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TO

THIS EDITION

THE first edition of this book appeared in 1877, at the time

of the most rapid and beautiful development of the kinetic

theory of gases. About twenty years before, the founders

of the theory, Kronig and Clausius, had explained the

expansive tendency of gases, and had calculated their

pressure on the assumption that the smallest particles of

gases do not repel each other, but are in rapid motion.

From the theory based on this supposition not only were

the laws of gases, so far as they were then known, deduced

in simplest fashion, but ajso new laws, hitherto undreamt

of, were discovered, whicc were afterwards confirmed when
^f

tested by experiment. These results, which we owe to

Maxwell and Clausius, quickly won to the theory many
friends and adherents.

But a deeper insight into the new theory was not then

widely possessed, since the mathematical shape of the me-

moirs formed a grave obstacle for many readers. I under-

took therefore to exhibit the kinetic theory of gases in such

a way as to be more easily intelligible to wider circles, and

especially to chemists and other natural philosophers to

whom mathematics are not congenial. To this end I

endeavoured, much more than was otherwise usual, not only
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to develop the theory by calculation, but rather to support

it by observation and found it on experiment. I therefore

collected together, as completely as I could, and summarised,

the observations by which the admissibility of the theory

might be tested and its correctness proved. I dare to think

that I have not failed in this endeavour
; for not only did my

book receive favourable judgment, but also my presentation

of the subject was turned to much account in popular

writings and found its way into physical text-books.

In this my book fulfilled the purpose I intended. I

wrote it only for that time, and did not seriously think that

it might reappear in a new edition after long years. But

the demand for the book did not cease, and, as the supply

was nearly exhausted more than ten years ago, I had to

determine on a revision, although the necessary preliminary

work had not yet been done.

As to the general plan of the revision I could not long

be in doubt. I could not destroy the shape in which the

book had been proved and had won recognition, and I have

therefore written it anew on the old plan. The mathematical

discussions form, as before, an Appendix which makes no

claim to completeness and need not be studied by every

reader; the contents of the book are limited to the same

range of phenomena as in the first edition ; the observations

which I have taken into consideration belong partly to

mechanical physics and partly to the domains of heat and

chemistry. The book has therefore preserved its character,

and may perhaps also serve its first purpose.

I have inserted a series of new theories, as, for instance,

an explanation on the kinetic theory of the resistance of air

and of the reaction of a jet, together with a longer investi-

gation, also new, concerning the influence of the dissociation

of the molecules of a vapour upon its viscosity. I should

have enlarged the contents of the book in many other

directions with pleasure ;
I should gladly, for instance, have
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treated of evaporation in connection with the diffusion of

gases and have discussed many other subjects allied to the

gaseous theory. But I had to omit much, since the work

would have demanded too much time. With the present

limitation to the old range it has cost very much trouble

and very much time to work up the literature of the subject,

that has grown mightily in these more than twenty years.

The first German edition of this book has already had a

large sale in England and America. The present English

translation will contribute to a still wider dissemination of

the book, and will win new friends to the kinetic theory.

This I confidently hope, now that by reading the proofs I

have seen the loving care with which Mr. Baynes has

worked at the translation. By numerous suggestions, too,

he has enabled rne to remove some errors and to make

corrections and additions. For this I here express to him

my warmest thanks.

OSKAR EMIL MEYER
BRESLAU : September 1899



TRANSLATOR'S PREFACE

HAVING found the first edition of this book of great use, I

have willingly undertaken the preparation of an English

translation of this greatly enlarged and improved second

edition. I have embodied in it all the additional matter

contained in the Addenda to the German text, as also

certain modifications and additions communicated to me by
Professor Meyer, who, by reading the proofs, has ensured

their accuracy.

It has been no part of my intention to add any com-

mentary upon the book, but I have appended a few foot-

notes that seemed advisable, and I have added an Index

which I hope will prove useful.

KOBEKT E. BAYNES
OXFORD : October 1899

Addenda and Corrigenda

P. 46, 1. 13 : Add Planck (Miinchener Sitzungsber. 1894, xxiv. p. 391 ; Wied.
Ann. 1895, Iv. p. 220) has attempted to meet Boltzmann's
objection (see also Wied. Ann. 1894, liii. p. 955) by a change
in the form of Kirchhoff's proof, but Boltzmann
(Munch. Sitzungsber. 1895, xxv. p. 25 ; Wied. Ann. 1895,
Iv. p. 223) considers that even this amended proof is not

perfect. See Phys. Soc. Abstracts, 1895, i. pp. 96, 313.

,, 106, 4th formula : For = read a
p
= a.

139, 1. 21 : For Staigmuller read Staigmiiller.
,, 232, formula for t\ : Add the exponent f after .
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PART I

MOLECULAE MOTION AND ITS ENEEGY





CHAPTEE I

FOUNDATIONS OF THE HYPOTHESIS

1. The Nature of Heat

THE proposition that heat is not a substance, but a form
of energy, is no longer considered a hypothesis, but the ex-

pression of a certainly proved fact. Experiment shows that

heat is generated when mechanical motion is destr^|P^by
friction or otherwise ; and, on the other hand, the perform-
ance of work by engines that are driven by heat is taken as

a proof that heat can be converted into ordinary mechanical

energy.
From these and other observations it follows that heat

is of the same nature as mechanical work, kinetic energy
of visible motion, and all other forms in which energy shows
itself in nature. Measurement further proves that the same
amount of heat always corresponds .to a given expenditure
of mechanical energy. Heat therefore undoubtedly forms

one of those indestructible magnitudes which we class as

energy ; or, in other words, heat is energy.
But in every branch of physics generally, as in mechanics,

there are two species of energy, which may be distinguished
as potential

1 and kinetic,
2 and in heat both species are

recognised latent heat, for instance, is for the most part

1 The term^ potential energy was applied by Ran kin e (Phil. Mag. [4], v.

1853, p. 106) to the magnitude called vis mortua by Leibniz (Acta Erud*

Lips. 1695, p. 149; collected works, Gerhardt's ed. vi. 1860, p. 238), and

later called Spannkraft byHelmholtz.
2 The term kinetic energy was first employed by Thomson (Lord Kelvin)

and Tait (Treatise on Natural Philosophy,Oxford 1867) in place of actual

energy, E a n k i n e
'

s name for half of the magnitude called vis viva by L e i b n i z .

This was termed simply energy by Thomas Young (Lectures on Nat. PhiL
lect. viii. London 1808, ,p. 79 ;

new ed. 1845, p. 59).

B 2
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*
at least potential energy, as it consists of the work spent
in overcoming cohesion, while sensible heat, which we feel

with our hand and measure with the thermometer, is kinetic

energy.
We cannot, therefore, in general use Rumford's 1 ex-

pression, and say that heat is motion, but we may assume

that sensible heat is a mode of motion, though this motion

is invisible and almost unknown to us. As its carrier we
take the particles, supposed immeasurably small, of which

bodies are composed, and to these ultimate particles we
ascribe motions of different kinds, assuming that some may
move forward in straight lines, that others may oscillate

periodically, that others again may revolve about each other

in this small world imitating the planets and that each

may further rotate about an axis of its own ;
and the sum

of the kinetic energies of these motions represents the

mechanical energy of the contained heat.

In the mechanical theory of heat we extend this specu-

lation, as a rule, no further, so as not unnecessarily to make
our reasonings and conclusions depend on doubtful hypo-
theses. In this connection physical investigation has special

reason to avoid hypothesis, as the high value and great

significance of the mechanical theory of heat rest on the

general and unconditional validity of its propositions,

whereby we are enabled to measure forces of unknown
nature equally with known forces, and to subject them to

calculation with equal certainty.

It would, however, be a censurable restriction of investi-

gation to follow out only those laws of nature which have

a general application and are free from hypothesis ;
for

mathematical physics has won most of its successes in

the opposite way, namely, by starting with an unproved and

unprovable, but probable, hypothesis, analytically following
out its consequences in every direction, and determining its

value by comparison of these conclusions with the results of

experiment.
For the mechanical theory of heat, too, this method has

already borne good fruit. By ascribing special forms to

1 Phil. Trans. Ixxxviii. 1798, p. 80.
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*

the motion which we call heat forms which necessarily
differ with the nature of the body considered, its state of

aggregation and other qualities we have succeeded in

showing that a whole series of important laws of nature

necessarily follow from these assumptions, and we may
therefore be sure that we have discovered the mechanical

cause of these laws in the circumstances of the ultimate

particles of bodies. Specially successful have been the

labours of those who sought to explain the nature of the

gaseous state doubtless because the heat-motion in gases

obeys the simplest laws. From a very simple assumption
as to the nature of this motion we have deduced, not only
all the laws already known for gaseous bodies, but also new

properties which have been most beautifully verified by

experiment.
There has thus arisen from the joint labours of the

workers in this field a special theory of the gaseous state

which was formerly known as the dynamical,
1 but is now

better called the kinetic,
2

theory of gases. In this work I

have endeavoured to collect and arrange the scattered con-

tributions of individual authors that have appeared in 1

periodicals of all kinds.

2. Hypotheses with, regard to Heat-motion

The ultimate elements of bodies whose motion we wish

to investigate are not freely movable each by itself; they
are bound together by mutual forces their affinity, whence/
arise combinations of atoms into larger masses called mole-

cules.

We may therefore distinguish two kinds of heat-motion,

atomic and molecular. By the latter we understand the

translatory motion of the centroid of the atoms that form

the molecule, while as atomic motion we count all the

1 Maxwell, Phil. Mag. [4] xix. 1860, p. 19, xx. 1860, p. 21.

2 So far as I know, this name was first used by Lord Kelvin (Sir W.

Thomson) in an address before the British Association at Edinburgh (B.A.

Rep. 1871, p. 93) ; Maxwell afterwards adopted it (Nature, viii. 1873, p. 298 ;

Scientific Papers, ii. p. 343).
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rations which the atoms can individually execute without

/breaking up the molecule. Atomic motion includes, there-

fore, not only the oscillations that take place within the

molecule, but also the rotation of the atoms about the

centroid of the molecule.

This division of the whole heat-motion corresponds to

the division of physical science into physics and chemistry

not, indeed, in every respect, but in so far as chemistry
deals chiefly with the equilibrium of atoms, while physics
treats more of the mechanics of molecules.

Chemical equilibrium, or the unchanged existence of

molecules, is attained when the affinity which holds the

atoms together is in equilibrium with the forces that tend

to break up the molecule
;

such forces arise from the

motion of the atoms, partly from the collisions of those

which vibrate, and partly from the centrifugal tendency of

those which rotate. Since then, in a chemically stable

body, the atomic motions are kept in continuous dynamical

equilibrium with the chemical forces, and their action is

overcome by the latter, only the molecular motion comes

primarily into account in the investigation of purely physical
forces and phenomena, and we therefore limit the range of

our discussion in the first place to the latter.

Just as the atomic motion tends to break up a molecule,

so the molecular motion tends to loosen the connection

between the parts of a body, partly in consequence of

collisions between the molecules, and partly from their

centrifugal tendency ;
and equilibrium is maintained at

when there is no external pressure by cohesion, a

in which we need see nothing different from affinity.

It seems enough to account for cohesion in an excess of

affinity over the dissociating action of atomic motion, which
is not large enough to attract an atom into the pale of

a molecule and to keep it there, but is sufficient to

bind together neighbouring molecules in a much less close

bond.

The problem of discovering the laws of molecular motion

is therefore identical with that of determining the laws of

cohesion, since when the medium is in equilibrium the
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forces due to this motion are equilibrated by those of

cohesion.

The difficulty of this problem disappears in the special

case which is the subject of this work.

3. Behaviour of G-ases

In gaseous bodies scarcely a trace of cohesion can be

found. In these most attenuated of all known media the

molecules seem so far apart that one experiences no attrac-

tion by another, except in the rarely occurring case of two
molecules coming accidentally very close, or even into colli-

sion, in consequence of their motion.

This theoretical view explains in the simplest manner
the tendency of gases to expand, and it has a further sup-

port, derived from experiment, in the thermal behaviour of

gases when changing volume. For if a gas expands without

overcoming pressure, and therefore doing work if, for in-

stance, it streams into vacuous space its temperature falls

sp little that for long it was admitted, on the evidence of

tr ay-L us sac's experiments, that under such circumstances

no fall of temperature at all occurs.

This behaviour would not be possible if on expansion a

gas had to overcome any considerable cohesion, since for

this an expenditure of energy, and therefore of heat, would

be requisite. Just as little can the assumption of repulsive

forces between the molecules be reconciled with this ex-

periment, since such forces would come into play during

expansion and generate energy in the shape of an increase

of heat in the gas.

By the more exact experiments made by Joule and

Lord Kelvin on the heat-effects of gases in motion, it is,

indeed, shown that there is cohesion between the particles

even of gases; but the above conclusions are not thereby

invalidated, since Joule and Lord Kelvin's values for the

work done by an expanding gas in overcoming its own
cohesion are of nearly vanishing magnitude.

It is specially important for our theory to note that all

experiments that have been made to determine this small
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amount of work agree in showing a real cohesion in so far

as it was proved that particles of gas attract, and do not

repel, each other. Herein is a weighty support of our

/hypothesis, since in face of this fact the possibility of

explaining, as Newton attempted, the expansive tendency
of a gas by the repulsion of its particles disappears ;

and

there remains as the only admissible hypothesis the oppo-
site view that in a motion of its molecules consists the

expansive tendency of a gas.

4. Character of the Heat-motion in Gases

It is now easy to detexxaine4he .way... in, .which we have

to represent to ourselves this molecular motion. We first

assume that the gas under consideration is removed from

the action of external forces such as gravity, for instance

and we then introduce the further assumption, which is

sufficiently, though not strictly, accurate, that there is no

cohesion in the gas worthy of account.

If these two suppositions are realised the molecules of a

gaseous substance move freely without being subject to the

action of any force. Now, according to the law of inertia,

free motion without the action of force takes place with

unchanging speed in unchanging direction. Hence the

hypothesis which must form the groundwork of the theory
of gases is this :

/ The heat-motion of the molecules of a gas consists in a
* uniform rectilinear translatory motion.

We must add to this what is nearly obvious, namely,
that a molecule can proceed along its straight path only so

long as it meets with no obstruction. If it should strike a

wall or collide with another molecule, its motion must suffer

an abrupt change in direction by reason of the impenetra-

bility of matter. Two colliding molecules therefore rebound

from each other, and possibly just like two elastic balls.

If, now, we take account of the action of external forces,

such as gravity, which is practically uniform, we have to

represent the paths of the molecules as no longer straight,

but in general curved, the path for a constant force being a
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parabola. This curvature of the path under the action of

/gravity will, however, be quite insignificant if the speed of

the molecules is very great. Since this condition is actually

fulfilled, as the numbers in 13 show, we may neglect this

curvature and consider the molecular motions in even heavy

gases as rectilinear.

Of more importance is the fact that gases are not quite
free from cohesion of their particles, but exhibit distinct,

though very slight, traces of it. Two gaseous molecules,

however, can only attract each other when sufficiently near,

so that if a gas is not too strongly compressed, but is far

from the point of liquefaction, we are justified in represent-

ing an overpowering majority of its molecules as far enough
apart to be nearly always outside the range of their mutual
attraction

;
and we may therefore assume that the small

amount of cohesion which does come into play is to be put
to the account of the rarely occurring cases when two mole-

cules now and then come very near each other.

If we therefore represent the molecules of a gas as

moving in general in a straight line, and only changing
direction when two approach very closely, this view is

practically the same as that enunciated for the simple case

first given, the difference between them consisting only in

the substitution of a rapid, though gradual and continuous,

change of direction in the motion of two molecules on very
close approach to each other, in place, of a sudden rebound

on collision.

The most essential point of our hypothesis is not thereby
ouched

;
it remains true that a gaseous molecule moves

with uniform velocity in a straight line between every two

successive collisions with other molecules.

t.

*

5. Founders of the Kinetic Theory

s When these views on the nature of the gaseous state

i/were published in 1856 by Kronig,
1 and in 1857 by

Clausius,
2

they aroused very special remark by their

1

GrundzUge einer Theorie der Gase : first published separately in Berlin

by A. W. Hayn, and then in Pogg. Ann. xcix. 1856, p. 315.
2 Ueber die Art der Bewegung, welche wir Wcirme nennen, Pogg. Ann. c.
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novelty and their entire variation from the ideas till then

y current . The mathematical theory which Clausius founded

on this hypothesis, and published in the memoir cited, as

well as in later papers, especially attracted attention, and

many physicists were induced by these investigations to

help in developing the theory and putting it to experimental

proof.

It was, indeed, quickly found that these views on the

nature of gases were not new, but had been published very
often before Clausius, and indeed with perfect clearness

very long before. Clausius himself mentioned in his first

memoir a paper published by Joule 1 in 1851, which had
remained almost quite unnoticed, wherein the question is

taken up and treated in essentially the same way ;
and

Joule refers to a paper by Herapath
2 which appeared in

1821. In 1845 there was also presented to the Koyal

Society of London a paper by Wat erst on,
3 which proceeds

on the same lines regarding molecular motion, but, for

/certain faults, was not printed till Lord Kayleigh pub-
lished it on account of its historical interest.

A whole series of writers have further been named who
are said to have held and published similar views and to

have expressed them with more or less clearness
;
this list,

beginning with the philosophers of classical antiquity,

runs through the Middle Ages to the last century. Of all

these writers, however, there is but a single one of conse-

quence from the present state of the theory, viz. Daniel

Bernoulli,
4 whose memory Franz Neumann has pre-

served for his pupils and posterity, and to whom P. du

Bois-Reymond 5 has directed the attention of his con-

temporaries by a German translation of a fragment of his

1857, p. 353 ; Abhandlzvngen ilber die mechanised Warmetheorie, Brunswick

1867, 2nd part, p. 229 ;
transl. Phil. Mag. [4] xiv. 1857, p. 108.

1 Memoirs of the Manchester Lit. and Phil. Soc. [2] ix. 1851, p. 107;

reprinted later PMl. Mag. [4] xiv. 1857, p. 211.
2 Annals of Philosophy [2] i. 1821, pp. 273, 340, 401.
3 Phil. Trans, clxxxiii. 1892, p. 1.

4
Hydrodynamica, Argentorati 1738, Sect. X. D. & J. Bernoulli, Nouv.

Princ. de Mec. et de Phys. &c. Eec. des pieces de prix, v. 1752.
5
Pogg. Ann. cvii. 1859, p. 490.
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works. The writings of the others have now only a historic

interest,
1 as they exhibit, in the rise and fall of a philo-

sophical system, a picture of the intellectual life of man
which becomes the more distinct by a narrow limitation to

a special study.
2 The kinetic theory of our day has come

to life quite independently of those forgotten predecessors.
We may look on Daniel Bernoulli as the first author of

the fundamental notion of the kinetic theory so at least I

think I have proved in the following pages ; but he who
has the honour of being acknowledged as the author of a

scientific system a mathematical theory founded on this

notion is Clausius, and with him Maxwell has done the

most to promote and develop the theory.

1 Gehler's Physik. Warterbuch, iv. 1828, p. 1049; Clausius, Pogg. Ann.

cxv. 1862,'p. 2, Abhandl. pt. ii. p. 230 ; transl. Phil. Mag. [4] xxiii. 1862, pp. 417,

512
; Lothar Meyer, Theoriender Chemie, 2nd ed. p. 29, 5th ed. p. 30.

2 A thorough exposition of the ' Fall of the kinetic theory of atoms in the

seventeenth century 'is given by Dr. Kurd L ass wit z in Pogg. Ann. cliii.

1874, p. 373, as well as in his Geschichte der Atomistik, 2 vols., Hamburg and

Leipsig 1890. The influence of the corpuscular philosophy is there portrayed,

and the harm done by Newton's doctrine of the kinetic theory of atoms. I

might add that it fell into complete oblivion in the eighteenth century, when
the Cartesian philosophy, with which it was in constant strife, was supplanted
and Kant's arose; and it remained forgotten by all, with few exceptions, of

the natural philosophers of the present century, who take but little account of

older works.



12 MOLECULAR MOTION AND ITS ENERGY 6

CHAPTEK II

PRESSURE OF GASES

6. Boyle's Law

THE hypothesis, which we have described, of the to-and-fro

motion of the molecules of a gas in straight paths, of their

collisions and subsequent separations, and of their striking

against the walls of the containing vessel, furnishes a very

simple explanation of the cause of the pressure which the

gas exerts. This pressure results from the series of impacts
of the molecules, as they move to and fro, against the

enclosure. As the first test of the admissibility of our

hypothesis, we have to see whether this explanation of the

pressure is in agreement or not with the laws of gaseous

pressure that have been deduced from experiment.
The law with which we have first to deal is in Germany

generally called Mariotte's law, because Mario tte

enunciated it at the head of his essay
' De la Nature de

FAir/ which first appeared in 1679. As, however, there can

be no doubt that the discoverer 1 of this law is Robert

Boyle,
2 who determined it seventeen years earlier, I shall

follow the English custom of calling it Boyle's law.

That this law viz. that the density and pressure of a

gas are proportional to each other is not in contradiction

with the kinetic theory, but, on the contrary, is a necessary
result of the hypothesis of rectilinear motion, was proved

by Daniel Bernoulli, 3 the originator of this hypothesis.

1

See, for instance, Muncke in Gehler's PhysiJcal. Worterbuch, 1828,

iv. pp. 1026, 1028.
2 ' A Defence of the Doctrine touching the Spring and Weight of the Air,'

London 1662, Pt. II. Chap. V.
3
Hydrodynamica, Argentorati 1738, Sect. X. p. 200 ; reprinted in German,

Pogg. Ann. cvii. 1859, p. 490.
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Bernoulli supposed a mass of gas to be confined in a

vessel with a movable but air-tight lid, such as the cylinder
of an air-pump ; this gas can be compressed by increasing
the pressure on the lid or piston. If, now, the gas consists

of a large number of moving particles, and the pressure
exerted by it on the walls of the vessel arises from the

impacts of the particles against these walls, then equilibrium
results when the resultant action of the impacts on the lid

is equal to the pressure applied to it.

If the gas is compressed and the volume diminished,
the number of impacts of the now more closely packed

particles against the walls increases, and for two reasons :

first, there is a larger number of particles in the layer of gas

immediately adjoining the walls
; and, secondly, as the par-

ticles are more crowded together, they collide oftener, and,
hurled back by the collision, are oftener flung against the

walls. If, by the compression of the gas, the volume is

diminished in the ratio 1 : s
3

,
the distance between any pair

of particles is diminished in the ratio 1 : s
;
the number of

particles, therefore, in the bounding layer, which is in

contact with a given area of the walls, is increased in the

ratio s
2

: 1
; further, the number of collisions that take place

between the molecules in a given time is increased in the

ratio 5:1; and in this same ratio also is the number of

impacts of any particle in the bounding layer against the

walls increased. Since, then, the number of impinging

particles is increased in the ratio s
2

: 1, and the number of

impacts by each in the ratio s : 1, the number of impacts

against a given part of the walls in a given time is increased

in the ratio s
3

: 1, which is the inverse of the ratio in which

the volume of the gas is diminished. The pressure, therefore,

of a gas varies inversely as its volume.

Boyle's law is thus deduced from the hypothesis of

molecular impacts.

7. The Admissibility of the Hypothesis

Since Boyle's law can be deduced also from quite dif-

ferent assumptions, this first consequence of the theory is
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no proof of the exclusive claims of our kinetic hypothesis ;

but it allows us to judge for what substances, and under

what circumstances, the theory may be considered ad-

missible.

Boyle's law is not obeyed by all substances in the

gaseous state. The vapours of liquid bodies do not obey it

except within certain limits of pressure and temperature,
and then only with moderate approximation. Even the

so-called permanent gases do not satisfy the law rigorously
and under all circumstances.

,.,--'
This was known to Boyle himself, and the inexactness

^f the law has been confirmed by Musschenbroek and

a whole series of physicists, ancient and modern, such as

Despretz, Arago and Dulong, Pouillet, Kegnault,
Siljestrom, Mendelejeff and Kirpitscheff, Amagat,
Cailletet.

It would be out of place here to enter fully into the

results of the numerous investigations undertaken to test

Boyle's law, as this work does not profess to be a complete
text-book of the physics of gases, and the more detailed text-

books l contain full information. A few examples are here

sufficient, which show how far the real gases depart from

Boyle's law under ordinary circumstances, that is, at mean

temperatures and under moderate pressures.

If this law -were strictly exact, the product of the pres-
sure p into the volume v of a mass of gas would be a

magnitude which would not alter in value when the pressure
took the value P and the volume the corresponding value

F ; we should, therefore, have

pv _-,
PV~

if, as we assume, the temperature did not alter. The

following table contains for a series of gases the values of

this ratio which Begnault
2 found on increasing the pres-

sure from_p= l atmosphere to P= 2 atmospheres.

1 Winkelmann, Handbuch der Physik, i. p. 503
; Ostwald, Allgemeine

Chemie, 2nd ed. i. p. 139 ;
&c.

2 M6m. de VAcad. de Paris, xxi. 1847, p. 329 ; xxvi. 1862, p. 260.



PRESSURE OF GASES 15

Gas
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possible causes of these variations. If Bernoulli's theory

gives, as its necessary consequence, a law that is only approxi-

mately exact, the hypothesis underlying the theory cannot be

quite true in every respect, but must be defective, even if only

slightly.

In the assumptions with which we started there are two
different points which cannot be directly proved, and are there-

fore open to doubt. The first is the assumption that gases
are made up of molecules of very small dimensions, and the

second is the assumption that in gases there is no cohesion.

Neither of these is exactly true, and therefore neither can

be admitted except as an approximation to the truth
;
and in

their inexactness lies ample ground for the departures from

Boyle's law.

In the first place, if the dimensions of the molecules are

^ not indefinitely small, the calculation which led to the law

is not exact. For it is only if the space actually occupied

by the molecules is absolutely negligible in respect of the

volume which contains them that we may justifiably conclude

that the frequency of collision is increased in the ratio s : 1

by a diminution of the volume in the ratio 1 : s
3

. If this con-

dition is not fulfilled there is less actual distance between

the molecules, which, therefore, collide the oftener with each

other and in the same ratio impinge the oftener against the

walls of the vessel in other words, the pressure is greater
than according to the former calculation ;

and as this in-

crement in the pressure is the more considerable the less

the volume, the pressure must increase at a greater rate

than the volume diminishes. The denominator PV of the

ratio considered in 7, wherein P denotes the higher pres-

sure, is on this account greater than the numerator pv,
so that the ratio pvjPV has, as actually happens with

hydrogen, a value less than 1.

A deviation in the reverse direction occurs when the

second hypothesis is sensibly in fault and the gas has

marked cohesion. For such a property will tend to lessen

the volume, which will, therefore, on this ground diminish

more rapidly than the pressure increases; PV will thus be

smaller than pv and the ratio pv/PV greater than 1, as is
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the case with all the gases in the table of 7
', except

hydrogen.

Probably both influences occur in nature, and the
numbers inKegnault's table seem to show that in the
case of most gases the influence of cohesion is predominant
so long as the pressure lies within certain limits. But
when higher pressures are employed all gases exhibit,

according to the observations ofNatterer, 1

Amagat,2 and

Cailletet,
3 the same behaviour as under lower pressure is

noted with hydrogen. The product PV increases with the

pressure P, because on account of the dimensions of the

molecules the volume V cannot diminish so much as the

law requires.

These considerations, which we shall repeatedly have

again to take up and extend,
4 show that the departures from

the strict law can also be explained by the theory. Since

the probability of the theory is, therefore, in no respect

prejudiced by the inexactness of Boyle's law, we are

entitled to draw further inferences and conclusions, first of

all, from the simple theory, and to reserve their correction

for later chapters.

9. Increase of Pressure by Heat

Bernoulli also saw that his theory accounted not only
for B o y 1 e

'

s law, but also for the observed increase in the

pressure of a gas to which heat is communicated. Ac-'

cording to the laws of thermodynamics heat is energy ; an

increase of heat, therefore, consists in an augmentation of

the speed of the molecular motion, and this increase of

speed entails increase both in the number of impacts of

the molecules of the gas against the vessel and also in

the strength of these impacts. For a double reason,

therefore, the resultant action of the impacts in a given

1

Pogg. Ann. Ixii. 1844, p. 132, xciv. 1855, p. 436.
2
Comptes Rendus, Ixxxviii. 1879, p. 336

;
Ann. Chim. [5] xix. 1880, p. 345,

[6] xxix. 1893, p. 68.
3 C. R. Ixx. 1870, p. 1131, Ixxxviii. 1879, p. 61

;
Journ. de Phys. viii. 1879,

p. 267.
4 See Chap. IV. 40-51.

C
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time, i.e. the pressure of the gas, is increased by an addition

of heat.

Beyond these considerations no further proof is needed

of the proposition that the pressure increases as the square
of the molecular speed, or, what comes to the same thing, as

the energy of the molecular motion. In agreement, there-

fore, with the general principles of thermodynamics it

follows that the mechanical measure of heat and of tem-

perature is the kinetic energy of the molecular motion.

1O. Mean Value and Components of the Energy

The closer investigation of the relation between the

temperature of a gas and the kinetic energy of its molecules

is rendered difficult by the circumstance that the molecules

have not all the same speed, and, therefore, not all the same

energy. This consideration is really identical with this

other, that the energy of each particle changes on collision.

If, however, we can say that the resultant action of the

/ impacts which each particular molecule makes in a fairly

long time with its energy ever changing is equal to that

which would result if the impacts all occurred with a

uniform mean energy, then we must allow that the resultant

action of the impacts of all the molecules is the same as if

the molecules have all a uniform mean energy of motion.

We gain a further advantage in our calculation by

making use of the proposition that, just like a velocity or a

force, kinetic energy may be separated into three components,
of which each corresponds to a component of the motion in

a given direction. The whole energy is equal to the sum of

its components, as is easily seen from the known formula

0) =

for a velocity G> in terms of its rectangular components u, v, w ;

for this gives/

j/

This proposition enables us to substitute a simpler
motion for that which really goes on in the gas near the

walls of the vessel and produces pressure on it : we divide
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the kinetic energy of all the molecules into three parts
which in the mean are all of equal magnitude, one of them

being the energy of a motion at right angles to the wall, and

the others corresponding to motions which are parallel to

the wall and at right angles to each other.

Only the first of these components of the energy comes
into account in the estimation of the pressure on the vessel,

and we therefore find the correct value of the pressure by
ascribing to all the molecules a velocity perpendicular to the

wall and a kinetic energy equal to one-third of the total

mean kinetic energy of a molecule.

This result of our investigation is identical with the

assumption with which Joule l and Kronig
2 started in

their calculations, as they assumed a gas, enclosed in a cube,
*

to press as strongly against the faces as if one- third of the

molecules moved parallel to each of the three directions of

the edges, so that each face was impinged upon by only
one-third of all the molecules.

11. Calculation of the Pressure 3

With this simplified assumption it is easy to calculate

the value of the pressure from the resultant action of the

impacts which the surface undergoing pressure receives

from the molecules that meet it.

This surface, which we will call the stressed surface,

may be taken either as a mathematical plane or surface

inside the space filled with gas, or as a wall of the

containing vessel. The former assumption has the

advantage of allowing the calculation to proceed without

1 Mem. of the Manchester Lit, and Phil Soc. [2] ix. 1851, p. 107; Phil.

Mag. [4] xiv. 1857, p. 211.
2 Berlin 1856

;
afterwards reprinted in Pogg. Ann. xcix. 1856, p. 315, and

in many other periodicals.
3 Other calculations beside those of Joule and Kronig: Clausius, Pogg.

Ann. c. 1857, p. 353; Maxwell, Phil. Mag. [4] xix. 1860, p. 29, xxxv. 1868,

p. 195
; Stefan, Wiener Sitzungsberichte, xlvii. 1863, p. 91 ; 0. E. Meyer, De

Gasorum Theoria, Vratisl. 1866 ; Pfaundler, Wien. Sitzungsber. Ixiii. 1871,

p. 159; v.Lang, ibid. ixiv. 1871, p. 485, Pogg. Ann. cxlv. 1872, p. 290;

Saalschiitz, Schr. d. phys.-okon. Ges. zu Konigsberg, 19. Jahrg. 1878,

Sitzungsber. p. 45.

c 2
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further hypothesis being necessary ; here, however, I will

first investigate the value of the pressure exerted on a

solid wall by reason of its greater intelligibility.

For this it is necessary to introduce a hypothesis as to

the magnitude of the forces exerted by impact against the

wall. In choosing this we shall have to be guided by the

consideration that a gas suffers no loss of energy through

exerting pressure on the solid walls of its enclosure ;
the gas

therefore receives back from the wall the energy it has given
to it. If this is true for the gas as a whole we shall have

also to assume for each one of its molecules that at every

single impact against the wall its stock of kinetic energy
remains undiminished. We thus arrive at the hypothesis
that each molecule is, like a perfectly elastic ball, thrown

back from the wall with the same speed with which it

struck it. A molecule that impinges perpendicularly against
the wall receives an impulse which is sufficient not only
to stop its motion, but also to give it an equal speed in

the reverse direction. The magnitude of this impulse is

expressed by the product %mG, wherein m denotes the

mass of a molecule and G its speed ;
and just as great is the

impulse exerted on the wall by the molecule during the

impact.
To obtain from this the total force exerted on the wall

we have to multiply this expression by the number of

impacts in the unit of time.

Although this calculation can be made for every possible

shape of the enclosure containing the gas, we will for

simplicity consider the gas to be in a rectangular parallele-

piped, whose edges are a, /3, 7 in length, so that its volume is

a@y. If now there are N molecules per unit volume, there

are Nafiy molecules altogether. According to Joule's

representation of the case, which, as was proved in

10, may be used in the calculation instead of the real

circumstances, one-third part of this number, or j^Na/By

molecules, move in the direction of the edge 7 per-

pendicularly against the two faces a/3. These faces will

be struck alternately by the molecules moving to and fro

between them.
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The number of impacts on one of these faces in the

time-unit is found from the consideration that between

every two successive impacts by one and the same molecule

there elapses the interval during which the molecule passes
to and fro between the faces, that is, the interval in which
it traverses the path 7 with the speed G. The number of

impacts, therefore, which a single particle makes on the face

in a unit of time is the ratio of the path G traversed in the

time-unit to the length 2^ of the path to and fro, and is thus

G/Zy; hence the number of impacts on a face a/3 in the

unit of time made by all the particles is

The product of this number into the impulse 2mG,
which is in the mean exerted at each impact, gives for the

whole impulse exerted on the face a/3 in the unit of time,

that is, for the total force exerted on it,

pa/3 = NmG*a/3,

p being the pressure ; so that the pressure on the surface is

given by
p = pTmG2

.

This formula confirms what has been 'deduced before,

viz. that the pressure p is directly proportional both to the

square of the speed ( 9) and also to N, the number of

molecules in unit of volume, and therefore to the density of

the gas ; it is consequently inversely proportional to the

volume ( 6).

12. Another Calculation of the Pressure

I do not wish, however, to be content with this one

calculation of the pressure, as it suffers from the defect of

containing an unproved and unprovable hypothesis which

it would have been easy to avoid I mean the hypothesis

that the laws of elastic impact hold for the collisions of

molecules, even if only to a limited extent. We do not

need this hypothesis if we investigate the pressure in the

interior of the gas in place of that on the walls ;
and this
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interior pressure can be calculated by the following method,
which is carried out with greater strictness and generality
in the Mathematical Appendix No. 1, l*-7*.

Consider the space occupied by the gas to be divided by
a plane into two halves, a right half and a left half, and
mark off a bit of this plane of unit area. On this unit area

the one half of the gas presses with the same intensity from

its side as the other half from the opposite side. For the

right half would be moved from left to right by the pressure
exerted on it by the left half, if it did not itself exert an

equal and opposite pressure. Now, we measure a continuous

force by its impulse in a unit of time
;
in the meaning of

our theory, therefore, the pressure is nothing else than the

momentum which is transferred in unit of time through
the unit area of the plane from one half of the gas to the

other, or, rather, as need hardly be specially specified, it is

the component of this momentum in the direction of the

pressure. To find the value of the pressure we have there-

fore to calculate the momentum perpendicular to the unit

area which is transferred from one half of the gas to the

other by the molecules that cross the unit area in a unit of

time.

If for simplicity we retain Joule's conception of break-

ing up the motion into three components, we have to assume

tKat one-third of all the molecules move perpendicularly to

/the plane. One-half then of this one-third i.e. one-sixth

of the whole move at any moment from left to right, while

an equal number move from right to left.

In a unit of time those molecules only can cross the

plane whose distances from it at the beginning of the time-

unit are less than the length of path travelled during the

time-unit. Hence all the molecules which cross the unit

area from left to right in a time-unit come from the cylinder,

whose base is the unit area, and whose height is measured

by the speed G, and whose volume therefore is numerically

equal to G. The number of molecules therefore which cross

unit area of the plane in unit time from the left half of the

gas to the right is %NG, if JV, as before, represents the

number of molecules in the unit of volume.
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Since each of these molecules, being of mass m and

moving with speed G from left to right, carries over into

the right half the momentum mG, the molecular momentum
of this half from left to right will have been increased by the

passage of molecules over this unit area in the unit of time

by the amount
x mG =

while simultaneously the same number of molecules cross

the area from right to left, diminishing thereby the oppo-

sitely directed from right to left momentum of the right
half by the same amount ;

and therefore there is produced
in the right half an excess of the left-to-right molecular

momentum over that from right to left of twice this amount,
or of jjNmG

2
. This excess acts continuously during the

given time viz. the time-unit as a force from left to right
on the right half of the medium, and it is nothing else than

the pressure

p = NmG2
,

which is balanced by the oppositely directed pressure of the

other half.

This formula is the same as that found before, and thus

proves that its validity is not bound up with the assumption
before made, which assimilated the problem to that of elastic

collision.

13. Absolute Value of the Molecular Speed

The product Nm in the last formula, of the mass of a

molecule m into the number N of the molecules contained

in unit volume, has a simple meaning, for it obviously repre-
sents the mass of gas in the unit of volume ; but this may
be shortly called the density of the gas, the density of

water of which the mass-unit, one kilogram, occupies the

volume-unit, one litre being the unit density. This defini-

tion of the density p gives

Nm = p.

Consequently the formula may be written

P =
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in which form its agreement with Boyle's law, viz. that

the pressure of a gas is proportional to its density, is more

directly seen.

In this new form, however, it teaches us much more ;

it empowers us to draw a remarkable and very important
conclusion. Since two of the magnitudes occurring in the

formula, viz. the pressure p and the density p, are directly

amenable to observation and measurement, the formula

allows us to deduce from them the third, viz. the value of

G, the mean speed of the molecules, in absolute measure. It

was Joule T who by this conception opened up to investiga-

tion a field which one would have been tempted to think

was closed to human knowledge; and Clausius 2 followed

him along the path thus trodden to explore an unseen

world.

Though measured by the height h of a column of mercury,
the pressure p is not identical with this height, but with the

action of gravity on the column when taken of unit area.

If, then, q denotes the density of mercury and g the accelera-

tion of gravity, we have

P =

and therefore G is given by

G2 = Sgqh/p.

Let us make this calculation for the temperature C.

and the pressure of one atmosphere, i.e. of a column of

mercury O76 metre high. We will take K&gnault's
3

value, q = 13-596, and his values for the density of the

various gases ;
we must therefore take the value of gravity

for Paris, where Begnault made his observations, and put

g = 9*80896 metres per sec. per sec. The density p of the

gas is, like the density q of mercury, to be referred to water
as unity ; but if instead it is referred to air, which under the

1 Mem. of the Manch. Lit. and Phil Soc. [2] ix. 1851, p. 107 ; Phil Mag.
[4] xiv. 1857, p. 211.

2
Pogg. Ann. c. 1857, p. 375 ; Abhandl. iiber d. Warmetheorie, pt. ii. 1867,

p. 254 ; transl. Phil Mag. [4] xiv. 1857, p. 108.
3 M4m. de VAcad. de Paris, xxi. 1847, p. 162.
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given circumstances is 773*3 times lighter than water at

4 C.,
1 we must put

p = s/773-3,

where 5 is the specific gravity of the gas. We obtain in

this manner, according to Clausius's calculation, a general
formula for the value of the mean molecular speed of a

gas at 0C., which we will denote by ,
viz.

($5 = 485 j\/s metres per second,
2

which holds good for all pressures and places, though the

special circumstances of Eegnault's observations were

employed in its calculation.

From this formula Clausius 3 has deduced the follow-

ing values for the mean molecular speeds of atmospheric
air and other gases at C. in metres per second :

Values of &
Air 485

Oxygen 461

Nitrogen 492

Hydrogen ,
. . 1844

The surprising magnitude of these numbers may serve

as new evidence of the degree in which heat, the cause of

these rapid motions, is superior to the mechanical forces

which are at our disposal in capability for doing work ;
and

they further justify the assertion in 4, which is there

not proved, that the speeds produced by gravity in short

periods are too small in comparison with these speeds to

cause any sensible parabolic curvature in the paths of the

molecules.

But, on the other hand, these molecular speeds are not

so great that in comparison with them gravity can be abso-

lutely neglected. If this were so, the continuance of an

atmosphere about the earth would be impossible, as all the

1 Eegnault found p = 0-00129321 = 1/773-270, and Broch (Trav. et Mtm.
du Bureau Int. des Poids et Mes. 1881, pt. i. p. 49) p = 0-00129305 = 1/773-365.

2
[Kegnault's value of p gives 484-898, and Broch's 484-928, and the

number 773-3 for the value of s/p gives 484-907. TB.]
3
Pogg. Ann. c. 1857, p. 377 ;

Abh. u. Warmetheorie, pt. ii. 1867, p. 256
;

Mechanische Warmetheorie, 1889-91, 2nd ed. iii. p. 35, edited by Planck and

Pulfrich.
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molecules of the air would disperse into space in conse-

quence of their speed.
A body thrown vertically upward with a speed of 485

metres per second would rise to a height of 12,000 metres

and then fall back again. A molecule of air, therefore,

which moves at the. earth's surface with a calculated mean

speed of 485 metres per second, cannot in consequence of

this rise higher than 12,000 metres, and remains, therefore,

within the much higher atmosphere. Just as little can

molecules in higher layers leave the atmosphere, as these

layers are colder, and the molecular speed is therefore smaller.

To entirely escape from the earth without returning, a

molecule of air must have at the earth's surface a speed of

at least 11,000 metres per second, which is twenty times

larger than the mean speed at 0; but we are in a posi-

tion l to assume that such a speed can never occur or, at

most, only very exceptionally.

On the moon, whose diameter is four times less than

that of the earth, the acceleration of gravity is nearly six

times less than on the earth
; consequently a molecule

of air with the speed 485 metres per second could rise

to a height of 74 kilometres, and to escape entirely from

the moon it would require a speed of only 2,400 metres per
second. From this we may conclude that if the moon

possesses an atmosphere at its general low temperature
it can in any case have only a very thin one. 2

14. Temperature

The values found for the mean molecular speed are those

at C., and it has already been pointed out in 9 that this

speed increases with the temperature. To determine in

what ratio this increase takes place we have to compare the

formula which theoretically expresses the pressure with the

laws regarding the pressure that have been deduced from

1

Compare 24, 26, 28.
2
Bull,Liveing, and Bryan, Meteorologische Zeitsckrift, xi. 1894, p. 76.

G. Johnstone Stoney, Astrophys. Journ. 1898, vii. p. 25
; Journ. de P/w/s. [3]

vii. p. 528.
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experiment. This comparison leads to a definition of the

nature of temperature in reference to the conceptions under-

lying our theory.
The empirical law, discovered nearly simultaneously by

Gay-Lussac 1 and Dalton, 2 which expresses the de-

pendence of the pressure of a gas on its temperature, is

contained in this amended form of Boyle's law, viz. :

where p and p denote the pressure and density as before,

$ is the temperature C., k a constant, and a the thermal co-

efficient of expansion, or, more correctly, the coefficient of

increase of pressure.
3

From this and the formula proved before, viz.

p =

we obtain the value of Jc by taking the temperature $ = 0,

thus finding
k = i\

where denotes the mean molecular speed at the tempera-
ture 3 = 0; and it further necessarily follows that the

square of the molecular speed G increases in linear proportion
with the temperature 3, the relation between them being

G 2 = 2
(1 + oS).

We thus find that the square of the molecular speed of a gas,

and therefore the kinetic energy of its molecular motion,

increases proportionally with the temperature. The speed
itself is given by

-I- aty-

This law is in complete agreement with the conclusion

obtained in 9 from Bernoulli's theory, viz. that the

kinetic energy of the molecular motion is the mechanical

measure of heat and temperature.

1 Annales de Chimie et de Physique, xliii. 1802, p. 137 ; Gilb. Ann. xii. 1802,

p. 257.
2 Mem. of the Manch. Lit. and Phil. Soc. v. 1802, p. 595 ; Gilb. Ann. xii.

1802, p. 310.
3 See 46.
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15. Absolute Zero of Temperature

The law just found allows the position of the so-called

absolute zero of temperature for gaseous bodies to be

determined.

If heat is nothing else than the kinetic energy of

molecular motion, the temperature at which a gas possesses
no more heat must be identical with that at which its

molecular motion has disappeared, and all atoms and mole-

cules remain in a state of perfect rest.

The expression that has been found for the molecular

speed G shows that this speed vanishes when

If from the measures of Magnus,
1

Eegnault,
2
Jolly,

3

Recknagel,
4 and others, which are all in agreement

5 with

each other, we take 0-00367 for the value of a in the case of

air when the Centigrade scale is used, and put this in the

last equation, we find

3 = - 272-5 C.

for the required temperature of the absolute zero. If we
reckon temperature, not from the melting-point of ice

arbitrarily chosen to start from, but from this absolute zero,

then we obtain for the absolute temperature

= 272-5 + 3;

or, in the general case, for all scales in use we have

e = a + a,

where the value of the constant a is to be taken as the

reciprocal of the coefficient of expansion
6 of air for the

scale in question.

1

Pogg. Ann. Iv. 1842, p. 25.
2 M6m. de VAcad. de Paris, xxi. 1847, p. 73 ; Pogg. Ann. Iv. and Ivii.

3
Pogg. Ann. Jubelband, 1874, p. 82.

4
Pogg. Ann. cxxiii. 1864, p. 127, table i.

5
Mendelejeff, Ber. d. deutsch. chem. Ges. x. 1877, p. 81.

6
[This requires definition ; on the Fahrenheit scale, for instance, the co-

efficient of expansion is usually denned with reference to an initial volume at
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Introducing this absolute temperature, we have for the

mean molecular speed the formula

where H is a constant, the meaning and value of which are

easily decided. 1 The molecular speed, therefore, is a mag-
nitude which increases proportionally to the square root of
the absolute temperature.

This determination of the absolute zero and of absolute

temperature deserves the more notice, as it is the same, or

very nearly the same, for all gases ; for, as experiment

shows, all gases have very nearly the same coefficient of

expansion,
2 and therefore the position of the absolute zero

is approximately the same for all gases.

A real meaning, however, is perhaps not to be ascribed

o the zero 3 so found in the sense of its really denoting a

temperature at which all molecular- and heat-motion ceases

so that there is no more heat. For it is evident that if

there is no more heat-motion there is also, according to

our theory, no more tendency to expand, and therefore no

body can remain in the gaseous state. The formula of

Gay-Lussac's law cannot strictly be applied at such low

temperatures, since possibly and certainly for such gases as

are condensed to liquids at temperatures above 273 C.

this law loses its validity at some higher point, and another

takes its place. Th&jabaoln te.~taroperature that has been

introduced has therefore more the signification of an auxiliary

mathematical function than of a physical reality.

the freezing-point of water viz. 32 F. and in the case of air is taken to be

- x 0-003670 = 0-002039, whereas in the text an initial volume corresponding

to & = is required on all scales ; so that for air on the F. scale we must take

a = 0-002039 -5- (1
- 0-002039 x 32) = 0-002181. TB.]

1

[In fact, H = 485 -=- V(272-5 x s)
= 29'38/ Vs metres per second for the

Centigrade scale. TB.]
2 See 32.

3 On other determinations of the absolute zero of temperature see Gehler's

Physikalisches Worterbuch, x. p. 115.
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16. Pressure and Energy

The formula found for the pressure of a gas,

brings this magnitude into very close relation with another,

namely, the kinetic energy of the molecular motions. Since

the density p measures the mass of gas contained in the unit

of volume, the magnitude

K =

is nothing else than the amount of kinetic energy possessed

by the molecules in unit volume.

The simple relation deduced from these two formulae,

viz.

enables us to express the molecular energy by a magnitude
which is directly amenable to observation. The pressure
and kinetic energy of a gas stand to each other in an in-

variable relation which is independent of the temperature.
This simple relation is nothing else than an expression

of the thought which underlies our theory. Both mag-
nitudes, pressure and energy, have their origin in the

molecular motion ; they are even completely alike in their

nature. Their difference consists only in the difference of

the units in which their values are expressed. For the

pressure which the walls of a gas-holder support forms

also a measure of the kinetic energy of the contained gas.

Both magnitudes change proportionally to the absolute

temperature, and we have

P = *B, and K = #,
VJ ^0

where pQ ,
K

Q are the values of the pressure and kinetic

energy per unit volume at the temperature of the freezing-

point of water, which on the [Centigrade] scale of absolute

temperature is

= 272-5.
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On an ordinary scale of temperature wherein a is the co-

efficient of expansion [see note 6, p. 28] we have

p = Po (l + oS), and K = K (l +

The latter formula, which is the mathematical expression
for the proposition named several times already [ 9, 14],

that the energy of the molecular motion is the mechanical

measure of the temperature, shows that the kinetic energy
increases by the same amount for every degree of tern-

perature.

17. Dalton's Law for the Pressure of Mixed
Gases

From this relation between the pressure and the kinetic

energy of molecular motion a very important conclusion

may be drawn if we extend our consideration to a gaseous
medium containing molecules of different kinds, that is, to

a gaseous mixture.

For such a mixture the calculation of the pressure
exerted would be carried out in exactly the same way as

was done in 11 in the special case of a simple gas. The

pressure on a surface is, in the more general case of a

mixture of gases, also measured by the sum of the impulses
of the molecules on a unit of area in a unit of time ; its

value is therefore represented by the total energy given

up to the surface by all the different kinds of molecules

present.

The formula for the value of the pressure exerted by
a mixture of different gases therefore takes the slightly

modified shape
p = (#, + K, + ...),

where the magnitudes denoted by K are the values of the

kinetic energy per unit volume of the molecular motions in

the single components of the mixture, and are given by

p p 2 ,
. , . being the densities of these components, and G

I}

2 ,
. . . the mean speeds of their molecules.
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But the values of the pressures which the components
of the mixture would severally exert if separately occupying
the volume of the mixture are

Pi = f#i> P* = fKv - -
J

whence

P=Pi +P*+ ->

or the pressure exerted by the mixture is equal to the sum of
the pressures separately exerted by its several components.

Thus the law found by Dal ton 1 for the pressure of

mixed gases, and confirmed and defended by Henry 2

against many attacks, follows as a necessary consequence
from the assumptions underlying our theory. Of these one

was assumed by Dal ton, viz. that molecules of different

gases act on each other neither attractively nor repulsively,

and it is the most important for our present case
; for it is

this assumption which entitles us to consider that we have

to take into account kinetic, and not -also potential, energy.
That this assumption is not absolutely exact, but only

approximate, has already several times been pointed out

[ 4, 8]. Just as Boyle's law, this of Dalton can have

only a limited validity.
3

Dalton's hypothesis, that molecules of different gases
neither attract nor repel each other, is often taken to mean
that they do not exert pressure on each other. This is

quite inadmissible on our theory, for molecules of different

kinds moving about in a given volume collide with each

other just as much as if they were of the same kind, and,

consequently, must exert pressure on each other, as pressure
is nothing but the sum of the actions produced by impact.

And this, reading of Dalton' s hypothesis is also in

disagreement with experiment ; for different gases do really

1 Mem. of the Manch. Lit. and Phil. Soc. v. 1802, p. 535
; Gilb. Ann. xii.

1802, p. 385.
2 Nicholson's Journal, viii. 1804, p. 297 ; Gilb. Ann. xxi. 1805, p. 393.
3 Kegnault, Mem. de VAcad. xxvi. 1862, p. 256 ; Andrews, Phil. Trans.

clxxviii. 1887, p. 45; Cailletet, Journ. de Pliys. [1] ix. 1880, p. 192;

Galitzine, Ueber das Dalian 1sche Gesetz, Inaug. Diss. Strassburg, 1890 : Wied.

Ann. xli. 1890, pp. 588, 770 ; Gott. Nachr. 1890, No. 1
;
U. L al a , Comptes Rendus,

cxi. 1890, p. 819, cxii. 1891, p. 426 ; Nalurw. Rundschau, vii. 1892, p. 188.



17 PRESSURE OF GASES 33

exert pressure on each other, as has been proved by mani-
fold.,ol>servations .

1

\/The meaning of this law is simply that a mixture of two
or more gases possesses the same amount of kinetic energy
as its components taken together, and the correctness of

this fact is proved by the observation that if two gases at

the same temperature and pressure are mixed together there

is neither generation nor absorption of heat.

18. Heating by Compression

Eemembering that the pressure, energy, and tempera-
ture of a gas increase together in constant ratios, we have

at once an explanation of the fact that the temperature of

a gas is raised by compression and lowered by expansion.
Even without employing the assumptions of the kinetic

theory, it is not difficult to see that a diminution of volume

caused by heightened pressure must be bound up with an

increase of energy, and that part of this energy may be

transformed into heat ; expansion, on the other hand, requires
an expenditure of mechanical or heat energy to overcome

the opposing external pressure. All, however, is not ex-

plained by this general consideration. We obtain a deeper

insight into the nature of the phenomenon when we inves-

tigate more closely the nature of the molecular motion in a

gas that is being compressed or expanded.
Let the gas be in a cylinder which is closed by a movable

piston. To keep this in equilibrium a pressure must be

exerted upon it which will balance the action of the mole-

cules impinging on it. But when an excess of pressure acts

on the piston from the outside, the piston is driven into the

cylinder; and during this motion of the piston the forces

that come into play in the collisions with the oppositely

moving molecules are increased. The molecules are, there-

fore, thrown back with greater vigour, and consequently

1 For instance, Lament, Pogg. Ann. cxviii. 1863, p. 168; Schlomilchs

Zeitschrift, viii. 1863, p. 72, ix. 1864, p. 439; Bun sen, Gasometrische

Methoden, 1857, p. 209; 2nd ed. 1877, p. 267; 0. E. Meyer and F.

Springmiihl, Pogg. Ann. cxlviii. 1873, p. 540.

D
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attain a greater speed on rebound from the moving piston

0an if they strike it when fixed. But since the kinetic

Venergy of the molecular motion is nothing but heat, it is

obvious that the compressing motion of the piston com-

municates heat to the gas.

The reverse occurs when the pressure on the piston is so

small as to be overcome by the impacts of the molecules.

The piston then moves in the same direction as the mole-

cules that strike it, which therefore attain a less speed by
the impact, as they give part of their former momentum to

the piston. The gas consequently cools in doing work by
pushing the piston out.

In this way the heating of a gas by compression was

explained by Kronig
1 and Clausius. 2 A mathematical

theory of the phenomenon has been given byWoldemar
Voigt.

3

It has been shown by Clausius that the heat pro-
duced by pressure can easily be calculated on the grounds
of our theory, and that it is equal to the work done. In

a rather later memoir 4 he gives a proof which we here re-

produce.
We will, for simplicity, continue to use Joule's pro-

cedure, described in 10, and therefore assume not only that

all molecules possess the same mean speed G, but also that

only one-third of the molecules are to be taken into account

in calculating the impacts on a wall of the containing
vessel. This assumption is admissible if the compression
takes place so slowly that the disturbance of the equilibrium
has always time at once to subside. With this supposition
the number of molecules which in unit time meet unit area

of the wall of the vessel is %NG, by 12, and the number
therefore in unit time which strike the surface F of the

piston is

1

Grundzuge einer Theorie der Gase, 1856 ; also Pogg. Ann. xcix. 1856, p. 315.
2
Pogg. Ann. c. 1857, p. 365 ; Abhandl. pi. 2, 1867, p. 242.

3 Gott. Nachr. 1885, No. 6, p. 228. See Natanson, Wied. Ann. 1889,

xxxvii. p. 341.
4 Mech. Warmetheorie, iii. 1889-91, 14, p. 29.
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Each of these molecules would, after impact, rebound in

the opposite direction with unchanged speed if the piston
were at rest. But let the piston which compresses the gas
move forward with a speed a, in the direction opposite
that of the molecules which strike it with speed G. The

strength of the rebound is thereby increased in the ratio in

which the relative velocity G -f a exceeds the molecular

speed G. A rebounding molecule therefore experiences in

the impact an impulse, which is not ZmG as before, but

the greater one, 2m(Gr + a), which results from its losing
its initial speed G, and gaining the speed G + 2a in the

opposite direction ; its kinetic energy therefore increases

during the impact by

Jm(G + 2a)
2 - JmG2 = 2ma(G + a).

This we may with sufficient exactness replace by 2waG,
since we have assumed that the compression goes on so

slowly that every disturbance of the molecular motion at

once subsides ; for we thereby also assume that the speed
a of the piston is negligible in respect of the speed G.

Since each molecule gains this amount of energy at

every collision, the whole gain of energy by the gas in unit

time due to the impact of ^FNG molecules, as above, on
the piston is given by

This product has a very simple meaning ; for the pressure
of the gas which the piston has to overcome is p = NmG\
by 11, and the diminution which the volume V of the

gas experiences in unit time is 8V = Fa, as in this time

the piston moves through the length a in the cylinder, the

sectional area of which is F, and therefore the expression
found for the increment of energy is

NmG 2.Fa = p 8V.

It is thus proved that the kinetic energy gained by the gas

during the compression is equal to p 8V, the work which

the piston must do to overcome the pressure of the gas.

D 2



36 MOLECULAR MOTION AND ITS ENERGY 19

19. Cooling by Expansion

A.U exactly the same manner the reverse phenomenon
janay be explained by the kinetic theory, viz. that a gas

V must cool when it does work by expanding, and that it

thereby loses an amount of molecular energy equal to the

work done.

If by its pressure the gas pushes back the piston with a

speed which, as before, we will denote by a, the molecular

speed of a molecule which impinges on the piston diminishes

from G to G %a, and there passes therefore from the

molecule to the piston at each impact the energy %maG.
Thus the molecules that strike the piston in unit time,

in all, lose the total energy

.Fa=p SF,

which is the work done by the gas in expanding through
the volume SF against the pressure^.

The rise of temperature that accompanies the compres-
sion of a gas and the fall that results from its expansion can

from this be easily calculated if the value of the specific

heat of the gas at constant volume is known. We have

only to apply to this problem the general theorem of

thermodynamics that heat and energy are equivalent to

each other. If we represent by A the heat which is equi-

valent to a unit of work, Ap SF is the heat which is added

to the gas during the compression of its volume from F to

F SV or which leaves it during the expansion from F to

F 4- SV. We can otherwise express this heat in terms of

&S, the change produced in the temperature $. If c is the

specific heat at constant volume, pV the mass of the gas in

the cylinder, and therefore pVc its heat-capacity, the rela-

tion between the heat produced by compression and the

corresponding rise of temperature is

= -ApSV,

and this holds good too for the case of the gas cooling by

expansion. The negative sign has to be introduced into the

formula to indicate that an increase of volume corresponds



19 PRESSURE OF GASES 37

to a diminution of temperature, and vice versa. The change
of temperature which occurs is therefore

cp V
Here c denotes the specific heat at constant volume and

not that at constant pressure. That this is so we shall

easily see by again analysing the procedure. Without

transgressing the law of the conservation of energy we can
thus picture the transaction

; that the work of compression
p SF first produces a progressive velocity a of the gas, the
volume being diminished without the to-and-fro motions of

the molecules being altered, and that then, on the piston

ceasing to move forwards, the energy of the progressive
motion communicated to the gas is transformed into heat

without change of volume by the collisions of the molecules.

In the calculation, therefore, it is the specific heat at constant

volume that is to be taken into account.

20. Vaporisation

Many gaseous bodies are condensable into liquids by
application of pressure only, without the necessity of re-

moving heat from. them. Such substances are called

vapours, in contradistinction to gases proper.
The cause of liquefaction by pressure alone we can only

look for in the forces of cohesion. If the molecules of a gas
are brought nearer each other by increase of pressure, those

forces are exerted in greater degree ; and it may happen
that, if the molecules are brought near enough together,
their action is so much increased that the molecules cannot

separate anymore from each other. For this it is necessary
that the kinetic energy of the molecules shall be no longer
sufficient to overcome the energy of the cohesive forces. If

this limit is reached, the vapour begins to change into

liquid.

There is now a condition of equilibrium, in which one

part of the substance remains liquid and another hovers

above the liquid as vapour. In this vapour the molecules



38 MOLECULAR MOTION AND ITS ENERGY 20

in general move in straight lines, except when two approach

very near to each other. In consequence of this linear

motion it must often happen that a molecule of vapour
strikes against the surface of the liquid ;

in this case, under

favourable conditions, it may be held there by cohesion.

In the liquid, too, the molecules are not at rest, but are

in as brisk motion as in the vapour, but not in straight lines.

In consequence of this motion it may happen that a liquid

particle gets out of the range of the forces of cohesion and

passes again into the vapour.
There is, therefore, a continuous interchange of molecules

between liquid and vapour, and, since there is equilibrium, as

many molecules must on the average pass from the vapour
into the liquid as from the liquid into the vapour.

On considering that this equilibrium between liquid and

vapour extends also to temperature, we see that not only as

much mass but also as much energy necessarily passes from

the liquid to the vapour as from the vapour to the liquid.

The same number of molecules therefore carry over the

same amount of energy from the one state of aggregation to

the other, and this is only possible if the energy of a

molecule is as great in the liquid as in the vapour.
In this theorem we have to remember that we are not

dealing with kinetic energy only, but in the case of liquid

molecules with the sum of their kinetic and potential

energy.
This equilibrium will only be maintained, however, when

the vapour has a certain density, so that there is a sufficient

number of molecules to bombard the surface of the liquid.

Such a vapour is called a saturated vapour.
If liquid is introduced into a vessel in which there is at

first no vapour of this substance, vapour at once begins to

form in consequence of the heat present. Molecules detach

themselves from the liquid surface and move about as

molecules of vapour in the free space above. Such a

separation of a molecule from the liquid left behind takes

place the more easily the greater the energy which the

escaping molecule possesses. With the molecules that

have darted off, therefore, the liquid loses a sum of energy
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which is greater than that which on the average falls to

these molecules, and thus for those that are left behind
there remains a less amount of energy than they possess
hitherto on the average. It is thus explained on our theory
that a liquid cools by vaporisation. The heat that has dis-

appeared has gone in doing the work of expansion.

21. Absorption and Adsorption

Quite the same state of things occurs when a gas or

vapour is dissolved in a liquid which is not of the same sub-

stance as occurs in the phenomenon of absorption. In this

case the gaseous substance throngs into the liquid in conse-

quence of the motion of its molecules, and is held fast by
the attraction exerted on it by the liquid ;

and this process

goes on until equilibrium between evaporation and conden-

sation occurs.

On the absorption of a gas by a liquid, heat is developed
which is greater in amount than the latent heat of vaporisa-
tion. As the latter is equal to the sum of the kinetic energy
of the molecules of the gas and the potential energy required
to overcome the cohesion in the liquefied gas, it follows

that still more energy than this is required to separate the

gas from the liquid which has absorbed it. Hence there is

no doubt as to the existence of an attraction of the gas by
the liquid.

If the force with which the liquid, when in the state of a

saturated solution, retains the gas were as great as if the

liquid were pure, the number of the molecules of gas
absorbed by the liquid would be exactly proportional to the

mmiber of molecules remaining above it in the gaseous

/state, and Henry's law, that the mass of gas absorbed

increases proportionally to the acting pressure, would hold

strictly. But as this supposition cannot be accurate when

large masses are absorbed, Henry's law can only approxi-

mately represent the truth.

A rise of temperature also increases the energy of the

molecules in the absorbed gas ; they will, therefore, at a

higher temperature come oftener into a position of being
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able again to escape from the liquid. Therefore the higher
the temperature the less gas will be absorbed, as observation

has taught.
Molecules of a gas can also be held fast by a solid body

just as by a liquid, porous bodies especially being able to

condense considerable masses of gas. In other cases the

mass condensed increases with the extent of surface of the

body, and we must therefore assume that only the surface

layers are active in causing condensation by the attractive

forces they exert. On this account it has been thought

necessary to introduce a new name and designate the

phenomenon as Adsorption when the condensation is caused

by a solid body. It differs, however, in nothing else from

absorption in liquids ;
on the contrary, everything that has

been stated about absorption can be ascribed to adsorption
without further remark. One such fact is that by adsorp-
tion also can considerable heat be developed, as, for instance,

in Dobereiner's lamp, on the condensation of hydrogen

by spongy platinum.
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CHAPTEE III

MAXWELL'S LAW

22. Unequal Distribution of Molecular Speed

THE mean value of the molecular speed given in 13

is not the arithmetic mean of all the different values of the

speeds with which individual molecules move. The magni-
tude G by which the mean value in question is denoted

has been denned in 10 to be such that the mean energy
of the molecules which strike against the wall would be

unaltered if all of them possessed this same speed G instead

of their actually different speeds. From this it results that

with that equalised distribution the gaseous medium retains

the same energy and exerts the same pressure asjvith its

actual unequal distribution.

So long as we are concerned only with the calculation of

the pressure and energy, therefore, it is sufficient to ascribe

this mean speed to all molecules. But if we wish to in-

vestigate more nearly the character of the gaseous state, we
have to ask ourselves whether a difference in the values of

the speeds is possible, and, further, how these different speeds
are actually distributed among the molecules.

That the equilibrium of a swarm of gaseous molecules

in .no way depends on the speed of all the molecules being
the same, and that, on the contrary, there must really be a

non-uniform distribution of speed among the molecules, can

be seen without calculation. For it is easy to prove that if

all the molecules had exactly equal speeds at any moment,
this distribution of speed would be at once disturbed, and

in place of it a non-uniform distribution would be estab-

lished.

Consider, for instance, the case of a moving particle
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being struck perpendicularly to the direction of its motion

and so that the direction of the blow passes through its

centre of mass
; then the striking particle will cede part

of its speed to the struck particle, which, as it experiences
/no resistance in the direction of the path it has thus far

traversed, will retain its own motion undiminished, and,

therefore, receiving in addition a further speed from the

striking particle, will move more quickly than before the

collision, and in changed direction, while the other moves
more slowly, since it must lose speed.

This example shows that in such an aggregation of

molecules as we assume in gaseous bodies in our theory
the speeds of the individual molecules cannot be equal in

the state of equilibrium. Equilibrium can, therefore, only
consist in a condition of continuous interchange of speed
between every pair of colliding particles, every particle now

gaining and now losing, its velocity being now big and now
little, and changing as often in direction as in magnitude.

It is for this continuous change of motion of the particles

as they dash about that we have to investigate the law.

23. The Applicability of the Calculus of

Probability to the Kinetic Theory

The attempt to deduce a law for something that is sub-

ject only to chance may seem singular and strange, but this

should not deter us from undertaking a research which

touches the very core of the kinetic theory.
This theory, indeed, seeks for the cause of regular phe-

nomena and regular properties of gaseous media in irregular

tumultuous motions of the molecules. We have here to

look at the observed facts, not as direct necessary conse-

quences of unchangeable laws as is usual, but as the result

of a large number of elementary processes which are subject
to no law but that of chance. And yet all phenomena
occur in unchangeable regularity.

This is certainly a very uncommon position, but it is

by no means unwarranted, and it is also not in the least

limited to this theory only. During every chemical reaction
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the atoms which separate and combine again must at first

move confusedly about in irregular disorder till the new
regular arrangement is found. A still more striking example
of a regular law arising from chance events is afforded by
meteorological phenomena, the varied change of which
follows a law that is clearly recognisable from the means of

long periods.

In all these cases, and in our theory as well, the regu-

larity arises only from the great number of the elementary

processes from which it results. If this number were not

so great, the result in similar cases would not always be

absolutely and fixedly one and the same, but there would
be different results conceivable of more or less probability.
But the greater this number, the greater the probability that

of all possible consequences a single perfectly definite one

would occur just as if it were directly caused by the opera-
tion of a fixed law of nature instead of by the play of

numberless casual events.

Applied to our theory this general view teaches that in a

really infinite number of molecules of gas a condition must

exist, the law of which must admit of recognition and even

of mathematical expression, in spite of the chance character

of the motion of each individual molecule. We must there-

fore be able to determine how many molecules per thousand,

say, taken at random from the countless swarrn, have a

speed of a definite magnitude, or, in somewhat different

words, we must be able to express numerically the chance

that any given molecule in a region filled with an infinite

host of molecules should attain a speed of given value.

In a gaseous mass consisting of a finite number of mole-

cules this condition of simple regularity will not be attained,

as in the case of an infinite number at least not at every

instant. In a finite system this law shows itself only if all

the states which occur with continual change in the course

of longish periods are taken into account together. The

particular condition of regularity which is exhibited at every

moment by an infinite swarm determines also for a finite

number of molecules its mean state during a considerable

period.
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The arrangement that changes from moment to moment
and represents the distribution of the different speeds among a

limited number of molecules, oscillates therefore about a mean

regular state, and in such wise that the result which ensues

in the course of a considerable time is the same as if that

regular state had existed at each moment. In the calcula-

tion of the result we may therefore consider that regular
distribution of speeds as always existing instead of the actual

circumstances of constant change.

24. Maxwell's Law

/The law which regulates this distribution of speeds

among the gaseous molecules was discovered by James
Clerk Maxwell, 1 who thus made it possible to calculate,

by strict mathematical methods, the mean values of the

speeds which hitherto had been only estimated, and a know-

ledge of which was necessary for the development of the

theory of gases.

Maxwell's law of distribution, the theoretical founda-

tion of which rests on the calculus of probabilities, agrees

exactly in form with another law which is also founded on

this calculus. The possible values which the components of
the molecular velocities can assume are distributed among
the molecules in question according to the same law as thepos-
sible errors of observation are by the method of least squares
distributed among the observations.

According to this law the equilibrium of a gas depends,
of course, as was to be expected, in no way upon equality of

motion in all the particles. All values between and oo

occur for the components of velocity, and in such fashion

that small values occur oftener than large ones, just as

according to the method of least squares errors of small

magnitude should happen oftener than large ones.

In order to give an idea of this law without having
recourse to mathematical formulae I will quote a few figures.

2

1 Phil. Mag. [4] xix. 1860, p. 22
; Scientific Papers, i. p. 377.

2 Obtained from the values of the integrals

(

}

dze- z
"~

= 0-74682, f

2

<fee~*
a = 0-13525, Vdze~** = 0-00413.
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If 10,000 molecules move with such velocities that their

components in any given direction lie in 'magnitude between
and a certain value W (see 2 7), then there are only 1,811

for which this component lies between W and 2TF, and but

fifty-five with a value between 2TF and 3JF for the compo-
nent. The small values therefore predominate in remark-

ably large proportion, and the probability of larger values of

a component of the molecular velocity, just as that of large
errors of observation, is vanishingly small.

In this form the law expresses the frequency of occur-

rence of the values which the three components of the

velocity assume. We shall show later on, in 26, how
the probability of a particular value of the resultant velocity
of a molecule can be deduced from it.

As has been already mentioned, Maxwell's law can be

employed in two ways. First of all it tells us how many of

a certain number of molecules move with a given velocity
at the same moment ; but, secondly, it serves equally well

> to give the frequency with which one and the same particle
> attains a given velocity in consequence of its encounters

with other particles.

26. Proof of Maxwell's Law

Several demonstrations resting on different footings have

been tentatively given for this law of distribution of mole-

cular speeds.

Its discoverer, J. Cl. Maxwell, first
1

proved it by the

assumption of a principle which, though true, itself needs

proof.
2 Since Maxwell himself recognised this defect, he\J/

later gave a second proof,
3 the basis of which is subject to

''

no doubt. Since the state of equilibrium with which the

law is concerned is not disturbed by encounters between the

molecules, but is continuously maintained, every change

produced by collision must at once be cancelled by other

collisions. A velocity of a particular magnitude and direction

1 Phil Mag. [4] xix. 1860, p. 22
; Scientific Papers, i. p. 377.

2 See the end of 14 * of the Mathematical Appendices.
3 Phil. Trans, clvii. 1867, p. 49; Phil. Mag. [4] xxxv. 1868, p. 185;

Scientific Papers, ii. p. 43.
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yfill therefore result from one collision as often as it will be

/ destroyed by another ; and from this principle, together with
^ the laws of collision, Maxwell's law may be established.

L. Boltzmann 1

completed and perfected this proof by

employing stricter mathematical work, and thus removing

just ground for doubt. A further step forward we owe to

H. A. Lorentz,2 who raised a new objection and improved
tne calculation, thereby inciting Boltzmann 3 to again

/give a new proof, which proof may now be considered as

quite free from objection.

Further, Kirchhof f has given a proof of the law in his

Lectures 4
; buTligairist this, too, according to a remark of

Boltzmann,5
objection may be made.

In a different way the proof of this law was attempted

in^the first edition of this book. The weak points of this

Attempt were removed by N. N. Pirogof f,
6 and a varied

./form of Pirogoff's proof is given in the second of the

Mathematical Appendices.
These mathematical proofs cannot be repeated here, nor

> should we attempt here to give them
;
I will only indicate a

striking point that arises from them.

Since the law of distribution which we are looking for

is concerned with the state which in time results from the

encounters between molecules, we might expect that a

knowledge of ivhat occurs during the encounters might be

necessary in order to find the law. It would seem that we

ought to know the law of collision for molecules if we would

calculate the final result of the collisions ; and apparently
we must therefore know whether the molecules behave

during collision as elastic bodies, or whether their collisions

occur as those between hard or soft bodies.7

1 Wiener Sitzungsber. Iviii. 1868, p. 517 ; Ixvi. 1872, p. 275.
2 Ibid. xcv. 1887, p. 115.
3 Ibid. xcv. 1887, p. 153.
4
Vorlesungen iiber mathematische Physik, iv. (Theorie der Warme, heraus-

geg. von Planck), 1894, p. 142 (14th Lecture).
5 Munchener Sitzungsber. xxiv. 1894, p. 207. Ibid. (Planck) p. 391.
6 Journal der russ. physik.-chem. Ges. xvii. 1885, pp. 114-135, 281-313.
7 A discussion of the question how far the laws of elastic collision are

applicable to molecules of gas is given in Chapter X.
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But the knowledge of the laws of collision proves to

be quite unnecessary for the proof of Maxwell's law.

So little indeed is it necessary, that Maxwell was able in

course of time to change his views on this point without

having to upset or reject the theory established by him.
At Erst he thought it probable that two colliding mole-

cules, just as two hard elastic bodies, would, after the

collision in which they might have come into actual contact,

be hurled apart by a suddenly arising and vanishing force.

But later, on grounds which I shall examine in Chapter X.

123, in discussing the molecular forces, he declared it more

probable that two molecules of gas act on each other

with repulsive forces, which, varying inversely as the fifth

power of the distance, are insensible at greater distances,
but at smaller suffice to force apart two molecules coming
very near each other. We may hold either the one view
or the other without prejudicing the validity of these

proofs.

This shows that for the purpose we have first in view it

would be superfluous to indulge in speculations on the \JL-

character and the laws of the forces that come into play

during the collision of molecules. A decision in favour of

a particular hypothesis would only diminish the value of

Maxwell's law, as it would seem to limit its validity. JLor_
the law is valid independently of all hypotheses.

For the proof of Maxwell's law it is therefore sufficient,

as Boltzmann 1 has already recognised, to impress the

quite general, and on that account jndubitable, propositions^^
of analytical mechanics ; Maxwell too has made use of these

alone. So in the proof given in the Mathematical Appendices

( 10*) it stands out clearly that Maxwell's law needs the

assumption of these general propositions only.

The most important of these propositions is that of the

Conservation of Energy. The admissibility of its application

to molecular motion will not be questioned, but there is one

precaution to mind. If the molecules do not consist of

single massive points, but are made up of combinations of

several atoms, we have to take into account not merely
1 Wiener Sitzungsber. Ixiii. 1871, pp. 397, &c.
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the energy of the molecular motion, but also that of the

motions of the individual atoms, which presumably consist

of oscillations and rotations about the common centroid.

The proposition of the conservation of energy makes it

necessary to admit certain assumptions, which, indeed,

would be contested by no one, but which are only hypotheses,

since they fail to possess the certainty afforded by a mathe-

matical proof. In the particular case when we apply this

proposition to a system of material particles endowed with

mutual attraction or repulsion, the most essential of these

hypotheses is that the action of one particle on another is

equal to the reaction exerted on the first by the second.

If this assumption is admitted, no further hypothesis is

needed for the proof of Maxwell's law save the proposition

y
of the conservation of energy, the other general theorems of

/ analytical mechanics which are used for the mathematical

proof being immediate consequences of this assumption

regarding action and reaction. This applies especially to the

theorem of the Conservation of Momentum of the centroid

of a system a theorem which is brought into our proof

only when the gas possesses a general forward velocity in

addition to its internal heat-motion, i.e. when it is in a

state of flow. The same is true with regard to the so-

ailed theorem of the Conservation of Areas or of the

Moments of Momenta', this comes into consideration only
when the gas is in a state of rotation.

If then no further hypotheses are needed for the proof
of Maxwell's law, the assumption underlying the first

proofs, viz. that the molecules are simple material points,

can especially be dispensed with. The law therefore holds

not only for monatomic molecules, i.e. such as consist of a

single atom or one massive point, but also for polyatomic
molecules or chemical combinations of several atoms.

That this extension of M axw e 11
'

s law to compound mole-
cules is admissible was first recognised by Boltzmann 1

who has thereby exercised a very important influence on the

further development of the theory.
It must, however, not be overlooked that the law has

1 Wiener Sitzungsber. Ixiii. 2. Abth. 1871, p. 397.
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prference only to the molecular motion in which all the

/components of the molecule equally take part. For the
atomic motions that exist by its side, the motions, that

is, which the atoms separately possess within the mole-

cule, the law can hold only with a certain limitation, since

there is a difference, which we shall discuss in 57 and

60, between the free motion of a molecule and the con-

strained motion of the atoms that is due to affinity.

Maxwell's law needs also modification when the gas is

subject to external forces, such as gravity. We may here

neglect this action, as it does not come into account
in physical researches, but only in meteorological investi-

gations ;
it is therefore sufficient to mention that, in

addition to Maxwell 1
himself, there are, among others,

^Boltzmann,
2 Loschmidt, 3 and Ferrini 4 who have

P occupied themselves with this extension of Maxwell's law.

26. Fuller Explanation of Maxwell's Law

According to Maxwell's law the occurrence of the

zero value for one of the three components of velocity is

more frequent than that of any other given value. One

might be inclined, therefore, to conclude that the most fre-

quently occurring case would be that in which each com-

ponent, and consequently the resultant velocity, is vanishingly
small. This conclusion, however, must be false, as it can

only extremely seldom happen that a molecule comes to

rest in the midst of a swarm of molecules rushing rapidly

about.

It is easy to explain the apparent contradiction between

Maxwell's law and this undoubtedly true fact. When
one of the components is zero there is no necessary reason

for the other two to vanish, but they may have any

possible value. In the case, therefore, which, according to

Maxwell's theory, is the most probable, one of the three

components may very well vanish without the resultant

1 B. A. Beport, 1873, p. 29.

2 Wiener Sitzungsber. Ixxii. 2. Abth. 1875, p. 427.

3 Ibid. Ixxiii. 2. Abth. 1876, pp. 128, 366.

4 Eendiconti d. E. Istituto Lombardo [2] xviii. 1885, p. 319.

E
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velocity of the molecule being zero. We shall rather obtain

a value differing from zero in determining the mean of the

absolute values of the molecular speed without reference to

direction, in all those cases in which one of the three com-

ponents is zero.

Maxwell's law must therefore be differently expressed

than it is in 24, when it has reference not to the com-

ponents of the velocity, but to the actual speed itself. We
can then explain the law as follows :

There is a most probable value of the speed which occurs

more frequently than any other. Other values of the speed,

whether greater or less, occur the oftener or are the more

probable the nearer they approach to equality with the most

probable. Infinitely great as well as infinitely small values

of the speed have infinitely small probability. Molecules at

rest, therefore, are infinitely seldom to be met with.

The connection between the two different forms of the

law may be clearly illustrated by a comparison employed by
Maxwell l in a lecture.

If practised marksmen shoot at a target, the hits are most

crowded together near the centre, and there are but few

shots near the edge ;
the marks are approximately repre-

sented by the figure on page 51. In this case, too, the distri-

bution of the hits follows the same law which Maxwell has

found for the molecules of gas, viz. the law of errors ; for

a shot at the target is an attempt to hit the centre, just as a

measurement is an attempt to hit the true value of the

measured magnitude. Small deviations from the centre are

therefore more probable than large ones in target practice
also. The shots can deviate to right or left, above or below,

and thus both horizontally and vertically. We have therefore

in this case two components of deviation to distinguish, a

horizontal and a vertical
;
and for each component the value

zero is the most probable, since if we draw a series of

parallel lines, say vertically, on the target, that one which

passes through the centre passes also through more shot-

marks than any other. But what is true for the components
1 ' On the Dynamical Evidence of the Molecular Constitution of Bodies,'

J. Chem. Soc. xiii. 1875, p. 438 ; Nature, xi. p. 357 ; Scientific Papers, ii. p. 418.
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cannot be immediately transferred to the resultant deviation
from the centre. The points that are equally distant from
the centre do not lie on a straight line, but on a circle

described about the centre; and the circle which passes
through the most shot-marks is by no means one of the
innermost circles of the target, for the inner rings are too
small to contain many marks in fact, the circle passing
through the most shot-marks lies on a ring of medium size.

The same relations hold also for the values of the speeds

FIG. 1

and of the components of velocity which occur the most

frequently among the molecules of gas.

A more exact representation of the unequal probability
of different values of the speed is given by the curve on

page 52, the course of which shows us the law regulating the

number of molecules which move with a given speed. In

the figure the function which determines the frequency of a

value is represented by a curve with the equation

419 xz

7T *X 6
'

.

This construction means that the magnitude of the ordinale

y of the curve is equal to the probability of a speed whose
E 2
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magnitude is equal to that of the abscissa x, and for the

unit of speed that value is chosen which is the most

probable.
This graphic representation of the law lets us easily see

that the values of the speed that occur with any considerable

frequency are only slightly different from that of greatest

probability, whence we might conclude that the idea of all

the molecules possessing equal speed is really approximately

admissible. For a speed which is three or even only two

to

08

O 6

0-4-

oz

1.

FIG. 2

and a half times as great as the most probable speed has

an almost vanishing probability, as a glance at the figure

shows, so that no speeds can in fact occur which con-

siderably surpass this value. And this is the case, too, with

jadarkedly smaller speeds.

Pirogoff
l has therefore gone so far as to assume that

the values of the molecular speed which really occur lie

between fixed limits, both the very large and the very small

values of the speed being cut out by some equalising action

such as a resistance or something of that kind. We may,
in fact, as we easily see from the curve, determine such

1 Fortschr. d. Physik, 1886, 42. Jahrg. 2. Abth. p. 241.
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limits that the variable values lying between them give the

same mean kinetic energy as if all the values are possible.
We have merely to take one limit on the ascending and the

other on the descending branch of the curve at corresponding

places.

/The probability that the speed of a molecule lies between
Aveu limits is represented on the figure by the area included

'^between the curve, the axis of abscissae, and the ordinates

corresponding to the limits. In this way we find, for instance,

that the probability of a value between O9 and 1-1 of the

most probable value is given by 0'2 x 0*8 = O16
; that is,

16 molecules out of every 100, or 1 out of every 6, have

speeds which deviate less than 10 per cent, from the most

probable value. There are, on the contrary, as we similarly

find, about 9 molecules in every 100 which possess within

10 per cent, of half the most probable value, and about 11

in 100 with a speed equal, within the same limits, to 1J times

this value. There are, further, but 3 in 100 with a speed
4 times less than, and scarcely more than this number with

a speed twice as great as, the most probable.

27. Mean Value of the Speed

These numbers teach us, as indeed does a glance at the

curve, whose ascending branch is steeper than its descending,
that the number of particles, whose molecular speed is greater

than the most probable, surpasses that of the particles which

move with a speed less than the most probable. The most

probable speed is therefore not also the arithmetical mean
of the various speeds, but the mean value of the speed is

greater than the most probable. Similarly the mean value 1

of the,_molecular energy_Js__reater than the energy of a

molecule which moves with the most probable speed.

The values of the molecular speed, which we have calcu-

lated in 13 by Joule and Clausius' method, from the

pressure exerted by gases, are, therefore, not at all the most J

probable values of the speed of the molecular motion. ^

Indeed, we cannot strictly regard them as correct means

of the various speeds ;
at least, they are not the arithmetic
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means, but the values of the speed which correspond to

the arithmetic means of the energy of the different particles.

(See 10.)

By a simple mathematical consideration we may easily see

that the method by which Joule and Clausius calculated

the mean values of the molecular speed must in all cases

give numbers which are greater than the real arithmetic

means. Consider n particles moving respectively with the

speeds a, &, c . . .
;
the mean value of these different speeds

is then
H = (a + b + c + . . . ) /n.

Calculating also the mean value of the molecular energy of

a particle,
E = \mG\

wherein m, as before, represents the molecular mass, and G
the mean value of the speed, we obtain

E =
so that the mean value G of the speed introduced by Joule
and Clausius has the signification

G2 = (a
2 + Z>

2 + c2 + ...)/*

Comparing this expression with

H2 = (a
2 + b* + c

2 + . . . + 26c + 2ca + Zab + . . . )/n
2

,

which, as we see from the known relation

a2 + V > 2ab,
leads to

or, since each square octfurs n times in the numerator, to

H 2 < (a
2 + b2 + c

2 + ...)/
we find

that is, the arithmetic mean value H of the speed is less than

the mean value G calculated by Joule and Clausius from
the mean kinetic energy.

If Maxwell's law is true, this relation, which holds in

general between the two mean values, takes the following
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simple form that is equally true for all gases, viz. (see 19
of the Mathematical Appendices) :

_
* v \^ i

^"*
j ^ -^-~

= 0-9213 a, ^ tt
which, with extreme approximation, may be written

Joule and Clausius' values are therefore greater than
the arithmetic means of the molecular speeds by about a
twelfth part.

The latter may just as easily as the former be calculated
from the value of the pressure ; for the formula for the

pressure p given by Joule and Clausius (13), viz.

where p denotes the density of the gas, may be replaced by

p = ^Tr/ofl
2
,

from which the arithmetic mean values fl of the molecular

speed for different gases may be calculated, as has already
been done in a Latin dissertation 1 that I published in

1866.

Further, for the calculation of the most probable value

W of. the speed, according to Maxwell's theory, we have
the formula

the value W is, therefore, smaller than both the others, and
stands to them in a ratio which is the same for all gases.

Closely related to this most probable value is a third

mean value of the speed, which is called the value of

mean probability, or, more shortly, the mean probable value.

The signification of this value, which I denote by in 19*

of the mathematical theory, is that there are as many particles
with speed less than as there are particles with speed

greater than 0. Its value lies between W and fl, and we
have

= 1-09 W = 0-96 H.

1

Inaugural dissertation, De Gasorum Theoria, Vratislaviae 1866.
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28. Values of the Speeds

In order to give a clearer idea of these relations I have

calculated a few examples of numbers, and more especially

for the two gases which are the most important constituents

of atmospheric air, namely, oxygen and nitrogen. The

densities of these gases, according to Jolly,
1 are

p = 0-0014291 for oxygen
= 0-0012576 nitrogen,

when at under the pressure of a mercury column 0'76 m.

high at Munich, where the acceleration
"

of gravity is

9-8069 m. per sec. per sec. We therefore obtain for the

Joule-Glausius mean values at

G = 461-2 m. per sec. for oxygen
= 491-7 nitrogen,

which completely agree with the values given in 13, as

deduced by Clausius from Eegnault's observations.

From Maxwell's law we obtain for the arithmetic means

of the molecular speed at

O = 424-9 m. per sec. for oxygen
= 453-0 nitrogen.

The mean probable values at are

= 409-5 m. per sec. for oxygen
= 436-6 nitrogen,

and, finally, the most probable values of the speed at are

W = 376 '6 m. per sec. for oxygen
= 401*4 nitrogen.

Lord Eayleigh
2 found hydrogen to be 15-884 times lighter

than oxygen, and consequently for hydrogen at

G = 1838-2 m. per sec.
- O = 1693-6

= 1632-2

W = 1500-9

The law of the unequal distribution of different speeds is

1 Abh. d. Akad. zu Miinchen, xiii. 2. Abth. ;
Wied. Ann. vi. 1879, p. 520.

2 Proc. Roy. Soc. xxiii. 1888, p. 356.
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shown by the following numbers. Of 1,000 molecules of

oxygen at

13 to 14 molecules have a speed below 100 m. per sec.

81

166

214

202

151

91

76

82

167

215

203

152

92

77

from 100 to 200

200 300

300 400

400 500

500 600

600 700

above 700

Since this one example will suffice to give a clear repre-
sentation of the nature of the law, I shall limit myself to

giving only the mean values of the molecular speeds for

other gases and vapours, and these I shall tabulate together
with the values of the specific gravity which have been used

in their calculation. I have in this case not referred the

density p of a gas to that of water as unity, but instead of

this I have introduced, as in 13, the specific gravity s

referred to atmospheric air. This is a procedure which
would not be admissible for exact scientific calculations,

since atmospheric air is, as Jolly
1 has shown, by no means

always of the same composition. Still, for the purpose in

hand, this inexact procedure is justified by there being a

still greater uncertainty in the values by reason of the

deviations of the gases from Boyle's law. It is on this

account that most observers have referred their numerical

values to air ; it would have served no purpose to reckon them
with respect to water. The references appended to the

table relate to the determinations of the specific gravities.

Values at C.
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I could with little trouble have enlarged this table very
considerably, since the tables of densities very carefully

compiled byPoggendorff,
1 as well as the fuller tables of

Boedeker 2 and those prepared by Trau be,
3 would have

furnished ample materials. But I fear that I have already
included rather too much than too little in the above table.

For the calculated numbers can claim exactness only
for those bodies to which the theory may be applied
without hesitation, and thus, strictly speaking, only to

gases which conform to Boyle's law. But a series of

gases and vapours have been introduced into the table

which do not obey this law, at least at the temperature
for which the calculations have been made

; some, indeed,

cannot exist in the gaseous state at 0. For these bodies

the calculated numbers possess no directly real meaning,
but they may be used to calculate the real values of the

molecular speed at a higher temperature ,
at which

Boyle's law does hold, by simple multiplication by the

factor -v/(l + a9), where a = O00367 (see 14). Instead^
of making the calculation for these higher temperatures,
which would have had to be different for different bodies,

I have preferred to refer all numbers to one and the same

temperature, so as to make them comparable with each

other.

29. Equality of Temperature of Different G-ases
/fi~

Just as in a simple gas which is in equilibrium and at

rest with respect to external bodies the state of motion of

the molecules is subject to a definite law of distribution of

speeds, so the distribution of energy in a mixture of two or /

more gases must also be equalised among the different kinds ^/
of molecules in a way regulated by law.

The law which regulates this more general case was also

discovered by Maxwell, and a strict proof of it was given

by Boltzmann. The calculation 4 showed that it is the

1

Pogg. Ann. xlix. 1840, p. 424.
2 Boedeker, Die gesetzmdssigen Beziehungen zwischen der Dichtigkeit,

der specifischen Warme und der Zusammensetzung der Gase, Gottingen 1857.

3 Landolt and Bernstein's Tables, 1894, 2nd ed.

4 See 20* of the Mathematical Appendices.
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^ame law as that which was found for the special case of

/a simple gas. MaxweJJSj^Jmv of distribution^ is apglic-
v able equally to single and mixed gases. There is, therefore,

in gaseous mixtures, too, such a~~"clistribution of molecular

energy that of all possible values of the kinetic energy a

definite value can be assigned which will be found in any

given particle more frequently than any other value,

whether larger or smaller. The deviations from this most

probable value of the molecular energy of motion follow the

same law in each kind of molecules that are mixed in the

gas.VA definite amount of energy of forward motion occurs,

therefore, in a particle of one kind with the same degree of

probability as in a particle of another kind.

From this follows directly a proposition first given by
Clausius, that in a mixture of two or more gases the mole-

cules of both kinds possess on the average equal kinetic

energy ; or, to express this by a formula, if mp m^ are

the molecular masses of the two gases, G
} ,
G

2
the mean

values of the corresponding speeds as calculated from the

values of the energy, then

2 .

'2 >

or, if the arithmetic mean speed O be introduced instead

of the magnitude G,

n 2

This mathematical proposition possesses an important

^physical meaning, which will be easily understood on re-

pealling our former considerations ( 9, 14) regarding the

increment of pressure with temperature. We there saw
that the kinetic energy of the molecular motion forms

the mechanical .measure of temperature. If we further

remember that two gases must attain equal temperatures
when mixed together, the conclusion follows that the equality

of the temperature of two gases consists in equality of the

mean energy of the forward motion of their molecules.

These conclusions cannot be strictly proved without

mathematical investigation into molecular mechanics.

Still, we can show their probability without mathematical
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means if we consider the gases, not as already mixed,.but

as initially separated. And here we employ a law that is

the result of experiment, viz. that if two gases of the same

temperature are mixed with each other, the temperature
remains unchanged ;

and we make an assertion which is

little likely to meet with opposition, viz. that if two gases
whose molecules have the same mean value for the energy of

their to-and-fro motion are mixed with each other, the mean

energy of both kinds of molecules will remain unchanged.
That the total amount of energy in the mixture remains

unchanged follows from the law of the conservation of

energy. An inequality of the mean energy on mixture

could therefore only arise if one of the gases suffered

diminution of its energy below the mean value in order to

raise that of the other above that amount, which would be

very improbable. This analogy would therefore justify us

in assuming also for unmixed gases the proposition first

laid down by Clausius,
1 that two gases have the same

temperature when the mean energy of r
rectilinear motion of

the molecules is the same for both gases.

It is not, perhaps, superfluous to observe that the law

laid down for the state of a gaseous mixture applies only to

the condition of equilibrium. Hence those cases are ex-

cluded in which the mixture of gases is accompanied by
chemical reactions. The law of the equality of molecular

energy need not therefore be applicable to such gaseous

mixtures as chemically combine in a flame ;
even if the

original two gases which combine in the flame possessed

equal temperatures, it is still possible, and indeed prob-

able, that the molecules of the products of combustion

possess a far higher temperature and greater energy than

the molecules of the primitive gases while uncombined, as

Srnrth^lLs_^jbS^umes."^ thermometer which is held in a

flame would then indicate, not the temperature of com-

bustion, but the mean temperature of the burnt and

unburnt gases existing in the flame.

1

Pogg. Ann. c. 1857, p. 370 ;
Abhandl. 2. Abth. 1867, p. 247 ;

transl. Phil.

Mag. [4] xiv. 1857, p. 108.

2 Phil. Mag. [5] xxxvii. 1894, p. 245.
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3O< Gay-Lussac's Law of Gaseous Densities

As simple consequences of the theorems of molecular

mechanics that have been given, we deduce certain laws of

theoretical chemistry, of which the law of gaseous densities

obtained empirically by Gay-Lussac
1 should first be men-

tioned:

Two gases are at the same temperature when the mean
kinetic energies of a molecule of each,

E
l
= iwA 2 and E

2
= \rnfi?,

are equal to each other. By 16 they exert equal pres-

sures when their kinetic energies per unit volume,

K
l

=
_ PlG }

2 and K, = ^ 2 2

2
,

are equal to each other. Hence it follows that, if two gases
e not only at the same temperature, but also under the

same pressure, their densities must be in the ratio of their

molecular masses, or

Pi '- p2
= m

i

' m
z-

This proposition deduced from our theory agrees sub-

stantially with Gay-Lussac's law, that the quantities of

two gases which can chemically combine with each other

occupy volumes which, when the measurements are made
at the same temperature and under the same pressure, .are

either equal or in the ratio of simple integers. More

simply expressed, this theorem runs the densities of two

gases are in a simple ratio, expressed by integers, to their

stoichiometric quantities. If we denote the latter by Q lt Q2 ,

and put n
{ , n% to represent integers, Gay-Lussac's law

gives

Pi
'

p2
= niQi : ra

2Q 2
.

This empirical law agrees exactly with that deduced

from theory if the molecular masses m of the gases are to

their stoichiometric quantities Q in ratios given by simple

integers, or

m, : 7^ = 7^ : n
2Q.2 ;

a condition which is obviously fulfilled if Dal ton's atomic
1 M6m. de la Soc. d'Arcueil, ii. 1809, p. 207 ; Gilb. Ann. xxxvi. 1810, p. 6.
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theory forms the true explanation of the constancy of the

chemical equivalents, since a molecule can contain only an

integral and not a fractional number of atoms.

The relations considered above may be made useful in

theoretical chemistry in two ways. We may either, with

Gay-Lussac, calculate by means of the given propor-
tion the unknown density of a gas or vapour from its

chemical equivalent which has been determined from its

chemical action
; or, inversely, from its observed density

we may deduce its chemical equivalent. For this purpose

Avogadro's law, which is discussed in the next para-

graph, is of service.

31. Avogadro's Law
The proportion deduced from Maxwell's theory, viz.

or the theorem that the densities p^ /o2 of two gases at the

same temperature and under the same pressure are in the

ratio of their molecular masses m
t ,
w

2
in the gaseous state,

is capable of a very simple interpretation, which is, there-

fore, the more important.
In the meaning assigned in 13 to the idea of density,

p is nothing else than the mass of all the N molecules con-

tained in unit volume, or

p = Nm.

For two different gases we must write

P!
= N

l
m

l
and

/o 2
= Nrfnz ,

where the meaning of the symbols is plain. If we sub-

stitute these values of the densities in the above proportion

we obtain the equation
N, = Nv

which, expressed in words, gives the theorem that two

different gases, when they are at the same temperature and

under the same pressure, contain equal numbers of molecules

in equal volumes.

This is called Avogadro's law, after its discoverer.
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Although the considerations by which Avogadro
1 arrived

at it are closely bound up with views which were then

universally accepted, but are now rejected, viz. with the as-

sumption of a material caloric, yet the experimental results

from which he. started, and the conclusions he founded on

them, agree substantially with those which we have here

employed.
'

He relied especially on the law of Gay-Lussac,
which was discussed in the last paragraph, and from which,
even without this special theory of gases, Avogadro's law

can be easily deduced with at least very great probability.

On this ground Clausius, who had already pointed
out the significance of this law for theoretical chemistry in

his jftrst .memoir
2 on the kinetic theory of gases, was able to

proceed the reverse way. From the laws of Gay-Lussac
and Avogadro he inferred the law, first given by him,
that two gases have the same temperature when the mean
kinetic energy of their molecular motion is the same, a law

which, aided by Maxwell's later researches, we have

deduced from the mechanics of molecules.

Avogadro's law forms one of the most important
foundations of theoretical cEemistry ;

for by its aid we are in

a position to calculate the molecular mass of a substance from

its density in the state of gas. For if in the formula

p = Nm

N is a number which is the same for all gases and vapours,
we can express the values of the molecular mass for all gases
in terms of any arbitrary unit, such, for instance, as the

molecular mass of hydrogen. The values of the molecular

masses so found do not all agree with the atomic masses,

but are in cases multiples of them. A molecule, therefore,

must in general consist of several atoms, as we have already
assumed to be possible.

Further inquiry into this interesting subject, which is

more concerned with chemistry than with physics, I must

1 Journ. dePhys.parDclamttherie, Ixxiii. 1811, p. 58
;
Ixxviii. 1814, p. 131 ;

Mem. cli Torino, xxvi. 1821, p. 440.
2
Pogg. Ann. c. 1857, p. 353

; Abhandl. iiber W&rmetheorie, 2. Abth. 1867,

p. 229 ; transl. Phil. Mag. [4] xiv. 1857, p. 108.
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here abandon, and all the more so as it has obtained a

thorough treatment in a treatise by my brother. 1

32. Coefficient of Expansion

From the relation found in 16 between the temperature
of a gas and the mean value of the kinetic energy of its

molecules, follows another law which has in like manner
been confirmed by experiment.

Since two gases have the same temperature 3 when the

mean values of the kinetic energy of their molecules are

equal, i.e. when
*,<?, = %m,G*,

the values also of their molecular energies are equal when

they are both at the temperature 0, or, in the notation already
used in 14,

im^2 == im2 2

2
.

But, if av 2
are the thermal expansibilities of the two gases,

From these four formulae we obtain the equation

Or the law that thf> thermal fixpansihilitip.* c\f
nil

qn.RP.R
rt.ra

the same.

This law, which has been already mentioned in 15, in

the determination of the absolute zero of temperature, was

empirically established by Gay-Lussac
2 and Dal ton, 3 and

still earlier, as the former tells us, by Charles. If it now

appears as a logical deduction from the theory, we must

see in this coincidence a weighty and convincing argument
for the truth of the theoretical views from which we have

started in explaining gaseous pressure.

1 Lothar Meyer, Die, modernen Theorien der Chemie, 5. Aufl., Breslau

1884
;

6. Aufl. I. 1895.
2 Ann. Chiin. Phys. xliii. 1802, p. 137 ;

Gilb. Ann. xii. p. 257.
3 Mem. of the Manchester Lit. and Phil. Soc. v. 1802, p. 595

;
Gilb. Ann.

xii. p. 310.

F
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33. Maxwell's Law for a Gas in Motion

./ In the simple form in which we have hitherto used it,

Maxwell's law of distribution rests on the assumption that

the gas is in equilibrium and at rest as a whole. Hitherto,

we have always assumed that there is no other motion in

the gas than the invisible to-and-fro motion of its par-

ticles. Beside this molecular motion, the effect of which

we perceive only in the pressure and heat of the gas, there

should be no directly perceptible motion, no flow, no rota-

tion, no change of the volume occupied ;
there should,

therefore, be no sort of cause for the centroid of the whole

mass of gas to change its position, nor, indeed, for that of

any portion of the gas of finite magnitude ; only the single

atoms-were endowed with independent motions, which they
executed without disturbing the equilibrium of the gas as

a whole.

If we discard this assumption Maxwell's law must be

modified, and the necessary modification in a special simple
case is easy to see. If we impart to the whole mass of gas
and its containing vessel a uniform motion of translation,

there is no reason at all for any change in the to-and-fro

motion of the molecules. Both motions, the molecular and

the molar, will exist together without mutually disturbing
each other. If we compound them by the known rule of

the parallelogram of velocities, we get for each molecule the

direction and magnitude of the velocity with which it moves

when the gas as a whole is in translatory motion. Herewith,

then, the law of distribution for this case is determined. It

does not seem necessary to express here in mathematical

formulae l this more general law ;
for the more general law

is easily to be deduced from Maxwell's known law of dis-

tribution. If we diminish, that is to say, the actual velocity

of a molecule by the velocity of translation of the centroid of

the gas as a whole, Maxwell's simple law for the probability
of a definite speed again comes to view. It is obvious that

the subtraction of the velocity of the centroid of the whole

gas from that of a molecule amounts to bringing the prin-

1 See 16*, 17* of the Mathematical Appendices.



33 MAXWELL'S LAW 67

ciple of the parallelogram into play, or, what comes to the
same thing, to subtracting the components of both velocities

from each other.

The most general case can be at once deduced from this

very simple one. If the gaseous mass so moves that the

molar velocity is not everywhere the same, but in different

places is different in magnitude and direction, we have at

each particular place to subtract the velocity of flow at

that place (which is the same thing as the molar velocity),
and the remaining molecular motion will satisfy Maxwej^^ F

law. s
UNIVFBSIT

34. Pressure of a G-as in Motion.

If such a distribution of molecular velocities exists, the

different directions can no longer be looked upon as having
no distinction. The pressure, too, of a streaming gas will,

therefore, no longer be equally great in all directions. In

the direction of the flow the velocity and pressure will

be greater than in any other direction ; the pressure is

increased by the stress which the gas by its motion exerts

on a surface in its way.
It is easy to calculate this increase of pressure if we

remember that, according to the kinetic theory, the pressure
consists *in a transference of momentum. In a gas at rest

this transference is effected by the to-and-fro motion of the

molecules. In a gas in motion there is an additional cause

in the velocity of flow by which not only momentum but

also mass is transferred. Through a surface F at right

angles to the direction of flow there passes in unit time a

volume Fa and a mass pFa, if a denotes the velocity.

This mass possesses the momentum

pFa*.

In consequence of the flow, therefore, the momentum
transferred in the direction of the flow increases in unit

time by

Since, now, according to our theory, the pressure is



68 MOLECULAR MOTION AND ITS ENERGY 34

measured by the momentum which is transferred in unit

time across unit area, we must conclude that the pressure

exerted by the gas in the direction of its motion is greater

than p by pa
2 in consequence of the flow, and so rises to

p + pa
2 = p(%7rW + a2

).

This increment of the pressure in the direction of the flow

makes itself perceptible as stress when a surface is put in

the way of the flowing stream of gas.

An equally great stress results between the surface and

the gas when the gas is at rest and the surface is moved
with velocity a against the gas in the direction of its normal.

The force which then results and tends to stop the motion

is felt as resistance, and the resistance of a gas is therefore

also determined by the formula

PFa
2

,

which expresses the law that the resistance increases pro-

portionally to the square of the velocity.

That this law holds not only for the resistance in a

liquid, but also for the motion of a body in air, has already
been proved by Newton and Hawksbee 1

by means of

experiments on falling bodies; it has lately been found

also for other gases by Cailletet and Colardeau 2
by

means of observations on the gases in flow. A rernarkable

confirmation of the formula deduced for gaseous resistance

arises from an observation made by Him,3 from which
too Him himself thought he must conclude that the kinetic

theory of gases is wrong. He found in fact that the

resistance does not alter with the temperature if the

density is kept unchanged. With this fact the theoretical

formula is in perfect agreement, as it does not contain the

molecular velocity G, but only that of the flow a.

The range of applicability of Newton's formula is

however dependent on definite limits for the value of the

1 Newton, Principia, bk. ii. prop. 40; Hawksbee, Physico-mecJmn.
Experiments, London 1709; Musschenbroek, Tentamina Exper. in Acad.
del Cimento, Lugd. 1731, pt. ii. p. 118.

2
Comptes rendus, cxvii. 1893, p. 145.

3 Mem. de VAcad. de Belgique, xiii. 1882.
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velocity a. If this value is too great, the resulting heat

(see 19) cannot be disregarded ;
if it is too small, the

viscosity of the air (see Chapter VII.) cannot be left out of

account.

In another relation, too, the formula for the resistance

does not exactly correspond to the results of experiment.
Hut ton l and Borda 2

long ago found that the resistance

is not exactly proportional to the extent of the surface F of

the moved body, and that it depends also on the curvature

of the surface. For plane discs which move at right angles
to their plane, Schellbach,3

Gr. Hagen,
4 and Him 5 have

shown that the factor F would be more exactly replaced by

expressions of the form

AFn or AF(l + Bq),

where A, B are constants, n an exponent greater than 1, and

q the circumference of the disc. The cause of this deviation

is easy to indicate. Part of the air which is pushed in front

of the disc turns off sideways, and the resistance is thereby

diminished
;
the theoretical expression has therefore to be

multiplied by a proper fraction A. This fraction, however,

depends also on the size of the disc, since the air cannot slide

aside so easily in front of a large surface as in front of a

smaller ; hence the value of the fraction increases with

the area F or with the circumference q of the disc.

35. Reaction. Cross-pressure

In a flowing gas there is also, in the direction opposite

that of the flow, a change of pressure due to the flow,

which is also an increase and not a decrease. To. prove

this statement I might merely rely on the mechanical

principle that action and reaction, and consequently pressure

and counter-pressure, must be always equal. Yet I prefer

1 Trans. Boy. Soc. Edin. ii. 1790. 2 Mtm. Paris 1763, 1767.

3
Pogg. Ann. cxliii. 1871, p. 1.

4 Ibid. clii. 1872, p. 95.

5 M6m. de VAcad. de Belgique, xiii. 1882.
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to repeat a proof which has been given by Clausius,
1

by
which also the rise of pressure already described in the

direction of the flow is better explained.

For this we start, as in the consideration ( 12) of the

state of equilibrium, from Joule's assumption,
2 which even

in this case is admissible, that the pressure caused by the

motion of the gaseous molecules so operates as if a third

part of the molecules move to and fro along the normal to

a stressed surface, while the other two-thirds move parallel

to this surface. Of the first third one-half will at every
moment have a molecular velocity G in the same direction

as the velocity of flow a, while the other half has a mole-

cular velocity in the opposite direction. Therefore, of the

N molecules contained in unit volume, j?N move with a

resultant velocity G + a in the direction of the flow, and

simultaneously the same number ^N move in the opposite
direction with the resultant velocity G a.

The difference G a we may take to be positive, since

the mean molecular velocity G is very great, while the ob-

served speeds of flow are for the most part considerably less.

The greatest velocity which the wind attains that, for

instance, of the most fearful storm may be taken at about

only one-tenth of that with which the molecules move
about. But if, indeed, it should happen that a were greater
than G, the argument would not be invalidated.

If, now, one-sixth of all the molecules move with the

velocity G -f a in the line of flow, the number which pass

through a surface F in unit time in this direction is

iNF(G + a),

and they carry with them momentum equal to

NmF(G + a)
2

.

In the backward direction there pass

*NF(G - a)

1 Bulletin de VAcad. de Belgiqiw [3] xi. 1886, p. 180 ; Mech. Warmetheorie,
2. Aufl. iii. p. 248.

2 The calculation is carried out independently of this assumption, and

purely on the basis of Maxwell's law, in 7* and 43* of the Mathematical

Appendices.
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molecules through the surface F in unit time, and these

carry back the oppositely directed momentum

NmF(G -
a)

2
.

The two halves into which the gaseous mass is separated

by the surface F, therefore, both gain and lose momentum,
and the question is, What variation in the law of distribu-

tion results ? If we call that side the right towards which
the flow is directed, we can say that the right side gains
an amount of momentum directed towards the right which
is equal to

while it loses momentum directed towards the left equal to

The right half thereby obtains an amount of right-directed
momentum which exceeds the left-directed momentum, and

this excess is equal to

NmF{(G + a)
2 + (G - a)

2

}.

The excess of left-directed over right-directed momentum
which arises in the left half is of equal amount; for this

half gains left-directed momentum equal to

NmF(G - aY,

and loses right-directed momentum equal to

so that the left-directed momentum in the left half will

exceed the right-directed momentum in the left half by the

amount
a)* + (G + a)

2

}.

These formulae, however, do not account for the whole

changes that occur. In the case of a flowing gas the other

two-thirds of the molecules come also into account; for

these, too, take part in the flow, and therefore possess the

velocity a in the direction perpendicular to the surface F.

In this direction, therefore, there pass
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molecules from the left half to the right in the unit of time,

and these carry with them the momentum

The total excess, therefore, of right-directed over left-

directed momentum which is produced in unit time in the

right half is given by

$NmF{(G + a)
2 + (G - a)

2

} + %NmFa2

= NmF(G* + a2
).

Just as large is the excess of left-directed over right-

directed momentum which occurs in the left half in unit

time
;
for the former increases by

NmF(G - a)
2

,

while the latter diminishes by

Now, according to the kinetic theory of gases, the pressure
is nothing else than the momentum carried across unit

area in unit time ; consequently the pressure is expressed by
the formula

p = JVm(JG
2 + a2

),

and this formula holds good equally well for the direction

in which the gas flows and for the opposite direction. As

for the former direction, the added term

Nma2 = pa
2

expresses the stress exerted by the stream, so for the oppo-
site direction it represents the equal reaction-stress

which is exerted by the flowing gas on the containing
vessel.

For a direction at right angles to the stream the pres-

sure will be expressed by the formula

p = $NmG\
which holds good for all directions in a gas at rest. An
essential difference, however, consists in the magnitude G
not having the same value for a flowing gas as it has in a

gas at rest. This is, at least, the case when the gas is not

brought into a state of motion by the application of energy
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from without, but is forced by its own pressure to rush

along an opened pipe. In this case the amount of energy
of the mass of gas remains unaltered. If, then, the gas
were under the pressure-

when at rest, and its kinetic energy per unit volume were
therefore

*o = */><?'

before the flow began, the whole energy of molecular motion
and flow in the exit pipe, viz.

K =

must be the same as before. We have, therefore,

G2 = G 2 - a\

or the molecular speed G of the flowing gas is less than
the molecular speed G of the gas at rest. The cross-

pressure

P = i/><?
2

of the gas when flowing is, therefore, less than the pressure
when the gas was at rest. This lowering of the pressure

by the flow depends, as the formulae show, on cooling being
produced.

Since these formulae contain the velocity only in its

square, they are independent of the direction of the motion,
and hold, therefore, as well for to-and-fro oscillations as for

the propagation of the longitudinal waves of sound. On
this depend the apparent attractions and repulsions in air

when sounding and in the ribbed dust-figures of Kundt. 1

36. Propagation of Sound

When we develop the theory of sound according to the

kinetic hypothesis we have also to consider two sorts of

motion which exist without disturbing each other. In

addition to the molecular motion which is present even in a

gas at rest there are the to-and-fro motions which constitute

1 See W. Konig, Wied. Ann. xlii. 1891, p. 353 ; Zeitschr. f. phys. u. chem.

Unterr. 8. Jahrg. 1895, p. 191.
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the vibrations of sound. The latter motions spread from one

place to another, and the cause of this transmission is the

molecular motions which bring the particles that execute

the sound-vibrations into contact with others. From this

it follows that the velocity of propagation of sound cannot

depend on the nature of the sound-vibrations, but only on

the molecular motions.

If we paid no regard to the variations in temperature
which a gas undergoes by condensation or rarefaction, it

would be easy to answer the question as to the speed with

which, on the basis of the assumptions of the kinetic theory,
a sound wave is propagated. If sound consists in alternate

rarefactions and condensations of the air, the speed of its

propagation cannot be different from the speed with which

/any inequality of the pressure that arises at any place

/ would spread through air-filled space.
1 Now, according to

our theory the pressure arises from the to-and-fro motions

of the particles, and is exerted and carried on from one

layer to another by the same cause ; the velocity with

which a pressure- or sound-wrave is propagated must there-

fore be just as great as that with which the particles of gas
move to and fro in the direction of propagation of the

wave. The value of the component of the molecular motion
in the given direction, and not the resultant velocity of the

particles, comes therefore into account in the calculation of

the velocity of sound
; and hence it follows at once that the

speed ofpropagation of sound in a gas must be smaller than

the mean speed of the molecular motion in this gas. This

theoretically deduced proposition is completely confirmed

by experiment ; for instance, in atmospheric air at C. the

speed of sound is about 332 metres per second, and is con-

sequently considerably less than the mean molecular speeds
G=485 and ft =447 (28).

How much smaller the speed of sound is we may easily,

and with sufficient exactness, determine in the same way as

in 10 we calculated the pressure of a gas.
2 If the energy

1 This conclusion has been experimentally confirmed by C alder oni, Wied.
Beibl. iii. p. 155.

2 More mathematically strict calculations have been made by Stefan (Fogg.
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of the motion of the molecules in a given direction is one-
third part of the whole energy, we might look on the

magnitude

as the mean value of the component in a given direction,
G being, as before, the mean molecular speed ; for, as the

energy varies as the square of the velocity, the velocity
varies as the square root of the energy. We therefore find

for the velocity v of sound the formula

v =

which shows that v is less than G ; we also have

from which it appears that Maxwell's mean value O of

the molecular speed is also greater than that of sound.

If we put these formulae into the form

we obtain Newton's 1
formula, with which the speed of

sound can be calculated from the pressure p and the corre-

sponding density p of the gas.

But,_as Laplace
2
first saw, this formulae-needs..a coxrec.-

tion. The oscillations constituting sound depend not so

much on the actual pressure and density of the gas as on
the changes which they simultaneously undergo in con-

sequence of the alternate condensations and rarefactions.

With more correctness, therefore, should we have expressed
G in terms of the variations which p and p undergo instead

of in terms of p and p themselves, and this could have been

Ann. cxviii. 1863, p. 494), Eoiti (Mem. delV Accad. dei Lincei [3] i. 1876, pp.

39, 762; Nuovo Cimento [2] xvi. 1876; [3] i. 1877, p. 42), and Brusotti

(Ann. Sclent, del 1st. Tecnico di Pavia, 1874-5, p. 171) ; further by

Hoorweg (Arch. Neerl. xi. 1876, p. 131; Pogg. Beiblatter, i. 1877, p. 209),
Mees and H. A. Lorentz (Versl. en Med. K. Akad. Amst. xv. 1880),

Schlemiiller (Die Fortpflanzungsgeschw. in einem theor. Gase, bearb. auf
Grund d. dyn. Gastheorie, Prag 1894). S. T. Preston has given an elementary

explanation of the process in Phil. Mag. [5] iii. 1877, p. 441.
1

Principia, ii. 8, prop. 49, probl. 11.
2 Ann. Chim. Phys. [2] iii. 1816, p. 238 ;

xx. 1822, p. 266 ; Mec. Gel. v.
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done equally easily. For by Boyle's law, if p + dp and

p + dp represent the values of p and p when increased by

compression, the ratio

p _ p + dp __ dp

p p + dp dp

is constant so long as the temperature remains unchanged.
We might therefore have written

dp

for the formula giving the speed of sound ;
and herein the

increment dp of pressure and the corresponding increment

dp of density may be taken either as finite or as infinitely

small magnitudes.
But the ratio of the pressure to the density remains con-

stant only so long as the temperature of the gas remains

unaltered. If, however, a gas is made to occupy a smaller

volume, not only do the pressure and density increase, but

also the temperature ;
and if the gas expands, not only do

its pressure and density diminish, but its temperature falls

too. This rise and fall of temperature, when the volume

undergoes change, have both the effect of causing the

pressure to alter in greater measure than the density, and

therefore the ratio of dp to dp has in the actual case a

greater value than Boyle's law gives it when the tempera-
ture is not taken into account. Thus the formula must be

completed by a factor which is greater than 1, and, accord-

ing to the equations of the theory of heat, which have been

established by Laplace and others, this factor is the ratio

of the specific heat C at constant pressure to the specific

heat c at constant volume. Consequently we have

C, p
3

c v 8

and the speed of sound itself is given by
v = flvVC/Sc).

That with this improved formula, also, the ratio of v to fl

is less than 1, I will show by taking atmospheric air as an

example. Putting for this substance

C = 1-405 c,
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as is deduced from the observations that are discussed in

detail in 55, we obtain

v = 0-74 fl,

and, on substituting for O its value 447, as given in 28,

v = 332 metres per second.

The ratio 0'74 calculated for air holds good equally for

the other so-called permanent gases, and is also approxi-

mately admissible for those that are condensable, so that in

general we may assume the ratio of the speed of sound to

the mean molecular speed to be about j in round numbers.

According to the formula, the speed v of sound must
decrease with falling temperature, just as the molecular

speed H. This theoretical conclusion is confirmed by
experiment.

1

According to experiments made by Greely
2

in Arctic regions, at temperatures between 8 and 48 C.,

the speed decreases by 0-603 metres per second with every

degree ; its value, therefore, may be represented as a function

of the temperature $ by the formula

v = 332 + 0-603 3

= 332 (1 + 0-00182 S),

while the molecular speed is given by the formula

n = 447V(1 + 0-00367 3)

= 447(1 + 0-00183 S),

when 3 is small enough.

37. Effusion of Gases

One directly valuable result of the numerical calculation

of the mean speed with which the molecules of different

gases move is obtained from the fact that from these

numbers we can at once infer the speed with which gases

will issue through fine openings in a thin wall. We have,

therefore, to consider the phenomenon designated effusion

1 Benzenberg, Gilb. Ann. xlii. 1812, p. 1.

2
Meteorolog. Zeitschrift, 7. Jahrg. 1890, p. 6 (25. Jahrg. d. Zeitschr. d. ost.

Ges. fur Met.).
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byThos. Graham, for which also the name diffusion has

been used, thus giving rise to mistakes.

The theory of this process has been already developed

by Daniel Bernoulli,
1 and its exactness has been con-

firmed by the experiments of Graham 2 and Bun sen.3

Bernoulli rests his theory on a proof of the proposition

that Torricelli's theorem is not only applicable to the

efflux of liquids, but may be extended also to gases. From
this it at once follows that the speed of efflux is proportional

to the square root of the pressure. Since, according to the

kinetic theory, the pressure varies as the square of the mean

speed, the signification of Torricelli's theorem on the

kinetic hypothesis is that the speed of efflux of a gas is

proportional to the mean molecular speed of its molecules.

We should have been able to arrive directly at this con-

clusion from the assumptions of the theory of gases, even

without employing Torricelli's theorem; for it is clear

that one of the to-and-fro moving particles which reaches

the orifice can issue through it with no other speed than

that which it possessed before. The speed of efflux thus

originates directly from the speed of the molecular motion,

and the mean speed of the issuing particles must therefore

be simply proportional to the mean molecular speed.

Here again, therefore, appears the same ratio which we
noted in the investigation on the speed of sound. The speed
of efflux, equally with the speed of propagation of sound,

is proportional to the mean molecular speed. The reason

for this simple relation between effusion and the motion of

sound is not far to seek. In both processes we are con-

cerned with the propagation of differences of pressure. In

the motion of sound periodical alternations of condensation

and rarefaction of the air are transmitted ;
in efflux the

pressure goes from the compression vessel into outer space.

The difference consists only in this, that in the case of

1

Hydrodynamica, Argentorati 1738, sect. 10, 34, p. 224.
2 Trans. Roy. Soc. Edin. xii. 1834, p. 222

;
Phil. Mag. ii. 1833, p. 175 ;

Pogg. Ann. xxviii. 1833, p. 331 ;
Phil. Trans. 1846, p. 573 ; 1863, p. 385.

3 Gasometrische Methoden, Braunschweig 1857, pp. 128, &c.
;
2nd ed. 1877,

pp. 185, &c.
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sound the pressure alone is transmitted, whereas in effusion
the transmission of pressure can only be effected by the gas
itself flowing from the compression vessel into space of

lower pressure, and thereby raising the density in this outer

space. Energy and mass therefore flow out together with

equal speed, and the gas would flow out with the speed of

sound if there were no obstacle in the way.
This assumption, however, is untenable, for on the one

hand the friction which the gas experiences from the rim
of the orifice retards it, and on the other the pressure in the

space into which it flows acts as a resistance.

The first disturbance, that by friction, is avoided as much
as possible by making the orifice small and using a thin
wall. For if the wall is not very thin the orifice acts as a
tube in which the flow would be considerably diminished by
the internal friction of the gas. And the orifice must be

small, as otherwise it would offer room for eddies and
vortices to form which would hinder the regularity of the
efflux

; for the turbulent motions that must occur in wider
orifices would cause heating effects which would consume
a large part of the energy present.

The other disturbance, that by the back pressure of the

space into which the efflux occurs, is removed when the gas
flows into vacuous space. In this case the issuing mass of

gas appears to be almost exactly proportional to the pressure
which drives it out, as was a priori to be expected. Since

the density of a gas is proportional to its pressure, we must
from this experimental result draw the conclusion that the

speed with which a gas flows into vacuous space is inde-

pendent of the pressure which causes the flow. But in this

conclusion lies a confirmation of the inference already drawn
from the theory, viz. that the speed of efflux of a gas is

determined only by the speed with which sound travels in

this gas, or, what amounts to the same thing, on the mean

speed of molecular motion in the gas.

The manner of dependence of the speed of efflux on that

of the molecular motion could be assigned if we knew how

many molecules issue per unit of time, and what is the

pressure in the orifice itself. The former question may be
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easily answered if we are content with an approximation
which must be admissible when the excess of pressure and,

therefore, the speed of efflux are small. With this assump-
tion we can make the calculation just as for a gas at rest.

We need only determine the number of molecules which

are forced per unit time out of the interior of the vessel into

the orifice. To simplify the calculation we shall further

provisionally assume that all the particles move with the

same mean speed ft.

Before we determine the number of particles which

arrive at the orifice, let us find the number of those which

reach it in a given direction. In the accompanying diagram

E A B F

FIG. 3

let EF denote the wall of the containing chamber, and AB
the orifice in the wall. Let CA be the direction correspond-

ing to the number of particles we are considering, and let it

make angle s with the normal AG. We see at once from

the diagram that all particles which can meet the surface

AB in the given direction must come from a volume CABD,
the edges CA, DB of which are parallel to each other. If

we wish to determine the number of particles that pass

through AB in unit of time, we have to limit the space

CABD by taking the lengths CA, DB to measure the speed
ft. For it is obvious that the surface AB can be reached in

unit time only by such particles as were initially distant

from AB by a less length than the path ft traversed in unit

of time. The volume CABD, from which the molecules

come, is equal to

GA.AB = Fl cos s,
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where F denotes the area of the orifice AB, and ft cos s is

put for GA ;
and the number of molecules we denote by

nFl cos s.

We have still the number n to determine. It represents
the number of particles which move in unit volume in the
direction given by CA and therefore determined by s. This
number is easy to calculate for a gas at rest, since in this

case no one direction differs from any other, equal numbers
of molecules therefore moving in every direction. Consider
all the N particles which are in the unit volume to be

FIG. 4

brought to one and the same point 'A, and to begin their

rectilinear paths from this point ; then at a small area K
of a sphere described about A with unit radius there will

arrive

*s
4-7T

particles ; for the whole sphere, whose area is 4?r, will be

symmetrically met by the N particles. If we take the

element K to be the zone CDD'C' obtained by rotating the

radii AC, AD about the normal AG as axis, then

K = 27rrA,

if we denote by A the breadth CD = C'D' of the zone, and

by r the mean radius of the circles which make up this zone

and are parallel to its boundaries CC' and DD r

. The number,

therefore, of particles which meet this zone is

1

4-7T

KN =
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We may look on this expression as being the value of n
when we take the angle GAG of the same value s as in the

former figure. For the number which we have found for the

particles which fly out from A in a given direction is just

as great as that which we are seeking, viz. the number which
reach A in the opposite direction. In this respect only do

we alter and extend the meaning of n, that we count not

only the particles which move in a given direction in space,
but include also all those whose directions form the same

angle with the normal AG.
If we put this value

n =

into the above formula we obtain the number of all the

particles which in unit time meet the area F at an inclina-

tion 5, which is therefore

cos s.

This expression may be simplified by our replacing A cos s,

which represents the projection of the breadth CD = A of

the zone on the plane EAF, by the line HJ = H'J' = S ;

this gives

for the number of particles which in unit time meet the

area F from the zone CDD'C'.

From this we obtain the whole number of the particles
which arrive at the area F in the unit time by summing the

expression for all the zones, i.e. by evaluating the magni-
tude

S.rS.

To calculate the sum S.rS, let us take the zones so as

all to have the same value S
; we therefore divide the line

AF, whose length is 1, into q equal parts (where q is a very

large number), and put

HJ = S = -.

q

Then, taking the radius r as the arithmetic mean of the

bounding radii AH and AJ of the zone, or

r = (AH + AJ),
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we can express it as a multiple of 8
; for if

AH =
(v
-

1)8 and AJ = v$,

where v is an integer lying between 1 and q, then

.

We have then to find the sum

.=.,-
for all values of v from 1 to q ; but we have

S.(2v-l) = g-fe + l)-gr-
so that

2.rS = i,

and we have the simple expression

for the number of particles of a gas at rest as a whole which
in unit time hit an area F of the containing vessel. If for

F we understand, as at first, the area of an orifice in the

side of the vessel, the expression we have found represents
the number of particles which in unit time get to the

orifice from the vessel.

The formula is deduced on the assumption that all the

particles have the same speed fl. But it is easy to see

that the formula also holds good if fl denotes the mean of

all the speeds that occur; it holds good, therefore, as is

shown in 41* of the Mathematical Appendices, even if the

different values of the molecular speed are distributed accord-

ing to Maxwell's law
;

it depends only on there being no

difference in the distribution in different directions.

The number of particles getting into the orifice is not,

indeed, the same as that which pass through it
;

for a

portion will be pushed back by collisions with others. But
the formula shows us that the speed of efflux of a gas must

be simply proportional to the speed of its molecular motion.

The full meaning of this proposition comes out quite

clearly only when we compare two different gases with each

other. In both gases the speed of efflux must be determined

in the same fashion by the mean molecular speed, since

G 2
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Maxwell's and Avogadro's laws hold good for both. If

both gases are under the same pressure p, the two equations

p = iw^lV, p = i7rp2
O

2

2

hold good, pu p2 being the densities of the two gases, and

ftp I"1
2
the mean speeds of their molecules. If, as in 28,

we refer the density not to that of water, but to that' of air

D, the formulae take the form

P = jwDsA 2
, p = jTritejiy,

and contain only the magnitude D which varies with p,

since the specific gravities s
l}

s2 are independent of pressure

and temperature. These formulas therefore give
2 _

and consequently

or the molecular speeds are inversely as the square roots

of the specific gravities. In like manner the speeds with

which different gases stream out into vacuous space are

inversely as the square roots of the specific gravities of the

gases. The times required for efflux of equal volumes of

different gases are therefore directly proportional to the

square roots of the specific gravities of the gases, these

volumes being measured under the same pressure.

This law is confirmed by observation, in proof of which
I subjoin some of Graham's 1 observed times of efflux

of different gases, together with Begnault's and Henry's
determinations of the specific gravities which he used.
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The two series of experiments with the perforated brass

plate were carried out with slightly different arrangements
of the apparatus, and the second of these columns I have
calculated from the results given by Graham for the speeds
of efflux.

The agreement between the observed times and the

square roots of the specific gravities may, on the whole, be

considered excellent, and may serve as proof of the correct-

ness of the theoretical law that has been established
;

it

will not, therefore, be necessary to quote further observa-

tions made by Graham with altered values of the pressure.
The greatest deviation from the law is exhibited by hydro-

gen, and, doubtless, for the reason assigned by Graham,
that for this light gas, which undergoes very great friction

in narrow tubes, the plate was not thin enough and the tube

not short enough.
Not only does the law hold for the efflux of gases into

vacuum, but the times of efflux of different gases are also

proportional to the square roots of their specific gravities if

under otherwise similar circumstances especially, therefore,

under equal pressures they stream into a space filled with

air or gas the atmosphere, for instance.

The ground on which we are entitled to extend in this

way the applicability of the law is very simple in the case

of the back pressure being small in comparison with that

which causes the efflux
;
the speed of efflux, in fact, will

not be materially diminished by a slight resistance. The

back pressure may, indeed, increase up to half the value of

the pressure that forces out the gas without the speed

sensibly falling off. This remarkable fact was first noticed

by St. Venant and Wantzel, 1 and has been confirmed by
later observers. On the kinetic theory we should explain

the matter thus : that on issuing from the orifice and coming
into the space which is less densely filled with gas, the

molecules very seldom collide with others, since the latter

also have most of them only just emerged from the orifice,

and, therefore, for the most part are moving in the same

direction and with nearly the same speed ; they will therefore

1 Journ. de VEcole Polyt. xvi. 1839, p. 101.
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only seldom be overtaken by those that follow, and will stop
them but little. The stream of molecules therefore flows

into a less dense gas almost as it would into vacuum.

But even if the pressure outside the containing vessel is

not much less than that within, Graham's law still holds

good. In this case the distribution of pressure in the

orifice and its immediate neighbourhood is certainly quite
different from that which accompanies efflux into vacuum.

But if experiments are made with two different gases with

the same two values of the pressures within and without,

the pressures in the orifice itself will also be the same in

both cases. The equation

remains correct therefore in this case too. In like manner

also, for the same reasons as in the former case, the speed
of efflux is proportional to the molecular speed. Therefore

Graham's law, which was deduced before from these two

assumptions the law, namely, that the times of efflux of

two gases are as the square roots of the specific gravities

must hold good also for efflux into space already containing
the gas. And if the space contains a different gas the law

holds good in the same way.
This law of effusion is to such a degree confirmed by

experiment that Leslie,
1 and later Bun sen,

2 have been

able to found on it a method of determining specific

gravities. Column I. of the subjoined table gives the values

of the specific gravities determined by Bun sen by this

method, and column II. those that have been calculated by

Gay-Lussac's law ( 30) from the atomic weights.

Gas
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The deviation in the case of hydrogen has presumably
the same cause as that shown in Graham's experiments.

38. Thermal Effusion

If the speed with which a gas issues from a narrow
tube is really proportional to the speed of its molecular

motion the two must increase in the same ratio when the

temperature rises. From this it follows that it must be

possible to augment the efflux of a gas by warming it.

If we let a gas pass through a porous plate, we shall be

able to increase its speed by warming the exit side of the

plate.

A one-sided heating of the porous partition produced
in this way is not only able to augment an already existing

flow, but it is sufficient of itself, without any difference of

pressure, to cause a percolation through the pores of the

partition. Just as effusion results from a difference, of pres-
sure at the two sides of a porous partition, so can a similar

phenomenon be brought about by a difference of temperature
of the two sides of a partition ;

and the latter phenomenon,

according to Maxwell's 1

suggestion, is called thermal

effusion.

The possibility of in this way producing a flow of gas by
means of an unequal distribution of temperature was first

pointed out by Car! Neumann 2 when he was attempting
to explain the production of a thermoelectric current by

analogy with a thermal effusion. At Neumann's sugges-

tion F edder sen 3
arranged a simple experiment, in which

he stuffed into a glass tube a tolerably long plug of spongy

platinum and then warmed one of the ends of this plug ;
he

observed the phenomenon expected, viz. a flow of air

through the plug from its colder to its warmer side. He
obtained the same result on substituting hydrogen for air

and spongy palladium for spongy platinum. He observed

the same action, too, when he used other partitions made of

1 Phil Trans, clxx. 1879, p. 255 ; Scientific Papers, ii. p. 711.

2 Ber. d. math.-phys. CL d. K. Ges. d. Wiss. zu Leipsig,IS12, p. 49.

5

Pogg. Ann. cxlviii. 1873, p. 302.
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gypsum, charcoal, silica, and burnt magnesium. Neumann
aikd Feddersen called the phenomenon thermo-diffusion.

/ Osborne Reynolds,
1 who used the name thermal

transpiration, repeated Feddersen's experiments, and

made a great number of actual measurements of the

difference of pressure that was produced at the warmer

side of the partition. In the above-mentioned memoir

Maxwell has given a very simple explanation of the

phenomenon on the basis of the kinetic theory of gases.

His theory starts from the assumption that the number
of particles of gas which collide with the walls of the

containing vessel in unit time is proportional not only to

the number N of molecules contained in unit volume but

also to their mean speed fl
; and, when the area struck

is taken equal to unity, this number is expressed by the

product

as in a formula developed in 37.

If in unit volume on one side of the partition there are

jVj molecules with the mean speed flj, and on the other JV2

molecules with the mean speed I1
2 ,
a unit area of the narrow

openings in the wall will be met on one side by

molecules, and on the other side by

#A.
If then

more molecules will pass over in the first direction than in

the second, but fewer if

There consequently ensues a flow of gas from that side on

which the product Nfl has the greater value towards that

where the value is the smaller.

Suppose now, first of all, as is the case at the beginning
of an experiment, that there is the same pressure on both

1 Phil. Trans, clxx. pt. 2, 1879, p. 727; Wied. Beibl. vi. 1882, p. 455.
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sides of the partition ; then between the values of N and
there subsists the relation

We have then

and consequently

if

or

The flow of gas therefore proceeds in this case too from the

side where there are the more molecules, i.e. where the gas
is the denser, to the side where it is the less dense, just
as in ordinary effusion

;
but while in this latter case the

rarefaction is produced by lowering of pressure, in the case

of thermal effusion just considered it is effected by warming.
Hence the flow of a gas from a colder region to a warmer is

a result of the theory no less than of experiment.
The pressure therefore rises on the warmer side, and a

force opposing the motion is brought into play by which a

state of equilibrium is finally set up ;
and we have now to

investigate under what circumstances this will happen. The
flow must cease when

In this case, between the values of the pressure on the two

sides of the partition,

p l
= i-H-N^tl^ and p 2

= %7rN2
ml

2

2
,

the relation

Pi = P*

n; o

must hold. Introducing into this equation the absolute

temperature defined in 15, and therefore putting

n2 = n 2
<H>

in general, and in this particular case

O2 _ O 2
(fi> O 2 - O 2 (H)

j
1Z

Q ffj,
\L

2
1Z

Q
V_J

2 ,

we find as the condition of the final state of equilibrium
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The thermal effusion therefore ceases as soon as the ratio

of the pressures on the two sides of the partition has

attained the value of the ratio of the square roots of the

absolute temperatures.

39. Heat Effects Accompanying Effusion

As effusion may arise from inequalities of temperature, so

may it cause the temperatures at the two sides of a porous

partition to be unequal. Cooling is produced at the side

from which the flow takes place, while the other space into

which the gas streams is warmed. The same action there-

fore occurs which has already been described in 18, 19.

Where the gas expands it cools, and where it is condensed

it gets warmed.
The explanation of this behaviour 1

is also essentially

that which has been given for the case in which it was

assumed that the condensation was caused by the pushing
down of a piston, the lifting of which made the gas to

expand. The only difference consists in our having to take

into account the encounters of the streaming particles with

each other and with other particles instead of the collisions

of the molecules against the piston.
A particle which reaches.the orifice from the interior of

the receiver does not here meet particles at rest, but particles

in motion that are proceeding in the same direction. In

consequence of this the particle will be thrown back into

the receiver, not with the same speed with which it arrived

at the orifice, but with a much less speed, while the motion

of the particle that streams out is increased. Thus the

particles in the receiver lose part of their molecular energy

during the flow, and the gas in the receiver therefore cools.

On the other side of the partition the particles that

escape from the orifice strike against particles that either

are at rest or have lost in the larger space at least a part of

their energy of flow by its transformation into heat. To
these latter particles momentum is communicated by those

which rush from the orifice with the full speed of the

1 L. Natanson, Wied. Ann. xxxvii. 1889, p. 341.
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stream ; the molecular motion therefore of the particles

in the space into which the flow occurs is increased, or,

what is the same thing, the temperature in this region rises

by reason of the flow.

Both conclusions agree with the experimental observa-

tions made by Joule and others.
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CHAPTEE IV

IDEAL AND ACTUAL GASES

4O. Inexactness of the Theoretical Laws

ALTHOUGH all the laws which we have deduced from the

kinetic theory of gases are in accordance with experiment,

yet it must not, on the other hand, be overlooked that the

agreement between observation and the strict results of

theory has not proved to be absolutely complete and unex-

ceptionable for any of the laws. In the case of Boyle's
law respecting the pressure we have already had to remark

that it holds good only approximately, and that every one

of the gases shows deviations from this law, which, even if

in most cases only small, are yet distinctly provable. This

remark holds good also for all the other laws which follow

from the theory. That Dalton's law with respect to the

pressure of mixed gases suffers from the same deficiency as

Boyle's cannot be doubted ; from numerous observations

which Galitzine 1 has partly made by himself and partly

drawn from other sources, the pressure of a mixture is

sometimes greater and sometimes less than the sum of the

pressures exerted by the components separately. There

must therefore be present several causes of different kinds

which act together and cause the deviations from the theo-

retical laws in either the one direction or the other.

Just as incompletely do the experiments on the effusion

of gases agree with the conclusions of theory. Neither

does the speed of flow, as determined in Graham's and

Bun sen's experiments, exactly correspond to the theo-

retical law, nor do the changes of temperature occur

1 Das Dalton'fche Gesetz, Strassburg 1890
;
Wied. Ann. xli. 1890, p. 588

;

Gott. Nachr. 1890, p. 22.
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exactly as represented in 39. Joule and Lord Kelvin
have measured with great care the alterations of tem-

perature that occur in the vessels from and to which the

flow takes place, and by these observations have proved that

the whole amount of work done by the gas in the receiver,

when it flows out, is not to be found in the increased energy
of the gas in the outer vessel which has been warmed by
compression, and in the heat that has been produced by the

overcoming of frictional resistances. This phenomenon has

no explanation on our theory so far as it has been developed
in the preceding chapters ; it proves, therefore, that a

secondary circumstance has not been sufficiently taken into

account, and scarcely leaves room for doubt that the cause

which has been neglected is the cohesion of the gases, to

overcome which during their expansion into vacuum a part

of the heat energy must be taken up.
If we take in hand a thorough comparison of the two

laws which bear Gay-Lussac's name with the results of

experiment, we see no less clearly that our theory has not

so far led us to absolutely strict laws of nature, but only to

rules that hold good approximately, though the approxima-
tion is certainly excellent.

According to the first of these, all gases are to expand

equally under the action of heat
; they ought, therefore, all

to have the same coefficient of expansion as air, viz.

0-00367. But the value of this coefficient is, for instance,

0-00366 for hydrogen and 0-00370 for carbonic acid. Similar

deviations, which in some cases are even larger, are exhibited

by other gases too.

Indeed it cannot be said of any one and the same gas

that under all circumstances it has the same coefficient of

expansion. Magnus 1 has pointed out that the coefficient

of expansion must vary if Boyle's law is not exactly

obeyed. For if the pressure and volume of a gas are not

strictly inversely proportional to each other, there is no

reason to expect that both magnitudes will be increased in

exactly the same ratio by a rise of temperature. We have

therefore, strictly speaking, two different thermal coefficients

1

Pogg. Ann. Iv. 1842, p. 5.
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to distinguish in a gas, viz. the coefficient of volume-

increase and the coefficient of pressure-increment ; the

former determines the increase of volume that occurs with

rise of temperature when the pressure remains constant, and

the latter measures the increase of pressure that is produced

by heating without change of volume. By his experiments

Regnault proved the difference of these coefficients ; he

found, indeed, that with most gases the volume-coefficient

is somewhat larger than the pressure-coefficient, hydrogen
alone showing the reverse property. Regnault

1 further

observed that the two coefficients are not entirely indepen-
dent of the pressure and temperature of the gas, but that

they increase with the pressure and diminish when the

temperature rises.

This behaviour of gases may be also indirectly recognised
from the observations that have been made on the specific

gravities of gases. These are usually referred to the density
of atmospheric air, at the same pressure and temperature, as

unity. It is therefore sufficient to determine the specific

gravity of a gas at different temperatures in order to learn

whether this gas has the same mean coefficient of expansion
as air, or a different one that varies with the temperature or

the pressure.

An instructive example is given by the experiments made

by E. Ludwig 2 on the density of chlorine. For the densi-

ties of the gas, compared with air, he found the following
values :

2-481 at 20 C.

2-478 50

2-468 100

2-461 150

2-450 200

The falling-off in these numbers shows that chlorine expands
more than air. At 200 chlorine attains the same density
as it should have according to Gay-Lussac's law in 30 ;

presumably from this temperature upwards its specific

1 M6m. de I'Acad. de Paris, xxi. p. 96
;
xxvi. p. 565.

2 Ber. d. deutsch. chem. Qes. i. 1868, p. 232.
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gravity remains constant, so that its expansion-coefficient
would have become equal to that of air, while at lower

temperatures it must be greater.

41. Vapours

With vapours developed from liquids by heat the

deviations from the theoretical laws are much larger than

with gases proper. On the whole, vapours comport them-
selves as gases. They obey Boyle's law approximately,
so that in their case, too, the pressure and volume vary very

nearly in inverse proportion ; and further, both pressure and
volume increase with rising temperature in almost equal
ratio, just as with gases. Dal ton's law also holds good
for mixtures of vapours and gases with approximate exact-

ness. We might, therefore, apply the kinetic theory also to

vapours by ascribing to their molecules, just as to those of

gases, a rapid rectilinear motion, and by assuming that this

motion increases with the heat.

Whether and how far these assumptions suit a given case

can be most easily determined from the vapour-densities. As

vapour-density we denote the value obtained for the specific

gravity of a vapour when the density of air at the same

pressure and temperature is taken as unity. The vapour-

density must, therefore, be independent of pressure and tem-

perature if the vapour obeys Boyle's and Gay-Lussac's
laws as exactly as air. Observation has shown that only

within certain ranges of pressure and temperature can a

vapour-density be looked on as constant.

In such determinations experiment has in general shown

that greater values of the vapour-density are found the

lower the temperature at which the measurement is made,

and that not till higher temperatures are reached do we

observe a constant density of the vapour, i.e. a density inde-

pendent of the temperature. Further, for greater values of

the pressure we likewise find greater values of the density

of a vapour, as compared with air under equal pressure ;

and, correspondingly, the vapour-density approaches con-

stancy in its value as the pressure falls off.
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As regards the coefficient of expansion, it follows from

the reasons given that it is not at all constant under all

circumstances, but that it depends on temperature and

pressure in such wise that with rising temperature or falling

pressure it decreases, and that at a sufficiently high tem-

perature or a sufficiently low pressure the expansion-
coefficient for every vapour attains the same value as that of

atmospheric air.

42. Saturated Vapours. Absolute Boiling-point

A problem to which the endeavours of experimentalists
in this direction have been especially directed consists in

the measurement of the highest pressure which a vapour can

attain in dependence on the temperature. The theoretical

investigators have also occupied themselves very greatly

with the condition of vapours at their maximum pressure,

or of saturated vapours, as they are called. Interesting
as are these researches, and important as their results may
be in themselves, this limiting case has less significance for

the theory of gases than for a corresponding theory of liquids.

For the state of equilibrium of a saturated vapour which

lies above its liquid is characterised by this, that the

equilibrium is maintained by vaporisation and condensation

at the surface of the liquid. The molecules of the vapour
which in their to-and-fro motion strike the liquid surface

will not all bounce back, but a part will be retained by the

force of cohesion. On the contrary, it will happen just as

often that a particle of fluid which possesses sufficient speed
tears itself loose from its neighbours, and passes into the

vapour above. From this it follows that, in the state of

equilibrium of a saturated vapour, the kinetic energy of the

vapour is equal to the work which is done by the forces of

cohesion during condensation to the liquid state. The
measurement of the maximum pressure of the vapour has

therefore this significance, that it gives a measure for the

energy-value of cohesion in the liquid state, while for the

determination of the properties and laws of the vapour
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state the observation of unsaturated or superheated vapours
is of greater importance.
We shall, therefore, here touch upon only one point of

especial interest which has resulted from the observations of

Mendelejeff
l and Andrews. 2 As the observations of

Frankenheim and others on the capillary rise of liquids
in narrow tubes at different temperatures have shown, the

cohesion of a liquid decreases greatly as the temperature
rises, whence we should conclude that heat probably pro-
duces molecular motions in liquids, just as in gases, by
which their cohesion is diminished. If we increase the

temperature and this molecular motion more and more by
addition of heat, we may imagine a point reached at which
the forces of cohesion cease to act and the capillary constant

which measures them is zero.

On the other hand, the vaporisation which results from the

rise of temperature and the consequent increase of molecular

motion is prevented, or at least hindered by pressure. We
may imagine the process to be this : that pressure and dimi-

nution of volume bring the molecules of the vapour nearer

together, and cause their cohesive forces, which increase with

diminishing distance between the molecules, to come more

strongly into play, so as to overcome the expansive force due

to the motion of the molecules. This is, however, pos-
sible only so long as the kinetic energy of the molecular

motion is not too great ;
if by the addition of heat this

energy should become so great as to exceed the sum total

of the potential energy of the forces of cohesion which is

lost by two molecules which, from being widely separated,

come into contact with each other, it is no longer possible to

cause the molecules to join together, and it is, therefore,

also no longer possible for the vapour to be changed into

liquid by pressure. The temperature necessary for this,

which Mendelejeff calls the absolute boiling-point, may,

according to our former remarks, be determined also from

1 Ann. Chem. Pharm. cxix. 1861, p. 1
; Pogg. Ann. cxli. 1870, p. 618.

2
Report Brit. Ass. 1861, ii. p. 76 ;

Ann. Chem. Pharm. cxxiii. 1861, p. 270 ;

Phil. Trans, clix. pt. 2, 1869, p. 575; Pogg. Ann. Erg.-Bd. v. 1871, p. 64; Proc.

Roy. Soc. xxiii. 1875, p. 514.

H
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the diminution of the capillarity with rise of temperature.

Mendelejeff has determined the height of this point for

several liquids.

These theoretical views are in most excellent agreement
with the observations made by Andrews, and also earlier

by Cagniard de la Tour and Faraday. Andrews
called the temperature of the absolute boiling-point, the

critical point, which forms the limit between the vapour
state and that of a gas proper. At a temperature below this

critical point an elastic fluid can be condensed into a liquid

both by pressure and by cooling, that is, by either alone,

and thus deserves the name vapour. On the contrary, at a

temperature above the critical point there is no pressure

high enough of itself to make the fluid become liquid, and
both cooling and pressure must be applied together to pro-
duce condensation ;

the fluid is then called a gas.

Conformably to Mendele Jeff's theoretical interpreta-

tion, therefore, we must consider a gas to be a medium in

which the kinetic energy of the molecules is greater than

the sum total of the energy of the forces of cohesion which

may come into play on condensation to a liquid. In a

vapour, on the contrary, the energy of motion does not

reach this amount, but it is sufficient to overcome the part
of the cohesion-energy which from time to time comes into

play in the to-and-fro motions of the vapour molecules.

A further investigation of these interesting limiting
states between gas, vapour, and liquid that have been

touched upon, and especially of the saturated state of

vapours, will some day or other *

presumably form a bridge

by which a passage will be found from the kinetic theory
of gases to a kinetic theory of liquids a theory the ideas

underlying which have been already expressed by Clausius.
For us, whose aim is the establishment of the laws of

gases, the foregoing suffices, on the one hand, to show
the necessity of an improvement of our theory, which has

otherwise approved itself in so many different respects, and,

1

[Voigt has elaborated a kinetic theory of vaporisation and of liquids in

Gott. Nachr. 1896, p. 341
; 1897, pp. 19, 261. See Phys. Soc. Abstracts, iii.

1897, p. 350 ; Science Abstracts, i. 1898, p. 545. TR.]
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on the other, to point out the means by which the defects

that have clung to it so far may be removed. The chief

ground of these defects we shall have to seek in our having
hitherto taken no account of the cohesion of gases.

43. Rankine's and Recknagel's Modification
of Boyle's Law

An attempt to carry the kinetic theory further in this

direction, and to find the correction of Boyle's law that

is necessitated by cohesion, has been already made by
Bankine 1 and by Be ckn a gel

2 with happy results. Beck-

nagel allowed for the influence of the cohesion of the gas,

in the calculation of the pressure exerted by it, by assuming
at every encounter between two molecules a temporary
retardation of their rectilinear motions what, in fact, might
be the simplest way of taking the influence of the curvature

of the paths into account. Joule's calculation of the

pressure given in 11 will hereby be so far altered that

the number of collisions of a particle in unit time against
the wall will be diminished by an amount which increases

with the number of collisions made by the particle with

other particles. We may, therefore, assume this diminution

to be directly proportional to the density of the gas, or in-

versely proportional to its volume, and thereby obtain for

the pressure, the value of which is proportional to this

number, not Boyle's law as before, but a more general

formula of the shape
pv = A(l - Bv~ l

),

where A and B are magnitudes depending on the tempera-
ture only ;

and according to Bankine A is directly and B
inversely proportional to the absolute temperature.

This formula agrees well with the experimental results

obtained in 1862 by Lord Kelvin and Joule 3 on the

cooling that accompanies the expansion of gases. Beck-

nag el also finds that the formula represents Begnault's
1 Note in a Memoir by Thomson and Joule, Phil. Trans, cxliv. 1854,

p. 336.
2
Pogg. Ann. Erg.-Bd. v. 1871, p. 563.

8 Phil. Trans, clii. 1862, p. 588.

H 2
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observations on the compressibility of carbonic acid with

great exactness ; since it gives a maximum value for p,
this occurring for v = %B, it suffices also to represent

Eegnault's determinations of the maximum pressure of

the gas as a function of the temperature. It thereby appears
what deserves to be mentioned as especially important

that the saturated vapour of carbonic acid has the same
thermal coefficient of expansion as the permanent gases.

This is, however, not an incontestable proof of the exact-

ness of the hypothesis from which the formula was deduced.

For exactly the same formula comes also from the different

assumption that in condensable gases a part of the mole-

cules are bound together in pairs, since with this hypothesis
we have to take into account a diminution of the number
of colliding molecules, which diminution is to be assumed
the greater the oftener the molecules collide together, that

is, the more particles there are in unit volume.

44. Hirn's and van der "Waals's Correction of

Boyle's Law
For the same reason a more general theory, which we

owe to Hjm^and to van der Waals, 2 leads also to .the

same result, without its appearing necessary to specialise

the hypothesis so exactly.

This theory not only considers the force of cohesion,

which alone up to the present has been mentioned as a

cause of the deviations from Boyle's law, but also takes

into account, as a second cause, the circumstance that has

been mentioned before ( 8), viz. that the dimensions of

the molecules are of disturbing influence on the exactness

of the law. This necessitates a twofold change in the

theoretical formula

p = NmG 2
,

1 Th&orie Mtcanigue de la Chaleur, ii. 1864, p. 215 ;
Ann. Chim. Phys. [4]

xi. 1867, p. 47.
2 ' Over de continuiteit van den gas- en vloeistof-toestand,' Academisch

Proefschrift, Leiden 1873. Translated into German by F. Both, Leipsig

1881 [and thence into English for the Physical Society of London]. Abstracted

in Fogg. Beibl i. 1877, p. 10.
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which may also be written

if we introduce the number n of molecules in the volume
v instead of the number N contained in unit volume.

In its new shape the formula shows itself as an applica-
tion of the theorem of the conservation of energy to the

system of n molecules, by stating that the energy of motion

represented by the term on the left-hand side of the equa-
tion finds its equivalent in the volume v being filled at

the pressure p. If the medium has internal cohesion, this

pressure is not the only equivalent, but there is another

pressure arising from the cohesion that must be added to p
in the preceding equation.

On the other hand, the volume v of the gas which
occurs in the equation must be diminished if the molecules

occupy space ;
for the molecules fly about here and there,

not in the whole of the space filled with the gas, but in that

part which is left free between them. The number of colli-

sions, therefore, depends only on the extension of this space
that is left free, and not on the whole of the volume filled.

The intensity, therefore, of the pressure exerted will also be

determined only by this smaller volume.

The theoretical formula consequently needs correction on

both grounds, and we must put

where ( denotes the pressure arising from the cohesion, and

b the space by which the volume v has to be diminished.

Of the two new magnitudes introduced, the latter b is

made up of the sum of the volumes which are so filled by
the n molecules that no other molecule could force its way
into any one of them. Possibly the volume filled by a

molecule in this sense is actually determined by its own

extension in space ;
a different assumption, however, is quite

possible. Physicists who believe in a luminiferous ether,

which is different from ponderable matter, would be dis-

posed to consider the volume of the ether atmospheres con-

densed about the atoms rather than that of the molecules.

The assumption of Clausius, Maxwell, and others is also
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permissible, namely, that the forces acting between the

molecules drive two encountering molecules away from each

other even before the moment of an actual contact. We
should then have to consider not the actual space occupied

by the molecules, but the sum of larger spaces which sur-

round the molecules ;
and since we might picture these

envelopes as spherical, we might justify the name mole-

cular sphere, which we will retain until in our investiga-
tion of the free path ( 63) we introduce the term sphere

of action, used by Clausius, for a sphere with a similar

meaning.
One is tempted to take the magnitude b that occurs in

the formula simply as the sum of the molecular spheres ;

but this conclusion could be unhesitatingly pronounced right

only if the molecules could be supposed at rest. But as

they move about they mutually obstruct each other by their

motion in greater proportion than if they were partly at

rest ; it consequently follows that we shall have to under-

stand by b a multiple of the sum of the molecular spheres.
The more exact determination of this w^e shall leave for

Part III. ( 117) ; at present the remark is sufficient that,

excepting perhaps the most extreme cases, we have to re-

present by b a magnitude which, as well as the molecular

sphere, is independent of the pressure and volume.

The second magnitude ( contained in the corrected

formula, viz. the pressure which results from the forces of

cohesion, is determined by van der Waals in the same

way as Laplace calculated, in his theory of capillarity, a

magnitude of similar meaning, which he denoted by K, viz.

the pressure against a flat bounding surface. Since each

of these pressures, both & and K, arises from the mutual
actions of attracting and attracted particles, it is propor-
tional to the number of attracting particles on the one hand,
and of attracted particles on the other ;

and it is conse-

quently proportional to the square of the number of particles

present, and thus increases in proportion to the square of

the density. If we refer all magnitudes varying with the

expansion of the gas to the volume, as in last formula,
and not to the density, we have to introduce @ * a magni-
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tude inversely proportional to the square of the volume

containing the gas.
1

Hence van der Waals's corrected formula for Boyle's
law becomes

av~ 2
)(v

-
b),

wherein a and b are constants independent of the pressure
and volume

;
and if, as before, we express the molecular

speed by the temperature,

(p + av~ 2
)(v

-
b) = E(l + a&),

where E is a constant, and a, S denote, as before, the co-

efficient of expansion of gases and the temperature. Only
by comparison with experiment can it be determined whether

a and b depend on the temperature ;
van derWaals finds

that it is tolerably sufficient to assume them both to be

independent of the temperature, as well as B and a.

45. Comparison with Begnault's Observations

The theoretical formula obtained agrees nearly exactly
in form with the formula of interpolation by which

Kegnault represented the results of his observations; for

.
this has the form 2

= I A(m l) + B(m - I)
2

,m
wherein m denotes the ratio of two values of the volume

reduced to the same temperature, say C., or

m = V/v,

r that of the corresponding values of the pressure,
3 or

r=p/P,

while A and B are constant coefficients. If, as in

Eegnault's memoir, that volume F is taken as unity

1 Hitter has proceeded by this method in determining the cohesion of

gases in a memoir (M6m. de la Soc. de Phys. de Geneve, xi. 1846, p. 99), with

which I have become acquainted only through the notice of it by von

Morozowicz in the Fortschritte der Physik, ii. 1846, p. 89.

2 Mem. de I'Acad. de Paris, xxi. p. 421.

3 See Table of Errors at the end of vol. xxvi. of the Memoires.
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which, at the pressure P = 1 metre of mercury, is filled by
the mass of gas used in the experiment, Eegnault's
formula can be more simply written

2

or

pv + (A + %B)v-
1 - Bv~ 2 = 1 + A +B.

In this form it agrees with the theoretically deduced formula

of van derWaals for the temperature 0, viz.

pv + av~ l
bp abv~* = B,

if it is allowable to replace the pressure in the correction

term bp by the reciprocal of the volume in accordance with

the approximately correct Boyle's law

for then van der Waals's formula runs

pv + (a b)v~
l abv~ 2 = E,

so that it is equivalent to Regnault's if the constants

calculated for unit of mass are related to each other

according to these equations :

a - b = A + 2B,

ab = B,
E = 1 + A + B.

Under these circumstances a detailed comparison of the

formula with the numbers obtained directly is not necessary.

But it should be mentioned that from the values of A and

B found byEegnaultwe shall afterwards be able to calcu-

late 1 the numerical values of a and b, which represent the

magnitude of the cohesion and the extension in space of the

molecules. 2

46. Pressure- and Volume-coefficients

Van der Waals's formula is also suitable for explain-

ing the variation in the values of the expansion-coefficients,

1 Van der Waals, Continutteit ; Both, Wied. Ann. xi. 1880, p. 1.

2 See Chap. X.
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and especially the circumstance that the coefficient which
determines the increase of pressure with temperature is

not identical with that on which the increment of volume

depends.
The value of the former coefficient, which for distinction

from the other the expansion-coefficient proper may be

termed the pressure-coefficient, is the more easily obtained.

The increase which the pressure of a gas undergoes when
the temperature is raised from to $ while the volume
remains unchanged is found by comparison of the formula

(p + av~ 2
)(v

-
b) = E(l + a$)

for the latter temperature with that referring to 0,

(pQ + av~^(v- b) =JB,

when we give to v the same value in both. By subtraction

we get

(p- P<)(v-b) =
or

P Po= (Po + aw

whence we obtain for the pressure-coefficient the corrected

formula

.

This teaches that gases in which cohesion really exists

have a greater pressure-coefficient ap than the ideal gases

for which its value is a. Since this behaviour agrees with

experience, the formula can be used to deduce the value

of the constant a, which measures the strength of the

cohesion, from the observations.

The same agreement between theory and observation

is also shown when we calculate from the theoretical

formulae the value of the expansion-coefficient proper, i.e.

that coefficient which determines the increment of volume.

Since p is now to be taken as constant and v as variable,

the formulae

(p + av~*)(v - b) = E(l + aty,

(p + av
- 2

)(v -b) = B
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give for the expansion-coefficient defined by the formula

v vnav = --M̂
the value

(p + ap"

In order to gain an insight into this complicated formula

let us apply it to extreme cases, and first of all to that,

approximately realised with hydrogen, in which a = or

the cohesion is vanishingly small. With this assumption
we have

av
= (1

- bv
Q

~ l

)a,

so that

av<af
= a.

Now, on the contrary, take the cohesion to be so great

that in comparison with it we may neglect the correction

that arises from the size of the molecules, or put 6 = 0;

then

p av

in this case therefore we have

> a.

Both of these conclusions from theory are in consonance

with experiment ; for according to Eegnault's observations

already mentioned in 40 we have for hydrogen

a
v
= 0-003661, ap = G'003667

;

but for all other gases the relation between the values of

the coefficients required for the second case is fulfilled.

Van der Waals's theory thus agrees in all points
with experiment in so far as it rightly expresses the general
laws. This agreement speaks for the fact that to a certain

degree the assumptions on which the theory rests correspond
to reality. If we should consider van der Waals's theory
also as probably not yet perfect, we are yet justified in the

view that in it the first step is taken along the path by which

we shall arrive at a completely satisfactory kinetic theory of
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real gases and not of ideal gases only. The point in which
it most especially needs improvement is the manner in which
the law of cohesion is introduced.

47. Completions of van der Waals's Formula

Properly recognising this imperfection, Clausius 1 has

attempted to improve van der Waals's formula by sub-

stituting another expression for the value of the cohesion.

His formula, which has the form

{p + a(v + /3)-
2

} (v
-

b)
= B(l + aS),

differs from that of van der Waals essentially in this:

that the cohesion-pressure is put inversely proportional,
not simply to the square of the volume v, but to the square
of the volume v increased by a constant /3. By this means
Clausius obtains a better agreement of the formula with

observations that have been made under high pressures,

and therefore with small volumes.

Earn say and Young 2 think it more correct to sub-

stitute the more general expression of an nth power instead

of that of the square of the volume v.

A second difference between the formulae of Clausius
and van der Waals consists in this : that the magnitude
a is with Clausius not a constant, but a function of the

temperature. As he first employed his formula only in the

case of carbonic acid, he could be content with the assump-
tion of the simple formula

<-.
in which c is a constant and <) denotes the absolute tem-

perature
= 3 + a'

1
.

Later on, when trying to apply the formula to other gases

and vapours, he assumed a more general expression,

a = (A-n- B)R(l + aty,

1 Wied. Ann. ix. 1880, p. 337; xiv. 1881, pp. 279, 692; Mechanische

Warmetheorie, 1889-91, iii. pp. 184, 21,5, 227.
2 Proc. Boy. Soc. xlii. 1887, p. 5.
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in which A, B, n are constants. Similarly Battelli 1

put

a = (A~n- B%m
}E(l + aS),

so that he had one more constant at his command. G.

Jager,
2 on the contrary, added to a the factor

@-y/e
,

where 7 is constant.

These formulae exhibit much better agreement with ex-

periment than the simpler formula of van der Waals, as

is to be expected from the greater number of disposable
constants. Yet, as Korteweg 3 has remarked, the formula

of Clausius deviates from the observed behaviour of gases
in many other regards more largely than that of van der

Waals. For our theory the more complicated formulae

are less valuable than the original simpler one on account

of the difficulty of their interpretation.

Amagat 4 has completed van der Waals 's equation

by giving it the form

{p + Av~\v -s)}{v-b + B(v - b)
n
}
= B(l + aty,

which contains five constants, A, B, s, b, n. This formula

has proved itself good in a comparison with the observed

behaviour of hydrogen.
Boltzmann and Mache 5 assume the formula

(p + flwr
1

) (v
-

b)
= E(v + 25) (1 + a&).

48. The Cohesion of Gases

If it can appear scarcely doubtful that the defects of the

theory, even after the corrections just applied, depend on

the cohesion having been insufficiently treated, there may
yet arise doubts as to the mode in which a strict theory

1 Memorie di Torino [2] xliv. 1893, p. 27.
2 Wiener Ber. ci. 1892, p. 1675.
3 Wied. Ann. xii. 1881, p. 143.
4
Comptes rendus, cxviii. 1894, p. 566. [He has also found (Comptes

rendns, cxxviii. 1899, p. 538) that the behaviour of C02 in a very wide range
of pressure and temperature is well represented by a formula of the type

+
-

{a + m(v - b)I

kvn - a + V{(v - )8)
2

Wiener Sitzungsanzeiger, 1899, p. 87.
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would have to take the influence of this force into account,
and as to the change in our views regarding molecules and
their motion that are demanded by reason of the cohesion.

There are, in fact, two essentially different explanations of

the deviations which gases and vapours exhibit from the

theoretical laws, and yet both explanations arise at bottom
from the same origin.

In order to understand this double possibility we need

only remember that the foundation of our theory contains

also several unproved and unprovable assumptions, of which

only two come here into account. The first is the assump-
tion that gases consist of molecules of invariable mass, the

second is the hypothesis that they move in straight lines.

Of these two hypotheses the latter at first sight seems

the more doubtful ;
for in any case it is only true with the

limitation or exception that at the moment of a collision

the motion, till then along a straight line, must experience
a sudden change of direction. But the former, too, as we
shall see, is not above doubt, and an inexactness in this

hypothesis might just as well cause the deviations as an

error in the second of the two hypotheses.
We can frame for ourselves no idea of the cohesion of

gases that is essentially different from that of liquids ; we

imagine, therefore, forces which act attractively from particle

to particle in the direction of the line joining them, and

whose strength falls off very quickly as the distance in-

creases, so that at a finite or measurable distance the force

is infinitely small. It would be as difficult to oppose this

customary supposition regarding the nature of cohesion as

to contest the essential part of the kinetic theory of gases

if we were to ascribe to the forces of cohesion, for a dis-

tance of the attracting particles from each other equal to

the mean distance apart of those which were the nearest

neighbours, a sensible value which comes somehow into

consideration. We shall therefore have to assume that

attractive forces of any importance are active between two

particles only when they actually collide or just graze each

other in their paths.
If we assume this idea of the action of the force of
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cohesion, we do not on this account need to drop the hypo-
thesis of rectilinear motion, in which the most essential and

characteristic peculiarity of Bernoulli's theory consists.

It only becomes necessary to modify the hypothesis so that

the changes of direction from one straight path to another

are not caused suddenly by a collision, but gradually by
forces which act continuously, even if they very quickly
come into and go out of play. The paths then do not form

sharp-angled zigzag lines, but the passage from one straight

line to another is brought about by lines that are sharply
but continuously curved so that the corners seem to be

rounded off. In the next paragraph we shall have to

discuss, at least in its general character, the influence which
this modification of the hypothesis introduces into the cal-

culation of the pressure.

Still, an effect of quite a different kind is conceivable

with the same hypothesis as to the nature of cohesion. 1 If

we assume, with regard to this force, that it acts only in the

proportionately rare moments of an actual or very nearly

occurring collision between two molecules, the fact esta-

blished by Joule and Lord Kelvin, that the intensity of

the cohesion in gases is very small, will be simply explained

by the force acting only during the short time of the

collision and being in abeyance during the much longer
interval between successive collisions. There would there-

fore be no contradiction with the observations mentioned if

we assume that in the short periods of collision the force

acts with very considerable intensity.

But if this assumption is admissible there is nothing
inconsistent in the hypothesis that the attractive forces of

cohesion might be able, at least now and then under favour-

able circumstances, to bind together two colliding particles

so fast that they traverse the next stretch of their path

together as a double molecule. By this a state of equi-
librium would be produced in the gas in which, among the

1 In his memoir on '

Temperature and the Measure of Temperature
'

(Pogg.
Ann. Erg.-Bd. vi. 1874, p. 275) Eecknagel also considers effects of two kinds

attraction of molecule on molecule and actions within molecules. The latter

are perhaps to be interpreted in the manner explained later.
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molecules of the same kind, there would be always some of

greater mass. The number of the latter would depend on
the frequency of the favourable cases of collision, and there-

fore, also, chiefly on the number of collisions that occur, so

that in a denser gas wherein the molecules collide more

frequently there will be also more molecules of greater mass.

49. Playfair and Wanklyn's Explanation of the
Anomalies

The hypothesis last expounded forms the basis of the

explanation of the anomalies regarding vapour-densities that

has been given by Playfair and Wanklyn, 1 an explana-
tion which embraces all the other deviations of actual gases
from the theoretical laws.

According to what has already been said regarding the

hypothesis, it is only necessary to remember the mechanical

definition of temperature, given before in 14, to see at once

the possibility of the explanation of all anomalies. Accord-

ing to 29, the mean value of the kinetic energy of a

molecule, even when of different kinds, forms the measure

of temperature. Consequently, in a gas whose molecules

are either wholly or in part bound together to form larger

aggregates, the kinetic energy contained in unit volume is

less than before the aggregation ; or, more simply expressed,

the pressure is lowered by the aggregation of molecules if

the rise of temperature resulting therefrom is compensated.
Hence a gas whose molecules may combine together may
be more easily and strongly compressed than an ideal gas
whose molecules are unalterable massive points. A deviation

from Boyle's law will therefore arise in the direction

shown by most of the gases included in the table of 7, with

the single exception of hydrogen, the behaviour of which

has been already described elsewhere
;
and determinations

of vapour-density will therefore give higher values the

higher the pressure during the measurement, as was found,

for instance, by Alex. Naumann to be the case for acetic

acid.

1 Trans. Roy. Soc. Edin. xxii. pt. 3, 1861, p. 441
;
Ann. Cliem. Pharm.

cxxii. 1862, p. 247.
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The fact that the vapour-density is smaller at higher

temperatures and larger at lower temperatures is explained
in the same way ;

for since the heat-motion loosens the bond

between the molecules the molecules will be lighter, and

therefore the gas or vapour will be specifically lighter at

the higher than at the lower temperatures.
The behaviour of the thermal expansion-coefficients is

also directly explained. At lower temperatures not only do

the gaseous molecules separate more widely from each other

on the addition of heat, but they also split up and require

greater space for their greater number. At higher tempera-

tures, at which all the molecules have been already split up,

heating brings about merely an increase of speed as in ideal

gases ;
all vapours and condensable gases must therefore at

high temperatures attain the same thermal coefficients of

expansion as the so-called permanent gases, while at lower

temperatures they expand more largely.

If this explanation of the deviations is really true, a con-

clusion already drawn by Eegnault 1 from his observations

on the compressibility of gases must be unconditionally
considered as correct. If molecules that are bound together
are more and more separated by rise of the temperature,
there must be a temperature at which all move singly and no
further separation is possible ; at this temperature the ground
in question of the anomalies would fail, so that the only
cause of an anomaly that would remain is the circumstance

that the dimensions of the molecules in comparison with

their distances apart need not be vanishingly small, a cause

therefore which, as in hydrogen, would entail a deviation

in the opposite direction. According to this theory, there-

fore, as Begnault has already conjectured, every gas must
at a sufficiently high temperature exert a greater pressure
than would be expected by Boyle's law, and a less pres-

sure at lower temperatures, so that for every gas there will

be a certain temperature at which it strictly obeys this law.

Hydrogen would at very low temperatures behave just like

the others.

1 Mini, de VAcad. de Paris, xxi. 1847, p. 404.
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5O. Horstmann's Explanation

A different explanation of the same circumstances given

by Hojrj^tinann
1 rests at bottom on the second of the

hypotheses described in 48, although Horstmann gives
it a quite different form. He throws doubt, in fact, on the

exactness of Avogadro's law in the case of vapours and

gases which do not strictly obey Boyle's law, and explains
it as being only approximately correct. This law is, on our

theory, a necessary consequence of the hypothesis that

pressure and temperature are caused by rectilinear motion of

the molecules alone. Hence Horstmann's assumption is

not essentially different from that discussed in 48, accord-

ing to which the to-and-fro straight paths of the molecules

are supposed to be joined together by curved parts.

By this assumption also the observed anomalies can be

explained. The force of the blow with which a molecule

strikes against the wall of the space filled with gas or

vapour is greater if the molecules move in right lines free

from forces of cohesion than if they are drawn back from

the wall and into the interior of the space in curved paths

by the attraction of other molecules. The pressure, there-

fore, of a vapour or gas which contains a given number of

molecules will be the less the more frequently the molecules

are caused to move in curved patns, and the greater the

more frequently and the longer they move in straight paths.

If, therefore, the density is increased, the pressure increases,

not in the same ratio, but in a less degree, because the

increase of the number of collisions causes a diminution

of the force of a collision. On the other hand, by an in-

crease of temperature the pressure will increase in greater

measure, since the force of a blow increases not only for

the reasons already given, but also because the faster moving
molecules traverse longer straight paths.

These views, therefore, also suffice to explain simply and

naturally not only the greater vapour-density possessed by

easily condensed gases and vapours in the neighbourhood of

1 Ann. Chem. Pharm. Suppl. Bd. vi. 1868, p. 53 ; also in his Habilitations-

schrift, Heidelberg 1867.

I



114 MOLECULAR MOTION AND ITS ENERGY 50

their condensing point, but also the fact that their volume-

and pressure-coefficients are greater than those of ideal

gases.

51. Claims of the Two Explanations

In the present position of the matter a definite answer

to the question, Which of the two explanations of the anoma-

lies deserves preference ? is not possible, since each represents
the observed behaviour in general, and neither seems to con-

tradict our gaseous theory, which is otherwise confirmed. A
distinction between them could only be made after a further

pursuit into details of the views that have only been

sketched very generally.
In order to carry out the theory of gases with the sug-

gested corrections in the one direction or the other, the

calculus of probabilities offers the same method as was
used to prove Maxwell's law of speeds. It would be only

necessary to consider as unknown not only this -law of dis-

tribution, but also the form of combination of the molecules,

whether in groups or as units. The problem offers the same
difficulties as a mathematically formulated chemical statics,

which would have to treat of the combination of atoms into

molecular groups ;
and the solution of the one will be the

solution of the other.

The contention between the two modes of explanation
seems to be capable of more easy decision empirically. It

might be recommended to determine the densities of vapours
not only by weighing, but also indirectly in the way proposed

by Leslie and Bun sen, viz. by observation of their speeds
of effusion at different temperatures and under different

pressures. Perhaps, too, transpiration- and thermal-measure-

ments may give help in the determination.

At present we shall look on both explanations as equally
entitled to consideration, and must consider the probability
to be that both circumstances, as discussed in 48-50, work

together to cause actual gases and vapours to deviate in

their behaviour from the ideal laws.
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CHAPTEK V

MOLECULAE AND ATOMIC ENERGY

52. Dulong and Petit's Law for Gases

THE theories of Clausius and Maxwell, developed in

Chapters II. and III., form, in the first place, a kind of

molecular mechanics ; but as heat is nothing else but the

mechanical motion of molecules, these theories are entitled

to form the basis of the laws of heat no less than of those

of mechanics. One of the immediate conclusions from it is

a theorem that exhibits a marked analogy with the law /

respecting the specific heats of solid bodies, which was dis-
~~

covered by Dulong and Petit.

If the temperature of a gas rises by 1 degree, the kinetic

energy ( 14, 16)
E =

which its molecules possess on the average, increases by

a magnitude which, by what has gone before, is the same for

all gases.

On the other hand, the law which Dulong and Petit

discovered for the specific heats of solid bodies may, as is

well known, be expressed in the form that, in order to heat

chemically different bodies to the same extent, the
.
same

amount of heat must be communicated to every atom ; and
^b

for this we generally say more shortly that the atomic heat '

of all bodies is the same.

If we remember that on our theory heat and energy are

identical, the analogy we have mentioned at once comes

into view. By a rise of temperature the energy of each

ATOM in the SOLID state increases by the same amount, and,
i 2



116 MOLECULAR MOTION AND ITS ENERGY 52

m the contrary, in the GASEOUS state the kinetic energy of
each MOLECULE increases by the same amount.

The analogy of the two laws, which, by the bye, can

claim only an approximate and limited validity, does not,

however, entitle us to consider them identical, and to take

as the specific heat the magnitude

obtained above as constant for gases. In the next para-

graph we shall examine its meaning more closely.

53. Ratio of the Molecular to the Total Energy

From the calculation of the mean speed of the molecules

in absolute measure the value of the kinetic energy of mole-

cular motion present in the gas is at once known. On the.

other hand, the value of the total energy present in the gas
can be calculated from its heat-capacity and temperature,
since it is equivalent to the heat contained in it. The

question arises, whether the two values calculated by these

different methods are in harmony with each other, and the

/resolution of such a doubt rests on the following considera-

tions, which are borrowed from Clausius.

We ought not to expect the two values to be quite

identical, so that the calculated kinetic energy should be the

exact equivalent of the heat-energy ; for the molecules, on

their side, consist of atoms that are separately movable.

The kinetic energy of those motions which the whole com-

plex of atoms in a molecule together execute need therefore

not be the whole energy contained in the gas, but there

may, in addition to the forward motion of the molecules as

they course to and fro, be other internal motions of the

single atoms. The whole energy, calculated from the con-

tained heat, may very well then be greater than the energy
of molecular motion.

We find the total heat-energy contained in a gas by

assuming that it has been brought into its present condition

by being warmed at constant volume from the absolute zero

to the temperature 0. If the volume filled by the gas is
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unity, and therefore the mass of the gas given by the

density p, the heat needed is

cp,
where c is the specific heat of the gas at constant volume.
If J is the value of the mechanical equivalent of heat, the

equivalent of this amount of heat in terms of mechanical

energy is

H = Jcp.

With this value of the whole amount of energy in unit

volume of the gas we have to compare the value

*-**.
which we obtained in 16 for the kinetic energy of mole-

cular motion contained in the same unit volume.

Since in regard to the latter magnitude we know that in

correspondence with Gay-Lussac's law it increases pro-

portionally to the absolute temperature when heat is added,
we see at once that both H and K are proportional to the

absolute temperature . Their ratio is therefore a constant

number independent of the temperature of the gas, constant

at least if the assumption founded on Eegnault's obser-

vations for atmospheric air is in general true, viz. that the

specific heat c at constant volume does not alter with the

temperature. Since also both magnitudes are proportional
to the density p, we have with that supposition the proposi-

tion : In a perfect gas the kinetic energy of the molecule

stands in a constant ratio to the total energy contained in

the QOS.
The formulae given are sufficient to determine the

numerical value of this ratio. But the proceeding employed

by Clausius, 1 of first reducing to the same units the two

magnitudes to be compared, and of giving them as nearly

as possible the same form, is more to be recommended.

This was done by Clausius in the same way as J. E.

Mayer 2 determined the value of the mechanical equivalent,

1

Pogg. Ann. c. 1857, p. 377 ;
AbhandL iiber Warmetheorie, 2. Abth. p. 256 ;

Mech. Warmetheorie, iii. 1889-91, p. 35; transl. Phil. Mag. [4] xiv. 1857,

p. 108.
2 Ann. Chem. Pharm. xlii. 1842, p. 239 ;

Mechanik der Wdrme, 1867, p. 28-
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by finding the thermal equivalent for the energy contained

in a gas in the form of pressure.

In order to heat to the temperature under constant

pressure a mass of gas p, which at constant volume needs

an amount of heat

cpS

for the same rise of temperature, the greater amount of heat

is needed, where C expresses the specific heat at constant

pressure. The difference between these magnitudes

(C c)P

serves therefore only to increase the volume, and thereby
maintain the pressure constant.

We find the mathematical expression for the expenditure
of energy needed for any action, or, more shortly, for the

work done, by multiplying the force by the distance through
which it has been overcome. In our case the force on unit

area is given by the pressure^?, and the action consists in

overcoming this pressure through the whole extent of the

volume v, and, since the latter is assumed equal to unity,

the work done is

pv = p.

The production of this work, the initial value of which

was zero at the temperature of absolute zero, is equivalent
to the above heat, as is expressed by the equation

p = J(C-

J here again representing the mechanical equivalent.
If we apply this formula, which is just the same as that

employed by J. B. Mayer for his calculation of J, to the

value of the molecular and total energies K and H, we get
the equation found by Clausius, viz. :

X
H

which shows that the ratio of the two energies is deter-

mined by that of the two specific heats.
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In this form the proof is bound up, as was before

mentioned, with the assumption that the gas obeys the ideal

gaseous laws, and especially that its specific heat c at constant

volume does not alter with the temperature. We can, how-

ever, easily free ourselves from this assumption and establish

a more general formula, which serves also for the case

wherein the specific heat does vary with the temperature.
If

,
are two temperatures between which the value

of the specific heat may be taken constant, the formula

H - H
Q
= Jcp(S

- @ )

gives the whole amount of energy which must be added

to unit volume of the gas to heat it from (B> to <B) without

expansion. The kinetic energy of the molecular motion

thereby simultaneously increases by

where p p is the resulting increase of pressure. Since

for this change of pressure the relation

holds good, we have the more general formula

H-H~ 2 c

the interpretation of which is quite similar.

54. Monatomic Molecules

To prove whether or not this theoretical formula corre-

sponds to the truth, we may apply it to the special case of a

gas whose molecules consist each of a single atom. To this

class of gases, which we may call monatomic, if we may use

this word in a different sense from the term single-valued,

belong the vapours of mercury, cadmium, and perhaps zinc.

For these monatomic vapours the possibility of assuming

proper motions of the atoms, in addition to the motion of

the molecules, falls to the ground ;
we shall therefore have

to suppose that in these vapours the kinetic energy K is

identical with the total energy H, provided that, like gases,

they may be considered free from cohesion.
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For this class of bodies, therefore, K K
Q
= H H

Q ,

and thus
C -_c _ 2

c ~3'

or, if this assumption is correct, the ratio of the two specific

heats must be

Led by this consideration Kundt and W&ibuvg 1 have

submitted mercury vapour to an investigation, the result of

which completely confirmed the exactness of the theoretical

formula. They determined the ratio of the specific heats

from the speed of sound, which can be found from the wave-

length of a tone. By comparing the wave-lengths of the

same tone both in air and mercury vapour they found that

the ratio of the specific heats of mercury vapour is really

^ = 1-67,
c

if after Bontgen's
2 determination the value of this ratio

for atmospheric air is taken as

-= 1-405.
c

Exactly the same behaviour has been also observed in

the case of the newly discovered gases, argon and helium,
3

and the conclusion has therefore been drawn that, in their

case too, each molecule consists of but a single atom.

Since this fact, that C /c
= If for a monatomic gas,

is established by observation, we must assume that the

theoretical hypothesis which led to its discovery corresponds
/also to the truth. In mercury vapour, therefore, and in the

* other monatomic gases, H = K, that is, there is no other

nergy of any kind but that of the progressive motion of

the molecules.

1 Ber. der deutsch. Chem. Ges. Berlin viii. 1875, p. 945
; Pogg. Ann. clvii.

1876, p. 353.
2
Pogg. Ann. cxlviii. 1873, p. 580.

3
Eayleigh and Eamsay, Proc. Roy. Soc. Ivii. 1895, pp. 282, 286;

Earn say, Gases of the Atmosphere, London 1896.
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This excludes the idea that a rotation of the molecules

about their centroids can occur
; or, at least, if such a rota-

tion be present, it cannot be altered by addition of heat ; _\jk

for, though we need not put H K, we must at least
y

put H H = K K
Q

. The rotation of the particles has

therefore to be independent of their rectilinear motion,
and has not to be altered by collision between two particles.

This is difficult to understand if the laws of elastic collision

are to hold good for the collisions of atoms. We may not

therefore figure the atoms as small elastic bodies occupying

spaces, like spheres for instance, but as vanishingly small

massive points, if we do not make other assumptions as to

their nature, to which we shall return in Chapter X., 123

and 124.

That monatomic gaseous molecules also may be capable
of oscillatory motions in their interior we may look upon
as probable, since in their spectra whole series of different

lines are found. But these motions, as we may assume in

accordance with E^ Wiedemann
'

s
l

observations, require

so small an expenditure of energy that its amount does not

come at all into account in comparison with the kinetic

energy of the molecular motion.

Hence monatomic molecules need in no way be rigid

massive points ;
it is only necessary that they should be

very small particles in whose interior only such motions

can come into play as demand but very little energy. It

therefore does not appear impossible that the ratio

C/c = 1-67 should be found in the case of chemically com-

pound molecules also, if the connection of the atoms is so

firm that internal motions are excluded.

55. Polyatomic Molecules

In the case of a gas whose molecules are made up of

several atoms, the ratio of the kinetic to total energy, K : J3",

is indeed not directly known ;
but in spite of this we can

here too test by observation the correctness of the theory

1 Wied. Ann. 1889, xxxvii. pp. 241, 248. Comp. 123.
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to a certain extent. For, since K, as a part of JEZ", is not

greater than H, but can at most be equal to H, our formula,

which can be put in the form

C 2tf
e ^3H'

or, more generally,

=1 2 K - K,
c

=

3 H - H
Q

'

gives limits for the values which the ratio of the two

specific heats can have
;
thus the formula gives

or the value of the ratio must in all cases lie between

1 and f .

Since the experimental determinations of this ratio

mentioned further on confirm this theoretically deduced law

without exception, we may consider ourselves justified in

using the formula

K_ 3C-c
H =

2 c

in the reverse way, and in calculating for different gases

the ratio of the kinetic energy K of the molecules to the

whole heat-energy H from the values of the ratio of the two

specific heats that have been determined by observation.

At least, for a gas whose specific heat is not variable with

the temperature the sufficiency of this formula instead of

the more general one

K - K
Q __ 3 C-c

H - H
Q

~

2 c

will not be contested
;
for other gases the simpler formula

will give values that are very approximately correct.

The value of the ratio in which the two specific heats

stand to each other has indeed been experimentally deter-

mined for a tolerably large number of gases, though un-

fortunately not in all cases with such certainty as for our

purpose is desirable. For since the formula does not con-

tain only the ratio, but also the difference of these magni-
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tudes, the uncertainty of the values calculated by means of

this formula will become still greater.

For atmospheric air we have to take for this ratio the

value

- = 1-405 ;

c

this we obtain from Dulong's 1 and Masson's 2 observa-

tions on the speed of sound,
3

if we apply a correction 4 that

according to the newer measures is necessary ;
and this value

is in harmony not only with Wiillner's 5
experiments by

the same method, but also with Bontgen's 6 determina-

tions by Desormes and Clement's 7
procedure, and with

P. A. Miiller's 8 observations by Assmann's 9 method.

From this value we obtain by the formula

H =
l (f

"

*)
=0 '

608;

the energy K therefore of the molecular motion in atmo-

spheric air stands to the whole energy H contained in

the gas in about the ratio 3:5. Thence it follows that

the two parts into which we may break up the whole

energy H, viz. the internal energy H K of the mole-

cule (which we may distinguish as the atomic energy] and

the energy K of its progressive motion, must bear to each

other nearly the ratio 2:3; or, more exactly, we have

^ = 0-646.

The values of H and K have hitherto been referred to

unit volume. If, however, we are concerned with only the

ratio of their values, it is unnecessary to refer them to unit

volume, and we may refer their values to any arbitrary

1 Ann. Chim. Phys. xli. 1829, p. 113
; Pogg. Ann. xvi. p. 438.

2 Ibid. [3] liii. 1858, p. 257.
3
Compare 36.

4 Wiillner's Lehrbuch d. Experimentalphysik, 4. Aufl. 1885, iii. p. 522.

5 Wied. Ann. iv. 1878, p. 321.
6
Pogg. Ann. cxlviii. 1873, p. 580.

7 Journ. de Phys. Ixxxix. 1819, pp. 321, 428.

8
Inaug. Diss. Breslau 1882 ; Wied. Ann. xviii. 1883, p. 94.

9
Pogg. Ann. Ixxxv. 1852, p. 1.
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volume, as, for instance, the molecular volume. Hence if,

as in 21* of the Mathematical Appendices, we denote the

mean energy of forward motion of a single molecule by E,
and the mean value of its internal atomic energy by (, the

ratio of these two magnitudes is equal to that calculated

above, viz.

E K
This somewhat altered conception allows us to compare

the mean amount of energy e possessed by a single atom
with the molecular energy. For if the number of atoms in

the molecule is n, then the desired mean value is

-*.
n

Since air is not a chemical compound of unchangeable

composition it is not, strictly speaking, allowable to apply
this formula to it. But since its components, nitrogen and

oxygen, have the common property of possessing two atoms

in a molecule, we may also for air put n = 2, and obtain

|=0-646, I
= 0-323.

The energy e of an atom is thus considerably smaller than

the energy E of progressive motion of a molecule of air.

This ratio is in agreement also with that for most other

gases, as the following table shows.

The first column of figures contains the observed values

of the ratio of the specific heats for a series of gases and

vapours. The observations of Dulong (D) and Mas son

(Mn) are given according to Wiillner's corrected calcula-

tion
; also in Wiillner's (W) determinations the correc-

tions later applied byStrecker and Wullner are taken into

account. 1 In addition to these I have taken the observations

of Kontgen (E), P. A. Miiller (Mr), Strecker (S),
2 de

Lucchi (I/),
3 Martini (Mi),

4 Maneuvrier and Fournier
1 Wiillner's Lehrbuch, 4. Aufl. 1885, iii. p. 522.
2
Inaug. Diss. Strassburg ; Wied. Ann. xiii. 1881, p. 20

;
xvii. 1882, p. 85.

3 Nuovo Cimento [3] xi. 1882, p. 11
;
Exner's Rep. xix. 1883, p. 249.

4 Atti del 1st. Yen. [5] vii. 1880-1, p. 491; Landolt and Bernstein's

Tables, 2 ed. p. 340, tab. 137.
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(MF),
1 Lummer and Pringsheim (LP),

2

Capstick
(Ck),

3 and also those of Cazin (C),
4

though these maybe
less exact. From these observed values are then calculated

the values of the ratios K : H, ( : E, and e : E.

Molecular and Atomic Energy

Gas
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Molecular and Atomic Energy cont.

Gas
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56. Approximate Calculation of the Atomic Energy
in Polyatomic Molecules

A further series of approximately correct values of these

ratios can be obtained by a theoretical method which has

been used by Sadi C a rn o t * to calculate the values of the

specific heat at constant volume from the observed values of

the specific heat at constant pressure.

To explain this method we introduce the values of the

specific heats F, 7, which are referred to unit volume, instead

of C, c, which refer to unit mass ; these are given by
r = cp, 7 = cp,

where p is the density of the gas referred to that of water as

unity. Then for the ratio of the kinetic energy of the mole-

cules to their whole energy we have the formula

E_= 3 F-7
H 2 ~7~

This new form of the formula possesses an advantage
when we take account of a law discovered by Carnot, which

can be directly deduced from the formula

developed in 53. If we write it in the form

it contains only two constants, the mechanical equivalent J
and the difference F 7 ; of these only the latter can depend
on the nature of the gas used in the experiment. But con-

sidering two different gases under equal pressures and at the

same temperature, we see that the difference F 7 of the

two specific heats referred to unit volume has the same value

for all gases.

It follows for our purpose, from this law, that the value

of the ratio of K to H in different gases is inversely propor-

tional to the specific heat 7 of unit volume of the gas at

1

Reflexions sur la Puissance Motrice du Feu, Paris 1824. Reprinted in

Ann. Sci. de VEcole Norm. Super. [2] i. 1872, p. 393. Translated into English

by Professor Thurston, London 1890.
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constant volume. Hence the ratios for other gases could

easily be calculated from the known value of the ratio for

any one gas if their specific heats at constant volume were

known.

But the specific heat at constant volume is with much

greater difficulty accessible to observation and measurement

than the specific heat at constant pressure. On this ground
no direct determinations of the former have been made. 1

But their values may be calculated from the measured values

of the latter by means of the law just given, which is

expressed by the last formula. Since this formula and law

are strictly exact only for perfect gases, the calculation can

indeed be admitted without hesitation only for such gases as

have no cohesion and strictly obey Boyle's law. For other

gases and vapours this calculation can only supply numbers

which, at most, can claim to be approximately correct esti-

mations.

Still more doubtful becomes the interpretation of this

theoretical calculation if it is necessary to employ values of

the density which are not actually observed but' are theo-

retically deduced on the assumption of Boyle's and Gay -

Lussac's laws or of Avogadro's law.

Finally, as a further cause that makes the values so

calculated uncertain, must be added the circumstance ob-

y^erved by Kegnault,
2 E. Wiedemann,3 Winkelmann,4

* and Wiillner, 5 that the specific heat of many gases and

vapours is variable in a high degree with the temperature.
This is especially the case, according to an observation

made by IVS^b-^J^6 with those compounds which contain

carbon.

With these reservations the values of the specific heat

1

[Dr. Joly's direct determinations by means of his steam-calorimeter must

not be ignored. See Phil. Trans, clxxxii. 1891, p. 73 ;
clxxxv. 1894, pp. 943,

961. TB.]
2 M6m. de VAcad. de Paris, xxvi.

3
Habilitationsschrift, Leipzig 1875 ; Pogg. Ann. clvii. 1876, p. 1.

4
Pogg. Ann. clix. 1876, p. 177.

5 Wied. Ann. iv. 1878, p. 321.
6 Hohenheimer Programm, Stuttgart 1874, p. 82

; Pogg. Ann. cliv. 1875,

p. 580.
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7, which I have borrowed from a table calculated by
Clausius 1 from Kegnault's observations and displayed
in the annexed table, are to be taken

; and the values of the
ratios in the last three columns, which I have deduced from

them, must be similarly judged.

Gas
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of translatory motion E of the molecule. The values of this

last ratio, which are placed in the last column, are in nearly
all cases less than 1, and, indeed, are in general less than J.

The number of exceptions, including perhaps ethyl ether 1

and possibly seven l chlorine compounds, is so small that we
shall be inclined to consider the rule, that in gases with

^^^V polyatomic molecules the mean energy of an atom is smaller

than the translatory energy of a molecule, to be a veritable

law of nature, which, like Boyle's and the other laws of

gases, admits exceptions under certain circumstances.

The possible grounds for such exceptions will appear
from the following considerations.

57. Dissociation and Disgregation

By our theory and by experiment, so far as the theory
has up to the present been confirmed by observation, the

molecular energy E consists only in that of the linear to-

and-fro motion of the molecules, that is, in kinetic energy,

or, in the older nomenclature, in vis viva. We may not,

however, assert this of the energy Q* of the atoms nor of the

mean energy e of a single atom. For the atoms do not move

freely like the molecules, which in the gaseous state exert

no cohesion towards each other, but they are bound to

each other by chemical affinity, and are, consequently, con-

strained to a certain extent in their motion. The energy
of the atoms, therefore, does not consist, as that of the mole-

cules, entirely in kinetic energy, but also in the potential

energy of the affinity which holds the atoms together ;
the

magnitude ( is the sum of the amounts of both kinds of

energy which are present within the molecule, or, according
to Leibniz's terminology, it is the sum of the vis viva and

vis mortua of the components of the molecule. In the same

way the mean energy e of an atom is made up of its kinetic

energy and its share of the potential energy of the chemical

forces of affinity.

From this it first of all follows that we are not entitled

to infer the magnitude of the speed of the atoms from the

1 Eefer also to the table of 55.
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calculated values of e as we were able to deduce the speed of

translatory motion of the molecules from the molecular

energy E. It would rather be allowable to estimate the

strength of chemical affinity from the atomic energy e.

But from what has been said regarding the character of

the atomic energy we further draw this as a necessary con-

clusion, that an atom cannot, like a molecule, attain any

speed we choose. A great speed exceeding a certain limit

would be able to tear the atom from its combination with

the others, and such a freed atom would then move on in

straight lines free from external forces like an independent
molecule, and its energy, therefore, which till then formed

a part of the atomic energy, would go to increase the mole-

cular energy E. Herein lies an evident ground for the view

that the mean energy e of an atom must be smaller than

the average energy E of translatory motion of the mole-

cules.

That an atom can be actually loosened from the mole-

cular combination by an increase in its speed cannot be

doubted
; to this testifies the fact of dissociation, that is, the

phenomenon that chemical combinations can be broken up

by a rise of temperature, and, therefore, by an increase in the

energy of the molecules and of the atoms. With a moderate

amount of heat this breaking up of molecules into single

atoms does not in general occur ; but among a great number

of molecules there will always be some which become split

up into their components in consequence either of extra-

ordinary high speed or of collision under exceptionally

favourable circumstances.

This view, first put forward_by Clausius, is applicable

not only to gases but also to liquids. From measurements

on the conductivity of water made by F,._Kojy^aTisc h and

A. Heydweiller
1
it may with great probability be assumed

that evenTEe" purest water contains traces of uncombined

oxygen and hydrogen.

Analogously to this partially occurring dissociation we

should expect a partial chemical combination to result when

two gases are mixed together at a temperature bel^w that

1

Sitzungsber. d. Berl Akad. 1894, p. 295. ?
K 2
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of normal combination or combustion. This presumption
is confirmed by EL B. Dixon's 1 observations on mixtures

of oxygen and hydrogen.
Before a complete breaking up of a compound molecule

occurs the addition of heat produces a loosening of the bonds

of the atoms in the molecule. In this process, which with

Clausius we may term disgregation, the heat acts in two

ways : it increases the kinetic energy of the atoms and over-

comes a part of their affinity. The sum of both actions

requires the expenditure of energy, which we will denote by
the letter e.

Disgregation becomes dissociation, i.e. the molecules

break up into their atoms, when the energy of the atomic

motion is able to overcome the remaining part of the affinity.

For this to be produced the energy of motion must be at

least equal in magnitude to the total amount of the energy
of chemical affinity. The value therefore of the atomic

energy which is attained at the temperature of commence-
ment of complete dissociation is the mechanical measure

of the maximum energy to which the chemical affinity of

an atom is capable of giving rise.

58. Dependence of the Specific Heats on
Temperature

The foregoing discussions show that the molecular and

atomic energies are by no means magnitudes of the same

kind. Now that we know this, it seems doubtful if both

kinds of energy will increase in equal measure when the

temperature rises. Hitherto we have assumed this, since

the theory had given the law that the kinetic energy of

the molecules bears a constant ratio to the total energy
contained in a gas. The proof of this law, however, rests

on the assumption, which is not in general true, that the

specific heat of gases at constant volume is independent of

the temperature.
We cannot well test by direct observation of the speci-

fic heat at constant volume whether this assumption is

1

Nature, xxxii. 1885, p. 535.
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admissible. But we can with more ease and exactness
determine the other specific heat, that at constant pressure,
and infer from the behaviour of the one that of the other.
For this the ratio of the two magnitudes need not be
known if the gas in question obeys with exactness the
laws of Boyle and Gay-Lussac. For the equation

p = p x const,

which is the mathematical expression of these laws when,
as before, p represents the pressure, p the density, and
the absolute temperature, in connection with the formula
that we have already used several times, viz.

p=J(C- c)p,

in which J is the mechanical equivalent of heat, immediately
gives the law that the difference C c of the two specific
heats is a constant independent of both pressure and

temperature. This law, which was first given by S. Carnot,
leads at once to the conclusion that, for those gases whose

specific heat C at constant pressure does not alter with
the temperature and pressure, the specific heat c at constant

volume has also a constant magnitude.
Now Kegnault

1 has experimentally shown for air

and hydrogen, and Eilhard Wiedemann 2 for carbon

monoxide, that the specific heat C at constant pressure /
does not depend on the temperature. From this we may
probably assume that all gases whose molecules contain

two atoms will exhibit the same behaviour if they obey

Boyle's and Gay-Lussac's laws exactly. In this case,

therefore, there would be no doubt as to the ratio of the

atomic energy (5- to the molecular energy E having a

constant value.

For other gases, on the contrary, whose molecules are

composed of more than two atoms, it has been observed

that C is by no means constant. Eegnault found with

carbonic acid, and E. Wiedemann with carbonic acid,

ethylene, nitrous oxide, and ammonia, an unmistakable

1 M6m. de VAcad. de Paris, xxvi.

2
Habilitationsschrift, Leipzig 1875 ; Pogg. Ann. clvii. 1876, p. 1.
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dependence of the specific heat C on temperature. L u s s an a l

found that for a series of gases it varies also with the

pressure increasing, in fact, with the pressure. For these

gases, therefore, the specific heat c at constant volume

cannot be looked upon as invariable
;
we shall consequent ly

have also to expect that the ratio of the atomic energy G" to

the molecular energy E depends on the temperature, and

perhaps also on the pressure.

This expectation is confirmed by some of the numbers

given in 55. Wiillner, as was there indicated, has found

the following values for the ratio of the specific heats at

and 100 :
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is much greater, and the variation seems the greater the

more atoms there are in the molecule.

This remark leads to a simple explanation on the basis

of the previous discussions upon the nature of the mole-

cular and atomic energy. A possible cause was there

indicated in the circumstance that the atomic energy is not,

like the molecular energy, simply kinetic, but partly consists

of the potential energy of chemical affinity, and that the

latter is perhaps subject to different laws. If this is true,

the variation must prove the greatest where the greatest
forces of affinity come into play, and, therefore, will be the

larger the more atoms are chemically combined. And this

is in fact the case.

It still remains for us to explain why the ratio of the

atomic energy c to the molecular energy E increases, and

does not diminish, as the temperature rises. This fact is

indeed to be explained only thus, that the so-called disgre-

gation or loosening of the chemical bonds of the atoms

combined in the molecule requires an expenditure of energy
which is the greater the further it has already proceeded in

consequence of increase of the temperature.
This assumption contains nothing improbable, provided

that we suppose that the force of chemical affinity does not

bring the atoms into direct contact, but endeavours to hold

them at a certain distance from each other ; they can then

oscillate about their assigned positions of equilibrium, and

rotate or move about in any other way. By addition of

heat these motions will be accelerated, and the amplitude
of the oscillations and, above all, the lengths of the

paths will be increased without at first causing the atom

to escape out of the range of action of the forces of affinity.

For this proportionally little energy is needed. Far more

energy, however, is required when the atom begins by its

increased speed to break loose from the bonds of the mole-

cule, because now the opposing chemical forces are to be

overcome.

This explanation of the behaviour observed byWiillner
seems to contradict the fact that, according to the obser-

vations of P. A. Mil Her, some substances act exactly
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oppositely to the gases investigated byWiillner. Miiller

found, as in the table of 55,

Gas Temperature



58 MOLECULAR AND ATOMIC ENERGY 137

molecules consist of two atoms there are several which do

not obey the laws of Boyle and Avogadro with exact-

ness; for these, then, Clausius' law cannot be exactly
true. To this class of gases belongs, for instance, chlorine

and many gaseous chlorine compounds.

Possibly we may also refer to this behaviour of chlorine

the striking circumstance that, of the possibly eight sub-

stances for which the ratio of the atomic energy e to the

molecular energy E was found greater than 1, seven are

chlorine compounds. For these substances the temperature
at which the ratio of the specific heats C and c has been

determined will perhaps not have been high enough for a

complete breaking up of the vapour into single molecules

to have been attained.

The deviation exhibited by ethyl ether will be explainable
in the same way. If the measurements had been made at

higher temperatures, there would doubtless have been found

a greater value of the ratio of C to c, as in the case of methyl
ether

;
and the calculation would then have given a smaller

value
^
for the ratio borne by the atomic energy e to the

molecular energy E.

The law that in real gases the share of energy possessed "")

by each atom of a molecule is always less than the trans- <

latory kinetic energy of the molecule would not therefore \

be confuted by the eight exceptions.

59. Dependence of the Specific Heat on the

Number of Atoms

From the foregoing remarks on the nature of atomic

energy it at once follows that the total amount of atomic

energy ( depends on the number of atoms contained in the

molecule, and, indeed, must increase with this number.

That such is the case is at once seen by a glance at the values

of the ratio ( to E in the sixth column of the table in 55.

On closer examination further regularities come to view.

Among them the fact is especially striking that the ratios

for the gases O
2 ,
N

2,
H

2 , CO, NO that head the table are

very nearly identical ;
for them the whole atomic energy (5 is
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to the molecular energy E nearly as 2 : 3, and since all these

gases have diatomatic molecules, the mean energy e of an
atom is to the molecular energy E nearly as 1 : 3. This
class of gases, therefore, possesses the really remarkable

property that at equal temperatures not only are the values

of their molecular energy equal to each other, but also those

of their atomic energy, and, consequently, also their whole

eat-energy. These bodies, therefore, obey in the gaseous
state the law of Dulong and Petit, to which other sub-

stances in the solid state are subject.

Not all diatomic gases seem to follow this law equally.
Even though HC1, HI, and perhaps HBr, obey it to

some extent, yet BrI, C1I, C1
2 ,

Br
2 ,

and I
2 exhibit very

considerable deviations from it. But we need not on this

account completely deny the validity of this law for diatomic

gases. For the substances last named are rather vapours
than gases, and it is therefore probable that with them the

ratio of the specific heats increases with rising temperature.
It is therefore not impossible that for all diatomic gases
the ratios

- = 1-4 and
' = O33

c E
would be found if the measurements were made at such

pressure and temperature that the laws of perfect gases were

exactly obeyed.
For monatomic gases theory and observation agree (see

54) in giving
C = 1-67 and e = 0.
c

The idea is accordingly suggested that the value of the

ratio of the specific heats, as also those of the different

species of energy, depends, not on the material of the atoms,
but on their number. The observations quoted seem also

to indicate this ; at least the numbers for the triatomic

gases oscillate about the mean values

C = 1-27 and = 0-5.
C L

It has therefore also been attempted to find a general
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law of dependence of the ratio of the specific heats on the /
number of atoms in the molecule. After Boedeker 1 and
Buff 2 had recognised the existence of simple relations

"between the ratios for different gases, Naumann 3
gave a

formula which is based on the assumption that the ratio

of e to E that has been found for diatomic gases, viz. 1 : 3,

holds in general for all gases. On theoretical grounds
Boltzmann 4

put forward the view that the mean energy e

of an atom must be equal to the kinetic energy E of the

molecule, but he found this assumption not confirmed by
observation. Pining 5 obtained a formula that agrees very
well with measurement by starting with the hypothesis that

the atoms exert on each other forces which vary inversely as

the sixth power of the distance between them. Eddy 6 has

made the more general assumption that the action is in-

versely proportional to some power of the distance
; but

Eicharz 7 has proved by general theorems of mechanics

ttet"airscBsumption of this kind respecting the law of action

between atoms is inadmissible, as it does not satisfy the

conditions for the stability of the molecular combination.

A new memoir by Staigmuller
8 on the kinetic theory of

polyatomic gases must also be mentioned.

6O. Degrees of Freedom of -the Motion

In another way Maxwell 9 and ..Watson 10 have at-

tempted to answer the question by taking into account the

1 Die gesetzmass. Beziehungen zw. d. Dicht. d. spec. Warme u. d. Zusam-

mensetzung der Gase, Gottingen 1857; GGtt. Nachr.1857, p. 165; Ann. d.

Chem. civ. 1857, p. 205.
2 Ann. d. Chem. cxv. 1860, p. 301.
3 Ibid, cxlii. 1867, p. 284 ;

Grundriss d. Thermochemie, 1869, p. 44.

4 Wien. Sitzungsber. Ixiii. pt. 2, 1871, pp. 397, 417.

5 Ueber die Beziehungen d. Warmecapacitdt der Gase zu den zwischen

Atomen wirlienden Kraften, Inaug.-Diss., Jena 1876.
6 Scient. Proc. Ohio Mech. Inst. 1883, p. 26.

7 Wied. Ann. xlviii. 1893, p. 476.
8 Ibid. Ixv. 1898, p. 655.
9
Nature, xi. 1875, p. 357 ; Scientific Papers, ii. 418 ; Nature, xvL 1877,

p. 242.
10 Kinetic Theory of Gases. Oxford 1876, pp. 27, 37 ;

2nd ed. 1893,

p. 81.
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number of ways in which a system of particles is movable. In

this method they have been followed by Boltzmann, 1 and

then by Koiti,
2 and later also by Violi. 3 It shall be given

here on account of its clearness, although very weighty

objections must be raised against its admissibility.

We can assert with regard to a single massive point that

it has a threefold freedom of movability, since its motion is

determined by the values of the three components of its

velocity. The above-named English physicists ascribe to it,

therefore, three degrees of freedom, which Boltzmann ex-

presses as three kinds of movability (Beweglichkeitsarten) . A
material system consisting of a multitude of particles possesses
as many degrees of freedom or kinds of movability as the

number of variables which must be given for the complete
determination of its state of motion

;
if made up of atoms,

, therefore, a gaseous molecule has a greater number of degrees
of freedom, the number depending upon that of the atoms.

This mode of attacking the question is marked by simplicity

and clearness, and it therefore leads to very simple results.

If heat W is added to a gas whose molecules consist

each of a single atom, while its volume is kept constant, the

energy, which is only kinetic, will increase equally in the

^yfe-ection of each of the three given degrees of freedom, and

thus in each by the amount ^W measured in heat-units. If

this gas is heated at constant pressure, so as to attain the

same temperature as before, there must, in addition to the

heat W, be given to it, to overcome the external forces, a

further amount of heat W, which bears to W the ratio 2:3;
for in this case the ratio of the specific heats is

C _ W W_ 5

c W 3'

whence

17 . -8'

1 Wien. Sitzungsber. Ixxiv. 1877, p. 553 ; Pogg. Ann. clx. 1877, p. 175 ;

transl. Phil. Mag. [5] iii. 1877, p. 320.
2 Atti deir Ace. dei Lincei [3] i. 1877, p. 774 ; Nuovo Cimento [3] ii. 1877,

p. 61.
3 Atti deir Ace. dei Lincei [3] vii. 1883, p. 112

; Nuovo Cimento, xiv. 1884,

p. 183.
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If now a gas which possesses q degrees of freedom is heated

just as much, each of the q degrees of freedom will require
a corresponding share of heat, and therefore /

heat-units are necessary for the heating at constant volume,
if we have to consider only translatory kinetic energy. If,

besides, there is other energy in question, a further amount
of heat

/
is needed, whereja is a constant. The whole heat, therefore,

>

required for heating at constant volume is

J(q -f h$W;

on the contrary, for heating at constant pressure the heat

is needed. The specific heats, therefore, must be in the ratio

C _ q + hq + 2 _ ^
2

c
"

q + &q q(l + h)'

where h is a constant and q the number of degrees of

freedom and therefore an integer, the value of which is the-^
greater the more atoms there are in a molecule.

Before this formula can be tested by experiment, the
,

mode of dependence of q on the number of atoms n must f

be determined. In most cases, since the degree of movable- \

ness of the atoms is in general unknown, this can only be\

done by the aid of hypotheses; and for several cases suchj

necessary hypotheses have been made.

Of these we shall here pursue those which Boltzmann
has investigated. For monatomic molecules q

= 3, and, since

If the molecules consist each of two atoms, Boltzmann

puts q = 5, since he assumes that the atoms do not alter

their distance apart, but are bound fast together ; the

position of a molecule is then completely given by the
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three coordinates of its centroid and by two angles, which
determine the direction of the joining line of the two atoms.

The formula therefore becomes

I

c 5(1 + h)'

and gives the value

which has been found for atmospheric air and other

diatomic gases if for these gases also may be put

We should arrive at this same result also if we considered

v the molecules to be rigid bodies, shaped like any figures of

revolution we like
;
for their place and position in space are

also determined by five coordinates.

But against this Pirogoff
l has raised the justifiable

objection that a figure of revolution can rotate not only
about its axis of symmetry, but also about another axis at

right angles to the first as well. A figure of revolution and
also a diatomic molecule would thus have more than five

kinds of free movability.
In spite of this objection, we may suppose that inside a

diatomic molecule no shifting of the atoms towards each

other occurs when the heating is kept within the limits

p>
within which the observations have been made. For this

r speaks the fact that for diatomic gases at least for atmo-

spheric air and carbon monoxide the value of the ratio

varies with the temperature only very inconsiderably.

If, therefore, the molecules of diatomic gases behave as

solid bodies, in which the parts suffer no relative motion,

only such motions of the atoms as consist in a common
rotation of all the atoms about their centroid can occur in

addition to the translatory motion of the molecule as a

whole. In monatomic molecules, as we have seen, such

rotations do not also occur
;
in their case there is nothing

but the rectilinear translatory motion of the centroid.

1 Fortschr. d. Physik. 1886, 2. Abth. p. 247.
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This remark can, however, be valid only so far as the

question concerns the phenomena which are conditioned by
heat alone. By this is only intended to be meant that

addition of heat can bring about no other motions than

those named. But that other kinds of motion can be pro-
duced in the molecules and atoms of gas by other causes is

shown by the spectra of incandescent gases.' The motions

inside a molecule, which are perceptible as light, are easily

brought about by electrical or chemical forces. But simple

heating in gases does not cause them to radiate red or white

light like solids or liquids. Hot gases, of course, send out

both dark and luminous radiation
; but the radiation which

they emit, purely in consequence of their being heated, is

very much less than that which comes from gases in com-

bustion
;
and under all circumstances gases radiate heat in

much less degree than solids or liquids. With this re- ^
markable fact the results of the kinetic theory agree most

excellently.
1

It is not for all diatomic gases that the value of the ratio

of the specific heats is independent of the temperature and

equal to 1'4
;
for many of these gases it is smaller and is

variable with the temperature. This fact can be interpreted

in two ways. In the first place, the constant h, which

expresses the ratio of the energy spent on internal work to/'
the energy of translation, need not be equal to for these

gases ;
and if it is greater than zero, the ratio of C to c is

less than 1*4.

Another, though not essentially different, possible ex-

planation might be found in the assumption that the

number of degrees of freedom q is not 5, but 6. There

is, indeed, a sixth kind of movability if we drop the assump-
tion that the two atoms of the molecule must remain at an

'

invariable distance from each other. With the value h = 0,

the ratio would approach the value

- = 1-33,
c

1 B. v. Helmholtz, Licht- und Warmestrahlung verbrennender Gase,

1890, p. 64.
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/ as from the table in 55 we see is really the case for some

gases.

For gases whose molecules contain three or more atoms the

number of degrees of freedom q is to be taken still greater,

since the structure of such a molecule cannot be imagined
to be that of a figure of revolution. The position of such a

figure as a triangle or tetrahedron is not completely deter-

mined when only the position of its centroid and the

direction of one axis are given ;
there are thus more

elements required for its determination. If, therefore, we
assume q to be greater than 5 or 6, the ratio of C to c

becomes smaller, and with increasing q approaches more

and. more the limit 1, as observation also teaches.

y This theory therefore gives a satisfactory account of all

the principal circumstances. In spite of this we cannot

think that by it the question has been exhaustively treated.

For there is a weighty objection to this theory, which H._T1

Eddy l has pointed out. Since the bonds of the atoms by
which they are bound together in the molecule allow of

neither perfect freedom nor perfect fastness, it does not seem

admissible simply to count the kinds of movability ;
the

7^ degrees of freedom cannot be introduced as all of equal

value, but must be brought into the calculation differently

weighted. An atom in a molecule has not the same degree
of freedom of its motions as the centroid of the molecule,

and a limited freedom must not be counted as a perfectly

unlimited freedom.

As we shall easily see, this objection amounts to the

/same thing as the opinion already mentioned in 56, that

the energy of the limited motion of an atom cannot be equal
to the energy of a molecule, but must be smaller an

opinion which in the first edition of this book was shown to

be in accordance with experiment.
On these grounds, at the Aberdeen meeting of the British

Association in 1885, a great number of prominent investi-

gators denied, or at least threw doubt upon, the validity of

1 Sclent. Proc. Ohio Mech. Inst. 1883, p. 42
;
Journ. Franklin Inst. [3]

Ixxxv. pp. 339, 409 ; Ohio Mech. Inst. 1883, p. 82.
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Boltzmann's proposition of the equal distribution of

energy among the different degrees of freedom. The

objection which had been raised against this theorem by
Crum Brown was supported by Liveing, Lord Kelvin, N/

J. J. Thomson, Hicks, and Osborne Keynolds.
1

1

Nature, xxxii. 1885, pp. 352, 533.
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CHAPTEE VI

MOLECULAR FEEE PATHS

61. Objections to the Kinetic Theory

THE theory of gases developed in the foregoing investiga-
tions has been shown to be in agreement with experi-

mentally determined laws in a series of important points ;

Boyle's law and Dal ton's law respecting the pressure of

gases are necessary consequences of the theory, which

explains also the law of effusion and justifies important laws

of theoretical chemistry by furnishing Avogadro's law
with a convincing foundation. In spite of this, however,
its admissibility would lie open to justifiable doubts and

objections if we confined the investigation to the points so

far considered, and omitted to pursue the consequences of

our hypothesis in other directions also.

As soon, indeed, as Kronig
1 and Clausius 2 had

roused the attention of the learned world in 1857 by their

first memoirs, many replies and objections were raised

against the hypothesis that combated the views hitherto

held. But the considerations that were urged against it,

far from refuting the theory against which they were

marshalled, have served but to promote its development

by causing Clausius to publish the important works in

which, by enlarging into a scientific system the funda-

mental conceptions of the theory that had frequently been

brought forward before his time, he made himself the real

founder of the kinetic theory of gases.

The doubts put forward by Buys- Ballot,3
Hoppe,

4

1

Pogg. Ann. 1856, xcix. p. 315. 2 Ibid. 1857, c. p. 353.

3 Ibid. 1858, ciii. p. 240. 4 Ibid. 1858, civ. p. 279.
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Jochmann, 1 and others related to a series of very different

phenomena, which were apparently irreconcilable with the

theory, but are all referable to one and the same point of

the theory that is easily liable to misconception.

Starting from the hypothesis that the particles of a

gas are in a state of forward motion in straight lines, we
have found ourselves forced to the conclusion that, for

the elasticity and pressure of a gas to be explained, these

motions are executed with enormous speed. A particle of

air traverses a path of more than 400 metres in a second,

and a molecule of hydrogen a path even four times greater.
If these paths are really traversed in a single straight line,

as the hypothesis of the theory seems to require, many
phenomena are at once unintelligible.

Smoke can hang in still air for a long time almost im-

movable like a cloud. But it would be dispersed in a

moment if the air molecules tore the particles of smoke away
from each other, and carried them off in all directions nearly
500 metres in a second.

Sulphuretted hydrogen, generated in the corner of a

room, must at once be scented everywhere in the whole

room if its molecules hastened through the room in straight
lines with the speed of 409 metres per second as calculated

in 28. On the contrary, we observe that the diffusion of

this and other gases proceeds with the utmost slowness.

Still more convincingly than by this objection the theory
seems to be refuted by the fact that gases conduct heat very

slowly. For if heat consists in that rapid motion, and if

this proceeds in straight lines, it must be propagated so fast

by its own agency that a rise of temperature occurring at

one point of a gas would be discoverable 400 metres away
in no longer than a second ; it must travel, in fact, quite as

fast as sound.

For the same reason it would not be conceivable that

the equilibrium of temperature that exists in the earth's

atmosphere, where the higher layers are much colder than

the lower, could be maintained
;
indeed there would be all

the appearance of the earth's being surrounded by such good
1

Pogg. Ann. 1859, cviii. p. 153.
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conductors that it could not maintain a temperature in

which life could exist.

62. Refutation of the Objections

There would, indeed, have been no need of such a piling

up of objections to bring the conviction that in a theory
that has already obtained confirmation in so many points
there must be some conception liable to be misunderstood.

The molecules of gas certainly move with that furious

speed, and also move in nearly straight paths, but only till

they strike some obstacle or collide with other particles.

This, however, occurs very often so often, indeed, that the

case in which a molecule of the atmosphere enveloping
us traverses a path of 400 metres without actual disturb-

ance hardly ever occurs ; but each air particle collides with

some other exceedingly often, indeed many million times a

second.

This remarkable behaviour, which was brought to light

by a theoretical calculation carried out successfully by
Clausius 1 and was confirmed by Maxwell in a theoretical 2

and experimental
3
investigation closely connected with that

of Clausius, puts our theory in quite a different light. We
have not to consider the rectilinear backward and forward

motion of the molecules as a translatory motion, bound up
with enormous change of place and proceeding within wide

limits of space, but as consisting of a motion of molecules

among each other, proceeding tumultuously hither and

thither in straight zigzags and confined within a narrow

space ; the molecules thus execute such a motion that the

best representation of it is that of grains of corn shaken

about in a closed box.

By this explanation of the character of the molecular

motion the objections that have been raised fall at once to

the ground ; for the supposition at the bottom of each,

viz. that a particle of air can in a second reach a place

1 ' Ueber die mittlere Lange der Wege u.s.w.,' Pogg. Ann. 1858, cv. p. 239 ;

Collected Works, 2. Abth. 1867, p. 260 ;
tfansl. Phil. Mag. [4] xvii. 1859, p. 81.

2 Phil. Mag. 1860 [4] xix. p. 19 ;
xx. p. 21.

3 Phil. Trans. 1866, clvi. p. 249'.



152 PHENOMENA DEPENDENT ON MOLECULAR PATHS 62

distant by more than 400 metres, is not at all made in the

kinetic theory.
How in accordance with this we have to explain the

slowness with which the diffusion of gases proceeds is clear

and intelligible without further words. The reason for the

slowness of the conduction of heat is also easily seen if we
look more closely into the process in the way in which
Stefan 1 has first examined it.

A heating of one region in a gas consists, according to

our theory, in an increase of the molecular speeds in this

region. The warmer particles therefore collide with greater
momentum against the colder ones near them, and thereby

impart a portion of that greater momentum, or, what is

the same thing, of their higher temperature, to their environ-

ment. In this transference of the energy of motion consists

the conduction of heat. This conduction would take place
with the speed of the molecular motion if at each collision

the striking particle so hit the one struck that the latter

moved on in the same direction as that in which the blow
occurred. But this happens only on the direct collision of

two molecules which were moving in the same or opposite
directions ; they then simply exchange their velocities, and
the whole excess of motion and heat is transferred from
the one particle to the other. Mostly, however, the particles

collide against each other obliquely ; then the particle
struck is thrust off in quite a different direction, and it

follows that it also receives a much less share of the excess

of energy of the other. The transference of heat is there-

fore not only impeded by its having to follow a zigzag

path hither and thither, instead of proceeding in a straight

line, but also by only a small fraction of any excess of

energy being in general imparted at each collision. It is

thus intelligible why a sensible heating cannot spread with

the speed of sound in the space occupied by a gas, but only

very slowly.
The objections raised are not, therefore, hard to remove.

But the raising of them was of great importance for the

development of the kinetic theory, and was very beneficial

1

Pogg. Ann. 1863, cxix. p. 492 ; Wiener Sitsungsber. xlvii.
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to it. For, owing to that conflict of conceptions, a new
and interesting side of our theory has been brought for-

ward which is worth a searching investigation. As in

Part I. of this book, the speed of the molecular motion

and the supply of energy therein contained were considered

and calculated, so there remain for this Part II. the

investigation of the character of the motion, the deter-

mination of the length of the path of a molecule between

collisions, and the development of the consequences which

will result from our knowledge of these free paths in respect

of the different properties and phenomena that have been

observed in gases.

63. Probability of Molecular Collisions

The pioneer investigation in which Clausius 1

opened
out this new wide field cannot, for the attainment of its

first aim, viz. the determination of the length of the

molecular path, dispense with mathematical expedients.

As in Part I., we need again the calculus of probabilities

in order to investigate processes which are conditioned by
no other law than that of chance. But the demand on

mathematical means may be more restricted than it was

in the original memoir. It is not necessary to use the

higher analysis, and the aid of elementary mathematics is

sufficient ; the following calculation presupposes no further

mathematical knowledge than is needed for the calculation

of compound interest.

Before we solve the actual question and determine the

probable length of the straight path traversed by a mole-

cule between two collisions, we follow Clausius' procedure

in investigating a preparatory and more simple problem.

Instead of the actual behaviour of the gaseous molecules,

which are all moving about hither and thither, let us

imagine the simpler case in which one particle (or a

certain number of particles, but all with the same speed

1

Pogg. Ann. 1858, cv. p. 239 ; Abhandl U. Warmetheorie, 2. Abth. 1867,

p. 260 ; Mech. Warmetheorie, iii. 1889-91, p. 55 ;
transl. Phil. Mag. [4] xvii.

1859, p. 81.
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and in the same direction) is thrown into a space which

is filled irregularly with molecules at rest, their distribution,

however, being such that the density is the same every-
where.

For the solution of the question bound up with this

idea, viz. What path will a particle so thrown in probably
traverse without a collision ? it is advisable to determine the

density of distribution of the particles at rest and express
it in terms of their mutual distances apart. If there are

N molecules in unit volume, then, considering the volume

of this unit to be divided into N equal parts, in fact into N
small cubes, we have in each of these small cubes a space
which contains on the average only a single molecule. If

we denote by the letter X the edge of one of these elemental

cubes, which Clausius calls the mean distance between

neighbouring molecules, the volume of one of the cubes is

X3
,
and the relation

holds good.
Since the density p may be expressed in terms of the

molecular weight m and the number N by the formula

(13)
p = Nm,

the former formula shows that the density is related to the

distance between neighbouring molecules by the equation

pX
3 = m.

From the mean distance X between neighbouring mole-

cules Clausius deduces the mean probable length of free

path by comparison of that mean distance with the smallest

possible distance of separation, i.e. with the distance apart
of their mean points or centres of gravity at a collision, and

of the volume X3 of the elemental cube with the space which

the moving particle must at least have for its motion.

If, on the collision of two particles, it happens that

they come into actual contact, the least possible distance

apart of their centres would be the diameter of either, if we
could look upon the molecules as being spheres of equal

size; if the molecules have any other shape, the calculus
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of probabilities allows us to take for this distance the mean
diameter of a molecule. But it is very conceivable that two
molecules cannot come so near each other as to actually
touch, but that they are repelled from each other, without
actual contact occurring, by forces that come into play at

certain, though very small, distances. On account of this

possibility it is better that, as already suggested in 44, we
should not put the smallest distance apart of two molecules

during a collision as absolutely equal to their diameter. With
Clausius, we suppose each molecule to be surrounded by
a spherical envelope which is called the sphere of action,

meaning thereby that the mean point or centre of gravity
of another molecule cannot penetrate into it. The radius of

this sphere is thus equal to the smallest distance apart
of the centres of the particles at the moment of a collision.

By introducing this conception we allow the possibility
of the molecules exerting forces upon each other of sufficient

strength to prevent actual contact and to cause mutual
rebound from each other ; we do not, however, thereby, on

the other hand, bring in this hypothesis as necessary, as it

still remains open to us to assume actual contact on col-

lision ;
in the latter case we should have to define the sphere

of action as eight times the volume of a molecule, and we

might call the actual space occupied by a molecule its

molecular sphere.

Denoting the radius of the sphere of action by s, and,

therefore, the area of its central section by TT^, we find that

if the moving particle considered advances by the mean
distance X between neighbouring molecules, its anterior

convex surface traverses a cylindrical space bounded by

hemispherical ends, the anterior convex and the posterior

concave, of volume equal to TTS^X. Since there is on the

average only a single molecule in a volume equal to X3
,
the

probability that there is a molecule in the cylinder TTS*\

described is as much smaller than 1 as 7ry
2X is less than X3

.

The probability, therefore, that the particle moved strikes

another as it passes over a path of length X is determined

by the ratio
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or by the ratio of the central section of the sphere of action

to the face of the elemental cube.

On the other hand, the probability that the particle does

not undergo collision in its path X, but passes through a

layer of thickness X without colliding with the other particles

within it, is

We may therefore, to use an ordinary expression, bet

7rs
2

/(X
2

7r$
2
) to 1 that the particle will undergo collision

before it passes over a distance X, and (X
2

?rs
2
) /

vrs
2 to 1

that it will not collide in this distance.

In these formulae there lies a simple meaning. If we

suppose that the molecule struck were pushed from the

interior of the elemental cube containing it into the same

face through which the moving particle entered, it would

cut out of this face, whose area is X2
,
a portion equal to Trs

2
,

through which the entering molecule would not be free to

pass ; only the remainder X2
Trs

2 would allow free entrance

for the molecule. The two probabilities therefore have, as

indeed they must have, the same ratio as the not-free part to

the free part of the face of the elemental cube.

64. Probability of a Longer Path being Traversed

From this value of the probability for the traversing of

a path of length X, or for the passage without collision

through a gaseous layer of a thickness X equal to that

separating two neighbouring molecules, may be easily

calculated the probability for the passage through a thicker

layer or for a path of finite magnitude.
For this we suppose M moving particles, instead of one,

to be simultaneously projected into the medium, consisting

of particles at rest, which we suppose to be divided into

a number of layers of thickness X. Of these M particles

MW/X2 will probably undergo collision in the first layer,

while only the remainder M(l 7rs
2

/X
2
)
will pass through

it unhindered. Of these the number that collide in the

second layer of the same thickness X is M(l
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while M(l 7rs-
2
/X

2
)
2

particles pass through this layer.

So in the third layer M(l - 7r*
2

/X
2)W/X2

collide, and

M(\. 7rs
2

/X
2
)

3
pass through. Proceeding in this manner

we see that in the xth layer there are probably

that collide, and thus have traversed a path of length x\
while the remainder M(\. Trs^/X

2
)* do not probably suffer

collision, and therefore traverse still longer paths.
1

From this we at once obtain the probability that a

single molecule will pass over a given path and then collide,

by dividing the probability in the case of M particles by the

number M, since the probability for one particle must be

M times less than for M particles. The probability, there-

fore, that a moving particle traverses a path x\ and collides

on its completion is

65. Calculation of the Mean Free Path under
Simplified Assumptions

From the foregoing formulae we can calculate by elemen-

tary methods and without great difficulty the probable mean

value of the lengths of the paths traversed by all the

particles. To find this it is only requisite to calculate the

sum of all the different paths traversed by the M molecules

and to divide it by their number, that is, by M.

Of the M particles there remain M7rs2

/\
2 in the first

layer, and these therefore traverse only the path X
;
thus the

sum of the paths traversed by these molecules is MW>/X.

Similarly, there remain in the second layer, after completing

the path 2X, the number M(l - *rs?l\*)irs?l\*, the sum of

whose paths is therefore 2Jf(l
- 7r*

2

/X
2
)7r*

2

/X. In this way
we find in general that the sum of the paths of the particles

which collide in the xth layer is xM(l rr^/X
2
)*-W/X, and

the total sum of the paths traversed by the whole of the M
particles is therefore

2.xM(l - 7r*
2

/X
2
)*-W/X,

1 This formula is developed in 26Mn a mathematically simpler form.
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where the sign of summation denotes a summation for all

integral values of x from 1 to oo. The mean probable

length of the free path L of a molecule is therefore given

by the formula

L =

This sum may be easily calculated. For

or, n our case,
1 = (X

2
/

2
)

2
.

Hence it results from this calculation of probability that

the length of the path which a moving particle would

traverse without collision amid a multitude of particles at

rest is on the average
L = \*/7TS

2
.

This formula, which Clausius deduced in the memoir
referred to in a similar way, but with the use of the integral

calculus, assumes an intelligible form if we write it

L : X = X2
: TT^ ;

it then expresses that the mean free path bears the same

ratio to the mean distance separating two neighbouring

particles as the area of a face of the elemental cube has to

the central section of the sphere of action.

From this proposition Clausius draws a very important
conclusion. The above proportion shows indeed that the

free path L is greater than the distance of molecular separa-

tion X, and that it must be very much greater than the

latter in a rarefied gas. For by definition X is the edge of

the elemental cube in which a single molecule is contained,

and s, the radius of the sphere of action, is a distance

within which the force exerted by the molecule is sensible.

It would be in contradiction of our theory, no less than of

experiment, which has shown an almost perfect absence of

cohesion in gases, if we were not to assume the latter length

s to be considerably smaller than the former X
; consequently

also the proportion shows that L is considerably larger

than X.
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A molecule therefore passes by many molecules like itself

before it collides with another.

66. Probability of Particular Free Paths

Now that we have determined the mean value of the

molecular free path, the probability-formulae obtained in

64 present a simple meaning which makes it possible for

us to numerically answer the question, How much more

probable is a shorter path than a longer ?

The expression M(I 7T9
2

/X
2
)

a;

, which we have found

for the probable number of those among the M projected

particles that traverse a path greater than x\, becomes

M(l r- X/I/)*

when the mean free path L is introduced into it, so that we
can see how the number of the particles which collide in each

layer and that of those which pass through it unobstructed

depend only on the ratio of the average distance of molecular

separation to the mean free path.
If we wish also to refer to the mean free path the actual

path traversed, which hitherto has been given by the

number x, we can put for the path

y
= x\ = qL,

where the number q gives the number of times by which

the path already traversed by the particle under consideration

exceeds the mean free path. If we also put

L = Q\,
we shall have

x=Qq,

and the probable number of particles which do not undergo
collision in a path of length qL is given by

Jf(1-

We do not indeed know the number Q, i.e. the ratio of

the mean free path to the distance of molecular separation,

which occurs in this expression, but we do know that its

value must be very great, so great indeed that we may look
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upon it as almost infinitely great. If Q were actually in-

finitely great, we should have

(1
_ Q-i)Q = e

-i = 1/2-718 . . . = 0-36788,

where e is the base of natural logarithms.

Therefore the number of particles which traverse a path
at least q times greater than that passed over in the mean

is, with this assumption,
~ lQq = Me~ q

.

According to this formula we have calculated the follow-

ing table. Out of every 100 particles

99 traverse the path O'Ol L
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path we were calculating was in motion, all the others being
at rest. All the particles, however, are in motion in the
actual case. It is easy to see that this general motion must
increase the probability of a collision of one particle with
the others ; for the particle can also be struck by another
that moves from the side and with which it would not
come into contact as a result of its own motion. By the

general motion, therefore, of all the particles the probability
of a collision is increased, and thus the mean value of the
molecular free path is diminished.

Clausius has calculated this shortening of the path for

the case in which all the particles move with equal speeds
but in all possible directions in space. With this supposi-
tion we find the number of collisions increased in the ratio

of 4 : 3, and, therefore, the free path shortened in the ratio

3 : 4. We obtain then, as is proved in 28*, the value

L = fX
3
/

2

for the mean free path of a particle in the uniformly moving
medium, and this differs only by the factor f from the

former value. From this equation also we can deduce a pro-

portion like the former and of similarly simple meaning, viz.

L : ^ = X3
: TTS*.

68. Molecular Free Path with an Unequal
Distribution of Speeds

But these calculations do not correspond exactly to the

real state of things, since the underlying assumption as to

the way in which the speeds are distributed among the

molecules cannot possibly be right. The supposition that

all the particles of a gaseous medium are to have equal

speeds gives no real picture of the motion which exists in a

gas that is in equilibrium under a pressure which is every-
where the same and at a temperature which is everywhere
the same. The true law according to which the molecules

arrange their speeds is, as we know ( 24), that discovered

by Maxwell.
M
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Maxwell l has also calculated the mean value of the

free path on the assumption of this law. The calculation

cannot be here given ;
a deduction of the formula will be

found 2 in 29*.

The result of the calculation agrees almost exactly with

that just rmentioned which Clausius obtained on the

assumption of equal speeds in the molecules. In this case,

too, the formula demonstrated in 65 undergoes no further

alteration than the addition of a numerical factor, and there

results for the mean free path

L = X3
/7rsV2.

The factor, the value of which will be more closely indicated

in 96, is nearly the same as that in Clausius' formula;
for the latter is f or O75, and the former l/\/2 or 0-707, so

that they are approximately in the ratio of 17 to 16 [or, still

more nearly, of 35 to 33].

The value of the free path that follows from Maxwell's
law is somewhat the smaller; there also results from this

law a smaller value of the mean speed than that given by
Clausius' theory; both results are explained on the simple

ground that a shorter path and a slower speed occur more

frequently than a longer path and a higher speed.

69. Molecular Path.-volume

The name of molecular path-volume has been given by
Loschmidt 3 to the content of the cylindrical space which
a molecule describes when it traverses its mean free path.
The magnitude of this volume is %TTS?L, since the radius of

the sphere of action is equal to the distance apart of the

middle points of two molecules during collision, and is,

therefore, equal to the diameter of a molecule in the case of

actual contact during collision ; hence by the foregoing for-

mula it is equal to X3
/4\/2. If we replace in this expression

the size of the elemental cube, or of the space that contains

a single molecule only, by the number N of molecules

1 Phil. Mag. 1860 [4] xix. p. 28 ; Scientific Papers, 1895, i. p. 387.
2
Compare 97.

3 Wiener Sitzungsber. 1865, Hi. Abth. 2, p. 397.
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contained in unit volume which is given by ^X3 = 1, we
find that the molecular path-volume is determined by the

expressions ^L = \3

IV2 = l/4yW,

which show that its value is the same for all gases, since,

according to Avogadro's law, the number N has the same
value for all kinds of gas.

7O. Frequency of Collisions

From the value of the free path and of the known

magnitude of the molecular speed we can without difficulty

determine the frequency of the collision of any particle with

others, and the time which on an average elapses between

two successive collisions. We need only remember that the

speed is simply measured by the length of path traversed in

the unit of time.

If now a particle traverses on an average in unit time

the path O, which in general is zigzag-shaped, and between

two successive collisions passes over the average length L in

a straight line, the time required on an average for the

particle to move over the length L is

From this interval between successive collisions we obtain

the frequency of collision or the number of collisions

particle undergoes in unit time, viz.

If we put for the speed in these formulae the aritl

mean H calculated by Maxwell's theory, we must also put
for the free path L the value

as calculated ( 68) on the same theory.

If, on the contrary, in accordance with Glaus ius' theory,

we assign to all the molecules the same mean energy and

the same value G of the speed which corresponds to it, the

interval between successive collisions in this case would be

T' = L'/G,
M 2
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where L r

is the value of the free path as deduced in 67 on

this assumption, viz.

L' = fX
3
/

2
,

and where

as in 27. Thus between these two values there is the ratio

T 1

: T = V3 : \/TT

[or very nearly as 43 : 44] ;
the interval between successive

collisions is thus somewhat smaller, and the collision-

frequency a little larger on Clausius' theory than on

Maxwell's.

71. Relations of the Free Path to the Pressure
and Temperature

According to the theoretical formula we have found,

the value of the molecular free path depends only on the

volume X3 of the elemental cube and the area Trs
2 of the

central section of the molecular sphere of action
;

the

molecular speed H, by which the value of the temperature
of the gas is determined, does not, however, occur in the

formula.

Of these two magnitudes the elemental cube denotes

the small volume in which, on the average, each single

molecule only is contained. The size of this space is not

altered by mere addition of heat, but can only be altered

by the volume of the gas becoming greater or less
;

it is

proportional to this volume, and therefore varies inversely
as the density, but is independent of the temperature of

the gas.

If now the size of the sphere of action were not variable

with either the pressure or the temperature of the gas, it

would follow that the molecular free path cannot depend on

the temperature, but only on the density of the gas ; and,

indeed, must decrease or increase inversely proportionally
to the density, and therefore, if the temperature remains

constant, inversely proportionally to the pressure, by reason

of Boyle's law.
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The assumption that the sphere of action of a molecule

is actually altered neither by pressure nor by heat has much
to entice us; for we have become used to consider a molecule

as an aggregate of atoms which can certainly be altered by
chemical transformations, but not by processes which belong
to the narrower region of physics. If this doctrine, which

in former days ruled without question, were true, the size of

the molecular sphere of action could not be conditioned by
the temperature or the pressure of the gas.

But this view is contested by abundant observations and

especially by the phenomena of dissociation. Numerous

instances of gases and vapours can be cited wherein the

molecules are composed of more atoms at lower temperatures
than at higher. The vapours and many gases deviate at low

temperatures from the laws of the ideal state of gas, especi-

ally from those of Boyle and Gay-Lussac, as has been

already described in Chapter IV., these deviations being such

that the gases have too great a density and an expansibility

which is much greater than that of ideal gases. These and

many other irregularities force us to the conclusion that the

molecules of those gases form bigger aggregates of molecules

at lower temperatures than at higher. By increment of heat

the molecules break up into smaller ones, and therefore the

mass of the molecule is decreased by rise of temperature ;

consequently their extension in space, and therewith the

size of their sphere of action, will both become smaller

when the temperature rises. From this we should expect

that, by reason of dissociation, the molecular free path for

vapours and non-perfect gases increases as the temperature

rises.

Moreover, even for gases which undergo no dissociation

of their molecules, it is possible to suppose that a diminution

of the molecular sphere of action may occur and demand

explanation. We have only to remember that the sphere

of action need not denote the space which the molecule

itself occupies or claims for itself
;
but its radius is the least

distance to which the centres, or, more generally, the centres

of gravity, of two molecules can approach each other during

a collision. To assume that this distance is smaller at higher
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temperatures than at lower entails nothing that is at all

contrary to either reason or probability. For the speed of

the particles increases with the temperature, and, therefore,

also the intensity of the stress during collision, and it is

easily conceivable that the more strongly the particles col-

lide, the nearer they approach each other.

We might perhaps suppose that the molecules become

looser in their joints during rise of temperature this is a

safe assumption at least with compounds so that one pene-
trates into another the more easily and deeply the warmer

they are.
1 Or we might assume with Stefan 2 that the

molecules are surrounded by atmospheres of ether which,

like elastic bodies, are compressed the more during a

collision the more intense the blow. We could, finally, share

Maxwell's 3
view, according to which two molecules that

collide are repelled from each other because, when they

approach very near together, they act on each other with

repulsive forces. On all these different hypotheses the

particles must come the nearer together the greater their

relative velocity ; or, in other words, the sphere of action

is the smaller the higher the temperature, and we ought
therefore to expect that the molecular free path increases

with rising temperature. This has in fact been proved, as

will be later shown, by measurements on viscosity and allied

phenomena.
W. Sutherland 4 has attempted to give an essentially

different explanation of these facts. He assumes forces

between the gaseous particles, when very near together,

which are not repulsive, as Maxwell takes them, but, on

the contrary, attractive
;
his supposition agrees, therefore,

the best with the known observations which Joule and

Lord Kelvin 5 made on the heat-phenomena of certain

gases streaming from a holder. These attractive forces do

1

Pogg. Ann. 1873, cxlviii. p. 233.
2 Wiener Sitzungsber. 1872, Ixv. Abth. 2, p. 339.
3 Phil. Trans. 1866, clvi. p. 257 ; 1867, clvii. p. 51. Phil. Mag. 1868 [4]

xxxv. p. 133. Scientific Papers, ii. pp. 11, 29.
4 Phil. Mag. 1893 [5] xxxvi. p. 507.
5 Phil. Trans. 1853, cxliii. p. 357

; 1854, cxliv. p. 321
; 1860, cl. p. 325 ;

1862, clii. p. 579.



71 MOLECULAK FKEE PATHS 167

not remain without effect on the molecular free path ; for

by such forces as cause approach the probability of a

collision is increased, and the mean probable value of the

molecular free path is therefore diminished.

The process by which Sutherland calculates the

amount of diminution of the free path is given in 35*
;

I prefer here another way of attaining this object without

much calculation.

Whether the attractions will bring about an encounter of

two particles that pass close by each other, or not, depends
on the amount of the two kinds of energy, one of which
furthers the encounter, while the other hinders it. While
the kinetic energy which the particles possess by reason of

their speed, as they rush close by each other, opposes a

deviation from the rectilinear path, and, therefore, also the

probability of an encounter, the potential energy of the

attractive forces, on the contrary, has the effect of promoting
the encounter. The number of collisions will therefore be

the more increased by the molecular energy the greater the

amount E of potential energy which comes into activity on

the approach of one particle from an infinite distance to

entrance into the sphere of action of another; but this

increase will be so much the smaller the greater the kinetic

energy of the particles. Hence we assume that the number
of encounters which a particle undergoes in unit time, by
reason of the attractive forces, is increased by a magnitude
which is proportional to the given potential energy E

y

and, on the contrary, is inversely proportional to the mean
kinetic energy of the gaseous molecules, and thus inversely

proportional to the magnitude

in which m is the molecular weight of the gas and G
represents Clausius' mean value of the molecular speed

( 27).

According to a formula of 70, the number of encounters

in unit time without reference to the molecular attraction is
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this is increased in consequence of the attractive forces,

and, in accordance with the hypothesis just mentioned, may
be put as

where k denotes a numerical factor. But now JmG2 + E is.

the total amount of energy of a gaseous particle ; if then

we were to put Jc = 1, the formula

would indicate that, owing to forces of
i cohesion, the number

of encounters is increased in the ratio in which the whole

energy stands to the kinetic energy. But this would be an

assumption which, by its very simplicity, may convince us

of its truth, and there is scarcely any need of the mathe-

matical proof of it contained in Sutherland's calculation,

which is given in 35*.

For the application of the theory-to the calculation of

observations we do not need the assumption k = 1, since

we can express the result of our considerations even more

simply without it. Considering that, according to 14

and 15, the magnitude G2
is proportional to the absolute

temperature , while k, m, and J*do not depend upon it,

we see that the ratio in which the collision-frequency is

increased by the cohesion, viz.

1 + ZkE/mG
2

: 1,

may also be brought into the form

1 + (7/6:1,

where C denotes a constant depending on the nature of the

gas but not on its temperature.
Hence the collision-frequency appears as a magnitude

which depends in a twofold manner on the temperature;
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for while the factor O increases with
,
the newly added

factor diminishes as increases.

The value L of the molecular free path is altered for the

same reason in inverse ratio to the collision-frequency. It

must be represented by the improved formula

in which L denotes the value that holds at the temperature
of melting ice, and therefore at =

I/a = 272'5 degrees
above absolute zero, a being the coefficient of expansion of

the gas. According to this formula, the free path L in-

creases with the temperature .

The extent of increase to be expected from this theory

may be easily judged by considering the two possible limit-

ing cases. If there were no cohesion, there would be no

increase of L with the temperature ;
if the cohesion is so

great that the numerical value of is small in regard to (7,

the factor

+ (7/0)
= 0/(C + 0)

approximates to proportionality with ,
and the more so the

greater C. The free path therefore increases with rise of

temperature at most as greatly as the temperature estimated

from absolute zero, and consequently in a slighter ratio in

general. (Compare 87.)

72. On the Absolute Value of the Free Path

The absolute magnitude of the number of collisions of a

molecule that occur in unit time a second, for instance

can be determined from the above formulae just as little

as the value of the mean free path in absolute measure-

millimetres, for instance. For the latter depends on two

unknown magnitudes, viz. the mean distance of molecular

separation X and the radius of the sphere of action s.

With respect to these we only know, as has already been

mentioned in 65, that X must be very much larger than $,

and therefore L very much larger than X.

Although, therefore, a molecule passes by many mole-
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cules like it, perhaps many thousands, without obstruction,

before it finally collides with another, yet the absolute value

of the free path, as measured in our usual units, may be an

insignificantly small magnitude on account of the extreme

minuteness of the distance of molecular separation.
It is on these circumstances that the possibility of ex-

plaining the apparent contradiction between the phenomena
mentioned at the beginning of Part II. ( 61) and the theory

developed in Part I. depends. The fundamental hypo-
thesis of the latter of molecules rapidly moving in straight

paths does not exclude the other, viz. that the lengths of

these paths, measured in ordinary units, are very small
;

it

is sufficient that they should be large in comparison with

the dimensions and the distances apart of the molecules

for the justness of Clausius' assumption to be upheld;
for then it is allowable to suppose that the length of path
which a molecule passes over in a straight line between

successive collisions may be considered as infinitely great
in comparison with the curved path it traverses while casu-

ally within the sphere of action of another.

Whether this mode of getting over the difficulty is right

and based on actuality is for observation to decide. We
turn, therefore, to the experimental methods of actually

measuring molecular free paths, and to this end we proceed
to the consideration of the viscosity, diffusion, and heat-

conduction in gases.
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CHAPTEK VII

VISCOSITY OF GASES

73. On the Character of Internal and External
Friction

BY the name of internal friction
} Newton has denoted a

property of fluid media which is also termed viscosity. This

property exhibits itself in phenomena whose cause we might
be inclined to look for in a cohesion which is exerted during
motion and acts in opposition to motion, and perhaps we
should not be wrong in the case of liquids ;

in gases, how-

ever, which have no sensible cohesion, we must look for

another cause, and perhaps therefore in liquids too.

To push a solid body on a liquid at rest, or one liquid

layer over another, a certain force is required, just as force

must necessarily be employed when a solid body is rolled or

slidden along a solid support at rest. Analogy justifies the

use of the word friction to all these phenomena, and there-

fore the ascription of friction to fluid media and not alone to

solids. So by the external friction of a fluid we mean the

friction that is brought into play at the surface of separa-

tion of the fluid and a solid body or of two fluids, while as

internal friction we denote that friction which acts between

layers of one and the same fluid which move with different

speeds.

It is not difficult to see the reason why force must be

employed to overcome this, which is perhaps only apparently

friction in the fluid. When a body is moved either in or

upon a fluid it puts the fluid also into motion, and thus loses

a part of its energy, just as by friction against a solid support ;

1 ' Attritus vel resistentia quas oritur ex defectu lubricitatis,' Philosophies

Naturalis Principia Mathematica, 1687, lib. ii. sect. 9.
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and if this loss is to be replaced force must be employed.
Just in the same way, a fluid which streams along the

surface of a movable solid or of a second fluid loses part of its

speed by imparting motion to that other solid or fluid body.
What was said about external friction in these cases

applies also to the internal friction of fluids. If inside a

fluid one layer moves more quickly than its neighbours, it

drags them along with it, and loses a part of its speed by

giving it up to them, just as a moving body loses speed by
friction with its support.

The friction of fluids, therefore, both internal and ex-

ternal, consists only in a transfer of motion
; but this

transfer does not proceed without loss : a part of the

translatory motion of the layers is transformed into heat,

and, since this change into heat is continually going on, the

motion of translation is in time all changed into heat-

motions, and mechanical motion is annihilated as in the

case of friction between hard bodies. This change into heat

becomes complete at once if the body on whose surface the

friction is exerted is fixed and immovable.

This transformation into heat, also, is easy to understand.

Heat-motion differs from translatory motion only in the

particles moving in all possible directions, without dis-

tinction, and not, as in the latter case, all in one and the

same direction. Change, therefore, of mechanical motion

into heat-motion consists in nothing else than a change
of the direction in which individual particles move. A
multiform change of direction of this kind cannot fail to

occur in the crowd of particles of which the medium con-

sists if these particles exert actions upon each other either by
forces of cohesion or by collisions ;

and therefore, along with

the transfer of speed, which is called friction, there must
also occur a partial transformation into heat.

74. Newton's Fundamental Law of Internal
Friction

The force which causes the transfer of motion from one

layer to another when internal friction occurs in a fluid has
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already been recognised by Newton as a kind of pressure
which acts on the limiting faces of the two layers. But by
this we must not think of a pressure in the hydrostatic

sense, which acts equally in all directions, and whose action

on a surface is always directed normally to that surface
; just

as the elastic forces in a body depend as to their magnitude
and direction upon its changes of shape, and therefore on

the shifting of its particles, so must the frictional pressure

depend as to its magnitude and direction on the magnitude
and direction of the motions that take place. Its value,

therefore, may be different according to the position of the

surface of pressure or friction in respect of the direction of

the motion.

The way in which the magnitude of this pressure de-

pends on the velocity that is present cannot be completely
determined by theoretical considerations. There is nothing
else, therefore, for us but to make up for our defective know-

ledge by a hypothesis, and afterwards to make trial of its

soundness by comparing the conclusions drawn from it with

the results of experiment.

Only one hypothesis has been recognised as certain, viz.

that the amount of the friction exerted between two layers

can depend only on their relative motion, and therefore only
on the difference between their velocities ; for if both layers

move with the same speed in the same direction, neither

gives to the other, and no friction occurs. Starting from

this consideration, Newton has put forward the hypothesis
that the internal friction is directly proportional to the

difference in velocity of neighbouring layers, so that, for

instance, a doubling of the friction results from a doubling
of both velocities.

The internal friction must further depend on the nature

of the medium, so that a more viscous fluid experiences a

greater friction and a thinner fluid a less friction. Such a

dependence on the matter may be expressed by a numerical

factor by which the mathematical expression of the frictional

pressure is multiplied. This numerical factor which gives

a numerical measure of the viscosity or the friction of the

fluid is called the coefficient offriction or of viscosity.
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The following illustration gives an insight into the mean-

ing of this coefficient of viscosity. Let a fluid, whose depth
is equal to the unit of length, move over a horizontal plane,
and let its motion have become stationary and be of such

character that all the particles in the same horizontal plane
have the same velocity. A necessary consequence of this is

that the velocity is given by a linear function of the height
above the base. For in this state of motion each layer

experiences on its two sides equal and oppositely directed

friction, so that no change can occur in the velocity of a

layer. If we further assume that the lowest layer sticks

fast to the base, and that, on the contrary, the highest layer

has such a velocity that it moves over unit length in unit

time, so that the speed in each layer is numerically equal to

the height, then the friction on unit area which is exerted

between any two neighbouring layers of this fluid is equal
to its coefficient of viscosity.

The measurement of the internal friction of a medium
consists in the determination of the value of this coefficient

;

it is a constant magnitude if Newton's assumption that

the friction is proportional to the relative velocity is really

true. Newton's theory will therefore be proved to be

true if different measures of the internal friction, especially

if made by different methods, give the same value for this

constant.

Such an agreement of measures has really been found,

both for liquids and for gases, as will be described later

in fuller detail. In gases a perfect agreement with experi-

ment has also been found for those properties which, on the

kinetic theory of gases, are connected with the coefficient

of viscosity.

75. Formula for the Coefficient of Viscosity of
a G-as

To establish the properties of the viscosity-coefficient of

a gas on our theory it suffices to carry out in greater particu-

larity, in the sense of our theory, the analysis of the process,
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called internal friction,
1 which has already been given in

general terms.

If, according to that analysis, the internal friction con-

sists in a transfer of the motion of flow from one layer to

another, and in a transformation of the motion so transferred

into heat-motion, then no gas can be free from internal

friction. For the molecules carry over velocity from one

place to another by their very hither-and-thither motions,
and by their frequent encounters the directions of their

motions undergo continual change, so that the flow of the

gas which existed at the beginning, and in which all the

molecules moved in the same direction, must gradually
be changed into a motion that proceeds in all possible direc-

tions, that is, into heat. The phenomenon of internal

friction is therefore explained by the kinetic theory in an
unforced manner.

Our theory, however, gives more than this explanation
on general lines

; since the friction is caused by the exceed-

ingly rapid motion of the molecules, the theory justifies us

in concluding, in agreement with experiment, that gases

possess no little viscosity, and that this viscosity will in-

crease with the temperature, since the speed increases with

the temperature.
We obtain the amount of the friction brought into play

by summing the momentum which is carried over from one

layer into another by reason of the heat-motion of the mole-

cules, for on our explanation this momentum and the friction

are identical. To form directly the measure of the viscosity

given above, i.e. the coefficient of viscosity, I start for the

calculation of this sum from the illustration given in 74,

wherein a gas flows over a horizontal surface in the imme-
diate neighbourhood of which it is at rest, elsewhere flowing

1 Maxwell, Phil Mag. 1860 [4] xix. p. 31. 0. E. Meyer, Pogg. Ann.

1865, cxxv. p. 586. Maxwell, Phil. Mag. 1868 [4] xxxv. p. 209. V. von

Lang, Wiener Sitzungsber. 1871, Ixiv. Abth. 2, p. 485; Pogg. Ann. 1871,

cxlv. p. 290
; Einleitung in die theor. Physik. 1867, p. 526. Stefan, Wiener

Sitzungsber. 1872, Ixv. Abth. 2, p. 360. Boltzmann, ibid. 1872, Ixvi. Abth.

2, p. 324 ; 1880, Ixxxi. Abth. 2, p. 117 ; 1881, Ixxxiv. Abth. 2, pp. 40, 1230 ;

1887, xcvi. Abth. 2, p. 891.
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parallel to the surface, and so that the velocity is the same

at all points of a horizontal plane ; we further take the

velocity of flow at a distance x above the base to be

numerically equal to x, that is,

v = x,

or we assume that each particle passes in unit time over a

distance which is equal to its height above the base. In

this distribution of flow the friction per unit area between

any two layers is equal to the coefficient of viscosity.

Besides this forward velocity v there is the heat-motion

of the gas. In comparison with this exceedingly rapid

motion, which in air, for instance, has at a mean speed
of 447 metres per second, the assumed forward velocity v,

which at the height x = 1 metre is only 1 metre per second,

is vanishingly small. The addition of this new motion will

therefore exert no sensible effect on that heat-motion or on

the length of free path, the collision-frequency, &c., so that

we can reckon the number of particles which leave one layer

and pass over into another as if they had their molecular

speed only.

We calculate the friction between two layers which lie

the one on the other, with the horizontal plane at the

height x above the base for their plane of contact, by exactly
the same method as we used in 12 to calculate the pressure
in the interior of a gaseous mass. We put the number of

particles, which in unit time pass through unit area of the

limiting plane from the lower layer to the upper, equal to

%NG; for this we assume, as was first suggested by Joule,
that only a third of the .IV particles in unit volume come
into account as regards passage in a given direction, and, as

before, we take G to represent the mean value of the speed
as deduced from the mean kinetic energy ( 27).

The particles forming this number have begun their path
towards the limiting layer at different depths, but on the

average they come from a distance from this layer which is

equal to the mean free path Z/, and therefore from a layer

which is at the height x L above the base. Their mean
forward velocity is therefore given by

v f = x L,
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and the momentum which is carried over on the average by
every single molecule from the lower to the upper layer
amounts to

mv' = m(x L} ;

on the whole, then, the momentum

NmG(x - L)

is carried in unit time over unit area of the plane at the

height x by the particles which cross the plane from the

layers below it to those above.

There simultaneously goes in the opposite direction from
the upper to the lower layers the amount of momentum

Therefore the layers above the limiting plane lose in unit

time the momentum

NmG(x + L) - NmG(x - L)

while the lower layers gam t^e'same amount. According to

the explanation of viscosity, which we have given in the sense

of the kinetic theory, the internal friction exerted on unit

surface is therefore

tl
= NmGL,

and this magnitude is the coefficient of viscosity of the gas.
The formula we have obtained has an unmistakable

likeness to that found for the pressure, viz.

p = iNmG* ;

it differs from it only by having the free path L, i.e. a

magnitude of the dimensions of length, in place of the

factor G which denotes the molecular velocity. Thus the

idea of friction being a kind of pressure, which was brought
forward in 74, is justified, and the value of a coefficient of

viscosity may be referred in the same way
x as a pressure to

the usual units, the gram, centimetre, and second.

To avoid, however, all uncertainty afterwards, we must

point out that it would be incorrect to leave out of account

the difference between the two magnitudes, a velocity and a

1

[The dimensions are, however, not the same; those of p are ML~ 1 T~ 2

and those of i\ are ML~ l T~ l
. TB.]

N
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free path ;
for a velocity is not, like a path, measured only

by a length, but for its complete specification it requires a

time unit also to be laid down. It is therefore well not to

express the numerical values of the friction in the way usual

for values of pressure, but, after deduction of the formula,

which on replacement of Nm by the density p we bring
into the form

y = ipGL,

to refer them to the units of density, length, and time. We
thereby obtain also this advantage, that the numerical values

become independent of the value of gravity, which alters

with the latitude of the place of observation. I shall there-

fore give the numerical values of the viscosity which follow

in such units that they contain the density of water, the

centimetre or square centimetre, and the second as funda-

mental units.

76. Theoretical Laws of Gaseous Friction

The final formula of the kinetic theory of viscosity,

which was found by Maxwell, 1 leads to a very surprising

result if we introduce into it the value of the free path.

Since we have worked out the above considerations as if

all the molecules possessed equal speeds and attained equal
free paths a mode of calculation which is sufficient only for

an approximation we must use the Clausius expression

for the free path, and not that of Maxwell. Referring to

the Mathematical Appendix ( 46*-48*) for the stricter

calculation of viscosity, we put here

L = fX
3
/

2

with Clausius, and find for the viscosity-coefficient the

value

97
=

In this formula N is the number of molecules per unit

volume, and X3 the volume occupied by a single molecule
;

consequently JVX3 = 1, as we have already ( 63) several

1 Phil. Mag. 1860 [4] xix. p. 31 ; Scientific Papers, 1890, i. p. 390.
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times seen, so that the coefficient of viscosity takes the

simpler form

7j
= WG/47TS-

2
.

In this form the expression for the viscosity-coefficient

contains no factor which at all depends on the pressure of

the gas, but only magnitudes which depend on the mass,

speed, and sphere of action of the molecules, and thus

generally on their state. The formula therefore gives the

proof of the well-known law of Maxwell that the viscosity

of a gas is independent of its density.

At first sight this law must seem but little probable.

According to it the friction should retain the same intensity
when the gas increases in rarity. This seems to lead to a

conclusion which, although apparently admissible by the

last formula, contains a contradiction in itself, viz. that a

gas rarefied to density 0, and thus rarefied out of existence,

exerts the same friction as one that actually exists. We
see the fallacy of this conclusion l when we consider how
the formula was obtained

;
it is a transformation of the

formula

given in 75, according to which the viscosity 77 vanishes

with the density p, so long as neither the mean free path L
nor the mean speed G becomes infinitely great. But this

limiting case is obviously excluded in the deduction of the

formula given in 75, and therefore the theoretical formula

no longer holds for the coefficient of friction in the limiting
case for which p = 0.

With the exception of this limiting case, Maxwell's
theoretically deduced formula seems still surprising enough
to justify our more closely describing the causes of its

being obtained which are hidden in the mathematical reason-

ing. For such an explanation in words the last formula,
whose meaning is easily perceived, offers itself suitably.
The friction 77

is the quantity of momentum which is

carried over from layer to layer under the before-mentioned

circumstances. The transfer occurs by means of the

1

Compare further 81.

N 2
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heat-motions of the molecules
; consequently, as the formula

shows, it must be proportional to the speed G. It, further,

is carried out by the molecules themselves, and therefore

will be the greater the more there are of them
; hence the

formula for the friction contains the density of the gas as

a second factor. The transfer can only take place between

layers whose distance apart can be traversed by a molecule ;

the friction must therefore be the greater the wider the

range of effective layers, and it must therefore, in the third

place, be proportional to the molecular free path. The
fourth factor, the coefficient J, is explained in the same way
as in the exactly similar formula for the pressure, namely,

by the circumstance that only a third part of the molecules

which are moving in all directions, and therefore sym-

metrically with respect to the three dimensions of space,

come into account in regard to transference in the direction

of one of these three dimensions.

This explanation of the formula we have found contains

at the same time a reason for this remarkable law. Of the

factors in the formula there are only two, p and L, which

are variable with the compression or rarefaction of the gas,

and they vary so that, if the density p increases, the free

path L of the molecules, which are hindered in their motion

by the constriction of the space containing them, becomes

smaller and vice versa. In this way it is possible that the

product of these two quantities, of which one increases

while the other diminishes, may always keep the same

value ;
and therefore after this consideration the paradoxical

law of Maxwell will have lost much of its improbability.
The coefficient of viscosity is not, however, independent

of the temperature, as it is of the pressure. Of its factors

only G and L can be variable with the temperature. With

respect to the former we know from experiments on the

pressure of gases that it is proportional to the square root

of the absolute temperature, or that it increases with the

temperature $ measured on the usual scale in the ratio

\/(l 4- a$) : 1, where a denotes the thermal coefficient of expan-
sion of the gas. As to the free path L, the theory leaves it un-

decided whether it alters with the temperature or not. The
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simplest assumption would be that it does not depend upon
temperature ; but, as we have seen in 71, other possibilities
are not excluded. From this, then, we cannot take it as

certain, but only as a probable consequence of the theory, that

the viscosity of gases increases with the temperature. Gases
would therefore in this respect behave oppositely to liquids,

whose viscosity is the less at the higher temperatures.

77. Observations on the Friction of Gases at
Different Pressures

The remarkable laws of the viscosity of gases deduced

by Maxwell in 1860 from the kinetic theory of these

media challenge experimental proof, not only on account of

their apparently innate improbability, but also especially
because an experimental proof of the laws of viscosity might
in general give at the same time a decision as to the truth

and admissibility of the kinetic theory. For if we do not

verify by experiment the laws that are consequences of the

theory, the theory which requires them must be rejected as

erroneous. The importance of this question prompted both

Maxwell and myself almost simultaneously to carry out

experimental investigations, which were published in the next

following years, and were founded on exactly similar methods.

Of the methods employed up to that time for the deter-

mination of the viscosity of liquids, that invented by
Coulomb 1

presented itself first of all as the most suitable,

because with it the same pressure is exerted everywhere

throughout the gas investigated. If a circular disc is

suspended horizontally by a wire fastened to its centre, it

may, by means of the torsion of the wire, be put into oscilla-

tion in its own plane about that centre. If the disc is in

a fluid, the amplitude of the oscillations will gradually
decrease by reason of the friction which is exerted on each

other by the layers of the fluid that are set in motion, and,

indeed, the decrease of successive amplitudes follows the law

of a geometrical progression. If we measure the amount of

decrease, and determine therefore the so-called logarithmic
decrement of that progression, we can from the observed

1 M&m de Vlnst. National, an IX, iii. p. 246.



182 PHENOMENA DEPENDENT ON MOLECULAR PATHS 77

magnitudes calculate the amount of friction that has taken

place and the value of the coefficient of viscosity. The
external friction that also comes into play in the experi-

ment, that is, the friction that occurs between the fluid and

the surface of the disc, may be eliminated by repetition of

the experiments with more discs of various sizes.

To make this method more suitable for the determina-

tion of the friction of the air, I altered it in my own

experiments
1

by employing three oscillating discs with a

common axis, instead of one, and arranging them either

apart from each other so as to put into oscillation by their

six faces the air above and below each of them, or all close

together, like a single disc, so as to move the air by two
faces only. The combination of the results of the two ex-

periments allowed the coefficient of viscosity to be calculated

in a simple way from the difference of the two observed

logarithmic decrements. Determinations of the coefficient

of viscosity of air carried out at different pressures by this

method did not, indeed, show a complete agreement with

each other as Maxwell's theory required, but the differ-

ences between the values found were small enough to prove
the law at least within certain limits of the pressure. As
an instance I cite the numbers 2 which I obtained by experi-

menting with an apparatus provided with three glass discs.

Since the method does not lead directly to a knowledge of

the viscosity-coefficient itself, but rather, first of all, to the

square root of the coefficient, I put the latter, referred to

centimetres, in the following table, which contains also the

temperature and the pressure, the former in Centigrade

degrees, the latter in centimetres of mercury.

a
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I could, however, deduce in all strictness the proof that the

viscosity of gases is really independent of the pressure from

experiments carried out by T. Graham 1

; these related to

a phenomenon which he called transpiration, viz. the slow

flow through a long, fine capillary tube, or through a bundle

of such tubes, or finally through the fine pores of a porous
substance. The theory of these experiments, which are

obviously similar to those carried out by Poiseuille 2 and

Hagen 3 on the behaviour of water and other liquids in

passing through a capillary tube, may be easily developed

by the analogy of the theory of these hydraulic experiments
worked out by Stokes 4 and others, now that the inde-

pendence of the viscosity of air on pressure has been

rendered at least very probable ; for, in spite of the variation

of pressure along the tube through which the flow takes

place, the friction exerted may be assumed to be the same

everywhere. This theory, which I published in a second

memoir,
5 led in the case of gases to a law of speed of flow

which corresponds fully with that found by Poiseuille

for liquids, and, like the latter, can be used to calculate the

numerical value of the coefficient of viscosity from the

measured amount of the gas transpired. Since the deduction

of this law rests on the hypothesis of a friction which is not

variable with the pressure, an experimental confirmation of

it is also a proof of the correctness of the hypothesis. This

confirmation was actually given by the experiments, as the

following numbers show, provided that the tubes used in

the experiments were sufficiently long.

The following table 6 contains the calculation of the

results given by Graham in his tables XV. and XVI.
Here t denotes the time in seconds required for the flow of

1 Phil. Trans. 1846, cxxxvi. p. 573 ; 1849, cxxxix. p. 349.

2 Soc. Philomath. 1838, p. 77 ; Comptes rendus, 1840, xi. pp 961, 1041
;

1841, xii. p. 112
;
Ann. Chim. [3] 1843, vii. p. 50 ; 1847, xxi. 76

; M&n. de

Savants Strangers, 1846, ix. p. 433.

3
Pogg. Ann. 1839, xlvi. p. 423 ; Abh. d. Berl. AJcad. 1854, p. 17.

4
Cambridge Phil. Trans. 1851-6, ix. pt. 2, p. 8.

5
Pogg. Ann. 1866, cxxvii. pp. 253, 353.

6 Ibid. 1866, cxxvii. pp. 279, 365. In this memoir I have given a slightly

different meaning to these numbers ; this, however, has no influence on the

meaning now assigned.
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a given volume of gas, and P the excess of pressure in inches

which causes the flow ; D is an auxiliary quantity, propor-
tional to the viscosity-coefficient 77, which is used in the

calculation, and is constant like that coefficient ; the added

values of ?/, referred to centimetres and seconds as units,

have been calculated from the mean values of D. $ is the

length of the transpiration tube in inches.

*
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perimental proof of the independence of the friction on the

pressure by use of a method like Coulomb's. Maxwell's
apparatus differs from mine by an improvement that is

apparently only slight, but in reality is extremely important.
1

Between the three oscillating discs fixed to a common axis,

as well as above and below them, Maxwell placed four

fixed discs at distances from them that were everywhere the

same and as little as possible. The first effect of this is to

cause the friction of the air to exert on the oscillating discs

a greater resistance, and one therefore more easily measured.

A second advantage of Maxwell's method consists in the

mathematical theory leading to a final formula which gives
the viscosity-coefficient directly, while mine led first of all

to the square root of the coefficient, to a magnitude, that

is, the error of which would be doubled on squaring. For
these reasons Maxwell's numbers show the constancy of

the coefficient of viscosity much better than mine. The

following table contains the mean values given in the much
fuller table 2 drawn up by him. The values of the pressures
are given in inches of mercury, and opposite each value of

the observed logarithmic decrement is put the corresponding
value which is calculated on the assumption of the con-

stancy of the coefficient of viscosity :
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transpiration experiments of Graham on the one hand, and
of Springmiihl and myself

l

(which were made later) on the

other ;
such proof being founded on the law discovered by

Graham, that the times in which two different gases flow

through a tube under the same circumstances have always
the same ratio.

After all these researches it still remains undecided

whether Maxwell's law of the constancy of the coefficient

of friction still holds at very small pressures of the gas, or

to what extent of rarefaction the law may be considered

valid. That it cannot hold right down to the limit zero has

already ( 76) been pointed out. We may therefore expect
that deviations from it will be exhibited when the pressure
is only a few millimetres of mercury, or when it is lowered

so exceedingly far as in the Geissler's tubes used for electro-

optical experiments by Pliicker, Hittorf, and Crookes.
A first attempt to decide this question was made by

Kundt and Warburg,
2 who repeated Maxwell's ex-

periments and pursued the phenomenon down to extremely
low values of the pressure. Their experiments confirmed

Maxwell's result that the law is valid till the pressure
falls to g

3^ atmosphere ;
but from that point onward they

noted a marked diminution in the value of the logarithmic
decrement. But they explained this diminution not as a

consequence of the coefficient of friction being smaller at

such low pressures, but by a considerably increasing effect at

low pressures of the slipping of the gas on the discs of the

apparatus. We shall return to this point later ( 83).

That this explanation is correct, and that the coefficient

of viscosity really remains constant, as Kundt and War-
burg assume, down to extremely small values of the

pressure, was proved by Crookes 3
by observations in

which he employed a vertically suspended leaf of mica

instead of a horizontally oscillating disc. From the oscilla-

tions of this leaf he was able, by help of a theory developed

by Stokes,
4 to arrive at conclusions with respect to the

1

Pogg. Ann. 1873, cxlviii. pp. 1, 526.
2 Monatsber. d. Berl. Akad. 1875, p. 160 ; Pogg. Ann. 1875, civ. pp. 337, 525.
3 Phil. Trans. 1881, clxxii. p. 387. 4 Ibid. 1881, clxxii. p. 435.
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magnitude of the viscosity of rarefied air without external

friction coming into the question, since slip was excluded by
this arrangement of the experiment. From these measures
it resulted that Maxwell's law of the constancy of the

coefficient of viscosity in actual gases holds down to pressures
which are so small that they can no longer be measured
with accuracy. Only at a much higher rarefaction there

occurs a sudden drop in the value of the coefficient of

viscosity.

Just as at very low pressures, so also at very high
pressures, Maxwell's law of the constancy of the vis-

cosity-coefficient loses its strict validity; for under these

circumstances, too, the assumptions of the theory no longer
hold good. The theory starts with the assumption that

a particle of gas traverses a straight length of path between

successive encounters with others, in comparison with which
the curved parts of the path that are traversed during the

actual encounters are vanishingly small. But this assump-
tion can no longer be upheld when the gas is very dense.

The dissociation of the molecules also may cause the law
to lose its admissibility, for the theory assumes that the

molecules are unalterable.

That the law does not hold any longer with exactness at

very high or very low pressures cannot form any objection

against the validity of the theory under ordinary circum-

stances, i.e. at moderate pressures and average tempera-
tures

; and we may for the present leave out of account

that at very high pressures the value of the viscosity-

coefficient of a gas perceptibly increases with the density,
as Warburg and von Babo l have shown for carbonic

acid at pressures between 30 and 120 atmospheres.
For other gases which conform more exactly to the laws

of perfect gases the question has not been sufficiently

investigated. For even if the coefficient of viscosity for air

and other gases seems, according to many observations,
2 to

1 Ber. d. naturf. Ges. zu Freiburg i. B. 1882, viii. ; Wied. Ann. 1882,

xvii. p. 390 ; Berl. Sitzungsber. 1882, p. 509. Compare 89 and the following.
2 Graham, Phil. Trans. 1846 and 1849 ; Pogg. Ann. 1865, cxxvii. pp. 271,

355, and fol. P. Hoffmann, Wied. Ann. 1884, xxi. p. 470. Barus, Bull, of
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increase as the pressure rises, yet all these experimental
results admit of other explanations as well. We may
therefore conclude, as the united testimony of all the

observations, that within wide limits of the pressure the

internal friction of gases is variable with the pressure either

not at all or only in a very slight degree.

78. Numerical Values of the Free Path and
Collision-frequency of Particles of Air

This confirmation of a predicted fact constitutes a

brilliant success for the kinetic theory. We may assure

ourselves by it that we are not moving in the doubtful

region of hypothesis, but on the sure ground of experiment,
when we employ the results that have been thus far ob-

tained to widen our knowledge of the molecular motion and

to investigate the direct properties of molecules.

The formula established in 75 for the coefficient of

viscosity of a gas,

TJ
= PLG,

now that it is justified by experiment, assumes a no smaller

importance than the analogous formula

p = iTrplP

that holds for the pressure ( 11 and 27) ; for just as we

employ the latter to calculate the absolute value of the

molecular speed, we ca,n use the former to determine the

value of the molecular free path. The formula enables us

to calculate in absolute measure the numerical value of this

length, which is apparently inaccessible to observation,

when the internal friction of a gas measured in absolute

units is known and the value of the molecular speed is

obtained from the pressure and density.

Before we follow Maxwell in this important step we
must point out that the formula for the viscosity is capable
of a slight improvement. It was deduced in 75 by a con-

the U.S. Geological Survey, No. 54,
' Measurement of High Temperatures,'

Washington 1889. De Keen, Bull.de I'Acad. de Belgique, 1888 [3] xvi.

p. 195.
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sideration in which for simplicity equal mean values, both

of the speed and the free path, were ascribed to all the mole-

cules instead of values which really vary from molecule to

molecule. A more exact calculation of the internal friction of

gases, carried out in the fourth Mathematical Appendix

( 47* and 48*) in accordance with the rules of the calculus

of probability, shows that by the simpler calculation the

numerical factor of the formula has become affected by a

slight error. It is more exact to put

77
= 0-30967 pLtl

for the coefficient of viscosity, where fl is the arithmetical

mean of the speeds on Maxwell's theory, and

is the mean value of the free path on the same theory

( 68).

Although atmospheric air is a mixture of molecules of

different kinds which have unequal speeds and traverse

unequal paths, yet we may apply the theoretical formula to

air, if not with exactness, still with approximate admissi-

bility, to calculate the mean free path of its heterogeneous
molecules. My transpiration experiments

l

gave, for the

coefficient of viscosity of air at C. values from

77
= 0-000168 to T?

= 0-000174,

which, as mentioned already in 75, are expressed in terms

of the centimetre, the density of water, and the second as

units. Puluj,
2 from his transpiration experiments, found

77
= 0-000179 ;

von Obermayer,
3 also by transpiration experiments by

two different methods,

77
= 0-000171 and 0-000168 ;

1 Fourth and fifth memoirs on the viscosity of gases. Pogg. Ann. 1873,

cxlviii. pp. 37, 203.
2 Wiener Sitzungsber. Abth. 2, 1874, Ixix. p. 287 ;

Ixx. p. 243.

3 Carl's Rep. f. Experimentalphysik, 1876, xii. p. 13
; Wiener Sitzungsber.

Abth. 2, 1875, Ixxi. p. 281
; 1876, Ixxiii. p. 433.
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Otto Schumann, 1

by oscillation experiments after Max-
well's method,

77
= 0-000168 ;

Schneebeli,
2

by transpiration experiments,

7?
= 0-000171

;

Tomlinson,3
by oscillation experiments with cylinders,

77
= 0-000172.

The mean value of all these determinations is

r]
= 0-000172.

If we join with this value, which is referred to centi-

meters, the value of the mean speed at C., as calculated in

28, which in centimetres per second is

ft = 44,700,

and employ the value of the density of air at C. under

the barometric pressure of 76 cm. as given byRegnault,
viz.

p = 0-0012932,

in grams per cubic centimetre, we find for the mean free

path, measured in centimetres, of a particle of air at C.

and under the pressure of one atmosphere the value

L = 0-0000096.

From this mean value of the path we obtain, by com-

parison of it with the length H travelled in a second, the

mean number of collisions that occur per second and of the

paths that are newly begun in each second, viz.

fl/L = 4,650,000,000.

The two numerical values of the free path and collision-

frequency here established on an experimental basis prove,

the former by its smallness and the latter by its greatness,

how correct was the expectation which Clausius 4
expressed

in his refutation of the objections raised against his theory.

The molecular free path has indeed come out as a magni-
tude which is three times smaller than the smallest micro-

1 Wied. Ann. 1884, xxiii. p. 353.
2 Archives des Sci. Phys. et Nat. Geneve, 1885 [3] xiv. p. 197.
3 Phil. Trans. 1886, clxxvii. p. 767. 4 Compare 62 and 72.
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scopically visible magnitude
l

;
and the vibrations of the air

molecules as they course backwards and forwards take place
more than 60,000 times more rapidly than those for: the

highest tone audible. 2

79. Free Path, and Collision-frequency of the
Particles of Different G-ases

Just as for atmospheric air, the values of the two magni-
tudes, the free path and the collision-frequency, may be
calculated for every other gas for which the value of the

coefficient of viscosity has been measured. In place of this

it is also sufficient if the particular ratio is known for the

gas, which Graham has called the coefficient of transpira-

tion, viz. the ratio in which the coefficient of viscosity of the

gas stands to that of oxygen. The value of this ratio has

been determined for many gases by Graham,3
by measuring

the speed with which the gases flow through fine capillary
tubes

;
the times of flow of equal volumes of different gases are

in the same ratio as their coefficients of viscosity. Graham
found that the value of this ratio varies only insignificantly
with the temperature and pressure, so long as these two

magnitudes are not altered too greatly. It is therefore

possible, from the mean value that has been found for the

coefficient of viscosity of atmospheric air, viz. rj
= 0-000172,

and the transpiration-coefficient for air determined by
Graham, viz. 0-899, to at once calculate the coefficient of

viscosity of oxygen, viz.

17
= 0-000191,

and thence the values of the coefficients of viscosity of all

the other gases experimented on by Graham. We then

find, just as for air, the values of the free path and collision-

frequency of the molecules of all these gases.

The results of this calculation are given in the following

1 Helmholtz, Pogg. Ann. 1874, Jubelband, p. 575.
2
Depretz, Comptes rendus, 1845, xx.

; Pogg. Ann. 1845, Ixv. p. 447.

He gives 37,000 complete, or 74,000 single, oscillations per second as the limit

for audibility.
3 Phil. Trans. 1846 and 1849.
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table. The numbers are referred to the centimetre, the

second, and the density of water as units, as were the values

for air which underlie them ; as, too, in the case of air,

they correspond to the temperature C. and the pressure
of 76 cm. of mercury. The values of the molecular weights
have been taken from the tables ofLothar Meyer and

Karl Seubert. 1
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The values also deduced by Kundt and Warburg 1

from oscillation experiments at 15 C. differ from the former

by nothing more than can be explained by the change of

temperature.

Hydrogen
Water vapour
Carbonic acid
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given in 28, I calculate the density of argon at 0, referred

to that of water at 4 C., as

p = 0-0017810,

whence the mean speed at of the molecule of argon is

H = 381 metres per sec.

For helium the numbers are somewhat uncertain; in the

mean Eamsay 1 found the value 2-14 for the density when
that of oxygen was taken as 16. Hence follows, when the

density is referred to that of water,

p = 0-000191,

for which the mean speed at is

O = 1162 metres per sec.

From these numbers we obtain then the molecular free

paths,
for argon, 0-0000099 cm.,

for helium, 0-0000240

at and atmospheric pressure, and, finally, the collision -

frequency of a molecule

for argon, 3840 x 106
per sec.,

for helium, 4840

The viscosity of mercury vapour has been measured by
S. Koch, 2 and the numbers found by him have later been

confirmed as correct by Noyes and Goodwin 3
by means

of comparative transpiration experiments. At the tempera-
ture 370 C. the value of the coefficient of viscosity was

found to be

TJ
= 0-000642,

while according to the numbers given in 28 the value of

the molecular speed at this temperature must be taken as

H = 260 metres per sec.

Hence from the formula

= i7n?a/ 0-30967 p
1 Proc. Roy. Soc. 1896, lix. p. 325 ;

Zeitschr. f. phys. Chemie, 1896, xx.

p. 614. 2 Wied. Ann. 1883, xix. p. 857.

3 Zeitschr. f. phys. Chemie, 1896, xxi. p. 671 ; Phys. Rev. 1896, iv. p. 207.
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the value of the free path of mercury vapour at 370 C. and

atmospheric pressure is

L = 0-0000209 cm.,

and that of the collision-frequency under the same circum-

stances

fl/Z,
= 1245 x 106

per sec.

An estimation of the values at can only be made with

great uncertainty, since the law of alteration of rj with

temperature at such low temperatures is not known. If we

employ the formula of interpolation determined by Koch
for high temperatures, according to which rj is proportional
to the l'6th power of the absolute temperature, and put fi

proportional to the square root of the same magnitude, we
have for mercury vapour at and atmospheric pressure

v = 0-000162, L = 0-00000344, fl/L = 7540 x 106
.

We may expect that in the foregoing series of numbers

regular relations between the free paths and molecular

weights may be recognisable. For it can scarcely appear
doubtful that the area of the central section of the sphere
of action which is contained in the formula for the free path
is closely connected with the molecular volume

;
and it is

just as probable that the molecular volume depends in like

manner on the molecular weight, as in chemically simple
bodies the atomic volume depends on the atomic weight. Bat
Lothar Meyer 1 has shown that, as the atomic weight in-

creases, the atomic volume now increases, now decreases, with

a peculiar kind of double periodicity ;
and similar behaviour

has been shown, by the investigations of Mendelejeff,
Lothar Meyer, and other chemists, in the case of all

other physical properties of the chemical elements. Conse-

quently we may expect that the molecular free path and

collision-frequency will also be functions of the molecular

weight that regularly decrease and increase.

Graham has already recognised the simplest relations

to the molecular weight. He noticed that substances of

equal molecular weight in many cases possess the same

1 Ann. d. Chem. u. Pharm. 1870, Suppl.-Band vii. p. 354.

o 2
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coefficient of transpiration, in consequence of which they
must also have the same free path and collision-frequency.
This rule, however, does not hold in general, but only for

such substances whose molecules are made up of the same
number of atoms. Thus, for instance, CO, N

2 , and NO,
which all three have two atoms in the molecule, have nearly

equal free paths and collision-frequencies in addition to

nearly equal molecular weights, while the molecule C
2
H

4 ,

consisting of six atoms, shows a much smaller free path
and a much larger collision-frequency, although it has the

same molecular weight. Further, the molecules C0
2
and

N
20, composed of three atoms, agree in respect of weight,

viscosity, free path, and collision-frequency, while the only

slightly heavier molecule C2
H

60, consisting of nine atoms,

has a much smaller viscosity and free path, and a much

larger collision-frequency. In both these cases, therefore,

the collision-frequency is the greater the more atoms in the

molecule.

If now we arrange the substances enumerated according
to the number of atoms in the molecule, we first obtain the

following two series, whose regularity is obvious :

Number
of atoms

in

molecule
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The periodicity is exhibited most clearly in the first

group, which embraces the diatomic molecules
; it is repeated,

however, in the same way, but less markedly, in the second

group, which contains the triatomic molecules. In both

groups as the molecular weight rises, the coefficient of
viscosity so alters as to first of all rise, and then fall after

having attained a maximum. The free path diminishes in
both groups at first, then undergoes a slight increase, and
finally diminishes again. Lastly, the collision-frequency

falls off at first to a minimum, and then increases.

Whether these relations hold good with monatomic
molecules can scarcely be judged from the numbers at

hand. To this class of gases belong not only mercury
vapour, but also argon and helium, because both these

gases, in common with mercury, have this property, that
for them the ratio of the two specific heats has the value l

1-67 ( 54). We should then have to tabulate the following
numbers calculated for C. :

Number
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tables, however, for diatomic and triatomic molecules the

numbers determined for argon fit in much less well.

For gases which have more than three atoms in the

molecule the foregoing numbers permit of just as little

certainty with respect to a regular dependence on the mole-

cular weight. A difficulty which specially arises is that, as

the following table shows, the differences between the values

of the viscosity-coefficient and of the magnitudes deduced

from it become the smaller the higher the number of atoms
in the molecule.

Number
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with the molecular weight, and also with the number of

atoms which are joined together in the molecule.

This supposition is also actually justified by the numbers

given as values of the free path for diatomic and triatomic

molecules ; for on the whole they decrease as the molecular

weight increases, and they are on the average smaller for

triatomic molecules than for diatomic.

Yet in each of these two series of values of the free

path there occurs about the middle a slightly marked but

still plainly recognisable rise. The central section, therefore,

of the sphere of action cannot continuously increase as the

molecular weight increases, but at mean values of the mole-

cular weight the section must decrease when the weight
increases. This behaviour is explained the most simply if

we assume that the atoms in the molecule can be grouped

together differently, and we may indeed assume that they
draw the more closely together the heavier their masses.

The consequence of this would be that with increase of mass
the sphere of action is contracted, although the intensity of

the action will perhaps increase.

After this discussion the relations between the numbers
that represent the collision-frequency are easily intelligible.

The formula for the collision-frequency is

this contains a factor fl, which continuously decreases as the

molecular weight increases, while the other factor irs
2 for

the most part increases with the molecular weight. The

collision-frequency may therefore as well decrease as increase

with increase of the molecular weight.

According to the formula a greater value of the collision-

frequency may result from two different causes which are,

to a certain extent, antagonistic. On the one hand this

number is increased by an increase in the speed of the

particles, on the other it rises in value with the extent of the

sphere of action, and therefore with the mass of the mole-

cule. Consequently those molecules collide the oftenest

which, firstly, move with the greatest rapidity, that is, the

lightest ;
and those, secondly, which are in a certain measure
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heavy by reason of their mass and extent. With this the

run of the numbers agrees ; the collision-frequency first

diminishes, and then increases, as the molecular weight
increases.

An exactly similar explanation serves to account for the

observation that gaseous chemical compounds which are

polyatomic behave nearly alike as regards viscosity, and
indeed we see this just as before from the mathematical

expression for the collision-frequency. By the entrance of

more atoms into the molecule the section irs
2 will in most

cases increase, while the molecular speed will diminish
; the

interval T between successive collisions may therefore be

constant. In this case the coefficient of viscosity must also

be constant ; for the formula which gives it,

T?
= 0-30967 pLtt,

leads to the relation

= 0-30967 pO
2

between the viscosity and the collision-interval T, and by
substitution of the pressure by means of the formula

p = ^7Tpl
2 we can bring this into the form

7jIT = 0-03871 TTP = 0-121607^.

If therefore T is independent of the molecular weight, so too

is ?;. Hence all gaseous substances which contain a large
number of atoms in their molecule have nearly equal co-

efficients of viscosity.

This law is important in the examination of the behaviour

of vapours, which we have still to investigate ( 86). But we
must first discuss some other relations which there come
into consideration.

80. Viscosity of Gaseous Mixtures

Both theory and experiment agree in showing that the

principal laws of viscosity hold not only for chemically pure

gases, but also for mixtures of different gases. Indeed, it is a

mixed gas, atmospheric air to wit, which has been employed
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by most observers much oftener than pure gases to prove
the independence of the viscosity on the pressure and to in-

vestigate its dependence on the temperature.
The theoretical considerations retain their validity also

for mixed gases, especially the deduction given in 75 of

the formula which expresses the theoretical value of the co-

efficient of viscosity. In this reasoning mean values were

always dealt with ; the mean momentum which is carried

by the moving particles in unit time over unit area in

a given direction was brought into account, and also the

mean value of the distance which is traversed by the

particles that cross the area. From the two we obtained

the amount of the friction which in a particular case is equal
to the coefficient of viscosity. This calculation, depending
on mean values, does not in any way assume equality of all

the molecules; for mean values of magnitudes that have

even very unequal values can be formed. The fundamental

formula of the theory is therefore valid also for gaseous
mixtures

; the question now only arises how to form the

necessary mean values.

We can attempt this in different ways. We may either

direct our efforts to the carrying out of the mathematical

calculation as strictly as possible, and so far as is possible

without neglecting anything, or strive to find simpler for-

mulas, which are easy to evaluate for numerical calculations.

Maxwell l has followed the first way; here we employ an

easier method, which is due to Puluj.
2

The formula for the coefficient of viscosity

^\ B R A /Ty*
1,
= 0-30967

we use for a gaseous mixture in the form

17
= 0-30967

where m is the molecular weight, and we thereby under-

stand m, O, and s- as representing mean values. If the

1 Phil. Mag. 1868 [4] xxxv. p. 212
; Scientific Papers, ii. p. 72.

2 Wiener Sitzungsber. 1879, Ixx'.x. Abth. 2, pp. 97, 745 ;
CarVs Bepert. d.

Experimentalphys. xv. p. 590.
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mixture of two gases whose molecular weights are m
}
and

m
2
contain N

l
and N

2
molecules of them respectively in

unit volume, the mean value of the molecular weight is

m = (m l
N

l
+m2N2) /

N
where N = N

l +N2
.

By means of this mean valuem the mean value of the speed
O is at once obtainable from the two magnitudes fl^ O2

which denote the mean speeds of the two kinds of particles ;

for there must be equilibrium of temperature, and therefore

whence for the factor wO in the numerator of the expression

for 97 we may put

mil = m
l
Q,

l^(mlml)
= m

l
fl

l^/(Nl IN-t N2
m

2 /N7n l ).

Similarly we may alter the denominator. If we put s
l

and s2 for the radius of the sphere of action of the two

kinds of molecules, the mean volume of the spheres of

action is

NJ IN,

and therefore the mean central section of the sphere of

action is

Replacing the ratio of s2 to s
{
in terms of the viscosity

coefficients from the formulae

77!
= 0-30967 ra^/TjWS, ^2

= 0-30967 m
2
O

2 /7r?2V2,

whence we obtain

we have for the mean section

.

\7j2 m
l

If we put these two mean values in the numerator and
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denominator of the formula for
77, we obtain for the co-

efficient of viscosity of the mixed gases the expression

N

In this formula, however, the numbers N which are not

accessible to direct observation may be replaced by the

values of the pressure, on the assumption that the mixed

gases obey Boyle's and Avogadro's laws. Denoting by
p 1

the pressure which the first gas, consisting of the mole-

cules m
lt
would exert by itself, and by p2

that which the

second gas alone would produce, and lastly by p the whole

pressure exerted by the mixture, which in accordance with

Dalton's law is given by

the formulae

N
l :N=p l :p and N2

: N = p2
: p

hold good, and by these the expression^for the coefficient of

viscosity takes the form

p p

p

Puluj has made measurements of the internal friction

of mixtures of carbonic acid and hydrogen, has compared
his results with the formula, and has found a really good

agreement. So, too, has Breitenbach. 1 By these observa-

tions a striking fact was confirmed, which was first noticed

by Graham 2 as he allowed mixtures of hydrogen with

other gases to flow through capillary tubes. Although the

viscosity of hydrogen is less than that of carbonic acid, a

slight admixture of hydrogen has the effect of increasing
and not of decreasing the viscosity of carbonic acid ;

nor

does a diminution begin until the mixture contains a largish

amount of hydrogen.

1 Wied. Ann. 1899, Ixvii. p. 820. 2 Phil. Trans. 1846, p. 622.
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To explain this remarkable phenomenon by the formula,

we note that the numerator of the fraction may be put

PL + &?!*) = vjl -
(l
- "

p p m^J |
\ M!/ p

= l_Vl_*V)^_. . = 1-0-48?'--.
m/p p

in the case under consideration, where w2
= 2 andmj = 43-67

if p 2
is the pressure of the hydrogen, while the denominator

becomes

fa + p*(ii\*(*\*\* - fi h ^iVr^V^'
\p pVV ;J |

"
L
1 "

I

1

Uv W }p

. 1 _|fl - (aVf^)*!*' - . . = 1 - 0-52?? - ...

3{ ^J \rn.J } p p

if the values of the coefficients of viscosity are put in from

79. For small values of p z , therefore, the numerator

diminishes less than the denominator as p2 increases, and

the value of 77 must therefore rise in magnitude, and not fall,

with increase of pv so long as this remains small. For

larger values of p 2
the relation alters.

1

We may not, therefore, as this instance shows, without

further consideration conclude that, because the viscosity of

air is greater than that of carbonic acid, the coefficient of

viscosity of carbonic acid is increased by the mixture with

it of some atmospheric air. But if we put in the formula

w
2
= 28*69 for air (which we assume as a mean value from

N2
= 27-88 and

2
= 31-76), and also 77 2

= 0-000172 for air,

and
77,
= 0-000145 for carbonic acid, the formula becomes

TJ
=

Vl (l
- 0-17 p 2 /p -...)/(!- 0-29 p,lp -...),

and from this it follows that 97 increases with p 2 ,
and

therefore with the amount of added air, even for small

values of p2 ,
as Warburg and von Babo 2 have actually

observed.3

1

[The numerator of the fraction is greater in this case than the denomi-

nator so long as the ratio p^p does not exceed 0*615. TB.]
2 Ber. ilber d. Verh. d. naturf. Ges. in Freiburg i. B. 1882, viii. p. 117 ;

Wied. Ann. 1882, xvii. p. 422.
3
[This behaviour is independent of the relative amounts of the two gases ;
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Now that the formula has been confirmed, let us, as a

simple application of it, calculate the transpiration-coefficient
of atmospheric air, that is, the ratio of its coefficient of

viscosity 77 to that of oxygen 77^ Putting p l jp = O21 and

Pzlp = 0-79, in accordance with the known ratio of mixture

of oxygen and nitrogen in air, and also m
l

31'76 for

oxygen and m
2 27*88 for nitrogen, and lastly, Graham's

value T72/
7
?!

0'873 for the transpiration-coefficient of

nitrogen, we obtain for the transpiration-coefficient of

atmospheric air

7? / 7?1
= 0-898,

which is in complete agreement with the mean value

obtained from Graham's observations, viz. 0-899.

81. Friction of Gases on Fixed Bodies

A gas experiences frictional effects, not only when two of

its layers flow by each other with different speeds, but also

when it streams along the surface of a fixed body, or of a

body which moves within it ;
this friction causes the more

quickly moving part to be retarded, and the more slowly

moving part to be accelerated. This external friction of

gases has been investigated and measured by Kundt and

Warburg.
1

The existence of a friction between a gas and a solid

body assumes that they are moving unequally fast, so that

the gas does not adhere firmly to the solid surface, but slips

along it. The friction, which diminishes the difference of

the velocities by accelerating the slower and retarding the

quicker, diminishes this slip on the surface, so that only
with very weak or moderately strong external friction is a

sensible slip perceptible, while with more considerable

friction it almost disappears, and at last entirely ceases. On
the other hand, the amount of slip depends also on the

magnitude of the internal friction. The stronger this is, the

for the numerator and denominator are equal only when p.,fp
-

2-664, which

does not correspond to any possible combination. TE.]
1

Pogg. Ann. 1875, civ. pp. 337, 525. Previously published in abstract in

Monatsber. d. Berl. Akad. 1875, p. 160.



206 PHENOMENA DEPENDENT ON MOLECULAK PATHS 81

more the differences of the velocity of flow in the different

layers are blotted out, by which the difference between the

velocity of the gas, moving as a more compact mass, and that

of the solid body must necessarily be increased. The slip

therefore increases with increase of internal friction just

as with decrease of external friction, while it would be

diminished as well by decrease of the internal as by increase

of the external friction.

A measure for the amount of the external friction we

might obtain in the same way as that for internal friction,

viz. by means of a coefficient of friction, which measures the

intensity of the friction exerted per unit area of the surface

if the difference of the two velocities is the unit of velocity.

But after our explanation of the relation between friction and

slip another method commends itself as no less convenient,

viz. to introduce instead, as a measure of the slip, a

coefficient of slip, as Helmholtz and von Pietrowski 1

have first defined it for liquids. By the coefficient of slip,

which we denote by ,
is understood the ratio of 97,

the

coefficient of internal friction, to s, the coefficient of external

friction, or

ITS*/*

so that f appears a really suitable measure of the slip which

is increased by increase of 77 and diminution of g.

The older investigations of the friction of gases, both

those founded on observations of oscillations and those

directed to the measurement of transpiration, had agreed in

showing that the value of the coefficient of slip is vanish-

ingly small, so that f might be put equal to 0. The
external friction, therefore, in the circumstances under

which those experiments were carried out, is infinitely

greater than the internal. An essential advantage was in

consequence gained for the determination of the internal

friction, since, as no slip occurred, the external friction

might be left out of account in the working out of the

observations.

But when Kundt and Warburg undertook to test

1 Wiener Sitzungsber. 1860, xl. p. 607.
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Maxwell's law of the independence of the viscosity on the

density for very great rarefactions, such as are to be attained

by a mercury pump, they found the external friction consider-

ably lessened in gases rarefied so far, so that the coefficient

of slip f could no longer be put equal to 0, and the slip

could no longer be neglected. From their experiments,
which were carried out at pressures between O6 and 20
millimetres of mercury, it resulted that the value of the

coefficient of slip is inversely proportional to the density of
the gas. The external friction is consequently directly pro-

portional to the density. We cannot, after this experiment,
conclude from the law found for viscosity by Maxwell
that a gas of vanishingly small density would exert the same
friction on the motion of a body as a denser gas; the

influence of the friction will rather become less as the

rarefaction of the gas increases, not indeed by reason of the

internal friction diminishing, but because the external

friction decreases.

82. Theory of External Friction

Kundt and Warburg have already explained by the

kinetic theory the law empirically found for the coefficient

of slip, in so far as they have shown that on this theory f is

a magnitude which is proportional to the free path and,

therefore, inversely proportional to . the density. But,

apparently because a calculation founded on erroneous

assumptions did not lead to the correct value of the

numerical coefficient of the formula, they have not evaluated

their observations on external friction in a complete manner

for comparison with the absolute magnitude of the free

paths.
The external friction which a gas in flow undergoes at a

fixed wall may be calculated just as in 11 we calculated

the pressure which it exerts on the wall. Just as in that

case, we have to find the number of particles which meet

the wall during unit time, say, one second, in consequence
of their molecular motion ; each of them loses a portion of its

forward velocity by its collision against the fixed wall
; the
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sum of the momenta which the impinging particles lose in a

second gives the amount of the friction which the surface-

layer of the gas has experienced at the wall.

But to form this sum we have to make a hypothetical

assumption as to the magnitude of the loss which a single

particle suffers on impact at the wall. In the case carried

out in 11 we supposed that no kinetic energy was lost on

the collision, but that the particle was reflected from the

wall with the same speed as that with which it struck it.

We could not now consistently suppose that the particles of

gas lose any of their speed ;
but we might assert that of the

forward motion, which all the molecules in common possess,

a part must be transformed into heat-motion in consequence
of the divergency of the directions in which the impinging

particles are reflected. How large a part this will be

depends on the degree of unevenness of the surface, with

respect to which, therefore, we have to form a definite

conception.
The fixed wall on which the particles impinge does not

form a plane or continuously curved surface at all
;

it is

made up itself of molecules which leave spaces between each

other of sufficient size to allow other molecules to penetrate

into them. On the breadth of these molecular pores rests

the capacity of solid bodies for condensing
1 on their surfaces

considerable quantities of gases and vapours, that is, for

depriving them of the mobility proper to their state of

aggregation. The gaseous molecules penetrate thereby

deeply into the interior of the solid body, so that they are

able to pass through the walls of glowing tubes 2 whose

briskly moving molecules may often leave wide interspaces,

and also, when helped by the force of electrolysis, through

platinum foil.
3

From such observations we are forced to look upon the

surfaces of solid bodies, even if most excellently polished, as

1 Or adsorbing them, according to the modern nomenclature. Compare the

observations of B u n s e n and Kayser, Wied. Ann. 1883-5.
2 H. Sainte Claire-Deville and Troost, Comptes Rendus, 1863, Ivii.

p. 965 ; Pogg. Ann. 1864, cxxii. p. 331.

3 Helmholtz, 'Bericht iiber Versuche des Herrn Dr. Elihu Root,'

Monatsber. d. BerL Akad. 1876, p. 217.
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so rough and uneven that a regular flow immediately over

them is scarcely even conceivable. The forward motion of

the gas becomes almost entirely annihilated, so that we are

justified in looking on the external friction as infinitely

great and in putting the slip equal to zero, as was in

general done in the older investigations on the friction of

gases.

In the limiting conceivable case, in which the mean
motion of all the particles of gas close by the wall is zero,

we must assume that the velocity of flow which those

particles have that are coming towards the wall is entirely

taken up by those which are coming from it
; each particle,

therefore, which meets the wall must not only lose on

impact its share of the general velocity of flow, but return

with an equal component of velocity in the opposite direction.

The loss which it has experienced by the impact would,

therefore, in the case considered, amount to double the

velocity of forward flow.

In reality the loss of velocity will probably be less. I

represent it then by @v, where v denotes the mean velocity

of flow and (3 a constant whose value lies between and 2.

By the impact of a particle of gas of mass m against the wall,

the amount of momentum in the gas is diminished by ftmv.

The whole lessening of the momentum in unit time is

obtained from this by multiplying it by the number of

particles which strike the wr
all in this time.

In the determination of the pressure by summation of

the kinetic energy of all the impacts we found in 11 and

12, by the method first employed by Joule, that the number
of particles which strike unit area of the wall in unit time is

%NG, where, as before, N is the number of particles in unit

volume and G is a mean value of the speed. We cannot,

without further consideration, apply this to the case under

consideration, because the method there employed is strictly

admissible only for the calculation of the kinetic energy, and

not of other magnitudes. This value, therefore, for the

number of impinging particles is only approximately correct,

and for accuracy we must replace it by the number JVH calcu-

lated in 37 and 41* of the Mathematical Appendices, which

p
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differs but inconsiderably from it, and involves instead of G
the smaller arithmetical mean fl of the molecular speeds.

Multiplication of this number into the loss of momentum
of a molecule as found above gives

/3mNClv = sv

for the total loss of momentum experienced per unit area

per unit time by a gas which flows along a solid wall with

the velocity v
; or, more shortly expressed, this expression

gives the friction of the gas per unit area per unit time on a

solid body.
The coefficient which comes into the formula, viz.

s =

is the constant of the external friction of the gas ; the

formula shows that the theory is in agreement with the law,

mentioned already in 81, which Kundt and Warburg
deduced from their observations, viz. that the external

friction is proportional to the density p
= mN.

For the coefficient of slip we have

f = 77/5= 0-30967 L/J&
1-23868L/A

which is therefore simply proportional to the free path of

the molecules ;
in denser gases, accordingly, as experiment

has proved, the slip on a solid surface is vanishingly small,

and it can in general be shown and measured only in rarefied

83. Comparison of the Theory with Experiment

The observations of Kundt and Warburg confirm most

excellently the law that immediately follows from the

foregoing formula, viz. that f, just like L, is inversely

proportional to the density and the pressure of the gas. I

forbear citing here in fulness the series of numbers given

by them, and limit myself to a setting forth of their con-

clusions.

From every three or four observations under different

pressures made with the same arrangement of apparatus they
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have deduced a magnitude, denoted by a, whose relation to

the coefficient of slip is given by

aD/f=2 x 760,

where D denotes the distance in centimetres between the

discs of the apparatus employed with Maxwell's method.

By means of this formula I have calculated the following
values of the coefficient of slip from the numbers given on

pp. 544 and 545 of the memoir cited :
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84. Phenomena in very Rarefied Gases

The molecular free path increases with increase of rare-

faction in the ratio of the increase of the volume
;
so too,

therefore, does the coefficient of slip. But we cannot,

therefore, believe that the molecular paths in excessively
rarefied gases, as in the vacuum of a mercury air-pump,
attain a considerable length. If we assume, for instance,

that such a pump were to rarefy the air 100,000 times, or to

a pressure of less than y^ mm., the free path, which is

-00001 cm. under atmospheric pressure, would become
1 cm. ;

it therefore always remains a remarkably small

path for a body projected with a speed of something like

450 metres per second. The number of encounters to which
a molecule is exposed remains still very great even in such

a condition of rarefaction
;

it would amount to 46,500 per
second.

This calculation certainly does not deserve unconditional

confidence, if only because Boyle's law does not hold at

such small pressures. But, under any circumstances, this

consideration is well suited to show that a gas, even if

exceedingly rarefied, is anything but a vacuum. A nomi-

nally vacuous space, obtained either by an air-pump or even

by Torricelli's method, is distinctly not vacuous, but is so

uniformly filled with a medium, of a density certainly very

small, that our observations will still give us the impression
of the space being continuously filled.

The lengthening of the free path helps, indeed, to remove

more quickly and easily any inequalities that exist in the

distribution of pressure, temperature, &c. According to the

kinetic theory, the transference of any action is the result of

the transference of molecules from one layer to another.

The longer the paths of the molecules, the wider will therefore

be the ranges within which all inequalities will be removed.

This remark remains of force, even when the inequality

consists in the distribution of electrical tension. This is the

reason why electrical discharges in regions of rarefied air, as,

'for instance, in Geissler's tubes, take place at far greater

distances than in denser air.
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The same holds good for the remarkable phenomenon
observed in 1825 by Fresnel, 1 which he was inclined to

interpret as a repulsion between heated bodies. The essen-

tially similar actions which Crookes 2 observed during

weighings in rarefied spaces, as well as the motions observed

in the apparatus
3 invented by him, and called the radio-

meter or light-mill, are to be explained by the same ideas.

The vanes of the little mill, which are black on one side and

white on the other, are warmed by radiated heat, or even by

light since a luminous ray is only a heat-ray which is also

luminous to the eye but they are warmed unequally, and

the black side the more strongly. If, therefore, a particle of

air impinges on a black face it carries off more heat, i.e. flies

off with greater speed, than if the collision had been against
a white face. The reaction which it exerts on the vane in

its rebound is, therefore, greater when it leaves the warmer
black face than at the colder white side. Consequently,
the mill must so turn that the white side of the vanes

precedes.
If we think of the immense speed with which the gaseous

molecules move, it seems scarcely necessary to specially

prove that the force that results from this unequal heating
is really sufficient to bring about this action. But since the

proof can be easily given independently of the hypotheses
on which the theory of gases rests, we will calculate the

magnitude of the energy for a simple case, so chosen that

the necessary experimental data are known. Suppose the

vanes to be made of aluminium foil of 1 sq. cm. area, and to

be blackened with soot on one side, and suppose the heating
to be caused, not by a source outside the instrument, but by
the glass envelope itself, which we will take to be 1 degree C.

warmer than the mill.

Lehnebach 4 has observed that glass and sooted sur-

faces radiate with equal intensity towards a region of rarefied

1 Ann. Chim. Phys. 1825 [2] xxix. p. 57 ; (Euvres Computes, 1868, ii.

p. 667.
2 Phil. Trans. 1873, clxiii. p. 277.
3

Quarterly Journal of Science, 1875, xii. p. 337.
4

Pogg. Ann. 1874, cli. p. 96.
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air; according to Kirchhoff's 1 law concerning the emis-

sion and absorption of radiant heat, they have therefore

equal coefficients of absorption also. Hence the conclusion

that the radiation received by the blackened side of the vane

from the glass envelope is equal to that which the blackened

side of the vane would send out to the glass wall if it were

as much the warmer as the glass envelope is.

I have calculated 2 in absolute measure the amount of

heat which a warmed black surface radiates to the re-

ceiver of an air-pump under which it is placed from the

observations made by Stewart and Tait,
3 on the heating

of a blackened disc of aluminium in a vacuum of 7 '6 mm.

pressure. I have found the value

h = 0-0017

for the constant of radiation, referred to a millimetre, second,

and degree C. as units ; with centimetres substituted for

millimetres, we have
h = 0-00017,

and this number simply means that the heat radiated in one

second by a square centimetre of a blackened surface of

aluminium at a temperature 1 degree C. above its environ-

ment would suffice to raise 0-00017 gram of water through
1 degree C. that is, is equal to 0*00017 calorie. From
observations by Dulong and Petit, and also by F.

Neumann, I found & = 0-00013. Later on Lehnebach
found a value which, reduced to 1 degree C., is

li = 0-00015 ; and, lastly, Kundt and Warburg 4 have

obtained h = 0'00014 in the same units. The perfect

agreement between these numbers vouches for their correct-

ness.

A vane of the radiometer of 1 sq. cm. area would,

therefore, receive on its blackened side a radiation of about

0-00015 calorie in a second if the glass envelope were the

1

Pogg. Ann. 1860, cix. p. 275 ; Untersuchungen iiber das Sonnenspectrum,
2nd ed. Berlin 1862, p. 22.

2 Ibid. 1868, cxxxv. p. 285.
3 Proc. Roy. Soc. 1865, xiv. p. 339 ;

Phil. Mag. 1865 [4] xxx. p. 314.
4
Pogg. Ann. 1875, clvi. p. 208.
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warmer by 1 degree. According to Stewart and T ait's

observations, the emissivity of a surface of bare aluminium

is four times smaller, so that, in accordance with Kirch-
hoff's law, it seems just to assume that a vane made of

aluminium will absorb in the same time only a fourth part

of that amount of heat, i.e. about 0*00004 calorie. The
difference between the two amounts of heat received, viz.

0*00011 calorie, which is the energy that drives the radio-

meter, is capable of raising O'OOOll x 425 = 0*05 gram by
1 metre, or 5 grams by 1 cm. [that is, the power is 5 gm. cm.

per sec.]. This energy, acting on a vane, would certainly

be capable of turning the light-mill round, and, indeed, even

if the difference in temperature of the vanes and envelope
were 100 or 1,000 times smaller than 1 degree. For with the

mill there moves only the rarefied, and therefore light, air

which has to overcome at the wall only an external friction,

which is very much diminished by the rarefaction.

85. Influence of the Temperature on the Viscosity

Since according to the kinetic theory the friction of gases

is to be looked upon as a consequence of the molecular

motion, the coefficient of friction must be variable with the

temperature if that theory is true
;
and we may expect, from

the reasons given in 76, that it increases with rise of

temperature. Every observer who has investigated the

influence of the temperature on the friction has found

this expectation justified. Only in respect of the rate of the

increase with the temperature have the results of different

observers shown differences which were at first hard to

explain.

We can only conclude,
1 from the observations of

Graham 2 on the flow of gases through tubes, that the

friction of gases really increases with the temperature, as the

theory requires ;
we might draw the further conclusion from

them that the increase of friction with the temperature is in

nearly the same ratio for all gases. Both speak in favour

of the theory ;
for the speed of the molecules, which comes

1

Pogg. Ann. 1866, cxxvii. p. 369. 2 Phil Trans. 1846 and 1849.
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as a factor into the formula for the coefficient of viscosity,

increases with the temperature at nearly the same rate for

all gases ;
and it is not unreasonable to expect the same also

with respect to the free path.

As a fact, the earlier of the more accurate measures

made on the increase of the coefficient of viscosity with the

temperature seemed to result in a simple relation to the

coefficient of expansion, and therefore to a magnitude which

has nearly the same value for all gases. Maxwell 1
first

drew from his observations that the coefficient of viscosity

of air increases in the same ratio as the absolute tempera-

ture, and thus proportionally to

1 + a$,

where 3 is the temperature measured from freezing-point,

and a is the coefficient of expansion. It was, indeed,

proved by the later experiments of other observers 2 that

the viscosity, at least of atmospheric air, does not increase

with the temperature so rapidly as Maxwell had believed ;

but it was conclusively shown that it rises more rapidly

than the square root of the absolute temperature, i.e. faster

than the magnitude

There can therefore be no further doubt that, in the

formula for the coefficient of viscosity ( 78)

97
= 0-30967 pl/n,

not only does the speed ft, which is proportional to that

square root, increase with the temperature, but so also does

the free path L.

The endeavour was then made at first to express the

dependence of the coefficient of viscosity on the temperature

by a factor of the form
i + aBr,

1 Phil. Trans. 1866, clvi. p. 249 ; Scientific Papers, ii. p. 1.

2 0. E. Meyer, Pogg. Ann. 1873, cxlviii. p. 203. Puluj, Wiener

Sitzungsber. Abth. 2, 1874, Ixix. p. 287 ;
Ixx. p. 243 ; 1876, Ixxiii. p. 589. von

Obermayer, ibid. Abtb. 2, 1875, Ixxi. p. 281; 1876, Ixxiii. p. 433 ; Carl's

Eepert. 1876, xii. p. 13 ; 1877, xiii. p. 130. Warburg, Pogg. Ann. 1876, clix.

p. 403.
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and this formula seemed to suit the case of atmospheric
air when n was taken equal to f . Since the molecular speed
alters with the temperature proportionally to \/(l + a^)>

the molecular free path must then be proportional to

(1 +

According to the observations of C. Barus 1
, who in-

vestigated the flow through capillary tubes within a very
wide range of temperature, n = f both for air and for

hydrogen ; with this value the formula holds from to

1,300. For both gases, therefore, the free path would in-

crease proportionally to

(1 + <*)*.

Experiments with other gases showed, on the contrary,

that this value for n cannot hold in general. Puluj
2

obtained by the oscillation method the value n = 0*92 for

carbonic acid, and von Obermayer 3 observed with capil-

lary tubes values for N0
2 ,
C0 2 , ethylene and ethyl chloride,

which were all nearly equal to 1. Eilhard Wiedemann 4

found for these gases that the value for n is variable with

the temperature, and is the smaller the higher the tempera-
ture. S. W. Ho1m an 5 arrived at the same result, and
he therefore expressed his results by the usual series of

powers.
0. Schumann 6 chose a formula with a double factor

of the form

to represent his observations ; the square root here expresses
the dependence of the molecular speed ft on the ternpera-

1 Bull, of the U. S. Geological Survey, No. 54, Washington 1889 ; Amer.
Journ. of Science, 1888 [3] xxxv. p. 407 ; Wied. Ann. 1889, xxxvi. p. 358.

2 Wiener Sitzungsber. 1876, Ixxiii. Abth. 2, p. 589.
3 Wiener akad. Sitzungsanzeiger, 1876, No. 8

; Carl's Repert. 1876, xii.

p. 465.
4 Arch. d. Sc. Phys. et Nat. 1876, Ivi. p. 273. Breitenbach, Wied. Ann.

1899, Ixvii. p. 816.
3 Proc. Amer. Acad. Boston. 1877, xii. p. 41

; 1885, xxi. p. 1
;
Phil. Mag. [5]

iii. p. 81
; xxi. p. 199.

6 ' Ueber die Eeibung von Gasen u. Dampfen u.s.w.' Tubinger Habilita-

tionsschrift ; Wied. Ann. 1884, xxiii. p. 353.
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ture, while the quadratic factor is to express the change of

the second quantity occurring in the formula for the co-

efficient of viscosity, viz. the molecular free path. The
second power is here chosen, because from the formula

L = \3/V2
we may assume that the free path can depend on the

temperature only in so far as the central section of the

sphere of action is variable ; hence 7 might be looked on as

the measure of the diminution which s the radius of the

sphere of action undergoes with rise of temperature. The
new formula excellently satisfies the observations which
Schumann made by Maxwell's oscillation method, yet
it seems to correspond less well to the transpiration experi-
ments which Barus 1 has carried out within a far larger

range of temperature.
The reasons for the assumption that the section of the

sphere of action diminishes as the temperature rises have

been given already in 71. These depend for the most

part on conceptions which would be as well fitted to explain
the deviations from the laws of perfect gases, so that they

might be applied to vapours. But in the question of actual

gases, those attempts at explanation will certainly meet with

most acceptance which do not assume a real diminution

of the molecules or their spheres of action, but only an ap-

parent alteration. From this point of view Sutherland's
view deserves to be preferred to all others. According to

him we have not to deal with the real sphere of action, but

with an apparent sphere of action which is larger than the

real one.

The attractive forces which are recognised by us in

liquids and solids as cohesion and hardness are, according

to Joule and Lord Kelvin's experiments, not absent

from the molecules of gases too. Certainly they only come

into play when two molecules come very closely together ;

but they may then cause two molecules to collide which

without such attraction would have passed by each other.

1 Bull U. S. Geological Surv. No. 54, p. 278 ;
Wied. Ann. 1889, xxxvi.

p. 386.
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The forces of cohesion have therefore the same result as

an increase of the section of the sphere, which with

Glaus ius we have called the sphere of action, would have.

The amount of this enlargement depends on the speed with

which the particles move, and, therefore, on the temperature
of the gas ;

it is the greater the less the speed or the lower

the temperature. The sphere of action will therefore appear
to be less enlarged at higher temperatures than at lower,

and this produces the same result as if it becomes smaller

when the temperature rises. The consequence of this be-

haviour is an increase of the molecular free path with the

temperature.
We might a priori take it as very probable that this

view is right, because the gases for which tolerably large

or, indeed, variable values of n have been found belong to

those which have strong cohesion, and can therefore be

condensed to liquids with proportionate ease.

In bringing forward this hypothesis to explain the

phenomena Sutherland 1 had really the greatest success.

According to his theory, explained in 71, the free path L
at the absolute temperature <B) is connected with its value L
at the freezing-point by the relation

In the constant magnitude C which here occurs we have

to see a measure of the strength of the attractive forces

which act between the gaseous molecules, and, therefore, a

measure of the cohesion of the gaseous medium ;
a is the

coefficient of expansion. If we introduce this value of L
and also the value

into the formula for the coefficient of viscosity

77
= 0-30967

we obtain the equation

Phil Mag. 1893 [5] xxxvi. p. 507.



220 PHENOMENA DEPENDENT ON MOLECULAR PATHS 85

which expresses the value of rj at the temperature
= $ + a~ l

in terms of rjQ which corresponds to the freezing-point.

With this formula Sutherland first succeeded in very

exactly reproducing the law of the observations which
Ho1man had made on the viscosity of atmospheric air at

different temperatures. Putting C = 113, he calculated the

following values of the ratio r)/7jQ which are put opposite
the corresponding observed values :

1

Atmospheric Air.
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Carbonic Acid.
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exactness. For it may be concluded, from Boyle's law

holding, that the assumptions on which the gaseous theory
rests are right ;

and if this is the case, the chief law of

gaseous friction must also hold, viz. that the coefficient of

viscosity is independent of the pressure.

Further experiments on the friction of vapours have

been made by Puluj
1 and Schumann 2

by the oscillation

method ;
numerous experiments also on the transpiration of

vapours have been carried out by Lothar Meyer,
3
partly

by himself and partly in co-operation with Schumann
and Steudel. The law of the non-dependence of the coeffi-

cients of viscosity and transpiration on the pressure of the

vapour was proved, by the measurements of these coeffi-

cients, for the cases when the conditions of the experiments
were so chosen that the vapour was sufficiently far from its

point of condensation. The temperature, therefore, must be

so high and the pressure so low that the vapour can follow

the laws of perfect gases, and, therefore, can exhibit the

normal density, at least approximately.
The values of the coefficient of viscosity measured under

such circumstances stand in a simple relation to the chemical

nature of the substances. Substances of similar constitution

have equal, or at least approximately equal, coefficients of

viscosity. Thus the following values of the coefficient of

viscosity were found always with tolerable exactness for the

different kinds of compounds, whatever value n might have

in the formulae, provided only that it exceeds 1 :

Alcohols . . CnH^+^O TJ
= 0-000142

Chlorides . . C M.H2W+1C1 150

Esters . . . CnH2n 2 155

Bromides . . C^H^+^Br 182

Iodides . . . CnH^+J. 210

Against the correctness of these numbers we may remark,
as Lothar Meyer did himself, that they do not agree
with the observations of Graham for methyl chloride and

ethyl chloride which are cited in 79. I believe, however,

1 Wiener Sitzungsber. 1878, Ixxviii. Abth. 2, p. 279 ; Carl's Eepert. 1878,

xiv. p. 573. 2 Wied. Ann. 1884, xxiii. p. 353.
;< Ibid. 1879, vii. p. 497 ; 1881, xiii. p. 1

; 1882, xvi. pp. 369, 394.
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that we must not see in this any ground for doubt
; for

Graham's measures were made at quite a different tem-

perature from those of the observers at Tubingen. On the

contrary I should sooner think that Graham's observa-

tions are of small value because they were made with a

short tube, the section of which was neither circular nor

regular.
1

If, however, Lothar Meyer's observations also

were to be affected by a constant error, that would be

without effect on the mutual agreement of the numbers ;

and the conclusion remains that the entrance of chlorine or

bromine or iodine into a chemical combination substantially

increases the viscosity of the vapour.
Within each group, however, the value of the viscosity

is the same for all substances. In this lies a confirmation

of the proposition stated in 79, that the viscosity-coefficients

of gases whose molecules are made up of a considerable

number of atoms are of nearly the same magnitude. They
are certainly not so different from each other as the co-

efficients of viscosity of bodies in which fewer atoms are

bound together to form the molecule ; this is seen also from

a comparison of the numbers just given, both with each

other and with other numbers tabulated earlier.

If, as this shows, vapours obey the laws of viscosity

in many respects like gases, there still remain essential

differences to take into account, and these we have now to

consider more in detail.

87. Dependence on the Temperature

The first of these differences concerns the mode in which

the viscosity of vapours depends on the temperature.

Vapours exhibit a much more marked variation with tem-

perature than gases. Hence Sutherland's formula, which

is in excellent agreement with the behaviour of gases, is

only imperfectly satisfied by many vapours.

We can at once see that the validity of the formula may
be limited ;

for it is not possible by a determination of the

value of C to represent every possible ratio in which the

viscosity may increase with the temperature.
1

Capillary tube K, Phil. Trans. 1849, pp. 353, 357.
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This constant C serves as a measure of the cohesion of

the molecules of the vapour in comparison with the energy
of their motion. With vapours we must expect that G will

assume a larger value, which is to be taken the larger the

more easily the vapour can be condensed to the liquid state.

Considering then that C increases, the factor

6),

which comes into the formula, takes approximately the

simpler form

eye,

and is thus simply proportional to the absolute temperature
(D when C is so large that the value of (*) is small compared
with it. The length of the free path in such vapours will

thus increase in nearly the same ratio as the absolute tem-

perature, or will be proportional to

This limiting case cannot, however, be exceeded, so that

on this theory, as has been already indicated in 71, the free

path can only increase as rapidly as 1 -f a$ at the most when
the temperature rises. The coefficient of viscosity, which,
in accordance with the formula

77
= 0-30967

contains, in addition to L, the second factor XI that is variable

with the temperature, cannot therefore, from Sutherland's

formula, increase with the temperature more rapidly than in

proportion to

(1 +

But Synesius Koch 1 has shown by experiments which

embrace a range of more than 100 degrees of temperature
that the viscosity of mercury vapour increases with the

temperature proportionallv to

(1 + aS)
1

,

in which the coefficient of expansion a is taken equal to

1 Wied. Ann. 1883, xix. p. 857.
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0-003665, as for gases. Mercury vapour therefore alters its

viscosity in a rather larger ratio than can be explained by
Sutherland's theory.

1

We meet with similar difficulties in regard to the ob-

servations made by 0. Schumann 2 on the viscosity of

the vapour of benzol and of different esters ; for the func-

tion of the temperature that represents the behaviour of

benzol is

(1 + 0-00185 3)V(l + 0-0043),

in which each term increases more rapidly with the tem-

perature than the theory can explain. For many of the

esters, certainly, the law of alteration with temperature that

was found lies between the theoretical limits
; but the

function

(1 + 0-00164 -9)V(1 + 0-004 3),

which Schumann has deduced as the most probable mean
of all his observations on esters, increases nearly as rapidly

as the extreme limiting case admissible under Sutherland's

theory.
Let us now examine whether Schumann's observa-

tions satisfy this limiting value, and for this let us express
the coefficient of viscosity by

7,
=

where TJQ
is its value at C., and a is taken for all vapours

equal to 0*00367 ; or more simply let us put

7)
= HW,

where if is a constant and the absolute temperature ;
we

then find a tolerably good agreement between the theoreti-

cal formula and the results of experiment. The following
tables contain the mean values of the magnitudes measured

by Schumann and the values of H calculated from

them.

1

Compare 92.
2 0. Schumann, Tiibinger Habilitationsschrift, 1884; Wied. Ann. 1884,

xxiii. p. 353.
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The new formula therefore agrees with the observations

not essentially worse than Schumann's, which contains

a disposable constant. For the esters investigated by
Schumann I have likewise calculated the following values,

which I tabulate opposite the observed values :

Values of 106
rj.
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the viscosity and partly in the estimation of the tempera-
ture. But against this view there is the circumstance that

a fluctuation is shown in the values of the constant H first

calculated which occurs in several esters in almost exactly

similar fashion.

We are also forced to the opinion that these fluctua-

tions are not entirely fortuitous by the consideration that

the theory is not without other underlying causes, which

may be adduced, along with that theoretically investigated

by Sutherland and justified by observation, in order to

explain the large variation of viscosity in vapours with the

temperature.

88. Dissociation

Among the causes which make vapours deviate from the

laws of perfect gases the most important depends upon the

dissociation which the molecules undergo as well from rise

of temperature as from diminution of pressure.

In earlier sections of this book we have several times

spoken of this dissociation. Especially in 48-51 has its

nature been described and the influence which it exerts on

the density of a vapour. In a vapour the molecules are not

all of the same size and mass as in a perfect gas. The case

often occurs, in consequence of the forces of cohesion, in

which two molecules which chance to come near enough to

each other join together to form one molecule of double

size ;
and just as frequently the case arises that such a

double molecule splits up again into its constituents, either

as a result of collision with another molecule, or simply in

consequence of an increase of speed, which not only breaks

up the whole molecule, but also partly tears apart the atoms

bound up in it. Hence it happens that a vapour is always
a mixture of large and small molecules.

The ratio in which the simple and compound molecules

are mixed together differs with the temperature; for an

increase of speed, as brought about by a rise of tempera-

ture, increases the probability of the division of the larger

masses. The number of simple molecules therefore in-
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creases when the temperature rises, and that of the com-

pound molecules when the temperature falls, until finally,

at a definite temperature, all are broken up and the per-

fectly gaseous state is attained. At lower temperatures, on
the contrary, the number of the compound molecules is in

excess.

This behaviour of the molecules explains, as before re-

marked, the fact that the density of vapours, when compared
with the density of air or of any other gas under the same

pressure but at different temperatures, does not remain con-

stant. Since, in accordance with Avogadro's law, the

number of molecules in unit volume is the same for all

gases at the same pressure and temperature, we find a

smaller value of the vapour-density if the molecules are

broken up into smaller ones at higher temperatures ; at

lower temperatures, on the contrary, when all the molecules

are joined together, either in pairs or larger aggregates, the

vapour-density will turn out much larger.

A change of pressure has just the same kind of effect

upon the degree of dissociation attained. If the pressure
is diminished by an enlargement of the volume, the mole-

cules separate from each other in greater number because

they acquire greater freedom of movement, and are less

exposed to the forces of cohesion. But an increment of

pressure brings the particles nearer together, and affords

them more frequent opportunity of combining.
If these views are right, the law of alteration of the

density of a vapour with its pressure and temperature must

be determinable from theoretical considerations that go more

deeply into the nature of the phenomena. The first who
succeeded in finding this law was J. W. Gibbs. 1 In

addition to the general laws of gases he employed the two

principal laws of Thermodynamics, viz. the theorem of

energy and the theorem of entropy ;
from these he deduced

formulae that agree excellently with experiment. Van der

1 Trans. Connecticut Acad. New Haven 1876, iii. pt. 1, p. 234. Under the

title of '

Thermodynamical Studies, 1892,' published in German by Ostwald,

p. 204. Report on this memoir by Maxwell in Proc. Camb. Phil. Soc. ii.
;

Amer. Journ. Sci. [3] xiii. p. 380
; Scientific Papers, ii. p. 498.
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Waals 1 treated this problem similarly, and later, in a

somewhat different way, which starts with the conception
of atoms as vortex rings ( 124), J. J. Thomson 2 discussed

it by an investigation of the probable mean intervals during
which a pair of molecules remain separate or combined.

Almost simultaneously Boltzmann 3
proved the theoretical

formula by a method which depends entirely on the con-

ceptions of the kinetic theory of gases. He investigated the

probability of the different possible results of an encounter,

and thus determined how often, on an average, two particles

on meeting join together, and how often on an average two

particles joined together separate on a collision ; from this

we obtain the number of separate molecules and that of

combined pairs of molecules, and these numbers give finally

the density of the vapour. L. Natanson 4
proceeded simi-

larly, and also G. Jager,
5 who considerably simplified the

formula by introducing approximate values.

I must omit from this book a reproduction of these

theories and formulae ; we have only to investigate whether

the dissociation has any effect on the value of the coefficient

of viscosity, and, if so, of what kind this effect will be.

89. Alteration of Viscosity by Dissociation

We can scarcely doubt that a breaking up of the

molecules must be of importance for the viscosity in a

vapour as it is for its density. But whether the viscosity

is increased or diminished by the dissociation is a question
not so surely and generally answered as that of the influ-

ence of dissociation on the vapour-density. For the factors

which form the mathematical expression for the coefficient

of viscosity change their values in opposite directions when

1 Versl. en Mededeel. d. K. Ak. v. Wet. AmsL 1880 [2] xv. p. 199.
2 Phil. Mag. 1884 [5] xviii. p. 233.
3 Wien. Sitzungsber. 1883, Ixxxviii. Abth. 2, p. 861 ; Wied. Ann. 1884, xxii.

p. 39.
4 Wied. Ann. 1889, xxxviii. p. 288.
5 Wien. Sitzungsber. Abth. 2, 1891, c. p. 1189 ; 1895, cii. p. 671 ;

Wink el -

mann's Handbuch der Physik, 1896, ii. pt. 2, p. 561.
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the molecules are broken up. The free path will certainly
become no smaller, but in all probability larger, because the

section of the molecular sphere of action cannot be in-

creased, but only diminished, by the separation of the mole-

cules ;
and of the other two factors the density p decreases

and the speed O increases as the dissociation progresses, but

their product pl decreases, since the magnitude /oO
2 remains

constant while the pressure is unaltered. Hence the

formula for the coefficient of friction 77 contains two factors,

of which the one, L, is probably greater when separation

occurs, and the other, pl, smaller. Consequently without

closer consideration or numerical calculation we cannot say
how rj will be altered.

We find, however, a surer way of answering this

question by looking on the partially dissociated vapour as a

mixture of two different gases, of one gas, that is, which
consists of the dissociated simple molecules, and of another

whose molecules are unbroken-up and are consequently of,

say, doubled size. If we then employ the formulae developed
in 80 for the viscosity of a mixture we must put in them

m
2/m l

= 2,

if we limit ourselves to the simplest case, in which only
double molecules occur, and not triple, quadruple, &c.

We employ the formula for the coefficient of viscosity of

the partially dissociated vapour in the form

(
'
l

(Nl i

but avoid replacing the magnitudes JV, which denote the

numbers of the different molecules, by the values of the

whole and partial pressures, since Boyle's law does not

hold. But instead of the numbers N we may put the

values of the density which the vapour has when partially
and completely dissociated. From the formula for the mean
molecular weight

m = (Nl
m

1
+ Nj

we obtain
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on multiplying by N, the whole number of the particles, and

putting
B = Nm, D = Nm

lt

so that 8 represents the density of the vapour in its actual

state in which it is partly dissociated, and D the density
which it would attain when all the molecules were broken

up and the vapour therefore completely dissociated. Since,

further, Nl
+ N2

= -^ we mav express JYj and N2 by the

densities 8 and D
;
for the foregoing formulae give

Hence it follows that the coefficient of viscosity rj of the

partially dissociated vapour is represented by

7?
= ^ 18*JD{2D - 8 + 2*fo 1 / 7; 2)t(8

- D) }-*

in which rj l
is the coefficient of viscosity of the vapour

when completely dissociated into simple molecules ; 7? 2 ,
on

the contrary, denotes the value of the coefficient of viscosity

for this substance if no dissociation at all has taken place,

but all the molecules are combined together in pairs. There

further come into the formula the magnitudes 8 and Z),

which represent respectively the density of the actual vapour
and the value which the density would attain at the same

pressure and temperature if all the molecules were dis-

sociated into simple molecules by dissociation. The co-

efficient of viscosity therefore of a vapour appears to be

variable with its density, in contradistinction to the beha-

viour of perfect gases.

It follows that the formula is not to be used for such

vapours as exhibit no dependence of their viscosity on the

pressure ;
and we may conclude that in all cases in which

the coefficient of friction has been found to be independent
of the pressure the dissociation of the molecules has been of

no material influence. This occurs in most of the vapours
hitherto experimented on

; especially is it shown in the

experiments of Puluj
l on the friction of ether vapour, and

1 Wiener Sitzungsber. 1878, Ixxviii. Abth. 2, p. 279.
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in those of Schumann 1 on benzol and the esters in

most of his experiments at least. Schumann, however,
mentions that with methyl formate a slight increase of the

coefficient of friction, amounting to about 1 per cent., was
noted when the pressure at 21*8 was raised from 37*47 to

46-37 cm. of mercury, or nearly to the pressure 50 -1 cm.

corresponding to the point of saturation. Perhaps in this

small variability we may see a confirmation of our theoretical

formula.

For a sure resolution of the question whether the

formula correctly represents the actual behaviour of vapours
we may, with a better prospect of success, employ in our

calculations the observations, already mentioned in 77,

which Warburg and von Babo 2 have made on the

friction of carbonic acid under high pressures. For these

experiments confirm the theoretical formula in that they
both agree in showing that the viscosity depends on the

pressure only in so far as it varies with the density.
3 Prob-

ably, too, the observations of Houdaille 4 on the varia-

bility of the viscosity of water-vapour may help to good
results.

90. Comparison of the Theory with the Behaviour
of Carbonic Acid

In order to submit the numerical results of the observa-

tions to the theoretical calculation I have put the formula
for the coefficient of viscosity 77 in the simpler form

by making the following substitutions, for the sake of short-

1 Wied. Ann. 1884, xxiii. p. 394.
2 Ber. ub. d. Verh. d. naturf. Ges. zu Freiburg i. B. 1882, viii. ; Wied. Ann.

1882, xvii. p. 390 ; abstract in Berl. Sitzungsber. 1882, p. 509.
3 Warburg and von Babo, Results, 12, i. 3. Hence the viscosity

seems to be connected with the density much more simply than with the

pressure.
1 Fortschr. d. Phys. 1896, 52. Jahrg. I. p. 442.
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ness, in the magnitudes that are independent of the density

S, viz. :

The magnitudes r) l
and ?7 2

contained in s are the limiting

values which the coefficient of viscosity attains, the one

when the vapour or gas is entirely decomposed by dissocia-

tion into simple molecules, the other when all the molecules

are combined in pairs. Of these limiting values we can at

most assume rj 1
as known, since we put for it the value of

the coefficient of viscosity which has been observed for

carbonic acid under such circumstances that it may pass
without question as a perfect gas, i.e. under low pressure at

a sufficiently high temperature. The other limiting value,

>?2 , is, however, not known, and must, indeed, itself be calcu-

lated from the observations. Therefore e, which depends on

the ratio of these two limiting values, is unknown, and the

same is true, therefore, of both the magnitudes A and B
which occur in the formula.

These two magnitudes A and B depend not only on s,

which according to the theory ought to be constant, but

also on the density D of the completely dissociated gas.

What unit we are to choose for the numerical value of this

magnitude is on the theory entirely at our pleasure ; we can

take the density of any gas whatever, such as atmospheric

air, as unit, or we are equally at liberty to refer the number
to the density of water as unit

;
it is only necessary that for

both 8 and D one and the same unit should be chosen.

Since Warburg and von Babo refer the density 8 of

the carbonic acid which they have themselves measured to

that of water as unit, we must also choose this unit for D
if we wish to employ directly the values which they have

tabulated and which they have denoted by s.

Doubts, however, may be raised whether D is not

variable with the pressure, and as to the law of variation, if

variation does occur. Since D denotes the density of the gas
when all its molecules are decomposed into simple ones, we

might be inclined to assume that the gas then behaves as a
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perfect gas, and therefore conforms to Boyle's law. In

this case the density D must be assumed to be proportional
to the pressure, so that we may put

A = ap, B = bp%,

where a and b are independent of the pressure, and there-

fore can be variable with the temperature only.

The assumption that the gas obeys Boyle's law

appears, however, as very improbable if we remember that

the temperature in the experiments lay between 25 and

41, and was, therefore, on neither side very different from

the critical temperature 31, at which, under certain cir-

cumstances, the distinction between liquid and gaseous
carbonic acid ceases. Instead of Boyle's law, therefore, we

might with equal justice assume that the density of the

carbonic acid vapour varies but very little with the pressure,

just like that of any liquid. That this assumption is for

the most part really satisfied under the circumstances of

Warburg and von Babo's experiments is seen from the

observations of Andrews on the continuity of the gaseous
and liquid states, being especially perceptible from the curves

which are given in his memoir. 1 These show the volume of

the partly gaseous and partly liquid carbonic acid to be

nearly constant at temperatures which are very near to those

employed by Warburg and von Babo, and under simi-

larly high pressures ; whence it follows that the density of

the carbonic acid vapour is nearly equal to that of liquid
carbonic acid, and that therefore, under the circumstances

now coming into consideration, they are both independent of

the pressure.

I have therefore calculated the results of the observa-

tions communicated by Warburg and von Babo 2 under

both assumptions, supposing in the first place that Boyle's
law is obeyed and in the second that the density D is

invariable.

The results of the calculations gave that at 25 f

l, the

1 Phil. Trans. 1869, clix. p. 575 ; Pogg. Ann. Erg.-Bd. v. p. 64, 1871.
2 Table xii. of their complete memoir

; p. 512 of the extract.
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lowest temperature employed by Warburg and von Bab o,

their observations are quite unrepresentable by the formula

with variable values of D, A, and B, and that, on the con-

trary, the assumption of the values

A = 1-203, B = 0-000378,

which I have found as mean values, is very satisfactory.

For the values of the coefficient of viscosity, which are

calculated from the formula

97
= 0-000378 8* (1-203

-
S)~*

with the values of B given by Warburg and von Babo,
agree very well with those observed, as the following table

shows :

Carbonic Acid at 25-1.

P 4

Atmospheres
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formula with these values agree with the observed values is

shown by the following table :

Carbonic Acid.
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and with these values I calculated from the formula the

following values of the coefficient of viscosity which, as

before, I tabulate opposite those observed :

Carbonic Acid.

*
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We must therefore conclude that carbonic acid at

temperatures between 30 and 40 obeys the laws of perfect

gases with sufficient accuracy so long as the pressure remains

below a limit of about 70 atmospheres, which corresponds

nearly to the critical pressure. But if the pressure exceeds

this limit, carbonic acid behaves, at least approximately,
like a liquid the density of which is scarcely altered by

pressure.

Since this behaviour is confirmed also by observations of

another kind, we may look on the result of our calculations

as a sign that the theory of the viscosity of partially

dissociated gases developed in 89 is substantially founded

on truth. We shall have to assume that the formula

really represents the coefficient of viscosity of a partially

dissociated gas of density 8, and A and B are to be looked

upon as constants if the pressure is sufficiently high, but to

be put
A = ap, B = bp%

for smaller values of the pressure p, a and b being constants.

I might probably have found a general formula appli-

cable to all values of the pressure if I had attempted to use

as basis of my calculations one of the general laws which
have been proposed by van der Waals, Clausius, and

others to represent the connection between the pressure and

the density. I have had to abandon doing this, as I wished

to delay the appearance of this book no longer,

91. Viscosity of the Perfectly -dissociated Gas
and of the Non-dissociated Gas

I have, on the other hand, sought for a more compre-
hensive proof of the theoretical formula by returning to the

theoretical meaning of the magnitudes A and B, the values

of which I have obtained from the observations, and investi-

gating the conclusions of another kind to which they lead.

According to 90,

A = D2 -
g) (1

-
), B =
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where s is determined by the ratio of the two limiting values

of the coefficient of viscosity, viz. ?/ 1
of the gas when com-

pletely dissociated into simple molecules C0
2
and ?; 2

of the

gas when composed of only the double molecules C
2 4 ,

in

accordance with the formula

s =

D is further the density which the gas would possess under

the circumstances of the experiment if it were entirely dis-

sociated into simple molecules.

The three magnitudes T? P rj^ D named above are not

capable of direct measurement because we cannot know
whether the limiting case in which the gas contains only
molecules of one kind, single or double, has been reached in

any experiment.
But from one of the laws of theoretical chemistry

l we
can theoretically calculate the density D of a gas from its

molecular weight. Since now, according to what we have

already said, carbonic acid below the critical pressure, or at

least below 70 atmospheres, may be considered as an actual

gas, we are justified in extending the procedure for the cal-

culation of D to the formulae in which we put

A = ap, B = bpk.

We may therefore put these formulas in the shape

a = A (2
-

e) / (1
-

e), b =
wherein

represents the density of the completely dissociated gas
under the pressure of 1 atmosphere, and therefore the

known magnitude which chemists call the theoretical or

normal density of the gas. We have now to take into

account the circumstance that we must retain for its

specification the unit of density assumed by Warburg
and Von Babo, so that we must not take for carbonic acid

the usual value 1*5198 as referred to air, but its value as

1 30.
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calculated with the density of water for nnit, for which we
obtain at the temperature of freezing-point

A = 1-5198/ 773-3 = 0-0019653

and at the temperature $

A = 0-0019653/(l + 0,3),

where a = 0-00367 is the coefficient of expansion.
If we put this value of A in the formula for a, we obtain

from the given values of a, first the corresponding values of

and thence those of the ratio which the two coefficients of

viscosity bear to each other :

3- = 32-6 s = 0-8482
17, /i?2

= 0-634

35 8550 637

40-3 8236 621

If we now employ the formula for b in the same way
we find also the absolute values of the two coefficients of

viscosity, firstly that of TJ I
for the gas when perfectly

dissociated into the simple molecules C0
2 ,
and then that of

rj2
for the gas when containing only the double molecules

C
2
H

4 , thus,

3 = 32-6 7
7l
= 0-000142 rj2

= 0-000224

35 148 232

40-3 151 244

These numbers refer to the temperatures placed opposite
them. I have therefore reduced them to C. by assuming
for C0 2 the temperature-factor

1 + a&,

which holds approximately ( 85) for ordinary carbonic acid,

and, on the contrary, for C
2 4

the temperature-function

which holds for vapours (87). I have thus obtained for

the temperature C. the following values :

Vl
= 0-000127

77,
= 0-000189

131 194

132 198

which exhibit a fairly satisfactory agreement.
E
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A comparison of these values with those obtained for the

viscosity of carbonic acid under ordinary pressures is ob-

viously the next thing. As was mentioned before, in 79,

Graham's experiments on carbonic acid at gave

77
= 0-000145 ; Puluj found the nearly equal value ij

=
0-000143, while von Obermayer and Schumann agree
in finding the rather smaller value ??

= 0-000138
; [and the

mean of all these is

rj
=

0-000141].

Since this is only slightly greater than the mean value

17!
= 0-000130

now found for perfectly dissociated carbonic acid, the

assumption that carbonic acid under ordinary circumstances

consists almost entirely of simple molecules C0
2 , seems to

be justified.

Nearly the same results are deducible also from the

formulae which contain constant values of A and B, if we
make an assumption regarding the variation of the density
with the pressure such as after our former explanations
cannot be taken as entirely improbable. I assume that the

density of gaseous carbonic acid obeys Boyle's law up to

the critical pressure, which is 77 atmospheres according to

Andrews 1
; from this limit onward, however, I assume the

density not to be variable with the pressure. In reality

there will certainly be a continuous change from the one

state to the other, but I think that we may take this

assumption to be allowable as an approximation to the true

behaviour.

I therefore put for the density of the intensely com-

pressed gas which has become independent of the pressure
the value

D = 77 x 0-0019653/(1 + aS) = 0-15133/(1 + aty,

wherein $ is the temperature and a the coefficient of expan-
sion 0-00367. On putting this value in the formula

A =

1 Phil Trans. 1876, clxvi. p. 421.
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where A has the value
A = 1-203,

which was found to be the same in all the series of observa-

tions, we find for the four temperatures of the observations

25-1, 32-6, 35, 40-3 the nearly agreeing values 0-870,

0-876, 0-875, 0-877, respectively for s, the mean of which is

sfffa/tf*- 0-874

from which further follows

^/^ = 0-6465,

so that the ratio in this case only slightly exceeds that re-

sulting from the other calculation [viz. 0-631 in the mean].
We further obtain the following values of rj l

from the

values given before for B :

3 = 25-1 32-6 35 40-3

B = 378 398 409 404

lOfy = 131-9 139-4 143-4 142-3
;

and on reducing these to C. by division by 1 + a$, we get

for 10% the values 121, 124, 127, 124 respectively. These

give values of TJ l
that are somewhat smaller than the former

mean value 0*000130, but they do not vary very much from

their mean value

r
1l
= 0-000124.

From this follows for the coefficient of viscosity of the gas
at when all its molecules are double, or C2 4 ,

the value

772
= 0-000192

which agrees perfectly with the mean ( 0-000194 ) of the

numbers found for it from the other formula.

After this multiplied confirmation of our formulae we can

scarcely still doubt that the theory of viscosity in partially

dissociated gases which we have developed corresponds to

the reality in all essential points. The deviations which

occur between calculation and observation will doubtless be

completely explained and made to disappear when the

calculation is made with more exactness and generality.

A first improvement that is desirable has already been
R 2
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named
;

it consists in the introduction of a law of dependence
of the density on the pressure, which embraces both the

liquid and the gaseous states of the substance. A second

possibility of improving the theory lies in the consideration

that, in addition to single molecules C0
2 and double ones

C
2 4

in the gas, there may also be present triple molecules

C
3 6 , quadruple ones C

4
O

8 ,
&c.

The want of the necessary leisure alone prevents me
from carrying out these calculations.

92. Transition into the Critical State

In the combination of the simple molecules of a gas or

vapour to form larger masses we must doubtless see an

approximation to the liquid state in which all particles

are joined together into one cohering mass. If, now, the

viscosity increases when the density rises by aggregation of

the molecules, as in the theories and observations we have

before discussed, we shall have to conclude that the viscosity

of a vapour attains its greatest value when the vapour has

attained the saturated state.

But an experiment of Lothar Meyer's,
1 on the vis-

cosity of the vapour of benzol, seems to contradict this. He
allowed saturated benzol vapour to pass through a capillary

tube into a space where the pressure was less
; the vapour was

here condensed by cooling, and the mass of vapour which

had traversed the capillary tube in a given time was deter-

mined by weighing the liquid. From this weight the

coefficient of viscosity of the vapour was calculated by
Poiseuille's law. Calculation gave the value of this co-

efficient (which is constant for gases) to be the smaller the

higher the back pressure at the exit of the capillary tube.

We may therefore also say that the friction seemed to be

the smaller the larger the mean pressure was in the tube
;

but this is the exact opposite of the theoretical conclusion,

that the viscosity of a vapour is the more considerable the

nearer the vapour is to the saturated state.

Lothar Meyer has explained this apparent contradic-

1 Wied. Ann. 1879, vii. p. 531.
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tion in an easy way, by recalling attention to the fact that

the saturated vapour which enters the tube cannot, with a

high back-pressure, expand so much as still to follow with

sufficient exactness the gaseous laws, while, with smaller

back-pressure, it is brought by expansion still more nearly
into the state of a perfect gas. Schumann, 1 who had

taken part in carrying out these observations, followed up
this explanation still further by saying outright that the

originally saturated vapour must, during its expansion, form

drops of liquid which it carries on with it, and that thence

it follows that the mass transpired comes out as too great,

and consequently the coefficient of viscosity as too small.

To make this explanation of the process perfectly clear

and convincing we have only to remember that a saturated

vapour which expands must cool thereby, and consequently

partially condense into a liquid. The capillary tube used

inLothar Meyer's experiments was, of course, contained

in a tube surrounded by the vapour of benzol of the same

pressure and temperature, so ithat it seemed to be ensured

against cooling. But if we consider that the thick wall of a

fine capillary tube offers a considerable obstruction to the

passage of heat, it in no way seems improbable that a slight

lowering of the temperature might have occurred within

the capillary tube, and that, therefore, a slight amount of

vapour might have been condensed. This mass of vapour

precipitated in the form of drops will then settle on the walls

of the tube, and spread over them as a thin liquid layer.

That the transpired mass becomes greater by means of

this disturbance of the experiment follows at once from the

fact that the density of the liquid is very much greater than

that of the vapour. But we might raise the objection that

the friction which the liquid experiences as it flows along the

bottom of the tube is also much greater than that which

the vapour undergoes. This objection is, however, answered

by the fact that the coefficient of friction of a substance is

not by any means so greatly altered by the passage from

the vapour into the liquid state as its density is. Thus, for

instance, the coefficient of friction of water in the liquid
1 Wied. Ann. 1884, xxiii. p. 393.
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state at mean temperatures is only about 120 times greater
than that of water-vapour, while the density of the liquid

water is about 1,000 times greater than that of water-vapour
under atmospheric pressure. From this example we easily

understand how a wet vapour seems to have a smaller

viscosity than a dry saturated vapour.
This behaviour substantially occurs also in the case of

mercury vapour, the viscosity of which has been determined

by Synesius Koch. Since the mercury vapour entered

into the capillary tube in a saturated state in Koch's

experiments, we must assume that, in these measures too,

some of the vapour condensed in the tube into little drops,
and that, consequently, the transpired masses came out too

large, and, therefore, the values of the viscosity too small l
;

and, indeed, they will have come out the smaller the nearer

the vapour was to condensing, and, therefore, the lower its

temperature. Hence the consequence would be that the

observations would give a greater variation of the viscosity

with temperature than the theory could explain. The same

might, in like manner, occur with many others of the

vapours mentioned in 87.

1

Compare also 108.



CHAPTEE VIII

DIFFUSION OF GASES

93. Observations

BY diffusion we understand the slow mixing of two

liquids or gases which were previously separated. Such

mixing may be effected by processes of different kinds which,

though closely connected, are yet so materially different

from each other that it is well to give them different names.

In this the terminology of Graham is satisfactory.

When the two substances are separated by a solid wall

which contains one or more narrow openings, the mixing
is caused by effusion, the laws of which have already been

discussed in Chapter III. 37. This mode of mixing must
be distinguished from that which takes place through the

pores of a natural or artificial membrane, a porous pot or

the like, which for liquids is called osmose, and for gases

transpiration ; the slowness with which this transpiration is

carried on is a consequence of the internal friction of the

gas, dealt with in Chapter VII., which is active within the

narrow channels of the porous partition. A process which

essentially differs from the last is that which occurs when
the substance of the partition is capable of absorbing
either one or both of the gases, so that it takes the gas
in at one side and gives it out at the other; this process
can also be explained by the kinetic hypothesis, but as it is

conditioned, not only by the state of motion of the gaseous

substance, but also by the movements of the molecules of the

liquid or solid partition, we cannot treat of it here. What
we have here to describe, viz. diffusion in the narrower

sense of the word, is the mixing together of two liquids
or gases which directly touch each other without being



248 PHENOMENA DEPENDENT ON MOLECULAR PATHS 93

hindered by a partition. The explanation of the extreme

slowness of this free diffusion between gases is now the

special problem before us. 1

Passing over the older observations of Dal ton,
2

Berthollet,3 Graham,4 and others, I choose, as instances,

the experiments carried out by Loschmidt 5 on the

diffusion of gases.

A glass tube, 975 mm. long and of 26 mm. diameter,

which can be closed at both ends by flat glass plates and

glass stopcocks, was cut into two parts of equal lengths,

which could at will be shut off from each other or put into

connection by means of a slider made of a thin sheet of steel

in which was a hole as large as the inner section of the

tube. After the two halves had been filled with different

gases under the same pressure, the slider was opened so that

the gases began to mix, and after the lapse of a measured

time from half an hour to an hour the slider was again

closed, and the gas in each half of the tube was then

analysed in order to determine the degree to which the

mixing had progressed during the time of the experiment,
and from this to discover the speed of diffusion.

A theory developed by Stefan 6 was employed for the

reduction of these experiments. This starts with the

assumption, made also by Maxwell 7 and Boltzmann, 8

1 We must not conclude that, because Thos. Graham so judiciously distin-

guished these differing phenomena by different names, he was the first to employ
these names. The term diffusion was used by Da It on

('
On the Tendency of

Elastic Fluids to Diffuse through Each Other,' Mem. Manch. Soc. 1805, new

series, i. p. 244) and Priestley (Trans. Amer. Phil. Soc. 1802, v. p. 15
; 'Ex-

periments and Observations relating to Various Branches of Natural Philo-

sophy,' Birmingham 1781, iii. sect. 27, 3, p. 390.
2 In different places ; Gilb. Ann. 1807, xxvii. p. 388.
3 M&m. d'Arcueil, 1809, ii. p. 463.
4
Quarterly Journ. of Sc. Lit. and Art, 1829, p. 74 ; Pogg. Ann. 1829, xvii.

p. 37,5.
5 '

Experimentaluntersuchungen uber die Diffusion von Gasen ohne porose

Scheidewande,' Wien. Sitzungsber. Abth. 2, 1870, Ixi. p. 367 ; Ixii. p. 468
; con-

tinued by Wretschko, Ixii. p. 575 ; and by Benigar, Ixii. p. 687.
6 Wiener Sitzungsber. Abth. 2, 1871, Ixiii. p. 63

; 1872, Ixv. p. 323.
7 Phil. Mag. [4] 1860, xx. p. 21

; 1868, xxxv. p. 199. Scientific Papers, i.

p. 392 ;
ii. p. 57.

8 ' Weitere Studien u.s.w.' Wien. Sitzungsber. Abth. 2, 1872, Ixvi. p. 324 ;

1878, Ixxviii. p. 733 ; 1882, Ixxxvi. p. 63
; 1883, Ixxxviii. p. 835.
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of the idea of a resistance to diffusion which each gas

experiences from the particles of the other gas which meet

it. This resistance is taken to be proportional to the

densities of both gases and to the difference of their

speeds of diffusion. The working out of this idea leads

to formulae which have a great likeness to the equations

which come into Fourier's theory of the conduction of

heat.

This similarity is not only in respect of the mathe-

matical form, but is founded on the nature of the matter.

Just as heat spreads in a conducting body, so in diffusion a

gas spreads from one region to another. The speed with

which heat is transmitted is determined for each substance

by a constant which is termed the conductivity ;
in like

manner the speed with which one gas penetrates into

another is determined by a magnitude which we might
call the diffusivity, but which is more usually termed the

coefficient, or constant, of diffusion.

The meaning of these two constants is quite analogous.

We obtain the strength of the flow of heat by multiplying

by the conductivity the difference of the temperatures at two

places, which are distant from each other by unit length along
the line of flow, i.e. the so-called rate of fall of temperature.

We likewise obtain the intensity of the flow of diffusion if

we multiply by the coefficient of diffusion the difference of

the density of the diffusing gas at two places whose distance

apart is equal to unit length. But we can express the

meaning of this coefficient also in a somewhat different way
by replacing the density by the pressure which, by Boyle's
law, is proportional to it. We may then say that the

amount of partial pressure of one of the gases transmitted

by the diffusion is given by the difference in the values of

this partial pressure at two places which are separated by
unit length (or, as we may say more shortly, by the Tate of

fall of the partial pressure), multiplied by the coefficient of

diffusion.

From this determination of the flow of diffusion it is easy

to see that the coefficient, which holds for the diffusion of

one gas into any other, must be equal to that upon which the



250 PHENOMENA DEPENDENT ON MOLECULAR PATHS 93

diffusion of the second gas into the first depends. For

since no inequality in the total pressure is brought about

by diffusion in an experiment wherein the initial pressures of

the two diffusing gases are equal to each other, the strengths

of the two flows which occur in opposite directions, but

otherwise under the same circumstances, must be equal,

and, therefore, also the two coefficients must be equal.

Loschmidt's observations showed that the value of

this coefficient is inversely proportional to the total pressure
of the gases, so that, as is almost obvious, the mixing occurs

the more rapidly the more rarefied the gases. Loschmidt
found further that the coefficient alters with the temperature
in accordance with the law, that it increases nearly propor-

tionally to the square of the absolute temperature. Finally
it appeared that a regular relation must exist with the mole-

cular weights, which, however, did not succeed in disclosing

itself with full clearness.

We have to develop the value of this coefficient from

the conceptions of the kinetic theory.

94. General Theory of Diffusion

The slowness with which two diffusing gases mix

together is to be explained on the kinetic hypothesis in a way
which is so fully analogous to the conceptions underlying
the theory of friction that we may speak of diffusion as a

kind of reverse friction of the two gases on each other.

The cause of the phenomenon, that the forward flow of

one layer is transmitted only very slowly by friction to a

distant layer, lies only in the shortness of the molecular

path. With all their swiftness of motion, the molecules

transmit a part of their own momentum only to those

particles that are quite close to them and with which they
collide after traversing a very short path. A transference of

momentum to a greater distance takes place, therefore, only

by the interaction of very many particles in their to-and-fro

motions
;

it is, consequently, carried on by no means in a

straight direction, and experiences, therefore, a considerable

retardation, which appears to us as a consequence of friction.
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The proof that the shortness of the molecular paths
must cause an equal slowness in the mixing or diffusion of

two gases may be deduced in an exactly corresponding way.
This is just the point on which Clausius 1 laid special

stress in his celebrated memoir on the free paths of mole-

cules. Into a space already filled with one gas the mole-

cules of a second gas penetrate only slowly, because by their

frequent collisions with the molecules of the first gas they
are driven hither and thither, so that it is impossible for

them, even with their enormous speed, to penetrate into the

interior of the other mass in straight lines.

The velocity of diffusion therefore depends not only on
the speeds with which the molecules of the diffusing gases

move, but also no less on the length of the free path which
a molecule of one sort traverses among molecules of the

other sort. It is thus conditioned by the same elements as

the friction of gases, viz. molecular speed and free path.
A closer examination of the way in which these two

elements are connected together leads to a knowledge of the

value of the coefficient of diffusion and teaches us to see its

meaning and its relations to other magnitudes.

95. Theoretical Value of the Coefficient of

Viscosity

At each moment during the interval occupied by an

experiment the diffusing gases may be in such a state of

motion that the equilibrium of the total pressure exerted by
the mixture is nowhere disturbed

; there is then at every

point the same pressure p, and this is the sum of the partial

pressures p 1
and p2 which each of the two gases would exert

by itself, or

P = Pi + Pr

Similarly, by Avogadro's law, there is the same number
of molecules in each unit volume, which we will repre-
sent by

1

Pogg. Ann. 1858, cv. p. 239 ; Abhandlungen, Abth. 2, 1867, p. 260
; Phil

Mag. 1858 [4] xvii. p. 81.
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where N
l
and N2

are put for the number of molecules of the

first and second sort in the unit volume.

But the mixture is not homogeneous ; the nearer to one

end of the tube, the more in excess are the molecules of one

kind, just as those of the other kind are at the opposite end.

The pressure and density of one gas diminish along the

tube in one direction, while those of the other gas increase

in the same direction in equal measure. If the experiment
has already lasted some time, the diminution of pressure all

along the tube will have become uniform, so that we can

represent the pressure and the number of particles of the

one gas at the distance x from the junction of the diffusion-

tubes by formulae of the form

p l
= $) + $x , Nl

= 31 + nx,

while the same magnitudes for the other gas are

P*='P ty $x , N2
= N 91 nx.

Here the magnitude p which determines the increase and

decrease of the partial pressures is the same for our problem
as what is called in hydraulics the slope of pressure, or the

diminution of pressure in unit length along a line of flow.

The analogous magnitude n determines the decrease or

increase of density along the same length ;
it will result, in

agreement with the views mentioned in 93, that the

strength of the diffusion-flow is proportional to it.

If such a uniform distribution of pressure and density
has not yet been established along the whole tube, the

foregoing simple formulae can still be employed without

error, if we use them for only a very short portion of the

tube, and therefore, for instance, if by x we understand a

length which is shorter than a molecular free path, as in the

following calculation.

We have to determine how many particles of each kind

cross any section of the tube in a given time in consequence
of the inequality of the pressure and density that has been

described, or, more correctly, how many more cross in

one direction than in the other. If the distribution were

uniform, the number of particles which in unit time meet
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unit area of a section from one side and pass through it,

would by 82 be

i-ZVA and i-tfaflj,

for the two sorts of molecules, whose mean speeds are fl
l
and

O
2 respectively.

In consequence of the unequal distribution there come

fewer particles of the first kind from the side of the smaller

x and more in the opposite direction, while for the other

gas the reverse holds good. The particles of both groups
start from layers which are distant from the section with

abscissa x by magnitudes that are less than the possible

values of the free path, or are at most equal to them. The

average distance of these starting layers from the section

considered will be less than the mean free path, since "a

larger part of the particles not only reach this section but

pass through it.

If we denote by A x
the value of this mean distance of

the layers from which the particles of the first gas that

cross the section come and this value we shall determine

later those which cross in the positive direction start from

layers which, on an average, are distant by x \ from the

origin of the tube ; the density in these layers is not deter-

mined by Nl
but only by

91 + n(x - AJ =
JVj

- wA,

particles in unit volume. From this side, therefore, there

are only

particles of the first kind which in unit time meet unit area

of the section ; there similarly cross this unit area in the

same time from the opposite side the number

of the same kind, which start, on the average, from the

distance x + A
t
from the origin of the tube. There is con-

sequently an excess of

particles of the first kind which in unit time cross unit area
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in the negative direction i.e. towards the origin of the tube

more than in the opposite direction.

There are, similarly, more particles of the second kind

which cross the same surface in the same time, but in the

positive direction from the beginning of the tube, than in

the opposite direction, and the number representing this

excess is

where A2
has a meaning corresponding to that of Ar

Through this double flow the number of particles on

the side of the section towards the origin increases by

- A0),

and thus an inequality of pressure arises which at once

disappears again by causing

particles of the mixture, and thus

N and

particles of the two kinds respectively to cross the section

towards the end of the tube. 1

The number of particles, therefore, of the first kind

which finally diffuse in unit time over unit area towards the

origin of the tube is

The oppositely directed diffusion of the second gas has the

same strength, for it is

From this number of the particles which cross unit area

in unit time we obtain the change of the partial pressure of

each of the two gases which is due to them directly expressed

by the formula

+
1 Gross contests, wrongly, as I think, the correctness of this conclusion.

Wied. Ann. 1890, xl. p. 424.
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since the pressure is always directly proportional to the

number of particles which give rise to it, and therefore the

excess of pressure p# is proportional to the surplus number of

particles nx, or p to n.

Our theory is now so far developed that the strength
of the diffusion-current has been expressed in terms of the

numbers n and p, which give the measure of the inequality
of the distribution. We thereby find an analogy, already
hinted at, with the flow of heat that is caused by in-

equality in the distribution of temperature, which is so far

confirmed as touches the proportionality in both cases of

the flow to the surplus that is present. We therefore define

as the coefficient of diffusion the factor of proportionality

We have still in this formula to determine more closely

the two distances denoted by A. We have already said that

they are smaller than the mean free paths of the molecules.

The determination of the numerical ratio in which they are

less than the free paths is of secondary importance. We
easily see without calculation that A must for every gas be

about half as large as the mean free path of its molecules ;

for the path on which a particle crosses the plane considered

will lie, on an average, half on the one side of the plane
and half on the other. But since the more rapidly moving

particles attain a greater free path than the slower ones, the

more rapid particles will exert a greater influence on the

value of the product AH ; by an accurate calculation, there-

fore, we may expect to find a rather larger value for the ratio

of A to the mean free path. As a matter of fact, we find

by a calculation founded on Maxwell's law of distribution

of speeds, and given in 52* of the Mathematical Appendices,
that the ratio of A to the free path is equal to 77-. The
formula for the coefficient of diffusion therefore becomes

D = ^(JV^A + N&QJIN,

if we denote by ^ and 2
the free paths of the two kinds

of molecules in the mixture, and in this form it exhibits a

striking likeness to the value of a coefficient of viscosity.
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There exists, however, an important difference between

the two formulae for the coefficients of viscosity and diffusion,

which lies in the different significations of the molecular

free paths. While in our discussions on viscosity we had

to deal with only those paths which a molecule passes over

in a crowd of molecules of the same kind, the question in

the theory of diffusion concerns the lengths of the paths of a

particle which moves among other particles not only of its

own kind but also of another kind, and which collides with

particles of both kinds. To calculate these free paths,

therefore, we have to find the number of collisions of both

kinds in unit of time.

Since we have already learnt how to determine the

number of collisions of a particle by others of its own kind,

it is now only necessary to calculate how often a particle

collides with the particles which are present of another

kind. We attain thereby at once the possibility of cal-

culating the mean length of the paths which a single

particle can traverse in a crowd of gaseous molecules of

another kind.

96. Free Path, of a Gaseous Molecule in a Gas of
Different Kind

This calculation may be carried out in exactly the same
manner as it is in Chapter VI. for the value of the free path
of a molecule of a simple gas ;

and the calculation is so

fully analogous to that simpler one that a complete repeti-

tion of it seems unnecessary ;
it will be sufficient to bring

forward the distinguishing points of importance which have

reference to the molecular sphere of action and the molecular

speed.
The probability of a collision, or the frequency of the colli-

sions, is proportional to the section of the sphere of action or

to the area of the circle whose radius is equal to the distance

between the centres of the two colliding molecules at the

first moment of the encounter. This radius and this area

must have different values for every different kind of gas,

since the free path differs for different gases, as we have
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learnt from the observations on viscosity. We shall there-

fore not be justified, when considering the encounters

between particles of different kinds, in taking the value of

the radius that is proper to either the one or the other kind

of gas, but we must introduce a third value of this radius,

which we shall denote by the letter <r, to distinguish it from

the symbol $ which we have before employed for a homo-

geneous gas. In the formula for the collision-frequency and

for the free path we have therefore to replace the section Try*

by 7TCT
2

.

According to a suggestion made by Stefan,
1 which

seems to be confirmed by experiment, the magnitude a-

stands in a simple relation to the two magnitudes s
l
and $2 ,

the values that hold for the two simple gases ; this relation

being probably
<* = i(*i + %)

The meaning of this equation is directly intelligible if we
do not look upon the molecules as massive points, but

ascribe to them the property of extension in space, and take

^s l
and ^ as the mean radii of the two kinds of' molecules.

The interpretation of the formula is, however, not bound up
with this material conception, but it admits of a dynamical

explanation ;
we may consider the molecules to be centres

of force surrounded by spheres of force of radius J$, if we
ascribe to the spheres of force the property of not suffering
the one to penetrate into the other. 2

The free path of a molecule of one gas in another gas will,

in the second place, depend on the speeds of both kinds of

molecules. To determine the character of this dependence,
let us first for simplicity consider a gaseous medium whose
molecules do not move to and fro in all possible directions

of space, but only in directions which are perpendicular to

those of the entering particle. These to-and-fro motions

make the probability of a collision greater than it would be

if the particle moved into a medium at rest
; for a particle

moving hither and thither will require a greater space for

1 Wien. Sitzungsber. 1872, Ixv. Abth. 2, p. 323.
-
Compare 44, 63, 113.
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itself during the time in which the molecule wanders past

it, and therefore comes more easily into the condition of

colliding with it. The probability is increased in the same

measure as the relative velocity of the two moving particles

with respect to each other is greater than that of the

particle moving alone. In the case supposed the magnitude
of the relative velocity is easily obtained

;
the absolute

velocities of the twTo particles (since they are perpendicular
to each other) form the shortest pair of sides of a right-

angled triangle, the hypotenuse of which represents the

relative velocity of each with respect to the other. If these

absolute velocities are represented by l
}
and O

2
as hitherto,

the magnitude of the relative velocity is

+ a,2
).

This consideration may be directly extended to the more

general case such as really occurs. If the molecules do not

move only at right angles to the particles coming in among
them, but hither and thither in all possible directions, the

probability of a collision is increased by this motion in

exactly the same measure as by that to-and-fro motion

which we have hitherto assumed. We have, therefore, in

this case too, nothing further to alter than to substitute the

.above expression for the relative velocity instead of the

absolute velocity of 'the particles which throng into the

medium at rest.

This consideration, which Maxwell 1 seems to have

employed several times, puts us now in a position to find

an expression for the free path not only for a homogeneous

gas, but also for the case before us of a molecule of one gas

moving in a different gas.

The probable number of collisions experienced by a

particle in unit time is equal to the mean number of the

other particles which come within the range of its sphere
of action during this time as it moves along. The path of

the particle in unit time is measured by its velocity, for

which, in the case in which all the particles are in motion,

we must substitute the expression for the relative velocity

1 Phil. Mag. [4] xix. p. 28
; Scientific Papers, i. p. 387.
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just given. While the particle traverses this path its sphere

of action moves over a cylindrical path of equal length, the

section of which is equal to that of the sphere of action,

viz. TTcr
2
. In this volume, whose magnitude is

there are

molecules of the second kind, if N
2
denotes the number

of these molecules in unit volume; and the number of

the collisions that ensue is just the same. If we divide the

whole path fl, passed over in unit time by the molecule by
this number of collisions, we obtain the mean free path of a

particle of the first kind amid a crowd of particles of the

second kind for which we are looking, viz.

In the same way the free path of a molecule of the second

kind in a medium consisting of molecules of the first kind is

B' 2
= iytf^VW + IV)..

In the particular case of the molecules being all of one

kind, these expressions turn into the value of the free path

already given in 68 on Maxwell's theory, viz.

L =

for this assumption gives

This comparison of the general formula with the special

one already known shows the mechanical meaning of the

numerical factor \/2, which was not explained before.

97. Molecular Free Path in a Gaseous Mixture

By the help of these formulae it is now easy to write

down the value of the mean free path for the case first

mentioned in 96, where a molecule moves in a mixture of

molecules, some of which are of the same and some of a

different kind.

s 2
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If there are N
l particles of the first kind and N

2 particles

of the second in unit volume, we see at once from the

formulae we have established that the whole number of

collisions which a particle of the first gas undergoes in unit

time is given by the sum

r,
= Ti-^WAv^ +

while
r

2
= ,r*awa

n
2V2 +

represents the whole number of collisions which a molecule

of the second gas experiences in unit time in the mixture.

Hence for the mean free path of a particle of the first

kind we obtain the value

and similarly for a particle of the second gas,

Both values are dependent on the numbers N
l
and N2 ,

and are therefore variable with the ratio of the amounts of

the two gaseous components in the mixture.

98. Coefficient of Diffusion

If we insert these values of the two free paths fci and 2

in the formula of 95, viz.

D = X^&A + N&nj/N,

we obtain the value of the coefficient of diffusion _D, of

which we said in the introductory explanations of 93 that

it possesses the same meaning for the process of diffusion

as the conductivity does for the propagation of heat. If this

analogy were allowed to4 be perfect we should expect that,

just as the conductivity is a constant magnitude, so too is

the coefficient of diffusion, which will always keep the same

value in all experiments made with the same pair of gases.

But this expectation is not justified by our formula. 1

1 See also Tait, Trans. Boy. Soc. Edin. 1887, xxxiii. p. 266; Phil Mag.
[5] xxiii. p. 141.
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For by substitution we obtain for the value of the coefficient

of diffusion

D = Jr + N
wherein the magnitudes F have the meanings

4-

given before. This value is by no means constant ;
for it

depends not only on the temperature by reason of Oj and O
2

and on the pressure of the mixture by reason of N, but

it varies also with N
l
and N

2 ,
and thus with the ratio in

which the two gases have already mixed with each other.

The dependence of the coefficient of diffusion on the

temperature and pressure of the gaseous mixture can raise

no doubt. The coefficient, however, is to be looked on as a

constant in this respect, that it has the same value every-
where throughout the space filled by the gas in an experiment
on diffusion, provided that the temperature is kept constant ;

for the pressure equalises itself everywhere if the diffusion

proceeds without a separating partition.

It is also in agreement with experiment if the coefficient

of diffusion varies in value with the temperature and total

pressure of the gaseous mixture. Loschmidt observed

that the value of the coefficient was found to be the greater
the higher the temperature in the experiment ;

and this is

shown by the formula too. From the formula also it follows

that the value of the coefficient of diffusion alters with the

total pressure of the mixture in such wise that D is inversely

proportional to this pressure, because the number N of the

molecules contained in unit volume varies directly as the pres-

sure. This too is in perfect agreement with Loschmidt's
observations.

But our theoretical formula exhibits still another varia-

tion of the coefficient of diffusion, which we should not

a priori expect. The value of D is dependent also on the

values of N
l
and N2 ,

and these numbers, which express how

many molecules of the one or other kind there are in unit

volume of the mixture, alter on their side with x, as in 95,

and therefore with the position in the tube. The coefficient
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D therefore assumes a different value at every different place
in the mixture that is being formed by the diffusion ; its

values consequently alter with the rate of fall of pressure of

each of the two gases, so that for the same reason the

coefficient is variable with the time during the whole period
of the experiment. So the observed values of the coefficient

D will not be able to exhibit any perfect agreement together
if the observations are made for unequal values of the ratio

of mixture N
{

: JV2 .

The theoretical calculation of an experiment on diffu-

sion therefore becomes very complicated, and so excessively

laborious that we easily comprehend why the foregoing

formulae, which were deduced in the first edition of this

book, have scarcely at all been used up to now. People
have for the most part preferred to employ less exact but

more convenient formulae, which give a constant value for

the coefficient of diffusion.

99. Another Theory of Diffusion

The theory leads to a constant value of the coefficient

of diffusion if a somewhat different fundamental assumption
is made as to the cause of the slowness with which the

mixture of the two gases proceeds. There can be no doubt

but that this cause must be sought in the mutual encounters

of the particles, which prevent a forward path in a straight

line. But the question may be raised whether the two kinds

of molecules take part in these processes in the same way
and in equal measure.

It does not seem improbable to assert that the encounters

between molecules of the same kind have little influence on

the velocity of the current with which each of the two gases
flows against the other

;
that just as often as a molecule

loses velocity by an encounter with another of the same

kind, it happens that it gains velocity in the direction of the

flow. Quite otherwise, on the contrary, is the case with

encounters between particles of different kinds. Since both

gases are streaming in different directions, the final result

of the encounters between particles of different kinds must



99 DIFFUSION OF GASES 263

be a retardation of the velocities of flow. Hence the cause

of the remarkable slowness of the current of diffusion would

have to be sought not so much in the obstruction exerted on

each other in their flight by particles of the same kind as in

the resistance offered by the oppositely moving particles of

the other kind met with. It matters, therefore, the less

whether, and how often, particles of the same kind encounter

each other
;

it is rather the collisions between molecules of

different kinds that have special weight in the determination

of the phenomena of diffusion.

These views essentially agree with those which Maxwell l

and Stefan 2 have placed at the basis of their theories of

diffusion, as they assumed a resistance to diffusion which

arises from the encounters of the particles of the one gas
with the molecules of the other that meet them, while the

collisions between particles of the same kind are to remain

without influence on the phenomena.
If we adopt this assumption, then, the magnitudes %

introduced into the formula for the coefficient of diffusion

would not really represent the actual free paths of the mole-

cules in the mixture of the two gases ; but
fij

would be the

mean value of the path which a particle of the first kind

would traverse if it moved solely among particles of the

second kind, and likewise
2
would be the free path of a

particle of the second kind in a medium composed of particles
of the first kind only. Hence in the expression for D the

values of
'

x
and 2/ 2

deduced in 96 must be substituted for

fcj
and fca .

In this way we should obtain for the coefficient of

diffusion the value

from which N
{
and N2

have disappeared. It has therefore

become independent of the ratio of mixture of the two

gases, and is. therefore to be looked on as constant
;
for it

has one and the same value at all points of the tube and at

all times during the progress of the experiment. It depends

1 Phil Mag. 1868 [4] xxxv. p. 199 ; Scientific Papers, ii. p. 57.
2 Wien. Sitzungsber. 1872, Ixv. Abth. 2, p. 323.
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only on the nature of the two diffusing gases, and on the

temperature and pressure at which they are
;

its value also

increases as the temperature rises, and it varies inversely as

the pressure, just as in the theory first developed and in the

observations that Loschmidt has made.

But this agreement with experiment does not prove the

accuracy of the simplified theory. It is still open to the

objection that the resistance offered by the other kind of gas

is not the only one experienced by a molecule ;
molecules of

the same kind also obstruct a particle in its forward motion,

since they, too, can get in its way just like those of the

other kind. This resistance of the same medium, and the

consequently ensuing shortening of the molecular free path,

cannot be left out of account.

The assumption that the current of diffusion of a gas
should be resisted only by molecules of the other kind which

are moving in the opposite direction rests on a fallacy only.

For the velocity of the current is much too little for there

to be found in it a sufficient cause why the particles should

collide so much oftener or more forcibly with the particles

of different kind which meet them than with particles of

their own kind, that the influence of the latter should appear

vanishingly small.

10O. Observations in Test of the Theories

Led by these considerations, I spoke out, in the first

edition of this book, which appeared in 1877, for the view

that the coefficient of diffusion is not constant, but is

variable with the ratio of mixture of the gases. But I

could not prove the correctness of this assumption, because

no decisive experiments had then been made. I could

adduce in favour of my conjecture only one observation

of Graham's, 1 to which Maxwell 2 had drawn attention;

for Maxwell's calculation gave smaller values of the co-

efficient when the experiment lasted long, and larger values

when the period of diffusion was shorter.

1 Brandos Journal, 1829, pt. 2, p. 74.
2 Phil Mag. 1868 [4] xxxv. p. 202

; Scientific Papers, ii. p. 61.
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Since this time observations have been made to decide

this question, first by Waltz 1 and von Obermayer 2

simultaneously, and somewhat later by Winkelmann. 3

All three observers found that the assumption of a constant

value of the coefficient of diffusion of two gases was not

sufficient if the experiments were made under varying cir-

cumstances.

Waitz, who did not, like his predecessors, chemically

analyse the gaseous mixture that resulted at the end of an

experiment, but determined its composition by measuring its

refractivity during the course of the experiment, was able to

determine the value of the coefficient at different places of

the diffusion-apparatus at which the mixtures were not alike.

He thus obtained, as the means of a number of experiments
for three different heights in his apparatus, the values,

referred to the centimetre and second,

0-151, 0-154, 0-158,

for the coefficient of diffusion of carbonic acid into air at

19 C. and under the pressure 751 '6 mm. These figures

show an increase of the coefficient which is certainly not

great, but is still marked, and this increase of the coefficient

corresponds to an increase of the amount of carbonic acid

in the mixture, which agrees with the theoretical formula.

Similar results were obtained by the other observers named,
von Obermayer and Winkelmann ;

their observations,

too, confirmed indubitably the fact that the constant of

diffusion varies with the ratio of the mixture of the gases.

But when Waitz tried to go into details and to show
whether the observed variations of the coefficient conformed

numerically to the theoretical formula, a considerable devia-

tion seemed to appear. But it does not at all follow from

this that the formula is incorrect ;
for an objection that is

mathematically justified may be raised against the mode of

calculation employed by Waitz. With regard to this,

1 Wied. Ann, 1882, xvii. p. 201 ; Inaug. Diss. Berl. 1882.
2 Wien. Sitzungsber. Abth. 2, 1882, Ixxxv. pp. 147, 748 ;

Ixxxvii. p. 188.
3 Wied. Ann. 1884, xxii. pp. 1, 152

;
xxiii. p. 203 ; 1885, xxvi. p. 105

; 1886,

xxvii. p. 479.
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Hausmaniger 1 has remarked that the formulae employed

by Wait z are founded on the assumption of the constancy
of the coefficient of diffusion, and therefore do not apply
to the case when it is variable. For the same reason, the

conclusions which Winkelmann has drawn from his

observations can be maintained only so far as it is shown

by them, too, that the coefficient of diffusion, as my theory
had predicted, is variable with the ratio of mixture, and

therefore also with its rate of fall.

Hausmaniger has therefore taken the trouble to re-

calculate Waitz's observations by formulae in which the

coefficient of diffusion is taken as variable. But this

attempt, too, has unfortunately been unable to obtain

agreement between theory and observation
;
for the mea-

surement of the variability of the coefficient, since it is

small, will be made too uncertain by the errors of observation

for the law of variation to be established with sufficient

exactness.

A comparison of the numbers found by the different

observers shows that the uncertainty of the observations is

really as large as we say. For the diffusion of carbonic

acid into air Loschmidt 2 has found the value of the

coefficient, referred to centimetres and seconds, for C.

and 760 mm. pressure,
D = 0-142,

while von Obermayer 3
gives

D = 0-135.

These two numbers show as great a difference as the

numbers observed by Waitz, which, according to von

Obermayer 's calculation, assume the values

0-131, 0-133, 0-137,

when they too are reckoned for the temperature C. and

the pressure 760 mm.
We should also on theoretical grounds have been led to

1 Wien. Sitzungsber. 1882, Ixxxvi. Abth. 2, p. 1073.
2 Ibid. 1870, Ixi. Abth. 2, p. 367 ;

Ixii. Abth. 2, p. 468.

3 Ibid. 1880, Ixxxi. Abth. 2, p. 1102.
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expect that the variation of D with the ratio of mixture,

determined by the values of JYj and N
2 , would be quite

small. The formula takes the form

B.N.IN, A + B

when for shortness we put
A = wo-VW + IV), B

l

= irV*W2,
and it then shows that the first of the two terms becomes

smaller when the ratio of N-^ to N2 increases, but the second

becomes larger; the value of D will therefore be able to

change with N^ and jV2 much less than either of these

numbers itself changes.
1

The alteration of D will be very small when the values

of the magnitudes B are nearly equal ;
and that will occur

for the most part. For one of the two gases possesses a

greater speed fl, and a smaller molecular section TTS* along
with a less molecular weight than the other.

After these considerations and experiments we cannot

assert that the theoretical formula for the coefficient of dif-

fusion here obtained has been proved by experiment to be

perfectly correct. But it is highly probable from the

observations that have hitherto been made that the formula

corresponds to the true circumstances. In any case there

is no fact known which contradicts it ;
on the contrary

the other formula developed in 99, which gives a constant

value of the coefficient, is certainly inaccurate.

To finally decide as to the validity of our formula we
must, asHausmaniger has already noted, experiment upon

gaseous mixtures 2 which contain only small masses of one

of the constituents. For when N = the formula gives

the limiting value

D = V/aMrV(*V + n
2

2
),

and on the contrary, when A
T
2
= 0, the limiting value

+ j,
1 Guglielmo, Atti d. Accad. di Torino, 1882, xvii. p. 106; Exner's

Repert. d. Phys. 1883, xix. p. 580.
2
Perhaps by the method recommended by M. Topler, Wied. Ann. 1896,

Iviii. p. 599.
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which are essentially different values [being in the ratio

(tQj/OJ
8 or m

2/m l ,
where m denotes the molecular weight].

But in the conditions that have chiefly been employed in

the experiments we can take for the but slightly variable

coefficient the value

-Afci
which we find on putting A^ = N2

.

1O1. Dependence on Pressure and Temperature

To test the formula we can also raise the question
whether the formula correctly gives the law of dependence
of the coefficient of diffusion on both pressure and tem-

perature.

Since both of the mixing gases have the same temperature,

where m
l
and m

2
denote the molecular weights of the two

gases. If then we denote by m and n the values of the

molecular weight and molecular speed for any normal gas
which has the same temperature, we have

By means of this relation the formula for the total pressure

p = iTrt^rv + #2
m

2
n

2
2
)

takes the simple form

p =

wherein N = N
l
+ N2 signifies, as before, the total number of

all the gaseous molecules of both kinds in unit volume. By
this formula we may replace N in the formula for D by the

pressure p, and we then obtain for the coefficient of diffusion

D = ^(
where

i
+ *( + ^2^1

If we put s^
= = s

2 ,
these general formulae would turn
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into that which would hold if the mutual collisions of

particles of the same kind might be left out of account.

We need not therefore pursue this improbable assumption,

according to which the coefficient of diffusion would have

the constant value

D =" /(V V

any further here, if we obtain an answer to our question
from the more general formula.

Since the magnitudes denoted by 7 do not depend on the

pressure p, the equations show directly that according to the

theory the coefficient of diffusion is inversely proportional to

the total pressure of the two diffusing gases. But this is

the very law which Loschmidt deduced in 1870 from his

observations, and which has been confirmed by all later ex-

perimenters.
Loschmidt has further concluded from his observations

that the coefficient of diffusion increases as the temperature

rises, and that it increases indeed proportionally to the

square of the absolute temperature. The theoretical formula

likewise requires an increase of the coefficient with rise of

temperature. In the formula p is not variable when we are

dealing with experiments that are made at constant tem-

perature and pressure. If the magnitudes 7 were also

independent of the temperature, D would increase propor-

tionally to the f power of the absolute temperature (since

this on the kinetic theory is proportional to II2
), and there-

fore less than is really the case according to Loschmidt's

experiments.
But according to the observations on viscosity the radii

?! and s-2
of the spheres of action are dependent on the

temperature, either actually or apparently ; this is also pos-

sible, and, indeed, highly probable, for the newly-introduced

magnitude a-, which has a similar meaning. If we may
assume that <r and the magnitudes s are variable, at least

approximately, in the same way with the temperature, the

coefficient of diffusion D must increase with the temperature,

according to the same law as the product of the coefficient
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of viscosity r), which, according to 78, is given by the

formula

97
= 0-30967 ran/7r*V2,

into the absolute temperature or the magnitude 1 + a$,

where $ is the centigrade temperature and a is the co-

efficient of expansion.

Now, the value of the coefficient of viscosity, according
to the observations described in 85, increases with the

temperature in such wise that it may be taken, at least

approximately, to be proportional to the function

where the exponent n has values which for different gases
lie between 0'75 and 1

; its value being greater for the easily

condensible gases than for those which were formerly con-

sidered permanent. We should have then to expect that

the coefficient of diffusion varies as

where n has the value appropriate to the gas.

The observations from which Loschmidt 1 has con-

cluded the law put forward by him were made with three

pairs of gases diffusing into each other, viz. carbonic acid

and air, carbonic acid and hydrogen, hydrogen and oxygen.
The value of n for carbonic acid, which occurs in the first

two pairs, has been found, from experiments on viscosity, to

be nearly equal to 1, so that Loschmidt's observations

on the diffusion of this gas are in excellent agreement with

the investigations of the viscosity of the same gas. For

hydrogen and oxygen the value of n given by the experi-

ments on viscosity is certainly less
; but the agreement in

Loschmidt's experiments on diffusion is not so great that

we are forced to assume the exponent n to be always exactly

equal to 1.

In fact von Obermayer 2 found later, by experiments

1 Wien. Sitzungsber. 1870, Ixi. Abth. 2, p. 367 ;
Ixii. Abth. 2, p. 468.

2 Ibid. 1880, Ixxxi. Abth. 2, p. 1102.
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on diffusion, that the exponent has different values for dif-

ferent gases, and his observations give for

Air -carbonic acid . . . . n = 0-968

Hydrogen oxygen . . . 0'755

Carbonic acid nitrous oxide . . 1-050

Carbonic acid hydrogen . . 0'742

Oxygen nitrogen .... 0-792

and these values so far agree with those which the same

observer l obtained for the dependence of the coefficient of

viscosity on the temperature, viz.

Air n = 0'76

Hydrogen .... 0-70

Oxygen . . . . 0-80

Nitrogen .... 0-74

Nitrous oxide . . . 0-93

Carbonic acid . . . 0*98

that the exponent for the diffusion in the case of any pair

lies, with one exception, between the exponents for the

viscosity of the two gases concerned.

From these experiments we cannot doubt that the

variability of the two phenomena, viscosity and diffusion,

with the temperature is to be referred to exactly the same
causes. Both coefficients, that of viscosity and that of

diffusion, depend on the temperature, not only because

their formulae contain the molecular speed H, but also in

so far as the radii s and a of the spheres of action are

variable with the temperature. The only difference in

their variability with the temperature consists in that for

diffusion being greater than that for viscosity in the ratio

of 1 + o3 to 1.

We may further conclude that the change of both

magnitudes s and a- with the temperature is effected by
forces that are equal or, at least, of like kind. Both magni-
tudes are radii of spheres, of action ; * refers to the mutual

1 Wien. Sitzungsber. 1876, Ixxiii. Abth. 2, p. 433; Carl's Bepert. 1877,

xiii. p. 130. Compare 85.
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action of similar molecules, while a denotes the distance

apart of dissimilar molecules when they collide and, there-

fore, the radius of this sphere for the action of dissimilar

particles on each other. If, now, as we saw in our discus-

sion of viscosity, the diminution of the radius s of the sphere
of action with rise of temperature is only apparent, and is

to be referred to forces of cohesion, as with Sutherland's

explanation, we shall have to assume, in the same

way, that the magnitude a also appears to diminish with

rise of temperature only because the forces of cohesion,

or, more accurately, the attractive forces exerted by dis-

similar molecules on each other, heighten the probability of an

encounter, and, indeed, increase it the more strongly the less

the speed fl of the molecular motion or the lower the tem-

perature. Accordingly the law of dependence of the co-

efficient of diffusion on the temperature must be represented

by a formula which must be formed quite similarly to that

found for viscosity ( 85), viz.

77
=

we shall therefore have to put

D = D (l + o3)*(l

where a represents the coefficient of expansion, and 6 the

absolute temperature

= 9. + a- 1 = 9 + 272-5,

while D stands for the value of D at C., and G' is

a constant which represents the measure of the cohe-

sion between dissimilar particles, as does C for similar

particles.

We may omit a detailed comparison of this theoretical

formula with the observations; for, since Sutherland's
formula has been proved for viscosity, the agreement of the

values of the exponent n now shows that the formula for the

diffusion can represent the results of experiment in the same
excellent way. It is therefore sufficient to give the values
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of G' which Sutherland 1 has calculated from von Ober-

mayer's experiments on diffusion :

Carbonic acid air . . . . C' = 250

Carbonic acid hydrogen . . 106

Carbonic acid nitrous oxide . 380

Oxygen hydrogen ... 100

Oxygen nitrogen . . . . 136

Oxygen -carbon monoxide . . 124

As we should expect, these values correspond in magnitude
to those which Sutherland has calculated for the simple

gases from the observations on viscosity ( 85).

In the same memoir Sutherland also submits to calcula-

tion, in accordance with his theory, the observations which

Winkelmann has made on the diffusion of vapours into

gases. The same vapours which Lothar Meyer, Schu-

mann, and Steudel had employed for their experiments
on transpiration ( 86) served also in these experiments.
Here also the agreement between the calculations from both

series of experiments is satisfactory.

1O2. Calculation of the Coefficient of Diffusion from
the Coefficient of Viscosity

The agreement between the measurements of the vis-

cosity and diffusion goes still further. In the first memoir
he published on this theory Maxwell 2 had already deduced

from observations on diffusion a value of the free path of

gaseous molecules, which harmonises well with the value

determined for air from experiments on viscosity. But the

connection into which these two different phenomena are

brought by the kinetic theory came more strikingly into

view when Stefan 3 calculated the numerical values of the

coefficients of diffusion directly from the coefficients of

viscosity, and thereby found numbers which agreed quite
well with Loschmidt's experiments-.

1 Phil Mag. 1894 [5] xxxviii. p. 1.

2 Ibid. 1860 [4] xx. p. 21
; Scient. Papers, i. p. 392.

3 Wien. Sitzungsber. 1872, Ixv. Abth. 2, p. 323.
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The possibility of such a calculation from our formulae is

at once evident when we remember that the absolute values

of the free paths

L
l
= \3

/^iV2, L
2
= X8

/w*8V2,

of each of the two diffusing gases in an unmixed state, in

which they are under the normal pressure p and contain N
molecules in unit volume, can be calculated from the co-

efficient of viscosity, and that therefore the magnitudes

Nir9lV2 = 1/r
1

, Nirs**/Z = L^
are known. Stefan used further the hypothesis already
mentioned in 96, viz.

a = i(^ + ,2),

which allows us to evaluate the magnitude

Since also the molecular speeds H are known, we have all

the magnitudes given which come into the formula for the

coefficient of diffusion, and the value of this coefficient,

therefore, can be calculated in absolute measure if the co-

efficient of viscosity is measured for each of the two gases
that take part in the diffusion.

Stefan has carried out this calculation for the gases
the diffusion of which has been experimentally investigated

byLoschmidt, and has arrived at a tolerably good agree-
ment between the theoretically calculated numerical values

and those deduced from the observations. But since he

made his calculation from another formula, I have had to

repeat the calculation.

Since Lose hmid t has always in his experiments allowed

equal volumes of the two diffusing gases to mix together, I

have put the numbers N
l
and N2 equal to each other, and

so have made my calculation by the formula that is given at

the end of 100. The values of the molecular free paths
and speeds that are introduced are those we have given
before

; the values, however, at C. are not used directly,

but are reduced to the temperature ofLoschmidt's experi-
ments. In the following table the values so calculated are
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tabulated together with those observed, the centimetre and

second being taken as units :

Coefficients of Diffusion.
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each is affected with an error, are employed for each of the

calculated values of the coefficients of diffusion.

In addition to these grounds, which are indeed sufficient

of themselves, defects in the theory may have contributed to

the discrepancies, since the theory of diffusion has not been

carried out with such strict mathematical accuracy as was
the theory of viscosity. That a more accurate calculation

would improve the agreement seems to me the more prob-
able as my figures fit in with the observations better than

those of Stefan, which were calculated from a formula

that leads to a constant value of the coefficient of diffusion.

Now that this relation between the viscosity and diffusion

of gases is known, we seem to be fully justified in applying
the observations on diffusion, in the same way as those on

viscosity, to extend our knowledge of the direct properties

of the molecules, and indeed first to calculate the molecular

free path. Observations on viscosity certainly deserve to be

preferred for this purpose, in so far as the processes of

friction are more easily and simply treated theoretically.

But when there is a question as to the magnitudes of s and

o-, diffusion-experiments are the best means of teaching us

something about <r. Von Obermayer 1 has employed his

observations on diffusion for purposes of this kind. He
thereby obtained for the sections of the spheres of actions

numerical values 2 which are about 1^ times greater than

those calculated 3
by me from the viscosity ;

but the reason

of this simply resides in his having employed a formula for

his calculation which leads to a constant value of the co-

efficient of diffusion ; he neglects, therefore, the resistance

which the molecules of the same kind offer to each other,

and therefore finds the resistance of the dissimilar molecules

too large, and so estimates the section of the sphere of

action 7r<r
2 also too large. He thus arrives at results whose

lack of agreement with experiment must be taken as a proof
that the formulae which give a constant value for the

coefficient of diffusion are inexact.

1 *

Experiments on Diffusion, III.' Wien. Sitzungsber. 1883, Ixxxvii. Abth. 2,

p. 188.
2 See p. 197 of the memoir cited. 3

Compare Chapter X.



277

CHAPTEE IX

CONDUCTION OF HEAT

1O3. Low Conductivity of Gases

ONLY very little was known respecting the conduction of

heat in gases before the development of the kinetic theory

of heat. The experiments made by Andrews, 1

Magnus,
2

and Peclet 3 show nothing more than that heat is propa-

gated in gaseous media not only by radiation, but also by
conduction as in solid and liquid bodies ; but the experi-

ments gave no measurements of the conductivity of gases,

and only showed that it is very much less than the con-

ductivity of solids and liquids. Among the gases hydrogen
is distinguished, as was long ago known to Priestley

4

and Ac hard,
5
by so considerably greater a conductivity that

Magnus thought it might be compared with that of

metals; however, later observations have shown it to be

something like 1,000 times less than that.

The vapours also of liquids, just like the real gases, have

only a small capacity for conducting heat. The most

striking proof of this fact is furnished byLeidenfrost's
6

experiment with a drop of water on a hot plate, as it shows

that the layer of vapour which is formed between the drop

and the plate prevents the passage of heat to such an extent

that the water does not reach boiling-point.

1 Proc. Irish Acad. 1841, i. p. 465 ;
Berzelius' Jahresb. xxii. p. 24.

2
Pogg. Ann. 1861, cxii. p. 497.

3 Traite de la Chaleur, 3rd ed. 1861, iii. p. 418.

4
Experiments and Observations relating to Various Branches of Natural

Philosophy, Birmingham 1781, i. sect. 33, 5, p. 378.
5 Mem. de I'Acad. de Berlin, Annee 1783, p. 84, Berlin 1785.
6 Leidenfrost, De aquce communis nonnullis qualitatibus tractatus, 51,

Duisburgi 1756. Opuscula phys.-chem. et med. iii., Duisburgi 1797.
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At the time when Clausius laid the foundation of the

kinetic theory the low conductivity of gases and vapours
was adduced, as has been already mentioned in 61 at the

beginning of Part II., as the most weighty objection to the

correctness of the new hypothesis. It was asserted that in a

medium the molecules of which are moving with great speed
the heat, which consists in the energy of motion of the

molecules, must also be transferred with similar speed from

one spot to another. This objection we may still attempt
to maintain, even if the similar objection which has been

raised in respect to the diffusion of gases is already removed.

For although it has been shown that on this theory the

mixing of two gases does not proceed with the speed at which
the molecules move, but very slowly, because the molecules

frequently collide and therefore traverse only very short

distances in spite of their large speed, yet this answer to

the doubts derived from the phenomenon of diffusion cannot

without more consideration be applied to the phenomenon of

conduction, since in diffusion there is a question of a trans-

ference of mass, and in conduction, on the contrary, of a

transference of energy.
This difference is best illustrated by an example which

seems to lead to a conclusion by analogy. A very common

piece of physical apparatus consists of a row of elastic balls

which hang in contact and are used for experiments on the

collision of balls. If, for instance, we allow one of these

balls to fall against the remainder of the row, it comes to

rest itself on the collision if all the balls are of the same

size, and all the others remain at rest except the last, which

flies off from the rest with the same speed with which the

first struck the row. In this experiment the energy alone

of the motion has been propagated, and, indeed, with very

great speed, without the mass through which the trans-

mission was effected that is, the row of intermediate balls

being carried on with the energy. We might likewise

conclude that the energy of the heat-motion may be very

rapidly transmitted by means of a group of molecules, which
now and then collide and mutually transmit energy to each

other in the collisions, without the molecules which effect
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the transmission having themselves to move in the direction

of the motion of the heat.

But this instance in illustration of the objections contains

in itself its own refutation, for it does not correspond in all

points to actuality. In the collision-apparatus the trans-

mission of energy takes place at all the collisions in the

same direction, and travels therefore over a wide stretch in

a short time. But in the gaseous medium in which the

molecules collide now in this direction and now in that, the

energy is carried over now here and now there, and is

jerked about in the same zigzags as the molecules. The
transmission of heat therefore goes on in a fixed direction

with slowness similar to that of the forward motion of the

molecules.

104. Kinetic Theory of Conduction

Starting from this conception Clausius,
1 a short time

after Maxwell, 2 who first treated the problem, gave a

detailed analysis of the process of the conduction of heat,

by which he has removed the last doubts before men-
tioned regarding his hypothesis. Stefan 3 and von Lang 4

have later given elementary demonstrations of this theory.
The same question has been mathematically treated by
Boltzmann 5 on the basis of a later hypothesis of

Maxwell's, according to which the molecules of gases

repel each other with forces that are inversely as the fifth

power of the distance. The theory given in the Mathe-

matical Appendices of this book starts from Maxwell's
older view and rests on Maxwell's law of distribution of

speeds.

1

Pogg. Ann. 1862, cxv. p. 1
; Abhandl. U. Warmetheorie, 1867, Abth. 2,

p. 277 ; Mechanische Warmetheorie, iii. p. 105.
2 Phil. Mag. 1860 [4] xx. p. 31

; 1868, xxxv. p. 214. Scient. Papers, i.

p. 403
;

ii. p. 74.
3 Wien. Sitzungsber. 1863, xlvii. Abth. 2, p. 81.
4 Ibid. Abth. 2, 1871, Ixiv. p. 485

; 1872, Ixv. p. 415 ; Pogg. Ann. 1871,
cxlv. p. 290 ; 1872, cxlviii. p. 157 ; Einleitung in die theor. Physik, 1867,

p. 529.
5 Wien. Sitzungsber. 1872, Ixvi. Abth. 2, p. 330 ; 1875, Ixxii. Abth. 2, p. 458.
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It is easy to give an idea of the matter contained in

these mathematical theories without repetition of the calcu-

lation, because the analogy of the problem before us with

the theories earlier discussed is obvious. Diffusion consists

in a transference of mass effected by means of the molecular

motions and viscosity in a transfer of forward momentum
caused by the same means

;
conduction of heat is likewise

a transfer of energy, which is effected as before by the

motion of the molecules. This similarity goes so far that

the propagation of heat may be directly looked on as a

diffusion-phenomenon in which the warmer and colder

particles diffuse among each other. For, since the mole-

cules as they pass from an upper and warmer layer to a

lower and colder one retain their energy till a collision, the

process of conduction of heat is completely identical with

that of diffusion
;
and we have no further difference to take

into account than this, that we have now to find, not the

number of the diffusing particles, but the sum of their

energy.
In order to form a distinct idea of the arrangement of

the experiment that shall correspond as nearly as possible to

that chosen before, let us consider a gas enclosed between

two unlimited, or, at least, very widely extending, parallel

plane walls which lie horizontally with the distance between

them equal to the unit of length ;
and consider the lower to

be kept at the constant temperature C., and the upper at

the temperature 1 C. Under these circumstances a distri-

bution of temperature is produced of itself between the

walls which is independent of the time, and such that at the

height x above the lower limiting plane the temperature is

A constant flow of heat in the direction from above to below

takes place in the gas, and this is such that through each

imaginary horizontal plane in the space occupied by the gas
there flows an equal amount of heat in unit time. In

accordance with the usual definition we denote as the

coefficient of conductivity of the gas [or simply its conduc-

tivity] that amount of heat which in unit time passes
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through unit area of such a horizontal plane under the given
circumstances.

If we now go back to the consideration respecting the

current of diffusion which was wrorked out in 95, we have

merely to change the meaning of the symbol n which occurs

in it in order to apply it to the flow of heat. There n
denoted the difference of the values which the number of

molecules per unit volume of one of the two diffusing gases

has in two different layers separated by unit length. We
may take over this signification to the present problem in

so far as we can refer it to the number of warmer or colder

particles which meet each other ; we understand therefore by n

the difference of the values of the number of the, for instance,

warmer particles in two different layers which are separated

by unit of length. Then it follows that the number of

particles which in unit time carry heat over unit area may
be expressed by the product

nD,

where D denotes the coefficient of diffusion.

We have, however, yet another alteration to consider ;

for we have no longer to do with the number of particles

that pass across, but, as we have already said, with the

energy carried over by them. Instead, therefore, of the

number n, we must introduce the difference of the heat-

energy per unit volume at two layers which are distant from

each other by unit length.

We have taken the difference of temperature corre-

sponding to this distance to be 1 degree ;
hence the

difference in the thermal energy of a molecule in two layers

separated by unit length is me calories, if c denotes the

specific heat at constant volume and m the mass of a mole-

cule. It thus follows that the difference of the energies per
unit volume for which we are looking is

Nmc

in thermal units, if N denotes, as before, the number of

molecules in unit volume, and the expression

! = NmcD
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results on our theory for the quantity of heat which is

termed the coefficient of conductivity.

The coefficient of diffusion D, which was determined in

95 by the formula

D = ^(JVj&A +
becomes

D =

in our special case in which the two kinds of gas are the

same, for we may neglect the small difference in the values

of fl and that arise from the inequality of temperature,
and therefore by 96 and 97 put

and by 95 we have also

N
}
+ N2

= N.

The conductivity of a homogeneous gas for heat is there-

fore

1O5. Relation of the Conduction of Heat to
the Viscosity

The formula shows a simple relation of the conductivity
to the coefficient of viscosity which by 78 is given by the

formula

v = 0-30967 NmQL.

From this we find that the conductivity can be expressed in

terms of the viscosity and the specific heat of the gas as in

the equation
f = (ITT/ 0-30967) T/C

= 1-26812 ye.

The factor which occurs in this formula is not much

greater than 1, and we should not be unjustified if in this

theory, which depends only on approximation, we were to

put it equal to 1, and thus obtain

f = r]C.

This value would, indeed, have directly resulted if we had
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used the formula for the coefficient of viscosity as given by
Stefan,

1 viz. :

7)
=

which, if we are contented with a somewhat less accuracy,

seems quite justified, and is therefore mentioned fre-

quently in memoirs. The reason that we have arrived at

different values of the numerical coefficients in our formulae

for D and 77, viz. JTT
= O39270 and 0-30967, is that in the

calculation of rj a higher degree of approximation has been

aimed at and attained.

We have already met with a similar uncertainty of the

numerical factors that come into formulae ;
it is in all cases

caused by the different way in which the mean is taken of

the varying properties and circumstances of the molecules.

In an elementary theory it is not, indeed, possible to keep

up the consideration of all conceivable particular cases right
on to the end through the whole calculation, and then at

the conclusion and not till then if we are to be accurate

to form the sum and take the mean. We are obliged, on

the contrary, for greater simplicity and clearness of pro-

cedure, not only to deduce the mean result for each part of

the calculation by itself, but also to employ from the first

average values of the magnitudes that come into the

calculation instead of the real ones. Since the concluding
result of such a calculation can be only approximate, we
must not be surprised that the theories given by different

investigators have led to different values of the numerical

coefficients. All, however, agree in concluding that the

conductivity I and coefficient of viscosity 77 are connected by
the relation

I = /eye,

where c is the specific heat of the gas at constant volume,
and K a numerical coefficient which has the same value for

all gases. This value lies between 0'5 and 2'5.

In 57* of the Mathematical Appendices to this work
I have given a calculation in which I have striven to find

1 Wien. Sitzungsber. 1872, Ixv. Abth. 2, p. 363. Compare 48* in the

Mathematical Appendices.
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the value of the coefficient K as exactly as possible. This

calculation, in which the mean values have been taken with

due regard to Maxwell's law of distribution of speeds,

has given
f = 1-6027 yc.

If we compare the mathematical calculation which has

led to this larger value of the coefficient * with that here

deduced in an elementary way, the difference will perhaps
astonish us, and give rise to the objection that in laying
down the mathematical formula we have taken into account

the kinetic energy of the molecular motion only, while at

the end we have substituted for this kinetic energy simply
the specific heat at constant volume c multiplied by the

absolute temperature. This procedure seems to contradict

the view as to the ratio of the molecular energy to the total

energy which is put forward in 53
;
for it is there proved

that the kinetic energy of the rectilinear motion of the

molecules of a gas forms only a part of the whole energy
contained in the gas. We might therefore be inclined to

assume that the calculation in which account is taken only
of the energy of the molecular motion will give a result, the

validity of which should be limited to the propagation of

that energy only ; and that we should therefore consider the

value 1'6027 of the coefficient K to apply only to the propa-

gation of the molecular energy ;
and we might consider it

possible that the remainder of the energy forming the heat

of the gas, and therefore the energy of the motions which
the individual particles execute within the molecules and the

whole potential energy, may be propagated with a different

speed, either smaller or larger, than that of the kinetic

energy.
In fact, the assumption has many times been made,

especially by Stefan 1 and Boltzmann,2 that the kinetic

energy of the molecular motion is passed on from place to

place with greater speed than the remaining energy, which

in Chapter V. we have termed the atomic energy. We
1 Wien. Sitzungsber. 1875, Ixxii. Abth. 2, pp. 74, 75.
- Ibid. p. 458 ; Pogg. Ann. 1876, clvii. p. 457.
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were at that time obliged to yield to this view, because no

other possibility was seen of bringing the theoretical law

f = KT]C

into a complete agreement with the observations then

published. It had, in fact, been apparently established that

a smaller value must be assigned to the factor K for gases
whose atomic energy forms the greater part of the whole

energy than for the other gases in which the molecular

energy exceeds the atomic energy. These facts would really

be very simply explained on the hypothesis named, accord-

ing to which the gases with preponderating molecular

energy must have a better conductivity than the other

gases with greater atomic energy and smaller molecular

energy.
Theoretical reasons could also be adduced for this hypo-

thesis which at that time seemed to be unavoidably necessary
from the results of the experimental measures that had been

made. If we consider the processes that occur during the

encounter of complicated molecular structures, we may
become inclined to the view that the motion of both centres

of gravity will chiefly be altered by the collision, while many
parts of each complex of atoms may scarcely be disturbed in

their own motions. The molecular energy would therefore

be carried over from place to place with greater speed or in

a higher degree, or, in other words, the conductivity of the

gases would be greater for the molecular energy than for the

atomic energy.
In the first edition of this book, which was published in

1877, I explained these ideas as possible and admissible

because I knew no better explanation of the facts, although
even at that time I raised several weighty objections to

them. At the same time, however, I pointed to another

interpretation, in expressing my belief that all differences

between theory and observation might find their explanation
in the accumulation of the errors of experiment.

The most important objection that can be urged against
this hypothesis, that gases have unequal conductivities for

their molecular and atomic energy, is that it contradicts an
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important fundamental theorem of the kinetic theory. As

has been mentioned in 53, Clausius has established the

proposition that in a perfect gas the kinetic energy of the

molecules bears an always constant ratio to the whole

energy contained in the gas ;
and this theoretical proposi-

tion is experimentally confirmed by the experiments that

have been made for the measurement of the specific heats.

If now a greater amount of molecular energy were brought
to a point in a gas in consequence of the assumed better

conductivity for it, the necessary consequence would, accord-

ing to this proposition of Clausius, be. that a compensation
would at once result by the atomic energy gaining at the

expense of the molecular until the proper ratio was again
restored. By this the untenability of that hypothesis might
be established, at least for perfect gases.

Now, there are certainly many gases and vapours for

which Clausius' proposition cannot hold in all strictness,

because their specific heats are not constant, but are highly
variable with the temperature. For such cases a different

consideration would be in place, which rests on the proposi-

tion of the conservation of energy alone. According to this

law the discussion of considerations respecting the condi-

tions during an encounter has no bearing on the resolution

of our doubt. If a particle has flown from one place to

another, it has carried over with it to its new place the

whole amount of its energy not its kinetic energy only,

but also the whole of its internal or atomic energy and

it is an entirely unimportant question whether and how this

energy is transformed by the collisions that afterwards

occur.

Hence it follows that the conductivity of a gas for every
kind of energy is the same, and that if the formula

f = 1-6027 TJC

holds for the conduction of the molecular kinetic energy, it

must also hold for the conduction of heat generally.
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1O6. Theoretical Laws of the Conduction of
Heat

The conclusion of the theory which we have found requires

the conductivity of a gas for heat to obey the laws which

hold for the coefficient of viscosity and for the specific heat.

The kinetic theory of gases has led to the discovery,

which has afterwards been confirmed by experiment, that

the coefficient of viscosity of a gas is independent of its

pressure or density. It also follows from this theory that

the same value must be found for the specific heat at

constant volume, referred to unit mass of the gas, if the

experiment is made with a different volume or at a different

pressure ; for the number of molecules of a gas which are

contained in unit mass of the gas require under all circum-

stances the same addition of energy when this mass is

warmed by 1 degree without expanding, and therefore

without doing work. In agreement with this theoretical

result the experiments of Begnault
1 have shown that the

specific heats of air, hydrogen, and carbonic acid, measured at

constant volume, are independent of the pressure.

Since, then, not only the coefficient of viscosity, but also

the specific heat, is independent of the pressure of the gas,

the theory leads to the law laid down by Maxwell and by
Clausius that the heat-conductivity also of a gas for heat

is not variable with its pressure.

Eegnault has further found that the specific heat of

chemically simple gases is independent also of the tempera-
ture. Probably all gases whose molecules are composed of

only two atoms have this property, to judge from E.
Wiedemann's 2 observations. On the kinetic theory,

therefore, the heat-conductivity of a diatomic gas increases

with the temperature according to the same law as its

coefficient of viscosity.

The laws we have cited for the specific heat do not,

however, hold without limitation. The more easily con-

densible gases and vapours do not obey these laws, at least

in all strictness. Hence, also, the theoretical laws of the con-

1 M6m. de VAcad. de Paris, 1862, xxvi. 2
Pogcj. Ann. 1876, clix. p. 1.
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duction of heat deduced from these empirical rules cannot

be extended without objection to vapours, nor to condensible

gases, nor to gases of complicated chemical structure ;
for

these media the laws have only an approximate applicability.

107. Observations of the Conductivity at Different
Pressures

That the heat-conductivity of gases is really independent
of the pressure, as the theory requires, has been shown by
Stefan's 1

experiments, in which a measurement of the con-

ductivity of gases was given for the first time in absolute

measure.

After he had convinced himself by preliminary experi-

ments that the method followed by Magnus is unsuitable

for the purpose, by reason of the simultaneous conduction

of heat through the walls of the gasholder,
2 Stefan em-

ployed Dulong and Petit 's method, which had shortly

before been also used by Narr 3 in comparative experi-

ments on the speed of cooling in different gases. In a

cylindrical chamber fitted with the gas under investigation

was a similar cylindrical holder, which was filled with air

or other gas, and provided with a manometer, whereby it

was ready to serve as an air-thermometer. Stefan made
observations with this apparatus by immersing it, when

initially at the temperature of the room, in melting snow,
and measuring the speed of cooling of the air-thermometer

by observation of the falling condition of the manometer.

It is by this method, or
'

by similar methods which
have been partly improved, that most of the later measures

of the heat-conductivity of gases have been made. In

addition to a second memoir by Stefan 4 and two investiga-
tions by Josef Plank on gaseous mixtures 5 and a few pure

gases
6 which are a continuation of it, several more valuable

1 Wien. Sitzungsber. 1872, Ixv. Abth. 2, p. 45.
2 Buff has confirmed this. Fogg. Ann. 1876, clviii. p. 177.
3 Ibid. 1871, cxlii. p. 123.
4 Wien. Sitzungsber. 1875, Ixxii. Abth. 2, p. 69.
5 Ibid. 1875, Ixxii. Abth. 2, p. 269.
6 Ibid. 1876, Ixxiii. Abth. 2, p. 123 ; CarVs Eepert. 1877, xiii. p. 164.
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memoirs have been published by Winkelmann, 1 Kundt
and Warburg,

2 Janssen, 3 Graetz, 4 Eichhorn, 5

and others. Schleiermacher 6 made his observations by
Andrews' method.

I first bring forward some of Stefan's results for the

experimental proof of the theoretical law that the conduc-

tivity of a gas is independent of its pressure. From four

observations on air under the ordinary pressure of about

750 mm. of mercury Stefan found the following values,

referred to the centimetre and second as units, for 107?
?

viz. 554, 560, 552, 554, and thus the mean value

* = 0-0000555 ;

and when he rarefied the air to the pressure 428 mm. he
found in the same way

f
_ Q-0000552

If, then, there is a diminution of the conductivity with the

density, this is certainly so small as to elude observation.

Kundt and Warburg obtained similar results by ob-

serving the cooling of a mercury thermometer in a closed

space. They found the following values for the interval t

which was necessary for the thermometer to cool from
59-3 C. to 19-6 C. when the apparatus was filled with the

gases named at the pressures specified.

Air . . . p = 19-5 mm. t = 277 sees.

9 277

4 278

0-5 280

Carbonic acid . p = 7- 7 t = 349

1-5 350

Hydrogen . . p = 154 t = 66

8-8 68

The constancy of the conduction and radiation of heat

1

Fogg. Ann. 1875, clvi. p. 497 ; 1876, clvii. p. 497; 1876, clix. p. 177 ; Wied.

Ann. 1877, i. p. 63 ; 1880, xi. p. 474 ; 1883, xix. p. 649 ; 1886, xxix. p. 68
; 1891,

xliv. p. 177 ; 1893, xlviii. p. 180.

2

Pogg. Ann. 1875, clvi. p. 177 ; previously in abstract in Berl. Monatsber.

1875, p. 160.
3 Wied. Beibl. 1879, iii. p. 701.

1 Wied. Ann. 1881, xiv. p. 232 ; Munch. Habilitationsschrift, 1881.
5 Ibid. 1890, xl. p. 697.

6 'Ibid. 1888, xxxiv. p. 623 ; 1889, xxxvi. p. 346.

U
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comes out plainly from these numbers, at least within the

given limits of the pressure. Under greater pressure the

regularity was disturbed by currents of the gas.

In the opposite case also, when the pressure was made

very small, Kundt and Warburg observed deviations from

constancy ;
there is here, however, no question of currents

in the gas but of a phenomenon of a similar kind to that

noticed by them in their experiments on viscosity, which

have been described in 81. Just as the slip of a gas on the

wall of the containing vessel becomes the more appreciable
the further the rarefaction is carried, so a difference between

the temperature of the enclosure and that of the gas touch-

ing it becomes the more considerable the less the pressure.

If the pressure is high and the gas. dense, many particles

strike against the wall and cause so complete an interchange
of heat that only a small difference between their tempera-
tures can arise. But if the pressure becomes smaller, and

therefore the number of particles fewer, the difference of

temperature increases and may become so great as to

amount to several degrees.
This behaviour is quite analogous to that observed in con-

nection with viscosity ; for in viscosity the internal friction

alone comes into account in dense gases, while in rarefied

gases the phenomenon depends, not only on the internal

friction, but also on the external friction as well
; and, just

in the same way, the conduction of heat in dense gases

practically depends only on the internal conductivity of the

gas, while in rarefied gases it is conditioned by the external

conductivity as well. The internal conductivity, like the

internal friction, is independent of the density and pressure ;

the external conductivity, however, alters, like the external

friction, with the pressure, and, indeed, according to the

same law. In both cases there is a simple proportionality to

the pressure, and for the same reason in both cases ; for both

the external friction and the external conduction increase in

the ratio of the number of the particles which meet the wall.

For the clear recognition of this behaviour, first noted by
Kundt and Warburg, the later memoirs of Crookes, 1

1 Proc. Roy. Soc. 1881, xxxi. p. 239.
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Smoluchowski von Smolan l and Brush 2 have essenti-

ally contributed.

Winkelmann similarly tested the constancy of the

internal conductivity by determining the logarithmic decre-

ment of the series of observed readings of his air ther-

mometer, which decreased with the time in geometrical

progression. The following are some of the values found by
him :

Air . . Apparatus I . . p = 750 mm. 0-000509

138 501

3 480

Apparatus II . p = 750 0-000277

43-3 260

13-1 260

1 259

Hydrogen Apparatus I . . p = 750 0-00294

91-9 290

4-7 258

3 245

1-92 216

Winkelmann examined other gases, too, especially ethy-

lene, and found a similar confirmation of the law. But the

examples we have given will suffice to prove the accuracy of

the theoretical law and to show us to what low pressures
the conductivity remains constant.

108. Calculation of the Heat-conductivity from
the Coefficient of Viscosity

But the theory requires more than that the value of

the conductivity should not vary with the density of the

gas ;
it furnishes also the law of the variation of the con-

ductivity with the temperature, and even suggests the

possibility of calculating the value of the conductivity
itself in absolute units for those gases whose viscosity and

1 Wied. Ann. 1898, Ixiv. p. 101 ; Phil. Mag. [5] xlvi. p. 192
;
Wien. Akad.

Anzeiger, 36. Jahrg. 1899, p. 1, and Sitsungsber. 1899.
3 Phil. Mag. 1898 [5] xlv. p. 31.

TJ 2
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specific heat are known. This has been already done by
Maxwell and Clausius, the first founders of the theory,

long before any measurements of the conductivity of a gas
were experimentally made. Clausius concluded from his

theory that air conducts heat 1,400 times less well than

lead, and Maxwell predicted that the conductivity of air

is 3,500 times smaller than that of iron ;
and both these

predictions have been since confirmed in striking fashion by
Stefan's experiments.

The formula that leads to these conclusions, viz.

f = 1-6027 TJC,

has yet to be proved. We have to calculate the theoretical

value of the conductivity of different gases from the observed

values of their coefficient of viscosity 77 and of their specific

heat at constant volume c, and compare them with the

observed values of the conductivity.

The earlier attempts, and even that made in the first

edition of this book, to carry out this calculation and com-

parison led to no perfectly satisfactory results
;
the calculated

and observed numbers exhibited no general agreement to-

gether. A satisfactory agreement was obtained only in the

case of gases which contain not more than two atoms in

the molecule, while with all other gases no approach to

agreement was found. This result led to the hypothesis of

assuming two different kinds of conduction in gases ( 105).

This faulty attempt to account for the contradiction be-

tween theory and experiment was refuted by Wiillner,
who saw and proved that the failure to obtain agreement
was only due to the faultiness of the values assigned in the

formula to magnitudes, the variation of which with tem-

perature was at that time not known with sufficient accuracy,

the values employed having been determined at quite

different temperatures.

Wiillner,
1 whose memoir has already been several

times mentioned in 55-58 of Chapter V., determined anew

the ratio of the two specific heats for a series of gases, and

investigated the dependence of its value on the temperature.
1 Wied. Ann. 1878, iv. p. 321.
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By combining these measures with the observations of

E. Wiedemann on the change which the specific heat C
under constant pressure undergoes with change of tempera-

ture, he obtained the law of alteration of the specific heat c

at constant volume with the temperature, and gave these

numbers :

Values of c.
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From these numbers, which exhibit a very delightful

agreement between theory and experiment, we may also

answer the question whether the conductivity f really in-

creases as strongly with the temperature as the product of

the coefficient of viscosity 77 and the specific heat c. For this

we need only find the ratio of the values for 100 and 0,
both of the calculated values and of the observed. In this

manner Wiillner obtained the annexed table, which shows

as good an agreement as can be desired.

Values of f100/f '
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The values of the magnitudes measured at which have

been employed for the calculation of these ratios have also

been taken from Wiillner's book and are tabulated below.

Where Wiillner has given several values I have put
down their mean modified by taking K = 1-6027.

Values at 0.
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are so greatly variable with the temperature as is the vis-

cosity of mercury vapour, according to Koch's formula. It

cannot, therefore, be surprising if for mercury vapour the

ratio of the observed value of f to the calculated value of the

product Tjc, given by Will In er, is 3'15, and therefore nearly

twice as great as the ratio 1*6027 required by the theory.

This great excess of the calculated value of the ratio may
be taken as a confirmation of the view put out in 92, that

Koch's numbers are too small because a portion of the

mercury vapour may have been condensed into the liquid

form in the capillary tube. The behaviour of mercury may
also perhaps be explained by the division of the molecules

into single atoms ( 54) not being complete at 203. But

we are in no way compelled to see any obstacle to the theory
in this single exception, so long as it is not proved on

surer grounds to be an exception.
The excellent agreement of the calculated and observed

values shown by all other gases justifies in us, on the contrary,
the conviction that the accuracy of the theoretically deduced

relation between the conductivity and viscosity of gases is

no longer to be doubted, and that we may take it as proved
that a gas has the same conductivity for every kind of

energy.
From this result of theory we see finally that viscosity,

diffusion, and conduction of gases depend in the same way
on the free path of the gaseous particles, and that each of

these three phenomena may be employed to determine the

value of the molecular free path.
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CHAPTEE X

ON THE DIEECT PEOPEETIES OF MOLECULES

1O9. Section of the Molecules

As the investigations in Part I. of this book made it

possible to calculate in absolute measure the speed of the

molecular movements, so the phenomena discussed in

Part II. enable us to determine also in absolute measure

the length of the paths traversed by the molecules. All the

elements therefore which are concerned in the motion of

the molecules are fully known.

Still, the conclusions which the theory lets us draw

respecting the properties of the molecules are not thereby

exhausted; and first of all we may seek to determine the

extension of the molecules in space.

When we remember that the length of the paths is

determined by the probability of a collision, and that this

probability depends on the size of the molecules, it becomes

at once clear that the knowledge of their molecular free path
enables us to form a judgment as to their extension in

space. In 1865, directly after the first experimental in-

vestigations of the viscosity of air had led to the knowledge
of the free path, Loschmidt 1 made an attempt to deter-

mine the sizes of molecules. Later on, in 1867, there

appeared two other memoirs with the same aim by my
brother Lothar Meyer 2 and Alexander Naumann,5

1 Wien. Sitzungsber. 1865, Hi. Abth. 2, p. 395 ; Schl&milch's Zeitschr. f.

Math. u. Physik, 1865, 10th year, p. 511.
2 Ann. Chem. Pharm. 1867, 5. Suppl.-Bd. p. 129.
3
Ibid. 1867, 5. Suppl.-Bd. p. 252.
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then two in 1870 by Lord Kelvin, 1 and in 1873 one by
Maxwell. 2

In the formula found earlier ( 68) for the free path,

= A,/7rs> V2,

its value is expressed in terms of the size of the elemental

cube whose edge has length X, and of the diametral section

of the sphere of action ( 44, 63) whose diameter is s. If

we use the relation between the size of this cube and the

number of molecules contained in unit volume, which is

given by JW = 1,

the former formula may be written in the shape

which shows that, if the free path L is known in absolute

measure, the magnitude

or the sum of the diametral sections of the spheres of all

the molecules contained in unit volume, can be also ex-

pressed in absolute measure.

110. Numerical Values

From the values of the molecular free paths as obtained

from the observations on viscosity carried out by Graham
and by Kundt and Warburg, which are tabulated in 79,

I have calculated the following values of the magnitude Q
by the above formula.

Values of Q.

Air ...
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The numbers express in square centimetres the sum of

the diametral sections for the molecules contained in one

cubic centimetre of the gas under the pressure of one atmo-

sphere, or, more correctly, for their molecular spheres of

action. What is noticeable in the table at the first glance
is the large value of these numbers, which seems to be out

of harmony with the assumptions made on the nature of

gases. The tabulated number for air, for example, tells us

that, if all the molecules contained in a cubic centimetre of

air under ordinary pressure could be ranged close together
in a plane, they would cover an area of T84 square metres

with their spheres of action. This large value seems to

suggest a rather dense packing of space with the air

particles and the assumption that the molecules of bodies

cannot be of small size.

It requires, however, but little consideration to see the

error in this conclusion. The sum Q of the sections may also

attain its value by reason of the largeness of the numberN of

the molecules, and in this case we should at once be able to

conclude that the value of the section of a molecule is really

small ; for if we consider the number of molecules N to

increase by division of the molecules, so that the section of

any one molecule becomes correspondingly smaller, yet the

sum of the sections will thereby increase. This is easily

perceived when we recall the mathematical formulae for the

section and volume of spheres. If, for instance, a sphere is

divided into two equal parts, the sum of the sections of the

two smaller spheres is greater than the section of the ori-

ginal sphere in the ratio

2(i) : 1 = 2* : 1 = 1-26 : 1.

But without mathematical calculation this is easily

seen. Suppose we pound a bit of a solid substance to

powder, then a larger surface can be strewn with the powder
so obtained the finer the powder. We may analogously

suppose the molecules of air, which in spite of their light

weight can cover so much area as is given above, to form

an extremely fine dust, like grains that are very small but

of enormous number.
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This conception reconciles in the simplest fashion the

apparent contradictions between the properties of gases, and

explains the striking circumstance that the phenomena
those of viscosity, for instance remain essentially unaltered

even when the gas is very greatly rarefied. For the free path,

which a molecule can attain in the fine dust of molecules,

remains a small magnitude under all circumstances. It is

at once obvious from the numbers given that a cubic centi-

metre of gas of ordinary density is almost as good as

impenetrable by another molecule of gas ; but even if this

gas has been rarefied to about a three-thousandth part ofo J-

its normal pressure, and so to a pressure of about mm.
of mercury, the number of molecules contained in a cubic

centimetre would still yet suffice to thickly cover the six

faces of the cube which they fill
; this cubical space there-

fore seems to remain almost as impenetrable as before,

and we see that the molecular free path will be still very
small even now.

111. Section of Compound Molecules

If we compare the tabulated values of the sums of the

sections for different gases, we easily perceive that a simple
law holds in several cases. The value 25100 for hydrochloric
acid is very nearly equal to 24400, which is the arith-

metical mean of the values 9900 and 38800 for hydrogen
and chlorine respectively. Nitric oxide, however, does not

follow this rule, since its value for Q, viz. 19200, is greater
than the mean (18000) of those for nitrogen and oxygen,
viz. 18600 and 17400 ; but in this case the conformity to

the law indicated might be hidden by these three numbers

differing from each other by scarcely more than the possible
errors of their determination. The same law appears in

another similar case ; thus the difference of the numbers
27000 and 18700 for C0

2
and CO respectively, viz. 8300,

is with tolerable exactness the half of the number 17400

found for
2

.

These examples seem to indicate that the section of a

molecule is equal to the sum of the sections of the atoms
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which form it
; for if this law holds for single molecules,

then by Avogadro's law it will hold too for the magni-
tudes Q which represent the sum of the sections of all the

molecules in unit volume. As a test of this supposition I

have calculated the most probable values of the sum of the

sections of the simple atoms by combining the values

found for molecules consisting of only two atoms by the

method of least squares, and have obtained the values

H=5082, = 8877, N = 9513, = 9796,

01 = 19513.

By the help of these values, together with those for H2S
and S0

2 ,
I have also obtained for the sulphur atom the

mean value

S = 19617.

I have finally from these atomic sections deduced for the

compound gases the following molecular sections, which for

comparison are tabulated in the column marked '

calculated,'

against those given in the former table, and here marked
' observed.'

Values of Q.
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compounds. The rule is therefore not of general validity,

although it holds in many cases.

. Chemical Structure of Molecules

If the hypothesis were general and exact that the section

of the molecule of a chemical compound is equal to the

sum of the sections of its atoms, it would allow of but a

single interpretation, and thereby permit an interesting peep
into the circumstances of arrangement of the atoms. We
should not be at liberty to make any other assumption than

that the atoms which are bound together into one molecule

are all in one plane.

We ought, of course, to remark that only the average
value of the sections can be found from the magnitude of

the viscosity of a gas or, more directly, from its mean free

path. If now the molecules have a flat shape, then the

value of their section, as found by observation, is not iden-

tical with the surface-extension of the plane system of

molecules. But if we consider in our calculations only the

relative and not the absolute measures, we may still be

allowed to identify these two sections of the system, the

mean and the greatest. For the value of the mean will

in this case, in which all others are vanishingly small, be

determined almost entirely by the greatest only : hence it

seems allowable to extend to the greatest sections the law

that holds in many cases for the mean sections.

In all the cases, therefore, in which the calculated values

of Q agree with those observed, we shall be able to suppose
the grouping of the atoms within the molecule to be such

that all the atoms that are bound together in the molecule

lie in one plane. We do not need thereby to assume that

they are firmly fixed together in this plane, but we may
suppose them to be movable in the plane. The system of

atoms, then, that form a molecule appears to us as a small

planetary system ; just as all the planets with their satellites

move about the central sun in one and the same plane at

least approximately and with but unimportant exceptions

so the atoms all move in a plane about the centroid of the
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molecule, and may at the same time rotate about their own
axes.

But in one point the similarity between a molecular and

a planetary system need not exist. In a planetary system
the plane of the motions is unalteringly fixed in space, or

else moves so slowly that the change is recognisable only
after a long time. But in a molecular system of atoms the

plane of motion may be looked upon as variable ; indeed it

alters its direction at every collision of one molecule with

another.

The agreement of the tabulated figures seems to support
such a supposition of the condition of the molecules of all

gases which are diatomic only. To a pair of atoms of this

kind corresponds a double star in the stellar heavens, each

part of which describes a plane path about the common
centroid.

Further, when three atoms are contained in a molecule

we must suppose the molecule to have a plane shape.

According to chemists' views the atoms are then so bound

together as to be arranged either in a straight line or in

a ring. In the last case the plane will be determined by
the three points at which the three atoms are. The motion

then takes place either by two atoms revolving round the

third, or by all three, forming a triangle, revolving about

their common centroid. The admissibility of these con-

ceptions arises from the agreement of the calculated with

the observed values of Q in all the cases that have been

cited, with the single exception of water-vapour ;
the devia-

tion in this case, however, probably depends only on the

observed value not being reducible to the temperature C.,

to which the other numbers in the table are referred.

When four atoms are joined together to form a molecule

it is in general no longer necessary for them to possess the

property of being a plane system ; the possibility, however,
of the system being of such character is shown by the

example of ammonia, for which the calculated value of Q
agrees very exactly with that observed. We shall conse-

quently be unable to make any other supposition as to the

molecular constitution of ammonia than that usual with
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chemists, viz. that the three atoms of hydrogen are so

arranged that their common centroid is always within the

atom of nitrogen, and that they circle about this atom
in plane orbits.

There is, however, no agreement in general between

calculation and experiment for molecules which contain

five or more atoms, though in many cases the agreement

appears still to hold. This, indeed, is not recognisable from

the few cases investigated by Graham, but from the

numerous determinations of molecular sections which have

been deduced from other observations on viscosity, diffu-

sion, or conduction of heat. I here subjoin some examples
which I have taken from a very compendious collection

of such numbers, arranged by Landolt and Bornstein. 1

For marsh gas (or methane), in the case of which the

number 22200 for Q deduced from Graham's obser-

vations does not agree with that calculated theoretically

(30100) ,
we find from Stefan's 2

experiments on diffusion the

value 30000, which agrees very exactly with that calculated

from the formula CH
4

. So for chloroform, the same tables

assign a value 73700, deduced from one of Puluj's
3
experi-

ments on viscosity, which agrees exactly with that (73400)

theoretically calculated from the formula CHC1
3

. And
Graham's number 40100 for methyl chloride CH

3
C1

agrees, at least approximately, with the calculated number
44600.

From these examples we may look upon such molecules

also as are made up of one tetravalent atom of carbon and

four univalent atoms as possessing a plane or, at least, a

flat shape. This differs from the usual idea of the grouping
in which the four univalent atoms are put at the apices of

a regular tetrahedron, at whose centre is placed the carbon

atom. If we rely on the assumption that each of the four

univalent atoms is bound by the carbon atom in the same

way, we can scarcely make any other supposition so long
1

Phys.-chem. Tabellen, 2. Aufl. 1894, tab. 126. But the corrigenda

published later must be consulted
;
from these the numbers quoted are

taken.
2 Wien. Sitzungsber. 1872, Ixv. Abth. 2, p. 323.
3 Ibid. 1878, Ixxviii. Abth. 2. p. 279.
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as the atoms are considered at rest. But this conclusion

loses its justification if we suppose the gaseous molecule

to be in motion and in brisk rotation about its centroid,

which lies in the atom of carbon ;
for the univalent atoms

are driven by the centrifugal force into the equatorial plane
in which they rotate about the carbon atom. This con-

ception seems to be juster than the other, at least for the

state of gas, though the other may, perhaps, better suit the

case of the liquid or solid state.

It is not surprising to find that the benzol atom, which
we are accustomed to consider ring-shaped, also shows

itself to have a plane structure. According to Landolt
and Bernstein's tables, the experiments on diffusion by
Winkelmann 1 and those on viscosity by Puluj

2
give

the values 93000 (W.) and 80350 (P.) for benzol, whereas

the value calculated from the formula C
6
H

6
is 89300. For

aceton (C 3
H

G0) the same tables give 68000 from an

experiment by Puluj
3 on viscosity, the calculated number

being 68800.

We find 4 also a tolerable agreement for the following

group of alcohols :

Values of Q.
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while for the following acids we have :
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tables, while those marked ' calculated
'

are obtained from

the chemical formulae. There is in general a fairly good

agreement between the two columns, which, as in the

former cases, is the less the greater the number of atoms
combined in the molecule. But differently from what

appears in respect to the three other series, the values of

the section as calculated from the chemical formulae are

greater than those deduced from the observations, whereas
in the other cases it is the observed numbers which mostly
are the greater. We shall, therefore, feel inclined to look

for the cause of the deviations in the inexactness of the

values as deduced from the observations on viscosity or

diffusion.

In the foregoing I have taken account of all the values

given by Landolt and Bornstein which are referred to

the temperature C. I have left out only those values

that are given for very much higher temperatures ; these

cannot be brought into agreement with those calculated

from the chemical formulae, and are mostly much the

greater. From this we may conclude that the section of

compound molecules is very variable with the temperature,
and, as we might expect, increases considerably as the tem-

perature rises.

We can, consequently, expect agreement between theory
and observation only when all the numbers are reduced to

the same temperature. And so good an agreement is ex-

hibited by the great majority of the values at for gases
and vapours that we have to conclude in general that

their molecules have a shape that is flat, and not spread out

on all sides into space. This view seems to be the most

probable, at least for the gaseous state.

113. Molecular Volumes

If the molecules were extended in space on all sides

they would behave very nearly as if they were spheres;
and no further justification would be needed for looking

upon the envelopes, which surround them in such wise
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that no other molecule can penetrate with its centroid into

them, as real spheres and calling them their spheres of

action. But, after the foregoing explanations, we must

hesitate to believe in the spherical form of the gaseous
molecules and, perhaps too, in the spherical form of their

spheres of action.

Against this, however, it may be argued that the flat

discs which we call molecules are not at rest, but are con-

ceived as being continually in motion
; and since, too, they

are continuously turning round, they must exert their

actions equally in all directions of space, and we should

thereby be justified not only in calling the regions within

which their action is sensible their spheres of action, but

also in looking upon them as veritable spheres.

But we have to consider that the surface conceived to

be constructed about a molecule obtains a somewhat dif-

ferent signification when it is assumed to be spherical. The

sphere of action has been enlarged to occupy a greater space,

which we may call the molecular volume
; for we may very

well so term that volume which a molecule at least

requires for itself. If the molecule were at rest, this space
would be the sphere of action, or that volume into which the

forces exerted by the molecule would not allow another to

penetrate; but the molecule is in motion, and requires,

therefore, a greater space. This will be smallest when the

molecule has no forward velocity and executes only rotatory

motions ; the rotation of the sphere of action then gives
rise to the molecular volume, or the space from which the

molecular forces strive to drive intruders now this way and

now that. The molecular volume is therefore the smallest

space required by the molecule in case it is not quite at

rest, or, in other words, robbed of its heat.

What I have here called the molecular volume is not

essentially different from that which for many reasons has

been denoted by this term in theoretical chemistry. As is

well known, chemists call the molecular or specific volume
the volume measured in cubic centimetres of a mass which
in grams is numerically specified by the same number as

the molecular weight. It is therein assumed that the sub-
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stance is in the liquid state, and consequently in a state

that is marked by its very slight compressibility. We may
therefore assume that the substances in the liquid state

have attained nearly the smallest volumes to which they
can be compressed. But the specific volume of a molecule

in the liquid state is then exactly the same as that other

volume which encloses the sphere of action, and which we
have also denominated the molecular volume. The single

difference that can still exist is due to the choice of the

units in which the numbers are expressed ; but this differ-

ence also comes to nothing if we content ourselves with

relative values and do not strive after a knowledge of the

molecular volumes in absolute measure.

When molecular volumes were calculated for the liquid
state from the molecular weights and the specific gravities,

simple relations were found between the calculated values

and the chemical composition of the substances. Kopp,
1

Schroder, and others were led to propose empirical laws,

from which the molecular volume of a liquid compound can

be calculated by simple addition of the values of the specific
volumes of its components.

Loschmidt 2 and Lothar Meyer 3 found similar and

just as simple relations when they attempted to estimate

the molecular volumes of gases. For this purpose they
started from a knowledge of the molecular free paths and
of the diametral sections as deduced on the kinetic theory
from observations on the diffusion and viscosity of gases.
In order to estimate the size of the molecular volume from
the section of the sphere of action they neglected the dis-

tinction between the sphere of action and the molecular

volume, and therefore took the sphere of action as actually

spherical.

With this assumption it is very easily possible to com-

pare the volumes of the spheres of action or the molecular
volumes

1 Ann. Cliem. Pharm. 1855, xcvi. pp. 1, 153, 303 ; 1856, c. p. 19.
2 Wien. Sitzungsber. 1865, Hi. Abth. 2, p. 395.
3 Ann. Cliem. Pharm. 1867, 5. Suppl.-Bd. p. 129.
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for different gases ; for this purpose the theoretical formula

for the coefficient of viscosity ( 76, 27),

77
= wG/4

2 =

or, more strictly by 78,

77
= 0-30967

is of service, in which, as before, m denotes the molecular

weight and fl the mean molecular speed. For two different

gases, which we distinguish by the subscripts 1 and 2, we
then obtain the ratio

since for equality of temperature we have

m^l^ = m2
fl

2

2 or m^f^ = W
2
*n

2
.

From this formula we see that the ratio of the sizes of the

spheres of action of two gases, viz.

can be determined from the molecular weights and the

coefficients of viscosity.

In order to be able to compare the values of the mole-

cular volume calculated by this formula with those given by

Kopp, the molecular volume V2
for any normal gas, chosen

arbitrarily, with which the others are compared must be

put equal to the value found by Kopp. For this purpose
Lothar Meyer employed sulphurous acid, because its

specific volume seemed to be determined with greater

certainty than that of any of the other gases whose

viscosity had been accurately measured by Graham. In

this way he, and likewise Loschmidt, obtained values for

the molecular volume which in many cases agreed really

well with those calculated by Kopp from the density of

the liquid.

But before I can tabulate the results I must mention

a striking circumstance which would be well suited to raise

objections against the accuracy of the calculation. Such
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doubts may be raised even against Kopp's laws, although
the molecular volumes of all liquids that had then been

investigated with sufficient exactness could be so well cal-

culated by them as to agree excellently with experiment.
For there remains the very grave objection that by these

rules one and the same volume is not always to be ascribed

to one and the same atom. Thus, for instance, the volume

of the oxygen atom has to be now 7'8, now 12'2
; the

nitrogen atom has to have a different volume in ammonia
and analogous compounds from what it has in cyanogen

compounds, and a third different volume in nitro-compounds.
A further objection is that the molecular volumes cal-

culated for gaseous bodies cannot be represented by the

atomic volumes given by Kopp for the liquid state, for this

seems to contradict the assumption that the atoms are to

be looked upon as invariable. But in order to obtain agree-
ment between calculation and experiment, Lothar Meyer
was obliged to assign, both to nitrogen and hydrogen, a

different atomic volume in gaseous compounds than in

liquid ones.

The variation in the occupation of space by the atoms

which we should have to assume in accordance with these

investigations can only mean this, that we have not at all

to do with the actual dimensions of the atoms and mole-

cules, but with the smallest space which these particles

at least require for themselves under the given circum-

stances. This space may really alter with circumstances.

As is almost obvious, it alters with the temperature,
because this determines the motion of the atoms. But the

shape of the molecule and the grouping of its atoms may
also have an influence on the space required by it as a

minimum. A flat molecule with its atoms grouped together

nearly in a plane will require more room, when turning
with its motions that depend on the temperature, than a

spherically shaped molecule with its atoms all crowded

together. It is thus explicable, from the differences between

molecules that have been described, that different extensions

in space may be ascribed to the atoms according to their

location in the molecule.
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The following table contains the results of the different

calculations of the molecular volumes :

Molecular Volumes.
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Lothar Meyer's assumed occupation of space by the

atoms. The volumes N = 7'7 and H = 3*0 are assumed,
and also = 12-2 in nitrous oxide and for one of the atoms

in sulphurous acid, but in all other cases = 7*8.

Columns IV. and V. contain the values as calculated in

accordance with Loschmidt's assumptions. In them are

put
S = 26, C = 14, Cl = 22-8, H = 3-5,

and in Column IV.
= 11, N = 13,

but in Column V.

= 11, O
a
= 21, N = 12, CN = 28.

The agreement of the last four columns with the first is

not complete, and indeed cannot be if the preceding con-

siderations are justified ; for here the sphere of action and

the molecular volume are treated as if the same thing,

whereas in reality the former is much the smaller. If the

theory were worked out with absolute accuracy, we should

have to deal with circumstances which depend not only on

the volume, but also on the section and shape of the mole-

cular system ; hence no perfect regularity of agreement can

show itself if the matter is treated one-sidedly as if the

volume alone determined the phenomena.
But so many cases exhibit a surprisingly good agreement

that all idea of the agreement being accidental must be put
aside. One will agree with Lothar Meyer in deducing
from his figures that the atomic volumes of many elements

in their liquid combinations are proportional to the spaces

occupied by their atoms in the gaseous state.

114. Influence of the Molecular Heat-motion in

Liquids on the Apparent Size of the Molecular
Volume

One feels oneself tempted to go a step further in this

conclusion, and to assume that the volumes in the liquid and

gaseous states are not only proportional to, but identical

with, each other. Lothar Meyer did not consider this

conclusion justified, but he is of opinion that the molecular
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and atomic volumes are greater in the liquid state than in

the gaseous. The weightiest reason that he adduces for

this view rests on a conception, like that of our gaseous

theory, of the state of motion which the molecules of a

liquid take in consequence of their heat.

We have to consider the atoms in lively motion not only
in the gaseous state, but also in the liquid and solid states.

The solid state seems to be characterised by the centroids of

the molecules being at rest while the atoms move. Dulong
and Petit 's law at least points to this, in so far as it

establishes a relation for the atomic heat of different bodies

into which the molecular heat does not enter at all. We
shall probably have to conceive of the liquid state as some-

thing between the other two ; so that we have to ascribe

to the particles of a liquid both molecular and atomic

motions. Of whatever kind these motions may be,
1

they in

any case require space for their performance. In a liquid,

therefore, a molecule will, under all circumstances, require a

larger space than if it were at rest.

The space demanded by a molecule will presumably
increase, not only with the kinetic energy but also with the

speed itself, in such a way that, of two different kinds of

molecules whose energies are equal, the lighter needs a

larger space for its correspondingly quicker motion than the

heavier and therefore more slowly moving molecule. The
same holds good for the atoms. By this consideration

Lothar Meyer explains the behaviour, for instance, of

hydrogen, for which a much smaller atomic volume results

from consideration of its viscosity than Kopp had calcu-

lated for it from its liquid compounds ;
and this was his

reason for assigning to hydrogen in gaseous molecules a

smaller volume than in molecules of a liquid.

Similar considerations may enter into the case of other

atoms, even if, perhaps, they are less striking. We may
therefore assume it as possible, for the molecules built up
of atoms, that their molecular volume in the liquid state

is larger than in the gaseous.

1 On this subject further explanations will be found in Clausius' memoir,

Pogg. Ann. 1857, c. p. 360 ; Abhandl 2. Abth. 1867, p. 236.
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In spite of all this, we have no reason to believe that the

molecules themselves are larger in a liquid than in the

vapour of the same substance. For, to explain the difference

of the two states of aggregation, the assumption that the

motion of the molecules in the two cases is different seems

sufficient. If the molecular motion in liquids were known
to us just as much as the motion in gases, we should be in

as good a position for liquids as for gases to determine in

absolute measure the sum of the sections, or any other

corresponding property, of the whole assemblage of mole-

cules contained in unit volume, and we could thus by
experiment decide the question with certainty whether the

difference of the states of aggregation consists only in the

motion or also in other properties of the molecules. But so

long as we are without a kinetic theory of the liquid state,

we cannot in the determination of the extension in space of

the molecules bring into the calculation the influence of

their motion, as in the case of gases, and we therefore

obtain values which are too high.

116. Possibility of Determining the Size of Gaseous
Molecules

We have succeeded, however, in obtaining limiting

values, at least, of the sizes of molecules in absolute mea-
sure by comparison of the two fluid states of aggrega-
tion. Such a calculation was first attempted and made by
Loschmidt, 1 and then later by Lord Kelvin 2

(then Sir

William Thomson) and by Maxwell 3 in the memoirs

already cited.

These calculations assume the sphere of action to be

spherical, and they are based on the relation between the

mean free path L and the radius s of the sphere of action,

which was discovered by Clausius, and is with Maxwell's

theory represented by the formula

1 Wien. Sitzungsber. 1865, lii. Abth. 2, p. 395.

2
Nature, 1870, i. p. 551 ; Sillimaris Amer. Journ. 1. pp. 38, 258.

3 Phil Mag. 1873 [4] xlvi. p. 453 ; Sclent. Papers, ii. 1890, p. 361.
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that we have already ( 109) employed. This may be written

in the form

wherein the value of s-, which may also be called the

diameter of the molecule, is expressed by magnitudes of

simple signification. Since j?7rs
3
is ( 109) the volume of the

molecular sphere, the product ^Trs^N denotes the space

actually occupied by the molecules contained in unit

volume.

Let ft denote the ratio of this volume to the unit volume

in which the molecules are contained, or

we shall with Loschmidt call it the coefficient of con-

densation, since underlying it is the meaning that it repre-
sents the extreme limit of possible condensation. We thus

obtain for the molecular radius the formula

which allows the possibility of a calculation in absolute

measure, if we may assume that when a gas is transformed

into a liquid it has actually reached its maximum condensa-

tion ; for in this case the value of the coefficient of con-

densation would be given simply by the ratio of the

densities of the substance in the gaseous and liquid states.

This assumption is certainly not free from doubt, since,

in the first place, the assumption of the spherical shape is

not justified, and in the second, as we have remarked in ihe

foregoing paragraph, the space required by a molecule in

the liquid state is possibly, or probably, not equal to the

extension of the molecule in space when actually in the

gaseous condition. The values of the coefficient of condensa-

tion t) so obtained will thus presumably be too large, and
this must also be true of the values of the molecular

diameter s which are calculated on this assumption. Such
a calculation is not, however, valueless, because it at least

shows us that the gaseous molecules must be less than a

certain magnitude which is expressed in absolute measure.
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116. Values of the Molecular Diameter

The calculation of the molecular diameter s- may be

actually carried out for a large number of gases and

vapours, since now not only their mean free paths are

known from measurements of viscosity and diffusion, but

also their densities in the liquid state.

I first of all tabulate the necessary data as to density in

the liquid state of the series of gases whose free paths are

sufficiently well determined from viscosity experiments ;

and wlien several determinations are to hand for the same
material I shall always choose the greatest, as this is to be

preferred for our purpose.
For the density of liquid sulphurous acid Is. Pierre 1

found the value 1'49 at 20
; for liquid ammonia

A. Lange 2 obtained the value 0-6954 at 50; for liquid

carbonic acid Cailletet and Mathias 3 found 1-057 at

34, and the same observers 4 determined the value 1-003

for nitrous oxide at 20*6. The density of liquid ethyl
chloride is given as 0-9216 at by Is. Pierre,

5 0-9176 at

8 by Linnemann, 6 0-9253 at by Darling
7

; of these

values I use the greatest 0*925. For methyl chloride Vincent
and Delachanal 8 found the density 0*9831 at 20.

Faraday 9 has found 0*866 for the density of cyanogen
in the liquid state, and 0*9 for the approximate density of

condensed sulphuretted hydrogen.
10 An s del I

11 found for

hydrochloric acid 0'908 at 0.

The density of liquid chlorine at 80 is given as

1-6602 by Knietsch,
12 and Cailletet and Mathias 13 found

that of liquid ethylene at 21 tobeO'414. Wroblewski 14

measured the density of liquefied oxygen at 200, and
1 Ann. Chim. Phys. 1847 [3] xxi. p. 336.
2 Zeitschr. f. Kalte-Ind. 1898, v. p. 39 ; Wied. Beibl. xxii. p. 265.
3 Journ. de Phys. 1886 [2] v. p. 555. 4 Ibid. 1886 [2] v. p. 555.
5 Ann. Chim. 1845 [3] xv. p. 362. 6 Ann. Chem. 1871, clx. p. 214.
' Ibid. 1869, ol. p. 221.
8
Comptes Rendus, 1878, Ixxxvii. p. 987 ; Ann. Chim. 1879 [5] xvi. p. 427.

9 Phil. Trans. 1845, p. 169 ; Pogg. Ann. 1848, Erg. Bd. ii. p. 215.
10 Phil. Trans. 1823, p. 193.
11 Chem. News, 1880, xli. p. 75; Wied. Beibl. 1880, iv. p. 310.
12 Ann. Chem. 1890, cclix. p. 100. 13 Journ. de Phys. 1886 [2] v. p. 555.
14

Comptes Rendus, 1886, cii. p. 1010.
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found the value 1-24; Olszewski 1 has likewise determined

the density of nitrogen at - 181 as from 0-859 to 0-905,

and that of marsh gas at 164 as 0-4148. And, finally,

Dewar 2 obtained for the density of liquid hydrogen at its

boiling-point, 238, the sixfold smaller value 0-07.

With these values of the density S for the substances in

the liquid state I have combined the numbers giving the

density A in the gaseous state, and from their ratio I have

calculated the coefficient of condensation

I have, however, not employed the observed values of the

density A of the gases, but their values as theoretically

calculated from their molecular weight M by means of the

formula 3

A= M/ (28-88x773-3).

I consider this procedure the more correct as it gives the

smallest values for A, and therefore also the smallest possible

values for the coefficient of condensation t>.

In order to now find from these values of t> the values

of the diameter s I have employed the numbers for the free

path L which I have deduced from Graham's observations

and have tabulated in 79. The following table contains

the results of this calculation :
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I have deduced similar values from the observations on

viscosity of Kundt and Warburg, 1 and also of Puluj,
2

and of these I quote the following :
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find this constancy when we proceed to calculate the path-
volume for a series of gases from the foregoing numbers.

It therefore follows that we cannot hold ourselves justi-

fied in taking the calculated values of * as representing the

actual diameters of the gaseous molecules. The reason that

we may not do so is obvious. There can be no doubt that the

molecules are not spheres in shape ; for, as we concluded in

112 from a large number of facts, they are more probably,
without exception, flattish discs of very small thickness. We
therefore cannot arrive at true values of their diameter and

volume by looking on them as spheres. At most we may
expect ( 113) to obtain from this calculation an estimate of

the volume of a larger sphere which the flat disc describes

when it rotates, and the mean diameter of a molecule must
be less than the diameter of this sphere. We may not,

therefore, take the values calculated for * as giving the true

size of the molecules, but may see in them only a superior
limit which the size of the molecules does not attain.

From these considerations we can conclude only that the

gaseous molecules are smaller than a sphere whose diameter

is one-millionth of a millimetre. But we may add as very

probable that the size of the gaseous molecules will in no

way appear to be vanishingly small when compared with

that small sphere. This is justified on many other grounds,
which we have still to mention.

117. Calculation of the Size of Molecules from th
Deviations from Boyle's Law

The above calculated numbers obtain a remarkably good
confirmation from the values which we obtain for the same

magnitude by a different mode of calculation first given by
vander Waals. 1 In the theory explained in Chapter IV.

of this book, by which van der Waals sought to explain
the deviations of actual gases from the Boyle-Gay Lussac
law, the grounds of these deviations were found partly in

1 ' Over de continuiteit van den gas- en vloeistof-toestand,' Leiden 1873,
transl. by Phys. Soc. London, 1890, Chap. VI. p. 384. Abstracted in Beibl. to

Pogg. Ann. 1877, i. p. 10.

Y 2
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the cohesion of the gases and partly in the space occupied

by their molecules. On the basis of this theory the values

of two constants a and b, the latter of which represents a

measure of the size of the molecules, could be calculated

from Kegnault's observations on the compressibility of

gases and on their expansibility under the action of heat.

This magnitude b is directly connected with the coeffi-

cient of condensation u described in the last paragraph, and

to recognise this more clearly we will seek with van der

Waals to push Clausius' theory of the molecular free

path a step further. The correction, which is calculated

in fuller detail in 34* of the Mathematical Appendices,
results from regard being paid to the fact that a particle

cannot pass over paths between other particles which are

equal to the distances apart of these other particles, or, more

strictly, of their centroids ; for the paths cannot be greater
than the length left free between the spheres of action of the

particles. For this reason the estimated molecular free path,

L = X3

/7rA/2,

has to be diminished by an amount which depends on the

radius s of the sphere of action. This correction attains

its greatest value when the collision is direct and central,

in which case the paths of both colliding molecules are

together shortened by the radius s. On the average its

value is smaller, and equal to

(V'2/3) ,,

so that the free path would, strictly speaking, be represented

by the formula
L = (X

3
-f7rs

3

)/7rA/2.

From this we see that the so-called elemental cube X3
,
in

which a single molecule is contained, is diminished in the

corrected formula by
|7r*

3 =
447r*

3
,

that is, by four times the volume of the molecular sphere.
From this remark we at once obtain the meaning of the

constant b which comes into vanderWaals's theory, since

on this theory a similar correction was introduced by putting
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the smaller volume v b for the larger volume v = N\3 of

the whole mass consisting of N molecules. The number to

be subtracted has thus the meaning

b = 4

that is, it is equal to four times the volume actually occu-

pied by the whole of the molecules that are contained in

unit volume.

Putting in this equation the value of the free path given

by the former formula i _ /o 27^7-

which may without hesitation be here employed without

correction, we obtain 7 T , /0 /QXoL (v2/3)s-,

so that we can calculate the molecular diameter s from the

known values of b and L. In this calculation we have still

one precaution to take; for b and L are both dependent on

the pressure, b being proportional to the number N and

therefore to the pressure, and L being inversely proportional
to these magnitudes. The values given in 79 and 116 for

the free path have reference to the pressure of one atmo-

sphere, while the values of b calculated by van der Waals
and others from his theory presuppose, at least for the

greatest part, the pressure of 1 metre of mercury ;
to com-

pensate for this difference we must multiply the formula for

the calculation of the radius of the sphere of action by the

ratio of the pressures, and thus put

where b is referred to the pressure of 1m. of mercury, and

p denotes the pressure in metres of mercury for which the

value of L, which is employed, holds good.
From the observations made by Eegnault and

Cailletet on the deviations of gases from Boyle's law,

van der Waals 1 has calculated the following values:

Air .

'

. . . 6 = 0-0026

Carbonic acid ... 30

Hydrogen .... 069

1

ContinuUeit, die. Chap. VIII. b. 41, 42, pp. 67-9. Phys. Soc. Transl.

pp. 400-2. F. Both, Wied. Ann. 1880, xi. p. 25.
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On combining with these the values of the free paths given
in 78 and 79, as obtained from Graham's experiments
on transpiration, we obtain for the molecular diameters the

values :

Air . . . s = 0-80 x 10~ 7 cm.

Carbonic acid . O63

Hydrogen . . 0*40 ,,

These numbers are markedly smaller than those given

before, but they are of the same order of magnitude, and

therefore we may see in them a confirmation of the correct-

ness of the theoretical views from which we have started.

We should obtain a better agreement if we replaced the

numerical factor of the formula, 3/\/2
= 212, by a greater

value. Our determination of this factor really rests on a not

entirely safe footing, and it has not always, therefore, come
out the same. 1 We might object that the correction, which

the value of the free path needs on account of the space

occupied by the spheres of action, must not be applied

quite in the same way as that which we have to make to

Boyle's law for the same reason. The two corrections,

therefore, b and 4*^irsPN, need not be equal to each other, but

may still differ by a numerical factor ; and this factor is

obtained by Clausius 2 and G. Jager
3 from the considera-

tion that molecules which are near each other cannot be

struck by another colliding particle at every point of their

surface if they really occupy space ; there is therefore a

diminution of their surface to be taken into account in the

calculation, and this consideration leads to the formula

1 In the first edition of this book another smaller value, 1-5, was taken ;

this results from assuming as strictly valid the calculation first developed in

34* of the Mathematical Appendices. There are grounds of probability in

its favour which depend on the phenomena described in 118 (Heilborn,
Exner's Bepert. 1891, xxvii. p. 369; Sydney Young, 1898, Chem. News,

Ixxviii. p. 200), but the larger value seems to me to be theoretically better

established.
2 Mech. Warmetheorie, 1889-91, iii. pp. 57, 213 ; Wied. Ann. 1880, x,

p. 102.
3 Wien. Sitzungsber. 1896, cv. Abth. 2, p. 97.
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from which we get for the determination of s the formula

*== (24/5^/2) bL.

The factor, according to these theories, becomes 24/ 5\/2=3'39,
and attains therefore a value by which a satisfactory agree-
ment is established.

118. Calculation of the Size of the Molecules from
the Dielectric Capacity

Stefan,
1 in his memoir on the theory of the diffusion of

gases, drew attention to a simple relation in which the

values of the mean free paths of the gaseous molecules

stand to the refractivities of the gases. He remarked that

the refractive index n of a gas is the smaller the greater the

free path L of its molecules, the simple law, indeed, that the

product
(n
-

has a nearly constant value, holding for many gases, especially
for those whose properties have been investigated with the

greatest exactness.

Now Maxwell's electromagnetic theory of light re-

quires the refractive index of a substance to be equal to the

square root of its dielectric capacity ; and this law has been

shown by Boltzmann's
2
experiments on seven gases to be

very exactly correct. Therefore also the dielectric capacity
of a gas must stand in as simple a relation to the mean free

path of its molecules as its refractive power.
The surprising fact that a simple connection exists

between two such different magnitudes as the dielectric

capacity and the molecular free path finds its explanation
in an assumption regarding the molecular qualities of

dielectric bodies made by Faraday and by Mossotti.

The molecules of such substances are assumed to be good
conductors of electricity, while the interspaces between

them are taken to be insulating. According to this assump-
tion the dielectric polarisation must depend on the size and

1 Wien. Sitzungsber. 1872, Ixv. Abth. 2, p. 341. Compare also Kubenson,
Oefv. Kgl. Vetensk.-AUad. Forhandl. Stockholm, 1884, xli. No. 10, p. 3.

2
Pogg. Ann. 1875, civ. p. 421.
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distance apart of the molecules, and therefore on the same

elements which regulate the molecular free path. This

explanation makes the connection of the two magnitudes to

appear no longer surprising.

Clausius 1 has developed the theory of these relations

after the method of Maxwell and Helmholtz. His

theory, with the assumption that the molecules are spherical

in shape and are perfect conductors of electricity, gives the

dielectric capacity K in the form

where g denotes the fraction of the volume containing the

gas which its molecules actually occupy. By transformation

then we obtain the value of g expressed in terms of the

dielectric capacity K, viz.

We see at once that this magnitude g is closely allied in

its meaning to the coefficient of condensation t> introduced

byLoschmidt; for both ratios represent exactly the same

thing if the molecules come into actual contact in their

utmost state of compression. But it is possible, and even

probable, that the spherical surfaces on which the electric

charges of the molecules reside, do not come into actual

contact with each other, even when the molecules are on the

point of entering within the range of their spheres of action.

The fraction denoted by g may therefore be less than that

denoted by \>, and can at most be equal to it.

If, therefore, we replace \> in Loschmidt's formula

by g, we shall probably obtain a smaller value for the mole-

cular diameter s- than is given by either Loschmidt's or

van der Waals's formula. Dorn 2
is the first who has

carried out this calculation of s by the formula

s = 6^2 gL = 6V2 L(K - 1) / (K + 2),

and he combined the values of the dielectric capacity K
1 Mechanische Warmetheorie, 1879, 2. Aufl. ii. p. 94.
2 Wied. Ann. 1881, xiii. p. 378.
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determined by Boltzmann, as well as one observation by

Ayrton and Perry, with the values of the molecular free

paths L calculated from Graham's experiments on trans-

piration. The numbers found by him are really much
smaller than those obtained by the other modes of calcula-

tion, as we see from the following comparison of his numbers

with those calculated by the methods of Loschmidt (116)
and van der Waals ( 117).

Values of 10 7
s in cm.
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not only from the dielectric constant K by means of the

relation

but also from the index of refraction n by means of the

analogous formula
= (- !)/(* + 2),

which on Maxwell's theory is identical with it. To avoid

repetitions I will cite these figures only from Exner's
memoir.

Values of 10 7s in cm.

Ammonia



118 DIKECT PROPERTIES OF MOLECULES 331

had to do with magnitudes which are capable of direct

measurement. But since these magnitudes are much
smaller than the smallest that is microscopically visible,

and since a knowledge of them is attainable only in

roundabout ways by the use of many kinds of measures

and uncertain conclusions, we must rejoice and, at least

provisionally, be content that we have found values which

differ only so little from each other that they, in all cases,

are of the same order of magnitude.
We shall be able to form a judgment with greater

certainty as to the trustworthiness of these figures when we
shall have compared them with the values deduced from

different speculations ( 122). But we may now attempt

to decide the question, which method of determining the

absolute magnitude of the molecules deserves preference

over the other. The answer can scarcely be doubtful if

we remember that the determination by means of the

mechanical measurements cannot give too small, but only

too large values of the molecular diameter. The smaller

of the values found is therefore to be looked upon as the

more credible, and I therefore use the value

s- = O2 x 10~7 cm.

in some further conclusions as to the state of gaseous
molecules.

But there is still a further reason which we may give

for preferring the values calculated from the dielectric

capacities and the refractive indices. The equality of the

path-volume ( 69), which the former values failed to give

( 116), comes into view when the latter are employed in the

calculation, as is proved with sufficient accuracy by the

following values of the product s\/L calculated by Dorn :

Air 1-55

Carbonic acid . . . .1*42

Hydrogen . . . . 1'84

Carbon monoxide . . . 1'86

Nitrous oxide . . . . 1*50

Ethylene .... 1'56

Marsh gas .... 2'12
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These numbers have for unit of length the millionth

part of a millimetre.

119. Section and Volume of Molecules

Although we may not pretend to see an exact evaluation

of the size of the molecular diameter in the value 0-2, which

we have assumed as a mean, yet it seems justifiable to

suppose that this number may serve as an approximately
correct estimate. It is therefore not lost trouble, and it is

more than a play with figures, if we calculate the sectional

area and the volume of a molecule from this estimate of its

diameter. We shall be conscious that the calculation can

give us only approximate values, since we must once more
introduce the assumption of a spherical figure, which is not

strictly correct.

If, then, we put s- = 2 x 10~ 8 cm. as the average
diameter of a gaseous molecule, its sectional area will be

i-TTs
2 = 3 x 10~ 16

sq. cm., and its volume ^Trs
3 = 4 x 10~24 ccm.

Keferred to the millionth part of a millimetre as unit of

length, these numbers are 0'2, 0'03, 0-004 respectively, the

units of area and volume then being the face and volume of

a cube of which the edge is a millionth of a millimetre.

12O. Number and Distance apart of Molecules

Now that we have attained to a knowledge of the size

of the molecules, there opens out the possibility of taking
a further step towards the knowledge and measurement of

an invisible world by determining first the value of N, or

the number of molecules contained in unit volume. This is

at once obtained if we compare the value of the sectional

area just computed with the sum of the sections Q,
discussed in 109, which we likewise know in absolute

measure, having calculated it numerically in 110. By this

magnitude Q we understand the area covered when we range
close together on a plane all the molecules contained in one

cubic centimetre of a gas under atmospheric pressure. Since

we now know, at least approximately, the size of the
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covering spheres, in addition to the area covered, it is easy

to calculate the number of spheres which we wish to find.

In this calculation I shall content myself again with an

approximate estimate. If the area of a molecule is about

3 x 10~ 16
sq. cm., while the molecules contained in 1 cubic

centimetre of air can cover an area of 18400 sq. cm., their

number is

N = 18400/(3 x 10~ 16
)
= 61 x 10 18

,

or in 1 cubic centimetre of air under atmospheric pressure

there are about 60 trillion molecules. This number holds

not only for air, but also, by Avogadro's law, for all gases
under the pressure of one atmosphere.

From this number we at once obtain also the value of

the mean distance apart X of two neighbouring molecules

by means of the formula

N\3 = 1,

whence

X = 2-6 x 10~7 cm. = 2*6 millionths of a millimetre
;

and this number, too, is the same for all gases under

atmospheric pressure.

The values we have found confirm in a remarkable way
a conjecture which Clausius made so early as 1858 in

his celebrated memoir on the molecular free path. In

this paper, which has formed the starting-point for the

investigations now occupying our attention, Clausius l

estimates the fraction of the space, enclosing a gas which

is actually filled by the spheres of action when the pressure
is that of one atmosphere, as about one-thousandth, this

estimate being given for the explanation of his ideas by a

numerical example. Clausius, therefore, puts X
3= 1000. fTry

3
,

whence it follows that X = 16 s- ;
and he further finds

L = 61 X from his formula for the free path.
2

If we find the corresponding relations with the values

that we have now obtained from observations, we have
in round numbers for air L = 0*00001 cm., and therefore

1

Fogg. Ann. 1858, cv. p. 250 ; Abhandl 2. Abth. 1867, p. 273.
2
Compare 65.
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L = 40 X about. We further find, since s- = 2 x 10~ 8
cm.,

the relation X = 13 s, and, finally, we obtain for the volume

actually filled by the molecules contained in 1 cubic

centimetre under atmospheric pressure,

N.7Ts3 = 2-5 x 10~4 ccm. = cubic millimetre ;

the molecules themselves therefore fill only about a 4,000th

part of the whole space containing them. The spheres of

action of Clausius, of which s is the radius and not the

diameter, occupy a volume eight times larger than the

molecules, and therefore about a 500th part of the whole

volume.

The agreement with the numbers assumed by Clausius
is so close that the good fortune with which he chose his

example would appear wonderful if we had not rather to

see in it a testimony to his sure and clear vision into things.

If we calculate the values of these magnitudes for very
small pressures such as occur in Geissler's tubes, i.e. for

a pressure of about 1 mm. of mercury, the number of

molecules in 1 cubic centimetre will be 760 times less,

or N = 80000 billions about ; it thus remains still very

large, and we see again that a space containing gas which is

so extremely rarefied is still very far indeed from being

completely empty.
1 In this case the mean distance apart

of two neighbouring molecules is X = 23 millionths of a

millimetre about.

We can also raise the question as to how these relations

alter when the gas is very highly compressed. At a pressure
of 1,000 atmospheres the distance between neighbouring
molecules would become X = 0-26 millionths of a millimetre,

so that the molecular spheres must then be nearly in contact

with each other. But, as we have several times remarked,

we must not leave out of account the fact that our numbers

represent only limiting values ; s may very well be less than

we have calculated it, and in this case N would have to be

taken still larger, while X on the contrary would diminish,

though not so much as s, since the value of the free path L
is not altered by such change of s.

1

Compare 84 and 110.
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121. Absolute and Specific Weight of Molecules

Remembering this possibility, it will not appear an un-

allowable boldness to attempt also, as vander Waals and

Maxwell have done, to calculate the mass of a molecule in

absolute measure, or at least to determine a limiting value

of it.

From the number of molecules in 1 cubic centimetre

of a gas which we now know, we obtain very simply the

mass of a single molecule by dividing by this number the

mass of the gas contained in 1 cubic centimetre, which is

the same number as that representing the density of the gas

relatively to that of water. Since air under atmospheric

pressure is 770 times lighter than water, it follows that

there will be about 770 x 60 or 46,000 trillion molecules

of air in 1 gram, or 46 trillions in 1 milligram ; or the mass
of a molecule of air is about 2 x 10~ 23

gram.
From this we can also calculate the density of a mole-

cule of air, since we know the size of the molecules
; for we

have the mass of a 46-trillionth of a milligram contained in

a volume of 0*004 trillionth of a cubic millimetre, so that

the specific gravity of the actual substance of an air mole-

cule referred to water is 5, which is considerably greater
than the specific gravity of air in the liquid state.

Hydrogen is about fourteen times lighter than air, and
there are therefore about 640 trillions of hydrogen molecules

in 1 milligram ; the unit of the usual atomic weights is thus

equal to about a 1,300-trillionth of a milligram, or, as we
may more shortly express it, a quadrillion of hydrogen atoms

weigh about f gram.

122. Comparison with other Limiting Values

Having arrived at the end of these investigations, we will

not omit to compare the last remarkable conclusions that

have been deduced from the kinetic theory of gases with
the results of other methods by which attempts have been

made to compass the weighing and measuring of molecules

and atoms.



336 DIRECT PROPERTIES OF MOLECULES 122

The most direct judgment as to the smallness of the

atoms is afforded by investigations on the limits to which

the divisibility of matter can be pushed. For this purpose

strongly-coloured substances have been employed, and these

have been diluted by solution until their colour has disap-

peared. By experiments of this kind Musschenbroek,
A chard, and other older physicists,

1 as also A. W. Hof-
mann 2 in later years, have shown that coloured substances

can be plainly recognised when diluted to a 100-millionth,

or even less, of their strength, from which we may conclude

that the smallest quantity that can be weighed can be

divided into several hundred million parts. Annaheim 3

has calculated in this way that an atom of hydrogen must

weigh less than O05 millionth of a milligram [which is

6 x 1015 times our calculated mass]. It is obvious that this

method is not suitable for obtaining the outside limit of

divisibility, but the experiments are interesting as showing
that the numbers calculated in the foregoing paragraphs are

really much smaller than the limit attained.

The same may be said of an experiment by Kirchhoff
and Bun sen,

4
by which it was proved that a 3-millionth

part of a milligram of sodium chloride is sufficient to colour

the flame of a Bunsen burner distinctly yellow.

In a similar way attempt has been made to push the duc-

tility
5 of a substance to the utmost, in order thereby to obtain

a limit for the size of the smallest particles. Faraday 6

has obtained gold leaves whose thickness he estimates

as 100 times less than the length of a wave of light ; since

these leaves must contain at least one layer of atoms, it

follows that the thickness of an atom of gold is equal to or

less than 5 millionths of a millimetre. This limit corre-

1 The older literature has been put together by Muncke in Gehler's

Worterbuch, 1838, ix. p. 709, article '

Theilbarkeit,' and by G. Karsten
in the Encyklopadie der Physik, edited by him, 1869, i. pp. 820, 877.

2 Ber. d. deutsch. chem. Ges. 1870, p. 660.

3 Ibid. 1876, ix. p. 1151.
4
Fogg. Ann. 1860, ex. p. 168.

5
Compare the article

' Dehnbarkeit ' in Gehler's Worterbuch, 1826, ii.

p. 504.
6
Pogg. Ann. 1857, ci. p. 318.
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spends sufficiently accurately to the size of the gaseous
molecules which we have obtained from the kinetic theory,
viz. 0'2 millionth of a millimetre for the diameter of a

molecule.

The experiments by which it has been attempted to de-

termine the size of the spheres of action of the molecular

forces in liquids, or the distance to which capillary forces

sensibly extend, also afford help towards the answering of

our question. For this purpose Plateau 1 measured the

smallest thickness at which films of a soap solution contain-

ing gtycerine could still hold together ; he took a half of

this thickness as the range of the molecular forces, and thus

obtained the value 0*00005 mm. This value of the range
of the molecular forces was also found by Quincke 2

by measuring the thickness of thin layers on a wall which
exerted capillary force on a liquid through the thin layer.

Sohncke 3
proceeded by Plateau's method, and measured

the smallest thickness of a layer of oil which spread itself

over the surface of a liquid ; he, like Plateau and Quincke,
also found 0-00005 mm. for the semi-thickness. But

shortly after Kontgen 4 showed that it is possible to obtain

much thinner layers of oil ; he observed layers of only 0'56

millionth of a millimetre which held together, so that the

range of the capillary forces in Plateau's sense would be

only 0'3 millionth of a millimetre, and would consequently

agree almost exactly with the diameter of the molecular

sphere of a gaseous particle. Drude 5 found that, when a

film made of Plateau's soap solution has become so thin

as to show no colour, but blackness only, it is 17 millionths

of a millimetre thick at this point, so that the range of the

capillary forces would be half of this, or 8J millionths of a

millimetre/' E e in o 1 d and K ii c k e r 7
had, by measurements

1 -Mem. de Brux. 1861, xxxiii, p. 44
; 1847, xvi. p. 35.

2
Pogg. Ann. 1869, cxxxvii. p. 402.

3 Milncli. Sitzungsber. 1890, xx. p. 93 ; Wied. Ann. 1890, xl. p. 345.
4 Wied. Ann. 1890, xli. p. 321.

'

5 Ibid. 1891, xliii. p. 158.

Johonnott estimates 6 x 10~ 6 mm. (Phil. Mag. 1899 [5] xlvii. p. 501).
7 Proc. Roy. Soc. 1877, xxvi. p. 334

; Wied. Ann. 1891, xliv. p. 778.

Z
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of its electrical resistance, found the thickness of such a film

to be 12 millionths of a millimetre. Buns en,
1 and also

Warburg and Ihmory,
2 found magnitudes of the same

order by weighing the films of water formed on glass. But

long before all these experiments were made Thos. Young,
as Lord Rayleigh

3 has pointed out, instituted measure-

ments for the determination of the range of the capillary

forces, for which he found a 250-millionth of an inch, i.e.

0-1 millionth of a millimetre, but by a calculation that is

really uncertain.

Lord Kelvin 4 found just as small a value as these for

the volume of the molecules of a liquid by discussing in

another way the phenomenon examined by Plateau, viz.

the formation of thin films of liquid. He investigated the

work required to extend a liquid film, and also the corre-

sponding amount of heat, and found from these considera-

tions that inconceivable conclusions would follow if we
were to assume that several layers of the ultimate atoms of

water were to lie over each other in a water film the

thickness of which is twenty times less than a millionth of

a millimetre. Boltzmann 5 calculated the work which is

necessary for a displacement of the particles that are held

together by capillary forces, and compared it with the tenacity

of the substance in the solid state
;
this consideration led to

the result that the range of molecular forces in metals lies

between 1 and 7 millionths of a millimetre. By similar con-

siderations De He en 6 concluded, from a comparison between

the tension of a capillary surface and the pressure of the

vapour above it, that the radius of the sphere of action for

water is about 3 millionths of a millimetre. On the contrary,

Gr. Jager 7 obtained the values 0*5 for water and alcohol, 0*4

for methyl alcohol, 0'7 for aceton and carbon disulphide, 0'8

for ether and chloroform, all expressed in millionths of a milli-

Wied. Ann. 1885, xxiv. p. 321. 2 Ibid. 1886, xxvii. p. 481.

Phil Mag. 1890 [5] xxx. p. 474. 4 Proc. Eoy. Soc. 1858, ix. p. 255.

Wien. Sitzungsber. 1877, Ixxv. Abth. 2, p. 801.

Bull. Ac. Belg. 1892 [3] xxiii. p. 235
;
Wied. Beibl. 1892, xvi. p. 724.

Wien. Sitzungsber. 1891, c. Abth. 2, p. 1233; Wied. Beibl. 1892, xvi.

p. 345 ; Winkelmann's Handbuch d. Physik, 1896, ii. Abth. 2, p. 602.
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metre. He starts with the assumption that we may consider

the molecules as small drops which result from larger ones

that are broken up by collisions with each other and with the

sides of the containing vessel. Such a division of a drop into

two smaller ones is possible only when the kinetic energy of

the collision is greater than the work which must be spent
in overcoming the forces of cohesion and producing the in-

crease of the capillary surface that results from the division.

Since both the kinetic energy of the molecules and the

intensity of the capillary pressure are known, the limit at

which divisibility ceases can be determined. Houlle-

vigue
1 and H. A. Wilson 2 tried to find the same limit by

determining the conditions under which the latent heat of

vaporisation and the capillary pressure of a drop of water

equilibrate each other
; and the results of both give

O13 millionth of a millimetre as the smallest diameter

which a drop of water can have.

Phenomena can be adduced from other branches of

physics, such as optics, for example, which may serve to

give a determination of the size of the smallest particles.

Our first idea would be to get an estimate of it from the

size of the smallest objects that are visible microscopically ;

but the limit of visibility is, unfortunately, reached far too

soon in consequence of the diffraction of light in the micro-

scope, so that only a 4,000th part of a millimetre is recog-
nisable. 3 The dispersion of light can, on the contrary, be

utilised for an estimation in this respect, as it is caused by
the action of the material particles on light ; and Lord
Kelvin 4 has so employed it. It is sufficient to mention

here that the simple laws of dispersion in transparent media

cannot be correct if only a few particles are to be found in

the length of a wave of light. If there are many, the

distance separating two neighbouring particles must be

much smaller than the length of a wave of light, and

1 Journ. de Phys. 1896 [3] v. p. 159.
2 Chem. News, 1896, Ixxiii. p. 63.

3 Helmholtz, Pogg. Ann. 1884, Jubelband, p. 557.
4
Nature, 1870, i. p. 551.

z 2
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if the number were 1,000 we should have 0-0005
/
1000 mm.

for the distance between adjacent particles ; and this agrees

fully with the value determined by the theory of gases.

A far better estimation, which rests on similar assump-
tions, is the calculation from the refractive index of a gas,

which has already been mentioned in 118.

In addition to the method, described also in 118, of

calculating the size of molecules from the values of the

dielectric capacity, there are also other ways of deter-

mining it by electrical measurements. For this we can

make use of considerations which compare the energy of

the electrical forces brought into play with other kinds of

energy, just, indeed, as those we have mentioned in respect

of the capillary forces. By comparing his measurements of

the force of attraction between a pair of plates of zinc and

copper, which are electrified by contact with each other,

with the equivalent amount of heat, Lord Kelvin 1 finds

that it cannot be possible to make plates of these metals,

whose thickness is 30 times less than a millionth of a

millimetre. The atoms of zinc and copper, therefore, like

the molecules of air, have a size that is measurable in

millionths of millimetres. L. Lorenz 2 also makes use of

the electrical potential energy of a zinc-copper element and

the value of the energy necessary for the electrolysis of

water, and from these data he draws the conclusion that

the mean distance apart of two molecules of water in the

liquid state must be at least 10 times less than a millionth

of a millimetre. Oberbeck, 3 who investigated experiment-

ally the electromotive forces of thin layers, found that the

molecular forces of platinum are perceptible through layers

of other metals of from 1 to 2 millionths of a millimetre

in thickness.

If these different methods that have been used to obtain

a limit of the divisibility of matter do not all lead to the

same value for the size of the particles, they yet agree,

without exception, in giving the thickness of an atom or

1 Proc. Roy. Soc. 1860 ; Nature, 1870, i. p 551, ii. p. 56.

2
Poog. Ann. 1870, cxl. p. 644.

3 Wie'd. Ann. 1887, xxxi. p. 337.
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molecule of the substances investigated as not much less

than a millionth of a millimetre. We may, therefore,

consider ourselves justified in looking upon this measure

as a tolerably accurate limit of the size of the smallest

particles.
1

123.

The information given by the kinetic theory as to the

forces that act between atoms and molecules seems very

meagre in comparison with the widely extending knowledge
of their state which this theory affords.

We know as a fact, directly proved by experiment, that

the forces exerted by gaseous molecules on each other when

separated by their average distances are of very small inten-
v

sity. But this tells us nothing as to the same forces which

come into operation between two molecules when they

approach very near to each other. Our theory assumes that

forces come into play at a collision which drive the mole-

cules away from each other ; but, however much we have

discoursed of impacts and impulses in this book, we have

learnt nothing more as to the nature of these forces ;
we

have remained in ignorance whether these forces are in-

stantaneous stresses, which come into play at the moment
of contact, or if they are of the kind generally assumed in

theories of capillarity, which act at only very small dis-

tances and rapidly fall off as the distance increases, while,

on the other hand, preventing a diminution of the distance

beyond a certain limit.

If the theory of gases does not decide this question, it is

no ground for reproach of the theory ; but, on the contrary,

it is the source of a superiority which this theory has over

others. For the reason that it does not decide the question
which of the two hypotheses on the nature of molecular

forces, which seem possible and admissible, is the true one,

is that it is itself independent of the choice of either of

1

[An admirable rts'ttmt of the experimental investigations on molecular

magnitudes is contained in K ticker's lecture 'On the Range of Molecular

Forces,' Journ. Chem. Soc. 1888, liii. p. 222. TB.]
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these hypotheses. The kinetic theory of gases is based on

firmer ground than that it should stand or fall with one

of these hypotheses.
Even though a decision respecting these hypotheses is

therefore not necessary for our theory, the question still

arises, whether absolutely no hypothesis at all as to the

process of an encounter has been introduced into our de-

monstration or general assumptions have tacitly been made.

The answer lies in the remarks which I have made in 25

with respect to the basis of Maxwell's law, as to the dis-

tribution of the different values of the speed among the

individual molecules.

Some general theorems of analytical mechanics have in

fact been introduced into our reasoning as the conditioning

assumptions upon which that important law rests ;
first and

^/foremost the proposition of the conservation of energy, then

some less important theorems which are generally looked

upon as conditions of that proposition, viz. the theorem of

the equality of action and reaction, and, lastly, the theorem

of the conservation of the motion of the centre of gravity of

two molecules both before and after an encounter. In addi-

tion to these, the hypothesis has also been made that the

duration of an encounter is very small in comparison with

the interval between two encounters. Other assumptions
were not necessary.

The assumptions enumerated are all satisfied, both if

the molecules are perfectly elastic and if they act on each

other with forces which fall off very rapidly as the distance

increases and which are therefore only sensible at exceedingly
small distances. They can also be fulfilled with other laws

of impact, as, for instance, when two absolutely hard bodies

collide, the hardness of which, together with the impossi-

bility of compressing them, causes a repulsive force to come

suddenly into play at the moment of the collision.

This follows from Poinsot's 1

investigations on impact,
so far as his results relate to perfectly elastic and absolutely
hard bodies. The correctness of this view is seen more

1 Liouville's Journ. de Math. [2] 1857, ii. p. 281; 1859, iv. p. 421;

Schlomilch's Zeitschr.f. Math. u. Physik, 1858, 3. Jahrg. pp. 143, 274.
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clearly from a memoir by Gustav Liibeck, 1 who in-

vestigates the laws of the collision of massive particles

without introducing any further suppositions than the

above-named theorems. It follows that these assumptions
are sufficient to determine the velocities with which the

colliding particles separate from each other after an en-

counter when the velocities which the particles possessed
before the encounter are known. We easily see, for instance,

without calculation for direct impact, that from the two pro-

positions of the conservation of kinetic energy and of the

conservation of the motion of the centre of gravity we
obtain two equations, which must be sufficient to fully de-

termine the two unknown values of the velocities after the

impact. The same thing holds in the more general case of

oblique impact, in which only the number of unknown

magnitudes is greater since several components come into

account.

We may from this conclude that the validity of the laws

which determine the change of the motions on the occur-

rence of an elastic impact is not confined to the case of

elastic bodies, but presupposes only that the above-named
theorems of mechanics hold good. We may therefore
assume that the laws of elastic impact are valid for the

encounters of molecules also without thereby ascribing elas-

ticity to the molecules themselves.

If according to this the answer to the question, what
forces are developed at an encounter of two gaseous mole-

cules, does not touch the foundation of the kinetic theory,
that question still remains so important and interesting that

we cannot pass it over in silence.

In memoirs upon this theory, and especially in the older

ones, we often meet with the assumption that two molecules

behave during an encounter like two elastic bodies, or even

like two elastic spheres. This hypothesis has much that is

tempting about it from the ease with which it can be

handled
;
but the difficulty would only be transferred, and

not overcome, if we proposed to explain the elasticity of

gases by the elasticity of the molecules.

1 Schlomilch's Zeitschr. f. Math. u. Physik, 1877, 22. Jahrg. p. 126.
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In order, therefore, to explain the behaviour of the

gaseous particles, we must have recourse to the assumption
of forces which the particles exert on each other, at least

when near enough ; and there arises only the question

whether these forces are attractive or repulsive ; for the

latter may also come into play when the distance becomes

small enough, though the gaseous molecules certainly attract

each other at their mean distances of separation.

On this account Maxwell, too, for a long time de-

fended the assumption of repulsive forces between gaseous

particles. These repulsive forces were supposed to decrease

more rapidly than the attractive forces as the distance in-

creased, and, indeed, inversely in proportion to the fifth power
of the distance, while the attractive forces were to be taken

as following Newton's law of being inversely proportional

to/the square of the distance. Maxwell 1 arrived at this

hypothesis, which allows of a very easy and elegant treat-

raent, because the law of dependence of the viscosity of a

gas on the temperature, which is deduced from this hypo-

thesis, is that which he obtained by experiment. But since

this law, viz. that the coefficient of viscosity of a gas is pro-

portional to the absolute temperature, is contradicted by
later observations, the hypothesis must be given up.

Other physicists have professed the view that attractive

forces are to be assumed as acting between gaseous mole-

cules. That such forces must be assumed unconditionally

has been proved by Clausius by means of his proposition

of the Virial, from which it follows that a stationary state

of motion can be permanently maintained only if forces

maintain the equilibrium dynamically, and that therefore a

stable state is quite impossible without attractive forces. 2

Further, Boltzmann 3 has shown that it is also sufficient

to assume only attractive forces, and no repulsive forces,

between gaseous molecules. By assuming that strongly

1 Phil. Trans. 1867, clvii. p. 49 ;
Phil. Mag. 1868 [4] xxxv. p. 129 ; Sclent.

Papers, ii. p. 26.

- Bull. Ac. Belg. 1886 [3] xi. p. 193 ;
Kinetische Theor. d. Gasc, 1889-91,

p. 264.
3 Wien. Sitzungsber. 1884, Ixxxix. Abth. 2, p. 714 ; Wied. Ann. 1885, xxiv.

p. 37.
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attractive forces act only at quite small distances, he obtains

the very same laws for an encounter which Maxwell ob-

tained with his repulsive forces. This result is in excellent

agreement with Liibeck's proposition, of which we have

made mention. We may therefore consider all the forces

as attractive which gaseous molecules exert upon each

other, whether at large or small distances apart. This

corresponds to the experimental results of Joule and Lord

Kelvin as to the heat-effects of flowing gases, and also

no less to the ideas employed by Sutherland to explain
the large variation of the coefficient of viscosity with the

temperature.
The law of variation of the strength of these

attractive^
forces with the distance between the particles cannot yet be

decided from our present knowledge. It j^jioweyer, guite

possible to calculate, or at least to estimate, the amount of

the energy that comes into play during the action of these

unEown" forces. This is just as possible~as it was possible

to estimate the energy of the heat contained in a body
without its being necessary to know the law of the molecular

movement in which heat consists.

Boltzmann 1 has made a first essay in this direction,

and has thereby proved that we have to do with forces

of extraordinarily great intensity. In this calculation

Boltzmann introduces manifold hypothetical suppositions
which are approximately admissible for every case ;

we may
especially mention that, just as we did in former para-

graphs, he looks upon the molecules themselves as the same

in the liquid and gaseous states, and upon their motions only
as different.

With Boltzmann we will first of all calculate the

amount of energy needed for two molecules of water, whose

mean distance apart is p, to approach each other by the

length xp, so that their distance apart is reduced to (1 x)p.

For this we make use of a result of Gr as si's experiments
on the compressibility of liquids, viz. that water is com-

pressed by 0*000048 of its volume by the pressure of one

atmosphere, so that by the addition of an atmosphere to

1 Wien. Sitzungsber. 1872, Ixvi. Abth. 2, p. 213.
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the pressure the distance apart p of two molecules is

diminished by 0'000016p. An atmosphere is the pressure

of 10334 kilograms per square metre, and it therefore exerts

on the area p
2

corresponding to a single molecule the force

10334 #p
2 absolute units, wherein the kilogram is taken as

unit of mass and the metre as unit of length, g being the

acceleration of gravity. Since this force diminishes p by
-000016p, the force required to diminish p by xp is

10334</p
2

z/ 0-000016,

if we may make the assumption (which is doubtless approxi-

mately correct) that the force is directly proportional to the

amount of approach. The work done by this force while

the molecules are approaching each other is found by multi-

plying the force by half the diminution of distance, and it is

therefore

10334#pV/0-000032.

Boltznzann compares this expenditure of work with

the energy of the molecular motion in water-vapour, in

order to determine the shortening of distance, measured by x,

which occurs at a collision of two molecules. Let m be the

mass of a molecule, and therefore, with a kilogram and a

metre as units, m =
lOOOp

3
,
since 1 cubic metre of water

weighs 1000 kilograms ; further, with our former notation,

wherein G represents the mean value of the molecular speed
as calculated from the energy, the sum of the kinetic energies

of the two colliding molecules is

2.imG
2 = wG2

,

where by 28 the value of G for water-vapour at the

temperature is to be taken as 614 metres per second.

If we equate the value of the energy so determined to

the above value found for the expended work, and also put

g = 9-81, we have

1000 x 6142

p
3 = 10334 x 9'81p

3z 2

/ 0-000032,

whence we obtain

x = 1/2-9 =
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in round numbers, so that

According to this calculation the centres of two mole-

cules of water-vapour at 0, if they undergo direct collision

when moving with their mean kinetic energy, approach to

a distance of f/o,
which is only two-thirds of their separation

when they are in the liquid state at maximum density at 4.

In order to compress water so strongly, a pressure of 20,000

atmospheres must be employed.

Though several points in this calculation may have only
a very doubtful justification, yet from the result we learn

that the molecular forces which are developed on the

encounter of two molecules possess a very considerable

intensity.

From the value of the molecular energy we can at once

form an estimate of the energy of the motion of the atoms

within the molecule
;

for the ratio in which these two :

energies stand to each other is
( 53) determined by the

ratio of the two specific heats. The forces, therefore, to

which the atoms are subject must also be in general very

great.

The only exception is that of the case when the mole-

cule is monatomic. In this case we might assume that

there is not interior motion at all in the molecule, since it y
is simple and consists of but one atom. But this assump-
tion cannot be right, for monatomic gases and vapours

mercury vapour, for instance can radiate light the spectrum
of which consists of a series of bright lines, and therefore

internal motions must be present in a gaseous molecule that

contains but one atom just as in a polyatomic molecule.

Eilhard Wi ode in ami 1 has cleared up this apparent
contradiction by measuring the energy necessary to make
a vapour luminous. He compared the light radiated by
sodium vapour with that coming from a platinum wire

made to glow by the passage of an electric current ; from

the resistance of the wire and the strength of the current

he could determine the luminous energy in heat units, and
1 Wicd. Ann. 1889, xxxvii. pp. 241, 248.
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cojnpare it with the total heat-energy contained in the

Vapour. He found that the energy needed for the illumina-

tion is vanishingly small in comparison with the total

energy. An atom, therefore, must be a structure in which

pendulous movements can be produced by very small forces.

124. Vortex Atoms, Pulsating and Electrical
Atoms

The considerations of this final chapter have taught us

much, and perhaps more than was to be expected, about

things which seem to remain as a last object, at least for

the present, for the comprehension of the natural philo-

sopher, viz. about atoms and molecules. We have been

able to investigate their shape, measure their size, and

estimate their wr

eight ;
we have also learnt that these small

entities exert powerful forces on each other when they come
close together. But we have not yet learnt sufficient about

their state to be able to solve the puzzle which lies before

us in the wonderful property of indivisibility to which
atoms owe their name. Indeed, the property of indivisi-

bility seems far more unintelligible than ever, now that we
know that the size of atoms is not infinitely small, but is

measurable in finite terms. The molecules and atoms con-

cerned in the theory of gases, and more especially with

mathematical physics, are small bodies which are only one

or more thousand times smaller than the smallest magni-
tude microscopically visible. We shall scarcely be able to

conceive that such large bodies are really indivisible elemen-

tary atoms.

We shall be so much the less inclined to this belief as

many different reasons can be brought forward for the con-

clusion that the small particles, named atoms by chemists

and physicists, are not monads. The most obvious reason

is afforded by the simple relations which show a regular
connection l between the atomic weights and other pro-

perties of the chemical elements conditioned by these

1

Compare Lotbar Meyer, Die modernen Theorien dcr Chemie, section 9,
' Das Wesen der chem. Atome.'
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atomic weights, and which point to a common origin of all

the elements from one and the same substance, as was con-

jectured by Prout, and after him by Thos. Thomson and

Dumas.
The theory of vortex atoms proposed by Lord Kelvin l

seems to me to be a happy hypothesis which is well suited to

satisfactorily explain the facts
;

it is directly connected with

a similar and rather earlier theory of Rankine's, 2 and with

a doctrine taught by Descartes a very long time before.

It rests on a mathematical memoir by Helmholtz, 3 in

which the vortical motions of a liquid moving without

friction are investigated, and especially upon one theorem

proved in this memoir respecting vortex lines and vortex

filaments. The former name is given by Helmholtz to

curved lines which may be so drawn in the liquid that at

every point along their whole length they are perpendicular
to the direction of the motion of rotation, and are therefore

parallel to the axis of rotation ;
a vortex filament is a thin

filament of liquid the axis of which is a vortex line and

which is bounded on the outside by a system of vortex lines.

Helmholtz proved that, if certain assumptions, satisfied

in nature, are made as to the law of action of external forces

on the liquid, all the motions so proceed that each vortex

line remains permanently made up of the same particles of

liquid. Since the vortex lines are in general closed curves,

each vortex filament contains a finite and never-changing
mass of liquid, which can alter its ring shape and its

position, but can never lose the connection of its parts.

Lord Kelvin takes as the^foundation of his new theory
of atoms the theorem, which this law proves, that the pro-
duction of new vortices and new vortex filaments would be an

act of creation. He considers the so-called atoms to be vortex

filaments, and represents them by the smoke-rings which

tobacco smokers blow.

However strange this view may appear at first sight, it

will be found by everyone who takes the trouble to master

1 Phil. Mag. 1867 [4] xxxiv. p. 15.

2 Ibid. 1855 [4] x. pp. 354, 411.
3 Crelle-Borchardt's Journ. f. Math. 1858, Iv. p. 25.
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it to be well fitted both to represent the facts and also to

avoid the philosophical objections which can justly be raised

to the assumption of atoms. We may conceive of a sub-

stance filling space continuously, and we shall then, in

spite of, or even by reason of, this representation, be forced

to the assumption that small ring-shaped or even thread-

shaped parts separate from the continuous mass which
cannot be further divided by any force on earth. These

yvortices,
then, are the atoms of ponderable bodies, and

the substance between them remaining unmoved is the

ether.

The unchangeable mass of these vortex atoms is deter-

mined alone by the states of the motion in which the world

was at their creation. The multiplicity of these states has

given rise to a multiplicity of kinds of vortex atoms, which,
in spite of their multiplicity, were all formed of the same
substance and in accordance with the same laws, and which
must bear witness to these laws for all time by the regu-

larity of their properties. The conformity to law exhibited

by the properties of atoms, and especially the law of the

periodicity of these properties, will thus find explanation by
this theory.

3^ord Kelvin's theory of vortex atoms accounts also for

the forces exerted by the atoms on each other. Since the

vortex atoms have at once the properties of flexibility and

impenetrability, it is not paradoxical to ascribe to them the

same kind of elasticity as, on the older wave-theory of light,

ether is supposed to possess. We thus understand how
easily pendulous motions can pass from the atoms to the

ether and from the ether to the atoms, and comprehend how
luminous oscillations of the atoms require only vanishingly
little energy, as E. Wiedemann has shown. 1

We may further assume, in respect of atoms of this kind,
that they conduct themselves like elastic bodies during an

encounter. These atoms can also exert an action at a

distance on each other by means of the medium which
exists between them but does not share their vortical

motions, and yet may transmit pressure ; for, as Lord
1

Compare 123 and 34.
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Kelvin and Tait,
1 Kirchhoff,2 and Boltzmann 3 have

shown in their mathematical papers, rings and other bodies

which are in a moving liquid experience an apparent
attraction which is comparable with electrodynamic attrac-

tion.

All this holds good even if the vortices have not the

shape of rings or of unlimited threads. The same forces are

also originated by masses, and act between masses which

move in different ways. We may therefore also form

other similar conceptions of the atoms which correspond
better to the/views that have been put forward since very
old times.vOf this nature is the hypothesis of pulsating

atoms, which we may look upon as spheres, or bodies of

some similar shape, in such a state of motion that regular

oscillations, perhaps in the radial direction, go on at every

point within them. Bjerknes has mathematically investi-

gated the forces brought into play by such motions, and

S.c h i 5jtzjias experimentally examined them. 4

On both these theories the force exerted by one atom on

another would be transmitted by the medium that lies

between them without motion and therefore powerless and

weightless the luminiferous ether in fact. The close rela-

tions which have been recognised of late years between

light and electricity suggest the idea of supposing the forces ^>
between the atoms which are transmitted by the ether to be

of electrical nature, and of taking the motions inside the

atoms, to which the atoms owe their force and nature,

to be also of electrical character. These suppositions have

often been made, especially by Wjj&cjieri
5 and Prince

Galitzin. G

ijTach. of these theories, whether referring the force

between atoms to hydrodynamical motions or to electrical

1 Treatise on Natural Philosophy, Oxford 1867, i. p. 264; 2nd ed.

Cambridge 1879, i. p. 330.
2 Crelle-Borchardt's Journal, 1870, Ixxi. pp. 237, 263.

3 Ibid. 1871, Ixxiii. p. 111.

4 Gott. Nachr. 1876, Nr. 11
; 1877, Nr. 13. F. Auerbach, Theoret. Hydro-

dynamik, 1881.
5
Schriften d. phys.-oUon. Ges. zu Konigsberg, 35. Jahrg. 1894

; Sitzungsber.

p. 4
; 37. Jahrg. 1896, p. 1.

6 Bull, de VAcad. de St. Petersb. 1895 [5] iii. p. 1.
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causes, strives after the same end as the kinetic theory of

gases ; for all these endeavours are aimed at explaining all

natural phenomena as the result of motion. If this

endeavour is successful we shall have, together with the

theory of gases, not only a kinetic theory of liquids and of

solids, but also a kinetic theory of atoms and force, of

electricity and light.
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APPENDIX I

PRESSURE AND ENERGY

IN the first part of this book it has several times been pointed out

that we can correctly calculate the pressure exerted by a gas if, in-

stead of ascribing to the molecules, as is actually the case, unequal

speeds that are constantly varying, we assume that they have all

the same mean speed. This mean value is of such size that the

kinetic energy on the assumption of equal speeds in the gas has

the same value as it really has with the actual inequalities that

exist. The justification of this simplifying assumption rests on

the fact that the pressure exerted by a gas is dependent on the .

speed of the molecules only in so far as it increases in proportion
to their kinetic energy.

Against the validity of the reasons marshalled in Chapter II.

no objection can be raised. But it will not be superfluous to

calculate the pressure without this simplifying assumption. There

will therefore be made in the following investigation no assump-
tion of any kind with respect to the distribution of unequal speeds.

But the result of the calculation will be the same, viz. that the

pressure depends only on the mean kinetic energy.

1*. Number of Molecules and their Paths

Let the number of molecules of a gaseous medium in unit

volume be N. These N molecules do not all move with the same

speed, nor even in the same direction ; the components u, v, w of

the velocity of a molecule, reckoned along three fixed rectangular

axes, assume for different molecules values which vary from oo

to + oo. The number of molecules for which the values of the

components differ infinitely little from u, v, w, so that they lie

between the limits u and u + du, v and v + dv, w and w 4- dw, is

an infinitesimal of the order du dv dw
;

it may be expressed by

NF(u, v, w)du dv dw,

A A 2
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where F denotes a kind of probability-function, with the deter-

mination of which we shall proceed in Appendix II. 10*-15*.

Just as the values of the velocity for different particles are in

general different, so also will the times be different during which

the molecules move in the same direction with unchanged speed.

Let the length of this time that is, of the interval between two

successive collisions be t, and let the probability of a molecule's

moving for the time t in a straight line with unchanged velocity,

whose components are w, v, lu, and then colliding in the following

infinitesimal interval dt be

f(t,u,v,w)dt.

This function /, like the other F, I will not here more closely

examine, as an obvious property of it is sufficient for our present

purpose. Since every path must certainly come to an end, the

sum of all the probabilities must be certainty, or

With this notation, therefore, the number of molecules in unit

volume, which move with the velocities u, v, 10, but only for the

time t without collision, is

NF(u, v, w)f(t, u, v, iu}dt du dv dw.

At the end of time t this group begins a new path in a new
direction with a new velocity.

But if we assume that the state of the gas does not change
with the time, then for every molecule that at any moment loses

the velocity-components u, v, w another molecule must at the

same moment gain these velocities as the result of collision. After

the interval t, therefore, the number of molecules above given
move again out of the unit volume under the same circumstances

and with the same probability of collision. Thus the number of

paths which in the unit of time are newly begun by the N
molecules in unit volume with velocities u, v, w, and which are

ended after time t, is

NF(u, v, w)f(t, u, v, w)
d
--du dv dw.
t

2*. Summation
We use this formula to determine the number of particles

which in a unit of time cross any surface-element within the gas
with a given speed in a given direction.



2* PRESSURE AND ENERGY 357

Take the axis of x perpendicular to the plane, and investigate

the number of those particles which in a unit of time cross an

infinitely small rectangle dy dz at the point (x, y, z) with a velocity

the components of which are u, v, w.

Since this specification of the components determines the

direction of the motion of the particles in question, it follows that

all these particles must come from a limited region, an oblique

parallelepiped in shape, which has the rectangle dy dz as base and

its length along the direction of motion.

Denote the coordinates of any point in this region relatively

to the given point (x, y, z) by r, p, j ;
these must satisfy the

condition

F : 9 :
5
= u : v : w,

and the absolute coordinates of the point are x r, y \),
z

j.

Divide up also this region, from which all the molecules in

question come, into infinitely small oblique parallelepipeds

cZ]C dy d% = d\ dy dz

by planes drawn parallel to that of yz.

In one of these volume-elements it will, by 1*, happen

NF(u t v, w)f(t, ut v, w) -du dv dw dt dy dz
t

times per time-unit that a particle begins a new path, with a

velocity whose components are u, v, w, in the direction towards

the surface-element dy dz, this path ending after the lapse of

time t.

The particles will actually reach their mark, the element dy dz,

and pass through it if the time t is sufficient for the path to be

traversed, and therefore, in the case of particles moving in the

positive direction of x, if

X > ut.

We consequently obtain the total number of the particles which

start from the elements of that oblique parallelepiped standing on

the base dy dz, and pass through the element dy dz in unit time

with a velocity whose components are u, v, w, by summing up the

above expression for all the volume-elements with the condition

X }> ut,

that is, by integrating it with respect to dp from the initial value

y = to the limiting value = ut. In the second place, to obtain
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the total number which after a shorter or longer time reach the

mark, we have to integrate with respect to dt from t = to = oo.

Hence

dy dz du dv
dwFj(*d*NF(u% v, iu)f(t, u, v, w)

is the required number of particles which pass through the

element dy dz in unit time with the velocity whose components
are u, v, w.

3*. Keaction

This formula, however, only gives the number of particles

which cross the surface-element from one-half of the medium to

the other in the positive direction of x, that is, with a velocity

such that its component u is positive.

If in like manner we obtain the number of the particles which

pass in the reverse direction from the second half of the medium

to the first, the value of the relative coordinate r, which must be

positive since for this motion the component u is negative, must

satisfy the condition

4 x 4 ut.

Therefore the number of particles crossing in this opposite direc-

tion is

dy dz du dv dw
f ^ [ dfNF(u, v, w)f(t, u, v, w)
JO t Jut

= dy dz du dv dw
[ [**dfNF(ut v, w)f(t, u, v, w).
Jo i Jo

In form this formula is distinguished from the other only by its

sign, but if the functions N,F,f depend not only on the given

variables t, u, v, w, but on the position as well, it may also differ

by reason of a difference in the signification of these functions.

4*. Summation Carried Out

The integrations can be immediately effected in the case

wherein these functions do not depend on position, but when the

state of the motion is the same at every point of the gaseous
medium. With this assumption we obtain, by aid of a theorem

given in 1*,

f dt f

ut

+ dy dz du dv dw NF(u t v,w)\
-

f(t, u, v, w) \ df

= + NF(u, v, w)u du dv dw dy dz
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as the number of particles with the velocities u, v, w which, in a

unit of time, cross the surface-element dy dz in the interior of the

space filled with gas. The upper sign applies to the passage in

the positive direction of x, and the lower to that in the opposite

direction.

The analogous expressions for the other axial directions are

+ NF(u, v, w)v du dv dw dz dx,

NF(u, v, w)w du dv dw dx dy.

These formulae have a very simple interpretation. For u dy dz

is the volume of an oblique parallelepiped on the base dy dz, of

length equal to the velocity, and of altitude equal to the

component u ; it is thus the volume of the region in which all

the particles which cross dy dz in a unit of time with the given

velocity must have been at the beginning of the time-unit. Since,

from the definition of F, the first of the three expressions denotes

the number of particles in this volume which at any moment are

moving with the given velocity, it shows, as do also the other twr

o,

that as many particles pass through the surface-element as if none

had been previously stopped or deviated.

The motion in a gas which is in the same state of equilibrium
at all points of the space occupied by it, therefore, goes on just as

if the particles never collided, but moved about in all directions

without hindrance.

The reason for this (at first sight) surprising result is simply

that, when the requisite state of unchangeable equilibrium is

attained, for every particle which loses its motion by collision

there occurs another which acquires the same motion by another

simultaneous collision.

5*. Momentum Carried Over

The possibility thus demonstrated of replacing the hypotheses
on which our theory is founded by still simpler assumptions in

the case of a gas in equilibrium very considerably facilitates the

calculation of the pressure exerted by the gas.

On the theory here assumed, the pressure exerted on a

surface within the gaseous medium is measured by the force

which one half of the medium exerts on the other from which

it is separated by the surface. 1

Since, as has just been proved,
1 See Chap. II. 12.
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the collisions do not come into account in the state of equilibrium,
we have to deal only with the force which the particles that pass
backwards and forwards over the surface exert in virtue of their

own motion, and transmit from one half of the medium to the

other. What becomes of this motion after the passage from the

one half to the other whether it is destroyed or transformed is

of no moment, since, in the condition of equilibrium, for every

particle that loses its velocity another appears which acquires the

same motion by collision.

We therefore obtain the momentum carried across the surface

dy dz in the unit of time in the positive direction of x from the

first half of the medium into the second by multiplying the above-

found number of particles which in unit of time cross the surface

with the velocities u, v, w, viz.

NF(u, v, w)u du dv dw dy dz,

into the components of the momentum of each of these particles,

which are

mu, mv, mw,

and then integrating the expressions so obtained. The summations
are to be carried out with respect to the possible values of the

velocity-components u, v, w, and their limits are determined by

noting that the passage from the first half of the medium to the

second in the positive direction of x can only occur with such

velocities as have a positive component u. Consequently, the

momenta carried over dy dz in unit of time in the positive

direction are
|>00 pOO pOO

dy dzNm
\ du\ dv\ dw u2

F(u, v, ID) ,
J o J o J

pOO pOO pCO

dydzNm] dtij dv] dwuvF(u,v,w),

poo poo poo

dy dzNm du dv\ dw uwFfu, v, w) .

JQ J co J _ oo

For the particles which pass from the first half to the second,

and for the momentum carried with them, the first half is compen-
sated by the passage that occurs in the opposite direction into it

from the second half. In this direction the passage can occur only
with negative values of u ; and the number of particles which

pass in this direction with velocity-components u, v, w being

NF(u, v, w)u dii dv dw dy dz,
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and each carrying with it the momenta mu, mv, mw, the total

momenta carried across in the backward direction are

ro
f

10
f

dy dz Nm du\ dv\ dw u*F(ut v, w),
J _oo J CO ^ CO

ro r 00 r

dy dzNm du dv dio uvF(u, v,w),
J oo J CQ J oo

ro r 00 r 00

dy dzNm du\ dv\ dw uwF(u, v, 10).J- J -co J -co

6*. Components of Pressure

The second half of the medium loses these latter momenta
and gains the former. The resulting increase of its momentum is,

therefore, given by the difference of these expressions, so that
/OO

fOO
/-CO

dy dzXx= dy dz Nm du dv dw u2
F(u, v, w) ,

J _oo J -co J -co

/OO /-00
pCO

dy dz Yx
= dy dzNm du dv dw uvF(u, v, iv),J OO J CO J CO

pOO
/-CO

pOO

dy dz Zx = dy dzNm du dv dw uwF(u, v, iv)J 00 J CO J 00

are the components of the momenta which, during the unit of

time, pass over the surface dy dz from the first half of the medium
to the second, or, more briefly, are the components of the force

exerted on dy dz by the first half towards the second.

Just as we have here found the force-components which act

on a surface perpendicular to the #-axis, and are denoted by the

suffix x, we may obtain the analogous magnitudes for the other

two axial directions. We thus get, with the corresponding

notation, the following values for the forces exerted per unit

area, that is, for the pressures,
/CO

pOO
/-CO

Xx =Nm) duj dvj
/CO

|>CO
fCO

Y
v
= Nm du dv] dw v2

F(u, v, w),J 00 J 00 > CO

/CO
pCO

/-CO

Zz
= Nm\ du\ dv\ dw w2

F(u, v, w).J _co J co J _oo

rco /-co />oo

Y
'

z
= Zy

= Nm\ du\ dv\ dw vivF(u, v, w).
J _co J_oo J oo

rfCO
/-CO

du dv dw wuF(u, v, w),^CO * CO J 00

/CO /CO
pCO

Xy Yx
= Nm du dv\ dw uvF(u, v, w).J -CO J -CO J -00 '
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These formulae determine the pressure exerted by the half of

the medium which is nearer the negative coordinates, and has

hitherto been called the first half, on the second, which lies on

the positive side. The action of the second half on the first is

expressed by the same formulae with changed sign.

The first three of these six formulae give the pressures which act

normally on the stressed surface, i.e. the normal pressures, while

the last three express the magnitude of the tangential pressures

whose directions lie along the surface itself.

7*. Interpretation of the Formulae

Both forms of pressure are expressed by integrals which, from

the meaning of the function F, are easily seen to represent probable
mean values.

Noting further that

that is, the mass of gas contained in unit of volume, or its density,

we may write the foregoing formulae thus :

Y
y
= p v* Zx = X z

=
p wu

where the bar denotes the mean value of the magnitude placed
under it.

1

These formulae, which were first given in such generality by
Maxwell 2 for the pressure in a gas in any state of motion that

does not depend on time or position, can be much, simplified

when there is only the heat-motion of the molecules and not a

forward motion of the gas as a whole. Since in this case the

motion is symmetrical in all directions of space, all functions

depending on uneven powers of the velocity-components u, v, w
vanish, and therefore

vw wu = uv = 0.

These terms also vanish when the direction of motion is along one

of the coordinate axes.

1

[The author uses the notation M(x) to denote the mean value of x, but

the ordinary English custom is here followed. TB.]
2 Phil. Mag. [4] xxxv. 1868, p. 195.



7* PRESSURE AND ENERGY 363

Further, when the gas has no progressive motion as a whole

we shall have \y
u2 = v2 = w2

. *M\

The value of these three equal means is easily found ; for if w is

the actual velocity of a particle

and therefore w2 = u2 + v 2 +

and consequently y? =~

In this special case then

that is, the pressure in a gas which is in equilibrium and at rest

as a whole is the same in all directions, and acts always normally
to the surface on which it acts.

If the gas possesses a progressive motion in which its whole

mass takes part, the magnitudes of the mean values are just

as easily found. Let a be the velocity with which the gas
as a whole moves in the direction of the component u] then, if

we put
u = Ui + a,

Ui is the component of the molecular motion which is perceptible

not as causing change of position, but as producing heat and

pressure in the gas, and, by 33, the relations

hold good, if we now represent the pure molecular velocity freed

from that of the flow by where

Wl
2 =V + tf + w*.

We have in this case also, just as before, expressions of the form

for the components of pressure at right angles to the direction of

flow. On the contrary, for the pressure in the direction of flow

we have _Xt = p (u, + a)
2 = P ?7? + ,oa

2
,



364 MATHEMATICAL APPENDICES 7*

since %7 = ;
this is greater than the other components by pa

2
,

for we also have

P V = 3P w
i

2
-

This new magnitude pa
2 shows itself as the pressure with which

the streaming gas strikes against an opposing surface, or, if we

consider the reverse direction, the reacting pressure which the

issuing stream exerts on the containing vessel ( 34, 35). The

pressure which the stream of gas exerts normally to its direction

of flow, viz.

is smaller than what it would be in the case of rest, viz.

for in coming to rest the gas retains all its energy, so that the

mean value of this energy remains unaltered, or

The formula found for the pressure in the case of a gas at

rest,

does not differ from that deduced before
( 11-13), viz.

since the magnitude G herein contained denotes the mean value

which is determined by the equation

Since this formula gives the pressure p as proportional to the

density p, it expresses Boyle's law.

This deduction of the law is preferable to the former in being
as free as possible from unproved hypotheses. We have assumed

only that the molecules move in rectilinear paths, and have

employed no other hypothesis. The single assumption, therefore,

of rectilinear molecular motion suffices by itself for the proof of

Boyle's law.

Since the sum of the kinetic energy in the unit of volume is

K = itfmf du\ & dw (u* + vz + w*)F(u, v, w)J 00 J CO J CO
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we obtain by this method also the known relation ( 16)

If we had taken the molecules to be not all of the same kind,

but had assumed that two or more kinds of molecules m ly m%,
. . . were mixed together, then we should have obtained, both for

the transmitted momentum and for the kinetic energy, formulae

of the same form as those just found, but of greater generality.

The equations would then have contained summations with respect

to all the different molecules m it m2 ,
. . . Instead of the last

formula, therefore, we should have obtained, as is obvious without

calculation, the equation

which has the same meaning as that in 17, and thus proves
Dal ton's law for the pressure of mixed gases. The hypothesis

of rectilinear molecular motion therefore is also sufficient by itself

for the theoretical proof of Dalton's law.

8*. Kinetic Pressure of Liquefied Substances

It is, perhaps, not even absolutely necessary for the molecular

motions to be rectilinear. For B o 1 1 zma n n 1 has Attempted with

good results to extend the foregoing considerations to bodies which

are in the liquid state, and therefore to substances whose molecules

move, not in straight, but in curved paths.

The case is that of substances which are mixed in very great

dilution with a liquid ; we can imagine, therefore, either a very
dilute solution of a solid body, or a liquid which has absorbed

small quantities of a gas or contains a small quantity of another

liquid. The molecules of the alien body that has been added

spread themselves throughout the liquid, and therefore become so

widely separated from each other that the forces of cohesion no

longer come into play. If we further assume that the liquid also

exerts no force on the alien molecules, or that the forces it exerts

mutually annul each other, the molecules of the added substance then

appear to be quite free from all external forces but that of gravity.

They would then move in straight paths just as molecules of gas

if they were not hindered by the molecules of the liquid and forced

1 Zeitschr. fur phys. Chem. vi. 1890, p. 474 ;
vii. 1891, p. 88.
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to continually change their direction of motion. Yet they move,
and this motion, even if it should happen to be in curved paths,

produces a kinetic pressure just as in gases.

This pressure may be calculated in the same manner as gaseous

pressure, and the calculation leads to exactly the same result. If

no attractive or repulsive forces act between the molecules of the

liquid and of the alien body the particles of the latter move about in

the liquid, not in continuously curved paths, but in straight paths
like the particles of gas in vacuum. The only difference is this, that

the alien particles collide very much oftener in the liquid, and that

therefore the free path traversed between successive collisions is

very much shorter. But this difference has no influence on the

validity of the calculation. There is only a change in signification

of the function f (t, u, v, iv), which denotes the probability of the

path being straight for the interval t, to this extent that it has

values differing from only for very small values of t, and that

it vanishes for greater arguments ; but thereby no alteration in the

final result of the calculation is entailed.

The result is similar in the other case which better corre-

sponds to actuality, viz. when forces do indeed act between the

liquid and the alien particles, but when the forces to which a

particle is subjected from the molecules of the liquid which surround

it mutually balance each other on the average. The path of a

particle is then continuously curved, as it is continuously under

the action of molecular forces ; yet we may look on the path as

rectilinear which is traversed during an infinitely small interval

of time. To this straight bit of path and to the short time needed

for it we have to apply the foregoing calculation, which results in

the same value as before for the pressure due to the motion of the

added alien particles, and gives the same relation between this

kinetic pressure p and the kinetic energy K of the particles con-

tained in unit of volume, viz.

This formula remains therefore at least approximately correct

when the stretches of which the paths of the molecules are made

up are not of finite length. It would therefore be mathematically
stricter so to express the condition of its validity that the particles
whose motion causes the pressure move under the laws of inertia

and collision only, without being subject to external force.
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On account of this result Boltzmann's theory of osmotic

pressure in liquids is important for the kinetic theory of gases.

Except for this, however, I should not here have mentioned it,

since osmotic pressure is not one of the phenomena which the

kinetic theory of gases has to explain. I will also not conceal

that I do not think van't Hoff's views of the kinetic nature

of osmotic pressure to be correct. For osmose does not arise from

the kinetic pressure of the dissolved substance, but from quite

different forces which cannot be neglected.

At all events, if the formula is to be applied to osmose, it first

needs a correction, which G. Elias Miiller 1 has pointed out
;

viz. from the kinetic pressure of the dissolved molecules there

must be subtracted the pressure which the displaced particles of

liquid would have exerted by their motion. Not till then does it

become intelligible that osmose is able to cause a motion of the

liquid towards the side of the greater pressure.

1 Theorie der Muskelcontraction, Leipzig 1891, 1. (App.) p. 321.
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APPENDIX II

MAXWELL'S LAW

9*. On Some Older Proofs

/THE state of_equilibrium of a multitude of molecules of gas, as

/ has been already shown in 22, does not consist in their all

moving with equal speed. On the contrary, the velocity of any

particle changes at every encounter, not only in direction but also

in magnitude. But the values of the speed fluctuate about a

mean value. The law of devIaTJiorT of the actual speeds of the

particles from this mean value was first perceived by Maxwell;
he found that the components of the molecular velocity are

distributed among the particles of a gas in equilibrium with the

same regularity as we find in all apparently fortuitous phenomena
and processes which are really subject to fixed changes. For the

^^distribution of the speeds the same law holds good which, accord -

^ing to Gauss, regulates the distribution of chance errors of

observation among the several observations.

Very many proofs have been given of Maxwell's law. One

such proof was attempted in the first edition of this book, wherein

/the law was put forward as the most probable of all conceivable

/ laws. Although the mathematical investigation of this idea is

closely connected with the proof given by Gauss 1 of the method

of least squares, the proof in its first form cannot be admitted as

valid, and the doubts thrown upon it byBoltzmann 2 and von
Kries 3 must be held to be well founded.

N. N. Pirogoff,
4
however, showed that my proof can be

1 Theoria motus corp. ccel. 175-177.
8 Wiener Sitzungsber. Ixxvi. 1877, p. 373.
3
Principien der Wahrscheinlichkeitsrechmtng, Freiburg 1886, Chap. VIII.

p. 192.
4 Journ. d. Euss. pliys.-chem. Ges. xvii. 1885, pp. 114-135, 281-313. Ab-

stracted in Fortschr. d. Physik, 1886, pt. 2, p. 237. Exner's Repertorium,
xxvii. 1891, p. 540.
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justified if the mathematical formulae are differently interpreted, v

The differential calculus expresses the property of a function in

having a maximum in the same way as its behaviour iri maintain-

ing its value when its argument is varied. My formulae, which I

again give in 12* in unchanged form, need not therefore contain

the meaning that Maxwell's law is the most probable of all

conceiyable_Ia!W_s_; but they show, as Boltzmann had already

recognised before Pirogoff, that among a limited number of

molecules the values of the speeds may be distributed in different /

ways, and that all these different ways possess an ^qual degree y
of probability. On this theorem Pirogoff founded his proof,

which he carried out by the same process as I did mine. Since

this altered proof by Pirogoff was originally published in

Eussian only, and is therefore little known elsewhere, I will here

give his method at length.

Pirogoff starts with the assumption that out of an unlimited

number of gaseous molecules, whose motions have already become

in accordance with Maxwell's law, a group of N particles is

so picked out that the choice is guided only by chance. He
then investigates the probability that given values of the velocity-

components u
t v, w are to be found in this group. By these

values also the average state of the motion of the group, its

average speed and energy, are determined. If now a second

group of N particles is again picked out by chance, there will be

other values of the components in this second group ; but the

average values of the speed and energy may, in spite of this, be

the same as with the first group. The probability that each

group will have the same average value is the same for both.

That we may arrive at the formulae of_my_jormer proof by
the stricter way suggested by Pirogoff was shown me on

February 5, 1882, by Gustav Liibeck, with whom I was then /

corresponding on the subject of my memoir and his.
1 I had

then, unfortunately, no opportunity of making use of this com-

munication. I will therefore now lay the foundation of this

proof in a way which will, I hope, be valid as a more comprehen-
sive improvement.

1

Festschrift zur zweiten Sdcularfeier des Friedrichswerderschen

Gymnasiums in Berlin, 1881, p. 295 ; Ueber die Bewegung eines kugelfdrmigen
Atoms.

B B
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10*. Hypotheses Used in the Proof

Maxwell's law of distribution refers to the state which a

group of gaseous molecules finally attains as its state of equi-

librium in consequence of their encounters. If this state once

>/occurs it is maintained to the last in unchanged fashion. But,

strictly speaking, it can only be reached when the number of

gaseous molecules is unlimited ; for by an encounter any value

whatever"of velocity may 'result, and only with an infinite

number of particles can all possible values of the speed be

actually existing at each moment.

If the number of particles is limited, Maxwell's law must
"x be understood otherwise. Since the state of motion of the group

of particles is altered in a perceptible degree at every single

encounter between two particles, Maxwell's distribution cannot

exist at every moment, but will occur with exactness only when

the changing states which succeed each other in the course of a

sufficiently long period are all taken into account together. If all

these different distributions did not succeed each other, but

occurred simultaneously together in an unlimited number of

particles, the law would not thereby be changed ; but Maxwell's
law must be equally valid in both cases.

After this remark we can proceed to investigate more closely

the function required which expresses the value of the probability.

For this purpose let us consider a large number Z, say 1,000 or

100,000, of the changing states succeeding each other, which a

group of N particles pass through. On the whole, then, NZ
different states of a single particle come into account. Among
these numerous cases it will often happen that a given particle

m
}
attains a velocity the components of which in three rectangular

directions are u^v^w^. The number of cases in which this occurs

we may represent by a function of the form

for it must be proportional to the number NZ of states, and it

must further depend on the values u^ v lt w l
of the components.

For Z = co the value of the function

which expresses this law of dependence is the probability of
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occurrence of the possible case that the particle w t
should move

with a velocity made up of the components u lt v it w l
.

Although the motion of a particle is not independent of the

motions of the other N 1 particles, yet the function F
{
will be

determined only by the three arguments u lt v lt w l
if the NZF^

cases are so counted that account is taken in them only of the

state of the one particle Wj, and not of the states of the other

particles also.

For the same reason, if the particles of the group are all like

each other, the probability of the event that a second particle m2

has the components u2 , v%, io 2 is determined by the same function

with different arguments, viz.

From these two values of the probability-function we easily

obtain by a known law the expression for the probability of the

occurrence of both sets of circumstances, viz. that the particle w,
should have the components u lt v

} , w\, and ra2 the components

%, v2 ,
w 2 . It is necessary to assume only that the number Z,

which we look upon as very large, may be approximately taken

as infinitely large, and that the function F is determined in

correspondence with this assumption ;
in this case the two events

of m
l possessing the components u lt v lt w

l
and of w2 having

u^ ^2> W 2 are independent of each other, and the probability of

their simultaneous occurrence is therefore expressed by the

product of the two functions, and therefore by
l

F,F2
= F(u } ,

v lt io
} )F(u2 ,

v<2 ,
w 2 ).

If we also consider a third particle m3 which may have the

velocities u3 ,
va ,

w s ,
a fourth with components %, v4 ,

w4 ,
and so

on for all the N particles which form the group, we have in the

product of the N factors

F^F2 ...FN = F(u lt v
} , wdFfa, v 2 ,

w 2 ) F(us , %, WN) .

1 This formula and those which follow later would contain numerical

factors which would have to be formed according to the rules of combinations

if we did not fix a definite series of the particles. If we sought the probability

that one of two particles m^ and ra2 had the components u^, vn wv and the

other the components uv vv wv this would be twice as great as in the

case we have taken. Since these factors have no influence on the result,

it would be superfluous to complicate the formulas by inserting them. The

factors, furthermore, disappear when the number of particles considered approxi-

mates to infinity. (
E n c k e

,
Astron. Jahrb. filr 1834, p. 256.)

B B 2
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the chance of the event that, among all the changing states of the

group, the first particle w t
has the components u\, v

{ ,
io

l ,
the

second m2 the components ^2 V 2> W 2> ar|d so on
>
*ne last w# having

the components UN ,
VN ,

WN .

In this nothing is assumed regarding the time at which these

values of the velocity for the individual particles of the group
occur. We may therefore apply the formula to the values of the

components which the N particles may have at any given moment
whatever.

At another time the particles have different velocities, and

u'i, v'i, w\ may then be the components of m lt also u' 2 ,
v f

,
w f

2

those of m.2 ,
&c. The probability of this changed state is then

given by the product

^iJP,....^3-J^^ ,

which contains the same function F as the first, but with different

arguments.
The two products are equal to each other in value, for each of

the states of distribution is as likely as the other, because, accord-

ing to our supposition, both form part of the state of equilibrium
which finally ensues. For equilibrium, therefore, it results that

the function F must satisfy the equation

or that the product

F(u lt v it w { }

must always have one and the same value for all systems of the

values of the variables that occur. 1

1 This theorem is proved differently by Pirogoff (Journ. d. russ. phys.-

chem. Ges. 1885, xvii.). P i r o g o f f~considers an infinite number of gaseous

particles which are in a state of equilibrium. From this infinite multitude

N particles are taken out. The probability of finding given values of the

components u, v, w among these N particles is expressed by the given

product. Of the same magnitude is the chance of taking a second group of

JV other particles which, though having different components of velocity from

those of the first group, have the same total kinetic energy and the

same motion of their centroid. Maxwell's law follows likewise from this

assumption.
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11*. Mechanical Conditions

The correctness of the conclusion that all the states of distri- /
bution considered occur with equal probability we see still more

clearly when we remember that a change of condition does not

occur as a consequence of chance, but that each alteration of the

molecular motions takes place in accordance with fixed and

invariable mechanical laws. Each distribution of speed that at any
moment exists was the necessary consequence of that which

ceded it, and from it in its turn necessarily arises a new state

with a distribution that is by no means arbitrary, but completely
determined.

Before, therefore, the final state, which seems to the observer

one of equilibrium, that does not alter with the time, is arrived at

in a mass of gas left to itself, the function which expresses the

probability of a given value of the~speecl continual}/ changes its

nature according to the fixed laws of mechanics./ But when the

final state is attained the form of this function remains always the

same ; only the arguments the values of the components then

alter at each encounter, this alteration also being subject to the

general laws of mechanics. Each system of simultaneous values

of the speeds appears therefore as often as that from which

arises and as that which results from it
;
in other words, the pro-

bability of occurrence of all these systems is the same.

The laws from which this conclusion is the necessary con-

sequence are contained in the theorems which deal with the

mechanicsjoLsystems of free particles in motion. For our prob-

lem, the establishment of the law of distribution of the energy
and speed, only those theorems come into consideration which -

contain and determine these magnitudes alone. These theorems

are

1. The principle of the conservation of energy ; ^~
2. The principle of the conservation of the motion of the

centroid.

Further hypotheses are not needed for the present ;
indeed both (

these theorems depend on a single common basis, ifwe may assume

that the action exerted by one particle on another is equal to the

reaction which at each moment it experiences itself from the other

in the reverse direction.

In respect to the application of these theorems to our proof,
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only the former, the principle of the conservation of energy,

requires a few remarks to be made, since it may be applied in

different ways according as the molecules are to be looked on as

simple massive points or as made up of atoms. In the former

case, of the frwo_
kinds of energy, kinetic and potential, the sum

of which, according~tcTthe principle, possesses a value TiEat is

constant for all time and under all circumstances, only the former

comes into account ;
for since two molecules act on each other

only at the moment of a collision, the potential energy can be

neglected if we take into account in the calculation those speeds

with which the particles move betiveen two collisions, and not

~X during a collision. WT
e have then to consider simply the sum of

the kinetic energies as invariable, or to introduce the theorem that

no kinetic energy is lost at a collision.

We shall first of all limit our consideration to this simpler case,

and postpone that of composite molecules for later investigation

in 21*.

12*. Determining Equations

By 10* our problem consists in finding the function

F(u, v, w) which has the property that the product

F(u { ,
v

} , w^F(u^ v 2 ,
iu 2 )

. . . F(uN ,
VN,

WN)

has the same constant value C for all values of the components

u, v, w of the molecular velocities that occur together. According
to the last discussion the values of these components are not

magnitudes that vary arbitrarily and independently, but they are

subject to the conditions that they must satisfy the two named

theorems of mechanics. If, then, we denote by E the mean value

of the kinetic energy of one of the N molecules in question, by m
the mass of a molecule, and finally by a, b, c the components of

the velocity with which the centroid of the whole system of

gaseous particles moves, the two theorems are expressed by the

equations

Na= u
{ + u2 + . . . + UN

]

Nc = w
{ + w.2 + . . . + WN )

For our problem these equations represent the conditions con-
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necting the variable magnitudes u, v, w with the given constants

E, a, b, c. We have then from the functional equation

C = F(u } , Vi, wJFfa, v 2 ,
w 2 ) F(uN,

VN ,
WN),

coupled with the conditions represented by the above four equa-

tions, to determine the function F(u, v, w).

This is done by the known processes of the calculus of varia-

tions. If we represent a second system of values which satisfy

the equations by the symbols un + luM vn + $vnt wn + lwn ,
where n

may represent any integer between 1 and N, then we have also

,
v

l + $v
i ,
w

i + $Wi) . . . F(uN+ SuN,
VN + Zv

+ (Vi +fo l)* + (wi + 2wi)
2 +. . .

+ (UN + ?O 2 + (% + ^) 2 + (WN + 2wN)*}
Na = UL + ciii + . . . + UN + CUN

Nb = Vi + $v
l + . . . + VN 4- %Vy

Nc = Wi + $Wi + . . . +WN + 2wN .

On subtracting the one system of equations from the other we

obtain five equations from which the constants C, E, a, b, c are

absent. In these equations we take the variations $u, 8v, w as

infinitely small, being justified in this if we choose both systems

of values of u
t v, iv to be such as to differ infinitely little from

each other ; developing, then, the equations in powers of <>u, $v, hv,

and neglecting their higher powers, we obtain five equations whose

terms are all of the first order.

If for shortness we put

STTT dF(u,,, vn ,
wn) , dF(un ,

vn ,
wn) ? dF(un ,

vn ,
wn) .

vJP n jsz- ^
'VUJn "T 1 ^ un T j CW;HJ

dun dvn dwn

the first equation becomes

which, on dividing by the product of all the functions F, we may
write in the form

The single terms of this equation have the meaning

i_F, = _1 (^ dV, s dF, h
Fn F,: \dult

dvn dw,
"
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In addition to this we obtain from the four other equations the

simple conditions

= uj^ + v^Vi + w
l
hu

l + . . . 4- UXCUN + VNGVN + WNCWK,

=
ht,! +....+ CUN

= &?! + . . . -f SvN
= llU

l + . . . + faVy

to which the variations are subject. The variations are therefore

not perfectly arbitrary magnitudes, but are in such wise dependent
on each other that four of them are determined by the remaining
3N 4. The values of these last 3N 4 are limited only by the

condition that they must be infinitely small : for the rest, how-

ever, it remains perfectly arbitrary what values we assign to the

variations, and what ratios we take between their values. If,

therefore, by means of the last four equations we eliminate

from the principal equation

_Fl + i + +*.+ +*!F
t F* F. Fs

four of the 3N variations, we obtain a formula which we can so

arrange that its 3N 4 terms contain each a factor lu
t $v, 3w

which may have any value whatever. The formula therefore

breaks up into 3N 4 independent equations which do not con-

tain the variations, but only the function F and its arguments.
This elimination is most easily performed by the help of

initially undetermined coefficients by which the equations of con-

dition are multiplied before being added to the principal equation :

these coefficients, which I will take as 2&w, %kma, 2&m/3,

2&my, are then so determined that four variations out of the

whole disappear ; then, by reason of the 3N 4 other variations

being quite arbitrary, their factors are also zero. We thus obtain

3N equations of the form

in which for n are to be taken all the integers from 1 to N. In all

these equations the four magnitudes k, a, ft, y have each one and
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the same value,, which is therefore a constant independent of n

and of u, v, w.

13*. Another Method

We may arrive at these formulasJn__another, perhaps simpler,

way from the functional equation

C = F(UI, v l} w l)F(u 2t v2 ,
wz) . . . F(ux ,

VN,
WN),

by comparing together two states of the molecular system of which

the one immediately follows the other. A change of the state

occurs at every collision between two particles : we compare
therefore the state of the system before a collision between a/ty

two particles with its state immediately after the
collision^/

Of

all the particles, then, only thoseJwo which collided have changed

their_motipn. We may, then, in the product neglect the factors

that have remained unchanged, and thus conclude that

F(u lt v } , wjFfa, v 2 ,
w2 )

= F(Ult Vlt WjFW, F2 ,
TF2),

if u\ t
v l} Wi and u2) v2 ,

tu2 are the components of velocity of the

two particles before collision, and Uit FJ, Wl and U2 ,
F2 ,

TF2 the

corresponding values after collision.

We thus arrive at a form of functional equation to which other

methods of proof have also led. It first occurs in Maxwell' s

se&ond 1

proof, and then in the memoirs of Bolizmann. 2

L^ren_iz^
3 and others. It occurs in these memoirs as expression

for the stability of Maxwell's state of distribution : the equation

may also be interpreted in such wise that the number of collisions

depending on the product F(UU v lt w\)F(u2 ,
v 2 ,

w2),
in which the

components u, v, w are changed into U, F, TF, is exactly as great
as the number similarly determined by F(Ult Vlt W})F(U2 ,

F2 ,
TF2 )

in which the components u, v, w take the place of the values

U, F, TF.

The functional equation is subject to the conditions

=
, 2 2

tit + u2
= U"

} + U2

Vl + V2
= F! + F2

Wl -H W.2 = Wl + W2

1 Phil Trans. 1866, p. 157 ; Scientific Papers, 1890, ii. p. 45.
2 Wiener Sitzungsber. Iviii. 1868, p. 517 ; Ixvi. 1872, p. 275 ; xcvi. 1887,

p. 891 ; &c. 3 Ibid. xcv. 1887, p. 115.
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which express the fact that the collision makes no alteration in

either the total kinetic energy or in the motion of the centroid of

the two particles.

For the solution we employ in this case too the method of the

calculus of variations, which may be here employed without

hesitation, as the components are variable magnitudes. But we

are also entitled to consider the components u, v, w as variable at

the same time that the components U, V, W are constant
;
in this

case we limit our consideration to the cases of collision in which

from the original values u, v, w the same values U, V, W always
result. We thus obtain the equation

= F(u.2t v 2 ,
w2)SF(u lt v lt wj + F(u { ,

v lt io^F(u 2 ,
v 2 ,

w 2),

ux *-
-j-,,

F(u\,v lt
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oo and + . The equations, then, which we may write with-

out the index and in the slightly altered form

du

dv

= <iM! + zkm(w - y),dw

are the differential equations which determine the function

F(u, v, w) that depends on the arguments u, v, w, and which

therefore determine the probability that a molecule moving with

the velocities u, v, w occurs in the group in question.

By integration of the equations we obtain

F(u,v,w) = Ce- km
{
(u - a)^ (v ~^- +(w -^} t

where e is the base of Napierian logarithms and C a constant of

integration. Instead of the latter we may introduce another

constant A given by the formula

C Adudvdw,

We are entitled to make this change, because du, dv, dw possess

constant values as differentials of independently varying magni-
tudes ; considering further that the occurrence of a component of

velocity of perfectly definite magnitude for instance u, or, more

properly, a value lying between the limits u and u + du can

have a probability that is only infinitely small and of the order

du, we see that C must be an infinitely small magnitude of the

order du dv dw. We may therefore understand by A a constant

of finite magnitude when we put for the probability-function

F(vi,v,w)=Ae-
km

l
(u - a)

* + (v - f3}2 + (w - r^ dudvdw.

/ This expression exhibits an important property of the

'function, viz. that it may be broken up into three simpler

functions, each of which depends on one, argument only ; for we

have

F(u,v,w) = U(u)V(v)W(w)du dv dw,

if U(u)=Be- km(u ~ a)
\

V(v)=Be- l:m(v - 0)
\

W(w) = Be -***-*,

and B* = A.
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This mathematical property of the function F is the expression

of the fact that the occurrence of a speed u, the probability of

N^ which is U(u)du, is independent of the values of the simultaneously

occurring velocities v and w of the same pa.rjjftle.,
thp. probabilities

of which are V(v)dv and W(w)dw ; a fact the correctness of

which is so evident of itself that Maxwell chose it as an obvious

axiom for the foundation of his first
*

proof of the law found by
him.

15*. Determination of the Constants

Since the probability that some one of all the conceivably

possible values of the speeds may occur is a certainty, and has

therefore the value 1, it necessarily follows from the above inter-

pretation of the functions U, V, Wthat the sum of the probabilities

of all possible values must be 1, or

poo

L
and that for the two other functions two corresponding equations
must hold. By simple substitutions all three formulas give the

same result

1 = B
j

dre-**"* = B*/(ir/kni),

whereby the constant B, and thus the constant of integration A }

is determined.

We further arrive at a knowledge of the constants a, /?, y by

calculating the mean values of the components of velocity, or, in

other words, as the first equations show, the components a, b, c

of the motion of the centroid. From the equations so obtained,
CO

duu/e~**i*~**
CO

dvve -**'
- CO

c =B
co

we obtain simply = a, = b, y = c,

since

(w - a)
"' =

dr(r + a
fJ co

1 Phil. Mag. [4] xix. 1860, p. 22
; Scientific Papers, i. p. 377.
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of which the first term is equal to zero and the second to

af dre- kmr*

=a/B.
J oo

We finally obtain the value of k by calculating the mean value

of the kinetic energy of a molecule, which is given by the first

equation in 12*, thus :

E = Am
"
f (" du

\" f ("
oo J oo J oo

/OO pOO poo tmfr2 4- 2 -v/z ^

\Am drdsdt{(r + a)
2 + (s + b)

2 + (t + c)*}e
*

J _oo J oo J oo

c=).

The meaning of the constant k is, therefore, according to the

equation

? = E - >(a2 + Z>
2 + c

2
),

4/j

determined by that part of the kinetic energy which is present in

the system independently of its translatory motion as a whole,

that is, by the energy of its heat-motion.

16*. Law of the Distribution of Speeds

As the values of all the constants in the expression for the

probability have been found, we can sum up the result of our

investigation in the following way :

In a gas which streams with a velocity whose components are

a, b, c, and whose particles are in a state of heat-motion of mean

energy 3/4& when the equilibrium stpfge has been reached, out of

every N molecules there are

n = Mr-*kmyb-*l*-++*-*+'-*}du<bdu

whose components of velocity lie between the limits u and u + du,

v and v + dv, w and w + dw.

If we assume that the gas has no progressive motion as a

whole, but possesses only the internal heat-motion in all directions

equally and with equal strength, and so put

a = b c = 0,

we obtain the simpler expression

km{u* + * + ""du dv dw
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for the number of molecules which move with such a velocity

and in such a direction that its velocity components are u, v, w.

Thus, too, the number of particles which have a component n,

independently of the components v and w, which remain un-

determined, is

and similarly the numbers of particles whose velocities have the

components v and w respectively are

N(TT
~ l

km)*e
~ kmv

"-dv, N(T

The constant k which here occurs is connected with the mean
/kinetic energy E of molecular motion by the relation

In these simplified formulae lies the law found by Maxwell,
which has been already pointed out in 24 the law, that is, that

the different values of the components of the molecular velocities

are distributed among the molecules considered according to the

same rule by which the errors of observation of different magni-
tudes are distributed among the observations in accordance with

the method of calculation by least squares.

According to the formulae first given, this special case of a gas
at rest in space is distinguished from the more general case, in

which the gas flows as a whole with a certain velocity, only by
the velocity of flow having to be subtracted. The same law holds

good when we diminish the components u, v, w of the velocity of

a molecule by the components a, b, c of the velocity with which
the gas flows as a whole. The molecular motions will therefore

not be disturbed by a translatory motion being given to the gas as

a whole, but both motions combine simply together.

17*. Gas in Rotation

Just as simply stands the matter when the gas is not put into

translatory motion, but into rotation about an axis.

In a review of a book 1 Maxwell has pointed_Qut that the

general theorems of mechanics mentioned inSll* are not the

1 Notice of Watson's Kinetic Theory of Gases, Oxford 1876, in Nature
xvi. 1877, p. 242.
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only ones which must be taken into account in an exhaustive

treatment of the subject. In a system of bodies free fromi

external action, the sum of the energy and the velocity of the

centroid of the whole system are not the only invariable magni-
tudes ;

but there are others, too, that always have the same value.

According to the theorem of the conservation of areas the

moments of the momenta of the system about th^ftf fl.vp. a.t.
right.

angles to each other have also constant values. By the method

here employed it is easily possible to take this proposition of

mechanics also into account in the calculation.

If we denote by x, y, z the rectangular coordinates of a

particle of mass m whose velocity is made up of the components
u, v, w in the directions of the system of coordinate axes, this

general proposition of mechanics is expressed by the equations

GI = ^.m(yw zv)

c2
= ^.m(zu xw)

C3 = 2.m(xv yu),

in which the magnitudes c are independent of the time and

position, and the summations 3 are taken over all the particles

of the whole mass. We may either refer the coordinates x, y, z

to a fixed system of axes, or choose as origin of coordinates the

centroid of the whole gaseous mass, which moves on with un-

changeable velocity : we will do the latter in order to gain the

advantage of obtaining formulae which refer only to rotations

about the centroid.

The new formulae differ from those established earlier in 12*

by containing the coordinates as well as the components of

velocity, yet they can be introduced as equations of condition in

the same way as those which refer to the energy and the motion of

the centroid.

For, to express the fact that the occurrence of other values

u + &u, v + &v, w + Sw of the velocities has the same degree
of probability, provided that they satisfy the laws of mechanics,
we have to add to the formulae before developed the conditions

c
t
= 2.ra [y(w + 8w)

-
z(v

c2 = $.m{z(u + $u) x(w
c3 = 2t.m{x(v + Sv) y(u

in these formulae only the velocities u, v, w, and not the co-

ordinates x, y, z, are varied, since among the changed values
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u + Bu, v + Bv, w + Sw those velocities are to be understood

which replace the original values u, v, 10 at the same place (and

therefore for the same values of x, y, z], but at a different time.

From both systems of formulae it follows that to the equations of

condition, to which the variations Bu, Bv, Bw are subject, must be

further added the three equations

= 2.m(y Bio z Bv)

= $.m(z Su x Biv)

= $.m(x Bv - y Bu).

We take these formulae into account by multiplying them by
three provisionally undetermined but constant factors, which we
will denote by 2&, 2&iy, 2&, and adding them to the

former formulae, and then the coefficient with which each of the

3N variations Su, Bv, Bw appears to be multiplied in the sum of

the equations is to be put equal to 0.

In this way, instead of the three differential equations that

stand at the end of 12*, we obtain the more general equations

which may be integrated when u, v, w are taken to vary without

limit and x, y, z to be constant.

This integration does not need to be carried out in order to

let us see that the result of the calculation will only differ from

that in the former case by the magnitudes

zrj y, x zg, yg xrj

having to be subtracted from the variables u, v, w as well as the

constants a, (3, y. The magnitudes have a similar meaning to

those of a, /3, y. While a, /3, y were found equal to the values of

the components a, 6, c of the velocity of the centroid, , rj, ,
as it

is easy to see, are the values of the angular velocities with which

the gaseous mass rotates about the axes of x, y, z ; for if this is

their interpretation, the sum

a + zr
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is the velocity with which a particle at the point x, y, z advances

in the direction of the axis of x while rotating about the axis of y
from the -axis to the #-axis with the angular velocity 17,

and also

about the axis of z from the #-axis to the ^/-axis with the angular

velocity . In exactly similar ways are the two other magnitudes
to be interpreted. The formulae therefore express motions of the

gaseous mass which correspond to those of a nut which moves on a

screw-spindle that itself moves along and turns about a second axis.

These kinds of motion of the gaseous mass are, as our ex-

amination shows, to be simply subtracted from the molecular

motion present in order for us to arrive dipeclily at Maxwell's
law of distribution for the state of rest. Hence it follows that

the individual motions of the molecules are not disturbed if in

addition to a forward translatory motion of a gas there are also

rotations about any axis in which the gas as a whole takes part.

The actual velocities of a particle are thus made up of three

parts : firstly, of the motion which the particle would have in

accordance with Maxwell's law if the gas were at rest as a

whole
; secondly, of the velocity with which the centroid of the

whole gas moves ; and, thirdly, of the motions which it has in

taking part in the general rotation with the mean values
, 17,

of

the angular velocities.

Thus the kinetic energy of the molecular motions breaks up
into ihree parts, and the mean energy of a molecule at the- point

z$* + (c + yt-xtf}.

When the whole amount of energy is known this formula may be

used for the determination of the constant k.

In order to obtain Maxwell's law of distribution in its

simplest form, we have, according to the foregoing discussion, to

subtract from the components u, v, ID of the molecular velocity, no

always equal values of speed for all the different particles which

belong to the system, but for each particle the values of the

velocity-components which belong to the whole gas at the point

where it actually is. This remark discloses the possibility of

widening still further the limits of the region wherein Maxwell's
law holds good.

In the simple cases which we have considered the validity

of this process would have been easy to see even without mathe-

c c
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matical proof; for a gaseous body executes a motion of the

centroid and rotations about fixed axes exactly as if it were solid.

But if in a gaseous mass there are layers which shift together

with unequal velocity or rotate unequally quickly, our formulae

which have been used in the proof are no longer valid with

absolute strictness, since the energy within any layer need

remain constant as little as any other of the observed magnitudes ;

for the propositions are only strictly true for the gas as a whole.

We may, however, look upon them as approximately valid if the

interchange of energy or of velocity between the layers occurs

only slowly. With this assumption, which is permissible if the

differences in the motion of neighbouring layers are small enough,

each of the mechanical theorems remains valid with sufficient

exactness even for a single layer within an interval of time that

is not too long. At the same time, this interval may be long

enough to allow the very rapidly resulting
1

arrangement in the

^^distribution of the velocities according to Maxwell's law to
^

occur. In such cases, therefore, the law must also hold good if the

gas is divided into unequally moved layers. In each of these

layers, then, Maxwell's law holds good for the distribution of

the velocities on this condition, that on each occasion the velocity

in which a particle shares by the flow or rotation of its layer is to

be subtracted from the value which the particle would have in the

state of rest and equilibrium of the gas as a whole.

18*. Transformation of Coordinates

In using Maxwell's law it is often of advantage to give it

another form by a transformation of coordinates. Naturally

/it
is not always necessary to know how many molecules have a

velocity the components of which are u, v, w, that is, a velocity

of given magnitude and direction ; far oftener the question arises

as to the number of particles which possess a given speed, that

is, a motion of given magnitude without reference to direction.

This question is answered if we pass over to polar coordi-

nates from the system of rectilinear coordinates to which the

components u, v, w are related, and therefore introduce the abso-

lute velocity

1

Tait, Trans. Eoy. Soc. Edin. xxxiii. 1886, p. 82; Natanson, Wied.

Ann. xxxiv. 1888, p. 970.



18* MAXWELL'S LAW 387

whose direction is given by the angles s and with reference to

a fixed axis, such that

u = w cos s,

v = w sin s cos 0,

w = a> sin s sin
</>.

In order not unnecessarily to complicate the calculation,

which I wish to carry out without the limiting assumption of a

state of rest, I take the position" of the coordinate system, which

so far has been left arbitrary, such that the axis of u, which is

also that of the polar system of coordinates, coincides with the

direction of the absolute velocity of translation of the whole

system
o= v/(a

2 + 62 + c2).

Then in the former formulae o enters instead of a, while b and

c vanish altogether. Since, further, the element of volume is now

given by the expression w 2^w sin s ds d$, we have, instead of the

first formula of 16*, the new one

n = N^km^e-^^-^^^^^da, sin s ds
d<j>,

and this gives the number of molecules which out of everyNmove
with the velocity w in the direction given by s and

</>.

From this we obtain by integration the whole number v of

all those which move with a speed lying between w and w + da,

viz.

ds sin s er^-^ cos + a
>

e
~ *m( ~

With the special assumption that there is no translatory

motion, i.e. that the gas is at rest as a whole or o = 0, this

formula, found by Maxwell, becomes

This new formula differs from the former formula in 16* by
an important circumstance ; while the latter showed a continuous

diminution of the probability as the values of the components

increased, this has a maximum which occurs for the value

= 1

or

w = (km)-*= W.
c c 2
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The different values of the absolute spaed are separated by this

most probable value W in such wise that other values of the

speed, whether greater or less, have the less probability the more

they differ in value from W.

The law of this distribution is graphically represented in 26

on p. 52. The ordinate of the curve is such that

y dx v/N,

so that it simply denotes the probability of a value w : the abscissa

on the contrary is

x =

and is therefore equal to the ratio of the corresponding value w to

the most probable value W.

19*. Mean Values of the Speed and Energy
From the trend of the curve we easily see that the most

probable value of the speed is no average value in the usual sense

of the words. But the arithmetical mean value ft of all the

values of the speeds, when each is reckoned according to the

frequency of its occurrence, is given by

ft = 4?i

We may compare with this mean value of the molecular speed
that corresponding to the mean energy of a particle in motion

E =
o

which agrees with the formula already found in 16*, this other

mean value G of the molecular speed being therefore given by

/A_V 2&m'

the meaning of which is as simple and important as that of the

arithmetical mean value ft. We have in fact to understand by
G- that speed which all the particles would have if without

addition or subtraction of energy the speeds of all were made equal.

Then the simple relation in which these two mean values

stand to each other is given by the formula

G = ON/ (37r/8)
= 1-08540
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which was employed in 28 to calculate the values of i. These

magnitudes G and 1 bear to the most probable value "FT the ratios

given by .

it hence follows that a volume of gas V at the pressure

P =^2 = ^P&>

as in 27, possesses a capacity for doing work equal to

which is as great as its kinetic energy would be if each particle

moved with the most probable speed W. 1

A third mean value is also of interest, namely, that which in

accordance with the nomenclature adopted by Gauss in the

theory of least squares must be termed the mean probable value

or the value of mean probability. This value, which I denote by
0, is determined by the condition that the cases in which a

molecule has a less speed than occur just as often as those in

which the speed of the molecule exceeds the mean value 0.

Since now the probability of the occurrence of the former case

is given by

and that for the second by

47r-i(fcm)*|"
do.

while the sum of both probabilities is

it follows that each of the single probabilities possesses the

value ^. The mean probable value of the molecular speed will

therefore be determined by the formula

or by

i,r*=
o

1 Saalschiitz, Schr. d. phys.-okon. Ges. zu Eonigsberg, 1878, 19. Jahrg.,

Sitzungsber. p. 45
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where the upper limit of the integral is

= 0/W.

To determine the value of M* a numerical evaluation of the above

transcendental integral is necessary, which can be carried out by
means of different rapidly converging series

; and we find

= 1-0875,

and therefore
= 1-0875 TT= 0-9640.

Thus the mean probable value is greater than the most probable

W, whereas it is less than the other two mean values, so that the

four special values of the molecular speed arranged in order of

magnitude form the series l

W < < O < G.

To exhibit these relationships more clearly some numerical

examples calculated from these formulae have been given in 28.

We need not here examine more closely the more general case

wherein there is also a translatory motion of the gas as a whole

in addition to its molecular motion, since the formulas for the

mean energy and the pressure have been already deduced in a

more general investigation in 7*.

20*. Mixed Gases

The foregoing investigation may be easily extended to the more

general case in which the gaseous medium considered consists of

a mixture of different kinds of molecules. The calculation is

of exactly the same character, the only difference being that the

number of equations of condition is increased.

In order to avoid unnecessary complications let us assume that

the gaseous mixture is not in a state of motion as a whole, but,

apart from the molecular heat-motions, is at rest and in equili-

brium ; then for each kind of molecules three equations hold good
of the form

where m lt ra2 ,
. . . denote the masses of the different kinds of

1

[These means are very approximately as 80 : 87 : 90 : 98 T.].
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molecules, arid u
} , v^ w } ,

u.2 , v%, w^ . . . the components of their

respective velocities. For a mixture of two gases we have there-

fore six equations to take into account ;
for a mixture of three

gases, nine equations ;
&c.

In addition to these equations, which specially hold for each

species separately, there is still a condition relative to the whole

number of particles which has to be fulfilled, namely, that the

kinetic energy of the whole system shall possess a given value. If

we denote byNlt Nz ,
. . . the numbers of particles of each kind, and

by N their total number, so that

N = N, + N2 + . . .
,

and if we further write E lt E2 ,. . .for the mean values of the

energy of a particle of each kind, and E for the mean value for

them all, so that

NE = N
}
E

l + N2E2 + . . .
,

then

NE = ^.m^u^ +V + Wi
2
) + iS.w2(w2

2
-I- v2

a + w z *) + . . .

where, as before, N and E are given magnitudes.

If now with respect to this enlarged number of equations of

condition we seek the function F which determines the distribu-

tion of the different values of the components u, v, w by the same

methods of the Calculus of Variations as before in 12*, there is

in the calculation only a difference in the number of the variations

that remain arbitrary and of those which are determined by them.

The form of the equations therefore remains the same ;
the number

of constants only is increased. For each kind of molecules we
obtain differential equations of the form

= 1 f + SM,- ft)

as before, wherein a, ft, y may have different values for different

kinds; the constant k however has the same value for all the

kinds of molecules, since it is the elimination-coefficient by which

the last equation of condition is brought in which takes into

account all the particles alike.
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If therefore these equations are integrated with the condition

that there is no translatory motion but only heat-motions, the same

expression
(ir-

l

km)*e-
km(u* + v* + wZ)du dv dw

results for every gas to represent the probability that its com-

ponents of velocity have the values u, v, w. In this expression

the corresponding value of the molecular mass m has to be taken

for each kind, while the constant k has the same value for all.

If, as in 18*, polar coordinates are employed in place of

Cartesian, the proposition just shown may be expressed thus, that

the probability of a given value w of the speed is

for each kind of molecules. Since this expression
l contains the

magnitudes m and w only in the combination raw2
,
the simple

meaning of the above theorem is that the probability of a given
value of the kinetic energy of a molecule is exactly the same for one

component gas as for another.

From this it follows that the mean value of the kinetic energy
of a molecule has the same value for each kind of the molecules,

or

3

Therefore in a mixture of different gases a state of equilibrium
results such that a molecule of each kind possesses on the average
the same amount of energy ; and the varying values of the energy
are distributed among the individual molecules of each kind

according to one and the same law of probability, that, namely,

whiph regulates the distribution in unmixed gases also.

, therefore, two gases, the molecular motions of which are of

mean energy, are mixed together, no change in the distribu-

tion of the energy occurs. The importance of this theoretical

proposition stands out when we compare it with a law obtained

by experiment, viz. if two gases of the same temperature are

mixed together no change in their temperature occurs. Both
laws are identical if, in accordance with the fundamental ideas of

this theory, the kinetic energy of the molecular motion is taken as

the mechanical measure of the temperature. We are therefore

justified, on the ground of this agreement with experiment, in con-

1

[For it is of the form 47i $rze- r
*dr, if r = fo;ia>

2
. TK.]
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eluding the following law, first established byClausius (see 29),

and in taking it as definition of equality of temperature, viz. two

different gases are at the same temperature when the mean kinetic

energy of the molecules of both ifmas is ine same.

If both gases are also under the same pressure, and have there-

fore equal amounts of kinetic energy in unit volume, the further\k*-

conclusion of Avogadro's law, discussed in 31, holds good, viz.''

that two different gases at the same temperature and pressure con-

tain in equal volumes eqiial numbers of molecules.

21*. Polyatomic Molecules

The foregoing considerations can, strictly speaking, claim

applicability only to gases whose molecules have no internal

motions ; for atomic motion was left out of account, and our con-

clusions are thus justified only for gases whose molecules consist

each of a single atom.

For .sys*ep nf
po|ya,tr>rm'n molecules the investigation

is cer-

tainlyjspmewhat more complicated ;
but for these media too the

distribution of the motion among trie individual molecules may be

found by the same method used before, and also the law of distri-

bution of speeds among the constituents of the molecules, i.e.

among the atoms.

Let a molecule m consist of a number of similar or different

atoms nil, Wz> - which, in addition to the molecular velocities

u, v, w, execute special atomic motions- with the velocities

tli, t>i, H>i, U 2 , t) 2 , tt> 2 ,
. The magnitudes of these last velo-

cities must satisfy the equations

= S.mit, = S.nw, = S.mw,

when the summation denoted by S is extended over all the atoms

forming a molecule. The equations

cS.w = "Si.mw

also hold good, in which a, b, c, as before, denote the velocities

of flow of the gas, and the summation 2 is extended over all

molecules.

But the equation for the kinetic energy takes in this case an

essentially different shape. While the motion of the molecules

investigated before was not constrained by molecular forces, the
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new motion of the atoms which now comes in is not free
;
it takes

place under the influence of forces which maintain the combination

of the atoms into a molecule, and whose joint effect we call affinity.

In addition, then, to the kinetic energy, which is made up of the

sum of the kinetic energies of the atoms and molecules, we must

bring the potential energy also into the theorem, which, therefore,

takes the form

N(E + <) = |S. {m(u* + v2 + w*) + S.m(u
2 + to

2 + tt>
2
)} + SS.a.

To the mean energy E of the to-and-fro motion of a molecule,

which I will call the molecular energy, there is here added on the

left-hand side the atomic energy (5 which is present inside the

molecule, in the form partly of heat-motions of atoms, and partly

of chemical affinity, while on the right-hand side these magnitudes
are taken into consideration as the kinetic energy of the molecules

and atoms, and as chemical work performed by heat. The last

magnitude is introduced by a function which represents the part

of the work which is done on a single atom contained in the

complex of the molecule. So that S.0 expresses the amount of

chemical work in the molecule, and SS.^ the whole amount of

chemical work in the medium.

The value of this chemical energy we may easily express by
/he attractive forces between the atoms if these forces belong to

/. the class named__by Helmholtz central forces. Thus, if one

atom exerts on another distant by r from it a force f(r), the work

required to increase this distance by dl is

fW;
to overcome the affinity, therefore, in the infinitely small dis-

placement of an atom, an amount of energy or of heat

is used up, so that we find

as the value of the energy spent, the constant 6 here denoting the

smallest distance from the atom in question to which the attracted

atom can come.

The new more general formulae, like the earlier simpler ones,

hold good for all possible states of motion, and may therefore

undergo variation in the same way as the others. But in this
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operation we must consider not only the velocities u, v, w of the

molecules and the atomic velocities u, fc, tt) as variable, but also

the distances r and the function
</>,

since the mode in which the

atoms are bound together into molecules and arranged within

them is not given. The number of molecules N therefore cannot

be taken as absolutely fixed, but we shall have the product

where H stands for a given constant, which in 53 was thus

denoted.

The variation consequently gives

= ~L.in(u^u + vlv + wcw) 4- SS.

= S.mSu, = S.m&>, = 8.

The variation fy here occurring is not independent of the other

variations. For by addition of heat not only does the kinetic

energy rise in amount, but also the relaxing of the bonds, which

Clausius calls disgregation, increases in continually corre-

sponding measure, till at last it leads to dissociation. The

regular connection between these phenomena is to be introduced

into the calculation.

Since an increase of the velocity with which the centroid of a

molecule moves is conceivable without the internal connection

between its component parts needing in any way to be altered,

^ cannot depend on u, v, w. On the contrary, <f>
must be

considered a function of U, tt, tt> ; for an increase in the atomic

motions must cause the distances t between the molecules to

increase in consequence both of the collisions between the atoms

and of their centrifugal force. Hence we must put

<ty
= S.

where the sum is to be taken over all the atoms of the molecule

which contains the atom subjected to the influence of affinity.

If now, as before, we denote the probability that an atom

possesses the molecular velocities u, v, w, and also the special

velocities u, t), w by
F = F(ut v, w, u, V, tt>),
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the formula defining the state of equilibrium of the medium for

which we are looking is

= 38. fc + fc + to + su + a, + f8m)dn> /

Since the variations here contained must satisfy the above

conditions, we obtain by the method of elimination already used

the following differential equations for the determination of the

function F :

= 1 + 2km(u-a)

Here k, a, /3, y are the same constant magnitudes as before ; but

a, b, C are to be considered constant only so far that for all atoms'

in one and the same molecule they have the same value ; they

might possibly have different values for different molecules,

and, so far at least, should be taken as dependent on the state of

the molecule, that is, as functions of u
t v, w.

We easily see, however, that the above equations would
contradict each other if a, b, C changed with u, v, w from molecule

to molecule.

By differentiating, for example, the first and fourth of the

above equations, we obtain inconsistent values of the second

differential coefficient with respect to the two variables u, u, which
are independent of each other, thus :

T

== d_(ldF\
dudu du\Fdu)
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and similarly with the others ; whence we see that the magnitudes
a, b, C must in general be constant in respect to u, v, w also.

The integration of the equations is now easy to carry out, and
we obtain

F = Ae ~
*+du dv dw du dv dw

where

$ = ra{(w-a)
2 + (v /3)

2 + (w y)
2
}

+ m{(u - a)
2 + (t>

-
b)

2 + (n>
-

c)
2
} + 20,

and A denotes a constant which may be different for each kind of

atom. This function F may, as before, be broken up into the

product of several simple functions, for we may put

of which the first three have the form

U(u)=Be-
km

V(v) =j3e
- *

where by B may be understood a constant which is the same for

all molecules and atoms, and the fourth is

, t>, w) = S3e~*x

where x = {(
~

<*)

2 + (*> &)
2 + (w c)

2
} 4- 20

and S3 denotes a constant which may have a special value for each

kind of atoms.

The three former functions have the same meaning as before in

14*, so that, for instance, U(u)du denotes the probability that the

atoms of a molecule move parallel to the #-axis with a velocity

between u and u + du. The determination of the constants can

therefore be carried out exactly as before ;
in this case, too, we

have

00

duue'

with similar equations for the components v and w. Hence follow

B = (Tr-^m)*

a = a, fi
= b, y = c.

We obtain, therefore, exactly the same equations as before,
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whence it is proved that Maxwell's law holds good for composite

as weH as for simple molecules.

There finally remains the constant k to determine ; as in the

special case investigated before, it depends in simple wise on the

mean value of the energy.

Since Maxwell's law holds good for polyatomic molecules

just as for isolated atoms, the new formulae also lead to the known

value

E = 1 + \m(o? + 62 + c2
)

for the mean kinetic energy of the centroid of a molecule, and

thus, in the special case of a gas in equilibrium and at rest as a

whole, to the value
3

22*. Atomic Motions

But another less simple law, which is given by the function

(lt, t), IT), determines the distribution of the internal motions among
the atoms composing the molecule. To determine the constants

which in the expression of this function have been so far left un-

determined, we may in the first place remark that the atoms of one

kind have no special motion of translation besides the general

motion of the molecules. The mean values, therefore, of the

components u, tt, tt>, calculated from the probability-function

must all be equal to zero when all the molecules of the whole

system are taken into account, and we therefore have

a = 0, b = 0, c = 0;

for in the integrations with respect to dtt, cfo, d\v there are as many
atoms with negative components U, tt, tt) as with positive com-

ponents of the same absolute magnitude, and these atoms are at

the same time endowed with the same values ^ of chemical energy ;

the integral can therefore vanish only if a, b, C also vanish. We
have then more simply

x = m (u
2 + & + n>

2
) + 20,

or x is double the total energy, i.e. double the sum of the kinetic

and potential energies of the atom-complex of a molecule.
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In order, further, to find the value of the magnitude 23, a

determination is first of all necessary of the limits within which

the velocities it, tt, tt> are variable. These magnitudes cannot

assume any value between oo and -f oo, as in the case of the

molecular velocities u
t v, 10

; for if their values were to increase

above a certain amount, the energy of the internal motions would

be sufficient to break up the combination of the atoms, which

would then move on, either singly as independent molecules or in

new molecular groupings : the former atomic motions are there-

fore partly transformed into molecular motions when their value

exceeds the limits determined by affinity.

In this view the upper limits of the atomic velocities are

determined by the condition that the corresponding kinetic energy
of an atom cannot be greater than the energy of affinity which is

overcome when the atom considered is to be loosed from the bonds

of the molecule. If we denote by $ the maximum value of the

energy which can be developed by the combination of the atom

with the remaining constituents of the molecule, so that

* =
8.J"f(r)*,

then, since the molecule considered is in such a thermal condition

and with the disgregation so far advanced that the chemical

energy

has already been overcome by the expansive tendency of heat,

there still remains only the difference

to keep the atom in the molecule. The condition, then, which

determines the upper limits of the atomic speeds is therefore

or, more shortly, with the above definition of

This equation expresses that the sum of the kinetic and potential

energies at any moment within the molecule, or the sum of the

heat and chemical affinity within it, must remain smaller than the
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highest value which the energy of affinity can have ;
in other cases

the stability of the molecule is destroyed.

The value of the constant S3 can therefore be determined by
our noting that the sum of the probabilities of all possible cases

must be certainty, and that therefore

when the limits of the integrations are values connected by the

equation
x = m(ll

2 + tt
2 + tt)

2
) + 20 = 2$.

Without knowing the value of the function we can carry the

integration only so far as to express S3 by the transcendental

equation

where

x = mg
2 + 2^,

and the limiting value g is given by

mg
2 + 2fy

= 2*,

<f>q
and

</>g
being the mean values of

</> corresponding to the

velocities q and g.

We meet the same difficulty in attempting to find that part

of the energy which we have called the atomic energy ; for, in

taking the sum of the kinetic and potential energies within the

molecule we obtain on the average

where the limits of the integrations are again conditioned by
i
x = im(u

2 + tt
2 + n>'

2
) + ^ = *.

Without a knowledge of the function the integration can be

carried no further than as is given above for S3.

23*. Rotations of the Molecules

It can still be doubted whether the formulae for the individual

motions of the atoms, as they have so far been developed, really

contain everything of importance for the nature of the case. If

we consider that composite molecules are doubtless thrown into

rotation on collision, we must consider our procedure open to

A
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suspicion, as in the deduction of the formulas for composite mole-

cules the theorem of the conservation of areas, which was applied

to the case of simple molecules in 17*, was not regarded. I will

therefore take this theorem into account by way of supplement.

According to this theorem the following equations hold for

molecules whose mass m is made up of atoms of mass m, viz.

d = SS.m \(y + \))(w + ) (z + j)(v + t>)}

c2 = 2S.m {(z + &)( + u) (x + y)(w + )}

c3
= Z8.m{(aj + jr)(t> + a)

-
(y + \))(u + u)},

where c 1} c2 ,
C3 are constants, and the summation S is extended

over all the atoms of a molecule, while the summation 2 embraces

all the molecules of the whole gas ; further, by x, y, z the coordinates

of the centroid of a molecule are denoted, and r, p, j are the co-

ordinates of an atom referred to this centroid as origin. Hence we
have the equations

S.m = 0, S.mp = 0, S.mj = 0,

and, since we have also

S.mu = 0, S.nn> = 0, S.mw = 0,

S.m = m,

the equations first given reduce to

zv) + 2S.m(wtt> $t>)

xw) + SS.m($u rn>)

yu) + SS.m(xt) pu).

The two parts into which each sum in this way breaks up are

independent of each other. For the second parts, which have

still remained double summations, depend only on the position

and motion of the atoms inside the molecule, and cannot alter

with the velocity and position of the centroid of the molecule,

that is, with u, v, w or x, y, z. If, for instance, to the gas as a

whole a constant velocity u were given in the direction of the

#-axis, or if it were displaced in this direction by a constant

amount x, such an alteration would be without effect on the pro-

cesses occurring inside the molecules. Hence it follows that the

three equations can only be satisfied if each of the six magnitudes

zv) 2 S.

D D

2.m(xv yu) SS.m()

possesses a value that always remains constant.
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Hence, in addition to the former equations of condition given

in 21*, we have six new ones of which the first three

=
=

agree with those already established in 17* for monatomic

molecules. The three others we can write only in the unsimplified

form

= S s.m
du

= SS.ra
I dn d$ dm

= ss.m
L cZu

since we do not know in what way the position given by x, 9, ,

which an atom has inside the molecule, depends on the components

tl, t>, tt) of its velocity.

In order to take account of these conditions we have again to

multiply each by a coefficient and then add it to the principal

equation, whereupon the resulting equation may be broken up into

a number of formulae. In this way we obtain the equations found

already in 17* for monatomic molecules, viz.

=

= + Mm(v -p + zt-xQ
JJ av

= 1 ? + 2km(w - 7 + xrj- yf),

in which k, a, (3, y, g, -rj,
are constants, and also the new

equations
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in which the function
<p'

is connected with the potential energy <j>

of the atom by the relation

and a, b, C, I) i, fy2 > fys are constant coefficients.

The first three formulae need not be again investigated. We
deduce at once, from their holding good in this case too, that

Maxwell's law of distribution in composite molecules also is

not disturbed by motions of translation or rotation of the gas as a

whole.

If we integrate the last three differential equations we find

that the function F contains a factor depending on it, tt, tt), which

may also be brought into the form

25 is here again a constant, and x has now the meaning

X = m j(u
-

a)
2 + (t)

-
b)

2 + (n>
-

c)
2
} + 2f,

where / has the value just given.

On the same grounds as those given before in 22*, all terms

drop out of the expression for r which contain uneven powers of

U, t>, VD or of F, t), 5,
at least if the supposition is realised that the

gas is free from external forces, electrical or magnetic for

instance, which cause a definite orientation or a definite direction

of rotation of the molecules ;
for on our supposition each direc-

tion is as probable as that which is its exact opposite. Hence it

follows that

a = 0, b = 0, c = 0,

so that the function x takes again the simple form

x = m(u
2 + \3

2 + n>
2
) + 2</>,

in which denotes the potential energy of the atom m.

The introduction, therefore, of the theorem of the conservation 7

of areas alters nothing in the result of the calculation ; and we \

may therefore be convinced that, in the formulae before developed, (

the energy of the rotatory motion of the molecules has already-
been taken into account.

The case would, however, be probably different if the gas were

dielectrically polarised or encircled by electric currents.

D D 2
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24*. Molecular and Atomic Energy

With respect to the formula

thus proved for the whole mean value of the kinetic and potential

energy within a molecule, we have already remarked, at the end

of 22*, that the integrations cannot be strictly carried out without

a knowledge of the function ^ and of the limits of the integrals

which depend on its values.

We may, however, approximately evaluate the triple integral

by considering that the functions

c
~*x and

change value like each other. The values of the integrals of the

two functions, if taken between equally wide limits, will therefore

be of the same order of magnitude. But the limits extend to

infinity in that integral only by means of which the molecular

energy E is calculated from the velocity w, and not in (, in which

the variables u, t>, tt) are limited by the finite magnitude $ in

accordance with the equation

i
x = im (u

2 + tt
2 + tD

2
) + = <*>.

We may therefore conjecture that integration of the function

will give a value which is less than E. If this conjecture is

correct, we may conclude, with due regard to the summation over

all the atoms in the molecules indicated in the value of G by the

sign S, that

if n denotes the number of atoms combined in the molecule.

If we divide this internal energy of the whole complex of

atoms in equal shares among the n atoms, each share being

e = (S/tt,

we may express this conclusion thus, that the mean energy e of

an atom is less than the energy E of the motion of the centroid of

the molecule, or

C < E.
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I do not conceal that this conclusion is not proved with con-

vincing force by the foregoing considerations. I will also not

suppress the fact that Boltzmann 1 has put forward another-it-

law : from reflections that are very similar to those here given,

but which seem to me less justifiable, he concludes that the mean

energy of an atom e must be equal in magnitude to the molecular

enejgy,JJ7. The comparison with experiment, which was instituted

in 55, 56, speaks in favour of my view in the great majority of

cases.

25*. Molecular and Atomic Motion in

Mixed Gases

The considerations of the previous paragraphs may without

difficulty be extended to gases which, like atmospheric air, con-

tain molecules of different kinds. The more general problem of

determining the distribution of the energy between the molecular

and atomic motions in such a gaseous mixture depends entirely

on the same equations which were established and solved before ;

we have only in this case to do with a greater number of such

equations. We obtain, therefore, for each kind of molecule, and

each species of atom, formulae to express the law of distribution

of energy which are quite like the others, and differ from them

only in the values of the constants that enter into them.

If, now, we again assume that the mixture considered has no

translatory motion, but heat-motion only, and so put

a = b = c = 0,

the law which determines the energy of molecular motion depends

only, as the formulas of 21* show, on a single constant k, which

has the same value for each kind of molecules. It thus follows

that the mean value of the energy of molecular motion is the same

for each kind of molecules, or

The conclusions drawn from these equalities in 20* hold

good, then, not only for monatomic, but also for polyatomic

molecules, so that we are justified in laying down the following

laws quite generally, both for chemically simple and chemically

compound gaTses.

Wiener Sitzungsber. Ixiii. Abth. 2, 1871, p. 397.
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Two different gases are at the same temperature when the mean

energy of the motion of the centroids of the molecules is the same in

both gases.

If two gases are at the same pressure and temperature, equal

volumes of both gases contain equal numbers of molecules.

The internal motion of the molecules

not conform to such simple laws. Since the value of the potential

energy, which is spent in the form of chemical affinity when
atoms are combined to form molecules, is of different magnitude
in different compounds, the value of the energy (5 of the atomic

motions inside a molecule is by no means the same for all mole-

cules, but each kind of molecules has a different mean value of

this species of energy.

The sums total, therefore, of the energy in two gases at the

same pressure and temperature are by no means equal, but only,

as stated above, the amounts of the energy of motion of the

centroids of the molecules. The correctness of this conclusion is

/confirmed by experiment, which shows that gases do not in

)/ general satisfy the law of Dulong and Petit, and that they
therefore possess unequal atomic heats.
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APPENDIX III

MOLECULAR FREE PATHS

26*. Probability of a Molecular Free Path of
Given Magnitude

THE first calculation of the mean length of the free path of a

molecule was given by Clausius, 1 in that memoir which we

may rightly consider as the foundation-stone of the theory of

gases which rests on the calculus of probabilities. In Chapter VI.

I have made the same calculation by another method, as I thought
it better to avoid the use of transcendental functions and the

methods of the higher analysis. I will here, however, complete
that elementary demonstration by treating the problem in

Clausius' fashion.

No further assumption respecting the state of motion of the

gas and its molecules shall be made than this, that at all places
within the gaseous medium the motion goes on in the same way.
We may therefore suppose not only that the heat-motion at each

point has the same energy, but that at each point it takes place in

all directions without distinction, so that every direction of motion

has the same probability. Together with this heat-motion we
assume a translatory motion of the gas as a whole, but with the

limitation that this motion must be regarded as constant within

limits of space and time which we shall more closely determine.

We may, for example, figure to ourselves the gas as flowing

through a pipe.

Within this gas let us consider an arbitrarily chosen molecule,

which moves with a given velocity in a given direction. We wish

to find the probability that this particle will traverse a path of

length x without a collision.

1

Pogg. Ann. cv. 1858, p. 239 ; transl. Phil Mag. [4] xvii. 1859, p. 81 ;

Abhandl. ilber die mech. Warmetheorie, 2. Abth. 1867, p. 260; 2nd ed. iii.

1889-91, p. 46.
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If we denote by a the probability that this molecule will

traverse a path equal to 1 unhindered, a is a proper fraction

which, from the assumption made, is so far of constant magnitude
that for every position of the starting-point it has one and the

same value. If the gas as a whole has no motion of translation,

the value of a is also the same for every direction in which the

molecule considered can move.

It therefore follows that the probability of traversing a path

equal to 2, that is, the path 1 twice over, is a.a or a,
2

. So, too,

the probability of its traversing without collision a path three

times as long is o?\ and we thus see that in general the pro-

bability of an unhindered passage through a length x is given by
the function

a*,

which we may more conveniently write

where e is the base of natural logarithms and

i=- JL
loga'

so that, as a is a proper fraction and thus log a negative, I is

positive.

This formula agrees in form and meaning with the expression

established in the elementary theory ( 66), viz.

in which q denotes the ratio of the path traversed to the mean

free path. We can also now easily see that the constant I means

nothing else than the mean probable value of the molecular free

path which the molecule considered can attain.

For out of n molecules which move in the same way as the

given molecule, that is, with the same velocity and in the same

direction, the number
ne-xii

traverse the length x without collision, but only

ne (x + dx)ll

pass over the length x + dx ; hence in the length dx

= ne
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molecules undergo collision from among those that have traversed

the path x. The sum of all the paths traversed by these molecules

amounts to

ne- xllX
dx,

l

and hence as each particle must certainly collide after traversing

some distance between the limits x = and x = oo, the sum of

the paths traversed by all the n molecules before collision is

Jo I

Thus the mean value of these n free paths is I.

This mean probable value of the free path is to be understood

as corresponding only to particles that move with a certain definite

velocity, since we assumed the same motion for all the n particles ;

it is therefore denoted by I, so as to be different from the symbol
L used in 65. In addition to altering with the speed of the

particle, I may in general depend also on position, time, and

direction, if the molecular motion of the gas alters with these

magnitudes.

27*. Probability of an Encounter

Before we determine the value of the free path Z for a particle

of a real gas, let us solve, by Clausius' method, a preliminary

problem.
Into a space filled with molecules at rest, of which n are

contained in each unit of volume, let a molecule enter with the

velocity w. What is the probability that this molecule may in a

given interval t, say the unit of time, collide with one of those

at rest, the radius of the sphere of action being s ?

In the time t the molecule traverses the length wt ; its sphere

of action therefore moves through the volume 7rs
2w. Since in this

space there are irn^ut molecules at rest, the probable number of

encounters which the molecule meets with in the interval t is also

and the probable number of encounters in unit time is therefore

given by the product
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the value of which may also be interpreted as the probability of

an encounter in unit time.

To this simple problem another, which better corresponds to

reality, may be reduced.

Suppose a multitude of particles in motion, and all with the

same velocity in the same direction, so that all the particles have

the same velocity-components U, V,W; assume further that the

particles fill the space with equal density on the average, and that

there are n of these particles per unit volume. Into this swarm
let another, or even a number of other particles, enter, which move

with a different velocity in a different direction ; let the velocity

of this second group when resolved in the same three directions

have the components u, v, w. We have to find the probability

of an encounter, and the probable time that elapses before an

encounter occurs.

The probability of an encounter in this case is the same as if,

instead of allowing both systems to move in two different

directions, we had, more simply, assumed that the one swarm was

at rest and the other moved relatively to it with the relative

velocity
r = N/ {(u

-
U)

2 + (v
-

F)
2 + (w

-
W)*} .

The probability, therefore, that a given particle of the one

system should collide with any particle of the other in the unit of

time is to be represented by the same formula as before when for

the absolute velocity w the relative velocity r is substituted. Thus

the probability sought is

28*. Number of Encounters

From this simple formula we obtain that which holds for the

case of a real gas by simply finding the mean value of the relative

velocity of two of its molecules. In this calculation we first of all

assume that all the particles are moving with the same speed.
This assumption is certainly not quite true, as we know from our

former investigations; since, however, it has shown itself very
serviceable in the calculation of the pressure and in other

problems, we may here, too, expect by its help to obtain formulae

that are approximately correct.

If, as before, we denote by G the velocity which all the
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molecules possess, the components into which the velocity of any

particle can be resolved are expressed by the formulae

U = G cos s

V= G sin s cos

W == G sin s sin $,

in which s and denote two angles which determine the direction

of the motion. By formulae of the same kind we may express the

velocity-components u, v, w of the particle whose collisions with

others we wish to count ; but these formulae are substantially

simplified if we so choose the system of coordinates that one

of the three axes coincides with the direction of motion of this

molecule. We may therefore put

u= G, v 0, w = 0,

and the relative velocity of this particle with respect to the other

taken is

r GV(2 2 cos s)
= 2G sin %s.

On substitution, then, we get

sin s,

and this magnitude denotes the number of particles with which in

unit time any particle so collides that the directions of motion of

the colliding particles make the angle s with each other.

In order to calculate the total number of collisions which a

particle suffers in the unit of time we have to take the sum of the

values of the above expression for all values of the angles s. It

is therefore necessary to know how great is the number n of the

particles for which the angle of encounter with the particle con-

sidered has the value s, or, better expressed, a value differing

infinitely little from s, so as to lie between s and s + ds as its limits.

We find this number by making use of the property of heat-motion,

that it goes on in the same way in all directions without distinction,

so that equal numbers of particles move in every direction.

Consider all the particles with their directions of motion to be

so displaced the latter parallel to themselves that all move
towards the colliding molecule, which for the instant is considered

at rest ; then the paths of all the particles which make an angle

between s and s + ds with the colliding particle fall in the space

included between two infinitely close cones whose vertices lie on

the colliding particle and whose axes coincide with the direction
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of its motion. The number of particles with a given direction,

therefore, when all directions occur equally, bears the same ratio to

the whole number of particles as the surface of the zone inter-

cepted between these two cones on a sphere constructed with the

colliding molecule as centre bears to the whole surface of the

sphere, viz.

2?r sin s ds : 4?r.

The number, therefore, n of the particles in the unit of volume

which move in the direction denned by the angle s is

n = yV sin s ds,

where N is the whole number contained in unit volume.

It is now easy to find, in the way required above, the total

number of the collisions. Since the angle s can increase from

to 180, the value of this sum is

A = Tr^NG-r sin is sin s ds = Zn^NG
f

71
"

sin2
s cos ^s ds ;

o

and the evaluation of this integral gives the value

A =

for the number of collisions which a particle undergoes in unit

time in a large group of other similar particles, when all the

particles have the same velocity G, and there are on the average
N particles in unit volume.

Compare this number with that first found

which holds for the case of a particle when it moves with the

speed w among a multitude of particles at rest, of which there are

n in the unit of volume. If we assume the speed and the number
of particles to be the same in both cases, or w = G and n = N, we
see that the number of collisions denoted by A is greater than the

other in the ratio 4:3. A gaseous particle, therefore, as Clausius 1

first perceived, meets with others more frequently when they are

all in motion than when one only is in motion and the others are

at rest.

Inversely, the mean length of the straight path which a

particle traverses between two successive collisions is smaller in

1 Phil. Mag. [4] xix. 1860, p. 434
; Abhandl, iiber die mech. Wcirmetheorie,

2. Abth. 1867, Note on p. 265.
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the case when all the particles are in motion than in the other.

The value of this free path is simply found by dividing the whole

distance travelled in the unit of time (which is measured by the

velocity) by the number of collisions experienced in the same
time. We thus obtain

for the value of the free path of a particle in a swarm of particles

at rest, but

G 3

A

for its value in a swarm of particles in motion. This calculation

shows the correctness of the value given in Chapter VI. 67 for

the ratio of the free paths in the two cases.

29*. Mean Collision-frequency according to
Maxwell's Law

The assumption that all the particles possess equal velocities

is not, however, strictly true : we should rather take Maxwell's

law, proved in Appendix II., according to which, if there are N
molecules of a gas in unit volume and the gas has no progressive

motion, the number of them with velocity-components U, V, W is

Introducing this value of n into the formula
( 27*)

irn&r = TmsV {(u
-

U)
2 + (v

- V)
2 + (w

-
TF)

2
},

which gives the frequency of collision of a particle, whose velocity-

components are u, v, w, with n others which move about in unit

volume with velocity-components U, V, W, and integrating we
obtain

for the number of collisions which a particle with velocity-com-

ponents u, v, w makes in one second with all the N molecules

contained in unit volume. Since

r = V {(u
- U)

2 + (v- VY + (w
-

T7)
2
},

this value B depends on u, v, w, and consequently on the velocity

<o = \/ (u
2

-f- v
2 + w 2

)
with which the particle in question moves.
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Let us first of all investigate, not this value B, but the average
value T of the collision-frequencies of all possible particles. For

this we remark that the probability of the occurrence of the com-

ponents u, v, w is expressed by

dw.

We then obtain the probable average value of B by multiplying it

by v and then integrating with respect to u, v, w between the

limits oo and oo. The average value of the frequency of colli-

sion of any particle whatever is therefore, according to Max-
well's law, given by

{00 fOQ fOO /-CO TOO fOO
r = irs*N (km!*)

3
\ du\ dv\ dw \ dU \ dV\ dWre~*
J CO "J 00 -CO J 00 'CO ^ CO

where r and < are connected with the variables of integration by
the relations

r = V {(u
- UY + (v- 7)

2 + (w
- WY]

4 = km(u
2 + v2 + iv

2 + U 2 + F2 + TF2
).

This sextuple integration assumes a much simpler form with the

substitutions

U =n +u u=n -u

for then
r=

and therefore T takes the form

T = 7r<r

of a product of two triple integrals

00 * 00

which can be easily evaluated ; for P consists of three factors, of

which each is a simple integral of the form
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and on introducing polar coordinates as given by

it = <*> cos s, tt = o> sin s cos
ij/,

tt) = o> sin s sin ^

Q takes the simple form

s sn
Jo Jo o

which leads to the value

Hence, finally, we find for the average number of collisions

which a particle undergoes in unit time

F

or, if the mean velocity O of the molecular motion as calculated

in 19* is introduced,
T =

This formula, first given by Maxwell, 1 differs from that of

Clausius, which was deduced in 28*, only in the slightly

different factor V2 = 1-41 instead of $ = 1*33. The assumption,

therefore, which is not quite correct, that a single mean velocity

may be ascribed to all the particles instead of velocities that are

constantly changing, leads in this problem, too, to tolerably correct

conclusions.

30*. Collision-freqiiency in Mixed Gases

This procedure may be also extended to the case of two

different gases mixed together, as of nitrogen and oxygen in

atmospheric air. If we wish to determine the collision-frequency

of a particle of gas in such a mixture, we have only to note that

this is made up of two parts, viz. the collision-frequency with

particles of its own kind and the collision-frequency with particles

of the other sort. The former number is given by the calculation

just made ; the latter can be obtained by repeating that calcula-

tion, and remembering that the molecules of the two kinds of gas

differ not only in mass, but also in the magnitude of their sphere

of action, so that unit volume of the mixture may contain unequal
numbers of them. We must therefore distinguish the different

values of m, 9, and N ;
on the contrary the value of the constant

1 Phil. Mag. [4] xix. 1860, p. 28
; Scientific Papers (Cambridge 1890), i.

p. 387.
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k must be taken the same for both kinds of gases, since they are at

the same temperature.

The calculation is, however, no more difficult if we do not

introduce the last condition, but take k too as different for the

two gases. This generalisation is further not without advantage,

but will be of importance in the calculation of the conductivity

for heat. In a gas in which the temperature alters from place

to place layers of different temperatures come into contact.

The free path of a particle will therefore depend not only on

the temperature of the layer from which it proceeds, but also

on the temperature of the layers into which it enters. In

order to be able to apply our calculation to this process also,

which we shall investigate later on, we assume the values of the

magnitude k for the two kinds of gaseous particles to be different.

Let ra
t
and m2 be the molecular weights of the two sorts of

particles, u lt v
} ,

and w
l
the velocity-components of a molecule

mi, and u%, V2 , w% the velocity-components of a molecule m2 ; also

let NI and N% denote the number of molecules of each kind

contained in unit volume, ki and &2 the values of the constants

which determine the temperatures of the two gases, Qj and O2 the

mean values of the molecular speeds which are given by the

relations

i), Oj ass 2/>/ (7r& 2ra2) ;

finally, let s lt s 2 ,
an<3- be the radii of the spheres of action or

the distances within which two molecules m
l ,
two molecules w2 ,

or a molecule m
l
and a molecule ra2 , approach each other during

collision. Then the mean number of collisions r x experienced by
a molecule m

l
in unit time, and the mean number F2 for a

molecule w2 have the values

in which the first terms are formed in accordance with the

formula of 29* ;
in the last terms, which represent in each

case the number of collisions with molecules of the other kind, y

is given by
I TOO /-GO Ceo TOO TOO f 00

y= (ir
-1

Ar 1m l . ir~
l

,#>,) du
1

I dv l I dw
l

I du2 \ dvx \ dtr.2 re

J 00 J 00 J 00 J CO J CO

where

r = V ui % 2 + vi v 2
2 + w w 2

2
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To simplify this integral put, in like fashion as in the former

case,

,

= U + . l u ,
= U -

.
*'"*' u

k
l
m

l + &2ra2 &,?/&!

^=$8+1 ?-*
1) V2 =%$-^ -T)

,= SB + --*!
,,
= i

.

fc
l
m

l + tfiWa
Then

r = x/ (u
2 + t)

2 + tt>

=
(fclWl + fc2m2) (U

2

and by evaluation of the sextuple integral

$foo poo poo poo poo poo
y = (ir-

1 k
l
m

l . rr-
ltam a)

\
du

\
fa \

frfw <ill 4
J 00 J 00 J 00 J 00 J 00 J

we obtain

y = 2x/ (^ffi-
^2~2>

\

V Tr^m^m^ J'

or, on substitution of the mean values of the molecular speeds,

Finally, then, the collision-frequencies of the particles of the two

kinds are given by

r2
= N

These formulae, which, like that obtained before, were first

deduced by Maxwell, 1 allow of the simple interpretation that

the number of collisions of both kinds of particles together is just

as great as if the NI particles of the first kind were all moving
with the speed 12, in one direction, and the N2 particles of the

second kind with the speed O 2 in a perpendicular direction. 2

These formulae have been applied in 97 and 98 to the

theory of diffusion, and have also been taken into account in 104

in the investigation of heat-conductivity.
1 Phil Mag. [4] xix. 1860, p. 27 ; Scient. Papers, 1890, i. p. 386.

2 Stefan, Wiener Sitzungsberichte, Ixv. Abth. 2, 1872, p. 349. [This inter-

pretation does not apply to the first terms of the formulae. To include these

we may say that everything occurs as if the particles of the two kinds are all

moving with the speeds fl, and H
2 respectively, and that two colliding particles

always meet at right angles. TB.]

E E
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31*. Number of Molecular Collisions in a
Current of Gas

To be able to apply these formulae to the theory of internal

friction we have yet to determine the influence which a forward

motion of a gas exerts on the collision-frequency of its molecules.

If this motion at all points of the gas is characterised by the

same speed and the same direction, the frequency of collisions

can neither increase nor dimmish. But a perceptible influence

may result if layers move near each other with different velocities,

as is shown by the experiments made to determine the viscosity.

A state of things then arises by the mixing of layers, which we
can represent with tolerable accuracy by supposing two masses

of gas of the same kind and at the same temperature to be flowing
in the same enclosure with unequal speeds.

Consider, therefore, two groups of gaseous molecules in the

same vessel, which they fill with unequal densities ; they further

differ in the unequal speed of their flow, but are otherwise com-

pletely alike : Maxwell's law of distribution of speeds therefore

holds in both groups in exactly equal fashion, provided that we

apply it only to that part of the molecular motion which shows

itself as heat, and therefore provided that from the motions of the

individual molecules we subtract the progressive motion of the

group as a whole. In the formulae referring to the separate

groups we have consequently to introduce the same value, not

only for the molecular weight m, but also for the constant k, and

this holds, too, for the radius of the sphere of action s. Suppose,

further, that the flow has the same direction for both groups, and

take this direction to be that of one of the axes of coordinates.

Then the number of collisions per unit time of a particle of the

first kind, of which there are N
l per unit volume, is

and that of a particle of the second kind, of which there are

per unit volume, is

r 2
= 7T5

2
( x/2AT2a + Arl7),

wherein y is given by
/co ,-oo

pco /.co /-co

y==(&ra/7r)
3 duA dvA dwA du^\ d
J oo J co J _ co J co J co

r = >/ {(u,
-

.

2 )

2 + (v,
- v^ + K -
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where a
}
and a2 denote the speeds of flow of thp two groups in

the direction of u.

By substitution as before in the expression for y of

Ui = U + ill n2
= U ill

0,
= S3 + 1*> va

= SB - i

w
l

= 353 + iw t^ 2
= SB in>

a
t

= v4 + i& a<2 = A i,

y assumes its former shape, while r and become

r= V(u
2 + tt

2 + tt>
2
)

AY -f S3
2 + SB 2

} + Pm{(u - a)
2 + tt

2 + n>
2
} .

If we now introduce polar coordinates, the integrations with

respect to U, S3, 2B are easily performed, and those with respect
to u, t>, w partially so, the final shape of the integral being

o

which by development in powers of a gives

7 = 2

and this for a = reduces to the known result

7 = s/2a

If we also develop the exponential function in powers of a we
obtain

7 =

which shows that the collision-frequency is increased by the flow

of the gas by an amount which is of the order of the square of the

difference a = a
}

aa . This difference, or the relative velocity

of two neighbouring layers, is in the theory of internal friction

always looked upon as very small, and its square as therefore

negligible. Here, too, it is a very small magnitude of the order

of the molecular free path ;
and in the formula, which by

introduction of the mean speed becomes

we may neglect the correctional term as vanishingly small, and

therefore apply to a flowing gas the same formulae for the

E E 2
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collision-frequency of its molecules as to a gas which possesses

no other than its molecular heat-motion.

32*. Collision-frequency of a Particular Molecule

The collision-frequency of a molecule which moves with a

given speed may be calculated, but not quite so easily as the

mean collision-frequency of all the molecules. To calculate this

number B we can, in the case of a single gas composed of exactly
similar molecules, make use of the formula obtained in 29*,

viz. :

B = 7rsW(ta/7r)
fr dU\J _oo J -co

where

Since the velocity of the colliding molecule and its axial

components are in general of finite magnitude we may put new
variables U + u, V + v, W + w for U, V, W without altering the

limits of the integrations ; consequently

where for shortness is put

x = km{(U + >

Since there is no distinction as regards direction, we may choose

our coordinate system as we like, and, therefore, take the

direction, in which the particle under consideration moves with

the speed
u = ^/(u

t + v2 + w 2
),

as that of one of the axes. If we further substitute polar
coordinates ^, s, <j>

in place of the Cartesian U, V, TFwe have

3 rzir fn
roo

B = TT<s^N(km/Tr) J d(f)\ ds sin si

where

q
= kmfy

2 + o>
2

-f

On integration with respect to s and
<j>

this becomes

-p> 2"^ / 1/, I
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which can be put into another form

B =

I arrived at this last expression in 1866 in a Latin disserta-

tion,
1 in which, starting with Clausius' formula, I deduced

Maxwell's. From this value of B I calculated, by integration,

the value of the mean collision-frequency

r = 47r-i

and, by developing this in a series, obtained the same value

which we have already found in a simple way.
The magnitude B denotes the number of collisions which a-

particle moving with speed w experiences in unit time from an

assemblage of N other particles whose mean speed is li. Closely
allied to this expression is that of another magnitude

which we deduced in 30*
; this represents the number of

collisions that occur in unit time between a particle of a group
whose mean speed is ^ and the N2 particles of another group
with mean speed Ii2 - The chief difference between the two

expressions is that w denotes a speed of arbitrary amount, while

Q! represents a mean value ;
but otherwise they are so similar

that we might expect the formula

which we have formed from that last given, to represent the

number B with at least approximate accuracy.

This expectation is fairly well justified by the comparison of a

few values of the exact ratio

with those of the approximate expression

1 Dissertatio de Gasorum Theoria, Vratislavise 1866. Also in the first

edition of this book, 1877, p. 294.
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The following series of figures show that the two expressions

agree remarkably well both for small and large values of w, while

for middle values of u> a regular deviation occurs.

/0
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as follows at once from the formulae of 29*, by employing his law

of distribution of speeds.

34*. Correction of the Formula "by allowing for

the Dimensions of the Molecules

The formula obtained for the free path may be further im-

proved by a correction which van der Waals 1
first attempted

to apply. The length as given by the formula is somewhat too

great, since the calculation of the probability of collision in 27*

was conducted as if the space occupied by the sphere of action of

a molecule between two collisions (or the fourfold volume of the

path, as in 69) were equal to a cylinder whose base is a central

section of the sphere of action, and whose height is the free path
in a strict calculation we must remember that this space has

hemispherical ends. Owing to this circumstance, the free path L
which the centre of a molecule traverses between two collisions is

diminished by a magnitude of the order of s, the radius of the

sphere of action.

In the case of central collisions the diameter of a molecule or

the radius of its sphere of action would have to be subtracted, and

a smaller amount in every other case. The mean value of the

correction may be found by a simple integration over the hemi-

sphere. The correction corresponding to an angle of impact s

made by the direction of the relative motion with that of the line

of centres is s cos s. The probability of this value of the angle of

impact is obtained by projecting the ring-shaped element 2w sin s ds

of the spherical surface on the plane of the section and dividing

by TT, the area of this section ; its value is 2 cos s sin s ds, and conse-

quently the mean value of the correction is

2?
f

cos2
s sin s ds = fs.

Jo

Van der Waals, who instead of this had found the value

^s, has given a more exact calculation in a later memoir. 2 He

pointed out that the correction thus found does not refer to the

absolute value of the molecular free path ;
it is rather the path of

1 Over de continuiteit van den gas- en vloeistoftoestand, Leiden 1873,

p. 48. Abstract in Beiblatter, 1877, i. p. 10. An English translation of F.

Both's version has been published by the Physical Society of London.
2 Arch. NterL xii. p. 201, 1877.
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the colliding particle relatively to that encountered that has to be

shortened by fs, and, of this shortening, part falls on the striking

particle and part on that struck. If the former moves with a

velocity whose components are u, v, w, and the latter with a

velocity whose components are U, F, W, the path of the striking

particle is diminished by

J U* + V*+W*
I (u - C7)

2 + (v
-

F)
2 + (w

-
TF)

and that of the struck particle by

2 ,/__IP+V*+ W*
'

\ (u _ 7)2 + (
v _ 7)2 + (w

_ W
)

To find the average shortening of the paths of a particle with

velocity components u, v, w for all its collisions, we have to

multiply the former number by the collision-frequency ( 29*)

where

r=*/{(u- U? + (v- F)
2 + (w

-
TF)

2
},

and integrate : the result is

If now we multiply this expression by the probability of occurrence

of the velocity w = *J(u
2 + -u

2 + w2
),

viz.

oo
( 18*), and integrate with respect to w between the limits and

we obtain the value fTrsWto, which we must divide by the mean

collision-frequency F = N/2?rsWli in order to find the mean
value of the correction

According to this calculation, on taking account of the magnitude
of the molecules, we have to put for the value of the mean free

path

If instead of N, the number of molecules per unit volume, we
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introduce X, the edge of the elementary cube containing one mole-

cule as given by the relation

m3 = i,

we obtain
X3 -

frrs
8

V27TS2

Advantageous use of this improved formula has been made in

the investigation of the actual volume occupied by molecules

( H7).
G. Jage^has extended these considerations also to the

theory of viscosity.

35*. Influence of Cohesion on the Free Path

W. Sutherland 2 has obtained a second correction of the for-

mula which gives the molecular free path by calculating in what

ratio the probability of collision between two particles is increased

by their mutual attraction. We now proceed to give his calcula-

tion in order to put on a better footing what has been said

in 71 and 85 respecting this action of the forces of cohesion.

Since we need not calculate the absolute motion of both

particles, but only their relative motion with respect to each other,

we may take one to be fixed, while we ascribe to the other a

velocity which is equal to the relative velocity with which they
move relatively to each other. The path of the moving particle

which is attracted by the fixed one lies in a plane which contains

also the position of the fixed particle, and we may therefore denote

the position of the moving particle at time t with respect to the

fixed particle at the origin by the coordinates p and r in that plane.

The attraction, which depends on the radius p only and is inde-

pendent of the angle T, being denoted by F(p), the motion is given

by the differential equations

p
_

p;
2 = _ F(P)

of which the second on integration leads to

P
2r = h.

This constant h represents twice the area of the surface described

1 Wien. Sitzungsanz. 1899, p. 89. 2 Phil. Mag. 1893 [5] xxxvi. p. 507.
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in unit time by the radius vector p, and we determine its value by
consideration of a point on the orbit so distant from the origin

that the attraction F(p) may be taken as vanishingly small ; the

velocity is then constant, being that of the relative velocity r with

which the particles began to approach each other in straight

paths, and the surface h is then equal to the product rb, where b

is the length of the perpendicular from the fixed particle on the

rectilineal part of the path of the moving particle.

The angular velocity is therefore

f = brp~
2

,

and the first differential equation, on introduction of this value,

becomes

p
= &VV 3 - F( f>),

which on integration gives

The constant C may be determined by application of the equation
at an infinitely great distance p where the total velocity r is given

by the formula
r2 = p

2 + ,o

2f2
,

while

pf = h/p =
from a former equation. We thus finally obtain

dpF(P).

The shortest distance to which the particles approach each other

is determined by the vanishing of p, and thus by the equation

= r2 - 6VV 2 +

A collision ensues if this distance is less than the radius s of the

sphere of action, and this occurs if the perpendicular distance b

which satisfies the equation

is less than a limiting value, which we may put as

dPF(p)} ;

since for every value of p which falls within the sphere of action,

and is therefore less than s, we may assume that the function F(p)
is equal to 0, as this small distance is never reached.
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If these gases had no cohesion, then F(p) would be zero for

every value of p, and the condition for the occurrence of a collision

would be 62 <s2
,
as is obvious from the meaning of b, viz. the

distance of the particle encountered from the path of the striking

particle. The influence of the forces of cohesion on the frequency
of the collisions and on the length of the free path therefore con-

sists in the replacement in all calculations of the actual section ?rs
2

of the sphere of action by a larger area

The magnitude by which the section has to be augmented depends
on the temperature, and is, indeed, inversely proportional to the

absolute temperature, as is shown by the occurrence in the deno-

minator of the square of the molecular velocity r. This ratio was

given in 71, and its value was estimated in 85 for the explana-
tion of the observations on internal friction. 1

In the next following investigations we shall for simplicity

leave out of account both this correction and that given in 34*.

36*. Free Path in Mixed Gases

In the case of a mixture of gases composed of molecules of

two different kinds, we find the free path L\ of a particle of the

first kind and the free path L2 of a particle of the second kind

from the formulae of 30*, viz.

taking account of the meaning of the magnitudes 1 we may write

these

+ inrWj-N/fL + k2m2/k l
m

l)}L.2 = 1,

and, in case the temperature of both components of the mixture is

the same,

These equations were first established by Maxwell. 2

1

Compare the account of the observations on the friction of vapours in 87.

2 Phil Mag. [4] xix. p. 29, 1860 ; Scientific Papers, i. p. 388.
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37*. Free Path of a Particle with a Given Speed

The values of the molecular free paths calculated in the pre-

ceding article are of the nature of average values, since they are

deduced from the mean value of the speed li and from that of

the collision-frequency r. We may therefore, for instance, look

on the value

found for a simple gas, as a mean value of the paths which are

traversed by the whole lot of particles moving with different

speeds. But it is in no way to be considered as the probable or

mean length of free path which any one single particle, moving
with a particular speed, passes over without a collision.

To find the probability that any particle moving with speed w

traverses a path of length x (or rather of a length between x and

x + dx) between successive collisions, we go back to the formulae

of 26*, which give
e-*ll

dx/l

for this probability, I being the mean length of the paths traversed

by the molecules which move with the speed w. Since a particle

with speed w collides on an average B times in unit time with

other particles, where B has the value given in 32*, the path
travelled in unit time is

- El = a).

Thus the mean free path of the particle with speed w is

I = w/B,

and the probability of a length x being traversed with speed w

without disturbance, and for a collision to occur at its extremity, is

(B/w)e-
B*^;

also the probability of the particle's traversing a path which

exceeds the limit x is

So as to show more clearly how the probability and mean free

path I depend on the speed w, in accordance with the above

formulae, I have calculated a few values of B/T and the corre-

sponding values of l/L = (r/B) (<*>/&) from the formula

B/r = 1
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and these I subjoin in the following table 1
:

/o
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Of theN molecules contained in unit volume, Maxwell's law

gives

as the number which move with a speed w or with a speed differing

infinitely little from w. According to the preceding article these

B/r

FIG. 5

w/Ct

2.

FIG. 6

particles attain on the average a free path I = w/B. If therefore

N is a number sufficiently great, the sum of all the paths which
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are traversed between successive collisions by the particles in

question is

The sum, therefore, of all the paths which all the N particles

traverse in a straight line, i.e. between successive collisions, is

given by the integral

From this total length of the paths of all the particles we obtain

their average length, which we shall express by M(l), by dividing

by the number of particles N, viz.

The mean value given by this formula is thus expressible as

the arithmetic mean of all the values of the free path I at any
moment for the whole number N of the molecules contained in

unit volume. We may thus take all the N particles as starting

at a given moment, each with its speed w, and then determine the

mean value of the lengths of the paths attained at this single

start.

We must distinguish this mean value from that which we

obtain by considering the paths traversed by the particles in the

course of a prolonged time. To find the mean in this other case

we have to consider not only a single path traversed by any

particle, but the whole of the B paths which it passes over back-

wards and forwards in the unit time. The sum of all the paths

traversed in unit time is therefore given by the integral

which is at once integrable, and leads to the value

= NCI.

But, according to 32*, the number of these paths is
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Consequently the mean value which we obtain from this other

consideration is the value already obtained,

L = 0/r,

This mean value L is greater than the other M(l], since, in the

summation of the B free paths I of any particle, the larger values

I of the faster particles come more into account than when only

one path for each particle is considered, as B too increases with

the speed w.

We must give up the idea of calculating with exactness the mean

value M(l), by reason of the complicated form of the function B.

But we can obtain an approximate value for M(l) by a tolerably

simple calculation if we substitute for B its approximate value

as given in 32*. If, then, we put

the integral takes the form

Mil) = 4V 2 7r

which reduces to

==4v/27r-
]

L V," ~J Jw-

and from this we may calculate the mean value. By the help of

tables l of this integral we find

M(I)
= 0-937 D.

This value is certainly less than L, but we must still remember

that it is only approximate. For we have put too large a value

for B, and have consequently got too small a value for M(l). For

the values of w, which occur the most frequently, the error in

the approximation to B is about 2J- per cent., and thus the factor

G'937 is too small by this amount. The mean value M(l) is there-

fore about 4 per cent, smaller than L.

39*. Interval between Two Collisions

In calculating the average interval between two successive

collisions of a particle with others, we can arrive at two different

1 Bess el, Fundamenta Astronomies, 1818, p. 36. En eke, Astronomisches

Jahrbuchfilr 1834.
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mean values, just as in the case of the free path. We might first

consider all particles to start new paths at the same moment, and

then ask how long the interval is, on the average, before one of the

particles undergoes collision. Since a particle whose speed is w

collides on the average B times in unit time, the time that passes
between successive collisions of this particle is on the average

Hence we should obtain the mean value for all the particles by

multiplying this expression by Maxwell's expression for the

probability of occurrence of the speed w, and by integrating from
w = to w = oo.

The calculation is much simpler if we do not aim at finding

the mean interval from any one collision to the next, but seek the

average interval between two collisions that occur within a finite

period, as, for instance, the unit of time. We then bring into

reckoning, not the time of a single path of each molecule, but the

time of all its paths ; and to find the mean value divide, not by
the number of particles, but by the number of paths. The mean
value of the time between two successive collisions is then nothing
else than the ratio of the whole interval to the mean number of

the collisions that have occurred in this interval, viz.

or the ratio of the mean free path to the mean speed.

This second mean value T is less than that first named. For

in its calculation the interval 1/B is taken, not once, but B times

for each particle, so that a smaller interval is taken oftener, and a

larger interval more seldom.

4O*. Calculation of the Pressure

Since the collision-frequency B is a transcendental function of

the speed w, the theory frequently leads to formulae that seem very

complicated. But in a series of cases the calculation gives quite

simple results.

As an instance, I proceed to calculate anew the pressure exerted

by a gas, and this calculation can of course lead to no other result

than that given by the general theory which was investigated in

the first of these Mathematical Appendices.

We seek the pressure at an element of surface df, which we
F F
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suppose is either in the interior of the space occupied by a gas

or on the wall of the containing vessel. We take this surface-

element at the origin of a system of rectangular coordinates

x, y, z, whose directions we assume to be such that the direction of

x is perpendicular to df. Let an element of volume dx dy dz be

at a distance r from df, and let the line r make an angle s with

the negative direction of x. In the element dx dy dz there are at

each moment

****Pdia dx dy dz

particles with speed w, of which each collides on an average B
times per unit time with other particles and starts a new path. In

unit time, therefore, there proceed from the element dx dy dz

^-^(kmyBe-^^du dx dy dz

particles with speed w. Of these the number

~ 2cos s dfdx dy dz

move in such a direction that the surface-element df is met when
the length of path is greater than, or at least equal to, the distance

r. The number of the particles which traverse this distance

without collision is

N(km/ir)*Be-
fre-km'*u*du r~ 2 cos s dfdx dy dz

if /3 is the reciprocal of the mean free path I, or

/3
=

l/Z = Bw.

To deduce from this number of the particles meeting df the

force exerted by them, we must multiply by

2?7iW COS S,

if df is part of the fixed wall, and integrate over the whole volume
of the gas.

But if df lies within the gas, we must multiply by mw cos s

and integrate, and thus determine the momentum which passes

through df in unit time in the direction of increasing x, and sub-

tract from this the momentum simultaneously carried over in the

reverse direction.

The integrations are easily performed when the Cartesian

coordinates x, y, z are replaced by the polar coordinates r, s, <j>

given by
x = r cos s, y = r sin s cos 0, z = r sin s sin 0.



40* MOLECULAR FREE PATHS 435

We then have for the momentum carried over in unit time in the

positive direction the expression

Q,df = dfNm(lm/ir)*fdu ^e-^B Cdr e~^ds sins cos^f
2^ ;

Jo Jo Jo Jo

from this the momentum carried over in the negative direction,

viz.

Q2df=- dfNm(km/Tr)% f
dw w3e-ftwla>2B

f
dr e~^r

f ds sin s cos2 s
f""cfy,

JO Jo Jjw Jo

differs only in sign and in two limits of integration. Therefore the

pressure exerted (or the force per unit area) is given by the

formula

p = 2Nra(&ra/7r)tr d<^ wV^'B ["dre-^'ds sins cos2
r(

2

*eZ0,
Jo Jo Jo Jo

which is obtained more simply in the case when df forms part of

the wall of the containing vessel. On carrying out the integrations
we obtain

p = N/2k,

for which may be written, in accordance with the formulae of

19*,

p =

A variation of this mode of carrying out the calculation, which

deserves mention, consists in our introducing the time in which a

path is traversed by a particle instead of the path itself. Among
the particles contained in the element of volume dx dy dz there

are
47T-W(&ra)fe-*

w"VdwB<r B^ dx dy dz

which continue for the interval t without collision their straight

path, which was begun with speed w, and then collide in the follow-

ing element of time dt. Since the state of the gas does not alter

with the time, there must come in just as many particles, which

after the lapse of the time t have acquired the velocity a;, in the

place of those which lose their former speed w. Therefore the

number of particles which in unit time proceed from the element

dx dy dz with speed w, and collide after the lapse of time t, is

^-*Wtt'Vdu> e-**Bt- l

dtdxdy dz.

Of these the number

/rfe-^Mu e- ziEt~ ldt r~ 2 cos s dfdx dy dz

reach the element df if the time t is sufficient for the length r to

F F 2
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be traversed, that is, if ut>r. From this we obtain the required

pressure p by multiplying by 2ww cos s, dividing by df, and

integrating. If, again, we introduce polar coordinates, we have

f

"

o

and this quintuple integration gives, as before,

p =

f e'^^du (*6-*B1r ldt [

ni

dr [**ds sin s cos2
s f

Jo Jo Jo Jo J

41*. Number and Mean Collision-impulse of the

Colliding Particles

The number of particles, by the collision of which against the

walls of the vessel this pressure is set up, is easily calculated by
the same methods. We obtain it from the foregoing formulae

by suppressing the factor 2wo> cos s in them. The result of the

integration is that the unit area is struck by NQ particles

in a unit of time ; and since these give rise to the pressure

p = ^TrNmft
2

,
the mean value of the impulse of a single particle

is

These considerations show that it is not right under all circum-

stances to calculate mean values in the mode invented (see 10)

by Joule and Kronig.

42*. Another Calculation of the Mean Free Path

Our formulae may be employed with proportionate ease to

calculate in another way the value of the mean free path.
The number of all the particles issuing in unit time from unit

volume is

Be
~
*"***

o o

where B is again put for /3w, and the sum of the paths traversed

by them till they next collide is

47T-*N(lcm)* f
Be- **"VtfwfV*^ dr.

J o J
o

The values of these integrals respectively are

2N/(27r)N
2
s
2
/&w and

and their ratio

is the mean free path, as has already been found.
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43*. Pressure of Air in Motion

The same calculations may also be made in the case when the

mass of gas is in a state of flow, and we shall estimate the pressure
exerted by a gas moving with constant velocity a upon a surface

in the mass of gas which we take at right angles to the direction

of flow.

Since the forward velocity a may be taken as equally shared

by all the particles of the whole mass of gas, there is no need for

this new problem to alter the formulae of 40* except by replacing

the function e~kmojt
f expressive of Maxwell's law, by the more

general function
z-2a cos s)

Two integrations then give

for the momentum carried across unit area in unit time in the

positive direction, and

<o
4 sin s cos2

s e
-

for that carried over in the negative direction ; and the pressure

exerted by the streaming gas in the direction of its flow is, accord-

ing to the former formula, given by

Carrying out the integrations as far as we can, we obtain

d = Nm*/(kmf*)l (a/2&ra)e-*
2

+(a
2+ l/2fcm)j" foe-***},

or, on introduction of the mean value O ( 19*),

Q l
=
i-Nm^O

2 + a2
)
1

1 + (4/VO)J^*r*"
1"'

J
+ JdQr

Similarly we have

ga
= - iJVmRjirQ

2 + a2
)
1
1 - (4/TrO) due-*

and thus as result we get the simple formula

p = Nm(*& + a2
),
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which we also might have deduced, by a much simpler calculation,

from the formula

p = torNmmd* ds sin s cos2
s e

-

or its equivalent

p =

We have obtained this formula in 35 (p. 72) in the form

and from it have drawn conclusions respecting the momentum

and force of reaction of a stream of air, and also respecting the

resistance of air.

The magnitude of the resistance is calculated in another way
in some memoirs. 1 It has been thought that the formulae for Q^

and Q2 may be interpreted as if
<

^Q l represents the pressure which

the forward face of a body moving with speed a experiences in air,

while 2Q2 represents the pressure of the air against the hinder

face. Then the difference of these two magnitudes

would give the resistance per unit area, and this reduces to

Ca)
=

on neglect of higher powers of a. The resistance would thus

consist of two parts, of which one would be proportional to the

first, and the other to the third, power of the speed a.

This mode of interpreting the formulae was first employed by

Him, 2 and the contradiction between his formula and experi-

ment led him to raise objections to the validity of the kinetic

theory, which were, however, answered by Clausius. 3 It is

sufficient here to point out that the deduction of the expressions

for Q! and Q2 are not valid for a rigid bounding surface, but only

for a hypothetical plane in the interior of the gas.

1 W. B. Smith, Zur Molecular-Kinematik, Gottingen 1879; E.

Toepler, Zur Ermittlung des Luftwiderstandes nach der Mnetischen

Theorie, Wien 1886; G. Sussloff, Journ. russ. phys.-chem. Ges. xviii. p. 79,

1887.
2 Him, ' Kecherches sur la Kesistance de 1'Air en Fonction de la Tempera-

ture,' Mem. de VAcad. de Belgique, xliii. (2) 1882.
3 Clausius, 'Examen des Objections faites par M. Him,' Bull, de VAcad.

de Belgique [3] xi. p. 173, 1886.
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APPENDIX IV

VISCOSITY OF GASES

44*. General Remarks on Viscosity

THE viscosity or internal friction of gases is, according to this

theory, nothing else than the transference from one place to

another of the momentum of translation or flow of the medium by
means of the heat-motions of its particles. In order to find the

magnitude of the force exerted by one layer upon another by
reason of viscosity, we have to determine the amount of momentum
which is carried over in unit time by the molecules as they move
backwards and forwards across the separating plane or surface of

friction.

Starting from this conception of the action, which has

been explained more at length in 73, I published, in a memoir l

that appeared in 1865, a theory of viscosity which I will

here first reproduce. However, since for easiness of calculation

I then made the not strictly accurate assumption that all the

molecules move with the same speed, I shall follow up this cal-

culation, made in accordance with Clausius' assumption, by
another which I shall found on Maxwell's law of the distribu-

tion of speeds.

46*. Theory of Viscosity on the Assumption of

Equal Speeds for all Molecules

While I now ascribe at first to all molecules of the gas equal
molecular or heat motions that occur equally in all directions,

I assume, further, a forward movement of given magnitude and

direction
;
of this I assume the direction to be the same at all

1 ' Ueber die innere Eeibung der Gase,' erste Abhandlung.
' Ueber

den Einfluss der Luft auf Pendelschwingungen,' Pogg. Ann. 1865, cxxv.

p. 586.
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points of the gas, but the magnitude to vary continuously from

layer to layer. I consider, further, that this motion may be

looked upon as vanishingly small in comparison with the heat-

motions, though not actually small in itself ; for, since the mean
molecular speed which will be ascribed to all the molecules is

very great, amounting to several hundred metres per second, the

forward motion of even a tolerably quick flow, such as occurs

with a speed of 10 metres per second, will seem of but little

importance in comparison.
Consider a system of rectangular coordinates x, y, z such

that the ^-axis is parallel to the direction of the forward motion,

and take the surface of friction, or the plane for which the friction

between the gaseous layers on either side of it is to be determined,

as perpendicular to the #-axis, and therefore parallel to the

2/^-plane, and let this plane pass through any arbitrary point in

the medium with coordinates x, y, z. In this plane take an

infinitely small rectangle with edges dy and dz, and find the

number of particles which pass through it and the amounts of

momentum, which I will denote by Q l
and Q2 ,

carried over it in

both directions by these particles.

For this purpose consider an infinitely small volume-element

dx'dy'dz' at another point (x', y
f

, z') of the gas, and first determine

the number of particles which, starting from it in a straight

course, meet the surface dy dz and pass through it. If N is

the number of molecules contained in unit volume, there are

N dx'dy'dz' particles in this volume-element at any moment ;
and

if T denotes the average interval between two successive collisions

of a particle with others, the number of straight paths commenced
in unit time by this group of molecules is

NT- l

dx'dy'dz
f

;

this is also the number of particles which issue from the element

in unit time in all directions.

Of these a portion, whose number is

traverse a path of length r without a collision ; herein J3L = 1, or

/3 is the reciprocal of the mean free path L which, on the assump-
tion of equal speeds for all molecules, we have to put equal to the

value found byClausius
1

,
so that /3

= f^A- 3
, s and X denoting

1 67 of the text, or 33* of Appendix III.
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as before the radius of the sphere of action and the mean dis-

tance between neighbouring particles. Putting for r, which is

still undetermined, the distance of the point (x, y, z) from the point

(a/, y>, O, or

r2 = (x
r - x? + (y

f -
y)* + (z'

-
z)\

we may interpret the magnitude

NT~^-^dx'dy'dz'

as the number of particles which start from the element dx'dy'dz'

in unit time and traverse a sphere of radius r described about the

element as centre, so as to cut the surface-element dy dz. From
the number of particles traversing the whole spherical surface we
deduce the number of those crossing the element dy dz by com-

paring the projection of the element on the spherical surface with

the area of the whole sphere. The latter amounts to 4?rr2
,
and the

former to dy dz cos s, where s denotes the acute angle which the

direction of r makes with the a?-axis. The number of particles,

therefore, which in unit time reach and pass through the element

dy dz, having started from the volume-element dx'dy'dz', is

NT-V^Trr2
)-

1 cos s dydzdx
f

dy
fdz f

.

The next question is, How much momentum is carried over

by these particles ? Since the molecular motion, of which heat

consists, is taken to be the same throughout the medium, its

transference causes no change, and it may therefore be left out of

account, and we have to consider only the forward motion of the

layers. Let this occur with velocity v at the point (x, y, z), and let

v f be the corresponding value of this function at the point (x
f
, y', z').

Then the momentum leaving the element dx'dy'dz' and crossing

the element dy dz in unit time is

dQ = (m/^NT-We-^r-* cos s dy dz dx'dy'dz'.

From this, by integration with respect to x', y', z' over one-half

of the medium, we obtain the total value of momentum carried

over from this half of the medium through the element dy dz of

the dividing plane into the other half. If we take the medium

as unlimited, this quantity which is carried over in the direction

of increasing x is

Q l
= dy de(m/4nr)NT

~ lf dx'
f dy' f

dzf e- ffrvfr~z cos s,
Jx J-co J -co
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while that carried over in the other direction is

Q2
= dydz(m/4:ir)NT-

l

\

X

dx'\* dy'^ ^e^Vr
J _oo J 00 J 00

The difference between these magnitudes

or the sum of the gain and loss of one-half, is the friction exerted

from the side of increasing x upon the other ; and so

denotes the reaction exerted by the half corresponding to the

smaller values of x on the half with the larger values of x.

Since, as above assumed, v is a continuous function of x, y, z,

and therefore also v' a continuous function of a/, y
r

,
zf

, Taylor's
theorem gives the development

* = v + (*-*)* + (y'-y)~ +('-) + ...

After substitution of this series the integrations can be carried out,

and present no difficulty if the rectilinear coordinates are replaced

by polar coordinates whose origin is at the point (x, y, z), i.e. by
the coordinates r and s already introduced, and a second angle $

given by
(a/ x) = r cos s

(y
r

y) r sm s c s

(z
f

z)
= r sin s sin 0,

where the sign must be determined so that the acute angle s may
satisfy these relations. Then we obtain

cos s sin s dr ds dCi = dy dz(m/7r)NT-
ir f" (V*
Jo Jo Jo

C2
= dy dz(ml7r)NT-

1

(^ (^
f

M
e-^vj cos s sin s dr ds <fy,

Jo Jo Jo

where for shortness we put

v/ = t> + os s + sin s cos < +
1\^ dy \ dz

vj = v - \(^ cos s+ ^ sin s cos
<f>
+ ~ sins sin0V + . . .

l\dx dy dz
Y
J

Eemembering that v and its differential coefficients are independent
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of the variables of integration, we get, on performing the integra-

tions,

and thus by subtraction of these expressions the value of the

friction exerted

dv
,

1 d3v
,

The series obtained may be transformed into one proceeding

by rising powers of the molecular free path, or, more correctly, of

its square ; for by substitution of the value l/L for j3 it becomes

and if the free path is really very small, this series will converge so

rapidly that we may neglect all the terms after the first, and write

for the friction

F= %mNT
~ l

L*(dv/dx)dy dz.

The friction is therefore proportional to the surface dy dz on

which it is exerted, and also to the differential coefficient of the

forward velocity v with respect to x, the direction of the normal to

this surface. But this is Newton's hypothesis with respect to

the nature of viscosity, according to which it is taken to be pro-

portional to the relative velocity of the neighbouring layers, as has

been explained more at length in 74 ; for the relative velocity, or

the difference of velocity, of two neighbouring layers is expressed

by the value of the differential coefficient. Newton's hypothesis
therefore gives the viscosity as expressible by

in which r? denotes the constant, which is called the coefficient of

viscosity.

According to the theory just developed the value of this co-

efficient is

for which we may write ( 75)

7?
= frnNGL or 77

=
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where p and G, as before, denote the density and mean speed of the

molecules. If in this formula, which was first deduced by Max-

well,
1 we put the value of the mean free path given byClausius'

theory, we obtain

77
= m(7/4:7r5

2
.

These expressions agree with those obtained in an elementary

way in 75 and 76.

46*. Calculation ,of Viscosity on the Assiimption
of Maxwell's Law of Distribution of Speeds

If we put on one side the inaccurate assumption that all the

molecules have equal speeds, and replace it by Maxwell's law,

as in our calculation of the pressure, we can at first introduce a

simplification which is sufficient as an approximation. If the

speed with which the gas flows is so small, as it is always assumed

in the theory of viscosity, we can consider it as negligible in

comparison with the very rapid motion of the molecules. It is

then, therefore, allowable to employ Maxwell's law in the form

which, strictly speaking, is valid only for the state of rest. In this

manner Boltzmann 2 and Tait 3 have calculated the value of

the coefficient of viscosity.

We arrive at the value of the momentum carried this way and

that in unit time across the surface element dy dz in the same

manner as in the foregoing calculation. In unit volume there

are

particles with speed w, and therefore

4r~*tf(Jbi)V*""V4w r2 dr sin s ds d$

in the volume-element r2dr sin sdsd<f>', of these there pass over in

the direction of dy dz, given by the angles s and ^>, the number

dy dzN(km/Tr)^e~
Hma>*Mio dr cos s sin s ds dy.

Each particle begins B new paths in unit time, where

B S

1 Phil. Mag. [4] xix. p. 31, 1860 ; Scientif. Works, 1890, i. p. 390.
2 Wiener Akad. Sitzungsber. 1881, Ixxxiv. Abth. 2, p. 41.

3 Trans. R.S.E. 1887, xxxiii. p. 259.
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and the number of those which traverse the length r without

collision, and therefore pass through dy dz, is determined by the

function

e -r/

Thus the number of particles which in unit time pass through

dy dz with speed w starting from a volume-element situated at the

point (x, y, z) is

d/

ydzN(km/7r)%e~
km'*Be~ Brl<0 w2dwdr cos s sin s ds dfy.

As before, we assume that each of these particles possesses
the speed v f with which the gas flows through the point given by
r, s, (p. Thus we obtain the value

f
00

f f\n C2TT

Q=dy dz
Nm(km/ir)*}

do u>
2Bg-* ^2

J
dr e~*rlai

] Q
ds sin s cos

SJ Q
dtyv

for the momentum which in unit time is carried over the element

dy dz in the one or the other direction, according as we put for

vr the values v'\ or i/ 2 given before; and the coefficient of friction

is determined, as before, by doable the value of the factor of

(dv/dx)dy dz in the development in series, or

w w 2Be-*w<ua

j
dr rer*rl<0

j
"ds sin s cos2

sf

which reduces on integration to

or, as it may be written,

The value of this integral has been calculated byBoltzmann
and also by T ait. The former found

n = 0-088942636 m/sV(A;m),

and with this T a i t
'

s
l value agrees, as well as one calculated by

Conrau, 2 of which I have been privately informed. Using the

mean values of the speed and free path, viz.

we find finally

T/
= 0-350203 p&L = 0-322648 PGL.

1

Compare Boltzmann, Wiener Sitzungsber. 1887, xcvi. Abth. 2, p. 895.
2 See 48*.
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The numerical factor, which is the same for all gases, does not

materially differ from that which has been calculated on the

assumption of equality of speed for all molecules.

47*. Calculation from Maxwell's General Law
Even this improved calculation cannot lay claim to perfect

accuracy. Instead of the law of distribution which is valid for the

state of rest, must be employed the law that holds for a gas in a

state of flow.

Maxwell's law can of course be extended without difficulty

to the case wherein the mass of gas has a forward motion, as has

been shown in 16* and 18*. But this generalisation has

reference only to the particular case wherein the forward motion

has the same direction and speed at all points in the whole mass

of gas. Those formulae, therefore, are not directly applicable to

our case, in which the gas is divided into layers which slide past
each other with unequally quick motion.

The formulae can, however, be taken with sufficient approxima-
tion as applicable, if their use is limited to so small a region that

within it the forward motion of the gas may be considered as

everywhere the same in magnitude and direction. Now the

transference of momentum, in which, according to the kinetic

theory, the process of internal friction consists, is carried on by a

molecule no further than the molecule itself moves : it depends,

then, on processes in such limited spaces that their dimensions

may be compared with the mean length of the molecular free

paths. And within such spaces we may look on the speed of the

flow as uniform.

This assumption may be justified quite independently of the

hypotheses of the kinetic theory, and simply by means of the

assumptions upon which Newton based the theory of viscosity.

The validity of the formulae of this theory depends on the

limitation that the velocities of the flow in separate layers which

slide past each other are taken to be only very slightly different ; the

difference in the motion of neighbouring layers is to be taken as

so small that, in comparison with the first power of the difference

of the velocities, all higher powers may be neglected as vanish-

ingly small.

On these grounds we here employ the formulae of 16* and



47* VISCOSITY OF GASES 447

18* without hesitation, taking the forward motion to be uniform

within each layer, but to differ from one layer to another.

In the formulae wrhich we introduce with this assumption we
must partly alter the meaning of the symbols, in order to be able

to retain the notation employed in the last two paragraphs and

the system of rectangular coordinates there introduced. We had

before denoted by s the angle which the direction of motion of

the particle under consideration makes with the direction of the

forward velocity o of the flowing gas ; instead of cos s we have

now to put sin s cos 0, if, as hitherto, we take the direction of

flow coincident with that of the ^/-axis. Corresponding to this

assumption we replace the letter o by vf
,
to which we leave the

meaning it has hitherto had. The formulas of the preceding

paragraphs are thereby changed so far that the exponent
which occurs in Maxwell's formula, is to be replaced by

q
= m<*) + v wv sn s cos ^.

The number B of collisions which a single particle undergoes
on the average in unit time, and the number of paths which it

begins in unit time, are calculated just as if the gas were at rest.

For, firstly, with our assumption the speed of flow alters by only

vanishingly small quantities with the region in which the paths
of the molecules considered lie ; and, secondly, the calculation of

31* teaches that with an unequal distribution of the forward

motion the number of collisions is altered only by quantities of

the order of the square of the differences of the speeds.

We put therefore

dy dzN(km/7r)%e~
qRe~ Brl"u>

2
dt*> dr cos s sin s ds

d<f>

for the number of particles which pass through the surface-element

dy dz in unit time, having started from the volume-element

r2dr sin s ds d$, B retaining its former meaning.
Each of these particles possesses the momentum mw sin s cos

<j>

in the direction of the y-axis ; hence the momentum which is

carried across the element dy dz in unit time is

sfoo foo r$7r (-27T -Br/o, a
Q = dydz mN(km]rrY dw

\
dr ds dA'Be '

e
a * sin2

s cos s cos <b;

Jo Jo Jo Jo

and this expression gives the momentum Q lt which is carried

across in the direction of decreasing x, if the value v' lt as defined

in 45*, is substituted for v' in q, and also the momentum Q 2 ,
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which is carried over in the opposite direction, when v'2 is put
for vf

.

In this formula the function B, which expresses the probability

of a collision, is, strictly speaking, not only dependent on the

velocity o>, but also varies with place, that is with r, since the

gas is not in the same state of motion at all points. We may,
however, neglect this variation, and take B to have the same value

everywhere if we retain the assumption that the velocities v and vf

of the forward motion may be looked upon as vanishingly small

in comparison with the mean speed 1 of the heat-motion.

In this approximation we can further neglect the square of v
f

in comparison with <o
2

,
and put

e~* = e~kma>
\l + Qkmuv' sin s cos 0),

by which the integrations become partly practicable, and we
obtain a development in a series proceeding by powers of w/B = I,

which we may limit to its first terms ; we then have

Q l
= (yv + ^rj dv/dx)dy dz,

and also

62 = (yv i? dv/dx)dydz,
wherein

15?r3

The last formula gives the value of the coefficient of friction of

the gas.

48*. Investigation and Development of the
Formula for the Coefficient of Viscosity

This formula is as little integrable as Boltzmann's; but
even thus it is not difficult to grasp its meaning and deduce
from it the laws of internal friction, just as from the formulae
first obtained.

We first of all easily see that by this calculation too the
value of the coefficient of viscosity is proportional to the square
root of the absolute temperature. For if in the formula for r/,

which may be written
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we put the value of B given in 32*, viz.

}

and substitute for kmu 2 a new variable, the constant k under the

sign of integration disappears, and r\ becomes inversely propor-
tional to \/'(km), i.e. directly proportional to the mean molecular

speed O, and therefore directly proportional to the square root

of the absolute temperature.

If, lastly, in the final formula of the foregoing paragraph we

replace the free path I of the particles which move with the speed
<o by the mean free path L given by the equation

l/L = wT/lB = (u,/a)/(&raw
2
),

which results from those obtained in 37*, we see that ?? is also

proportional to L, and may be expressed by a formula of the

form

in which K is a numeric which is indepandent of m and is thus the

same for all kinds of gases.

The equation now appears in the same shape as before in the

approximate calculation, and therefore directly shows that the

law is still valid which lays down that the viscosity of a gas is

independent of its density.

The value of the factor K is given by an integral which, though
not integrable, is easily interpretable. If, in agreement with a

notation already used in another calculation, we express the mean
value of a function of the speed, as calculated on Maxwell's
law of probability, by

*
du <a*Fwe-**

= 25
/r-

2a-3

J

then

By means of this interpretation of the integral as a mean
value we are enabled to assign limits within which the value of

the numeric K must lie.

The mean value in the formula is to be formed exactly as the

mean value M(l), which is introduced in 38* with the like nota-

tion. The arithmetical mean, therefore, of all values of the product
G G



450 MATHEMATICAL APPENDICES 48*

w3
l for the whole of the N molecules in unit volume is to be

found, wherein / denotes the length of a path already begun, and

W the speed with which it is traversed. Thus for each particle

we are concerned only with the single path which has been begun.

In 38* we also formed another mean value by considering

for each particle all its paths traversed during a lengthened

period. If we also now take into account all the paths traversed

in unit time, we have to bring into the calculation B paths instead

of a single path. This process results in a larger mean value,

since the number B and the free path I are (by 37*) the larger

the larger the speed w. This second mean value is denned by the

formula

which shows that our new consideration is simply equivalent to

replacing the collision-frequency B by its mean value T. The
formula leads to the value

If we put this in the formula for the coefficient of viscosity, we
obtain the equation

77

first given by Stefan, 1 which gives too great a value.

On the other hand, we get too small a value for the coefficient

if we substitute for the variable free path Z its mean value L, that

is a length which is too great for small values of w, and too small

for large values of w, so that in the calculation of the mean the

smaller values come more into account than the larger. We have
therefore

or

77 >

For the value of the coefficient K-, therefore, we obtain the

following limits :

<<*
or 0-27 <K< 0-39,

1 Wiener Siteungsber. 1872, Ixv. Abtb. 2, p. 363.
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which may be drawn somewhat closer. For, from the remark that

the least value of B is T/N/2, it follows, for instance, that

ir<0'37.

Accurate knowledge of this coefficient can only be obtained

from a numerical evaluation of the integral by which the viscosity-

coefficient is expressed. I have, therefore, already calculated the

value of the integral for the first edition of this book, and I then

obtained the value K = O318. But, since in this calculation I used

o'nly ten of the values of the free path given in 37*, and also

employed only the simplest process of mechanical quadrature, the

value obtained could only be approximately accurate.

A more exact calculation was made in 1892 at the instance of

E. Dorn, of Halle, by one of his pupils, Wilhelm Conrau,
of Magdeburg, now deceased, with the help of tables which were

even more complete than those published by Tait 1

,
and by the use

of Cotes' s formulae. This calculation has given the somewhat

smaller value
K = 0-30967,

which is said to be correct to all five places of decimals. I have

tested this calculation in different ways, firstly by repeating my
former calculation with a greater number of calculated values of I,

by which I found the value K = 0'311, and, secondly, by a different

process of calculation, viz. by breaking up the integral, which

stretches from to oo, into a number of parts, and putting I in

each part equal to a linear function of w, whereby the integrations

can be performed ;
this process, which by reason of the curvature

of the curve that represents I as a function of w can only give too

small values, gave K = -

308. The number found by Conrau
lies half-way batween these two approximate values, and may,

therefore, be assumed to be accurately calculated. Besides, P.

Neugebauer, who has had the goodness to carry out similar

calculations for the theory of the conduction of heat in gases

which is given in 57*, has tested Conrau' s numbers, so far as

was necessary for his purpose, by forming the first, second, third,

and fourth differences, and has thereby found only unimportant
errors which can be of no influence on the figures given.

I therefore consider

rj
= 0-30967 mNClL

1 Trans. R.S.E. 1887, xxxiii. p. 277.

G tt 2
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as the correct formula for the coefficient of viscosity, and I have

employed it in Chap. VII. in all the calculations of the numerical

values of the molecular free paths L.

Even this calculation of the factor K depends, indeed, on

assumptions which are not exact, but only approximate. As has

already been mentioned in 47*, objection can especially be

raised that the law of distribution of speeds has been employed
in a form which is exact only for a constant flow, and that the

collision-frequency and the mean free path have been so taken

as if the gas were at rest. I cannot, therefore, gainsay Boltz-

m a n n
'

s l

expectation that another value of K would result from

stricter regard being paid to these considerations. But hitherto

no one has succeeded in overcoming the mathematical difficulties

of a more accurate calculation, and in bringing out from it a final

formula so simple that it can be turned to use for application to

observed magnitudes ; and, even if this were done, the result would

not practically differ from that given by the above formula, which

certainly does not depart much from the truth.

49*. Friction Accompanying Change of Density

In addition to the kind of internal friction that has been con-

sidered in the foregoing investigations, and which takes place in

like fashion in both liquids and elastic fluids, there can be ex-

hibited in the latter class of fluids a second kind of friction which

has hitherto not been experimentally investigated. The motion

does not undergo frictionlike resistance only when one layer slides

over or near another ; but such motions also as lead to compres-
sion or expansion are hindered by resistances, and these too we

may term internal friction, since they spring from the same

causes. These kinds of frictional forces which occur on compres-
sion or expansion have, therefore, been considered in all theories

hitherto put forward of the viscosity of gases ; and it has not

escaped notice that this second kind of frictional forces may
depend on a different coefficient of viscosity. For as the elasti-

cities of extension and tension require two different values of the

constant of elasticity, so also the friction that comes into play
with dilatation may be determined by quite a different coefficient

of friction from that concerned in the frictional phenomena
1 'Theorie der Gasreibung,' Wiener Siteungsber. Abth. 2, 1880, Ixxxi.

p. 117 ; 1881, Ixxxiv. pp. 8, 1230.
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hitherto exclusively considered, in which the molecules slide or

roll over each other without, on the average, coming nearer to or

going further from each other. But the different mathematical

theories do not agree together in respect to the numerical ratio of

these two coefficients of friction.

The value which the kinetic theory of gases requires for the

second coefficient of friction can be calculated from the same
formulae as before, if only the single alteration is made, that

instead of the velocity-component v, which is parallel to the

surface of friction dy dz, we consider a velocity u perpendicular to

it. We have, consequently, in the formula given in 47* for the

momentum carried across the element dy dz, no further change to

make than to employ the exponent q with the value

q = km(u
z + ur2 2umr cos s)

and to exchange the factor m sin s cos for m cos s. Thus the

momentum normal to the surface of friction which is carried over

dy dz in unit time is

,
r oo pco c\n r2ir _ TV,.,

Q = dttdimJ(JcmlnV\ du dr
\

ds
\

dA Be 1<a
e V sins cos2 s;

Jo Jo Jo Jo

on carrying out the integrations with the assumption that

u1 = u -h i (^ cos s + ~- sin s cos <t> +
C

\
U

sin s sin <b]r +~
1 \dx dy dz

T
J

which corresponds to a former assumption, and that

e
-
q _ e

-km* ^ + 2&wiom/ cos s)

with sufficient approximation, we find the values

Q! = \p + y'u + \n' dujdx

Q.2 = \p + y'u \r)' du/dx,
where

p = ffwMl2

is the pressure, and y
f and r)

f are constants whose meaning is

= 2y

'
=3,.

The latter is the second coefficient of viscosity for which we are

seeking ; y
f

disappears from the difference Q.2 Q\ between the

momenta carried the one way and the other, which has the value

Q2 Q l
= p tf du/dx =p -

3/7 du/dx
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Our theory agrees, therefore, with all the older theories in

giving the value of the friction that accompanies alterations of

density as larger than that of the ordinary friction. The ratio we

have found of 3 : 1 is the same as that which, on Poisson's

theory, should hold between the elastic constants of extension and

torsion. In a theory of friction which I formerly developed from

other hypotheses
1 I found the same value for this ratio. Its

determination has, however, but slight practical value, since, as

indeed the last formula shows, this kind of friction gives rise to

forces which are not distinguished from the pressure, and may
therefore be reckoned in the value of the pressure.

50*. External Friction

The considerations and formulae of 47* at once supply the

means of determining the external friction which a gas experiences

at the surface of a solid body.
Consider a gas which flows along the surface of a body at rest

and has everywhere the same velocity v ; then in each unit of

time a number of particles, which have the momentum

Q = yv = imN&v

in the direction of flow, strike unit of surface and rebound from

it. Each particle rebounds from the solid wall with the same

speed with which it struck it, but not always in a direction

inclined to the wall at the same angle as that of the impact ; for

the solid wall, which is made up of molecules grouped together,

is, in respect of a striking molecule, an exceedingly rough surface.

Therefore the colliding molecules lose a part of their momentum
in the direction parallel to the wall, and this becomes transformed

into heat-motion. This loss appears as external friction, whose

intensity, therefore, is given by the expression

where (3 is a numerical coefficient.

1 Crelle's Journal fur Mathematik, 1873, Ixxviii. p. 130 ; with Addition

Ixxx. p. 315, with improvements by Stefan and Boltzmann. Other theories

of internal friction have been given by Navier (Mem. de VAcad. de Paris, 1823,

vi. p. 389), Poisson (Journ. de VEc. Poly. 1831, xiii. cah. 20, p. 139), Stokes
(Camb. Phil. Trans. 1849, viii. p. 287), Cauchy (Exerc. de Math. 1828, 3rd

year, p. 183), Barre de St. Venant (Comptes Rendus, 1843, xvii. p. 1240),
and Stefan (Wiener Sitzungsber. 1862, xlvi. Abth. 2, p. 8).
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This factor /3 need not be a pure fraction. If the wall is very

rough, many of the particles meeting it will be jerked back by its

unevennesses with an oppositely directed motion ; they undergo,

then, a diminution of their velocity v by an amount which may
rise to 2u. It may consequently be very possible that the particles

which strike upon the wall receive a mean motion which is

oppositely directed to their initial motion, as certainly in like

manner occurs at the edge of flowing water; and in this case

we should have to assume j3 > 1. According to Kundt and

Warburg's observations, which were discussed in 83, it

appears that

/3
=

|,

whence the coefficient of external friction would have to be put

The assumption herein contained, that the striking molecules

lose their whole velocity of translation and gain an opposite one,

is not in contradiction with the fact that the gases slide along

solid surfaces with a sensible speed ; for not all the molecules of

the surface layers of gas lose their velocity, but only those that

strike against the solid surface.
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APPENDIX V

DIFFUSION

51*. General Theory of Diffusion

IT is not my intention to investigate the theory of diffusion of

gases with the same mathematical rigour as the simpler theory of

viscosity. I limit myself here to supplying the mathematical

explanations desirable for those going more deeply into the theory

of diffusion developed in the text, and these I shall found upon
Maxwell's law.

As to the distribution of the two gases, I make only the

assumption that the whole pressure of the mixture

P=Pl + P2=P

possesses everywhere the same constant value P, and therefore

keeps this same value always ; and also that, corresponding to it,

there are always at every point the same number

N
t +N,

of molecules of the two kinds in unit volume.

As in the investigation given in the text, we determine for one

of the two kinds of gas the number of molecules which in unit

time pass in the direction of increasing x through a surface-

element dS of a section of the diffusion tube at a distance x from

the beginning of the tube. We form this sum with the assumption
of the validity of Maxwell's law of distribution of speeds. This

assumption is not strictly admissible, since the deduction of this

law presupposes the state of motion of the whole gas to be every-
where the same. But the application of this law to our problem
is allowable as a good approximation, if we can look upon the

ratio of mixture of the two gases in the space filled by them, not

simply as a continuous function of the position, but also as one

that varies very slowly. For, with this hypothesis, that ratio and
the whole state of the mixture can be assumed to be constant
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within a tolerably large region, throughout which, therefore,

Maxwell's law may be considered to hold.

According to a formula which we have developed before, and

used several times, the element dS is reached by a number

dS cos s sin s ds dr d

of particles, which proceed in unit time with speed w from the

volume-element r2 dr sin s ds
d(f> expressed in polar coordinates

with dS as origin and the normal to dS as axis. N, m, and B are

here magnitudes which have different values for the two kinds of

gas, and must therefore be distinguished by subscripts 1 and 2.

N and B are also functions of the position ; but it will be

sufficient in the case of B, the collision-frequency, to assume a

mean constant value, and consequently to take into account only
with respect to N that we must employ that value of it which is

proper for the position of the volume-element r2dr sin s ds dty, and

which should be indicated by the argument x r cos s. Since

r is small, the function N with this argument may be put

dN
N(x r cos s)

= N -- r cos s,
ax

where the letter N without any argument denotes the value at the

position x.

We are not concerned with the whole number of particles that

pass through dS, but only with the difference between the numbers

which pass from the right and from the left ; this difference does

not depend on the absolute value of N, but is conditioned only

by its variation. Hence, on introducing into the above formula

the expression we have developed for N, we neglect the first term

and investigate only the second

^(km/rfBe-^e-^Wdu dS cos2
s sin s ds rdr d$,dx

which we have to integrate between and oo in respect to w and

r, over unit area as regards dS, from to JTT in respect to s, and

from to 2 * in respect to
<j>.

We thus obtain as expression for

the number which pass through unit area in the direction of

increasing x, in consequence of the unequal distribution,

_
ON/TT ax

For the number passing in the opposite direction the same

expression holds, but with changed sign.
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52*. Signification and Value of the Integral

The integral that occurs in the last formula has a simple

meaning, in virtue of which we are enabled to solve the problem
in 95, viz. to find the mean perpendicular distance, represented

by A, by which the original layers of the molecules that diffuse

through any section are distant from that section.

In the preceding paragraph we first found the number of the

particles meeting the section considered
; to this was added the

factor rcoss, or the perpendicular distance of one of the original

layers, by the development of the function N. Consequently the

somewhat altered expression

I"""

would be nothing else than the sum of the perpendicular distances

for all the particles that meet the unit area in unit time. If we
divide this sum by the number of particles that meet the area,

which by 41* is ^N^l, we obtain the mean value we are seeking,

A =
|

Employing as before the symbol M to denote the mean value of

a magnitude within brackets, as calculated on the assumption of

Maxwell's law, we may write for this

where I is the mean free path of the molecules moving with the

speed w.

Since the integration cannot be carried out, we are obliged to

estimate its value by approximations. It seems sufficient to put
for B its mean value, which was represented by F in 29*. We
then get

and hence, since by 19* the mean value of w 2
is

M(^) = G2

we obtain

A =

where is the mean free path of the molecules.
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53*. Coefficient of Diffusion

This result enables us also to express in terms of the free path
the number of molecules, represented by the last formula in 51*,

which pass over unit area in unit time in the direction of increasing

x : for this we have

In the opposite direction flows an equal number with changed

sign, so that

more particles cross in the positive direction than in the negative.

If now we introduce the necessary subscripts for the two

gases,

particles of the first kind and

particles of the second kind pass through unit area in unit time

in the positive direction. By repeating the procedure employed
in 95, and remembering that

tf
i + N2

= N
is a constant independent of x, we obtain for the constant of

diffusion the expression

which agrees with the former one. We have to substitute in this

the values of the free paths as in 98 ; and we then obtain

where for shortness are put

54*. Differential Equations

If this value of D were constant, the differential equations

tit dx*' dt dx2
'
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would hold good, if the composition of the mixture determined by

NI and N2 depends only on a single coordinate x in addition to

the time t. In that case N
}
and N,2 may be replaced by the

partial pressures p l
and p2 ,

which each gas would exert were it

alone.

But if the coefficient of diffusion D varies with NI and Nz ,
and

consequently with x, the equations become

d dNi\ &Nt dD dN,= d
(DdNi\ =

dx\ dx Jdt dx\ dx dx2 dx dx

dN2 ^ d
(DdN*\ __ j)

,

dt dx\ dx J dxz dx dx
'

But now
dD _ dD_dNi ,

dD dN2

dx dN, dx
* dN2 dx'

or, since the numbers NI and N2 are connected by the equation

N,+N2
= N,

in which N denotes the whole number, independent of x and t, of

the particles in unit volume,

AD = (dD _dD\dN (
dD dD\dN2

dx
"

\dNl dNj dx
"

\dN2 dNJ dx'

The differential equations therefore take the form

Dd^N1 fdD _ dD
dt dx2 \dN l dNj \ dx

d-N2 . J-LI^ _i

dt dx*
'

in which the square of the first differential coefficient with respect
to the coordinate is involved as well as the second.

If the diffusion tube is long enough for the rate of change of

the partial pressure of a gas to be very small, then (dN^dx)
2 and

(dN2/dxY are small magnitudes which may be neglected. The

equations then retake the simpler form

AN*
dt dx2 '

dt dx2 '

but they contain a factor D which depends on N
l
and N2 ,

and
thus varies with x and t. If we are to assume solutions of these

equations of the usual form, we shall have so to arrange our

experiments that NI and N2 ,
and therefore also p l

and p2 , may
alter with time and place in only a very slight degree.
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APPENDIX VI

CONDUCTION OF HEAT

55*. Transference of Energy
As interpreted in our theory, viscosity and heat-conduction are

closely allied phenomena. Viscosity consists in the transference

of the forward momentum of the molecules from layer to layer;
heat-conduction is the transference of the kinetic energy of the

molecular motions from place to place.

The calculation of the heat-conduction is thus to be begun and

carried out quite analogously to that of viscosity in 47*. The

only difference consists in this : that in place of the ^/-directed

momentum nno sin s cos
<f>,

is to be substituted the total kinetic

energy, which is Jmw
2

if we here neglect atomic motions and

consider those of the molecules only. If, then, we assume the

gaseous medium to be practically at rest so far as the exterior is

concerned, we obtain the formula

Q = JfJ^{ "ds sin s cos
s| Q drN(fan/*)*lQ

d< u*Ke-*rl<ae-kmto
\

which denotes the kinetic energy or heat carried across unit area

of a surface in unit time in the direction of increasing x.

Maxwell's law, which the formula assumes, is of course

strictly applicable only to the case of a gas in a perfectly uniform

state throughout, and not for one in which the mass and motion

are unequally distributed. But, just as for viscosity and diffusion,

the application of Maxwell's law to the case of heat-conduction

also is justifiable as a sufficient approximation to the truth, if only
the change in the values of the variable magnitudes with place

occurs everywhere sufficiently slowly, so that a constant state may
be assumed to exist in a tolerably large region.

For the problem of heat-conduction the most important of the

magnitudes which vary with place is the mean value of the mole-

cular energy which, by a formula developed before in 19*, p. 388,
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is determined by the magnitude k. Further, the number of mole-

cules per unit volume N must also vary from place to place,

because the warmer parts of the gas are more expanded than the

colder. And, finally, the magnitude B, or the collision-frequency,

is also variable with the place.

As regards the last, magnitude, I shall again neglect its

variableness with place, as in our former investigations of viscosity

and diffusion
;
for the approximation will be permissible that in

the short length of a molecule's free path a constant mean value

of B may be substituted for what is in reality a variable value.

The two other magnitudes N and k must, however, be both

treated as variable. By reason of their continuity we can use

Taylor's theorem to find from their values at a point (x, y, z)

their values at any neighbouring point. This last, referred to the

former, we denote by the relative coordinates r, s, <f>. Since only

very small values of the distance r come into consideration, by
reason of the smallness of the molecular free paths, we can limit

the expansions by Taylor's theorem to the first two terms,

more especially as the functions are, on our assumption, to vary

only very slowly. Assuming therefore that the heat-condition of

the medium varies only in the direction of the coordinate x, we

may put

and N +dx ^ dx

instead of k and N, where both functions are to be taken with

their values at the point (x, y, z), and the upper or lower sign is

to be taken according as the position (r, s, <) lies nearer to

or further from the origin of the ^-coordinates than the point

(x, y, z}.

If we further neglect the square of r, we then obtain for

the kinetic energy which passes through unit area in unit time at

the point (x, y, z) in the direction of x the amount

Q = %Nm(km/iry\
27r

d(f) [*"iefe
sin s cos s^ dr{ du V,

Jo Jo Jo Jo

wherein N and k have the meanings last defined, and is

given by

s w, Be e
-,.,[:{$+ (P- - *.>! }

r cos

the upper sign corresponding to a flow in the direction of in-

creasing x, and the lower to one in the direction of decreasing x.
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56*. Conditions for the Stationary State

Since the two magnitudes N and k are simultaneously variable

together, either can be considered as a function of the other. For

the complete solution of this problem the determination of their

mutual relation is necessary. This can, as Clausius 1 has

taught, be obtained from the condition that the transfer of heat is

not bound up with a simultaneous transfer of mass.

If we make the further assumption that the state of flow of

heat has become stationary, the following three propositions hold,

according to Clausius :

(1) The mass of gas which passes in unit time through the

7/2-surface in the direction of increasing x must be equal to that

which passes through it in the reverse direction, i.e. of decreasing

x
;
for otherwise the density would alter with the time.

(2) The momentum which passes in the positive direction in

excess of that which passes in the negative direction must have

the same value for every section, and thus be independent of x.

For if through two parallel planes there did not pass equal

quantities, on the one hand, into the space lying between the

planes, and, on the other, out of this same region, the mass in it

would increase in momentum and so in speed.

(3) The energy which passes through any section must, just as

the momentum, exhibit at every position of the section, i.e. for

every value of x, the same excess of quantity crossing in the

direction of increasing x over that crossing in the opposite

direction.

These three propositions may be expressed in the form of

equations, each of which contains an integral of the form of that

just given. The three integrals differ in that for the first the

factor \m^ is absent ; for the second it is replaced by mu cos s ;

and for the third it remains as it is.

We satisfy Clausius
'

second and third propositions, at least

with sufficient approximation, by the assumption that N and k

are linear functions of x. For then the differential coefficients

are constant, and as, according to the hypothesis of slow variation

assumed before, these are small in value, and are, moreover,

multiplied by the small quantity r, the variations of N and k may
be neglected in their coefficients.

1 ' Ueber die Warmeleitung gasformiger Korper,' 16, Pogg. Ann. 1862,
cxv. p. 32

; Abhandlungen iiber Warmetheorie, 2. Abth. p. 303, 1867.
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But we can satisfy the first proposition, viz. that the trans-

ference of heat is not carried out by a transport of heated masses,

only by the assumption of some relation between N, B, and k.

After carrying out some easy integrations, we obtain the equation

Ndx '

dxi

For the performance of this integration there are two methods

of approximation, which have been already employed in the theory
of viscosity, of which the one consists in our putting the constant

mean value of B, the collision-frequency, in the place of B, while

in the second we substitute the mean value of the free path
I = w/B instead of its actual value. The former method gives for

the integral a value too large ; the second, one too small. By both

we arrive at a relation between the differential coefficients which

is of the form

Q _ !_
dN _ h dk,

N dx
"

k dx
'

here h = 1 according to the former method, and according to the

latter h ^.

The true value of h must lie between these. It would then be

practically sufficient if, without seeking to exactly evaluate the

integral, we assumed the mean value h = f ,
and eliminated the

differential coefficient of N from by means of the equation

1. dN = 3 dk

N dx 4& dx'

We should obtain

(fk~
l - mw2

) ^ rcoss
dx

But it is also possible to calculate the value of h with exact-

ness, if we are not afraid of the tedious work of calculating by
a mechanical quadrature the values of both terms of the integral

which is above put equal to zero, just as, indeed, the similar in-

tegral in 48* occurring in the theory of viscosity was treated.

This calculation, too, has been made by W. Conrau, who has

communicated to me his result, viz. :

h = 0-71066,

which gives for the value

j
1 q: (2-21066 k~

1 - mw 2
) rcos s

j
.
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57*. Conductivity

The integration, so far as it can be carried out, gives that the

energy which crosses unit area in unit time in the direction of

increasing x has the value

u
1

(2-2107 k~ l-

The first of these terms, which is constant, may be put into the

more intelligible form

In the opposite direction, that of decreasing x, there passes
a quantity of kinetic energy, the expression for which differs

from that just given only by the sign of the second term. The
flow of heat in the positive direction resulting from both

transfers, which, in accordance with Fourier's theory, is put

proportional to the conductivity f and to the differential coefficient

of the temperature $ with negative sign, is the difference between

the two magnitudes, or

_ F = - fyrmN^MFdu 6B -^2-2107 fc-'-wwV*""
1

.

Now, as we found before in 19*, p. 388,

km = 47T- 1 Q- 2 = 47T-
1 Q "

VC1 + $)

where fi is the mean molecular speed at the temperature 9 = 0* C.

and a is the coefficient of expansion ; consequently

dk
yi -10 -2 n i a\-2^ akm d

m-=- = 47r
1
Q0

2
a(l + a3)

2 -=- = j -=-.

dx dx 1 -f a$dx

We therefore obtain for the conductivity

f = $K-*N(km)*a(l + a-9)-
1 f^ 6 B-^ww

8 - 2-2107 &->- *""".

To reduce this expression to thermal units for energy is ex-

pressed in it in mechanical units we note that the kinetic energy
of unit mass is

while on the other hand the heat at temperature 5 C. (or absolute

temperature $ + a" 1

),
which is equivalent to it, is

c(* + a'1

),

H H
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where c denotes the specific heat at constant volume. Hence the

conductivity expressed in thermal units is

f = r-lfefe
f fe uB- l

(mu>*
- 2-2107 Ar1

)^*"-'

**l(m*
- 2-2107 AT >-*"-',

where I is the mean free path of the particles which move with

speed o>.

We find upper and lower limits of the value of this integral by
the approximate methods employed in former paragraphs, in which

we put for B or I their mean values. In this calculation I have

not taken the exact value of h, but its approximate value f ,
and

therefore 2-25 instead of 2-2107 ; and I have obtained

f|7

or

0-333 mNQLc < I < 0-818 mNQLc.

If we compare this determination with the theoretical value of

the coefficient of viscosity, which with sufficient approximation is

given by

we have

or

1-047 rjc < I < 2-570 rjc,

so that the upper limit coincides nearly exactly with that calcu-

lated by Boltzmann.
Since these limiting values are rather far apart, an exact

evaluation of the integral by mechanical quadrature, as in the

case of viscosity, is necessary. This has been very kindly done

at my request by P. Neugebauer, by means of the tables

left behind by Conrau; and my best thanks are due to him for

his kindness. The calculation has given that, if h is taken equal
to |,

I = 1-53716 TIC,

as was assumed in the first edition of this book ; but with the

more correct value 0-71066 for h calculated by Conrau we have

f = 1-6027 ric .

This value lies between those calculated by Clausius and

Maxwell, viz. j^c and |j?c respectively. A comparison of these

theoretical formulae with experiment is given in 108.
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