帝 國 大 學 紀 要理 科
落
业 THE JOURNAL （）I L＇HE

COLDEGE（）下（TENCE，
 IMPERIAL UNIVERSITY，
 JAPAN．

VOL. IV.

笛 國 大 學 印 行
明 治 廿四年

TŌKYÓ，JAPAN．
1891.
2724

CONTENTS.

On the Foetal Membranes of Chelonia. (Contributions to the Embryolory of Reptilia II.) by K. Mirsunuri, 1 '/h. l., Lii!galiuhalietshi, Professor of Zoology, Imperial University. (I'ith l'lates I-X.) 1
On the Development of Araneina. By Kamakich Kisminouye, Mityakushi, Science College, Imperial University. (With I'lates X-XIT.) 5
Observations on Fresh-water Polyzoa. (Pectinatella gelatinosa, nov. sp.) by A. Ora. Imperial University, Tokyo. (With l'utes XItI-AX., 89
On Diplozoon nipponicum, n. sp. By Sertano Gotō, Riéaliushi, Post- gradnate Student in Zoology, Imperial University. (With I'lates XYI- NYIII.) 151
A New Species of Hymenomycetous Fungus Injurious to the Mul- berry Tree. By Nobujro Tavaka. (With l'letes NTIF-XIVII)... 193
Notes on the Irritability of the Stigma. By M. Mrroshi, Litymimsini. (With Plates XXVIII-XXIX.)... 205
Notes on the Development of the Suprarenal Bodies in the Mouse. 215
On some Fossil Plants from the Coal-bearing Series of Nagato. By 239
Comparison of Earthquake Measurements made in a Pit and on the Surface Ground. By S. Sekira, Professor, and F. Omori, Lityminushi, Imperial University, Japan.. 34
Laboratory Notes. By C. G. Kvotr., D. Sc., F. I. S. E. Professor of Phy- sics. 287
Diffraction Phenomeua produced by an Aperture on a Curved Sur- face. By H. Nagmoka. Riequaushi 301
Effect of Magnetization on the Permanent Twist of Nickel Wire. By H. Nag.aoka. Riighliushi (IVith Plate X.Y.TVIII.) 323
On Certain Thermoelectric Effects of Stress in Iron. By C. G. Knotr, D. Sc., F. R. S. E. Professor of Piysics, Imperial University and S. himura, Migakushi... 341
On some Cretaceous Fossils from Shikoku. By Matampo Yokorama. (IVith Ilate XL.)... 3.57

Publishing Committee.

Prof. D. Kikuchi, Rigakuhakushi. M. A., Director of the College (ex offici).
Prof. J. Sakurai, Rigakuhakushi, F. C. S.
Prof. K. Mitsukuri, Rigakuhakushi, Ph. D.
Prof. C. G. Knott, D. Sc., F. R.S.E.

From July, 1891.

Prof. D. Kikuchi, Rigakuhakushi, M. A., Director of the College (ex ufficio.
Prof. E. Divers, M. D., F. R. S., etc.
Prof. K. Yamakawa, Rigakuhakushi, Ph. B.
l'rof. K. Mitsukuri, Rigakuhakushi, Ph. D.

On the Fœtal Membranes of Chelonia.

(Contributions to the Embryology of Reptilia II*)
W.
K. Mitsukuri, Ph. D., Rigakuhakushi.

With Platem 1-N

Whats embeting emberes of 'holonia, I hecame awate of the

[^0]tigate the whole history of these membranme in this gronly. 'The following embodies the ressults of my stmy on this subjert.

The speries which I have investigater arr (temmys (or Emys) Japonica, Gray. amd Trinnyx. Japonicus, Srhlequel. In earlier stages, the fatal membranes of these two species are very much alike but in later stages they present differences which, in wr opinion, are highly significant. For convenience of treatment. I shall divide the present article into three parts, as follows:-

1. Earlier Ntages of the Ammion.

IT. ()rigin of the Allantois.
WIL. Lanter stages of the Fatal Membrames.
And in emrh part, I wall trat hatwo speries separately, generally giving the dereription of Glemmys firnt, as that iperios seems for have more primitive relations in its fatal membranes. At the comelnsion, I have put together some sugestions on the theoretioul hearinge

I. Earlier Stages of the Amnion.

11. 「lrmm!!s. Japomira.

The first state of whirh I shall wive a dexeriphion is represemted
 deep horse-shoe shaperl growe hemmeting the anterion end wh the em-
 The posterior wall of this groove is the head of the embryo, while its anterior wall is the first rarliment of the anterior fold of the ambion. The structure and relations of these parts will herome rlear fiom the sections to be deseribed directly. The mednlary groove is still open thonghont its lageth. its posterior part heing witar apary ham its atorior pertion. The torsal opening of tha
 region, there is, in the specimen figured. a low semilnar fold bometing the embryo from hehind. It gives one the impression of its leing the posterion fold of the ammion. Suld folds are not, however. found by any means in all the embros. and eren when present, are not always of the same ligure and distinctues as in the figure. An the smbegment history shoms, these incomstant folds at the penterion (and of the embryo take bus share whamer in the formation of the permanent ammioticesar.

Romed the headerad of the cmbry, there in an irregutarly semicircular tramparent area of the bastoxerm. In this areat, there is nsmally an opague line also semicircular and conemtric with the eqhalic groove (Fig. 1). Romm the porterior end of the embryo, and along its sides, there is a broad homsershe shaped opaque streak Which is cansed ly the abmadant acemmatation of yolk-gramulesthe gemminal wall. The mesoblast, at this stage extends into the head of the embrea proper. hat amteriorly, laterally and powerionly the "payne homerene shaped streak matere the limit of ite extent. Hence the tramparem area in frome of the comber is as yed free from the mesuhfas.
 tmlimal seedion of the head end of the embryo is represented. It is evident from this section that the deep homsersoe shaped groove at the anterion end (a. l. i.) is bommed pesteriorly ly the heal (II. F.) of the embryo, while its anterion wall forms the first ruliment of the anterion fold of the ammion (Amm). The ammion is thas laid in the rescon int" "hich the mesoblant has not yet fomm its way, and
 blast. In lig. 59 ($\mathrm{Pl} . \mathrm{V} I \mathrm{I}$.), a tramsuerse section of the same region is represented. From this and Fig. is (I'l. VII.). the "hameter-
of the two layer：in the ammion will l_{n} canily materotome．Where the layers reath the level of the general surfare of the hastoderm． the epiblast presents a thickencel ridge along the whoke＂per edge of
 ammion comes to cover the cmbres，this ridge of the cpiblast mast be the seal of an ative growth．There is alon in the median line a thickench ridge（Fig．59．©．）of the epilasi which starting fom the bettom of the groone reaches as tar as the level of the hatasterter．
 hacel of the embreo．

In the semicircular rameparent area in front of the anterior horee shoe shaped grococe，the epiblant consists of two layers of pare－ ment cells．of which the＂pper is expecially that and secmes to be of stiff consistency．The hypohlast in the region directly in from of the groove comsists of polyenal eells．The opaque semicircular line in the transparent area abrealy ypken of seems to be due to a special accumalation of the hypoblastic（ FH g ．is．）cells．A little in front of this line．the hypoblant lecome sudenty a mase of five yolk Grambes with malei scatered amons them．It the periphery of the trancarent area this pases rather abruptly into a hed of large yolk pharules．

The fare that the amminn in Reptilia．consists．when tirst haid． only of the two primary layers was made known by strahl（No．i）： Hofliman（No．6），l＇crenyi（No．16），and Ravn（No．9）．Itoftiman pointer it our an a print of greal difference between the ammion of
 also，the ammion comsiste at first muly of the epiblast and hypoblast． Kialliker refers to the fuct in his olasical work（\％weite Auf．p． 1 sis．ant
 Beneden and（h．dulin（No．11）alow wherved the salue fact in the
 amman." Fleivelamann has alon fomme the same state of thinge in
 the ammion, when tirst lail. comsists throughout the Ammiota moly
 nion. In lieptilia, this point is mate perhap, more conspicuons lyy the sulsempent history of the firtal membrathes than in other eronps.

It will hereen firm the stage that the head at the embryon sink from the first below the level of the bastotiom. . Dart fiom any phylogenetie signilicance, there is mechansial neresory for its sinking in this manner. Is soon as the development begins. the white of the ege is rapindy aborbed from the part over the blastorderm which becomes atherent for the inner surfate of the shell membranc. There is therefore no sace intw whide the heat an erow exeept towards bednw. In removinge embryon from the eqes, I avaled myself of the fiet wi the blastondem beeomine atherent to the shell membrame. fire with a stont pait of scisoms. I could easily eat a wateh-glass shaped piece of the shell with the shell membrane and the mondre adtherent to it, and inverting it. I cond pour the preservative
 it in this that it keeps the embryo and the hastoderm stretched in lhoir natural positions.

I am inclined to think that the semilumar rifge at the posterion
 sinking into the pare lefon. Its seetion is almost exactly like that
 Surh adventition- ridges seem to le prontmend here and there withoul
 take no part in the firmation of the amminn.
A. later stare will show, the whole ambiotie -ate is
produced solely by the growth backwardof the anterior foldin ronjunetion withthelatemal foldswhich risceradually furmbeforebackward.

Ln the stage with two or three mesoblastic mmites, as shown

 whose anterior part has smak meanwhile more and more helon the level of the blastoderm. The posterion edge of the ammintic howe presents a hotse-shoe shaperl outlime, beine rameed bey the lateral fold of earh site extembing more perterionly than the mertian part. There are again some irregular folds (a) in the posterior parts of the cmbryonic region.
 from different farts of thi embryo, Fig. 30 bemo the most proterior and Fig. :33 the most anterior.

Fig. 30 is from the region conered anly by the lateral limbe of the horse-shoe shaped posterior marein of the ammotic honel. From thin and Fig. :30a ($\mathrm{L}^{\prime} 1 . \mathrm{V}^{\prime}$.) (the latter representing the left half of Fig. 30 wher a monh higher power of magnitication) it will be seen that lar lateral fold of the amnions: when first laid. presents two pecoliarities: (1) it is purely epiblastic, and ther mesoblast has mo shate whaterer in it ; (4) the fold is solith and not comporeal of the inner and onter limbs as representerd in ordinary diagrams.

Fig. Bl is just in front of the point where the two latemal amniotic folds have materl. Onc half of it is shown mater a higher power in lig. Bla (l'. V.) The whole ammion here is composed of
 epiblast relle omly later on. The cells of this part of the ammon are in several layers. and of these, the cells of the outermost bayer have materEnne sonme proces of hardenin! and their mactei are stamed deepert.

 the level of the havtolemm. Is emphasized by Ilotimann, the head

 wnly me-rell layured.

These sections show that the ammion at this state ronsists, in the region of the sumken head, of the epihlast amd hypohlast, and in
 share in it.

In the stage with 6 on 7 mesohlastir somites (Figs. it and it a lel.
 fembed to the posterior and of the matryo, leaving only the region fomed the nemrenteric amal appoed. The mesoblant has also very moneh increased in its distribution and has become, thoughont, split into the somatir and splandhaie layers. Tha corlonn has thas

 Althomg the mesoblast hav mievinally preal fiom hehimel forward, the rolomice ravity appears first in the merk rewion of the motryo and
 In the stage represented in fig. 3 . when seen thromeh firm atose the extra-embryonic celomir ravities of twn sirles, extending into the ammintic folls come close together (but are wot fused) in the median dorsal line along a considerable distance in the anterior part of the dorsal region, but separate from ach other before the posterior
 ate bost tugether with the erathally lowerime lateral fohle of the ammion. 'Thar the meshbast mon has a eomsiderahle share in the formation of ther ammion.

Figs. 3t-88 (l'l. V.) are a series of transverse seotions selected from difterent regions of this entrive.

Fig. $3 t$ is from the region where the lateral folde of the ammion are still low. When we compare this with Fig. 30. we see that in this stage the somatic layer of the mesoblast is foldeal and perhime itself into the hitherto solid epiblasia ammiotic folld.

 still some distane from the median line. Fies. 35 "reprexent- the malian dersal pertion wit the amminn in the same sernion mbler:
 meshblast insinuating itself, so to seak. on earh side into the ori-
 of which the immer is the trone ammon and the mater the false ammion* ar serons envelope.

 fwed the ammon and the seron- envelope.

[^1] Fig. B. Il. I.).

In Figs. 37 and 37 . whirh are form the rewion of the heart.

 hastomerm, which therefore appearsabs the head in thi sertion. The

The retations of different parts will hecome dearer. when stmied in : longitutinal ration.

Fig. 41 (Pl. V.) in moch a seetion slightly out of the median dorsal
 appears in the ammion. This sectionshow that the epiblastic ammiotic fod reaches nearly to the nemmenteric canal, while the hypobastir fold extents only to the neek region. The triangular pare between these two foldo as seen in this section is ocenpied, for the most part, by the
 A little carlier there would have heen mo mesulatast in the ammion which then eonsisterl. in the homal region. of the epiblast ouly, and in the smben heal part. of the epiblast and hypmbast. The mennb, has is mow pushing itaelf into the solid ephbastic sheet of the ammion, dividing it into an outer and an imer limb. In Fig. 4l, the posterine part of the eqiblastic fold is. howerer. atill solid. Anteriorly the mesollast is insimating itself between the epiblast and hypohast. The celomic avity in the memblat is widest in the anterior part.

One of my most important resalts is in regard to the combection between the ammion and the serons envelope, seen in Figs. 35-37. ("obtrary to what is hitherto koown, theextraembryonicemlomicarities of twosides areneveranited
across with each other over the dorsal region of the embryo. A connection--quite elongated and definite in later stages-between the ammion and the seroms envelope separates them to the very end of the development. That this structure canses great peculiarities in the fiptal membranes is to be expected and will become clear as later stages are described. This comertion, I shall call hereafter the seroamniotic connection. It does not extend to the smenen head part where the ammion comsists of the epiblast and hypoblast, and is ennfined to the region hehint the neek representing the original solid epiblastic sheet of the ammion or its prolongation behind.

While Fig. 3 (Pl. I.) mu dombt represents the commonest ant momal form in which the :mmion preans backwand, it seems by mon means to be the exclusive oue. Fig. 14 (II. H.) shows ome in which the posterior fold is present but a part of the left lateral fold is absent, so that the horse-shoe shaped posterior margin of the ammion is open roward the left. I have also another embry in which a part of the right lateral fold is absent.

Now romes the most remarkable point in the development of the ammion in Clemmys. Aconding to what is hitherto known about the ammion, one womld expect that when it has reached the stage shown in Fig. 3 (II. I.) the posterion foll will be produced or the lateral folds will cowerge wward each other and thas the ammiotic sac will be completely cloned. Sinch is wot the case in Clemmys. The anterior and lateral folds which starting from the head have gradnally extended hackward over the whole embryo do not stop at the posterior end of the embryo but continue to grow backward, althongh diminished intheir width, until finally there is produred a tube exteuding backward from the posterior end of the embrro, almost as long as the
body of the embryo itself, connecting the amniotic sac with the exterior. A reference to Figs. 4-7 (Pl. I.), will make the growth of this posterior tuhe clear. [n Fig. 4, the folds have extended slightly beyond the posterior end of the embryo. Beyond this point, they suddenly come near each other, and being diminished very much in width, their continned growth barkward produces a tuhe (Figs. 5 and (i). It will be seen that the extreme posterior point always presents a horso-shoe shaped outliue, as it did when growing over the body of the embryo itself. Fig. 7 whows the stage of the greatest development of this tube in my possession. ha three embryos of this stage whose lengthe are $\delta, 8$, and $8!$ millimeters, the length of the posterior tube of the ammion is respectively 6,8 , and $7 \frac{1}{2}$ millimeters. The posterior opening is some distane beyond the edge of the vascular area.

The sections of this tole show that the relations of the different layers are in all esential respecte exactly an in that part of the ammion proper enclowing the embryo as shown in Figs. 39 and 40 (Pl. V., from the embry given in Fig. . 5) of which Fig. 39 is from the anterior part of the tabe near the embryo and Fig. 40 from about the middle of the tube. In the surface view, there is offen seen a strak along the metian line of the thlue, which is shown by the sections to be a thiekening on the floor of the tube. 'The strueture of the similar
 (PI. VI.).

What the function of this remarkable thbe comecting the amniotic sac with the exterior is, whether it has any active finction at all or is only of the nature of a remmant organ, I am umble to tell. I think it probable that it serves for comburting into the ammiotic sac the mutritive matter from the white, with whose grathal disappearance from over the embryo the backward growth of the
posterior ammiotic tube seems to keep pare.
The condition of the ammintic sac proper at this stage when the posterior tube has already been duveloped is shown in the series given in Figs. 42-47 (Pl. VI.) from an embryo with twenty mesoblastic somites. An inspection of these figmes show that orer the posterior part of the embryo (Figs 42 and 43), the ammion and the serons envelope are still adherent to each other for a considerable space: hence the extra-embryonic colomic cavities (coel') of the two sides are separated from each other by a wide interval over the dorsal region. As we proceed forward, the mesoblastic folds grandally push toward the median line separating the ammion from the serons entolope, matil, over the middle region of the embryo, they are separated muly loy a thin partition (Figs. 44 and 4 fa). This partition-the sero-anniotic comertion-has now berome vertially somewhat angated and mike
 (Fig. +4a). This represents the greatest vertical elongation of the seroammintie commertion at this stage. Further formard, the mesoblantic fold hecme again separated by a considerahle interval (Fig. 45). Anterionly to the point where the heat-end hegine to sink beneath the surface of the hasterlerm, the celomie cavities of two sides which arose separately have heome mited acons, there being mo seroammiotic commertion from the heqinning in this part (Fig. 16). In the head which i- freely properting into the ravity helow the hastoderm. the ammion still comsists omly of the epiblast and hypoblast (Fig. 47).

From what has heren given alove, it follows that the extmo embryonic rolomic ravities of wo sides are separater from earh other ower the donsal median line hy the serosmmionte ammertion from the beek region ththe bery tip of the posterior tube. In front of the nerk region, i.e., in the smakn head region.

remember this fact in order to moderstand the relations of some parts in later stages.

In a slightly older embryo, the sern-amniotic connection has increased more in its vertical extension. Figs. 48 and $48 a$ (ll. VI.) are from the tail region, Figs. 49 and 49.4 (Pl. VI.) from the middle of the hody. In the latter, the sero-amniotic comection is of a considerable length, becoming quite definite.

As to the fate of the posterion amniotic tube. It the stage (Fig. $\overline{\text { I }}$, Pl. I.) when it is in its highest development, the axis of the tube is the same as that of the embryo, i.e., the embryo and the tube are in the same straght line. Beyond this stage, the tube begins to become enreed, at first slightly, then more and more. In Fig. 13a (Pl. II.) the 'urvature is very slight ; in Figs. 13b and 8 (Pl. II.) it has increased greatly; in Fig. ! the distal portion of the tube is hent at a right angle to the proximal hasal part : in Figs. 10 and 1.5 (I). II.), the tube has berome very irregularly curved. It will he seen that the tail elll of the embryo which is at first far in front of the horse-shoe shaped distal end of the posterior amniotic tube (Fig. 7) Eratually appoaches the level of the latter (Fig. !) matil in Figs. 10 and 15 it has pusheel itself far behind. It is now the distal end of the tule that is in fromt. This chame of the relative positions is mo dombt due to the fact that the embry and the ammintic sac proper grows more rapinly than the posterion amonio tula which they push anide, su to speak, in orter to grow beyoud it. As the curvature becomes ereater, parts of the tube beeome fainter and fainter in apearance. For insiane in Fig. 10, a large part of the tube excepting the distal horse-shaped end and the proximal basal part, was very diffionlt to reongnize (being repremented too distiontly in the Figure). In Fig. 15 I combld detert only faint mates of the thbe, here and there exopting the proximal hasal part which is atways
distinct. The oldest stage in whirh I detected any portion of the distal half of the posterior amniotic tube is that given in Fig. 67 (Pl. VIII.). I fomed there the horse-shoe shaped distal end of the tube and the portion contiguons to it, hut after a most carefnl scarch. I could not connect it with the proximal part. From these facts, it appears that the largest part of the posterior :mmiotice tube disapjears entirely, and that only the proximal part--the part nearest the amoion proprer (prox pt. Figs.9, 10, and 15, Pl. II.)-remains permanently. It will he remembered that the sero-ammiotic combertion extends from over the neck region of the embryo to the tip of the posterior tube. As the proximal part of the tobe remains permanently this marks in all later stages the posterior end of the sero-amniotic comection. As further growth in size of the ammion proper (acommodating itself to the growth of the embryo within it) takes place mostly behind theremnant of the posterior tube. the latter and the sero-ammotic connection rome to lie in the anterior part of the ammion in older embryos. The growth in size of the ammion after being closed one is therefore due mostly to the enlargement of that part whirh is phaced behind the posterior tuhe enclosing the tail end in a stage like Fig. 11 (Pl. II.).

In all the stages hitherto desuribed, the heal of the amber projected betow the level of the hataterm covered be the prommion which comists only of the epiblast and hymblast (Fig. +1. Pl. Y.). (On this accomnt, in sections of this region, the heal is fomm below the general level of the hataterm (Figs. 33. 38, Pl. V., Fig. 47. Pl. VI.). The manmer in which this ammalons state of things is bromght to a close, and in which the heall covered by the :mmion contsisting of the epiblast and the somatio mesoblast comes to lie above the hypoblast as in other parts of the holy, has been deseribed by Strahl (No. 5) and Hoffiman (No.6) and quitereently hy Ran (No. 9).

The last mamed author (No.8) has also studied the frocess in the chick and fonm? it to be alike. My own ohmeration ayme in all essential print wibl the acemm given ly these anthors. The process briefly stated is as follows: An sated befine the ratraembrynic ratomic can ities of the two side become early mited across in the heal rexion, there being un sern-ammonic annection here. This mited ravity of its mesohiast wall. in opreading itself. insimates iteref betwen the epiblast and hyophan of the hastorlerm

 will make this print ckar. In Fig. th. the heat is still entirely cosered by the poammion: in Fis, the the extra-embryonic
 forward and peeled it oft, so to speak, fiom the greater part of the prommion covering the head, so that uew the prommion is fomet only on the ventral part of the heal. Meanwhile, the embryo turning on it. longitmdinal axis comes to lie on its left side. These movements bring about the -tate of things as shown in Fige 11 and 11 (PI. II.) In Fig. 11 the embryo lies entirely on it, left side, and a small anterion part of the head is cosered ly the mow much rednced pros aminion. In the contral view of the same (Fig. 11") the prommion is very conspicmons: becaluse it is tramparent and withont bloodvessels. I section from the head of thin embryo is shown in Fig. 85 (Pl. X.). It shms hom the prommion extends now only for a short extent.

The final disapparance of the prommion is brought about by the contimed extemsion of the mesulast. Althome the encroachment, of the proammion takes place to some extent from behind and before, it takes place mon actively from the two sides. Fig. 86 (llo. X.) is a seetion similar to Fig. 85 frome a somewhat wher tmbryo.

How the prommion has ben encroached upon from both sides and has all but disannared is very dear. if we empare these two figures. These two figntes show also that the left vitelline vein (V ra) beronnes much larger than the right.

b. Triomyx Japumicus.

Earlier stages in the development of the Ammion in Triony x are very murh as in Clemmys. There is in fact no print of :my importance which is different in the two species. As, however, the Trionyx embryos in my possension show very well in surface views how the extra-embrymice colomic cavities arise first in the nerk region and gradually spread backward, I wall introduce here some figures which illnstate that point among others.

Fig. 16 (PI. III.) is the stage closely resembling Fig. 1 of Clemmys (Pl. I.). The anterior horse-shoe shaped groove ("die vordere (iremzfruche '"), the still open mednllary camal, and the tramsparent area in front of the embry are all very similar to the Clemmys embryo of the orresponding sage.

In Fig. 17 (PI. III.) the ammion has extended over the anterior half of the embry. When secn from the ventral side the whole anterion end of the embryo covered ly the prommion is projecting below the level of the blastolerm, as shown in Fig. 17". In the neck region where the embryo gains the level of the blastoderm, we is able to rerognize distinetly the extra-monryonic celomic cavity on each side of the embryo appearing as a vesicle which hulges ont the dorsal and ventral *urfaces of the blastoderm (Figs. 17 and 17 a). The level of its posterior limit is the same as that of the posterior limit of the ammon, and the growth hack ward of the colomic cavities progresses hand in hamd with the backward growth of the ammion. Theretwo cavities, one on eath side of the cmbry", are of comse the same as strahl's "Mesoblastische

Schlainche" ('f. Straht No. 5). The sections of this embery show that in the regisen where the lateral folds of the ammion have not yet mitel in the modian lime (Fis. io lly. VI.). the fold is purely
 In the rexion where the extra-cmhenic hody cavity is present (Fix. il). the menoblastie folds hate already parhed themselves ronsiderably into the epiblastic ammotic sheet, dividing it intor two limbs: the ammon proper and the serons emelope. In the embryon
 whaterer in the formation of the amnion. It follows therefore that the menoblastic follts begin to purh themselves into the epilabsic ammiotic shet smmewhat earlier in Trinuyx than in Clemmy.. Fig. g_{2} is from the head region of the embryongen in Fig. 17. The lean in surrombed by the prommion compensed for the most part of the epiblast and hypoblast, and appears beneath the blastoderm instent of above it.

Figs. 18 and is (Pl. II .) show that the ammion is gradually spreating backwark, and with it the exta-monyonic colomic cavities are growing larger and larger. In Fig. 1s, the eavities of the two -ides are still whe apart wer the dorsal region of the embryo: in Fix. L: they almost tome each other along the median dorsab line in the anterior dorsal part of the mbryo. but are considerahly apart 10 the posterior region. A sedion fiom the anterior rewion (Fig. 57) show. that they are separaten by the eero-ammintic comnection which apmears, howerer. still very short in a sedion.

In the embryo given in Fig. 23 (1 . IV°.) the ammon haw covered the embryo entirely and has even extemed a short distance behind it. The colomin canites are correspondingly culargen.

 tuhe of fone embres of the stase a litale offer than that wiven in

 sage of the highes development of the tabe it follows that the
 lhe embryon it is in C＇lemmers．

 hasal fart of it is，howerer．very elistinct．At this stage，the mon－ amaionic commetion exisk fiom the neck－rexion to the tip wi the remmant of the posterior ammiotic tabe．

The mammer in which the prommamon ansi－bine wnly of the
 of the（9）

II. Origin of the Allantois.

 laid. in Canorta, an a molid knoh at the posterion end of the embryo. - mberpuently hallows itself out, and whly then eome to mommanicate with the hind-g日t he an indepembent! formed allantorr stalk. It then turns romel the tail amt and emme to lie in front wit. and helow. the latter.

 have anmewhat motitied his idea. For the ward demals in which his
 to the wriminal papers thrmedres, as I have to contese my imatility

 whether my rexults agree with the view we rither or hoth wi these anthore, althongh I thank we have arrivel at nearly the same pesults. Ifollmamm sus that the origin of the allamtor in Raptila is

 process in Chermia.

 the former species．

Figs．60－63（Pl．VII．）and Figs． 87 and 87 （ 1 （l．X．）give successive stages in the development of the allantois in Trionyx．

Fig． 60 is from an embroo very smilar th the one represented in Fig． 23 with about seventect mesoblastic somites．The splanch－ noplenre has not yet been folled mader to form the himdegut．The first trace of the allantois（All．）is，however，alremty visible as a shallow motch in the posterior part of the tail－lohe．In a surfare view，this notch appear－as a shallow transerse slit as represented in Fig．20．From the first．Hhe posterion wall of the allantois is limed with a distinct epithelimm of the hypoldast．Its anterior wall is mo doult also of the hypohlastie nature．hat is here fised with the indifterent cell－mass alowe it．
 ficiently for themselves and med mot hemimately explamed to those
 Bey the gradual folding of the sphamehopleme on the ventral fare． the limd－gut is prodned，and on its ventral flom the allantois hecomen established as a vesicleat first wide open ahow（Figs．62－63） hut with ite grandal ！wowth emmetricterl at the neck（Fig．s7）．Fig．
 of the same stage an that repremented in lig． 87 ．It shows that the （avity of the allantoi－is at this stage two－lobed．

Figs．6t－66（Pl．VII．）are there sucessive stages in the develop ment of the allantoin in（＇lammys．．Mthongh these do mot give an complete a series as in Trionsx，they are yet sufficient to how that the process in（＇lemmys is in all nemential respects similar to than in Trionyx．

In none of my series of sections can I detect any trace of an

 of thr hind-gat and iv from thr first romtinunte with ii.

III. Later Stages of the Foetal Membranes.

 tomether. . In the devolopment andmes. they begin lo difter in the

 with that puracs.

 extermal aspert of the vesirle. 'Thar manmer af diviribntion of the
 the allantois.

 divided by two peraliar constrictions into two phets of uneynal sizes. The larger part is agin suldivided into two loher hy the posterior wet

 the allantaid resicle may be ablled the middle lobe．

The two eonstrietions that divile the midelle lobe fiom the lareer half of the allantoin vesicle are cansed in two ditherent wase．The anterior eonstriction in very easy to explain．It was mentioned ahowe that one set of the allantoin ressels runs on the anterior side of the as yet small allantoic resicle．Now，in the raping wowth of the vesicle．the lines along which bloorl－vessels mun amot．wh acrombt of their presence．keep 110 ，in their wrowth with the rest of the resiele，

 allantaid ressels．the ervowe has herome so deep that the right lobe amd the midnle lohe on the fwo sides of it have mot agath and lownome

 fion wh the altamois．la a similar way the moteh that divirles the larger parm of the allantois into the right and lofthone pormed

 minom indentations．

 to spread frealy over the वmbr！

 thar hefween the minhle and the left. lathe there is alwars interperal

 and prombeing a ronstriction. Thas in Fier (it the apes of the posterion eonstriction is some distance fiom the remmant of the

 Joming themerlver as white streaks. The result of this is that in

 and the other is simply an incision in the marein of the allantone resicle. In will hater stages the latter is mord the deeper of the two

 might canse it, as the anterion constriction of the altantois is cansed hy the rioht set of allantoic resels. It appare to he a congenitally sequired ehamater.

The neary rirenlar shape of the midille lolse is produced hy the

The allantoin has mot yet in this stage entirely rovered the ammion and the embryo fiom alonve so that the ammion with it-rero-ammiotic comection. and the amberine dorsal par of the rmbry are visilne beyond the margin of the midnlle allantur lobre The ammion at these stages does mot fit itself halal! wer har embly口 han leaves a spacious ammontic vavity arommal the ambryo. Experia! ! there is a remarkable smont-like prolongation of the ammion extomb ing in from of the head.

Fig. lis represents an embery about forly days old. Tha allantois han mow speat wer a hare part of the wper half of the folk, amd this extemsion is domemosly for the right and left lohes amd mot to the mixhle bole. A peruliarly shary demareation hetwern the midelle amb left loles of this stage is dae to the faed that the sero-ammiotia combertion is plared letween them. The remmant of the jesterine tore of the amion appars as a white trimgulat patch extending to the lefi at the head of the posterion incision. The lone white streak ratembing from the same point obliquely hackward wer the back of the embryo is the simple incision of the allantois refered to above in Fig. I2 (Il. Th.). The allantoir vesicle beinge of some thidknes. the walls wh the incison whirl rextend from the intwe fo the moter limh of the allantois are of some vepthe and

 lion wilh the right set of allamtoie reselv at its bottom.

It may be remarlied in paosing that the position of the embryo on the yolk is not necessarily as in fig. 6S. The embryo is formed at any phace which happens to be uphermas when har egey is

 on that, in the figme. the latter shans bate only at the posterime part
 the sero-immionir ammertion with peculiar smathres at its posterin,
 in the marein of the allathtuic veside.

 midthe ame the luti hase paringe wer the head of the embery

 In the lefi of the sero-anmintie commetion. This is hemght alonet

 it- domal median line, we are viewing it. © 10 suak, fiom the side.

 grow to the left of it, moder the loft allantoic lohe. The ammion being spacinos. the (mblive is alle to mone within it, amt the heme may mon bexen th the laf, of the thent or diectly mer, the
 apperse to be the most momal.

The bood-ressels that pase through the mombitions at these later stages, are armoned an in Fig. 75 (Pl. IN.). The mos anterior is the vitelline vein, then conce the vielline artery. after it the allantore artery and lass of all the allantoic verin. The last threedivile intotwo. the right and left hamehes. soon after theire exit from the monbicus. The vitelline artery is distributed over the surface of the yolk, but the ritelline vein is somewhat peculiar: it is much larger than the vitelline artery and while it receive lnanches from the surface of the yolk, the main lulk of it enters right into the substance of the yolk. This no dwobt makes the acpuisition of mutriment from the yolk much casier.

I may now proceed to describe the relations of the embryo, the foetal membranes and the yolk shortly before hatching. (ligs. 71 and 71" Pl. VIII, and Diag. VI. Pl. N.).

The rolk sace (Fig. 71") is now reduced comsiderally in size and the three bobes of the allantois have entirely enclosed it. These thre lohes never finse with ome another. hat are permanently separate. The seans that separate them are ronghly seaking tri-radiste, the center heing at tha anterior end of the yolk-sac slightly. to the left (to our right as we view it from the ventral surface) of the median sentral line. The sean that extends transversely from the exnter toward the right (to the heft of the whemer) separates the middle (flacer in front of it) from the right allantoice lobe (placed
 Hence at its distal end, is fomm the right set of the altantoie arteries ant reins. The sem that mons bexk from the center nearly parallel with the median rentral liue menates the left hote (placed to its left

shallow notch produced hy the pexterior (the left) set of hlowd-meseds in Fig. 67, or to the incision in Fig. 69. Hence, at its distal omb the posterior or left ont of allantoics resent is fomm. The semm that separates the middla from the lefi allantuin lolne is different from the other two, for here the two latere of the allanteis (ammot come inte contact. being separated he the sero-ammiotic comertion. It pases wer to the doreal side of the embren (Fig. it), and itw domal aml has the triangular remmant of the postrerine thle of the amnion, and the pecnlar conical white streak amenl by the simple incivin of the allantois. (Complare Figes. 68. Pl. Vlll.. ant 12, Pl. Il.).

There is one feature in an ege thas adranced which dextere special untice. The white of the egg which disappeared bery arty form over the embryo romimes to grow smaller and smaller in phantity. But it persots up to a very late date, if it are disappears entiedy. There is always, even in rory mach alvanced egessa small mass of the white just at the point where the three lobes of the allantois mert at the lower pole. This mass seems to have mangone some chamge in its chemical composition for it is now much denser. slightly yellowish in color aud sticky. To receive this mass the membranes are often shatlowly depressen. Into the center of this mass of the white a thick low process of the membranes penctrates (shown in Fig. 7l" on the left allantoic lolke, just to the right of the sero-amniotic sam), so that when the membranes are remosed. the mass of the white with the central part hollowed ont appars like a bowl. The cells of the serons curelope on the surface of this process are peentiarly moxlifind. They are more columar than in other part. (Fig. S!, Pl. I . .). Their nuclei are larger, irregular in shape, and stained decper. In these cells are fombd many large varnoles which remain mstainent. There wath be wo doubt that these wells are aborbing allmmimus particles from the
mase of the white. It seems to me that here we have in a ver! primilive condition the xtracture deseribed by Duval (No. lo) as the placenta in Birds.

The ammion in these later stages sems to curelope the embryo whahly donely, and its cavity is monger sparions.

In hatching, the yolk-san pasees into the interior of the body where it liew for a long time-in face for several months, for I foumd it in romg tortosese late in the apring of the year following that in which they were hate hed. The ammion is tome into shreds, hat the allantois seeme to be oplit opele he the anterion limbe of the
 heast in some rases. for I hatre speramens in which the allantris. hat been east away in this mamer amd in mingured. The moter shell whim has heome very hitaly is rasily lmokn thomgh ant the

 membanes. We tefi the surn-ammintir comaremon in the comdition

 apiblast celle in it berome flatemed in the direetion perpendientar to

 the flattening refered to alwowe.

This flateming gots ont more and more. hat I mint the intere mediate stages and proceed to the deseripion of the sernammiotic

three are from the region of the remnant of the posterior tone of the ammion, Fig. 78 heing the most anterior, and in order to facilitate the moderstanding of these sections, I have introduced a diagram of this region in Fig. 77. In this diagran, the serons emvelope is represented as spread over all the structures : the ammion is below it and is indicated only ly the line from whirh the sero-ammonte conmertion arises. The remmant of the posterion tube of the amnion has lefore this stage been modified into a solid rompressed string of rells and? is shown ly the heariest lark line which strotehes from The ammion to the semos anvelope. The sero-ammiotic romertion is represemted shated by paralled toted lines. Thronghont the largest part of its length (from its anterior end fo near its posterior (end) this struethre lies in ome phane amd is simply a membrante stretehe ing between the ammion and the sepous envelope. But on coming to the rewion of the pesterion tube of the ammion, it makes a suden Hurn of over gof to the left and goes to the serous termination of the posterion fulne, which latere stracture it connects on its way with the
 ammbotic commestom from its anterion to its postorior and was wiginally in wne straght lime and that its peronlan beat termination

 pernliar bent part of the -ro-immiotir emmeetion which is werl : the friangentar white pateh at the domal end of the sero-ammiotio xam. (Higs. 68, 69, 71, Il. I'fll.).

Fig. 78 is ferm the region of the simple sero-ammiotie romertion (the lime 1-1 in Fig. 77). [11 surh : section, the sero-amniotir connertion is really a striking strotore. forming a lroat and ron-
 Ther epilatas rolls in it are mow very flat and elosely parked. Ther
allantoic lohes hecome closely applied against the mesoblant of the comection but are permanently separate from ath wther. The (piblast of hoth the amnion ant the serons envelope "onsiste of two layers of extk. The inner layer of the fomer and the onter layer of the latter consint of very much flattened edts with large melaiwhich, in the case of the verous anvelope at least, are much larger and stained deeper than those of the serond layer. It is the ealle of the onter layer which become specially laree in the region of the placenta. The second or underlying layer comsiste of cuhical cethe which in some places may he present in more than one layer. It is this inmer second layer alone that forms the sero-smanion eomection, the outer taking no part in it. As regards the allantois, the onter limb is generally much thicker than the inner limh and hav many more hlowlvessels distributed in it. The thickness of the allantoie wails is arossed in all directions by stender spindle-shaped cells.

Fig. 79 correspont th the line $2-2$ in Fig .77 just through the angle of the bend which the sero-amuintic romection makes. The sero-amniotic connection gos here on one side to the ammion and on the other to the remmant of the posterior tube of the amnion, which, heing now reduced to a thick compressed and somewhat conroluted string of cells, show in section as lobated cell-masses.

Fig. so corresponts to the line B-3 in Fig. 77. The seroammintie comnection is In longer entinnons with the serons envelope but goses to the remmant of the posterime tube of the amnion. Tothe right of the sere-ammiotio comection. the two lohes of the allantois meet hat are not fisest. This is the section of the conical whire streak that stretches over the dorsal region of the embryo and corresponds to the simple incision of the allantoin trisen in Fig. 12 (Pl. IГ.).

In a few more sections, the serommantic eomedion diaplears. The two lobes of the allantois, howerer, kep separate and meot in
a seam for many more sections, as the simple incision of the allantois extends considerahly further posterinty than the most posterion point of the vero-ammiotic comnection. Finally. however, the allantois carity is contimed across. As the incision is deeper in the imer limh of the allantois than in the water. the allantose cavity first becomes montimous near the extermal surface and then gradually extemts fonard the inner surface.

 intulwo sets: the :anterime (in the right) and the pusterior (or the left). While the allamtuis is still a small resicle (Fig. ご I ll. IV.). When the allantois has adrances somewhat in its development, it presents the shape repreented in lig. 72 (1'l. VIIL.). This corresponts to Fig. if of Clemmys hat present- some important differemes. The allantoi- cmsist here of two homes marked off from eam other be awo eomstrations. Onc of these is just behimed the ere and the ather is direetly "phesite the fires wh the oppesite side of the vesiele. Unlike ('lemmyse buth these comstrictions are prodnced in the same way. That is. whe line atong which each
 allantwir vesicle is left bedind in its growthe and the parth on each -ide of the sime lime growist faster and mecting eath other som
 wher womp, hoth the constrictions of 'leionse are of the same mature as the atiterion monstrition of Commys (Fig. 67). The posterion constriction of Trionyx is not well-marked in Clemmys:

 of the sero-ammiotir commection-is never procherel in 'rionnyx. althongh at the spot where it owght of he prodaced, viz. opposite the

 constriction to the point opporite the remmant of the porterion ture of the ammion to the middle hobe and the pat fionn the same primt (o) the pesterion eonstrietion to the left labe. The minder lobre fieres. as in ('lemmys. the sero-ammiotic rommertion.

Unlike ('lemmys. however. the growth withe middle bobe pushes. so 10 speak. the scro-ammiotir
 ly to assume the shape of a hats of which the sero-amniotic eonnection forms fle puckered monith. Referenco to Figs. 25 and 26 (1 l. $1 V^{2}$.) will make these procesese rlear.

In Fig. 25. the sero-ammiotir commection is still directly one the dorsal side of the embryo and it is still straight. The allamtois is pressing on it.

In Fig. et, the erowth of the ammon has removerl lhe main portion of it from the vero-ammotie conneetions. The whole ammion has now assmated the shape of a hag hameing pendant by the seroammiotie conneetion. The allantois is still pressing on the seroammiotic comnection, and its pressme, so to speak, las bent the hitherto straight sero-ammiotic connection like the letter V'. Moreover the general axis of the sero-amniotic comnection which has hitherto been parallel with the axis of the embryo is now at right amgle with the later. The genema appearance of the ege at this stage as sern fiom
the lentral side is eiven in Fig. is (II. VIII.). The allantois han

 the sere-annionic commertion bent like the letter \backslash. and fiom this is seen -tretching forward the anterion prolongation of the ammion which miter the main portion of the latter with the sero-ammiotie connection (Comp. Diag. VII.. I'l. X.). The twa constrictions or mesemberr-like foll- of the allamtoin cansed by the for sets of

 VIII. (omp. Diag. VII., Pl. X.), and than part of the rentral surface where the lobe of the allantwis finally mee is represented in a more cularged scale in Fig. 81 (Pl. AX.). The space left meonered by the allintois in Fig. 7 ? is now mostly grown oter by the growith from the posterior side. There is howerer a small space still left uncovered by the allantoin. It is triangular in shape ; the apex of this triangle is loounded anteriorly by the sero-imniotic connection, now compressed to an irregular horse-shoe shaped opaque streak. On two sides of the triangle is the anterior allantoic lobe (which equals the middle and lefi lobes): posteriorly, it is limited by the posterior allantoic lobe (which equats the right lobe). From the lateral angles of this triangle the mesentery-like fold of the allantois stretches on each side to cach set of the allamoic vessels. These correspond to the 1 wo notches in Fig. $7 \because$. The view from inside of this region is given in lig. sla. In this there is a ridge acrons the middle of the trimgular area. This is the line of junction of the yolk-sate and the ammion, as will become clear from the sections to be described directly. It appears in the external view as an opaque line across the horse-shoe shaped sero-amniotic connection (Fig. 81). The anterior prolongation of the ammion connecting the main body of
the latter with the sero-ammiotir ammection in now so dispropertionately small compared with the ammion itself that it appears are a small irregularly triangular white path (Fig. Sla. Ans. Prolong.
 sion of its tion walls. is still contimmon with the ammiotio maty through anarow slit (see Fig. 81 amd Diag. I'Il). It leads to the
 tions of this region, the phane of sections being in the antero-posterior direction. Fig. 82 is from the left side of the triangular monered area in Fig. Sla (in fiom the right side in Fig. Sl). The two allantoic lobes, the anterin and posterim. are only lighty apart from each other. Attention is called specially to the section of a part of the anterior prolongation. Figs. 83 and 84 are from the triangular area itself. Here the two allantoic lobes are wide apart. The interspace is filled ilj mostly hy the growth of the somatic mesoblast of the serons (melope. The sero-mmintio commection in Fig. $8: 3$ is of a very amplicated figure. This arises fiom two reasoms. la the first phace the rection being taken in the antero-posterion direction. it conts one limb of the horse shoe shaped sero-ammionic commection more we lean hogitmdinally. In the seemed pace, the sero-ammintio. comection is mot in a simple straght line as in Clemmys, but being compressed and rufted. appears an of an irregatar pathom in a section. In fig. st, the sero-immintic ammection is coll mone
 have gisen a part of fig. St on a more culargen seale in Fig. 大ta.
 hate again apmoached each wher. the section beinge ont of the triangular area. 'They are however, distinet and contime distinet matil the sections reach the allantoie verseds.

In Trionsa, the remman of the posterion tube of the allamuis
is not to be rlarly distingmished. The place where it shomld be present is drawn ont to a point (Fig. 26. Pl. I V.) : that seems to be all the indieation remaining in later stages of the persterior tohe of the amnion.

The white remains to the last in Trionty as in C'lemmes. and is fomm opposite the trimentar area of the ventral pole lefi moneovered by the alkantois. This part is generally more or lese depressed to receive the m:ss which is sticky mol yellowish. The ontermost rells of the sonos emvelope in this area moteron morlifiontions - imilar to thowe of the corresponting wot in Clammys. They hecome taller and larga amd contain large vacomes. their molej beome larger and irregnlar in shape and stamed leeper (Fig. Sta., Comp. Fig.
 that penotrates into the white as in Clemmys.

The rotk pasw insille the embryo in hatehinge.

Of the completed fartal membranes of Clemmys and Trionyx above described. there can he no donbt that ('lemmys has retained more primitive relations. The main gromm for this eomelasion is that, starting from the same point, different structures (above all, the seroamnintir: connection) retain in ('lemmys their origimal position and arrangement, while in Trionyx varions structures are disturbed
 forward, hent and eompressed into a secondary shape. If the process hegun in Triony were to go one step firther, no spot womla he left manereal by the allantois, the sero-ammiotir ammection might be preswed ont of existeme the two allatotoce lohe might enme in entater with each other, amd then the romdition hitherto acerpted as ocerriug in Birds would be the result.

General Considerations.

The noteworthy features in the history of the feetal membranes of Chelonia as given above are:-

1. The presence of the Prommion and the manner in which it is replaced by the permanent Amnion.
2. The presence of a pernliar tube stretching posteriorly from the posterior end of the Amnion conncoting the ravity of the latter with the ex-terior--the Posterior 'Tube of the Ammion.
3. The permanence of the Kero-Ammiotic Connec. tion.
4. The differencesin the fate of the Siero-Ammiotic Connertion iu Trionyx and Clammys.

5 . The presence of the radimentary "Placenta." Of these, the first point has heen moficel in nearly all the amminta whose development has been carefully stmidied within reerent years. 'The only new feature is the faet that the domeal part of the proammion emsists at first solely of a solif sheet of epiblast

 present insotigation. They ertanly are rey momatahle feature.
 distinetive of the ('halonian fintal mombance. I think it. howeres.

-tages. Being possessed with the idea ohtained from the study of birds that it is coon to disappear. different writers have not thonght it wowth their while to follow its history further. Neverthelew I rall not hat think that the sero-ammintio comention rum a similar course
 think that the posterior whe of the amnion is not surh an migne strusture as it apeans to the at presell.

The fifth peint, the preselere of the rumentary platenta, is eertainly very interesting. If the depression inten which the white is receised shomblateme deeper, and the allantoic fold shonld be procuced to enclose it. We shall have exactly the same structure as " the placenta" deseriber by Inval in Birds.

The Reptilia, being the lowest group of the Ammiot: are of gerat importance in the comparation study of the foetal memhrames. What light does the history of the Chelomian fietal membranes as given atove thew on the phylogeny of those
 sion of this dittionlt prohlem. I think [might offere lore : fow suggestions which hatre perated themselves to me in the ernere of the present investigation. I strongly incline to the view that the ammion was originally dewnomed by merhanieal amsio. In (\%helonia, when the heart fold is prowhed. there are tworemens why it shomed sink inter the yolk helow. In the firs plaee, the yolk is very large and lignid. experially just bencath the haverterm, so that a slight weight is enongh to sink ally strueture into it. Th the secom plaw, the white rapilly dix:ppearw from wor the hastoderm. which atheres
 the head-find to grow exept towards below. Without asertinge that these are the very same rames that prombed the anterion
fold of the amnion, I think it reasonable to assume that it was produced by some such merhanical means. [n this relation, I think, those inconstant adrentitions folds as oiven in Figes 1 and 2 (Pl. I.) are highly significant. Thesi undonhtedly arise by the neighboring parte suking helow. We might suppose that in the carline stace of development many such folds are produced, difterent in different
 fild of the ammon may be looked upon merely as me of these. Only the canse that prochese it being present in all the embryos and acting permamently aml ammenting stembly, fually gave rise to the struatime which wrall the immion, heredity of course helping : $\underline{\text { areat deal }}$.

The auterior fold of the :mmion. when pronluced, consiste only of the hypoblast and epiblast, and is callerl the l'roammion. We now know that this is fornd in all the groups of the Amniota, and I think wo onght to add the stage of the proamnion as of normal nccurrence 11 the development of the ammion. In Chelonia, the dorsal part of the prommion is for some time entively epilastic. Shoald this he looked upon: a a pimitive feature or as a serondary one? I am inclined to adopt the former view for twor reanons:-
(1). The incomstant ademitions folds are as previously stated, alway purely piblastice ame exatity like the lateral folle of the prommiou (Fig. 30a, Il. V.) : hence, it is reasomable to conclude that all such folde procluced on the surface of the blastonderm are at first ahways purely epiblastice and the solid epiblastie, domsal wheet of the Prommion produced hy the rablesenere of the lateral folde of two sides have reason to be simply epillastic.
(2). In Clemmys. whane dexelopment is aptainly momemitive than that of Triony x, the solid dowal whe persists for a louger time than in the latter genos, and there is a comsiderable interval of
time before the meablastio folds insinnate themselves into the epiblastic sheek. I think, howerer, that althongh these fohls are solid and without any cavity, the nombthberesarled as eonsinting of two limbs; the imser and onter, which are timm! apresed agamst eath
 Which onght to be regarded as the sean along which the follo of the

If the clorsal part of the pionamai n eonsialed primarily of the chiblast almae whe shmal the mesohastice folm afterward imsimate thenselves between the two limbs wf that part, thas extemding the extra-embryonie endomir satit! intothat resion! for the explana-
 allantois as a respiantory wran, it is desirahle that it shomld be

 persell wilh the grathal gromal of the allantois. Tha extension of the folde wit the -wmatic mesoblase into the epiblastie folde of the prammano is. I thimk, dur primatily to this aanse That the
 caplained as a case of precocions development.

 allamotis, is, L think, also a primitive feature. 'The mamer in which the sero-ammiontic eomnection in Trionyx is pushed forward, bent and eompressed, points out, I think, the way in which that structure historically disappeared in higher forms. As I have stated
above, if the process hegrn in Triony in arried just one step finther, the -ero-ammotic commertion would case to exist. What is the callse which hronght abont thi- disappearance: so fiar as I can see the sefo-ammiotic conncetion nemes mpracieal purpose in e'lem10 y s and its presence is only to be accomented for phylogenetieally. If such is the rase it would be madoubtedly economical to skip orer the romadabont manner by which the allantors spreads itself in ('lemm! - romed the sero-ammionic connection. Hence its disappearance at last in higher forms. Whether the immediate agent of its forward shifting i- the force exerted solely by the growing edge of the allantois I ammot tell. It is as doube partly due to that, but in anklition I ofter the following as a sugesestion. In Triony x. the allantoit vessels come ont -ymmetrically on each side: in Clemmys. the symmetry is distmbed. the right set is fommed more anterjorly than the left. As I have often remarked, ('lemmys presents ou the whole more primitive relations. Bum I cammot resurd this asymmetry of the allantoic blout-vessels as a primitive condition: something being present in Clemmys has distmbed the original symmetry and being
 I think is the presence of the sero-amniotic connertion. Mar mot the tendency of the blood-vessels to assome a symmetrical armagement help to push the sero-amniotic commection forward in Trion! x ?

List of Works referred to.

1. H. Strahl:--Ueber die Entwicklung de., Cimalis Myeloentericns u. d. Allantois der Eidechse. Arch. f. Anat. u. Physiol. 1881. Anat. Abth.
2. ————Beiträge zur Entwicklung ron Lacerta agilis. Ibid. 1882.
3. —————Beiträge zur Entwicklung der Reptilien. Ibid. 1883.
4. -_- Ueber Canalis neurentericus u. Allantois bei Lacerta viridis. Ibid. 1883.
5. ————Ueber Entwicklungsvorgänge am Vorderende des Embryos von Locerta agilis. Ibid. 1884.
6. C. K. Hoffmann :-Beiträge zur Entwickhangsgeschichte der Reptilien. Zeit. für Wiss. Zö̈l. Bd. 40. 1884.
7. —————Weitere Untersuchungen zur Entwicklungsgeschichte der Reptilien. Morph. Jahrb. Bd. 11.18s6.
8. Ed. Ravir :-Ueber die mesodermfreie Stelle in der Keimscheibe des Hühnerembryos. Arch. f. Anat. n. Entwickl. 1886.
9. ————Bemerk. neber die mesodermfreie Zone in der Keimscheibe der Eidechse. Anat. Anz. IV. 1887 No. 5.
10. M. Duval:-Etades histologiques et morphologiqnes sur les Annexes des Embryons d'Oisean. Journ. de l'丸nat. et de la Physiol., XX. 1884.
11. E. Van Beneden et C. Julin:-Recherches sur la Formation des Annexes foctals chez les Mammiferes (Lapin et Cheiroptères) Arch de Biol. V. 1884.
12. E. Gasser :-Beiträge zur Entwicklungigesch. der Allantois der

Miiller'schen gainge n. des Afters. Fraukfurt 18 - 4.
13. —————Der Primitivstreifu bei Vogelembryonen (Huhn u. Gaus) Cassel. 1879.
14. K. Mitsukuri and C. Ishikawa:-On the formation of the Germinal Layers in Chelonia. Quart. Jour. of Micros. Sci. 18s6. Also Jour. of Science College. Itup. Univ. Tokyo, Japan. Vol. I.
15. A. Ostroumoff:-Zur Eutwicklungsgeschichte der Eidechsen Zö̈l. Anz. Nr. ®9․ 2.
16. Jr. Pereuyi:-Entwicklung des Amuion, Wolft"schen Gauges 1 . der Allantois bei den Reptilien. Zoïl. Anz. Nr. 274.
17. A. A. W. Hubrecht:-The Placentation of Erinacens Emropens, with Remarks on the Phylogeny of the Placenta. Quart. Jour. Micros. Sci. Vol. XXX. 1889.
18. J. A. Ryder :-The Origin of the Amnion. Amer. Natur. 1886. 19. A. Fleischmann :-Mittelblatt und Amnion der Katze. Erlangen. 1887.

Explanation of Figures in Plates I-X.

List of Reference Letters.

6 a. (Fig. 2) inconstant adventitious folds. a.l. f. anterior limiting furrow= vordere Grenzfurche. All. Allantois. Amn. Ammion. b.r. blood-vessels. Cocl. coelom within the embryo. C'oel'. extraembryonic coelom. ch. notochord. Epi. Epiblast. H. F. head-fold. Hyp. hypoblast. Lat. f. Amn. Lateral fold of Amnion. Mes. mesoblast. N. E. C'an. neurenteric canal. I'ost. Tn. Amn. Posterior tube of Ammion. prox. pt proxinal part of posterior tube of Amnion. Iroam. Proamion. Lemnent. I'ost. Tiu. Amn. Remmant of posterior tube of Amnion. Ser. E'ne. Serous envelope. Sero-Amn-C'om. Sero-Amniotic connction. r.r.a. anterior vitelline vein. y/. yolk.

In colored figures of sections, the epiblast is always colored red, the mesoblast blue, and the hypoblast yellow. In Pl. IX. blue stands for the somatic mesoblast, and green for the splanchnic mesoblast.

Plate. I.

Fig. 1. Dorsal view of a Clemmys embryo 2 days old. Zeiss ut $\times 2$.
(1.IV)

Fiy. Ia. Ventral view of the same. an $\times 2$.
Fiy. 2. Dorsal view of : Clemnys embryo $4 \frac{1}{2}$ days old, with $2-3$ mesoblastic somites. (un $\times 2$.
Fig. 2a. Ventral view of the same.
Fig. 3. Dorsal view of a Clemmys embryo 4 days on, with 6-7 mesoblastic somites. Extra-embryonic corlomic cavities of two sille distimetly wern almont therhing eath other over the median dorsal line of the embryo. an $\times 2$.
Fiig. $3 a$. Yentral view of the same. \quad an $\times 2$.
fig. t. Dorsal riew of a lommys embryo 7 days old. $\quad u \times 2$.
l'ig. \quad. $, \quad, \quad ., \quad 8 \quad, \quad, \quad$ u" $\times 2$. (xxsmin.)
fig. 6.
$"$
$9 \quad " \quad, \quad \begin{gathered}(16 \times 2 . \\ (x \times 515 .)\end{gathered}$
t'ig. 7. $\quad, \quad, \quad 4 \frac{1}{2}, \quad, \quad u t \times 2$. (.1.11.)

Plate. II.

Fig. S. Clemmys embryo slighty wider than Fig. 7. Enlarged.
fig. 9. Clemmys embryo 13 days old. au $\times \underset{2}{ }$.

Fig. 10. Posterior tube of the Amuion highly convoluter, from a Clemmys embryo 14 days old. a $a \times 2$.

Fig. 11. Dorsal view of a Clemmys embryo, 10 days old, $6 \stackrel{1}{3} \mathrm{~mm}$. long. Enlarged about 17 times. (xivi)
Fig. 11a. Ventral View of another embryo from the same deposit. Enlarged about 17 times.
Fig. 12. Semi-diagramatic riew of the posterior constriction of the Allantois in a Clemmys embryo 31 days old, seen from outside the serous envelope. $c a \times 7$. (wni)
Fig. 13. Two Clemmys embryos 18 days old. Slightly enlarged. (xxsxy.)

Fig. 14. Dorsal view of a Clemmys embryo whose ammion is open toward the left.
Fig. 15. Posterior tube of the Amnion disappearing. From a Clemmys embryo 13 days old, 8 mm . long.

Plate. III.

Fig. 16. Dorsal view of a Trionyx embryo $3 \frac{1}{2}$ days old. ut $\times 2$. (126.)

Fig. 17. Dorsal view of a Trionyx embryo $\tilde{n} \xrightarrow{!}$ lis, old, 3 mm. long, with 5-6 mesobl. somites. an $\times 2$. 128.$)$

Fig. 17a. Ventral view of the same.
Fig. 18. Dorsal view of a Trinnyx embryo $7 \frac{1}{2}$ days wh, $3 \frac{1}{2} \mathrm{~mm}$. long, with $7-8$ mesoblastic somites. $a a \times 2$.
Fig. 19. Dorsal view of a Trionyx embryo $8 \frac{1}{2}$ days old, 4 mm . long. au $\times 2$.
Fig. 19a. Ventral view of the same. $a a \times 2$.
Fig. 20. Ventral view of the posterior part of a Trionyx embryo

8 days old, showing the beginning of the Allantois. $A \times 2$. (112.)

Fig. 21. Posterior tube of the Amnion in four Trionyx embryos 13 days old. Slightly enlarged.
(162.)

Fig. 22. Posterior tube of the Amnion in two Trionyx embryos 16 days old. $a a \times 2$.

Plate. IV.

Fig. 23. Dorsal view of a Trionyx embryo $10 \frac{1}{2}$ dilys old. aax 2 . (157.)

Fiy. 2t. Dorsal view of a Trionyx embryo $11 \frac{1}{3}$ days old, $5 \frac{1}{2} \mathrm{~mm}$. long. Posterior Tube $2+\mathrm{mm}$. long. ${ }^{1661,}$
Fig. 25. Trionyx embryo 38 days old, seen from the side of the yolk-sac which has however been removed. (175.)
Fig. 26. Trionyx embryo 5.3 days old. The yolk-sac removed and the embryo seen from the ventral or yolk-sac side. $\times 3$.

Fig. 27. Trionyx embryo $10 \frac{1}{2}$ days old. (176.)

Fig. 28. Same embryo seen from its dorsal aspect. with the serous envelope lifted up, showing the sero-ammiotic comection and the remnant of the posterior tube of the Amnion.
Fig. 29. Cells of the serous envelope in the region of the "placenta" in the Clemmys embryo represented in Figs. 71 and $71 a$. $D D \times 4$.

Plate. V.

Fig. 30-33. (5-8). Selected transverse sections from the Clemmys embryo represented in Figs. 2 and 2a. $C C \times 1$.
Fig. 30. From the region of the lateral limbs of the Amnion.

F'ig. 31. From the region where the two lateral limbs have just united.
Fig. 32. From the region where the head is partly sunk below the level of the blastoderm.
Fig. 33. From the region of the head which is wholly sunk below the level of the hastoderm.
Fiy. 30a. Region of the left amniotic limb in Fig. 30. under a higher power. $D D \times 4$.
Fig. 31a. Left half of the amnion in Fig. 31. $D D \times 4$.
Figs. $34-38$. Selected transverse sections from the Clemmy embryo represented in Fig. 3 and $3 a . \quad C C \times 1$.
Fig. 34. From the region of the lateral limbs of the Ammion.
Figs. 35-36. From the dorsal region.
Fig. 37. From the region of the heart.
Fig. 38. From the region of the heal.
Fig. 35a. Median dersal part of the Amnion in Fig. 35. under a higher power. $D D \times 4$.
Fig. 36a. Median dorsal part of the Amnion in Fig. 36. under a higher power. $D D \times 4$.
Fig. 36l. The same region a few sections in front of Fig. 36. $D D \times 4$.
Fig. 37, Me . Mian dorsal part of the Ammion in Fig. 37. under a higher power. $D D \times 4$.
Fig. 39. Tramsverse section of the posterior tube of the Ammion from the embryo given in Fig. 5. near its proximal end. $C C \times 1$.
Fig. 40. Do. from abour its middle. $\quad C C \times 1$.
Fig. 41. Longitulimal section, slightly out of the median line, of a Clemmys embry from the same stage as that represented in Fig. 3. $B B \times 2$.

Fig. Ha. Diagrammatic longitudinal section of a Clemmys embryo somewhat older than that given in Fig. 41.

Plate. VI.

Fig. 12 -f\%. Selected tramserse sections from a Clemmy embryo 6 days od with 20 mesohartic smates. $\quad C(\subset \times 1$. axsm.
Figs. ttu. Median dorsal part of the Amnion in Fig. 4t. under a higher power. $D V \times 4$.
Figs. 45 49. selected transerse sections from a Clemmys embryo 9 days old. $\quad C C \times 1$.
fig. $\pm S$. From the tail-region.
Fig. 49. From the dorsal region.
Fig. ASa. Median dorsal part of the Amnion in Fig. 4s. under a higher power. $D D \times 4$.
Fig. t9a. Median dorsal part of the Amnion in Fig. 49. under a higher power. $D D \times 4$.
Figs, 50-52. Selected transwerse sections from the embryo represented in Fig. 17. C' $\times 1$.
Fig. 50. From the region of the lateral limbs of the Amnion. Fig. 51. From the dorsal region of the Amnion.
Fiy. 5\%. From the region when the head is sunk almost entirely below the level of the blastodem.
Fifs. 53-55. Selected transerse sections from the posterior tube of the Ammion in the embryo represented in Fig. 24. (1)! the epihlast and somatopleuric mesohast are represented, the hypoblast and splanchoplentic mesoblast being umitted. $D D \times 4$.
Fig. i3. Near the posterior opening of the tube.

Figs. 5t-55. At various distances in front of Fig. 53.
Fig. 56. Median dorsal part of the Ammion in a section from the middle dorsal region of the Trionyx embryo represented in Fig. 24. $D D \times 4$.
H'ig. 5\%. Median dorsal part of the Amnion in a section from the dorsal region of Trionyx embryo represented in Fig. 19. $D D \times 4$.

Plate. VII.

Fig. 58. Longitudinal section of an embryo from the same stage as that represented in Fig. 1. $D D \times 2$.
Fig. 59. Transverse section of the embryo represented in Fig. 1. $D D \times 2$.

Fig. 60. Longitudinal section of the Trionyx embryo shown in Fig. 20. $C C \times 2$.
Fig. 61. Longitudinal section of a Trionyx embryo $10 \frac{1}{2}$ days old. $C C \times 2$.

Fig. 62. Longitudinal section of a Trionyx embryo 9 days old. $C C \times 2 . \quad(115$.

Fig. 63. Longitudinal section of a Trionyx embryo 11 $\frac{1}{2}$ days old. $C C \times 2$.

Fig. 6t. Longitudinal section of a Clemmys embryo 4 days old with 16 mesoblastie somites. $B B \times 2$.

Fig. 6j. Longitudinal section of a Clemmys embryo 6 days old with about 20 mesoblastic somites. $B B \times 2$ (xxme)

Fig. 66. Longitudinal section of a Clemmys embryo 9 days old. $B B \times 2$.
(sxix.)

Plate. VIII.

Fig. 67. Surface view of a Clemmys embryo 28 days old. Seen from outside the serous envelope. $\times 4!$. (nxat.)

The upper transparent membrane is the serous emodipe. The lower opaque membrane with blood-vessels is the yolk-mrombrrans. Between these two membranes are placed the cmbryo, the allantois ide. Different divisions of the allantois are sufficiently explained in the text. The white line close to and parallel with the merlian dorsal line of the embryo is the sero-amuintic cantection: traced posteriosly, it bends shaply to the left, this short limb being the remnant or proximal part of the posterior tube of the ammion. Over the posterion part of the embryo, is a delicate, irregularly curved white tube: this is the distal part of the posterior tube of the amnion with its horse-shoe shaped posterior opening. It has no connection with the proximal furt.
Fi!. 68. Dorsal view of : Clemmys egg, with the embryo, the feetal membranes, and the yolk-sac. About 40 days ofd. $\times 2$.
fig. 69. Side view of a Clemmys egg with the embryo, the fextal membranes, and the yolk-sac. 51 days old. Nat. size.
(Lxsili.)
Fig. 80. Ventral view of a Clemmys egg with the embryo, the feetal membranes and the yolk-sace. 55 days old. Blood-vessels on the yolk-sac omitted. Nat. size. (nxsv.)
Fig. 71. Dorsal view of a Clemmys embryo, shortly before hatching with the foetal membranes. 45 days old.

Fig. 71a. Ventral view of the same.
A low lobate process of the membranes situated close to the left of the tri-radiate allantoic seams penetrates into the mass of the white.
Fig. 72. Surface view of a Trionyx embryo $15 \frac{1}{2}$ days old. $\times 5 \frac{1}{2}$. (177.)

This corresponds to Fig. 67. of Clemmys, and the explanation of the latter is applicable to this. The white line stretching from the neck of the embryo to its posterior end is the sero-ammiotic comnection. Its slight posterior expansion marks the remnant of the posterior tube of the ammion.
Fig. 73. Embryo represented in Fig. 26. with the yolk-sac and the foetal membranes. Blood-vessels on the yolk-sac omitted. Slightly enlarged.
Fig. 74. Ventral view of a Trionyx embryo 42 days old with the yolk-sac and the foetal membranes. Slightly enlarged.

Plate. IX.

Fig. 75. Blood-vessels that pass through the umbilicus.
Fig. 76. Part of a transverse section through the sero-amnintic comection of a Clemmys embryo 13 days old. DI) $\times 4$. (uix.)

Fig. 77. Diagram of the region of the posterior tube of the Amnion. Figs. 78-80. Selected transverse sections through the posterior part of the sero-amniotic connection and the remnant of the posterior tube of the Amnion in the Clemmys embry" represented in Fig. 71. $\quad C C \times 2$.

Fig. 78. Through the line 1-1 in Fig. 77.
Fig. 79. $\quad, \quad, \quad, 2-2$ in Fig. 77.
Fig. 80. , $, \quad, \quad 3-3$ in Fig. 77.
Fig. 81. Region on the non-embryonic pule of the yolk-sac where the allantoic lobes meet. From a Trionyx embryo similar to Fig. 74. Seen from outside the serous envelope. $\times 3$.

Fig. 81a. The same region seen from inside.
Figs. 82-85. Selected sagittal sections through the region represented in Figs. 81 and $81 a . a a \times 2$.
Fig. 82. is to the extreme left of Fig. 81/. and the sectiongradually proceed toward the right.
Fig. Sta. Region of the sero-ammiotic connection in Fig. 8t. more highly magnified. $D D \times 2$.

Plate. X.

Fig. 85. Transserse section from the head-region of the Clemmys embryo represented in Fig. 11. un $\times 2$.
Fig. 86. Similar section from the headreegion of a Clemmys embryo 13 days old. a $\times 2$.
Fig. 87. Longitudinal section of a Trionyx embryo 16 days old (the same embry as that given in Fig. $2 \because$). ($C \times 1$.
Fi!!. S7a. Transverse section through the allantoin vesicle of an embryo of the same stage. $\quad C C \times 1$.
Diags. I-III. Give a summary of the development of the fural membranes in Chelomia.
Diags. $I-V^{\text {. }}$. Applicable to both Clemmys and Trionyx. Diag. I. Corresponds to Fig. I. (Pl. I.) and to Fig.

58 (Pl. VII.). The head-fold of the embryo is smok bclow the level of the blastoderm and enveloping it is the proamnion as yet only slightly developed.
Jiag. $I I$ aml $I I^{\prime}$. Correspond to Fig. 2 (Pl. I.). The ammotic hood proceeding backward has covered the anterior half of the embryo. Its cephalic portion consists of the hypoblast and epiblast ; its dorsal portion of the epiblast alone. II' represents a cross-section of the dorsal region. It shows clearly that the mesoblast has as yet 10 share whatever in any part of the ammion (or more properly proamion).
Dhig. III and MII'. Correspond to Fig. 3. (1'l. I.). The ammiotic hood has extended nearly to the posterior end of the embryo. The extra-embryonic cuelomir cavitien of two sides are mited across in the head-regiou. The mesoblastic folds have also insinuated themselver into the hitherto solid epiblastic dorsal part of the ammion (III'.) A partition-the sero-ammiotic comucre-tion-in the median line, however keeps the colomic cavities of two sides separate in the dorval region.
Ding. IV and $I I^{\prime \prime}$. Represent the stage when the posterior fulce of the amnion is fully developed. The seroammiotic connection in a cross-section (IV'.) is now $^{\prime}$. alosely invested on each side by the mesohlastic fold, and is longer than in III'. The mesoblastic fold is peeling the hypahbast off the prommion covering the head. (IV.).
Diag. V. . All but a small proximal part of the posterior tube has now disappeared. The sero-amniotic comection is more developed. The musoblastic fold has now contirely
peeled the hypoblast off the prommion, and the head is now enclosed in the amniotic cap consisting of the epiblast and mesoblast. Although these diagrams (III, IV and V) show the encroachment of the mesoblast on the proamnion as taking place from before backward, it in reality takes place mostly from two sides. In Diags. IV and V, the gradual development of the allantois is shown.
Diay. I'I. Shows the fuetal membranes of Clemmys as completed.
Diag. VII. Shows the fetal membranes of Trionyx as compheted.

\qquad
\qquad
\qquad

Fis M.1.1
\qquad

Jour. Sc. Coll. Vol. IV PI. VI.

[^2]

On the Development of Araneina.

by

Kamakichi Kishinouye, Rigakushi.
Science College, Imperial University.

With Plates XI-XVI.

The following observations on the development of Arancina were made in the Zoological Laboratory of the Imperial University during the acalemic session of $1838-9$. Some of the results I have arrived at serem to be uot without interest. Before going further I wish to express my thates to my temere, Dr. K. Mitsukuri and Dr. I. Ijima for their kind and valuable advice during my work.

The materials used for the investigation were all collected by myself during the summer of 1888 in the grounds of the university. The genera that have been most carefully studied are Lycosa aml Agalena, while Theridion, Epeira, Dolomedes, Pholcus were more or less examined for comparison. A species of Lycosa which is very abundant among grasses breels constantly from the end of March to the latter part of Sicptember, and carries about the cocoon so that we are able to obtain its eggs in various later stages with great ease. It, however, fitilerl to breed in captivity, and for this reason, in the stuty of earlicst stages recourse was had to the eges of a species of Agalena which breeds very freely in captivity. The statements made in the following fare refer to all the species examined mbess otherwise operifierl.

A few words about the methods of investigation may be of use. Eggs of later stages were killed by heating in water to $70-80^{\circ} \mathrm{C}$., while segmenting eggs were phanged directly in hot water. Iteating was stopped when the eggs became somewhat opaque and white. They were then allowed to cool and transferred to 70% alcohol. After 24 hours, they were examined one by one under a dissecting microscope and those with unburst egr-membranes were perforated with the point of a needle to facilitate the penetration of reagents. They were then hardened in ascending grades of alcohol. I have always found this method to be excellent for all spider eggs.

Staining was done with alcoholic cochineal, picrocarmine, alcoholic carmine, or hematoxylin. Alcoholic cochineal and picrocarmine have given best results. It is a remarkable fact that paraffin penetrates into eggs stained with picro-carmine more easily than into those stained with any other reagent. Alcoholic cochineal proved to be especially good for staining sections on the object glass. Imbedding for section-cutting was done in paraffin.

Composition of the Freshly Laid Egg.

The egg has two investing membranes, the inner of which is the vitelline membrane, and the outer the chorion. The external surface of the latter is covered with a crust of minute spherical gramules, insoluble in alcohol. In a species of Epeira, these granules are comparatively large and closely encrust the surface of the eggs, in some places in two or three layers, making the examination of the inside almost impossible. They were easily removed by gentle rubbing with the fingers. In species of other genera examined, the granules were tolerably crowded in one layer, hut being smaller than those of Epeira did not seriously obstruct the view of the inside.

The composition of a freshly laid egg has been tolerably accurately described ly previous writers, their opinions differing only in some points of letails. It may be conceived of as a scanty network of frotoplasm in the wide meshes of which yolk granules are imbedded. There is always more or less concentration of protoplasm toward the centre which may be called the centroplasm. An extremely thin layer of protoplasm is found on the external surface of the egg, directly inside the vitelline membrane and may be distinguished as the periplasm. The centroplasm and periplasm are no doult connected with each other by a scanty protoplasmic network, although not always apparent in sections. The space between the centroplasm and periplasm is almost entirely taken up by large yolk granule which are arranged in characteristic radiate columns. In each column the yolk granules are in several rows, one placed outside another, and in each row there are generally two granules abreast. The granules near the centroplasm are much smaller than those placed more to the outside. In a freshly laid egg I was unable to detect the germinal vesicle in any part. The first segmentation nucleus appears in the centroplasm a few hours later. In Lycosa, the so-called yolk-nuclens of the usual appearance was distinctly seen in the centroplasm. In Agalena, I could not find it.

The periplasm when seen from the surface presents the appearance of being divided into irregular polygonal areas (Pl. XI, fig. 1). The cause of this appearance has been a point of dispute, Ludwig* even maintaining that there is uosuch. That the periplasm is marked out into irregular polygonal areas, there can be no doubt. I agree with Locy** in assigning the canse of this marking to a pressure which is exerted on the periplasm and presses it against,

[^3]the peripheral end of the underlying yolk columns, thas causing the former to receive the impression of the latter. The fact that in freshly laid eggs the polygonal areas correspond with the underlying groups of yolk gramules favours this view. I must, however, differ from Locy as to the cause of this pressure brought to bear on the periplasm. Locy ascribes it to the contraction of the egg. This can hardly be, for I could find in no case any trace of contraction, the eggs being always very closely covered by the two membranes. I think it much more probable that the polygonal markings are the effect of the pressure to which the eggs are subjected as they pass through the narrow oviduct. Locy states moreover that at an early stage a number of faintly marked areas mate their appearance at the animal pole, while they could not be detected upon the opposite hemisphere. I can not corroborate this statement, for I fomod the polygonal marking covering the whole surface of the egge from the earliest period after being laid. It should be stated that after a while when segmentation begins, the yolk granules more or less shift their places ; hence we no longer find the coincidence of polygonal areas with groups of yolk granules. The polywonal areas do not seem to change their positions nor do they vary in mmber after they are once formed.

From the Segmentation of the Ovum to the Formation of the Germinal Layers.

According to Ladwig*, who gives a detailed description of the segmentation of the orum in Philodromos, the nucleus and the yolk divide simultaneously first into two, then into four, eight, sixteen, and so on. Morin*** who studied Theridion, Pholens, Drassus and

[^4]Lycosa, states that there is no division of the yolk before there are formed eight maclei. In the species studied by myself, the yolk columns are grouped into as many masses (yolk-pyramids or rosettes) as there are nuclei, from the time when there are only two of the latter.

In Pl. XII, fig. 8, I have represented a section of an egg in which there are two nuclei. It will be seen that the yolk is ahready evidently divided into two masses or segments. In the lower segment, the nucleus is distinctly seen. In the upper, the nuclens does not happen to be in the section, but there is seen the yolk-mucleus (!. 11). The latter does not divide and was often found even in egges of the 4 cell stage, always by the side of one of the segmentation muclei. The segmentation eavity (sey. cav) is already present. The yolk granules immediately adjoining the perinuclear protoplasm are split up into small particles at whose expense the protoplasm revidently seems to increase in bulk (Pl. XII, figs. 8. 9. 10). This process of assimilation is no doubt continned during the whole process of segmentation.

From this stage on, as the nuclei divide, the yolk masses also divide, assuming characteristic rosette or pyramidal shape (PI. NI, fig. 2). Strictly spaking, the segmentation is not total but syncytial, as the periplasm remains undivided. Nor is it entirely regular, as stages with $3,11,22,34,85$ \& \mathbb{E}. nuclei were fomid. Nevertheless the nuclei, after repeated division, are distributed fairly miformly in the egg.

As the process of segmentation goes on, the segmentation carity which was alrealy present in the 2 -cell stage gradually enlarges so that in stages represented in figs. 9 and 10 the centre of the $\operatorname{eg} \mathrm{g}_{\mathrm{g}}$ is occupied by a large cavity.
side by side with their increase by division the nuclei together
with their surrounding protoplasm gradually travel toward the periphery of the egg through the yolk pyramids (Pl. XII, ligs. $8,9,10$). When abont 30 in number, they all reach the surface. When they are almost at the surface, the continuity of the perinuclear protophasm with the periplasm by means of pseulopodia-like processes can be demonstrated on surface views. Figs. 3, 4, Pl. XI. are iwo figures giving such views in which the radially arranged processes of the perinuclear protoplasm (represented in the figures as dark lines) become lost in the periphasm whose polygonal markings are still visible. Soon after such a stage the perinuclear protoplasm and the periplasm are entirely mixed together forming a nucleated layer at the surface. So far as my observations go, the nuclei emerge simultancously all over the surface of the egg-not, as Locy states, earlier at the animal pole than at the opposite pole. When there are formed alout a hundred nuclei, this nucleated layer separates itself from the underlying yolk, and then by the continual division of the nuclei the one-cell layered blastoderm is estalblished (Pl. XIII, fig. 15). Coincidently the polygonal markings disappear and the egg recedes from the investing membranes. Probably this is due to the swelling of the membranes and not to the contraction of the egg.

Whether the yolk still contains nuclei or is entirely free from nuclei when the blastoderm is established has been a matter of dispute. In my own sections, I could not at this stage detect any uucleus at all in the yolk, thus confirming the views of Morin in opposition to lalfour's.* Yolk granules are, however, still aggregated into masses.

The change that comes next is of great importance. The cells of the blastoderm when it is al first established are of uniform spherical shape throoghout its extent. While these cells grathally assme a

[^5]Hattened shape over the greatest part of the blastoderm, there is one spot where the nuclei become conspicuonsly spherical and multiply rapidly. The spot may be distinguished by reflected light as a round whitish area (Pl. XI, fig. 5, prim. thi). It is often a little depressed at first ; lout it soon becomes flat and eventually a little elevated. Sections through this spot show a large accumntation of blastodermic cells about seven cells deep (Pl. XII, fig. 11). I shall call this thickening the frimary thickening.

Shortly after this another thickening appears, close to the primary thickening, on the future median line (Pl . XI, fig. 6, Pl. XII, fig. 12, sec. thi). This is also slightly elevated above the general surface of the blastoderm (Pl. XII, fig. 13). I shall call it the secondary thickening. The primary thickening now gradually ex. tends itself in all directions and forms a whitish dise-like area of the bastoderm, the centre of which is thicker than the periphery (Pl. XI, fig. 7). This white area is the first trace of the ventral plate. The primary thickening as it spreads out surrounds and pushes away the secondary thickening, so that the latter now lies at the margin of the white area but is further from the centre of the primary thickening than before (Pl. XI, fig. 7).

There has been much confusion in regard to the nomenclature of these two thickenings of the blastoderm. The secondary thickening corresponds to the primitive cumulus as described by Claparede.* This appars at least very probable when we compare my fig. 7, P'I. XI, with fogs. 3 and 4, Planche I, of this author. Balfour was of the opinion that the primitive cumulus becomes lost in the caudal thickening. What is called the primitive cumulus by Locy is undoubtedly the primary thickening above described, while his "candal thickening" is the secondary thickening. Morin admitted

[^6]the existence of a blastodermic thickening giving rise to germinal layers, but denied the identity of it with the primitive cumulus. He says that the primitive cumulus is formed after the formation of the germinal layers and is composed of mesoderm cells. My observations on Lycosa show that the secondary thickening, or the primitive cumulus of Claparede, is formed after the formation of the primary thickening and that both are formed before the distinction of germinal layers is possible. Both are atcumulations of indifferent cells, not yet referable to any germinal layer (Pl. XII, figs. 11-14). I can not tell whether the position of the secondary thickening corresponds to the anterior or to the posterior of the future ventral plate. This much is certain, that it entirely disappars at the time when the germinal layers are established.

These two thickenings, the primary and secondary, are of a great significance, as the germinal layers are established from them, the primary thickening contributing the largest part in their format tion. In a longitudinal section, these two thickenings are as in figs. 12 and 14 , while in a cross section they appear as in fig. 11 . From these figures it is evident that they together form along the median ventral line of the future embryo a ridge-like thickening which sticks out into the cavity of the yolk. Cells from the top of this ridge (the lowest part of the ritge in the figures) proliferate into the yolk and become scattered without any definite arrangement throngh the entire yolk. These are the endoderm cells. They become large by taking nourishment from the yolk as they pass through it. The cell-layer of the ridge nearest the external face of the egg becomes established as the definite ectoderm. The cells of the ridge which are left close under the ectoderm form the mesoderm (Pl. XITI, fig. 17). They soon spread horizontally below the ectoderm. The mesoderm is at first in a single median mass on the
ventral face and does not extend to the dorsum of the embryo which is composed of the ectolerm only.

As to the nature of these two thickenings, the primary and secondary, it is difficult to state anything definite. The stage in which the one-cell layered bastoderm is established on the surface of the egg is to be looked upon as the blastosphere stage. When the ritge appert: in this blastong here along the line which beomes the median rentral line of the fature embryo and sembs off cells into the yolk cavity, the whole process mnst be regarded as a modified form of invagination and the ridge is to be looked upon as the bastopore. Why there should arise two thickenings. instead of one remains inexplicable to me. The primary thickening is withont doubt the remnant of the blastopore. Whether the secondary is to be looked upon as a part of the same, I camnot decide.

From the Formation of the Germinal Layers to the Reversion of the Embryo.

After the establishment of the ventral plate, its anterior part becomes marked off as the cephalic, and its posicrior part as the candal lobe, and the middle region between the two lobes is divided by transverse ridges into segments. The least number of segments observed between the cephalic and caudal lobes was five. The foremost of these corresponds to the segment which bear's the pedipalpi ant the four following are the thoracic segments, each of which subsequently produces a pair of ambulatory appembages. The segment which is to bear the chelicere is soon after ent off from the eephatic lobe and the abdominal segments are gradually cut off from the candal lobe, the process procerting posterionly, until there are formed eight aldomiat segments (Lyeosa).

In this process of segmenting the mesoderm of the ventral plate shares (Pll. XIII, fig. 16), and is divided into as many parts as there are segments in the body of the embryo. Moreover it divides itself into two longitudinal bands at the median line except at the cephalic and caudal lobes. Thus there is formed in each segment a pair of mesorlermic plates. After a while, each of these paired mesodermic plates produces a cavity-the colom-apparently by its spliting into two layers (Pl. XIII, fig. 18). The outer of the two layers is the somatopleure, and the inner the splanchopleure. The coelom therefore consists at this time of a number of paired cavities (P I. NIV, fig. 22), which are separated from one another. Celomic cavitics in the cephalic and caudal lobes appear only later on.

Shortly after the formation of the culom, a pair of protuberances appear on each segment. They are the first traces of the appendages (Pl. XIV, fig. 23, th. app). The order of their appearance corresponds to the order of appearance of the segments to which they belong. The appendages are formed on segments of the chelicera and pedipalpi in all the thoracic and the second, third, fourth, and fifth abdominal segments (Pl. XIII, fig. 20, Pl. XIV, fig. 22). The cephalothoracic appendages are formed at the lateral ends of the segments, while the abdominal appendages are formed neater the median line (Pl. XIII, fig. 20). The ablominal aphendages are little round protuberances, and do not elongate as rapidly as other appendages. The first abdominal segment bears no appendages, as Schimkewitch* has correctly observed. This segment is gradmally aborted, and is not distinctly visible at the time of the reversion of the embryo. The coelomie cavities of each segment extend into the appendages.

The fountations of the nerrons system are laid soon :fter the

[^7]establishment of the ventral plate during this period. The ectoderm of the cephalic lobe is very much thickened as shewn in figs. 22 and 23. This process of thickening proceeds back wards as two longitudinal bands, one on each side of the body, along the inner side of the attachment of the appendages in the thoracic and abdominal segments, finally meeting each other in the caudal lobe. These two bands are the first rudiments of the ventral nerve chain. Thus it is continuons from the first with the cephalic thickening above mentioned which becomes the brain, as in the case of scorpions observed by Kowaleveky and Schulgin.* This is not in accordance with the view of some authors who maintain that the brain and the ventral nerve cords are formed independently of each other. The cells composing the rentral cords aggregate in each segment and give rise to the ganglia.

The cephalic thickening of the cetoderm is now livided into two semicircular lobes (Pl. XIII, figs. 20, 21). Near the front edge of these lobes, there is formed on each side a semicircular groove (sem. gr.). This paired groove which is cut off from the ectoderm is the chief origin of the brain. liruce** compares it with the amniotic fold of insects; but the comparison is certainly not justifiable. Kowaleveky and Schulgin found that in Scorpions the ectodermic invagination comparable to the amniotic fold of insects is distinct from and formed earlier than the semicircular groove, which is no doulst homologons with the similar groove of the spider, as it also gives rise to the brain. Sections of the semicircular groove are representer in fig. $23, \mathrm{Pl}$. XIY.

Besides the semicircular grooves, there is a pair of small ectodermic invaginations in the posterior part of the head near the outcr borter (${ }^{\prime}$ l. XIII, fig. 20, Pl. XIV, fig. 23, lat. v). So far as I

[^8]know these invaginations have been till now entirely overlooked. [u fig. 19, l'l. XXI, of Balfour's work, I find one of these invaginations represented ; but he gives no information abont it. It is globular in form ; henceforward I shall call it the luteral reside. The lateral vesicles, which are also gradually constricted of from the ectoderm, go to form a part of the brain (Pl. XV, figs. 44-46).

The stomodicum is formed as an ectodemic invagination at the anterior margin of the cephatic region (Pl. XIII, fig. $20, \mathrm{Pl} . \mathrm{XIV}$, figs. 24, 25). At this stage it is easy to see that all the appendages are postoral in origin.

Late in this stage a number of large cells appear at the dorsal part of the embryo. They are never found in the ventral plate. They are very easily recognised by their large size and the peripherally situated molei, their centeal portion being filled with fat ($\mathrm{Pl} . \mathrm{XV}$, figs. 40, 41, f.c). Undombedly they are nowishing cells, wandering everywhere, and some of them are changed into blood corpuscles. They were called by Balfour the secondary mesoderm, by Schimkewitch the scondary entoderm, and by Lory the endoderm cells. These three authors ascriber the origin of these fat cells to the cells in the yolk, whereas according to Morin they are formed in Pholcus from dispersed mesoderm cells originally composing the so-called primitive cumulus,* and in Theridion which wants the cumnlus probably from cells of the mesodermal somites. Schimkewitch, Locy, and Morin observed that these cells become blood corpuscles. For my own part, I am inclined to agree with Balfour, Schimkewitch, and Locy and to derive them from the endoderm. For in the first place, they are found immediately above the yolk, and in some cases between yolk granules presenting the appearance as

[^9]if they have just emorged from the yolk. In the second place, their muclei agree in their large size with those fornd in the yolk.

At the end of this stage the mesolerm in the caudal lohe is faintly divided into two layers, hetween which an umpared cavity makes its appearance (PI. XIT, fig. 24). In the cephalic lobe also the mesoderm is faintly divided into two layers on each side (Pl. XIV, fig. 23), enclosing the rudiments of the colomic cavities. It is still undivided in the medi:m line. The colomic cavities in the thoma serondarily fuse together into a single eavity. They remain, however, quite distinct in the abrlominal region.

The Period of the Reversion of the Embryo.

The stage in which the reversion of the embryo occurs is as diffecult to study as it is important, since many orgas arise at the same time. At the end of the last stage, the romtral late had reacherd the maximum limit of doreal flexure, the cephatic and the anal boles. alasos tonching each other (Pl. XIY, figs. 24, 25). As Balfour states, the reversion of the embryo is due to the expansion of the dorsum ; and the expansion of the dorsum is due to the horizontal increase of cells which compose that part. The head and the tail are pushef away from one another further and further. As the dorsum is very rapidly expanding and the cells are pressed for room, a gronve is produced immediately behind the tail lobe to increase the surface of the dorsum, and the tail lobe then stands out as a conical process (1. XIV, figs. 26-29). The colomic cavities belonging to the segment in front of the tail lobe being pressed from the dorsal side by the increase of cells in the dorsum are compressed horizontally and pushed into the conical tail process, enveloping the unpaired colomic cavity of that process from the dorsal side. The caudal lobe stands
out gradually more and more prominent, until the stage represented in fig. 27 (surface view, fig. 21) is reached. After this, the tail process gradually shortens (figs. 28, 29) until after a while there is no tail projecting from the general body surface (fig. 32).

At about the same time with the increase of cells of the dorsum, the two nerve cords begin to diverge from each other. They are most widely separated from each other at the anterior part of the abdomen and gradually approach each other anteriorly and posteriorly until they meet in the cephalic and tail lobes (fig. 21). Their' divergence together with the expansion of the dorsum makes the embryo assume the ventral flexure.

The colomic cavity of the candal lobe now becomes gradually conspicuous. This mpaired cavity is transformed into the so-called stercoral pocket (Rectalblase, Kloake) of the adult spider. Hence the stcreoral pocket does not arise from the swelling of the internal end of the proctodmum, as has been supposed by other authors. This organ is purely mesodermic in origin and nothing more than a remnant of colomic cavities. This may be understood hy examining figs. 24-32, Pl. XIV. From these figures it will be seen that the proctodaum is formed in the caudal lobe later than the stercoral pocket.

The fact that any part of the adult alimentary canal should be derived from the colom seemed to me so remarkable that I have repeatedly examined my series of sections and am convinced of the correctness of the observation. I do not know how to interpret this fact unless it be that the stercoral pocket is a part of the primitive excretory system-a supposition which is strengthened by its peculiar relation to the remaining part of the digestive tube (Pl. XVI, fig. 55) and by the fact that the Malpighian tubes open into it.

At this period the mesodermic somites and the ganglia of the
anal lobe and of the four appendage-bearing abdominal segments have attained their utmost development. The first abdominal segment and those between the fifth and the last abdominal segments are aborted.

The mesodermic somites which are produced at first in the ventral plate now grow on dorsalwards and meet at the dorsal median line (Pl. XV, figs. 40-43). They first meet at their dorsal part, enclosing some of the large fat cells and their derivatives between them. The ventral part fuses later. Thus the dorsal circulatory tube is formed, the wall of which is produced from the mesoderm, while the blood corpuscles are produced from large fat cells (endodermic in origin). I am inclined to believe that both the aorta and the so-called heart are formed as stated above and not separately as many authors believe. The fusion of the mesodermic somites to form the dorsal vessel does not take place throughout the entire length, as there are left paired lateral slits between each two consecutive somites. The blood aerated at the lung-book returns to the heart through these lateral slits. These slits shut and open as the heart beats. They are found in the abdomen only.

In the basal part of the first abdominal appendage of each side, there arises an ectodermic invagination whose opening faces away from the median line. It is neither deep nor spacious but is a little pocket-like invagination. 'This is the beginning of the lung-book. The development of this organ, briefly stated, is as follows: Of the wall of the invaginated pocket, that which faces the distal end of the appendage is much thicker than the opposite wall, filling the interior of the appendage. The cells composing it become after a while arranged in parallel rows (figs. 34 and 47). Each two of these parallel rows adhering together produce the lamelle of the lungbook. The external epithelium of the appendage which cover these
lamellie becomes the operculum of the lung-book after it in depressed in height. Judging from figures (figs. LNXIX and LXXIX') given in "On Insects and Arachnids," Bruce seems to have mistaken the candal prominence of the early period of thin stage (wee my figs. 24-28) as the operculum of the lung-book. According to him the abdominal appendage is invaginated to form the long-book, but as we have seen, it is not so. Locy has correctly described the formation of the lung-hook lamella. He says that the lungs arise from infoldings: but he is silent about the place where these infoldings arise.

In the basal part of the second ablomital apoulage on the interior side, another ectodermic invagination is prodnced. It assumes the shape of a deeply invaginated tube and remains in this condition till after the time of hatching. The anpendage itself is not invaginated and becomes from this time gradually shorter.

It is very probable that the lang-books were derived from the gills of some aquatic arthropodous animals such as Limulus; for the lung-books are nothing more than the lamellar branchiae of Limulus sunk beucath the body surface. The tubular trachea may afterwards have been derived from the lang-books. The branchial lamelle of Limulus are formed as outgrow the of the ectoderm at the lower (posterior) surface of abdominal appendages, and those of spiders are also produced really in the lower surface of the first abdominal appendage (in the dipnemmonons spider). Hence I think that the spider with two pais; of lung-books is the most primitive one, and the one with one pair of long-books and the other pair transformed into the tubniar trachee is more primitive than the spiler with muly one pair of lang-books. I cannot agree with the view of some authors who maintan that the lang-hook is derived from a clustorn of tracheas.

The third and fourth pairs of the abdominal appendage are modified into spinning mammillae (PI. XV', fig. 34). At the distal end of each of these appendages a solid proliferation (sp.gl) of ectodermic cells is formed. This beeomes the spinning gland. spiders have generally three pairs of spinning mammillas ; two of which are modified abdominal aplendages, while the remaining one is adided very late, after the hatching of the embryo. The primitive spider must have had only two pairs of spiming mamillae. Some tetrapnemmonous spiders have only two pairs.

The two semicircular halses of the cephalic lobe, between which there is at first a decp median motch (Pl. XIII, fig. 20), now fuse with each other at the median line above the stomodarum, wo that the notch becomes much shallower (fig. 21). The grooves formed along their anterior margin during the preceding stage separate from the ectoderm begiming from their external end and sink down beneath the body surface. They are cut off from the ectoderm latest at the hindermost parts of their inner limbs (Pl. XVI, fig. 48). The lumina in the $t w o$ separated semicircular grooves come to eommuncate with each other at the anterior median part (I'l. XV, fig. 45).

At the last peint of separation there is left a shatlow insagination or rather sals on the surface. The invagination is parred. The "penings of these sacs are directel towards the month of the embry", and the invaginations are directed anteriorly. They are the first traces of the posterion median eyes (see below) or the 'Hanptangen' of Bertkan* (PI. XV, figs. $4 t-46,48$, I'.M. E.). The anterior wall of the sac is thicker than the posterior, the former being two th several cells decp, the latter only one cell decp. The formation of

[^10]the posterior median eyes in comnection with the brain in spiders is quite analogons to the similar process in srorpions as ohserved by Kowalevsky and Schulgin. This interesting relation was not observed by Locy who studied the spider, or by Parker* who studied the scorpion.

Hitherto these eyen were called the anterior median eyes; but morphologically speaking, this nomenclature is mot eorrect. For all the eyes of spiders are formed in reality in the ventral plate, never in the dorsum, and gain their apparently dorsal position in later stages only by the bending upward of the ventral plate. Hence, in this last position the eyes that composed the posterior row in the ventral position come to occupy the anterior position, while those that formed the anterior row in the ventral position are thrust further backward by the curving upward of the rentral plate and thus become the apparent posterior row. Hence those I called the posterior median eyes are in the apparent anterior row of the adult.

The three remaining pairs of eyes are formed later than the posterior median pair and in a different manner. Their first traces are the local thickenings of the ectoderm of the cephalic region Anterin lateral eyen (A. L. L.) appear above the lateral vesicle (ll. IV, fig. 46).

At this time the lateral vesicles are completely cut off from the general ectoderm (Pl. XV, figs. 44, 46). Their walls are thick and their lamen is conspicnons. In development and position they very much resemble the eyes of Peripatus.

The chelicere are now two-segmentel. They have shifted their position a little anteriorly and have approached toward the median line (Pl. AIII, fig. 21). Their granglia are placed at the sides of the stomolatum and form the commissual part between the supra-

[^11]and infra-œsophageal ganglia. They are in contact with each other at the anterior part. The basal joint of the pedipalpi is very broad, the maxillary part being easily distinguished. The ganglia of the pedipalpi and of the succeeding four thoracic segments are well developed and are in close contact with each other, thus forming the large sub-cesophageal ganglion. The ganglia helonging to the abdominal segments are also wall developed.

The stomodaum elongates itself obliquely upwards and is surrounded externally by the well developed upper and lower lips (Pl. XIII, figs. 19-21: Pl. XIT. figs. 24-26). The ectoderm forming the wall of the stomodaal invagination is thick.

The ectoderm of the ventral part of the anal lobe is conspicuously thicker than that of the dorsal part, being contimuous with the two ventral bands. At the beginning of the reversion, it is miformly two or three cells deep (Pl. XIV, fig. 27); but when the reversion is fairly advanced, so that the elongated anal lohe begins to become short again, the cells in the middle part of it are elongated and there they are only one coll deep (fig. 28). At this part an inragination takes place (fig. 29). From this stage the ectorlerm of the rentrum of the anal lobe, placed anterior to the invagination becomstwo or three times thicker than the posterior part, and is differentiated to form the anal ganglia (figs. 29-32, (t)). The invagination is the protodenm. It is rery shallow and small, and its bottom is in direst contact with the wall of the stercoral pocket. The wall of the proctorlam is thimer than that of the stomodienm. It is remarkable that the proctodxum is not formed at the extreme hind end of the ventral plate hot somewhat in front of it directly behind the anal ganglia, and that both the stomodxmm and the proctoderum are produced at the two extremities of the nervons system simultaneously with the development of the latter near them. The portion
of the ventrom, posterior to the proctodaum, gradually thins off, and after the process of reversion is completed it can not be distinguished from the dorsum (PI. XIY. figs. 31, 31).

The posterior part of the mesenteron is formerl by ancombation of endoderm cells at the anterior ventral part of the stercoral porket. It is a wide open fimmel-shaped tube, resting above the mesonterm (fig. 32, Post. misent).

The stercoral pocket prorluees paired diverticula from its lateral sides (fig. 33). At first, I was inclined to think that these diverticula berome the Malpighian tubes, as these tubes were formerly thonght to arise as a pair of outgrowth from the stercoral pocket. But I found that these diverticula give rise to no definite structure in the adult, and that the Malpighian tubes arise in a different way, as will be explained further on.

At this stage a very important organ is produced, which has heen almost entirely neglected by embryologists. I mean the coxal glamr, which is former from an ectodermic invagination at the intemal posterion base of the coxal joint of the first ambulatory appendage ($\mathrm{Pl} . \mathrm{XV}$, fig. 38, Col g). The invagination opens into the celomic avity (figs. 35, 36). Its development is traced further in the next stage.

After the formation of the circulatory system the colomic (avities atrophy, except the one of the amal lobe forming the stercoral pocket, and some part of the thoracic ones in connertion with the coxal glaud. The so-called body cavity of the adult is not the remnant of the relomic cavity ; but it is a serondarily produced blood-space. The mesodermic cells which formed the wall of these cavities form the covering of the nervous system, the alimentary canal and other organs.

Some mesodermic cells at the hase of the rephalothoracic appen-
dages become roumted in outline (Pl. XV. figs. 35, 36). They are easily distinguished from the fat cells by their centrally located nuclei, and from other cells by their wellodefined spherical form and sightly stainable protoplasm. They appear first in the chelieera, then in the pedipapi, and so on grablatly hackwards. These cells have un relation whatever with the coxal gland nor with the poism gland. Their furtion is unknown. It seems to me that Locy haw mistaken these rells at the base of the chelicera for the first rudiments of the poison gland. He says that these rells are prolably derised from an infolding of the ertoderm.

From the End of the Reversion to the Hatching of the Embryo.

This stage is characterized by the appearance of a con-triction separating the cephatothorax from the abdomen. The yolk in the ventral part of the abdomen is absorber, so that the aldominal appendages of both sulw apprach each other at the median line.

The semicircular grooves of the cephalic lobes formed in the preceeding stage are no longer grooves, nor semicircular in form. Now they are completely constricted off from the general ectoderm, and are consequently tuber. Their inner limbs approach each other in the median line and they form as a whole a I'shaped body (Pl. X V , fig. 45). The lumina of the two tubes communicate with one another at the anterior median part. They as well as the lumen of the lateral vesicle begin to atrophy by the thickening of their walls and finally disappear. At the same time the transverse bar of the T -shaped mass becomes curved on each side to a peculiar shape shewn in protile in fig. 45 a. This and the disappearance of the lumen change the brain into a compactly packed mass, instead of having its various
parts standing apart as heretofore. The transverse bar (fig. 44, a) of the T-shaped brain is separated from the median stem just hehind the point where the lumina of the two sides communicate with each other, while the median stem is in its turn transsersely divided into two segments (Fig. 44, b, c). Thns the spider's brain consists of three segments, as Patten* claims. These three segments may be called the transverse dorsal (Fig. 44, a), the anterior vertical (Fig. 44, b), and the posterior ventral section (Fig. 44, c). The lateral vesicles are in the level of the third segment. From his deseription, Patten seems to mean that in socorpions and spiders the three segments of the brain are formed from three separate invaginations; but I camot corrolorate this statement. Moreover he says that the anterior median eyes (my posterior median eyes) helong to the second seqment, while the three remaining pairs belong to the third segment. Supposing that his second segment is anterior to the third segment, I cannot corrohorate this statement either, as acrording to my own ohservations all the eyes belong to the third segment. It seems to me impossible that the posterior eyes shonld arise in a segment anterior to that in which the anterior eyes are producet.

The opening of the sacs of the posterior median eyes hecomes gradually smaller and is finally closed (Pl. XVI, fig. 49). The anterior wall of the sac hecomes enormonsly thick and obliterates its. lumen. The ectodermic sells which lie non the sac elongate and form the vitrenus borly (fig.. 49, 54, rit). The anterior wall of the -as forms the retinal part (fig. 49, R). The retinal cells elongate anterimly. The anterior surface of the anterior wall of the posterior merlian eyes, is morphologically the imner side of the ectoderm though it faces externally. The lens is formed by a local thirkening of the cutionla, which is secreted from the epithelium at this stage

[^12](PI. XVI, fig. 49. L). The nerve dues not enter the posterion median eyes eren a few days after the hatching of the embryo. Probably the nerve is sent out from the retina from the anterior (morphologically imer) surface of it, as this is the case in the adult. The development of the posterior median eyes is comparatively slow. They are homologous with the median eyes of scorpions, as the development is quite the same.

The three remaining pairs of the eyes or 'Nebenangen' of Bertkan* are formed later than the posterior median eyes ; but their development is completed earlier. They arise from ring-like depressions of the ectoderm (fig. 50). The walls surrounding these depressions grow over them and finally meet (fig. 51). The spot where the walls meet is one-cell layered. This spot gradually extends to a certain extent and forms the vitreons body which is characterized by elongated cells (figs. 51, 54, cit). The growth of the walls of the depressions is not uniform in every direction and therefore the point of closmre may not correspond with the centre of depression. Thas the 'Nebenangen' are also formed from ectodermic sacs; but these sace are different from the sacs of the posterion median eyes. While it is the anterior wall of the sac that becomes the retina in the posterior median eyes. it is in the case of the • Nehenangen' the posterior wall of the sac, which, forming a central elevated portion thicker than the anterior wall and surrounded by a ring-like depression, gives rise to the retina (figs. $50-54, R$). Also retinal cells, elongate postcriorly instead of anteriorly, as in the posterior median eyes, and form nerve fibres (figs. $50,51, N$). These nerve fibres are subsequently connected with the fibrous portion of the brain. The refinal portion is colt off from the general ectoderm at about the time

[^13]of hatching, and at the same time beemes concave (fig. 54), instead of being convex as heretofore (fig. 51).

In the 'Nebenangen' - but not in the posterior median eyesthere are formed transverse hars and a ciremferential ring (figs. $51-54$, tup) of chitinoms nature, posterior to the retinal cells and secreted by these cells. These chitinous bodies (the tapetum) are transparent and lightly yellowish by transmitted light and silvery glittering by reflected light. The lens is formed in a similar manner as in the case of the ponterior median eyes. The tapetum and the lens are equally secretion products of the ectoderm and both of them are chitinons in nature, but they are not homologons. The former is produced at the proximal end of the ectoderm cells, while the latter is formed at the distal end.

I know of only two anthors who have studied the development of the spider's eyes by recent modes of investigation. They are Locy and Schimkewitch. The results obtained by these authors are not entirely satisfactory. Iney conld not find the difference in the mode of development between the two different types of eye. He says that the ' Nebenaugen' originate in wubstantially the same way as the anterior median eyes (my posterior median eyes). Moreover he states that the development of the eyes begins by a local thickening of the hypodermis and a backward directed infolding which inverts the thickened region. Schimkewitch says only that the retinal part of the eyes originate from a pyriform enlargement from the brain, upon which the ectoderm invaginates in the form of a ring.

Patten recently gave a short accome of the spider's eyes in an article entitled the "Segmental Sense-organ of Arthropods" in the Sournal of Morphology, Vol. II. ; but his account differs from mine in many prins, as I have already mentioned. He says that there are segmental sense-organs, homologons with the eyes, at the base
of the legs. Unfortunately I could not find any trace of such an organ, though I carefilly searched after it.

The development of the pigment logins from the cephatic rogion backwards, after the differentiation of the vitreons body (fig. 51). I_{11} the ease of the 'Nebenangen' the pigment is first prodneed in those cells which form a kind of a cup around the retinal portion (figr. $51-53$), and it seems to me most probable that these cells wander in to the retinal portion, first among the nerve fibres beneath the lapetmon (fig. 53), then among those above the tapetum (fig. 54). In the ease of the posterior median eyes, however, the pigment is $1^{\text {mo }}$ duced from the begiming in retinal cells, below the vitremas body.

As we have already seen, all the eyes of the spider are formed in the ventral plate and near its anterior margin.

The concentration of the nervous system towards the cephalothorax goes on further in this stage than in the previons stage. In the thoracic region the two lateral ganglionic chains are united into one and form the sumeswhageal ganglion. The inner portion of the ganglion becomes fincly fibrous. The abdominal ganglia gradually atrophy and attach themselves to the posterior end of the subowophageal ganglion. It this stage the whone nervous system in (ompletely cut off from the ectoderm.

The stomodaram has developed very much. Afier dongating itself oblignely mpards, it takes the horizontal backward direction and reaches to about the segment of the fourth ambulatory appendage. It is lined with a cuticular envering which is continnons with the cutionla of the general body surface. In the pharyns, the cuticular lining ix thick and transversely ridged. The ridges run parallel with each other and appear in the sagittal section like teeth, the pointed edge turning dorsalwards. The wall of the stomodemm is very thick. The stomodienm gives rise to the pharyox, the mophagus, and the stmach.

Early in this stage some endoderm cells accmmalate at the posterior end of the stomach and form the anterior part of the mesenteron. These cells are arranged as a finmel-shaped tube wide ogen posteriorly. The posterior funnel has mited with the wall of the stercoral pocket at its hind end (fig. 55). The anterine and the posterior fumels of the mesenteron wot at this stage mite with each other.

Locy rays that on each side of the stomach are given off ceeca, which extend into the bases of the limhe. He adds that the cellular clements composing the walls of these tubes are flattened; but he gives no account concerning the time of their appearance Thongh I have carefully examined embryos of all the stages, I could not find such tubes.

The proctodenm is lined with a cuticular covering as the stomodaum ; but the stercoral pocket has no such covering. This fact confirms my observation that the stereoral pocket is not a portion of the proctodanm. The commmiantion between them is formed at this stage. The communicating canal is very narrow. In the last stage, the stercoral pocket was somewhat globular in shape (PI. XIV, fig. 32), now it is elongated anteriorly and is oblong (Pl. XYI. fig. 55). Its lateral diverticula have disappeared.

I could not make out the develupment of the Mapighi:n tuber satisfactorily ; but I an certain that they do not originate from the ectoderm. Also it is certain that they are not ontgrowthis from the stercoral pocket. It seems to me proballe that they originate from mesodermic cells belonging to the abdominal somites in front of the anal lobe. At this stage they are solid paired cords of cells (fig. 55, Malp.t) extending from the anterior end of the second abdominal segment to the sider of the confluent point of the posterine mesentern with the stercoral pocket.

The mesodermic cells of the coxal gland, which was formed in the preceeding stage, are very mush differentiand from the ertodermic cells of it. They are the glandnlar cells, their size becoming large and their protoplasm gramlar and matainahle (Pl. XV, fig. 37). The ectodermic cells form the duct.

At the distal end of the chelicera a solid growth inward of ectodermin cells takes place. These cells are surromded by mesodermic cells. The distal half of the former becomes the glandular portion, and its proximal half the duct, of the poison gland, while the mesodermic cell. form the muscular wall of the gland (fig. 39).

In this stage four paired tramserese septa are formed between the four appendage-bearing segments of the abdomen by the simking of the mesoderm into the yolk. A median unpaired sphtum, similarly formed, also stretches forwand from the posterior emd. These septa are formed after the disappearance of the colomic casites in the abdomen. In fig. 34, Pl. NV., two anterior septa are representerl. The first pair of sejta prolably give rise to the wemerative orgath, and all or some of the others to the so-called liver.

After undergoing oue or two moults, the embryo hatches. The body of the embryo is covered with cuticnar hairs. At the end of the pedepalpi and the four ambulatory appendages, the claws are produced, and at the end of the chelicera the pmison finge, by thickenings of the cuticula.

Summary.

(1) The polygonal areas are on the periplanm, and are probably formed when the eggs pass throngh the oviduct.
(2) In the process of segmentation the yolk and the muclens are divided at the same time. The segmentation is syncytial.
(3) The yolk moleus is found in segmenting eggs on to the four-cell stage.
(4) After the segmentation all the nuclei are fomb only at the surface of the eger, and none of them remain in the yolk.
(5) The primary blastorlemic thickening may be considered as a monlified gastrean mouth, the formation of which was obstructed by the abundance of yolk.
(6) The secondary blastodermic thickening or ' 1 rimitive cumulus' of Claparede plays a secondary part in the formation of the germinal layers.
(7) The brain and the rentral nerve cords are formed as a continuous ectodermic thickening.
(8) All the appendages are postoral in origin.
(9) The first abdominal segment bears no appendages.
(10) The large fat rells are derived from the endoderm. They form blood corpuscles.
(11) An invagimation at the posterior have of the first ablominal appentage gives rise to the lmg-book. A similar invagination at the hase of the serond gives rise to a tube-abortive trachea.
(12) The mpaired crelomic cavity, belonging to the anal lobe. changes to the wo-called stercoral porket. Probably it is excretory in function, not a part of the alimentary camal.
(13) The dorsal circulatory vessel is formed by the fusion of the meroblastic somites at the dorsal median line.
(14) The so-called body casity of the adnlt animal is not the descendant of the celomic cavity, but it is a secondarily formed space.
(15) The brain is composed of the semicircular grooves and the lateral vesicles cut off from the ertoderm. Later it is divided into three segments.
(16) The development of the posterior median eyes is comnected with that of the hrain. Their development is quite different from that of the other eyes: hot all the eyes are dermal in origin, not neural. And the nerves of the eyes enter always from the inner ends of the ectorlerm cells.
(17) A pair of coxal glands opens at the hase of the third appendage. The glamhatar portion of it is formed from a portion of the achom, while its thet is formed from an ertodemir insagination.
(18) The alimentary camal of the spider is formed from the ectoderm and the endoderm. The pharynx, the cesophagns, the stomach, and the anms are produced from the former, and the intestine from the latter.
(19) The Mapighian tobes are produced neither from the ectnderm tor form the steromal pocket. They are mesodermic in origin.

Explanation of Plates.

The figures are all exart representations of preparations. the outlines, the nuclei, and other details being drawn faithfully by myself with the use of the camera lucida, and they are not diagramatic. except in the case of a few figures expressly so stated.

List of References.

a, first scoment ot brain.
whl. app., abdominal appemdage.
a. l., anal lobe.
A. L. E., anterior lateral eye.
ant. mesent., anterior portion of mesenteron.
b, second segment of brain.
r, third " ", "
ceph. l., cephatic lobe.
ch., rheliceræ.
ch. g., cheliceral ganglion.
ro. gl., coxal gland.
rut., cuticula.
l, dorsal side.
drr., dorsum.
cct., ectoderm.
end., endoderm.
f. c., fat cell.
G, ganglion.
inv., invagination of lung-look.
L, leus.
lat. v., lateral vesicle.

Malp. t., Malpighian tulne. mes., mesolerm.
N, nerse.
pedip., peedipalpi.
I. M. E., pmaterion median ere.
post. mesent., posterior portion of mesenteron.
prim. th., primary thickening.
proct., proctodæum.
R, retina.
sec. th., secondary thickeniug.
seg. cav., segmentation cavity.
sell. gr., semicircular groore.
spl. gl., spinning gland.
sterc. p., stercoral pocket.
stom., stumodæum.
tal)., tapetum.
th. app., thoracic appendaye.
v, rentral side.
vii., vitreous body.
y. n., yolk nucleus.

Explanation of Figures.

Fig. 1. An masegmed egg, showing the polygonal areas above yolk gramales. (Lycossa). $2 \mathrm{~B}\left(Z_{\text {eiss }}\right)$.

Fig. 2. A segmentation egg of the four-cell stage, showing the rosette-like yolk pramids. (Lycosa). 2 B .

Fig. 3. A segmentation egg, shewing the mion of the polygronal areas with the regmentation molei. (Lycosa). $\quad \because \mathrm{B}$.

Fig. 4. The same abore, but of a little later stage. This shows that the yolk pyramids become very small and that the polygonal areas do not corre-pond in position with the yolk gramules. (Lycosa). 2 B.

Fig. 5. An egg shewing the primary thickening of the blastoderm. (Lycosa). $\because \wedge$.

Fig. 6. An egg having the secondary thickening of the blastoderm, produced at the margin of the primary thickening. (Lucosa). 2 .

Fig. 7. An egg in which the primary thickening has extended enomonsly, and the secondary thickening is at the margin of the primary one as before. (Lucosa). $\geq \mathrm{A}$.

Fig. 8. A section of an egg of the two-cell stage, shewing the division of the yolk. and also yolk columms, the segmentation cavity: and the yolk molens. (Lufcoset). 2 (.

Fig. 9. A section of an egg of the sixteen cell stage. (Lycosu). $\because \mathrm{C}$.

Fig. 10. A section of a segmentation egg in the stage of Fig. 3. containing twenty two nuclei. (Ly/osa). こ C.

Fig. 11. A portion of a section of an ege in the stage of Fig. 5. (L!ycosu). 2 C .

Fig. 12. A portion of a section of an egg in the stage of Fig. 6. (Lycosa). 2 C .

Fig. 13. A section of the secondary thickening. (Lycosa). 2 D.
Fig. 14. A portion of an section of an egg, a little more adranced than the egg in the stage of Fig. 12. (Lycosa). 2 C .

Fig. 15. A section of an egg after segmentation showing the absence of the molens in the yolk and a momber of small yotk balls. (L!cosa). こ B.

Fig. 16. A longitudinal section of an egg of the protozonite stage. (Agalime). 2 B.

Fig. 17. A portion of a cross section of an egeg of the protnzonite stage (Agulema). $\xlongequal{2} 1$).

Fig. 18. A cross section of an egg showing the separation of the mesoderm into two lateral halves, the formation of the coelomic cavity, and the appearance of the appendage, in the thoracic region. The mesoderm of the cephalic region is not yet divided. (Atfulrua). ± 1)

Fig. 19. The median longitudinal section of the embryo in the reversion stage. (Ayalena). 2 B .

Fig. 20. A diagram of the rentral phate (imagined as murolled) of an embryo in the stage of the maximum dorsal flexure.

Fig. $2 l$. A diagram of the ventral pate (imagined as murolled) of an embryo in the stage of reversion.

Fig. 22. A longitudinal section of an egg in the stage of Fig. 20 , showing the appendages and corlomic cavities. (Agalena). 2 B .

Fig. 23. A cross section of an egg in the same stage as of the previous figure showing the semicircular groove, the lateral resiche, the continuous mesoderm of the head, and the colomic cavities and thoracic ganglia. (Agalena). 2 l .

Figs. $-24,25$. Portions of median longitudinal sections, showing
closeness of the cephadic and anal lobes. and the formation of the stomoternm (Agatrm). 2 B.

Fig. 26. A protion of the median ongitulinal suction of an exg in the reversion stage showing the expmainn of the dorsmm. (Aychemu). $\because \mathrm{B}$.
 sive stages. showing the formation of the proctodam and the rhange of the colomis: cavity of the anal lohe the stercoral pooket. (Ayculout), 2 1).

Fig. 33. A woss serion of the amal lobe, showing its mpaired commic carity and ganglion, and its two lateral diverticula. (Agalena). \geq D.

Fig. 34. . A agittal section of the abdomen of an embryo after the reversion stage. Two anterior abdominal septa are represented. (Agalena). $\quad \therefore$ C.

Figs. 35. 36. Sagital sections of the coxal joint of the first thoracie appendage, showing the commmication of the colomic (avity with the exterion hy an ectodernic invagination. (Ayalema). \rightleftharpoons D.

Fig. 37. The ghandalar portion and the outlet of the conal gland. (Agulena). 2 D.

Fig. 38. A cross section of the cephaththorax, showing the position of the coxal g!land. (Agalema). 2 3.

Fig. 39. A crow section of the prison glant of an embryo, a little before hatching. (Itmena). 2 1).

Figs. 40-43. Portions of 'rose sertions of the abdomen, showing the fomation of the dorsal circulatery organ. (Agelema). 2 D.

Fig. 44. A portion of a frontal section of an embro in the reversion stage, showing the three segmonts of the hain. (tyalima). $\therefore \mathrm{B}$.

Fig. 45. A diagram of the brain and the cheliceral ganglia.
Fig. 45a. A diagram of the profile view of the hrain and the cheliceral ganglia of an embryo in the reversion stage.

Fig. 45. A frontal section of the lamin of an embryo in the reversion stage, showing the formation of the eye. (Agalemu). 2 U.

Fig. 47. A portion of a "ross section of the almomen in the reversion stage, showing the formation of the lang-hook lamellar. (Ayfalena). 2 F .

Fig. 48. A sagital section of the brain of an anloro in the reversion stage, showing the formation of the posterior median eye. (Atalena). 2 D .

Fig. 49. A sagittal section of the posterior median eye of a hatched embryo. (A!falena). 2 D.

Figs. 50. 51. Portions of frontal sections of the cephalothorax in different stages of growth after the reversion of the embryo, showing the development of the anterior eyes and the formation of nerve fibres, the tapetum, and the vitreous bedy. (Lymensu). Fig. io. 2 F. Fig. 51. 2 D.

Fig. 52. An oblique frontal section of the anterior lateral eye of an embryo about the time of hatching. (Lycovet). \& F.

Fig. 53. A longitudinal section of the anterior median eye abont the time of hatching. (Lycosu). 2. F.

Fig. 54. A frontal section of the anterior median eyes of a hatched embryo. (Lycosit). 2 D.

Fig. 55. A sagittal section of the abdomen about the time of hatching. (Ly/cosa). 2 B .

Observations on Fresh-water Polyzoa.

(Pectinatolla gelatinosa, nov. sp.)

by

A. Oka.

Imperial University, Tökyo.
with Plates XVII-XX.

The present paper emboties the results of my investigations on a new speries of Fresti-water Polyzon that lives in a large pend in the gromeds of the [mperial Chiversity, Tokyo, and is poblished with the hoper that it may throw some light on certain points in the structure amd development of the order Phylactolaemata, which have hitherto remained ohserme in spite of many eftorts of former investigators. The researher were begun, in the spring of $18 S S$. at the suggestion of Prof. I. Ijima, and I am inclebted hoth to him and to Prof. K. Mitsmkmri for nsofal advice. My thanks are also due to Mr. S. Watase, now of the . Wohns Hopkins Unisersity, who, whike here some years ago, studied the same sproses for kindly sending me his drawings showing the formation of the statoblast.

Although the species which [have studied loes not agree in some points with the generic description of l'ectinatella in Ilyatt's ()bservations (5), it can belong to no other wenus. The statements given there were marle when only one speries, viz l'ect. magnifica, was known, and most certainly be modified to receive the new one. The
diagnostic characters of the present species to which I give the mame of Pect. gelatinosa, are as follows:

Colony oval, hyaline; branches of cencecium dichotomous: no septa between the cells; ectocyst gelatinous, fills up the space between the branches, forms: a common base for many colonies; invaginated fold obsolote; alimentary caual straight when retracted; tentacles 90-98; statohlast saddle-shaped, carved in two axes; marginal spines minute, only seen under a moderate power of microscopre.

The colonies grow :mony atuous plants and on the underside of floating logs just below the surface of water, and seem to flourish in direct sumbine as well as in shadow. They are tound together in a large number forming a luxuriant mass of gelatine, sometimes two metres in length. The outline of each colony is irregularly hexagonal ou accome of mutual pressure. The gelatinous ectocyst of ueighboring colonies coalesce, and form a common base $2-3 \mathrm{~cm}$. thick.

This species furnishes very fitrorable materials for the student of this group of amimals, the tramsparency of its gelatinous ectocyst, the unequalled large size of the polypide and the promptness with which they evaginate, gring great facility for investigation.

The general appearance of a gronp of colonies is represented in matural size in fig. 1, Pl. XVII. The color of the concecium and the liphophome is stightly yellowish, the asophagus and the stomach are brown, and the rectum usually contains dark gravish refuse matter, stherwise of light brown color.

The largest colny that I have seen mensured 7 cm . in diameter The polypides are most crowded and in fullest vigor along the margin of a colony, min mach less erowded in the middle portion,
say about one in ench four squate millimetres. The more centrally situated polypides leeing older are the first to die, so that in ohd colonies, the: polypides are fomm only on the outer part, leaving the imer part hare and only marked with dark spots. the remains of dead polypides. When agitated the polypides retract only for a short time, and soon expand their tentacular crown again. Even in being transfered from one vessel to another, some of the polypides of a colony dos not retract at all. In confinement, however, they seem to become more timid and, once retracted, remain in that state for a longer time than when free.

Each colony originates from a single individual that comes out of the statoblast in the first weeks of July, becomes larger and larger by successive butding, attains it, full growth in October, and continues to live until the end of December. Compared with a species of Plumatella living in the same pond, the times of the first appearance and of the total disappearance are each about two months later. As I have not finm this species anywhere clse, I can say nothing about its geographical distribution.

Methods of Investigation.

Before proceeding further, I may here give a brief accomit of the methods of investigation employed. To kill the animal in a fully expanded condition was in this case very eary, although it is the principal difficulty met with in the preservation of all other genera. When 70% alcohol is gratually porred into a vessel containing the colonies, more than half the polypides die protruded. If we use such stupefying reagents as chloral hydrate or cocain chlorhydrate, every one of the polypides dies in a fully expanded condition.

The colonies after leing killed were put into alcohol to be hardened. Some of them were fixed with a saturated solution of corros.
sive sublimate or a weak solution (0.1%) of chromic acid, previous to hardening. For staining, borax-carmin and picro-carmin were chiefly used. In cutting sections, I imbedded sometimes a whole colony, sometimes separate polypides, in celloidin and paraffin.

In studying the development of the polypide within the statoblast, I proceeded in the following way. First, a statoblast was put into alcohol to harden its contents which in the fresh state consist of a thick milky fluid. Then it was held between two pieces of elder pith, and the edge was cut with a sharp razor so as to make an opening in the chitinous shell. Next, it was stained and kept in alcohol mutil it was to be cut. In cutting the statoblast, celloidin was indispersable, for, the shell being too hard, it was impossible to get good sections with paraffin only.

For examining fresh specimens, the only thing I had to do was to put a colony (stupefied with cocain) or a part of it on a slide, and cover it, putting a wire ring under the cover-glass to prevent overpressure. In this condition, the polypides had no power to retract, and the ciliae were in vigorous motion.

To study their habits, I kept colonies alive in a glass vessel. I kept also the statoblast in a vessel, in which a contrivance was made to have water always flowing. At last the shells burst, and the little polypides peeped out of the sutures, carrying about the shells like a tiny bivalve. Each of them floats about for a very short time, and then attaches itself by means of the gelatinous ectocyst to any object it may meet with, and gives rise to a new colony.

A. Anatomy.

The branched membranaceous tube (cunœeial endocyst) forming the greater part of the mass of a colony, together with the gelatinoms covering (ectocyst) over it, constitutes the conwecium. The terminal
portion of each branch is turned nearly vertical to the plane of the colony and is capped by another short tube (polypidal endocyst), through the pellucid wall of which is seen the alimentary canal contained within. This terminal tube, with the tentaculate lophophore at its free end, and several delicate organs in its cavity, is called the polypide (fig. 2, Pl. XVII.).

Besides this division of the colony into the eœnœcium and the polypides, we may divide it into a number of equal parts, each consisting of a polypide and a portion of the comecinm. For the sake of convenience I shall call such a part "polyzoüid," and the portion of the concecium belonging to it "cystic." We thus consider a colony as being made up of as many polyzoiids, all structurally alike, as there are polypides.

In all genera with chitinous ectocyst, the cenocimm is diviled by more or less developed septa into a number of compartments or cell-, each destined to receive a polypide when the latter is retracted. Such septa are not found in forms with gelatinous ectocyst, and the cystidal cavities stand in open connection with one another.

When a polspide is retracted by the contraction of the mascles that comect it with the bottom of the cystid, its tubular wall invaginates and be comes a sort of sheath for the tentacles, known as the tentacnlar sheath. In the process of evagination, the tentacular sheath begins to reflect upon itself from the lower end. The evagination generally stops when the lower end of the polypide is still within the cystid. In other words, the evagination is incomplete, thus leaving a permanent fold at the boundary between the cystidal and the polypidal endocyst. In this genus, howerer, the polypides are often stretched out their whole length, and then no such fold is to be seen.

The shape of the polyzoan colony is different in different genera and species, but it is characteristic for each species. The mamer of
branching of the conewimm in Pert. gedatinosa in shown in fig. 3, l'l. XVII. It is dichotomons with a short banach at each axil. The branches are so bent that all the polypirles stand upright and as the phamons tentacler cover the whole surface of the colony, their regular symmetrical arramgement camot be discerned withont elose examination.

The general phan of the struture of a proppide and its relation to the cystid are shown in fig. t, Pl. XV'I. 'The alimentary camal is bent in the shape of the leter V, and hangs freely in the perigastric Gavity. The mouth guarded ly a tougne-like epistome (Epist.) is surrombed by a momber of tentacles (T'ont.) arranged along the entire margin of a horse-shoe haped lophophore (Loph.). The anus opens outside the tentacular area near the mouth. on that side of the borly on which the arms of the lophophore stretch out. A nervons ganglion (N. Gemy.) is seen on the anal side of the asophagus. A thin hollow tube, called fimicnlus, in which the statoblasts are developed, joins the angle of the alimentary canal with the cystidal wall. An ovary (Oter. $^{\text {) }}$ is seen inside the tip of the comecial branch. The length of a polypiale from the tip) of the tentacles of the angle of thexure of the alimentary canal is about 4 mm .

Ahhough the term "individual" as "pplied to such forms as polyzoa is very difficult to define, yet homologonsly with its nearest relative, the lirachiopolis, cach polyzooid might be regarded as an individual in the ordinary sense of the word. Polyzon individuals show a chase analogy to "phytous" of plants.

The polypile and the cystid that constitute a polyonoid, are respectively vegetative and reprodnctive in function. As will lex seen further on, all the functions for the preservation of the species are performed by the latter, the funcolus being regarded as a part of it, while the former serves to proenre nomishment to the eystid.

All fresh-water Polyzoa are ammals, the regetative and the reprodnetive portions undergoing antire decomposition every year, while in marine furms, sevaral geneations of the regetative portion, i.e., the polypides, form and decompose themselven on the perennial rystid, like leaves ou the lomuche of a tree. This simgular phenomenon led many naturalists (Alman and others) to regarl the polypide and the eystid as two distinct intividuaks. In the present species alan. the duration of vitality of the two portions is by no means the same. The polypides invariably die after a certain periorl of existence, matly after the formation of younger polyzoizids of the fourth or the fifth order, hat the cystids remain until the colony itself disintegrates in winter. In the central portion of a large colony, therefore, we often see only bare cystids, each with a dark grayish mase, the remains of the dead polypide, hanging in its cavity. amd yet with satollasts contiming thair development in the fumionlus.

About the "pplication of the terms "anterior," "posterior," "dor*al," "ventral," ive., there is murh diversity of opinion. For instance Allman calls the free end of the polypide "anterior," and the fixerl end "posterion"; while Hyatt, following E. S. Morse, calls the fixed end "anterior," ant the free ond "posterior." Inuxley homologizes Polyzoa with Tunicata, and names that side on which the anus opens " nemal," and the side opposite to it "hatmal," althongh there exists mo heart. Again, if we were to rompare this animal with Phoronis, we shonld have to call the narow space between the mouth am the ams "dorsal," and all wher parts, "rentral." In fact, every one might give different sets of mames in orienting the animal, according to his conception of the homology which exists hetween Polyzea and nther amimals in which the anterior and posterior, or the dowal and rentral poles are miversally recognizer. In the following pages, I shall call the fixed cond
" lower," :und the free end "upper," the side on which the anus opens ": anal," and the side oplosite the anus" oral."

The organs that constitute the Polyzoan horly may be classified in the following way.

A. Organs for the preservation of the polyzooids or the colony.

1. Dermal System, consisting of the ectocyst and the endocyst.
2. Digestive System, consisting of the epistome, the osophagus, the stomach, and the intestine.
3. Tentacles.
4. Excretory Organs (?), consisting of two short ciliated tulhes.
5. Muscular System, consisting of five groups of muscles.
6. Jiprons System, consisting of a ganglion with two arms for the lophophore.

B. Organs for the Preservation of the species.

7. Uvary and Testis.
8. Funiculus, in which the statoblasts are developed.
9. The part of the entocrst that produces buts.

1. Dermal System.

The integment of Polyzoa consists of two layers. quite different in their nature, the onter "ectocyst" and the imner "endocyst" (see fig. 4). The latter is not everywhere coverel by the former, but is exposed on the polypides.

The ectocyst is gelatinous in this species. It fills up the space letween the branches of the cœnœcial endocyst, whereas in Pect. magnifica, Leidy, there is no ectocyst between them. In this respect
as well as in the erect position of propiden. has species comes nearer the genus Lophopus. The relatimons smbatance is famed by the seretion of eells of the onter layer of the endoeys. Nisineroms eell. some oval, others irregnlar in their shape, we scattered in it (fig. 6 , Pl. XVIII.). Their nuclens and moleolus are distinctly visible. These cells seem to hare wandered ont of the outer layer of the endocyst, and may have helped in producing the gelatinous substance, reminding no of the refls in the test of the 'lumeates. The gelatinous substance is antherine ?!m withont tante ; is serves aparently to protect the eqjony. On diymorg it shrinks ahmost to wothing.

The endocyst consists of four lay yem (fig. T, I'l. S YIIL.)

b. basement membrane (Bas. membr.).
\therefore Mascular layer (L. mus. and 'T'r. mas.)
d. Inner lining epithelinm (Lim. epith.).
 them of the same structure thronghont its distribntion.

The cells of the outer layer, which iepresents the ectoterm, are everywhere distinetly bomoded, eolmmar on the conocedum, Hat and horizontally elongater on the folypide, exept wh the temtarles ant the upper surface of the lophophore. In the former, they are culical, in the later hexamomally prismatie, and distimoty ciliated in wither
 cuc.) filled with : very refactile fluid. The momine of these
 where every cell shows a large vacuote. almont filling wp the whan cell (fig. 33, Pl. XIX. Ont. la!!.).

In preserved specimens, the cells are more or less shrmk, bfon leaving spaces hetween them. The numed are oval, and have a distinct, well-stanimg nucleolus. 'The whs on the coneredme are
$0.02-0.04 \mathrm{~mm}$. high. The nuclens measures ahout $0.007 \times 0.00 \mathrm{fmm}$.
The basement membranc situated directly beneath the outer cell-bayer is secected ather by this, or hy the intermal linimg epithelimm, or by both. In the greater part of the conucium where this membrance is separated foun the inner epithetion ly the mascular layer, it would be natumal to refer jos orgin to the onter well-iayer alone, but where the mascular layer is deficient, it is difficult to decide. On the other hand, in the wall of the funiculas into which this membrane and the inner epithelium, but not the outer celllayer, are continned, it cannot hat be the protuct of the inner chithelimm only. Generally, the lasement mombane and the muscalar cont are treated as one layer moner the mane of Tomica moscularix, but as they are in reality quite distinct from each other, it will be betier to regard them as two distinct layers. When a colony is treated with a weak solntion of acetic acid, the basement membane separates from the rest of layers. It is thin, tough, tramsparent, and homogeneons.

Next to the baement membane emes the mascular layer, consisting of transerse and longitudinal fibes. The former ron external to the latter. They are not very densely set, so that in a surface view they cuoss one another ats in coarse linen. On the main lat of the polyide. only the longitmanal fibere are present. In such genus a Cristatela, the mosomar layer gives the olony the power if stow loconntion, but what function it has to discharge in fixed Peetinatella, I ann hat preared on way. In the coneremm where this layer is best developed. ir is 0.005 mm . thick. It is not fomm in that part of the eudocyst where buts are formed, and is also absent in the walls of the lophophore and the tentacles.

The intemal epithelial layer lines the entocyst everywhere. It is thickest in the cunucium, especially at these point- where budding
take place amb in thimest in the tembales with murlei suattered wigely apart (figs. 16 and 17, Pl. XYIII.). The cells of this layer are finsed, hence cell bomolaries cammot be distmonisher. The nuclens is oval, but I am mable to deteot distinct numberli. The size of the molens is nearly the same everywhere, and is alout $0.008 \times 0.004 \mathrm{~mm}$. This layer is fumishoul with shot cilis, which set the perigustice flaid in motion. Svemere thickmess of the layer in the crencedmm is 0.008 mm.

2. Digestive System.

Tinute algae and infusoria that pass hy are canght in the whirlfool cansed hy the vibating cilia of the tentacles, and went into the
 special muscles which enable it to shat the oral aperture now and then. Perhaps the entrance of non-nntritive mattors is prevented by this contrivance. The foorl, after staving for a shot time in the asophagns, pushes open the fimmel-like ralve (fig. 4, PI. XVII.
 phagus and the stomarh, ? med enters the gastric cavity where it is moved about hy the peristalti, contraction of the wall of that organt. Afrer being fally digesterl, the residue main!y composed of the cellwall of diatoms and other algen, passes throngh the pyloric valve little by little, and accomulates in the intestine. Here, the refise matter, usmally of a dark-grayish color, is cemented together into a mass by a transparent gelatinons secretion of the intestinal wall. When the intestine is full, the contents are pushed ont of the anos by the agency of the muscles of that part. The form of the excremental mass, chameteristic of each genns, is the same in fom as the lumen of the intestine which in ond shectes is an elongaterl oval tapering toward the anus.

There are often certain amorboil cells to be found in the intestinal cavity. They stain very well, and are on that account very conspicuons among a mass of unstaned matter. Judging from their shape and size, it is rery probable that they are parasitic l'rotozoa.

The process of digestion is cartied on very rapidly. When fresh colonics are brought from the pond and kept alice, all the polypiles discharge their lark intestinal contents in a few homes. Fradually, new refuce matem has to acemmate in that organ, but they are alwas
 three of four hours. As the amount of fool that these anmals consume is considerable, it was impossible to keep them alive more than a week without furnishing them very often with water from the pond, which enntained minute organisms.

The layers that consitute the walls of the almentary camal are the same as hose of the endocyst. In fact, they are direct contimantions of the latter only slightly modified to serve special parper.

The epistome is a tongue-like prolongation of the dise of the lophophore on the anal sile of the mouth. Its cavity (see fig. 8 , Pl. XVIII.) commonicates with the general perigastric cavity ly a comparatively narow passige on the anal wide of the cerehal ganglion. The coll.s of the outer layer of its wall are similar in appearance to those of the lophophore. They are prismatic, and the height increases nearer the month. The oral nuclens with distinet macleolus lies near the hase. The whole external surface is furnished with cilia. This organ has no muscular layer in the wall, but is fumished with apecial muscular fibres which traverse its internal cavity. These fibres are simply elongated cell.s with the unclens at about the middle of their length. They are separate and never form bundles. The length of the epistome is about $\frac{1}{4} \mathrm{~mm}$.

The orsophagus is that portion of the alimentary camal that lies
hetween the month and the fumm-like valse at the cardia! opening of the stomath. Its uprea and lower sections are lined by epithelia of guite different apparance. The cefls of the upper section (fig. 9, Pl. X YIII) have cilia, and their melens lies near the hase. Yermorn says that the cells of this rection do not come in to any contact with one another throughout their whole length, being separated by a narrow intervening space but [cannot find any such space in Pect. gelatinosil, except such as is in all probability due to the post-mortem contraction of cells. In the lower wection. the lining rells have no cilin, and the numbi lie irregularly near the middle (fig. 10, Pl. XITII). In the upper section. the free end of cells is flat; in the lower, it is rommed. In both the nuclens has a distanct nucleolns. The cells of the lower section do not stain well, and seem to contain a secretise subtance, which may be comparable with the saliva of higher animals.

The lengh of the esophagus is about 1 mm . and its diameter 0.3 mm. The lumen of the drophages when expanded is round in section thronghont its entime length. lut in it, nper section contraction changes it into a stellate shage. The muscular layer is but samtily dereloped in the wophageal wall. The onter covering is the continnation of the lining epithelim of the endocyst with which it agrees in all respects.

The esophagus in its downward comse oceupies an excentric pasition in the inbular body of the polypide, and where the latter is extemally marked off from the lophophore by a wight constriction it actally come in contact with the body-wall on the oral side. At this point, the lining epithelinm of the polypidal wall is contimons. with the outer covering of the csophage, and forms a sort of meventery (fig. 15, !l. XVIIL.). This mesentery extends horizontally or both side for :a short distmer, :ad prevents orer-invagination
of the borly-wall when the polypide is retracten. Thas the alimentary camal is attacherl to the boly-wall at four points, viz. the month, the anns, the fmiculns and the above mentioned mesentery.

At the entrance of the stomach there is als already mentioneal a funnel haped valve, with the free end pointing into the cavity of the stomarh (fig. 11, Pl. XVIII.). It consists of a fumm-like prolongation of the basement mombrane, on the arsophageal side of which are arranged the characteristic cells of the msophagus, and on the gastric side, the pyramidal cells of the stomach. This valre, whose length is about 0.2 mm ., prevents the passage of food from the stomach back into the orophagre.

The stomath is a facion- sacenlar organ who e long axis is
 It measures 2 mm . in length, and 0.6 mm . in breadth at the widest part. The inequality of the length of the arms of V brings the cardiac opening abont 0.5 mm . nearer the fice end of the polypide than the pyloric.

The inner layer of the stomach has two kinds of cells; the long (lub-like rells (fig. 13, Pl. XVIII. cloc.) and the short pyramidal
 longitudinal rows, the lumen of the stomath is stellate in eross section. The nmber of the rows of cach kime is gencrally twelve or more (fig. 1ヵ. PI. XVIH.). In both, the imelni lie :t the lase and
 stain well, while the short pranidal cells freely take ne the coloring matter. In the fresh atate, the longer cells contain a yellowish brown fluid ant the shorter cells are of a light yollowish color, so that the stomad aprears longitudinally stripen with yellow and brown bants. As the alimentary canal has no distind glambular appeadage. the brown thaid contained in the longer cells probably performs the
function of the digestive fluid. Hence they have been called hepatia cell. by Athmath. The function of absorption seems to be pertiormed by the shorter cells. The length of the tomger cells is varions, the longest measuring 0.06 mm ., while the shorter pyamidal cells measure approximately 0.02 mm . On the gastric side of the cardiac valve, and at the blind end where the stomach is continuous with the funiculus, the rows of the longer cellss stop short, and only the short pyramidal cells are present.

The muscular layer of the gastric wall, componsed only of the transerse fibres, is well developed, especially behow. At the thickest part this layer is 0.007 mm . in thicknest. At the hind end of the stomach, however. there is now masce, and here the immer cell-layer comes in direct contact with the flnid contents of the fmicnlar cavity (fig. 32, P' XIX.). At this point, the wail is generally phshed inward in the form of a shallow pit.

The outer epithelimm does inot differ from the corresponding biver of the wophagus and the endoryst.

The pylorice value is represented by a simple constriction of the catire wall of the alimentary canal. Its openimg is very marrow, allowing the passage of only a small quantity of indigestible matter at a time.

The intestime is a tubular organ tapering foward the anur. It is aloust 1.2 mm . in leugth, and 0.3 mm . in width. The immer layer is composed of only one kind of celle, which are much shorter lout somewhat hoader than the longer cells of the stomach. The height of these cells is about $0.025-0.03 \mathrm{~mm}$. The nuclens is at the base and the macleolus is distinct (fig. 14, Pl. XY'lli.). These cells do not stain well ; the gelatinous flaid they comitan is probably the medimu by which the excrement is cemented infora compact mass. The muscular layer of this part, in which only ring filnes are present, is weakly
developed except near the anns, where it forms a sort of sphincter. The anus when expanded is as wide as the wident part of the intestine, but when contracted it closes altogether. The outer celllayer is similar in all respect with that of other parts of the alimentary canal. At the point where the intestine is tightly pressed against the cesophagus, the outer layer of the former passes directly into that of the latter, bringing the cells of the inner layers of both organs in contact.

3. Tentacles.

The tentacles are arranged in one contintmons series along the outer and the inner margin of a horse-shoe shaped lophophore, an mentioned before. They are hollow cylindrical organs measuriug 1 mm . in lengtl, and 0.03 mm . in breadth. They are to be considered as prolongations drawn ont, as it were, from the endocyst. In the living state, they are freely movable in every direction at the will of the anmal, but I have never seen them coil or contract. Gencrally, they stand naty parallel to one another in gracefnl curves (fig. ㄴ, Pl. X VII.).

The aross section of a lophophoral arm (tig. 30, Pl. XIX.) is almost semicircular in outline, slightly convex above and romaded below, measuring 0.3 mm . in breath, and nearly as much in depth. The ciliation on the upher sarface is distinctly visible on sections.

The ceils of the outer laper of the tentacular wall have all the essential chamacters of those of the cmbocyst. 'They rest on a fine basement membrane and are furnished each with a long cilium (fig. 16, Pl. X'III. Out. lay.), constantly vibrating in a certain fixed direction. The ciliation of that side of the tentacles turned away from the month drives the water upward, while that on the opposite side tends to drive it toward the monh below. The imer layer of the tentacles
(fig. 16, I'l. XVIII. Lin. epith.) is very thin and has the murbi wattered at great intervals. I was not able to detect any trace of cilia on the liniug epithelimm, but the rapid motion of the perigastric fluid, going toward the tip along one sile and coming back along the other in the narrow tentacalar cavity, indicates their existence. The lumen is a little more than 0.01 mm . in diameter.

The account, given by Verwam. of the manmer of junction of the tentacles with the lophophore and the tentacular membrane in Gristatella applies equally well to the speries investigaten by me. In fig. 18, Pl. XVIIT, I have embatomed to show diagrammatically the relation of several parts at the bases of tentacles.

Externally to the row of tentales there is a thin membrane. the tentacalar membranc. 0.3-0.4 man. in breadth, formed by a duplicature of the onter layer of the lophophomat wang its outer elge. It consists of a basement membrane covered on both wates by a layer of flat cells, the direct contimation of the mater layer. The basal portion of each tentacle is joined to the tentacular membrane by another narrow triangular membrane.

Alternating with the bases of the tentacles. a series of duplicatures. wheach side of the lophophoral cavity is produced in the imer layer, oo that if we were to cut across the arm and look into it, we should see a series of vault-like arches. The tentacular eavity opens into that of the lophophore between each two of such folds of the immer layer. These folds descend almost to the floon of the lophophomal cavily, and have been reckoned as part of the muscular system by Hyatt, mater the name of "hrachial contractors," lout I see n" gromai for regaching them as such, sime they consists simply of flat cetls.

The bases of the tentacles are not in one fance. Those on the anal side near the epistome are the most devated. The number of the tentaten is generally even, but in some individuals there is a
median tontacle on the amal sirle, making the total momber odd.
There can le no dondt that the function of the tentacles is threefold, serving for ropiration, for collecting food and for feeling. Of these, however, the first seems to le their principal office, when we consider the large extent of their surface exposed to water, and the constant current kept up, in the latter ly a special contrivance, as well as the perigastric fluid that circulates within their lumen. The Tentacles thus bear a close resemblance to the fringed arms of Brachiopods.

Circhlation. The perigatric fluid contaned in the general bodycavity may justly be regarded as representing the blood. Of its nature and the mechanism of circulation, little was known before. There are no spectal organs, such as heart and blood vessels, and the only means of driving the perigastric fluid is the supposed ciliation on the lining epithelium of the general body-avity. The nutritive part of the food taken up by the alimentary canal is conveyed to all parts of the body by this fluid. It is tramparent, colorless, and has no taste. Water seems io constitute the greater part of its constituents.

The fuid contains, floating in it, humerous round cells. each with it large vacuole almost filling up its body and fillen with a refractile thuid (fig. 20, Pl. XVIII). The murlens is pushed against the wall by the vamole. The study of the development of polypides in the statoblast shows that these free cells are derived directly from the grambiar mass that constitutes the man contents of the statublast, and in young stages they contain similar granules instead of the vacnole. It is therefore plain that they are, at any rate, nutriment carrying cedle, which might he regarded as hood corpuscles.

Besiles these, there are generally present a greater oi smaller number of cells or fragments of eofls of a quite different apparance, which have probably detachel themselves from some part of the body.

The flowating elements were observel hy previons investigator: (Alment. Hyat, Verworn), but no great importance was attributed to what were brobably either parasitic organims or detached cells. Hyatt, for instance, observed "numerons organisn", many of which probably parasitic, which float in the fluid, sometimes in such'a momber as to interfere with the examanation of the interman :trocture." It is prolable that at least some of thoue "organisms" were what I regard as the blood corpucles.

The direction of the blood currents an onservel in the natural wate is shown in fig. 21. On the anal side of the body cavity the fluid is driven toward the free cud of the polypide, evidently ly ciliary arim, which however comber neve actually bronght to view. In the lophophoral arme, the corpaselee travel :!long the flow to their ends, and either return directly along the ceiling, or enter the tentacles, in which they ascend on the side nearer the tip of the lophophore, ant descend along the opmsite side. In the cavity of the epistome, the fluid streams along the ceiling to its tip and coming back along the flom of that organ, cither enters the enistome again, or gres to the tip of the lophophoral arm along its lower side. On the oral side of the pmypide, the fluid is alway seen flowinge downward.

Allman and Hyatt deny the presence of cilia on the external wall of the alimentary cansal, but Yerworn saw them at the end of the stomach in Cristutella. My observations in living specimens of Pectinutella confirms the statements of the last author.

Both Allman and Hyatt observel that the cenecia of Lophemus, Cristutella, and Plumatellu ritren, readily emptied themselves of
their perigastric flnid when taken out of the water. They aswmed that the flaid passed out throngh pores in the endocest, but they searched iat vain for such communications.

It is certain that when a polypide retracts, a portion of the fluid contained must of necessity pass ont at some place, since the cmencial wall does not expand heyond a very limited extent. Nofwithstanding my special attention to this point, Pect. yclutinosa also gave no result. and I should prefer to go 110 further than to asome the presence of external openings in connection with the excretory organs.

4. Excretory Organ (?)

Toliet (6), in : paper entitled "Organe segmentaire des Bryozoaires Endoprocies," gives a pretty full description of two short fannel-shaped tubes in Pedicellina and Loxasoma, first noticed by Hatschek. In the division Ectoprocta, howerer, our knowletge on this subject is very limited. As far as I know, the two figures given by Farre, and the remarks by Hincks and Smitt, both of whom do not go beyond conforming the observation of the first, constitute the whole bihlingraphy on this sulject. They all noticed a ciliated pipe that opens between the mouth and the amus in Alcyonidium and Memlramipura, woth of which are gymmomatons. In regard to the order Phylactolamata, if we excent the short accomet given by Verworn, illustatel with twa semi-diagrammatic figures, there exists no literature known to me. Verworn left the terminations of that organ matermined, confining his attention to only the middle portion where it is most conspicnons. Braen tomehes on this sabject in his note in the Zoologischer Anzeiger, but he too conld not determine how the tubes terminate. Such being the case. I have investigated this organ with special attention.

There are two ciliaterl tube just beneath the onter layer, on the anal side of the horly. between the ams and the bases of the median tentacles of the inner row. The walls of these tubes are continnations of the epithelial lining of the invaginable portion of the endoryst. They open helow into the borly-cavity by fumel-shoped meningThey measure $0.15-0.19 \mathrm{~mm}$. in length, though the portion where the wall is entire is moneh whorter (fig. 26 his. Pl. XVIII). The shape of the fumel-like openings may be compared most appopintely with the obliquely ant end of a hollow tube.

The exact form of these tubes aml their relation with other organs will be best undestood hy referring to fige. 21-26, ll. AVIII, which show their aros sections with the neighboring parts at sarious levels.

In a cross section passing through the middle part of the tulnes. we see them as two oval sections lying side by side (figs. ot and 24 1). The ciliated epithelial wall consists of cells which are cuhical uear the median plane of the polypide and flat on the opposite side. Consequently both the nuclei and cilia are densely set in the portion nearest the median plane of the polypirle and scattered at some distance from one another on the outer side. The tubes are chsely enveloped on the anal side by the outer layer of the inraginahe tole (Out. lay.), and on the oral side by the lining enithelium (Lin. rpith.) of the bodr-cavity. The diameter of the tobes measures about 0.03 mm .

Tracing these tubes dommard, that part of the wall farther remored from the merlian line soon disapjears. i. e., the mben open into the borty-carity on that side (fig. 26). As the two tubes deviate from each other below, a part of the perigantic space appear between them (fig. 26 , opistom. cat.) This is the passage by which the cavity of the epistome commmicates with the perigastric.

The motian side of the wall ends abruptly on the anal side of the ganglion ; helow this point uross sections show only one contimuns hody-cavity. Thus, the body carity is divided into three bratheses on the יןper part of the polypide. The middle one (fig. 26 , quistom. car.). passing atong the anal side of the ganglion, extends into the epistome, while the lateral ones are protonged into the lophophoral cavity. The inner walls of these lateral branches pass eradually into the ciliated tubes.

If we now trace the tubes upwards, they are found gradually to approach each other, and their walls soon coalesce. A little higher the cavities of both open into each other, and there is seen a single flattened tube (figs. 23 , Nophr. \& 2 ? A). The whole inner surface of this part as well as that of the two deviating tubes below, show distinct riliation in sections, the cilia being always directed toward the perigastric opening. If we trace this flat tube still further upwarde, it again becomes divided in most individuals into two. in some into three tulies (figs $22 t^{\prime}$ \& 22 A), each of which is continous with tentacular lamen. In this part, the ciliation is no longer visible, but compared with the inner layer of the tentacles, there are more nuclei. But, further upwards, the nuclei are fewer in number and the lining epithelium presents similar appearance as that of ordinary tentacles (figs. $21 t^{\prime} \& 21 \Lambda$). What cain be the function of these ciliated tubes? The fact that they open into the perigastric cavity by viliated fumelshaped openings maturally remiuls us of the segmental organs of certan worms. And thas many obervers have been intuced to regard the function of these tubes as being of an excretory mature. If such is really the case, there should be some mifice hy which they open outwards, for the high degree of development they attain prove that they are not useless remnants. This makes me renture to assume the existence of minute apertures, at least on the two or three innermost
tentacles of the anal side, premmatly at their tips although I am mable to produce any positive proof. The pores, if ever present, must be of very minute size. indiscernilke ly ordinary methots in a mamer analogons to the pores at the tip of Actinian tentacles.

5. Muscular System.

The muscular system consists of five groups of mus.les. They are:
". Muscles of the fumiculus.
b. l'arieto-vaginal muscles.
\therefore Retractor of the polypilce.
d. Muscular layer of the alimentary camal.
c. Innsular layer of the endocys.

Tor these may be adfed the muscles of the epixtome.
The first three are, as development shows, modifications of the last two, which in turn may be regarded as mily locally differentiated forms of one and the same layer.

In the development of the polypide in the statoblast, the muscular fiboce are formed from certain cells of the gramular mass, and, in the process of budding, from the lining epithelium. In either case, the cells dougate, and berome rpindle shaped, with the molens at the middle. They lengthen more and more and the unclei become indincernible, although thesce can ofren be made visible ly the aill of acctic acil. Excepting some fibres of the parieto-vaginal muscles, which remain in this state to the end, the muscalar fibres are extremely thin, and do not show melei in their interior. It seems that these fine fibres arise hy the longitudinal splitting of the original muscle-cells, as is known to take place in many other ammals.

The mascles are never striated. Exen in the retractor of the
polypide, which is obviously of greatest physulogical importance, the fibres are smooth. In marine Polyzoa, however, I have observed that the muscles of the avicularia and the vibracula are striated.

The muscular fibres belonging to the funiculus run longitudinally on the inner surface of the basement membrane, on which the cellular wall of the funiculus rest.s (fig. : 3l, Pl. XIX). They run separately without forming bundles, and present the same appearance as those of other parts. Their extreme fineness as well as their small number agrees with the fact that the funiculus contracts, if ever, in a very limited degree.

The muscles ruming between the eystidal wall and the bottom of the invaginated fold (at the junction of the cystidal and the polypidal enducyst) are called the Parieto-vaginal muscles (fig. 4, Pl. XVII, $J^{I I}$). Their fibres run either solitary or in bundles, forming on an average $13-14$ sets arranged somewhat radially. Their points of attachment to the cystidal wall is irregular. These sets of muscless cause the presence of the invaginated fold of the body-wall. In l'ect. getalinuse when the polypides fully expand, this fold, which is otherwise distinctly present, disappears, the muscles relaning to their full extent.

The great retractors of the polypile consist of a pair of well developed muscular bundles, right and left in the perigastrie cavity (fig. 4, Pl. XVII, $1 I^{I I I}$). The fibres are modifications of the muscular layer of the endocyst, extraurdiarily developed to serve their special purpose. The point of attachment of each bundle to the bottom of the cystid is single, but the upper portion is aplit into :t large number of smaller bundes which are inserted iuto the walls of the arsophagus and the stomach at various places, but most numerously at the upper part of the former. The bundle is custheathed in a sort of fine sareolemma, which could distinctly be demonstrated at such phaces
where the fibres were mechanimally fom away having the whath uninjured.
 fibres are well developer, and the longitombal filnes, if ever there bo any, are very samty. The layer becomes harker ats we apmath the blind end of the stomath. The musculature in question performs peristaltic movemonts, periodically on the wophageal and faily constantly on the gastric: wall. The hlime ent of the latter is subject to stronger eomstrictions in arembane with the themened maselebate ef this part. The peristaltic movement of the gratrie wall help mot onty fo move about the contents of that otern, hat ako format the residue into the intestine. The muscalar fitmes of the intestinat Wall are esperially well developed near the anal prening ; they sene (t) discharge the excrements out of the borly and to keep the anms
 the funculus, there is no muscular layer (fig. $3: 3$, I'l. XIX).

The muscular layer of the endocyst has alreaty been imated umber the body-wall. The water ring fibres are epecially wed developed aromme the mifice of the concerial limathes and form an som of ophineter to close the opening prodnced when the propyides refract. When the polypinle is extended, the conarial brameh beromes shader hy the rantrantion of the ring fibere, lut apparently it is mot by their ageney that the polypindes are pushed ont, for this pramen takes phate wen in a cencerial branch with its wall oal ojen, so that the flum contamed can tramomit no pressme Whan the imaginated polypide.

The mascles that move the eqistome reman in a very primitive state of development, consisting of lonsely dintributal fibers whith. as ahrealy mentioned, are more romgated vell with the machens at the middle. 'They iratree the cavity of the epistome, joming its
undersile with the ceiling. So seen in croos sections, they are more choely ser ne:n the enge and ahost entirely wantige in the central part of the epistome.

6. Nervous System.

This system has been described more or hass fully in all works on Polyzoa, but the accounts given are very different from my whin observations. Nearly all investigators describe the cerebral gathghon ar a swlid cellular mass. Nitsche, studying the process of gemmatim, states that the ganglion has at first a vatricle, which, however. whiterates with the growth of the ammal. Contrary to this statement, sanftigen (10) recently diseoverel that in Cristutellu amt I'lumatllu, the cavity of the ganglion persists throughout life, and further that the gauglionic wall is not everywhere of the same thickno-s, being at some parts as thin as the lining epithelium of the body-wall. I have observed that in Lectinatclla also the cavity exists in the mature state ; it is so very large that at first sight it might be mistaken in sections for a part of the body-catity.

In fig. $28, \mathrm{Pl} . \mathrm{X}[\lambda$, I have represented the form of the ganglion in Lioclimutella gelatinoses. It may be compared with a spindle bent semewhat in the form of U , and fited with its concavity to the anal side of the cesphagns, in rather an obligne position with the :ams turned slighty upward. The end of cach arm again makes a sharp bend in the :hat direction and is contimmens with a large nerve trunk which procecels into each lophophoral arm. The ganglion is in direct contact with the ininer eell-byer of the a-ophagus, the outer layer of that tube enveloping it on all other sides ; the ganglinn is in fact sitnated between the two layers of the waphagus (fig. 29, Pl. AIX). The lophophomat nerve trums are likewise located between
the onter and the imere rell-layers of the botr-wall ; they rum. namely. immerliately beneath the outer layer of the lophophoral reiling. covered below by the lining epithelium.

As mentioned above, the ganglion is mot a solid cell-mass as has heen described by nearly all inveatigators. On the contrary, it contains : macions rentride, extending to the ent of the arm. or horns, as is diagrammatically shown in fig. 30 a, l, r. Pl. ALX. The wall of the rentride is very thin and of aln pithelial mature on all sidew exeept at the bottom somewhat on the :and sille. where it is reery thick, forming the ganglion sensu sirictu, -a condition which reminds u* of the Telenstian cerebrum.

This thick portion is distinctly bomated from the thin epithelial
 mase, with a slight constriction in the median phane of the polypide. It is this part that Hyatt took for the ganglion which he describes as compered of two lateral masses mited hy a repy thick commiswire. It is no wonder that he overlmeked the thin epithelial portion, since this is hardly recognizalle in surface views. As ran remdily bre imagined by combining the three sections given in fig. 30, passing through the brain in different directions, the thick portion is a tamstresely chongate romdel mass, with : transverse slit-like depression. looking orally and npward. The whole mass is not of the same structure throughout, but shows a differentiation into peripheral and central portions. In the former, the nuclei (of ganglion-cells) are densely crowded, while in the latter we wee a faintly stamed grimular mase (Punktubutanz) containing only a fow or no nuclei. Ther cell outline to each nuclens is not to be seen.

The thin part of the wall of the rentricle differs in nothing from an ordinary epitholinm, being compasen of a layer of thattened cells. It is continnons with the pripheral portion of the proper samionic
part. How the nerve fibres. if there he any, pass ont from the latter into the nerre-trmaks. I have been mable to elacidate.

The ross-section of the lophophoral nerse tronk is kitnershaped. with the concavity tmmed alme (fig. 31, Pl. XIX. more). Tu it the nuclei of nervecells are seen moch crowded. Longiturlinal sections show that the nerveredts in guestion are spindle-shatped (himblar) with the melens at the middle, and closely packed logether. A fow fibies rum anongst them ; these are probally to be regarded an werve-fiberes. The trmos themseteres are very thick and large in comparixon with the mass of the central ganglion, and their stracture gives the impression of an elongated watg limic mass rather than of a nerve. The trank gives off on each side a branch into cach tentacle. Such a branch is of fibrons appearance and combl be tramed only fir a very short distance after its departure from the traik.

The presence of a ciremmesophageal nerrous commissure in foch-wator Polyzon is a matter of ohseurity, having loen acepted ly a few and denied by manr. My observations on Pert. gelutimusu convinced me of its absence.

The colonial nervous system present in many marine Polyzon, which kernes the action of the members of a colony in harmony, seem: to be altogether wanting in this species, as is probably the cave in all other frech-water Polyzos. Special attention to this point showed now trace of nervons comentions between the polypides in preparations of sectioned colomies. The fact agrees with the lehavion of the polypides in : living eolony, in which moly directly disturbed polypides retract. while all the rest remain prostruded as if nothing had happened.

7. Ovary and Testis.

 mony in very rare instances. When present. it is situater? insile the cystid near its tip on the oral sil?e. It is a solid clnh-shaped ontgrowth of the internal lining epithelim, and nswally contains ten or more ova in different stages of devolopment (fig. 33, Pl. XIX). the space betwen them being filled with connective tissur strman. Ripe egge con fall into the perigastric cavity only ly the rupture of the wambun wall. The largest ovarian bexm measmed 0.35 mm . The length of the ovary is atont 11.9 mm ., and the headth 0.5 mm . Non donbt can ever be entertained about the ovarian nature of the body in guestion. That the funiculns has nothing to do with the production of eges h:s alon been ascertaned by braem for Cristatella and I'hmatelli.

As to the tentis, my investigations gave no result. I searched for it in hundrets of polypides, but in rain. I once saw something like -permatozoa within the tip of a ratidal branch, hat I failed to make it sure. At any rate, true sexmal organs are very imperfectly developed in accordance with their secondary importance in the reprodection of this species.

8. Funiculus.

The faniculus is a hollow tubular organ, ahont $5-6 \mathrm{~mm}$. long, whirh comerts the hlind end of the stomach with an opposite perint of the cyatidal wall. Its wall is composed of theee layers, but the imermost one, comsisting of a few longitudinal mownar fibres, hardly deserves to be called a layer (fig. 32, Pl. XIX). The outermost layer is the contination of the onter lining of the alimentary mal or the lining epithelime of the entocest, from either of which
it liffers in mothing. The cells of this layer rest on the outside of a tule of basement memhraue, which forms the middle layer, and are rather thickly set, every cross section of the tule showing from nine to twelve nuclei. Thus my observations on this organ are identical with and muly confirm Nitsche's. Verworn denies the existence of muscnlar fibres in Cristatella. In lectinatella they are decidedly present, although few in number and isolated, so that they are liable to be overlooked if not specially searched for. The outermost layer is the only cell-layer in the wall of this organ. I cannot hout assume that Krapelin had fallen into error in descrihing the funiculns as made up of two cell-layers, the equivalents of the outer layer and the lining epithelimm of the endocyst respectively.

The di:nmeter of the lumen is abont 0.02 mm ., and the thickness of the wall about half as much.

The nareow lumen of this tubular organ, whose wall must be regarded as entirely mesodermal, is bomed at it.s upper end by the inner cell-hayer (entoderm) of the stomach, and at the lower end, by the onter layer (ectoderm) of the endoryst (figs. 33 and 34. Pl. XIX). It is in this organ that the statoblasts are developed. That the funicmlas should not be regerded as the orary, as was dome hy sume former investigators, is self-evident, at least in the present species as whll as in those in which a distinct ovary has heen demonstrated in quite another region of the hody.

9. The part of the Endocyst that produces buds.

Budding takes place at a certain fixed position as Braem asserts, namely, at a definite area on the oral side of the cystidal cmitocrest. Here the endocyst is somewhat thicker than other parts of the same
wall, and the onter cell-layer and the lining epithelime are charly distinguishable from each other, as at other phaces, although mo muscular layer intervenes between them. At this place, the cells of the outer layer are wauting in vacuole and both layers stain more deeply than anywhere else. The area is comparable to the growing point in plants. How the buds arise, shall be treated under a special chapter later on.

B. Reproduction.

In fresh-water Polyzan, reproduction may take phace sexually on asexually in three different ways, as tabulated below:

Reproduction by

	$1 \quad \geq$	3
	Uvam Statehlisist	Bumling
Nature:	sexmal arex	
Function:	to formi primary poly. zoinid giving rise to a new colony.	to form a number of new polyzonids, thus increasing the extent of a colony.

New iudividual origitate:s from: me many cells

The mumber of
body-layers that
enter into the
formation of the
new individual: one two.
By the first mode, an ovem shoukd molergo segmentation, amd passing through a serien of metamorphosis give rise to a new primary
polyzooid. 'This mode, however, seems to take , lace very rarely, if ever, in the present species.

By the second mode, germs enclosed in hard chitinous cases (statoblasts) are produced in the funicular cavity of prolyzoijids. They are set free by the decay of the parent colony, and float on the surface of water daring winter, sometimes packed in ice. Next summer a primary polyooided is developer in carh, serving as a fombtation for a new colony. 'Thus, this and the first mode perform the same purpose, in so far as botli serve to establish new colonies, and the withdramal of the latter is supplanted hy the great activity of the former.

By the thind mode, a certain part of the endocyst adds, hy growth in a certain definite manner, new polyzö̈ds to the primary polyzooid. 'This mole of reproduction increases the size and determines the form of the colony.

In certain cases the colon! may propagate itself loy simple division. For instance, Allman and Hyatt observed that in old colonies of such gentera as Ciristatella, Lophophes and I'éctinatella, all of which have gelatinons ectocyst, the branches separate themselves from the comoeial trunk by constriction. In I'ed. gelatimosa, however, I have never met with the same phenomena. On the contrary, all the molonies collected by me showed no sign of such fissiparity, all of them being entire and of the form chanderistic to this species. In most of them, the shell-halten of the statoblast in which the primary polyzoiid has developed were seen sticking to the underside somewhere abont the centre.

With regard to the first mode of reproduction, I had no chance of making olservations any further than determining the presence of ovaries in certain polyzö̈ds. The phenomena of reproduction by the remaning two modes shall be treated, for sake of convenience, under the following four heads:

1, Statol)last,
\because Development of the Statoblast in the Funiculus.
3. Development of the Polypide in the statoblast, ant

4, Budding.

1. Statoblast.

The general structure of this seed-hike body, differing in shape and size in different speries, is now well-known and the following description referespecially to the statobnast of l'ect. gelatimosa. In winter the dead colony is soon decomponed and the statoljansts contained in it are set free. Duriug winter and spring months, they may be found on the surface of the water in large mombers, clinging to floating logs, bamborsticks or trunks of aquatic plant. They are of a dark brownish color with a wide marginal zone of a lighter tinge.

Let us take one of them and examinc it more minutely. It, shape is, properly speaking, like a flat lens. The outine, as it hes flat, is quadrate-oblong, about $1.5 \times 1.3 \mathrm{~mm}$., and about 0.3 mm . in thickuess. I may here mention that this species has the largest statoblast among all known Phylactolematous Polyzoa. It presents double curvature after the mamer of a saddle (fig. $5, \mathrm{Pl}$. X VII). For conveniences sake, we may call that side on which the longer axis is convex as the "convex surface," and the opposite side as the "contave surface," although these term- do not hohd good with regated to the shorter axis. On both sides, the whole surface is beautifully maked into hexagonal areats, more distinct in the marginal zone than in the central portion. The extent of the centrad darker are: is various in different statoblasts, and it may alsu differ on different sides of the same statohlast. Fenerally it ranges from 0.5 mm . to 0.6 min. in diameter.

Closer examination shows that what appeared as a distinctly reticniatel marginal area is a sort of brad rim aromed a chitionbon? of compact mature. This rim consists of a momler of prismatic arkets filled with gat, the diameter of the caskets increasing as we aproch the margin. The hollow caskets have their axis vertical to the plane of the statoblast and are arraged in two horizontal layers. They serve as a buoy to float the central boty, which is the most important part of the statoblast.

If the free elge of this rim, or the ammulus as it is called, be camined moler atrong power, we se a great nomber of minute hook perjecting fom it (fig. 35, PI XIX). They are fomm most abmantly where the margin is somewhat angular. Some of them are complex, while others are simpler, but all are formed by the combination of simple hooks in varions wass. They are mere outgrowths of the elgen of the mmmlns, and bave nos dieet commedion with the central body, as is the eave in Cristatllat and lect. mamifica. They are short and stont, amt the tips are romded. They measure about $0.02-0.03 \mathrm{~mm}$. in length and are too minute to be of mach functional impertance. When the ammlas splits hori-
 thes wine are fomm only on the margin of the concave sile.

The ampatiate of the annuln: and the prevence of hooks on the free chige secm to le worth carefil conaduation. In all statoblasts,

 chatatere the distribnive mown is evidently enhancel, exposing its curvel sumfe to the influence of the motion of water, or, if deren up, of wiml. As to the horks I have lu doubt that, as Krapelin has sat, they serve as anchors to secme attachment for
the colony that is to grome. At the amme time they must he looker upon as awisting distribution to a great extent. By their menns. for instame the etat hata have a chane of dinging to the feathere of
 todintant lowelities. The stongly develoget hooks om the statoldast-
 weakly developed amd ammot sere more than as a mere home may prophas have in this respect a great importance. [a the prosent

 but as such they can have no great value in the case of Ped. ghlutimose.

The annulnc. an stantiod on sertions (fige th. Pl. XIX), is mata "p as name of two horizontal vitata, cach masiang of a sumb layer of uright hollow prisms which remind us of cell in a honeyamb. The central part showing indiatinct retiontation in sum facerims proves to be the expese motare of a thick ditinoms capsale of spherobida! shape (orntr. cops). This ontral capsule is made ap of two watheglass like ralres tighty aponed with rim. the demaration betwern them being risible as a faint line. The
 Ho conter and the inner stratum resectively. The outer is danker in color, and lay far the thimer of the two. This strathm is the continnation of the rhitimons wall of the ammlns. and its expossend surface is rased into low ridges that fom a metwonk with hexagonal meshes.

The thick inner statum of the chatmons watule lowk haight yellow on sections. Disestly leacath this "apathe, there is a mem-

rells with centrally situated small nuclei. This cellular envelope completely encloses a gramlar mass of protoplasm (frim. muss.) in which are scattered minute nurlei. These nuclei meanure only $0.001 \times 0.003 \mathrm{~mm}$. in arerage, and are thos several times smaller than the nuclei of body tisues. They are very flat with thair plane paralled to that of the statoblast.

The gramular contents and the cellular envelope form the cssential part of the statol)last, while the chitimons capsule, the anmilus and the marginal spines are all accessory organs for its preservation and distribution.

2. Development of the Statoblast.

The knowledge of the origin of statoblast is certainly of vital importance in determining the true nature of this gemmole-like body, hut in the rather santy literature on this subject the statements given are widely different from one another. As to my own observations, I have seen in the lamen of the funiculus sometimes a single cell and at other times a loose group of two or more cells, representing the earliest st:ges of development of statoblasts. They are round in outline, and each supplied with an oval nucleus. Neither in size nor in general appearance do they perceptibly differ among themselves, or from those of neighboring tissmes. This circmanstance deprives me of all groumds to share Verworn's view that the increase of cells is due to contimed division of an originally single cell. This author smus up the earliest steps in the development of a statobast in the following words: An einer hestimmten Stelle des Funiculus vermehren sich die Epithelzellen dessethen zu einer kleinen Aufochwellung and draingen dadurch gegen das Lumen. Eine Zelle dayon tritt in das Lmmen hinein and wird zur Eizelle, während die amderen
sich zu einen Follikel formiren. Die Eizelle macht einnoregehain... igen Furchungroress durch. dessen liesultate eine solide Mnoma ist. Wie man sieht, wird also anch dureh diesen Furchongworgang die Knospennatur der Statoblast widerlegt." Hence he concludes: "Die Statohbasten sind als parthenogenetische Wintereier anfzufansen welche sich im Gegensatze za befrachteten Eiern am Funiculns entwickeln." I did not find this riew corroborated hy facts. Neither the thickening of the fumicular epithelimm nor an "Eizelle," which to judge from his figures must have been several times larger than any ordinary cell of the funiculns, could be fount.

On the contrary. what I have seen in Pectinatella grelationsa leals me to the conclusion that each statoblast originates from at least eight cells of separate derivation. Where they come from is a question which I cannot answer from direct observation. However. that it receives no element from the entoderm is evilent from the fact that where there are many statoblasts in the same fumicnlns, the older ones always lie nearer the stomach. completely shitting \quad p the passage. The question then reduces itself to whether the original cells are derived from either the funicular wall (mesoblast) or the outer layer of the endocyst (ectoblast) at the point where it bound the fumicular ravity below, or from both. As will be seen later on, the intrastatoblastic development of a polyzooid essentially agrees with the proces. of development by budding, differing only in such points as are necessitated hy the mechanical conditions of each case. Wes hould then expect similar elements in the "anlage" of a statoblast as in a bud, that is. both the fumicular wall and the outer layer of the endocyst should " priori give their contingents to form a statoblast. The correctness of this assumption is proved by the observations of Braem (\%ool. Anz. 1889.). According to this author, the primitive statoblast consists of two kind. of cells, which are genetically different, onc deriving
itself from the funionlas amt the other from the ectenderm. It is Hevellese to say that in the atmpe light, a statohnast cannot be anything else than a specially modified form of had, in other words. a portion of both layers of the endocest protected against severe dimate by special contrivances for the preservation of the species.

But to return to the process of derelopment, a certain number of cells, probably from the two sombes referred above to, assemble in the funicular lomen and armane themselves into a group at first loose and irregular. Furing this early stage the funicular wall nowhere shows thickening. contrary to Vermom's observations. Very soou the group heromes compart and ansumes a mornlatike form. It can now be saffy asserted that new malitions of cells no longer take place, but that the morna henceforth increases in size by multiplimation of it own cells. The mase bulges ont the funicular wall as it enlarges.

Arrived at a stage whon the morula measures abont 0.0 . mon. in diameter, a certain mmbur of cells ($8-12$ as seen in oquatorial rections) (on one side of it from a special eromp (fis. 38. Pl. XIN), at first very indistinetly distinguishable from the rest of the cell. Giralnally, a small cavity appears in the mentre of that apherical group of cells which are stemtily increasing, dhanging it into : hollow, rather flatened shere with distinct epithelial wall. This hollow where is the " eystogene Hailfe" of German anthors wi malled on acenut of its giving rise to the chatings covermg of the statoblast, and the remaining mass of cells constitutes the "Rildungsmase." Accorting to my ohervations, thase two partions are not morphologically distinguishathe from each other at a very eat! stage, but becone secondarily distinct. This is also the view held by Nitsclue and Yerwom, while Bram saw them originate sharply separated from the outset in ciristatella. According on the hast-mentionel
author the cystogenons where, which consists solely of cedls of ectodermal origin, in the first to form and to this is added the Bildungsmasse by proliferation of (mewodermal) cells of the fmaicular wall. Provided that in cither calse the two protions are respecs tively ectodermal and mesodermal products, it would be of but secondary importance whether they are distinct from the begimaing or become outwardly indistinguishable for a time. Nore study of this point is exceedingly desirable.

Further history of the developmont corresponds in the main with what is already known. The cells of the two portions are comstatly incrasing in munber and the entice mass in size. Nemwhile, the cystogemoms cells athan the character of cohmmar copithelime the whole cystogenoms phere flatens, and som takes the form of a shatlow watch-ghlass, the internal cavity diwappearing (fig. 40, PI. XIN. chst.c.). We may speak of it as the cystogenoms anp. The concavity of the cup grows deeper, alway closely claping the mass of the remaining cells. i.e., the "Bihlungmanse." The cells of the latter begin to pesent a gramular apparance by the depasition of refractile opherules in the protophasm, comparable in mature to the deutophasm of egges or of yolk-cells in Platheminthes. Bram conld not convince him--elf of the truth of Nitsches and Verworn's opinion that the granules are direct products of the moded ; noe combl I find any supmert to this vicw. Ahont this stage, the cells in puestion assume a opindle-shape, the axis stamling vertical to the maty of the cystogenous cul (lix. 39, Pl. XIX, gr. m.). This state was also moticed by Bratm in (ristatella. Howerer, as the gramulation adrances, they become rombler again, matil each rell is represented by a globular mass of gramules with a maclens at the centre (fig. $\frac{11}{11}$, I'I. XIS, gr. m. $)$.

As the eystogenons cup grows in size, its rim begins to close aromed the gramular cell mass. This oecors after the latter has
almost attained its maximum size. In the meantime, a flim sheet of chitin is secreted hefween the two hayers of the cystogenows cup; it is difficult to say whether it is the product of one or of both layers. This chitinous sheet sulsequently attains considerable thickuess. We may speak of it as the chitinous colp, as it has that shape along with the cystogenous cap. As the latter expands, its mouth narrows and the whole body of the young statoblast somewhat flatters, taking the form of a sheroid, the axis of which corremponds with that of the cystogenons cup. The wo layers of the eystogenous ellp were at first of the same thickues, but now the outer begins to thicken by the inerease in height of its cells while the inmer undergoes a eontrary change. The cells of the latter begin to flatten first at the bottom-portion of the eystogenous eup.

Along the equatorial line of the spheroidal mass, the outer layer of the cystogenous cup is thrown into a fold, which encircles the roung statoblast belt-like all around. The belt becomes more and more extensive, and consists, as seen in sections. of two elosely Mrosed strata of eylindrical eells.

Memwhile, a second chitimons layer is formed over the chitimons cup already present. Thus, the chitimons cup comes to consist of iwo layers; the onter of which is by far the thimuer. Simultameonsly and direetly contimous with this outer chitinous layer a thin plate of the same nature is also deposited between the two epithelaa strata of the belt. It may conveniently be designated the belt plate.

The elomgated prismatic cells of the outer cystogenows layer, secrete around their basal ends thin chitinous wall continuous with the belt plate or the outer chitimons cop, on which they all sit. They thas bring forth hexagonal caskets open at one end, into which every one of them abuts with their bases. But the wall of these cells does not develope everywhere to the same extent. It keeps very low on
the exterior of the botton of the eystogenons cup, and when the enp closes into a complete capsole, as it does later, the same combition is also seen on the oppositesinte, so that on a mature statoblast the polar surfaces show only a network of very low ridges. However, on both sides of the belt plate and of the capsular surface immediately adjoining them, the chitinous wall of eells altains considerable height, but never reaches the surface of the cell-layer. The open ends of chitinous tubes thas formed are finally chosed by the formation of what is called the hid-pates. This process proceeds on the one hand centrifugally firom the outer layer of the ehitinous cup, at a line which circumseribes the reticulated polar area, and on the other in the opposite direction starting fiom the margimal edge of the belt-plate, so that the tubes on the midway are closed last. A glance on figs. 43-16 will make the matter clear at once. Moreover, the lid-plates divide the prismatis: cells on either side of the belt-phate into an outer and an inner porfion. The latter is completely enclosed in chitinons caskets, while the former conjointly with the epithelimm covering the polar area invests the entire outer surface of the young statoblast. 'This invertment is to be seen as long as the statoblast remanins at the plate of its development, but decalys when the latter is set free by the dissolntion of mother-polypictes. As the lid-plates are developing, the marginal spines apuear. Iloo at about this stage, the closure of the mouth of the cystogenous cup takes place. It thus completely encloses the gramular cell-mass, followed by chosure of the two layers of the chitinous cup, which then is turned into a perfect capsule. After this, the two polar areas present no point of structural difterence.

The portion of the prismatic cells that are enclosed within the chitinous wall soon molergoes decomposition and giver place to a gas filling u, the caskets. Thas the formation of the swimming-belt is
complete. Nitsche's statement that the cells evacuate the easkets before their closure is probably an error.

As already said, the inner cystogenous layer thins out by the Hattening of its cells, and when the chitinons plates completely inclone the gramular mass it forms a thin epithelial covering to the latter directly within the central capsule (figs. 42-46, Pl. XIX, E'm. m.). The size of the nuclei becomes smaller as the height of cells decreases, and reaches at last the dimensions given before when the mature statoblast was described. The cells of this membrane are distinctly bounded and hexagonal in shape.
leturning to the stage represented in fig. 41, the gramalar spheres, composing the mass contained within the cystogenous eup, have each a centrally placed nuclens, and growing larger (fig, 42, Pl. XIA.) press upon one mother so that they assmme a polyhedral form. Ther rem:in distinctly bounded as long as the rim of the chitinous cup remains open, but fase together after the latter closes. It is a singrular fact, that in some statoblasts, either the granular mass is produced in over-quantity, or the capsule formed is too small, so that a portion of the mass is left outside the statoblast as the capsule closes, afterwards disappearing.

The nuclei of the gramular mass become smaller as the develop. ment of the statoblast advances. Arrived at a stage represented in fig. $4 \pm$, Pl. XIX, the melei almost lose their peenliar chromatin reaction, and stain very faintly, so that in some preparations it is very difficult to detect them. This coudition, however, lasts for a very short interval, an? in all the later siages the nuclei are again distinctly visible. This peculiar behavior of the muclei may have lead Verworn to assme that the gramules are the product of the splitting of mulei and that the latter as such are not found after the complete development of the granules.

The statoblast at the carliest stage of its development is of a milk white color. The chitinous parts as they form themselves at first present light yellow color, which, as the development allances, darkens to the characteristic hue of the mature statolnast.

On attaining a certain size, the statoblast bulges out the funiculat wall chiefly on one side, with its plane always parallel to the axis of the funiculus. When many statoblasts develope in the same funiculus, they genemally lie alternately disposed, by which means ceonomy of space is effected. It in on that side of the watoblast with which it joins the funicular tube that the cystogenons cup closes.

The number of statoblasts that develope in a single polyzoiid is usually fire or six, in some rases as much as eight. Of these, the mipermost one is the oldest and the lowest the latest formed, wh that at a certain period statoblasts in various stages of development in serial order may be seen in the same funiculas. In those old polypides that oconpy the central part of a colony all the statoblasts usinally attain maturity, while in the peripherally situated younger polypiles the latest formed statoblast is generally still in quite an early stage of development at the time when the colony begins to dissolve away. These immature statoblasts undoultedly suffer common recomposition with the mother-colony. As every polyzoöid producs statoblasts, their number in the entire colony is really viry great. Once I counted no less than 870 statolnasts in a very small colony of about 1.5 cm . in diameter.

3. Development of the Polyzoöid in the Statoblast. *

As the mature statololast floats on the surface of water, the beltphate of the amulus splits horizontally, so that the shell may now he said as being composel of two valves. These however remain tightly apmesed during winter. On the arrival of wam temperature, they wearate from each other, hut holding the whitish contents hetween. The two valses have then very much the appearance of a pair of cymbals. The separation takes place at a stage when no change is yet percejtible in the contents; hence I am inclined to ascribe its ause to some extermal influence rather than to internal pressure.

The contents of the statoblast, i. e., the gramular mass with its enveloping epithelime form a spheroidal mase. All along the outer margin or the equator of the spheroid, where the separation of the shell-valses has hrought it in direct contact with water, the enveloping epithelimm becomes thicker (figs. 4s, our. lay. and 48 A, PI. XX.), owing to increase in height of cells, accompanied by great increase in size of the molei, which are now ats large as those of grown-up polypides. The process of thickening thus begme at the equator proceeds gradually toward the two poles of the spheroidal mass, so that the membane thickens latest at these places.

Mcanwhile, the cells at two opposite arean on the equator become expecially taller, so that the enveloping membrane acquires a marked thickness at these places. The areas in question are oblong

[^14]in shape, lying with their long aves along the efrator, although me Wharp bommary can be fixed. From an carly stage they how differraces in the appearance of their cefls and take quite different direce tions in their future development. The axis joining the rentres of these areas correxponds, as will he seen later on, with the longitndinal axis of the futare polyzoiid. With regard to the rehation of this axis with the longer or shorter axis of the statohlast, there seems to be no constant rule, athough in the majority of cases the formor corresponded with the shorter axis of the statoblast.

In one of the two areas, the cells aefuire distinctly cylindrical form, and vacuoles are formed insome of them. In fact, they soon take the form and character of the cells of the outer layer of the endocyst. They hegin to secrete gelatinous ectocyst of a sticky nature, by which means the germinating statolnast attaches itself to anything it may mect with, be it the wall of an aquarim, floating wood, or shells of other statoblasts.

The other area gives rise to the polyzoial. Its cells are of less height and vacuoles develope in them later than in the other area, At about the middle point of the area, the cells multiply, and a group of them sinks into the granular mass below, forming a solid club). shaped body, which a little later on becomes hollow by the retreat of its cells toward the periphery. We have now a hollow dosed sac bounded by an epithelial layer of cells and comected with the superficial thickened area by means of a very short solid stalk (fig. 49, PI. XX). Soon after. the latter also acquires a lomen, aud the cavity (fig. 49. PI. XX. prim. l.) of the hitherto closed sac romes to commanicate with the exterior. Some cells of the gramular mass lose a part of their gramules, and arrange themselves into a sort of layer on the ontside of the sal (fig. 49. Pl. NX. Lin. epith). The muclei of these celle hemme larger an the gramles lexem in quantity and
approach those of ordinary cells in size and appearance. The outer limit of this layer is by no means definite, gradually losing itself in the granular mass.

As the sac elongates, it becomes constricted at the middle, dividing into an outer and an inner chamber. The constriction between the two chambers is the future mouth, and the imer chamber represents the future nesophagus and the stomach. The onter chamber sonn acpuires the form of a hollow cone, at the base of which the mouth opens and which tapers towards the onter opening. At the hase of this conical chamber the epithelimm is appecially thickened and eventually gives rise to the lophophore and the tentacles, the chamber itself being the tentacular sheath. The investing layer derived from the gramular cells (lin. spith.) become more and more conspicnons. and lines the entire outer surface of both chambers.

The lophophome is at first a semiciroular ridge, clasping the mouth on that side which corresponds to the original bottom of the cystogenons $\mathrm{c} p \mathrm{p}$ (eonvex side). The ridge arises by the folding of the wall, in which process both havers are comorned. The ends of this semicircular ridge are prolonged in the form of free finger-like processes, the rudiments of lophophoral arms. The interior of the lophophoral ruliment is occupied by the grannlar mase as roon as it is formed. The developing polypide lies on its anal side when the statoblast is placed on its concave side.

Another constriction divides the lower chamber into the nesophagus and stomach. The stomach begins to send a hollow process upward to form the intestine (fig. 51, Pl. XX. Intest.).

The free edge of the lophophoral rudiment is divided into a series of knobs, which are conspicuous nearer the median line, becoming gradually smaller towards the tips of the arms. These knobs are the nrigin of the outer row of tentacles. In the meanwhile, a second
ridge ruming parallel with，but less extensive than，the first one， developes on the anal side of the mouth．Its extremities soon meet and fuse together with the limbs of the first－formed semicircular ridge． Tentacles are formed on the new ridge in the same way as de－cribed above；the range of their row extending on either side to tips of lophophoral processes．Thas the inner row of tentacles is established on the lophophore．

The hollow process sent up by the stomach grows larger，and finally its cavity opens into the upper chamber or the tentacular sheath，which，when eraginated，forms the tubular body of the polypide．

The account given above may suffice to show how the gencral shape of a polypide is formed in the contents of a statoblast．fas the meantime rudiments of many other organs，of which the brain，the muscles，and the funiculus are the most important，have begm their development．

The cerebral ganglion arises as a pit－like invagination of the imer layer of the oesophageal wall，which is continuous with the outer layer of the body－wall．The process begins to take place at a stage when the stomach sends up the process that afterwards becomes the intestine，on the anal side of the oesophagns，just inside the month． The invagination is soon comstricted off，turning it into a closed sar， which as it is being formel，carries with it the outer layce of the oesophageal wall，so that the latter invents it externally，at the same time comecting it with the besphagus．The cavity of the sac peir－ sists as a sort of rentricle．The lower portion of the wall of the sat early begins to thicken，which process does not of course concern the investing layer，and finally developes itself into that portion which constitutes the main ganglionic mass（vide p．115）．The remaining portion of the sac－wall，except at two points，becomes thimer and
thimer as the entire ganglion incteases in size. The two exceprional points just referred to, are where the sate-wall prodnces a pair of solid horn-like processes, each of which gradually elongates towards the t_{p}, of the lophophoral arms, passing between the two layers of their ceiling. The position of the lophophoral nerve-trunks directly beneath the outer layer led me at first to assume their origin from the latter, in a way malogons to the development of the central nervous system in vertelsates. A careful study, however, convinced me that such is not the case.

At the time when the intestinal cavity becomes continuons with the exterior at the ams, the whole borly-cavity is still filled up with the granular mass. Some of the cells of the latter are seen to differentiate themselves from the rest, at two regions as seen in a median sagittal section (fig. 51, Pl. XX.), the one extending between the involuted tentacular sheath and the cystidal wall, and the other between the lower part of the oral side of the vesophagus and the part of the cystidal wall opposite to it. At these placen, the cells lose their granules, elongate, and become spindle-shaped joining the two points between which they lie. Their further development has been already treated mader the muscular system. The muscles that develope in the above mentioned regions are the parieto-vaginal and the ret ractors of the adult polypide respectively. The muscular layer of the endocyst and the alimentary canal developes itself later, probsaby from the cells of the lining epithelium in a similar way.

Ahost simulamemsly with the first appearance of muscles, the cells of the grammar mass lying between the blind end of the stomach and the coenoecial wall opposite to it, lose a portion of their gramules, and aggregate into a solid rod, which is, in sections of stained sjecimens, readily recognizable on acoount of the deeper coloring of its cells in contrast with the suromoding fainly colored gramules.

Afterwards, what remains of the gramales in these cells is entirely absorbed, and a lumen in formed inside the rod, converting it into a tube, the rudiment of the funiculus. Thus, it will be noticed that both the maseles and the fumicnins are producel in sitn from the gramular mass in the statoblast.

When the development of the polypide is complete, two bude are ahraty present on the oral side of the eystidal wall. one on cath side of the median platne. These buds are first seen in the stage when the intestine is still blind. The manner of their development will bx. treated under the budding.

As moticed before, the grambar cell mass compactly fills up the entire body-cin ity matil after the formation of all the important organs of the polypide. The cells then lonsen themselves, as the conse'fuence of the decrease of gramules, which are heing constantly used up, while the enhanced growth of the cystidal wall makes the body-cavity more and more spacions. When the young polypide begins to evagiante and expand their tentacular crown, maked conglomerates of granules, each with a nuclens at the centre, are seen scattered in the borly-cavity. Mixed with these conglomerates, we see some ot hers which have obtained a distinct wall, with the muclens pressed against it. In a somewhat later stage, the gramules are no longer visible in those eells with peripherally sithatel nuclei; instead of them we see a large vacmole in cach cell, which has thas aequired the characters of What I have proposed to call bood-corpusclen.

It is perhap- worth moticing that the developing polypide carries the shell hatvee on the anal and the orat side of its body, prenenting an appearance comparable to the condition of shells in brachopods.

4. Budding.

This mode of reprohuction in Polyzoa has been studied by numerons inventigators, hut their opinions are more or less divided, especially as to the origin from which the bud receives its hypoblastic elements, and consegnently, with regard to the relations of the germinal layers. Most of them derive the hypoblant from the outer layer of the endocyst, while a few are inclined to believe that the bud receives it from the gastric organ of the mother polypide.

According to Allman (1), who describes the process of budding in Lophopus and fleyonella, the outer layer of the endocyst gives rise to all the lining cells of the alimentary canal, while the lining epithelium of the mother polypide becomes also the lining epithelimm of the bud.

Metschnikotf (7) gives an accomet of budding in the embryo of Alcyonella. He fomm that after contimed segmentation of the egg, the cells arrange themselves into a two layered hollow sphere, both layers of which enter into the constitution of the bud, the outer giving rise to the onter layer of the tentacles, the inner lining of the alimentary canal and probably also to the nervons ganglion, and the inner, to the lining epithelimm and all the muscles.

Nitsche ($(x$) studied the process of gemmation in Alcyonella finnyose ant Cristatclla macedo. In both species, the wall of the alimentary camal is formed from a part of the endocystic invagination of the mother polyouid. In other words, the lining layer of the alimentary "amal is derised from the outer layer of the body-wall. Both Messchnikoft and Nitsele regard the outer layer of the endocyst as the ectorterm and the inner as the entoderm.

Hatschek's (4) aceount of budding in ('ristatclla is as follows. A hollow sac lies directly bencath thie onter layer, invested by
the inner layer of the body-wall on its inner side, at the position in which the buds are constantly developing. When a bud is to be produced, a portion of this sac is constrieted off and gives rise to the imer layer of the alimentary canal, while all other parts of the young prelypide are formed by an invagination of the body wall. Thus. the sac is being ronstantly constricted oft, as long as new huts are added to the colony.

Reinhard (9) studied the first budding in the embryo of Alcyonella fungosin and Cristatella mucelo. The cells formed by the segmentation of the ovum produce a true gastrula by invagination. Thr blastopore, however, som closes. The gastrula is comparable in all respects to the type of some other animals, and, therefore, he regards the inner layer as the entoderm. In the development of the hud, the antodermal cells seem to push into a certain thickened portion of the ectoderm, and form a part at least of the wall of the alimentary canal.

Salensky (11) abso states that the outer layer of the zodecimen (cystid) gives rise to the lophophore and to the internal cells of the digestive tract, while the inner layer becomes the lining epithelium of the new polypide. He belicves that the entoderm of the alimentary ranal originates from the ectoderm of the zoecium.

1Laddon (3) who studied the gemmation of some marine Polyzoa, came to the conclusion, on theoretical grounds rather than from aetual ohservation, that the alimentary canal is derived from the entodermic tissue of mother polypides.

To the position and the order of budding, the previons workers seem to have paid but little attention, except Brem who dwells on the matter at some length. To this author we owe much of the exact knowledge of the process of budding. As will directly be seen, the process of budding takes place at certain definite polyzooids and in a rertain definite manner, thus determining the shape
of the colony so characteristic for each species. What Brem describes for Cristatella on this point does not apply in all its details to the present species.

At the place where buds appear, there is mo muscular layer, as already ohserved by Nitsche, and the endocyst may here be represented as consisting of only two layers, viz. the outer cell layer aud the inner lining epithelimm. The latter in direct comtart with the former, passively follows all the changes in form undergone by the outer layer of the endocyst. So. it must be horne in mind, that when in deseribing different stages of budding, the changes of the onter layer (which is the imner layer of the bud as will be seen further on) alone are mentioned, similar changes are rejeated by the lining epithelium (the outer layer of the burd).

At first, some cells of the outer layer push their way inward in the form of a solid knol, covered by the lining epithelinm (fig. 57 . Pl. XX). At a certain observel stage in which the knob consisted of eighteen cells, many more were on their way of entering.

A cavity ultimately appears in the centre of the kuob (fig. 58, Pl. XX.) and the cells armage themselves regularly around it in epithelial order. The eavity soon comes to communicate with the exterior by means of a canal formed by the gradual ratreat of cells at that part (fig. 59. Pl. XX.). The had now represents a double-walled sac whose inner and outer layers are respectively continuations of the outer and inner layers of the endocyst. Thas it is plain, that the had originates not by direct invagination of the two layers of the endocyst, but by the formation of a closed sac which recondarily opens out ward.

As the bud grows in size, it inclines downwards and its oral side is connected to the conereial wall aloug its whole length by a me-sentary-like membrane which is the contimation of the lining epi-
thelium. A glance at fig. $56, \mathrm{Pl} . \mathrm{XX}$. will make this clear. The middle portion of this mesentery-like membrane becomes thinner, and is fimally perforated as shown in fig. $\mathrm{j}^{7}, \mathrm{Pl}$. XX. The sac is then joined to the cystidal endocyst at two points, viz. at its opening and at the hottom. Rudiments of new buds are produced in the region lying between these two point,, which separate more and more from each other.

The solid rod-like part of the lining epithelimu which now joins the hottom of the sac-shaped bud with the cystidal wall, is the rudiment of the funiculns. It gradually lengthens, and a lumen is secondarily formed in it, turning it into a tubular organ. It grows in size, and with the early apparance of scanty muscular fibres inside its cavity the development of the fumionlus is complete. Thus the result of my ohervations on the formation of this organ seems to agree essentially with that of Bram (2) who describes the process in the following words: "In der Mediane arhoboln sich die Zellen des :iusseren Blattes in Gestalt einer an der Oralseite der Primiirknosp" herablaufenten Laingsleiste, welche seitlich von den Fortsetzungen der Magenfalten begrenzt erscheint. Indem sich die Zellen des Kinospenhalses damn nach vorn muschlagen mod an der Pildung des Tnteguments betheiligen, liost diese Leiste sich ron dem Muttergewehe, welches hinter ihn zusammenfliesst, als selhststandige Strang los ond verdindet cinn oral mand median vor dem lrimairknowe gedegenen Pount der Laibeswand mit dom Grunde des Knospensarkes."

A constriction is formed in the middle part of the sac-like but, dividing it into two chambers. The constricted opening is the month of the future polypide, and the lower chamber developes into the alimentary canal. The upper damber becomes somewhat conical in shape tapering toward the orifice of the but. At the hasal dise of
this chamber, where the mouth is situated, the cells of the inner wall are prismatic while elsewhere they are flat.

We now recognize all the parts that we have seen at a certain stage of intrastatoblastic development. The lophophore with its tentacles, the nervons system and the intestine, all develope just in the same way as described in the previous chapter. One important difference exists in this, that in the one case the lining epithelium is produced from cells of granular mass, while in the other it is the result of the increase in extent of the same layer of the mother cystid. It will be noticed from above statements, that the entire inner layer of the alimentary tract is derived from the solid knob sunk in from the outer layer of the endocyst. The hollow process (the intestine) sent up from the stomach meets with and opens into a pit sent in from above outside the tentacular area, on the side turned toward the centre of the colony. The lophophomal arms of every individual always project toward the anal side of the polypide ; consequently they are all directed toward the centre of the colony.

While new polypides are thus being developed, their cystids are also growing in size, and some cells of its lining epithelimm gradually give rise to the muscular layer. At first, when the young polypide is still represented by a simple sac, the portion of the mother conorcium around its orifice is only slightly elevated above the rest of the wall, but as the growth of the polypide adrances, it becomes more and more prominent, growing in such a manner as to form at last a cell for the young polypide.

The retractor muscles of the polypide begin to appear when the bud is still a simple sace, shortly after the formation of the rudimentary fumiculus. At the point of junction of the rudimentary polypide and the canœcium, some cells of the lining epithelium becomes differen-
tiated from the rest by assming a spindle-shape. These cells gradually separate from their mother-hayer and form two loose bumfles which join the cunociam with the middle portions of the now twochambered bud. The parieto-vaginad muscles also originate in a similar way. but at a comsiderably later stage, when the lophophore already shows a certain number of knols-like tentacles at its median portion. Thus, in the process of budding, both the funiculus and the muscles are develnped as differentiations of the lining epithelimn.

The young polypide as it first evaginates, is a very pretty little animal with less that thirty tentacles. The more medianly situated tentacles are best developed, while they are yet knob-like nearer the tip of the lophophoral arms, where new tentacles are being added by degrees.

The buts arise ou the marginal crenocial branch alone, on the side facing away from the centre of the colony, i.e., on the oral side when we take the polypide into consideration. They always develope in pairs, one on each side of the median plane. Hence the dichotomy of the counccimm, with a polypide-bearing branchlet at each axil. The colony as a whole is consequently fan-shaped at tirst. With continued budding. it grows toward the periphery, its radius lengthening in arithnetical, and the marginal line in geometrical ratio. The two extremities of the latter soon tonch each other in a complete eircle ; after this the growth of the colony throws its marginal line as well as it, hitherto flatly expanded surface into folds, which make the regular arrangement of polypides murecognizable at a glance.

The uper series of diagrams in fig. $6 \pm$. Pl. XX, show early stages in the derelopment of a colony, each circle indicating an individual. These figures represent for sake of simplicity each individual as giving off' only two buds at a time, and each of these buds again performing gemmation after some time. In reality, however,
such is not the case. On the contrary, we usually see in an actively budding individual at the margin of a colony, not only buts of the first order but also those of second and third order already forment. Buds of the first order are present, as already stated. in a single pair, while those of the second occur in two pairs, and the nest wrder, the most rudimentary, in four pairs. When the londs of the first order have grown anfficiently to be regarded as new individuals, those of the second and the third order orcupy the grade of the first and the second order, while those of the third order arise anew. A comparison of the lower series of diagrams in fig. 6% with the upper -eries will hetp to make the matter clear. The backened pots in the bower diagrams show the gemmiparous portion of the endocyat. This spot might apporniately be compared with the growing point of plants. With the growth of the colony, it alvances centrifugally, splitting dichotomously at regular intervals. In this way, the colony grows as long as the condition is favorable.

It need scarcely be printed out that the development of the first polyzorid in a statoblasi cssentially agrees in process and condition with that of later polyzaiiids loy means of budding. In fact the first polyzouid is similarly buded off from the statoblastic contents, the whole of which is to lee seen in the light of a primary cystid derived of and contaning all the cesential elements of cy:tids of the previons year. Whereas in marine forms the cystids winter as such, those of fresh-water forms persist only in the form of statol) asts to germinate in the following year as do the peremial cystids of the former. In the bodding of fresh-water Polyzoa, a cystid and a polypide are formed simultaneonsly and an intrastatoblastic primary cystid is to
be considered as a particular sort of bud in which the formation of a polypide remains latent until the next year.

With regard to relations ef germinal layers in a primary cystid, all the granular cells of the "Bildungsmasse" might with propricty be called the mesoblast on grounds of their genesis and of their future history. For the same reasons, the enveloping epithelium might be looked upon as the ectoblast except at the growing point, i.e. where the buds are formed. At this point the cells are still in undifferentiated embryonal condition comparable to cells of a blastula which differentiater into Ectoblast and Entoblast for the first time at it* invagination. As the colony grows, the growing point of the primary cystid is split and transmitted into each sncceeding bud, ver. much like the growing point of a plant; in other words all the growing points seen in marginal polyzoiids of a polyzoan colony have started. I believe Bram is of the same opinion. Considering, on the contrary, the onter hay of the ectocyst at the growing point as strictly epiblastic, the conclusions, to which Nitsche, Joliet, Salenskr, de. were led. that no hypoblast enters into the bud and that it is formed as a secondary product of the epiblast, are certainly mavoidable. But such a conclusion does not accord, as was pointed out by Haddon, with the generally accepted nature of budding in the animal kinglom. In my opinion the budding in Polyzoa is only so far exceptional as the Epiblast and hypoblast take part in an modifierentiatod embryonal condition.

Works referred to.

1. G. .J. Allman.-A Monograph of the Freshwater Polyzoa. 18 an6.
$\xrightarrow{2}$. Fr. Bram.-Untersuchmgen iiber die Bryozoen des siissen Wassers. Zool. Anz. XI. 1888.
2. A. C. Haddon.-On budding in Polyzoa. Quart. Tourn. Mic. Sc. XXIII. 188:3.
3. B. Hatschek.-Embryonalentwick. n. Knospung 1. Pedicellina erhinata. Zeit. f. w. Zool. XXIX. 1877.
4. A. Hyatt.-()hservations on Polyzoa, Suborder Phylactolamata. 1865.
5. L. Jolict.-Orgatue segmentaire des Bryozoaires endoproctes.

6. E. Metschnikoff.--Bull. de l'Acal. de St. P'ítersbourg. XX. 1871.
7. H. Nitsche-Beitrige zur kemontniss der Bryozen. Keit. f. w. Zool. XXV. Supl. 1875.
8. IV. liemhard.-Zur kemotins der Siisswasser-Bryozoen. Kool. Anz. III. 1880.
9. A. Suffigen.--1) an Nervensystem der Phylactolemen siiswasser Bryozoen. Zonl. Anz. XI. 1888.
10. M. Nalensky.-Études sur les Bryozoaires endoproctes. Amm. des Sc. Nat. 19 sér. Zool. V. 1877.
1थ. M. Verworn.-Beitrage zur Kenntuiss der Siiswasser Broyzoen. Zeit. f. w. Zool. XLVI. 1888.

Explanation of Plates.

Plate XVII.

L'i.j. 1. A small group of colomier. nat. size.
Fig. i. A polypide. $\times 10$.
fig. 3. Shape of the conuecial endocyst.
Fig. t. Diagrammatic representation of a polypide and a pertion of the cerncecial endocyst.

Tent. Tentacles. Epist. Epistome.
N. (iang. Nervons ganglion.

Oesoph. Oesophagus.
Invag. tube. Invaginable tube.
Orer. Uvary. Stato. Statoblant.
M. I. Muscles of the fimiculus.
M. II. Parieto-vaginal muscles.
M. III. Retractor of the polypide.
M. IV. Muscles of the gastric wall.
M. V. Mnscular layer of the endocyst.
M. VI. Muscular fibres of the epistome.

Nephr. Nephridia. Loph. Lophophore.
Tent. membr. Tentacular membrase.
Fiag. is. Statoblast. a. Front view. b. View in profile.

Plate XVIII.

Fig. 6. Cells in the ectocyst. $\mathrm{F} \times 2$. .
P'ig. \quad. Section of the endocyst. $\mathrm{F} \times 2$.
Out. lay. Onter layer.

Bas. nembr. Basement membrane.
Tr. mus. Transerse muscular fibres.
L. mun. Longitudinal muscular fibres.

Lin. epith. Lining epithelium.
Yac. Vacuole.
Fig. S. Longitudinal section of the epistome, with the gamglion and the excretory organs. $\mathrm{B} \times 4$.

Gang. cav. (ianglinn cavity.
Fiig. 9. Cells of the upper half of the usophagus. $\mathrm{F} \times 2$.
Fig. 10. Cells of the lower half of the asophagrs. F $\times 2$.
Fig. 11. Section of the cardiac valve. $\mathrm{B} \times 4$.
Fiig. 12. Cross section of stomach.
Fiy. 13. Cells of the inner layer of the gastric wali. $\mathrm{F} \times 2$.
pyr. c. pyramidal cells.
cl. c. club-shaped cells.

Hiy. 1t. Cells of the rectum. $\mathrm{F} \times 2$.
Fiig. 15. a. Diagram showing the extent of the mesentery.
b. Section of the mesentery. $\mathrm{D} \times 2$.

Hig. 16. Cross section of a tentacle. $\mathrm{F} \times 2$.
Fig. 17. Longitudinal section of the tentacle. $\mathrm{F} \times 2$.
Fig. 18. Diagram showing the base of tentacles.
Fiy. 19. Diagram showing the direction of the currents of the perigastric fluid.

Fiig. 20. Cells floating in the perigastric fluid. $\mathrm{F} \times 2$.
Figs. 21, 2: $23,2 \pm, 25,26$. Sections at various levels of the upper portion of a polypide. 13×4.
Figs. $21 A, 22 A, 23 A, 2 \pm A$. Sections of the excretory organs. $\mathrm{F} \times \because$.
rig. 26 bis. Entire form of the excretory organs.

Plate XIX.

Fig. 2\%. Nervous ganglion.
Fig. 2S. Saggittal section of the gatuglion. $\mathrm{E} \times 2$.
Fig. $29, a, b, c$. Diagrammatic Sections of the ganglion, showing the extent of the ganglion eavity.
", sagittal, l, horizontal, c, frontal, sections.
Fig. 30 . Cross section of a lophophoral amm. D) $\times 2$.
Fig. 31. C'ross section of the funiculus. $F \times 2$.
Fig. 3\%. Longitudinal rection of the upper extremity of the funi(alus. 1$) \times \underset{\sim}{2}$.
Fig. $3: 3$. Longitudinal sertion of the lower extremity of the fanicultus. I) $\times 2$.

Eig. 34 . Section of Uvary. $\mathrm{F} \times 2$.
Fiy. 35 . Marginal spiue of statoblast. $\mathrm{F} \times 2$.
Eiy. 36 . The Linceloping cell-layer of the statoblastic content. $\mathrm{F} \times 2$.
ligs. 37 - $-5 . \quad$ Varions stages in the development of the statoblast. $37-39 . \mathrm{F} \times 2.40 . \mathrm{I} \times 2.41-45 . \mathrm{B} \times 4$.
Fun. Funicular wall. Cyst. c. Cystogenous cells. Or. m. Granular cell-mass. Caps. chitinous capsule. Env. m. Enveloping cellular membranc.
Fiu. Ho. Section of a mature statoblast. $1 ; \times 4$.
L'iy. L6A. A portion of the statoblastic content. F $\times 2$.

Plate XX.

Figs. t\%-5\%. V'arions stages in the development of Polypide in the statoblast. $\mathrm{B} \times 4$.
Prim. l. Primitive lumen.
B1. c. Floating cells.

L'igs. L\%A, t8A. I'ortions of the statoblastio content in the stages correspming to Figs. 47 and $48 . \mathrm{F} \times \because$.
Fily. j̇. Floating cells. F $\times 2$.

57-60, 13×4.
Fig. 61. Diagrams showing the mamer of bulding. The Roman mumerals show the order of the individuals.

On Diplozoon nipponicum, n. sp. ${ }^{11}$

by

Seitaro Goto, Rigakushi. Post-graduate Student in Zoology, Imp. Univ.

With Plates XXI-XXIII.

Since Diplozoon paradoxum was first discovered and described by v. Nordmann, ${ }^{2}$) it has been made the object of special investigations by many eminent naturalists. But our knowledge of the anatomy and especially the histology of this interesting genus, hitherto with but a single species, is, notwithstanding the publications of Paulson, Zeller, and others, by no means as complete as could be desired. I have, therefore, undertaken, at the suggestion of Prof. Ijima, to subject it to a renewed investigation. I at first believed that the .Japanese species was identical with the European ; but as I went on with my work, many points came to view, that made me doubt this identity ; and a close comparison with some preparations of the European species taken from Leuciscus rutilus, and brought hack from Germany ly Prof. Ijima, has led me to erect it into a bew species, for which I propose the name of

Diplozoon nipponicum.

Before proceeding any firther, I must here diwharge the pleavant duty of acknowledging my deepest obligations to

1) This paper was originally presented as a graduating dissertation.
2) Nordmann-Mikrographische Beiträge. I. Heft. 1832. p. 56.

Professor Ijima, already named, not only for constant supervision of my work, but also for lending me his books and preparations pertaining to the subject at haud. He has also handed over to me his unfinished manuscript, in which the anatomy and external features of many ectoparasitic Trematodes have been made out to a great extent —a circumstance for which I here express my warmest thanks.

Dipl. nipponicum is very common on the gill of Carassius vulgaris. Its differential characters as comparel with Dipl. paradoxum are 1) the smallness of the posterior suckers, 2) the greater length of the posterior half of the body, 3) the shortness of the "connecting canal" between the intestine and the oviduct, 4) the presence of a pair of glands at the entrance of the mouth, and 5) the fact that the intestin, does not present lateral branches in the posterior portion of the body.
"Comment la réunion des Vers, a-t-elle lieu? sont-ils réunis comme les frères Siamois, on bien sont-ils croisés comme les deux jambes d'un X ?' By the investigations of r . Siebold ${ }^{11}$ and Zeller, ${ }^{2)}$ it has been established heyond doubt that the double animal results: by the union of two Diporpae in the form of a cross-a fact which had already been anticipated by Dujurdin" their discoverer. The manner in which the two individuals are mited, and the details thereof have already been made ont by Zeller, who has also discussed the various opinions of his predecesors, and corrected their errors. I shall however, add a few remarks on some points not noticed by him, some of which are perhaps peculiar to the new species. Fur examining the external features of the worm, as well as for other purposes, it is best to kill it with boiling sublimate, in a watch-glass in which just sufficient water has been placed to cover its body. The worm which

[^15]has been killed in this way, preserves a matural position corresponding to its condition of rest, and can be examined when convenient.

Each individual, if considered separately, is elongated and hanceolate in form, with a heep, notch on one side a little posterior to the middle of its whole length, by means of which it is united with the other individual ; so that we may hereafter speak of the anterior and ponterior halves of the body. The anterior half is widest near the phace of mion, and becomes narrower anteriorly, where it ends with a romided ontline, and where the month is situated on the ventral side. In cross-section it presents an oval ontline, which gradnally becomes more circular as we proceed anteriorly. If the worm has died in a contracted state, the surface of the body is thrown into numerous transverse folds; otherwise the surface is entirely smooth, except where little conical elevations, hereafter to be described, exist. The posterior half may briefly be described as an elliptic cylinder in the anterior portion, which, posteriorly, passes irregularly into a rectangular prism. It is also much slenderer than the anterior half. Seen in profile, the surface of the posterior portion is always, in specimens killed with hot sublimate, thrown into a number of strong folds, due no doubt to the powerful development of the diagonal muscular fibres in this region ; so that here the margin is deeply cremate or even zig-zag (PI. XXI, Fig. 1). A cross-section through one of the posterior zig-zag folds presents nearly a rectangular outline. The folds suddenly come to a close at a short distance before the beginning of the posterior suckers. In this portion the crosssection presents: a tlattened ellipse ; and this part is, on surface view, distinctly marked off from the sucker-bearing portion which directly follows it, and still more so from the strongly folded more anterior portion, by a sudden change of level (Fig. 1). The lateral margins of this sucker-bearing portion are suddenly thickened on the ventral
side, so that a cross-section through it is somewhat m-shaped. Under the pressure of a cover-glass, this portion assumes a somewhat wal form-a circumstance which probably induced 1 . Nordmann ${ }^{1)}$ and Pauls:m ${ }^{21}$ to indicate it as an oral "Scheibe." Van Beneden" further speaks of " 131 pédicule" by which the "deux organes", which carry the suckers, are attached to the body ; but I have not observed any such structure in my species, and it is probably due to a deformation cansed by pressure and the extreme molility of this part. The posterior margin of the body shows either a nearly straight line w, more commonly, a slight concavity (Fig. 2). ${ }^{4}$ Toward this concavity, the body again becomes thicker, the thickening beginning this time in the median line, and thence spreading toward the sides, as indicated in Fig. .2, where the shading is made as if this portion were seen from the ventral side. (In a longitudinal section, therefore, which does not pars through the lateral suckers, the body is seen to present posteriorly a clab-like thickening, and end sudlenly as if it were cut off. Vim Beneden speaks of an "exaration plas ou moins profonde," by which he no doult means the hollon, just spoken of, between the suckers.

The peculiar sudden bend (Kuickug) towards the ventral side, which the body of the worm suffers at the place of crossing, has already been noticed by Zeller. There in, however, another feature not observed by him. If the worm. namely, is viewed from the posterior end, or if sections of this part ate cont. it will casily be noticed that the bodies of the two individuals do mot stand exactly opporite each

[^16]other, but that one is alwass a little either to the left or to the right side of the other, acording the woms are mited loy the corres pomling silles of their bodies. This fature is usmally leso moticeable in the anterior halses, hat it can eanily be bronght to view by bringinge them close to each other. It is cameen, bo donht, by the fact that the loodies of the two individuals are closely mited only at the point of crossing ; an may leseen, if one places two pieces of straw against each other in the form of a mons, ant prases them together between two fingers at ha print of amsing. besile this imperfect apposition of the correspoming halve of the two indivihatis. monst alon be noticed the twist, to which earh in sulpecter at the place of crossing, in consequence of the fact that one graspo with its ventral sucker the dorsal papilla of the other. To this twist, thomigh very small in degree owing to the presence of the notch already mentimed, must be attributed the common ocemrence that, when the whem is killed moler the pressure of a cover-glass, the anterior and posterior halves of the same indivilual present to view ophmite sides of the body-the anterior half presenting the tomal if the ather half presents the ventral side, ant vice cerse. The lwo individnals are united with each other by their sides, so that here a deep indentation arises--the notch alrealy spoken of. Here the cpidermis is absent, and the muscolar layers of the two imdividuals are directly applied to each other. Zeller describes a direct ammection between the vas defirems and "Laurer"s canal" of the two individnals ; but a careful examination has convinced me that this view is erronens. I fiml Lanter's canal to open distinctly into the intestine, and the vas deferems of one individual into the yolk-duct of the other, as will be proved later on. In this connection, it may be mentioned that the same writer thinks the Diporpa incapable of "eine noch weiter gehomle Eutwicklung ohne dass zuror die Copulation mit einer zweiten Diporpa zu stande gekommen
wäre." ${ }^{1)}$ But last summer I met with two Diporpae which were already producing eggs, but which were not united. They were attached to the same gill very uear to each other. They were quite as large as any average Diplozoon, and measured about 6 mm . in length in a completely outstretched condition. ${ }^{29}$ (They were provided with four pairs of posterior suckers, but there was wo trace either of the ventral sucker or of the dorsal papilla. In place of the ventral sucker, the longitudinal muscular layer was very strongly developed in the corresponding part; and the body shewed a sudden increase of breadth just auterior to the anterior end of the ovary, looking as if this part were bandaged. I have used the utmost care in detaching the worms from the gill, inasmuch as I carefully scraped off the gill-slime with a spatula, avoiding as much as possible any direct contact with the worms. The Diporpae in question were observed to be quite independent of each other from the moment they were detached from the gill ; uor have I been able to detect any mechanical injury, or the notch by which they might have been united to each other ; so that the chance of their being detached Diplozoon is, I believe, almost entirely excluded. Such a case of isolation is of course exceptional ; but it shews that the Diporpa cau, under certain conditions, become mature without uniting with another Diporpa.

It would have been interesting and instructive could I have determined where, in this abnormal case, the vas deferens opened. But unfortunately, owing to my inexperience then, I killed both the Dipurpac under the pressure of a cover-glass and prepared them for gross mounting ; and when I afterward cat one of them into sections,

1) Zeller-1. c. p. 176.
2) The size of the common Diporpa varies according to its stage of development. Dujardin gives it as $0.26-0.56 \mathrm{~mm}$. in length and $0.1 \mathrm{~s}-0.35 \mathrm{~mm}$. in breadth (l. c. p. 317). A specimen of the Diporpa of Dipl. parapoxum lent me by Prof. Ijamand possessing three pairs of suckers measurel about 0.6 mm . in leugth. 'Ihat of Dipl. nipponicum of the same stage is of about the same size.

I could no longer trace the course of such a delicate canal as the vas deferens.

Remark:-In Prof. Ijima's mannscript I find the following passage which I have his permission to publish.
"Ich will mir endich norh eine Bemerkung iiber die von Heller ${ }^{1)}$ beschriebene Monstrositiit erlanben. Dieser Forscher lïsst, obschon ihm das Verhältuiss des Cupnlatio luteralis decussata (Siebold) nicht fremd blich, sein interessantes Exemplar sich dadurch erkliaren. dass die Verwachsung der heiden Diporpen sich iiber die ganze vordere Kärperhalfte amsgedehnt hätte. Panlson, der sich iibrigens mit die Ansicht Leurkart's theilt, dass die Diporpen einfach mit Bauchfäche zusammenhängen, hebt die Unm̈̈glichkeit des Zustaulekommens jener Monstrosität durch Copulatio lateralis decussata hervor, mud nimmt an. es handele sich nm eine Misshildung per lefectum eines Diplozoons, bei welchem sich einer der Vorderleiber gar nicht entwickelt hätte. Dabei kam er sche wah an die richtige Interpretation der Heller' schen Monstrosität, dic meiner Ueherzengmg mach, nichts anderes sein kam, als eine Diporpa, nicht Diplozoon, mit in doppelter Anzahl angelegtem Schwanzende, also cine Misslithung par adjectum. Dies darf man nicht $W_{\text {F m m }}$ mehnen, denn wir wissen zahlreiche Faille :ahlicher Misshidangen unter den l'amarien. Ich kemue velbst vinen Fall von ganz jungen, eben ansgexchlipftem I bendrocelum lacteum mit zwei hinteren Hälften, deren je cine einen Mund und einen Pharynx besitzt."

I shall now proceed to the consideration of the various parts.

[^17]
I. The Epidermis.

The nature of the integmment of the Trematodes has been varionsly represented by varions anthors. This subject I hope to discuss more fully in a later work which shall treat of our ectoparasitic Trematodes in general. Zeller") tells us that if no occasion is offered the embryos to attach themselves to the gill, "schon nach Verfluss von 5 Stunden (after the embryos have left the egg) einzelne der. Wimperzellen reissen sich los, bald mehrere und schliesslich alle. flomnern aber auch abgetrennt noch eine Zeit lang fort." The embryos finally die. It is not clear from his statements whether this throwing off of the "Wimperzellen" is a normal process or not. In P'olystomum he merely says that they "schrum]fen," hut does not hescribe their exact fate. In the case of Distomum, however, it has been proved by Bhwarze" and Bichringer ${ }^{3}$ that the so-catled "conticula" consists origimally of cells which undergo one by one a pentian transformation, and which do not at any time possess the typical mithelial arrangement. After the first rough manuscript of these pages had been finished, I received the article of Bramat) in "Centrhl. fiir Bakteriologie n. Pamasitenkmode," in which the writer hrings forward some strong and interesting evidences as to the epidermal nature of the integament. In view of these facts established by the preceding investigators, I believe I may regard the integument of the monogenctic 'rematonles as a modified epidermis.-. the more so from the consideration that it has a distinct cuticle and

[^18]sit.s on a hasement membrane. An embryological study, however, of the transformations which the original epidermis undergoes is, as Bram maintains, very desirable.

The integment of Dipl. nippomirmm is composed of two layers, the cuticula and the underlying matrix. The cuticul:t, when examined in a living worm, is a very thin, structureless, refractive membrane. In sections of hardened specimens it appears as an insignificant line bounding the subcuticular (=epidermal) layer against the external world. It is very well seen in a living specimen which has been allowed to macerate in water for some time under the cover-glass. Numerous watery blisters then form in the epidermis. and separate the cuticula from the underlying layer. The former can then be examined as a sejarate structure. Transverse canals have been described in the cuticula of many Trematodes, but I have not observed any in the new species. The cuticula is reflected inward for some distance into the mouth.

Dirertly under the cuticula lies the epidermal layer, a uniform, gramular matrix in which no nuclei are to be observed. I believe I have observed indistinct dark lines traversing the breadth of this layer but not quite reaching the cuticula. The epidermal layer, like the caticula, is continued into the cavity of the mouth, and the sticky glands hereafter to be described (p. 166) are but local modifications of it. Wierzejski" describes the "Hant" of Culicotyle Kroyeri as consisting of " einer feinen Cuticnlarschicht mit den darunter liegenden kleinen, runden Matrixzellen "; but judging from his figure, I believe he has mistaken the nuclei of the connective tissue for his "Matrixzellen." The epidermal layer rests on a basement membrane, which eagerly takes up coloring matter, and is very conspicnons in cross-

1) Wierzejski-Zur Kenntniss des Baues von Calicotyle Kroyeri. Ztschr.f. wiss. Zool. Bd. XXIX. 1877. p. 552.
sections as a dark line with indistiuct lorders, separating the epidermal from the muscular layer. It is also much thicker than the cuticula. The total thickness of the integument, with the cuticula and basement membrane taken together, is about 0.004 mm .

It has already been mentioned that little conical elevations exist here and there on the surface of the body. These are more abundant on the ventral than on the dorsal side, and are entirely absent in the posterior half of the body. They are simple elevations of the epidermis with an almost homogeneous mass of connective tissue under it. Here the muscular layers do not touch the basement membrane, but pass straight on ; so that these elevations are somewhat subject to changes of form. I have represented one of them in section in Fig. 7 (PI. XXII). As will be seen, they are pointed at the end. A very similar structure has heen described in Sphyramura Oslcri, ${ }^{1)}$ where it seems to act as a semse organ. But although I directed my special attention to the point, and applied the highest magnifying power at my disposal (Zeiss Imm. L..), I could not discover any canal opening at the apex. or any hair-like projection, or any fibrils such as have been observed in the above-mentioned species to supply these conical bodies.

II. The Muscular System.

The muscular sistem is contituted ly monsular wall of the body, the dorso-ventral muscles, and the mascles pertaining to the various organs.

The muscular layer of the body consists of three layers. These are, comited from outside inwarls, the circular, the diagonal, and the longitulinal muscles. The rircular fibres run everywhere immediately

[^19]beneath the basement membrane. They run isolated without forming bundles. This layer is most strongly developed at the anterior extremity of the body in the region of the anterior suckers, and inmediately anterior to them, especially on the ventral side (Fig. 9), where its thickness amonnts at some places to 0.01 mm . In the posterior part of the borly it is very weakly developed, and in the region of the posterior suckers the fibres are very difficult to detect.

Closely applied to the circular layer of muscles run ihe second or diagonal fibrew (Fig. 10). In the anterior half of the body these, like the transverse fibres, run isolated without forming bundles; and those coming from opposite sides of the body cross each other at an angle of nearly 120°. In the posterior half of the body, this layer is strongly developed in the region of the folds already mentioned, where the fibres run in flat bundles and close to one amother. According to Taschenberg, ${ }^{1)}$ the diagonal fibres are situated iunermost in Tristomum ; but in all the species of ectoparasitic Trematodes I have hitherto examined, viz., in Microcotyl', Axine, Octobothrinm, ${ }^{2}$ Dactylogyrus, and a new genas not yet named, the diagonal fibres are situated between the transverse and lougitudinal muscular layers. Lorenz, ${ }^{3)}$ who includes the transverse and diagonal muscles under one head, also places the "zairteren Fasern" (by which he means the two sets of muscles just mentioned) outward ; and an examination of the sections of $T r$. molae, kindly placed at my disposal by Prof. Ijima, has convinced me of the crror of Taschenberg, oceasioned perhaps by the circumstance that in Tristomum the longitudinal fibres describe a

[^20]curve in the lateral portions, corresponding to the circular or oval outline of the worm. The same writer did not observe the diagonal fibres in Onchocotyle appendiculata and I'seudocotyle squatinae ${ }^{1)}$; but since they are present in all the species I have examined, they were probably overlooked by him.

Internal to the diagonal muscle. and separated from it by a greater or less amount of connective tissne, run the longitudinal muscular fibres in parallel bundles of greater or less strength. They are more strongly developed on the ventral than on the dorsal side of the body, as is nsual in most Trematodes, and cause a slight curve of the body on the ventral side when the worm is killed with hot sublimate. The fibres that constitute the bundles are but loosely united together by connective tissne, and form by no means such compact muscular bundles as we see in some other Trematodes. They appear in cross-section as dots, separated from one another by a greater or less amount of comnective tissue between. Some of the fibres of a bundle often diverge from their previous course, and enter into the formation of a neighboring bundle. Most of the longitudinal fibres combine toward the posterior part of the body to form a certain number of strong bundles, which proceed posteriorly. and are inserted one to each sucker on the melian chitinous piece of the posterior wall (Fig. 5).

The dorso-ventral muscles (dvm in Figs. 11, 13, 16. 24) are well developed. Each mascle generally breaks up into a few branches dorsally and ventrally before being inserted into the basement membrane. They traverse the brain, vitelline body, and other internal organs. In longitudinal (sagital) sections of a specimen, in which the vitelline hody has not yet well developert, the dorsoventral muscles are seen to be placed at pretty regular intervals. In

[^21]specimens with fully developed vitelline body, these muscles are obscured to a great extent.

III. The Organs of Attachment.

The organs of attachment are constituted, posteriorly by the four pairs of suckers already mentioned and a pair of hooks, and anteriorly by a pair of suckers and sticky glands. Each posterior sucker (Figs. 3, 4. 5) may briefly be described as a short-ovate, flat bag with it, wide month directed ventrally, its walls very thick, and the line of its greatest breadth directed tramsversely to the long axis of the body ; so that we may speak of the anterior (aw), posterior (pw), and lateral walls. The first two walls are very thick, and are directly continnons with each other at the bottom of the bag (Figs. 4, 5). The lateral walls are very thin, and seem to consist of a cuticula-like refractive membrane only. The entire structure is supported by a framework of chitinons rots, which are by no means so mmerous or complicated as Nordmann has represented them. They are five in mumber : a U -shaped median piece (pm), a pair of curved pieces (ppa), (resembling in form certain fishing-hooks), tw support the anterior wall, and a pair of similar pieces (1 pp), with a large process (1 p) at the base, to support the posterior wall. Having thas given a general idea, I stall now proceed to the exptanation of the three figures already referred to, by which I hope to make clear the structure of the suckers. Fig. 3 represents the chitinous rode as very commonly seen in a specimen observed under the pressure of a cover-glass, with the mouth of the sucker directed below in the figure and the rods belonging to the anterior wall shaded more deenly. Fig. 4 represents a section made in the direction indicated by the liue ab in Fig. 3, whereby it is to be remarked that the median
piece has been cut nearer the fundus of the sucker. This section shews the thickness of the anterior and posterior walls, as well as their fibrous structure. The prismatic fibres, of which these walls are composed, are strongly refractive, and are scarcely colored by haematoxylin. They seem, therefore, not to be of the same nature as the muscles of the body; these being well stained by the same coloring fluid. In fact, they seem to be not contractile but elastic fibres. The supporting rods are all of them hollow, with, the inner surface, however, not quite smooth, but with irregular projections, which sometimes unite with those of the opposite side, and form septa-like partitions (Fig. 3). The paired rods are somewhat triangular in section, and are imbedded in their respective walls along the margins. The rods of the posterior wall are articulated at their bases each with another piece (pp), which is imbedded in the substance of the wall, and imparts greater strength to it-a fart well in accordance with the circumstance already mentioned that the main bundle of muscle is attached to this wall. Fig. 5 represents: a section made in the direction indicated ly xy in Fig. 3, i. e., in an antero-posterior direction. In this section, the direct continuity of the anterior and posterior walls is clearly seen ; the U-shaped median piece has been cut but in part. as also the extremities of the paired pieces at the entrance of the sucker. The median piece exhibits, in the posterior wall, a deep cut, where the main bundle of muscle is attached for controlling the raried movements of the sucker. Beside this bundle, weaker ones are attached to the paired pieces. The fibrous substance of the wall is boumed by a cuticula both against the external world and the surromming mesenchyma. The supporting rods are very easily broken into fragments when the amimal is subjected to tor much pressure : and this takes place pretty regularly in the manner represented by Nordmam. who, however. describes the
fragmentary pieces an "Biigel, zahnformige Vorspriange Rippen, u.s. w." All the pmsterior suckers are of the same build ; but they vary somewhat in size the last pair being always smaller than the antorior ones, ${ }^{1}$, and the first pair very offen smatle than the following t.wo pairs. Measurements on five individuals gave the aremge breadth of the suckers as 0.093 mm .)

Besides the suckers just described, there is, on the dorsal side, a pair of solid chitinons pieces (Fig. 6). Earh piece consists of two parts. The basal portion, to which a sma!l bumfle of muscle is attached, is straight, and ants an a hamdle. To this is articulated a hook-like piece, whose and alone sticks out from the surface of the raticala ; the handle as well as the other part of the hook lying in the integment. The straight hamdle-like portion and the hook constitute a single piece, and not two pieces as v. Benelen ${ }^{3}$ thinks. The total average length of the piece is 0.072 mm .

The anterior suckers are either round or egg-shaped, according to the different states of contraction, and are sitmated right and left at the entrance of the mouth. Like the posterior suckers, the walls (Fig. 9) are composed of prismatic fibres plared at right augles to the investing membane. which lines the whole internal cavity, and bounds the wall from the sumounding mesenchyma. In cross-section, the sucker is generally circular in ontline. Earl is provided with a number of sperial museles for the control of its mosements in suction. There muscles I have represented in Fig. 12, where there will be seen three bundles coming from the dorsal side, two of which are attached to the anterior border of the sucker, and the remaining one to the

[^22]posterior ventral border. A bundle, which soon divides itself into two smaller bundles, proceeds from the ventral side, and is attached, one of the branches to the same point as the posterior dorsal bundle, the other branch a little more ventrally and anteriorly. Two weaker bundles start, in addition to the alove, from the upper and lower lips of the mouth, and are attached to the corresponding borders of the sucker. I have observed some of the fibres of these various bundles directly continued through the substance of the wall, and inserted on the cuticula that lines the cavity of the sucker. By the combined action of these muscles, the worm can exercise a strong suction on the gill of the host, and extract its blood.

Besides these suckers, there is a pair of glands at the entrance of the mouth, just anterior to the suckers, which seem to be peculiar to Dipl. nipponicum. They can be seen well in a living specimen under the cover glass, or in preparations of the entire worm, as a round, paired body. One of them is seen in section in Fig. 8, which shews it to be a gland formed by the invagination and local modification of the epidermis. It has generally a reniform cavity, which opens into the mouth by a canal, just anteriorly and close to where the sucker opens into the mouth. The epidermis is continued into the canal for a certain distance, and then changes its character, becoming firmer and refractive like the cuticula. The cavity of the gland is destitute of any distinct epithelimm, but is generally filled with a granular mass, which stains very well. This mass is densest near the wall, and gradually becomes thinner towards the centre, where there is generally an empty space. I have often observed the exit camal filled with a deeply stained granular mass, very similar in appearance to the contents of the sticky glands of Dactyluygrus and other allied forms, and which is donbtless the sticky secretion of the gland. Next the granular content is a basement membrane. The wall is exceedingly
thick and musular. The muscular fibres are mostly arranged meridionally, i. e. if we suppose the rentral and dorsal pole of the glame to correspond to the two poles of the earth, the mavenlar fibres are arranged nearly in the plane of the meridians. Fibres alon come from the dorsal side of the animal, and enter the wall. Between the muscular fibres, I have sometimes olserved unclei, which are to all intents and purpose exactly similar to those of tho general mesenchyma of the body, and probably belong to it.

IV. The Mesenchyma.

Of the mesenchymatons connective tisstle of the Trematodes. Lenckart ${ }^{11}$ distinguishes two forms. Th the first form, the merenchyma consists of a "fast homogene helle mul feimkiimige substanz mit zahlreich eingelagerten kleinen Kernen" : in the seconl form of the mesenchyma, we see \cdot Zellen ron melar ofter minder ansembicher frösse, die mit einer meist wasserleflen Maso wefiallt sind" and generally of a pelyhetral form, with a fibroms net-work between. Taschenberge" regarls the mesenchyma "als ein Bindegewebe, welches zu einem Maschenwerke motwickelt ist, in wetchem die urspring-
 demi Protoplasma mil darin eingelagerten Kernen sich erkemen lassen." All these forms of the mesenchyma, however different they may seem to be with we another, call. in mb opinion, be derived from the differentiation in different directions of : single primitive fom. The strong resemblance of the mesenchym of the Trematodes to the chorda dorsalis of the eertebrater has ahremly been observed ly Leuckart ; and I believe the former is formed just in the same manner as the latter. lint first the mesenchyma of Diplozoon.

[^23]In this tissue are imbedded all the organs hereafter to be described, as also some of the organs already described. Owing to the presence of the ritelline body, the mesenchyma in the anterior half of the body is mainly confined to the peripheral portion, but is also present in a seanty quantity between the lobes of the vitelline body and the cells of which they are composed. When one takes it up for study, he finds great perplexity and difficulty in making out the true nature of the elements that compose it, until he compares it with the mesenchyma of other allied species. In Diplozoon, it consists of a fibrous substance, in which are seen muclei each with a distinct memlrane of its own. These nuclei always enclose one or more deeply stained nucleoli. The nuclei are of various size and shape. In the anterior portion and generally in the anterior half of the body, they are generally of a comparatively small size (Figs. $7,8,9,25$) ; in the posterior half of the body, however, they are generally of a larger size (sometimes having the diameter of about 0.01 mm .) and have a circular or oval outline (Fig. 13). In the vicinity of the internal organs, where the connective tissue is generally more or less compressed, the nuclei are smaller and often fusiform in shape. Around the pharynx, the fibres form a tine close net-work (Fig. 11).

Beside these elements, we see here and there, scattered apparently without any regularity in the parenchyma, large vesicular bodies of a circular or oval outline (Fig. 13), with a large conspicnous nucleus in the centre surrounded by a mass of granular protoplasm, which on close inspection hetrays a fibrous structure, and which gradually thins out peripherally, and leaves an empty space between it and the wall. These vesicular bodies are sometimes drawn out towards one end, and are very abundant in the posterior half of the body, posterior to the testis. In the region situated between the ovary and the testis, the mesenchyma consists of distinct cells with a granular, generally
well-stained protoplasm, of a polyhedral form, and leaving irregular intercellular spaces between (Fig. 14).

In Axine, the mesenchyma is distinctly seen to consist of large, vesicular cells, each with a nucleus generally in the centre, but sometimes attached to the wall, and filled with a hyaline fluid containing numerons almost uncolored granules. The muclens as in Diplozoon, has a distinct membrane, and encloses a deeply stained nucleolns, but is considerably smaller. Beside these cells, there are, as Lorenz ${ }^{1)}$ has already observed, in the neighbourhood of the ragina, cells whose contents take up the staining floid very eagerly and appear like ganglion cells. In Microcotyle, the mesenchyma presents somewhat different aspects in different parts of the body-a statement that holds good to a greater or less extent in all other allied forms. Around and outside the vitelline body, the mesenchyma presents an appearance very similar to that of Diplozoon. Nearer the median line, it consists of large cells with the nuclei in the centre, from which protoplasmic fibres radiate to the wall, whose cavity is filled with a clear fluid without any granule. Along the median line, finally, the mesenchyma consists of cells with a gramlar somewhat fibrous protoplasm which deeply stains with haematoxylin. ${ }^{2}$ Here in Microcotyle, I believe, are manifested the tramitional steps through which the mesenchymatous comnective tissue such as that of Diplozoon has been differentiated from the primitive parenchyma cells. These primitive cells are, I believe, very nearly represented by the cells of the median portion of Microcotyle. The next step on ward toward the differentiation of connective tissue is, according to my view, represented by such a form of mesenchyma as that of Axine, or that portion of the same in Microcotyle situated just inside the vitelline body- composed of cells of a vesicnlar appearance

[^24]anl filled with a hyaline floid. A step further onward in the same direction would result in the formation of abmentat fibres, and the bommiaries of the original cells would be partly absorbed and entirely ohliterated ; so that we shond then have a grombl-mass of irregular fibrous wibstance, with muclei sattered therein- in fact just such a form of mesencherma as we really see in most parts of the body of Diphozon. The large, round, vesionlar hodies alove mentioned (Fig. 13) :ar in fact the remmant cells of the original patencliynat, and the portion, alroady reformed to. sitnated between the ovary and the testis, sems to have madreon but little transformation. and to have preserven the original cednar structure According to the view here -tated. the so-called pembencel of the Trematodes wonld be not spaces formed hey the departing of the cells from one another leaving intereellalar spares between them. but spaces which were hefore truly intracellalar. I do not, inded. chtirely deny the presence of traly intercellnlar spaces, but thes are. I believe. comparatively insignificant.

Similarly, of the two typalame form Lemekart, the first results apparently he a simple obliteration of the bomdaries of the original cells. The rewod form an low derivel hy a prows similar to that which we have seen to has taken plare in Microcotyle, in which some of the cells (the larger resicular ones) have maintaned their cellular matare more completely, while others have been more or less completely transtormed intu connective tiswe and pressed in, forming the "Maschengewebe" between the former: as alrealy proved embryologically by s.hwarze. ${ }^{11}$ The two forms alone mentioned, are connected by mmerons intermediate forms. and an actual transition between them has heen observed in some species. ${ }^{2}$

[^25]Beside the various elements hitherto described. there are, in the neighborhood of the bain and pharyme, large cells of a rommish or polyonal outline eavily distinguishable from the suremonding elements of the parenchyma (Fig. 25). They are of : sigantir si\%e. and in some sections they reemed as if they were drawn inn into fibres in more than one direction. Ther have comspicuon- resicutar muclei enclowing each a deeply tained moleolus, which again gemer-
 have a finely grambar protophasm. Their very appearance sugests their nervons nature. Bat more than that, carefal examinations have convinced me that these large celle are very constant in their position and number. They are fomm, namely, laterally and behind the pharyns. and \quad an be seen in living specimens meder the cover-glas. expecially well after the water has exaporated to a deertain extent. . 1 . will be seen from the figure, ther are situated symmetrically, right and left, on both sides of the pharyax. bevides the four cells on each side and a median ventral one. datwa in the figme. I have commed another pair and a median mpared one mome posteriorly. There are alsu similar well.. which ate wattered apparently withont symmetry, aromed the bain. But always ontside it in the mesemblymat Two of these are sume in Fig. 17.

Comsidering the form and appearame of these eelle, the comstaney and symmetry of their position and momber (at least in the more anterior ones), together with the eiremmetance that there are no nervons cells in the hain or norves. I ann strongly inclined th atribute nerrons functions to these gigation cells: fint I have bot been able to trace any direst comection with the meroms system. I have tried methyl-violet and cochineal stain. By the latter, they are but -lightly colored, and meither of these stains atforts :my better clue ints their exad mane. They sem to be different from the remmant
cells of the parenchyma already described (Fig. 13); but I must leave the exact nature and function of these cells undetermined.

V. The Digestive System.

The digestive system consists of the mouth (Fig. 2, mo), the prepharynx (ph), the pharynx (ph), the oesophagus (oe). and the intestine (int).

The month is a funnel-shaped opening situated on the ventral side of the anterior extremity of the body, at the entrance of which are placed the glands and suckers already described. Its cavity is lined l_{y} the contination of the cuticula of the general surface of the body. The fundus of the fumnel leads directly into an expanded cavity, the prepharynx, into which the anterior half of the pharynx protrudes. This latter is an ellipsoidal body which has a narrow tubular carity passing throngh the centre, and whose major axis is directed antero-posteriorly. In cross-section (Fig. 11) it is circular. The internal tubular cavity is lined by a comparatively thick structureles membrane. The thick wall is composed of muscular fibres arranged in regular gromps, and of connective tissue, in which muclei, very similar to those of the general mesenchyma, are to be oloserved. Lust internally, and separated from the structureless membrane lining the internal cavity by a sort of basement membrane, is a thin layer of circular fibres (mci). Most externally, and directly internal to the cuticula-like membrane that envelopes the whole pharynx and separates it from the surromding mesenchyma, is another layer of circular fibres, alont double as thick as the first. Besides these, there are radial fibres extenting between the internal basement membrane and the extemal cuticula of the pharyngeal wall. These radial fibres are weakly developer, and do not rim in bundles, as ther have been observ-
ed to do in some orher Trematodes. Between these fibres is found a masso of connective tissme with conspicuons mullei. These nuclei are donbtless the remnants of the cells that produced the muscular fibres and the commective tissue of the pharynx. Strong dorso-ventral mucular bundles (Fig. 11, dvm) are closely applied to the wall of the pharynx, and no doubt assist in its action. The total thickness of the pharyngeal wall, the internal membrane inclusive, is about 0.02 mm .

The cavity of the pharynx leads directly into the oesophagus, a simple, slender, tubular portion, which is directly continued into the median trunk of the intestine. This median tronk sends out in the anterior half of the body, right and left, lateral branches. which ramif.y dichotomonsly once or twice. Some of these lateral branches are distinctly paired, but I have also observed others which are as distinctly unpaired. l'osterior to the place of crossing of the two individuals the lateral branches are absent. Here the median trunk diviles into two, one of which retains nearly the median position, while the other proceeds more laterally towards the ovary. Posterior to the testis these two branches mite, and thenceforth the intestine proceeds towards the suckers as a simple unbranched tube, and ends between and a little anterior to the first pair of suckers, where it gencrally presents a rounded enlargement. "A l'endroit on les deux corps s'unissent, les coecums digestifs semblent atrophiés, mais en dessous de l'appareil générateur, dans. le bout postérieur du corps, chayue tube présente de nouvean ses ramifications régulières et complètenent séparées, comme dans la partie antérieure," says r. Beneden, ${ }^{1)}$ and I can confirm his observation with my own on the Emropean species ; but in nipponicum I have found this part of the intestine always simple. The wall of the intestine is destitute of an epithelime

[^26]such as we are wont to see in the Distomes. la its steal. wr fimblarge cells (Figs. 14, 16. 19. 小r.) -eparated from one another by a comsiderable interval, and filled with dank-hrown or sometimes even black granules. I have mot wherved any wall or molens in these eells, althongh Zeller" print- to the presence of the latter in I'olystomum. and I could distinctly wherve it in Octobothriam. These black pigmentcontaning cell.s [hold. in agreement with Taschenberge, to be digestive cells, and the pigment-grambes 10 be fond-particles taken in from the can ity of the intestine. Digestion, therefore. takes place in the allied forms intracellulary, as in the Tubellarims. The intervals between these cells are nsmally destime of any distinct membrane in the anterion half of the body; so that here the digestive system enmists. of mere hollows in the nesenchyma : bun in the posterion part, where the intestine is simple. I cond manally distinguish a more og leos distinct membrane of compart comective lissue.

VI. The Excretory System.

The excretury system of the Plathelminthes has been minuteIy examined by Fraipont." Lang," Pintneri R. Wright and Manallom, "and wome others. By thene investigations two points -eem to have been firmly established: 1) That the exeretory system

1) Zeller-Untersuch. ii. (l. Entwick. n. d. Ban. d. Polystomum integerrimmm. Ztschr. f. w.

2) 'Taschenkers-Weitere B-itrines. 1' 11.
a) Fraipont - Recherches sur I'appareil excreteur des 'Trématoh s. Archiv. d. Biologie. 'T'. I. I hase not been able togain aceess to this nork, and am indelnted for its account to J. V

3) Lamg Der Ban von tiunda segmentata n. (l. Vermandtschatt ete Mittheil. a. d. zool.

j) Pintuer . Untersuch ii. (1. Ban. d. Bandwurmkïpers, mit bes. Beriicksichtigune etc. Arbuit a. d zumb.zoot. Inst. d. Unir. Wien, ete. Bal. III. 1880. ᄅ. Heft.
(i) K. Wricht and Macallum-1. c. p. 20 .
of this class comsiots of versels with a di.sinut wall, \because) that these vessels are of two kimls, the larger anes somimg mainly for lealing ont the containel finil, and the apillames which em! in fummel-shaper little borlies shewing the so-salled "Wimperftamme" in the interior, and which are the most important part of the system.

In Dipl. "ippomicam, as in Dipl. puradroxm, Iwo main calmats an always be distingmished on each side of the looly, one of whirh is larger than the other and opens to the exterior by meane of a circular opening on the dorsal sile ${ }^{1)}$, close to the lateral margin, a short distance posterior fo the pharyan (Fig. 2, en). Immerliately at the ratrance of the ofening, the ressel presents an enargement (the soralled "S:mmehohr"). then proceents anterionly to abont the level of the pharymx, where it bents backward amd proceeds posteriorly, winding more or less on the way, and giving off but a few branches. On reaching the posterior suckers, it bends inward to them and reaches nearly the posterior margin of the body. Here it turns on itself amd pioceeds anteriorly. following closely its former course, but this time liberally sending out branches which anastomose with one another and with those from the opposite side of the body. Auteriorly this main vessel reaches the upper lip of the month, where it divides itself juto numerous branches, having also become smaller during its comse. These two main vessels follow closely in their course that of the ventral nerves, on whose dorsal side they are situated except where they make windings towards one side or the other. I have sometime- olservel a direct comecing vessel between the two main ones. Within these vessels as well as the branches that proceed from them are seen, in a living specimen, active vibratory movements, which generally come to view only after the animal has been left for

[^27]some time under the cover－glass，anl which are execoted in such a way as to drive the contaned fluid towarls the excretory pores．These movements are probalily due to the presence of vibratile flaps in the wall，but I have wot been able to whorve them in sections．The wall is seen，in section，to be formed by a compact refractive mem－ branc with double contour，which does not stain with haematoxylin （Fig．16，an）．Evidences have been adranced by Lang ${ }^{11}$ and Ijima ${ }^{2}$ ） that the excretory vessels of the Turbellarians are＂nichts Anderes als durchbohrte Zellen．＂In the Cestodes，Pintner ${ }^{3}$ has observed a well－ developer ep ithelime on the wall of the main vessels，＂das zweifels－ whe als Matrix jhrer glashellen，homogenen Membran aufzufassen ist．＂According to Schwarze ${ }^{\text {th }}$ ，the central excretory vessel of the Distomes is at first a solid string of cells，which afterward acquires a lumen．He：also supposes that the finer branches originate in the same way，and that the structureless condition of their walls in the adult worm may be explained by supposing＂dass nach der Resorption des Inhaltes der primairen Zallen keine ：̈ussere，mosknlöse Zellenlage gel，ildet wird，somdern die Handung sich allein ans der äusseren Zellmem－ bran＂der ursprianglichen Anluge zusommensetzt．＂Whether the walls of the excretory ressels of $D i p h z o m$ in to be regarded as similar to those of the＇Turbellamians，with the difference that the protoplasmic remanats of the original cells have been transformed into a structureless mem－ brame，or whether they had been proluced by a distinct epithelimm which afterwards moderwent degencration and finally disappearel，or whethee they were formed by such a process as Schwarze ${ }^{50}$ suppones

[^28]to have taken place in the smaller excretory ressels of the Distomes, I must leave entirely underiden, with the single remark, however, that in Diplnzoon I have observed no trace of molei in the wall.

The capillaries, furnished like the larger wessels with a distinct wall of compact refractive membrane, proceed from the smather branches of the main ressels, and continue throughout their whole course without undergoing any perceptible diminution of their calibre. They are especially abmodant in the layer of the mesenchyma just unter the muscular wall of the borly. They do not, like the branches of the larger vessels, anastomose with one another, and no viluatory movement is to be ohserved within. They branch freety, and each of the branches ends with a minute fumel-shaped entargement (Fig. 15), within which is to be seen an active vibratile flap, the so-ealled "Wimperflamme." Varions structures have been desmited in connection with these funnels, but, although I directed my utmost attention to the point and applied the best lensers at my dixposal (Sciloert apochr. syst., $4 \mathrm{~mm} \times 8$), I cond not oberve any of them. The majority of the writers who have specially investigated this sulject seem to agree in excluding any direct commmication betwecn the cavities of the fumels and those of the suromading mesenchyma. In this respect, however, Frapont makes an exception. Ho obsersed "fentre ovale" in the wall of the fumel, by which it, mavity was pat in direst comertion with the surrounding jeseadocoel. I hand at first supposed the end of the fimnel completely closed ; but on repeater observations with the apochromatic system of seibert, it seemed to me very probably open, and to commonicate with the cavities of the mescongma. I have mot ohserved any of thone peculiar cells described by preceeding writers."

[^29]
VII. The Nervous System.

With the excellent investigation of Lang ${ }^{11}$ on the nervons system of the Trematodes hefore me, I directed my special attention to this system, and can confirm his statement in its general aspect, thongh it seems to me to require modification when the writer extends it to the Trematodes in general. Let us begin with the brain.

As to its position, Lang says, "Ich glanhe iiberhanpt, dass bei allen Trematoden das Gehim diese Lage hat, dass es nämlich bogenförmig iiber den vorderen Theil des Pharynx verlanft und ich zweifle, ob sich die abweichenden Ang:aben bei ernenter, genaner Untersuchung bestaitigen wiirden." Lenckart ${ }^{2}$ is inclined to explain those cases where the brain has been observed behind the pharynx "durch eine Lagenveränderung" of the latter, " hie um sn leichter eintreten kann, als das Nervenband uirgends ringfirmig geschlossen ist, obwohl das fiir einzelnen Arten behanptet warde." I find, however, after careful and repeated observations, with these statements full in view, that in Diplozoon and also in Axine, Microcotyle, and Ochobothrium, the brain is a band-shaped nervous borly arching over the oesophagus on the dorsal side and behind the pharyux. In a fresh specimen, it is seen to he composed of very thin fibres; but sections shew that in addition to these fibres the brain contains a finely gramular substance doubtless identical with the "Punktsmbstanz" of the Turbellarians (Fig. 17). The fibres in the brain are seen to rm mainly in two groups, one on

[^30]its dorsal side, the other more on the ventral side. close to the dorsal side of the oesophagus. These I have marked in the figure with a lighter sharle. They unite at the two emrls of the hrain where the nerves take their rise. The hrain is traveran by manerons dopsoventral bundles as alrandy mentimat.

From the brain are qiven off berves both anteriserly and posteriorly. One pair (Fig. 2. mi) procest anterimply near the median line embracing the maryna, near the anterion fart of which it is lost in the mesenchyma. A second pair (nam) promerts mome laterally, and can be followed as far as the smekere, oxtemally to which it proceeds and there withdraws itself from view. 'Thene internal and extermal anterior nowes are commected witle each other by a commissme at a little distance from their origin in the bram.

Two pairs of nerves also proveed postoriorly, one of which may be called the vental par and is hy far the stronow par. The wther pair (nyl) may be ablled the ventro-lateral nerves and proceds posteriorly just at the angle hetween the vatial ant lateral horders of
 each other. 'The vemtral nerver (nv) take their riwn in the hain at its postero-lateral comer, and an be followed to bear the posterior bordar of the boly. They become, however, more and more indistinct as they proceed posteriorly, and fanally beeome invisible at about the level of the hindermost pair of suckers. They closely follow in their conrse the man exoretory vessels, oll whow vontral sille they are situated at a little distance from the musmbar layers. At the place where the two imlividmals crose each other and where the ventrolateral nerves withdraw themselves fom view, the ventral nerves take a more lateral position, and this position they keep thromghont the remander of their course. The ventral neves are connerted with each other and with the ventro-lateral nerves by a number of com-
missures occurring nearly at regular intervals; and in such a way that each commissure between the rentral nerves lies in a line with that between them and the ventro-lateral nerves. The ventrolateral nerves, again, sends ont branches towards the lateral margin of the body, just at those points where they receive the commissures from the rentral nerves; so that all the nerves form a regular rectangular net-work, and divide the whole ventral surface of the body into a momber of distinct areas. At the points where the commissures cross the main nerves, the comre of the fibres is interesting. From any main nerve, namely, which we may be considering, fibres are given off on both sides to the neighboring nerves. Beside these, there are aloo fibres coming from the latter and procecding directly past the main ueve without mingling with its fibres, so that the four main herves are prohahly put in direct connection with one another. I hase combed as many as thirteen commissures in the anterior half of the hody, in addition to the pair of commissures between the anterior nerves. In the posterior half the commissures seem to be less mmerous. I have been able to comit only a few ; but this is perhaps due to the presence of the strong folds already mentioned and the special derelopment of the diagomal musele in this region, which greatly increases the diffoulty of following the conrse of the nerves. I have not been able to make ont the plexas which the nerves probably form on the domal side.

As to their histological character, the newes present typical "Palkenstränge" (Fig. 16). In some of the meshes are fo be seen sections of nervons fibrils as exeedingly minate dots, which are visible moly in the mont favomble cases. Pintnerrit matatains that the " Bailk ehen edhat" which form the mesh-work are the sections of the fimeris which are probuly armaged "reihemweise, nebeneinand-

[^31]erstehent." Poinier describes the nervons fibres of D stmmin clututum as filling प, the enfire (avity of the meshes. But an examination of the nevers in a fresh state shews ver? distinctly the exeedingly fine fibribs. Ther do non swon to be so regularly armaged as linther supposes. and are not at all large enomgh to fill op the entire cavities of the meshes. Withont donbting the correctuess of Poirier's observation, I am convincel that in Diplazoon the nerves monsist of a frame-work of comertive tissue, in the mesher of which run the true nervons fibrits. I hase not obseven any of the mervons rello describ)od by Lang and other, in the uerves. This set we to a atrefol search after gatiglion cells, as these were not also whe form lin the brain, where in other species they make such a compionoms figure esperially in the peripheral portion. But I have mot been able to find out any to which 1 could decidenlly print as nervons cells (lide supra p. 171).

VII. The Reproductive System.

We now come to the consideration of the mon complicated systen, the reproductive organs. Of these the female frotion consists of the vitelline borly, the ovary, the widnet, and we ntern, with a "commecting canal" the batmre of which is bor at all clembly known. The male portion comsists of the testis with a simgle vals deferens. I shall begin with the latter.

The Mal, Oryans-The testis is a nearly globular or ovoid borly situated about midway between the point of crossing of the two individuals and the prosterion margin of the botly, and is rompensed of many lobes. Each lobe is reparated from its neighbom and from

[^32]the suromuling mespmoma by a layer of dense connective tissue (Fig. 2, t. R Fig. 18). Thring the winter seasm, it is a solid mass of
 pressure. Sach cell embloses a conspichons round nuclens, which seems to be provided with: wall of its own, and in which nomerous (hromatin particles are to be wherved. The eytoplasma is a hyaline fluid which searcely takes un any color. The muclei are of varions size in the same lobe some being very small, leaving abmont -buce for the cytoplanm:, while others are of such a size as nearly to fill 1 , the entire cavity of the cell.

From the anterior curt of the towis proceeds a single vas A.ferens, which passes anterinely in a straight comese dorsal to the wribuct and ventral to the yolk-luct. During the first part of its conmes. it lies rentrally th the aterns; but at ano the level of the anterior end of the ovary, it thens dorsal to it and "pens into the vitelline duct of the other indiridual a little more anterionly than the anterion end of the orary. Zeller" represents the vas deferens of one indivilual as standing in direct comection with the "Laurer"s "anal" of the other. But my olservations contradiot this view entirely. I have traced the course of the as aleferens in more than one series of the sagital sertions of the worm. One of these serie- is reprotucel withwat interrytion on PI. X XIII. The opening of the vas deferens of one innlisidnal into the yolk-duct of the other is seen in Figs. XI. 芷 XIII. By the same serics of rections, the opening of the connecting canal of the oviduct into the intestine is distinctly seen (Figs. I \& XIX). The ras deferens is destitnte of any distinct wall of its own. It seem- to be merely a confinnons tube-like cavity in the general mesenchyma, and to collape entirely during the winter seamon.

[^33]The Female Organs-The owary (Fig. - - , w) is a long conicocylindrical body which is dombled on itself ly its middle portion, so that the two ends come close to each other, and paced on the dorsal side of the body just anterior to the testis, to which its smaller eme is closely applied ; the anterine end where it is doubled on itself reaching as far as where the dorsal papilla formerly was. From its larger end, where ripe ova are found, proceeds the oviduct. As we approach the other end, the ova become smaller and -maller until finally we see a mere assemblage of round nuclei imbedded in a common mase of protopham. The whole ovary lies in a mere cavity of the mesenchyma without any distinct wall of its own. A section through the larger end (Fig. 21) shews the wary to be a solid body consisting of large ova which are either polygonal or wedgeshaped according to the direction of the section. Each orum is destitute of any membrane, and consists of a mass of homogeneous deeply stained protoplasm, in which lies a large vesicular nuclens provided with a distinct wall and containing a hyaline fluid in which float numerous deeply staned dots, the chromatin particles. Each nuclens again encloses a large deeply stained nucleolus in which are again to be observed one large or a few smaller vacooles. Zeller ${ }^{1)}$ mentions and figures in the ovum of Polystomum and Diplazoon a thick, elastic "Hiille" ; but I have no doubt that the ovarian ova of Diplozoon are destitute of any membrane. This is also the case in Axine, Microcotyle, Octobothrium, Dactylogyrus, in fact in all the species of ectoparasitic Trematodes I have hitherto examined. Willemoes-Suhmr mentions no "Dotterhant" in I'olystomum ocillatum; Taschenberg" anserts

[^34]the absence of any membrane in the ovim of Tristomm ; so also Wierzejski" in that of Calicotyle Kroyeri : and I believe the same is true of the ova of all ectoparasitic Trematodes. Is we procerd nearer the smaller end of the owary, the ova and their nuclei beome smaller and smaller, the vacuoles within the nucleolns disappear and finally the nucleolus itself, until we see only spherical nuclei crowded together and surrounded by a common mass of uniform protoplasm. Fig. 22 shews a section through this part.

The oviduct proceeds from the larger end of the ovary and takes its course posteriorly and to the right, ventral to the vas deferens and the testis. At a short distance from its origin, it receives a canal (Fig. 2, er) which proceeds anteriorly and, after making a slight winding or two, opens into the intestine (Figr. V \& XIX). This is the "Laurer's canal" of Zeller which he represents as standing in direct connection with the vas deferens of the other individual. In I'olystomum integertimum ${ }^{2}$) he asserts a direct connection between the ovary and the testis ; and in proof of this he alleges his observation of the ova passing through the widuct and Laurer's canal and entering the cavity of the testis. But it has been pointed out by Ijimais) that the canal in question distinctly opens into the intestine, and that a similar canal is present in many other species of the group ; and I call confirlently state from my own sterly that the "dritte Dottergang" of Lorenz in Asine and Microcotyle distinctly opens into the intestinc. A similar comecting canal is also present in a species of Octobuthrimm which I have examined. ${ }^{4}$. The fact cited by Zeller can he explained

[^35]if we consider that the intestine is destitute of any distinct wall, and that when the testis is nearly empty there is almost nothing that would prevent the entrance of the ova into the cavity of the testis by way of the intestine. I therefore believe, notwithstanding his positive statement to the contrary, that the canal in question opens also in Polystomum into the intestine at the point where he represents it as arising from the testis. In Dactylogyrus a similar canal opens externally on the dorsal side, at a short distance from the right lateral margin of the body. In Dipl. paradoxum this canal is very long and undergoes numerons convolutions, but in uipponicum it is shorter and nearly straight, and the internal surface is clothed with cilia. Its nature and function, if it has any, I hope to be able to treat of later. At a little distance from the point where it receives this canal, the oviduct receives also the yolk-rluct (yd). After this it continues its former course, and then, making a sudden turn anteriorly, opens into the uterus.

The uterus, under which I include both the "Ootyp" and the "Eiergang" of the German writers, is a cylindrical tube with a distinct wall which is thickly beset for the greater part of its length with long cilia on its internal surface. It shews an ovoidal enlargement at its origin, the "Ootyp," then diminishing in diameter proceeds anteriorly. following the same course as the vas deferens, and opens externally by a small aperture on the ventral side just at the angle formed by the ventral side of one individual with the dorsal side of the other, at the top of a conical elevation which is sometimes very small, sometimes larger and very conspicuous. Just before opening, it presents a second enlargement in which a single egg is asmally found during the period of reproductive activity. "Il y a à l'origine de re conduit (i. e., of the uterus) une sorte de pylore," says v. Beneden. ${ }^{1)}$

[^36]This is calused by the opening at this point of numerous flask-shaped unicellular glands (s g), the shell-glands. The wall of the uterus proper (Ootyp, Fig. 24) is lined by a distinct epithelium, whose cells contain each a round unclens projecting into the internal cavity. The protophasm is granular and no cell-houndaries are to be seen. The epithelium sits on a distinct basement membrane and is destitute of cilia. The remainder of the uterus (Eiergang) is provided with a similar wall (Fig. 23), with the nuclei, however, more separated from one another. Here, as already stated, the wall is beset with long cilia.

The vitelline body is an extensive lobed body (Fig. 2, vb) situated exclusively in the anterior half of the body, all around the intestine both on its dorsal and ventral sides. In specimens in which reproduction is going on, each lobe is seen, when fresh, to contain a dark granular mass. Sections (Fig. 19) shew that each lobe consists of a number of cells containing numerous yellowish granules, each with a nucleus and a mucleolus in the centre, and a thin cellwall. These are the ripe yolk-cells, and when freed take up a globular form. In the peripheral portion are seen smaller cells with a deeply stained protoplasm, a nucleus and a nucleolus. The protoplasm is homogeneous, finely or coarsely granular according to their different stages of development. They are the young yolk-cells; and there are also to be observed cells intermediate between these two kinds-cells one half of whose content has already been changed into yellowish yolk-granules while the other half still consists of granular protoplasm. During the winter months, the yolk-cells present a quite different appearance (Fig. 20). They are then sarcely to be distinguished from the cells of the mesenchyma of certain species of Microcotyle. They are then of a polygonal form, with a distinct cell-wall, a round nucleus and nucleolus, and a gramular protoplasm which stains very
well. In this granular protoplasm there are fibrons structures radiating from the central nucleas to the cell-wall and more or less forming a net-work. The steps hy which these cells are changed into ripe yolkcells and the origin of the deeply stained young yolk-cells I must leave at present unexplained.

As will be immediately seen from the above investigation, the union of Diplozoon is, as Zeller maintains, a permanent copulation. But the relation in which he has represented the parts of the two individuals to stand to each other requires correction. We have seen that the vas deferens of one individual opens into the yolk-duct of the other. This is well in accordance with the probable mode of copulation in some allied forms. In Microcotyle, which seems to be very closely allied to Diplozoon, there is a dorsal vagina which leads into a canal opening into the yolk-duct. In this canal I have often observed spermatozoa, and as during the period of reproductive activity yolk-cells are constantly going down the yolk-duct and push down before them anything that might come up from below, it is very probable that these spermatozoa had found their way here from the dorsal vagina. Hence the smposition is very natural that in copulation the penis of one worm is directly applied to the dorsal vaginal opening of the other. Now if this very probable supposition be trine, and if we further imagine such a relation to persist permanently, we should have just the case that we actually see in Diplozom, with the only difference that the copulation is not cross-wise. Whether in Miconcotyle also, as in Polystomum, the copulation is nomally cross-wise and motnal is well worthy of our attentive observation. since if this be the case, the copulation of Diplazom wonld be nothing more or less than the regular mode of copulation in allied forms made pormanent.

In conclusion I wish to express my best thanks to Prof. K. Mitsukuri and Prof. C. G. Knott for kindly looking through my paper and making suggestions.

Tokyo, October 1890.

Explanation of Figures.

Abbreviations common to all the figures. as.........ascenting stem of the excretory versel (according to the direction in which the contained fluid moves).
br..........brain.
ccconnecting canal between the oviduct and the intestine.
drm.......dorso-ventral muscle.
$d s \ldots$. lescending stem of the excretory vessel.
$d c$. digestive cell.
eo..........excretory opening.
int..........intestine.
mce........external circular muscle
mciinternal ,, ,. $\}$ of the pharyngeal wall.
mo..........mouth.
nac........external anterior nerve.
nai.........internal anterior nerve.
$n v$. ventral nerve.
nol.........ventro-lateral nerve.
ovovary.
ovd.........oviduct.
oeoesophagus.
ph.........pharynx.
pph.........prepharynx.
$p m$. .median piece ppapaired anterior piece ppp........, posterior, $p p \ldots \ldots$. process of the posterior piece
saanterior sucker.
spposterior sucker.
$s g$..........sticky gland.
shg.........shell gland.
t..............testis.
ututerus.
$v d$...........vas deferens.
vbvitelline body.
ydyolk-duct.
All the figures, if ant otherwise stated, were drawn with cam. luc., Zeiss $\mathrm{E} \times 2$.

Pl. XXI.

I'ig. 1.-Dipl. nipponicum killed with boiling sublimate; free-hand, surface view, \times abont 14 . The black dots represent the digestive cells seen through the tissues.
Fig. 2.--The same, free-hand, from a specimen killed under the coverglass, shewing the intermal organs, half-diagramatic. The right anterior half presents the ventral, and the corresponding posterior half the dorsal aspect ; and vice versa with the other individual. The nerves are colored yellow ; the excretury vessels indigo-blue.
L'ig. 3.-Chitinons frame-work of the posterior sucker as seen in a specimen under the cover-glass.
Fig. 4.-Section of the posterior sucker in the direction inticated by ab in Fig. 3.

By inalvertonee of the printers, the mocteoli in Fis s, 9,11 , $1: 1,16,17,18,19,20,23$, and $2 t$ are represented either as lying outwile the nuclei or quite eccentrically in them, wherets they ourht to oceupy more central positions. Their true positions are indicated in most of the figures ly weakly shated dot..
.

Fig. 5.-Section of the same in the direction indicated by $x y$ in Fig. 3.
Fig. 6.-Hooks between the posterior stuckers.

Pl. XXII.

Fig. 7.-A part of a cross-section of the worm passing through one of the conical elevations of the epidermis. It also passes through one of the transverse folds into which the surface of the body is thrown when the animal contracts ; hence the longitudinal muscles are separated from the circular by a rather thick layer of connective tissue.
Fig. 8. -Section of the sticky gland, from a cross-section of the worm.
Fig. 9.-Section of the anterior sucker, from a cross-section of the worm.
Fig. 10.--To shew the direction of the diagonal muscular fibres, from a horizontal section of the worm.

Fig. 11.-Cross-section of the pharynx.
Fig. 12.-Diagram shewing the muscles accessory to the pharynx.
Fig. 13.-A part of a cross-section of the worm, from the posterior half of the body, a little posterior to the testis; to shew the character of the mesenchyma.
Fig. 14.-The portion of the mesenchyma situated between the ovary and the testis, from a sagittal section of the worm.
Fig. 15.-Excretory funnel, Seibert apochr. sys. $4 \mathrm{~mm} . \times 8$.
Fig. 16.—Cross-section of the ventral nerve.
Fig. 17.-The brain, from a cross-section of the worm.
Fig. 18.-The testis, from a longitudinal section of the worm.

Fig. 19.-The vitelline body, from a longitudinal section of a worm collected in September.
Fig. 20.-The same, from a cross-section of a worm collected in May; the yolk-cells not ripe.
Fig. 21.—Section of the ovary near its larger end.
Fig. 22.-The same near its smaller end.
Fig. 23.-Longitudinal section of the uterus (Eiergang).
Fig. 24.-Cross-section of the uterus proper (Ootyp).
Fig. 25.-A cross-section of the worm through the region of the pharynx ; to shew the peculiar gigantic cells. Zeiss $\mathrm{D} \times 2$.

Pl. XXIII.

An uninterrupted series of sagittal sections of the worm. To the respertive ablureviations is subjoined the letter or l aroording as the parts belong to one or the of her intividual. Zeiss $B \times 2$.

$$
\times 4 \geqslant
$$

A New Species of Hymenomycetous Fungus Injurious to the Mulberry Tree.

by

Nobujirō Tanaka.

With Plates NXII--NXITI.
In Japan the mulberry tree has been widely cultivated, from time immemorial, for raring silkwoms. Although the methods of its culture have murh improsed, yet its diseases, eppecially those caused by fingus parasites, have ben oremoknd eren ly skilful caltivators. The chief reason for gemeral meglect reamang these points is the want of accurate knowledge of the mature and biology of fungi. One of the most serions discenses of this kind is that which is known under the name of "Mompa-byo." * This discase has produced much distress at varions intervals for abont eight years, in the experimental farm of the Agricultural College at Komaba, Tōkyō. Some diss tinguished biologisis and agriculturists have investigated its nature, and stated that it was due to the ravages of a sterile mycelial stage of a fungres of some other form, but its true nature has never yet been fully explained. I have lately had the good opportunity to study this disease under the direction of l'rof. R. Yatalse. The object of this paper is to deal with one or two of the unsettled questions regarding it, namely, the morphology of the perfect condition of the fungus which canses the disease, and its systematic position.

[^37]Towards the end of last year, I obtained specimens of mulberry trees attacked by the disease, but unfortunately the specimens were so far advanced in decomposition that the course of the mycelium of the fungus in its relation to the internal tissucs of its host was not clearly defimable, and also the fructification of the fungus could not be found. Since then I have examined many other specimens, up to the begimning of April of this year, and at leugth found the perfectly developed condition of the fungus. Its specific characters are as follows:-Pilens sessile. resupinate, somewhat urbicular or oblong, often irmenlaly lobed. $5-10 \mathrm{~cm}$ across, $2-4 \mathrm{~mm}$. thick, at first velveiy and membranaceons. then subcoriaceons, somewhat convex, incrustate, purplish hown, at length albo-pruinose ; hymenimu white ; basidia curvd, 1-3-septate, tetraspored ; sterigmata elongated; spores oroid, curved, hyaline, $10-12 \mu$. long, 5-7 μ. brond.

By the above chanacters, en ciatly hy its peculian form of hasidia and by its mature, I consider that this fungus belongs to the genus Helicobasidium in the family Thelophorer of the H!!menom! getes. It has much resemblance in its character: ant hathit to many species of its allied genera; but it can be distinguished from Thelephora and Corticenn chiefly by having an intermediate stratum in the pilens, and from Storem by having a msually superior hymenimm. Of the species of the gemus Holicobasidinm but few are known; in Saceardo's Sylloye Fungorum* only two species, H. purpuram (T'ul.) $P^{\prime} a t$. and H. cirratum Pat. at Gail., are given. By comparing my description of the fungus with that of the above named species, it can be distinguished from the former chiefly ly the colour of the pilens and the number of spores borne on a basidium, aud, from the latter, by the diameter of the pilens, the number of spores borne on a basidium,

[^38]and their size. An allied fungus on the mulbery tree in South Carolina, North America, was described by Prof. Berkely under the name of Stereum moricolum; and two other species of Steremm, viz. S. suberuentatum B. et C. and S. contrarium Berli., are given in Saccards's Sylloge.* These are Japanese species, but mufortmately I have never yet found them. They must, however, he very distinet from my species. For these reasons I venture to call it Helicobasidinm Mompa \dagger from the well known fapanese name of the diseare.

The fungus at first attacks the root of a living tree, and the diseased tree shows external symptoms of the disease on portions above ground: usually the growth of shoots is arrested, the newly developed leaves become gradually smaller and at length die off ; then the lower part of the shoots begins in die. thongh the bark higher up may preserve its normal appearance. [t takes a tree one or two months to reach this state, after it has first show the external symptoms of the disease.

On upronting a young malbery tree bally atracked by the fungas, the roots are form to lee killed from below mpards, and present the appearance represented in Plate XXIV, Fig. 1. The tree figured there is three years old ; the roots marked a have grown three yars, and those marked b and c are of this year. The portions marked a^{\prime} are dead roots, whome bark was aldeaty severely injured and so loose that it was sepmated by the act of uproting. As these cleal roots were of no ase to the tree, it produced the new roots b to absorb nomishment from the soil. But the newly formed roots were also injured as the disease advanced, and berame ninfit to perform their function ; and at length another crop of newer roots r was produced higher up, by means of which the tree was emabled to

[^39]sustain its life. In the state just described no fructification of the fungus is yet observable, although its subtermenoss vegetative mycelia are actively growing.

After the fungus has been growing in this manner for some time, flat irregular disks of mycelia begin to form under certain circumstances on the aerial portion of the tree at the bases of the shoots. These disks are the first stages of the jilens. The successive stages of growth of the pileus are shown in Plate XXIV, Figs. 2, 3, and 4. It first appears as a thin effused mass of mycelia of a dark purplish brown colour, having a paler margin of definite ontline, and presenting a smooth velvety appearance ($\mathrm{P} L$. SXIV, Fig. 2, a). It surounds the basal part of the shoots of the diseased tree to a height of 15 cm. or more, sometimes leaving here and there small narmo portions unconered. It often enchises in its embrace some extrameons matter, such as decayed leaves, branches, and the like, together with partictes of soil. As it gradmally develops, it forms generally an irregular roumdioh that disk, one part of which stands out at right angles from the surface of the shoot, while the other remaining part is firmly attached to it. The projecting part of the pileus then expands laterally either on one side of the shoot or on both sides ; and as the shoot is usually bent horizoutally at the base, the pilens becomes also horizontally expanded. The hymenium is produced on the free surface of the pileus, on the mper and lower sides of the projecting parts, as well as on the exposed side of the part fastened to the shoot. The fully developed pileus is of a whitish colour tinged with violet; the projecting part is abont 5 mm . thick, and its upper sarface is more uncenthan its lower surface (PL. XXV, Figs, 1, 2).
liy carefully detarhing the young pilens fom the substratum, numerons mycelial strauds of unequal thickness may be observed on its lower margin (PL. SXV, Fig. 3). These strands are fomed on
almost every portion of the diseased roots, forming irregular networks of various complexity (PL. SXV. Fig. 4). They are ! - 1 mm . thick and of a purplish brown colour like the young pileus; and as to their mode of ramification there seems to be no regularity. Without destroying even their finest branches, they can be very casil! detached, with a needle, from the roots upon which they grow, to a length of several centimetres (PL. XXV, Fig. 5). They are often fomud free, either forming large groups in spaces left between the partly detached cork layers of ohd dineased roots, or solitarily in the soil.

The microscopical structure of the mycelial strand is different from that of Agaricus mellens, whose mimute details are now well known from the excellent description given by the late Prof. De Bary.* In the present species the axiad portion of the myeelial strand consists of thick-walled hyphae, 3μ. in diameter. mixed with a few finer ones ; and the peripheral portion consists entirely of finer lyyphe (PL. XXVI, Fig. 1). In the transerse section of the strand this is more clearly seen (PL. XXYI, Fig. -2). In the mycelial strand of Agaricus melleus the hyphe are so compactly arranged as to form a tissue as is clearly seen in the cross section $; \dagger$ but in the present species the hyphe composing the strand are so loosely put together that they easily separate from one another, and in the cross section they present a circular and not angular form, since they are bot pressed together so as to assume the latter form. Moreover the form of the cross section of the strand in Agaricus mellens is round, but in this species it is flattened. The thickening of the strand is effecterl either by the copions branching of a single hyphat or by the coalescence of two or more strands. In the gromp of hyphe formed ly the first method, there is alway an axial or original thick hypha

[^40]surrounded by finer ones which have been produced by its ramification (PL. XXVI. Fig. 3). As the strand grows, the branches of the original hypha also ramify ; and the secondary luranches thus produced surround the primary branches, just as the latter surround the original hypha. In this way lmanches of higher orders are successively produced, and suromed the branches of the next lower order. Ordinarily the branches of the hypha grow in one direction, but occasionally there are found those that grow in two opposite directions from the point of origination (PL. XXVI, Fig. 4). The older hyphe or those lying towards the eenter of the strand are much more darkly coloured than the younger or those of the periphery. The mycelial strand of the fungus is found ouly on the surface of the host. When it makes its way into the tissues of the latter it usually forms longitudinally clongated masses, such as are seen in the interstices between the cork layers of the host (PL. XXVI, Fig. 9). Similar masses are also found on the surface. These masses of the hyphe spread widely in the cambinm zone and in the young last. forming membranelike expander networks of whitish mycelia. These mycelia send out single colourless hyphar, 1.5-1 μ. in di:meter (PL. XXVI, Fig. 5), into the rind and wood, and especially into the dotted vessels. They also send out masses of coloured hypher to the surface of the host, from which are again developed ordinary extemal mycelial strands.

Crystalline spheres of calcimm oxalate, $\frac{1}{10}-\frac{1}{2} \mathrm{~mm}$. in diameter (PL. XXYI, Fig. 6), are fomd in great mumbers on those places where the white mycelial membranes abound. They consist of an enormous momber of somewhat radially aranged wedge-shaped crystals (l'L. XXVI, Figs. 7, 8), cach of which is $20-30 \mu$. long and 10-15 μ. broad. If we examine one of these crystalline spheres under the microscope, taking are not to crush it, we see only the siles and bromer ends of the wedge-shaped crystals; and by orushing
it we can recognize the radial arrangement of the erystals. Prof. De bary has described erystalline pheres of a similar nature found in the narrow cylindrical hyphae of the mycelimm of l'hallus camimus.* Crystals of calciom oxalate of other forms, such as regular quadrate octohedra, rod-shape, \&c., are also found in great abomdance in the same place where the crystalline spheres are found.

The mycelia of the fungus form an enormons number of selerotia in all parts of the diseased portion of the roots (PL. XXVII, Fig. 1, a). The sclerotia are irregnlarly ronndish bodies $1-4 \mathrm{~mm}$. in diameter, and are dark purplish brown in colour. If the nourishment in the sap-containing layers of the host plant becomes santy by the parasitic action of the fingus, and also when the vegetative activity of the host plant is diminished in antmmn, the interior of the lenticels and the interstices between the oork layers become filled with the sclerotia of the fungus, while the myelial strands which remain ontside spread widely on the surface of the roots. By carefully detaching the mycelial strants we can ascertain that they have no direct commmanation with the sclerotia. The number of sclerotis is different in difierent parts of the roots, acoording to the kegree of the injury done by the fungus ; and the greater the degree of the injury, the greater the number of the sclerotis. The formation of sclerotia does not take place on the outside of the host plant, but always in the inside or in the spaces partly exposed by the formation of fissures (PL. XXVII, Fig. 2). The sclerotia have a dark brown rind (PL. XXVII, Fig. 3. b), and a medulla of white soft tissue (Fig. 3, ") with a few air-conducting passages. The hyphae of the medulla are cylindrical and septate, anastomosing with one another in a rather loose manner ($\mathrm{Fig} .4, a$), and are $4-5 \mu$. in diameter. Towards the surface of the xclerotia, the medulla passes gralually into the rind,

[^41]which consists of thicker-wallet and shorter-celled hyphe, forming a compart tissue without interstices (Fig. 4, b). In its younger stage the surface of the rind is felted orer with the remains of dead hyphe (Fig. 4, c). A series of five different colours-white, yellow brown, dark brown, rose violet. and dark violet brown-may be seen in the order stated, from the centre ontwards in the section of the sclerotinm.

As the mycelial strands gradually grow upwards, they aggregate into a few flat thick strands, more than 1 mm . broad. These strands spread themselves from the apices and unite into a thin broad layer. consisting of reticulated hyphal filaments and covering the base of the shiots of the host plant. As the development of this layer proceeds, the pileus is formed from it. The pilens is an irregularly roundish flat disk with a smonth relvety surface, and takes a purplish brown cohour, leaving its margin whitish (PL. XXIV, Fig. 2, a). Thin radial rections of a fully developed pileus, show that its medullary stratum is composed of loosely anastomosing branched hyphe, dark violet hrown in colour, and 3-4 μ. in diameter (PL. XXVII, Fig. 5). Towards the onter surface of the pilens these hyphe take a vertical position, and produce short and blunt branches (PL. XXVII, Figs. 6,7). These branches of hyphe are colourless and shortly septate, and form the hymenial layer. Some of them elongate here and there, and form the hasidia, which are curved and 5-8 μ. in diameter. From the convex surface of the basidium are produced fon sterigmata, which are pointed. slightly curved and 6-10 μ. in length (PL. XXVII, Figs. 8. 9, 10). The spores are formed singly on the apices of the sterigmatat ; they are ovoid, curved, $10-12 \mu$. long and 5-7 μ. broat (PL. XXVII, Fig. 11). The portion of the pileus attached to the sub-tratum produces hairs or rhizoids on its imner surface, which penctrate into the substratum. But the horizontally projecting part of the pilens proxlares the hymenimm on both surfaces, when it does
not lie flat on the grommd. The internal structure of these two portions is, however, essentially the same.

In the medullary stratum of the pilens which lies on the ground. an immense number of minnte algae, belonging to the genera Conferra and Protococous (PL. XXVII, Fig. 16) are found in groups, very morh like the gonidia of Lichens. On the higher parts of the stems and branches of old mulbery trees, are frequently found orbicular and brownish purple patches, from $1-10 \mathrm{~cm}$. in diameter ; they are commonly called "Kōyakn-byō" * of the mulbery tree. They resemble very murh in their structure the young pileus of the specices of Mrlicolasidimm in question, except that the hypher in the pileus of the former are more slender than those of the latter, being only $\boldsymbol{2}-\mathbf{3}$ μ. in diameter (PL. SXVII, Fig. 1-) . The sterigmata of the former are also very minnte; and I have not been able clearly to determine their nomber on a basidimm (PL. XXYTI, Figs. 13, 14). Besides the ordinary slender hasidia. 3μ. in dianeter, much thicker and segmented hasidimm-like extremities of hyphe bearing mosterigmata are often seen in the hymenimm (l'L. XXVII, Fig. Ij). Whether the orbicular patches just describer simply represent a form of the present species or not can only he determined after further investigation. But I venture to say that it is probably a poorly nourished form of the latter.

In conclosion, I wish to express my thanks to Prof. R. Yatabe who has helperd me throughout my work with valuable smggestions.

[^42]
Explanation of Figures in Plates XXIV-XXVII.

Plate XXIV.

Fil. 1. Sketch of the base of a young molberry tree, injured by the disease at the roots a, b. The upper portion a^{\prime} and the roots c are free from the disease ; the lower portion a^{\prime} of the roots a is completely disorganized.

Reduced.
Fig. 2. Portion of the base of a shont, showing the roung pileus a of the fungus.

Natural size.
Fig. 3. More adranced stage of a similar pileus with its projecting parts ".

Natural size.
Fig. t. Mature form of a similar pileus; a its projecting part ; b its basal part.

Nethral size.

Plate XXV.

Fig. 1. Mature form of the pileus of the fungus, showing it, upper surface.

Fig 2. Lower surface of the same. Natural size.

Fig. 3. Young stage of the pileus carefully detached from its substratum.

Natural size.
Fig. 4. Portion of a diseased ront, with mycelial strands of the fungus.

Natural size.
Fig. 5. Portion of the mycelial strands detached. Nalural size.
Fig. 6. Giroup of mycelial strands. Nutural size.

Plate XXVI.

Fig. 1. Hyphre of mycelial strands. $\times 140$.
Fig. 2. C'ross section of the same. $\times 440$.

Fig. 3. Hyphre of mycelial strands, showing the mode of ramification. $\times 440$.
Fig. 4. A kind of branching in a similar hypha. $\times 440$.
Fig. \dot{j}. White hyphae in the tissues of the host plant. $\times 440$.
Fïy. 6. Crystalline spheres of calcium oxalate. \times 5.
Fïg. 7. A similar sphere much magnified. $\times 240$.
f'ig. 8. Wedge-shaped crystals B of the same: A showing their radiating structure. $\times 240$.

Fily. 9. Masses of coloured mycelia a in the interstices of cork layers b. $\times 10$.

Plate XXVII.

Fig. 1. Portion of a diseased root. with numerons sclerotia a of the fungus.

Netural size.
Fiy. 2. Longitudinal section of the bark of a root. showing the formation of sclerotia. \times i.

Fi!. 3. Vertical section of a sclerotinm; u, medulla ; b, rind; \therefore, remains of hyphes.
$\times 50$.
Fig. t. Portion of the same. showing its tissues; the letters correspond to those in Fig. $3 . \quad \times 440$.

Fig. j. Hyphe in the medullary stratum of the pilens. $\times 440$.
L'igs. 6,7 . Hyphe in the hymenial layer of the pilems. $\times 440$.

Figs. S. 9, 10. Basidia with sterigmata and young spores. $\times 440$.
F'iy. 11. Hature eporen. $\times+40$.
Fig. 1%. Hyphar in the moclullary stratum of the orbicnlar
patches on the higher parts of the stem and branches of an old mulberry tree. $\times 440$.

Figs. 13, 14. Basidia of a similar patch. $\quad \times \not 40$.
Fig. 15. Basidium-like hypha of a similar patch. $\quad \times 440$.
Fig. 16. Algae in the medullary stratum of the pilens; A, Confera: B, Protococcus.

N. Tanaka del
.

-

,

Notes on the Irritability of the Stigma.

bs

M. Miyoshi, Rigakushi.

With Plates XXVIII-XXIN.

It is alrealy known by the researches of Heckel* and others that the hifid stigmas of certain plants, such as ILartymia, Bignonia, anl espectially of some Scrophmarince, e.g. Mimulus, Torenia, Gratiola, are irritable to touch. But as our knowledge on the subject is still scanty, it will not be superfluons here to state some of my observations on this sulject. The plants I studied were Mazus rugosus, Lour., var. macrantha, Fr. et Sar'., Mimmlus mepalensis, Benth.. M. sessifulius, Maxim., M. moschatus, Dong. I shall give in detail only the case of

* Mazus rugosus, Lour., var. macrantha, Fr. et Sav.

(PI. XXVIII, Fig. 1.)

The plant belongs to Scrophnlarinece, and may be briefly desribed as follows:-

A low anmal. Branches prostrate, $5-40 \mathrm{~cm}$. long, often rooted at the nodes. Leaves exstipulate. saringly hairy, coarsely and irregularly dentate; the radical sessile, cuneate-spathulate, 1-4 cm. long, 0.5-1 cm. broad; those of the branches opposite, sometimes altermate, obovate, narrowed into the cmeate base, smaller than the radical leaves. Flowering stems, erect, more or less

[^43]pubescent. 5-95 cm. high. Flowers distant; perlicels brateate, minutel! pulescent, $1-\underset{y}{-5} 5$ cm. long ; hracts minute, scaly, acute. Calys (Fis. . 3) 5-lobel, campamalate, persistent, 0.7 rm. long ; lobes ovate, acote, at length speralimg. Corolla (Fig . - 2) bibabiate. light blue or often deeper-endoured, sometimes snowy whitr. Epper lip erect, or arved upwarl, bifid at the apes. Lowor lip detlexed, : \quad-Johel, $1-1.5$ cm. bond and lome; the two lateral lobes broader than the minhle; its palate comsex. beset with delicate hairs, whitish or yellowish, with yellowish brown or deep hrown spots. Stamons (Fig. 2) 4, dirlymamons, inserted in the tube of the corolla, distinct at fisst, each pair combivent and anthering by the anthers at maturity ; anthers whitish, e-celled. Pollengrains (Fig. 6) whitish yellow, elliptical, with 3 longitudinal grooves. Sryle (Fig. 3) longer than the stamens, ascending under the upper lip of the corolla. Stigma (Fig. 3) 2-lobed, lobes semicircular, 1 man. long. Ovary smperior, globose, $\mathscr{(}$-cellal. Capsule compressed, Iocnlicidal. Seeds numerous, minute, brown.

The phant is common ererywhere, especially on smmy lawns, and hears flowers fiom cally spring to mid-smmmer. When I hap pened to motion* the irritable pronerty of the stigma and begra my observations early in April. I visited daily rertain spots in the Lniversity grounds where I fonme the plant in profusion, some growing in positions very convenient for examination.

T'o observe the phenomemon, take the Hower of this plant, and touch the lower lobe of the stigma with the point of a needle or the like ; we shall then see the atteroted lobe move steadily upwards with miform speed mutil it eomes in close eontact with the upper lohe (I'l.

[^44]possible tonely as, fore example, whithe the of a hander hair. On the other hame, pacing a small drop of water an the stigmatic lober ar howing mon them does mot intaca the motion. Again, mere rubhing on the style on on the nemer surface of the lobes does mot show even the last sign of motion, thongh a slight tomeh wh the inner surface in very effective. Morenver, this cmrions property is not confined to the lower lobe only, an may at first sight appear, but it is possessed hy the upper lobe as well. Since the lower lobe is widely reftexed, the motion there is vory manifest but the uper one being nearly in the same line with the stye hows no decided motion other than a slight bending down.

I mande these experments on the natural position of the flowers, and measmed the time regnired for the closing and reopening of the lobes. The results varied not only in the flowers of different stocks, but in difterent flowrs of the same stock, even in the same flower in different stages of development, in different hours of the day, and also in different states of temperature and weather. Generally speaking, the closing and reopening in a given flower are more rapid at the middle of a clear wamm day than at other times and in other states of weather. Complete closing is performed msmally in 3-6 reconds, but may sometimes take 7 , even 10 , seconds. Complefe reopening takes place usmally after $\overline{6}-12$ mimutes, but sometimes souner, sometimes later. Some flowers which I examined on a very wam day, reopened wnty after aminutes. I ako fonnd that in yomg flowers, the elosing in more rapid, while the reupening is much slower, requiring abont $10-15$ minntes. But in mature flowers, elosing takes place in the usmal interval of time, while reopening is quicker ($7-10$ minntes). In all cases the movement of closing may earily be wherverl, lont that of reapening is no grarlat that we cannot recognise it without carefal observation. The experiments may be
repeated several times in a given flower apprently without any sign of deerease in irritahility. The experiments may also be made on the plants kept in the house with just as grood results as on those in their natural habitats. Of the flowers detached from the shoot, the same holds good as long as they are prevented from withering.

* The stigmatic lobes, when magnified are seen to be made up of bundles of filaments (Pl. SXIX, Fig. 10, 11, loos. tiss.) composed of cells full of granular protoplasm. The filaments are very loosely aggregated, passing below to the closer eonducting tissue (eond. tiss.) of the style. The inner surface (Fig. 10) of the lobe is quite naked but studded with many papill:e (pap.) or the chavate apices (elav. ap.) of the above-mentioned filaments, among which the pollen-grains (pol. gr.) take lodgement. The outer surface (Fig. 11), on the contrary, is loosely covered with a very thin layer of epidermis (directly continuons with that of the style), the cell-walls of which are more or less cuticularized and marked with minute longitudinal wrinkles (Fig. 11). Besides, there may he seen differences in the outlines of the component cells of the epidermis, as we pass from the lobes of the stigma (stig.) to the stylar portion (styl.) below-those of the former being irregular and sinuate, while those of the latter are almost reetangular.

As has been pointed ont by Pfeffer. Sachs. and others, cell. forming irritable parts of plants, when acted on by external stimulns, allow water to pass out of their protoplasm, thereby suffering diminution of volume ; and this contraction affecting the extensive and elastic cell-walls makes the motion visible to the naked eye. This, I believe, may also explain the irritability in the present case,

[^45]although I am as yet mable to detect any decided structural peculiarity.

The following onservations were made to ascertain the significance of the movement and to know in what relations, if any, it stands with respect to the visits of insects.

April 16, 17. Rainy. I visited certain spots where the plants were abondant. Many flowers were open. I saw no single insect near, and the stigmatic lobes of almont all the flowers were deflexed.

April 18. Clear warm day: $22^{\circ} \mathrm{C}$. at nown. At one o'clock p. M. I went to the same places and found that many of the flowers had their stigmas closed. Soon I saw two or three bees come with a buzzing note. They alighted on some of the flowers, thrusted their month-parts deep into the throat of the corolla which had honer stored in the basal part of the lower lip. In so doing the heads of the insects unavoidably struck against the open lones of the stigma which at once closed. The heads were then thrust in leeper and came in contact with the anthers. In a few minutes they risited no less than a hmodred flowers and then flew away.

At 3 p. ar. On the same day I revisited the same places and found a similar occurrence.

At 6 p. M. Comparatively small number of Howers (about one-third) had their stigmais closed; no insects were flying about.

At 9 p. ar. Datk night. The flowers did not close, and the stigmas were wide open.

April 19. Foggy morning. At 7 A. m. I saw the stigmatic lobes quite reflexed.

At 9 A . м. A few insects were found entering the flowers.
April 20. Clear but very windy day. At noon I visited
the same place without noticing a single insect, and most stigmas were open.

D wing these days I likewise examined the same species in the Botanic Garken of the University at Koishikawa. and found almost the same state of things.

In all cases I observel that those growing in shady places and those kept in the honse had their stigmas always open, while those on open smmy lawns hat the parts mostly closed,--the differences seeming to be due to the relative frequency or total alsence of the insect-visitors.

These insect-visitors belong ahost exelusively to the Hymenoptera, a species of Élura (PI. XXVIII. Figs. 4, 5) of Apida, identified for me by Dr. C. Ishikawa, being the chief visitor. The visit of this bee, however, is not confined to the Hower of Mazas, for I often noticed that the insect burdened with yellow pollen dusts of other flowers, probably of Taraxacum, thrust it. body into the lips of the flower smeang the stigma as well as the corolla with the golden yellow powder.

So far as my , bloservation extemts, I may conchale that the irritability of the stigma of this plant is not for the purpose of protection agranst wind and rain, of which the stigma may be tolerably well kept out l_{y} the werhanging upger lip of the enrolla, but-as has been suggested by Hermann Mialler* in the case of Mimulus lutus-for a more impertant purpose, i.e. for cros-fertilization, which no doubt takes place in the following mamer.

A bee laden with the pollen of one flower enters another flower of the same species for honey, and thas comes with its head in contact with the lower lobe of the stigma which just overhang- the

[^46]stimens. Som after the contact (ly which the stigma receives the
 then enters deeper and becomes dustad with a new shyply of pollen. That reopening of the lobe takes place in abont 10 minates after the closing seems to loe well adipted to the requirement of the case. when we consider the interval of time which matally elapero before
 rarer smowy white, colom of the comolia serves no donbt to attract the insects, while the hairs wh the flom of the lower lip seem to assist the risiting inserts in alighting.

In Mimmlus mpelinsis. Benth.. Me sessifinlius Maxim.. and M. moschutus, Dong., all of which I hase ohservel, the mechanism is precively similar and adapted for the same purpose as Mazus, so that it is hardly necessary to enter into details.

Explanations of Plates XXVIII and XXIX.

Indications of Reference Letters.

I. l., upper lobe of the stigma; l. l., lower lobe of the stigma; sty., strle ; stig., stigma; loos. tis., loose tissue of the stigma; cond. tis., conducting tisssue of the style; pap., papille ; pol. gr.. pollen-grains.

Plate XXVIII.

Fiy. 1. Muzus rugosus, Lour., var. mectuntlus, Fr. et Sav. (natural size).
Fig. S. Corolla cut open along the middle line of the central lobe of the lower lip. showing 4 didynamons stamens (magnified 3 times).
F'ig. 3. Calyx rat open showing the pistil and its limbed stigma (magnified 3 times).
Fig. to Eucera spo which visits the flower of Mazus. (matguified 1.5 times).

Fig. 5. Upper and lower wings of the same, showing the veins (magnified 3 times).

Plate XXIX.

Fig. 6. Pollen-grains in different positions (magnified 540 times). Fiy. 7, 8, 9. Stigmatic lobes in the sneressive stages of closing (magnified 22 times). Fig. 7, at the moment of a shock given. Fig. 8, after 3 second. Fig. 9, after 5 seconds.

Fig. 10. Portion of the immerneme of the stigmatio labe showing
 with some pollen-grains developing pollon-tump. The mimute ghobule in the erells represent the wrambar anpect of the promplam (magnifiod 5 to time $)$.
 of 1 her stele: the epilermin is shown as broken along the midulle line - ${ }^{\prime \prime}$: 16 shew the lonse tissme inside. The cells of the epidermis on the stigmatio portion are simmens, thase on the sylar portion menly rectangular (magnified 230 timers)

Fig. 4

Fig. 5

Fig. 1

Fig. 2
Fig. 3

lig. 7
$u l$.

H'ig. 8

Notes on the Development of the Suprarenal Bodies in the Mouse.

Be

Masamaro Inaba, Rigakushi,

With Plates NXX-NXXI.

It has lomg beon known that the suprarenal boties of the vertehata comsist of two suhatances, the medulia and the cortex. As to how these two subtances arise and in what relations they stand to arbother the opinions of previons investigators are divilat. During the acalemic year, 1888-89. Istadied the development of the organ in the common domesticatel monse, a variety of ML us musculus, :and came to the comblusion that the cortical cells are derived, as danosik stated, from the peritoneal witheliam, and the medullary substance arises, as lescribed by Mitsukuri, from the sympathetic elements. The following is a brief account of my investigation. I mast here express my sincere thanks to l'rofs. Mitsukuri and Ijima, for their ennstant encouragemont and valuable suggestions, without which I cond not have finished the work.

As to the method of investigation I preserver after Selenka the specimens, young aud adult, in Kleinenberg's piero-sulphumie acid mixed with chromic acid in the ratio $8: 1$. Some of the aldult sperimens were also preserved in hichromate of potash. hout as (inttschau justly remarked, it is mot necessary to nse the chromir acid, at least in
the case of the monse, to demonstrate the distinction between the medullary and cortical elements. In the preparations of the chromo-picrosulphrie acid the mednlla in not coloured hrown ; this seem to be due partly to the shortuess of the interval during which the embryos were exposed to the action of the reagent ($1 \frac{1}{4}$ hours) and partly to the presence of the picro-sulphuric acid. To stan embryos, I used a weak solution of Kibincuberg's hamatoxylin, as it gives the dearest and mosi differentiated ligures. With piorocarmine I also obtanced grox preparations of the suprarenal bodies of the yomg monse. The objects were stained in toto before imberding in the celloidin paraffin. In all cases I took pains to stain deyly am. i to colat sections as thin as possible.

I am not quite sure of the age of the embryo, since I could not Wherve any actual coputation. After the methot of Selenka, I separated the indiviluals of two sexes for from ten to fifieen dars, then put a pair together for a night, amd separated them again the next morniug. I comed the day of separation as the first day of gestation, the next the second daty. :and so forth. From a numher of preserved embryos I determined the approximate size (from the tip of the head to the root of the tail) of the embryo in each stage as follows:

In cases of embryos oller than this stage, I opened their abdomen as puickly as possible before immersing them into the killing fluid, and could not make any reliahle measurement.

Suprarenal bodies of the Monse, from the new born to the adult.-I commencel my study with the young mouse about
one month oll. In thase specimens, the two substances of the suprarenal bodies are already well marked. In cross sections, the organ is elliptical, consisting of two concentric zones (Pl. XXXI. fig. 21); the inner central zone (med.) stains somewhat less than the outer zone (cor.). Under a high power, the central zone is found to be composed of irregular cord-like cell-aggregates. each of which is bounded by strong connective tissue fibres. The cell-protoplam is faintly stained ; the muclei are large (6μ. on an arerage) and slightly gramular. The huclei of the cells of the outer zone are smalier in size (5μ.) and highly gramalar. Their rells are smaller than those of the central zone ; this is especially the ease in the middle portion of the outer zone where the cell-protoplasm is stained deeper than in any other part. so that the outer zone is subdivided into these minor concentric zones. But these three zones gralually merge one into another withont presenting any distinct limit. The tramsition from the onter (cor.) to the central zone (med.), on the other hamd in very sudden; the limiting line is distinct and toleral) ly even, forming an elliptical outline. Evidently the central zone is the medulla, and the outer the cortex.

Turning now to the mouse ten days old (Pl. XXXI. fig. 18), a considerable difference is observed in the structure of the medulla. The medullary substance (med.) projects irregulanly into the cortex (cor.), and the boundary is not yet even, though its elliptical out line can already be mate out. The rells and muclei of the medulla are stained deeper than before, sothat the disibuction of it from the cortex is obscure in some parts where the former projects into the later. The difticulty is further incrased hy the fact that the cord-like arrangement of the mertulla is as yet very weakly developer, and the respective sizes of the nuclei in the two substances are approximately equal. But tracing carcfully the margin of the medulla, we can find here and
there the distinct grompings of its cells into cord (fig. 19), where the muclei are larger and the protopham is less stanted, than in the adjuing cortical cells. This stage seems to be the formation of the medullary cords. The the minor zones of the cortex are atreaty to be formd, though low diatinct than in the stage deseribed before

In the mouse three days old (figg. 16). the medulla is very irregular in its outline. Nong its margin the cells are greatly mingled with the erorical cells. Jut the distinction is clear, the cells and nucle of the medulla being stamed more deeply and packed more closely. than in the cortex. The three minom cortical zones are not yet distinguishable.

In the newly-bom monne (wood-ent 1 and l'I. NXXI. fig. 15), the mednla no longer forms any compact mast, hat has cortical eolls, intermined thronghont its substance. The distinctions betwen the two substances can howerer be easily made out as before.

The relative size of the melei in the two substanese is intereating. In figs. 1.5 and 16 (Pl. SXXI.), the mucle of the medullary cells are witently matler than thome of the cortical cells, while in fig. 21 , the case is reversed. I measural the maclei of cells in the two substances near their boundary line at rarious stages. The following gives the arerage size (in μ) of those nucki.

	1 diay wh.	: days	10 lays.	29 days.	adult.
Merlulla	$5 . \geq$ -	5.6 -	-. $6+$	1 ;	
Cortex	6.5-	(i.-	$5.4-$	j-	$5+$

It will be seen from the table that for about a month affer lieth, the entical modei are granmally decreasing in size ; at the same time the medullary huche are growing though very slightly. This is, I believe, due to the formation of the cord-like arrangement on the part of the medulla, and of the zona reticulata on the part of the cortex.

Woodcut 1 .

From a monse one day old. The left sumarenal body is represented. Ao=Aorta, Br.-Veins. Cor=cortex, Med.=Mehnila, Mes=Mesentery, s. s. Main mass of

So far an traced, the medulla is always distind from the corter. and its origin cannot be derided. but some interesting (and evilently a little ahomal) cance were mod with. In me monse just bern (woodent 1), the romghly chlipical medutha (med.) witnated in the centre of the wean semds off an offehoot at one phace toward the methal side, actually reaching the comnective tissme alpule. Ontside the organ lies a large ganglion (s.g. . , which is foum in tracing
 The medulary cells of the suparemal body and the true ganglion cells are very similar in their size and colouration. This combition was ols.served only on the left sumprent.

In a three-day old mouse (wootcut 2), thain on the left sile, I wherved an actual commection of the mednlla with the gation. In fig. 17 (1 II. XXXI.), which is a more magnified figure of the wool cut 21 , a mass of cells with small and deeply statued mote; (med.)

lying close to it . In another monse at the same stage, a similar condition wa- observed ; the gation besides being joined by a nerve coming from the neighbourhoul of the kidney.

Woodcut 2.

 Medulla.

Giniled by these fache, I exanimed agan the ten-days of monse. and fomet in one ase the medulla projecting on its medial side and
 but it was mot timed to the sympathetic ganglion. These facto plainly show that the medalla is derived from the ganglion cells. When and how the nervons elements enter the organ, will be deseribsed below.

In passing. it may he remarked that in woodent 2. a small portion of the cortical whatance is projecting far postrionly and is separated from the main mas hy the sympathetic ganglion. In fig. 17, the part (ace cor.) is distinctly separated from the man mass by strong connective tiseme cells. This is the w-callen? acessory suprarenal bedy. From the mode of the entrane of the neme into the organ, as seen in this and other cases, I am inclined to believe that the introduction of the herrons elemente into the organ greatly inflnences the formation of the acesiony suparenal body, though it may mot he the sole manse.
 say, as it does not differ much from that of the one montla old mone
 view is the ocrasional presmer of the ganglimie remmants.

 deeply stamel. Their mulei are smalter than those of the modnlla on cortex rells hat deciledly larger than those of the comertive tisane cells. By trang sections. I fomd the mass to propect pyramidally into the cortex and fimally rearh the capsule. In comparixon with
 as a part of the nervons elements. which has not been transformed into the true medulla. Of the large ganglion relle surth as seen motside the adnat supraremal hody. I combl find nome present within the adult organ.

Development of the Mednllary Substance, in the 13th-18th day Embreas.-Dalfone remarked in his mome. graph on elamotranch fishes that the supramemal booties of

[^47]Vertehrates consist of two substanes distinet, in their origin. This Bramo ha confirmed in Reptiles, and Mitsuknti" in Mammalia. Mitsuknri a ays that in the 16 th day embryo rablit the medullary whbtance is already distinet; sympathetic nerve ecth closely applien to the imner side of the supraremal hastema semt in a process partly romposed of nerve fibres into the ventral end of the suprarenal ; the cells thas carried in herome gradually transformed into the medulta. (iottschan ${ }^{4}$ anl . Tanosik" dispute this statement. Thomgh these anthas do mot deny the entrance of the nerve fibres into the suprarenal, they state that the two parts of the supraremal substance camot be distinguished at the time of the entrance, and the mednllary substance is gradnally differentiator from the cortical substance at a considerably bater stage. fontsehan even states that in some mammats the medulla in developed mly after hirth. I et from the deseriptions of the two anthors, the exact monde of the formation of the metulla is mot yet rear, and it is also neerssary to trace the ultimate fate of the nervous filmes sent into the supraremal hastema.

The suprarenal blastema is already distinct in the 13 th day embryo. It is a comewhat elongated mase of cells lying between the 16 th and 17 thi boty-segments, just behind the lobes of the lungs. The anterior end of the hastema lies on about the same bexel as the end tumbe of the mevonephros, white the 3rd segmental tubule lies on about the midule portion of the suprarenal. In (ross eretions (wodent 3 and Il. XXX. fig. S), the blastema
‥ Ban und Entwicklung der Nobennioren bei Roptiben. Arh, ans dem Zool. Zoot. Inst. in Wïrzburg. Bul. V. 18Sㄹ.
3. On the Derelopment of the Supmonal Bodies in Mammalia. quart. Journ. of Micruserp. Sender, XXII. lise
4. Structur und mbryonale Entwiekhner der Nobennioren bei sïngethieren. Areh. f. Anat. n. Phesiol. 1ssiz.
5. Bemerkugen ïh, lic Entwickhng dor Nobreniore. Arch. f. Mikr. Anat. XXIf. 1883.
($\because \cdot r^{r}$) is seen as a roumded mass (about $\frac{1}{4}$ mm. thick) of cells lying between the anra (. 1 n.) and the mesonephos (st.), immediately below the rardinal reins (r. car.). Alrealy at this stage, a blood vessel (c. v.) is seen in the posterior portion of the blastema, coming from the cardinal rein ; this vin is ultimately transfomed into the central rein of the ahtult suprarenal. The suparenal bhastema (s.r.) is distinguished from all neightouring tissue cells by the densely packed state of its large and faintly granular cells. Cell boundaries within the blastema are only faintly iuticaterl, lut a carcful observation shows that colls are collecten into irregular groups, separated by santy connective tissue cells. The cell muclei are slightly granular and their size varies between $5-7 \mu$. These chararters of the cortical cells are retained during the subsequent develonmental phases and are useful in distinguishing them from the medullary cells.

Woodcut 3.

A cross section taken near the postrior end of the suprarenal bodies - 13 th day

The sympathetic ganglia (woodent is s. w. ate well developed on the uppar lateral comer of the anta, ant a strong branch from
the spinal nerve enters each ganglion. The ganglia send out branches downwards between the aorta and the rardinal vein, but they are very fine, often consisting of a single row of cells and cannot be elearly traced. Yet on the medial side of the suprarenal hastema, closely applied to it, there is seen a small irregular group of depply stained cells (fig. $8, \stackrel{y}{ } y^{\prime} . g^{\prime}$.), whose nuclei are a little smaller and more grambar than those of the suprarenal, and similar to the cellw of the sympathetic ganglia. Probably these cells are of the nervous nature.

Woodcut 4.

A aross section taken near the posterior end of the supraremal lodiw.-Later stagr of the 13 th disy. Ao. norta, Bs, veins, f. O. - generatire organ, s. r. $=$ suprarenal
 ear. - ambinal reins, W. D. = Wolflian duct. -2ха.

Towards the close of the 13 th day (woodent 4). the cardimal veins areatly retrograde, on the right side almost completely. Thus the central rein of the right suprarenal hecomes now the direct continuation of the vena cava, amd the left central rein becomes a side branch from the great rein. The supraremal blastemas of the two sides are now placed not ventrally, hat laterally to the anta. The mesonephros is pushed laterally and Miiller's duct is distinct. In
the 14 th day embryo, the blastemas have a considerable size, a little projecting into the coelom cavity. The kidneys appear at the posterior and dorsal side of the suprarenal. By dissecting the embryo, the suprarenals are seen as a pair of oval shaped bodies, flattened anteroposteriorly as if pressed by the developing kidner. The inner end of each suprarenal is attenuated and thus overlaps the anterior inner corner of each kidney, -a state of things retained and more distinctly seen in later stages. In the 15 th day embryo (woodent 8), the suprarenal bodies have shifted their position, further dorsalward, being now placed just laterally to the vertebral body and dorsally to the aorta. Thus at no stage, are the suprarenals of the two sides connected together as some writers state. As Mitsukuri and Gottschau well remarked, it is the ganglion placed iuside of each suprarenal, which is posteriorly joined to its fellow by a cross bar.

The nerves sent out from the sympathetic ganglia are distinct in the later stage of the 13th day (woodeut 4). Two or three branches are successively given ont from the ganglia and all are united into the splanchnic plexus lying inside of, and closely applied to, each suprarenal. A branch is further sent downwards from the plexus to the front of the aorta, where it is comnected (in the next day) with its fellow of the other side. From the 14th day onward (woodent 5), we can distinguish in each splanchnic plexus at last two ganglia, the larger anterior and the smaller posterior ones. The posterior ganglion on the right side is elongated and becomes continnous with the catiac ganglion, so that the latter may be satid to be the direct continuation of the right splanchnic plexus. From the ganglion closely applied to each suparenal (that is the second ganglion of the plexas), some fibres enter the organ. Though very fine, these fibres can be traced for a certain distance within the organ. Woodent 6 and fig. 9 , takeu from the 14 th day embryo, repre-
sent the state of things, when the nerons clements are just entering the organ. It is seen only for one section.

Semi-diagramatic figure, showing relations of suprarenals to ganglia and bloodressels.

From a 1 th hay embry, representing the right supparenal. The phace marked \times is

 of the sympathetic origin.

In the 1 oth day embren, the norve filmes within the organ are stronger amd more anily fore ascertamel. These branches are
tolerably constant in mamber. Ciemerally ints the left sunamenal (woodent S), wne very strong bunde chters at abont the middle and ventral portion of its imer margin. At the corresponding point of the right suprarenal (woodents 7 and 9 a a strong bundle (but more sender than that of the left side) is seen ; wn the same level amb somewhat dorsal to the one just mentioned another smaller bundle rums in from the same ganglion. lesinlesthese a small bundle may sometimes be seen entering the organ at is preterior eme (woodent 9 b). All these bundles are very delicate, and can be seen only for there or form consecutive sections.

It will be necessary here to desmibe the characters of the nervow cells to distinguish them fiom the cortical cells. The protoplasm in these cells is mot so rich as in the cortical rells, and is very gramular ; their nuclei are comparatively small (4.5μ on an areragre) thickly packed, and deeply stamed due fo the presence of many granules.

Woodcut 7.

 The place marked is mone magnified in tig. 10. X. (1ll. I.) 'lhe phace marhom $\%$ is more maguified in fig. 10. B.

In fig. 10 A (which repreent- a protion of the wondent 7 under a higher power) taken from a loth hay embryo, a mass of
nerrous cells is seen insinuating itself into the cortex. The other smaller bundle (marked in the woodent with a *) is interesting. It is very delieate and sarcel! vinible ruming deeply into the cortex. and finally ending in a small cluster of cells, which are distinctly of nervons hature (Pl , $\mathrm{X} X X$. fig. 10 li).

Woodcut 8.

 med $=$ medullary substance, sy, $=$ maghon of sympathetic origin. $2 \times \mathrm{BB}$.

In the 16 th day embryo, the nerrons element carried in the organ are comsiderable (wooklous 8 and 9). They form now a reticulated network imbedted between the cortical cells, appearing in sections ans small scattered groups of cells. Though the main mass of the nerve rells is clantered in the exatre, ame cell gromps (Pl. XXXI. fig. 11) are formd in the periphery of the organ at its medial side and send out their fibres, which actually piercing through the conwective capsule become continuous with the ganglion near the organ. In others (fig. 12), although the fibses pierce through the capsule,
they ean not be traced to the ganglion, but are lost on the way : in others again. they are lost in the connective tiswe capente of the organ. From this stage onward we can all the nervons elements within the suprarenal more appropriatcly the medulla. I believe this amd the previons stage are sufficiont to show the natme of the mednllar! substance. Probably these two stages were not observed ly contserhan and lamosik. who thus concluded that the mednla is differentiated grathally from the cortical substance.

Woodcut 9.

Cross section taken from a lith day embro. right silu suprarnal.
A, at the midtle of the orgath. B. neat the posterion and
 origin. $2 \times \mathrm{BH}$.

As to the further $\underline{2}$ ronwth of the medulla, I hase little to deseribre. It consists merely in the increase of the melnallary cells which gratually form a compact mass in the centre of the organ, the cortical substance becoming in consequence seanty in the centre and phaned to the periphery. (I'. XXXI. 14)

The severance of the nervons connection eommenced in the previons stage is nilatly complete in the listh dity embryo, which
was the oldest one I investigated．The process takes place simply by the growth of the connective tisulue capsule around the piercing herve which is consequently reduced to a narrow nerk and finally cut off （tig．13）．Still the direct eonnection of the medulla with the － ym pathetic ganglion is retained in some cases，expecially on the left side．In all such cases observed．the connective link which persiste
 may he immersed in the organ．This is one reason why the commertion persists lomger．Further as before stated，on the left side the newons fibres enter the urgan mostly as a single conspicuous lumde．While on the right side they are usually divided into several smaller＂usters，which will more easily be cut off．Hence the connection when it persists in the newly horn monse is always fomel on the left suprarenal as before described．

As th the general appearance of the histological elements of the surarenal bodies in this stage，it does not murh differ from those of the newly horn animal．

Development of the Cortical Substance in the 11 th－ $12+$ hay Embryos．－－As regards the origin of the corticalsubstance the athention of earlier writers has been principally directed to the in－ difterent mesolbast．Kialliker ：stated that the suprarenal bodies in the rablit first appers in the 1 Oth or 13 th thy embryo as mases of some－ What hate rombleclls on each side of，and rentral to the aorta，on the inner side of the Wolffian bodies：and dorsal to the mesentery．Mi－ twiknio comfirmed this and added that dorsally this mase is tolerably distinet from the other mesmbastie cells．hat ventrally its termination is indefinite．Bramí，bram，and more reently Gottschan derived

[^48]the cortical cells from the mewhalast. hat in connertion with the walls of the boorl vesols (anta, cardinal veins. vena (ava, or voma renalis).

Recently for the first time fanowik stated that the suprarenal body take its origin from the peritoneal epithelime and it is in fact
 this eomertion persists for a tolerably long time mat it is ant oft be the entrance of hood reacke, e-pecially the vena rertebralis posterioni and other reins emptying into the same from the Whaffian budies. Weddom." on the other hand. derived the blatemat from the Wrolfiam bedics. Aseording to his statement, a cell-mase proliferates from the walls of the ghmernlas :mblerater into two mases: the one travelling hackwards becomes the smparenal body, the other growing downwards ant entering the sexual organ becomes the tuhbli seminiferi (in the male). Jihatcorios also aftiemed like Weden the connection of the supmenal hastema with the sexmal "strang" (=segmental "strang" of biamin), which he devises, however, from the germinal epithelimm. At this point he agrees with Jameik, but differs in the statement that the suparemal boely is only the undifferentiated anterior continmation of the sexmal organ. In front of the anterior end of the gencrative ridge the suprarenal cells are said to be directly proliferated from the peritoneal epithelimm, and posteriorly they are said to be contimone with the sexmal strang hat not in direct ronnection with the peritoneal mithelinm. In hirds and mammals, the direct proliferation of the peritoneal epithelimn to form the suprarenal blastema is said to be confined to a very small tract, so that it might he overlooked if series of sections were not studied.

[^49]Tor trace the origin of the eortical sulstance is in fact extremely diffioult, as its cells are faintly distinguished from the other tissue cells. The artical blastema in the monse is tolerably well seen in the early stage of the 12 th day of gestation. The mesonephros in the monse is very weakly developet. Only the anterion two or there segmental tubules actually open to the Wolfitan duct ; following these ran be traced five or six hind thbules, which lewsen in size one after another, until finally no tuhblar structure is sem beyond the Sth or 9th one, the edells heing merely elnstered in proper phaces. The
 two segmental thbule to abont the 6 th or 7 tha tubule. In eross section, it is large anterionly and granally lessem in size posterionly. It is placed just at the mgle of the mesentery (Il. XXX. figs. is and fi), ocerpying the space enclused ly the anta ame the cardinal vein on the metial and dorsal side, and by the mesouephros and the generative organ on the lateral size. Medially the hastema is distinctly twourded hy comnective tiswue cells. Where the S -shaped segmental tuhnles are projected in medial direction, they approach the dorsal end of the suprarenal blastema; in other cases they are far remosed from the suprarenal. In no caves do the tubules send out cells meelially. The walls of the carlinal rein show no sigus of proliferation. Branches of the rein to the suprarenal are not yet developed.

The relation of the suprarenal hastema with the heginning of the gemerative organ is interesting. These two hastemas are placent side by side, their anterior extremities reaching about the same level, hut posteriorly the enencrative hastema extends far beyond the end of the suprarenal. The cell elements of the two are rery similar, consisting of large cells with large romed molei, which are stained slightly deeper than those of the connective tisone cells. But the two blastemas are separated from each other in all places, except at
the anterior parts, by an intervening thin septum of comective tisoue cells. This septum, consisting of the two or three rows of cells, runs from the peritoneal epithelime in dorsal direction, and fiually separate itself into two branches, the one bending laterally and corering the generative organ, the other bending medially and covering the dorsal eud of the supraremal.

The cell.s of the peritoneal epithelium which touches the suparrenal blastema are arranged in a single row (fig. 6). Bat as we proceed anteriorly (fig. 5) the epithelimn cell.s are evidently proliferating ; they are actually phed upwards and are even continuons with the suparenal blastem:. 'Tracing ections still anteriorly, the comertion becomes more intimate, till near the anterior end of the supraremal (1'l. XXX. fig. t) the peritoneal epithelimm camnot be distinguishod from the suprarenal blastema itself. Here the septum no longer exist between the suprarenal and generative organs. The tells of the two blastema are laterally continmons with each other, the two being indicated only by the two romeded eminences projected dorsalward; rentrally they are both seen to be the proliferation of the peritoneal epitheliam.

In a stage somewhat earlier than that above described, the smprarenal blastema is not yet so distinct. Figs. 1-3 were taken from an embryo in the later stage of the 11 th hay of gestation. Fig. 2 taken from near the anterior end of the left apraremal blastem:a corresponds with fig. t, and figs. 1 and 3 taken on both sides at the middle of the organs correspond with fig. 5. From the somewhat detailed dencription of the previons stage, any further remarks will not be needed. Only it may he added that the proliferating cells are very indistinctly bounded dorsally, but a careful stuly shows that they are proliferated from the epithelima. Why I da not consider these proliferating cells as the sole begiming of the genemave organ
is simply that the position of that organ is alwas in the following stages a little remosed from the angle of the mesentery. Further in figs. 1 and 3 the proliferation of the peritoneal epithelian can be roughly separated into two parts, the medial and lateral.

From the above description, I think that Jansik's statement as to the origin of the cortical cells in quite correct. My figure 1 corresponds with his figure 1. The only difference is that the mesoncphros in the monse is not so well developed as in the case of the pig. Thus Jamosik stated that the cells proliferate in the melial direction to the aorta, which condition is observed in the monse only on the right side. The mesentery in the monse heing' shifted from the medial line a little to the right side, its angle on the left side is carried far to the medial line, so that on this side the sumaremal blastema is projected upwards and a little lateralwards in the direction of the mesonephros (rompare figs. 1 and 3). I camot detemine whether the suprarenal body is rally the anterion comtimation of the gencrative rilge or not. The state of things as seen in the ligure given by Mihalkovics from a sheep embryo (his tig. I67) I conk not find at the corresponding point of the monse. But from the fact that the peritonemn is proliferated and the sumarenal blastema is placed side by side with the generative organ in its entire length, it is more likely to be the lateral separation, and not the anterior continuation of the generative organ.

Further growth of the suparemal blatema consists simply in its separation from the peritonem and clustering into a more compact romed mass, as will be seen in fig. 12. The proliferation of the peritoucum, though slight, is still ohserved fowntis the clowe of the 12th day. Beyond the anterior end of the suprarenal bodies, a slight proliferation of the feritoncmm was sometimes observed (PI. XXX. fig. 7). I think that the compact supraremal blastema is formed
rom the main mass of the proliferated cells. while a small portion may be left behind, which seems finally to disappear without cotering into the formation of the suprarenal bodies.

Tosumup:

1. The Medulla and the cortex are distinct in their origin.

2 . The cortical blastema appearsinthe laterstage of the llth day of gestation, as aproliferation of the peritoneum at the angle of the mesentery and laterally continnous with the beginning of the generative organ. The separation from this combection is complete ont the 13 th day.
3. The medulla in derived from the sympathetic elements, which enter the orgatinthelth day embryo. Theyincrease and formareticulated mass at the centre. from which the cortical cells are gradually pushed aside. The comuection with the sympatheticsystem is usually cut toward the close of gestation, but in some may be retained untilafter birth.

Explanation of Figures.

 Br:= \ins. cor =cortical cells. c. $v=$ central vein of Suprarenal bodies. Diag. = Diaphagm. (i. . =Gemmative organ. Kid. =
 remal borly. Sit. Seqmental tubuler. Sy. f. $=$ Sympathetic nerve fibser. Sy.g. $=$ sympathetic ganglion cells. v. car. $=$ cardinal veins.

Fig. 1. From the 11 th day embryo. Right side. Taken from the level of the zud segmental tmbule. $2 \times \mathrm{E}$.
Fig. \therefore. From the lath day embryo. Left side. Taken from near the 1 st segmental fubule. $2 \times \mathrm{E}$.
Fig. 3. From the 11 th day embryo. Left side. Near the ond segmental tubule.
$\underset{\sim}{2} \mathrm{E}$.
Fig. F. From the 12 th day cmbry, early stage. Left side. Near the anterior encls of the suprarenal and gencrative orgats. $\because \times \mathrm{E}$.
Fig. J. From the $\left.12 \begin{array}{c}\text { th } \\ \text { day embryo, early stage } \\ 10\end{array}\right)$ sections behincl. $\because \times \mathrm{E}$.
Fïg. 6 . From the 120^{2} day embrow, early stage. Absut the level of anterior one thind of the left suprarchal. $\quad \cong \times \mathrm{E}$.
 leyond the anterior ent of the suparemal bodies $\quad 2 \times \mathrm{F}$.

Fig. s. From the 13th day embryo, early stage. Right side. $2 \times \mathrm{E}$.

Fig. 9 . From the $14 t h$ day embryo. Right side. The place marked \times in woodent 6 . $\because \times \mathrm{F}$ 。
lig．10．From the 1 anth day embryo．light wide．A．the

$$
2 \times \mathrm{F} .
$$

Fily．17．From the 16 th day embryo．Laft sile．Morr

 magnified figure of woment ！A． 3×1 D．

Fïg．Ris．From the 18 th day embryo．From the penterion part of the left sumememal． $\because \times \mathrm{F}$.
rig．1t．From the 18th day embroo．From amother ambryo． （antral fortion of a sertion．taken near the pexterior emt of the right supraremal．

$$
3 \times 101
$$

Fig．15．From the 1 day wh monse．Right smparenal．

$$
: 3 \times I
$$

 Posterion eme of the left supmenal．Whe magniferl figume of wootcut 2．P．

F̈̈！．7．s．From a mome about 10 days odr． $2 \times \mathrm{E}$ ．
 weakly developed． $2 \times F$ 。
fíls． 80 ．From a mone about 10 days old，another specimen． The remnant of the connertion with the sympathetic．

$$
\begin{aligned}
& 2 \times \mathrm{E} \text {. } \\
& \text { F'ig. } \because I \text {. From : monse abont } 1 \text { month wd. } 2 \times \mathrm{E} \text {. }
\end{aligned}
$$

> Fial. 23 . A part of the right sumaremal from an old monse.$\because \times \mathrm{E}$ 。
-

ERRATA.

Page 245, line 10, for I'rof. Schenk read Sehimper.
," 246, , 20, " D. Kochile read D. Koehibei.
" 300 , 5 , from end, for " nickel" read " bismuth."

On some Fossil Plants from the Coal-bearing Series of Nagato.

19

Matajiro Yokoyama.

With Plates XXXII-NXXIV.

 : plare ralled y:mm?m, :omm $: 30$ kilamoter: eat of the rity of

 I w:

 fomm havise hern atienty repremated in the willeotion of Mre

[^50]siste of a thick eomplex of sumbthes, day-states ame shate: with subondinate layers of semalatein and anthrasite in its lower patt and of brownemal in it: uper part. These strat: which fiom a low
 formation trike geneally from eat to wed, ant how steeper dip in the northern than in the somthern part of the district, where they gently slope towards the sea. (wing to the repeated foldings to
 complicated, and has mot yet beent clearly mak out. It will be moly aded here that our fowsil: were disenvent in the bawer or whalstem-hearing fart of this formation.

The forsil hieality liw on whe side of : a man which lead: from the village of Yamanoi to the town of Habn, in a valley :mrommed by hills. Here in a pace of :alnout 4 meters, I , wiserved fom fossil horizoms. The bowe of them is: y yellowish grey argillacems sandstone yidding mly Dictyoplyllum juponicmu, lut in great momberi. The plants of this hamizon are easily distimenishabe from thene of the othere, being coloured dark green :as if the vegetable matter were still remaning on thene. The next harizon is that of : a light interish argillacems sunt-
 horizon all the aceries below described were fimm, Ar. Kinhiine: plants having been prolably taken alse from this layer. The fwo पper horizons have vieded mily same fiegment: of Dictyophyllum japonicum. Deside: there fwo horizons there is, I prestme, :nother, as I fomul some piman of the emme peries in a bank state stuated nome to the north and oremping poobably : higher position than the sambtome'. From this, we (an we that there are several forsiliferons zonce: in the coal-heming :eries of Nagato. lint at present as the number of arecies fomm in them is very mall, it i m, poible to patake any palaemonogical distinctions in them.

Fonsils, where there they are fomm in ahmotace, are generally very well preservel. Owing, lowever, to the lnittle nat are of the rock containing them, if is very difficult to ohtain any large secimen.

After these hrief prediminary remarkn 1 shall first pass to the deseription of the seecies, and then to the conclusions which can be drawn from them.

Description of the Species.

1. Asplenium Roesserti Tresl sp.
 PI. XXXII, Fig. l-ォ, ll. XXXIV, Fig. 2.

Aspleminm Linesserti Schenk, Fossile Pflanzen aus der Albourskette gesammelt von L. Tictze, p. 2, pl. I, fig. 2-1, II, 8-10, IV, 19, VI, 33, VII, 36.

Asplenites Linesserti Schenk, Foss. Flora d. Grenzschichten d. Keupers u. Lias Frankens, p. 49, pl. VII, fig. 6-7a, $\mathrm{A}, 1-1$. Zeiller, Evamen de la Flore foss. des Conches de Charbon du Tongking, p. 302, pl. X, fig. 3, Ba.

Chladuphthis nehmense var. Linesserti Nathorst, Eloran vid Heigatnas och Helsing. borg p. 42, Helsingborg pl. II, fig. 1-3.

All of' our specimens excepting fig. 3, 4, pl. XXXIl agree so well with the figure: of Aspleninm Rocsserti given by behenk and Nathome that I have mot the aghatest dombt about their identity with this well known speries. The pimules are more or less filcate and indined forward, with econdary veins only one forked. As to the form of the pimmen, l mast say that they are very variable, being sometimes long and finger-like, smetimes short and triangular, at, may l_{x} sufficiently seen from the secimens here figured. The armagement of piman along the primipal machis is in our specimens "Innsite or subnmosite which acemering to selenk is said to be the case in the lower part of the froml.

 been already shown la eminent ：mothmities，that Asplemimm mhitbiense is syomymons with Ahthopteris imticum（lld．it Jowre，${ }^{1)}$ which in

 tween the two，I should prefer to dexithe forms with hifitente second－ ary veins as Asplenium liasserti rar．nlhithicusis．

Aspleninm liesserti orens in the［iper and Lower（iondwana
 in the Lower Oolite of vanons mantrie．
 fossil next to Dict！rnh！！llum jupomicum．

2．Dictyophyilum ef．acutilobum Braun sp． Iリ．XXXII，ドゥ。6．

 II，fig．7．Foss．Floma d．Gremzshichten，1．77，11．NLA fig．：；－5，XN，1．Nathorst， Floran rid Hogamas och Helsinghorg，P．14，Haganas aldre pl．I，fig．\＆，p．44， Höganäs yngre，pl．I fig．10－13，Hclsinghorg pl．I fig．（i－10．Zeiller，Exam，de Ja flore foss．du Tongling，p．311，pl．N，fir． 11.

$\ddot{-}$ ）Saporta considurs in his＂Jlantes Jurassinues＂（I．aleont frane＇Jerr．Jurass．，Végét－
 whilbiensis Brat．

A framment of a coavely toothem pima, with teeth triangular, ohtucly perinted at apex and shghty indined forwand and with retioulate vemation, is mofoubtedly : peceion of Dictyophyllum which is at least very chacly akin to Dictynhyllam acmilohum of the Rhatic
 in most of the figmes given of this species, and the secondary veins slightly zigzag.
besides oceuring in the Rhatie of Eurne, this specios has been alsu described as oecorring in that of the Monoms ('hain in Persia and of Tongking.

3. Dictyophyllum japonicum n.sp.

II. XXXII.

Although this is the mont ahmulant of all the plants found at Yamanoi. yet bot : sperimen was ohtained representing a romplete
 Pimar linear-laneolate, broule at near the midde, slightly tanering thwards both cumb, fobed exept hear the hase where they are
 in shate, with the atherion magin statight or conconce, with the
 Rhathis very strong, staight on somewhat curved, rmming to the

 its median vein; tertiary rens distinct, somewhat indined anteriorly and dichotomizing, the branches foming ley their mion with those of the neighbomring one coame pentagemat on hexagomat net., which are usually dratwo out in the direction of the median vein ; quaternary veins sery fine, forming secombary nets within the primary ones.

A glance at the phate with show that a great resemblance exists between this species and Thmmatopteris Mïnsteri var. abbreriata (iöpp. (Shimper, Trater de labont l'éget, vol. I, pl. XI., fig. 7) from the Whatic of Franconiat. Sio emeat is this resemblanere, that l was at first inclined to treat the two sperie: as ilentionl ; but a carefal comparison between schimper's figure and many tens of pecimens at hand seems to show that the seemulary velus in our phant are not so strong and rigid as in the Emopean. Besides, nome of our - pecimens had the lobes linear ame finger-like as in the figure of sehimper, hut always hat them more or less triangular. Cuder these circmonstanes, I deem it more advisable to treat it as a new pecies.

Dict!oplyyllum juponicum is also not malike C'amptopteris serrata
 of its pinma. But the latter is said to have very indistinct secondary veins.

A Spiropteris shown in fig. 5 , pl. XXXIX, I believe to belong to Incty"phyllum japmicum, :n: it was fomm in the lowe fowsil homizon, where not other speries onectir.

4. Dictyophyllum Kochibei n.s. l. XXXIN, Fis. 1, 1:.

limat dongaterl, deeply pimatifid: pimmle: wate on wately lanceolate, crenate at margin, obtusely pointed at apex, pasing off either at right angles fiom the thachis, of shighty inelined forwart. Rhachis moderatele strong ; acomblary veins quite distinct, somewhat zigzag, one in each lobe ; tertiar velus ako diatinct, forming by their mion twotothre rows of imegularly polyonal neto ; quaternary veins very fine, forming secontary nets within the primary ones.

Jutging from the size of the rhachis and the weaker inn mession
mate he the lobse on tome, this fern sem. to have been more delieate th: 1 the prexeditg and.
 Thammatoptrois Schembi Nisth. ($=$ T'. liromima simenk) from the

 Sheak, who madider: Thummatoteris (iäp, as identical with Dietyo-
 1. 138).

The figured aperimen in the only one fomme.

5. Podozamites lanceolatus Limil. sp.

 P. SXXIV, Fis. 3, 4.I'mlasamite's lancon'atus Nathorst, Floran vil Bjnf p. 78 , pl. XVI, fig. $2-10 \mathrm{a}$, Heer, Juraflom Ostsibiriens, 1876 p. 45, 106 , pl. I, fig. Ba, pl. XXIIF, 1c, 4abe, XXVI, 2-10, XXTIF, 1-8. Beitr. 1878, 1. 6, 20, pl. V, fig. 1-11. Foss. Flora Spitzbergens, p. 35, pl. VIF, fig. 1-7c, M. Schmalhansen, Juraflora Rasslands, p. 29 pl. V, fig. 3-5c. Schonk, Jurassische Pflanzen, in lichthofen̊s China, vol. IV, p. 248 , pl. NLIA, fig. 4, 5, p. 255, LIF, : , LII, 8, p. 2.58. LIL, 7, p. 261, LIV, 2c. Yokoyama, Jurassic Plants from Kaga, Hida and Echizen, p. 45, pl. IV, V, V I, 1, VII, sb, XII, 18, XT, 12l).

I'mduamites distans Zeiller, Exam. flore foss. An Tongling, p. 320, Pl. XL., fig. 2. Nathorst, Beitr. z. foss. Flora Schwedens p. 23, pl. XILI. fig. 6-16, XV, 20.
\%amites distans Schenk, Flora h. Grenzschichten p. 15s, pl. XXXV, fig. 10, XXXVI. Now :and then orrorr leaflets of :a I'oulozamites whichare to loe identified with the woll known ammopolitan weries abowe named.

best, but wanting the tip. Indeing fiom it general outline, it seems to belong to the variety frminn of Heer in which the leaflets are drantu
 shorter, and I :an hut quite sure whether it really hedings here.

6. Baiera ? sp.
 1I. XXXIV. Fig.

Fragmente of long, parallol-wided kenes, apmently representing

 to allow :hy frerise determination.

 form any very definte condedins. Sime of them howerer serm to
 heen restricted to the Lhaetio of Enopge :and the smitar fimations

 Sichomki Nath. sp.. It amant therefore, arioly peakinge lie comphoyed in the determination of the age The two other wedl detarminable series, Asplenimm lioesserti :anl I'mbzamites lamerolatus, :are

to the Rhatic or to the Jurasie. From these facte, I am inclined to bedieve, at present, that this liftle flow is somewhat odder than that of

 of Eumpe. Ouly the diacorery of a greater mmber of -pecies ram Werile the prestion. It is here intaresting to mote that :a similar flom:a
 in China, ${ }^{1}$ Nathomat having recently mentioned Dictyophyllum Nilssoni

 hard it. maximal derelopment in Enrope during the Rhartir time.

[^51]
PLATE XXXII.

Plate XXXII.

Fig. $1, \therefore$, j.-Aphenium Reserti l'resl. sp.

, 6.--Dictyophyllum cf acuthobum Bramens.

Anctor m lapidem del.

PLATE XXXIII.

Plate XXXIII.

Auctorinapidem aut.

PLATE XXXIV.

Plate XXXIV.

.. i.-simpteris.
.. b.-- Maicr:": *.

Yokoyama, Fossil Plants.
Jour. So. Coll. Vol. IV. PI. XXXIV.

Auctur in laturem del

Comparison of Earthquake Measurements made in a Pit and on the Surface Ground.

By
S. Sekiya, Professor',
and
F. Omori, Rigakushi.
Imperial University, Japan.

In certain earthquake reports it is stated that there has been comparatively little or no movement felt at the bottom of a deep pit or excavation, while great damage was done on the wurface of the groumd,* and it veems to be generally believed that shocks are felt less intensely in mines. It is not easy to make instrmental measurements in a mine, and, in fact, we have very little exact knowledge of underground whaking. From a practical point of view, however, with reference to the buikling of house, it is more interesting to investigate the wakings in pits or excavations such as might be made for foundations. The only instance of such actual measurements as yet published, an far as we are aware, is that described by Prof. John Milne in a parer entitled "On a Seismic survey made in Tokio in 1884 and 1885" (Trans. Seis. Sioc. Vol. A.) He made observations in a pit 10 feet in depth, whose bottom was dry and consisted of hard natural earth. Comparing the maximm amplitudes, maximum velocities and maximmon accelerations obtained in the pit cluring the tolerably severe earthpuake of

[^52]March 20th, 1885, with those obtained on the surface ground about 30 feet distant he found that they were in the ratios of $1: 34$, 1:52 and 1:82 respectively. But for mall disturbance, the records in the pit did not differ much from those on the surface. The observations we have made are really a continuation of Prof. Milue's, the same method being adopted in both cases. The results contained in the present paper also show in certain cases some difference of movement on the free surface and in the pit.

The observations were made in the Imperial University at Hongo, Tokyo, where the woil is hardened alluvim. The pit is 4 feet square and 18 feet deep, and is situated only a few yards distant from the instrments in the Seimological Observatory. Its bottom is paved with bricks to a thicknes of ahout 2 feet. The soil appears here to be very homogeneons, so that there will he little difference in earth-shakings arising from the heterogeneity of ground between the surface and the bottom of the pit.

Comparison of the Instruments used on the Surface and in the Pit.

The comparison in the present paper is restricted to the horizontal components of earth movements. The instruments employed were l'rof. I. A. Ewing's Horizontal Peutulum Scismographs. For earthquakes which are not too great these instrument, give diagrams which represent practically absolute motions of the ground.*

The instruments ased in the pit and on the surface were made as much alike an posible. To compare their action, they were placed on a shaky table, and their diagrams for the wame motion were

[^53]taken. Specimens of such comparison diagrams are given in Pl. XXXV'. The multiplying ratio of both seto of instruments was intended to be five. If we go through the diagrams, we see that for moderate motions both give waves of almost exactly the same amplitudes and periods. Even small and irregular ripples are faithfully recorded. Fig. 1 is for the Last- West component instruments, and Fig. 2 is for the North-South component instruments. In the following tables is given the numerical comparison of the amplitudes of some of the corresponding waves as recorded by the pit and surface seismograph.

For E.W. Component Instruments.

Amplitudes in ma. given by		Ratio.	Amplitudes in mm. given by		Ratio.
The Surface Instrument s.	$\begin{gathered} \text { The Pit } \\ \text { Instrument } \\ p . \end{gathered}$	$\frac{s}{p}$	The Surface Instrument s.	$\begin{gathered} \text { The liti } \\ \text { Instrument } \\ p . \end{gathered}$	$\frac{s}{p}$
1.3	1.4	. 9	1.3	1.45	. 9
. 92	. 92	1.0	. 9	. 9	1.9
. ${ }^{\text {d }}$. 75	. 8	1.3	1.2	1.0
. 85	. 9	. 9	2.5	2.45	1.0
1.2	1.2	1.0	2.1	$\pm .6$. 8
1.65	1.55	1.1	. 67	. 67	1.0
. 4	. 4	1.0	1.3	1.3	1.0
. 3	. 3	1.0	1.05	1.2	. 9
. 15	. 15	1.0	. 9	. 9	1.0
. 4	. 35	1.1	1.45	1.45	1.0
1.4	1.4	1.0	1.5	1.0	1.0
2.1	2.3	. 9	1.45	1.6	. 9
2.9	2.6	1.1	1.5	1.5	1.0
1.2	1.05	1.1	. 26	. 26	1.0
.23	. 29	1.2	1.3	1.25	1.0
. 15	. 15	1.0	1.03	1.2	. 9

For E.IV. Component Instruments. (Continued.)

Amplitudes in mim. given by		Ratio.	Amplitudes in mm. giten by		Ratio.
$\begin{gathered} \text { The Surface } \\ \text { Instroment } \\ s . \end{gathered}$		$\frac{s}{1}$		$\begin{gathered} \text { The Pit } \\ \text { Instrument } \\ p . \end{gathered}$	$\stackrel{s}{1}$
. 1	. 1	1.0	1.1	1.05	1.0
. 2	.22	. 9	. 4	. 48	. 8
2.65	2.85	.9	. 1	. 1	1.0
2.5	2.35	1.1	.25	. 13	1.9
2.2	2.0	1.1	.12	. 10	1.2
. 6.5	.85)	. 8	. 2	\therefore	1.0
. 82	. 7	1.2	. 27	. 30	. 9
2.7	2.55	1.1	. 36	. 4	9
3.05	2.8	1.1	. 4	. 4	1.0
1.75	1.6	1.1	. 50	\%	1.9
1.8.5	2.0	. 9	1.9	1.8	1.1
1.1	1.1	1.0	. 9	1.0	9
. 18	. 17	1.1	1.8	1.8	1.0
1.4	1.35	1.0	2.1	2.0	1.1
1.55	1.55	1.0	1.82	1.9	1.0
1.9	1.9	1.0	9	. 9	1.0
Averag	e of all the	S...			1.01

For N.S. Component Instrument:

Amplitudes in am. given by		Ratio.	Amplitudes in min.		Ratio.
$\begin{gathered} \text { The Surface } \\ \text { Instrument } \\ \text { S. } \end{gathered}$		$\frac{s}{p}$	$\begin{gathered} \text { The Surface } \\ \text { Instrument } \\ s . \end{gathered}$	$\left(\begin{array}{c} \text { The Pit } \\ \text { Lnstrument } \\ p . \end{array}\right.$	$\stackrel{*}{p}$
1.9	1.7	1.1	2.9	2.75	1.1
2.1	1.9	1.1	1.35	1.4	1.0
1.8	1.7	1.1	1.3	1.2.	1.0

For N.s. Component Instruments. (Continued.)

Amplitudes in am. given by		Ratio.	Amplitudes in mar. given by		Ratio.
The Surface Instroment s.	$\begin{gathered} \text { The } \mathrm{P}_{\text {It }} \\ \text { Instrumient } \\ p . \end{gathered}$	$\frac{s}{p}$	The Surface Instrument s.	$\underset{\text { The Pit }}{\text { Thstrument }} \begin{gathered} \text { In } \end{gathered}$	$\frac{s}{p}$
1.4	1.3	1.1	1.1	1.15	1.0
1.15	1.15	1.0	. 58	\%	1.1
1.1	1.45	1.0	. 7	. 96	1.1
1.15	1:2	1.0	.92	. 89	1.0
1.2	1.4	. 9	. 9	. 8	1.1
2.5	2.4	1.1	\therefore	\therefore	1.0
1.7	2.0	. 9	. 65	. 61	1.1
2.1	2.4	. 9	. 18	.13	1.4
1.2	1.6	. 8	. 74	.74	1.0
1.5	1.4	1.1	. 71	. 69	1.0
1.8	$\because \because$. 8	. 3	. 3	1.0
2.15	1.6.5	1.3	.65	. 65	1.0
1.3	1.15	1.1	. $4-$.1:)	1.0
$\stackrel{-1}{ }$	1.8	1.2	. 1	. 1	1.0
1.5	1.7	. 9	. 31	. 31	1.0
2.0	$\stackrel{2}{2} 1$	1.0	$\therefore 1$	21	1.1
1.9	1.8	1.1	. 119	. 15	1.1
1.7	1.7	1.0	. 1	. 08	1.3
1.9	1.9	1.0	. 76	.76	1.11
2.85	2.6	1.1			
Averag	of all the	S...	\ldots	1.04

In the above tables, the numbers are the actual semi-ranges of motion as recorded by the instruments each divided by i. These shew that the two sets of instruments give on the whole results which are practically identical, so that their records are at once comparable.

It should lee stated that the surface-ground and the pit instrments were interchanged with each other in June, 1888.

The quantities calculated for the different earthquakes are:-
(1). The number of waves in 10 seconds, marked n.
(2). Amplitude, (r), or semi-range of motion in mm .
(3). Complete leriod, (T '), or the time taken to make a complete for-and-back motion of the gromed in see.
(4). Maximum Velocity in mm. per sec., (V^{\prime}), or $\frac{2 \pi r}{T}$.
(5). Maximmm Acceleration in mom. per sec. per sec., (A) or $\frac{r^{r a}}{r}$.

In (4) and (5), it is assmed as usual that the motion of the ground is simple-harmonic. It is rare, however, that amy complete wave presents a very good simple-harmonic character during the whole of ite course, but usually differs in extent of motion and in the corresponding time of describing it in the first and seeond semi-phases of the motion, and so in some cases we have calculated V and A for the two different semi-phase of a wave. Sometimes also we give the maximum period during the 10 seconds interval.

The East- West and North-South components of the horizontal motion are not compounded, but the same components in the pit and On the surface are compared separately. It is a well known fact that motions of very quick periods and of small amplitudes generally ocem at the begiming of earthquakes, and in the diagrams appear superposed on the principal mululations. In severe earthyuakes, such as those of January 15th, 1887, and of February 18th, 1889, these ripples are very prominent ; and, being very quick in period, though smali in anplitude, they have maximum accelerations very much greater than those of the principal waves, which are longer in period though greater in amplitude. We have also made calculations on some of these ripples, which can sometimes be identified in the two sets of diagrams. As
may be imagined their calculation is very difficult, especially in the estimation of their periods, so that any great exactness is not to be obtained. The calculation will, however, give some approximate idea as to the state of things. Hence, for some of the earthquakes, " large waves" and "ripples" are separately calculated. "Large waves" are those principal undulations for which calculation is usually made in earthquake reports, and "ripple" are the irregular waselets superimposed on them. In doubtful cases the amplitudes only are given. With respect to n, the number of waves in 10 seconds, there is no difference to be found between the large waves of earthguakes observed on the surfice and those observed in the pit ; but, for ripples, the number is often very much less in the pit diagram, becanse of the reduction of amplitude and the consequent unification of some of them amongst themselves. The quantity n is therefore given only for ripples and not for large waves. The distinction between large waves and ripples is often very doubtful and does not exist for small earthquakes.

We may here remark that the maximum acceleration, A, is a quantity which approximately measures the overturning and fracturing effect of the shocks. In the case of a ripple, whose period is rery short, this effect might probably be also measmed by the total amount of impulse commmicated to a body during a : semi-phase of the wave, which is found to be propertional to the maximm velocity.

Records.

For the materials of the present paper we examined the records of thirty actual earthquakes. Of these, three interesting shocks have their diagrams shewn in PI. XXXYI. and Pl. XXXVIL., and their peculiaritics are discused. The other twenty-seven shocks were comparatively small and the different quantitien, measured and deduced
from the actual diagram", are arranged in tabular form. Notwithstanding the frequent occurrence of earthquakes in Tokyo, simultancous records of the pit and the surface instruments have been obtained for a comparatively small number of earthquake:. This was owing to the difficulty of managing the underground instrument.
(1.)-January $15 \mathrm{th}, 1887$.-This was an earthepuake of musual severity a full account of which has already heen given.* The beginaing portions of the surface and pit diagrams are given in Pl. XXXVI., 申 and these for the consenience of comparison are placed wide by side. Fig. 3 is for the E.V. component, and Fig. 4 is for the N.S. component. The ghas plate which received the record of the surface instrmment made one revolution in 128 see., and that of the pit instrment in 68 sec., an that the latter moved nearly twice as quick as the former. Such a difference of the rate of revolution would however camse no material difference in the diagram. In these, as well as in the following diagrams, the corresponding patis are marked with the same alphabets, and the surt ratial line: mank the succeswive seconds. counted from the begimings of : Mockw.

The earthonake hegins as matal with tremors. After a few seconds, the motion becomes suddenty great. The dhameter of the motion is atriking. The ripples are very prominent, :nd these
 in the E.IV. component, and about 3 see. in the N.S. component. After a short time the ripples berome less evident but the amplitude of the motion continues to be great, and the maximum diaplacement oceurs at a point maked o in the E.VF. component. Comparing now the surface and pit diagrams, we see that the latter is much amoother

[^54]than the former, expecially new their hegiminge. The nomber. 1,2 . 3 , cte., in the firat collumn in this and other table ate merely. given for convenicure.

（II．）Large Wiaser．N．S．Compenent．

	Amplitide．			Period．			Max．Vme．			Max．Acc．		
No．	surf．	l＇it	$\frac{\text { Surf. }}{\text { Sit }_{\prime}}$	surf．	l＇it		surf．	Pit	$\frac{\text { Surf. }}{1 \text { 1'it }}$	surf．	1＇it	surf.
1	1．12	． $8:$	1.7	\ldots	\ldots	．．．	．．．	\ldots	\ldots			
\because	1．19\％	12.	1.3	．．．	\ldots	\ldots	\ldots	\ldots	\ldots		\ldots	
；	1.65		1．3	\ldots	\ldots	\ldots	．．	\ldots		\ldots	\ldots	
t	1．85	$\because .1$	0.9	．．．		\ldots				\ldots		
j	1．85）	－． 1	0.8	\ldots	\ldots	\ldots	．．	．			．	
${ }^{\text {f }}$	1.5	1.8	0.8	$1 . \therefore$	1.7	10.9	1；．；	18.7	1.9	23	2.	1.0
	erage		1.1									

（III．）Riaplen E．IV．（immonent．

	Amplitule．			Perion．			Max．Vel．．			Max．Aec．		
	surf．		$\frac{\text { Surf }}{P_{i t}}$	Surt．	Pit	$\frac{\text { surit }}{\text { l'it }}$	Surt．	Pit	$\begin{aligned} & \text { Surf. } \\ & \text { Pit } \end{aligned}$	Surí	lit	$\frac{\text { surt }}{\text { l't }}$
1	9．9	．7．）	1.3			\cdots	\ldots	．．			\ldots	
$\xrightarrow{2}$	1.115	．9） 1	1.1	．j1	．7：	19.7	12.	8.1	1.8	110.	70.	$\because 11$
：3	．${ }^{1}$	$\because 1$	1.8	．3！	． 17	0.19	1.7	1.7	$\because .1$	110.	6.5	
－）	.9 .9	.16	：$: \bigcirc$	$.0!$.9	.196	11.1	$1: 3$ 11.	1．9）	！：	2らい。 こう！	14.	$2{ }^{-11}$
6	\therefore		2.15	25	．${ }^{\text {a }}$	11.1	$1 \because$	\cdots	（i．）		$\because 1$.	150
7	1.21	．78	1.6	$\therefore 1$	．${ }^{\text {d }}$	1.6	$\underline{3}$ ？	S．）	．-6	$1: 30$	86.	$\therefore .0$
8	．$\quad 1$	not		．4）		\ldots	7.			100.	\ldots	
9	（9）	exist． ing．		． 4			1.			$3: 30$		
10	． 7.9			． 1			1% ．			1！11．		
11	1．2	S＇	$1 . \therefore$	．75	． 9	11.8	11.	． 5.7	1.8	S：	10.	2.1
10	．98	．！9	1.1	． 1	.7	19.9	1%	8.	1.8	$\stackrel{-110}{ } 10$	$7:$	$\therefore .: 3$
	cerag		1.1			11.19			0.7			7.6

(IV.) Ripple.. N. \because ('mupumit.

		Phtuter	10.		Errow			ix. ${ }^{\prime} \mathrm{f}$			Ax. Ac	
.	Surf.	Pit	$\frac{\text { surf }}{P: \mathrm{it}}$	surf.	I'it	$\frac{\operatorname{sinf}}{P_{i t}}$	Suri.	Pit	$\frac{\text { surf. }}{\text { Pit }^{2}}$	Surf.	P'it	$\frac{\text { suri. }}{\text { Pit }}$
1	. 4	2.)	2.9	\therefore	$\because 8$	0.7	18.	i. 1	$\therefore 3$	200.	100	4.6
\because	. 7	. 61	1.1	28	\therefore	0.5	1 i.	7.3	2.2	:30.	$8:$	1.1
3	. 3	29	1.1	. 1	$\therefore 1$	$1 .:$	\therefore.	i.	10.8	7s.	120.	0.6
1	.)!	$\therefore 7$	1.19	:2	:38	0.8	12.	16.1	20	2:30.	100.	2.3
,	1.0.)	. 8	1.2	.	\therefore	0.9	13.	10.	$1 .:$	170.	120.	1.4
$1 ;$. 11	:31	1.3	2:)	: $\%$	0.7	10.	5.1	1.9	260.	01.	2.8
7	. 99	.63)	11.9		. 8	0.7	$\overline{7}$.	-. 1	1.1	8:3.	1.11.	2.1
Average.			1.3			. 8			1.8			0.7

 diagran hase mited into ome in the pit diagram, and thome marked

 differene will he fommentan to h_{x} the ease with of her severe earth(plakes.

	Max. Amet.			Pertod,			Max. Vet.			Max. Ame		
	Surf.	l'it	$\frac{\operatorname{sinff}}{\mathrm{l}^{\prime} \mathrm{i}}$	Suri.	Pit	$\frac{\text { surf }}{\text { Pit }}$	Suri.	l'it	$\frac{\mathrm{Smar}}{\mathrm{I}^{\prime} \mathrm{t} \mathrm{t}}$	siurf.	l'it	surf.
E. W. Cump.		.1:3	11.8	\ldots	\ldots	.			\ldots			\ldots
N. S. Comp.	. 1	.1.)	11.7	.i	1.2	.;	1.1	. 8	1.4	12.	4.	3

Х. A. Componem.

E. WV. Compment.-MEaximm amplitule is mot greater thant 0.1 mm . buth in the surface and pir diagrame. The wave are

(4.) - May 7h. 1887.-A mall carthuake whow extell , it motion appear: to be rathere greater in the jut hath on the surfare

					n.		Aver	r. Per	Riod.	Max	Prf	10 p .
				Surf.	1it	$\overline{\frac{\text { Surff }}{\text { fit }}}$	Surf.		$\frac{\text { Surf. }}{\text { lit }}$	Surf.	Pit	$\frac{\text { Surf }}{\text { lit }}$
		E. W.	'omp.	22.	1!	1.2			. 4	. 7		
		く. \times.	Coup.	$1!$	1s.	1.	.		. 9	. 7	1.	7
		Ax. As	Pl.		Emin			ix. V			Ix. A	
	surf.	Pit	$\frac{\text { surit }}{\text { Pit }}$	Surf	I'it	$\begin{aligned} & \text { surf } \\ & \text { P'it } \end{aligned}$	Simri.	Pit	$\frac{\operatorname{sinf} .}{f^{\prime} \mathrm{it}}$	Smri.	Pit	$\frac{\text { surf }}{\text { lit }}$
E. W. Comp	. 1	. 1	1.	. 1	1	1.	1.	1.6	.is	11.		. 4.4
N. S. Comp.	.15	1:1)		7	1.0	. 7	1.4	.9	1.6	13.	6.	$\because .2$

	Max．Ample			Permot			Max．Vem．			Max Ac：		
	Simf．	lit	$\frac{\text { Surf. }}{\text { lit }}$	Surf．	Hit	$\frac{\text { Surf }}{\text { litit }}$	surf．	l＇it	$\frac{\mathrm{surf}}{\mathrm{P}^{\prime \prime} \mathrm{t}}$	surf．	fit	$\underset{\substack{\text { sit } \\ \text { Sit }}}{ }$
L．W．Comp．	． 1		1.4		1.	． 9	．	． 1.	1.6	3.	2.8	1.8
S．S．Comp．	． 1	.1	1.	\therefore	1.1	\therefore	$1 .:$	． is	$\because \because$	16.	3.1	

 Whature in the pir orte．

小：：11．05 m： 11.

	Max Mmem		PERTOM．			Max．Vel．。			Ma．小心．		
	Surf．Pit	Surf． lit	Surl	$1{ }^{1}$	$\begin{aligned} & \text { Surf. } \\ & \text { I'it } \end{aligned}$	nimf	l＇it	$\frac{\operatorname{sinif}}{P_{i} ; i}$	suri	Pit	$\frac{\text { Surf }}{\text { fit }}$
E．W．Cromp．	．16．16	1.	\therefore	\therefore	1.	$\because .1$	2.1	1.	28．	27.	1.
N．s．comp．	．2\％	1.1	．i	． 7	．9	2.6	$\because .1$	1.1	27 ．	20.	$1 . \because$

 long perionl．Sfore ahout 10 wemme from the siall，the motion

	n.		Aver. limind.			Max. $\mathrm{P}_{\text {erimp. }}$		
	Surf	$\underset{\substack{\text { sinff }}}{ }$	Surf.	l'it	$\frac{\text { surf. }}{\text { Pit }}$	surf.	Pia	$\frac{s u l f}{1 ; i t}$
E. W. Compr	36	2.19	\therefore		. 1	1.	1.15	. ${ }^{1}$
S. S. Comp.	2 S.	1.1	: χ_{6}		7	. 7	1.7	. 1

	Impiotione.			Permo.			Mix. Vel.			Max Mas.		
	Surf.	l'it	$\begin{gathered} \text { Surf. } \\ \text { l'it } \end{gathered}$	surf	1'it	$\frac{\text { surt }}{P^{\prime} i t}$	surf	P'it	$\frac{\text { surf. }}{1 \mathrm{it}}$	Surf.	P'it	$\frac{\text { Surit }}{\text { litit }}$
1	.1.i	.1.7	1.0	\therefore	. 8	0.6	1.9	1.2	1.15	$\underline{-1 .}$	$!.1$	$\underline{.} .15$
\because	-	$\therefore 1$	1.2	1.1	1.11	1.1	1.4	$1 .: 3$	1.1	8.5	S.	1.1
:	11	. 11.	0.8	.194	19.)	1.11	1.1	1.1	0.8	11.	11.	19.8
1	$\therefore 1$	\therefore	1.1	.!	$\therefore 1$	1.1	1.:	1.1	11.4	8.	10.	11.8
\therefore	.15	.15	$1.1)$	7	. 7	1.1	1.1	1.1	1.0	12.	1:\%.	0.9
1	. 14	.21	11.8	1.2	1.:	0.9	1.	1.2	0.8	5.	i.	0.8
7	. 18	. 11	1.6	1.2	1.1	1.1	1.	.	1.7	\therefore	: $1 ;$	1.1
s	. 11	. 11	1.0	1.1	1.11	1.1	. ${ }^{\text {r }}$. 1	.!	4.6	$\therefore .5$	1.8
$!$. 11.	.191	1.1	(1:)	!	1.0	9	.i	1.7	6.5	1.1	1.5)
10	.1:;	. 11	1.2	. $8: 3$	7	1.1	1.	.	1.1	7.1	7.7	1.0
11	.1:	.12	1.1	.8:\%	.! 1	0.9	.9	.	1.1	7.	\therefore	1.1
12	.14	.15	.9	1.1	1.0	1.1	. 8	.!	.	4.6	6.	0.8
13	.15	.15	1.11	.8:)	94	.9	1.1	1.	1.1	8.7	7.	1.2
14	. 08	.0.)	1.6	. 7	. 8	0.9	7	. 1	1.8	6.	3.	2.0
1\%	. 15	.12	1.2	1.0	. 9	1.1	. 9	. 8	1.1		16.	1.0
16	. 08	.11.)	1.19	. 7	.i1	1.1	. 7	. 5	1.4	13.	5.	1.2
17	.20	.19	1.0	1.:	1.i	11.1	1.	. $九$	1.3	1.7	3.4	1.4
18	-1	.15	1.1	1.1	1.1	0.8	1.2	.7	1.7	1.	:3.1	2.2
19	. 119	. $2: 3$	0.7	1.:	1.4	19.9	.	1.11	0.8	: 8.8	1.1	0.9
20	. 21	$\therefore \therefore$	0.8	1.3	1.19	0.8	1.	1.1	1.0	5.	3.8	1.?
21	: ${ }^{4}$: 1	1.1	1. \quad	2.9	0.8	1.1	1.0	1.4	13.	8.1	$\xrightarrow{2} .1$
Arorage.			1.1			1.10			1.2			1.3

N. S. Compment.

No.	Amplitule.			I'eriod.			Max. Vel.			Max. dee.		
	surt.	Pit	$\frac{\text { Surit }}{\text { Pit }}$	Surt.	1'it	$\frac{\text { surf }}{\text { lit }}$	Surf	P'it	$\frac{\text { suri }}{\text { l'it }}$	Surf.	1'it	surf. P'it
1	$\therefore 7$		1.0	.7	. 9	.'s	$3 .:$	2.5	1.3	29.	18.	1.19
2	.13	$\therefore 2$. 7	. $1 ;$	1.5	.1	1.3	. 8	1.17	1:).		37
Avorage.			. 9			. 1			$1 . \therefore$			$\because .7$

In the latter part of the motion. the :amplitmberem. of be larsew in the pit diagran than in the surfae diagram. Bat the period was much longer in the former that in the latter.
(9.) - September 2.sh, 1887.-. 1 momerate earthymake, like the preceding one. The extent of motion aprens to be larger in the pit than on the surface, and comsennently atan the duration of motion is longer in the former than on the latter.

	$1{ }^{\prime}$			Aver. P'eriou.			Max. Periov.		
	Surt.	I'it	surf.	Surf	Pit	$\begin{gathered} \text { Suri } \\ \text { l'it } \end{gathered}$	surt		$\frac{\text { surft }}{\text { P't }}$
E. IV. Cump.	$\because 8$.	10.	$\because .8$. $\%$)	1.	. 1.	1.1	1.5	. ${ }^{1}$
N. S. ('omp.	; 1.	17.	1.	: $: 7$. ${ }^{\text {a }}$. ${ }^{\prime}$		1.	1.

su.	Amplitude.			1'mers.			Max. Vat.			Max lue	
	surf.	l'it	$\begin{aligned} & \text { suri. } \\ & \text { l':t } \end{aligned}$	surf	Pit	$\frac{\text { surt }}{P: 1}$	Suri	l'il	$\frac{s u r f}{1 \text { it }}$	Smf. Pit	$\begin{gathered} \text { Surf } \\ \text { Piit } \end{gathered}$
1	- 5	. 1.6	19.$)$	1.5	1.5	1.0	1.1	$1 .!$	0.6	1.1 is.	0.6
\because	. 08	. 1	9.8	.15	. 7	$11!$. ${ }^{\text {S }}$.	11.1	ss s.l	1.1
:	. 09	$\because 2$	0.1	1.1	1.5	11.9	. 1	.9	0.1	$1.5 \quad 3.4$	0.3
1.	. 09	.1.)	19.6	1.2	1.:	0.9	.17	. 7 :	0.19	$2 . \therefore \quad: 3.19$	0.7
\therefore	12	. 21	$1 . .1$	-7	76	1.9	1.	1.8	0.19	!. 1\%.	1.19
(;	.0.)	. 07	0.7	.	$\therefore 7$	$11 .!$. ${ }^{\text {P }}$.	0.8	7.18	9.!
Aurame			11.19			. 1			11.7		11.7

\therefore.	Amintupe．			Perai．			Max．Vmi．			Max．Ame		
	surf．	I＇it	$\begin{gathered} \text { suri. } \\ \text { P:t } \end{gathered}$	surf．	l＇it	$\frac{s u r f}{1 . t}$	surf．	．Pit	$\frac{\text { surfi }}{P^{\prime} t}$	Surf．	Pit	$\frac{\text { surit }}{1_{1}^{\prime \prime}}$
1	． 17	． 19	10.9	．${ }^{\prime}$	（6）	0.5	1.9	1.7	1.1	21.	1．）	1.1
\because	\therefore	．2；	9.8	． 3	12	1：－	\therefore	3， 8	11.7	31.	is．	0.5
：	． 1	． 1.	0.7	． 110	1.0	． 3	1.1	！ 1.	1.5	19.	6.	： 2
1	（1）	． 1	0.8	． 11	． 5	． 9	！	1.	0.9	11.	11.	1.0
；	． $1:$	．1：；	0.9	． 7	． 163	1.1	12	1.1	0.9	11.	13.	11.8
（；	． 1	11	0.7	，${ }^{\text {d }}$	．13i	0.9	1.4	1．3	19.8	11.	12.	0.9
7	． 11	．15	9.7	． 81	1.11	0.8	\therefore	（\％）	1.0		6.	1：2
8	． 115	． 1	0.5	． 11	．5：3	0.8	． 7	1.2	0.15	10.	1.1.	0.7
$!$	． 17	2	0.9	． 16	！	1.1	1.7	2． 1	0.5	17.	$\because 2$.	0.8
10	． 1	．1．5	1.7	． 6	． 1	1.0	1.0	， 1.6	1.15	11.	17.	0.6
11	．19）	． 18	1.0	． 5	． 15	1.0	2.4	$\underline{2.1}$		30.	32．	0.9
12	．119	． 08	1.8	\because	\therefore	0.9	． 8	．！	0.9	10.		
1：3	．191	．11i	1.9	． 1.	． $1:$	1.0	． 8	． 9	$0 .!$	12.	13．	0.9
11	． 91	． 116	${ }^{1.6}$	，${ }^{\text {i }}$	． 11	$9!3$	． 1	1.1	4.1	11.	$1 \because$.	0.8
1.5	．19	atunat	．．．	．1．）	． 11	1.1	1.	．．．		1%		
	ersyc		． 8			0.9			11.9			1.1

 and more irregular that that in the pit．

	1.			Aver．Perind．		
	Nurf	Pit	$\frac{s_{1}^{\prime}+i}{r_{i}^{\prime}}$	内ッド	Pit	$\underset{\text { S'it }}{\text { Surt }}$
F\％W．Conp	11.	$\underline{\prime} 10$	2.	$\because 1$		．
N．S．c＇omp＇．	11.		\because.	$\therefore 1$		． 1

V. IV. ('muprnent.

Nu.	Implatude.			l'ermpr.			Max. Vim.			max lace		
	suri.	l'it	$\underset{S_{1}}{\substack{\text { Pit } \\ \hline}}$	Suri	Pit	$\frac{\mathrm{mmi}}{1 \text { rit }}$	Suri.	P'it	$\frac{\operatorname{Sinf}}{\mathrm{Fit}}$	surf	d't	$\frac{\text { Surif }}{1 / 2 t}$
1	. 77	. 7	1.1	$!$.!	1.11	$\therefore .1$	1.9	1.1	38.	31.	1.1
$\stackrel{\square}{2}$	\because	.	0.8	\therefore	. 8	0.6	\because	$\because .0$	1.2	$\therefore 1$.	16.	$\because .0$
:	\therefore -	$\therefore 2$	1.1	6.)	. 8	0.8	2.4	1.19	1.5	$\because \cdot$	$2 \because$.	10
4	.17	I'.		$\underline{2}$.	\ldots	$\because \because$	\ldots	\ldots	70.		
\therefore	. 1	. 11.	0.7	.	7	0.7	1.3	$1 . \therefore$	1.0	16.	12.	1.3
i	. 14	. 14	1.0	7	. 7	1.0	1.3	1.3	1.0	12.	12.	1.1
7	.15)	. 18	$1)$.	.i	1.2	U. 5	1.11	. 9	1.	$1 \overline{7}$	\%	3.1
Average			. 9			0.8			1.3			1.19

S. S. (immonemt.

S	Amplitude.			Pertod.			Max. Vel.			Max Ace.		
	Surf.	I't	$\frac{\text { surf. }}{\text { lit }}$	surf.	Pit	$\frac{\operatorname{surf}}{\text { lit }^{\prime} \mathrm{it}}$	Surf	l'it	$\frac{s_{1}+i^{2}}{\text { Pit }}$	Surt.	Pit	$\frac{\text { surit }}{\text { Pit }}$
1	. 5	$\therefore 3$	1.0	. $5: 3$.53	1.0	(1.)	(1.3)	1.0	77.	ij	1.0
\because	:3	$\therefore 4$	1.2	.5.)	72	0.8	3.1	$\stackrel{.1}{ }$	1.1	:3s.	18.	2.1
:	:3:	. 1.5	1.19	1.	.12	1.0	\therefore - 2	. 7 ,	7.	¢-2.	11.	$7 . \%$
4.	2.	.2:	1.0	.9	$\therefore 1$	1.0	3.2	$\stackrel{1}{2} \cdot 9$	1.1	11.	$\because 1$.	1.2
\therefore	$\therefore 5$		1.7	.j)	.s	0.7	2.9	1.2	$\because .1$	34.	10.	3.4
$1 ;$	$\therefore 1$. 1	$\because .1$. 8	67	1.2	1.9		-. 11	15.	9.	
7		. $19: 3$	$\therefore .3$	$\therefore 2$	$21 ;$	1.0	1.0	.7:3	\therefore \%	100.	18.	5.5
8	\therefore	. 11	1.8	12	.s:3	0.)	:	. 81	3.6	1.5	6.4	7.0
Average.			2.19			0.9			3.0			3.7

(11.)--January 11th, 1888.-A very small earthpuake. In cach component on the surfice, the maximmomplitude i. 0.1 mm . while for the motion in the pit. it is not greater them .06 mm . The motion secm: here to be much more promonned on the surface than in the pit.
(1थ.) - April 5 th, 1898. . I tolerably mere earthquake, in which the ampliturle is hot very large, but the vibrations are very quick.

The difference of appearance between the surface and the pit diagram: is striking, the small sharp wase which exist in the former being mostly flattened in the latter.

	n			Aver. Period.		
	Surt.	lit	$\frac{\text { Surf. }}{\text { P'it }}$	Surf.	1'it	$\frac{\text { Surf. }}{\text { Pit }}$
E. W. Comp.	\%\%.	9.5	2.3	. 4	1	.j
\therefore S Comp.	jt.	2.	$\xrightarrow[-2]{2}$.19	1	. .5

E. II. Compment.

		Litut			Er., ${ }^{\text {d }}$			x. Vh			IN. 1	
So.	Siurf.	Pit	$\underset{\substack{\text { Surf. } \\ \text { rit }}}{ }$	Surf	Pit	$\frac{\operatorname{sinf}}{1 ; t}$	Suri.	P'it	Surf. Pit	Surf.	Pit	$\underset{\substack{\text { surf. } \\ \text { Pit }}}{ }$
1	. 1	. 35	1.1	7	. 8	0.9	: 3.15	2.7	1.3	:3.	23.	1.5)
\because	. 195	.37	1.7	23	(i.)	19.8	7.8	3.6	3.2	(1).	: 1.	$\stackrel{.}{-8}$
3	. ${ }^{\prime}$. 1	3.10	\therefore	\therefore	0.7	$!1.1$	2.2	1.3	300.	20.	15.0
1	.35	\ldots	\ldots	:3:3	\ldots	\ldots	(; 7			120.		
5	30.3)	2\%	1.1	$\therefore 1$.42	0.19	$!$	3.8	$\because: 3$	40.	60.	1.0
Average.			1.8			9.8			2.5			3.6

N. S. Component.

	Amplituef.			Peniols.			Max. Yei,				Max Ars:		
	Surf.	l'it	$\frac{\operatorname{surf}}{1 i t}$	surp.	1'it	suri.	:ur	rf.	Pit	$\begin{gathered} \text { Surf. } \\ \text { Pit. } \end{gathered}$	surf	Pit	$\underset{\substack{\text { Surf. } \\ \text { Pit }}}{ }$
1	. 1	. 34	1.1	.1:3	. \because	0.5	15		4.5	1.3	9.	\% 3.	. 7
\cdots	. 3	. 1	3.0	21	-	11.8	$!$		2.3	1.0	20.	53.	. 1
3	2	. 08	2.5	\therefore	:3	0.7			1.7	1.1	$\underline{290}$	3\%	6.3
1	. 65	.3)	1.9	. 71	. 7	1.11		. 7	3.2	1.5	\%.	29	1.7
;	. 5	29	$1 .!$. 7	.	0.7		. 7	2.3	3.0	(1).	21.	4.:
6	\therefore	29	0.8	.27	.if	0.5		. 7	2.9	1.6	110.	32	3.4
7	.1:	.15	1.0	. 21	. 3.	0.7		. 9	2.7	1.	100	49.	2.0
8	21.	.1.)	1.6	24	. 44	$11 . \therefore$. 3	2.2	2.9	165.	32.	5.2
!	. 18	.23)	0.8	.21.	. 5	0.5		. 7	3.2	1.1	120	$1 \therefore$	2.7
10	\therefore	.16	1.9										
11	. 31	.2	1.6		.7.	0.9		. 81	1.7	1.7	2.5	14.	1.8
12	\because	2	1.0	-24	. 510	0.1		. 3	2.3	2.3	140.	25.	3.6
1:3	2-7	.1:1	.	. 17	s	1.15		. 1	1.2	2. 8	46.). 1
14	. 4.	. 18	2.2										
1.)	. 34	. 2	1.7										
110	.22	2.)	11.9										
17	:3	18	1.7	, 3	. 7	1.0		.6) 1	1.15	1.6	22.		1.:
	am.		1.1 .			11.7				-3 3			8.15

(13.)—Amil 29th, 1888.-1 meme eurthymat. This is very like the preceliug one but much more intense. The begiming portions of hoth sets of diagrame :ure given in Pl. XXXVII, Fig. 5. :mat Fig. 6. The glas phate of the surface-gromm instrment made one revolution in 88 sere, and that of the pit inatrument in 70 see. In the early part of the shock, the vibutions are vere prick, and with the exeption of the wave marked A in the E. IV. come

distributed more or less in groups. Here again the pit diagram appears much smoother than the surfice one : compare, for instance, the portion: marked $:$, l,, , d, e, f, g, in the E. Wr. component. Towards the end, the motion becomes slow.
E. IV. Component.

n					
Surf.	Pit	$\frac{\text { Surf }}{\text { Pit }}$	Aver. Perion		
19.	30.	1.6	.-	.3 .3	.19

(I.)-Ripples.-E. W. Component.

No.	Amplitude.			Perion,			Max. ${ }^{\text {fel. }}$			Max Acr.		
	Surf.	Pit	$\left\lvert\, \frac{\text { Surf. }}{\text { Pit }}\right.$	Surf.	Pit	$\frac{\text { Surf. }}{\text { d'it }}$	Surf.	Pit	$\frac{\text { Surf. }}{\text { Pit }}$	Surf.	Pit	$\frac{\text { Surf }}{\text { Pit }}$
1	5	. 21	$\underline{2} .2$	29	.2.	1.0	1.).	ii.	$\bigcirc .5$	+19.	170.	$\underline{2 .} 1$
$\stackrel{-}{2}$. 3	.04	7.5	-	. 19	1.0	9.5)	1.3	7.3	: 10.	41.	7.)
:	.27			. 2			8.5			270		
1	4			. 2			1:3.			400.		
.)	.35	..)		2-)	.		8.8	1..)	. 0.	220.	.) 1.	$\underline{2} .11$
6	2\%)			22			7.2			210.		
7	.')	. 35	1.4	. 17	. 47	11.4	19.	4.7	3.9	690.	(i).	11.0
8	. 1	.2.)	1.6	. 3	.2:;	1.3	8.4	69	1.2	180.	190.	1.0
9	. 3	. 28	1.1	. 44	. 43	1.0	1.3	4.1	1.1	62.	180.	1.11
10	.)	. 4	1.2	2:	. 8	10.3	1:3.	8.2	4.0	:20.	\cdots	15.0
11	.	. 48	1.2	.27	. 47	0.6	13.	6.2	2.1	300.	80.	8.7
Average.			2.3			0.8			3.2			18.7

X	Amphimete.			Perten.			Max. Yel					
	Surf.	$1{ }^{\text {it }}$	$\frac{\text { surf. }}{\text { pit }}$	surf.	Pit	$\frac{\text { surt }}{\text { Pit }}$	Surf.	1:t	$\frac{\text { sinff }}{1 \prime \prime t}$	surf.	l'it	$\begin{gathered} \text { Surf. } \\ \text { l'it } \end{gathered}$
1	2.	1.19:)	1.2	1.	. 8	1.3	13.	1:3,	1.11	80.	(1)	1.9
2	. 12	(3i)	1.2	\therefore	5	1.1	5.3	1.1		\% ${ }_{\text {\% }}$	\therefore	1.2
:	. 7	. 7	11.8	.(9:;	!	1.11	1.	5.	0.8	26.	3.	1.8
1	. 69	. 5	. 7	1.	1.	1.1	1.	$\therefore .3$	11.8	$2 \therefore$: ${ }^{\text {a }}$	1.8
\therefore	.5:	. is	!)	1.2	1.1	1.1	$\because .8$:3		1.)	19.	0.8
	verag		1.0			1.1			11.9			$11 .!$

(III.) Ripple. N. S. Compunent.

		hitu			eriol			x. V			Ax. A	
No.	Surf.	l'it	$\frac{\text { surf. }}{\text { lost }^{\prime}}$	Surf.	Pit	$\left.\frac{\text { surf. }}{\text { Pit. }} \right\rvert\,$	Surí,	Pit	$\frac{\text { Surf. }}{\text { Pit }}$	Surf.	Pit	$\frac{\text { Surf }}{\text { Pit }}$
1	$\therefore 7$. 18	1.5	$\underline{2}$	2:3	1.0	7.7	4.9	1.:	220.	1:30.	1.7
\because	. ${ }^{\text {d }}$.5.)	1.1	32	. 13	0.7	12.	8.	1.i)	240.	120.	2.11
3	\therefore	. 31	1.8	. 3	8.3)	0.8	12.	9.6	2.1	240.	100.	$\underline{2.1}$
4	:37	. 2	1.9	-2:	8.9	0.7	9.9	3.6	2.15	230.	Bis.	3.9
5)	. 54	. 14	14.	1	.?	1.3	8.)	0.8	11.	130.	16.	8.0
f	. 58	.15	3.9	24	.3	0.8	15.	3.2	1.9	100.	68.	18.0
Average.			1.0			0.9			3.9			4.0

(IV.) Large Wives. N. S. (ompment.

x	Amplitude.			Periow.			Max. $\mathrm{V}_{\text {ele }}$			Max. Ace		
	Surf.	Pit	$\frac{\text { surf. }}{\text { Sit }}$	Surf.	Pit	$\frac{\text { surf. }}{\text { lit }}$	Surf.	Pit	$\frac{\text { surf. }}{\text { Pit }}$	Surf.	Pit	$\frac{\text { Surf. }}{\text { Pit }}$
1	. 75	\therefore	1.4	. 6	. 8	1.0	7.9	6.	1.3	8.	6.5	1.2
2	78	. 5	1.)	1.3	1.2	1.1	:3:)	2.8	1.2	16.	1%	1.1
:	'	. ${ }^{\text {a }}$	1.3	1.1	1.2	1.2	3.6	3.1	1.2	16.	16.	1.0
4	1.0.)	.85)	1.2	1.2	1.0	1.2	5.5	5.3	1.1	29.	34.	. 9
5	(4)	.4.)	1.0	1.1	1.1	1.0	2.6	2.6	1.0	1%	15.	1.1
6	i.	. 7	1.0	1.7	1.6	1.1	2.8	$?$	9	10.	11.	. 9
7	. 2	. 45	1.2	1.1	1.0	1.1	3.0	2.8	1.1	17.	18.	,
8	. 5	. 53	1.0	$1 .:$	1.1	$1 .:$	2.6	:, 3	. 8	12.	21	, 1
9	. 5	1.0	. 8	\bigcirc.	2.	1.9	?.:	3.1	.s		$!9$. 8
Arerage.			1.2			1.1			1.1			$1 .!1$

In (I), the riphle mombered :3, 4, 5, (5 which are distinet on the surface hase mited into ond wase in the pit. The taking the ratios of maximm velocitios:an maximm ancterations, this sughe wave is compared with the eqeate of the comedemeding ripples.
(14.) -..Inue $3 \mathrm{ral}, 1888$ - An ...nthymake of moderate amplitule.
N. S. ('mponerit.

n			Aver. Plerioh.		
Siurf.	Pit	$\frac{\text { sarf. }}{\text { lit }}$	surf	Pit	$\frac{\text { surf }}{\text { l'it }}$
\because	17.	$\xrightarrow{-}$.	$\therefore ;$. 1	\therefore

		plitu	1e.		Eriol			Ax. Ve			Ax 1	
s.	Surf	Pit	$\frac{\text { surf. }}{\text { Pit }}$	Surf.	Pit	$\frac{\text { Surf. }}{\text { Pit }}$	Surf.	Pit	$\frac{\text { surf. }}{\text { Pit }}$	Surf.	Pit	$\frac{\text { surf. }}{l^{\prime} \text { 'it }}$
1	. 3	. 4	$1 . \mathrm{S}$	1.2	1.2	1.0	1.10	2.1	0.8	$8 . j$	11.	0.8
\because	. 5	.4.)	1.1	1.5	1.	1.5	2.1	2.8	0.8	8.8	17.	0.5
:	. 16	. 32	1.1	1.	1.	1.0	2.9	2.0	$1 . \%$	18.	1:3.	1.4
Average			1.1			1.2			1.0			0.9

E. IV. Cimpontmit.

Max. AMrL		
Surf.	Pit	$\frac{\text { surf. }}{\text { 'it }}$
1.1	9.5	1.1

 the ampliturle seems to h_{x} murh ereater in the pit that on the surface.

E. IV. Compment.

No.	Amphitule.			lerion.			Max. Vel.		Max Ace.		
	Surit.	Pit	$\frac{\text { Surf. }}{\text { l'it }}$	suri.	Pit	$\frac{\text { Surf }}{\text { Pit }}$	Surí. l'it	$\frac{\text { Suri. }}{\text { Pit }}$	Surt.	1 it	$\frac{\text { Surf. }}{\text { Pit }}$
1	1:	. 2	0.6	. 7	.!	0.8	1.11 .1	0.5	10.	10.	10.
2	. 1	$\stackrel{2}{2}$	0.5	5	. 7	0.7	1.81 .8	1.7	16.	16.	10.
:3	.115	. 1	10.3	\ldots	\cdots	.	\ldots	\ldots	.	\ldots	
1	. 18	.26	0.7	\ldots	..	\cdots	\ldots	\ldots		.	
5	. 11	21	10.5	.	..	\ldots	\ldots	\ldots			
6	. 14	21	19.7				\ldots				
Average.			0.6			0.8		0.8			$1.1)$

> N. S. Componelit.

		Pı, T			'exioul			ax. V			1x.	
No.	Surit	1'it	$\frac{\text { Surft }}{\text { Pit }}$	Suri.	P't	$\frac{\text { surfit }}{\text { Pit }}$	surf	Pit	$\frac{\text { surf. }}{1 ; i t}$	surf.	l'it	$\frac{\text { surf. }}{\text { Pit }}$
1	. 1 ;	.15	1.1	. 1	.	0.8	2.i)	1.9	1.3	39.	$\because 1$.	$1.1 ;$
$\underline{2}$. 1	.2	11.5	1	6	0.7	1.19	2.1	.s	$2 \mathrm{Q}_{6}$	\cdots	1.2
:3	. 1	\therefore	0.5	7	;	1.1	19.9	2.5	19.1	8.	31.	11.3
1.	. 1	.14;	11.19	. 1	\therefore	0.8	1.19	-. 11	4.8	23	2%	1.11
,	. 1	.11;	0.6	\therefore	\therefore	1.11	$1 .: 3$	2.11	0.7	$1 ;$	-	10.19
${ }_{6}$. 1	21	11.5	\therefore	5	1.1	$1 .: 3$	2.6	0.5	16.	:3.	0.5
7	\therefore	1.	0.5			\ldots		...		\ldots		
s	11	. 28	11.1									
$!$. 1	. 7	11.1			.						
10	. 1	\therefore	0.1									
Average.			0.6			1.11			0.8			0.9

(16.)—Norember こud, 1888.—. - mall carthquake. The pit diagram is much smother than the surface one.

Max dmpl．			
	Surf．	Pit	$\frac{\text { Surf．}}{\text { Pit }}$
E．W．Comp．	.19	.16	1.2
N．S．Comp．	.1.	.14	1.1

（17．）－Jamary lat，1ss9．－．－mall mothquake．

	Max．Mmil．		
	Surf．	Pit	$\frac{\text { surf }}{\text { Dit }}$
N．S．Comp．	0.01	． 05	1.

（18．）－Pehmary 18th，1s89．－ 1 serere carthymake，in which there was a comsidemble amome of vertical motion．The earlier portions of the diagrans of the E．W．compenent are given in Il． XAXVII，Fig． 7 ．The ghas plate of the wimfe and pit instrments mate revolutions in 108 sere athe ！ 5 sere repeetively．The periods of the vibation are very shom and the motion wh the surface seems to be mueh sharper that in the pit．

	E．W．Comp．			S．S．Comp．		
	Surf．	P＇it	$\frac{\text { surf. }}{\text { l'it }}$	surf．	I＇it	$\frac{\text { surf. }}{\text { P'it }}$
n_{1}	41.	28.	1.5	S0．	31.	1.7
n_{2}	35．	1.		＋！	$2: 3$	2.
10		15.	$1: 3$	：3）	14.	\because
n_{1}		19.	1.0	26.	20.	1．：
n_{5}		11.	1.1	15.	16.	．9

 the successive 10 sec．intervals．
(I.) Ripplen. E. IV. Component.

צ	Amplitude.			Period.			Max. $\mathrm{V}_{\text {kle }}$			Max. Acc.		
	Surf.	Pit	$\frac{\text { surf. }}{1 ; i t}$	Surf.	Pit	$\frac{\text { surf. }}{\text { lit }}$	surf.	Pit	$\frac{\text { surf. }}{\text { pit }}$	Surf.	Pit	$\left\lvert\, \frac{\text { Surf. }}{1 \text { ''it }}\right.$
1	24	2:3	1.0	28	. 27	1.0	5.1	5.4	1.0	120.	130.	1.0
$\underline{2}$	1.05	. 8	1.3	7	. 66	1.1	9.4	7.7	1.2	84.	74.	1.1
3	1.35	1.3	1.0									
4	2.4	$\underline{2.17}$	1.1			\ldots						
5	. 73	4	1.8									
${ }^{6}$.93)	1.0.5	0.9									
7	. 3	. $0 ;$	- 0	\ldots	\ldots	\ldots			\ldots			
8	. 82	. 2 2	1.6		...							
9	. 8	. 3 2	2.5									
10	1.3	. 8	1.6									
11	. 7	. 35	2.0	. 21	.25	1.0	18.	$!$	2.0	480.	20.	2.2
12	. 155	2. 5	2.6	.32	.2:3	1.4	13.	.	1.9	250.	190.	1.3
13	1.05	. 8	$1: 3$. 35	-7:	. 5	$1!$	7.	2.8	340.	60.	$\therefore .7$
14	. 31	. 2	1.6	27	29	0.9	7.2	1.1	1.6	170.	100.	1.7
15	1.1.5	7-2	1.6	\therefore	. 51	1.1	13.	S. 4	1.6	1.50.	101.	1.5
16	. 8	nul		.	\cdots		111.			$1: 30$.		
17	1.2	.	1.7	:33	. 3	1.1	23.	1.5	1.6	140.	30.	1.1
18	. 4	nul		18	...		11.			490		
19	. 85	nul										
20	1.73	1.5	1.1									
21	. 8	.1	1.:3	26	.i)	0.1	$1!$	\cdots	3.2	160.	io.	8.0
2	is)	1.5)	1.7	36	.19	11.6	1:\%	4.7	2.8	130.	\%	. 7
2:3	. 3	.10;	5.0	-2	\therefore	1.0	$!$	1.9	1.7	80.	(10)	1.1
21	. 8 ¢	.i.)	1.2									
25	. 71	. 1	1.2	:	. 7	1.4	15	5.1	2.8	320	$\therefore 1$	(j.)
26	.95	. 7	1.2	,	. 8	0.8	10	6:2	1.1	100.	.	\because
\because	. 88	.i)	1.1	ij	.s	1.0	10.	8.2	1.2	110.	90.	1.3
28	. 5	. 50	4.9	B	ss	11.)	11.	(i.)	1.8	220.	(6i)	:3
29	. 47	. 3	1.6	;	\%	1.5		${ }^{1}$.	1.11	80.	130	1.15
:30	. 81	. 51	1.3	. 6	. 8	0.8	8.8	1.4	2. 21	92.	3).	2.6
31	.32	.2:3	1.1	. 1	.	1.11	\%	3.1	1.4	is.	56	1.1
Average.			1.7			9			2.0			2.8

(II.) Large Mriver. E. IV. Component.

र	Amplitude.			Period.			max. ${ }^{\text {emel. }}$			Max. Ace.		
	Surf.	Pit	$\frac{\text { surf. }}{\text { pit }}$	suri.	I'it	$\left\lvert\, \frac{\text { Surf. }}{\text { Pit }}\right.$	surf.	Pit	$\frac{\text { surf. }}{\text { sit }}$	Surf.	Pit	$\left\lvert\, \frac{\text { surf. }}{\text { Pit }}\right.$
1	1.1	2.	2.1		\ldots	.	..	\ldots	\ldots			
2	1.7	1.4	1.2	1.5	1.7	0.9	7.1	5.2	1.4	:0.	19	1.6
3	1.75	1.:	1.2	2	. 89	0.9	15.	12.	1.3	1:0.	96.	1.3
1	$\xrightarrow{2}$	1.15	1.2	$\xrightarrow{2}$	$\xrightarrow{2}$	1.0	18.3	5.	1.3	$\bigcirc 0$.	16	1.2
\therefore	1.4	1.	1.1	2.:	2.4	1.0	3.5	2.6	1.3	9	6.8	1.3
$1 ;$	92	.9.5	1.1	1.0	1.0	1.0	- 8	6.0	1.0	37.	: 3.	1.0
7	. 8	.92	. 9	1.4	1.9	1.1	:19	1.5)	0.8	16.	22	. 1
8	1.4	1.1	1.3	1.1	1.3	1.1	6.3	53	1.2	28.	215	1.1
?	1.8	1.35	1.3	2	1.9	1.0	5.7	4.5	1.3	18.	15.	1.2
10	- 2.05	1.7.)	1.2	3.9	3.7	1.0	3.3	3.	1.1	5.3	5.1	1.0
11	1.4.5	.9	1.6	$\underline{2}$	1.9	1.0	1.6	3.	1.$)$	15.	10.	1.5
12	1.2	. 8	1.5	1.7	1.7	1.0	$4 . ;$	3.	1.5	17.	11.	1.)
1:3	1.4	1.3	1.1	2.7	:	0.9	3.3	2.7	1.2	8	(i)	1.4
14	1.65	1.	1.7	3.	3.	1.0	3.7	2.1	1.8	8.3	1.1	1.9
15	2.2	1.25	1.8	2.1	2.6	0.9	$\therefore 8$: $:$ -	1.8	1%	8.2	1.8
	verage		1.4			1.0			1.3			1.9

(II.) Ripper. N. S. (omponent.

	Amplitupe.			P'eriop			Max. Yel.			Max Mege		
So.	Surf.	Pit	$\frac{\text { surf. }}{\text { Pit }}$	surf.	Pit	$\frac{\text { surf. }}{\text { Pit }}$	Suri.	Pit	$\frac{s i n f}{s_{1}^{2} t}$	surit.	Jit	$\frac{\text { surf. }}{1 \text { 'it }}$
1	.8.)	. 7	1.2	1:3	it	$1) .8$	$1 \cdots$	$8 .:$	1.5	180.	100.	1.8
2	1.65	1.2	1.4	1	. 56	1.1	17.	11.	1.3	500.	1.50	3.3
3	4	. 09	4.4	2	.23	0.9	13.	-	$5.1)$	400.	70.	5.7
4	T2	4, 5	1.1	.3	\therefore	1.0	15.	11.	1.1	320.	- M)	1.1
-	. 1	nul	\ldots	.1.)	...		17.		...	700.		

Ripples．N．S．（omponent．（Continued）．

No．	Amplitude．			Period．			Max．Vel．			max．Anc．		
	Surf．	Pit	$\frac{\text { Snrf．}}{\text { Pit }}$	Surf．	Pit	$\frac{\text { Surf }}{\text { Pit }}$	Surf．	Pit	$\frac{\text { Surf．}}{\text { Pit }}$	Surf	Pit	$\frac{\text { Surf．}}{\text { Pit }}$
6	． 85	． 78	1.1	\ldots								
7	．7．）	． 8.5	0.9	． 33	1.0	． 3	14.	S．	$\stackrel{.}{2} 8$	270.	34.	8.0
8	． 3	． 1	：	． 14	25	0.6	14.	3.	4.7	1500.	60.	10.
9	． 4	． 0	0.7	． 17	6	0.3	1ヶ，	13.3	2.4	500.	66.	8.9
10	（i5）	． 5	1.	．	．	0.6	11.	7.	2.0	290.	87.	3.8
11	． 4	． 12	：${ }^{\text {a }}$	． 14	25	0.6	18.	\therefore ．	（i．0）	800.	80.	10.
12	\％	． 5 \％	0.9	． 46	． 1	1.2	7.	$!$	0.8	93.	110.	0.8
13	．19	． 4	1.	． 46	1.5	1.0	8.	i．	$1 .:$	110.	80.	1.1
14	． 6	． 5	1.2	． 4	． 1	1.	9.	8.	1.1	1.00	120	1．：
15	．）	\therefore	1.7	．1．	． 4	1.1	7.	5.	1.4	100.	71.	1.4
16	65	．1．5）	1.4	．7：3	． 7	1.0	6.	1.	1．5）	18.	46.	1.0
17	． 9.1	． 74	$1 . ;$	\ldots	\ldots	．．		．．		．．．	\ldots	
18	． 66	．3：；	2.0		．	\ldots						
19	． 28	nul	\ldots	24		．．	7.			90.		
20	． 99	． 89	1.1	．5：）	． 8	．！	12.	9.7		10	110.	$1 .: 3$
$\bigcirc 1$	． 6.5	． 9	1.1	$\therefore 1$.	4.	（）	17.	9.	1.9	450	150	8.0
22	． 67	． 42	1.6	．21．	：	． 8	18.	8.8	2.1	11.10	180.	－2．5
Average．			1.6			． 8			$\underline{2} .2$			：3．8

（IV．）Large Wines．N．S．Compment．

X	Amplitude．			Periol			Max．${ }^{\text {rel．}}$			max．Ac：		
	Surf．	Pit	$\frac{\operatorname{sincf} .}{1 \mathrm{lit}}$	Surf	Pit	$\underset{\text { surif. }}{\substack{1 F \mathrm{t}}}$	surf．	l＇it	$\frac{\text { Surf. }}{\text { Sit }}$	Surf．	Pit	$\frac{\text { surf. }}{\text { Pit }}$
1	2．7）	2．：	1.1	1.1	1.19	1.0	11.	9.	1.2	H．	85.	1.3
\because	․！）	3．3	．9	2.0	1.9	1.1	9.1	11.	0.8	29.	i\％．	9.8
3	． 8	万．	1.1	．i	$1:$	1.4	8.4	11.	0.8	88.	170.	0．5
4	． 5	．2：	2．0	，i	． 7	0.9	$\therefore 3$	2.3	2.3	二成	21.	2.7

	1 m	ritu			Eltion			Ax. Vf			x. 1	
No.	surf.	Pit	$\frac{\text { surf. }}{\bar{\prime} \mathrm{it}}$	Surf.	Pit	$\frac{\text { Surf. }}{P^{\prime} \mathrm{it}}$	surf.	I'it	$\frac{s u r i}{P i t}$	surf.	Pit	$\frac{\text { Surit }}{P_{i t i}}$
5	S5	(13:)	1.1	. 74	. 66	1.1	7.2	6.	1.2	(i).	87.	1.1
6	.8.)	. 8	1.1	6	. 8	0.8	8.9	6.:)	1.1	9 9.	\%,	1.9
7	1.1	1.25	1.2	. 8	. 8	1.0	11.	9.1	1.2	87.	7-3.	1.2
8	1.1	. 7	2.1	1.1	1.2	0.9	8.	8.7	-2. 2	46.	$1!$	$2: 3$
9	1.15.)	1.1	1.2	T	. 8	1.0	11.	11.	$1 .: 3$	110.	87.	$1 .:$
10	1.1.5)	1.1	$1 .:$									
Average.			1.3			1.0			1.2			$1 .: 3$

The ripples mombered 16, 18, l! in (I) :mm thow mombered \vdots, 19 in (III), whirh are distine on the surfare, 小o mot exist in the pit.
 lations are sumpered minute irregulatics. Were the motion appeare 10 be rather greater ath of lomer dumation on the surf:ace that in the pit.

	1.			Aver. Period.	
	Surf.	Pit	$\frac{\text { surf }}{\text { l'it }}$	Surf. Iit	$\frac{\text { Surf. }}{\text { Pit }}$
E. W. Comp.	48.	i3.	1.8	.2:3 $\quad .3$	0.8
S. S. Comp.	$\therefore 0$.	22.	2.3	$\therefore \quad .1$	0.5

E. WV. Component.

> N. S. Component.

Max. Ampl.			Perion.			Max. Vei..			Max. Aca.		
Surf.	Pit	surf. Pit	Surf.	Pit	Surf. Pit	Surf.	Pit	Surí. Pit	Surt.	Pit	$\frac{\text { Surt. }}{l^{\prime} i t}$
.1:3	()!	1.1	. 8	\therefore	1.		1.1	0.9	8.	14.	11.6

	n.			Aver. Period.		
	Surf.	Pit	$\frac{\text { Surf }}{\text { Pit }}$	Surf.	I'it	$\frac{\text { Surf }}{\text { Pit }}$
S. s. Comp.	$\therefore \underline{3}$	21 .	1.)	\therefore	.)	0.19

	Max. Ampl.			Period.			Max. Vel.			Max. Ame		
	surf.	Pit	$\sqrt{\frac{\text { Surf. }}{\text { Pit }}}$	Surf.	Pit	$\frac{\text { surf. }}{\text { l'it }^{\prime}}$	Surí.	P'it	$\frac{\text { surf. }}{\text { Pit }}$	Surf.	Pit	$\left\lvert\, \frac{\text { surf. }}{\text { p;it }}\right.$
E. W. Comp.	0.8	. 1	0.8	.33	. 41	0.7	1.5	1.4	1.1	28.	20.	1.4
S. s. Comp.	. 3	.15	2.1	. 9			2.1	\cdots	11.9	1.5	38.	0.1

(21.) —Ime $1 \times \mathrm{t}, 185 \%$ - . 1 very mall earthpake.
 diagrams, the maximam:mplitudes are almot . $03 \mathrm{zmm}$. : and .02 mm respectively.

In the E. W. (ompencent of the luth the surface and pit diagrams, the maximum :mplitule in almat . 03 mm .

> N. S. Compencut.

Max. Arpl.			Periol.			Max Vel.			Max. dece		
Sirrf.	Pit	$\frac{s i n f f}{l^{\prime} \mathrm{it}}$	surf.	Pit	$\frac{\text { surf. }}{\text { Pit }}$	Surf.	l'it	$\frac{\text { surf. }}{\text { Pit }}$	Surf.	Pit	$\frac{\text { Surf }}{\text { lit }}$
. 1	.0.)	2.		. 7	1.4	.i	.)	1.	1.	4.	1.

	Max. Ampl.			Periol.			Max. Vel.			Max. Aece		
	Surf.	l'it	$\frac{\text { Surf }}{\text { l'it }}$	Surf.	Pit	$\frac{\text { surf. }}{\text { Pit }}$	Surf.	1'it	$\begin{aligned} & \text { surf } \\ & \text { Pit } \end{aligned}$	surf.	I'it	$\frac{\text { surf }}{\text { l'it }}$
L. W. Comp.		.07	1.0	. 8	. 8	1.0	.5.5	.j.)	1.0	$1 .: 3$	$1 .: 3$	1.0
S. s. Counp.		. 0.5	1.1.	1.0		1.6	11		0.6	2.8	5.6	0.5

(21.) - Inne 1 tith, $1859 .-1$ small earthymake.
E. IV. ('ompmem. On the surface, he maximmon amplate is

X. S. ('ompment. On the surfare, the maximmm amplitute is alonet 07 man, :and in the pit it is: about 0.1 mm .
(25.)—. Ime 20th, 1889.-A small earthyuake. In this anse, the amplitude seems to be rather greater in the pit than on the surface.

	Max. Ample			I'eriod.			Max. Veh.			Max. Ace.		
	Surit.	I'it	$\frac{\text { Surf. }}{\text { Pit }}$	surf.	Pit	$\underset{\text { Surf. }}{\text { Dit }}$	Surf.	Jit	$\frac{\text { surf. }}{\text { P'it }}$	suri.	P'it	$\frac{\text { surf. }}{\text { 'it }}$
E. W. Comp.	. 08	. 11	0.6	. 5	. 7	. 7	1.	1.	1.	13.	12.	1.
S. s. Comp.	.07	. 11	0.6	. 1	.	. 8	1.1	1.1	. 8	17.	18.	1.

	Max. Ampl.			Period.			Max. Vel.			Max. Ace.		
	Surf.	Pit	$\begin{gathered} \text { Surf. } \\ \text { 'int } \end{gathered}$	surf	Pit	$\frac{\text { Surf. }}{\text { P'it }}$	Surf.	Pit	$\frac{\text { Surf. }}{\text { Pit }}$	surf.	Pit	$\frac{\text { Surf }}{\text { l'it }}$
E. IV. Comp	. 1	. 0.5		1.1.	1.2		. 5	. 3	1.7	$\stackrel{\square}{2}$	1.3	1.5
S. s. Cump.	. 1	. 03		1.2	. 5		. 5		1.3	$\because .7$	4.6	0.6

In the E. 11 . ('omponcmi, the maximmon amplitude is . 13 mm . on the sumface, ant . 1 mme. in the pint.

E. Wr. Component. Buth on the smface and in the pit the maximum :mpliturle is not grater than 05 mm .
N. S. Component. Poth on the surface and in the pit, the maximum amplitude is about 0.1 mm .
(29.)-April 11th. 1890.-A An:All mirtho:ke.

Max. Ampi.			
Surf.	Pit	$\frac{\text { Surf. }}{1 \text { Pit }}$	
E. W. Comp.	.13	.12	0.9
N. S. Comp.	.1	.06	1.7

(30.) - 人pril 18th, 1889.- 1 rery small earthpuake.

Summary of Results.

It is generally believed that the eartheakemotion is conviderally less in a pit than on the :mfare. From the foresaing calculations it seems probable that this bime for some carthyakes and not true for others. Among the thirty earthymates we exminem, there are three which were expecially severe. These are (1), (13), and (15). The rest are small eartloguake of the kim that daily oreme in lapam. The ratios of the amplitudes, perionls, maximum velocities and
maximum areflerations for some of these latter earthpake as oherved On the free surface grombl to thase wherved in the pit are collected in the following table, average values being ased when : momber of waves have heen calculated for a single eathonake.

(No.)	$\begin{gathered} \text { Ratiour } \\ \text { AMPLTCODN } \end{gathered}$		RミTTM OF PERTons		$\begin{aligned} & \text { Matio of Max. } \\ & \text { VEl. } \end{aligned}$		Ratio of Max. Aco	
	E. W.	S.s.	E. W.	S.s.	E. W.	ミ.s.	E. W.	N.s.
(2)	1.8	0.7	\ldots	.j	\ldots	1.4	\ldots	:
(3)	\ldots	1.7	\ldots	. 8	\ldots	$\xrightarrow{2.0}$	\ldots	3.
(4)	1.0	1.2	1.5	. 7	. 1	1.6	. 4.4	2.2
(5)	1.4	1.0	19.9	0.5)	1.6	$2 .:$	1.8	3.0
(7)	1.0	1.1	1.0	11.9	1.0	1.2	1.0	1.2
(8)	1.1	0.9	1.1	1.6	1.2	1.7	1.8	2.7
(9)	1.6	0.8	0.9	0.9	0.7	0.9	0.7	1.1
(10)	19.9	2.6	19.8	11.91	1.3	3.0	1.6	3.7
(12)	1.8	1.1	19.8	0.7	\because	2.3	3.6	3.6
(14)	1.1	1.1	\ldots	1:-	\ldots	1.0	.	0.9
(15)	11.19	0.6	9.8	1.0	19.8	0.8	1.0	0.9
(16)	1.2	1.1	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
(19)	0.9	1.1	1.1	1.6	0.91	0.9	0.9	0.6
(20)	0.8	$\xrightarrow{2} .0$	0.7	2.3	1.1	0.9	1.4	0.4
(22)	\ldots	2.0	\ldots	1.4	\ldots	1.0	\ldots	1.0
(23)	1.0	1.4	1.0	1.15	1.1	0.8	1.0	0.5
(25)	0.19	0.6	0.7	0.8	1.11	0.8	1.0	1.0
(26)	2.0	3.0	1.2	2.1	1.7	1.3	1.5	0.6
(27)	1.3	\ldots						
(29)	0.9	1.7	\ldots	\ldots	\ldots		\ldots	\cdots
A verage.	1.06	1.1	19.9	1.1	1.2	1.4	1.3	1.9
A verage for both Components.	1.2		1.1		1.3		1.6	

 ments are diffiente; theere lawere whe thest the motion in the pit

 The ratios of the :mplitules, perionts, maximmon velocities, and
 earthyakes are given in the following rable.
(i.) Latree mululatiman.

(II.) limple.

 eathryake: the ramer of motion is anmentat areater on the surface

 This seme to be hue to the face that for the latiser umblations the

 The eme is different with make, for which the reatt are more
 decided. From Trake (II.) the average extent of herizomeal motion in the pit i. only half that on the enface semme, and the period fore the former seems rather sereater then for the later, which arioe from the fact that very matur of the rimplen diancer in the pit. The

 pactical difference betwern the surface and matergromm onservations;

 And thus, if the er ripples are really in grat pat smonthed away in the pit, it is rery likely that in times of such werere enthruakes as disensed above, there might be less destrmotive artion in deep pits than on the fieresmefare.
 They exist only in the enty pat of the shoeks and seen to be the continnation of the tremors which oreme at the begrinning of earth-
 is very muel like that of the distumbures in the sea where minute
 ed as wate travellimen the smanere, then the who thing will andmit of :an ensy explanation.

We must state homere that there aberantions were made at

 natare of the sail. Hence it is quite powible that olservations in difterent phater mas leat to somewhat lifterent iesults than those

 comparatively fice of superponerl wateta.

Lat the alowe the observations were eontined at the horizontal
 shathacs of the motion at a subtermatan print is derivert foron the behaviout of a row of ivory batls in eantat with carh other when one

to the vertical component than th the horizontal. It is our intention to continne thesendervations we have leen making and in addition to investigate the nature of the vertieal motion in the pit.

Laboratory Notes.

By
C. G. Knolt., D. Sc., F. R. S.E.

Professor of Plysics.

1. Electric Resistance of Cobalt.

The mamer in which the electric resistance of cobalt varies with high temperatures does hot seem to have been atudied with any great "are. Tha peculiar helavione of nickel ant iron as reards their change

The piece of conalt 1 sed was ent from :a shed of rolled cohatt
 kindly determined it: composition ly an analysi of a very amall
 is: follow:


```
Silicon... ... 0.15
liont ... ... 0.73
```

 muldermined. Dr. Divers regarded it as of remarkable purity for a furmace product.

[^55]The method of experiment was essentially the same as that described in my earlier paper on nickel. Four stout copper rods, 60 cm . long and $0 \cdot 7$ sf. cm . cross section, were fixed in a vertical position some little distane apart. Their lower extremities were joined in parse by two coiled wires, one of whirh was a specimen of nealy pure phatimun and the other the colalt strip that was the special olyect of investigation. 'The upper extremitis of the rods were joined ly stont coplere strips to a commutator, which was in connection witha Whatstome Bringe rexintance box of ordinary eomstruction.

In one series of experiments the lower emts of the rods with their comberting wires were dipped in a ressel of oil which combl be heated י]) to a temperature of nearly $240^{\circ} \mathrm{C}$. A themometer. centrally placed so that its bull, lay at the mean level of the platimmon and cobalt roils, was nser for measming the temperature. 'The oil was heated repy gradmally and was kept briskly stimed until a few semonds hefore: rearling was to be taken. One of the wires was mennwhile thrown into the 11 heatstone bridge, and the resistance adjustert sighty in adrance. The temperature was then allowed to rise very sowly motil reversal of the commotator in the galvamometer brameh gave no deflection. When the equilibrium was thus attained the thermometer reading was moted. In this experiment rhief attention was given to the cohalt ; a few measurements of resistance were made with the platinum, sufficient to wive the most important temperature coefficient.

The resistance curves for the eohalt and the phatimm are shown in the diagram (p. 293), Curves Nos. 1 and 2. Nll morections have heen (:arefally applied and the resistances are in legal ohns.

By interpolation amongst a mamber of contiguons mammements the resistane for earh of the temperatures $100^{\circ}, 140^{\circ}, 180^{\circ}$, $220^{\circ}\left(^{\circ}\right.$.

Table I.

Reststance of a Cobaly Stray in Leqal Ohms at maferent 'Temperatures.			
'Temperature.	Hesistance.	First Difference.	Ratio.
$1010{ }^{\circ} \mathrm{C}$.	.12:310		
110	1:3691.	.1.).)	1.1096
		.01516	1.1109
18	.1.92011	.0]161!	1.1081
$2 \cdot 9$. 1685		

Sine the second differemes have :npreciably different values, it is imporible to represent the law of change he means of a parabolic function. But the remarkable comstaney of the ratios of successive pairs of resistancersugentan expmential function of the temperature an the expreswon fir the resistane.

Thus we maty put

$$
l i=l_{i n}{ }^{\prime \prime}
$$

from which we find, if I is the temperature in degres Centigrate,

$$
l_{i}=\cdot 002605, R_{v}=\cdot 09519
$$

The measured resistance at $7^{\circ} \cdot 5($ C. was 0.0960 , which doe- mot dilles firm the value given be the firmula here than 1 per cent.

In my paper alrealy refered to 1 fomm that the ame form of expresion held for the case of one of the niekel wire invertignted, the only essential differene being in the value of the coefticient k, which for the nickel wan . 003 .

The resistance of colalt therefore done not change so quickly with temperature as does the renstance of uickel.

Th the second series of experiments the lower ents of the roxts with their comberting wires were inserned into a porcelain verad. Asbestos was wrapped round the wire ; and the whole was heated in
a charcoal furnace. The ohservations of resistance were mate as the system was cooling, the colsalt and platinum being thrown alternately into the W Whatstone Bridge. The instants at which the balancing was effected were carefully noted, so that it was an eas matter to interpolate between two successive measurements for the one wire that resistance which corresponder to the intemontiate meamement fise the other.

By this mean more than twenty distinct pairs of measurement. were obtaned, every colnalt resistance having its comedmaling hatinum resistance. Ifter all convections were mate the patinum resistances were divided by the resistance of the platinum at $7^{\circ} \mathrm{C}^{\circ}$. ; and similarly all the colbalt residathes were diviled by the rexistance of the cobalt at this same temperatione. The numbers were then datified
 the cobalt resistances which corresporled to assumed convenient values of the platimm resistances. These are the numbers given in Table II. which epitomises the results of four distinct experiments. The measurements were all made during cooling, and the higher valnes are accordingly tabulated first. The first column whtains the patinum resistances, taken as convenient maltiple of the resistance at $7^{\circ} \mathrm{C}$. measured afier the experiment: and the other ablmms give in order the correxouding resistane of the colatt.

Table II.

Platinum Resistances.	Comalit Resishances			
	Exp. 1.	Exp. 11.	Enp. 111.	Exp. 15.
2.0	3.8017	-.7996;	5.9718	6.0361
1.8	4.5101	$1.312: 3$	1.1.1!	4.4580
1.6	3.1892	3.11 .93	8.0983	3.2.216
1.4	2.2029	2.179 .5	2.1111	2.2602
1.2	1.5329	$1.53: 37$	1.80 .50	
1.0	1.0000	1.0000	1.0090	1.0000

If we andme that the changes in the patinm redistance follow the same lan :a in the errier experinent with the oil, the rise of temperature which will just double the resistance is about $680^{\circ} \mathrm{C}$.; and the interval from 1 to 1.2 maty be taken a correponding appoximately to a rise of temperature of $136^{\circ} \mathrm{C}$. Amorting th the experiment in wit, the resistance of the colalt would hase been inceased in the ration 1.4248 to maty ly the rise of temprature. It is: mater the influence of the first exemive he:ting the colatt has lacen
 refficient foir resistare up to $150^{\circ} \mathrm{C}$. ha: heen increased by a quater.

That the successive heatiug eathen : marked change in the stracture of the wire or strip, is shown the variations in the measured resistance at $7^{\circ} \mathrm{C}$. These are given in Table ll.

Table III.

When Measured.	Resistance of Platinum wire	liosistance of Cobalt strip.
At the begimming	.8.e.j	.997-2
After lat heating	. 5098	.09135
,, こnd ,	.850-8	.19835 1
", 3rrl ,	.8501:;	.0967t
., ith	. 590	. 090978

The fall in resistance ather the fird hesting i.s mes doubt due w swne change in the contat iesistanes. It mataterises both the
 the phatinm to any great extent matil the rery lat experiment ; but their effect on the colvalt is very makerl. Ifier the experiments were
 was excedingly britale and hioke into matl pieces when it wat heing
detached from the eopper rods. While the obervations were being matle, if was noticed that the fourth experiment was much inferion in point of regrataity and stemlines to the otheres a fact sufticiently explaned by the final condition of the metal.

It is mot surprising, then, that there is considerable divergence letween the value: of the temperature cofficients as obtaned from the carlier experiment in oil and the later series in the charemal furnace.

What is surprising is, that in spite of the great alteration in structure going on in the strip, the general behaviour of the cobalt as shown in the finst there experiments isesemially the same. 'This is well ween firom the tabulation of the mates of chatge themselver. These fuantities were ealenlated lis the same gencral method of interpotafion as Was used in calsulating the resistance. They eorrenpond to the values of $d y / d x$ if y and x are taken to represent respectively the comerponding resistances of colnalt and phatinmm. They are given in 'lable $\sqrt{\prime}$, the firat eolumn containing the values of the platintmon resistances to which the tabulated mates of change comerpond.

Table IV.

Platinmu Resistance (Arbitrary 'Temp'r scale).	Rates of Change of Comat Reshetance hem iste Change of Phatinem Rembtanee.			
	Exp. 1.	Exp. If.	Exp, 111.	Exp. 11.
\because	7.15	7.30	10.33	9.15
1.5	16.19	7.21	(1.7)	\%. 99
1.19	5.45	5.57	19.63)	6.10
1.1	3.76	3.58	3.65	3.66
1.2	3.58	3.2:3	2.75	

I have thought it sufficient to give the condensed numerical results as contained in Tables J, I [and I V'. The individual observations upon which these results are based are shown graphically in the diagram.

Cimese 1 and 2 hase already been mentioned. They show the marel of resistane with temperature as meaned on a meremial rentignale thermoncter. In No. 3, the phatimm redistane are virthally used as temperatures, and form the absimat The ordinate; are the corresponting cohalt resistancer. The point belouging to the winns experiment: are distinguished byectal mark.

It will be seen at at entace that in one partiontar cohalt behaves. very like iron and nickel. There is a rapid increase in the stepurs of the enerve at the higher temperature. In iron and nickel this rapicl increase is followed at still higher temperatures hy distinct derrease, the curves hembing so as to present : comeavity toward the temperature (or platimm resitaice) axis. T:able IV. gives mo hint of :ach at tentency in colnatt. The curves all become steper with rie of temperature if we excent the distinctly iriegratar indications of Experiment ${ }^{\prime}$.

It will he een from 'T:ulle IV. that Experimentic I. :und II. :we in fair agrement thrombent ; :Hnd that all four experiments point to the existence of a critical temperatme, at which the resistance hegins to iucrease rapidly with 1 ise of temperature. This critical temperatme is ahnont the stage 1.5 , whith correspords apmoximately to $350^{\circ} \mathrm{C}^{\prime}$. The same conchasiou may be drawn from 'athle II. and expersent in these term:. Between the temperatures 400° and 700° C. the resist-
 great as the arerage rate of inderace hetween 0° and $300^{\circ} \mathrm{C}^{\prime}$.

2. The Thermoelectric Positions of Cobalt and Bismuth.

Sn far as I know, the mily wati.factory iletermination of the pasition of the Coblatt lime on the thermoeleetric diagram was made by

I'rofesom Tat's student: in the Physeal Cabmatory of Edinhurgh

 diagram, and that itw inclination to the lead line was much greater the:n the inelinetions of the imo :mel niekel lines.

 adjustment of the resistances in thes branches to whain an intere merliate line which amold out through the cobalt line at temperatures within ess rearh.

Surf :m intermetiate line pases through the nentral point of the anmanent motals. It divirle: the region between their lines an that

 intemediate line sutable for our purpase. The extreme accurace with

 lines: are kuown.

The low pastion of colatt on the diagram very much circom-
 one of them, as atone was keown to be below molat. The other

 fortmately, howeref, the meressity of mater hismoth limiter the

 in al lamian flame anfiered to medt the metal, which ran towedner and solidified on cooling into : faify mafomm row. 'The junction wires were finser into the (1)l: of the himanth ral.

 was necessary in keeping the varions whl jundions at the wane temperature.

Melal.	$\begin{aligned} & \text { Thermbetectric Ponser } \\ & \text { at } 10 \text { at } 1 \text { owo. } \end{aligned}$		Noutral Point with Cobalt.
C^{\prime}	7.00	17.:1	
	$\therefore 18$	(i. 1.15	$-10^{\circ} .11{ }^{\circ}$
P號	9.38	9.910	+ - 10.5
ld lii.	11.1.5	14.15!	71.1
I'd lii	17.11	17.11	101.1.
Jd li_{3}	21.73	22.1:3	11.8 .9
P'd Bi.	29.11	29.55	- - + . 0
$13 i$	86.0	88.8	

The monder: in the lat row have been calculated from the

 know that

$$
\begin{aligned}
\frac{p^{\prime}-p_{n}}{p_{n}} & =\frac{n}{1} \\
m^{\prime} \quad P^{\prime} & =(n+1) i^{\prime n}
\end{aligned}
$$

 following values foir p at $1^{\circ} \mathrm{C}^{\circ}$. :mat $100^{\circ} \mathrm{C}^{\circ}$.

$n+1$	$1 \prime \prime$	/'111
14	S:3.7	90.1
$!$	S1.t	8!8is
i;	86.7	ss.l
j	87.2	-7
1.	81.9	SS.
\therefore	87.:	8S. 7
Meams	Stig - ${ }^{\text {S }}$	$85.8+8$

This table in obrious alle indiation of the acuracy of the experiment.

And how, reforman erevthing the Lead line, and expening the themedednic fener in the limen

$$
p=\frac{d e}{d t}=-A+I 3 t
$$

	A	$B \times 10^{2}$
Lacad	11	1
Pablanlium	- 15.18	- 3.5 .5
Colalt.	-1:3.15	-13.9
Bismuth	-92. - -	-6. 1

Acerding to the bumber:s derluced ly Feming Jenkin from
 dues colalt. Here we have it sevela time.. Profesmi Tait's electroly-
 pallatium. Here we have it a liftle one two time: Acending to
 Masaat ant Jonlert': Ellectricily and Ingnetism, the mation at $51^{\circ}($ '. of the thermbelectrice ponem. of pathadium and hismuth relatively to lead is: an $7: 40$. Here we late $1: 16$.

These dinerepacies are not smpmining. Wraknow how variable
 same compontion, and how a very sheht change iat componition may

 will fit in to the region hotwem leat and bisunth bery much as

This mexpected result was at mace tested. I moth experiment
 \{aimel at a temperature behw $100^{\circ} \mathrm{C}$. This onbate line therefore, at
 weater downward inelination weta helow it at trmperatures above $100^{\circ}{ }^{\prime}$.

 with two quite different :perimen af the metal. Thas, expessed in
 wiven by the formala.

$$
p=-26.3-11.111 ; t
$$

Whereat for the present ipeciment

$$
p=-13.18-0.1: 386 t
$$

With the excepton of the shap monam beme in nirlicl. thi wive the

[^56]be interesting to establish be direct experiment that the Thomson Effect is exceptionally large in colnatt.

The downamed trem and comparatively laree inclination of the bismuth line are also wortly of mote. berame of the pasition of the line as : whole, lying far below the lines of all of ther metals, this large inclination dies not greatly inflane the electronotive foreen, so that with bismuth comples the clectromotive foree is very apposimately proportional to the temperature. This fact of course preventio us from making a ver? acomate determination of the coefficient b, which in the prevent experiments has a large probable emror. Itw mean value is a little greater than the value indicated in Battelli's direct measurement of the 'Thomson Effect in bismuth ${ }^{1}$.

Righi has showne that the electric resistance of Bismuth is altered in a strong magnetic field. 'To find if any themolectric change accompanied matenctization in hickel, a hismuth palatimen comple was
 whaterer was obtained, although the armagement (slightly modified) was sensitive ehough to show with great ease the thermomagnetic effect diseovered by v. Etting hatuen and Nemptas).

[^57]
Diffraction Phenomena produced by an Aperture on a Curved Surface.

By

H. Nagaoka.

In ordinary prohlem: on diffraction of light produced by apertures of varions haper, the diffracting apertures are supowed to lie on

 It has been my ohjeet to fill in this gaty, althomeh the experemon for the intensity of diffiacted light is integrable only in: a few particular (:Nな.

In the following. I give a general expmonu for the intemity of

 applied to find the distribution of light atter ite pasage themedrat
 retinler.

Expression for the Intensity of the Diffracted Light.

Let L he :

[^58]Fig. 1.

Fig. 2.

 sees : (listant juint 7) (Fig. 1) : in wher words, D) is the su-c:alled diffraction point.

In order to fiml the gateral eypreswon for the intensity of light
 that the diffracting apertme is very mall compared with its distance from the source of light, ahe firom the penint at which the intensity of diffirated light is comsidered. Comsedumaty the:amplitme of vilnation wf the light coming fiom different point: of the apeptore will not vary at the peintit musiderent.
 mena. Rafemine to Fies. 1 , let he whation at I herepresented by
 be propertional to

$$
\cos \left(\frac{t}{T}-\frac{L I^{\prime}}{i}\right)=\pi
$$

Now mandering the ray in: the direotion I) I^{\prime}, the vibration at ans pentat

$$
\operatorname{la} \cos \left(\frac{l}{T^{\prime}}-\frac{I l^{\prime}}{i}-\frac{I^{\prime} C^{\prime}}{i}\right)=-
$$

$$
\operatorname{dis} \cos \left(\frac{t--}{T^{\prime}}-\frac{L I^{\prime}}{K}-\frac{I^{\prime} C^{\prime}}{i}\right) \geq-
$$

 of the aperture, on that the wat eftert at ' T will he given by the integral

$$
\text { (1) } \quad \int \operatorname{loc} \cos \left(\frac{1-i}{T}-\frac{L I^{\prime}}{i}-\frac{P^{\prime}}{i}\right) \geq \pi
$$

Taking any pial () near the aperture, we maty wite

$$
\begin{aligned}
I^{\prime} C^{\prime} & =I C^{\prime}-L I^{\prime}, \\
& =I C^{\prime}+\left(L O-I I^{\prime}\right)-I O, \\
L I^{\prime} & =L O-\left(I O-I P^{\prime}\right) .
\end{aligned}
$$

 tively, let $L O-L I^{\prime}=J i$, and $D O-I I^{\prime}=J I^{\prime}$

Introducing thene symbsiat the expresions for $l^{\prime} C^{\prime}$ and $L l^{\prime}$, we find

$$
\begin{aligned}
& I^{\prime}=J C-R^{\prime}+J i^{\prime}, \\
& L I^{\prime}=R-J I_{i}^{\prime} .
\end{aligned}
$$

substituting thex in (1), we wet for the vilsation at ' T the integral
(2) $\quad \int d \sigma \cos \left(\frac{1-i}{T^{\prime}}-\frac{D C}{i}-\frac{R-R i^{\prime}}{\lambda}+\frac{J R-J R^{\prime}}{i}\right) 2 \pi$

$$
\frac{t-\Sigma}{T^{\prime}}-\frac{D C}{i}-\frac{I_{i}-I^{\prime}}{i}=i
$$

and the above expression fin the vibation becomen

$$
\begin{equation*}
\int d \sigma \cos \left(i j+\frac{J I i-J R^{\prime}}{i}\right) 2 \pi \tag{3}
\end{equation*}
$$

The intensity of light at ' I ' is, therefore, given by the expression

$$
I=\left[\int d r \cos \left(\frac{J R-J I_{i}^{\prime}}{i}\right) 2_{-}\right]^{2}+\left[\int d \pi \cos \left(\frac{J R-J I_{i}^{\prime}}{i}\right) 2_{\pi}\right]^{2} ;
$$

or more simply ly

$$
\text { (I) } \quad I=M o l e^{2} / d \pi e^{i \frac{\sum \pi}{\lambda}\left(\Delta R-\Delta l^{\prime}\right)}
$$

When the diffiraction perint is situated on the other side of the -urface from the somed of light, and the phemomenom is seen propected On a sercen at D, we must sightly monlify the expression for the intensity of light.

Proceeding in exactly the same way as before, the vibration at D due to a small element do at $P^{\prime}(\mathrm{Fig} .2)$, will be proportional to

$$
d \sigma \cos \left(\frac{t}{T}-\frac{L O}{i}-\frac{I^{\prime} U}{i}\right): \ddot{\pi}
$$

which ean be written

$$
d \sigma \cos \left(\frac{t}{T}-\frac{L I I^{\prime}}{i}+\frac{L O-L P}{i}+\frac{O H-I^{\prime} D}{i}\right): \pi
$$

P'utting as before

$$
\begin{aligned}
& \frac{t}{T}-\frac{L I}{i}=i \\
& L O-L l^{\prime}=J i \\
& O D-C D=J l^{\prime \prime}
\end{aligned}
$$

we get

$$
\cos \left(\frac{1}{T}-\frac{L I^{\prime}}{i}-\frac{P l}{i}\right) 2 \pi-\cos \left(i+\frac{\mu I++\mu l^{\prime}}{i}\right) \cdot 2 \pi
$$

Conseguchty, the total effect at I is given by

$$
\int d \pi \cos \left(i+\frac{J R+J L_{i}^{\prime}}{i}\right): \ddot{\pi}
$$

Thus, the intensity of diffiracted light at D in given $\begin{aligned} & \text { lo }\end{aligned}$

$$
I=\left[\int d \sigma \cos \left(\frac{J I+J I^{\prime}}{i}\right) \cdot \pi\right]^{2}+\left[\int d \sigma \sin \left(\frac{J I+J I R^{\prime}}{i}\right) 2 \pi\right]^{\circ} ;
$$

or more briefly by

$$
\begin{equation*}
I=M o r l^{2} f d r c^{i \frac{2 \pi}{n}\left(J R+\Delta R^{\prime}\right)} . \tag{II}
\end{equation*}
$$

The abowe expersion give the intensity of diffiacten light for Frenel's diffiaction phemonema.

Too evaluate the integral. given in (I) and (II), asome 0 an the migin of there rectangular co-orthate axes x, y, a. Let the coordinates of the print: L, I, l^{\prime} referred to these axe be denoted thus:-

$$
\begin{array}{ll}
I: \quad a, b, c, \\
1: & a^{\prime}, b^{\prime}, \boldsymbol{c}^{\prime}, \\
P^{\prime} & x, y, z,
\end{array}
$$

and let the equation of the surface refered to the same axe be

$$
F^{\prime}\left(x^{\prime}, y, z\right)=\text { const. }
$$

Thur, we hase

$$
\begin{aligned}
L O & =\sqrt{u^{2}+b^{2}+c^{2}}=l i, \\
O D & =\sqrt{u^{\prime 2}+b^{\prime 2}+c^{\prime 2}}=I i^{\prime}, \\
L P^{\prime} & =\sqrt{(\prime \prime-r)^{2}+(b-y)^{2}+(c-z)^{2}}=l i-\Delta l, \\
P^{\prime} H & =\sqrt{\left(u^{\prime}-x\right)^{2}+\left(b^{\prime}-y\right)^{2}+\left(c^{\prime}-z\right)^{2}}=l^{\prime}-\Delta l^{\prime} .
\end{aligned}
$$

Expanting the expressions for $L I^{\prime}$ and $P^{\prime} D$ by means of the binomial therrem, we have

$$
\begin{aligned}
& L I^{\prime}=R-\frac{a x+b y+c}{l i}-\frac{1}{2 R^{\prime}}(a x+b y+c z)^{2}+\frac{x^{2}+y^{2}+z^{2}}{2 l i}+\ldots \ldots, \\
& I^{\prime} D=R^{\prime}-\frac{a^{\prime} x+b^{\prime} y+c^{\prime} z}{I i^{\prime}}-\frac{1}{2 R^{\prime 3}}\left(u^{\prime} x+b^{\prime} y+c^{\prime} z\right)^{3}+\frac{x^{\prime}+y^{2}+z^{2}}{2 R^{\prime}}+\ldots \ldots,
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\Delta R=\frac{a x+b y+c z}{R}+\frac{1}{3 R^{3}}(a x+b y+c z)^{2}-\frac{x^{2}+y^{2}+z^{2}}{2 l} \\
\Delta R^{\prime}=\frac{a^{\prime} x+b^{\prime} y+c^{\prime} z}{R^{\prime}}+\frac{1}{2 R^{\prime \prime}}\left(a^{\prime} x+b^{\prime} y+c^{\prime} z\right)^{2}-\frac{x^{\prime 2}+y^{2}+z^{2}}{2 l^{\prime}} \tag{4}
\end{array}\right.
$$

Let the direction cosines of $0 L$ be x, \because, \quad, \quad, and those of $0 D$ be $u^{\prime}, u^{\prime}, v^{\prime}$; then (4) becones

In Framhofer's diftimetion phenomena, $l i$ and R_{i}^{\prime} are supped to be very large compared with x, y, z, su that we com heglect the terms containing R or R^{\prime} in the denominator. Thus

$$
\Delta l i-\Delta L^{\prime}=\left(u-u^{\prime}\right) x+\left(u^{\prime}-u^{\prime}\right) y+\left(n-v^{\prime}\right) z .
$$

Writing

$$
\begin{aligned}
& \frac{\ddot{y}}{i}\left(x-x^{\prime}\right)=l, \\
& \frac{2 \pi}{\vdots}\left(\prime-u^{\prime}\right)=m, \\
& \frac{2 \pi}{i}\left(\because-\because^{\prime}\right)=u,
\end{aligned}
$$

the expresion fion the intersity of the diftimeted light becomes

$$
\begin{equation*}
I=\operatorname{Mod} d^{2} \cdot \int d \sigma e^{i(l x+m y+m-)} \tag{I'}
\end{equation*}
$$

where the integration extende wer the whole aperture
In Fresuel's diffeaction phemonena, we ean mo longer neglect the temins. $\frac{1}{R}$ and $\frac{1}{R^{\prime}}$. Thm the expression tor $\Delta R+J A^{\prime}$ becomes ver: complicated. It is, howerer, somewhat simplified he taking O in the line $L D$ as shown in Fig. 2. 'Therely $x^{\prime}=-u, \quad u^{\prime}=-\mu, \quad v^{\prime}=-2$, because $O L$ and $O D$ ane in one line. Thus

$$
\Delta R+\Delta R^{\prime}=\left\lceil(x x+y y+2 z)^{2}-\left(x^{2}+y^{2}+z^{2}\right)\right\rceil\left(\frac{1}{2 R^{\prime}}+\frac{1}{2 R^{\prime}}\right) .
$$

[utroduring this value in (II), we get for the intensity of light at D
(II^{\prime}) $\quad I=M o d l^{2} \cdot \int d \sigma \rho^{i \frac{\pi}{\lambda}\left[(k x+\mu y+\nu z)^{2}-\left(r^{2}+y^{2}+z^{2}\right)\right]\left(-\frac{1}{1 i}+\frac{1}{l^{\prime}}\right)}$,
where the integration extende over the whole apertmed
Thas the problem of the diffiaction of light produced by an aperture on a cmed mitice is reduced th the ithegration of exprese
 respectively.

Fraunhofer's Diffraction Phenomena produced by a narrow Slit on a cylindrical Surface.

Let us now discusw Fraunhofers diftraction phenomena produced by a narrow slit cut on a right circular cylinder and perpendicular to the generating line of the cylinder.

In order to calmbite the intensity of light for different positions of the telescope, Wrop : perpendicular on the axis of the cylinder from the eentre of the slit. Aswme the entre as the origin of co-ordinate axer. Lat the x axis be parallel to the axis of the eylinder, and the z axis perpendicular thereto, both drawn through the centre of the slit.

The axes being then-fixed, we have. by (I^{\prime}), to find the integral

$$
\int d \pi e^{i(l x+m y+n z)}
$$

where the integration extends over the whole aperture, and la, $"$:are determined by the directions of the iucident light amt of the

and by the wave length of light employed in the observation. In addition to this, there is the conation of combition

$$
y^{2}+z^{2}-2 \pi z=0
$$

expressing the fied that the aperture lies on a cylinder of radins 4 .
In actual calculation, it is more convenient to ase polar conordinates. In the right eireular section of the cylinter, assume polar co-ordinates with the pole on the axis, and take

$$
y=\| \sin \text { is }, \quad z=\|(1-\cos \text { i }),
$$

Then

$$
d \sigma=a d x d y .
$$

where $2 b$ denotes the health of the slit.
The integral

$$
\begin{aligned}
& \int l l \\
& \int l e^{i l x}=\frac{e^{i l l}-e^{-i l l}}{i l} \\
&=\frac{2 \sin l l}{l}
\end{aligned}
$$

It thas remains to find the integral

$$
\int d i t e^{i n(m \sin v-n \cos v)}
$$

taken between proper limits.
Lutroduce an :mxiliary angle it , weh that

$$
\left\|\prime \prime=ミ \sin y^{\prime}, \quad \quad\right\| n==\text { ミos } y^{\prime}
$$

where

$$
\equiv-\| \sqrt{m^{2}+n^{2}}
$$

Then

$$
\left.u(m \sin i n-n \cos i)=亏 \cos (i)+i^{\prime}\right)=亏 \cos c,
$$

Thus

$$
\int d i y e^{i n(m \sin \theta-n c \theta \theta)}-\int d \varphi e^{i \xi \cos \varphi}
$$

The limits of interation with respect to cs are fommerl from or and the known limit. with reaped to is.

The difficully of the poblem lien imply in finting the intergat

$$
I=\int d c e^{i \xi \cos 4}
$$

I hatl hemeforth put $J=K+i L$, where

$$
\begin{aligned}
& L=\int \cos (\xi \cos \varphi) d \varphi \\
& L=\int \sin (\xi \cos \varphi) d \varphi
\end{aligned}
$$

Evaluation of the Integral $I=\int d \zeta c^{i \xi \cos \varphi}$.

There are varions ways of evaluating the abose intereral. The simplest way would be to lime a differential cymation which is satiander

Since cory integral of the finm $\int \operatorname{diche}^{i \xi \cos \varphi}$ between known
 fiom $\int_{1}^{i} i_{c}^{a} c^{i s c o s e} .1$ shall only considele

$$
I-\int_{11}^{a} e^{i \xi \cos \varphi} d x .
$$

Puting:

$$
\begin{aligned}
& \cos y=u, \cos u=c \\
& J=-\int_{1}^{c}{ }^{i}{ }^{i} \frac{\sqrt{2} u}{}-u^{2}
\end{aligned}
$$

Differentiating with refoed to 三s, we have

$$
\begin{aligned}
& \begin{array}{l}
d . J \\
d \xi-i \int_{1}^{c} u e^{i \xi u} d u, ~ \\
\sqrt{ } 1-u^{2}
\end{array}
\end{aligned}
$$

wheress athulw for $\sqrt{ } 1-c^{3}-\sin \%$.

:Inl

To fint the expersion fin K :and L, asume : acrice proceding
 choosing the constan, we ealy fint that

(b) $L=-1$

$\left.+3 \begin{array}{l}1 \\ \left.3^{2} .5^{2} \ldots(2 n-1)^{2}\right)\end{array}\right)+\ldots \ldots \ldots \ldots$.

 where J° demeter bexsels functinn of the first kinel with index 0. Thas: the almose expresion for K reduces to

It i e emily seen that the abore two serie: fir K :mat I comberge

 Thum

$$
\begin{aligned}
& r^{i \xi \cos 4}=J^{4}(\xi)+2 \underset{1}{5} i^{n} \cdot J^{n}(\xi) \cos n c \cdot
\end{aligned}
$$

 wr ha:

$$
\begin{align*}
& K=\mu \cdot J^{\circ}(\xi)+2 \sum_{\Gamma}^{2}(-1)^{n} \cdot J^{2 n}(\xi) \frac{\sin (2 n(\mu)}{2 n}, \\
& I \cdots 2 \sum_{\pi}^{\infty}(-1)^{n} 1 \cdot J^{2 n} 1^{1}(\xi) \frac{\sin (2 n+1) n}{2 n+1} . \tag{1}
\end{align*}
$$

 . $J^{\circ}(11 \pi)$:

$$
x=-\int_{\sqrt{1}-u^{2}}^{i^{i \xi u}} d \| .
$$

$$
\frac{1}{\sqrt{1-u^{3}}} \quad \frac{1}{2}+\frac{1}{1} \cdot T^{n}(n-x) \cos u-u .
$$

Atter a simple reanction, wo have

$$
\int \frac{\rho^{i \xi u}}{\sqrt{ } 1-u^{2}} d n-\frac{i}{2} r^{i \xi u}\binom{\frac{1}{ミ}+2 \sum_{i}^{\infty} J-(n \pi) \approx \cos \|\pi-i\| \pi \sin n-n}{\xi^{2}-u^{2}-\pi} .
$$

 equation

$$
-2 \pi \cos =n \grave{v}_{1}^{\infty} n \cdot \cdot^{\circ}(n \pi) \sin (11-n)^{-} \mid,
$$

 reguetively.

 t(rmes of the findo 0

Let

$$
\begin{aligned}
& +\because K^{\prime} \cdot(m \pi) \mid,
\end{aligned}
$$

where

$$
\begin{aligned}
& +2 I^{\prime} J^{\circ}(111 \pi)
\end{aligned}
$$

where

", n_{2} denoting the limita of integration with reapert to ${ }^{\prime}$.
Evalnating these two inketrminate form: $K^{\prime \prime}$:and L^{\prime}, wr find

$$
\begin{aligned}
& K^{\prime}=\frac{2 ; u+\sin (2 ; u)}{1}, \\
& L^{\prime}=-\frac{\sin \gamma\left(n_{1}+u_{2}\right) \sin \gamma\left(n_{2}-n_{1}\right)}{\underline{u}} .
\end{aligned}
$$

 of diftration, that a more enceral intecral of the form

$$
\int d r e^{i \xi \cos \varphi} \sin ^{2} \varphi
$$

the limitw lying between -and - - am he made th depemt on . J"
 of the first kind with intex 2 c:an be expreseed by mems of the following fimmula

For comsenicnce of calculation，the following value of $J^{\circ}(n-)$ ，for sucessive values of n ，hase heen caldulaten and tabubated．

n	$J^{\circ}(n-\pi)$	$\log J^{\circ}(n \pi)$	n	.$J^{\circ}(n-)^{\prime}$	$\log J^{\circ}(n \pi)$
1	-0.301212	（－） 1.483219	20	＋0．0ri2329	（＋）-.794691
2		$(t) 1.312969$	27	－0．061168	（－）－－ 786.523
3	－ 0.181212	（－）1． 2.98186	28	＋0．069069	（＋）－－7886．90
4	＋0．15957	（＋）1．197：300	29	$-0.0 .590 .27$	（－）－．-710.51
j	－0．11．118：	（－） 1.119 .979	30	$+0.0 .580: 38$	$(+)=268710$
${ }_{6}$	＋ 0.129001	$(+) T .110804$	：31	-0.057096	（－）－2．-56608
7	-0.119009	$(-) 1.077265$	32	＋0．056199	$(+) 2.719732$
8	＋0．111988	（＋） 1.9190093	3：3	$-0.0 .53348$	$(-) 2.743066$
$!$	－0．10．562．）	（－）1．U2：3768	31	＋0．0．5152．5	（＋）
10	$+0.100251$	$(+) 1.001089$	35	$-0.0 .59718$	（－）$\overline{\text { ® }}$ ． 730320
11	－ 1.095951	$(-) 2.980 .595$	36	＋19．0529933	（＋）$\overline{2} \cdot 7 \cdot 1: 216$
12	＋0．091．579	（＋） 2.91515	：37	－ 0.0 .52 .273	（－） $\bar{\square} .718280$
13	-9.088010	（－） 2.91 .1530	：38	$+0.05158$	（＋）$\overline{2}$ 710．901
11.	$+0.031827$	$(+) \underline{\square}$	：3）	－0．0．00918	（－）$\overline{2} .70687$.
1.5	－0．085917	$(-) \bar{\square} .9131388$	10	＋9．0．04079	$(+)$ ¢． 701386
1 i	＋0．0795378	$(+) \stackrel{3}{-3} 8.946!7$	41	－0．0196\％${ }^{\text {a }}$	（－）$\overline{\underline{I}}$ ． 199603%
17	－0．077019		$1:$	$+0.019070$	$(+)$ O．in90812
18	＋9．07185！	（＋）2．stin 13	$1: 3$	－0．018197	（－）$\overline{3} .18 .5712$
$1!$	－0．072871	（ - ） 2.869 .951	1.1	＋0．017941	$(+)$ I 1980示！
29	＋0．0710：3：3	（t）-8.8146	1．）	－ 11.91 .7109	（－）$\overline{2} .67 .55 .8$
$\because 1$	－0．0403328	$(-) \because .810910$	115	＋ 0.01689 .9	（＋）$\overline{3} .671091$
22	＋0．0165750	$(+) \geq 2.800816$	47	－0．040391	（一）${ }^{(1) 6661: 30}$
23	－0．0665．2．5	（－）－521－28	48	＋0．01．5900	（＋）$\overline{2} .161868$
$\cdots 1$.	$+0.06186{ }^{\circ}$	$(+)=812017$	19	－0．01．51：30	（－） I .6 .57398
3	－0．06：35＇30	（－） $2.80: 318: 3$	51	$+0.011080$	$(+) \underline{3} .6 .530] 8$

Retarning worr problem on Frambofers liftacton phenomema， we get for the expression of the intermity

$$
I=1 \cdot u^{2^{2}} \frac{\sin ^{2} l b}{l^{2}}\left(K^{2}+L^{2}\right)
$$

With a homogenems some of light，the intenaty alway valus hes whenever $l b$ is a multiple of \bar{c} ．The frime ：atiag from the term
 the surfare on which the slit is cot is colindriand，the additional factor $K^{2}+L^{\prime \prime}$ enters into the expression for the intensity of the diftracted light．This factor has maxima and minima for different pesitions of the telesence，and moreser depende on the length of the slit．＇Thus， When the limits of integration lie from 0 to $\pi, K=\pi=J^{\circ}(亏)$ and $L=0$ ， and there would be phates of darkness for such pestions of the teles－ eope as are determined ly the values of＝comerpouling to the roots of J°（言）。

For at ereat mumine of equidistat sits．the expresion for the intensity would be the same an that for orlinary erating，matiplied ly the factor $K^{2}+L^{2}$ ．

The case which calls for ：gectal attention i when the ray is momally incident，am the telesenge turned on as alway to lie in the pane $x y$ ．Then $x=0, n=0,2=1$ ，ann $n^{\prime}=0$ ．Thus $l=\frac{2 \pi}{i} \sin$（1），where a is the angle mate by the axis of the telesenge with z axis．The phace of datken are given ly

$$
\sin (1)-\frac{n}{2} \cdot \frac{i}{b}
$$

 reparately determined for the particular it in prestion．

Fresnel's Diffraction Phenomena produced by a Slit on a Cylindrical Surface.

Let $A B$ be :a section of the slit, cut bey alane prowing through the sonree of light L, and the point D at which the illmmination is required. I shall smpose that the point D is not very far from the line juining mey peint ou the slit with the somere of light. Alon, the problem will be still further simplified if the pata LAA l; marde to rontain the axis of the revimer.

For calenlating the intemsity of the diffacted light, assume the point O where I I meets the cylintrical surface as the origin of conrdinate. Let the x axis be paralled to the axis of the erlinter, and y perpendicular to the plame $L A B$.

$$
\text { In this case, } \quad x=\cos L O A=\text { it, }
$$

where g is very mall.

$$
\because=0 . \quad \text { :nd } \quad 2=1 \quad \text { ne:ml! }
$$

Thus

$$
(u x+m y+z a)^{2}=\underline{y} \dot{x} x a+z^{2}
$$

Remirring to formula (II).

$$
\Delta I+\Delta I^{\prime}=\left[2 \text { it } x z-\left(x^{2}+y^{2}\right)\right]\left(\frac{1}{\underline{2 R}}+\frac{1}{\underline{2 I^{\prime}}}\right) .
$$

Therefore, he formula (II').

$$
\begin{equation*}
I=M \text { Morl } 2^{2} \| \text { d } d \sigma i^{i \frac{\pi}{\lambda}\left[2 n^{n}-\left(i+y^{2}\right)\right]\left(\frac{1}{l}+\frac{1}{k}\right) .} \tag{1}
\end{equation*}
$$

Since is. x alld a are all wery mall, we call write

$$
e^{i \frac{\pi}{\lambda}}\left(\frac{1}{1 i}+\frac{1}{k}\right) \div \theta r:=1+i 2 i=r=
$$

Whore Etmal for $\frac{\pi}{i}\left(\frac{1}{l_{i}}+\begin{array}{c}1 \\ h^{\prime}\end{array}\right)$.
Taking portar momblate in the right arentar sedion of the "linder with the pole on the axic, we may write

$$
\begin{aligned}
& d \sigma-\| d x d r, \\
& y=a \sin c, \quad z=\|(1-\cos \varphi) .
\end{aligned}
$$

 difin:uctedray

In integrating the above expresion with rexped to x, we mas dis-
 geometrical dandow.

$$
\text { in } \quad \text { 石 }+b
$$

 mons h_{x} fiom

$$
-\beta \text { to } b-3
$$

 length of the wit.

I hall tirst perfiom the integration with maned to es. IVe emm write
 investigated in ammedion with Frambuters diflimetion phenomema. I shatl, therefore, write for simpliaty

$$
\begin{equation*}
\int e^{i \xi u^{2} \sin ^{2} \varphi} d c=K+i l . \tag{3}
\end{equation*}
$$

Again

$$
\begin{aligned}
& \int c^{i \xi u^{2} \sin ^{2} \varphi} \cos \varphi d \xi=\begin{array}{c}
1 \\
a \sqrt{ } \xi \\
\int \cos (n \sqrt{\xi} \sin \varphi)^{2} d(n \sqrt{\xi} \sin \varphi)
\end{array} \\
& +i \int \sin (11 \sqrt{\xi} \sin \varphi)^{2} d(1 / \sqrt{ } \xi \sin \varphi) \mid
\end{aligned}
$$

 (anchy. ne dommel can be used for calculation. I shall, therefore, pu

$$
\begin{equation*}
\int e^{i \xi \cdot \sin ^{2} \varphi} \cos c c d c=I^{\prime}+i \breve{\prime} \tag{1}
\end{equation*}
$$

Next performing the integration with reaped to x, we hase whent

$$
\int e^{i} y^{2} d x:|l| l \mid \int e^{i \xi} x d x
$$

The firs is an motinary Fexnel integral ; and can, therfore, be writem

$$
\begin{equation*}
\int e^{i \xi x^{2}} d x-\left(x^{\prime}+i s,\right. \tag{5}
\end{equation*}
$$

where

The second intergral is integrable ; thans,

$$
\begin{align*}
\int e^{i \xi x^{2}} x d x & =\stackrel{1}{2 亏} e^{i \xi c^{2}}, \tag{6}\\
& =\gamma+i \pi .
\end{align*}
$$

 the internity,

$$
I=\operatorname{Mot} l^{2} a\left[(C+i S)(K+i L)+i \underline{2} a i=(i+i \pi)\left\{(K+i L)-\left(l^{\prime}+i \cup^{\prime}\right)\right\}\right] .
$$

Thlms, we get for the expersinn of the intersity
 where

$$
\begin{aligned}
& I=K \check{\prime}-I! \\
& (!=K(K-I)+L(L-\unlhd) .
\end{aligned}
$$

 Both K and L remain constant provident the distance of the slit fiom the souree of light and the peint at which the intersity is reyuired do not chatuge. If we oberee the finger ins plate parallel to the axi-
 the term multiplied be it, the position- of m:axim:a and minimat will

If the observer apmonhes or reede fiom the shit, the intensity of light at a peint direetly omposte the alit will differ from that of the phate slit, for the intensity in affected ly the fiector $K^{2}+L^{*}$, which is uol longer comstant.

Obervation shews that the small ind ditional term is of very mall effect. ('alculating the minima of $C^{2}+S^{-2}$ ly means of Kinochenhaner: series, I find that the agreement of calculation with observation is quite close, excejt when the print considered lies outsite the geometrical shatow.

In order to test the result of calculation with ohservation, the following experinents were made with a slit of 90° aperture, cut on a right circular eylinder of 5.0 mm . ranlins. Simblight was admitterl into al darkened rom. After parwing through a small vertical sit. and a lens, it was analyed by a prism. The pectron thas formed was projected on the slit of a spectrometer. The slit, however, wat rlosed by thick paper, and ouly a small hole was pierced, through which light was pased to the slit under examination. The spectrom War so distinctly formed, that one could casily make the light coneres porting to any one of the principal Pramhoners line illumitate the *it. The following obervations were mate for the prestions of zew intensity of the fringe formed low the shat.

Wilth of the slit $26=0.5745 \mathrm{~mm}$.
Wiave leugth of light $\lambda=0.0004861 \mathrm{~mm}$.

		Observed Angle of Deviation.	Calculated Angle of Deviation.	Obs.-Calc
1st	Min.	! 4.3	$!: 3: ;$	+ 1.10
$\bigcirc \mathrm{nd}$	"	191.9	1819.15	+ 5.3
3 rd	,	283.6	279.9	+ 3.1
4 th	"	$: 37.8$:3:3,2	+ 1.6
5th	"	173.8	466.6	+ 7.2
Gth	"	566.9	5959	$+7.1$
7 th	"	69.7	(9.93, 1	-0.4

 of a mierometer．The following table give the wherverl momber．
$L_{\mathrm{c}}=324.0, \quad i_{0}^{\prime}=285.4 \mathrm{~mm}$.
$\because b=0.347 ; \quad \lambda=11.00048611 \mathrm{~m}$ 。

Effect of Magnetization on the Permanent Twist of Nickel Wire.

ly

H. Nagaoka.

Pl. NXXV'III.

Profestar Wiedemma, in : mars of experiments on the matual retation betwen torsion sum magnetization, fomm that there was a reciprocal mation letween the two. IEe foum thet wheres tomsion changen the magnetization of irom, matureation, on the other hame changel the fomion. Tor estatiath the relation between the two, he matw a series of experiment, which sement to indieate matu other intimate relations between the two. Experments relating th the dhange

 matuetization of nickel ins induen me to try experiments in the seme line :and find if there alan exist similar reedporal relatims latween masuctization and tomion in nekel wire. Wrant of apmatus did bot allow me to try experiments on the efted of matuctization on nickel wires muler different conditions of hwist. The present paper
 permancut twist of himed wire.
 chert due th magetization wat remetially different fiom that of

[^59]of the apparatus. On a firm stand furnished with three levelling screws (Ill), two stout pillars (p) were erected. A cross har of wood (bi) was fixed to these pillars. At the middle point of the cross piece, a torsion circle (t) was attached, with an arangement for fixing the wire. Below this stood a magnetizing coil (c) on an amxiliary stand. To keep the wire twisted, two stout rods ($r r$) were raised vertically from a thick bras plate of circular shape, which was screwed to the stand (s). These rods were fastened to alidades, which were movable

Fig. 1.
Fig. 2.

about an axis at the centre of the plate. Thus the rods conld be fixed in any desired position, and made to catch the cross attached to the lower end of the wire. The cross was matle of two rods at right angles to each other. The vertical rod had an arrangement for holding a small plane mirror (m). The horizontal rod was capable of sliding in the vertical, and could be clamped firmly to it by means of a screw. A vane (c) was attached to the lower end of the vertical
rod. It dipped into a vessel filled with water, which served to stop the torsional oscillation of the wire, when the twist was released. The torsion circle had a stout rod (a) for vertical axis. This was capable of up and down motion by means of ratch work, and could be clamped by a serew. The lower end of the axis wats eut, and made to bite the upper extremity of the wire. The wire is shown in Fig. 2. Two small pieces of thiek brass plate were attached to the extremities of the wire. The upper end wats placed between the terminal cleft of the axis, and elamped by a screwing nut, while the lower end was similarly eaught at the upper end of the cross, and fixed by a serew which went through a hole in the plate, as hown in the figure.

In front of the mirror was placed a circular seale divided into half millimetres. The radius was 85.8 cm ., so that one scale division corresponded, when seen by reflection, to one minute of arc. The scale was illuminated by gas jets, and the reflected image was onserver by means of a telescope.

The magnetizing coil was 30 cms. long, and gave a fich of 36.7 C. G. S. units by passage of a current of one ampere. In addition to the magnetizing coil, a small coil was inserted within the solenoid. Through this coil, a steady current was maintained to compensate the vertical component of the terrestrial magnetic force. The magnetizing current was generally obtained from Bumsen cells, and made to vary continnously by placing a liquid slide in the cirenit. It was masured by a Thomson graded galvanometer. The different parts of the apparatus being as described above, the experiment was conducted in the following manner.

A carefully amealed nickel wire was fixed within the solenoid, its upper end being serewed to the axis of the torsion cirele, and its lower end to the cross as before mentioned. While the wire was leing set in position, the magnetizing force was zero within the solenoid, the
 by a current in the small wil daced within the main coil. The realing of the torsion circle was then taken, and the two serticat ronk (re) were on placerl, that they just tonched the horizoutal rod (d) of the ernsto on its opmoste silcs. The wire was mo twisted ly turng the tomsion circle, and hedr in the twisted condition for some time. The reatling of the scale was moted. The eirele was then hatned in the opmsite direction sa : to make the cross fiee of the retical rods. When the residual twist was small, the torsion circle was brought back completely to its original prition, and the smath amount of residual twist was given hy the difference in the initis! and final scale realing: For hage iesidmal twist, howerer, tumang the forson circle buck to its original ${ }^{\text {wition }}$ would have thrown the reflected beam off the suale. Accordingly the torsion circle was turned batk throngh a comwenicm and known angle, so that the wire hung free, and the reflected beam remanted on the seale.

In the preliminary course of experiments, after the wire was freed firon toriomal oscillations, the elastic after-effect was measured by simultanemsly moting the sucesive seale readinge and the eoresponding times after the release. When the matwisting due to the aftereffect had heome very sow, the magetizine force was ipplied, and the correnemating seale realinge moted.
licfore entering into the insestigation of the effect of magnetization on the permanent iwist, it was desirable to have some knowledge of the torsional atter-cffect of nickel. In every experiment, the wire was twisted and left for some time in this state. On releang the torsion, torsimal oscillations chaned. After its cessation, the wire continued gradnally to matwist in virtne of the elastic after-cffect. It was then necessary to know when the mitwisting due to the after effect shond cease, for otherwise the matwistigs due to manctization
and to the elastic after-effect would be mixed together.
Ls a general rule, the aftereeffect for the same angle of twist is smaller as the wire leeomes thicker. For this reasom, lopofessor Wiedemanm med tolembly thick imon wires. Athough moch certainty is gained as to the effect dere to magnetization only hy asing thick wires, yet there is the ereat disulvantage that the amonat of matwisting is very small. Witlonerel wires, the elastic after-effect is rery small, and we can nee than wires withont inemring the risk of mixing the effect duce magnetization and that due to clastic afterefticet.

A nickel wite $0 . j 1$ mmo. thick ant 27 ems. long was kept twisted thengeh 60° for an home the lomeitudinal pull acting on the wire being the weight of the erons hefore meationerl. Whan redeaned from torsion, the wire hat : permanent twi.t of $2^{\circ} 38^{\prime \prime}$. On the cestation of the torsional ascillations, the following leflections with simaltanenus rearlings of the chronometer were taken.

Time

$3^{1+} 19{ }^{12} .0$	1. 11. (11th dpil $18 s 9)$	$\because 38.11$
20.5	:	.37'.6 (Temperaturi)
20.11	"	37.4
$\because 4.11$,	37^{\prime}.
315.0	"	37.11
7 4. 11		36.2 (! $\square^{\prime 2}$)

The reating show that the after-eftect in nickel is very small. The wire above tested would have leen untwisted though a few minutes more, if we had waited for some weeks or months. Lomding the wire, howerer, increases the afterefted, but when compared with the aftereffect in iron maler similar eiremmanese it is very small. It is mnecessary to give the result of hamerous similar experinnents. Suffice to s:y, they all lead to the same conclasion. The precautions which mast
he taken in discriminating the untwistings due to maguctization and to after-effect in nickel is greatly lessened as compared with the precautions necessary in the case of iron. If sufficient care be taken to wait till the after-effect becomes very small, we may we thin nickel wires in the investigation of the effect of magnetization on torsion. Gencrally I waited an hour after the cessation of torsional oscillation, but if the wire was loarded, it was left for a might.

The thicknesses of the wires used in the present investigation varied from 0.34 to 0.72 mm . Nost of the experiments were tried with the thimest, for with it the effects were greatest. The wire was always carefully amealed by menns of a Bunsen flame. It so happened, that when the twist was very large, the wire once used assumed a piral appect as was oberved by Hinstedt.* Such wires were rejected, and other wires cut from the same specimen were used instead.

The experiment was first tried with the wires above mentioned, when the permanent twist was very small, and the wire was subjected to weak longiturlinal stress. The following gives the rearlings of untwisting due to magnetization when the load was the weight of the cross only.

* Wied. Ann. 17. pg. 712.

EFFECT OF MAGNETIZATION ON THE PERMANENT IWIST OF NIK KEL 329

$\begin{gathered} r=0.17 \\ \text { Perm. }{ }^{T} \text { Twist }=1.6 \end{gathered}$		$\begin{gathered} r=0.21 \\ \text { Perm. 'Twist }-7.2 \end{gathered}$		$\begin{gathered} r=0.35 \\ \text { Perm. Twist }=3.3 \end{gathered}$	
5	τ	\square	-	i)	-
7.1	9×3	6.0	4.7	4.4	2.9
9.8	$17^{\prime} .1$	10.3	1293	6.:	9.8
13.2	$29^{\circ} 6$	$1: 3.2$	$16^{\prime} .4$	8.2	9.1
15.9	$30^{\prime} \cdot 0$	16.7	$20^{\prime} .6$	10.9	12.4
20.7	$37^{\prime} .3$	24.1	$25^{\prime} .9$	13.4	19.9
25.2	$43^{\prime} .0$	35.4	29%	16.0	$18^{\prime} .1$
31.3	$48^{\prime} .0$	42.2	: $31 .: 3$	18.5	19'.
40.7	52.6	54.1	32.9	2.8	23^{3}
52.0	5.5.	67.2	$34^{\prime} .0$:38.4	$26^{\prime} .7$
15.0	57.6	157.8	:3 $4^{\prime} .6$	\%).2	$28^{\prime} .1$
82.9	59.1	\ldots	\ldots	186.7	$\underline{28} 8$
112.7	$60^{\prime} .1$	\ldots	\ldots	10:3.0	29.7
184.:3	$60^{\prime} .7$	\ldots	\ldots	184.3	29.9

The above table show how the matwisting proceeds :s the strength of the field is increased. With the increase of the magnetizing force, untwisting becomes greater and greater, mitil at a rertain point, the ratio of the untwisting to the corresponding magnetizing force reaches a maximum ; in other word, the curve of untwisting hat a wendepunkt. After this, the untwisting takes place very showly, su that ultimately the curve (Fig. I, PI. XXXVIII) becomes almost

In comparing the curves obtained with different wires, we easily see that the untwisting is greater for the thimer wire. For it will he noticed in the experimente first given that the permanent twist is greater for the thicker wire. Nevertheless, even with such handicapping, it is the thimer wire which has the greater untwisting ath ohown at a glance on the curves.

If :fter the magnetizing fied has attained a certain value, it be orad-
 the removal of the maguefizing foree is, howerer, fir suatler that the untwisting produced by the inerease of the manctizing force. Consequently, the retmon curve goes : thore the other, as is show ley the dotted line in curve (1) Fig. I. This fact ant be briefly expressed ly sayg that there is mation aftereeffer in the twisting which become conspicuns: ly the removal of the matuctizity fores. So long as the amome of permanent twist remans vere smatl, the cmro showing the tomsiom effect of a continumaly chating mation fore resemble the wellinary eurve of magutic hysteresis.

The alowe remark dow mot hold when the permandent twist exceds:a certain limit. The decrens of twit with hacease of masuetization :axh reaches: a maximme. After this, the wire hecrins to twist in alite of the increase of magnetizing force. The amome of twisting of romse vare with the permanent set of the wire as well as with the :mome of palling stres. The fillowing table give the amount of change of twist with the wise of 0.17 mm . ratins.

Perm. Twist 6.7		Perm. Twist 10.6		Perm. T'wist $86 \mathrm{l}^{\circ}$	
\therefore	$=$	\therefore	τ	\therefore	$=$
1.7	11.	2.7	7.0	6.7	$20^{\prime} .5$
7.11	18.2	5! $!$	1.9.8	11.11	:38.6
11.0	$\underline{-2} 4^{\prime} .7$	8.5	19.6	12: \because	15%
$13: 3$	$20^{\prime} .8$	12.9	-33.0	1.3.1	52'0
17.0	20.9	17.1	-9.8	17.7	51.9
18:2	203	- 9	$26^{\prime} .8$	20.1	61.0
27.!	26	$\because 9$	-24. 1	:31.6	*19.2
$1: 2$	- 5	17.1	$26^{\prime} .1$	20.1	60! 0^{\prime}
(i3) ${ }^{\text {a }}$	$25^{\prime} .7$	7.9;	-2..11	1i2.K	9ir.l
12.)	$\because 4^{\prime} .2$	$1 \because .1$	$11^{\prime} .5$	s8	$16^{\prime} .2$
...	...	\ldots		15%	19.0

These realinge are photed in curves (1) (2) (3) Fig. 2. rexpectively. Comve (4) is photted from :an experiment made with : wire of the same thickness, with a permanent twist of 1621°. These emres show that the matwisting on the first application of the materetizing force is very large. When the twist is :mall the matwisting immediately beermes very mall, and the wire hegins to twist. Pat the further inerease of the magnetizing firece is of very little effect. The aurve, shortly after the maximm is attained, hecomes mearly farallel to the line of motwisting.

This appermare is comfined to those ases where the jermanent twist in mall. With a residual tomson of $10^{\circ} .6$ in the same wire, the -arse acyuires duite : different apmeanace. The rate of increase of matwisting with the increase of magetizing force berones lese, wo that the motwisting gratually apmondes the maximme Thereafter the twisting takes phace granually and sterdily. (Ha remoning the magbetizing foree, there is at first motwisting which reaches a maximm in :a manetizing fied less than that correspurding to the maximm matwisting on the first application of the magnetizing force. The wire then :gain legins to twist, hut on the complete removal of the magnetizing force, the wire remains matwisted relatively to it. first position. The most striking difference hetween the curves in Fig. 1 and these of Fig. 2 is that the latter has a maximum pint and the former hats nome. This maximm which seems to be dosely monected with the amome of residual torsion oeches in weak matuetizing fields Where the fwist is :mall, hat :as the twist is increasert, it ocerns in stronger fiekls.

When the permanent twist is very large, the features of the curve do not change esentially. Curves (3) (4) Fig. 2. Ahow the state of things for the twists of 861° and 1621° respectively. From these it will be seen that the matwisting does mot increase propertimally with
the permanent twist. (On the contrary, the matwisting for the twist of 861° is greater than that fion the twist of 1621°. The course of the curve, after pasing the maximm becomes steeper with the larger permanent twist as the compurison of (1) (2) with (:3) (t) will :how. Thus, when the twist i: large, and the magnetizing force sufficiently great, the curve may be expected to cont the line of matwisting.

Another difference in the curves of torsion matained for different permanent twist enmist in the conse of the come on the remoral of the magnetizing force. In curve (2), we find that the "off" returns helow the "on" curse, while in curve (3), it returns: above it. In the former there is hysteresi: of lagging, its the latter priming on negative hysteresis. This distinctive feature in the curves obtained for different twist ans: raries with the thickness of the wire.

It is unnecessary to give mumerical details for the varions experiments made with different wires and with different twists. The chamacteristic: above describal are illustrated in the curves of Fig. 3, which gives the results for nimel wires of dianmeters $0.5,0.4,0.7 \mathrm{~mm}$.
 low field, and :awisting hesins to set in, and romathers to the highest fiedr used.

The following experiment shas that this twisting may proced son far an to result in : funs momition of turistedness relatively to the original condition of the wire. The wire, 0.34 mm . Thick : m . 30 cms . loug was twisted thromg eight complete renolutions of the torsion circle, and then released. It thas: acquired : permanent twist of 2548°. The magnetizing antent was derived from : shme dyanmo.

EFFECT OF MAGSETIZATION ON THE PETMANEST TWIST OF NICREL. 3.3 .

Fiell.	Untwisting.
11.3	$+20^{\prime} .0$
36.6	$49^{\prime} .0$
68.0	$33^{\prime} .0$
89.4	$51^{\prime} .0$
159.9	$34^{\prime} .0$
200	$24^{\prime} .0$
245	$12^{\prime} .3$
303	+6.0
361	$-4^{\prime} .0$
432	$-10^{\prime} .0$

The application of the maghetizing force showed at first :an untwisting, which reached : maximmon in :t field strength of :about 65 C. G. S. mits. The wire then began to twist. In a field of about 335 mito, it came back to the condition in which it was after release before the mangetizing force was applied. Thereafter the wire continned steatily to twist with the increase of magetizing force, so that when $5=432$, the wire becme twisted 10^{\prime} from it: initial position of equilibrimm. Thu: a nickel wive with large permanent twist ean he
 course of the curve after pasiug the maximum is less steep in thick than in thin wires, still stronger matuetizing fiehs will be neresury to twist the former.

The next set of experiments has to do with nickel wires under longitudinal stres. The only change in the process of experimenting consisted in loaling the wire. The vane was letached from the lower end of the cross and a short hook placed in its stend. A pan of weight: hung from this hook, and was completely immersed in the water.

Different experinents were tried with wires of varions thicknesses, and with different amomets of twist. Some of the results are shown plotted in Figs. (5) and (6). In all of these the matwisting by magnetization becomes greater by loading. When the fermanment twist is small, the curve representing change of torsion reaches a maximm quite abruptly. The course of the curve immediately after pascing the maximum is guite steep for some time, but atter the maghetizing force attains a certain value, the return twist hecomes very small. Moreover, there is hysteresis on the grambal removal of the magnetizing force. An inspection of the figures will he of more service than mere verbal description.

With large twists, the features of the eurve of tomion do not greatly differ from those olbtained with the unloaded wire. The chief change wronght by the loading is that after the maximum untwisting has been passed, the curve goes down more steeply than in the case when there is 10 load. This evidently agesest the masibility that the curve for the loaded wire will cut the line of 14 mowisting in magnetizing fields smaller than those needed to effect the sime for unloaded wires. And this I found to be the case, as shown by the reatings on the following page, which were made on a wire of 0.17 mm . diameter under a load of 342 grm . weight.

The former readings are shown plotted in conve (2) Fig. 4 , and the first part of the latter in (4) Fig. 6, and the reading in strong fields in curve (3) Fig. 4. The comparison of these two curves with (1) shows that with the loaded wire the initial position is reached at :maller magnetizing fields than with the mulonded wire. Moreover, there is hysteresis when the permanent twist is moderate, but priming when the twist becomes large.

Finally the effect of tramserse magnetization on the permanent twist was investigated. The wire being treated as before described,

Perm. Twist 95°.		Perm. Twist $583{ }^{\text {c }}$.	
Field	Untwisting	Field	Untwisting
5.8	$16^{\prime} .1$	1.1	$88^{\prime} .0$
10.8	26.2	7.5	$15^{\prime} .0$
14.6	$32^{\prime} .7$	10.9	2:3'.5
$1!.4$	36.8	14.1	:3:3'.0
$2+.6$	$41^{\prime} .0$	17.4	39.4
28.6	$12^{2} .6$	$\because 2.5$	53'6
3:3.5	$1 \underline{2}^{\prime} .8$	39.4	73.0
38.8	$41^{\prime} .6$	50.3	70.2
44.1	$40^{\prime} .0$	54.4	7\%'.2
52.2	: 6^{\prime}. 4	66.7	$70^{\prime} .0$
131.5	$32^{\prime} .0$	8.).19	$89^{\prime} .5$
7.919	$\stackrel{7}{ } 7^{\prime} .0$	98.1	(2.2) 0
!8.1	$10^{\prime} .9$	161.2	29.0
125.7	! \square^{\prime}	1!1.9	$17^{\prime} .0$
18..1	--1':3	271	-- $1^{\prime} .1$
...		328	$-1 \underline{2}^{\prime} .2$

was placed between two flat coils, through which magnetizing currents of various strength were passel. The wire, however, did not show the least sigu of teing aftected by transerse magnetization, although the aphatus was ablale of mearing 0.1 of deflection.

The next perint of inguiry was a comparison of these effects with those prorluced hy twisting magnetized nidel wires. The apparatus nsed for examining the latter was similar to that nsed by l'rofessor Wiedemann, in his investigation on the effere of twist on magnetization, and described in his 'Elektricitit' Bid. 3. I nickel wire 1 mm . thick and 30 cm . long hand two pieces of stout hass wire soldered at the ends. The wire was phaced magnetice east and west, and carefully
annealed in this position. It was then slid into: magnetizing coil, and its extremities firmly clamped to the twisting aparatus. The magetizing current was gradually increased by means of the liquid slide, and then slowly remosed. Thereupen the deflection of the magnetometer mirror with corremonding angle of twist was read. The following table gives the changes produced on the permanent magnetism in arbitrary seale unit, the amount of permanent magnetism being propertional to the number of male divisions when the twist is zero.

'I'wist	(I)	(II)	(III)	(IV^{-})	(V)
0	589	1.\%)	18:3	8:3	41
\therefore	549	411	161	74	$\stackrel{2}{ }$
10°	590	38.5	159	78	20
15°	5.4	375	173	88	19
20^{1}	5.58	384	194	102	24
25°	560	393	212	119	33
30°	5.59	10.2	$2 \bigcirc$ t	131	10
35°	594	105	$23: 3$	141	17
41°	5.51	10.5	238	149	52
45°	\ldots	404	238	1:3	\cdots
50°	510	403	239	1-\%	62
$610{ }^{\circ}$	529	397	2:37	1.is	68
70°	\ldots	\ldots	235	160	71
80°	\ldots	\ldots	\ldots	160	\ldots
90°	\ldots	.	\ldots	161	74
120°	\ldots	\ldots	\ldots	160	7.)
180°	\ldots	\ldots	\ldots	\ldots	76
270°	\cdots	\ldots	\ldots	\ldots	74

The examination of the above table shows that the first effect of twist is alway to decrease the magnetion of the wire. This decrease soon ceases, :nnt:n inereaterets in as the twist hecomes larger. When the fermanent magnetism is large, the increase is small, and the original value of the masutic moment in mot reavered. () on the other hand, for small values of permanent maghetism, the increase is considerable; and as the twisting continues the wire acpures a greater mandetic moment than it hat origimally. When the wire is further twistet, the matuetic moment reaches : maximm, and begins to decrease. The maximum connes earlier for greater valnes of permanent matuetism. The maximman increase in weakly maghetized wire oremes at tolerably large twists, as an examination of the alowe table will show. In arlhition to this, the range of change in permanent maghetism hy twisting does ant ineresse, but rather seems to diminish with the :monnt of permane mot metism, for moterate angles of twist.

The experinnents hitherto describel show close relations between the effect: produced by twisting the permanently magnetized wire, and thome pronlaced by manetizing the permanently twisted wire. The
 the reants in the following parallel statements.

1 The permanent masenetism of mickel wire is at first liminisherl hy twjating.
2. With later fermatacht matnetism, the decresse inerenses with increased twist.
3. Enless the permancht matrnetism is very large, the nererase produced hy twistine reaches a maximmm. Furthei twi ting int

1. The jermanent twist of nickel wire is at first dimmished bey magnetization.
II. With small permanent twist, the mutwisting inereases with the stremeth of magnetization.

HII. Inless the permanent twist is very small, the mutwisting produced hy magnetization reaches a m:ximmm. The twisting produced
reases the magnetism, so that it hy firther increase of mangetizahecomes greater than its original tion is on large, that the wire acwane. guires grenter twi:t then it siviginally hat.
It apmens from the reating given above for the chathes in permanent maguetism, that there i a a tendency to at deerems ayain setting in at the higher twists. This sugeste that there may $\left.\right|_{k}$ untwisting in very strong fields, after the wire hats heen fion anc time twisting under the influcnce of magretization. The cmrent at my disposal did not allow me to try experiments with fields much ower 400. Up to that limit, the twisting contimed. It still remains modecided if further increase of magnetizing firere gives a maxinmm twisting, correnomding to the maximmon value of permanent magetiom obtained ly twisting.

When the sulbect is viewed trom the thenry of rotating molecular magnets, we fall intor diffirulties whirh emmot be maly explainerl.
 twist and magnetization of iron and sterl wires, amomes that the molerules: :are subject to disturbances in trying to mint their poles in the direction of magnetization. Drawing an :mandoy fom the effect of mednanical disturbmere applied to the twisted wire, he concludes that the disturtanee cansed by magetization mast mitwist the iron or steel wires. This casily expaim the effere of mandization on the permanently twister iron wire. It sembs quite polable that a similar
 The effect of magnetization, however, is ant in :imple in mickel as in iron. It seems very diffonlt to explain the maximmon misting ob
 inge is not limited to longitndinal manctization only. Transerse magutization mut likewise poduce smilar chatges among the

 moleroules.

On Certain Thermoelectric Effects of Stress in Iron.

By
C. G. Knott, D. Sc., F.R.S.E.
Professor of Plysies, Imperial University.
AmL
S. Kimura, Rigakushi.

Sine the disenvery made he Thoman that the thermodectric properice: of wires of certain matals wera altered he tension, the sulb-
 these we may mention more partientarly Le Romx, von Tunzelman, Cohn, and Ewing. The work done hey Cohn Ewing is of special importace ; and the latter, inseatigation for iron is the most comphete that has been carried out. laeference will he made to their results hereafter. It is :ufficient at present to point ont one respert in which the work of thee experimenter: lack: completenes. In all, the mether of experiment consisted in stulying the effect of stress upen the thermolectric properties of: wire, whoe junctions with the other enential wire of the circuit were kept at steady temperatures. The variation: of stres were, in the best experiment:, carried through a crele ; and at different :uceesive stage: the thermolectric eurrent Wat: measured on a : mitable gatramometer. The oherered change in the electromotive fore might be due to either of two quite different effects ; and the experimental method adopted conld give no eriterion
by which to draw the enrect conelnsim. The nature of the problem is most simply expressed in term: of the language of the thermodectric di:aram. In thi: di:uram the thermoclectric relations of the different metal:: are represented ly line: (nanally straight) in such a mamer that the electromotive fore existing in any circuit of two metals is equal to the area inceluded between the appropriate metal lines and the fwo line: drawn perpendicular to the temperature axis and throngh the pintit representing the temperatures of the two junctions. The question poponded above is then this. What chatue does: tress : ?phied th: agiven matal produce upon the position of the line in the themermedric diagram? Does it trmsate it as a whole up or down ; does it motate it ats a whole about some definite peint ; or does it efliot as combination of these on that the line is deformed as well ass hifter? In other words does stress change the Thomson Effect in a wire, or doe: it simply change the Peltier Effect with reference to an matfected :ecoull wire?

Now it is puite elear that the only way to answer this problem is
 difficut differenes: of temper:time can be mensured simultaneonsly on a wire muler given contitions: of :tres. This. could be acemplished only hy having the gratient of temperature along the wire both stemty and gradual. Thuctions comblhen the mate at several points along the wire ; :and the electrometioe forese due to the several circhit: so whatathe could be easily measured and compared, one the temperatures were stendy. The simplest way of realizing these conditions seemed to be to stretch the wire insiale a metal tube, and then to heat the metal tube as in the Forpes Experiment on the conduction of heat along hars.

For ease in manipulation the toble, which was of iron, was mate in two semi-cylimitrical parts. The upper part or lid fitted accurately
 The lower part was somewhat longer than the upher patt, the extrat lemgth berige a solid erlindrical piece of iren which dming the experi-
 rember the fiting secme a ridge cut out hagituthatly on each pane surface of the semi-cylindrical lid fitted into a grome cut out on the "Inming surface of the fower part. It suitable intervals alomg this lower part samall rambal mothes were ant. These beeme hole: when the did was set in prasion, :and through them wires were bed firm the interior of the tube. The wire to be used was stiecthed along the axial line of the tube ;and it and all the varions junction wires were arranged and adjusted before the hich was laid in $\mathrm{p}^{\text {mition. Sach junc- }}$ tion was a junction of three wire - (1) the axial wite to be texted, (2) a thin wire of the stme material, (3) a thin wire of some other metal. The two last formed what we thath eall the Thermmetric Circuit. Its indications served to measure the temperature of the junction. The eirenit, formed by the axial wire and the thin wire of the same material, was the essential dement in the experiment. We shall call it the Thermedectric Circuit.

The temsion wan aptied by means of a serew at the extremity of the wire, which projected some distance fiom the "pen ent of the tule ; and was measured on a prigg lynamometer set in line. 'To perent currents of air circulating in the tube, the open cold end was 1heged with eotton wool, and the side lales, though which the thin wires cane, were filled up with absto: The hot ene of the tule was chosed maturally by the vertieal face of the salich eytindrical pertion abrealy mentioned. The end of the wire was clamped to this face.

The curent were measured on : high resistance double coiled galvanometer; which wat catrefilly gatuged after every single day's experiment.

The general phan of experimenting watimple emongh. After the tube and contained wie hrmbatained astenty condioion as regards temperature, a series of rentings of the difterent thermodectric and thermonetric curents were taken as raplly ansible, with a sufficient nmmber of repetitions of the same to yich : good me:n for each individual circuit. This operation was carrien through for a series of ascending and descenting values of tension. The small value of the current in the thermodectic cireuit as compared with that in the thermometric ierpuired that only a small shmented portion of the latter should be taken through the gatramometer. This necessitated a somewhat complicaten armament of resistances and commutators, which howerer it i.: unnecessary to dereribe.

In the carlier experiments the thermometric circuits were of copper and iron, and the thermoedectric of iron :and iron. By using copper and iron, we expected to be able to get gerext measmements of the true temperature values of the junctions: : and this berante of the existence of a nentad print at an easily atoinable temperature. It was fouml, howerer, that the uncertanitie: of rentuction from the parabolic temperatme :avale of experiment to the linear sate of acepted use far outweighed the antratages of having ath observen neutral point as aguide. Accordingly after many experiments hat been mate the Coppre forn themometio junction was abondoned in
 tromotive force of this pair of metals varies in an approximately linear manner with temperature up to at dull red heat. The graphical comparison of the thermoelectric with the thermonetric currents will not in this case differ greatly in appearence from what wonld be the ease if an aceurate absolute seale of temperature were used instead. Iltimately, of course, the themonetric readings were reduced to the ordinary

It was determined to experiment first with irm wire. I'revions workers hand all fomm that the thermodectric effects of stress were much more prommaced in this metal than in others. It seemed natural therefore to begin with it. Should the experiments prove fromising, it was intended to purate the enpuiry in regard to coljer, nickel, platinum, ete. A few experiments were indeed tried with conger amb aickel wires; but in the latier its viseosity muler the influcuce of sustained atres produced a gradnal deeny in the value of the stress, applied as it was by a tightened serew. It was obvions that a stendy stress could be applied only be mems of a load acting ly ite weight ; and for this the aplaratur was mot remtily adjustable.

Several modifications in the mode of experimenting were repatedly tried before results of a satisfactory chamacter were oltained. In certain experiments with the iron wire, thermoelectric changen of very small amount were obtained by simply varying the tension without having established the temperature gradient. This thermoelectric effect increasel with the temsinn. The direetion of the current was Opmsite to the direction of : all the currents obtained when the gradient of temperature existed along the wire. In othere words, the current W:as such as might have resulted from a slight heating of the wire where it was gripped by the dyammoter clamp. The probable explanation of this effeet is that the part of the stretehed wire which lay outside the tule was a little wamer than the part inside the tube. Such a slight grandient of temperature might easily chsue mader the influence of the air at grew warmer with the andance of day, the mone maswive tube changing more sowly in temperature. If this is the true explanation, the effect will have no existence in the real experiment, in which a stendy temperature gradient is to be sustained. In any case, however, these initial currents, as they might be termed, were much smaller than the currents: whempently ohtained.

After the best method of experimenting hat been by long trial decided "pm, the chamater of the experimental part of the rexearch was in itself rery tedions: :and since monthe of pediminary and otherwise futile labour had atready heen anent it acmed hest to pest pone a continmation of the experiments till some futmedate. So far there
 engrossing our time.

We are now prepared to disus the results of the final set of experiments with iron wire.

The dimensions of the tube bar were afollow:

The diancter of the iron wire wed was 1.2 man. It frojected about afoot beyond the cold open ched of the thane and was attached to a
 was fixed to an serew working in a fixed hut ; and ly this means the temsion coud be incraned or diminished an denired.

In the final set of experiments each applied streso acted for at least one whole day before the thermoelectric observations were begme. The wire wan left for this intersat at the ondinary temperature of the air.

The sulid end of the crlinter was then heated to bright redness in a charcoal furnace ; and ater 2 homs' heating the temperature gradicul beemace faily stemp, an indiated by the thermometric currents on the gatranometer.

There were five pairn of jumetions, ten in all-five thermoelectric and five thermonetric. The pestions of the junctions along the
iron wire were so :mpanged that the tomperatures of two surees.ave pasitions diftered hy $40^{\circ}-60^{\circ}\left({ }^{\circ}\right.$. The pait of jumetions were distin-

The whemation were mate in the following orler. First, the

 other divertion thengh the gatummeter. [This was an insariable rule in the measmement of all wirent the total range from the

 thermometric current: with :3 interpelated wet: of the thermoelectric currents hat been momked. Exartly similan setw of ohservations

 and 0 respectively.

 fions form :an athitary temperature seale, and E for the thermotedric
 tion. The tensin, the temperatime of the eodd juinetions, and the

Table I.

Scale-readings of the Galvamoter-deflections of the E. MI. F. of Tron-Copper junctions (T), and of Trou-Tron junctions (E) in the five llaces.

Table I. (Continued.)

It maly now he asommed that the mean of any aot of four mumburs fin 'T will aresepend to the mean of the we of thee bumbere fin the

 1he rechation to temperature indapendent experimente were mate to
 final redturtion fill amount was taken of the sight variations in the

Table II.

E. M. F. hetween tretched and maffected Iron wires, at varions Tensions and Temperatures.

$\begin{aligned} & \text { Ten } \\ & \text { sion } \end{aligned}$	$\begin{gathered} \text { Coud } \\ \text { T'mpip. } \end{gathered}$	$\underset{\text { 'I'EMP. }}{\text { HOT }}$	E. M. F. in Microvolats	$\begin{aligned} & \text { Ten- } \\ & \text { SIon } \end{aligned}$	(COLI) 'Temp.	Hot 'I'emi'.	$\begin{gathered} \text { E. M. F. in } \\ \text { MI'RGWM.TS } \end{gathered}$
1	$19^{\circ} . \therefore$	$267^{\circ} .9$	502	6	$19{ }^{\circ} . \therefore$	$269{ }^{\circ} .4$	889
		$211^{5} .7$	437			$211^{\circ} .0$	1.36
		$1599^{\circ} 4$	3.52			1.570	844
		$119^{\circ} .7$	28.			$1600^{\circ} .6$	274
		$82^{\circ} .11$	$\because 0.5$			7\%	179
\because	12.5	2.55 .0	580	8	1:30.5	$27-1$	617
		$199^{\circ} .8$	121			2159	178
		$149^{\circ} .6$:3:3:			$1(i:)^{\circ} .1$	\%
		$111^{\circ} .5$	$\because 6$			1-3: ${ }^{\text {a }}$	$\therefore 2$
		710.7	187			8.90 .2	2:30
1.	$13^{\circ} .5$	-54.2	370	9.16	1:30.5	-780.!	621
		1995	12.1			$\underline{-18.7}$	468
		$1500^{\circ} .9$	3.13			11:1.2	:3if
		$113^{\circ} 4$	- - !			12.10	$2!19$
		78.1	$1!1: 3$			$863^{\circ} .7$	$\underline{210}$
				11	1:30.5	-81.0	(60)
						2-10:	413i
						$1660^{\circ} .7$:31
						12\%\% 9	281
						8t:3	20:;

The healinge of the coltamme sufficiontly explain themedver. The temions are expresed in kilogram-wemgh per spate milli-

kilos. acting along the wire. It will l_{c} moticed that there is a slight diminutions in this highes teman an the experiment progresed, dombtless dre (o) the viellinge of the highly heated part of the wire. This pied ding examed at all the tensions if the experiment were begun som after the tension was applied. For this reason, each new tension was allowed to ant at least for a whole day before the thermodectrie
 tions the dyamometer was arefully lonked th, and the tension was raised to the desired value if any slight fall bat oecorred. Uf course, onee the experiment itwelf was entered "pen the wire was not tourched until the whole series of ohservations hat leen completed. To gor to higher temans than thone here recorded wan mot practicable lecame of the diminished temady of the wire at its hoted parti. Not a few experimento were suilen by the heaking of the wire at or near the highest tension attempted.

For each tension we have determination of electromotive forcen al five different temperatures. Rome of the results are shown in Figure I., Plate XXXI. To prevent entinsion of figure, only three are shown-the initial and fimal for no temsion, and the fifth for tensions. Of particular interest in the manner in which the intial and final curves cal carth other at atemperature of about 150° or 1600° C. In interpeting this ressilt, we must know the thermenectric relation of the two kinds of iron ased in forming the junctions. In the language of the thermelectric diagran, in which the german-silver line lies betow the iron line, the iron forming the small wires had its line also below the line of the iron that was or was to be strained. In other worls, the morent always flowed from the maffected wire to the strained of to tre strained through the loot junction. Now from Fig. I., we see that the effect of the stress is to increase the currentfor all temperatures. The wire umber the stress 8 has therefore the
same relation to the mastabed wire which this latter has to the smatl matfected wire. The stress, wo to weak, dipplaces the line uphards on the diagram. The current is acomdingly from the unstraned to the strained iron thenegh the hot junctions. On the stress heing remoned, the wire is left permanenty stamed, or, as we shall for bresity call it, after-strained. Amb we see that fire temperature below $155^{\circ} \pm$ the current in from the atterstramed to the matraned throngh the hot junction ; but that ahove 155° the comrent pasese in the other dirertion. This would mean that the diagram lines for the unstraned and after-strained wires intersert anch oflher indicating a hentral temperature at a temperature of 85° or thereabmots. The directions of the currente an given above show that the diagram line for the after strained wire is inclined at a less angle to the lead line. Hence the (negative) Thomson Effect in this particulan iron wire is mmorically decreased after the application and withorawal of longitudinal temsion.

Curves, representative of all the experiments whese results are given in Table Il., were carefully drawn by free hand on a latge veale ; and from these the electromotive force comeromeling to paticular tempratares were picked out. 1 mone preteminus prowes of inter(w)ation cond hardly have been more acomate muler the eivemmstances ; fior the curves, thongh smooth, hase all a distinctly simmon form, which it would be difficult if not imponible to reperent les an equation of degrec lower than the fourth. The electromotive forcer correxpmeling to convenient temperatures, picked out as just dencribed by inspection of the curres, will he fomed tabulated in Tatble III. ; and in Table \mathbb{N}. the result of subtacting each momber in the zero temsion colum from all the others in the sime row is shown:

Table III.

E. II. F. Between the stretehed and matferted Iron IVires, at chasen Temperatures and at varions Temsions.

Hon Thar.	Texion 0	Texamen $-$	Tresion 1	Teximes (i	Texmox ¢	Texsion $!6$	Texsues 0
100°	212	$\because 42$	$\because 19$	211	$\because ワ$	$\because 1: 3$	$2: 31$
120	$28: 3$	28.	291	28.	:316	291	270
1.50	:3:8	;3:3	: 4.2	[:3:	:36\%	312	3:3:
1810°	:387	:381.	89	: 81	1.10	391	396
200°	419	12:3	12.)	1.16	11.5	124	1:30
$2: 30{ }^{6}$	170	191	800	178	5015	1.91	18.5
2.50	51.	518	5.97	5:31	80	511.	$5 \cdot 9$

Table IV.

Hu, Twn.	Teanton ()	Tlonan \because	Teasmas 1.	Texims (j)	Ternom 8	Teasion $!1.6$	Texales 0
100°	0	$1)$	7	-2	28	1	-11
120°	9	-1	11	-1	:3:3	11	-13
1.50	11	-i)	1	-5	$\because 8$	1.	-: ${ }^{\text {a }}$
180°	19	- 3	5	-6	\cdots	1	+!
$290{ }^{\circ}$	${ }^{1}$	+1.	1	- ${ }^{\text {a }}$	$\because 19$	j	11
230°	0	24	:30	$+8$:3i	$\because 1$	1.5
2.50	0	3:3	12	16	41	29	14

In the last lable we ace, almost at a glanec, the progeso of things as the tension incrased. The graphof Figure II. are obtained by photting the electromotise forces corremonting we temperature in
 curve obtaned loy Cohn and Ewing. In a vere general they do an; but they are moch more integutar. This perhate in wot sumping if
 different dayse experimentes as there are perints. If we late ont of considemation the experiment for temsion th, the remaining paints on each graph armage themsede in a faily regular maner. There doe not, lowerer, seem tols any sulticient rason fin omitting this experiment. For the peentiar deviations of all the pointe belonging to it
 temperature of ta eledrombtive fore. The same peculiatity appens if

 :ame day after day (ax may been from Talle l), exepting for the two late series of experiments at the highes temaion and the final zero.

 of obseration are of the order of the smatler gmatation given in that Table; so that it would be out of the prestion to attarh any impertance tu values leso thath 5.

Verentheles, wo are able tor recoguize in the grapho figured a certain ordered suceswion of changes ; and there can lee no doubt as to the significane of the values for the after-strained wire Here we have a result apmathy new to the sulject ; we are mot arare that the prosibility of such an effert has even been hinted at by previous workers. We have alreally expresed the natme of this result by saying that the Thomson Effect in an iron wire undergees a permanent

Whange after the fongitndinal temsion has hem applied and removed.

 ad to the matramed throngh the hot jumetion, we may reperesen

$$
e+31-0.21 t
$$

where t is the temperathere in 'entigrade degrees, and the mit in 1
 throlgl: the pointe is well within the emens of observation. It would

 Whe betow $160^{\circ}\left({ }^{\prime} .(c=0)\right.$.

Thomson, ('ohn, Ewing, and other invertigators have worked with temperature lower than the highest we need ; so that it is mot

 "omplete :greement. For example in Ewing's first set of experiments,

 order of quatitity as that jux given.

 —a result in fair agreement with some of l'rofesor Ewing's.

The general condelasion that mas be derlared is that the effect of tension on the themoneretrir position of an iron wire is a complex function of the temperatme. Not maly does the line on the ther-
 retation. In other words the ledtier Effert and Thomenn Effert are both rhanged.

These rewnts an only he regarded as preliminary. 'They are sufficient to show that the mothod is workable, and they have a dis. tinct value in themselves. It wonld be advixalule to repeat and extemd the experiments with a murh more masoive iron tube than that here nsed. A smaller gradient of temperatme wontl be therehy ohtained, amed it womal mot he newesary to keep the one end of the wire at a very high temperature. by surh a momification, marh higher temsions might he applied.

On some Cretaceous Fossils from Shikoku.

By

Matajiro Yokoyama.

With Plate NL.

The (reetacona Fommation in Shiknka weoms: in several places.
 each side of, :mal pamallel to, the rention zome of ervataline whist: which traveres the ishan from ENE to WSill along it: longitndinal

 (a) of of the i. land, intermpert only here and there hy allmial flat:-

 the west, vanishing partly mater the acen and perity mater the roleanie
 In the southern zone, they are mot so continnoms. 'They mather fill me

 as the Katsarayama Basin, the Momobeyara Pasin, the Manablia Basin, and the Sakara Basim. Bat here al:a the zomal wisibution of the

[^60]name of Izumi-Samlstour, from the predominance of : certain greenishgrey hard samdstone, locally known under the name of Izumi-stone.

Fonsils from this sandstone are very few. Besides; a large socalled fimoid which occurs at several places in Sanki, we know only a Helicoctas described below, and some fragments of a large Hamiteslike Ammonite found hy Mr. Suzuki at Ōknzure in Awaji. Harala, ${ }^{1}$ however, mentions also some Fomminifera, livalves, and conifers as occurring in this sambetone.

The Mesozoic Basin of the Katsuragava ocempies the upper part of the river of the same name in Awa. It was geologically investigated in 1883 hy Mr. Y. Kikurhi, to whom we owe the first discovery of the ('retaceons formation in Shikokn. Here it consists of sandstones and conglomerates, superpasing the Jurassic pant-hearing veries. The smatome is ham, fine-gramed, and when fresh greenishgrey in colour, and has nearly the same appearance as the Izmmi-stone, while on weathering it asmues a yellowish tiut. It contains shells in great profusion, which howerer belong to a very few specien, and are mostly found as casts. They are-

> Trigonia pocillifurmis,
> Trigonia Kikuchiann, Trigonia rotundatr.

Mr. Kikuchi also found a fragment of an evolute as well as of a spirally rolled Ammonite.

The Monobeyara Basin is in Tosa. Its geological nature is not well known. We possess only a bork of sandstone like that of the Katsuragawa, quite filled with casts of Trigoniu pocilliformis.

The Püseli Basin is mot far from the above :and oceupies the sonthern portion of Naganka-gori, Tos: Here the ('retacons form:-

[^61]tion reems to consist solely of sandstone which is as usual grey to greyish-green, fine-grained and hard. It contains Trigmia pocilliformis and Tr. Kilindhiuna in tolerable abmulance. Besides, it yieds remains of many other Lancllibrachs, some Ganteroporls and Echinoids, whose preservation, however, in very imperfect. The rock at Okmminodani directly overlies the I pper Jumasic (idaris-limestome.

Lastly, the Sakawa Basin is situated in Takamat-gori of the vame province, about 40 Km to the west of Ryoseli. What is known of it we owe to the investigations of Messis Namman ${ }^{17}$ and Nasa, ${ }^{2}$, the latter of whom phaned the geological maris of the district.

The Cretacenus Formation of Sakawa is wholly compored of satudstone, which is quite similar to that of lyoseki. On the south of the town of Sakana, it lies partly on the Cidaris-Limestone, and partly on a series of shales and sandstone, which at Yoshida-Y Yashiki vields some phats. ${ }^{4}$) Near Uchi, however, it seems to overlie directly the Triassic sandstone of the district.

Besides Alectryonia, Lucina, Nucula, Solen, Rhyuchonellat and a Scaphites-like Ammonite, Trigonia pocilliformis Tr. Kikuchiana, and Tr. rotunduta were also obtaned from the above sandstone.

From what has been said above, it will be seen that the number of fossil species in the Shikokn (retaceons is rather small ; and these, moreover, are so imperfectly preserved that the majority of them are indeterminable. On this accomt, I an describe only four species in this paper. These four, however, are very important, as some of them not only show the undoubted Cretacens age of the strata containing them, but at the same time, they give us the probability that

[^62]at least the 'rigona-Samlstone is to be considered as contemporanems with the Gamlo-Cemom:anan Formation of Hokkaido(Ezo). Already in my paper chtitled "Yerstemerungen ans der japanischen Kreide," ${ }^{1}$ I have montioned the occurrence of a scabrons Trigonia, allied to Tr. aliformis I'ark, in the Cretaceons of Kagathat which I consilered as prolably belonging to the ame equeh as thet of Hokkaido. It is this same 'Trigonia, 'T'r. pocillifinmes as I call it, which is so profucely fomal in the swothern zone of shikokn, paying so to say the rote of the leathag fosil of the Shikenn (retacoms. The alove view is morener justifice ly the fact that Mr. Jimbo has recently discovered the same form of Tigonian securing together with Ammonites in the (retaceous of Hokkaido. Whether the Izumi-Samlstome is also to be referied to the :ame age i.s at present unsettled, as it has not yet given any characteristic fomil.

The two pecies of glabrons Trigniae alse described betow are pateontologically very interesing. They are forms wheh, like some Latasie seede, exhbit a great extermal resembance to the Triassic.
 Trigoniae is Tr. Limgonensis I mon. of the Lias of England and France, remints one trongly of some forms of Myophoria glabre, e.g. M. laviget
 the Trigonie hitherto deseriber ; on the other hand, it has several

 of Myonhmia-like Trignaice in the Japmese Cretaceons seems to confirm the view genemally entertained by pamentologistic, that there is a close relationship between these two genera.

[^63]
Description of the Species. Trigonia pocilliformis n.sy.

I'I. XI., Fïy, 1:1, 11, 2. 3.

Trigmia sj. Yokoyama, Yersteinerungen ans der Jipanischen Krede, pr 199.
Shell suberescentic, very inequilateral, inflated atheriorly, at-
 touching, pointed, much incurved and alsu recorved. The :aterion side of the valse is somewhat produced, and its margin is strong! convex, gradually pasing into the comex rentral margin whin in raised up posteriorly without ans marked exeavation. The doral margin commences at the small ligamental anerture behint the beak, and descends posterionly with a slight connatity to meet the truncated siphonal margin nearly at a right angle. The encutchen is lemgthen-
 distance from the beak, and concase for about $\%$ the lemeth from the vame print, leyoud which it Alattens. It is transersely or somewhat obliynely costellated ; the costellae are simple and smooth, beimg comser, more elevated and distant in the posterinie than in the anterion
 the pesterion side, and somewhat ohligue, with the marginal emel
 but those situated mear the beak are :a faint that they are hardly visible. The area begins near the beak as a might ridge which gradually widens posteriorly and becomes hondest at the siphonal eul, where it attains alout $1 / 3$ the total height of the shell, and forms at the same time its posterior border. It i.s for the greater part of it. lengeth remered bipartite ly a groove which rum a little above its median
line and paralled to it ；each of the two somewhat mequal halves thas formed is moderately convex，and marked by fine transerse plications， some of which can becone very coarse．The remaining portion of the valse is omamented with coars，clevated，sightly flexuons，cremated ribs whose number exactly corresponds to that of the costelle of the ewentchen，beinge，so to meak，the contimations of the wame，althongh interrupted in their cousse loy intervention of the area between． They anise at the border of the area an marow emalated ridgen，and diserge in every direction，getting higher and bromer as they ap proach the pallial border，into which they paso over without any marked curvature．The interyaces are month．The pallial bowder is remede－ ded dentate by these ribs．

The internal characters of the whell are not well known．
The yonnger apecimens of this shell are a little shorter，and the ribs more straight and les in mumber（Fig．2）．

1 have alreanty compared this pecies，in the work above cited，with Trigomia aliformis l＇arli．It is nearer to the variety called attomuta
 pl．XXV＇，lig．6）than to its typical form．Still there are marked differenes between the two．The most striking lies in the ribs which， in the English form，are wot mly more numerons，but also descrike concentric curves in the anterior portion of the shell，whereas in the dapares，atthongh smowhat flexmon in themselves，they all phes wer straght to the pallial border without making any distinct curvature．besides，in the former，the marginal ents of the costellat of the excutcheon are direnten posteriorly instead of anteriorly．

A precies called Trignat Rombsii Layett（I．e．p．122）from Verdachellum in $I_{n d i}$ seems to show similarity in the course

[^64]of the ribis to the Japmese. lint it differs in having a shorter shell and a hroad costellated area.

Trigonia pocilliformis ocems sometime in great ahmolare, filling the whole rock. [t is, however, mostly preserved as castis, and even when the shell itself is fomm, this is sirmly attached to the stone that it is imposible to imolate it withont hreaking it to pieres. Furthermore, these casts are often so defomed that it is difficult to get grecimens on which we could found a good diagnosis. The alove figures ${ }^{1)}$ were taken from !eymm presingen of an external (abt of a young as well an of a full grown aremen, which was eomsideret as bearly perfect in shape.

This speries i one of the chatareristie fomals of the damere Cretarems, being met with atmost whereever the (retare mes fowils :are fomm. Th shikokn it is to be fomm at the following plames:

Tamo in the Katamagwa Basin ; Boyma and Okmomolani in the Ryoseki Basin; Hagino in the Monohegawa Pasin (Kamigor,
 near Sakawa, both in the Sakawa Basin ; Obmas. Yokohata-muma, Agamagori, Tosa.

Outside of shikokn, it occus in the Sanchin Basin, and in Howk:aidō.

$$
\begin{gathered}
\text { Trigonia Kikuchiana ". sp. } \\
\text { M. XL. Fig. } 4,5,6 .
\end{gathered}
$$

Shell ovately trigomal, obligue, rery eomes. beaks antero-
 margin consex, grathally pasing into a lese convex ventral matuin

[^65]which posterionly meets with the nearly straght, obliquely ascemding, sphonal margin almost at atight angle, the corner being romberd.
 to the siphomal margin without forming any marked angle at the perint of junction. Area and escutcheon mot distinctly separated, forming one, more or loss flat, surface which is slightly depresed along its median line. 'The other fortion of the shell. which makes an angle of about 90° with the areal :urface, is marked off from the latter by a romulen edge, rmang from the heak to the pastero-ventral comer and shopes to the anterior amd reutral margins with a sight comsexity. The entire surface of the :hell is:mooth, except hear the beak where a few come shallow comentria :alci are motly fomme

The shell :eems to have heen morlerately thick. The medi:n depresion of the posteriai surface is more manked in the :ulult than
 tramsersely stristed, diverging teeth.

Among the Cretacens Trigomiae there is mone which an l_{x}. compared to this specie: lint in the Lias there is one, Trigonin Limgonensis Dum. (Lucett, Monogr. of Brit. Foss. Trigonia, No. B, p. 98, pl. XXII, Fig. 1-4), which :how: : clowe affinity to it. The latter, howeser, has at little lpoater well and the posterior side distinctly wepated into area and esentehen by a sharp ritge.

Trigomin Kikuchiana, like 'Tr. Lingonensis, is one of those forms of Trigonia which extemally exhilit at areat resemblane to the ohler germe: Myophorin.
 The internal monded drawn on the flate has the back accidentally depresem. Fig. 4 is from the largest sperimen we got.
 shape somewhat differs from that of lig. 5. expecially in its anterion
margin. But this difference is probably due to the mode of preservation.

Very frequent at Tanno ; also occurs at Soyamat near Ryoseki, atat Yamanokami (Nagano) near Sakawa.

Trigonia rotundata n. sp.

Pl. NL, Fig. 7, 8, 9.
Shell suborlicular, slightly broader than high, sonewhat inequilateral, consex. lieaks approximate, a little pushed interiorly, prominent, pointed, and incurvel. Both the anterior and posterior margins convex, gradually passing into a less convex ventral margin. Hinge-margin also arched. The escutcheon is not clearly separated from the area, there being only a trace of a broad and flat ridge between, runing from the beak to the upper end of the posterion margin, which makes the area slightly depressed along its median line. The other portion of the shell is moderately convex, and sepamated from the area by an oltuse edge, and making with the latter an angle of about 120°. The entire surface of the shell is smonth, if we excep a few coarse, shallow concentric sulci near the beak, and coarse, concentric rugae which sometines appear on the pasterior side near the ventral margin.

In appearance of area and escutcheon this species i very similar to the preceding one.

Among the form: of Trigonia hitherto describerl, there is wne which shows aly relation to it. Among the Myophoriæ, however, there are several corresponding forms which have been mentioned before.

Like the two foreroing species, Trimpuia rotmmata occurs mostly
as casts, one of which is figured on the plate. It shows two strong, striated, diverging teeth.

Quite as mmerous as Trig.mia Kikuchiana at Tamo ; occurs also near Sakawa at Ninomiya, İanankami, and Sendachino.

Helicoceras sp.
 Pl. XL, Fig. 10, 10a.

A fragment of the body-whorl of a snail-like Ammonite, elliptical in section, somewhat higher than broad, and with the boly-chamber occupying about one half of the entire volution. The extermal sculpture consists in fine, rounded, transerse ribs, sightly modulatory in their course, and weakest on the umbilical side of the whorl, where some of them even disappear. Their number is alout 50 in one circuit. The sutures on the extermal side of the whorl are indistinct. But as far as they are seen in our specimen, they are deeply and much incised, with suddles and lobes lipartite; the siphmale seems to lie on the onter side, so that our fragment is that of a Helicoceras which is, at least, closely akin to Helicoceras indicum Stol. (Cret. Cephalopoda of Southern India, p. 184, pl. S6, Fig. 1-2). But as the specimen is imperfect, its exact specific determination is not possible.

Helicoctras indicum occurs in the Arrialoor Group of India.
Our specimen was found in a very fine-graned shaly sandstone of Ouni, $\bar{O}_{\text {uchigori, I'rov. Sanuki. }}$

Compronent Instrumu*hts. Pit Instr.
burf. Inser.

Hit Instr.

Surt. Instr.

Fiy. 2.-C'umpariven Inuquams of the Jorth-Sinuth
Componcht Insistrmonts.
fit Intr.

Surf. Instr.

Pit Instr.

Surf. Instr.

Fig. 4.-North-Siuth 1 omprinent.

 Fust-West Component.

Fig. خ... Earthouthe of F'brutry 15h, 1589.
East-IFest C'omponent.
$\therefore \therefore$

(I't)

PLATE XXXVIII.

Fig. 1.
Fig. \because.
(1) $r=0.17, T=1.7, u=2.9$.
(1) $r=0.17, T^{\prime}=10.7, w=2.9$.
(2) $r=11.2 \mathrm{t}, T-7.2, w=2.9$.
(\because) $\quad r=0.17, T=10^{\circ} .6, w=2 \%$.
(; 3) $r=0.3 i, T=: 3: 3, \quad w=2.5$.
(: i $^{\prime} \quad r=0.17, T=861^{\circ}, w=2.5$.
(1) $r=0.17, T=1621^{\circ}, w=25$.

Fig. \therefore
Fig. 4.
(1) r-9.2. $T=1026^{\circ}$, " 2)
(1) $r=1.17, T=2548, ~ w=$-. 9.
(2) $r=0.24, T=124!5^{\circ}, w=2.5$
(2) $r-0.17, T=95^{\circ}, w=312$.

(3) $r=0.17, T=583, w=342$.
l'ig. 5.
Fig. 6.
(1) $r=0.313, T=4^{0} .3, \quad w=218$. (1) $r=0.17, T=18^{\circ} .5, w=156$.
(2) $\quad r=0.20, T=2.2, \quad w=218$.
(2) $r=0.17, T=584^{\circ}, w=156$.
(3) $r=0.20, T=16^{\circ} .7, w=411$.
(3) $r=0.17, T=260^{\circ}, w=342$.
(4) $\quad r=0.20, T=9195^{\circ}, \quad w=218$.
(4) $r=0.17, T=583^{\circ}, w=312$.
r gives radius in mm.,
T, permanent twist in degrees,
w, longitudinal stress in grm. weight.
sour. Sc, Coll. Vol. IV. PI, XXXVIII.

.
 lompmature in contigralu bormes.

Thumsanth parts of Electromotive Foren.

PLATE XL.

Plate XL.

Fiy. $1 a, 1 b$. Trigonia pocilliformis. A full grown specimen.
, 2.
3.
4. Triqoni: Kikuchian:
jal. ", " seen from the posterion side, showing the indistinct separation of area and escutcheon.
" 6. Trigonia Kikuchiana. Cast, accidentally depressed on the back.
," 7. Trigonia rotumbata. Right valve.
", Sul. ", Left valve of a full grown specimen partly restored. l, seeu from the posterior side.
,, 9. Trigonia rotundat:. Cast.
" 10. Helicoceras s.
, 10九. , ., Trmasere section.

-
.

```
MBL WHOI LIBRARY
WH 1qJWO```


[^0]:    
    
    

[^1]:    
     very difirunt struthres ly dirman and Enylish anthors.

[^2]:    K. Mitoukuri del.

[^3]:    * Ludwig-Ueber die Bildung dus Blastorlermes lom din Spinnen, Zeit. fïr wiss. Zuool. xXVI.
    ** Locy-Observations on the Development of Agelena naeria, Bull. Mus. Comp. Zoul. XII.

[^4]:    * Ludwig—loc. cit.
    ** Morin-Zur Entwicklungsreschichte der Spinnen, Biolog. Centrably. VI.

[^5]:    * Balfour-Notes on the Development of the Araneina, Quart. Journ. Micr. Sici. XX.

[^6]:    * Glaparide-Recherches sur l'Ėvolution des Araignées, Naturk. Verhandel. I.

[^7]:    * Schimkewitch-Étude sur le Dévelopment des Araignées, Arch. de Biolog. VI.

[^8]:    * Kowalersiny and Schulgin-Zur Entwicklungsgeschichte des Scorpions, Biolore Centralbl. VI.
    ** Bruce-On Insects and Arachnids.

[^9]:    * Morin states, what I have before referred to, that the primitive cumulus is formed after the formation of germinal layers, and consists of mesorderm cells.

[^10]:    * Bertku-Beitrige zur Keuntniss der sinuesmyate der spinnea, Arch f. Mik. Anat. XXVII.

[^11]:    * Parker-'Ihe Eyes in Scurpions, Bull. Mus. Comp. Zool. XIIL.

[^12]:    * Patten-Segmental Sense-organs of Arthropods, Journ. of Morph. II.

[^13]:    * Bertkau, loc. cit.

[^14]:    * After finishing the manuscript of this paper, I receised No. 324 (1889) of the Zoologischer Anzeiger containing Praem's preliminary report entitled "Die Entwickl. d. Bryozoencolonie im keimenden Statol,]." His statements differ in many fundamental points from mine. 'Ihere is sutficient ground to assume that very considerable variation of development ubtains among lifferent specias of Polyzon.

[^15]:    1) v. Siebold-Ueber die Conjugation des Dipl. paradoxum. Ztschr. f. wiss. Zool. Bd. III. 1851. p. 62.
    2) Zeller-Untersuch. ü. d. Entwicklung d. Dipl. paradoxum. Ztschr. f. wiss. Zool. Bd. XXII. 1872. p. 168.
    3) Dujardin-Histoire naturelle des helminthes. 184.5. p. 316.
[^16]:    1) Morduann-l. c. p. 60.
    2) Paulson-Zur Anatomie r. Dipl. paradozum. Mém. d. Pacad. St. Petersbourg. Vif. sér. T. IV. 186.. p. 4. I have not been able to gain acces to this work, and am indebted for its account to Prof. Ijima's notes.
    3) P. J. v. Beneden-Mémoire sur les vers intestinaux. p. 41 .
    4) The European species shows a decided couvexity.
[^17]:    1) Heller-Merkwürdiger Fall vorderer Verwachsung an Iipl paradoxum. Sitzungsler: d. k. Akad. d. Wiss. Wien. 1857. p. 109.
[^18]:    1) Zeller-l. e. p. 173.
     XLITI. 18s(i. p. 49.
    2) Biehringe-Beitrige zur Anatomie w. Entwirkl-geschichte A. Trematoden. Arbaten a. d. zool.-zoot. Inst. in Wïrzhurg. But. VII. 184.5. p. 4.
    3) Braum, Max-Finige Banerkmogen ii. d. Körperbedeckung ectoparasitischer Trematoden. Centralbl. f. Bakteriol. u. Parasitenkunde. Bd. VIl. 1890. p. 594 (Nr. 19.)
[^19]:    1) R. Wright and Macallum-Sphyranura Osleri: a Contribution to American Htrlminthology. Journ of Morph. Vol. I. 18st. p. 9.
[^20]:    1) Taschenber_-Beitriige zur Kenntniss ectoporasitischer mariner 'Trematodtn. Halle, 1879. p. 11.
    2) In a specins of this genus which I have examined, there are in addition isolated longitudinal fibres between the dingonal and circular mascles.
    3) Lorenz-Ueber die Organisation der Gattungen Axine u. Microcotyle. Arbeit. a. d. zool.-zoot. Inst. d. Univ. Wien etc. Bd. I. 1878. 3. Heft.
[^21]:    1) 'Iaschenberg-Weitere Beitrage zur Kenntniss estopar. mar. 'Trematoden. Halle, 1879.
[^22]:    1) This fact must not be taken as proving that the hintermost pair is formed last.
    $\ddot{\sim}$ A corresponding mearmement on the Europ an specios of about the sume size qave the average result as 0.144 mm . fort he sucker, and 0.084 mm . for the total length of the hanalle and hook.
    2) P. J. v. Beneden-l. c. p. 42.
[^23]:    1) Leuckart—Dic Parasiten des Menschen. If. Auflage. I. Id. 3. Liefg. P. 13 et seq.
    2) Taschenberg-l. c. p. 13.
[^24]:    1) Lorenz-l. c. p. 7 .
    2) In appearance, these cells are very similar to the yolk-cells of Diplozoon during the winter season. Vide Fig. 20, Pl. XXII.
[^25]:    1) Schwar\%-1. c. p. 59.
    2) Looss - leitriige zur Kemntmiss der Trematorlen. Ztschr. f. w. Kool. Bd. XLI. 1885. p. $43 \because$
[^26]:    1) P. J. v. Beneden-l, c. p. 10 .
[^27]:    1) Cí. Braun-Ueber die Lage d. Eachetionspori bui d. ectopar. 'Trematulen. Zoul. Auz. Jahrg. XII. 1889. p. 620.
[^28]:    1）Long－l．c．p．ニIロ．
    －2）Tjima－Untersuch．ü．d．Ban u．d．Entwickl．d．Süsswasser－Dendrocoelon．Ztschr．f．w． Zッ口．Ful．XI．18st．1．3！7．

    3）Pintner－1．c．p． 21 ．
    4）Schwarze－l．c．p．58．The italics are mine．
    5）In the extreme case，viz．Where the cells are arranged in a single row，the view of Schwarze reluces itself to that of Lang and Ijima．

[^29]:    1) On reading Wright and Macallum:s deseription, the question naturally arises if the writers have not mistaken the ciliated portions of the capillarios, stich as hate been deseribed
[^30]:    by Looss, for the funnels, and overlonked these latter. I also belice that they go too far when they endeavor to attributw excretory nature to the large colls obserad by Looss and others in the phargnx of many Trematortes.

    1) Lang-Untersuch. z. vergleich. Anatmmit: u. Histabin d Smornsystems d. Plathelminthen. Mitth. a. d. zool. Station z. Neapel. Bd. II. 1sst. p. 2s. 2) Leuckart-l.c. p. 22.
[^31]:    1) Pintner-l.c. p. 71
[^32]:    ${ }^{1)}$ Poirier-Contribution ì lhistoire naturelle des Trimatudes. Arch. d. zool. expérimentale Že. Série. 'T'. III. 1885. p. 603.

[^33]:    1) Zeller-Ueber den Guschlechtsapparat des Dipl. parmbrum. Ztachr. f. w. Zool. Bd. NTVl. 185s. p. „33.
[^34]:    1) Zeller-Ztschr. f. w. Z. Bd. XXII. p. 5 \& 169 foot-note; Bd. XLVI. p. 235. Is not the elastic membrane the result of fertilisation?
    2) Wialemues-suhm-Zur Naturgescı. d. Polyst. integerrimum u. Polyst. ocellatum. Ztschr. f. w. Z. Bd. XXII. 1872. p. 33.
    s) Taschenberg-Beiträge. p. 36.
[^35]:    1) Wirrzejski-l. c. p. 5 55.
    2) Zeller-Weiterer Beitrag z. Kenntniss d. Polystomeen. Ztschr. f. w. Z. Bu. XXVII. $1876 . \mathrm{p} .245$.
    3) Tjma-Öber den Znsammenhang d. Eileiters mit d. Verdauungscanal bei gewissen Polystomeen. Zool. Anz. Jahrg. VII. 1884. p. 635.
    4) Voeltzkorw (Arb, a. d. zool.-zont. Inst. in Würzburg. Bd. VIIT. 1S88. p. 267) describes an evidently homologons canal in Aspidogaster conchicola. According to him it ends blindly near the dorsal surface of the worm. He calls it Receptaculum vitelli.
[^36]:    1) v. Beneden-l. c. p. 43.
[^37]:    * Mompa, a kind of nappy cotton-cloth ; byō, disease.

[^38]:    * Vol. VI. p. 666.

[^39]:    * Vol. I V. pp. 507 and 579.
    + See p. 193.

[^40]:    * De Bary, Vergl. Morphol. u. Biol. d. Pilze; Eng. traus. p. 23-29
    $\dagger$ See Fit. 11, 1. 2t, of the same book.

[^41]:    * De Bary, Vergl. Morphol. u. Biol. d. Pilze, Eng. trans. p. 11.

[^42]:    * The Japanese word kōyuku means a medical plaster; byō, disease.

[^43]:    * E. Hecke]:-Du mouvement dans les stigmates biloliés des Scrophularinérs, des Bignoniacéps et dres Sésamérs. (Comptes rendus, t. LXXIX. 187. No. 12. P. 702-704.)
    **'The Japanese name of this plant is sugigoke.

[^44]:    * A few weeks aftor, I was informe by Mr. 'I'. Yoshinagit of 'losa, of the same fact which he had himself oloserved.

[^45]:    * 'Ihe structures of the style and stigma have been studied by J. Behrens. (Untersuchungen über den anatomischen Ban des Griffels und der Marben. Gottingen, 1875)

[^46]:    * Die Befruchtung der Blamen druch Insecten und de gesenseitigen Anpassungen betider. Leipriщg, 1573.

[^47]:    1. Oliler erature I had not aceess to.
[^48]:    
    7．Ein Butrage zur Kentniss des foineren Banes und dre Entwiokhngegeschichte ther Nebennimen．Arch．f．Mikons．Anat．Vlll．1ム゙ー．

[^49]:    8. Suprarenal Borlies of Tertebrates. Quart. Jomr. of Mieros. Scirner XXV. 1495.
    9. Untersmehngen ïlwe die Entwickhog des IIarn-und fosebhochits-apparates der Amnioten. Inter. Monatachr. f. Anat. u. Hist. II. Iss.
[^50]:    1) 'Ihis eity is better known muler the alel name oil shimomostia.
     Imperial liniersity, Sipuen, vol. III, part I, 1ss:\%.
[^51]:    
    

[^52]:    * For instance, sere Trans Seis. Soe. Vol. Vilf page 98. "The Earthquakes of Ischia."

[^53]:    * See Memoirs of the Science Dep., Unir., Tokgo: No. 9, and the Jour. Science Coll., Imp, University, Vol. I.

[^54]:    * See the Jomrnal of the College of Science, Imperial University, Japan, Vol. I., Part III. or Transactions of the Suismological Society of Japan, Vol. XI.
    $\dagger$ The complet diagram of the surfite instrument is given in the same volumes as cited abore.

[^55]:    1) See my paper On the ELertrir Resistane of Nirkel at Migh Temperutures, Trans. Royal Soc., Filin, Vol. XXXIII (1896)-also ahstract in the Journal of the Colleqe of Science, Tokyo, Vol. I.
[^56]:    1) See the paper by Nactiregor and myself already refered to, also my paper on The Ehectrical Properties of Myhogenised P'allaham ('Thans. li. S. E., Vul. XXXIII., 18sti)—abstract in this Journul, Vol. I.
[^57]:    1) See Wied. Beibliitter, Vol. XI, 1857.
    $2)$ Sce Wied. Beibliatter, Vol NIII, 1881.
    2) See Wied. Anvalen, Vol. XXIX, 1896
[^58]:    * In the deduction of the expression for the intensity, I follow F. Nemman's methra.

[^59]:    * Pospo Ann. 12s

[^60]:     Pablished by the Iniperial Geological Survoy of Japan, 15:\%).

[^61]:    1) Lare cit., p. 107.
[^62]:    1) Jaumann u. Neumayr. Zur Geologir 1 . P'aläontologic ron Japm. Donk. d. math.-muturu. Classe d. Ǩ. Akad. d. Wissens., Wien, Bl. LI'II, 1890.
    2) 'I'. Nasa. Report. of Geol. Sure. of Sithemamur., Tost 1555 (MS).
    3) Giren in Harada's Japtmischen Insehn, l. c.
    4) Nuthorst considers these plants as Upper Jurassic. Vide Beitr. A. Mesoz. Vlora Japans. Denks. d. Muth.-Nat. Cll. d. K. Aliul. d. Wissen. Wien, Bd. LI'II, 1590.
[^63]:    1). Paloontographica, Bd. XXXV1, $1 \mathrm{~s}: 0$.

[^64]:    1）I＇alcentographical Society，Iol．SXISN，iswed for Isis．

[^65]:    1) 'Ihe teeth which wond be more or less vishble in the dorsal as well as in the portrion view of this and of the following species are not shown in our figures, as these figures were all drawn after gypsum pressings of external casts.
