form

the notation (ai;f ) being retained schematically for the new coefficients.

If A /zx is a root of multiplicity m, we can arrange the reduction

so that

.,n). (5)

We shall now show that the m solutions belonging to the charac-

teristic root
jitji

of 8 are permuted only among themselves by the

other transformation T.

Consider first the expression ^1(^+2oj3 )
=

] bytyu), and let bl8

Annales de rticole Norrnale (3) 1 (1884), 181-238; C. Jordan, Cours d"analyse, iii.

287-301.
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be the last coefficient which does not vanish, so that bls ^ 0,

b^ = (j > a). Then we shall find from (3) that

and this would give a contradiction if s > m, /xx ^ /x,,.
Hence

^1(^+2o>3 )
is expressible in terms of the first m solutions. Suppose

that this is also true of 2(^+2a>3 ),...,^A.(w+2co3 ); and that in the

expression for <^+1(^+2a>3 )
the last coefficient which does not vanish

is b(k+1)8
= 0, b(k+1)j

=
(j > s). Then we shall have

and again we find a contradiction if s > m, /zs ^ /^ fl .

We can therefore resolve the fundamental system, first into sets

belonging to each distinct characteristic root of S, and then further

into sub-sets belonging to each distinct characteristic root of T.

The solutions of a sub-set belonging to a particular pair of multipliers

(JJL,V) will then be permuted only among themselves in all trans-

formations of the group.

Construction of a Multiplicative Solution. It is not in general

necessary to construct ab initio a complete system of n distinct

solutions; for if f(u) is any solution, other solutions are given by

/(w+^coj), f(u-\-4:0} l ),...,
and we naturally choose as many of these

as are linearly independent as part of our fundamental system. Let

yi ^2/{u-\-2(i 1)0^} (i
= 1,2, ...,&) be linearly independent, then if

we have

we begin by reducing to the canonical form the transformation,

(9)

We can form at least one combination g(u) of these solutions, such

that g(u
jr2a) 1 )

=
i^ig(u); by applying the same argument to

g(u-{-2a)3 ), </(^+4o>3 ),..., we can then always find one combination

<j>(u), such that <f>(u-{-2uj l )
= ^^(u) and also </>(u-\-2a)3 )

=
vi</>(u).

It will not be necessary to construct any entirely new solution

until all solutions of the type f(u-\- 2pct>i+2^o>3 ) have been accounted

for and shown to involve less than n independent solutions.

Canonical Sub-sets. It was shown by Jordan that a sub-set

belonging to the multipliers (JLI, v) can be so chosen that the matrices
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are both of Jacob! 's type

Q 00
v

^ v

173

(10)

where or = TCT.

The theorem is obvious for a sub-set consisting of only one solution.

We assume it true for a set of (k 1), and prove it for one of k solu-

tions. By operating within the sub-set as we did for the system as a

whole, we can find at least one multiplicative solution <f>i(u), such

that
(j>l(u+2aj 1 )

= ^(u) and
<f>1(u+2a)3 )

=
v<f>(u). We choose ^(u)

as the first solution of the canonical sub-set, and retain (kl) of

the others to make up k independent ones altogether. We can now
rewrite the transformations in terms of these solutions. If we ignore

the first row and column of the matrix, we can reduce the trans-

formation of the last (kl) to the canonical form, because the

theorem was assumed true for (kl). When we add these relations

(with the terms in ^(u) on the right) to those expressing (f>1(u+2a>l )

and <f>i(u-\~2w3 ), the &-rowed matrices will be in the required canonical

form.

Analytical Form of the Solution. The two multipliers (ju, v) being
never zero, we can reduce both to unity by writing fa(u)

==

where x(u )
*s an auxiliary function of the form

For the relation cr(u-\-2<jt>i )
= e2(u+att>vii cf(u) gives

X(u+2wi )
= x(u)e*"*-#<> (i

= 1, 2, 3); (12)

and because 2(77^3 173 o^) = ^7^0, we can choose (a, b) to

make the multipliers corresponding to (2o>l5
2o>3 )

have any assigned
values

(fji, v). If we write

*l*(u) EH {^(w+2o>1 ) $(u)} and A*^(w)
=

{0(w+2o>3 ) ift(u)} 9

the two transformations become

A^(tt) = 0, AVi(w) = 0,

where the matrices (Ay) and (By) are commutative. (13)
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It is evident that ^i(u) is a uniform doubly-periodic function of u\

we shall prove by induction that $k(u) is a polynomial of degree

(& 1) in {u y (^)}, whose coefficients are uniform and doubly-periodic.
For this purpose, we take the periods in the order given by

~ +^> and introduce the expressions

ITT ITT

which have the properties

&ot(u) = 1, Afi(u) 0,

A*a(w) = 0, A*/?(M)
= 1.

Any polynomial of the type in question can then be written in the

ionn f/*.\ __ \p v* TT D / i ^ i.\ (16)

(17)

Suppose expressions of the required form have been found for

1 (^),...,j^A;
_1(^); at the next stage we are given the expressions

where

__ ^^...(cx-A^+l) Q _j3QS I)...(j8t+l)
otA.
_

,

^-
, pk ^

The condition (A^)(B^) = (B^A^) is equivalent to

A*A^A() = AA*^();
and the relations (18) will be compatible if, and only if,

n$+1)
= njtu-

Accordingly we now write

W)=
((|.g)

n
fc,yai ft, (20)

where HM =
n|}L 1M or ni>w

= !!$_. (21)

All these are given doubly-periodic functions, with the exception of

IT^ 00 ,
which is indeterminate. But the relations (18) now reduce

to (AII fc 00
= A*II A

.

f00 ), so that this is also a doubly-periodic
function. The theorem thus holds for the kth function if it holds

for the (k l)th, and the induction is complete.
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For the actual construction of the solutions, reference should be

made to works on elliptic functions.

EXAMPLES. IX

1. BBIOSCHI'S IDENTITY. If Y == yy2 is the product of two solutions of

Lamp's equation, show that the equation of 39 (7) has a first integral

= K -

Show also that

2. Show that, in Jacobian elliptic functions, Lame's equation may be

written in either of the forms

By changing the periods, reduce to Lame's form the equation

3. WHITTAKEB'S INTEGRAL EQUATION. Show that the Lame functions of

order n which are rational in snu satisfy the integral equation
4K

y(u) -- X ( Pn(ksnusnv)y(v) dv.

o

[E. T. Whittaker, Proc. London Math. Hoc. (2) 14 (1915), 260-8.J

4. LAME-WANGEKIN FUNCTIONS, (i) Show that Laplace's equation V2F
admits solutions of the type V = -rodeos w^W(w,?j), where (-ar,z,(f>)

are cylin-

drical and (u,v,(/)) curvilinear coordinates, connected by the relation

and tlrU -
8 *W

and that

(ii) Show that this has normal solutions W = G(u)H(v) if F(w) - snu?,

, or clnz/;; and that O(u] and //(?') then satisfy Lame's equation of order

(w-J).

(iii) In the most general transformation giving normal solutions, show that

[A. Wangerin, Berliner Monatsber. (1878), 152-66; E. Haentzschel,
Reduktion dcr Potentialglelchung (1893).]

5. PENTASPHERICAL COORDINATES. If (Sk ) are the powers of any point with

respect to five mutually orthogonal spheres of radii (-R^), show that
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* I (iX) -
X.V.Z

5

fc-1

If V is homogeneous of degree \L
in (Sk ), show that

[G. Darboux, Le$ons sur les systkmes orthogonaux (1910), 287-93;

Principes de geometrie analytique (1917), 379-404, 462-7.]

6. CONFOCAL CYCLIDES. If xk = Sk/Rk and if (ek ) are unequal, three surfaces

(6 A,/x, v) of the system

pass through any point.
6 5

If P === 2 ek xl t f(0) --. n (^ ^), prove that

(A-/*)(i>-A)dA
8

16 Z, /(A)

7. Show that V 2F - is satisfied by V = P-W
all solutions of the equation

cfc-^-Bto - 0.

[A. Wangerin, J. fur Math. 82 (1876), 145-57; G. Darboux, loc. cit.

or Comptes rendus, 83 (1876), 1037-40, 1099-1102; M. Bocher, Die

Reihenentwickelungen der Potent ialtheorie (1894).]

8. THE FLAT RING. Cyclides of revolution of the family

(O^:W--Z)
a

_ (q2+m24. Z2)2 __

(9-1 e-(l/k
z
)

~
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are given by 6 sn2
w, 9 = Bu2

iv, where

(m+iz) (a/k')[dn(u-\-w) kcn(u+iv)].

If V2F =- 0, show that

and that there are solutions V -ar~*cosm<f>F(u)G(iv), where F(w) 9 G(w)

satisfy ^ ^2

[E. G. C. Poole, Proc. London Math. Soc. (2) 29 (1929), 342-54;
30 (1930), 174-86.]

A a



X
MATHIEU'S EQUATION

41. Nature and Group of Mathieu's Equationf
Introduction. JUST as Bessel's equation is a limiting form of

Legendre's, so Mathieu's equation (which is now to be discussed) is

easily derived from Lame's. Let the latter be written in the Jacobian

form j%nl

= 0, (1)

and let n(n-}-l)k
2 = A be kept fixed as Jc -> and n -> oo. In the

elliptic functions 2K > IT and 2iK' -> oo; the singularities, which are

situated at the points u = [2pK+(2q-{~l)iK'} recede to infinity, and

we are left with the equation

?jt-(AsuAt+B)y=0, (2)

which is Mathieu's equation.

In celestial mechanics there occurs the celebrated equation of Hill

+ [0 +2e i cos20+20 2cos40+...> - 0, (3)

of which Mathieu's is a very special case. This equation was the

occasion for the introduction into analysis of infinite determinants

by Hill, and their subsequent justification by Poincare. In this

problem, the coefficients of the equation are given and we have to

determine the character of the solution. We here confine our atten-

tion to the special case of Mathieu's equation, where the difficulties

regarding convergence are trivial and where the determinants are

of the special type associated with continued fractions.

The equation arose in a different manner in Mathieu's problem of

the vibrations of an elliptical membrane, and in analogous problems

regarding the potentials of elliptic cylinders. We transform the two-

dimensional wave equation

_
dx* dy* c2 dt2

v '

t E. Mathieu, Liouville, J. de Math. (2) 13 (1868), 137-203 ; G. W. Hill, Acta Math.
8 (1886), 1-36; H. Poincar6, Lea mtthodes nouvelles de la mecanique celeste (1893),
ii. 228-80; E. T. Whittaker and G. N. Watson, Modern Analysis, ch. xix; P.

Humbert, Memorial des sciences mathernatiques, x (1926); M. J. O. Strutt, Ergebnisse
der Mathematik, i, 3 (1932).
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to confocal coordinates (x+iy) = acosh(g-\-irj), and look for normal

solutions of the form F == eikciF()G(r)). We then have

( }

and both sides of the equation must be equal to a numerical constant

p, whose value is unknown. F(i6) and G(6) will then both satisfy

Mathieu's equation

^+(p-*Vcos*%==0. (6)

In most physical questions, F must be a single-valued function of

position, and so^> must be chosen so that #(7?) shall admit the period

277. These periodic solutions are called Mathieu functions, and the

attention of writers on mathematical physics has largely been con-

centrated upon them for evident practical reasons.

Group of the Equation. The equation (6) has no singularities

except 6 oo, so that every solution is an integral function of 0. At

the ordinary point = 0, two independent solutions are determined

by the conditions (y ^ Q,y' 0) and (y
= Q,y' ^ 0). The equation

being invariant when we change the sign of 0, one solution will

involve only even and the other only odd powers of 6, say

/<,W=/o(-0)> AW = -A(-0). (?)

Now the coefficients of (6) admit the period TT and the solutions are

uniform functions of 9; in accordance with Floquet's theory, we

express the solutions / (^+7r),/1(^+7r) in the form

Since the Wronskian W{fQ(9) )fl (0)} must be a constant, we find on

changing 6 into (O+n) that

cxS-^y = 1. (9)

We now combine (7) and (8), and obtain the transformation

On repeating this transformation, we must have the identical one

f-ffy. 8-)x /i

oy
y(-8), p-fr) \0 l)

'
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(i) If possible, let these relations be satisfied with (a 8) = 0.

Then /?
= y and a = 8 = i 1

; the relations (10) now reduce to

either / (ir-0) - / (0), /i(*r-0) - A(0), 1

/ y
/J\

/ //1\ / / n\ f / /\\ I
* '

In the one case, every solution is even, in the other odd in 0' ES (0 Jrr).

But this is impossible; for \TT is an ordinary point of (6), and on

taking this as origin we find (by symmetry) that there is always both

an odd and an even solution in 0'. In all cases, therefore, we have

a = 8. (13)

The relations (a
2

j8y)
= 1 = (8

2
j3y) now follow automatically

from (9) and (13).

(ii) The multipliers of the transformation (8) are given by

A2-2aA+l = 0, (14)

and are unequal provided that a2 ^ 1. We write them (e
iirh

,e~
iirh

) 9

where a = COSTT&. The corresponding multiplicative solutions

{AfQ(0)+B l̂(0)} are given by the condition

B~ \-cc~ Y
since a = 8. We may therefore write them as

f(-e) = yyoW-W^).
Their product ^(0) =/(0)/( 0) is an even function admitting the

period TT, whose construction is the crucial step in Lindemann's

method of solution, based on the Hermite-Brioschi solution of

Lamp's equation. We can easily verify that

F(0)
==

y/J(fl)-j8/!(fl) (17)

is the only independent expression of the type

such that ,F(0)
= F(0) = F(*B).

In Hill's method of solution we use the property that, if the

multiplier eih>n belongs to /(0), then
<f>(0)

EEE e~ihef(0) is an integral

function of with the period TT. It is therefore a single-valued

analytic function of z ^ e2iff
t
whose only singularities are z = 0,oo;
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oo

and so it is expressible as a Laurent series 2 cn zn - WG therefore
n=-oo

have oo

/()= 2 cn tf*+*, (18)
n co

where h is at first unknown. But Hill obtained and solved a trans-

cendental equation for /, from the condition that the series (18)

should converge.

Periodic Solutions. If the coefficients of Mathieu's equation are real,

those of the linear transformation (8) are also real, and the character

of the solution depends on the magnitude of a2
.

(i) If a2 > 1, the multipliers (A, A"
1
) are real and unequal; the

expression /(#+2ra7r) = A2m/(0) then tends to infinity or zero for

large integers m. Such solutions are called unstable.

(ii) If a2 < 1, the multipliers are conjugate imaginaries of modulus

unity, and then |/(0+2w7r)| |/(0)| for all integers m; such solutions

are called stable. The values of h satisfying cos rrh a are real, but

not integers (since a2 < 1).

If h has a rational value h r/s, where the fraction is in its lowest

terms, the solutions both admit STT as a semi-period or full period,

according as r is odd or even. For example, if a 0, h = 1, we have

/o(0+7r) = j8A(0), A(0+7r) = y/ (0) (0y - -1); (19)

and then we have, on repeating the operation,

Ue+tor) = -/ (0), /1(fl+2r) = -/!(*), (20)

so that 2?r is a semi-period of every solution.

(iii) If a2
1, the multipliers are given by (Ail)

2 = 0. From

(9) and (13) we get f$y
=

;
hence one at least of the solutions admits

7T as a semi-period or as a full period. We find four types of periodic

solutions

\

/

The four types are distinguished by their parity as even or odd

functions of 6 and of (0 ITT).

Ince's Theorem.f It was proved by Ince that there cannot be two

independent solutions of period TT or %TT. Suppose there are two

t E. L. Ince, Proc. Cambridge Phil. Soc. 21 (1922), 117-20.
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solutions, in sines and cosines of even multiples of 9 say. Then the

recurrence formulae will be
(2kW-4p)aQ+(kW)a2

= 0,

"

r

b-d I

(22)

Ifwe eliminate the middle coefficient we get

271-2 2n

^
2n+2 >

^3)
Wnere ^2n =~ 2n 2n+2 2n 2n+2' '

But since both series are to represent integral functions of 6, we

must have, as n -> oo,

2n -> 0, b2n -> 0. (24)

Hence A
2/l
= for- all values of n\ and in particular A = aQ b2

= 0.

This relation and the relations (23) can only be satisfied if one of the

assumed solutions vanishes identically. A similar proof applies to

series of odd multiples of 9.

Since
/?, y cannot vanish together, the invariant factors of the

characteristic matrix are [(A^l)
2
, 1]. The fundamental solutions can

then be reduced to the canonical forms

(25)

where /(#), g(0) are integral functions of opposite parity, with the

same minimum period TT or 2?r.

42. The Methods of Lindstedt and Hill

Continued Fractions. In considering Lame's equation, it was

mathematically convenient to solve first the cases of greatest

physical interest, where there is a periodic Lame function expressible

in finite terms. But when we pass to Mathieu's equation (a confluent

Lame equation of infinite order) there is no simple expression for the

interesting solutions of period TT or 2?r; in the special cases, the

periodic solution is about as intractable as the solution in the general

case, and the associated non-periodic second solution much more
so. We shall therefore begin with the problem as it arises in celestial

mechanics, the coefficients of the equation

g+ (00+20! cos2% =
(1)uu

being known, but the solution not necessarily periodic.
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We write a multiplicative solution in the form

V = eihe I c^e*"*, (2)
n oo

and obtain the recurrence formulae

eiC2n-2+[0-(*+2) a>2+lCan+
=

(
= 0, 1, 2,...). (3)

Following Lindstedt, we use a method applied by Laplace in the

theory of the tides on a rotating globe, and greatly developed by
Kelvin, Darwin, and Hough.f Let us put for brevity

u'2n+2
~

' LJ2n ~f\ V*^
C2n ^1

then the recurrence formulae may be written

1

Let us choose any large value of n; then if u2n is not small, u2n+%
will be large and the subsequent ratios will tend to infinity.

But we require a solution (2) which shall converge for all finite

values of 0-, and this is only possible if, for all large values of n, we
have approximately

U2n
~

T~~ "^
(
n ~*

)- (
6

)

^2n

But we can now rewrite (5) in the form

!
= r^~ . (7)

^2n ^2n+2

and obtain an expression as an infinite continued fraction

M2n=
i L L .... (8)

We now apply the same argument to the terms of (2) with negative

indices; we now find

and since u_2n must now become large for convergence, we get the

expansion , ,

Of. H. Lamb, Hydrodynamics (5th ed.), 309-35.
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Finally, we substitute the expressions (8), (10) for u2,u_2 respec-

tively in the relation

and so obtain the transcendental equation for h

r \
l l l loJ l l 1

1LQ== \T~ ~T T "' + r" 7~ 7~~
-

r
L/>2 At AJ J |>-2 ^-4^-6 J

Hill's Determinant. The relations (3) can in general be written

and we obtain an expression for the mth convergent of the continued

fraction u2n c
27? /c2rt _2 , by using m successive equations (13) and

putting in the last of them c2n+2m = 0; on solving the modified

system of linear homogeneous equations in (c2s )
we get

(m) __ an jK"(w+l,W+W 1)

where

(14)

(15)

If 7i remains fixed and ri -> oo, we have an infinite determinant of

von Koch's type.f We have

K(n,n') = K(n,n
f

-l)-oin^n^1 K(n )
n f

-2), (16)

and this shows that every term in K(n,ri) occurs also in the product
n'-l

Y[ (1 ^r+iPr)) so ^na^ ^ne determinant converges absolutely if
r ~n

2 lWi&l converges. This condition is satisfied, provided that there

is no finite value of n for which L2n
= 0; for, as n -> oo, we have

otn
=

j3n = 0(?^~
2
). We may therefore write (8) and the analogous

formula (10) in the form

can_g K(n,co) c_2n+2 K( oo, i

t H. von Koch, Comptes rendus, 120 (1895), 144-7.

-, (17)
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and we have in general

(-K, -1).

The condition (11) may be written

= 0, (19)

which is the expansion in terms of the elements of the middle row
of the doubly infinite determinant

A(A)
== #(-oo, oo) = 0. (20)

This is a special case of Hill's determinant

n<n-Hfc)
= an(n-k) =

Should one or both of the numbers (&o) be an even integer, the

corresponding L2n 0, and the relation (3) becomes

(c2n-2+ C2tt+2)
= 0.

In one row of the infinite determinant (or in two at the most) the

triad of non-zero elements (an , I,j8w )
must be replaced by (1,0,1).

But we can still expand the modified determinant as a finite com-

bination of convergent infinite determinants of von Koch's type.

Evaluation of A(A). Let (m^.), (nk )
be any two sequences of positive

integers tending monotonically to infinity, and consider the sequence
of rational analytic functions of the complex variable h defined as

the determinants

fk(h) = K(-mky nk ) (k = 1,2,...). (22)

The poles of these functions are the points

A=0J2 (n = 0,l,2,...); (23)

if these are all excluded by small circles of given radius p, we can

show that the sequence {fk(h)} converges uniformly in the rest of the

plane, and so its limit A(^) is an analytic function of h, whose only

singularities are poles at the points (23). Corresponding to {fk(h)}

we construct as non-analytic functions of h the products of positive

terms
= ft {l+KI+l&D- (24)
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Now we have always

IAWI ,

2
.

L/VW-AWI
for in each case the modulus of every term on the left occurs among
the terms on the right, which are all positive. Accordingly the uni-

00

form convergence of 2 {KI+IA-Q in any domain, which implies
r= oo

that of the sequence {Pk(h)}> also ensures that of the sequence of

analytic functions {fk(h)}, whose limit A(^) will (by Weierstrass's

theorem) be a uniform analytic function of h. Now in this instance

we have
,

..... (26)
0J|

V '

Now among the terms |&+2r+0J| (r = 0, !>)> there is at most

one numerically smaller than unity, which is itself not smaller than

p outside the system of circles. Accordingly we have

uniformly in the said region; and so

A(A) = lim/^A) (28)

is a single-valued analytic function, whose only singularities are

at the points (23). By renumbering or rearranging the rows and

columns of the determinant, we now find

A(-A) = A(A), A(A+2) = A(A). (29)

Thus A(^) is an even periodic function, with the period 2; its values

everywhere are deducible from those in the strip ^ E(h) ^ 1.

But in this strip the expression Z = cos nh assumes once every value

in the plane of Z, cut from oo to 1 and from 1 to oo. Hence

A(A) is a uniform analytic function of cos irk, which is also an even

analytic function of h with the period 2. The points (23) are those

where cosrrh = cos7r0J; and as h approaches one of these points,

one or at most two factors of the product (24) tend to infinity, but



Chap. X, 42 MATHIEU'S EQUATION 187

in such a manner that [COSTT& cosTrOj]^^) remains bounded. A
fortiori, the expression [COSTT& cos 7r0J]A(/t.) remains bounded also;

and so A(^), regarded as a function of COSTT&, has a pole of the first

order only. IfK is the residue there, the function

#A) = A(*)-_~ -*--
-v,,., (30)

[cos rrh cos 7T0]

remains bounded for all finite values of h. But if h -> foo, A(7i) -> 1

and the second term in (30) tends to zero; and since <f>(h-}-2)
=

</>(h),

we see that
<j>(h)

is everywhere bounded, and therefore is a constant,

by Liouville's theorem.

Hence we have finally

(31)p
-~--^
[COS TTll COS 770JJ

The coefficient K is determined by substituting any convenient value

of h, such as h 0, which gives

K = [A(0)-l][l-cos7T0*]. (32)

The equation A(&) = is thus equivalent to

sm2 7Th = A(0)sin
2i7r0*. (33)

This equation may be read in two ways. In the astronomical problem,
where the coefficients of the differential equation are given, it serves

to determine the multipliers e i7rh of the solutions. On the other hand,

if is not given, it may be read as a transcendental equation to

determine
,
when the solution has assigned multipliers, for example,

when it admits the period 4-77- .

43. Mathieu Functionsf

Mathieu's Method. We must now examine more particularly the

solutions of period TT or 2?r, and we begin by remarking that, when

0! = 0, the critical numbers become = n2 and give the solutions

cos n0, sin n9. By the methods of Sturm and Liouville we know also

that, for any given real 1}
the critical numbers giving the even and

odd Mathieu functions with n zeros in an interval of length TT must

satisfy the inequality

|0 -n| < 2I0J. (1)

f See (in addition to previous references) E. Heine, Kugelfunktionen (1878), i.

401-15; E. L. Ince, Proc. Roy. Soc. Edinburgh, 46 (1925-6), 20-9, 316-22; 47 (1927),
294-301 ; S. Goldstein, Trans. Cambridge Phil. Soc. 23 (1927), 303-36; Proc. Cambridge
Phil Soc. 24 (1928), 223-30.
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Accordingly Mathieu assumes that the solution and its corresponding

critical number can be expanded as power-series in X , and gives

rules for evaluating those series term by term. We write in Mathieu 's

equation (
42 (1)) a solution of the type

cen (0) -
(2)

n 11 1 2 >

I

/g\

Q
= W2_^ jgi i _|_^2 02_p ?

j

where ri is zero or a positive integer. We now equate to zero the

coefficients of each power of v which gives for the even Mathieu

functions the set of conditions

Ul+n*Ul+(A l+2cos20)cosnO = 0,

U"2+n*U2+(A l+2cos2d)Ul+A 2 cosnd = 0,

0,

At each stage we first determine A k by the condition that Uk(0) shall

be periodic; and then we determine Uk(B) uniquely by the condition

that cos nd, sinnO must appear only in the leading term. Now a

particular integral of the first equation (4) is

TT
,m _ cos(n+2)6 cos(n2)0 A l 9sinnB . nUW-

4(n+l) 4fa=Ij 2rT (
n > ^

or, = JcosSfl
-

1(1+A^O sinO (n = 1),

'

^

or, = J cos 20 \A^e* (n = 0),

which is not periodic unless

A l
= (n^l), or^ 1

= 1 (n = 1). (6)

The complementary function Ccosn(d 6
Q )

need not be added, in

accordance with our rule, because all such multiples of 6 are to appear

only in the first term. We have therefore definitely

(n= 1).

At the next stage we have in general (if n ^ 2)

(tt 4)0
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and the condition for a periodic solution gives

A *
=
a&=T)

(n>2} '
A *
=

I*
(w==2); (9)

and we then have a unique expression

The second term is dropped if n 2; the modified forms correspond-

ing to n = 0, 1 are left to the reader. It is evident that the formal

process can be continued indefinitely, with proper precautions from

the Tith stage when terms in cos( n6) first appear. The same method

is applicable to the odd Mathieu functions. It was pointed out by
Mathieu that the series giving for cen(0) and sen(0) begin alike,

but differ after n terms. The coefficients of the trigonometrical

polynomials {Uk(0)} and {Vk(B)} begin to differ as soon as negative

multiples of 6 make their appearance. Various improvements in the

method have been made by Whittaker, and it has been shown by
Watson that the series converge if 0j is sufficiently small.

As X increases, however, the method breaks down from one of two

causes. The true connexion between and 0^8 found by putting
h = or h 1 in Hill's determinantal equation 42 (33). This is

a transcendental equation for
,
whose roots can be expanded as

convergent power-series in 1?
if and only if X is sufficiently small.

Again, in constructing the nth even Mathieu function, we divided

by the coefficient of cos nO. But, for certain values of 1}
the coefficient

in question vanishes; and, if we try to equate it to unity, the other

coefficients become infinite. These limitations of Mathieu 's method

have been more or less clearly realized by mathematicians since

Heine, who applied the method of continued fractions; this method

was employed by Lindstedt in the associated astronomical problem,

as we have already seen, and was also employed in connexion with

the solutions of period 2s7r (s > 1) by the writer. The most recent

and complete results relating to the Mathieu functions of period

TT or 277- have been based on the use of infinite determinants or

infinite continued fractions. The former were used by Ince to calcu-

late the critical values of
,
and the latter by Goldstein for expand-

ing the Mathieu functions and also the associated second solutions.

Continued Fractions. To construct the functions of period TT, we

put h = in the analysis of 42. It is easily verified that, by
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symmetry, we have

C-2r?-2

C-2

and this gives either

or c = 0, can
= -c_2n .

For the even solution we get

L cQ+2c2
= 0,

and so 42 (12) is replaced by the condition

^L =

or 42 (20) by the simply-infinite determinant

Chap. X, 43

(11)

(12)

(13)

(14)

1, 2ao , 0, 0, ...

i, 1, ft, 0, ...

0, 2 , 1, ft, ...

0.

For the odd solution, we have in the same way

2 c2+c4
= 0,+c4
= 0,

|
,

2n+2 =Q (n > 2); J

which give
1 1

or

1, !, 0, 0, ...

2> !> ft >

> a3> 1> ft>

= 0.

(15)

(16)

(17)

(18)

For the solutions of period 2w we put h = 1 and adopt the more

convenient notation

V= I e***
(19)
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We then have, by symmetry

C2n+l __.
c-2n-l

/2Q)
C2n-l C-2n+l

and so in particular

Ci C,

For the even solution we get now

(1-^)^+03=0,
C2n-l L2n+l C2n+l+ C2n+3

= (^ ^ 1),

giving the condition
j ,

1^-JL J- .... (23)
Ai A>

For the odd solution we get

= 0,
(24)

giving the condition

0= l+j^-.-L J_ .... (25)

The critical values are calculated by the method of successive

approximations, following Hough's procedure in the theory of the

tides. By the methods of Sturm and Liouville, we know that one of

the roots of (14), for example, is given to a first approximation by
L2n

= 0. To evaluate this root more exactly, we write (14) in the

equivalent form

J_. J_ ...l

2n+4~ -^2+8~ J

(26)

The value of given by L2n is now introduced in the two expres-

sions on the right, and a second approximation is then obtained, and

so on.

The Second Solution. When one solution is a known Mathieu

function, the other can be expressed by a quadrature; but a more

convenient construction based on the method of infinite continued

fractions has been given by Goldstein. As a typical case, suppose
we know the Mathieu function

(27)
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and the appropriate value of . According to 41 (25), the second

solution will be of the form

in28+1(0)
= 0ce2s+1(0)+ f oin+1 sin(2n+l)fl, (28)

n-O

and the recurrence formulae are

(29)

We now introduce an auxiliary sequence (A 2n+1 ), defined by the

relations
-(l +Ll)A1+A 3

= 0,
(3Q)

This must diverge to infinity; for otherwise we should have both

an odd and an even Mat

in 41 (23), we find that

an odd and an even Mathieu function for the same value of . As

' = ....... (31)

= 2a
1
A l ^ 0.

Following Goldstein, we write in (29)

2 +i
= I <4SSi

u
(
= 0, 1, 2,...), (32)

r-0

where the (r+l)th set of terms is defined by the relations

) = (n * r) (33)

= 2(2r+l)a2r+1/0 1 (w = r).

To satisfy these conditions by a sequence of values tending rapidly to

zero, we put
n 2r+l) _ \ A n in <? r\a2n+ I A2r+l^ 2n+l a2r+l \

n ^ r
)

(34)

where \2r+i *s determined by the condition

(35)

By using (30) and then (31), this is reduced to

r+1 ; (36)



Chap. X, 43 MATHIEU'S EQUATION 193

hence we have

ST+i
1) = -(2r+l)XA 2n+1 al+l (n < r),

|= -(2r+l)A^ 2r+1 a2r+1 a2/l4.1 (n > r), /

where A = (A 1
a

1 S 1 )~
l

. The expression (32) now becomes

rH~ 1 T
p

QO

(38)
Now for large values of n we have

//. /4 .

- co, (39)

lim 2+32* +8 _ lim (2n+3)Z,8yy+1 = x

n^oo(2TO+l)^4 2n+1 a2n+1 n^co(2^+l)L2A?+3

For any fixed positive a, we can choose M so that

+i; (41)

and so the first series in (38) has the upper bound

2"+1
- (42)

On the other hand, the second series in (38) converges with extreme

rapidity and (except for those values of ^, limited in number, for

which a2n+l = 0) its sum is nearly equal to the first term, for n > nQ

say. Hence

= 0[(2n+l)\A 2n+l aln+1 \]

^\a2n+l \]. (43)

From (38), (42), and (43) we now have

in+i
= #I>2n+i!(l+)

2?l+1
] (n > n ); (44)

and since ( 2n+1 ) are the coefficients of an integral function, the series

2 a2n+i sm (
2ri+l)0 is a^so convergent for all finite values of 6.

44. The Methods of Lindemann and Stieltjes

Product of Solutions. We conclude our account of Mathieu's

equation with the solution of Lindemann and Stieltjes, modelled on
4064 c c
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the Hermite-Brioschi treatment of Lame's equation. It is con-

venient to revert to the notation of 41 (6), namely

+(p-iVcos% = 0. (1)
av6

The product of any two solutions, Y = y^y^ satisfies the equation

= 0; (
2

)

du

and on multiplying this by 2Y and integrating, we have the

Brioschi identity
'A Y\ 2 ,72 Y

W/
~

dQ*
- 4^-*

If we put Y = yl y% and use (1), the left-hand side reduces to the

square of the Wronskian; when Y is known, we can calculate (7
2

from (3) and we then obtain the numerical value of the Wronskian

which will enable us to complete the solution by a quadrature.

Now whether the equation (
1
) has or has not a solution of period

TT or 277, it is easily verified that (2) has always one and only one solu-

tion which is an even function of 6 with the period 77, This solution

is either the square of a Mathieu function, or else the product

F(6) =/(#)/( 0) of the two principal multiplicative solutions of (1).

We could expand F(6) either in the form J A 2n cos 2nd, or as an even

power-series in cos or sin 9. The latter forms are more convenient

in connexion with the relation (3). For to calculate C we insert

some particular value 6 or \-n\ and in the one case Y and its

derivatives are expressed as infinite series, and in the other in a

finite form. We therefore put z = cos2 and obtain

z(l-z)Y
m
+^(l~2z)Y

f/

+(p-l~k^z)Y
f

~^k2a^Y = 0, (2*)

z(l-z)(Y'*-2YY")-(I-2z)YY'-(p-kWz)Y* = i<7
2

, (3*)

where primes denote differentiation with respect to z. Now the

equation (2*) has an irregular singularity at z = oo, and two regular

singularities free from logarithms, with exponents (0,^,1), at

z = 0,1. We can express each of the principal branches at z

in terms of the three principal branches at z = 1
;
and we must

construct a combination of the two branches holomorphic at z == 0,
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which shall not involve the branch belonging to the exponent

\ at z = 1. This solution will be holomorphic for all finite values of

z, and so it will be the required integral function. Now every solution

Y = 2 @n zn
>
which is holomorphic at z = 0, satisfies the recurrence

formulae

n(n+J)(n+l)C7w+1 = n(n-ii)C'll+*W(n-i)C7B.1 (n=l,2,...), (5)

which may be written

,

/ _
\

n+1 Cn
In general, if un is not small for some fairly large value of n, the

sequence (un ) tends to the limit unity. If the ratio u is arbitrarily

chosen, the solution converges when |z| < 1, but has a singularity

at z = 1. But, for a certain properly chosen value oful9 the sequence
tends to zero and we have approximately--

o
*

We write (5) in the form

(8)

which gives in general

= _^_^_n^l.... (9)

This infinite continued fraction is equivalent to the quotient of two

infinite determinants

** =-*^L)

. <

where &, _ x

Pn+l (11)

This converges by von Koch's rule, because 2 ^n+i^n *s absolutely

convergent. The coefficients of the solution may now be written

Cn = (-)
n C' cxia2 ...an ^(^+l,oo)/^(l,oo), (12)

and the series 2 ^n^
71

converges for all finite values of z.

4064 c c 2
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If p is the square of an integer (p = m2
), we have exceptionally,

for that one value of the suffix,

= _
M '

The expressions (12) as they stand are indeterminate of the type

oo/oo ;
but the correct values are found by omitting otm ,

whenever it

occurs as a factor of the numerator, and at the same time replacing

,1 i / -, n \ i /* ^ m(m+i)(m+l\ ,, -,
,

the elements Kn ,l,/3m ) by fl,Q ? -^^2^^ j

m the deter-

minants K(n, oo), where n < m.

The Invariant. The series Y = ^ Cn zn being now known, we

substitute it in the identity (3*) and put z = 0. This gives the value

of the constant Z __
(14)

If there is a Mathieu function of period TT or 27r, the constant C
vanishes and/(0) = f(0)', the solution is then more conveniently

constructed by other methods. We accordingly suppose C2 ^ 0; it

is immaterial which sign is given to C, as this merely changes the

notation by /interchanging f(6) and/( 6). We now have

(15)

f'(0)J'(-6)~

--
both sides reducing to unity as -

0, since /(O) ^ when there is

no solution of period TT or 2?r. If we put 6 TT in (16) and use the

multipliers, we have Stieltjes's formula

Finally, we obtain the solutions

e
i

1
[CdO]

2) F(8)\n J

(18)
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EXAMPLES. X
1. The four types of Mathiou functions are the solutions of the equation

=

determined by the boundary conditions y ~ or -~ = 0, at the two pointsdu

6 = and 6 = \TT.

2. Mathieu functions belonging to different critical values p l9 p2 satisfy the

orthogonal relation
Q7r

{ /i(0)/(0) d6 = 0.

o

If Pi > p2 and k2a2 is real, the zeros of/^0) separate those of/2(0) along the

axis of real values of 0.

3. If w is a solution of the auxiliary equation

show that

If n? = p, n\ = pk2a z
(k

za2 > 0), the real zeros of /(#) separate those of

cosn2(0 )
and are themselves separated by those of cosn

1(0~0 ).

[The zeros in the complex plane are examined by E. Hille, Proc.

London Math. Soc. (2) 23 (1924), 185-237.]

4. INTEGRAL EQUATIONS, (i) If x -- cos 6, show that Mathieu 's equation

may bo written in the form

(lx2)D*y-xDy-}-(pkWx2
)y == 0.

(ii) Show that this can be solved by Laplace's transformation

y = |
elkaxt

(j>(t) dt,

c

provided that (lt*)(f>"(t)-t(f>'(t)+ (p k2a2
t
2
)(/>(t)

= 0,

and [e^
axt

{ikax(l-t
2
}<)(t}+t(>(t)-(l-t

2
}\t)}] = 0.

(iii) By making <^(cos#) a Mathieu function, obtain Whittaker's equations
of the form

celn(0) = A
J cos(A:acos0cos0

/

)ce2n(0
/

) d6' 9

o

7T

Ce2n+i(^) A
J sin(fcacos0cos0

/

)ce2n+1(0') dO'.

o

(iv) By taking sin0 as variable, obtain similarly Whittaker's equations
77

ce2n(0) = A
J cosh(A;asin0sin0

/

)ce2n(0
/

) dB',
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9T

se2w+i(0)
= A

J sinh(kasm6smd')se2n+l(e') d6'.

o

[E. T. Whittaker and G. N. Watson, Modem Analysis, 400-2.]

5. By expanding as a series of Mathieu functions 2 ^n-^nd)^n(^) tne solu '

tions of the equation of wave-motion

eikx f eikVf

obtain Whittaker 's equations and the following:

rr

= ^ f sin0sin0'cos(fcacos0cos0
/

)sean+1(0'

1(0) = A
J
o

7T

n(^)
= A

J cos^cos^smh(;tasin^sin^)se2n(^) dd'.

o

6. If ceWH.j(^), se
OT4,^(0)

are tho even and odd solutions of period 4TT, whose

limiting forms are cos(m-f %)0, sin(m-f %)Q, show that

.' 2,

cWfl) - A
j K(e,6')cem+i(6')

dOf

,

o

sem+J ((9)
- A

J X^+TT.^-fTrJse,^^')
dff.

2C08i0C08}0'

where X(ft^) = d**<**o***
J

e~ikatt dt.

o

[Transform to parabolic cylindrical coordinates

(x+a+ iy) = ia(^+^)
2

^2F ^2F
the equation + r-^- ^2F = 0, and expand in a series of products of

Mathieu functions of period 4?r the particular solution

{?
V = d3cn(?-rt

[
e-*kat*dt.

E. G. C. Poole, Proc. London Math. Soc. (2) 20 (1922), 374-88.]

7. By means of Whittaker *s integral equation, show that

co2w(0) = a2r cos2r0 = ATT
] (-)ra 2rJ^acos^).

r= oo /= oo

[Heine; Whittaker; Goldstein, loc. cit.]

8. The solutions ^(0), t(^) of Mathieu's equation with the parameter p^ are

determined by the conditions

Ci(0)
- 1, cj(0) - 0, *i(0) - 0, f(0)

= 1.
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Show that

[Z. Markovi6, Proc. London Math. Soc. (2) 31 (1930), 417-38.]

9. KECUEBBNCE FOBMULAE. (i) If (x+iy) = acosh(f -f^), show that

8V 1 f . , f.
dV , , . &V\

xz- -~ _
i
gmn ^ cos f] -r cosn sin ft

}

c)x tt(cosh^ cosr?)L ^c ci^l

(ii) If V 53 cew(*)cen(77), show by expanding dV/dx as a series of Mathiou

functions that

//-^ f cos-ncert(-n)ce rt_1

i(tf)J

-
c^i~ 2

== -4 n.1 ceB-1(^) J cel_i(i?)dty.
ir

fE. T. Whittaker, J. of London Math. Soc. 4 (1929), 88-96.]
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