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PREFACE.

Since the appearance in 1870 of the great work of Camille Jordan
on substitutions and their applications, there have been many important
additions to the theory of finite groups. The books of Netto, Weber
and Burnside have brought up to date the theory of abstract and
substitution groups. On the analytic side, the theory of linear groups
has received much attention in view of their frequent occurrence in

mathematical problems both of theory and of application. The theory
of collineation groups will be treated in a forthcoming volume by
Loewy. There remains the subject of linear groups in a finite field

(including linear congruence groups) having immediate application in

many problems of geometry and function -theory and furnishing a

natural method for the investigation of extensive classes of important

groups. The present volume is intended as an introduction to this

subject. While the exposition is restricted to groups in a finite field

(endliche Korper), the method of investigation is applicable to groups
in an infinite field; corresponding theorems for continuous and collinea-

tion groups may often be enunciated without modification of the text.

The earlier chapters of the text are devoted to an elementary

exposition of the theory of Galois Fields chiefly in their abstract

form. The conception of an abstract field is introduced by means of

the simplest example, that of the classes of residues with respect to

a prime modulus. For any prime number p and positive integer n,

there exists one and but one Galois Field of order pn
. In view of

the theorem of Moore that every finite field may be represented as

a Galois Field, our investigations acquire complete generality when
we take as basis the general Galois Field. It was found to be

impracticable to attempt to indicate the sources of the individual

theorems and conceptions of the theory. Aside from the independent

discovery of theorems by diiferent writers and a general lack of

reference to earlier papers, the later writers have given wide general-
izations of the results of earlier investigators. It will suffice to give
the following list of references on Galois Fields and higher irreducible

congruences:

Galois, "Sur la theorie des nombres", Bulletin des sciences mathema-

tiques de M. Ferussac, 1830; Journ. de mathe'matiques ,
1846.

Schonemann, Crelle, vol. 31 (1846), pp. 269325.



IV PREFACE.

Dedekind, Crelle, vol. 54 (1857), pp. 126.
Serret, Journ. de math., 1873, p. 301, p. 437; Algebre superieure.

Jordan, Traite des substitutions, pp. 14 18, pp. 156 161.

Pellet, Comptes Bendus, vol. 70, p. 328, vol. 86, p. 1071, vol. 90, p. 1339,
vol. 93, p. 1065; Bull Soc. Math, de France, vol. 17, p. 156.

Moore, Bull. Amer. Math. Soc., Dec., 1893; Congress Mathematical

Papers.

Dickson, Bull. Amer. Math. Soc., vol. 3, pp. 381389; vol.6, pp. 203204.
Annals ofMath., vol. 11, pp. 65120; Chicago Univ. Becord, 1896, p. 318.

Borel et Drach, Theorie des nombres et algebre superieure, 1895.

The second part of the book is intended to give an elementary

exposition of the more important results concerning linear groups in

a Galois Field. The linear groups investigated by Galois, Jordan

and Serret were defined for the field of integers taken modulo^); the

general Galois Field enters only incidentally in their investigations.
The linear fractional group in a general Galois Field was partially

investigated by Mathieu, and exhaustively by Moore, Burnside and

Wiman. The work of Moore first emphasized the importance of

employing in group problems the general Galois Field in place of the

special field of integers, the results being almost as simple and the

investigations no more complicated. In this way the systems of linear

groups studied by Jordan have all be generalized by the author and

in the investigation of new systems the Galois Field has been

employed ab initio.

The method of presentation employed in the text often differs

greatly from that of the original papers; the new proofs are believed

to be much simpler than the old. For example, the structure of all

linear homogeneous groups on six or fewer indices which are defined

by a quadratic invariant is determined by setting up their isomorphism
with groups of known structure. Then the structure of the correspond-

ing groups on m indices, m > 6, follows without the difficult cal-

culations of the published investigations. In view of the importance
thus placed upon the isomorphisms holding between various linear

groups, the theory of the compounds of a linear group has been

developed at length and applied to the question of isomorphisms.

Again, it was found practicable to treat together the two (generalized)

hypoabelian groups. The identity from the group standpoint of the

problem of the trisection of the periods of a hyperelliptic function

of four periods and the problem of the determination of the 27 straight
lines on a general cubic surface is developed in Chapter XIV by an

analysis involving far less calculation than the proof by Jordan.

Chicago, November, 1900.
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CHAPTER I,

DEFINITION AND PROPERTIES OF FINITE FIELDS.

1. If the difference of two integers t and r be divisible by a

third integer p, then t and r are said to be congruent modulo p,

or according to the modulus p. This property is expressed by the

following notation due to Gauss:

t = r (mod p).

For example, TEE! (mod 3), 1 = 2 (mod 5).

The totality of integers congruent modulo p with a given posi-

tive integer r < p is given by the formula

lp + r .(Z-0, 1, 2, ...).

This totality, which will be designated Cr ,
is said to form a class

of residues modulo p; it includes every integer which gives the residue r

when divided by p. It follows that the p classes (7
, 1? C72 ,

. .
.,

Cp i include every integer, positive or negative. They are therefore

said to form a complete system of classes of residues modulo p.

Example.
- The three classes 'C

,
Clf C2

form a complete

system of classes of residues modulo 3; indeed, every integer falls

under one of the three forms 3?, 3? -f 1, 3Z + 2.

2. An instructive diagram is furnished by the regular polygon
of p sides inscribed in a circle. Denote the vertices taken in posi-

tive order (counter-clockwise) by C
,
C19 . . ., Cp \. Regarding (7

to be the origin, we take as the plot of any given integer + m that

vertex which is obtained by counting off from the origin m of the

divisions on the circle in the positive or the negative direction accor-

ding to the sign of m. All integers of the form Ip -f r (I
=

0, 1,

2, . .
.)

are evidently plotted by the one point Cr ,
so that congruent

integers give rise to the same point. The p classes of residues

modulo p are represented unambiguously by the p vertices of the

polygon.



3. From the numerical identities

(lp + r) (tp + s)
= (lt)p + (r s),

(lp + >*) (tp + s)
=

(ftp + ls + rt)p + rs,

we obtain the following formulae for the addition, subtraction and

multiplication of classes of residues:

CrC,= Cr , 9 Cr-C\=Crs .

If two given classes Cr and Cs ,
Cs =%=Co, lead uniquely to a

third class Cx such that Cr
= CaCx ,

then Cx is said to be the quotient

of Cr by Cs and the following notation employed

The condition for the quotient is evidently identical with the condition

that there exist a solution x of the equation

1) r = sx -f tup-

In order that a solution x shall exist for r and s arbitrary integers

such that s is not divisible by p, it is necessary and sufficient that p
be a prime number. To prove the condition necessary ,

let p=PiP^
where p > 1

, p2 > 1 . Then 1) can not always be satisfied
;

for

example, when s = p and r is not divisible by pv The condition

that p be a prime is, moreover, a sufficient one by the corollary

of 4. Hence the division of classes of residues, the divisor being
other than the class (7

,
is always possible if, and only if, the modulus p

be a prime number.

In particular, these remarks show that the classes of residues

with respect to a prime modulus may be combined by the rational

operations of algebra and that each result is itself one of the classes

of residues. For example, let p = 3. Then

G!-}- G2
= G

, Gg-T'Gg
880

GJJ G2 'G2=G11 ,

4. Format's Theorem. If an integer a be not divisible by a

prime number p, then a? 1 1 (mod p).

Since the integers a, 2 a, 3 a, . . ., (ptya are all distinct

modulo jp, their residues must be identical, apart from their order,
with the integers 1,2, 3, . .

., p 1.

Forming the product of the integers in each set, we have

aP
~ l 1 2 . 3 . . . (p

-
1)
= 1 2 - 3 . . . (p

-
1) (mod p).

Corollary.
- - If a be not divisible by the prime number p, there

exists an unique solution of the congruence ax = b (modp).
Applying the theorem just proven, the solution is evidently

x aP~ 2 b (mod p).
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5. Definition of a field. A set of elements ult u2 ,
. .

., ua ,
which

may he combined by addition subject to the formal laws

such that the sum of any two elements is likewise an element of

the set is called an additive- field. If two elements Ui and uk are

given, there may or may not exist a third element HJ in the set such

that Ui + Uj
= uk . If existent

, HJ is said to be determined by sub-

traction, Uj EE Uk Ui. Assume 1

) that subtraction is always possible

in the given additive -field. The set will contain the differences

MX Mi,"M2-- M2, ''> ua u . Each has the additive property of

zero, since % -f (M/ M/)
=

My. From the latter, M,: M/ = M/ */

follows by the definition of subtraction. Hence the above differences

all have a common value u. There exists no new zero element Mf

,

since Uj+ u' = Uj requires u' = Uj %= M. Two elements are called

equal or distinct according as their difference is or is not the zero

element u. Select from the original set all the distinct elements^and

denote them by MO , MI, Ma, . . ., 'M,_I, where MO denotes the unique
zero element.

Assume next that the s elements MO, MI, . .
., M,_ i may be com-

bined by multiplication subject to the formal laws

UiUj
=

M;M/, Ut(UjUk)
=

(UtUj) Uk, M^M; M*)
=

MfM; M/Mjfe,

P
such that the product of any two elements is itself an element of

the set. Then the element MO
will have the multiplicative properties

of zero, viz., for any element Uj of the set,

Indeed, since every product M/MI is an element of the set,

Uj(U; U^ =
M/M; MyM/

=
MQ, (M/ M,-)w/

= M .

Given two elements u-t and M*, M/=J=MO ,
there may or may not

exist a third element Uj in the set such that M,M,
= MA. If existent,

Uj is said to be determined by division, UjUk/Uf. Assume 2
) lastly

that division is always possible in the set, and in a single way, the

divisor being other than the zero element. A set of s distinct

elements satisfying the above four conditions is said to form a field

of order s.

To obtain a field of finite order, the assumption concerning
division may be replaced by the postulate that a product of two

1) In the additive -field of all positive integers, not every difference of

two elements belongs to the field.

2) The set of all positive and negative integers satisfies the assumptions
as to addition, subtraction and multiplication, but not that for division.
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elements shall be the zero element u only when one of the factors

is UQ . Under the latter hypothesis ,
the series of products

UoU;, UiUi, u-2Uh ,. .
., Ug-iUi (w/H= Wo)

are all distinct and therefore (their number s being finite) are identical

in some order with the series MO, Wi, Wg, . .
., ,_i. Hence if Uj be

any element of the set, the equation

2) xuL
=

Uj (wf =4=w )

is satisfied by one and but one element x of the given set. Hence

division by any element except UQ is always possible within the set

and gives an unique result.

For a field of infinite order
,
the assumption that division is not

possible in more than one way may be replaced by the above postu-
late that a product vanishes only when one factor vanishes. Indeed,
if 2) be satisfied by two distinct values x and x

2
of x, then

Ui(xi #2)
=

MO> "whereas each factor differs from UQ
.

After the above explanations, we make the formal definition:

A set of s distinct elements forms a field of order s if the elements

can be combined by addition, subtraction, multiplication and division,

the divisor not being the element zero (necessarily in the set), these

operations being subject to the laws of elementary algebra, and if the

resulting sum, difference, product or
,quotient be uniquely determined as

an element of the set.
1

)

A field may therefore be defined by the property that the rational

operations of algebra can be performed within the field.

The results of 3 may now be stated in the form: The complete

system of classes of residues modulo p forms a field if, and only if,

p be a prime number.

6. Definition of a Galois Field. Let P(x) be a rational integral
function of degree n having integral coefficients not all divisible by
a given integer p. If we divide an arbitrary integral function F(x)
having integral coefficients by the function P(x), we obtain a quotient

Q(x) and a remainder which can be written in the form f(x) +p q(x),
where f(x) is of the form

3) f(x) = aQ + aix -f a2x2
-\ h an - lx n ~'L

,

each a
i: belonging to the series 0, 1, 2, . .

., p 1. Then

4) F(x) = f(x) -f p q(x) + P(x)
-

Q(x).

We say that f(x) is the residue of F(x) moduli p and P(x) and write

A) F(x)
=

f(x) [modd p, P(].

1) Moore, Mathematical Papers, Chicago Congress of 1893, pp. 208 242;
Bull. Amer. Math. Soc., December, 1893.
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The totality of functions F(x) obtained by giving to the poly-

nomials Q(x) and q(x) in 4) all possible forms is said to constitute

a class of residues; two functions are called congruent if, and only

if, they belong to the same class of residues. From the form of 3)
there are evidently pn distinct classes.

Consider two integral functions having integral coefficients

Fi(x)
-

/,< +p-q, (as) + P(x) Qi (x) [
= 1

., 2].

It is evident that the class to which F
1
+ F

2
or F

t
F2 belongs

depends merely upon the functions fl
+ f2 or /j/g respectively, being

independent of the functions qif Qi. Hence classes of residues com-

bine unambiguously under addition, subtraction and multiplication.

In order that the division of an arbitrary class by any class (7, not

the class zero (7
,
shall lead uniquely to a third class, it is necessary

that the equation d = Co shall require d = Co- Evidently this

will not be the case if p be composite, p=Pip2 ,
or if P(x) be

reducible modulo p, viz.,

P(x)-Pt(x)Pt(x)+pPt (x)

where the P(#) are integral functions having integral coefficients,

the degrees of P^ (x) and P2 (x) being less than the degree of P(x).
Hence p must be prime and P(x) irreducible modulo p.

Inversely, if p be prime and P(x) irreducible modulo p, it

follows from 7 that to any class CFl other than the class C there

corresponds an unique class CF\ such that Cf^Cp^ is the class unity.

Hence there exists the quotient class

The pn classes of residues therefore form a field called a Galois Field

of order p
n

. Moreover, the p n classes of residues moduli p and P(x)
form a field if, and only if, p be prime and P(x) be irreducible

modulo p.

As an example, let p = 3 and P(x) = x2 x 1. The 3 2
resi-

dues are

0, 1, -1, x
9

x + 1, x1, x, -#+1, -x1.
The sum, difference or product of any two of these may evidently
be reduced moduli 3 and x2 x 1 to one of the nine residues.

Moreover, the quotient of any one by any residue except may be

reduced to one of the set. For example,

- 1
* x a*

2 _ 1= L
>

^ == =

The nine residues thus form a Galois Field of order 3 2
.
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7. Theorem. - - If two integral, functions F(x) and P(x) having

integral coefficients admit of no common divisor containing x modulo p,

p being prime, we can determine two integral functions F r

(x) and P\x)
having integral coefficients such that

F'(x)
-

F(x) -P'(x) P(x)
= 1 (mod p).

Applying 4, we can set

F(x)
= a -

A(x), P(x)
= I B(x) (mod p)

the coefficients of the highest power of x in A(x) and B(x) being

unity and the remaining coefficients integers. We perform the usual

process to determine the greatest common divisor of A and B,

neglecting however, multiples of p. Each remainder is congruent
modulo p to a product of an integer r and an integral function H(x)
with integral coefficients, that of the highest power of x being unity.

Supposing for definiteness that the degree of A is not less than that

of B, we obtain the congruences (mod p) :

Rm 2 = R>m lQm 4- rm .

We derive at once the following congruences modulo p

r,E,~A-Q,B
r,r,E,= -Q,A+(r,+ Q,Q,}B

r,r2 rs E.d = (r2 + Q2 Q9)A- (r2 Q + r, Qs + ft

where M and N are integral functions of x having integral coefficients.

None of the integers ^ . .
.,
rm are divisible by p; for, A and B

would then have a common divisor containing x. Hence, by 4,

there exists an integer r such that

r-abr^ . . .rm^ 1 (modp).

From the last congruence in the above set, we therefore find

1 = rab (MA - NB) = F(x)-rlM - P(x)-raN (modp).

Corollary. Jf F(x) =|= [modd p, P(xJ], p being prime and P(x)
irreducible modulo p, we can determine an integral function F'(x)

F(x) F(x)
= 1 [moddA P(*)].

Note. - By an analogous use of the process for finding the

greatest common divisor, we obtain the following theorem:
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//' two integers f and p be relatively prime, we can determine two

integers f and p' sucli ilwt f'f p'p = 1.

8. The proof of the existence of a function of degree n irreducible

modulo p and hence of the existence of a Galois Field of order pn
,

for every prime p and integer n, will be given in 19 27. We
will first prove that no other finite fields exist and that not more
than one Galois Field of a given order pn exists.

9. Consider an abstract field F[s] composed of a finite number
s > 1 of elements or marks u

,
^li ,

. .
.,
us _i. Having every difference

u ;. Ui f
the field contains a mark, denoted by M(O), which has the

properties of zero viz., for every ui9

Having every quotient

Ui/Ui (i+=%)),
the field contains a mark %) having the properties of unity; viz., for

The field thus contains every integral mark

W(C)
= w

(i) + w
(i) H

-----h w
(i) (c terms),

((_ C)= W(0) %).

Since there exists only a finite number of marks in the F[s],
there must arise equalities in the series

...,W(_ 2) , W(-i), *( ), %), W(8), .-.

If W(r)= ww ,
we have

W(0)
=

W(r) M(,)
=

W(r-s) -

Denoting by p the least positive integer such that U(P)
=

W(o, the p
TT1 fit* K"S

W(0), W(l), M(2), -, M(p_ i)

are all distinct, while

^(r)
=

W(4) if, and only if, r = s (mod p).

This integer p is a prime number. For, if

we have, by hypothesis, u(pj =j= U(Q). Hence, from

we derive W(ft ) W( )
and hence ^?2 ^> p. Hence the integral marks of the

F[s] form a field F{j>] which is the abstract form of the field of the

classes of residues with respect to a prime modulus p. When there

is no ambiguity, we denote by c the integral mark w
(c)

.
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10. Theorem. - - The order of F\s] is a power of p.

If U
L
be a fixed mark =j= ^f of the F[s], the products

^M! (ft 0, 1,...,|> 1)

give p distinct marks of the field. If s > p, there exists a mark u
2

not of the form c^. Then
+ C2 MS, (q, Cg

= 0, 1, . .
., jp 1)

gives p
2 distinct marks. If s > p

2
,
there exists a mark u3 not of the

form C
L
U

L -f C2 U2 ,
so that

'

gives ^
3 distinct marks. Proceeding similarly ,

we must ultimately

obtain all the marks of the F[s] expressed by the formula

CM + C2 u2 -\
---- + cnun (every c/== 0, 1, . .

., _p 1),

not two of these ^>
n
expressions being equal. Hence s = pn

.

Definition. - A set of marks uly u^ y
. .

., % are said to be

linearly independent with respect to the included field F[p\, if the

equation
CjWi -f C

2
u

2 H- + Cjfc^
=

0,

where the c's are marks of the -F[j0] 7
can be satisfied only when

every c/
= 0.

Definition. - - A rational integral function of any number of

indet'erminates X1; X27 . . .,
Xk is said to belong to a field if its

coefficients are marks of that field. It is irreducible in the field if it

is not identically the product of two or more functions belonging
to the field

;
each function involving some of the indeterminates X{.

An equation between functions belonging to a field is said to belong
to the field.

11. Theorem. Any mark u of the F [s =pn
] satisfies an

equation of degree k<^n,

belonging to and irreducible in the F[p].

Indeed, a linear relation with coefficients belonging to the F[p]
certainly holds between any n -}- 1 marks of the F[pn

] and hence
between

If such a relation holds between the first k -f 1 of these powers of uy

u satisfies an equation of degree k.
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i2. Let u be any mark =f= of the F[s = p*\. The marks

belonging to our finite field are not all distinct. From ur = us

,
we

derive ur~ s =^\. The least positive integer e for which ue = 1 is

called the period of the mark u, while it is said to belong to the

exponent e. The marks 1, u, u2
,

. .
., we1 are all distinct.

We may form a rectangular array of the marks =4= of the field

as follows:
1 u u* . . . u*~

. . . Ue

where ^ is any mark =j= not occurring in the first line, u2 any
mark =)= not in the first or second lines, etc. Evidently the marks

in any line are different from each other and from those in the

preceding lines. Since each new mark HI gives rise to a set of e

new marks, the number pn 1 of the marks =(= in the F[pn
~\

is a

multiple of e.

Theorem. The period of any mark =)= of the JP[p
w
] is a divisor

of pn
1.

13. Raising u" to the power (p
n

l)/e, we have

.^
w

-i=l, if u 4=0.

We have thus the following generalization of Format's Theorem:

Every mark of the -F[jp
w
] satisfies the equation

We have therefore the following decomposition in the

t =

HI running over the pn marks of the

14. Theorem. - -
// two marks ttL,u2 belong respectively to ex-

ponents e^ which are relatively prime, their product u^ belongs to the

exponent e
L
e
2 and the e e

2
marks

are all distinct.
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If MjWg has the period t, we have

(i^fii)
1* - ^ - 1,

whence t is divisible by <?
2 ; similarly, # is divisible by er But

(*ll)** I-

Hence # == e
1
e
2

.

15. We prove as in algebra the theorem:

-4n equation of degree k belonging to a field has in the field at

most k roots, unless it be an identity, when every mark of the field is

a root.

16. Theorem. - - For every divisor d of s 1, the equation

Xd - 1 =
has in tJie F[s =^n

] exactly d roots.

Setting s 1 = dq, we have the identity

X 1 -l = (Xd -l)(X <|fe- 1>+X<|fe- 8>+... + X"+l).
Since the last factor belongs to the F\s\ and does not vanish

for the mark zero, it vanishes for at most d(q 1) marks of the

field. But the left side of the identity vanishes for s 1 marks of

the field. Hence the factor Xd 1 must vanish for at least d marks.

17. Decompose pn 1 into its prime factors,

lP-l-i$i$...i$.
For each integer i of the series 1, 2, . . .

, k, the equation

has by 16 exactly phA roots belonging to the f [s
= p n

\.
Of

these roots p^""
1 are also roots of the equation

and thus belong to exponents less than p^. The remaining roots

in number

belong to the exponent ph
.i itself. Any product of the form

W = U1U2 ...Uk

will by 14 belong to the exponent pn 1. Forming in every

possible way the product w, we obtain 1

)

1) This number equals 0(p 1), where <t> (*) denotes the number of

integers less than and relatively prime to the positive integer t. See Dirichlet,

Vorlesungen u'ber Zahlentheorie, 11.
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such marks. Each mark w belonging to the exponent s 1 is called

a primitive root of the equation

and also a primitive root of the F[s]. Since the powers w1

,
w2

,
. .

., itf~
1

are all distinct, we may state the theorem:

Ttie pn \ marks =j= of the F[s = jp
n
] are the pn 1 successive

powers of a primitive root of that field.

Corollary. If d be any divisor ofpn
1, the mark w&n~V/ d

belongs
to the exponent d.

18. We may now recognize in our F[s] the abstract form of a

Galois Field of order s pn
. Indeed, by 11, the primitive root w

satisfies an equation of degree ~k < n.

Wk (x)
=

0,

belonging to and irreducible in the JF[jp]. Every mark =(= of

the F[s], being a power of w, can be reduced by the identityWk (w) to the form

where the c's belong to the -F[j>]. The mark zero evidently falls

under this form. Since, inversely, every one of these pk
expressions

is a mark of the F\s\, we must have k = n. Hence every mark of

the F[s =jp
rt

] represents a class of residues moduli^), a prime, andWn (x\
a function with integral coefficients irreducible modulo p. Every
existent field is therefore the abstract form of a Galois Field.

Suppose there could exist a second field F'{j)
ri

] of order equal
to that of F\jp

n
~\.

The field -F[j)
n
] possesses a primitive root w

satisfying an equation Wn (x)
=

0, of degree n, belonging to and

irreducible in the -F[jp]. The function Wn (x) divides xpn x in

the F[p]
1

}.
We may, indeed, apply in the F[p] Euclid's process

for finding the greatest common divisor of these functions. If there

were no common factor, we would ultimately reach as a remainder

a constant, whereas the process may be interpreted in the 6rjP[j?
n
],

in which field the common factor x w exists. Hence Wn and

xpn x have a common factor in the F[p~\. Moreover, Wn is irre-

ducible in that field.

Since F[p] is contained in -F"[j>
w
], the division of xpn x byWn is, a fortiori, possible in the .F'jj/
1

].
It follows from 13 that

i

1) Another proof is given in 23.
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the equation Wn (x)
= completely decomposes in the F'[jp

n
~\. Any

one of its roots w' is a primitive root in the F'|j9
w
]. Indeed, by its

definition, Wn (x) does not divide xe x in the F\jp] for e <pn
. The

powers of w' therefore give all the marks of the F1

[$>
n

'\.
Hence

F[pn
~\
and F1

\j)
n

~\
are abstract forms of the same Galois Field. These

results, first proven by Moore (loc. cit), may be stated as follows:

Theorem. Every existent field of finite order s may be represented

as a Galois Field of order s=pn
. The 6r-F[j}

n
] is defined uniquely

by its order; in particular, it is independent of the special irreducible

congruence used in its construction.

* CHAPTEE tt

PROOF OF THE EXISTENCE OF THE GF[p*] FOR EVERY
PRIME p AND INTEGER m.

19. The next step is to prove the existence, for every prime
number p and positive integer w, of a congruence of degree m irre-

ducible modulo p 7
from which will follow the existence of the GF[pm~\.

We will, however, make a more general investigation, taking as our

basis a fixed GF[pn
~] (in its abstract form), whose existence is supposed

known. We will prove that functions belonging to and irreducible

in the GF\j)*~\ exist for every integer m and will determine their

number. Since the GF[p\, the field of integers taken modulo p, is

known to exist, we shall have proven (taking n = 1) the existence,
for every value of m, of functions belonging to and irreducible in

the GF[p\, i. e., irreducible modulo p.

At the same time, we shall have deduced some important pro-

perties of the GF[p*
m

~\
with respect to the included field, the GF[jp*].

20. Theorem. - -

If two functions F(x) and P(x) belonging to

the G-F[p
n

'\
have in the field no common divisor containing x, we can

determine two functions F'(x) and P\x), belonging to the G-F[p
n

~]

such that F?^ . F(̂ _ p,^ t p^ _ L
The proof is quite analogous to that of 7.

21. Theorem. - -

J/J in the GF\pn
~\, P\x] lias no factor invol-

ving x in common with F(x) but divides the product F(x) F(x), then P(x)
divides E(x) in the G-F^].

Indeed, by multiplying the given equation

E(x) F(x) = P(x)
-

S(x)

by F'(x), determined as in 20, we find

E(x) - P(x)[8(x) -

F'(x)
-

E(x) -

P'(xj].
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22. Theorem. - - A function E(x) belonging to the G-F[j)
n
] can

be decomposed into factors belonging to and irreducible in the GF[pn
~\

in a single way.
For if

E(x)-f1f,...ft -F1F,...Ft ,

where fi(x) and Ft (x) are irreducible, F must by 21 divide one

of the factors /J, and, since the latter are irreducible, be identical

(apart from a factor independent of x) with one of them, say fv

Proceeding similarly with the equality

/2/3 fh
= F2FS . . . Fk ,

we may suppose f%
= F

2 ,
etc. In particular, h = ~k.

23. Theorem. - - Every function F(x) of degree m belonging to

and irreducible in the G-F[p
n

~\
divides

x^m- x.

Upon dividing any function E(x) belonging to the GF\j)
n

~\ by F(x\
we obtain a residue of the form

the a's being marks of the GF[p ri

\.
We denote the pnm distinct

residues of the above form by

5) X, (*- 0,1,...,/
m
-l),

and, in particular, by X$ the residue zero. Consider the products by a

fixed residue Xj=f= -Xo^

6) XjXt (*-0,l,...,i-"-l).

By the theorem of 21, the products 6) are all distinct and different

from X . Hence the residues obtained on dividing them by F(x)
must coincide apart from their order with the residues 5). Forming
the products of the residues not zero in each series,

i [mod
t=i t=i

Since nX,-=|=0, we have by 21,

Taking for X,- the particular residue x
9

the proof of the theorem

follows.

24. Theorem. - -

If f(x) belongs to the G-F[p*], we have, for

every integer t, the following identity in the field:
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Let
f(x)

= c + dx + c.2x2 + - + ckxk
,

where the e's belong to the G-F[p
n
~\,

so that

7) ef-c, (-0,l,...,t).

Raising f(x) to the power |j and noting that the multinomial coeffi-

cients of the product terms (viz., those not p ih
powers) are multiples

of p, we have the algebraic identity ,

We obtain by induction the formula

W*)f - c1+ cfV'+ - + <$'x
tp +p Qs (x).

Applying 7), we obtain in the G-F[p
n

~\
the identity:

Our theorem now follows by a simple induction.

25. Theorem. - - A function F(x) of degree m belonging to and

irreducible in the GF[pn
~\

divides (in the field) the function

only when the integer t is a multiple of m.

Let t = sm -f fj where < r < m. By the theorem of 23,

we have
xp

nt - x =(xP
nsm

)p
nr -x== x?

nr - x [mod F(x)].

Hence, if xpnt x be divisible by F(x) in the 6r-F|j)
n
] ?

we have

8) &"
r=x [mod JP(a?)].

Denote by f(x) any one of the pnm expressions

c 4- CiX -f c2x* 4- + cm -\xm ~^

in which the c's are marks of the G-F[p
n
~\. By 24, we derive

Hence the congruence ,. nr
t?

=
g [mod F(x)]

is satisfied by the^>
wm

expressions f(x), which are distinct modulo F(x),
the latter being an irreducible function of degree m. Since r < m,
it follows from 15 that the congruence must be an identity,

whence r = 0.

26. The number Nmffn of functions F(x) of degree m belonging
to and irreducible in the GrF[p"] may now be readily determined.

For brevity, such an irreducible quantic will be designated an
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It is to be understood throughout the investigation that all our

operations upon quantics are performed in the GF[pn
\ We may

therefore state the results of 23 and 25 as follows:

An IQlwiup*] is a divisor of xpnr>l x if, and only if, m
l

be a

divisor of m.

It follows that an irreducible factor of xpnnt x will be of degree m
if, and only if, it is a factor of none of the functions

9) xpnmi x (m^ < w, % a divisor of m).

After showing that the irreducible factors of any such function are

all distinct, it will follow that, if we divide xpnm x by the product
of all the distinct irreducible factors of the expressions 9), we obtain

a quotient Vm>pn which equals the product of all the IQ[m,p
n
].

For example, if m be prime, the irreducible factors of xpnm x
are of degree m or 1. By 13, the product of the distinct linear

factors is xpn x. Hence, if m be prime,

_XP
nm-X N _ pnm-pn

Vm' p m>p
~~

We next prove that the irreducible factors of xP
nm

x are all

distinct. If such a factor be of degree m, it can be used to define

the GF[pnmY)- In this field the equation

xp
nm- x =

has pnm distinct roots; viz., the marks of the field. Hence no factor

can be a multiple factor in this field and therefore not in the in-

cluded field the GF[pn
].

If an irreducible factor f be of degree m^< m,
it cannot be a multiple factor. Indeed, m^ must be a divisor of m,

and /' must divide xpnmi x in the GF\j>
n

~\. By the former case,

/' is a simple factor of the expression just given. It remains to prove
that f cannot divide the quotient

It suffices to show that Q and xpn 1 x have no common factor in

the GF[pn
~\. Setting

t /yp
wm'_L 1 v pnm I

y r__ x* i, r= mnm,_^ 9

it suffices to prove that y 1 and

have no common factor. The condition for a common divisor is

that r be the mark zero in the field. But r = 1 (mod p).

1) See 28.

DlCKSON, Linear Groups. 2



18 CHAPTER II. PROOF OF THE EXISTENCE OF THE GF[p^ etc.

27. Continuing the investigation, let

m = q^q^ . . . q
r

s
*

,

i> #2, . - ., qs being the distinct prime factors of m. For brevity,

we use the symbol .. -, __ pnt__

We proceed to prove the formula, due to Dedekind for n = 1,

In this expression, the term

in which the product extends over the C8,k combinations
q,^,

. .
., qjk

of the integers qi, . .
., qs taken ~k together, occurs in the numerator

or in the denominator according as / is even or odd. Each IQ[m,p
n
~]

occurs once as a factor in 77 = [m] but divides no other T7&; it is

therefore a simple factor of the fraction. If there be any factor of

the fraction having the degree ml < m, we denote it by F(x). By
25, m must be a divisor of m. Denote by qif q% }

. .
., qSl

the prime
factors entering in m to a higher power than in m . Then m

1
divides

- but not L
(j = Si 4- 1, Si -f 2, . . ., 5). It follows that,

gi 22... 2*,. 2;

if ~k > Si, J7& does not contain .F(#) of degree m^ while, for k < s,
IIk contains F(x) as often as ~k integers can be selected from qlf q2, . .

., q,j

viz., G
Sl .it times. Hencne F(x) occurs in the numerator and denomi-

nator of our fraction to the respective degrees,

These numbers are equal, since their difference equals (1 l)-
9i =

It follows that every irreducible factor of our expression is an IQ
The number of the latter multiplied by the degree m of must equal
the degree of the fraction, so that

This number cannot be zero; for, upon dividing by the last

term, which is the lowest power of p entering into the expression,
we would then obtain unity expressed as the algebraic sum of a

series of powers of the prime number p with exponents > 1. It

follows that the number of J[w,^w
] is 5> 1- [See Ex. 2 below].

28. Let F(x) be an IQ[m,p~\. As in 6, the totality of rational

functions of x belonging to the GF[p n
~\

can be separated into pnm
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distinct classes of residues modulo F(x), each being represented by
one of the pnm residues

a 4- a\x + a-2%
2
H-----h flm-i^" 1

(Xs in th

Proceeding as in 6
;
we find that these classes of residues form

the 6rF|jj
w
"'].

We can therefore construct the GF[p
r
"}

in as many
ways as we can express r as the product of two positive integers n, m,

viz., by using an IQ[m,p*]. From the theorem at the beginning of

26 it follows that the GF[pnm^ is contained in the G-F[^
nm

] if,

and only if, mL
divides m.

EXERCISES.

Ex. 1. Granting the existence of the G-F[p
n
], the existence of

the G-F[p
n
f\, q being prime, follows by 26. By induction, the GF[pr

]

exists for r arbitrary.

Ex. 2. Obtain for the number of IQ[m,p
n
] given in 27 the

following limits:

pnm pn = == $ (m) pnm pn

Hint: Expand each power of pn into a series in log p n and apply

Ex. 3. By decomposing modulo 2 the expression (#
2

x)/(x
2

#),

obtain the three IQ [4, 2] given in the left members below. Defining the

6r.F[2
2
] by means of the irreducible congruence

*
2 -H-j-1^0 (mod 2),

obtain the six /$[2, 2 2
] by means of the following decompositions:

x* -f x -f 1 = (x* + oo + i) (x
2 + x 4- ^

2

),

CHAPTER HI.

CLASSIFICATION AND DETERMINATION OF IRREDUCIBLE

QUANTICS.

29. Definition. - - An J(?[%J>*k as F(x), is said to belong to an

exponent e if e be the least positive integer for which F(x) divides

x* 1 in the GF[pn
~\. [Compare 32.]
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TJw exponent e to which F(x) belongs must divide pnm 1.

For, if
pnm._ ! _ u + r

^

where < r < e, then F(x), dividing tf 1, must divide xke 1

and,, by 23
,
also #*+ r

1. It must therefore divide their difference,

xke (x
r -l\

Hence must r be zero.

Furthermore, e must not divide pnt
1, for t < m\ for, if so,

x j 1 and hence also -F(^) would divide x f)Ht -
x, so that the degree

of F(x) would be a divisor of t.

An integer which divides am 1 but not a* 1, t < m, is said

to be a proper divisor of am 1. We may state the result:

The exponent to which an IQ\m, p n
~\ belongs is a proper divisor

of (p
n
y
n- 1.

30. Theorem. - - The number N pn of IQ[m, pn
~]

which belong

to an exponent e, a proper divisor of(p
n
)
m

1, i-s (e)/m.

Let q_i, q-2,
. . ., qs be the distinct prime factors of e. Proceed-

ing as in 26, we rid x6 1 of those of its factors which are irre-

ducible in the GF[p n
~]
and belong to an exponent < e. We obtain

the expression / e

0-i) n \x ^/

n\x qi -i) n\x
which is therefore the product of the irreducible factors of x 1

belonging to the exponent e. Each of them is an irreducible factor of

and hence of degree m or a divisor of m. Since each belongs to an

exponent which is a proper divisor of (p
n
)
m

1, the degree must
be m.

The degree of the above function is clearly

? V e
_L V e V e

i. c ^Y e
K ^ ~t~ ^ ^ t- -j 1 J_ )

""
,.,.,,. _().

31. Theorem. - -
J/' J^(a;) a^r? g) (a;) belong to and are irreducible

in the G-F[p
n

~\
and are of the respective degrees m and t, a divisor

of m, the roots of the congruence

10) 9>(X):-0 / [modF(x)]
are x1; xf, xfV..,^/^-

1

),

if XL be one root of 10) necessarily belonging to the G-F[p
nm

~\.
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By 24 we have in the 6rF[j)
TC

] the identity

Hence, if X
1
be a root of 10), so is every X^

nr
. Since <p(X) is an

IQ\t> Pn
~\>

we liave ( 23
)

in tne -*T>
w
]>

Xf
'- X

t
EE 9 (X,)

. * (X,)
= [mod F(*)].

Hence, m being a multiple of t,

XPnm= X, [mod FO)J-

We next prove that the above t powers of X
1

are distinct modulo

F(X). Indeed, if

[mod F(a;)]

for ft < b < ,
we would have, upon raising it to the power pn <m a

\

Xf
m
EE X

t
EE Xf

(m + 6 - a)

[mod .F(a;)],

so that, by 25, m + ft a would be divisible by m. Hence b = a.

Corollary.
- - We have in the GrF[p

nm
~\
the decomposition

<p (X) = (X- X,) (X- Xf) . . . (X- Xf
-

1)

).

In particular, F(x) = has in the G-F[p
nm

~\
the distinct roots

x
9 x^...,xP

n(m ~ 1
\

32. Theorem. If F(x) le an IQ[m, pn
~\ belonging to the

exponent e, every root of F(x) = in the G-F[p
nm

'] belongs to the

exponent e, and inversely.

We may define the G-F[p
nm

'\ by means of F(x). In it, all the

roots of F(x) = satisfy the equation xe
~L = 0, but do not all

satisfy a?/ 1 == for f < e. But, pn
being relatively prime to e, a

divisor of pnm 1, it follows from the corollary of 31 that the

roots of F(x) = in the GrF\j>
nm

~]
all belong te the same exponent.

This common exponent is therefore e.

In particular, for e =pn 1
9
the roots of F(x) = are primitive

roots in the GF[pnm~].
Such a quantic F(x) will be called a primitive

irreducible quantic of degree m in the 6r-F[p
n
] and will be referred

to as a PIQ [m, pn
'\,

33. Theorem. If e be a prime number, the function

is irreducible with respect to every prime modulus p which is a primi-
tive root of e.

By hypothesis, p belongs to the exponent e 1 modulo e, so

that e is a proper divisor of p*
1

1. Hence, by 30 for n = 1,

m = e 1, the number of irreducible factors of V is - - = 1.
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Note. Ifa be a primitive root of e, then a -h fce(&
=

0, 1, 2, . .
.)

are also primitive roots of e. By the theorem of Dirichlet, this

arithmetical progression contains an infinity of prime numbers. With

respect to any such prime p, V is irreducible modulo p. A fortiori,

F is algebraically irreducible.

Determination of IQ[m,p
n
] whose degree m contains no prime

factors other than those of pn
1, 3438.

34. Theorem. -- Let Fi(x),F*(x), . . .,
FN (x) denote the IQ\m,p

n
'\

which "belong to an exponent

e = (p
nm -

l)/d,

and let I ~be an integer relatively prime to d and containing no prime

factors other than those occurring in pnm 1. With the exception of

the case in which I is a multiple of 4 while p""
1

is of the form 41 1,

all of the IQ[lm} pn
1 which belong to the exponent el are given by

the N quantics Fi(af), . .
.,
FN(x

l

\
By definition, I contains no prime factor other than those

occurring in e. Hence el and e contain exactly the same prime
factors, so that .... ...

< <

By 30, we have
el

If we suppose satisfied the conditions (obtained below) under which el

shall be a proper divisor of
(_p

n
)
TO * 1

?
we will have

Since e divides pnm I, the irreducible factors of xe 1 are of degree

< m ( 25). Hence, in the notation of the theorem,

xe- 1 = Fi(x)F*(x) . . . FN(x) Q(x)

where the irreducible factors of Q(x) either belong to an exponent
< e or else are of degree < m. Therefore

where every irreducible factor of Q(x?) is of degree < Im or else

belongs to an exponent < el. Since there are exactly N irreducible

factors of degree ml which belong to the exponent el, they must
be identical with Fi(x*), . .

.,
FN(x^).

Calling v the least integer such that pnv 1 is divisible by el,
we seek the conditions under which v = ml. Since m is by hypo-
thesis the least integer for which pnm 1 is divisible by e, v must
be a multiple of m. For, if v = qm -f- r, 0<Jr<m ?

then e divides

^ &n(J pnmq_ ^ and tence also their difference ^mq(nr_
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which requires r = 0. Having v = qm, we inquire under what con-

ditions does q = A? Since

^x pnv 1 __ d pnmg1
ei

" T
'

~^r=ir'

it follows that A divides (p
nm<i- l)/(p_ 1). Raising to the power q

the identity pnm= 1 + (p
nw -

1), we find

Let be a prime factor of A and a the highest power of con-

tained in A. Since 6 divides pnm 1 and the left member of 12), it

must divide q. Further, if > 2, Qa divides q. Indeed, the ratio of

the &tb term of 12) to the first term q can be written

of which the first two factors are integers, while the third factor

{i -He- !)}
- _

k

is > 1 if k ^ 2. Hence the irreducible fraction equal to 6k
~ l

/1c has

the factor in its numerator. Hence the terms of 12) beginning
with the second contain to a higher power than the first term q.

Since a divides A, which divides the left member of 12), it follows

that a divides the first term q on the right. Hence, if A be odd

or the double of an odd number, q is divisible by A. Inversely, if q
be divisible by A, A being odd or the double of an odd number, the

above argument shows that the right member of 12) will contain

the factor A and therefore that the left member of 11) will be an

integer. In order that v be the least integer for which this can

happen, we must have q = A.

If A be a multiple of 4, p
nni 1 is even by hypothesis. Then

= 2 will be a factor of q as before. The ratio of the second term

of 12) to the first term will be divisible by 2 if, and only if, pnm 1

be a multiple of 4; the ratio of the &th term to the first will, for k ^ 3,

contain the factor 2. Hence, if pnm be of the form 41 + 1, we can

conclude that q = A. [The case pnm= 4Z 1 leads to the entirely
different theorem of 36.]

35. Let ^ be a primitive root in the GF[pn
].

The function x Q*

belongs to the exponent (p
n

l)/d where d is the greatest common
divisor of t and p n

1. Applying the theorem 34 for m = 1, we
have the result:

If A ~be any integer containing no prime factor not occurring
in pn \ and if t ~be an integer prime to A, the 7[A, pn

~\ belonging
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to the exponent k(p
n

l}/d, d being the greatest common divisor oft
and pn

1, are the binomials x1
Q*, the case pn =4:l l, A= 4^

being excluded.

Inversely, we obtain by this theorem every binomial irreducible in

the GF[pn
]. In the first place, I and t must have no factor in

common, since otherwise xl
tf would he algebraically reducible.

On the other hand, if A contains a prime factor 0, not a factor of p
n

1,

we can determine ( 7, Note) an integer Ov such that

Since
(>

ae =p, it follows that Q
e**= a is a root of

x<> ^= 0.

Hence x a is a factor of x9 Q', so that x^ e K divides #' Q*.

Example. For jp
n=s

l, we may take $ = 5. Then for A = 2

and t= 1, 3, 5, we obtain the irreducible binomials x2
5, a?

2
-h 1,

#2 3 belonging to the exponents 12, 4, 12 respectively. For I = 3

and =
1, 2, 4, 5 respectively, we obtain the binomials

t// -/ * ^(y TL . JO * 00 O

irreducible modulo 7 and belonging to the respective exponents 18,

9, 9, 18.

36. Theorem. - - Let p
n=2 {

t l, i^>2, t odd-, I = 2>'s, j > 2
7

s odd, let Jc be the smaller of the integers i and j] finally, let m be

odd. Then if, in the N quantics IQ[m, pn
~\ belonging to the exponent

e = (p
nm

l)/d,

we replace x by x 1
,
where I == 2->s is prime to d and contains no prime

factors other than those occurring in pn<m
1, we obtain N quantics

of degree m I each decomposing into 2k ~ 1

quantics irreducible in the

GF[pn
~\,

so that we obtain all of the 2k lN quantics

belonging to the exponent el.

If v denote the least integer such that pnv 1 is divisible by el,
we find as in 34 that v = qm. In the present case, q is even; for,

if q be odd, v would be odd and pnv 1 the double of an odd

number, whereas I is divisible by 4. By the restrictions on pn

and m,

13) #= 2 l r - 1 (r odd).

Raising this identity to the power g, we find
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The ratio of the Z
th term within the parenthesis to the first term is

where the first and second factors are integers, while the third

factor, being > 1 for I >i 2, equals an irreducible fraction with an

even numerator. Hence the first term contains 2 to a lower power
than the remaining terms in the above parenthesis. In order that

pnv_ i snall be divisible by eA, formula 11) requires that I shall

divide the left member of 14). Hence 2j must divide the first term

of the right member and consequently also 2 L ~ l
q. Hence the even

integer q must contain 2 to the power 1 or j i -f- 1 according
as j <! * or j > * Furthermore, by 34, q must contain every odd

factor of A. Hence, if v be the least possible integer,

according as j <; i or j > ?',
i. e., according as & = j or fc = i. Hence

I ml
2--W=T> "=^^T'

As at the beginning of 34, we have

m -

so that the number of /$[?', jp'
8

] belonging to the exponent eA

is 2^- 1
JV.

By hypothesis,

- 1
-
F^F^as) . . . Fa(x)'Q(x\

where the irreducible factors of Q(x) in the GF[p n
~\ belong to

exponents < e or are of degree < m. The irreducible factors of

are therefore of degree < 'km or else belong to exponents
Hence the irreducible factors of degree km of the expression

must, if they belong to the exponent eA, be factors of Fi(xF), . .
.,

Since the combined degree of the latter is Nmk = 2k ~ l
vN, and

since there are exactly 2k ~ 1N irreducible quantics of degree v

belonging to the exponent el, it follows that each Fi(x
l
~)

is the product
of 2k ~ l irreducible quantics of degree v.

Corollary.
- - Since the distinct functions of degree m = 1 which

belong to the exponent e = (p
n

!)/(? are given by the formula

X Q
ad

,

Q being a fixed primitive root in the GrF^j}"-] and a being any integer

prime to e, it follows that xl
Q
ad

decomposes in the GF\jp
n

~\
into

2* i irreducible factors of degree A/2*" 1

belonging to the exponent
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eA, provided pn and I are subject to the conditions given in the

main theorem.

37. Since irreducible binomials are lacking in the case treated

in the last section, we proceed to set up trinomial IQ[k,p
n
~],

It is,

however, not necessary to suppose that A is a multiple of 4. We
suppose merely that

p*= 2 l
t - 1 (t odd, i 5 2)

and that A is an even integer containing no prime factor not occurring

in^-1. Set
t, = 2>--%

so that v is divisible by 2*. If p be a primitive root in the G-F[p
n

~\

and if s be any integer prime to A and hence also to v, then x Q*

belongs to the exponent (p
n

!)/<?, where d is the greatest common
divisor of s and pn

1, and v is prime to d. Hence
( 36), the

binomial xv
Q

S
decomposes into 2 l ~ l irreducible quantics of degree A.

We proceed to determine them.

Since 2 t'~~ 1 and (p
n

l)/2 are relatively prime, we can determine

( 7, Note) two integers 1
L
and 7^

1
such that

Multiplying this equation by the even integer s -f (p
n

1)/2, we
obtain two integers I and Ji for which

Z2'~ h(p
n-

1)
= s -f (p

n-
l)/2.

Since the (p
n

I)/ 2 power of the primitive root $ is 1, we

aju_^ = aai-i+^
J% ^e G-F[p

n
~\
we have flie decomposition

15) <**-'*+ f*

where the |; are marks of the GF[pn
] determined as the roots of the

equation ._

a

In fact, by Waring's formula 1

), the sum of the (2
t'~ 1

)
st

powers
of the roots u and ^ of the quadratic

X 2-^X-1 =

is found to be E(%). Expressed otherwise, if % = u , then

1) Serret, Cours d'Algebre Supdrieure, I, p. 449.



CLASSIFICATION AND DETERMINATION, etc. 27

Hence, if |/
=

Uj is a root of E(%) = 0, we have

Then, since pn+ 1 = 2% t odd, we have

^+1+ i=o; uf
-

1/u..

Applying 24, we have modulo p,

so that every root 1

) of E(%) = belongs to the GrF[p
n

~\.
Hence

Substituting in this identity

Q* U Q* (JCA/2

and clearing the equation of fractions, we obtain formula 15).

38. As a simple example, let pn= 1 23
1, I 4. The

binomials
#16- 5s

(s
=

1, 3, 5)

can be readily decomposed into irreducible quartics. The congruence

(i)
= r+4|2+2 = (mod 7)

has the roots 1 and + 3. Further

^i6_ 5, = ^ie+ 5, + 8== ^i6+ 52^ (s + 3 = 22 = 4, 6, 8).

Since S'-^^S2 '

(mod 7), equation 15) becomes

-& 1

(mod 7),

holding for Z = 4, 2, 3. Taking each in turn, we have modulo 7:

X + 4 == (^_ ^2 _ 4) ^4+ ^2 _ 4) ^4_ 2^2_ 4) ^4_|_ 2a;2_ 4^

^i6_j_ 2 = (^_ 2^2_ 2) (0*+ 2ic
2-

2) (a;
4- 4z2-

2) (^+ 4ic
2-

2),

1) For another proof see Serret, Cours d'Algebre sup<rieure, II, pp. 160 3.

Compare 82 below.
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Determination and classification^ of the IQ[jP>p*]j 39 46.

39. Consider for positive integers p the auxiliary quantics

16) Xu

where C^ k denotes the number of combinations of p things k at a

time. Since Cpr^ k is a multiple of p, if < & < pr
y
we have

17) Xpr=xP
npr-x (mod p).

Hence
, by 26

7
the product of all the /<?[#*,#"] is given by

18) Vps, p
n=

We derive a simple expression for the quotient 18) as follows.

From

we deduce at once the congruence

19) X^EEXf-X, (modi.).

Multiplying together the congruences (for i = 1, 2, . .
., v)

X. + ,
= X*+ ,.

_ ,- X. + , _ ! (mod i,),

and dividing the resulting formula by the product

XU _j_ 1XU _j_ 2 XM ^- y _ 1 ,

we find
u -j- f 1

20) Xu + v = Xu fJ(Xf~i-l) (modp).

Taking w =p-i, w _j_ v=^ we fin(j from jg^ an(i 20) the result

21) rp,r

Further, if vlf v^ 7
. .

., vpn_^ denote the marks 4= of the GF[pn
],

we have

Since Xf i/
7

- is of degree pni in a?, it must decompose in the

into pni ~ s factors each an IQ\jf,p*].

1) For the case n 1, Serret, Jownal de Mathematiques , 1873, p. 301;
Algebre, II, ch. IV. For general w, Dickson, Bw?Z. J.wer. Ma^. ^oc., 1897
pp. 384 - 389.
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40. For s = 1, there are p 1 factors in the product 21), given

by i = l, 2, . .
, p 1. The irreducible factors of Xf~ l-l are

then said to form together the ^
th class of IQ[p, p"]. Consider first

which is the product of p
n ~ l

IQ[p,p
n
] of the first class. To

decompose it, consider the equation

It follows at once that

cp c EE ip
n

i] (mod p).

Hence every root r
f
of 22) belongs to the GF[p n

~\ if, and only if,

c be an integer. Setting in 22)

where A belongs to the GF[pn
~\,

we find

A (x*
n

x v) EE (mod p).

We have therefore in the G-F[p
n

~\
the decomposition

1
)

p*- 1

23) A (xP
n- x-v)~ II (tfxv Kx - ft),

where the /3, are the roots of

A or i/ being determined so that hv is an integer. We have therefore

the theorem: The quantic Wxp Kx $ is an IQ[p, p*] if, and

only if, B= (F-
l

+F>'-
>+ ... + p+p+Q.

Corollary.
- - If 1} is an integer not divisible by the prime p,

xp x b is irreducible in the GrF[p
n
~\ if, and only if, n is not

divisible by p; in particular, it is always irreducible modulo p.

In fact, the condition becomes in this case

B = nb E|E (mod p).

41. The decomposition 23) may be given a more explicit form

useful below. If
/3

be one root of 24), then is also

25) ft EE aP- a -f p,

for every mark a in the GF[p rt

~\. Indeed, we have

P
~ l + +# + &= ""- a + pe"-

1 + + PP + p = Iv.

1) For the case v =
,

this decomposition was given without proof by
Mathieu, Journal de Maihematiques , (2) vol.6, 1861, p. 280.
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Further, the formula 25) furnishes all the roots of 24). For, if

a* a + /J 5 OJL+/J,

(a
_

ffl)P= (
_

aj) [modp],

so that a = i + an integer. Hence there are p
n
/p = p

71 ~" 1 distinct

expressions ap a and hence as many roots
ft. Hence

23,) (^)^_ A^_(^-
1+ ...+ ^-f /3)^/7[(;^-,) p- (Aa-a*)-/3!

the product extending over pn ~ 1 marks f of the 6rjF[j?
n
] no two

of which differ by an integer.

42. Consider an irreducible factor xp x /3
of # pw a? 1,

where therefore

Denote by / one root of the equation

a* re
/3
= 0.

Its remaining roots are I -\- 1, /-]- 2, . .
.,
/ + p 1.

Then by 23
X ) every root of every /[j), ^ ra

] of the first class

is a linear function of I, viz.
;
A a? *= I + i, i = integer:

26) x = (/+ * + 0/A,

the coefficients I/A and (* 4- f-)/A being marks of the 6rjP[^
n
].

Inversely, every such linear function containing I is the root of

an lQ[p, pl

43. Consider an IQ[p, p
n
~\

of class
^t.

Its roots belong to the

GF[_p
n
P] and are therefore functions of I of the form

where the aj belong to the QF[pn
]. By 39, f(I) will be a root of

27) 2^-tf,
if be suitable chosen in the GrF[p*~\. But, by 42,

Hence, by 24, we have for any integer m,

\_f(I)Y
m
=f(I^

m
-)=f(I+m).

Substituting f(I~) in equation 27), X^ being given by 16), we find

The degree of this equation in J being less than p, it must be an

identity. But its first member is the ^
th difference of the polynomial

f(I) with respect to the constant difference unity attributed to I.
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Since it reduces to the constant 6 =j= 0, the degree of /"(/) is

exactly ft

1

).
Hence

We have therefore proved that the roots of every IQ\]p,p
n
] of class

ft

are integral functions of I of degree ft.

44. We can readily obtain a formula including all

In the above expression f(I) 9
let the

ct,
be arbitrary such, however,

that f(I) does not reduce to . To set up the equation of which

f(P) is a root, consider the p equations

PUW-Q-Q (i- 0,1,...,1-i}

Reducing the exponents of I below p by using the identity

we obtain the series of equations

2J2 + ----h Op-1/'-
1^ 0,

-
g 4- ,-!)!+ i/

2
-f r Hh ^- 2^- 1 =

0,

Eliminating J, J1
,

. .
.,
J^" 1 from these ^9 equations, we reach the

required irreducible quantic

Setting a
/u _|_i= a/,_|_2=

= ccp i== and giving to a
, i,

. .
., a/ui

all possible values in the GF[pn
] and to a^ every value =f= 0, we

obtain pn
t'(j)

n
1) irreducible quantics of class

ft.
Since f(I-\~m)

leads to the same determinant as /"(/), if w be an integer, the number
of distinct IQ[p,p

n
~\

of class
ft

is pwifjp* 1), a result also follow-

ing from 39.

For
ft
=

1, we find that

so that we may derive a new proof of formula SSj).

1) Boole, Calculus of Finite Differences, p. 5 and p. 19, formula 3).
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An interesting type of IQ\J>,p
n

'\
of class p 1 is given by

setting every /= except and ap_i; viz.,

Multiplying this by ffo P i and setting F(g) = 0, we find

that p is a linear fractional function of . But, by 31, the roots

of jF() = may be expressed in the form

fc fcp
w

fcp2 fcp(P 1)

S> 5 > 5 ? ? 5

Hence its roots are all linear fractional functions of one of them.

This result also follows from the fact that

so that each root is a linear fractional function of /.

45. Formula 19) expresses the fact that Xu becomes X^+i when x

is changed into xpH x. Further, if we set X =#, 19) holds true

for ^ = 0; viz., .

^LI EE XQ XQ.

Hence in order to change x into xpn x in any formula involving
the Xfi 9

we have merely to advance the subscripts of each X^ by
unity. Applying this operation to formula 21), we have the theorem:

If F(x), an IQ[p*,p
n
], divides Xf"""

1

1 for i<p*- 1, then

F(xpn x) decomposes into pn
IQ[p", p

n
~\,

each one being a factor of

Xf+1
1-

1; lut if F(x) divides xl| -
1, then F(x*

n

-x) decomposes

into pn~ l

factors each an IQ[p'+
l

, p
n
] which divides Xp"~ 1.

46. As an example under the second part of the last theorem,
consider the IQ[p, pn

~\
of class p 1 given at the end of 44.

From it we obtain the IQ[p
2
, p

n
~\,

)EE(^-^-o-^-l^
where or

, Op i, /3
are arbitrary marks of the GrF[p

n
~\
such that

For an IQ\j)*,p\ see Serret, C&urs d'Algebre superieure, II, p. 209.

Miscellaneous theorems on irreducible quantics, 47 49.

47. Theorem. An IQ[m,pd
~]

is irreducible in the G-F[p
nd

] if n
be prime to m.
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The given quantic being F(x), the roots of F(x) = are

all belonging to the GF[$dm'\.
If F(x) be reducible in the GF[pd

*],

the root x will satisfy an IQ[t,p*
n
], t<m, of the form

(IT sAfjT 'rP
dn}('Y /rP

2dn
} (~X ^pdn (t

~1 ^\ A
^^v

r

jjj\^\. Jj )\-^- *' / v**- * /
=== ^

Its constant term must be a mark of the GF[pdn
~],

so that

in virtue of the single relation F(x) = 0. But this requires that tn

shall be a multiple of m, and therefore that t be a multiple of m,
in contradiction with t < w. In fact, by 23, _F(#) divides in the

the function xpkd - x if, and only if, h be a multiple of m.

48. Theorem. 1

)
- - An IQ^p**] decomposes in the GF[pnv] into

d factors each an IQ Hp pnv ,
d &em^ ^e greatest common divisor

of p and v.

The given quantic being F(x), the roots of F(x) = in the

GF[pn
] are

x, x*
n
,

xP
2n

, ..., xPn(
-

l) [xf=x].

They may be separated into d sets each of ji/d roots,

x"
ni

, x^s +
'\ x*^ i + i

\ . . ., *" [(*-')' + ']

for i = 0, 1, . .
,
d 1. A symmetric function of the roots in one

set is unaltered upon being raised to the power pnd and therefore

belongs to the GF[pnd
~\.

The roots of the general set therefore

satisfy an equation

JFi(X)
= (X- **0 (X- x'"V + ).

- =
0,

with coefficients belonging to the GF[pnd
~\

and a fortiori to the

If

then

We next prove that the F{(X) are irreducible in the GF\_p
n

Suppose, on the contrary, that in the latter field,

Then .

Ft (X) = f,(X) 9>,

1) For the case n = 1, this theorem and the corollary of 49 were stated

without proof by Pellet, Comptes Eendus, vol. 70 (1870), pp. 328 330.

DlCKSON, Linear Groups. 3
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the coefficients of /v_j_i(X) being the power p
n of the corresponding

ones of //(X), those of fa being the power p
n of those of /y_i. The

coefficients of the product fofi .. .fs\ are consequently unchanged
when we replace the coefficients of f by their (p

n
)
ih

powers and are

therefore unaltered upon being raised to the power p'\ Hence that

product belongs to the GF[jp
n
~\,

so that F(x) would be reducible in

that field, contrary to hypothesis.

Since the degree ft/d of JR(X), an IQ[pfi,p
nd

], is relatively

prime to v/8, F{(X) is irreducible in the GF[p*
v
] by 47.

49. Theorem. //' F() be an IQ[m,p
n

~\
in which the coefficient

a Qj |/n
1 ^ swfo faofi fa ffe GF[pn]

a _|_ a,p-\- ap
~-\ -f- apU

~~ 1

=)= 0,

then F(&- 5) is an IQ[mp,p
n
l

If x be one root of JP(|)
=

0, its roots are

By the hypothesis concerning the coefficient

a = - x xP
n - rpn(m

~
1]

tX/ <AJ ii>
j

we have

/yj _j_ wPJL. /Y*P _j_ . . . I ^P^
m

I f\

Hence, by 40,
p

g x is irreducible in the GF[pnnt
~\.

The
same holds for each of the quantics

X, = f- |
- *"' (*

= 0,1,..., m- 1).

Consider the function belonging to the GF[p*\ 9

By 22, it has in the GF[$nm
~\
no irreducible' factors other than

the X{. Hence if F(%P |) have a factor /"() belonging to and
irreducible in the GF[pn

~\, /"(I) must be in the 6rjP[>
wm

] a product
of the X,-,

an identity in virtue of
JP(rc)

= 0. Replacing # by ^^
n
, another root

of F(x) = 0, and therefore X> by Xf+1 (* < m) and Xw by X ,
we

obtain from the above identity,

/"(I) =Xr .|_i

Hence /'(|) contains every factor X,- and therefore coincides with

I)- The latter function is therefore irreducible in the
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Corollary.
-

//' F(g) be an IQ[m,p] in which the coefficient

of
m ~- x is not zero, F(lv

) is an IQ\mp, p],

Examples.
- - The following congruences are irreducible:

(x
2-

x)
2+ (x

2-
x) + 1 = x*+ x + 1 = (mod 2),

8-
a?)
- 1 = x*+ x*+ #3

4- x-- x - I = (mod 3).

Primitive roots and primitive irreducible quantics, 50 58.

50. Theorem. -

If E be a primitive root of the GrF[p
nm

] and
m a divisor of m t any IQ\_mlf p

n
~\ belonging to an exponent e may be

exhibited as a prodtict

28)

wliere t is a multiple of d = (p
nm

l)/e such that -y -is prime to e.

Inversely) if e be a proper divisor of (p
n
)
m

* 1 and t be a multiple of d

and -j- be prime to e, the above product gives an IQ\m^ p
n

~\ belonging

to the exponent e.

Suppose first that cp(X) is an /$[%, p
n

~] belonging to the

exponent e, where m
l

is a divisor of m. By 23, <p(X) divides

Xrnm-X in the GF[^\ 9
so that any root X

l
of <p(X) = belongs

to the GF[pnm]. We may therefore set X^ R*. Then, by 31, we
have the decomposition 28). Since (f(X) belongs to the exponent e,

X^jR' must belong to the exponent e ( 32). Hence t must be a

multiple of d = (p
nm

l)/e and -r be prime to e.

To establish the inverse, we first prove that E t

belongs to the

exponent e. Since et is assumed to be a multiple of pnm !
9
we

have E et= 1. If R'J= 1, tj is divisible by p
nm~ 1. Set t = dd', so

that d' is prime to e. Then must

jd''(p
nm

l)/e = (mod p 1).

Hence must jd' 9
and therefore, j be divisible by e. Hence

all belong to the exponent e. Upon raising these marks to the

power p
n
, they are merely permuted. Hence any symmetric function

of them, and consequently (p(X) defined by 28), belongs to the GrF[p*\.

Furthermore, qp(X) is irreducible in the &JJ\jp
f
\\ for, if <p

l

(X} be

an irreducible factor of degree m1^!, it belongs to the exponent e.

Then by 29, e would be a proper divisor of (p
n
)
ml

1, so that

ml= m^
3*



36 CHAPTER IE.

Corollary. Every PIQ[m, pn
] is given by the formula

Ft (x)
= (x- E 1

} (x
- E (pn

) . . . (x
- R'pn(m-\

where t is an integer relatively prime to p
nm 1.

Evidently Ft=Ftp
n=Fip

2 n= . . -

51. The determination of a primitive root in the GF[pnm~\
is

one of the most important as well as most difficult problems in the

theory. Special methods of procedure are illustrated in 54 57.

We may determine simultaneously all the PIQ\m, p
n

~\
and therefore

all the primitive roots of the GF[pnm
~\ by the following method of

undetermined coefficients.

The roots ofFt (x)
= are the t

ih
powers of the roots of F

l (x)
= 0.

Hence the equations

are equivalent in the GrF[p
nm

~\.
Since t is prime to pnm 1, we may

determine t' by the congruence

tt'= l (modp
nm

1).

Hence F \x
'

) = and F
1 (#*')

= are equivalent equations in virtue

of xP
nm= x. By 30, the product of all the PIQ[m, pn

] is given
thus: nm_ l

n
.

^} =

where q^, q2 ,
. . . denote the distinct prime factors of pnm 1.

are equivalent if t and t' each run through the integers less than and

relatively prime to pnm 1, which give distinct functions F(x).

Giving Fl (x) the undetermined form

F^(x)
= x m+ axm~ l + ~bxm ~* H---- ,

and forming the product of the <$>(p
nm

1) distinct quantics F
the result may be identified with the above fractional expression in x,

giving a series of conditions for the coefficients a, b, . . . The

examples which follow will serve to make clear the method.

52. For pn =
3, m = 2, we have pnm 1 = 23

. The integers less

than and prime to 2 3 are 1, 3, 5, 7. But
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Hence

Since 5-5 = 1 (mod 23
), JF5(#)

= and F^af) = are equivalent in

the GF&. Let
-iz = x ax .

If a? be a primitive root in the 6rjF[3
2
], #8=

1, #*= 1. Hence

FaF = #10 a#5+ & = x2- ax + 6.

Hence

giving
a' =26, &

2 = 1 (mod 3).

Hence 6 = -
1, o = 1 (mod 3), so that the two PIQ[2, 3]

are a:
2

a? 1.

53. For j)
w=

5, m = 2, we have

1) a;
12

-!- 1- - ^ - ** L

The eight integers t less than and prime to 24 are

1, 5; 7, 11 = 5-7; 13, 17 = 5-13; 19, 23 = 5-19 (mod 24).

Each pair of integers furnishes a single Ft (x). For each of the

eight values of x
y
we have r

2= 1 (mod 24). Hence Ft (x)
= is

identical with F^tf*)
= in the (jr-F[5*], For a primitive root x, we

have #12= 1. We have therefore in the field,

F^x)
= x*+ ax + 6, j; (a;

18
)
= #2- a^ + ft,

a;
8

^(a
11

)
= bx*- ax -f 1, o;

2^^23
)
= 6^2

-f aa; + 1.

The product of these four quadratics is therefore identical modulo 5

with
V(a*- x*+ 1).

It follows that 52= 1 (mod 5) and, by subsequent expansion,

2a2=6 (mod 5).

Hence the four PIQ[2, 5] are x2+ ax + 2a2
, viz.,

30) x2 x + 2, x* 2x - 2.

Another method of solving this example is to require that

#2-1- ax 4. ft shall divide x8
x*-\- 1 modulo 5. We reduce the latter

function by means of the relation

#*_ -ax -I [a
4 = 6

4= 1 (mod 5)],

and find, modulo 5, that

^s_ x + i = (- ab b - ab*)x
- a*b2- a2 63+ 2.

Hence 6=_1, 2a2 EE& (mod 5).
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54. The eight PIQ[, 3] are the factors of

<m (a
80-

1) (X
-

1) _ 32_ 24 , T16_ T8 , 1

(a"-l)(a!"-l)
=

It suffices, however
,
in view of 50, to determine a primitive root $

of the OF[3
4
].

To get an /$[4,3], we employ the theorem of 37

for A = 4, i = 2, p
=

2, I = 1, giving the decomposition

x*+ 1= 77 (#
4 x2-

1) (mod 3).

Hence a root i of the irreducible congruence

x*-x2
1 = (mod 3)

belongs to the exponent 16. If then we find a mark 6 belonging to

the exponent 5, Q
= i<5 will, by 14, be a primitive root of #80= 1.

We readily verify that the fifth power of ?'
2

* is congruent to unity
modulo 3. To find the irreducible congruence satisfied by the primi-
tive root p

= i
(?'

2

i), we form its powers,

0*- if t'q: i
_

1, pS- qp **- ; 1, ()

4=qi ^_ ?:
2T ;_hL

Eliminating the powers of i, we have

P
4

s

3+ ?
2+ (

- 1 = (mod 3).

The product of the two PI$[4,3] thus reached is Q+ Q*+ ?
4
-h 1.

Since the expression 31) contains only exponents which are multiples
of 4, we would expect the new factor p

8 6+ 4+ 1. In fact, the

product of these two quantics of degree 8 gives p
16

-f- p
12

p
4
-f 1,

which divides 31) giving the quotient

pl_ p
l*+ p*+ 1 = (? + p4+ p

2+ 1) (,8+ p
4_ p2+ !)

We therefore have two new PIQ[4, 3] given by the decomposition

e
8-

(>

6+ ^>

4+ 1 = (?
4+ <>

3-
1) (?

4-
(>

3-
1).

Since 8+ (>

4
p
2+ 1 is derived from $

8
Q*+ Q*-\- 1 upon replacing

Q by in the latter and multiplying by p
8
,
we find

Q*+ e
4+ (>

2+ 1 = n
((>

4
P
3-

(>

2
=F e

-
1),

(>

8
+(>

4
-(>

2+l = //(9
4+ (>-!).

Hence the eight P/C[4; 3] are

55. To obtain a primitive root p of the &F[5
4
], we define the

latter by means of a root i of the irreducible congruence

x*=2 (mod 5).

Indeed, by 35, x* 3 3
is an /$[4,5] belonging to the exponent 16.

Since 54 1 =16 3 13, we seek marks belonging to the exponents 3
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and 13. We verify at once that 2i 2
-\- 2 belongs to the exponent 3.

To find the most general mark
rj
which belongs to the exponent 13,

we simplify the calculations by first determining the marks

% = ai s
-\- bi 2+ ci + d

of the jF[5
4
]

for which rff
= 1. Then either (+ T^)

18 or (- yj**

equals unity. Now

+ d
=

ai*-\- bi 2 ci -f d.

The condition r^=\ thus gives

(6*
8+0 8

-(ai
s

+ci)
8 =l.

Reducing by i* = 2, we obtain the conditions
,
modulo 5,

_ 2a2- c
2+ 2bd = 0,

- 4ac -f 2&2
-f d 2 EE 1.

For a = 0, the only solutions are seen to be

68
=1, f?

2=
1, c*=l; &^c = 0, f?

= l.

Hence -i 2+ci2 (e
=

1, 2, 3 or 4), or else the negative of this

expression, belongs to the exponent 13. We may verify that **
2-M-f 3

belongs to the exponent 13. We may therefore take

q
= -(2**+ 2) (t

s
-f i + 3)

= 3^ 3+ 2^ 2+ 4.

Then
2= _ ^3_ ^2_ t

- _ 1 3= ^D_ 2*8+ i + 1 = - + 2.

Hence we obtain the following PJ[4, 5] satisfied by the primitive

root ?>
9
4-

p
3-

p
- 2 = (mod 5).

This quartic can be decomposed into the two PIQ\2, 52
],

But
p
3= 4f s+ 3?:

2+ 4,
85 ==2 8+ 2t a+ 4, p

185= 8+ 3*+ 4.

Hence ^ -
?) (^

-
p
25
)
= ^2-

a?(-
8+ 3) -f 3 8+ 4,

56. The determination of primitive roots in the 6r.F[5
6
] and in

the 6rF[5
3
] may be made to depend upon the congruence

32) x+ x*+ x*+ x*+ x+ x2 + 1 = (mod 5),

which, by 33, is irreducible. The root x belongs to the exponent 7.

The general mark of the 6rF[5*] may be expressed in the form

5

x 1

(each d an integer).
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It will belong to the included field &F[5
3
] if, and only if, <J

125= (5.

Applying #7
^?1, we have (mod 5)

5 5

1 25 =

* / = 1

Applying 32), this becomes

(b- ci)
-V + fe- <i)a

8+ (c4
- Oa8+ (ft,-

The conditions that this shall be identical with 6 are

c = 0, e2
= c

6 ,
C3
= C4 (mod 5).

Hence the 53 marks of the 6r.F[5
3
] are given by

33) C
Q + c.

2(x* + x*) + c
s(x* + x*) fa, c2 ,cs

=
0, 1, 2, 3, 4].

Since (x
2 + x^=XB + x*,

we infer that % = x* + %5 defines the GrF\5F\. In fact, we find

T 5= X3 + X*, T= X + X*, T 80EE X5
-f X* + #3 + ^2

?

and finally that T
31= 1. Hence A = 2(a?

2 + a?
5
) belongs to the exponent

4 31 and is therefore a primitive root in the 6r.F[5
3
].

We derive

at once the P/$[3? 5] satisfied by A
7 viz.,

2A3-A2 + A + 1 (mod 5).

We next verify that x 2 belongs to the exponent 2 3
- 3 2

-

31,

so that Q
=

a? (re 2) belongs to the exponent

5 6 - lEE23 -3 2
- 7-31,

so that Q is a primitive root in the 6r.F[5
6
].

We have

(a;
-

2)
126-

(x
6-

2)(x
-

2)
= -

2(ff -f ^6
)
= - 2r 25

.

But T
25

belongs to the exponent 31. Hence the exponent of x 2

contains the factor 31 and, moreover, the factor 23
,
since

(*
-

2)^
(5
'-

I)

-(* - 2)
126

'"=(- 2)
M= - 1 (mod 5).

We next prove that the power 23
- 3 2

- 31 of x 2 gives unity. Indeed,

(x
-

2)
15=

(x
5

-2)
3=2x*-x*+x + 2 (mod 5),

and, by a slight calculation,

(x
-

2)
18= 2x5 + a* + a8 + 2#2 + 4.

This being of the form 33), we have

(x
-

2)*'

'
3*-

[(x
-

2)i*]
m= 1 (mod 5).

For the same reason
,

(X
-

2)2

3

-3-3i=
[(X
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To determine the PIQ[6, 5] satisfied by the primitive root
= x2

2#, we form the powers,

-x2 - x-l; Q*=x*-2x\
*+ 2x + 3, Q= 2x- x*+ x*+ x2+ x-1.

We derive at once the required congruence

P
6 -

<?

5
-f (>

4 -
?
3
-h 20 + 2 ~0 (mod 5).

57. We can set up the PIQ[2, 2 3
] and PIQ[6, 2] by means of

the theorem:

34) l*x*+lx + p

is a PIQ\2, 23
] if, and only if, ft is a root of

35) J
3=

j
2
-fl (mod 2)

and A is (my mark except zero and 4
.

By 40, the quadratic 34) is an IQ[2, 2s
] for every mark

A =)= in the 6r-F[2
3
] and for every root

/3
of the congruence

/S

4 + /3

2 + /3 + 1 =
(ft -f l)(/3

3
-f P

2 + 1) = (mod 2).

Defining the 6r.F[2
3
] by means of the irreducible congruence 35),

we may take
/3
=

1, j, j
2 or j

4
. We first find the exponent ep to

which belongs a root | of the congruence

|
2-? + ^ (mod 2).

Since jj belongs to the GF[22 ' 3
], e^ is a divisor of 26

1 ^ 32
- 7. But

Hence for =
1, ^=3; for a root

/5
of 35), we find

so that ep= 26
1. The theorem is therefore proven for the case A = 1.

Setting
= A#, it follows that, for =j= 1, # belongs to the

exponent 26 1 unless x9= 1
?

which occurs only when A 2
=/J,

i.e., >l =
/3

4
. We therefore reach all |O(2

6-
1)
= ISPIQ[2, 2s

].

Half of them are given in the left members of the identities below.

To pick out a set of three whose product gives a PIQ[6, 2], we
select three which are like functions of respectively j, j

2
, /, the

latter being the roots of 35). We thus find

x + j
4
)
=
5^ +j

4

)
-
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Replacing x by - and multiplying by x*, we find

which with the above three sextics give the six existing PIQ\, 2].

58. Theorem. The necessary and sufficient conditions that xp x a

shall be a PIQ\j), p] are that a be a primitive root modulo p and

that a root of yp
=

y + 1 (modp) belong to the exponent (p
p

1)/Q> !)

If a be an integer not divisible by p, the congruence

x p = x + cc (mod p)

is irreducible by 40. The product of its roots is

..x~ xp~ l ==-

Setting x = ay, we find that

yp =y-\- 1 (mod p).

Hence if # belong to the exponent p p
1, then a is a primitive root

modulo p and ?/ belongs to the exponent (p
p

l)/(p 1). The in-

verse is true by 14
?
since p 1 and (#

p
l)/(jP 1) are relatively

prime.

59. EXERCISES ON CHAPTER III.

Ex. 1. If 9 be a root of one of the PIQ[2, 5] of 53, then x* g

is an I[3, 5 2
]. Eliminate and derive the following I$[6, 5]:

x*x5+ 2, iC
6

2ic
3

2.

Ex. 2. (Moore). If x be a root of the irreducible congruence

xe_ %X3_ 2 = (mod 5),

a mark c -f c x + c
2
o;
2
-f- C

3 ic
3+ c4#

4
-h c

5
5 of the (rjP[5

6
J will belong

to the included field G-F[5
B
] if and only if

c3
=

0, c4
=

Scj-f 4c
2

. C
5
= 2c

x -f- 3c2 (mod 5).

Show that qp
=

a? + x2
-}- 2x^ is a primitive root of the 6r.F[5

3
] and

that it satisfies the congruence qo
3^ 2qp + 3 (mod 5).

Ex. 3. (Pellet). If y belong to the G-F[p
n
] and m be the least

integer for which yP
m

y, then xp x y is irreducible in the field

if neither n/m nor y + y
p

-\- y
p2 H-----hypm

"

be divisible by p; in the

contrary case it decomposes in the field into linear factors. Prove this

theorem equivalent to that of 40 for I = 1.

Ex. 4. (Pellet). If p be a prime number which is a primitive

root of the prime number
,

- ~ is irreducible modulo p.XV X 1

Ex. 5. Show that the theorems of 34 and 36 may be combined
into the theorem stated without proof by Pellet:
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If in an IQ\yv pv
] belonging to the exponent w, we replace x

by #*, where A contains only the prime factors of w, the resulting quantic

decomposes into D2k~ l
quantics IQ I j>g i

* ^r
I belonging to the

exponent Aw, where 2) is the greatest common divisor of \n and p 1^ 1

and where 2 fc 1
is the highest power of 2 dividing the numerators of

each of the fractions
'

' and ^ when reduced to their simplest

form.

Ex. 6. (Schonemann). If F(x, a) be an IQ[m, pn
] in which the

coefficient of at least one power of x satisfies the equation cpV
~ l= 1 if,

and only if, v = n or a multiple of w, the product

F(x, a)-F(x, a") . . . F(x, a^" 1

)

gives an IQ[mn, p\.

Ex. 7. (Schonemann). Generalize the theorem of 33 as follows:

If p belong to the exponent t modulo e, e being prime, (x
e

l)/(x l)

decomposes modulo p into (e l)/ quantics irreducible modulo p.

Ex. 8. Prove that x' x + 1 is a PI#[5, 3].

Ex. 9. (Pellet). If e be the exponent to which belongs

the product of the roots of an irreducible congruence of degree v, -F(fl?)

(mod p). and if A be a prime divisor of e, then

1) F(x^) is irreducible modulo p if A does not divide (jp l)/e ;

2) F(x*) decomposes into A irreducible factors of degree v if A

divides (p l)/c. According as A divides or does not divide e,

all of these factors belong or do not belong to the same exponent.

Ex. 10. Using Jordan's irreducible congruence

x*=x + 1 (mod 2),

show that x belongs to the exponent 73 and x + x*+ #6+ #7
-f #8 to

the exponent 7. The product y = x(x -f #4 -f #6
-f a;

7
-j- a?

8
) belongs to the

exponent 2 9
1 and is therefore a primitive root of the G-F[2

9
]. Verify

that it satisfies the congruence

?/+2/
8+/+/+2/2+#-f 1=0 (mod 2).

Ex. 11. If the GF[3*] be defined by i*= i -f 1 (mod 3), the 16

PJ[2, 3 2
] are given by the decomposition of the P/[4, 3] of 54;

for example,

x* x-l = {x
2

(i + 1) x
-

i} {x*+ (i + 1) x + i -
1},

* 1 ={x
2

(i l)x+i\ [x*+ ix-i + I}.
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Ex. 12. (Mathieu). If H belong to the GH[pnm], we have the,

decomposition

where ^ runs through the series of marks of the GF[pn
\.

60. Table of primitive irreducible quantics
1

).
When more than

one PIQ\m, p] is known, we choose that one xm~ ax''-f fix''
1

-j- . . .

(mod p) in which the exponent r is as small as possible.

Modulo 2: x2
:^x+l, afea-fl, x^x+l, x=x*-\-l, x=x + l,

Modulo 3: x2

=2x+l, x*=x + 2, x*=2 x*+2x2+ x+1, x*EE

Modulo 5 : x2= 2x + 2, x*~ 2x + 3, x*= x2+ x + 2, x*= x + 2,

Modulo 2

)
7 :x*=x-3, x*=x-2, x*=2x*+2x + 2, x=6x+3,
x= -x- x*- x5- x2- x - 3, x1= x + 3.

Modulo 11: x2~4x-2.

CHAPTER IV.

MISCELLANEOUS PROPERTIES OF GALOIS FIELDS.

Squares, not-squares, mih
poivers in a Galois Field, 61 63.

61. Every mark of the GF[2n
'\

satisfies the equation x2 =
x, so

that x is the square of the mark x2
. Every mark has one and

only one square root, since 1 = -j- 1 in the 6rjF[2
re

].

In the GF[pn
], p > 2, a mark may or may not be the square

of a mark belonging to the field, and is called a square or a not-

square respectively. If p be a primitive root of the GrF[p
n
], so that

36) ^"- 1=
1, 0(^-D/

2= -
1,

the even powers of p are squares,
2/'= (+ p

7

')
2

;
while the odd powers

are not-squares. In fact, ^
2/t+ 1= x2 would require

0(2A+l)(p*-l)/2^pA(p-l) .

Q(p
n-lV* = __! = xP

n~ l = +1.

Hence there are (p
n

I)/2 squares and as many not-squares in the

GrF\p
n
~\. Furthermore, the product or quotient of two squares or of

two not-squares is again a square; but the product or quotient of a

square by a not -square, or vice versa, is a not-square.

1) A table of irreducible quantics (not all primitive) is given by Jordan,
Comptes Eendus, 72 (1871), pp. 283 290. His quantic # 8

-f x
s+ x*+x + 1 is

divisible by #3
-f #

2
-|- 1 modulo 2, while # 8

-j-#-f2 is divisible by x 5 mod 11.

2) Serret, Cours d'Algebre superieure, II, pp. 181 189.
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62. Theorem. - - The not-squares of any 6rF[p*], p > 2, ewe

not-squares or squares in the GF[pnm~\ according as m is odd or even.

If (5 be a primitive root of the 6rF[p
wm

], then Q :EZ
<?", where

u = (p
nm

l)/(p
n

1), is a primitive root of the GF[pn
~\.

Hence

the marks =)= of the GF[pn
~\

are given by the formula

pfEE*"" (t,= l, 2, . ..,JP-1).

Let U be a not -square in the GF[pn
~],

so that v is odd. It will be

a not-square or a square in the GF[p nn<r
\ according as uv is odd or

even, i. e., according as u is odd or even. But

TO 1

u = (p
nm

l)/(p
n

1)=pni= sum of m odd terms.

Hence u is odd or even according as m is odd or even.

63. Theorem. If d be the greatest common divisor ofm andpn
l,

there exist exactly (p
n

\)/d marks =f= in the GF[pn
~\

which are

wth
powers in the field.

If ^ 4= be the mth
power of some mark v of the field, we find,

upon raising ^ = vm to the power (p
n

l)/d and noting that the

power p
n 1 of the mark i;

7W / rf

=j= is 1, the equation

37) ^(y- D/<*=1.

Inversely, there are (p
n

l}/d roots of 37) in the GF[pn
] by

16 and each root is an mth
power in the 6r_F[j3

n
]. To prove the

last statement, we note first that such a root p is a ^th
power. In

fact, the roots of 37) may be exhibited as follows:

where Q is a primitive root of the GF\jp
n
~\.

That these roots are

distinct is shown by supposing

Q
di-

9
dj

(j 5 *' < (P
n~

l)/rf)-

9*j(9
*d -J}-

1)
= o [d(i -j) <p- 1].

Hence i j = 0. We next prove that ^ = Q
di

is an wth
power.

Since m/d is relatively prime to pn
1, we can determine integers I

and t satisfying the equation

t(
Hence

Q
Therefore

ft
= P

t= m
-

Corollary.
- - Every mark of the 6rjF|jp

n
] will be an mih

power
in the field

if, and only if, d = 1. Extraction of the wth root of an
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arbitrary mark of the G-F[p
n

~\
is possible if, and only if, m be

relatively prime to pn
1. With this condition satisfied, there exists

but one mth root of each mark.

Number of solutions of certain quadratic equations in a Galois

Field, 6467.

64. Theorem. 1

)
- -

If v = 4- 1 or 1 according as a^ is a

square or a not-square in the GrF[p
n
~\, p > 2, the equation belonging

to tte field,
l6j + akg_ x (0l+ , 3+0),

has pn v or pn
-\- (p

n
\)v sets of solutions according as % =f= or K = 0.

Setting KJ^^^, the equation becomes

i?

2
-f- fl^tf = !.

1. If a^g^ ^2
;
a square =|= in the 6rF(j>

w
], we set

7? + Ai2=0, ??-A 2 =(>,
whence l

n = y (9 + *)> 2
=
YT ((>

- 4
The equation becomes nfi __ H

fj O I*
^

/v.

If ^ =f= 0, we can give to any one of the pn 1 marks =|= in

the 6r-F[j>
n
], when the corresponding value of Q is determined by

the equation. There are in this case pn 1 sets of solutions |t , |g

in the field of the given equation.

If ?c = 0, there are evidently 1 -f 2(p
n

1) sets of solutions.

2. If
ffjtfg

be a not-square in the GF\j)
n
~\,

the equation

g>
2=

ajflfg

is irreducible in the field. If one root be i, the other is i^
n
r - *

by the corollary of 31. We therefore have the identity

We are thus led to determine the number of roots in the

of the equation in the unknown Z =
TI -f it%,

38) ^*+ 1=
1
x.

If ^ ==
0, we have ^= and hence a single set of solutions

fc-cvt-o.
If 40, let JR be a primitive root of the ,F[>

2w
].
We maJ

set ^ ^ = Rk
, whence

so that 7c(p
n

1) is divisible by p
2w

1, the exponent to which E
belongs. We may therefore set / = l(p

n + 1), being an integer.

1) The theorems of 64 67 are immediate generalizations ofNos. 197 200

of Jordan's Traite des substitutions.
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Since Z, belongs to the 6rF[p
2n

], we may set ZR*. The equation 38)

Rt(pn+ 1)= Rl(p
n+l^

t(p+ 1)
=

l(p"+ 1) [mod p*
n-

1].

This congruence has p
n
-\- 1 distinct solutions for t, viz.,

becomes n

The corresponding values of .Z#= 2/ ^
r/ -j- &|2 givep

w -fl distinct

sets of solutions 1? 2 of the given equation.

65. Theorem. - - The number of sets of solutions ( 1? 2 ,
. .

., J2m)
in /*e 6r.F[p

ra

], ^? > 2, o^ $e equation

is a mar/^ =)= m #^

^(2m-l)_ Vpn(m-l) (ft ^ =(= Q)

wfwre v is + 1 or 1 according as ( I)"
l

cricf2 . . . a*m is a square
or a not-square in the field.

By 64, the theorem is true if m = 1. To prove the theorem

by induction, we suppose it true for equations in 2(m 1) variables.

The proposed equation is equivalent to the system of two equations

lll -f 2^2 = If,
tf3 g H-----h 2 W L= 3C n-

1. Let x =4= 0. For each of the pn - 2 values of y different from ^

and 0, the first equation has p
n

A. sets of solutions, while by hypo-
thesis the second has jp<2

) np
n (n' 2

),
where A = l according

as
1 2

is a square or a not-square, and p = + 1 according as

( l)
m~ 1

3 4 . . . 2m is a square or a not- square. For the value y 0,

they have respectively 2>
n
-f(^ 1)^ and p*(

2n
) np

n (m~ 2) sets of

solutions. Finally, for
>^
=

z, they have respectively jp
7* A and

j0(2m-3)_|_ ^^n(m-i)_^(m 2)^
se^s ofsolutions. The total number

of sets of solutions is therefore

(p
n

By 61, A^ = i/. Hence the induction is complete.

2. Let ;c = 0. Separating the two cases
17 ={= and

??
=

0, we
find the total number of solutions to be

(p*- 1)O
W-

-f [p
n+
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66. Theorem. The number of sets of solutions in the

of the equation .
,2

, fc
8 ,

where each
ccj

is a mark ={= in the field and K belongs to the field,

isp
2nm+ opnm ,

where = 4- 1, 1 or according as (

is a square, a not-square or zero in the field.

Consider the equivalent system of equations

' '

The first equation has one solution if y = 0. If
?/ =J= 0, it has two

or no solutions according as a
r]

is a square or a not -square. Let

u, = if x
?
and

/u,
= 1 according as a^x is a square or a not-

square. We may express the number of solutions of the second

equation by 65, if we set v = 1 according as ( I)
w a2 . . . 2m+i

is a square or a not- square. Evidently we have (JLV
= co.

According as /i
=

0, + 1, or 1, the total number of sets of

solutions of the pair of equations is respectively

.

)

-Ili
J|jj(2

1)_

In each of the three cases, we have enumerated separately the number
of solutions arising when

iq
=

7
when

17
== ^ and when

77
is one of

the values =j= for which the first equation has solutions (viz., two).

67. Theorem. - -
If S denote the number of squares

1

)
e 2 in the

GF[jp
n
'\ for ^vhich 6 2

-f 1 is a square and N the number of square r 2

for which T
2 + 1 is a not-square, we have

S=jGP"-5), JV-j(p-l), if -1 -square;

S - \(P
H
-3), N= i(p + 1), if - 1 = not-square.

Indeed, the number of sets of solutions
jj, y in the (^^[^

re

] of the

equation 2 =
^2 _|_ |

is always pn 1 (by 64). These solutions are of three kinds:

1. 6-0, *-l 5

2. |
2= -

1, , - 0,

occurring when 1 is a square;

3. ^=4=o, ^
2= + i4=o ;

giving 4S sets of solutions
, ^.

1) The mark zero is not reckoned as a square.
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Hence, if -- 1 be a square ,
we have

pn
_ 1^2 + 2 + 4^ N+S+l-(p-l).

If - 1 be a not- square ,
we have

Additive-groups In the GF[p*\ and their multiplier Galois Fields 1

},

68-71.

68. A set of m marks A
1;

A
2 ,

. .
.,

Am belonging to the GF[pn
]

and linearly independent with respect to the GF[p] give rise to

pm distinct marks of the larger field,

39) Cj^H- c
2
A
2 H

-----h cTO Am (every d= 0, 1, . .

., p 1).

Indeed, an identity between two of the marks 39) would contradict

the linear independence of A
1?

A
2 ,

. .
., A^. Since the sum of any

two of these pm marks 39) may be expressed as one of the set, they
are said to form an additive-group [A1?

A2, . . ., AJ of rank m with

respect to the GF[p\ and the marks A^ A2,
. .

.,
Am are said to form

its basis -system. In particular, the GF[pn
] may be exhibited as an

additive-group of rank n ( 10).

These conceptions are capable of the following direct generali-
zation. Any m marks A^ A

2,
. .

.,
ATO of the GF[pnr

] are called

linearly independent with respect to the GF[pr
~\

if the equation

^1*1+ %^H-----
(~ ymAm= 0,

in which the y/ are marks of the GF\_p
r
~\,

can be satisfied only in

case every y = 0. [See 72]. A system of m linearly independent
marks gives rise to prm distinct marks of the GF[pnr

]

yi^l-fftAgH
-----

1" Vm^m

by letting th y/s run independently through the series of the marks

of the GF[p
r
~\.

These prm marks are said to form an additive-group

[AD A
2 ,

. . ., Am] of rank m with respect to the GF[pr
~],

the marks

Aj, . .
.,

Am forming its basis -system.

If Am _t_i
be any mark of GF[pnr

] not in the additive-group

[A1?
. .

.,
Am] of rank m with respect to the GF[pr

], then the m -f- 1

marks A1? . .
.,

Am ,
Am _|_i

are linearly independent with respect to

the GF[pr
] and therefore define an additive-group [A1?

. .
., Am, A^+J

of rank m -\- 1 with respect to the GF[pr
].

69. Theorem. - Within the GF[pnr
] the number of additive-

groups [Aj, . .
., Aro] of rank m with respect to the GF[pr

~\
is

pr) . . . (pn r_ p(m
-

1) r)

pr) . . . (pmr p(m l)r)

'

1) Moore, Mathematical Papers, Congress of 1893, p. 214, p. 216; Math.
Ann. vol. 55, 12.

DlCKSON, Linear Groups.
4
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We first prove that the numerator expresses the number of sets

of m marks A
x ,

A
2 ,

. .
.,
Am of the CrF[p

nr
] linearly independent with

respect to the GrF[p
r
]. For A

L
we may take any one of the pnr~ 1

marks 4= of the GrF[p
nr

], for A
2 any one of the p

nr
p

r marks not

of the form 0^, where ^ belongs to the GrF[p
r
]-,

for A
3 any one

of the pnr p2r marks not of the form 0^+ P2^ where Q and p2

belong to the GF[pr
]; etc.

We next show that the denominator expresses the number of

these sets of m independent marks which generate the same additive-

group [A!, A
2,

. .
., AJ. In fact,, we may use as a basis -system for

the latter any set of m marks A^, A
2 ,

. .
.,

A'm chosen as follows.

AI may be chosen in pmr 1 ways:

each ylt
-

being arbitrary in the GF\_p
r

~\ provided not all are simultan-

eously zero. A
2 may be chosen in p

mr p
r
ways, viz.,

the y2t
-

being taken arbitrarily in the 6rJ^
T

(j)
r
]

but so as to exclude

the pr sets of values which make A
2
=

pA^, viz.,

where
(>

runs through the series of marks of the GrF[yf~\; etc.

70. If the pm marks c^-\-----h cm lm of the additive -
group

[Ai, . .
.,
Am] of rank m with respect to the GF\jp\ are multiplied by

any particular mark p =j= of the GrF\p
n
], the resulting pm marks

constitute the additive -group

^ [Ai, . .
., AJ = [^A 1;

. .
.,
aAm]

likewise of rank m with respect to the GF[p\. We will say that

[fiA1; . .
., f*AJ is derived from [Ai, . .

.,
Am] by multiplication by p.

In particular, we seek those multipliers ft
= % which do not alter

[Ai, . .
., A TO], such a mark being called a multiplier of the additive-

group [Ai, . .
.,
Am]. If Xj and K

2
be multipliers, then will evidently the

product 3^ Xg be a multiplier. To prove that ^ = Xj+ Xg will also be
a multiplier, we observe first that [jnAi, . .

., ^Am] is an additive-

group included within [Ai, . .
., Am], since ^ and x

2
are multipliers of the

latter, and further that it is of rank m if
t
u =j= 0- Hence 3^-f- >c2 is

a multiplier unless it be zero. Hence the multipliers ^ together with
the mark zero constitute an additive, as well as a multiplicative,

group and therefore constitute a Galois Field GrF[p
k
] included within
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the fundamental GF[pn
].

It is called the multiplier Galois Field of

the additive-group [At , . .
., Am j. Every GF[pf] included within the

GF[pk
] is called a multiplier Galois Field of the additive -group.

By 23, k
f

is a divisor of k and k a divisor of n.

The additive-group [A1?
. .

.,
Am] of rank m with respect to the GF[p]

may be exhibited as an additive-group [A^, ..., A'm'] of rank m' = m/k'

with respect to any multiplier GF[pk
'~\.

In proof,
let yi, y2> , TV run independently through the series

of marks of the GF[pk
"\. Taking Aj to be any particular mark I =f=

in [AJ, . . ., Am], the pk
'

marks y^ are all distinct and all belong
to [Ai, . .

.,
Am]. Taking A'

2 any mark in [Ai, . .
., Aj different from

the ftAj, the p*
k> marks ftA^-f^Ag are all distinct and all belong

to [Ai, . .
.,

AOT]. Proceeding similarly, we obtain ultimately a set

of pm
'

k> distinct marks y1 ^,( -f y8
A
2 H

-----h ym'tin' giving all the marks

of [Ai, . . .,
Am].

In particular, p*=*pF
m

',
so that &' divides m.

Corollary I. Since k is a particular k', k divides m.

Corollary II. Within the GF[pn
~]

the number A(p,n,m,k) of

additive -groups of rank m with respect to the GF[p] which have

the GF[pk
] as a multiplier Galois Field equals the total number of

additive -groups of rank m/k with respect to the GF\j>
k
~\:

A(V fcU (pn-^(pn- pk)(pn- p^ . . . (pn- pm-k}
LW ' !_ w- A r/i- ^2*) . . . (pm- pm-k)

71. If A' be a divisor of # and n and if AI, hz ,
. .

., ^ are the

prime factors occurring in both m and w to a higher power than

in fc, there are in the G-F[p
n

~\ exactly

m A (p, ^ m,

additive -groups of rank M with respect to the GF[p\ which have

the &F[pk
] as the multiplier Galois Field.

Indeed, from the A(p,n,m,k) additive -groups having the GF[yF\
as a multiplier Galois Field, we must eliminate those having a larger

multiplier Galois Field. It suffices to eliminate those having the

#JF[p*V], for i = 1, 2, . .
.,

or t, as a multiplier Galois Field. But

the A(p^n,m^kh1 )
additive -groups with the GF[pkh

>]
and the

A(p,n,m,kh2)
additive -groups with the &F[p***] are not distinct but

have in common A(p,n9 m,lchji2) additive -groups each with the

GF[^ hti
'^\

as a multiplier Galois Field. By this principle, we readily

determine the number of distinct additive -groups among the sets of

A(p,-n,m,1cht) with the GF[jf
h
i~\

as multiplier Galois Fields. Sub-

tracting this number from A(p,n,m,lG), we obtain the required number.

4*
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72. Theorem. The marks At ,
A2 ,

. . .,
Am of tlie GF[p>im

] are

Imearly independent with respect to tlie GF[pn
] if and only if the following

determinant 1

) is not s&ro in the GF[pn
\:

Ai Ao
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hence belongs to the GF[pn
]. Hence the m conjugate marks are the

roots of an equation of degree m with coefficients in the GF[pn
].

By 31, the roots of an equation of degree m belonging to and

irreducible in the GF[pn
] are conjugate with respect to the GF[pn

].

In particular, the marks A, Apn of the GF[pZn
~\

are conjugate

with respect to the GF[pn
].

The conjugate ApH of A will be

designated by A. Evidently A = A if, and only if, A belongs to

the GF[pn
]. The following relations are proven at once:

AB= A-B = BA, A =
', + B = A + B, (A/B) = A/B.

74. Neivtoris identities. If S( denote the sum of the t
ih

powers

of the roots of the equation

f(x)
= x + a^-i-h a2#'"-

2
-f .+ 0*1-1a + am= 0,

in which the coefficients a, Mong to the GF[pn
], then

= !+&!
=

40)
=

= m _i+ aiSm-2+ a2^m_ 3 H-----h-2^i4-(w l)am_r
These identities follow as in algebra upon equating the coefficients

of like powers of x in the following identity, in which ccv . .
., am

are the roots of f(x)
= 0:

41)

This identity, evidently true for.m = l, may be proven by

simple induction 1

). Supposing it true for a particular w, we have

proven it true for the value m -f- 1. Let

F(x)=f(x)'(x am ^i)=a?
n+ 1

+(ai am+i)x
m
+(a2 ^im-fi)^

m~H
+ (m Urn lm-f l) % am (Xm+ i

Multiplying 41) by x aw +i and adding /"(ic)
to the left member

and xm -\ h o>m to te right member, we find

^
-|

^ = (m + 1 ) #m+ wYa-i am 4. i) ic
m ~~ 1

XCti X ttm-l-l= 1

-f (m
-

m - 1 -f i).

1) Since equations in the GF[p*~\ are not algebraic identities, we avoid

the consideration of derivatives. We might, however, employ Weber's definition

(Algebra, I, 13) of the derivatives of a polynomial in x for the derivatives up
to the jpth, but not for the higher derivatives on account of the denominators TI(m).
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Hence if 41) be true for f(x)
= with the roots ffi, . . .

3
am ,

a like

formula is true for the equation F(x) = with the roots 1? . .
.,

am ,

Forming the sums

m m in

"V/Y ^ "V -/Y -1 ^V/Ya-)

we derive the new identities,

>

si****-***-*-*

Corollary.
--

If/'(#)
= have a double root a, the right member

of 41) must vanish for # = .

75. Theorem. - -
// t be a positive integer and

, % ;
. .

.,
up i

denote the ma/rks of the GF[pn
~],

then

4~> 1-1

In fact, the marks / are the roots in the G-F\j)
u

~\
of the

equation
X P

)I- x = 0.

Applying to the latter the identities 40), we find

CHAPTER V.

ANALYTIC REPRESENTATION OF SUBSTITUTIONS

ON THE MARKS OF A GALOIS FIELD.

76. Consider the problem to find every quantic <$>() belonging
to the GF [p

n
] such that the equation <t>

(i;)
=

ft has a root in the

field whatever mark of the field
ft may be. For example,

8= ft (mod 5)

is solvable for every integer ft, since we have
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If we denote the marks of the GF[pn
~\

as follows,

44) fi , tui, ji2 , ..., fv-i;

the necessary and sufficient conditions that O (|)
=

ft
be solvable in

the field for arbitrary /3
are that the marks

45) 0( k
u

), <D(f*i), <t>(>2), .. V 0(^_!)
be identical with the series 44) apart from their order. In fact, the

pn values which 0() takes must all be distinct, since
/3

is to have

pn distinct values. When the conditions named are satisfied, the

series 45) forms a permutation of the series 44), and the quantic 0()
is said to represent the substitution

f 8 ~|_r Po, ^i , -, JV-i ~1

LO (6)J
^
LO 0*o), o GUI), . .

.,
o Gv-i)J

ow $e marks of the GF[pn
~\.

For example,
3

represents the sub-

stitution m_r> i> 2
>

3
>

4
i

L6
8J=jo, i, 3, 2, 4j>

on the marks of the 6rF[5], i. e., the field of integers taken

modulo 5. A quantic of degree k with coefficients belonging to the

GF\j)
n

~\
will be called a substitution quantic SQ[k, jp

w
] if it satisfy

the above conditions. Its degree Jc will be supposed <_p
n in view

of the equation ^= | satisfied by every mark of the field.

77. An arbitrary substitution on the marks of the 6r-F[j?*],

("fo, .v^i .V-

can be represented by the quantic O (|) given by Lagrange's inter

polation formula,

where

and F'() denotes the function derived from F(g) by formula 41).

Evidently O(|) is an integral function of of degree <pn
.

78. Theorem. Two distinct quantics 0(8) aw^ Y^) belonging to

the GF\j>
n

'\
can not represent the same substitution oti its marks.

Por
>

if
<D(^)

- V(^) (i
= 0, 1, . .

., r- 1),

the equation <t>(J) Y(8)
= would have in the field p n distinct

roots
(ii 9

whereas its degree is less than pn
. By 15, it must be

an identity in .
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79. Theorem. |
w is a SQ[m, pn

~] if, and only if, m be prime

to pn
1.

The theorem follows immediately from the corollary of 63.

However, to illustrate a method of proof used below, we will verify

that, if m be relatively prime to pn
1,

m takes pn distinct values

in the GF\p n
~]
when does. It is sufficient to prove that from

j /~\ <-Wi *rYfl

46) $i = |2

follows | t
=

2 , provided ^ and |2 are marks of the field. This being

evident if either be the mark zero, we suppose |, 4= 0, ?2 4=
0? so that

47) if-'. -'_ i.

Raising the members of equations 46) and 47) to the respective

powers t and r, chosen ( 7, note) so that tm -f T(j9" 1)
=

1, and

forming the product of the resulting equations, we find that |,= i2 .

80. Theorem. - - For an arbitrary mark a of the GF[j)
n
],

is a SQ[b, p
tt

], if p is a prime of the form 5m + 2 and n is odd.

To prove that, in the GF[pt>r

\, |t
=

2
is the only solution of

(gi-^fe
4 + gfc+ 6?gJ 4- gig -h ^

we set
g1==A + ^, *

2
=A

tW,

here 1

) limiting our proof to the case p>2. Then 16 times the

quantity within the braces becomes

=
{(20A

2 + )

But 2
) -f 5 is a quadratic residue of wo odd number of the form

bm -f 2 or 5 w 2. Hence
( 62) 5 is a not-square in the 6r.F[5

n
],

w being odd and p = 5m + 2. Hence, if the above expression

vanishes, we must have

whence, for p > 2, ^
2 = 5 A 2

,
so that I = p = 0, |x

=
J2 .

1) An analogous proof for j9
= 2 is given in Annals ofMath., 1897, pp. 84 85.

For an arbitrary prime p, the theorem is a special case of that of 82.

2) Gauss, Disquisitiones Arithmeticae
,
Art. 121.
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81. Theorem. - - The quantic belonging to the 6rjF
f

[j)
wm

] 7

will represent a substitution on its marks if, and only if, X= is the

only solution in the field of H'(X)
== 0.

Indeed
,
the necessary and sufficient condition is that

=

shall require X1
= X

2 ,
or X

x
X

2
= 0.

Corollary. Xl>nr AX*"* represents a substitution on the marks

of the GF[p'
im

\ if, and only if, either A = or else A is not the

power pnr~
p"

s of a mark of the field.

82. Theorem. If k be an odd integer relatively prime to p2n
1,

and if a be an arbitrary mark of the GF\j)
n
~\,

the quantic

represents a substitution on the marks of the GF[p n
~].

We are to prove that the equation

48) <i\.(i, )
-

ft

has a solution | in the GF[pn
'\, ft heing an arbitrary mark of the

field. By Waring's formula, ^(?, a) is the sum of the &th powers
of the roots of the quadratic

??

2-^- = 0.

Hence, in virtue of the equation

| = n a/?},

we have the identity /i. N . , , N7

0*(g, a) = 7/- (0j)*.

The equation 48) thus becomes

^ fc __ ^y^ *. o.

Setting F=
iy*, this becomes

49) P!-/3F-a*=0.

According as 49) is reducible or irreducible in the 6r.F[j)
n
], it is

solvable in the GrF[p
n

~\
or in the GF[p2n

], and therefore always
solvable in the larger field. Call its roots Y

t
and Y

2
. Since k is

prime to pin
1, we can determine uniquely ( 79 or 63) two

marks r
tl

and % belonging to the GF[p**\ such that
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Likewise
,

it follows from Y
l
Y2
= ak that

If 49) be irreducible in the GF[pH
], we have

( 31, corollary)

and therefore n

nl
= %, nl

= %
Hence , n

(% + fc)
p - % + ft-

It follows that 48) has the solution in the CrF[p
n
]

If 49) be reducible, Y and Y
2 belong to the GF[pn

]. Since k

is prime to pn
1, it follows that ^ and

r]2 belong to the GF[pn
].

Remark 1. We have shown in 37 that (J)
2

r ~ 1
(?; l) com-

pletely decomposes in the CrF\p
n
] into linear factors, ifp

n=2'tl,
t odd and i > 1.

Remark 2. If & be a prime number, <&*(> )
is the only

quantic of degree It suitable to represent a substitution on the marks

of every GF[pn
] for which p

2n - 1 is not divisible by k (Annals of

Mathematics, 1897, pp. 89 91).

Remark 3. - - The equation 48) is algebraically solvable, having
as roots m k m / r\ / -\\

where

and denotes a primitive &tb root of unity. This result is a direct

generalization of Cardan's formula for the roots of the reduced cubic

and of Valles' solution of the quintic
1

)

83. Theorem. 2

) If d be a divisor of pr \ and v be not a

d^ power in the GrF[p
n
], the qttantic

is a SQ[pr
,p],

We are to prove that <t>()
-=

j3
has a solution | in the GF[pn

]

for
|8 chosen arbitrarily in the field. This being evident if

ft
=

0,

we will suppose that
ft =\= 0. Writing

1) Formes imaginaires en Algebre, 1869, vol.1, pp. 90 92.

2) For the case r = n
,
this theorem is included in the theorem of 85.
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we are to prove that

50) [<K)P= Of + v)riP
r-i=

r)P

r+y^-^ /3
d

has a solution
17

in the G-F[p
n
], for, if ^ be such a solution

(necessarily
- =

0), then

will belong to the GF[pn
] and wiU satisfy 0(|)

=
0.

Setting r
(
= 1/co in 50) and multiplying by cX, we find

This has a solution o in the 6rJP[j)
w
] for

/? arbitrary in the field.

Indeed, by 81, corollary,

represents a substitution on the marks of the GF[p"\, since v//3
rf

is

not a <2
th
power and hence not a (p

r
1)*' power in the field.

Note. - - For p = 3, 5, 7 and partially for # = 11, the author

has shown 1

) that the only SQ[p, p
n
] which exist are reducible to

the form
%(%

d
v)(P

l^d

where d is a divisor of p 1 and v is not a cp
h
power in the GF[pn

\.

84. Theorem. 2

) The necessary and sufficient conditions that

shall represent a substitution on the marks of the GF[pn
] are:

1. Every t
ih
power of 0(1), for t <^p

n 2 and prime to p, shall

reduce to a degree <pw 2 on applying the equation %
pn =*

5;

2. There shall be one and only one root in the Gf [p
n
]

of <D(g)-0.
After the exponents of are reduced below p

n
,

let

Put for the pn marks ^ of the GrF[p
n

~]
and add the resulting

indentities. We find, on applying 75,

If O(|) represent a substitution, we must have

1) Dissertation, Annals of Mathematics, 1897, pp. 101108.

2) For the case n=l, this theorem is due to Hermite, Comptes Rendus,
vol. 57 (1863), pp. 750757.
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Hence a necessary condition is that

<!>_!
= (<- 1,2, ...,*- 2).

The condition 2 is evidently a necessary condition.

Suppose, inversely, that 1 and 2 are satisfied. Consider the

equation satisfied hy the marks

J7 h
-

<(ft
./
= =

the sum of the ?wth powers of whose roots is denoted by (?m . Then

- 1
--P"- 1= -

1,

since all hut one of the ^(fi/) are by 2 and hence have unity
for their (p

n
1)*' powers. Applying Newton's identities 40) ,

we

readily find

y .= [i
=

1, 2, . . ..j?
w-

2; z
EEJEE (mod p)]

0p= 6zP
= -'= <Spp= Gpn= 0, yjB

_ 1
= 1.

To determine yp , yajo; ,
we apply the identities 42), viz.,

^4- 71 <?*- 1 4- ^2 fffc- 2 H-----h v Gk - P
n=

(A- ^ i>
n
)?

which here reduce to the form

51) tffc-h yp 6k -p 4- 7'2P <>k-2p-\
-----r yPn P 0k pn+p+^_ i (?A-- ^

w+ 1
==

0,

since by 2, _ i

Furthermore, since any mark equals its (j)
w
)
th

power, we have

Applying 51) for 7s =^ rt

-h j> 1, we find

y/>
<y

/) _i= 0.

More generally, for k = pn
-\- Ip 1, Z ^pn ~ 1

1, we get

^J0
(?p _ 1

= 0.

Hence y^= 0. We have therefore the result

so that the marks Ofe) form a permutation of the marks ^ of the
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85. Theorem. 1

)
- -

If r be less than and prime to pn 1 and s

be a divisor of p
n

1, and if /'(*) be a rational integral function

of
s with coefficients belonging to the G-F[p

n
] such that

/"((*)
= has

no root in the field, then

represents a substitution on ttie p
n marks of the field.

The conditions of the theorem of 84 for a substitution quantic
are all satisfied by the given quantic. In fact, upon raising it to

any power ,
not divisible by s, we obtain a set of terms whose

exponents are of the form ms -f Ir and therefore not divisible by s

and consequently not by pn
1. If, however, we take the power

l = ts<pn-l,

we get the result t,

lr
,
since the power pn 1 of /*((*) ^= is unity in

the field. But Ir is not divisible by pn
1.

Condition 2 is satisfied by our quantic, since it vanishes in the

field only when 5 = 0.

86. As examples under the preceding theorem, we note first
r

if r be prime to pn 1 [Compare 79]. Next, if p > 2,

represents a substitution on the marks of the GF[pn
~\

if x be any
mark in the field except +1, 1, 0. For the remaining p

n 3

marks T, the quantics 52) coincide in pairs. We note the following

special substitution quantics 52):

n = 1, p = 7:
4 3 and 5

2g
8
(Hermite),

For w = l, ^ = 7, v3=
1, the theorem of 85 gives the

quantics 2 3_

6(6- v)= 2 (|
5
-f 2

which together give the following SQ[b, 7] of 80:

6
5+ a S

8+ 3 a 2
^ (

=
arbitrary).

1) For w z= 1
,

this theorem is due to Rogers ,
Proc. Lond. Math. Soc.,

vol. 22 (1890), pp. 210 218.
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87. If 0(|) = a S*+ ai^-M---- be a [&, Pn
], then will also

), obtained by forming the compound substitution,

+ *
-

(fc/J

if a = 1. We may dispose of
T>, /3,

$ to simplify Oi(|). We take

y = tfo""
1

? and, in case Jc is prime to p, we choose
/5

so that

)

Finally, we take d= yO(/3). The quantic O^l), in which the

coefficient of (;* is unity, the constant term zero, and, when k is not

a multiple of j), the coefficient of I*"
1

is zero, will be called the

reduced form of 0() for the GF\j>*\.

88. To illustrate the use of the theorem of 84, we apply it to

determine all reduced SQ\3, pn
]. For p =J= 3, the reduced cubic in

the GrF[p
n
] is |

3+ aj. The sub -case ^)
w= 3m + 1 must be rejected,

since the mih
power of 3

-f J contains the power |
8 =

|
p*~ 1 with

coefficient unity and hence =j= 0. For the sub- case ^>
w= 3m + 2, the

condition given by the power m -f 1 is (m + 1) a = 0. But if m + 1

be divisible by^>, then would also 3m -f 3 =pn
-\- 1. Hence must a = 0.

The resulting form |
3

is a SQ[3, p
n= 3m + 2] by 79.

There remains the case pn=
3", when the reduced cubic is

Raising it to the power 3n ~i_f 3W
~ 2

H------\- 3 + 1 =(3
n

l)/2, we
find (mod 3),

fc
2.8-. 3-

fc
3- /fe3

g + 2 j-.-Cr-H^r
The highest exponent of | in this product is < 2(3

W
1). The

coefficient of

g8
w 1=

12(3^
irS 71 2

H-----1-3+ 1)

is evidently aj
^ x

. Hence must a.\
= 0. Applying then

the corollary of 81, the resulting form 3
-}- 2 g is a 5Q[3, 3W] if,

and only if, either 2
= or else -~

2 is a not -square in the

89. To treat a more characteristic example, we seek the SQ[5,p
n

']y

when pn
is of the form 5m -f 3. The reduced quintic is

The power m+1 gives (m + l)/3
as the coefficient of |5+2= |f

w
-i.

If m -f 1 = (mod p), then 5m -f 5 =pn
-\- 2 = and therefore # = 2.
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Hence
,
for p =j= 2, we must have

/3
= 0. The power m -f 2 of

53) f+|3 + y |

requires Cm+8>i y + CL,+i,8-3'y + CL+8.4*
4 - 0.

If jp is neither 2 nor 7, Om+ 2j2 =|= (mod p) and may be divided out;

for, if m -f- 2 be divisible by ^ then is also 5(m -f- 2) =^)
n + 7.

Multiplying the resulting equation by 5 2 and replacing 5m and 5(m 1)

by ^?
w 3 and pn

8, respectively, we have for p =)= 2, p =f= 7,

25y
2- 15y -f 2 4

EE(5^
- 2

)(5y
- 2 2

)
= 0.

The power m -f 4 of 53) requires, if
1

) ^>
n > 13,

On+4.,55(^M-^+4,620y^
If p is not 2, 3, 7 or 17, we may divide out the factor

(m + 4) (m -f 3) (m -f 2) (m + l)m.

Multiplying afterwards by 54
7! and replacing 5(m 1) by 8 (mod^),

etc., we find

This equation is an identity for by = a 2
,
but reduces to 10 a 9 for

by = 2 a 2
. In the latter case, a = y = 0, if p =j= 2. Hence, for

#*=)= 13, 2", 3", 7W or 17W
,
the only possible quintic which represents

a substitution on the marks of the GF[pn= 5m -f 3] is reducible to

5 5 + 5a 3
-j-

2
.

We have shown in 80 that this quintic is indeed a SQ[5,p
n= 5m -f- 3],

The special cases above excluded require separate treatment.

f
90. The foregoing methods may be employed

2

)
to show that the

following table gives every reduced SQ[]k, p"] for Jc < 6:

Beduced quantic Suitable for pn =
............... any p*....... ........ 2"

5
s a | (a

= not-square) ...... 3"

J
4

3| ............. 7

|4 + a
s | -f a

s g (if it vanishes only for g 0) 2"

|
5 ............... 5", 5m 2, 5m -f 4

|
5

ag (a not a fourth power) . . . . 5n

............ 32

............ 7
2+3 2

(a-
= not -square) . 7

1) If #=13, the power w-f-4 = 6 brings in terms |84= |2(/m 1).

2) Compare the author's Dissertation, I.e. pp. 77 86 and 101102.
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Reduced quantic Suitable for pn=
a 2

5
-f a 3

-f
-g-j; (a arbitrary) 5m + 2

|
5 + a|

3 + 3 2
| (a

= not-square) ... 13
5 2a|

3
-f

2
| (a

= not-square) . . . 5W

That in fact these quantics do represent substitutions on the

marks of the corresponding GF[pn
] follows from 79, 80, 81, 83

and 86, with the exception possibly of the eleventh and thirteenth

forms. To verify
1

)
that the latter two are substitution -quantics, set

k
(i

Since a is a not-square, we can choose an integer a so that fi~
2

shall be a particular not-square v. But

fi-^O*!) - ^-f^-^-f 3Gi-
a

)*g p-
8
|
s

.

Since ^,
3 = + 1 (mod 7), we can choose the sign of p = (/v) 1/2 to

make the coefficient of |
2

unity. It follows, therefore, from 87

that 0(1) and M*() will be substitution -quantics modulo 13 and 7,

respectively, for cc an arbitrary not-square, if they be such for a a

particular not-square v and for the -j- sign in H^). We take v = b,

a non-residue of both 7 and 13. In the notation of 76, these

reduced forms represent the substitutions,

n \ = /0, 1, 2, 3, 4, 5, 6\

U5 + o|
3 + |

2 + 5|j
-

VO, 5, 2, 3, 1, 6, 4)'

( g \ = /O, 1, 2, 3, 4, 5, 6, -6, -5, -4, -3, -2, -1\
l|+ 5|

8 + 10i; VO, 3, 1, 5, 6, 4, -2, 2, -4, -6, -5, -1, -3/

modulo 7 and 13 respectively.

The Betti-Mathieu Group, 9194.

91. It was shown in 81 that the quantic belonging to the GF[pnm} 7

represents a substitution upon the p
nm marks of the field if, and only

if, X = is the only solution in the field of the equation

0.

1) For a verification by means of the theorem of 84, see the author's

paper, American Journal
, vol.18, pp.210 218; in particular, 7 and 9.
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Suppose that this condition is satisfied by two functions M^(X) and
and consider the effect of applying first the substitution 1

)

A: X'=M

and afterwards the substitution
TO

-p. -\rfl \lt /"Vl\ "^1 T> -y-fw7l(TO ,;')

Jj. -A- = T^^^L J
> AwJL p

^J

The result is equivalent to that produced by the single substitution

1, ...,TO

-.7') V* (2m/;)

After reduction by means of X*
nm
=X, this equation may be written

(7* X" = Y (X) =

= 1

each (7; being a definite function of the A/s and B/s. By hypothesis,

requires ^(X) = 0, which in turn requires X = 0. Hence, X=
is the only solution in the field of H'c(X)

= 0. It follows that the

transformation C represents a substitution upon the marks of the

GF[pn
]. C is called the compound, or product, of A and B, and

the above relation is expressed in the symbolic form,

C = AB.

Giving to the coefficients At every possible combination of values

in the GF[pnm~\
such that

TO

~V"f "^^T A -f7-j,n(m i)

^J

represents a substitution on its marks
,
we obtain a set of substitutions

having the property that the result of applying first any one of the

set and afterwards any one of the set is identical with the result

of applying a single substitution of the set, called the product of

the two. Such a set of substitutions is said to form a group. In

the present case, the group will be called the Betti-Mathieu Group.
2

)

1) The present notation is used in place of and as equivalent to

2) For n = 1, this group was studied by Betti, Annali di Scienze Mat. e

Fisiche, vol. 3 (1852), pp. 49115, vol. 6 (1855), pp. 6 34; for general n, by

Mathieu, Jownal de Math., (2) vol. 5 (1860), pp. 9 42, vol. 6, pp. 241323.
The theorems of 92 94 are due to the author, Annals of Math., (1897),

pp. 94 96, 178-183.

DlCKSON, Linear Groups.
6
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92. Theorem. The necessary and sufficient condition that the

transformation m

54) X'-pAtZF* (X,Ai in the

shall represent a substitution on the marks of the GF[pnm~\
is

Al A2 ...Am
Apn A_P

n
Ap

n

+ 0.

pn( pn(m 1) pn(m 1)

I . . . A.m _ i

We seek the condition under which 54) is solvable for X.

Raising 54) to the powers 1, p
n
, p

2n
,

. .
., p

n (m~V and reducing the

powers of X by
ZPWW X,

we obtain the following m equations (written with detached coefficients) :

Z' A,

At Af

n(m pn(m L) n(m
- -AmAm -A-i . . . -ft-m 2 -^-m 1

The solution of this system of equations in X, Xpn
,

. . . gives

55)
- ^ ^

n(m-l) n(m-l) n(m-l) n(m_
2 <&*

56) AX*,n (m i)

An

.A{'

j_ 2

n(m-

The condition A =j= is necessary ,
since otherwise there would exist

a relation between the powers of X' with exponents < pnm. To

prove that the condition A =J= is sufficient
,
we need only verify

that the X given by 55) satisfies the relations 56) for i= 1, 2, . .
.,
w 1.

Observing that J.^
n = ^l in the field, we find the following relations

upon raising 55) to the power p
n (m ^ and moving the first i rows

below the last m i rows:
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= ( 1V
n- 2

(m_._
/

Moving the last i columns before the m i preceding columns,
which brings in an additional factor ( lyO"'^ we obtain the deter-

minant of formula 56).

It follows as a corollary that formula 55) gives the reciprocal

of 54).

A second proof may be given, based on the theorem of 72.

The condition that 54) shall represent a substitution on the marks

of the GF[pnm']
is identical with the condition under which

Xi, X%, . .
.,
Xm shall be linearly independent with respect to the

6r-F[p
n
] when it is given that X17 X2 ,

. . ., Xm are similarly indepen-
dent. We seek the condition under which

0.

Substituting the values of X], Xj ,
. .

., X^
p
*

in terms of Xj,

XP
J ,

. .

.,
XP

J
and the At, as given by the above table, we find that

-A.

The required condition is therefore ;that A =f= 0.

93. To illustrate a general method 1

) of obtaining sub-groups of

the Betti-Mathieu Group, we take m = 3 and consider the totality

of substitutions in the GrF[p
3n

']
on a variable X of that field,

x'
pni mA

;
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The conditions for the identity >' = $Z are readily seen to be

60)

Since the left members of 59) and 60) are the powers pn and p
2n

,

respectively ,
of the left member of 58) ,

we must have pp
w=

g. Hence

the totality of substitutions 57) for which the expression

is a mark of the GF[pn
~\ form a group leaving Z relatively invariant.

94. Consider next the substitutions 57) which multiply the

function

by a parameter p ?
where Z) is a mark =f= in the GrF[p

3n
].

To form the function T' into which 57) transforms Y
9
we

note that

Denoting by W the product of the expression on the right by D and

forming the sum T = W+ Wvn+ W^ n
,
we find that the conditions

for the identity Y' = $Y are the following six relations:

where, for brevity,

61) T = DA3A? 4- D*AfAf "+ D^ nA3A

62) f

In particular, it follows that $?"= Q. Hence those substitutions 57)
whose coefficients A1 , A, A

3 make r = and give to the function f/D
a value belonging to the G-F\_p

n
~] form a group with the relative in-

variant Y.

The method may be readily extended to determine for general m
the substitutions 54) which leave relatively invariant the following
function TO_i

(D in the GF[p* m
l[),

where s may be any integer < m, except perhaps m/2.
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It is found that the number of independent conditions upon
the coefficients AI, in order that 54) shall leave Y, relatively in-

variant, is at most (w -f- 1) or (m -f 2) according as m is odd or

even. One of these conditions merely requires that a certain function

of D and the A ; shaU belong to the GF[pn
~\.

95. We proceed to identify the Betti -Mathieu Group in the

GF[pnm
~]
with Jordan's linear homogeneous group on m indices with

coefficients in the GrF[p
n
~\.

Let R be a primitive root of the

GF[pnm~],
so that any mark of that field can be expressed in the

form
7> -f yiR -f y2^ 2 + : -f 7m i-^" 1

,
where each yt

- is a mark
of the GF[pn

'].
Consider the general substitution 54) of the Betti-

Mathieu Group. We may set

m 1 m 1 m I

where each
/, ,-

and af belong to the 6rJP[p
n
].

Substituting these values in the identity 54) and reducing the

powers of .R to a degree ^ m 1 by means of the equation of

degree m satisfied by the primitive root R, we may equate the

coefficients of like powers of E in the resulting identity. Since

we evidently reach a set of m equations of the form

63) gj
-

cc^ I, (
=

0, 1, . . ., m - 1),

in which the coefficients a -

belong to the GF[pn
\ By hypothesis,

equation 54) is solvable for X in terms of X'. Starting from this

solved form, our process evidently yields the ^ as functions of the |},

so that equations 63) are solvable in the field G-F[p
n

~].
Hence

|

a
{j =(= 0.

According to the definition given in 97, the transformation 63)

belongs to Jordan's linear homogeneous group.

Inversely, every linear substitution 63), with coefficients in the

GF[pn
~\
such that the determinant o-| 4= 0, can be represented in

nr 1

the form 54). We note first that 63) transforms XsV&lP into

where

l/m l \ m 1 /m 1 \ TO 1
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Furthermore, TO, r
1; . . ., rm_i are linearly independent with respect

to the GF[pn
], for, if #0, .,

xm \ be marks of the latter field such

that
h xTO -irTO_i= 0,

-i

0,

and therefore, since
| a^ =(= 0, each 3c/== 0. Hence, when each | e

- runs

independently through the series of pn marks of the GF[pn
], the

expressions X and X' both run through the pnm marks of the GF[pnm\.

Every substitution 63) therefore gives rise to a permutation on

the marks of that field.

But we can always find a set of marks AI, A%, . .

., Am of the

GF[pnm\ such that 54) will transform the set of marks 1, R, jR2
,

. .
.,

Rm~ l
, linearly independent with respect to the GrF[p

n
], into an

arbitrary set of m marks of the GF[pnm],

(f'-O,...,-!),

linearly independent with respect to the G-F[p
n

~\.
The conditions are

(*
-

0, 1, ...,- 1),

which can be solved for AI, A% 9
. .

., -4^, since the determinant in R
is not zero by 72. The resulting substitution 54) will transform

m 1 ? 1

the jp
nm marks ^^-E' of the (r^[p

wm
] into the marks "V^-Z?; all

?:= o /= o

distinct; indeed, we have the identity

t / m
('

96. EXERCISES ON THE TEXT OF CHAPTER V.

Ex. 1. Verify that 6
-{- a^

5 a4 2

(a arbitrary) represents a sub-

stitution on the marks of either the G-F[3
3
] or of the G-F[2

5
].

Ex. 2. (Hermite). A group of order 168 is generated by the sub-

stations ^M + 6) x
> =

aQ(x + b} + c (mod7))

where 0(V) ^ a?
5 2#2 and a is a quadratic residue of 7.

Ex. 3. (Rogers.) In applying Hermite's conditions ( 84) for a

substitution quantic, it suffices, when n ==
1, to test only the first

(p 1) powers. This result of Rogers does not generalize immediately
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to the case w>l; for SQ[6, 3 2
] it is necessary to consider, besides

the 2d and 4th
powers, also the power 5 >Y(3

2

l).

Ex. 3. By the theorem given by Weber, Algebra, II, p. 299, every
substitution on pn

letters, each affected with n indices #1, #2, . . ., A taken

modulo PJ may be represented by the transformation (mod p),

*!
=

<t>,-(*i, *2, ., *) (i
=

1, 2, . . ., n)

where each <t>
t is a rational integral function with integral coefficients.

Apply the method of 84 and show that, on raising each <t>t
- to the

powers 1, 2, . .
., p 2 and reducing by means of *?= 2,- (mod _p), the

coefficient of #? *.* ~
in each power must be congruent to zero.

Ex. 4. The following substitution in the G^O2
"]

a) X'-A
l
X?

n

+AtX (A4=0, .Af+i-^f+H-O)
can be reduced to the form Y f = BY by introducing a new index

b) 7=BiXP+BtX (Bf+iBf+^ti)
if and only if there exists no root in the G-F[p

n
~]

of the equation

^ R A
1

A?
= 0.

If A% + A?
n
=%= 0, it is not possible to reduce a) to the form

Y f = KYPn (K in the aF[p* n
])

by a transformation of indices of the form b).

[The first result is in marked contrast to that of 214 for m = 2].

Ex. 5. By the method of 95, show that the sub-groups of the

Betti-Mathieu Group defined in 93 94 by means of the invariants Z and Y
are identical with certain linear homogeneous groups on m indices in

the, G-F[p
n
] defined by a linear and a quadratic invariant respectively.

Ex. 6. (Moore.) The multiplier
- GrF [p

k
] of the additive -

group

[Ai, . .
., Aj is the (largest) additive -

group common to the additive -
groups

[V*Afc ,
A"

1

VI (i
=

1, . . ., m)

and is contained in the pm 1 additive -groups

[A-
1
A, . .

., A-
1
Am] (A =f of [A1? . . .,

Am]).
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CHAPTER L

GENERAL LINEAR HOMOGENEOUS GROUP. 1
)

97. First definition. Consider the pnm letters, or symbols,

fc*i-r>,

characterized by m indices, each running through the series of marks

of the G-F[p
n
]. The general linear homogeneous substitution A on

the m indices |,- with coefficients in the GrF [p
n
] replaces the letter

Ify # . . ., zm by l$'v f '#..., s'm where

m
A: 8-.V*i (-l,..,,m)

the coefficients
,-> being marks of the field. But A will indeed

permute the pnm letters if, and only if, the determinant ofA is not zero,

\A =K, 4=0.

In fact, there must be one and only one system of m indices which A
replaces by a given system J' and hence an unique set of values J^

satisfying the equations

Let B denote a second substitution with coefficients in the GF[pu
\

B:

where

1) Jordan, Trait des substitutions, Nos. 119, 169; author's dissertation,
Part II. Cf. 95 above.
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The result of applying first the substitution A, which replaces I*
, . .

., g

b ...' where

64) R-A (-l,...,m),

and afterwards the substitution _B
;
which replaces the general letter

^--- b f ---" where

65) tf-flwfi (*
=

1, 2, ...,),

is identical with the result of applying a single linear substitution,

called their compound or product AS, which replaces ^1? ..., %m by
l="v . . M C

TO, where, by eliminating the [ between 64) and 65), we have

m / m

Setting

we may write the product of A and JB in the form

AS: B-J? fly 6 Cfc-l,...,m).
/=i

By the theorem for the multiplication of determinants

Moreover, the coefficients 7^- belong to the GrF\_p
n
]. Hence the

compound AB is indeed a substitution and has its coefficients in the

same field as those of A and S. If therefore we let the coefficients

of A run through all the sets of values in the G-F[p
n
] for which the

determinant
| a^ \ =)= 0, we obtain a set of substitutions forming a

group called the general linear homogeneous group on m indices with

coefficients in the GF[pn
~\

and denoted by the symbol GLH(m y p
n
\

Remark. If the substitution A be identical with the substitution

then must o^= oc^ (i,j
=

1, . .
., m). This follows by taking in turn

for j = 1, 2, . .
.,
m the particular set of values
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98. Second definition of GLH(m,pn
).

- - The essential thing in

the substitution A is the matrix of its coefficients (^). Taking the

indices |i, ...,&* to be variable marks of the GF[pn
], we obtained

an immediate interpretation of A as a permutation of certainpnm letters,

so that the linear group was recognized as a permutation -group.
We may, however, let the indices |i, . .

., |TO be arbitrary variables

and consider the linear transformations

A-, i!

where each coefficient belongs to the GF[pn
~].

As in 97, the

'compound of two such transformations will be a linear transformation

of determinant not zero and with all its coefficients in the GF\jP\.
Since

, cc,-j =(= 0, the inverse of A exists and has similar properties.

Hence the totality of transformations A form a group, evidently

the GLH(m,p*).
Employing this second definition, we may represent the trans-

formation group as a group of permutations on pnm letters. Consider,

indeed, the p
nm linear functions AI|I+ ^2+ + ^mlm where each

/I runs through the marks of the GF[pn
]. These functions are merely

permuted by the linear transformations A.

99. Theorem. The order GLH[m, p
n
] of the group GLH(m,p

n
) is

(pnm_ l)(p _p) (p
m

_p
2n

) . . . (p
nm pn ("t" 1

)).

The number of distinct linear functions

by which the substitutions of the group can replace the index ^ is

pnm l, since the marks KIJ may be chosen arbitrarily in the GF[pn
]

provided not all are zero. Let T be one of the substitutions which

replace ^ by a definite linear function fv If then

Ei= I (identity), JR2 ,
B3 ,

. .

.,
EN

denote all the substitutions of the group which leave % fixed, the

products,
TRs> >TEx

will replace ^ by /i. No other substitution of the group has this

property; for, if U replace | t by /i, T~ 1U will leave ^ fixed and

hence be a certain E t ,
so that U= TRt . To each of the p

nm- 1

distinct functions /i there corresponds a set of N substitutions.

Hence
GLH[m, p\ = N(p- 1).
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The substitutions Rf are of the form

= 61, t
-

where the m 1 coefficients A i are arbitrary and the coefficients

Kkj(k,j
=

2, . .
.-, m) are such that their determinant =[= in the

field. The latter set of coefficients can be chosen in GLH\m !,#*]

ways. Hence ,-.. ,nm

GLH\m, p
n
1
= p(-V(p - l)GLH[m - 1, #].

This recursion formula giyes, since GrLH[l,p
n

~\ =pn
1, the result

GrLH[m,p
n
] =^(^-i)(p

100. Theorem. - -
Every linear homogeneous substitution A on m

indices with coefficients in the GF\pn
~\
can ~be expressed as a product

where B is derived from the totality of substitutions of the form

Br, : |r lr + Ag,, gl
= | f (^

=
1, . .

., w; i 4= r; r 4= *)

w arbitrary mark of the @F\p*] t
and where Dm denotes the

substitution altering only the index |m which it multiplies by the deter-

minant of A.

Let the giyen substitution A be the following:

A:

The product ^iJ5i >2 ,;.
has the form

the matrix of its coefficients being

Similarly, the matrix for the product

cll "13

s

<*2m
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To multiply A on the right by Z?r,,,ji, we therefore multiply the

s
th row of the matrix (a^) by A and add to the rih row; to multiply A

.on the left by the same substitution
,
we multiply the rih column by >L

and add to the s
th column of the matrix

(a//). We make use of

these operations, which are recognized to be identical with the

elementary operations permissible in reducing a determinant
,
to sim-

plify the form of the matrix A. It is shown below that, if m > 1,

we can set <xu = 1. Then by multiplying A on the right and left

by suitable generators Bi^if we can reach a new matrix A having
the elements of the first row and first column all zero, except an
which = 1. After m \ such steps, we would reach a matrix A^m~ V

having every element zero except those in the main diagonal and

the latter all unity except that lying in the last row. The resulting
substitution would be Dm . From the identity thus established,

BiAB-t^Dm? where S
L
and B

2
are products derived from the .B/j,*,

we find
A = Sr'DnBr

1- BPJfcBU- BDm .

It remains to be shown that, if m > 1, a matrix can be obtained

from A having an = 1. From the given generators we derive the

substitution

66) B^.iB^-i-iBtj.e ll-ife, --!-&,
affecting only the indices | f and

,.
In particular, for Z = 1, i = 1,

we get . .

* si-fe, --&.
We deterime a substitution derived from the Bi,j,i such that the

product A 1 = KA will have the coefficient 21 =J= 0. If 21 =f=0 ;
we

take K = I, the identity; if a
2i
=

0> ^ut a2/4=
>
we *a^e K = J-

The product ,,,_ .,-p
-oL A. -t>i,2,i

has the coefficient an = n + A 2i, which can be made equal to unity

by choice of A in the GF[p*].

Corollary I. The only linear homogeneous substitutions commuta-

tive with every B r,*, A (r, s = 1, . .
., m, r =)= s), wfare A is a

=(= o/" the GF[pn
~\,

are those of the form

It follows by inspection of the above two matrices for

and BiMiA that they are identical only when

ru = flf88 , ^-!=0 (f 2, 3, . .
., m), 2>=0 (j 3, ..., w).

Since the indices 1, 2 can be replaced by any pair r, 5 of distinct

integers ^ m, it follows that every element of the matrix (a/y) must
be zero except those in the main diagonal, which must all be equal.
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Corollary II. The group of Unary linear homogeneous substitutions

of determinant unity is generated by the substitutions -B^g,* and

T: Si- -I,, 6 = 6,-

Indeed, T transforms .#1,2, a into I?2,i,;..

101. Transformation of indices. - We can introduce in place
of . . . ro the m new indices

67) ni
-

provided the determinant 0;* | =(= 0. In fact, the substitution

A: |[-
=
"^ ccjj^j (i

=
1, 2, . .

., m)

1 . . .m

will replace ^- byfe^fe? which, by solving 67), can be put into

/,*
m

the form^%/;-%. The substitution A becomes

>=1

B-*AB: ,
=

(
-

1, 2, -
., m)

where 5 denotes the substitution 67) replacing the fj f by the ^.

In fact

B_!AJ> _

The determinant of the transformed substitution equals that of A
}

This result is, however, a special case (p
=

0) of the next theorem.

102. Theorem. Ihe characteristic determinant (with parameter Q)

of a linear homogeneous substitution A,

23

^'s unchanged under every linear transformation of indices.

It is only necessary to prove the theorem for the following types

of transformations of indices, since by 100 every linear trans-

formation can be derived from them:
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Under the transformation of indices D19 A takes the form

tttfty 0*
-

2, 3, . .
., ni).

The characteristic determinant of the transformed substitution is

n

. . amm Q

Under the transformation of indices JBi, 2, A, A becomes

i = 2, . .

., m).

The characteristic determinant of this substitution is

Multiplying the second row by A and subtracting from the first row,
and afterwards adding the first column multiplied by >L to the second

column, we reach the original determinant A(p).

Corollary.
- - The transformed of A by any linear substitution B

has the same characteristic determinant as A. Indeed, by 101, A is

converted into S~ 1AS by the transformation of indices indicated by
the substitution B.

Factors of composition
1

) of GLH(m,pn
), 103107.

103. Let Q be a primitive root of the GF[pn
~\.

If two linear

substitutions have as determinants Q
rl and $

sl

,
their compound has

1) For the case n = 1, Jordan, Traite, pp. 106110; for general w, author's

dissertation, Annals of Mathematics
,

vol. 11 (1897), pp. 168 175; also Burnside,
The theory of groups, pp. 340341.

DlCKSON, Linear Groups. 6



82 CHAPTER I.

the determinant @(
r+ sK Hence the totality of substitutions in the

group G= GLH(m,pn
'} having as determinants powers of Q

I forms a

subgroup GI. Suppose that

p
n

l=pip-2 Pk,

where pi 7 p%, . -
y pk are all primes. Denote by GP1 ,

Gpip^ . .
.,
Gpn_ i

= f

the subgroups of G formed of those of its substitutions whose

determinants are respectively powers of $
Pi

,
PlP

,
. .

., Q
pn l = l. By

63, the orders of these groups are respectively

= GLH[m,p]).

In fact, by 100, G contains substitutions of every determinant =f=

in the GF[pn
] and contains the same number of one determinant as

of another.

If S and T be linear substitutions
,
S and T~ 1ST have the same

determinant ( 101). Hence the groups GPI ,
GPlPz ,

. .
.,

f are self-

conjugate under G, i.
e.,

each is transformed into itself by any sub-

stitution of G. Since plf . .
., pk are primes ,

there is no group lying
between G and 6r

Pl ,
no one between G

P1
and Grplpt ,

etc, Hence we

may descend from G to f by the composition -series

G, G
Pl ,

GPlPz ,
. .

., G>rc_i
= f.

The group f of all substitutions of determinant unity is called

the special linear homogeneous group SLH(m,pn
).

It has a self-con-

jugate subgroup H formed of those of its substitutions which are of

the form

The mark
^Lt

must also satisfy the equation

pP*-
1- 1.

Hence, if c^ be the greatest common divisor of m and j)
n 1

7
we

find (by the method of proof used in 79) that

68) ^= 1.

Inversely, each of the d distinct solutions in the GF[p
n

~\
of 68)

[see 16], leads to a substitution M^ belonging to the group H.

The order of H is therefore d.

If d be a mark of the GF[pn
~\
which belongs to the exponent d

( 17, Corollary), then ^ is a power of d. Suppose that

d = qt q>2 -
g_i (each q, a prime).

Denote by JET
9l , H,M^ . .

.,
Hd
= I the groups formed of those sub-

stitutions of H which multiply every index by a like power of dq>

, by
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a like power of dqi
$*, . .

., by a like power of <5
d=

1, respectively.
Since we have, for any mark i/,

a composition -series of H is given by

H, H
qi ,

H
qiqt ,

. .
., Hg^ . . . qi= I.

In view of the theorem proven in 104 107, we may state the

complete

Theorem. - - The factors of composition of GLH(m,pn
} are

Piy P'2j - -
, Pk, Q/d(j)

n-
1), ql9 q2 ,

. .

., qh

except in the two cases (m,p
n
)
=

(2, 2) and (2, 3), when the factors of

composition are 2, 3 and 2, 3, 2, 2, 2 respectively.

104. Theorem. - -

Excluding the above two cases, the group H is

a maximal self-conjugate subgroup of f.

Suppose that f contains a self- conjugate subgroup J" which

contains all the substitutions of H and still further substitutions.

We will prove that, aside from the two exceptional cases mentioned,
J coincides with l~.

By hypothesis, J" contains a substitution

which is not in H and therefore does not multiply all the indices by
the same factor. Hence, by Corollary I of 100, S is not com-

mutative with every Br, s,i (f, s= 1, 2, . .
., m; r =)= 5). Changing the

notation if necessary, we may suppose that S is not commutative

with J5i,g f x,'a substitution of determinant unity and therefore in the

group f. It therefore transforms the substitution S of the self-conjugate

subgroup J into a substitution belonging to J. Hence J contains the

product c __
1 = b * j#

1? 2 , |

which does not reduce to the identity J. In calculating this product,
let O be the linear function by which S~ 1

replaces 2
. Then T is

seen to have the form, in which the values of the fa need not be

determined: m

T: ii-J^fc/t/1 -g,--A a <l> (
=

2, 3, . .
., m).

j*-i

Suppose first that the a,-! are not all zero, say cr21 =|= 0. For

m > 2, we introduce new indices
rj{

defined by the substitution V of

determinant unity,

171
=

gi, 7^ 2
=

g,, ^= i-
-

^
J2 (i

=
3, 4, . .

., w).

6*
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The resulting substitution V~ l TV belongs to J and leaves ^ (i> 2)
unaltered:

If, however, every a,-i
= 0, T itself leaves fixed m 1 indices. In

either case, J contains a substitution =J= JT of the form 1

)

rfi
=

rii (*
=

3, . .

., m).

Then J" contains the two substitutions leaving 7^3, . .

., rjm fixed:

=
^2

7?-l T>-1 T? T? I 1
?!
=

^1= H ^2,3^1-^-^2,3^' \
,

1^2
= ^2

These substitutions are both of the form

If T
2
and T3 reduce to the identity, R itself becomes

JRi: 1?1
=

^1 -f ^13^3 H-----h yimllm, ^2
= ^2+ ^23^3 H-----h

If y\j= y%j= (j
=

4, . .

., m) 9
this substitution =|= J is of the

form C7". In the contrary case, we may suppose that y14 and y24 are

not both zero. Then

is a substitution =}= / of the form U and belonging to J. Hence,
in every case J contains a substitution U not the identity. For

definiteness, let c?i =j= and introduce the new indices

Then 7 becomes -Bi,3, ff|
. Transforming the latter by the substitution

61-Ag,, Si
= -l- 1

|2 , |!
=

fc (t-3, ...,m),

where A is an arbitrary mark =)= of the 6r_F[j9
n
], we reach in J

the substitution BI^IO, and therefore every ^1,3,^. The latter is

transformed into Bt,af i(k =(=1? 3) by the following substitution of f:

&- -^ a -i,, !-$ (*- 2, :..,*- !,* + !, ..., w).

1) From this point, the proofs by Burnside and Jordan (1. c.) are incomplete.
The specific errors were made in the Traite, p. 108, 1 and in The theory of

groups, p. 316, "This process may now be repeated", etc.
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Finally, for j =f= &> ^/t.sa is transformed into I>k.j,i by the substitution

i;
= -

$,, g - I,, B = & (
-

1, . . ., m; 4= 3, .' +.
It follows from 100 that, if m > 2, 7 is identical with P.

105. For m = 2, we are given that J contains a substitution

8: ii
= a|1 +/5|2 , li

- oVl- /?$i (!*-'/ -1),
which is neither the identity J nor

: Ii--Ii, Ii--Ir
We proceed to prove that, for ^;

n> 3, J contains a substitution of

the form _Z?
2j 1) ^

in which A =j= 0.

a) Suppose first that
/3
=

0, so that J contains

S
1

= II-"?!, ft -'!+ "-'I,.,

where '

=|= if a = ~ 1

?
since ^ =f= J or .E.

a
A) If a = a" 1

,
whence a = 1, the group J contains both S

t

and fi^JK, one of which has the form

a^) If a =j=
1

?
tT contains the substitution =%=!,

8
l B^i, l 87

1Bl, t, 1 : li
= |1; i;

= I2+ (!-%.
b) Suppose next that /5 =}= 0. The following substitution

has determinant unity and therefore belongs to f. Hence 7 contains

flgEEl-^IS; viz.,

^ ^-^^ ?.. -a+^cy+^^fc ^fc
1
- ~ X 91) feg

~
JJ
X 2 Sl~~ % 62-

If p*= 4 or if ^;
n> 5, K can be chosen in the GF[p*] so that

Proceeding with 52
as in case ag), we obtain in J" a substitution ^2,1,

where I 4= 0.

If ^n=
5, we take x = 1, when

S
.E becomes

f

si tel? '2
~

i'
*

Our result follows unless
/3

f

-j- a = (mod 5). But J contains the

product SS^iji S~B2, i, i, viz.,

6i
-

(1 + /3)|1+ /P|, f ^ -(1 + aft-
2

)li+ (!-/
for which the sum corresponding to the above

/3

f

-f- a is

(1 + /5) + (1
-

a/3 + 2

)
= ^

2
-f 2 -|- (mod 5).
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We have now proved that, if pn> 3, J contains a substitution

2, i, i (A* =)= 0). It is transformed into B2,i^ Q
^ by the substitution

Also

BZ, 1, 1f B^ 1, ;. a2
= B^ 1, i

(
2+ o*).

By 64, there exist solutions in the GF[pn
] of p

2 + 2 = %/h for ^

arbitrary in the field. Hence J contains B^ ^ % . Transforming the

latter by (|J
=

%2 , 2
= ~~

Si) we ge^ B^z, ?.- It follows from 100

that J= T. By 99 and 103, the order of the group T of binary
linear homogeneous substitutions of determinant unity is pn

(p
2n

1).

106. For pn=
2, m = 2, the group f is of order 6 and is identical

with GLH(2, 2). It contains a subgroup of order 3 generated by
the substitution

61-6,, &-!,+ $,.

The index of this subgroup being 2, it is self-
conjugate. The factors

of composition are therefore 2 and 3.

107. For p"=3, m = 2/ the group G = GLH(m,pn
) is of

order 48 = (3
2

1) (3
2

3) and contains the following substitutions

A . fcf _ t' fc i .
**" *1 91) b2 ?1 ~r fe2?

-^ :
fe]

"^
fe2? Sg

B==
il~i~ 52?

C: R--fe, 6i-gi;
D: ft-li + 52 , 6i

= Si-Sa ;

^: Si
= -

Si, . Si
= -

Sz,

of which A has determinant 1 and the others determinant -f~ 1

modulo 3. In virtue of the relations

EC, CD -
EB, BD=CDB,

A*=l, AE=EA, AD = CA,

it results that the groups generated as follows:

{E,D,C}; {E,D,C,S}, \E,D,C,B,A

have the orders 2, 4, 8, 24, 48 respectively and that each group is

self-
conjugate under the following group. The last group is identical

with 6r
;
whose factors of composition are therefore 2, 3, 2, 2

;
2.
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108. From the linear homogeneous substitution A of 98 on the

arbitrary variables
1, 2; -, %m,

we obtain the linear fractional substitution

-{- Ui m lXml-{- Kim ,.
., ., N

j

--
i

-
( I = 1 , . . ., m 1 )

(-
amm i Xm i -f amm >

upon setting #,-= |//|m for i = 1, . .
.,
w 1. It being only a question

of the ratios of the coefficients a^ in A', its determinant
a,-;

is

determined only up to a factor (JL, (JL being a mark =j= 0. Also, ^4.'

is the identity if, and only if, A be one of the pn
1 substitutions

The products -M^J. and no other linear homogeneous substitutions

correspond to the same linear fractional substitution A'. Hence the

group G GLH(m,pn
) has (p

n
1, 1) isomorphism with the group L

of the substitutions A. If Q denote the order of 6r, the order of L
is Q -f- (p

w
1). To the subgroup f formed of the substitutions of G

having determinant unity there corresponds a subgroup A of L com-

posed of those of its substitutions whose determinant is an mth
power

in the field. If d be the greatest common divisor of m and pn
1,

there are exactly ^substitutions of the form 'M.^ in f and they form

the group H ( 103). Hence f has (d, 1) isomorphism with A. The
order of A is therefore Q -]- d(p

n
1). Aside from the cases (m^p^ = (2, 2)

and (2, 3), H was shown to be the maximal self-conjugate subgroup
of f; hence A has no self-

conjugate subgroup other than itself and

the identity and is therefore simple.

The group LF(m, pn
) of all linear fractional substitutions in

the GF [p
n
] on m 1 variables and having determinant unity or some

mth
power in the field has the order

d being the greatest common divisor of m and pn
1. It is a simple

group except in the two cases (m, p
n
)
=

(2, 2) and (2, 3). The group

of all linear fractional substitutions of determinants not zero has d times

the order of LF(m7 pn
).

The notation LF(m,pn
) emphasizes the point that the essential

quality of the linear fractional substitution lies in the matrix (a/y)

of degree m and not in the m 1 variables x\, . .
.,
xm i which play

the ro le of indeterminates. For m = 2, we use the suggestive notation

In virtue of the identity of the two substitutions

C" any mark + 0)*
y,

of determinants A and
ft

2
A, we may choose ft so that the substitution

takes its normal form, viz., of determinant unity if p = 2, but of
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determinant unity or a particular not-square v if p > 2. In fact,

if A is a square, ji
2A may be made equal to unity by choice of ^

in the field; while for A a not- square , |tt

2A may be made equal to v.

If p
n > 3, the group LF(2,p

n

) of all linear fractional substitutions

in the GF\pn
] of determinant unity (when in their normal forms) is a

simple
1

) group of order

P^^ /2 l according as p > 2; p = 2).

There are pn
(p

2n
1) linear fractional substitutions of determinant =j= 0.

From the formula of composition of binary linear homogeneous
substitutions ( 97) 7

we derive the product SS of linear fractional

substitutions S = | -?

="

Hence if /S> operate first and S
L
afterwards

,
the product SS

1
is

2
)

109. The quotient -group f/T may be readily represented as a

permutation-group on q =::- (p
nm

1) -;- (p
n

1) letters 3
).

Of the

p* 1 letters l^ ^ ...,sm in which % lf |2; . . ., ^m denote marks of

the GF[p n
] not all zero, we combine into a single system the

pn l letters l^ ^ . ..
? ^m in which p runs through the series of

marks =(= while ^, | 2; -, Im denotes a set of fixed marks not all

zero. Any linear homogeneous substitution on |i ;
. . .

; %m with co-

efficients in the field replaces the letters of any one system by letters

all of some one system and therefore permutes the q systems amongst
themselves. In particular ?

the substitutions M^ do not displace any

system. Hence the group f of substitutions of determinant unity

corresponds to a permutation -group on the q systems ,
which represents

concretely the quotient-group

1) Cf. Moore, Congress Mathematical Papers, pp. 208 242, Bull. Amer.
Math. Soc., Dec. 1893; Burnside, Proc. Lond. Matb. Soc., vol. 25, pp. 113139
(Feb., 1894); also see 261 below.

2) For the same product of matrices
,
the notation S

t
S is sometimes used,

S operating first.

3) Compare the method .of 228, 224; also, for m =
2, that of 239.
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CHAPTER H,

THE ABELIAN LINEAR GROUP. 1

)

110. A linear homogeneous substitution on 2m indices with coeffi-

cients belonging to the GF\j)
n
^ is called Abelian if, when operating

simultaneously upon two sets of 2m indices
,

fc . fc / __ -r c> ..,\

it leaves formally invariant up to a factor (belonging to the field)

the bilinear function

74) <p

The totality of such substitutions constitutes a group called the

general Abelian linear group
2
) GA(2m, pn

\ These of its substitutions

which leave cp absolutely invariant form the special Abelian linear group

SA(2m, p*). For other definitions of these groups see 160 below

and the author's article
,

Transactions of the American Mathematical

Society, vol. 1, pp. 3038.
The conditions that the linear substitution

75) S: ii
(i=l, 2, ..., w)

shall leave 9? formally
3
) invariant up to the factor p are

76)
'

KJJ Ctijt

Pij Pik

0', *

0.

For w = 1, the Abelian group Gt

^.(2, jjf*)
is evidently identical

with the general binary linear homogeneous group GLH(2, pn
\ In

1) Investigated by Jordan, Traite', pp.171 186, for the case n=l; by
the author, 'Quar. Jour, of Math., 1897, pp. 169 178, ibid., 1899, pp. 383 4, for

general n.

2) To distinguish these groups from the ordinary Abelian, i. e. commuta-

tive, groups, we prefix the adjective linear. The Abelian linear group is not

commutative in general.

3) The indices & and rji are treated as arbitrary quantities. Formal in-

variance is used in antithesis to numerical invariance.
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determining the structure of the Abelian group, we may therefore

suppose m > 1.

111. We proceed to determine the substitution reciprocal to S
9

m

(i
= 1,2,..., m).

Supposing $ to be Abelian, we obtain the same result upon multi-

plying (p by tt that we obtain upon operating the substitution S upon
the two sets of indices. The identity of the two results is not

destroyed by operating the substitution S~ 1
upon the indices |,-i, vjn

(i
= J

?
. . ,

9 m) of one set. The result obtained upon multiplying (p by p
and then applying the substitution S~ 1

upon the indices /i, r]n is

therefore identical with the result obtained by applying the substitution S

upon the indices , 2 , ^ 2 alone. Equating the two results
,
we find

uOMja + ^-^ya)
-

^i(.-J> + y/y

From this identity in the indices
J,-^, i;^ 7

we find

Hence the reciprocal of the Abelian substitution 75) is

77) (t-l, 2, ...,m).

When S~ l
is operated upon the two sets of indices, cp must be

multiplied by l/^. Forming the relations expressing this fact, we
obtain the following conditions, together entirely equivalent to the

set of conditions 76):

2
78)

l =

<*ki 7k i
\

7k i

7k i

Pa

k i

ft; a*
!

=
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112. Since the conditions 76) and 78) will be used repeatedly
in this and the succeeding chapters, it will be found to be of great
assistance to apply the following scheme by which these conditions

can be read off by inspection from the matrix of the coefficients

of 5:

11 ftl

ftl #11
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S - Ur
T,

where T is a new Abelian substitution not altering cp and hence in

the special Abelian group. Since r may be any one of the integers

1, 2
7

. .
., pn

1, the order of GA(2m, pn
) is pn 1 times the order

SA[2m,pn
~]

of the group SA(2m, p
n
\

Let a, /?,... be the prime factors whose product gives JM
W

1.

Let ^L, J., A tt p,
. . ., -4.p_i = SA(2m, p

n
) be the groups formed by

the combination of the substitutions of SA(2m, p
7

*)
with

Z7, Z7, 7<*, . .
.,

Z7*"- 1 = /

respectively. Evidently these groups have the respective orders

(p
n-

1)SA [2m, p
n

~] ,

~-
(p

n-l)SA[2m, pn
] ,,

while each is self-
conjugate under A =

114. Theorem. - - The group SA(2m, pn
) is generated by the

substitutions
x

where i, j = 1, 2
;

. . .
? m; i =j=^'; aw^ where k is an arbitrary mark of

the GF[pn
~\. Every substitution of the group lias determinant unity.

From these substitutions leaving cp absolutely invariant, we
obtain other simple substitutions of SA(2m, yf)

= G as follows:

Let /S be any substitution of 6r and let it replace ^ by

yiy not a11 zer
]-

We can set S = F$', where T^is derived from the above substitutions

and S' is a substitution of G in which the coefficient corresponding

1) In the expression for each substitution we omit the indices not altered.

For example, MI alters only the two indices v\i and | .
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to an in S is not zero. Indeed, according as cr^-^O or y1; =j=0,
we may take V= PIJ or P^jMj. Let S 1

replace |j by

We can determine a substitution 5j_ derived from the above types
which shall replace j^ by o^, viz.,

Si = In, MiLi, a ft, 2, ^ #1, 2, y
ia

ft, m, lm

where a and /? are determined by the conditions

Hence S' = S
t S", where S" is a new substitution of 6r which

leaves ^ fixed. Let S" replace ^ by

.7
= 1

For
f*
=

1, Kn = 1, yn = 12
= yJ2

= =
I TO
=

yii 0> the relation

jR12
=

t
a of 79) gives dn = 1 in the substitution S". The substitution

will replace ^ by o
2

if we take

Hence Sn = ^ >S"", where $'" is a new substitution of G which

leaves ^ and ^ unaltered and thus has the form

a-ii, ?;

Cff .

f ,r

Applying the following relations of set 79),

&.-0, fti-.O (<
=

3, 4, ..., 2m),

n - /
= M - n = (*

=
2, 3, . . ., ).

The relations between the coefficients a,-,, y,-^, /3,-y, ^ (*, j
==

2, . .
., m)

of S'" are seen to be precisely those holding for a special Abelian

substitution on m 1 pairs of indices. Furthermore,

S - FS' = F^S" = VS&S'",

where F, 51? 52
were derived from the types of substitutions given

in the theorem.

After m operations similar to that by which S"' was derived

from S, we reach a substitution which leaves fixed all the indices
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and is therefore the identity. Hence S is a product of substitutions

of the given types. Since the latter are all of determinant unity ,
so

is also the general substitution S of the group.

115. Theorem. - The order SA[2m, pn
~\ of the special Abelian

group equals

8) 2n

There are (j?
n
)
2m 1 sets of values of alj7 y\j (j

=
1, . .

., w), not all

zero, which give distinct functions c^. In the function o?
2 ,

dn = 1

while /3n, jSiy, diy (j
=

2, . .
., m) are arbitrary in the field. Hence o>

2

may be chosen in (#
n
)
2m~ *

ways. We have therefore the recursion

formula -
2, #].

116. Theorem. For p > 2, the factors of composition of

',j pn
)

are SA[2m, p
n
~]
and 2, the case pn =3, m *=* 1 being

exceptional.
1

)

Every substitution of Gr ~ SA(2m, pn
)

is commutative with

The group K = {J, T) of order 2 is therefore self- conjugate under Gr.

In order to show that K is the maximal self- conjugate subgroup
of 6r, we prove that a self-conjugate subgroup J of Gr, which

contains K without being identical with K, must coincide with Gr.

Let S, given by 75), be a substitution of J not in K. Then J
contains the products

S Li t
i SLij, S L'i,i SL'

f) i (i
=

1, . .
., m)

where I is a fixed mark =|= 0. Suppose first that all of these

products reduce to the identity. Then, for example, S is commutative

with both LI,* and L
100, S has the form

so that, by the proof of Corollary I of

lau
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But S is to be commutative with every pair L^ and L'I^. It follows

that S reduces to the form

By the first type of Abelian conditions given under 79), we have

aa= 1. Since S is not in K, the an are not all -f- 1 and not

all 1. Transforming S by a suitable product of the form Pi rP2 ,,

we may suppose that an= 1, ff22
= 1 in S. Then J contains

Ni~2,(tSN']L) 2 i ftf
which replaces |t by ij 2

ko-^2 and is therefore (since

p =j= 2) not of the form S. Taking it in place of our initial sub-

stitution S, we are led to the case next considered.

Suppose that not all of the above products reduce to the iden-

tity J; for example, let

If S~ l
replaces ?; t by the linear function CD/ A, the product denoted

by Si has the following form, in which the coefficients of il have

not been calculated:

i;..-=g/-a,-iCD (*
=

2, ..., m),

From Si we proceed to determine a substitution =J= / belonging
to J and leaving 2m 3 indices unaltered. S

1
itself is such a sub-

stitution if KH== Pn= (*
=

2, . .
., m). In the contrary case, the

transformed of S by a suitable P2; or P^jM^ will have <*21 =(= 0.

Consider therefore S
t
when a21 =f=0, and introduce the new indices

ii
=

if -^ is, fy-
= ^ -^-?2 (*

"^ 3, . . ., w),

an operation equivalent to the transformation of S^ by the following

product T belonging to the group G:

where

We obtain the substitution 5
2
^ T~ l

SiT, leaving fixed 2m 3 in-

dices, viz.,

1- =(&- afl co)
-

(
-

or21 o))
= I,-, ^ = ^ (i

=
3, . .

., m)
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Writing ,-, ^ for /, ^- in S
2 ,

and applying conditions 79) , viz.,

Jf?84=l, Eli=E2^=0 )
Rli =B* i =E* i

=Q (j
=

5, 6, . .
., 2m),

we find that $ takes tlie form

the indices /, rji (i
=

3, . .
., m), not being altered by S

2
and the

substitutions below, are not written in the formulae.

The group J contains the product

where is a linear function of 17 i^17 %.

a) Suppose first that $3
is not the identity. If 1 an =[= 0, we

may define r by the equation

Then e7 contains S = L\^
1

S$L\^, which has the form

iia> u / ,

QN

ia
-

^2 + ffaiii + fti^i + ^22^2. ^2
-

^2-

Applying the conditions E13
== -^3= of 79), we find that ylg

21
==

0, so that $4 has the following form (with a =f= 0):

If, on the contrary, 1 n = 0, J will contain M
1

1 SBM1J which
is not the identity and has the form 81). In either case, J contains

a substitution 81) in which a and
/3

are not both zero.

If a = 0, 4= 0, 81) is of the form L
it p 4= J. If a + 0,

7 contains the transformed of 81) by $3, i, Aj giving ^ne substitution

Taking A = /3/ 2 a, this becomes N^^ a - Then J contains

82) i,, _ , =
JVi, 2,

M7
J

JTiTi "Mt(Mt I*, j)-
1

JV,, ,. (M,L2, ,).

Transforming by P12 ,
we reach Z2

,
_2. In either case, J" contains

a substitution of the form jC2
,

;. (k =j= ^)-

We next prove that J contains all the generators Lftfl)
M

t
and

Ni
t jtft

of the group G. Having L^i, J contains the product

2V,*
1

I'M 2*,
= !,* (T any mark 4= 0).
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The product of two such substitutions gives L*, i^ + 1^). But, by
64, marks r

v
and r

2
can be found in the G~F[p

n
], p > 2, such

that t\ 4- 1\ has an arbitrary value ^ in the field. Hence J contains

-L
2)/u

. Then I contains the product

Hence 7 contains Z/>/t
and .Mi, the transformed of Z2,/u

and Jf2

respectively by P2? . Finally, 7 contains 1

)

^3) -2VJ-, y, ^ = Qi, j, i L^ p Lj, p Qi, j, i Li, p Lj, n

b) Suppose, however, that $3
= I. Then S

2
is commutative

with NI, 2,^? s that

n = !; fti
=

0, dn -=
1, d\2

= cf21 .

Applying the Abelian conditions E13
= R>5

=
0, we find that dl2

=
0,

y12 ='y21 ,
so that 5

2
becomes

=
la 4-

/S
2

is not the identity since $
t

is not. If yn = 0, $2
is of the form 81)

considered under case
a).

If yn =f= 0, J contains $'
2 ,

the transformed

of
2 by 2,i,^ where A = yu/yu , viz.,

For d = 0, /Sa
=

^i, yil
- For d 4= 0; ^ contains the transformed of

/S'g

by Ti
t
il2ifl ,

K and
ft being arbitrary marks 4= 0,- giving the sub-

stitution

Forming the product of two such substitutions and noting that,

for p > 2, the equation AJ -f ;|
== ^ has solutions in the 6r-F [p

n
] for ^

an arbitrary mark 4= f ^ne field, we find that J contains

where a and
/3

are arbitrary marks =(=0. A suitable product of two

such substitutions gives

Ll, a L%
} ^

-

LI, a L%, p
=

LI, 2 a

In every case we reach in J a substitution LI, 2, where A =j= 0, and

therefore also L2
,
*. It follows as in case a) that J= G.

117. Theorem. For p = 2, SA(2m, pn
) is simple except when

m = 2, pn =
2, and when m = 1, p* = 2.

1) We might reach J^i, 2, a by 82) and then obtain JV/, y, /*
in the group J.

DlCKSON, Linear Groups. 7
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For p = 2, a substitution $ of G = SA(2m, p
n
) is commutative

with every L^ i and every Z/, % only when S is the identity. Proceed-

ing as in 116, we find that a self-conjugate subgroup J of 6r,

which contains a substitution S =%= I, will contain either a substitution

of the form 81) with a and
/5

not both zero or else a substitution S'9

of the form 84) in which yu =j= 0.

We next prove that J contains . either Li
t

2. (h =4= 0) or else

-#i, 2, i 2, i. For d = 0, 2
=

Zi, 7ll
. For d 4= 0, we transform

2 by
a suitable TI

?
* T2? ^ and obtain the substitution Zi, i L2

,
i. Hence J

contains 1

) t

VI, 2, 1 -L/l, 1 -^2, 1 Vl, 2, 1 = -l-n, 2, 1 -^2, 1-

For a = 0, 81) becomes Z2
, /s,

so that we reach Li,p in J. If

/3
= 0, 81) becomes JYi

f
2

, a, so that, by 82), J contains i
lj
_ aa.

Finally, if 4= 0, /3 4= 6,' the transformed of 81) by 1^1*^ gives
the substitution

S = Si + ^2 , |;
=

|j -f

In the G-F[2
a
], we may take

ft -/J- 1/1, A = ->-*,

when the last substitution becomes JV^ 2, i -^2, i

Having a substitution Zi,/ (A =)== 0), J will coincide with Gr.

Indeed, TI^ transforms L^z into L^jn?. Since every mark of the

field is a square, we reach L^ a ,
6 arbitrary. Then, as at the end

of case a) of 116, J contains every L^ OJ Miy N^^ and hence

coincides with G.

There remains the case in which J contains N^ 2, 1^2,1- Then

J will contain all the products, two at a time, of the substitutions

85) L f
, i, Mh N^ ! (i, j=l,2,.. ., m;

Indeed, if i and j be any two distinct integers ^ m, J contains

I,
i j

t jt
i jt

i j
t j, i

=
f)

i y?
i ,

MT*Lit
i Lit !Mt

- L
t>

! Lj, ,
=

L>, ,M{ , (L,- , M^ = Mt L^,

L^ ! Lit !
.

L,, ! Mi= Lj, 1 Mi- Jf, Zy, !, JftLit x
'

Zy, ! Jf;
= Jf, Jf,,

Our statement is therefore proved if m = 2. If m > 2, let
i, j, Jc be

any three distinct integers <; m. Then J contains

N{
} j} i Lit i L{

}
i L^ i

= N.;
t jt

i L^ i
= LJC

}
i N^ ^ i ,

N
itit i i/, i Z/, i Jf* = ^,,- iMk

= Mk Nft/1 1.

1) This relation follows from 83), if p = 2, by taking i = 1, j = 2, p = 1.
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We next prove that, for m > 2, J contains L^ i. Since, for p = 2,

Z^-MtL^Mi, R^-MtMjNwMtfy,
it follows that J will contain the substitution

-D = L[
t
i L^ i 3, 1 -Bl, 2, 1 -Ra, 3, 1 ^3, 1, 1;

the latter heing the product of an even number 24 of the sub-

stitutions 85). This product is seen to be

D: 8-g,, tf
= ifc+!i+ a +ls (i~l, 2, 3).

But D is transformed into i^i by the following Abelian substitution

of period two:

Hence 7 contains .L^i and therefore also

/,
1 -^1, 1

'

^1, 1 ^/, 1 ^i, * /, 1 ^f, r = -/, t*> ^C i*i, i Zfi, i
=

-My,

JV,, A i i,, ! iz, !
= Nt

, ^ lf T-/ JV;. A , ^ ,
= Nt,^.

Hence, for p = 2, m > 2, J" is identical with 6r, so that 6r is simple.
For p = 2, m = 2, J" contains M M

2
as above, and therefore also

MiM* T^MtM9 T^
~
T^.

Hence J contains every T^ a . But -Ri, 2, A transforms T^ a into

Ki, 2, 2(i + a) ^i, If w > 1, the 6rF[2*] contains a mark a neither

zero nor unity, so that 1 + a =j= 0, =)= 0. Hence, for n > 1, the

group J" contains JRi, 2,^(14- )

=
^i, 2,1? by proper choice of L It

therefore contains -Ar
i, 2, i- Having the products in pairs of the sub-

stitutions 85), J contains M{ and L,^. Thus J=G.
The fact that the case m = 2, _p

= 2, = 1 is exceptional is

shown in the following section.

118. Theorem. - - The Abelian group SA(4, 2) on four indices

modulo 2 is holoedrically isomorphic with the symmetric group on six

letters.
1

)

By 264 of Chapter XIII, the symmetric group on 6 letters is

holoedrically isomorphic with the abstract group 6r6! generated by

jBj, JBfc,
-B

3 ,
-B4 ,

B
5 subject to the generational relations

j^2 = fil _ j^2 _ _g2 = _g2 = J

J,

B2- L

1) This theorem was first proved by Jordan by means of the groups of

Steiner, Traite', No. 335. The proof given in the text is due to the author,
Proc. Lond. Math. Soc., vol. 31, pp. 40 41.

7*
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To the operators Bt we make correspond the following substitutions

of SA(4, 2):

86) Si^^lMij -Z?2
'

'-^1,1; Bs^S, JD4~_ZJ2) 1, -Z?5<~.My,

where 8 denotes the Abelian substitution of period two:

li 0111101111011110
We readily verify that the relations corresponding to the above

generational relations are satisfied in virtue of the correspondences 86).

Since SA(4$ 2) has the order

(2
4
-l)2

3
(2

2

-l)2 = 6!,

the isomorphism between SA(4, 2) and Gr\ is holoedric.

119. In determining the factors of composition of the general
and special Abelian groups on 2m indices with coefficients in the

GF[pn
], we have been led to a quotient- group , SA(2m, pn

)/K,
where K^

{ I, T] is of order 1 or 2 according as p = 2 or p > 2.

Owing to the great importance of simple groups, we will designate
this quotient-group as A (2m, p

n\ it being a simple group except in

the three cases m = 1, pn= 2
;
m = 1, pn= 3

5
m = 2, pn=

2, when

its factors of composition are 2, 3; 2, 2, 3; 2, -*&., respectively. The

order A[2m, p
n
] of A (2m, p

n
)

is

where a == 1 or 2 according as p = 2 or p > 2.

Conjugacy of operators ofperiod ta) 1

) m SA(2m,pn
) and A(2m,p

n
).

120. Theorem. - Within the special Abelian group SA(2m, pn
)

any substitution S defined ~by 75) is conjugate tvith a substitution Z
which replaces ^ and r^ by the respective functions

lll + yiiyi -f !? ? ftili + dn tji + ^im-l^m-l +

i w _i = or ese i m=.
The theorem is evident if 1/;

= ylt
- =

/3lz
- = dlt

- =
(i
=

2, . .

., m).
In the contrary case, we may suppose that alm , yim , f}lm ,

dlm are

not all zero, first transforming S by Pim where i is a certain one

1) Taken from the author's article, Quarterly Journal, vol. 32, pp.42 63.
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of the integers 2, 3, . .
., m. According as a\ m 4= 0, yim 4= 0, ftlm̂ 0

or dim 4= 0, we transform S by J, Jf/n ,
Jf1? or M\Mm respectively

and obtain a substitution S' in which alw =J=0. Transforming S'

by Z,,^, we obtain a substitution /S" which replaces ^ by

r-

Since i m =)= ^ we can choose I in the field to make the coefficient

of tjm vanish. Transforming S" (in which now cclm =[=0, ylm = 0)

by L\,Q 9
we reach a substitution S^ which replaces |17 % by

respectively ,

On - Wii)* + yn 1
?! + +

( )l+ ( HiH-----h (ft TO + 0alm)| OT +
We choose p to make /?i,4- (>!= 0. Hence S

l
has i m =J=^

yim= 01m = 0.

We next determine an Abelian substitution which affects only
the indices 3? ??2> t>m, ^m and which transforms S^ into a substitution

5
2 having lOT ^0, ylm = /3ir;2

= y12 ==
/312
= 0.

a) Let cr12
= y12

= 0. If $
12
=

0, the transformed of S
1 by M.2

gives S2
. If ft2

and d\2
are both not zero, we transform S

{ by .L^,
where

/312 Q d12
= 0, and obtain S2

.

b) Let 12 and y12
be not both zero. Transforming by M2

when y12 =(= 0, we may suppose that 12 =[= in Sv Transforming it

by L^Q, we can make y12
= 0. If then ^

12 =)= 0, we transform by

is, ?
and make

/312
= 0. Suppose, however, that ^12

= 0. If dim =)=0,

we transform by R^m,^) where /S12 -f- ^ ^i =
0, and reach

/S'g.
But

if dim=0;
we have ^ if 12 =0; while for

/312 4=0, we transform

by Q^qMs, where a
l2 Qaim = 0, and reach $2

.

In an analogous manner, we can determine an Abelian sub-

stitution which affects only |3 , ??3 , i ro , rjm and which transforms ^
into a substitution $3 having

lm 4= ^ y = fe = yi8
= As = rim = ftm = 0.

Repeating the process, we may also make

We therefore reach a substitution S conjugate with S within the

special Abelian group and replacing |n ^ by respectively

Transforming 5 by m,2, a, where 12 <?ai TO
=

0, we obtain a

substitution of the form S but having 13
== 0. Similarly, we may

make a
13
= =

im _i = 0. If, in the resulting substitution S
19
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d12
= = di m = 0, we have reached X. If di w =f=0, we transform

$1 by Q-2,m,a, where d12 -f <7#im = 0, and reach a substitution of the

form S but having also #
12
= 0. In a similar manner we make

tf18
= . - = di m -.i = and reach I. Finally, if 8lm = but d

12 ,

d
13 ,

. .
., dim i are not all zero, we may suppose that #im _ i =j= 0,

first transforming by some Pim i. We then transform it by Q^ m i^j
for i = 2, 3, . .

.,
m 2 in succession, and make

so that we reach X.

Corollary.
- -

If au , yu , fin, $u (i
=

2, . .
., m) are not all zero

in Sj it is conjugate within SA(2m, p
n
) with one of the two types of

substitutions :

Since the conjugate substitution I! then has i m =f= 0, we may
transform it by Tmj i m . Then if dim_i=0, we have Zr In the

contrary case, we transform also by lm \i dim i and get Z
2

.

121. Theorem. - - The special Abelian group SA(2m, pn\ p> 2,

contains exactly m sets of conjugate substitutions of period 2. Ihe

rth set includes

substitutions all conjugate with Tr = li,_i ^2, i ^V, i-

In order that the special Abelian substitution 75) shall be

identical with its reciprocal 77), for ^ = 1, it is necessary and

sufficient that

Every substitution of period 2 of SA(2m,p
n

'), p > 2, has therefore

the form
11 12

an ft,

ft

pie>
a
l9
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G-F[p
n
], p > 2, on t < m pairs of indices is conjugate within the

group SA(2t7 pn
) with one of the substitutions Tr (r <; ) and proceed

to prove that a like result holds for m pairs of indices. In view of

120, we may suppose that S has one of the three forms Z1? Z2

or Slf the latter having lf
= yu ^ ft*

= \* = (i
=

2, . .
., m).

An $ of the form S is evidently a product T^ + iS*, where 82 affects

only the m 1 sets of indices |2 , ?y2 ,
. .

., m , ??m . By hypothesis,

52
is conjugate with one of the products, J, J

2j _i, T2> _i T3j _i, . .
.,

Tg,__i ^3, i Tm
,

i. Hence an $ of the form $
t

is conjugate with

some Ir (r
=

1, 2, . .
., m). We proceed to consider Zx

and Z2
in

the following three cases.

Case a),
d

=j= in X
x

. Then /S' has the form
'

an
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Taking a11 + tf# = and transforming the resulting substitution

by T^t, we obtain PI = (Slim) (ififyn)-
The latter is transformed

into Ji
5

_ i by the following Abelian substitutions (and by no others):

Kml

'ml

L 2(awil d
x

m i

iKi)-! 1

Wi iymi)
= 1 J

It follows that, if d =f= 0, Zj is conjugate with some Tr .

Case b). d = in Zr The, Abelian conditions 79) now give

y,-m=tf,-m=0 (i
=

2, ..., m-1), an+aTOIB =0, < = !.

Transforming Zj by 1, , *, where 1 2>Lan = 0, we obtain

u ... 01
u ...

a . ,

-fc,H .
-

Hence TT=Tii1 TT f

,
where TT' affects only &, ij.-.(i

=
2, . .

., m)
and may therefore, by hypothesis, be transformed into a product of

the T^ i by an Abelian substitution on the same indices. It will

transform W into a product of the T^_! (j
=

1, , . ., m), which is

conjugate with some Tr .

Case c). In virtue of the Abelian conditions, Z
2
becomes

a
ll



THE ABELIAN LINEAR GROUP. 105

To complete the proof of our theorem
,
we note that

T1 T T1 T T W T T
! 3= -ii,_i, J-2 -tl, 1 -L2,~ 1, ., -t* -^1, 1 ^2, 1 .

-//H, 1

have the respective characteristic determinants (with parameter K)

Hence no two of them are conjugate under linear transformation.

The most general substitution of SA(2m, p
n
) commutative with Tr

is seen to be A = A rAm r ,
where Ar is an arbitrary special Abelian

substitution on the indices | f-, r?,: (i
=

1, . .
., r) and Am- r an arbitrary

one on the indices
/, rj t (i

= r + 1, . . ., m). By 115 the number
of substitutions Ar and Am r is respectively SA[2r, pn

] and

SA [2m 2r, p*]. Dividing SA[2m, p*} by the product of the

foregoing numbers, we obtain the number of substitutions of

SA(2m9 pn
) conjugate with Tf within the group.

Operators of period 2 of A(2m,p*), 122123.

122. By 119, we obtain the quotient-group A (2m, p
n
) by

considering as identical S and ST= TS, where S is an arbitrary
substitution of SA(2m, p

n
) and T is the self-conjugate substitution

Tj,_iT2,_i . . . Tm? _i. In particular, Tr and Tr T become identical

in the quotient-group. But the latter is conjugate with TOT_ r .

Furthermore, if s = m/2 or (m 1)/2 according as m is even or odd,

no two of the operators Ji, T*, . . ., Ts are conjugate within the

quotient -group. The special Abelian substitutions of period 2 lead

therefore to just s distinct sets of conjugate operators of A(2m, pn
\

p > 2. To complete the study of the operators of period 2 of

A (2m, pn
), it remains to determine the conjugacy of the special

Abelian substitutions S for which S 2 =I. Being of period 4, such

an S is not conjugate to any Tr . Moreover, no two of the cor-

responding operators of the quotient-group are conjugate, since that

would require one of the four relations

= Tr or TTr ,
A" l

(8T)A^Tr or TTr ,

A being Abelian. But any of these would require that 8 be conju-

gate with some Tf.
within the special Abelian group, whereas their

periods are different. Making use of the result of 123, we may
state the theorem:

According as m is even or odd, the group A(2m, pn
), p > 2, has

exactly
--

(m + 2) or (m + 1) distinct sets of conjugate operators of

period 2.



106 CHAPTER II.

123. Theorem. - - Within the special Abelian group on 2m indices

in the GF[pn
], p > 2, every substitution S, sucli that S 2 =

T, is conju-

gate with M= M^Mz . . . Mm .

1

)

Taking as S the general substitution 75), whose reciprocal is

given by 77) for
ft

==
1, the condition S = S~* T is seen to require

.V
= - d

J iy V*i
-

YJ iy Pv = Pjt ft j = 1, . . .,' w).

The matrix of coefficients of the general S is therefore

8=
'12

Vim

72m

-"1m 7lm U2m 72 m

ftm tflm /^2m "~2??i- $

subject to the special Abelian conditions.

Take first m = 1. Then 5 has the form

It is conjugate with a similar substitution in which au = 0. In fact,

if
/3n =|= 0, the transformed of S by L^ % replaces r^ by

in which the coefficient of % may be made zero by choice of L If

fti
== ^ ^11 H55 ^ we firs^ transform S by Jfefj

and then proceed as

before. If
/3n = yu = 0, we first transform /S by L[, i and obtain a

substitution which replaces ^ by 2JLa11 ij1 n^i; so that the new

Ai + O.

With alt
=

0, S takes the form

and is the transformed of M by the special Abelian substitution

(f
Indeed, by 64, there exist solutions in the 6rJF[p

71

], ^> > 2, of

To prove the theorem by induction for m pairs of indices, we
assume it true for t pairs of indices t < m.

1) For the number of conjugates see Ex. 8, end of Ch. VIII.
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If KH = 0i t
= yn = #1,-

=
(^
=

2, . . ., m), then $ = $!$', where

$! affects only |1? ^ and is therefore conjugate with M19 and where

$1 affects only /, ^,- (^
=

2, . .

., m) and is, by assumption, conjugate
with M2MS . . . Mm . Hence $ is conjugate with M1M^M^ ... Jfm
within >SA (2 m, j

ra

) .

In the contrary case, 8 is conjugate (by 120) with one of the

two substitutions Z17 Z
2

. We consider the following three cases.

Case a). If Z1? with d =(=.0, be of the form 8 above, the Abelian

conditions give
/j J^ f\ / *

G) ~1\

Hence Zj
=

Z^ Zj_
f

,
where Z^ has the form

?1
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If =
0, then d

w =

CHAPTER II.

1 and the transformed of F by -Ri)TO , y^
1
gives

7n

y-
1 00000 - d^

r.T
1 ^- 1

If 0=[=0, the transformed of F by JVi, m>^ gives a substitution of

the form W. Since TF is the product of a substitution on the

indices 1? 7^ and a substitution on the indices %mj i]m ,
it is conjugate

with MiMm .

Cte b). If

conditions give

Ai-y.-Q,

Transforming Zi
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Suppose first that au = 0, so that ft 1 yn = l. Transforming
Z

2 by jRi,fB,a, where 1 + ^ fti
=

0, we reach a substitution equal to

a product $!$', where S1
affects 1? % only and S' affects

only .

a sj ,, *
^

(i-2,...,m)

Suppose, however, that n =4=0. Transforming Z
2 by Lm^^^,

ym-iro-i-f- 2pcfn ==
0,

we obtain a substitution Z
2

f the form Z
2
and having ^TO_ lw_i= 0.

Transforming Z
2 by .L',,, ^,

where
(lmm 2pGrn = 0, we obtain a sub-

stitution Z
2

of the form Z
2 ,

but having ftmm= ym _i m _i= 0.

If ft 1=^11=0?
we transform Z

2 by Qm 1,1,*, where 1 2Aan=0,
and afterwards by 1, m , ? ,

where 1 2^ n =0;
and obtain a product

$!$', where S affects only |1? % and 5' affects only | f , ^,- (i > 1).

/Jn H=0, we transform Z
2

'

by
and get
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CHAPTER III,

A GENERALIZATION OF THE ABELIAN LINEAR GROUP. 1

)

124. Those linear homogeneous substitutions in the G-F\j)
n
]

on mq indices
,

87) S:
x'ij
= ? (& xkl
t=i

,
. .., f; j 1, ...,

which, if operating simultaneously upon ^ independent sets of mq
variables

,
the j

ih set of which is given the notation

00

leave formally invariant the function

'i'2
'

form a group G~(m,q,jp
n
), which for q = 2 is the Abelian group

The conditions upon S for the absolute invariance of O are seen

to be those given by formulae 88) and 89), viz.,

88)

89)

mV
i= l

il il

iq

/each Is = 1, 2, . .
., g;

=
(

each j = 1, 2, . .
., m,

\ji>J2>- ,jq not all

125. T/ie inverse of the general substitution 87) o/* 6^(m, g, ^n
) s

90)

,
. .., m; s = 1, . .

.,

1) Taken from the author's paper, "A class of linear groups including the

Abelian group", Quarterly Journal, July, 1899. The group is mentioned, but
not investigated, by Jordan, Traite, p. 219, No. 301.
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where Aji denotes the adjoint of ar{ in the determinant

111

f 1

Ctrl
1 1 i 1

Cr '2
. . . CCr q

41

In fact, the product 87) 90) replaces xrs by

t = 1, . .
.,
m

Here the coefficient of xk i is

AIL '* =fj tfj =^rskl-
1, . . .

,

i 1 fl tl tl
CCri ... ttrsl UK i ttrs+l

iq iq
... r;_i ak}

and therefore, by 88) and 89), equals unity if (&, 1)
=

(r, s), but

equals zero if (k, T) 4= (^ s). Hence the above product replaces xrs

by xrs - The reciprocal of ^S is therefore obtained by replacing ^'

by A]
1
, for ,* !,.. ., w; ?, j

=
1, . .

., 2-

Writing relations 88) for S~ 1

given by 90), we find

91)

m

2
Ait

. . . A*.*
iq

v
.

tl
" '

"iq
2-1

1*

holding for j
=

1, 2, . . ., m.

Note. -- For substitutions 87) which multiply O by a constant p,

the reciprocal is evidently obtained by replacing ^ by ~A^.

126. The structure of the group 6r(m, ^, p") is essentially different

in the two cases q = 2 and g > 2. The case q = 2 has been investi-

gated at length in Chapter II. In the following investigation we
assume that q > 2, a restriction necessary for the treatment given.

Let fa, j3 ,
. .

., jq
have fixed values not all equal chosen arbitrarily

from 1, 2, . .
., m, and let &

2 ,
Jcs ,

. .
., Jc

q
have fixed values chosen

from 1, 2, . . ., q. Then for j^
=

1, . .
., m; ^ 1, . .

., #, we obtain

mq equations 89). In fact, since # > 2, ^ j2 ,
. .

., j? are not all

equal and hence do not lead to conditions of the type 88). Expanding
the determinants of 89) according to the elements in the first columns,
our mq equations may be written
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where

92)

in which

_ -71

i 1, . . ., m
Z = l, ...,,7

tt
7
:

6*

.72*2

~b
q
denote the integers 1, . .

.,
I 1, I -|- 1, . .

., q.

Since the determinant a*^ |
=4= 0, being the determinant of S, we have

Hence the determinant 92) vanishes for '!,..., m and for

&
2 ,

&
3 ,

. .
., &

9
an arbitrary combination of q 1 distinct integers <| q.

If # = 3, we have reached the relations 95) below. If q > 3,

we denote by C\
b
*

k
the adjoint of a!

6
* in the determinant 92) and

consider the following expansions:

93) C ib* = 0.

8=2

Of these consider the mq equations in which i, js ,
. .

., jq have fixed

values chosen arbitrarily from 1, 2, . .
., m, but such that j3 , j4 ,

. .
., ^

are not all equal, and &
3 ,

. .
., fc

g fixed values chosen arbitrarily from

1, 2, . .
., g, while lastly j2

takes the values 1, 2, . .

., m and &
2

the

values 1, 2, . .
., q. Since the matrix

-2, - .., 2

comprises g 1 rows of the matrix of /S, not all of its determinants

of order q 1 are zero. Hence the q 1 determinants 0, which are

the same in each of the mq equations 93), must be zero, viz.,

94)

where c3 ,
. .

., c
q
denote any q 2 distinct integers < q.

If q = 4, we have reached the relations 95) below. If q > 4,

we proceed as before. After q 2 such steps, we reach the set of

relations
a
Tk %

95) =0
r, s,
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In virtue of the relations 95), the conditions 89) all reduce to

identities. In fact, in each relation 89), at least two of the J'B are

distinct, say j ={= j2 ,
and therefore all minors formed from the first,

and second columns vanish in virtue of 95).

A substitution S belongs to the group G(m, q, pn\ q > 2, if and

only if its coefficients satisfy the conditions 88) and 95).

127. Theorem. - -
Every substitution S leaving <t> invariant can

be derived from the totality of linear substitutions of determinant unity

on q indices

Xik
(J
- V- > 2),

together with the linear substitutions, each on 2q indices,

... (XigXjg) (i, j-1, ..., l).

We can evidently derive from these generators a substitution T
which belongs to Gr(m, q, p

n
) and replaces an arbitrary index Xti by

any particular index as xn . We may therefore suppose that in the

product S' = TS, S being defined by 87), the coefficient ag =|= 0.

If then we set

}!-= CJ*g (j
-

2, . . , m; ft - 1, . .
., q)

it follows from 95), for i 1, r 1, / = 1, # 1, j > 1, that

96) J*
= Qi J* (j

= 2, . .
., m\ fc, s = 1, . .

., g).

Substituting these values in the relation 91) for j
=

1, we find

tn . . .

2-1 2-1

= 1.

It follows that
aft

Hence the following substitution is of determinant D =)= 0.

DlCKSON, Linear Groups.
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If we denote the determinants of by Dt
so that <t> EE

we readily see that E multiplies Z^ by the factor D but leaves

unaltered Dt (i
=

2, . .
., m). Hence, if W denote the substitution

the product WE multiplies by the factor J). The product

S
1
= (WE)~

1
S' multiplies <t> by D~ and therefore satisfies the

relations 89) and consequently also relations 95), derived from them.

But S
1

affects the indices xn ,
x12 ,

. .

., xiq as follows:

where aj denotes D l
times the earlier *, for & = 2, . .

., m. For

the substitution S we have
J*
=

(s
=

2, . . ., q). Hence by 96),

Also K\\ = (s
=

2, . .
., g), a\

s

s

= 1. Hence, by the following cases

of 95),

we find cijl
= 0. Hence every a** = 0, for j

i > 1, so that $j leaves

HX-(3Cl
tX/-j | ^12 ?

" " *
J ^1 ^?

*

Applying the Note of 125 to form the reciprocal of Slt we

find that the matrix of $1" has zeros throughout the first q columns,

except the diagonal terms D in the first q rows. By the above

argument, the remaining elements of the first q rows must be zeros.

Reciprocating this matrix by the same rule, we find that D = 1 and

that S
1
reduces to a substitution on the indices

(
' 9 *\

Since W is the identity, S = T~ l

S' = T" 1ES19 where I and E
are derived from the generators given in the theorem. Proceeding
with S

1
as we did with S, we reach a substitution S2

on the indices

Xjs, . .
., Xj q

. Finally, we reach the identity.

128. It follows from 127 that the group G(m, q,p
n
), q > 2,

has an invariant subgroup f composed of the substitutions

where, for i = 1, 2, . .

., m, the determinant

1 (j, *- I, -,
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The quotient-group is generated by the substitutions Pfj and is thus

holoedrically isomorphic with the symmetric group on m letters. The

group f is the direct product of m groups each the special linear

homogeneous group in the GF[pn
] on q indices

( 103). The sub-

stitutions of the i
ih
group are given as follows

X' = X .., m;

The structure of the group G (m, q, pn
) is therefore completely de-

termined.

CHAPTER IV.

THE HYPERABELIAN GROUP.

129. The totality of linear homogeneous substitutions in the

GF[p2n
~\ 2m

S: ;-==^V^ (i
=

1, ..., 2m)

which leave absolutely invariant the function

2J 1 52 Z

forms the hyperabelian group
1

) H(2m, p
2n

).
Its name is derived from

the fact that the totality of its substitutions whose coefficients belong
to the included field 6rF[p

n
] constitutes the Abelian group SA(2m,pn

\
which is therefore a subgroup of the hyperabelian group.

A general substitution S transforms Y into

a
if

!,...,2m

J 1,^=1

The conditions upon S for the absolute invariance of V are thus

97)

where

2
1=1

t,
. .

., 2m)

=
0, unless j and A; differ by unity, when

1) Introduced by the author, Proc. Lond. Math. Soc., vol. 31, pp. 30 68.

It will hardly be confused with Picard's hyperabelian group of infinite order.

8*
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The reciprocal of the hyperabelian substitution S is

8'

12 /

Indeed, the product 88 1

replaces 2^

12J

< {..-
; 1 2*

n

1 2 J

p
n

2j,'2Z

1 Silat 1 4- *2* 2? 2*) -^ 2Z

*=i
f 1

Similarly, $$ replaces |g/ by

The relations 97) in which j > & are derived from those in

which j
i < & by raising the latter to the power _p

w
. We may there-

fore express the hyperabelian conditions in the convenient form

98)
Ik

1 (if fcj + l= even)

(unless fc = j + 1 = even)

( j, fc 1, . .
., 2m; j ^ fc).

The corresponding relations for $
1

are found by replacing

by respectively

2; 12^

Writing out the four sets of relations 98) according to the evenness

or oddness of j and
Tc, and making the replacement just indicated,

we obtain four sets of relations for the invariance of Y by the sub-

stitution S~ l
and therefore together equivalent to the relations 98).

We may combine the four sets into the single formula

1 (if & = j + 1 = even)

;_! ^ 2 , I (unless & = j + 1 = even)

(j, fc 1, . . ., 2m; j^fc).

hyperabelian substitution S must

99)

130. T/&e determinant A o/
1

satisfy the relation

100) A*n
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For proof, we reflect on its main diagonal the determinant of

S~
,

then change the signs of the 21 1 st row and column for

I = 1, . .
., m, and finally interchange the 21 1 st row with the 2 I

th

row for I = 1, . .
., m, and likewise interchange the corresponding

columns. We obtain the determinant

Hence AA^ = 1, being the determinant of the product S3 1
.

131. Theorem. The maximal subgroup M of the hyperabelian

group H(2m, p2n
) which transforms into itself the Abelian group

SA(2m, p
n
) is given by the extension of the latter by the substitution

wJiere Q is a primitive root in the GF[p2n
]. The index of SA(2m, pn

)

under M is pn
-\-l.

We determine all hyperabelian substitutions

2m

fc (*
= !,..., 2m)

which transform the Abelian group into itself. Now S transforms

the Abelian substitution, affecting a single index,

| 2 r 1= ?2r 1+ ?2r

into the substitution

(*
-

1, . .
., 2m),

whose coefficients must therefore belong to the 6rJPf_p
n
], viz.,

f-2r-i ^L-i ft J ^ ? 2m; r = 1, . .
., m).

Likewise, S must transform the Abelian substitution

?2r == ?2r H- ?2r 1

into a substitution belonging to the GF[p*]. Hence the products

r ft j
=

1, -
-, 2w; r = 1, . .

., m)

must belong to the GF[pn
]. The reciprocal 8~ L

must transform

the Abelian group into itself. From the above results, it follows

therefore that the products

2r-i* _!, , ,.. .,.f; r =
,

. .
., m

must belong to the GF[p"]. Combining our results, every product



. 118 CHAPTER IV.

101) a,. r ccriaf. ftj,r-l,.-..

must belong to the GF[p*\.

But, if 0, 7 be marks of the .F|y] such that

$yP
n = p = mark of GF[pn

],

then, if y 4= 0, /5/y EE ^y--^-
1

is a mark of the GF[pn
]. Hence

by 101), the ratios of the non- vanishing coefficients in any row or

any column of the matrix of S must all belong to the GF[pn
~\.

Suppose first that m = 1. If ccn =j= 0, we have

ff21
= Aa11? 12

=
pcxn (A, ^ in the 6r-F(j)

n
]).

Then if A and p be not both zero, 22
= v 11 ,

v being in the GF[p n
],

For A = p = 0, the hyperabelian condition gives ccn ajj
=

1, whence

tf22 =i/fflr If, however, au = 0, both a12 and 21 are not zero.

Hence cr
22
=

(>a12; Q in the 6rJPfp
n
]. By the hyperabelian condition,

-
12 f"==l, whence tf21 =(?ff12 ,

(? in the (rJP[^)
n
]. In either case,

we have reached a substitution of the form 103) below.

For m > 1, S transforms the Abelian substitution

Hence the sums

must all belong to the GF\j^\. In like manner, if S transform

each of the following three Abelian substitutions (in which r 4= s),

into substitutions belonging to the GF[pn
], then must the respective

sums

belong to the 6rF[jp
re

]. Combining our results, every sum

102) ^ a + ,-,< ft j, r,
-

1, -. .
., 2m; r 4=

belongs to the



THE HYPERABELIAN GROUP. 119

Of the coefficients in the i
ih row of the matrix of S, we may

suppose that air =(= 0, for example. If, then, ajr =(= 0, the ratios of

the coefficients in the i
ih and j

th rows must all belong to the GF[pn
]

[by the result following from 101)]. If, however, ^- r =0, we may
suppose that, for example, ajs =j= (s =)= r). Then, by 102), the

products ,. r j" belong to the GF[pn
]. We have in either case the

result that the ratios of the coefficients in the i
ih and j

ih rows belong-
to the GF\_p

n
]. Hence the ratios of all the coefficients in 8 to any

one non- vanishing coefficient belong to the GF[pn
], so that S may

be written
2wj

103) gr=>%6, (t-l,..., 2m),

where the ^ belong to the GF[pn
].

Inversely, every hyperabelian substitution of the form 103)
transforms into itself the Abelian group defined for the GF[p*].

The conditions that 103) shall be hyperabelian are

104)
1 Ik

a-?"- 1

(if &=j + l

(unless Jc = j -f 1 = even)

(, j-1, . .., 2m;

The substitution (A^-), or 103) with the factor a deleted, therefore

belongs to the general Abelian group 6rJ.(2m, pn
) and multiplies Y

by the mark oj-^" 1 of the GF[pn
~].

If then we set

105) ^ a.r-,

we find that S = 7 F, where
2m

6 (-!,... ,2m),

F: i2-i=i2i-i, l2/=a~pn
|2i (?

=
1, ..., m),

so that F, and therefore also U9
is a hyperabelian substitution.

Moreover, in virtue of the relations 104) and 105), U belongs to

the special Abelian group SA(2m, p
n
) and is therefore of determinant

unity. The first part of our theorem is therefore proven.

If we form a rectangular array of the marks =j= of the GF[p* n
~\

with those belonging to the GrF[p
n
] as first row, the

"multipliers" form a set of marks tx1> 2 ,
. . ., a p*+i such that none

of their ratios belong to the G-F[p*\, while every mark of the

GF[p2n
] not of this set has with some mark of the set a ratio

belonging to the GF[p tt

]. Furthermore, the product
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Va'Vr
1

: Sii-i-a-'o'Sii-i, 62i= pV-"B

|2 , (Z
=

l,..., w)

belongs to SA(2m, p n
~)

if and only if a~ 1
a' belongs to the GF[pn

].

It follows that the substitutions Va . (i
=

1, 2, . .
.,

>
w
-f 1) give the

totality of substitutions Va such that Va'V~^
1

does not belong to

SA(2m,p
n
).

Hence an identity of the form

UV
{
= U' Va . (i and j ^ p- + 1

;
* + j)

is impossible when U and V' both belong to SA(2m, p'
l\ Every

hyperabelian substitution 103) is therefore of the form UVa .,
i being

chosen from the series 1, 2, . . .,p
n+ 1, while an identity C7Fa .

= 27' F.

requires i = j, 27= U f

. Hence the number of distinct substitutions 103)
is (p

n + l)SA\2m, p*~\. The second part of our theorem is there-

fore proven.

132. Those substitutions of the hyperabelian group H(2m,p2n
')

which have determinant unity form a self -

conjugate subgroup H 1 of

index p*+l. In fact, for c any mark 4= of the GrF[p
2n

], the

substitution

li-fffe, li-a-'-fe, 65-1, (-3, ...,2m)

belongs to T(2m, jp
2
").

Its determinant <?
(pn~ 1) can

; by choice

of 6, be made equal to any one of the pn
-f 1 roots of ApW+ 1 =l.

Hence there exist hyperabelian substitutions whose determinant A is

any root of this equation. By 130, there are no other values of A.

The group H r

contains a self-
conjugate subgroup formed by the

substitutions

106) T.,: |! = v^ (i
-

1, . .
;, 2m) [**- 1, x?

n+i -
1].

The quotient-group will be denoted by the symbol HA(2m, p2
").

It will be proven simple except in the special cases m = 1, pn = 2 or 3

( 138, 145, 148). By the same references its order HA[2m, p2n
] is

where ^ denotes the greatest common divisor of 2m and pn
-\- 1. The

order of H(2m,p2n
)

is

m-2)
^ ^ ^ (^,2

w

The Abelian group SA(2m, p
n
) has an invariant subgroup formed

by the identity and T_I. The quotient-group A. (2m, p n
)

is simple

except in the three cases m = 1, p n =
2; m = 1, pn ==

3; m = 2, pn= 2

( 119). But H(2m,p2n
) contains SA(2m, p

n
)

as a subgroup. In

order that Ty, shall belong to the latter, the coefficient K must belong
to the GF[pn

]. But jc^=5c and p
n+ 1 =l require K 2 =l. Hence
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would Tx be the identity or T_I. It follows that A (2m, p
n
) is a

subgroup of HA(2m, p
n
).

We proceed to determine the number of

conjugates to the former group within the latter group, using the

result of 131.

133. Theorem. -- The largest subgroup M' ofHA(2m,p2n
) which

transforms A(2m, p
n
) into itself is identical with A(2m, p

n
) ifp = 2

or if p > 2 and pn
-f 1 contains a higher power of 2 than m contains;

in tJie remaining case, the order of M' is double the order ofA (2m, p
n
).

The determinant of S=UVa being supposed to be unity and

that of U being unity, it follows that Va has determinant

107) a-m( P -i) =1>

Now Va and Ty.Va correspond in the quotient-group HA(2m, p
2ti

)

to the same operator. We investigate the conditions under which

TyVa has its coefficients in the GF[pn
]. The necessary and sufficient

condition is seen to be

(xtf)"*-
1 -!.

Hence must x 2 =apn ~ 1 and therefore

or a must be a square in the GF[p2n
]. The remaining condition

v? m = 1 becomes an identity in virtue of 107). Hence, if the solutions

of 107) are all squares in the GF[p2n
], the substitution 8 UVa

will correspond in the quotient-group to an operator belonging to

A(2m, p
n
). But, if there occur not-squares as solutions of 107), the

resulting substitutions F may be expressed as products Vv Vp*,
v being

a particular not -square. Then F^ corresponds in the quotient-group
to an operator of A(2m, p

n
), while F does not. In this case the

group A (2m, pn
) is transformed into itself by a subgroup of

HA(2m,p* n
')

of double the order of A(2m,p
n
).

For p = 2, the theorem follows at once since every mark of the

GF[22n
] is a square. For p > 2, we are to determine in what

cases 107) has as its solutions in the GF[p* n
] only squares. A

common solution of the pair of equations

i

is required to be a solution of a 2 (p
*

1} = 1. A common solution

of 108) satisfies ad^n
-^=l, where d is the greatest common divisor

of m and pn + 1. The condition is therefore that d shall divide

y (P
n + !) It is satisfied if, and only if, pn + 1 contains 2 to a

higher power than m does.
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Corollary.
- - If g = 1 or 2 according as the order of J\I' is

equal or is double the order of A(2m, pn
), the number of subgroups

of HA(2m, p
2w

) conjugate with A(2m, p1

*)
is

HA[2m, p2n
]

~
g A\2m, pn

]
=

where a = 1 ii p = 2, a = 2 if ^> > 2, and q denotes the greatest

common divisor of 2m and p n
-j- 1.

134. The conditions that the quaternary substitution in the

fel
=== tt\A ~i" ^I

shall be hyperabelian include the following:

22 + 81 42
=

Setting AEEEC^K^ #24^42? we nnd from these conditions that

The above substitution then takes the form

T:

Inversely, the substitution T is seen to leave absolutely invariant

if 22; 24; a^ ,
:44 belong to the 6r-F[_p

2w
], so that T belongs to

H(4, p*
ra

).
The totality of the substitutions T forms a group G

holoedrically isomorphic with the general binary linear group

GrLH(2, jp
2w

). Among the substitutions T occur the simple ones of

the form

where ^4 and B are arbitrary marks of the G-F[p*
n
] such that

We proceed to determine every hyperabelian substitution

i*i (-!,

which transforms the subgroup 6r into itself. The product S
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.7
=

1,

must belong to 6r. Hence the coefficient of ^j i must vanish if *

be even and that of |2y
if 2 be odd. Taking first B= 0, we find,

after dropping the common factor ( 1)*,

where i and & are both even or both odd.

If pn> 2, this leads to an equation in A of degree 2p
n <p2n

1.

Being true for every A=$=Q, it is therefore an identity, so that

110) a; I<K* 2
=

0, ft{sa*4 = (i,
Jc both even or both odd).

Taking next the terms in .Z?, which can have two values =[= 0,

we find

111) 0t s 0*2 = (*,
& both even or both odd).

Similarly, if S transform the following substitution of the form T,

into a substitution of 6r, we find from the terms in C that

112) 0/10*4=0 (i,
k both even or both odd).

If any cc^ =|= 0, i and j being both even or both odd, the sub-

stitution S reduces to the form 109) and must therefore belong to G.

In fact, the relations 110), 111) and 112), holding if pn > 2, may
be combined as follows:

113) 02i-12/-ia2*-12i= 0, 02i2f 102*2* = (l, I, &, I = 1, 2).

Hence, if 02/, 12*, i H=0, we get 2*-i2,i=0 (A*,
I = 1, 2). Then,

for fixed >L, 2i2^ is not zero for both Jc = l and A; = 2, since other-

wise all the coefficients in the 2>lth column would be zero and

therefore the determinant of S would vanish. It follows therefore

from the second set of relations 113) that 02 ,-311 = (i, I = 1, 2).

Hence S has the form 109). Similarly, the hypothesis ag^ 2^,^=0
requires, successively,

02/81-1 = (, Z = l, 2); 2i_i 2 ;.
=

(A;,
A = 1,2).
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If every a^ = 0, when i and j are both even or both odd, for

pn > 2, $ reduces at once to the form

This is of the form Vg, where g is of the form 109) and V denotes

the hyperabelian substitution not in 6r,

' ri^1
~

?2? ^2
==

*1? 3
== ~

*4? fe4
==

b3'

The theorem stated below has thus been proven for pn > 2.

For j}
w > 2, we consider the reciprocal of S and find the

conditions corresponding to 111) and 112) that S~ 1

shall transform

Tj_ and T
2

into substitutions belonging to G, viz.,

114) tfijtf4ifc=0, ff 2 iff3jfc=0 (, & both even or both odd).

By 111), 112), 114), S must be of the form g or Vg, g being of

the type 109). To illustrate the method of proof, let als =j= 0. Then

41
= a43=0 by 114). Since oc^ and 44 can therefore not both

vanish, a12
=

14=0 by 114). Likewise from 111) c^12
=

32 =0,
23
= cc43

= 0. The hyperabelian condition involving the coefficients

of the first and third rows then gives 13 J4
i==

0, whence aM= 0.

Then 31 and
33 can not both vanish, so that tt21 =0 by 114).

Hence S has the form 109).

The order of G is (>
4 n -

1) (p*
n p2n

) by 99. The order

of JT(4,_p
a

) is (p*
n

I}p
5n

(p
3n + I)p

2n
(p

2n -
l)p

n
(p

n
+l) by 132.

Theorem. Tlie quaternary hyperabelian substitutions T with

coefficients in the CrF[p
2n

] form a group G holoedricalty isomorphic

with GLH(2, p
2n

~).
The only substitutions of H(4, p

2n
) which trans-

form the subgroup G into itself are of the form T or VT. jff(4, p
n

~)

contains exactly JVn: -

(>~(p
5n

-j- I)p
3n

(p
n + ^)p

n
subgroups conjugate

with G.

135. Consider the subgroup H' formed of the substitutions of

H(4,p
2n

} of determinant unity. By 132, its index is pn +l. The

determinant of the substitution T is seen to equal A~^ . Those

substitutions T in the GF[p2ri
] whose determinant is unity form a

group G' of order (p** T)p
2n

(p
n

1). Since T and T
2

are of

determinant unity, the proof in 134 leads to the following theorem:

Within the group H' of quaternary hyperabelian substitutions in

the GF[p2n
] of determinant unity, the subgroup G' of the substitutions T

of determinant unity forms one of a complete set of N conjugate sub-

groups, each being holoedrically isomorphic with the group of binary
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linear substitutions in tJie GF[p"*
n
] with determinant in the

The only substitutions of H' which transform G' into itself are the

substitutions g
f

of G
1

and the products Vg'.

136. The substitutions T for which A = 1 form a group G
holoedrically isomorphic with the group of binary linear homogeneous
substitutions of determinant unity in the GF\p*"\. Since 6rx con-

tains T! and T
2 ,

it follows from 134 that g' and Vg
1

(g
f

in G 1

)

are the only substitutions of H' which transform G into itself.

Hence 6r
x

is one of a complete set of N conjugate subgroups of H'.

For p = 2, H' is the simple group HA (4, 227Z
)
and 6r

t
is the

simple group LF(2, 22w
).

For p > 2, we pass from H' to the simple

quotient
-
group HA(4, p2n~) by making the substitutions TK 106)

correspond to the identity. In particular, T_i corresponds to the

identity ,
so that 6r

x
becomes LF(2,fP*). The only Tx belonging

to G are T_i and the identity. We have therefore proven the

Theorem. The simple group HA(4c, p2t
*)

contains a complete

set of (p*
n
-r I)p

3n
(p

n
-f l}p

n
simple conjugate subgroups LF(2, p*

n
).

137. Theorem. The group of hyperabelian substitutions S of
determinant unity on 2 indices with coefficients in the GF[p2n

']
is

identical with the group of binary linear substitutions of determinant

unity with coefficients in the (r-Fjj)
7

*].

For m = 1, the conditions 98) and 99) that S shall be hyper-
abelian are

Hence the products <*^a^, a
11 a|" , n ^ belong to the G-F[p*\,

being equal to their own (p
n
)
th

powers. Hence if an =)= 0, the ratios

of ff
22 , 21 ,

cr12 to n all belong to the GF[pn
~\. Similarly, the

products a^ aj", aM f2 ,
a
22

ft
fi

a^ ^el ng to tne ^r^|j>
w
] and there-

fore, if ff
22 =|=0, the ratios of cfai , 12 , Ojj to 22 all belong to the

GF\_p
n
]. Finally, if an = ^22

=
0, we have

21 f2
==

1, so that

the ratio of #21 to 12 belongs to the GF[p*\. In every case,

>S has the form

where the a/y belong to the GF\jP\. Since it is to be hyperabelian
and since it is to have determinant unity, we have the respective

relations

Hence, by division, i'
w- 1 =

l, or a belongs to the GF[pn
].
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Corollary I. - - HA(2, p2n
)
==

A(2, p
n
}
=

LF(2, p
n
\

Corollary II. The group of all binary hyperabelian sub-

stitutions in the GF[p2n
~]

taken fractionally is the group of all

linear fractional substitutions in the GF[pn
~].

138. In virtue of the transformation of indices,

% EE J^ + gg, i?2
= QJ

pn
%! 4- p|2 ,

where J and Q are primitive roots of the respective equations

ePB+1 = l, ^+1_~1,
we have the following identity

Hence the hyperabelian group on 2m indices with coefficients in the

6r_F[p
2w

] is holoedrically isomorphic with the group on 2m indices

in the GF[p2n
] defined by the invariant

CHAPTER V.

THE HYPERORTHOGONAL AND RELATED
LINEAR GROUPS. 1

)

139. We first investigate the linear homogeneous group in the

GF[pn
~\

defined by an absolute invariant of the general type

where each A is a mark =)= of the Q-F\jp
f
\.

If r=pVr1 ,
we have in the GF[pn

~\
the identity

t=l

Hence a substitution which leaves Or absolutely invariant will at

most multiply the function

by a mark
t?

which satisfies the equations

1) Dickson, Mathematische Annalen, vol. 52, pp. 561 581.
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from which
r)
= 1. We may therefore limit our discussion to the

case in which r is prime to p.

In order that the linear substitution on m > 1 indices

shall leave r formally invariant, the following conditions upon its

coefficients must be satisfied 1

):

m
-j i

~ \ ^^"1 i
r

i / -i \
ILUJ >

AiCCij
==

AJ {j
=

i, . .
., m)

1=1

116) rlr.,

r '

,, y,vn ?>...
a,7.
-

o,

holding for every partition of r into s integral parts

r = r
x -f r

2 + f- r,, m > s > 1,

while for each partition J1? j2 . .
., j5 may take every combination

of s distinct integers chosen from 1, 2, . .
.,
m.

If r be not divisible by p, the inverse of S is

Indeed, the product fi^/S replaces |& by

m / OT \

IT21.2 * a'*"
J
a '

)
& ^ ^'

*
^-
= 1 V;= i /

upon applying 115) and 116) for r = r 1, r
2
= 1.

140. Theorem. - -
I/* r > 2, /"

r be not a multiple of p, and if

r 1 &e wo^ a power of p, the only linear homogeneous substitutions in

the G-F[p
n
] which leave r invariant are those which merely permute

the terms AII, . . ., lm m̂ amongst themselves.

Consider for r > 2 the following equations of the set 116), in

which ^ and j2 denote two arbitrarily fixed distinct integers <[ m:

1) If, as in 97, the indices are to belong to the GF[p] so that the

invariance of Or is numerical and not formal, we must take r <pn in order

that our results shall still hold true. Cf. 152.
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IS. V*i**th "iJiJ^te

li^~ ttij^ctijs
=

(j'3
=

1, . .
., w&; j&^FJv Jz)-

If neither r nor r 1 is divisible by p, we may drop the numerical

factors from these m equations.
1

)
But

being the determinant of $. Hence we have

Hence only one element of each row of the matrix for S is not

zero. The determinant of S being not zero, the non- vanishing
coefficients lie in different columns as well as in different rows.

Hence S merely permutes the terms of the sum Or .

Suppose next that r 1 is divisible by p and set

r 1 gp' (s :> 1),

where g is not divisible by p. We now consider the case g > 1.

We make use of the following equations of the set 116):

1=1

U;

( ft (Y\ S , Irn III ^t * X N.

(^^'-t- 1 ;- ^ /^ a (.9_ i)i*a jp* ) a =o (;=!.. m- j 4=; 9)
=i

of which the first two alone occur when m = 2. We may verify

that the numerical factors are not divisible by p.
2
) Then, since

| a,-y

It follows as before that S at most permutes the terms of <t>r .

1) If m = 2, only the first two equations occur. The same conclusion

follows in this case that was derived for m ^> 2.

2) This result follows by inspection from a general theorem on the residue

of a multinomial coefficient taken modulo p given in the author's Dissertation,

Annals of Mathematics, 1897, 14, p. 75.
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141. If r is not divisible by p and if r=^=p
s

-\-l, the structure

of the largest linear homogeneous group leaving Or (r > 2) invariant

is now evident. Indeed, the group has as a self-
conjugate subgroup

the commutative group of the substitutions

<
= & (*'=-!, ...,w) [

=
!],

the quotient-group being the symmetric group on the m letters |,-.

142. Theorem. - - Ike structure of the linear group in the GF[pn
~\

which is defined by the absolute invariant <t>r , r=j?* + l>2, results

immediately from the structures of the groups in the G-F[p*
s
] defined

by absolute invariants of the type

For the case r =jp*+ 1, the conditions that S shall leave r in-

variant may be derived as special cases of 115) and 116), but are

given by inspection from the identity,

By either method, the conditions in question are seen to be

117) V+i=^ 0' -!,...,),

118)

By 139, the inverse of 5 has the form

By the same rule, the inverse of the latter substitution is

. . ..
3

Hence this substitution must be identical with S. Hence

119) ;

The determinant of S" 1
is

Ja/f
= #|- ,,

DlCKSON, Linear Groups.

j -!,...,).
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Hence, since the product SS~ 1 = l has the determinant unity, we
have

120) a
ij \P

s + 1 = l.

From the form of the reciprocal S~
l

,
it follows that

121) ^< =
-S (M -!,...,)

where A,-/ denotes the adjoint of o^ in the determinant

D= an (i, j = l, . .
., w).

The value of w, denning the 6rjF[^
n
] to which the coefficients of our

substitution S and the quantities A/ were assumed to belong, has

played no part in the above formulae. We proceed to prove that

our problem can be reduced to a series of similar ones in which

n = 2s. Consider the GrF[p*
n
*\, which includes the G-F[p

n
] and

the G-F[p
2i

]. Raising 119) to the power
P

2s _ ^ we have

if
ccij =j= 0. Hence -=- would be the power p

s
-j- 1 of some quantity

in the GF[p2ns
].

The substitution Tj

t' t d" 1 OM. Z^ -I. A\ t' - ,,tA= bi V^
= ~

-1
-; ?

m
?
* \J)i 9j f*;

transforms cpr into

in which the coefficients Aj- and A} are equal. Evidently 1} transforms

^ into a substitution with coefficients in the GF\_p*
nf

\.

Suppose that the coefficients 13; ]37 . .
., lOTl

do not vanish,

while iy
= for j > m

x ,
in all of the substitutions leaving cpr

invariant. Then the group is isomorphic with a group of substitutions

in the GF[p2ns
] leaving invariant

In the latter substitutions the coefficients u.\j (j > m
x)

are all zero.

If, among the coefficients 2y (j> mi)> anJ one as ^i^H8*^ we
transform the invariant

<jp[. by T
ilt giving the function

*!=!
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But this function is invariant under the transposition (i^i/,) and hence

cpr must have heen invariant under a substitution in which a^ =j= 0.

It follows that '".

0,-j
=

(i
=

1, . . ., m^ j
= m{ + 1, . . ., m)

in every substitution leaving cpr invariant. Considering the form of

the reciprocal, we have

Kji
=

(i = 1, . . ., m^ j = w
t -f 1, . . ., m).

Hence every substitution leaving (pr invariant is the product of two
commutative substitutions

,
the one affecting the indices %lf . .

., |Wi

only and leaving invariant

and the other affecting only | TO| +i, . .
., m and leaving invariant

Proceeding with the latter substitutions in the same manner, it

follows that the structure of the group in the GF[pn
~\ leaving <t>r

invariant results immediately from the structures of various linear

groups in the GF[p*
ns

] denned by invariants of the type O. But

the relations 119) for substitutions of the latter groups become

a
fj
S=tt

ij (t, j
=

l,...,w).

Hence there is no limitation imposed in assuming that the field to

which the substitutions belong is the 6rF[jp
2
*].

143. We designate by Gm , P,
s the group of all linear homogeneous

w-ary substitutions in the GF[p2l<

] which leave <t> invariant. For

p > 2, those of its substitutions whose coefficients belong to the

GF[ps

] constitute the first orthogonal group
1

) in the G-F[p
>

']
on m

indices. Indeed, relations 117) and 118), for A,-=l, then become

The group G^p^, having the orthogonal group as a subgroup, will

be called the hyperorthogonal group in the GF[p* s

] on m indices.

We proceed to determine its structure, treating first the case m = 2.

144. Theorem. If p*> 3, the group of the substitutions of G^ p, 9

of determinant unity has a maximal invariant subgroup of order 1 or 2

according as p = 2 or p > 2; the quotient-group is LF(2j p').

1) See Chapter VJI, 171. For p = 2, see Ex. 4 of 210.

9*
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For m = 2, we have by 117) and 121), when A
1 =A2

=
1,

Inversely, every substitution satisfying these relations is seen to leave

If
" 1 + i?

" 1

absolutely invariant. Every such substitution is the

product of a substitution

122)

by one of the p* + 1 distinct substitutions

The number of distinct substitutions 122) is (jp
8 *

l)j>*. Indeed, for

the #*+! values of 12 for which *=*!, we must have an = 0;

while for each of the remaining (p
2s ps

1) values of a12 in the

there exist ps
-}- 1 solutions in the field of

for, the second member belongs to the GF\^p^\ and is therefore the

ps
-\-\ power of some mark in the G-F[p*

s
]. But

The group of the substitutions 122) has an invariant subgroup
of order 1 or 2, according as p = 2 or p > 2, generated by the

substitution

The quotient group (obtained concretely by taking the substitutions 122)

fractionally) is, by 137 138, simply isomorphic with the group of

linear fractional substitutions of determinant unity in the GrF[p
s

~].

By 109, it is a simple group when ps> 3.

Corollary. Every binary hyperorthogonal substitution in the

GF[p2s
] taken fractionally may be given the form

-^- B
\

-X A*i
of determinant a mark of the GF[p'] y

where J., B belong to the

Indeed, since Dp
* +1 =

l, we may set D = Rp* 1

, ^belonging to

the G-F[p*
8
].

The fractional binary hyperabelian substitution becomes
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The group may be transformed into the group of all linear fractional

substitutions in the GF[ps

] (see 138, 137, corollary II).

145. For m general, let S be an arbitrary substitution of

By 139, its inverse is obtained by replacing a
t-j by a?* . Hence the

relations 117) and 118), for A
2
=

1, when written for the inverse S~ l
,

771

give the equivalent set of conditions for the invariance of

123)

124) ^ X= U *- 1, . .
., ;>' -H *>

?' = !

By 146, the number of distinct linear functions

by which the substitutions of G-m
, p,

s can replace t
is the number

Pro, P.* of distinct sets of solutions in the G-F[p
2s

~\
of the equation

125)

Let T be a substitution of the group which replaces fjj by a

definite function fv Then, if Z, Z', . . . denote all of the Qm, PlS sub-

stitutions of the group which leave ^ fixed, the products TZ, TZ', . . .

and no other substitutions of the group will replace t by fv Hence
the order QW)2,,

S of the group Gm
, py * is

Q ^^ O P
772j J), S ~

jjWli P) ^ ffl) Pi S *

But the substitutions Z, Z f

,
. .

.,
have

n -l, !, (
= 2,...,w).

Hence by 124), for j = 1, we have

Hence Z
? Z', . . . are substitutions of the group Grm i

t p,*
on

indices |2 ,
. . ., |OT ,

so that ^, p,
s

- Qm _i,^,. Hence, since
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is the number of substitutions affecting one index only, we have

Q p P P
m,p,s 'm,p, s'm 1, p, s r

J,p, s

To evaluate Pw?jM ,
the number of sets of solutions of

we note that, for the Pn_i 5jpvS
sets of values of %, . .

., rjn which make
n

NI^
77

J*
8 -M=

1^ the corresponding value of r^ is zero*, while, for each

i=2
of the _pM-i)_ pn __ ljJM sets of values in the GF[p* s

] for which

that sum =(= 1, there exist ps
-f 1 values in the GF[p* s

~\
for

7?r Indeed,

belongs to the GF[ps
] and is therefore the power ps

-\-l of a mark

in the GF[p2s
]. Hence we have

Since Pi, P,s
=pSJr 1, we find by mathematical induction that

For another proof of this result, we consider only the case p > 2.

Then if v be a not- square in the 6rF[jj*] ;
the 6r_F[j

2
*] may be

defined by means of the irreducible equation

we have

Hence

By 65, this quadratic equation has j?
s(2n~ 1)

( l)^
5^"^ sets of

solutions 17 ...,, f$19 . .
., ($.n in the 6rjF[_p

a

]. Hence Q^^, equals

146. Theorem. - -
//" n , 12 ,

. .
., i ?n be any system of solutions

in the GF[p2s
] of the equation 125), there exists a substitution S in

the group Gm,p,s which replaces ^ by
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and which is generated ~by tJie following substitutions [in which only the

indices altered are written]:

additional generator ~being necessary if pg =2, m^ 3, vie.,

TF: = ix + 1 6, + P|s [-P= 1+ 1 (mod 2)].

If m = 1, we may take $ = ^i,^- If m = 2, we take

= Ojy
a

If m > 2, we prove the proposition by induction. Suppose first that

the af*
+1

(
=

1, ., m) are not all unity, for example,

l-ag+i^O.
The left member belongs to the G-F[$P]. Hence we may write

126) a(J+
1
+ft*

f + 1 -l,

ft being a mark =j= in the G-F[p
2
']. The group therefore contains

a substitution of the form 0^\ By 125) and 126), we have

Assuming our theorem to be true for m 1 indices, the group contains

a substitution S f

replacing ^ by

Hence the product 8 ~ S' Off will replace ^ by ^.

Suppose on the contrary that

If the group contains a substitution $A replacing ^ by |x + |2 4 ----h Sm,

the product ^ _ ^ ^F -M, n ^ 2, 22
-L m, alm &i

will replace |j by /j. But the group will contain a substitution of

the form S
l

if it contains S2
:n Oi'^^, which replaces j^ by
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If p =j= 2, we can take a =
ft

p
\ since the condition

can be satisfied by a mark
ft

in the GF[p2s
]. In this case, S

2 0%\

replaces |2 by the function

2/J6,+ S, + -"+6,
and therefore belongs to the group by our assumption on w? 1

indices. If p = 2, s > 1, we can choose a and
/3 among the sets of

solutions in the GrF[p
2s

] of

127)

in such a manner that

Indeed, the condition is (since p = 2),

Since ^> 2, we may take for a a mark neither zero nor unity in

the 6r.F[p
8

] and then determine a solution
/3

of 127) such that

ft=^ft
p
\ Then will a* ft*' =%= aft. To prove that such a choice for

/3

is possible, we note first that

CCP* = a, a 2

4= a; hence a*
1 + 1

=4= 1, 4= 0.

Further, if a', /3

f be one set of solutions of 127), then is also a', rft' y

where r is any root of

Not every root r belongs to the G-F[p*] 9
and therefore not every

solution
/3 corresponding to a given a belongs to the GrF[p*]. Hence,

if p = 2, ps > 2, we may suppose that in the* substitution $
2

the

coefficient an is such that
|^
+ 1

=j=l, when the proposition follows

as above.

For p*
=

2, an additional generator W, for example, is necessary

since the only substitutions of the form OJ^ are the products

T^r^-i and (g.yZVjT,,,-! (P
3
=l).

Indeed, there exists in the 6rjF[2
2

] only six sets of solutions of

viz., a = Q, ft
= and a = 0, /3

=
(>,

where ^
3 = 1. Hence the

substitutions T,-jr and Of'/ can not combine to give a substitution

replacing ^ by ^ -j- |2 + |3 ,
for example. It follows readily that the

additional generator W is sufficient, together with the substitutions

T and 0, to generate the group 6^2,1-
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147. Lemma. If a substitution S of the group G-m
, piS be commu-

tative with O
a
r\f , for certain values of a, then the following coefficients

of S must be zero, , .

Krj, Ktjy Kjr, CCj{ (j
=

1, . . ., f; J =|= r, t\

Among the conditions for the identity 80%? = 0%?S occur

(
- !>,,+ fa, = o,

(B
_ 1X> _^a _

t
=

0?

(j
=

l, ...,w; j+r, t).

Hence the theorem follows if the determinant

(a
-

1) (a*
8 -

1) + ftp'*
1 = 2 - a - UP"+ 0.

The equation 2 cc a?* = has p
s solutions in the GF[p2s

]-, indeed,

ap*'= (2
- X= 2 - ^

9= a.

But for a arbitrary there exists a mark
/S

in the GF[p2s
~\
such that

Hence there are sets of solutions a, /J for which the above determinant

does not vanish, as well as sets for which it vanishes.

Note. Another statement of our result is that S breaks up into

the product of a substitution affecting only r and %t by a substitution

affecting only g, (j
=

1, . .
., m; j + r, t).

148. We proceed to determine the structure of the group 6rm?pjS

of order Qm
,p,

s . For w = l
?

the group is a commutative (cyclic)

group of order p* -f 1- For m = 2, its structure was determined

in 144.

The substitutions of G-m
, p,

s of determinant D = 1 form an in-

variant subgroup Hm,p?s of order Qm
, P,s/(p*+ 1). Indeed, we have

shown that D must be a root of

120)

Inversely, substitutions do exist in the group 6rWi p)S having as deter-

minants every root of 120); for example, T^ t and its powers, where r

is a primitive root of 120). Hence the factors of composition of

G~m, P,s are those of H,n,A , together with the prime factors of p* -f 1.

Supposing w5>3, let I be an invariant subgroup of H
7?i) ^?s con-

taining a substitution

not of the form

T: g-
= T|, (i

=
1, . .

., m) [X+ 1 =
1, T* = 1].
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With the single exception m = 3, p* = 2, when H
3i 2i i is of order 72,

we shall prove that I coincides with H. Therefore the substitutions

T form a cyclic group of order d, the greatest common divisor of m
and p* -f 1, which is the maximal invariant subgroup of Hm? p,

s . Hence

the quotient-group gives a simple group of order //"^Vr We shall

designate it by the symbol H0(m, p
2

*).

149. Theorem. There exists in the group I a substitution replacing

^ 'by x^-J- <yJ2 and not reducing to the identity.

Suppose that a18 =j= 0, for example. Transforming S by 0|?, we
obtain a substitution /S" replacing ^ by

.7=4

To make the coefficient of
3 zero, we have the conditions

The condition for u is therefore

Unless ^
s + 1

-f- fj
+1 =

0, there exists a solution
t
u in the GF[p* s

~]

of this relation; indeed, the value of
t
it^

s + 1
belongs to the Q-F\_yp\

and is therefore the ,(jp*+l)*' power of a quantity t
a in the 6rJF[jp

2

*].

It follows that we can assume that the only coefficients a
1;

-

(J > 1)

which do not vanish are cr12 ,
. .

., ai TOl
and that, if % > 2, they have

the property that

128) f;+i++i_o (j, *-.,.--,i5 J-|-*>

If m1
=

2, the theorem is proven. If m
1 > 3, the terms in 128)

must all be equal and therefore zero unless p = 2. Supposing first

that p ={= 2, our theorem is proven unless m
1
=

3, when we have

129) ag+'-l, g + '+g+'~0, -<) 0-4,..., ).

In the latter case we may assume that not both

+i+ BfM-i_0 (*
=

2, 3);

for, if so, f2
+1 = tt

f3
+1 and hence each is zero by 129), since p =j= 2.

For definiteness, let

If the left member be unity, then 12
= by 129) and the theorem

is proven. Suppose therefore that the left member is neither zero

nor unity and consider the substitution
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S EE S (7j C/2 /Suj (7
2
EE Sa Cj (72 ,

where Sa
~ S~ C

1
C

2
S is seen to be the substitution

The coefficient u in $ is therefore

Hence

which =(=1 since f1
s + 1 + f2

+1 *s ne^ner zero nor 1- Applying the

above process to 8 in which ^+ 1
=|=l, we reach a substitution in

the group I in which all but one of the a^ (j
=

2, . .
., m) are zero.

Suppose next that p = 2. We have by 128)

The ratios of
lg ,

a
18 ,

. . .,
almi therefore satisfy the equation

130) T^+^l.

Hence by transforming S by suitable products of the form

^,,,-ir,.,, (
= 3,..,),

where the rz are roots of 130), we reach a substitution $' belonging
to I in which

12
=

13
= =

i Wl . Transforming S' by the reciprocal

of Ogjs, we obtain in J a substitution S" which replaces | t by

nii + ! (A
-

M'') it + G + i*
1

) is + 4 + + sJ-

If ^ =j= 2, we can choose A and ft [see 146] such that

^+1+^+1= 1, (A-^y+i+l.
Hence in S" the sum of the (p

s+ l)*
f

powers of the coefficients
j'2

and
j4 is not zero in the 6rF[2

2
*].

As above we can therefore

make "
4
= 0. If ps =

2, we reach at once the same result by

transforming S f

by (^ |4) W^^), TF being defined at the beginning
of 146.

Repeating the process, we reach finally a substitution in J, not

the identity, in which either

u-0 (j
= 3, . ..,w)

or else
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In the latter case, the substitution S thus obtained has (since p = 2)

+'-!.

Transforming it by T=T^ r T^ t i.,
we obtain in I the substitution

8'=-8-*-T

where S
1
denotes the substitution

Hence for S' m S^ T the coefficient of |t in |{ is

Setting for brevity ag+
1 =a, a mark =)= in the 6rF[p], we find,

since r^+^l, that

aP'+i = 1 + a (r
-

l)(r^
-

!)(
- ^ - r - 1).

Since the theorem follows as above if jj+
1
=(= 1, we seek to prove

that a value r can be found for which

But a root of r^
s + 1 =l will satisfy

**-*-!-
only when

131) l-r2 -r = r.

The desired value of r certainly exists if p" -f- 1 > 3. But if p* = 2
7

we have a = 1, whence the equation 131) has the single root r = 1

in the 6r.F[2
2

]. The theorem has therefore been proven for all cases.

150. Theorem. Excluding tlie case m = 3
; p

s =
2, $&

contains a substitution leaving one index fixed and not reducing to the

identity.

By 149, I contains a substitution S =|= 1 which replaces ^
by a function of the form % t + 2 Hence

*1 a

where S^ is a substitution of Hw,^, s of the form
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Consider the substitution belonging to H,

T^T^T^T^-t
where i > 2. The group I will contain the product

since T and 0*\2 are commutative. Since S' leaves j^ fixed, our

theorem is proven unless S' reduces to the identity. In the latter

case, we find by comparing the values by which S^T und TSt

replace 2
that

2,-=0 (j 3,. .
., w; j=H)> raj/ *-*,.

If m > 3, i has at least two values and therefore

ij=0 (j
=

3, . -,*).

If w = 3, the same result holds if p* > 2. For then a value of r

exists satisfying T^
<! + 1 = 1 but not r3 = 1. Hence must 2j

- = 0.

Excluding the case m = 3, _p*
=

2, it follows that 8
l (which was seen

to leave ^ fixed) alters |g at most by a constant factor L Hence

8 -OR TV*.,

where leaves ^ and |3 fixed. Hence I contains

S' = S' 1

(Ti,Ttt-*)-
l

8(Ti t r,,-i) [.+' = 1]

which leaves gs ,
. . ., |m fixed. If $' =(= 1, the theorem is proven. If

$' = 1, we find by comparing the values by which STi tT2r-i and

TulW-iS replace ^ that
X 6 T (5.

Hence, taking for r a value for which t
2

=f=l, we have 6 = 0. The

only case left for consideration is therefore that in which

S=2'i,r2,x-i2'Ml.

If S be not commutative with every 0' we obtain at once a sub-

stitution =|= 1 in I which leaves 3 ,
. .

., |m fixed. In the contrary

case, i-=*Vand therefore

S^T^T^Z.
If m = 3, Z = T^ % 2, the determinant of S being unity. Trans

forming S by (^g)^, we obtain the substitution

belonging to I. Then I contains

leaving |g fixed and not reducing to the identity. For that requires

jt
3 =

1, when we should have

S = Ti, x Z\ x l\ x

contrary to the hypothesis made in 148.
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Let m 5 4. If be not commutative with every

=
Otf (i,j

=
3, . . ., m; a*

1 +1 +
then I contains the substitutions leaving f^ and |2 fixed,

not all of which reduce to the identity. In the contrary case, X must,

by 147, have the form

l!
=

fi>& (*-3,...,m).

Hence I contains the product

which does not reduce to the identity; for, if so, v, = a and S would,

contrary to the hypothesis made in 148, have the form

!
= o& (i

=
1, 2, . .

., m).

151. Theorem. Except in the case m = 3, jp*
=

2, $
coincides with the group Hw,^jS .

The proofs of the theorems of 149 150 hold for any value of

m 5 3. Hence by a repeated application of these theorems, we finally'

reach in the group I a substitution S =j= 1 leaving m 2 indices

fixed and therefore of the form O^J, we may assume. If it reduce

to Cj(72 ,
when p =|=2, its transformed by 0"]% gives the substitution

so that I will contain an Oi)3 neither the identity nor C^Cg. Indeed,

by 144, there exist solutions =(= 0, /3 =)= in the 6rF[j?
2
*], p*> 2

;

of the equation a^+ x + /3^

v + 1 = 1. Hence I contains a substitution

Oi,'? neither the identity nor C C
2

. It follows then from 144 that,

for ps > 3, I contains every substitution O"^. Transforming by sub-

stitutions of the form ( ; |,)<7/,
we obtain in I every OfJ.

These substitutions suffice, except when m ^> 3, p* = 2, to

generate the group HW
, P)S . Indeed, by applying the formula

where
{= aP'+i -h r- 1

/3^+S P'
=

ap(r~
l -

1); T*'* 1 =
1,

it follows from 146 that every substitution of G-m
,p,

s has the form

h or }iTm^ where h is generated from the Ofy and has determinant

unity. Hence the substitutions of H
W5J9) .S (of determinant unity) are

of the form h.
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For the case p* = 3, we first prove that I contains the sub-

stitution QCg. We have shown that I contains an Ol'J not the

identity and therefore 0'/ given by 132). If
/3 =|= 0, we can make

'=
0; indeed, if a be not itself zero, we have in the 6r.F[3

2
]

and we need only take r = 1. But the square of Oj',2 gives C^C^
since 0'

4 = 1 when ' = 0. If, however, ft
= 0, then a =f= 1. If

a = 1, we have at once Oj'a = C^C^. If a =}= 1, then the square

of 0?;J gives Of'}
= &.

Having C^Cg, I contains (as above) the substitution

=
ccp (mod 3).

Taking for a and
/?

an arbitrary set of solutions of

ft
4 = -

1, /3

4 = -
1, whence a4 + /3

4 =
1,

we have
0?', 3 where ft

=
a/3 is an arbitrary solution of ft

4 = 1.

Hence I contains

Transforming the latter by Oi,'f, we obtain by 132),

(f'f'T T

Hence I contains every such O"/ . For a = 0, /3

4
==1, we have

a' = ^, /3

r =
0; for a4 = -

1, /3

4 = -
1, we have ' = - 1 ^. We

have therefore reached in the group I every \ in which x =
ji,

0, 1 + ft, where ft is an arbitrary one of the four roots of
ft
4= 1.

Defining the GF\$*\ by the irreducible quadratic congruence,

*
2 = -l (mod 3),

we have x ='0, 1, +i, 1 i. Hence % takes every value in

the GF\Z*]. We thus reach aU 24 substitutions O\. It foUows

that I coincides with Hm
, 3,1.

For the case p'= 2, we have in I a substitution 0"^ =f= 1. By
the result at the end of 146, it must be one of the six substitutions

The transformed of the latter by T^ t T^ t i gives

(i^V^-i"^^,*- 1 -

Hence, in every case, I contains a substitution of the form
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Its reciprocal gives l\, r iT^. If m > 3, I contains

(
T r + 1 r+l^

T + l T T+l
r + 1 T + l T

where

Hence I contains

and therefore TF". Hence I contains W 2 =( 2 i3). Hence I coincides

with Hm , 2
,

j if m > 3.

152. Theorem. The group Grm
, P,

s is isomorphic with a subgroup of
the linear group

1

) on 2m indices in the G-F[p*\ defined ~by a quadratic
invariant

111
1 T T 2

1 T
2 r

belonging to and irreducible in the

belong to the GF[p2s
~].

Set

Then

i=i

Indeed, we may define the GF[p2s
~] by an equation of the form

F[p^. Its roots I and I* = I~ l

C/ + 1~* y{ , r ^ = xj + i/f + 0^-2/,.

m

The invariant^ |f
" x

becomes the quadratic form if/. The general

substitution of G^p^,

takes the following form

1) Cf. Chapters VII and VIII. See also the note to 139.
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CHAPTER VI,

THE COMPOUNDS OF A LINEAR HOMOGENEOUS GROUP. 1

)

153. It was shown in 98 that the linear substitutions

A: IE

combine according to the law

A' f = A'A: I!

where
.1=1

(*
=

1, . .
., m)

(, j 1, . . ., m).

In Sylvester's umbral notation, the general #
th minor of the

determinant jay! is as follows:

The formula expressing the #
th minors of a/J in terms of the

q
ih minors of ay| and of

| ay |

is the following
2

):

I, . . .

133)
Ji

the summation extending over the Cm)q combinations I

the m integers 1, 2, . .
.,
m taken q at a time.

Consider the linear homogeneous substitutions on

I/, /..,. 7

Z
2?

. .
., ?

2
of

variables

' *

2

where the sets and
(?1?

Z
2 ,

. .
., 2

2) take independently

1) This chapter gives a new exposition of results published by the author

in the following journals: Bulletin of the Amer. Math. Soc., vol. 6 (1898),

pp. 120135; Proceed. Lond. Math. Soc., vol. 30 (1898), pp. 70 98; Trans-
actions of the Amer. Math. Soc.', vol. 1 (1900), pp. 91 96.

2) Scott, Theory of determinants, p. 53.

DlCKSON, Linear Groups. 10
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the Cm , q combinations q together of the integers 1, 2, . .
.,
w and

where we suppose

The determinant of the substitution [cr]3
is called the q

ih
compound

1 2. . . m
of the determinant and equals

1

) the latter raised to
1 2 ... m a

the power (7m _i)9 _i. In virtue of formula 133), we have the

following formula of composition:

["]? = ['M]r
Hence if the substitutions A = (a^-) form a group 6rm ,

the substitu-

tions [a]2
form a group 6rm

, 9
called "the q

ih
compound of the m-ary

group Gm". We may therefore state the theorem:

Any linear homogeneous group is isomorphic with each of its

compounds.

154. Theorem. The general linear homogeneous group GLH(m,pn
)

has (d, 1) isomorphism with its q
ih

compound, if d be the greatest common
divisor of q and pn

\.

We verify first that at least d substitutions of Crm ~ GrLH(m,p
n
)

correspond to the identical substitution in its q
ih

compound Grm
, q

.

In fact, there exist in the GF\_p
n

~\ exactly d marks d for which

dd=l ( 16). For every such mark #, the substitution belonging
to Gm ,

d 0...0

o <y...o

^0 O...J,

gives rise to the substitution [a]?
^E I in Gm

, q
.

To prove the inverse, consider the matrix J formed of certain

coefficients of the substitution [cc]Q , in which a <C j <^ m:



THE COMPOUNDS OF A LINEAR HOMOGENEOUS GROUP.

Consider also the matrix A of determinant A,
'

ajj a
gj

. . . o

aiq aqq . . . K

147

A =

The composition of the matrices J and A gives the result

'A O...CT

A. .0

' O...A

We seek those substitutions of Gm which correspond to the

identity in Grm
, q

. Suppose, therefore, that [K\ reduces to the identical

substitution, so that the matrix J is the identity. In this case we have

Taking in turn j = g -f 1; % + 2, . .
., m, we have the result

A 0... 0)

A. .

O...A

Hence A =j= and therefore A2 = l.

155. Theorem. The special linear homogeneous group SLH(m,pn
}

has (g, 1) isomorphism with its q
ih

compound, if g denotes the greatest

common divisor of m, q, pn
1.

The proof is quite similar to that of the last section. The

following w-ary substitution of determinant unity in the 6rF[_p
n
],

f d 0. . . 0^

^
0... d

will give [] 3
= /only when

is proven as above.

Hence must <J
7 =1. The inverse

156. Theorem. - The second compound of the general linear

homogeneous group GLH(m, p
n
} leaves invariant tlie Pfaffian

T Y Y

[1 2 . . . W] EE
23?

m 1m
10*
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The square of [1 2 . . . m] is the skew-symmetric determinant

Jtl

where Yy = Yj{ .

By 100, 6r = GLH(m, pn
) is generated by the substitutions

Br,s,?i
and Dm . The corresponding substitutions of the second com-

pound 6rm) 2 will therefore generate the latter group. To ^1,2, i and D
there correspond the respective substitutions of 6rm>2 :

2,.. -.,1113
^

But A is unaltered by an interchange of any two subscripts as 1

with 3; for, the resulting determinant may be derived from A by

interchanging the first and third rows and the first and third columns.

It therefore suffices to prove that A remains invariant, up to a

multiplicative constant, upon applying the substitutions "B\,^\ and D
1

.

By inspection, D multiplies A by D2
. Also Bi^a transforms A

into the determinant

v_!_ivvv v n
-t ml"T Ajt-m2 J-m2 -*-m3 -*-TO4 ...v

This reduces at once to A since F12 + I
r

21
= 0.

157. Theorem. For m odd, the substitution [a]2 of

compound gives rise to the substitution

second

upon the Pfaffians F$ E^ [1 2 . . . j 1 j -j- 1 . . . ni], if

minor 1

) complementary to a^ in the determinant

(* 1, . . ., m)

denotes the

1) Or the adjoint of cc
i

. without its prefixed sign.
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Consider the Pfaffian Fj, j being a fixed integer <; m. By the

last section, it is unchanged by the substitutions

Br
,
s,i (r, s = 1, 2, . .

., j
-

1, j + 1, . .
., m).

Furthermore, _B^ ^ alters no element of Fj and hence leaves Fj

unchanged. Finally, we prove that B
ftj^ replaces Fj by

j^_l_ (_ iy-

Indeed, B^j^ replaces Fj by

V V
J-23 > '> *;*/--* 9
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I:

where AIJ is the minor of ^
|
complementary to a,^, the products

jD
x
/S and B

rjSyiS will induce upon the Ft the substitutions called for

by the theorem. First, the product D S will induce upon the Ft

the substitution

The matrices of the two products D S and /S^X are respectively

-4,1

21 22

Da,. DAm2 ...DAmm )

Here the second matrix is derived from the first by the law expressed

by our theorem.

Next, the product Sr>s^S induces upon the F{ the substitution

! = AikFk -f
-

areThe matrices of the two products

. CCmm

and

Air

-2m

ml

The second matrix is seen to be derived from the first according to

the law expressed in the theorem.

Corollary. The second compound of any linear homogeneous
group G-m gives rise to a linear group on the m Pfaffians Flf . .

.,
Fm

which is identical with the m I st

compound of Grm .

158. We can establish in an analogous manner the theorem: The
linear substitution [a]2 of the second compound of any m-ary linear

homogeneous group Gm ,
which corresponds to the substitution (,-y) of Gm,

effects upon the Cm2 Pfaffians . .

/,,%,...,4,
Rh --] L- /,- /\<V<... 2

a linear homogeneous substitution identical with the substitution []m_s

of the (m 2}
nd

compound of Gm .

The group induced by the second compound of Gm upon these

Pfaffians is therefore the (m 2)
nd

compound of Gm .



THE COMPOUNDS OF A LINEAR HOMOGENEOUS GROUP. 151

159. Theorem. Tlie g
th and m q

ih
compounds of the special

linear group SLH(mf pn
) are holoedrically isomorphic.

The theorem follows from 155 since the greatest common
divisor of m, q, pn 1 equals that of w, m #, pn

1.

We proceed to set up the correspondence between the individual

substitutions of the two groups. We may express the #
th minors of

the determinant
, adjungate to D = in terms of the

m 2
th minors of the latter determinant by the formula,

Ji 3% -Jq

Dq
-i

1 2 ...!- 1
t + 1 . . . i, 1 i . . . m

. m

Hence, if we write (for every i < i
2 < < i

q< m)

the general substitution [a] OT_ 9
of the m q

th
compound of the

general m-ary linear group takes the form

/) /) i

Jl fa ' ' '
*

If we take D =
1, this substitution belongs to the q

ih
compound,

being derived from the substitution (Aij) of determinant

of determinant unity,Hence to []m_ q) the m g
th

compound of

corresponds \A\q ,
the g

th
compound of (A

160. Theorem. The general Abelian group G-A(2m, p
n
) is the

largest 2m-ary .linear homogeneous group in the G-F[p
n
] whose second

compound has as a relative invariant the linear function of its Cm,z
variables Y

It will be convenient to employ a notation for the general sub-

stitution S of GrA(2m, p
n
) more compact than that of 110, viz.,

S: (*
= !,...,2m).

The Abelian conditions 76) then take the form (see 112)

139)

TO

2 i IJfc _i(i (if ~k = j -f 1 = even)

} (unless Jc =j + 1 = even)

These conditions may also be obtained by the method of 129.
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The corresponding substitution of the second compound is

y. .

(h> h 1, .,
2m

\ i < i
2

In virtue of 139), [a] 2
transforms Z into

A, .72

Inversely, if []2
transforms Z into \iZ, the relations 139, follow.

161. Since the Abelian group GA(2m,pn
) contains the substitution

T: iS--& (*
= !,...,2m),

it is (by 154) holoedrically or hemiedrically isomorphic with its

second compound according as p = 2 or p > 2.

If /S belong to the special Abelian group SA(2m, p
n
), so that

ft
=

l, the corresponding substitution []2
of the second compound

will leave Z absolutely invariant. Since S then has determinant

unity ( 114), []2
will leave absolutely invariant the Pfaffian

[1 2 ... 2m] ( 156). If in SA(2m, pn
) we consider 8 and TS to

be identical, we obtain the quotient-group A(2m, pn
).

The latter is

therefore simply isomorphic with the second compound of SA(2m, pn
).

Applying 119, we may state the theorem:

Except for (2m, p
n
)
=

(2, 2), (2, 3) and (4, 2) the second compound

of SA(2m,p'"
:

)
is a simple group which leaves absolutely invariant the

Pfaffian [1 2 ... 2m] and the linear function Z.

162. For 2m = 4, p > 2, we introduce as new variables

The general substitution [a] 2
of the second compound of SA(4, p

n
)

takes the form, in which the unaltered index Z
v

does not appear
1

),

V V V V VJ- J-1Q -L 1 A J-OQ -J-OA

yJL oo

2
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For example, []2 replaces Y1S by the function

13

34 (Z-Y),

which becomes Y^s
of the table if we apply the Abelian relation

= 0.
13

12

13
34

i

ii <!*

'32

C13

<33

Similarly, it replaces Y by the function

12
12

34
12 T{

By means of the Abelian relations

= 1-34
12

12
1 2

12

34
1 2

1 2

12
13

34

34
34

34
13

34

12

12

34
13

12
13

Hence Y is replaced by the function Y' given by the above table.

It is therefore a substitution on five indices leaving absolutely
invariant the function

=
z\
-

[i 2 3 4]
= r 2+ F13 r24

- FMFM .

For p > 2, the simple group -4(4, p
n
) is holoedrically isomorphic with

a subgroup of the quinary linear group leaving the quadratic function 4>

absolutely invariant.

This theorem and the results of 163 165 find application in

Chapters VII and VIII.

163. By 155, the quaternary linear group of determinant unity

SLH(4:, p
n
}
=

G[ is holoedrically or hemiedrically isomorphic with

its second compound 6rl,2 according as p = 2 or p > 2. By
103 104, 6r{ has as maximal invariant subgroup the group

generated by the substitution

M^: g = pi,- (i
=

1, 2, 3, 4),

where p is a primitive root of ft
rf=l, d being the greatest common

divisor of 4 and pn
1. The quotient-group LF(4t, p

n
)

is a simple

group of order
1

Cv

To M/j, there corresponds in 6rl,2 the substitution which multiplies

every index by fi
2 and therefore the identity if p = 2 orjp

n=4Z + 3;

while, for p*= 41 -}- 1
,

it is the substitution T multiplying each of

the six indices by 1. We may state the theorem:
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For pn = 2n or pn = 4? -j- 3, 6rl)2 is a simple group lioloedrically

isomorpMc ivith LF(4:,p
n
).

For _p
n = 4Z + 1, 6ri)2 has a maximal

self-conjugate subgroup [I, T] of order two, the quotient-group being

holoedrically isomorphic with LF(4, p
n
). If e = 1 or 2 according as

p = 2 or p > 2, the order of G[^ is

164. Theorem. -- The second compound G^% of the general linear

homogeneous group G in the 6r.F[j>
n
] contains the substitution

14(Vi V vY Y f Y Y' Y Y' Y
/ 12 12? 18 13? 14 14? 2S 2

Y-
24 -1 24?

ifj and only if, v be a square in the field.

To the substitution
(a,-,-)

of Gr4 corresponds in

stitution [a]2 :

-*- 1 -> -./-
( O JL { A JL )Q JL & A

Y 1J-~~

Y'-L ~

the sub-

-34
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If []2
be the particular substitution 140), the "partial substitution"

141) becomes 100
010

v-

of determinant v~ l
. Hence if 140) belong to 6r

4) 2, v must be a

square in the field.

Inversely, if v be a square, 140) is the second compound of

the following substitution of determinant unity:

v
1
/. 00

i/A

v-'/

%
00 v

Note. The second compound contains the substitution

12>
rt V
23^2 2^="-' Y' i) 1Y

247 J1 34
V J-34 <

In fact, the latter is the second compound of the substitution

v

0100
0010

v~

165. Theorem. For p = 2, every substitution of
the relation

satisfies

= 1 (mod2);

formed by multiplying each coefficient of the partial substitution 141)

by that coefficient of the matrix [a]2
which lies symmetrical to it.

Gl, 2 does not contain the substitution M =
(F12 Y34).

The left member of our relation is seen to be the expansion of

the expression

12
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CHAPTER VII.

LINEAR HOMOGENEOUS GROUP IN THE GF\_p*\, p>2,
DEFINED BY A QUADRATIC INVARIANT. 1

)

166. Any quadratic form with coefficients in the GrF[p
n
~], p > 2,

/ ==i KH i ~T ^ #12 bi fe2 ~T~ ^22 2 '
a!3 5l 8 i

* * * "T amm fern

may ; by using the notation aji =:
,-y ;

be written in the form

By the determinant (or discriminant) of
/"
we mean

167. Theorem. - -

C/pow applying to f a linear m-ary trans-

formation of determinant D, tlie determinant A of f is multiplied by I)2
.

In view of 100, it suffices to prove the theorem for the types
of transformations considered in the cases 1 and 2 following.

1. Upon applying to f the transformation

SJ-fe+at,, |{-li (i
= 2,...,m)

we obtain the function

Its determinant is

Multiply the first row by A and subtract from the second row; after-

wards multiply the first column by K and subtract from the second.

We obtain the original determinant A = a^ \

.

1) The results of this chapter were given by the author in the American

Journal of Mathematics, vol. 21 (1899), pp. 193 256, and partially in earlier

papers there cited. For the case n = 1
,
the order of the first orthogonal group

was determined by Jordan, Traite, pp. 161 170.
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2. Upon applying to f the transformation

=Di1; is- & (;
= 2,...,m)

772 I* *
j 77%

we obtain the function

+

Its determinant is

168. Theorem. A quadratic form f with coefficients in the

GF[pn
~\, p > 2, awdf o/

1

determinant A =4= caw &e reduced by a linear

homogeneous substitution belonging to the field to the form

142) (each at =}= 0).

Since A =j= 0, the coefficients n , 12 ,
. .

.,
#lm are not all zero.

If 11
= 0, we may suppose that a12 =|= 0, for example. Applying

to f the substitution of determinant 2 A =j= 0,

I^A^ + ^2, 2
=

i fe> 15 & (i
=

3, ..., m)

we obtain a form in which the coefficient of %\ is #22 + 2Aor12 .

Taking for A any one of the pn 2 marks different from zero and

from #22/2^12? the coefficient of
J

will be not zero. Whether an
be zero or not, we thus obtain a form

whose determinant A f

is not zero by 167.

Applying to f the substitution

. li li~ ^2? If
=

I/ ,
. .

., )

we obtain a form in which the coefficient of |t |2 is zero, while

that |J remains
/3n =(=0. In a similar manner, we can make the

coefficients of l^g, . .
., ^m all zero. In the resulting form

2, . . .
,
m

the coefficients ^22 , ^23 ,
. .

., y^ m are not all zero, since the determinant

of the transformed form is not zero by 167.
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Proceeding with this form as we did with f, we reach a form

of determinant =j= 0. After in 1 such steps we reach the form 142).

169. Certain of the a { in 142) are squares and the others are

not-squares in the GrF[p
K

']. By applying a suitable substitution

which interchanges the
/,
we may suppose that in the resulting form

,,...,, are squares, say a2
,

. .
., a?, while a,+i, . .

.,
aOT are not-

squares, say vaJLj_i, . .
., vttm, v being a particular not -square. Apply-

ing the substitution

i;
= r^ (<-!,...,)

our form is transformed into

i s+1

Furthermore
,
we can transform fs into fs + 2 and vice versa. In

fact, the substitution of determinant a2 + /3

2

!$=&-/?!,, g}
=

/3g f+&
transforms |?+ || into

(
2
-f /3

2

)(||-f ||). By 64, a and may be

chosen in the GrF[p
n
~\, p > 2, such that

We have therefore only two canonical forms, fm and /_i. The
latter form may be dropped if m be odd. Indeed, fm i can, for m
odd, be transformed into

/=(!; + || + ... + !>,).

But the linear group leaving /" invariant leaves also

i =- & -4- & -4- - - 4- 2
/m |_

i 63 r i 6m

invariant. We may therefore state the theorem:

The group of all linear homogeneous m-ary substitutions in the

GF\j>
n
~\, p > 2, which leave invariant a quadratic form f belonging to

the field and of determinant not zero, can be transformed by a linear

homogeneous m-ary substitution belonging to the field into the group of

all linear homogeneous m-ary substitutions in the GrF\j>
n

~]
which leave

invariant

tvhere ft
= 1 for m odd, but p = 1 or a particular not-square v for m

even.
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170. The conditions that the substitution

Si ei-* (-l,...,m)

shall leave F^ invariant are the following:

143) *l+ !, + ..-+ !,_!, = m)

144) tf^ffi* H-----h m-l^m-lt + P<Xmj<Xmk=

0'; & = !, .., m;

It follows readily that the inverse of S is

m-l

The determinant of S l
is seen to equal the determinant D of S.

Hence D2 =l
; being the determinant of S~ 1S = I.

Writing the relations 143) and 144) for the substitution S~ l

,

we obtain the following relations, which are evidently together

equivalent to the set 143) and 144):

146) KjitXkl-i
-----h >w-l *-!+- <Xjm<Xkm=

(j, fc 1, - ., w; j + *)-

171. The substitutions leaving .Fu invariant were proven to have

determinant + 1. Among them occur substitutions of determinant 1, as

Or. - -fc, ;-& (j
= l,...,;j + *)-

The group 0^ (m, p
n
) of all linear substitutions leaving F^ invariant

has therefore a subgroup of index two 0^ (m, p
n
) composed of all

linear m-ary substitutions in the 6r-F[p
w
] of determinant unity which

leave F^ invariant. The latter substitutions will be called orthogonal^)
For

ft
=

1, we have the first orthogonal group O^m, pn
)] for m even

and
[i
=

v, we have the second orthogonal group Ov (m, pn
).

1) This unusual restriction of the term orthogonal to substitutions of

determinant -j-
1 is done in the interest of the later terminology and notation.

We will be concerned with such substitutions alone. If it became necessary to

consider substitutions of determinant 1 which leave Fp invariant, they might
be designated extended (erweiterte) orthogonal substitutions and the group On(m,pn )

designated the extended orthogonal group.
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172. Theorem. - - The order QU(W, p
n
) of 0^(m, p

n
) is, for m odd,

2) n(m 3) _

and, for m even,

[
(

pn(rn-i) qi
2
p"\

2 2 n

?'s
- - or -f according as ft

= 1 or i>,

= 1 according to the form 4:1 + 1 of pn
.

We notice first that the number of substitutions S, S', . . . of

Ofi(m> P") which leave |t fixed is Q^(m 1, jp
n
).

In fact
? they have

an = 1, cc
12
=

13
= =

i m= 0, and therefore by 146) for j
=

1,

*! = (Jc-2,.. ., w).

Hence they belong to the group 0^(tn \,p
n
) leaving invariant

i! + iI+---+&-1 +ft&.

Let T be a general substitution of 0^ (m; j9
w
) and let it replace t by

where, by 145) for j
=

l,

147) aj, + J2 + - - + i w -i + y JW - 1.

The 0^(^1,^") substitutions TS, TS', . . . and no others of the

group will replace | by Oj. If, therefore, P^(m, p
n
} denote the

number of distinct linear functions o
l by which the substitutions of

OP (
m

> .P") can replace ^ ,
we have for the order of the latter group,

This recursion formula gives

^(m, pn
)
= P^(m,p

n
) P^m - 1, p

n
) . . . P^,p},

since the identity is the only substitution of determinant unity on

one index which leaves ftgj, invariant, so that Q(l,j)
w
)
= l.

It will be shown in 174 180 that P^(k,p
n
) equals the number

of sets of solutions in the GrF[p
n

~\
of the equation

and hence, by 65 66, P^(k,p
n
)
=

k_ (jk__ 1
\

^(*-Dq: 2/va )
(j.

even)

* i

pn(k-l) e~T~^n(t-l)/2 (^ odd)

the upper signs holding if
fi
=

1, the lower signs if
ft
=

v, and

denoting +1 or 1 according as 1 is a square or a not -square
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in the 6rF[jp
n
].

Whether the integer t be even or odd, we find

that the product

We derive at once the expression for given in the theorem.

173. Theorem. The orthogonal group Op(m9 fP) is generated 'by

the stibstitutions
1

}

Of/:

0;,'m: t'-
I 5m

with the following exceptions:

1. For pn =5, m^3, jt

additional generator

a*-*

54, P =

u-

we as necessary

2.

additional generator

choose as the necessary

1234'

b2 b3

TF3 7" 1234 *

may as %e necessary3. J?V pn= 3,m>\p = vEE l,

additional generator
t 1 t t t
5i
-

5i 52
~

5m?

5m == ~
bl 2

For m = 2, the theorem is readily proven. If any orthogonal

substitution replaces |j by yii+^ls? ^nen $ OJjtfl^ where 8^
leaves ^ fixed and is therefore the identity.

For m = 3
7
the theorem follows from 174 179. For m > 3,

it foUows from 180.

1) For simplicity we write only the indices altered by the substitution.

DlCKSON, Linear Groups. 1A
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174. Theorem. If a17 ff
2 ,

a3 ~be any set of solutions in the

GF[pn
~],p>2, of the

,

there exists a substitution S, derived from the generators of % 173 which

leave If + If + ^|| invariant, such that S replaces |j_ % ^1^1+ ^2+ ^3^3-

The proposition follows if 1 a2 or 1 af be a square =j= in

the GrF[
n
].

For example, if 1
|
= r2

,
then

so that we may take

The proposition will be true for a19 &
2 ,

a
s

if true for the quantities

where {
= i9-2^ i

~
cr^ + a

a (, < = 8 ,

so that we have

148) I

i+i i + 7i
l-! + J + 7!-i.

In fact, if the group contains a substitution /S' which replaces |x by
aii+ 2&+ ^3^3? i* wiH contain the product S=Ol]^

a
S' which

replaces ^ by aji + 2 fe + ^3^3-

175. Consider first the case in which 1 is a not -square in the

GF[pn
~\. By 64, there are p

n+ 1 sets of solutions p, ^ in the field

of the equation p
2+a 2 =l. Not more than two of these sets of

solutions give the same value to

Indeed, upon eliminating tf,
we obtain a quadratic for p. Hence a'

2

takes at least y(p
n
H- 1) distinct values. But, by 67, there are

exactly y(p
w

3) distinct marks y =j= for which rf 1 is a square
1

),

so that 1 if is a not- square. Hence there exist at least two values

of
tfg

f r which 1 Kg
2

is a square or zero. If it be a square, our

theorem follows from the previous section. There remains the case

^ 2 =
1, for which, by 148),

If fi=l, we have
{
=

a$
= 0, since 1 is a not -square, and the

required substitution is S*=Cfyt*. If ^ be a not-square, we may
take

ft
= 1

,
so that

1) Zero is not reckoned as a square.
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But the theorem is true for a{, a[ y
cc'
s

if true for the quantities

'/

=
atf

-
aiy 9 < EE < a" = -

where /3
2 -

y
2= 1. In fact, if 8" replaces & hy o^ + a>& + '

3%,
then 0?;/S" will replace ^ by &+&+&. The^-l sets

of solutions in the GF[pn
~\

of the equation |8

a
y

2 =l are given by

where r runs through the series of marks =f= of the field. Hence

ft + y may be given an arbitrary value x =j= in the field. The
theorem being evident if a[

=
0, we exclude this case. Then a" =

a[ (ft + y) may be made to assume an arbitrary value except zero, and

hence, if ^)
w >3, a value for which 1 a" 2

is a square in the field

( 64). For jp
n = 3, a[, cc^,

cc'
3

are each 1, so that we may
evidently take

where C and 5" are products formed from C19 C2 ,
C3 . But, if C be

the product of an odd number of the d, we note that

^1 ^123
=

^2 ^3 ^123 ^1 ^2 ^3

We may therefore assume that C and .BT are each products of an

even number of the d and therefore derived from the given generators.

176. Suppose next that 1 is the square of a mark i of the

6r-F[p
n
], while

ft
is -a, not -square. There exist pn -\-\ sets of solutions

in the field of the equation

149)

'

0t+ JL
y _i.

But the theorem is true for aly &%, or3
if true for

Indeed, if 8' replaces & by & + i68 + *&, then 0%IS' will

replace gt by a^ + or2 |2 + ccs ^.

There are at least ~-(jp" + 1) sets of solutions of 149) for which

the values of a'
2

are distinct; for, upon eliminating /3,
we obtain a

quadratic for
<y. But, by 67, there exist only y(p

n
1) marks ig,

and hence as many distinct marks J, for which

(^|)
2 + 1 = 1 - |

2= not-square.
11*
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Hence at least one set of solutions of 149) will make 1 a^
2 a

square or zero. If it be a square, the theorem follows from 174.

If it be zero, we have by 148),

/y' 2 _ JL '2
"i

=

^
a
s

Hence a{ = as = 0, 2
2 =

1; so that we may take $ = 0ij2
a

-

177. For the case 1

) la square in the CrF[p
n

~\
and p = l, it

follows from 178179 that
1 (3,jp

w
) contains a subgroup of order

at least pn
(p

2n
1) generated by the substitutions Of/, together with

-^123 if #n = 5
>

a11 of determinant + 1. But, by 172, the order of

Oi(S,p
n
) is P

1 (3,jp
n)P1 (2,^

w
).

Here P^, pn
) =pn -l, being the

number of functions

by which the substitutions of
1 (2,jp

w
) can replace |j. Also

In fact, if a substitution of
1 (3,p

w
) replace ^ by

then i
= ii

150) J + J -f- |
== 1.

By 66, this equation has yP
n

-\- pn sets of solutions in the

-1 being a square. The order of Oj(3, jp
n
) is thus

(p
2w+ pn

)(j?
n

1). From the two results it follows that this number

equals the order of O
x (3, p

n
) and that for every set of solutions

of 150) there exists a substitution of O
x (3, p

n\ derived from Of/
and JR, which replaces ^ by c^.

178. Theorem. The first orthogonal group 1 (3) pn
) contains a

subgroup 01(3,j)
w
) Twloedrically isomorphic with the group LF(2,pn

')

of linear fractional substitutions of determinant unity.

Let 1 = ^
2
,

so that i belongs to the G-F[p
n

']
if and only if

1 be a square in that field. Introduce in place of |1; |2 , 8
the

new indices

%=-*!i> %=6s *8s> %=la+*S8^
so that

1) For a more direct treatment of this case, but one involving considerable

calculation, see Amer. Journal, vol.21, pp. 202 204, in which the proof of

Jordan, Traite, pp. 164 166, for n = 1, is corrected and generalized.
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The following substitution of determinant unity,

y.
-i rr "Y &$

a" p
a

2yd y
2 d 2

leaves %% rj* absolutely invariant. Written in terms of the indices

li> 2* %s> ^ takes the form

cud + 3y i(cty + /3d) ccy Su

x= ~ i(

afi yd

It follows that X has determinant unity ( 101) and leaves If + 1| +
absolutely invariant. Giving to the substitution Y the notation

we readily verify the formula of composition

ra' 0nr 01 [-' + /?/. /j' + /sdn
L' d'JL dJ La' d f

S' + dd'J

The group of the substitutions X, being isomorphic with the group
of the substitutions Y, is isomorphic with the group of the linear

fractional substitutions 151). But Y and therefore X is the identity

if and only ifa = d = +l, = y = 0. Hence the isomorphism is

holoedric.

If 1 be a square in the 6r.F[jp
n
], so that the coefficients of

X belong to that field, the substitutions X form a group 0{(3,jp
n
),

a subgroup of Oj(3, p
n
), which is holoedrically isomorphic with

If 1 be a not- square in the (S^PyrJ, the coefficients of X
will belong to the 6r.F[p

n
] if we choose or, /3> y, d in the GrF[p*

n
~]

such that a is conjugate ( 73) with d, /3
with y, with respect to

the G-F[p
n
~\. By 144, the resulting substitutions 151) of determinant

unity form a group holoedrically isomorphic with LF(2jpn
\ The

corresponding substitutions X form a subgroup 0{(3,#
n
) of 0^3,^").

In each case, the subgroup 0{(3,^
n
) has the order -crp

n
(p*

n
1),

since it is holoedrically isomorphic with LF(2,p"). We proceed to

prove that this subgroup does not coincide with (^(S,^
71

).
In order

that 0^3 shall be of the form X, it is necessary and sufficient that
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According to the definition of a, /3, ;/, d in the above cases, the

expressions

belong to the 6r.F[^)
n
].

The above conditions then give

so that O^s must be the special substitution Q^s defined in 181

Any orthogonal substitution 02,3 not of the form
2,3;

and therefore

not of the form .X, will extend Oi(3,^9
n
) to a larger subgroup 6r of

Oj(3, ^
n
).

The order of 6r is therefore at least pn
(p

2n
1). From

the remarks at the end of 177, it follows that 6r has exactly this

order and hence coincides with
1 (3, p^.

179. We proceed to the proof that, if -- 1 be a square i* in

the GrF[p
n
'],

the group 1 (3,p
w
) is generated by the substitutions

Of/ together with E12S if pn = 5. If pn> 5, there exist
( 64) marks

/3
and r in the GF[pn

~\
such that

1+ /*_, + 0, T + 0).
Then the product

^ i L wnich is an
6)2,3,

transforms _
fj

into .
^

Furthermore,
ri /jnri ^n_ri /s (! +
Lo i J Lo i J Lo i

Since /3 =f= 0, we can.( 64) find marks a^ and a
2

in the field such

that /3(a
2 + |)

=
x, where % is an arbitrary mark =j= 0. Also

r o il- ]

fi -*-ir o 11 ri on r o n
1)0

L-i oJ Lo iJUi oJ
= L J' L-i oJ

5^'

Hence, if pn > 5, we have reached from the O"'/ the substitutions

[J J], [1 J] (x arbitrary).

By 100 and 108, these substitutions generate the group LF(2,p
n
\

Hence the OJ/ from which they were derived generate the isomorphic
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group 0{(3, p
n
). Then, by the last section, all the O"'/ generate

For pn =
5, i = 2j we have

f i -i o

pi 3i p o

J ~LO 3J~LO ULO 2-i
4 L L

\

Hence from JR123 and
Q i = ^M' we reach

Q i It follows

as above that -R12S and 0^l'
= C2 C5

and C^Q generate 0^(3, 5).

The latter is extended to (3, 5) by any 0j *.

180. Theorem. If ]7 #2? .
., am be any set of solutions in the

GFWof
a , + fll+ ... + a, 1+ i ft

2 =1

there exists a substitution S derived from the generators
1

) of 173 which

replaces Jj by G^
=

cc |t + or
2 ?2 H f" a im

The proposition having been proven for m = 2 and m = 3, we
will give a proof by induction from m 1 to m, supposing m > 3.

Consider first the case in which every sum of three of the terms

J, 2> >
ami, <4 is zero. These terms must all be equal and

therefore

mal = 1, 3cq
= 0, ft

=
square.

Hence p = 3, while m is of the form 3& + 2 or 3k -f 1.

If m = 3k + 2, we have 1 af
=

af =(= 0, so that the theorem

is reduced by 174 to the case of m 1 indices.

If m = 3^ + l, we must have
J
= 1. But the product Oi]%S

will replace t by a'^ -{ H ttmm, where

Of the 3n l sets of values in the #jF[3
n
] satisfying

at most two give the same value to a[ and hence at most four make

a[
= 1. Hence, if n > 1, we can avoid the case

|
= 1. For pn=

3,

we may take

1) For the case p*= 5, m ^ 4, ji
= not -square, it would appear that the

generator JB123 were necessary in addition to the Of We can, however,

express .R123 in terms of the generators

^f,m-

leaving invariant gf -f- g + -f gj, _ t -f 3
gj,

. Indeed,
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where C and K denote products of an even number of the C{ [com-

pare the end of 175].

Suppose next that the above sums are not all zero, for example
1

)

J + J + 74*o.
We have proven that, for every set of solutions of

152) tt
s
+/}*+.lj,2= l,

there exists a substitution Z of the group,

which therefore satisfies the relation 152) and the following:

/3"=0, etc.

If there be a substitution S' in our group which replaces |x by

m 1

I.where

then the group will contain Z$ f which replaces ^ by 0?^ The prop-
osition is therefore true for the quantities y if true for i, 2, #m>

cr
3 , 4 ,

. .
.,
am_ i. We may thus make our proof by induction from

m 1 to m by showing that it is possible to choose a, /3, y among
the sets of solutions of 152) in such a way that i

= 0. We may
suppose that a^ =|= fy since otherwise the proposition is already proven.

If
| + f

=
0, then *

8 4= 0. From J,
=

1, it foUows that p

is a square, say ft
= 1. Then the values

satisfy 152) and make 1
= 0.

If a\ + a| ^ ^> the condition 152) combines with a'l
= to give

a single condition for
/3

and y:

1) The treatment for a case like ? -f af -f- =|= o is quite similar, taking ft
= 1.
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Multiplying this by a\ + af ,
it may be given the form

Since the coefficient of y
2

is not zero, this equation has in the

GF[pn
~] (by 64) pn I sets of solutions for y and

and hence as many sets of solutions /3, y.

The structure of the first and second orthogonal groups, 181 198.

181. The group 0^(m,^>
n
) contains the substitutions

leaving 4? + >tj invariant, where A = 1 if i
} j < m, but A = ft

if

i <j = m. For ^ and j fixed, while 0, <? take all possible values in

the field such that
q^-\--^-G

2=
1, the substitutions OfJ form a sub-

group denoted by 0,-j. Its substitutions are commutative since the

following product is unaltered if we interchange 9 with $' and with a f

:

By 64, the order of Otj
is #* sfj ,

where -= + 1 or 1 accord-

ing as I/A is a square or a not- square in the GF[pn
].

The squares of the substitutions of 0/j form a commutative

group $t
-

ji?-, composed of the substitutions,

The order of
$,-,-

is (^)
n

{>) Indeed, the identity

holds if and only if tf
= p,

f = (?.
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Let OfJ be a particular substitution which extends Q ti
to 0^-,

the values Q, (5 depending on A. Consider the subgroup O^(W,JP
TC

)

of On(m,p
n
) generated by the substitutions

CfA Of/ Of* ft A M -
1, , ; + ;, * + i)

where a, /3
take all the values in the G-F[p

n
~\ satisfying

2 + -7-j8
2
=l,

the generator JR, W or V being added in the exceptional cases of 173.

182. Theorem. - - The order of Ol(m,p
n
) is at least half of the

order of O
ft (m,p'

l

).

By the theorem of 173, every substitution of O^m, pn
) has

the form
8^0^0},^, . . .

where the hi (and the h\, hlr

, h, . . . below) are derived from the

generators of 0;(w, p
n
).

For m > 2, 0^{ and 0%7* = 0l\{ are

reciprocal. Hence
/-vO, O iT\Qi O /^j 6 /"ki O 7 /~kO G

ij
=

Off Oil i il 2
= \ Oil 2 -

Hence

Furthermore, Of; \ is commutative with every Q% and every C?/>
* and j > 2. Since the square of Oi

?

'

is $fj*> whose reciprocal is

Aside from the above exceptional cases, we may conclude that 8 is

of the form h or else h - 0J. We treat next the exceptional cases.

1. For^w=5
?
m > 3, f&

=
l, the additional generator is JR123 ,

and the only Qfcf are (ftp
1

==dCj and ^f/'=J. Since

00,
1 m /Tf

,; -M/^ij

where
T,-^-
=

(|-iy), is not in ^, it may be taken for O^'/. To complete

the proof that 8 = h or hO% J ,
we note that

T
12 C1

- li12S
=

Uj C/3 Ji123 jT23 (7
2
T12 Cl

' C
l
C3

- T
12 Cj .

2. For pn =3, m^> &, p = 1, the additional generator is Tf"1234 .

The remarks of 1 apply here, if we replace the last formula by

T12 (7j W12U
= C C2 W 2̂B4:T^Ci .

3. For ^w =3, m>3 7 p = v = 1, the additional generator is

F12m and the only 0? (a
2 -

^
2

=1) are CtCm and J, the only $$
being 1. We may take OfJ

= T
{jd (i, j < m) and 0?'^

= dCm . To

complete our proof, we use the formulae
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183. Theorem. The group 0{(3, p
n
) just defined is identical

with the subgroup of 0^y pn
) of index two defined in 178.

It is only necessary to show that every QfJ and every
are of the form X or, if we prefer, 151). We have

H-l-H
2

K

G*
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various reasons it would seem that the same result holds true when
m > 6, but no explicit investigation has yet been made. The devel-

opments in 191 193 are made on the assumption that this index

is 2. Moreover, if this conjecture prove false, very simple alterations

would be necessary in the treatment.

186. We continue the investigations begun in 163 on the

senary group 6rl,2? whose substitutions leave absolutely invariant the

Pfaffian [1234], viz.,

-^4 = ^12 -*34 ^13 -*24 ~^~ -M4 ^23

Denote by 6r
6
the group of all substitutions of determinant unity in

the GF[pn
~], p > 2, which leave F absolutely invariant. We will

prove that 6r6 is holoedrically isomorphic with 0^(6,^"), where ^=1
or v according as pn = 4Z + 1 or 4? -j- 3. Hence 6r6 has the order

( 172)

153) (p*
n

It will therefore follow from the theorem of 163 that 4,2 is a

subgroup of index two under the group 6r6 .

187. Let pn = 4:1 -f 1, so that 1 is the square of a mark i

belonging to the GF[pn
~\.

We make the following transformation

of indices:

-M2 fel ~J~ *2?
"
-MS '3 ~^~ ^4; -^14= 55 "f~ ^Q)

y t -t v ? - it Y it*- 34= fel
~~

* 2 ; -*-24 ?3 *54? -t 23 ?5 ^$6'

Then JP4 takes the form

Hence (r6 is holoedrically isomorphic with
1 (6,p

n
). By 164, the

following substitution of 6r6 (leaving four of the indices fixed):

belongs to the subgroup Cri } 2 if and only if r be a square in the

field. Expressed in the new indices, it has the form

155)

II
- - Y (

- -*- 1
) Is + (^ + T- 1

) I4 .

For T an arbitrary mark =|= of the field, 155) may be written

156)
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For r = t
2
, 155) may be expressed in the form

For r a not- square, 155) is not of the form 157), since that would

require y*= (* + l)
2
/4r. It follows that to the subgroup G^z of 6r6

of index two there corresponds a subgroup of O^G,^") of index

two, where is extended to
1 (6,p

n
) by any substitution Of; 4 not

of the form 3,4. We proceed to prove that is identical with the

group 0((,p
n
) defined in 181. We first show that contains all

even substitutions on the six letters f^, . .
., f^. Expressing the sub-

stitution

in terms of the indices

2
=

%s> 3
=

1?

- it takes the form

' = 4,5, 6)

12 13 14 23 34

r
i2
=
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Having every 3,' 4? contains their transformed

the even substitution (is 6*

by
By 164, Note, contains the

product Of; 2 Of; 4 and therefore also every Of//

are distinct. Hence contains

?'
CT

fell?
where i, j, ~k, I

and therefore every 0///0f?
'f in which two of the subscripts are alike.

For the case pn =
5, i = 2, there is an additional generator, viz., EIM .

Expressing R123 in the indices T^-, we obtain the substitution

4
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Under this transformation, F takes the form

175

Hence 6r6 is holoedrically isomorphic with the second orthogonal

group 0_i (6, p
n
). Reversing equations 158), we find

1
= 12

1

2|B
=r14+r23 , 2i4

=

The following substitution leaving jP4 invariant,

2V: 14>
V' r~-^ T

becomes, when expressed in the new indices 160),
'

'

li- ^ + '-'Jfc -C'-*-
1

)

It is always an
5> 6 ,

but is of the form Ql\$ if and only if T be a

square. It follows that 0_i(6, p
n
} contains a subgroup 0' of index 2,

which is the form taken by 4,2 when expressed in terms of the
,-.

The subgroup 0' may be extended to 0_i(6, p
n
) by the substitution

5
(76 ,

the new form of T_I.
We proceed to prove that 0' is identical with the subgroup

O.!_i(6, p
n
) defined in 181. Expressing the orthogonal substitution

Of,'4
in the indices Yy, we obtain the substitution, denoted for the

moment Of'?:

is 13
y yX ^ 24 34

_iL
(1 _}_ p)

_ JL G
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As shown above, T-i corresponds to C
6 CG . The product

seen to be the second compound of

-i s

X

-x ^
-x

c

x

But x belongs to the GF[pn
~\,

in which 1 is a not -square, if and

only if Y (!+(>) is a not-square, which occurs if and only if Of; 4

is not of the form 2' 4- Hence O 1

contains Ofj4(75 (76 if Of; 4 is not

& $2, 4? hut not in the contrary case. As shown above, O f

contains

every Ql\ 4 . To prove that 0' contains all the generators of 0_!_i(6,^)
n
),

it evidently remains only to prove that 0' contains all even substi-

tutions on i, (jg, gs , |4 , 5 , and, if #TC =3, also Fij2 ,
6 .

Expressing the linear substitution (i^is) in the indices Y^-, we get

4-fa-/3
2
) -ka-0-a/ft -4(

1

1

tfi y(-/
This substitution is the second compound of

x y

8 W
161> -TT Z

-Y X

having determinant unity, where

In order that 161) shall belong to the G-F\_p
n
~\,

it is necessary and

sufficient that x be a mark =[= of the field. We proceed to prove

that, for every set of solutions in the field of a2 + /3

2 = 1
,
the

expression
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is a square in the field or else zero. 1

) Eliminating /3 between the

two equations ,
we find

or

or

(1 + a + a 2 + 2s)
2 = 4s(l +

Hence will s be a square.
2

) Solving, we find

The linear substitution (J2 i4 i5) expressed in the indices Y
{j

takes

the following form, say V:

2 2

J_ JL^T Y

2 r 2

5
21 6>s

The product Fi7 will be simpler than F, if we take as E:

which is recognized as the second compound of

E'=

1 -a
/3

(01000010
-3 -a 1

1) The case s = requires 1
-}- a -f- a*= 0, and may thus be avoided.

2) For #n = 3, 7 or 11, there exist solutions of a*-|- (3

2 = 1 for which
is an arbitrary square in the field. Is this always true?

DlCKSON, Linear Groups. 12
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The product VE has indeed the simple form U=

i i

/3

cc

2

i

a/2 -p/2 -f 1/2 -fift -a/2

1/2 -1/2 a 1/2 -1/2

(1/2 1/2 -|8 1/2 1/2

which is seen by inspection to be the second compound of

U' =

1001
y (-/?) 1/2 -1/2 ~(a

1/2

-i
1/2 i(-

1

" 1
Hence F= Z7-E" is the second compound of V = U'E'": 1

)

(- ->
j_Y
j^Y

|(a+ ft .i(-

. _|_ /D>
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12 13 2-1 -34

Y'
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Since Q is holoedrically isomorphic with J.(4, p
n
), its order is, by

115, half of that of 0^(5, p). To complete the proof of the

theorem, we then show that Q is holoedrically isomorphic with a

subgroup of $i(5,p
w
) containing all the generators of the group

OJ(5,jp") defined in 181.

Let first 1 be the square of a mark i of the GI^p**]. Set

162)

whence

Hence G is holoedrically isomorphic with
1 (5,jp

n
). Proceeding

1

) as

in 187, we find that Q
1

(Q expressed in the indices | t-)
contains

the substitution Of' 4 if and only if it be a 3,4, also that Q' contains

( 3 5 6).
The latter with (i2 i3 54) will generate all even substitutions

on |2 ,
. . ., le hy the preceding section. But (S2 S8 ?4) expressed in the

indices Y;J is

12 13 -14 23 -24 34

1/2
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1
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y v-M4 J-23 24

/3

2
up aft -a 2

_
a/3 _02 _ K 2 _

a/3

a/3 -a2
-/3

2
a/3

-a2
-a/3 a/3 /3

2

and is the second compound of the special Abelian substitution

P a (

a -/3

/3
-a

-a -/3j

Hence $1 contains OajJOils. We next show that (^ contains the

linear substitution (i2 i4|8), so that with (ii^is) 61 w^ contain all

even substitutions on |1? . .
., J5 . Expressing (Ig^ls) in the indices Y/y,

we get
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ri=ru + r, r,'4
=r14+r24

when expressed in the indices 17 . .
., 5

becomes (mod 3)

12220
11210
11120
12110
,00001,

In every case it follows that Q1
coincides with 0^(5,^).

190. Theorem. 1

)
--

If pn = 4Z + 1, O'v (6,p
n
} is Moedrically iso-

morpMc with the simple group HA(4c,p*
n
). If pn= 4Z -|- 3, Oi(6,^)

n
)

has the maximal invariant subgroup { I, C C2 C3 C 5 CG } of order 2, the

quotient-group being holoedrically isomorphie with HA (4, jp
2n

).
In

either case, 0^(6; p") is of index 2 under 0^(6, p") and is extended to

the latter by any substitution Oij not a Qij.

Consider the group H' of quaternary hyperabelian substitutions

in the GrF[p*
n

']
of determinant unity. It has the order

The special Abelian group SA(4=,p
n
) is a subgroup of H'. Denote

their second compound groups by -44j2 and J3"4j2 respectively. By
161, ^(4,2 leaves absolutely invariant the functions

XT vy _yy_i_yy 7 y \ y
4 J: 12 ^34 J: 13-t 24i J: 14-I 23> " -^12 "t" - 34*

For an arbitrary mark co =f= in the GF[p2n
~\,

the substitution

ra 00
a*-*

11

00 co- 1

^00 co
f

is hyperabelian and of determinant unity. Its second compound is

V Y-L to -L 112?
F' 14?

= co**""1 F,84? F ' - F
'24 247

Taking p > 2, we introduce in place of F12 ,
F34 the new indices

165) fe

where J is a mark of the G-F[p
2n

] satisfying the equation

166) J^-^-l,

1) Bulletin Amer. Math. Soc., May, 1900; Transactions, July, 1900.
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Reversing relations 165), we find

167) ru =s,-.rj,, r34=-i1

Written in the new indices, the substitution Q' becomes

The coefficients 0, 7p, p/7 belong to the 6r.F[^
w
] since

Hence Q" belongs to the GF[p*] and has determinant unity.

If, in 162, we set Y= J^, Z^=. 7|6 ,
we obtain the present

transformation of indices 165). Hence, if we express any substitu-

tion [].2 of A^* in terms of the new indices, we obtain a substitu-

tion, not involving |6 ,
the matrix of whose coefficients is given in

162. Hence A^ 2 is transformed into a group A! 1

of substitutions

belonging to the GF[pn
~]
which do not involve |6 and which leave

absolutely invariant ,

2 ^
fel ~t~ -Ms-^24 -M4-^23'

In order that A" shall contain the substitution

A-.

it is necessary and sufficient (by 164) that o^
n+1 be a square in

the 6rP[^)
?l

] and hence that o be a square in the 6r_F[p
2n

],

C)(p
n
+i)(pn-i)/2 =

-J- 1.

Hence the group 6r", given by the extension of A" by Q", will contain

if and only if o be a square in the G-F[p
2n

~\.
Now ." leaves

-
|| -|- J 2

|| invariant and is therefore an 16 . We proceed to prove

that, if a be a square in the G-F[p
2
*], every K is a Q"l% and every

Qif& is a K, where a, ft belong to the GrF[p
n

~]. Let, in fact,

168) ^-

Since a)^
2 "-1)/ 2 ^

1, we see that a and
/3 belong to the GF[pn

~].
Also

169)

170)

Hence has the form
$?,'{?,

where a, /?
are defined by 168).
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Given, inversely, a Q"$, where a, /3
are marks of the GF[pn

]

satisfying 169), we can determine a square co in the GF[p2n
~\
which

satisfies 170). In fact, 170) may be written in the solved form

of which the second follows from the first in virtue of 169). That

the first can be satisfied by a square o in the GF[p2n
~\

follows

from the relation

For a a not-square in the 6rF[jp
2n

], Q" is the product of

an
16 ,

not a Q16 in the CrF[p
n
'], by the substitution A, neither

factor belonging separately to G".

Under the transformation of indices 165), F becomes

\i/ _ fcs _i 722 y y i TT v
1 "T w ?6 J-13 j: 24"t" J- 14^23^

where, by 166), J 2
belongs to the GF\j)

n
~]
but is a not-square in it.

We introduce in place of the Yy new indices such that

r15rM-rurw = sj + sj + ! +
5

Then V becomes JPgwvjg^fc Therefore, by 189, ^L" wiU be
i= l

transformed into Oi(5,p
w
).

For 1 the square of a mark i in the 6rF[j9"], we may take

r13 = i2 + ;|3 ,
rM =8,-|,, -r14=!4+*|6 ,

r23 =|4-^5
.

As in 187, ^4. becomes an 6)4,5, which is a 4,5 if and only if co

be a square in the 6rjP[jp
2n

].
Hence G-" is isomorphic with a sub-

group of Or (6, p
7

*).
The subgroup contains every Q^Q and every

16 45 ,
neither factor a $, but does not contain the separate factors.

For 1 a not-square, so that pn= 41 -f- 3, we may take o so that

Then A multiplies Yu and I^ by 1. The required transformation

of indices, transforming G" into a subgroup of
1 (6,j9

n
), is the

following:

r24
=

{, + ?4
-

/jfc, rM = |3 + /jg4 + a $,.

As in 189, ^L becomes in the new indices C^C^O^T^^^, the last

factor being not of the form
4>5 ,

while C5C4 = Ql',l belongs to

Oi(5,j)
n
).

Hence G" is isomorphic with a subgroup of Oi(6,p
w
).

The subgroup contains every 16
an(i every OjgO^, neither factor

being a Q, but does not contain the factors separately.
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It follows that G" is holoedrically isomorphic with OJ-(6, p
n

~)
or

Oi(Q,p
n
} according as pn= 41 + 1 or 4Z + 3. But, for p > 2, the

order of the second compound H^ of H' is h* and therefore

equals that of 0^(6, p
n
~).

Hence G", H^ and 0^(6,j)
n
) are holoedric-

ally isomorphic.

By 132, we pass from H 1

to the quotient-group .iELi(4, p*
n
)

by making the substitutions TK (106) correspond to the identity. The

corresponding substitutions of H^ are the identity I if p
n= 4? -f 1,

but are J and the substitution T changing the signs of the six indices

if pn =4:l + 3. Hence Oi(6,y) is holoedrically isomorphic with

HA(4,p*
n
) if #=4Z + 1; while, for #=4Z + 3, Oi(6,p") has the

maximal invariant subgroup { J, Q C2 C3 (74 (7
5
C6 }

of order 2, the quotient-

group being isomorphic with HA(4, p
271

).

191. We proceed to determine the structure of the orthogonal

subgroups 0^(m, p
n\ m 5> 7. Every w-ary linear homogeneous sub-

stitution is commutative with

0=0,0,... Cm : 65
- -

fe (
-

1, . . ., ).

belongs to the group Oj[(i,jp*) only when m is even and ^,= 1

(see 185). Suppose that Ol(m,p
n
) has a self-

conjugate subgroup G
containing a substitution 8 neither the identity I nor C:

Suppose first that /S reduces to the form

171) i!-8,- (t-l,...,i)

where ft-=l. Then $ is merely a product of an even number of

the d, in which certain ones as C* are lacking since S =j= (7. If ft
= v

and therefore m even by hypothesis, we may suppose that both Cm
and Ck (k <m) are lacking, since CiCm does not belong to Ol(m,p

n
).

But if S^dCjCrCs..., its transformed by T
ti
Ti1s (always in the

main group) gives 8' = Ck CjCr Cs . . ., so that G contains the product

From it we obtain in G the substitution C^Cg and are thus led

to the case treated in 193.

Suppose, on the contrary, that 8 is not of the form 171). We
may assume that 12 , 13 ,

. . .,
aim are not all zero. In fact, either 8

or its reciprocal will have at least one
,-y =[= in which i < j.

Transforming the one or the other by T^Tu, if j < m, we obtain a

substitution in G which replaces ^ by
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If j
= m, we transform S by T^Tu (k not 1, I or m) and obtain a

substitution in G which replaces i by

.?! H-----h a<mim-

From the resulting substitution S in which a12 ,
a13 ,

. . .,
alTO are

not all zero, we derive a substitution ^ belonging to 6r and having

ii + "?2 4s L We get #1 immediately if a^ + f, 4= 1 for j = 2, 3, . .
.,

or m 1. In the contrary case, we have

172) oj, + &-!, !8=4,= - = ?-!.
If 12

= 0, then 0^=1 and therefore i w=0 by 147), contrary to

the assumption that a12 ,
#13 ,

. . ., i m are not all zero. Hence a12 =|=0.

Transforming $ by a suitable product of the d, we can take

<*12
= a!3

= ' ' * = airo-l 4= 0.

Transforming
1

) the resulting substitution by OJ'S, we obtain a sub-

stitution which replaces f^ by

If pw> 5, we can determine a and
/3

in the 6rJP|j)
n
] such that

a+/J-l, .L+^i +^^+ l.

Indeed, since ai2
= i3=H^? an(i "u+^L^l? ^ne second condition

becomes 2a/3 4= 0. But, of the pn s sets of solutions in the G-F[p
n
]

of the first condition, where s = 1 according as 1 is a square
or a not-square in the field, only four sets of solutions have either

cc or ft equal zero. Hence, if^)
n >5, there exist other solutions.

For pn=
3, we transform S, in which

"11
=

>
= a

is
= i4= ai5 = 1>

by TF"
8|45 and obtain a substitution in 6r which replaces ^ by

for which therefore a^! -f ^2
= 0.

For pn =b, S has au = 0, J,
=

J8 ^4
= 1 in virtue of 172).

Transforming S by a product of the Ciy
we may take

The resulting substitution is transformed by .R^ into a substitution

of G which replaces |t by 2|2 -f 2
3 + cf15 |5 + -., for which

1) If the transformer does not belong to
0^(w, p), we afterwards trans-

form by OJ'|. Since the product OJ'JPJ^ belongs to the main group, the

transformed' substitution will belong to G. A like remark is to be understood

throughout this section.
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Taking the reciprocal of the substitution of 6r which has

&+&+ !,

we obtain in G a substitution S in which a\^ -f- |x =(= 1. Then 6r

contains the product

where Sa = S~Ct
C

2
S is of period two and has the form

1 \ / m 1

KJ^J + ^ fifmilm
J

2^-2 I Ci^ -f

/

\

I

$! is not the identity since $ would then be commutative with QCg
and would therefore break up into the product of

{
- a

11 ii + %2 i > ?2
=

2i Ei + "22 2 Ki + li
=

!)

by a substitution on |3 ,
. .

., |w .

We readily obtain the transformed $a - of Sa by an orthogonal
substitution 0, in which i,j<k:

where by 145)

173) a

We have . =
yy

2= 1 (I
= 1 if 7c < w; ^ = ft

if & = m).

0^(80). But S' = SO has the coefficients

*j EE asl (s
=

1, . .
., m; s 4= ^;^ ^)-

If ?i+a|i+ Aa^i=|=0, we can find solutions in the GrF[p
n

~\

of 173), which make a'u = 0. We suppose aa =j= 0, the trans-

formation of Sa being unnecessary if a be already zero. Eliminat-

ing a from 173) and

174) aaa+/3^i
we find the single condition on

/3
and

175) -f

If
2

i+a|i=0, so that ^i=^=0 and aA1 =j= 0, this equation deter-

mines /3 ?
when y is assigned any value =f= in the field. Then 174)

determines a in the field. But, if afi + |i be =j= 0, we multiply it

into 175), which then takes the form
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The coefficient of y
2
being not zero, this equation has solutions for

-f

in the field and hence solutions /3, y.

Transforming Sa by the orthogonal substitution

176) rf+fli+yi + ..*!...!,

we obtain as above a substitution $5 in which

-f tf

We proceed to show that solutions of 176) exist in the G-F[p
n

~\

which make an= 0. We may suppose that at-i, c^i, ecu are not zero,

since otherwise the result follows by inspection. If either of the sums

be not zero, the problem is solved as above. If both sums be zero,

I = square = 1, ah 4- |i + of i
= 0.

Then the following set of solutions of 176) will make ,-i zero:

^ = 1.

192. Transforming 8^
= 8aC^ by 534m, 634m, . . ., Om_i 34m in

succession, we obtain in 6r a substitution $' in which #51, 6i? . .
>

TO 11? are all zero. Then by 143),2222 2

11 + 21 + 31 + 41 + ^aJni
= 1.

A1SO
2 2

ii + aii ^ u + li 4= L22 2

Hence 31 -f ii + fiaJm 4= 0, so that we can transform $' by a

suitable Os 4m into S"=Sa"C1
C

2
in which

Transforming /S
ff

by 0/456 (j
=

7, 8, . .
.,
m 1) in succession,

we can obtain a substitution S2
= S^C^C^ which leaves |7 , |8 ,

. .
., ^TO_i

fixed and has /341
=

51
=

/361
== 0. If 42 , /362 , /362 are all not zero,

we transform $
2 by O^e and obtain a substitution $2 in which we

can make 062=0 except in the case
1

)

+ +-0, fti+ 0, m i4=0.

1) If psl = or j3mi= 0, we transform 2 by 06345 or Oem45 and make
0.
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In the latter case, we transform $
2 by Ol^fy'e and require that

$2= afts + bPm2 + eft, + d/352 + e/362
=

0,

/Jisa/k + a/ki-O.

the second condition becomes an identity and the first takes the form

e&2 = 6& P = ISrPn Pm2*
Psi

The further condition a2 + 62
-f c

2
-f d2

-f e
2 = 1 then becomes

177)

Since ft + PL+ l, /Sf. + ^+^+ft^i-l, i* follows that

178) 7 +
f-

1 + '

The coefficient of &2
is zero for at most two values of

/362 . In view

of 178), these two values of
/362 can be avoided, if ^)

w> 3, by an

earlier transformation of $
2 by 456 ,

an operation not affecting the

previous argument. Also the coefficient of d 2
is not zero. Hence 177)

has solutions d, I in the field. The conditions
/3g2
=

fi'6l
= can thus

be satisfied.

For p=3, 178) requires ^ = 1. The coefficient of & 2 in 177)
is then zero only when

/3 =f= 0. If
|8 =(= 0, we can determine a and 6

(each =J= 0) such that

Since a2= 6 2=
1, ^ = 1, the remaining conditions become

These are satisfied modulo 3 by taking c = /342 ,
d =

/352 ,
e = 0.

193. We have thus reached in G a substitution Z which leaves

fixed
6 , 7 ,

. . ., m_i and which is not the identity. If

X = G! C2
C

3 (74 (7
5 (7m ,

we obtain from it the substitution C^C/g as at the beginning of 191.

From the known structure of the subgroup 0^(6,p
n
),

it follows that

G contains all the substitutions of this subgroup. Transforming these

by suitable even substitutions on the t-,
we obtain all the generators

of 0(w,#n
), with which G therefore coincides.

194. In stating our results concerning the structure of the

orthogonal groups on m =f= 4 indices, we introduce permanent
notations for the simple groups reached. For the first orthogonal
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group the case m = 4 is shown in 195 196 to be quite except-
ional. We denote by F0(m,pn

) the first orthogonal subgroup

Oitphftyt when m is odd, and the quotient -group of 0[(m,p
n
) by

its maximal self-
conjugate subgroup {/, (7), when m is even and > 4.

By 72, F0(m,pn
) has the order

F0[m,pn
]
=
^(p

n (m-V-T)pn (m-V(pn (m-y

for m odd; while, for m even, m > 4,

The second orthogonal group on an even number m > 4 of indices

has a simple subgroup
1

) $0(w,jp
w
), previously denoted by O'v(m,p

n
)

of order

It wiU be shown in 197198 that this result holds true for m= 4 2
).

In both places, equals 1 according to the form 41 1 of p
n

.

Theorem. The first orthogonal group 1 (m,p
n

')
has for m even

and > 4 the factors of composition 2, FO [m, p
n
~\,

2 and for m odd the

factors of composition 2, F0\m,pn
~\,

the case m = 3, pn=3 being

exceptional. The second orthogonal group O v(m,p
n
) on an even number

m>2 of indices has the factors of composition 2, S0[m,pn
]. The

ortlwgonal groups on 2 indices are commutative groups.

195. In virtue of the identity

u + g + + e - e+i - e+ ----- $
it follows from 169 that the group

3

) L8
,p
n of 2s-ary linear homo-

geneous substitutions of determinant unity in the GF[pn
~], p > 2,

a

which leave ^Xf Yi invariant is holoedrically isomorphic with 1(25, Jp'
1

)

if 1 be a square in the (rJ^lj)
71

], jp > 2, or if 1 be a not- square

while s is even, but is isomorphic with Ov(2s,p
n
) if 1 be a not-

square while s is odd. In particular, L%>pn is, for p > 2, holoedrically

isomorphic with
1 (4,^)

n
).

In determining the structure of L^ pn we
do not exclude the case p = 2.

1) In view of the not-square factor in its invariant, it first appeared in

the literature with the notation NS(m, p}.
2) This result is readily verified for the case pn = 3 not treated in 197198.

3) The structure of this group was first determined by the author without

making use of its isomorphism with orthogonal groups, Proc. Lond. Math. Soc.,

vol. 30, pp. 7098.
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196. Theorem. Tlie factors of composition of L^p
n are

(ifp>2) 2,(^-1)^, Gp
2
-l)r, 2,

(if p = 2) 2r (2
2 * -

1) 2% (2
2 -

1) 2

e#cep w&m _p"
= 2 or 3, wto the composite numbers 6 awe? 12

respectively are to be replaced by their prime factors.

To determine the quaternary substitutions leaving ii^i + 2%
absolutely invariant, consider the two pairs of equations

1

),

179) ^ + 5^ = 0, % -%=<),

180) fe + *%=0, &-*%= ().

The most general quaternary linear homogeneous substitution, leaving
invariant the pair of equations 179), for every value of % in the field,

is readily seen to be

having the determinant (ad /3y)
2

. For it we have

The group of the substitutions 181) is therefore simply isomorphic
with the binary group on the variables ^ + ^|2

and
??2 ^%. Since

the transposition (2^2) transforms the pair of equations 179) into

the pair 180), we obtain the most general linear homogeneous sub-

stitution, leaving invariant the pair of equations 180), for every ^,

if we transform the set of substitutions 181) by (?2 %)> giving the set

The product of any substitution 181) by any substitution 182) gives

i{

183) ill

al> ~yD ccD yj$

ft
A -dC ftC dA

1) They give the two sets of generators on the ruled surface 1^ -f |2 ?y2
= 0.
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The same result holds if the substitutions be compounded in reverse

order, so that the substitutions are commutative. Further, the only
substitutions belonging to both of the sets 181) and 182) are seen to be

184) 8{
=

6i, ^ = <^1, %2
=

<*%2, *72
= %-

The substitution 181) leaves J^ -j- |2 ^2 absolutely invariant if

and only if ad 0y = 1. Hence there are (p
2n

T)p
n such substitu-

tions. It follows that there are

y {(!" -I)!*}' (ifi2)
distinct substitutions 183) for which

185) ad-/ty=l, AD-BC = 1.

The substitution T2)X ,
denned in 114, wiU be of the form 183)

only if

Therefore A= a" 1
,
D = KCC~\ d - x- 1

*, so that

ad $y = x- l a2 AD - BC = xa-*'

It will thus satisfy the relations 185) only when x is a square
in the Gf[pn

]. Hence there are at least {(p
2n

T)p
n

}

2 substitu-

tions 183) which satisfy the single relation

186) (ad
- p<y)(AD-BC) = 1.

For p > 2, L^pn is holoedrically isomorphic with #i(4,^
n
) and

therefore, by 172, has the order (p
Sn pn

)(p
2n

T)p
n

. Hence

L^ pn is composed of the substitutions 183) alone. Those of these

substitutions which satisfy 185) form a subgroup LilP* of index two.

It is extended to the main group L^pn by a substitution T
2jX

.

For p = 2, the substitutions 183) which satisfy 185) form a sub-

group jC2,2 of index two under Z
2j2

. In fact, by 204, the order

of L^n is 2(2
2
-l)

222w
,
which is double the order of L2>. The

transposition (ii%) serves to extend Z2?2 to i2
,
2 ; for, if 183) reduces

to the form (|A ^), then aA == aC = aB = 0, ccD = 1, whence

For either p > 2 or > = 2, the group i^^w of the substitutions

183) satisfying 185) has an invariant subgroup formed of the sub-

stitutions 181) which satisfy the relation ad fty
= 1. The quotient-

group is holoedrically isomorphic with the simple group LF(2,pn
*).

Indeed, it is clearly the quotient-group of the group of substitu-

tions 182) satisfying AD BC = 1 by the group of the substitu-

tions 184), a2 =l, common to the two sets 181) and 182) under

the conditions 185).

DlCKSON, Linear Groups.
13
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197. Theorem. For p
n> 3, the second orthogonal group Ov(,pn

)

is holoedrically isomorphic with the group E^p
n of quaternary linear

substitutions in the G-F[p
n
] of determinant unity which leave absolutely

invariant the function

in which q
=

|x% -f I? + ^2
^f & irreducible in the field.

For pra =3, the theorem necessarily fails, since q then becomes

(ii %)
2

. For pw> 3, there exists a quaternary substitution in the

6r.F[jp
w
] which transforms the invariant of the orthogonal group,

=
gJ + JJ + g + v gf (v

=
not-square)

into the function /j
=

(j^ + I2% 4- ^g| + A??|. But, for any _p
w
, /j is

transformed into A~V by the substitution |{
= X~\, l[

= A""
1

^.
If 1 be a not -square in the GrF[p

n
], we may take v = 1.

Then the substitution of determinant a3

converts O into the function

Of the p
n 1 sets of solutions in the GF[pn

], p> 2, of 2/3
2 - 2 2=

1,

two sets make a/3
= O.

1

) Hence there are pn 3 substitutions which
reduce O to /i The irreducibility of q follows from that of gf + g|.

If 1 = J 2
,
where I belongs to the (r^[p

ra

], the substitution

of determinant Ja/3 transforms O into the function

Of the^
M
-f 1 sets of solutions in the (r^[p

n
],^>2, of 2v/3

2

two sets make a/3
= 0. Hence there are^)

w 1 substitutions which
transform O into /i. The irreducibility of q now follows from that

of 8 + vfi.

198. Theorem. Whether p= 2 or p> 2, the group E^pn contains

a subgroup E^ pn of index two which is holoedrically isomorphic with

LF(2,p
2n

). According as p = 2 or p > 2, .E^w is extended to E^p
n

1) According as 2 is a square or a not- square, the solutions are given by
a = or

|3
= respectively.



LINEAR GROUP WITH QUADRATIC INVARIANT. 195

Let <? be a root of the equation

which is irreducible in the GF\_p
n

'\
in virtue of the irreducibility

of q. The second root is therefore ff^^o7

,
so that <S~G = A 2

. The
substitution

z- x-k-tffc, r-t,-%

transforms the function F=XY-\- 2 9?2
into

/".
Let a, ($, y, d be

any set of marks in the GrF[p
2n

~\ subject to the condition ad $y = 1.

Then F is absolutely invariant under the substitution [see 181)]

U: X'=a

If we regard
1

) |1; ^1? 2 , % to be arbitrary marks of the 6r.F[jp
n
],

F will be conjugate to X with respect to the GF\_p*\, while F will

be absolutely invariant under the following substitution conjugate
to U [see 182)]

If therefore the product Z7Z7 be expressed in terms of the indices

%i> %> fe; %^ ^e ^suiting substitution TF will leave f absolutely

invariant and have its coefficients in the 6rF[^
n
].

To give the

explicit form of W9
let U and U become C/i and U^ when written

in the indices g,-, ^,-.
Since the reciprocal of Z is

we find for Z7t the substitution

li % 2

a d o$ Get ft y

y GY a

f} 0ft d

The coefficients of Ut
are conjugate to the corresponding coefficients

of Uv The product TF= C/i^ is readily found to be the substitution

1) This interpretation is not a necessary one in view of the later explicit

calculations.

13*
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61 % 625~D f ^ O O \ f A"
Jtl %(()(}& (JpCC) K\6yO

P Q x({la ]}a) x(y~d

- Gay a'a -
y'y

where ~ 1^0r

c? and

Since every coefficient of TF equals its own conjugate with respect

to the 6rF[p
w
], T7 belongs to that field.

As in 196, the substitutions U form a group {7} holoedrically

isomorphic with the group of binary linear substitutions of determinant

unity in the GF\_p*
n

~\.
The substitutions W form an isomorphic

group {W} leaving f absolutely invariant and therefore a subgroup
of E^pn. Indeed, if we take Z7~TFand U'~W, then to UU' will

correspond

since the set of substitutions U is commutative with the set U by
196. Moreover, an identity UU^U'U' or U'-

1 U=U'U~
requires U 1 = U or CU

f
where C merely changes the signs of the

four indices. In fact, the groups {U} and {U} have in common only
the identity and C. Hence CU is the only substitution in addition

to U which corresponds to the product W~ U-JJi= C U^
- CUV It

follows that the quotient
-
group of {U} by {/, C} is holoedrically

isomorphic both with the simple linear fractional group LF(2,p'*
n

')

and with the group {W\ In particular, the order of {W} is

JL(jp4_l)p2n or (2
4n

l)2
2w

according as p > 2 or p = 2. For

>> 2, p
n> 3, IJ^n has the order (p*

n + pn
) (p

2n
l}p

n
, being holo-

edrically isomorphic with Ov (4,^)
n
), whose order is given in 172.

For p = 2, jEJ
4) g* is holoedrically isomorphic with the group leaving

i%+ 2% + ^i? + ^i absolutely invariant, whose order is shown in

204 to be 2(2
4 -l)22w

. Hence {W} is of index 2 under E^n.

According as p > 2 or p = 2, {
W

}
is extended to E^p

n by T2 , x

or (li%), where ^ is any not-square in the GrF[p
n
]. It is only

necessary to show that these substitutions are not of the form W,

If (gj%) were of the form TF, then
<yy
=

p]}
=

0, S = Q = 0. Hence

/3
= y = 0, ^"ad = <ydo", ^ad = (?a^. Hence would c?da" and
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and consequently also their product belong to the GF[pn
]. But

2accdd belongs to that field only when a or 8 vanishes, so that

ad fry
= 0.

If W reduce to the form T
Z) x ,

then a a = K^ dl$ = xr\ =
<y
=

0,

j=
=

1, 12 =P = 0. By the latter, ad = a~d. Then 5 = I gives
d~a = 1. But ad = ad /ty

= 1. Hence a = a", so that % = a2
,

a belonging to the GF[pn
].

CHAPTER

LINEAR HOMOGENEOUS GROUP IN THE GF[2n
] DEFINED

BY A QUADRATIC INVARIANT.

199. Theorem. If a quadratic form with coefficients in the GF\2n
~\

can not be expressed in the field as a quadratic form in fewer than m
linear homogeneous functions of 1; . .

., m ,
it can be reduced by a linear

homogeneous substitution belonging to the field to one of the canonical

forms

JF = 6J2 + i8 S4 + ".+ im_ 8 gm_i+Sl (m odd)

(meven)

where A, is zero or is a particular one of the values X for which

is irreducible in the GF[2n
~\.

We first prove that, if m ^> 3, / can be transformed into a

quadratic form having au =0. If every Uij (i,j
=

1, . .
., m; i <j)

were zero, f would reduce modulo 2 to the form

i + y% 2 + +

This being contrary to our hypothesis, we may assume that cr23 =f= 0,

for example. We may also suppose that or22 =(= 0, since otherwise the

transformed of f by (l^) would have ccn = 0. The terms of f which

involve
2 may be written thus,

8S + fefeg^l + ^23^3 + ^24^4 + ' ' ' +
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Hence the inverse of the following substitution,

3
=

<*12 Si + ^23^3 + ^24 4 H
-----

->$< (*-!,.:., at; t

will transform f into

summed for $, j = 1, 3, 4, . . ., m\ i <j. Applying the substitution

we obtain as the new coefficient of || the function a22 A
2 + /5n ,

which

may be made to vanish by determining A.

We may therefore suppose that #u = in our original function /.

Since the ccij are not all zero, we may assume that a12 =f=0. Apply-

ing to / the inverse of the substitution

Si
= ai2?s + %3^3 H-----f- iwSw? SS = S (*

=
1? 3, 4, . .

., m)

we obtain the function *=2...

Replacing |t+ y22 |2 + y23 |3 + . . - + y2m |m by ^, we get

Similarly, if m ^> 5, we can transform /"' into

If m be odd, we reach ultimately the form

Applying to it the substitution which replaces m by x~1/2
%m ,

we
obtain .F.

If m be even, we reach ultimately the form

If aSm-i + /J6w-iSm+ySJi ^ reducible in the ^jP[2], i.e., be the

product of two linear homogeneous functions of m_ i and m? an

evident substitution will reduce to FQ . In the contrary case, a, /?, y
are certainly distinct from zero, so that the substitution
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will belong to the GF\2n
~\.

It transforms into

187) 6ii, + 6564+-"+6-36-+6i-i+6-i6+
d being such a mark that the equation

188)
2+ 6 + * =

is irreducible in the .F[2
n
]. It follows from 188) that

Hence 188) has a root | in the GF[2re

] if and only if

The left member being its own square in the 6rF[2
n
] and hence

either or 1, it follows that 188) is irreducible in that field if and

only if

189) d f <52+<5
4+ ...+ d2n

- 1 =l.

Applying to the quadratic form 187) the transformation

Si-i im-i+a&ii, 65 60 (* i,...,w; t + w i)

the constant 8 is replaced by

which is therefore a root of 189). Giving to A all possible values

in the GF[2n
], we obtain the 2"- 1 roots of 189). Indeed, if in

the

we must have A
x
= A or A -f 1. Hence all irreducible quadratic forms

in two variables of the 6rF[2
n
] can be transformed linearly into each

other. Applying, finally, the transformation

^

187) becomes F^.

200. Changing the notation used in exhibiting F, the canonical

quadratic form for an odd number 2m + 1 of indices may be written

The conditions upon the coefficients of the substitution S:
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6 ,
. .

., m)

in order that it leave V absolutely invariant are seen to be the

special Abelian relations 1

) 76) for ft
= 1 together with the following:

190)
t=i

t=l

It follows from 114 that every set of solutions
,-y, /3^-, yfy, #/,

in the (^J^[2
W
] of the relations 76)^=1 leads to a special Abelian

substitution

whose determinant A is unity.
2

)

The determinant of the coefficients of the 2m quantities x,-, tf,- in

the 2m equations 190) is seen to equal A. Hence
;

since A =f= 0,

It follows that S takes the form

==1

1/2

=i

i/a

%

the coefficients of S' being subject to the Abelian conditions 76)

only. The group of the substitutions S is therefore holoedrically

isomorphic with the special Abelian group SA(2m, 2") of the sub-

stitutions Z. The structure of the latter group is given in 117.

201. Changing the notation employed in exhibiting the function Ft,

the canonical quadratic form for 2m indices may be written

1) Since p = 2, we have 1 = -{- 1 in the field.

2) For a direct proof that A =|= 0, see American Journal, vol. 21, p. 244.
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We study the group ft of 2w-ary linear substitutions in the 6rF[2
n
],

192) S:

(i
=

l, ..., w)
which leave fa absolutely invariant. The conditions upon the coeffi-

cients of S are the Abelian relations 1

) 76), for
ft
=

1, together with

193)

u=i
Since $ must be an Abelian substitution in the 6r.F[2

n
], its reciprocal

is obtained by replacing aih fa, yih d
{j by respectively dj t , ft-,-, yjiy

dji. Writing for S~ l
the conditions 76) and 193), we obtain the

equivalent set of conditions 78), for ft
=

1, and

194)
t=i

TO

(j

Among the simplest substitutions leaving fa invariant occur

(i, j < m if A =
J* f f fc i 1

"*"" ^ f* *\
'

*9ffl *{Wl J '/771
^~""

^771 I
"

*|77l \

which reduce, when A = 0, to the JV^,*, R^j,*, etc., defined in 114.

According as A = or A = A', ft is called #&e /?rs^ or fe second

hypoabelian group*). The name arises from the fact that ft is a

subgroup of the special Abelicm group SA(2my
2 ra

).

1) This also follows from the fact that the invariance of
fa implies that

m

of its polar. Hence, ifp = 2, G^ leaves
invariant^ (^ti

7?2~H ^t2^i)'
wliere

i,-i,

t==i

^fl and
l^.g, rjis

are sets of cogredient variables.

2) For the case n = 1
,

these groups were studied at length by Jordan,

Traite des substitutions, pp.195 213 and p. 440. For general w, they were

set up and investigated by the author in the papers, Quarterly Journal, 1898,

pp. 116; Bulletin of the Amer. Math. Soc., 1898, pp. 496 510; Proceed. Lond.

Math. Soc., vol. 30, pp. 70 98; American Journal, 1899, pp. 222 243.
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202. Theorem. If m > 1, 6a may be generated by the sub-

stitutions
1
)

195) M{ 9 N
if jjX (i, j = 1, . .

., m; K arbitrary in the field).

We note that Mi transforms Nj>isX into $>, /,*
and

<2/,/,x into

Ri,j,x. Further, for
$', j < w if A =

A', we have

Pij = ft, ,
i $'Wi i ft, ',

i >

But every mark of the Gf [2
n
] may be expressed as a square ^.

Except in the case m 2, A =
A', we thus reach every Ti}X . In the

latter case, we derive every T
1))e

from the formula

196) ^i,xC,i,x-ii-i Nm, l)K=LMiMmT^.
Taking first x = A"1/ 2

,
we find that L may be derived from the sub-

stitutions 195). Applying 196) again, we reach every T^i*.
To prove that every substitution S satisfying the relations 78)^1

and 194) can be derived from the substitutions 195), we first set up
a substitution T derived from them which, like 5, replaces |j_ by

where by 194),

197)

a) If a
1]t =j= 0, we may take as T the product

TI, au 1,2, or12 JVf, 1, yia ft, w, lm JVJn, 1,

since it replaces ^ by

b) If !!
=

0, ^i =|= 0, we may take for T the product

^l,yu""
1
C2,l,yw ft,l,flf12 @ro,l,ylTO -B/w,l, ln|

' M\Mm9

which replaces |x by

1) The structure of ^ being evident from 203 if m =
1, we exclude this

case henceforth.
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c) If iy= yij
=

(j
=

1, . . ., ~k 1), but ax* and yi* not both

zero, we may, for fc < w, proceed as in case a) or b) and obtain a

substitution T' which replaces it by and is derived from the sub-

stitutions 195). We then take T = T'Pi*.

d) If KIJ= y\j= (j
=

1, . .
.,
m 1), the proof given in c)

applies if Z = 0, since then Plm is generated by the substitutions 195)
of ft. For A = Af

,
this case cannot exist, since the equation

aimyim+ *'! + AVim=

requires aim=yim=0 on account of the irreducibility of (> Then
would /t

= 0.

It follows that S = TS1 ,
where S leaves | fixed but is a sub-

stitution belonging to ft. Let S
t replace % by

where, by 78), ^ = 1, and 194),
m

198) dn A lft/^4 A/8m+ Aa?m= 0.

The product

replaces |j by |j and ^ by

(ft2 ^12+"+ ftm^lm + A]8!m + AW^fe + % -j- OJi^S; +

which equals f since the coefficient of |t equals ftj by 198).
We may therefore set $1 =$'$2 ,

where $2
is a substitution of

ft which leaves ^ and ^ fixed. Then by 78),

a = fti
=

y<i
= fti= (i

=
2, . .

., m).

The relations holding between a^-, /3,^-, y^-, d^- (, j = 2, . .
., m) are

seen to be the relations 78) and 194) when m 1 is written for m.

Proceeding with $2
as we did with S, etc., we find ultimately that

= T'I, where T' is derived from the substitutions 195), while I
is a substitution of ft which affects only |m and

iym ,

The conditions 78), 193) and 194) become, for m = 1,

199) ad + 0;/
=

l, a/J + Aa 2
-|- A/3

2=
A, yd + Ay

2 + Ad

200) d/3 + Ad 2
-f A/3

2
=>1, ya + Ay

2
-f

Combining 199) with 200), we may replace 200) by

201) ft(a + d)
= y(a + d)

=
A( + d)

2
.
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Suppose first that a + d =f= 0. By 201), Z becomes

Suppose next that
ft -}- y =^=Q. Applying the above procedure to

it foUows that Zj
= r

. Hence Z = 0%
YMm .

Suppose finally that a4-d = /3-t-j'
= 0. Conditions 199) and

201) become
+0_l, a/3

= 0,
so that Z = I or Mm .

In every case, Z = Oj
d

or Z = 0^ YMm . If * = 0, Ofi'sET...
and the theorem is proven. If A = A', A' being suitably chosen, we

prove in the next section that every 0% is a power of L= 0^
and may therefore be derived from the substitutions 195).

203. Let Q be a primitive root of
(>

2n+1 = 1. It will satisfy an

equation belonging to and irreducible in the GrF[2
n
],

p
2 +0p + l = 0.

If we set = ^-!, Q
= %m/'qm ,

we find that A|
2
n -h A^+ L^m is

irreducible in and belongs to the GF[2n
]. Changing the variable

from Q to tf = Ap, we obtain for the irreducible equation

203)
2 +(? + A 2 ==0.

Since the roots of 203) are tf and 2W
,
we have tf + 2W = 1.

We make the transformation of indices:

204) 6 11

=

Solving, we find, for p = 2,

205) F12
=

Thea

The substitution 202) takes the form

206) r/2
=rF12 ,

r
3

'

4=r- 3̂4

where -

We have x2W+1 = 1 since (mod 2),

T2_ a + (+ d)0
2n == a + (a + d)(tf + 1)

- d + (cc

In particular, L = 0fy* takes the form

207) ri



LINEAR HOMOGENEOUS GROUP IN THE JF[2] etc. 205

The substitutions 206) are evidently powers of 207), p being a

primitive root of#2"+1 = 1. Hence the substitutions 202) are powers of L.

Inversely, every substitution 206) for which T2"+1 = 1 may be

transformed by 205) into a substitution 202) of the GF[2n
]. In fact,

a + d = r + T- 1
,

a = x + (x -f tr" 1

)*, d = T-i -f (r + r-i)<y,

so that a -+- d belongs to the 6r.F[2
n
] and likewise a since

The number of substitutions 206) is 2n -f 1. The number of sub-

stitutions 202) is therefore 2W +1. Furthermore Mm (|m^m) takes

the form

We have therefore a new proof of the results at the end of 202.

It is worth while to verify independently that the number of

substitutions 202) is 2*+ 1 according as A = ti or A = 0. We have

only to determine the number of sets of solutions in the GF\2n
] of

208) cc$ + tfa*+H2d*=L
The result for the case A = being evident, we suppose that K = A'.

The left member of 208) vanishes only when a = d= 0; for, otherwise,

would be reducible in the field, contrary to the irreducibility of 203).

Hence each of the 22n 1 sets of marks a
1? S19 not both zero, in

the GF[2n
] will make

Then will ajn, ^i/3^ be a set of solutions of 208), and inversely

every set of solutions of 208) may be so obtained. Hence, if ^ = A',

the number of distinct sets of solutions is (2
2 n

I)/ (2" 1).

204. We can now readily determine the order Q^J n of ft. The

number of distinct linear functions /J by which the substitutions

of ft can replace (^ is P$n 1, if Pi, denotes the number of sets

of solutions in the G-F[2
n
~\
of 197). For m > 1, the pair of equations

has (2"+
1

l)P^l.i)n
sets of solutions when t = and has

sets of solutions when r runs through the series of marks =)= of

the GF[2 n
]. We have therefore the recursion formula (m > 1)

P^n= 2-Pi
a

li |l , + (2-
-
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According as I = or A = A', the number of sets of solutions of

is Pi=2n+ 1 1 or P{f2
= l. We find by simple induction,

P$ - 1 - (2-
-

1) (2<-
- 1 ) + 1), P#? - 1 == (2- + 1) (2< *> -

1).

The number of distinct linear functions f is 2/z(2m ~~ 2
). In fact,

198) determines
/Ju in terms of /5^, $1, (j

=
2, . .

., m), so that the

latter may be chosen arbitrarily in the 6r.F[2
n
].

It follows therefore, from 202, that

aS.- (*- i)2
2 <>-

<?-!, (m > i).

By 203, we have the initial values

We now readily obtain the formulae

- 2)... (2
2w

l)2
2ra

.

- 2
)... (2

2re
l)2

2w
.

205. Theorem. - - T/wse substitutions of ft w/wc/fc satisfy the

further relation

209) J(,ft y,d)

a subgroup of index 2 which any M{. extends to ft. If m> 2,

*s subgroup is identical with the group generated as follows:

NijlX ] (i, j
=

1, . .
., m; H arbitrary in field).

If m =
2, ^ ^s identical with the group

JI={MIM^ jy
8l M, 5i,x, ft, 1,1}-

We first prove that every substitution of Ji satisfies 209). To
do this, it suffices to show that, if X be any substitution of ft
which satisfies 209), the products MiMjI., $-,/, x

will also satisfy 209),
the case m = 2, being treated later. Let Z have the form 192).

a) If the product -M^-Z be expressed in the form

210) K
we have J=1

(7

_ _ "I AJ7

fc=i''. !! 5
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Hence

upon applying 209) and 76). Hence I/}I does not satisfy 209),
while MiMjI. does.

b) If the product Nmj>x l. be expressed in the form 210), we have

<x'rs
= urs , firs

= prs (V, s = 1, . .
., m)

y'rs
=

rr,, d'rs
= #r* (V, s = 1, . .

., m] s =%=m,j)

Vrm= rrm-i- xarj , yrj = yrj -f- xarm+ ^K2
ccrj (r

=
1, . .

., m)

Hence J(a'; /3

f

, y
f

; d') equals

r, s =!,...,

r=l

(8mm+ K
/ m \

\r=l /

But the last two sums are zero by 76) and 193).

c) An analogous proof holds for N,-j, x (i,j<m), the above

terms involving A%2 not being present.

d) Since the substitutions Q;j,%, -R/,^,* (i, j
=

1, . .
., m) and P

iit

Ti)X (i,j < m, if A = A') may be expressed as a product of the
JY/,/|X

and an even number of the M; ( 202), the products jT,-)XZ, /,.?, *Z,

etc., will satisfy 209) if Z does.

Inversely, every substitution S of 6a which satisfies 209) belongs

to Ji. In fact, by the proof given in 202, S is of one of the two

forms K, KMm ,
where K is derived from 1

) M-tM^ Qi,j, x , $*,/, x>

7? fa A 1 AM\. p.. 7*. /V ,,* <^ wi if 3 2'"\ SI'TIPP # aiioll
Xtj x \y) j 9

* * 'J )l tji -*-tx \ i J ^ /"
kJiiiUc O blldil

satisfy 209), it is not of the form KMm . It remains to show that

these substitutions M{Mh Qi,j, K ,
. .

., T/, x belong to Ji.

For m > 2, Ji contains Qi,j, x ,
the transformed of JVJ,^|X by

J^Jf^ (^H=^ j); algo -Bf,/,x an(l ^-,f,x, the transformed of N
itil1t

and

C,y,x respectively by MiMj. Applying the formulae at the beginning
of 202, we reach Pi$

and T
iilt Tjlfl (i,j<m 9

if A = A'). Then Ji

contains Ti}fl ljftl i, the transformed of the latter by MmMj. The

product of the two gives T^*.

1) By 196), L and therefore every Gf%f is derived from M^ Jf
2 , Q2 x

and
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For m = 2, Ji contains M^M2 ,
TM? ^V2,i,x, -R2,i,x, 2,1,*, ft,2,x.

If A = 0, J* contains P12
= CM, 1 ft, a, i ft, 1,1-

The fact that J^J^ and JV^a.x do not generate JQ}
for m = 2,

follows readily from 196. Since J^Jfg transforms -Ni,2,x into 12i,2,x,

every substitution derived from the two former may be given the

form V or VM
1
M2)

where V is derived from -/Yi. 2,x and -Ri, 2lX . The

latter two are of the form 181). Hence the group of the substitu-

tions V is a subgroup of the group of the substitutions 181) having
the order v = (92

_ \\ g^

Hence -M^Jfg and the JV;,a,x generate a group whose order is at

most 2v. But 2v < (2
2w

1)
222

% the order of J" for m = 2.

It follows similarly from 197198 that M^M2
and â>1>x do

not generate Ji' for m = 2. This result may be shown directly for

the case n = 1, when Ji' has the order 60 ( 204). In fact, setting

M=MM2) N= N2,i,i }
E = _R2

, i, i
= Jf

~ *
JV-3f

,
the group generated

by .M and 3^ contains only ten distinct substitutions:

I, M, N, E, NM, EM, EN, NE, NEM, ENM.
For m = 2, the structure of <7 was determined in 196 and

that of Ji' in 197198.

206. Theorem. - - Ike senary first hypoabelian group J" in the

GF[2n
] is a simple group Moedrically isomorphic with LF(4, 2n

).

We obtained in 163 a senary group 4,2, leaving absolutely'

which is holoedrically isomorphic with the simple group LF(4, 2W
).

To identify 6r|, 2 with J" (m ==
3), we set

M2 ~~
1? ^13

==
fe2? -^14

==
b3; -^23

"^ %? -^24 ==7?27 -^34
~ %

The general substitution []2 of 6r4, a, given in 164, may be written

=

At At f\)

/13 /12 All

^23 9^22 ^21

^32 33 ^33 ^32 7s

Q /> V Jt 'C'

J1 /3oo MQQ Ooo VQO VQ-|51 i 04 i oo oo oJ ol

Ll A2 013 ^13 ^12 ^11

In this form the notation agrees with that employed in 201 for

the substitutions of J~ . In view of 165, the above general sub-

stitution of (ri, 2 must satisfy the relation (mod 2)

But this is relation 209) for A = 0, m = 3, which defines the sub-

group J" of the first hypoabelian group. Hence Gi^^J^.
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207. Theorem. The senary second hyperdbelian group Jv in

the 6rJF[2
n
] is a simple group holoedrically isomorphic with HA(4,22n

).

We begin as in 190, but make the following transformation

of indices, including the transformation 204) for m = 3:

il ^14> fe
= YIS , %= ^23> ^2

=
^24?

6,=A/tf-ir18 + 0A-v*r34 , % = ^/ 2(r12 + r34).

The invariant of the second compound group is transformed thus:

r12r34
- r13r24+

If we take

the substitution 206) becomes in the new indices a substitution 202)
with coefficients in the 6rF[2

n
].

In particular, if to be a suitable

primitive root of the 6rF[2
2n

], r will be the primitive root g of

^2W+ 1= 1. We thus reach, by 207), the substitution L.

We next express in the new indices the general substitution [a]2,

given in 164, of the second compound At, 2 of the group of qua-

ternary Abelian substitutions of determinant unity in the GF[2n
~\.

For example, it will replace |2
= Y13 by
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To prove that this substitution satisfies relation 209) for m = 3,

consider it to be expressed in the notation used for the general
substitution []2

of 206. The condition 209) built for the sub-

stitution 211) therefore becomes

14
14

23
23

14
13

23
24

1 3

14
24
23

13
13

24
24

12

12
-

3 (mod 2).

The left member may be written (mod 2):

n 32

W42 ^43

24

13 14

#
29 ^23 ^"24

Upon expanding according to the elements of the first column the

determinant on the left of the following identity

C*-,"11

"21 "22 "23

a1

.: Dfq

U "42 "43 "44

we obtain the first three terms in the above expression together with

14

42

12

It remains to show that the sum of these terms together with

zero - Upon applying the Abelian relations (mod 2),aai2i
34

"43 <*44

24

"43 "44

"11 "12

"21 "22

"21 "22

"41 "42

"32 "84

"42 "44

"23 "24

"33 "34

12 14

22 24

21 22

"31 "32
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These substitutions must therefore belong to the group C, the second

compound of HA(^, 22n) when expressed in the indices |/, r\i. Also

C contains L and therefore also MMm by formula 196). Hence C
contains all the generators of J^ (m = 3). But the order of C, being

equal to that of HA (4, 22
"), is .

which equals the order of J% (m = 3). Hence J^ = C.

208. Theorem. If m = 3, /&e number of substitutions of
which leave m fixed is

If a substitution $ of Jx does not alter m and replaces ym by

.7=1

we must have, in virtue of the relations 78) and 194),
m

212) dmm= 1,5? pmjdmj + Aftm = 0.

We proceed to prove, inversely, that if ftmj ,
dm j be any set of solu-

tions in the 6rF[2
w
] of 212) there exists a substitution X in J^

which leaves TO fixed and replaces rjm by fm .

If
ftmj- dmj= (j

=
1, . . ., m - 1), then fimm= or A- 1

. Hence

we may take as I the identity or M2MmL respectively.

In the contrary case, let
/3m 2=(= 0, for example. Then Jv contains

a first hypoabelian substitution T leaving |m and
r]m fixed and re-

placing 7^2 by

since TO idjni+ /3m2 d = in virtue of 212). Then we may take

For w = 3, the number of sets of solutions in the (rjF[2
B
] of 212):

Pmldml. + /3m 2^m2 + /3mw+ A/3^m =

is (2
2M + 1) 2

2
". Indeed, there are 2n~ 1 distinct values in the GF[2n

] of

f == Pm il i "Pm m

By 204, /3ml dmi+/3m2 (?m2 =T has 2Sw 4- 22n - 2" sets of solutions

if % = 0; while, if T have any one of the 2n1 1 possible values

=)= ,
it has

U*
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94 (nSn j_ 9 2rc 9 ri\2 -(2 +2 -2 J ^gn
2
W -1

sets of solutions, and therefore in all

sets of solutions. But each value of r furnishes two values of
(lmm .

209. Theorem. The hypoabelian groups Ji on 2m > 6 indices

are simple.

Let K be a self- conjugate subgroup of Ji containing a substitution

.7=1 .7=1

not the identity J. We first prove that .ZT contains a substitution =f=

multiplies ^ % a constant. Let $ replace ^ by

where by 194),
m

213) ?<xiJru+*>lm+ *-ylm= o.

If /i =f= anli; we have one of the following three sub -cases.

a) y11 =|= 0. Then J^ contains the product

T= TI
? yu
- 1 1?2

, i, au Q2
, 1, yw JR/n, 1, ^ m w, 1, n m

which replaces ^ by y^
1^ and ^x by the function

H

This equals fl} since the coefficient of |x is congruent to
cfj!

modulo 2,

in virtue of 213). Hence K contains S ^T l8T
f
which replaces

61 by yn
1
^-

If J^ contains a substitution T
x
which leaves ^ and

ifj1
fixed

and is not commutative with 819 K will contain the product

which leaves ^ fixed. Suppose on the contrary that S is commu-
tative with every substitution of Ji which leaves |x and ^ fixed.

Among the latter are E^^ y. and
3, 2, x- If we equate the two

expressions by which SiE^s^. and JR2,s,xi replace t;3 ,
we find

Similarly ,
if S

1
be commutative with Q^ 2

, x; we have
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Hence %'2
=

( ) |2
. Transforming ^ by P12 we obtain a substitution

4= I which multiplies ^ by a constant and belongs to K.

b) Let
j>n = 0, 12

=
i 8
= = im 1= and, if A = 0, also

im= 0. If A = A', we must have i w = yi m= 0, since 213) reduces to

i TOyiw -f A'afm + A'yim = 0,

whereas ( 199) is irreducible in the field. Since /iH=ii?i ?
we

cannot have y12 => y13
= =

yi m_i together with yim= 0, if A 0.

Transforming S by a suitable P2, (j < m, if A A') ,
we reach a

substitution S f

having y12 =(= and belonging to K. Transforming S
1

by M2
M3 ,

we reach a substitution of K in which y11 =0, cc
12 =^=0

[case c)].

c) Let /!!=(), cc
2 ,

. .
., !,_!, im be not all zero if A = 0;

let ^i! =0, a12 ,
. . ., im_i be not all zero if A = A'. Transforming S

by a suitable P2^, we reach a substitution S' of J having cc12 =(= 0.

Then J* contains

T= T^au Q^l,au
'

2,3,au ^V2,3,y13 ft, m, aj m -ZVg, m, yi m

which does not alter |x but replaces ^2 by

Since yn ==
0, this reduces to /j in virtue of 213). Hence ^ con-

tains $1; the transformed of S' by T, which replaces |j_ by |2 .

If ^ be commutative with both JR3,i,x and -Rs,2,x, it merely

multiplies 3 by a constant, so that its transform by P13 gives the

required substitution. In fact, /SiJRs/jX and RSjiXSi replace j^ by

respectively ^ +^ ^(^^
In the contrary case, K contains the two products

which leave |t fixed and do not both reduce to the identity.

Next, K contains a substitution =|= 1 leaving ^ and ^ /ted. We
have previously reached in K a substitution S =%=! which replaces ^

by a|r Let it replace ^i ^y(/^iyfe+ ^i>%)- % an Abelian

>=i
relation 78), d^^a- 1

. By 194), we have

214)
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a) Let
/3U = 0, fa = dly= (j

=
2, . . .,

w - 1), and, if A = 0,

also /3im=dlm =0. If A =
A', then must

/3lm=dlm=0 by 214).

Evidently S = T^ aSi, where 8 leaves |A
and ^t

fixed. By the

Abelian relations 78), S1
involves only the indices |f, ^ (*

=
2, ...,w).

If $! be not commutative with every substitution Z
x

of Jj which

does not involve |1? ^1; then K will contain a product

which leaves ^ and ^ fixed. In the contrary case, S is commu-
tative with H^^ y. and

3) 2? x; so that, as shown above, S
1
will replace

|2 by ^)|2 . Since ^ is to be commutative with -M"
2
Jf

3 also, it will

replace 7y2 by ^>^2 . Hence, by an Abelian relation, p
2
=l; whence

Q = 1. Transforming S by P12 ,
we obtain a substitution =f= /which

leaves |x and ^i fixed and belongs to K.

b) Let
/3n = 0, fa, dij (j

=
2, . .

., m) be not all zero if I = 0,

but let pn = 0, fa, 8ij (j
= 2, . .

.,
m 1) be not all zero if A = A'.

Then by 202, Ji contains a substitution T, affecting only

which replaces 2 by

Hence ^T contains $17 the transformed of 5 by T. $
x replaces ^ by

ajJ! and % by a-^j+fe-
If J^ contains a substitution F, leaving |1; %, |2 fixed, which

is not commutative with jfiT will contain

which leaves ix and ^ fixed.

In the contrary case, S
1

will be commutative with J52
, 3, ^ and

Rfli, 3, A and MsMm . Equating the two functions by which S^H^^ X

and I?2, s, x$t replace 7;2 ,
we find ?g

=
( )i3 +( )i2

- Equating the

two functions by which S\Rm,$, y. and JBm,s,xi replace ^TO ,
we find

that Sg
=

( )I3 + ( )im- Hence |g
= ^|3

. Since ^ is to be commu-
tative with MSMm , tf3

= Q%- Then Q = 1. Transforming $,_ by P13 ,

we have a substitution =%= I in K which leaves ^ and ^ fixed.

c) Let f}n 4= 0. We can determine a substitution 5' of K of

form similar to that of S but having also d
l2 =}= 0. In fact, if A = 0,

the products pijdij (j
=

2, . .
., m) are not all zero by 214). Trans-

forming by a suitable P2t-, we have ft 2
d12 =j=0. If A =

',
the same

result follows unless fiij= dij= (j
=

2, . .
.,
m 1), in which case

either /Sun^O or tfim^O by 214). In the latter case, we can take
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#im =4= 0, transforming by M2Mm if necessary. Transforming the

resulting substitution of the form

mlfot,... (&i =H, $i m+ 0)

by the substitution .Rm
, 2, *, we obtain a similar substitution having

in
1/1

the additional term xdim %2 .

Recurring to /S", in which d12 =[= 0, we transform it by T2J d~
1

and obtain a substitution /S
x

of K having the form

Si
- |1; Vi

- Aili + -*% + Atl. + %

Consider the following product, leaving 1? i^, |2 fixed,

"FT= 3,2,^-^3,2,^3 - Qm,2,

It replaces ??2 ^J the function

in which the coefficient of |2 equals 11 a~
1 + /312 by 214), since

d12
= 1 and dn = a~ i

. Hence W transforms S into the substitution S
2

:

II
=

all, <= 0u 61+ ~Si + %+ fti""
1
^; - -

Let f*
=

ftn cc~ 1
=4= ^- ^ among the substitutions 3,2,^^2,3,1,

T^pM^Mz, etc., of Ji, leaving Ij, ^ and ft|2 + ^2 invariant, there

exists one, say F, which is not commutative with $
2 ,

then K contains

which leaves ij and ^ fixed. In the contrary case, we find, on

equating the functions by which S
2 8

,
2

, p. N^ 3, i and
3j 2

, ^ N^ 3, i 2̂

replace 2 ,
that

^3
= (82 + ^23 + f 722)^3 + "23% + ^^23^2'

By one of the relations 194), we find a23 =0. Then, if $2
be also

commutative with T^pMiMs, we must have
3
= |3 , Vs^^s-

In proving that K contains a substitution $ =j= I which leaves |j

and % fixed, we assumed the existence of the indices

I,-, ^ (;
=

1, 2, 3, m)

only. But, by the relations 78) and 194) S is a hypoabelian sub-

stitution on the indices fj f , ^ (^
=

2, . . ., m). Hence, if m > 4, a

repetition of the previous argument shows that K contains a sub-

stitution =|=7 involving only the indices |,-, t?i (i
=

3, . .
., m). After

m 3 such steps, we reach in K a substitution =)= / and affecting

only six indices | t-, v\-t (i
= m 2, m 1, m). In view of the sim-

plicity of the senary hypoabelian groups, K will contain all the sub-
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stitutions of Ji will affect only the last six indices, and, in particular,

MiMj, Nij^ (i, j
= m %) m 1? m)- Transforming the latter by

suitable substitutions Prs (r, s < m, if A = A'), we reach all the

generators of Ji. Hence K=Ji, so that J;. is a simple group.
In view of the importance of the subgroups J" and J^' of the

first and second hypoabelian groups respectively, they will be

designated by the more explicit notation FH(2m, 2n} and SH(2m, 2 re

).

They are both simple when m 5> 3. The second is simple and the

first is composite for m = 2 ( 196198).

210. MISCELLANEOUS EXERCISES UPON CHAPTERS I VUL

1. Every m-ary linear homogeneous substitution in the G-F[2] leaves

invariant the function Sj -j- S
2 + h Sm, where sr denotes the sum of

the products of the m indices taken r at a time.

2. An m-ary linear homogeneous substitution in the G-F[p
n
] of

determinant D multiplies by D the function of the indices

if

pn(m 1) pn(m 1) n(m
51 52 ... 5m

Hence Y is a relative invariant of the group G-LH(m,p
n
).

3. The structure of the m-ary linear homogeneous group in the

G-F[2
n
] which leaves |? + i! H f- U absolutely invariant may be

derived from that of the special linear group SLH(m 1, 2W
).

[Take as new indices X = |x -f |2 H }- and |2 , J8 ,
. . ., &].

4. Those substitutions of the hyperorthogonal group G-m^ n ( 143)
whose coefficients all belong to the GF[2n

] form a group 6r, a subgroup
of the group of Ex. 3. Prove that 6r is generated by the binary sub-

stitutions ,, . . , . ^ ,_ .f , N . .

and that G is a solvable group of order 27m (m~1)/ 2
.

5. Consider the group (7 of 2 m-ary substitutions in the GF [p
n
] , p > 2,

common to the special Abelian and orthogonal groups. Being Abelian

its reciprocal is 'obtained by replacing ,-y, y,-y, ft^, (5,^ by d^-, y^,-,

ft'i tyf respectively. Being orthogonal, its reciprocal is obtained by

replacing the former by oy$, ft t-, y^,-, ^,- t-. Hence must

c) ay {
=

^-f, ft f
= -

yji (i, j
= l,..., m).
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The conditions that an arbitrary substitution S, for which c) hold, shall

be orthogonal are the same as the conditions that it shall be a special
Abelian substitution.

6. The most general 2m-ary substitution commutative with the

special Abelian substitution M = MiM% . . . Mm has the form

The group in the GrF[p
n
], p > 2, commutative with M is identical

with C of Ex. 5.

7. Setting -1=/2
, XfEEfe + Ity, A

tJ
= a

{j
-

Iyih S of Ex. 6

becomes

Z: HvJfAyJ, (<-!,...,).

If 1 be a not -square in the 6rF[.p
w
], we may pass, inversely, from

an arbitrary substitution in the G-F[p
2n

] to a substitution S in the

G-F[p
n

~\ by equating the coefficients of J and /. X leaves invariant

the function

Hence, if p
n be of the form 4=1 + 1, the group C is simply isomorphic

with the hyperorthogonal group G-mt p,
n - If 1 be a square in the

G-F[p
n
], we introduce the further indices Yf ^& J^,-, 5,-y

=
a,-,- + Jy,^-,

when <S becomes

m

leaving invariant S* X/Yf-. Inversely, from every substitution Z
t

we

1=1
derive a substitution of the form 8. The group of "dualistic" substitu-

tions is simply isomorphic with GLH(m,pn
), since the BIJ are determined

in terms of the A's.

8. The simple group A(&,p
n
), p > 2, of order

contains just two sets of conjugate substitutions of period 2. The one

set contains -~-(.p
2n

-}- l)p*
n substitutions conjugate with T],_ i. Those

of the other set are conjugate with M M3
and are in number

~pSn
(p^

n + l)(p
n + 1) according to the form 4Z + 1 of #n

.



218 CHAPTER IX.

9. The group of all quaternary linear homogeneous substitutions in

the G-F[p
n

~\
which leave absolutely invariant the functions ^^ + |2 ^2

and
Jj_ -f- ^ has a subgroup of index 4 holoedrically isomorphic with

LF(2,p).
10. The squares of the substitutions of the first orthogonal group

1 (m, p
n
) generate the subgroup 0[(m, p

n
) of 181.

11. To the subgroup E^ pn of E^ pn corresponds, for p > 2, the

subgroup OJ(4, p
n
) of Ov(,p

n
)

defined in 181.

12. In order that AI? + Aai? shall be capable of transforma-

tion into |ii(i + |f ) by a binary linear substitution with coefficients

in the G-F[p
2s
], it is necessary and sufficient that the ratio ^/^ shall

belong to the GF[p*~\.

CHAPTER IX.

LINEAR GROUPS WITH CERTAIN INVARIANTS

OF DEGREE q > 2.

211. Consider the group 6r3 of substitutions in an arbitrary field

S + Pays + vnefi (t 1, . . ., r)

which leave absolutely invariant the function of degree q = 3

It will be convenient to employ a symbol, analogous to a determinant,

A B C
t

^Afic -f Ayb -{-Bac + Bya + Cab + (7/3a.

The conditions that S shall leave O
3 absolutely invariant are then

215)
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r

r

AJ.tJ ^ [JuijA,,-j')nijc -\-Lijl/ij[Jii}c -{- "kijlij JJuLik)
== V)

218)

219) 2

220)

+ +^ JVJ*)

i= 1

LIjLI %LH

hij &ik ^it

l/ij l/ik In

lit {*.'* V,

* ik pit

ik mit
1=1

-0,

(if j-*-o
(unless j h =

j),

where, throughout, i, j, k = 1, . .
., r, while Jc =%=j in 216) and 219),

and t=^=j7
k in the first of the relations 219); together with relations

derived from 216), 217), 218) and 219) upon interchanging L, A, I

with M
y [i, m or with N, v, n. But relation 216) must also hold for

Jc =j, being then derived from the first one of set 215) upon multiply-

ing the latter by 3. Similarly 219) must hold for k=j, being then

derived from 216), 217), 218). Lastly, the first of relations 219)
must hold for t = k ==

j, being then derived from the first of the

set 215) upon multiplying by 6. Hence the above conditions must

hold for i, j, k = 1, . .
.,
r independently.

Let j be any fixed integer ^ r and consider the 3r equations

216), 217), 218) for k = 1, . .
., r. Taking as unknowns the 3r products

221) L^, Lijlij, Wit (*
= !,..., r),

the determinant of their coefficients is seen to equal the determinant

of S and is therefore not zero by hypothesis. Hence the products 221)
are all zero. From the analogous conditions,

Qfj^\ -n/r -n/r /~v f/tn 1 V~\

Expanding the symbols in 219) according to the last columns

and applying a similar reasoning to the resulting equations, we find

224) y = 0.

We obtain similar identities 225) and 226) between the M, p, m and

the N,v,n. From 220) for j 4= ft and the foUowing of type 219),
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J't^-o,
*' 1

lijmik mit
i~ 1

I lijmik lit

each set holding for t = 1, . . .
, r, we derive as above

By a similar process, we get, for ~k =(=,;,

212. Theorem. The group G3 is generated by the substitutions

230) (xi ?//) , (xi Zi) , Pij
=

(Xi Xj) (yi yj) fa%) .

together with the substitutions of the type

f)Q"J \ fJI T ~, .' n i d n/t M T M 1 (4 1 (*^

Let 8 denote any given substitution of 6r3 . We can determine

a suitable product Z of the substitutions 230) such that Z$ = $
x
will

have the coefficient Ln =f= 0. Then by 221), 224), 227), 228), we find

Hence 8^ replaces y and by the respective functions

The product "L
l
S

1 =iS3f where Zj is the identity if fin =)= but

X-L
=

(^ ^) if pn = 0, will be of the form S with the new coefficient

^n 4= 0. Then by 222), 225), 227) and 229), we find

Hence must wlt =)= and therefore 2^ == vn = by 223). Hence S
2

replaces x
, yly ^ by Ln x1} ^n 2/i, wn ^j. respectively. Also

Since the determinant of $
2

is not zero, the coefficients I2^
Jf2y, ^/ (j

=
2, . .

., r) are not all zero. We may therefore determine

a suitable product Z' of the substitutions 230), in which i, j > 1,

such that Z'$2
= Ss

will have L22 =(= 0. Proceeding as above, we
find that S= Z" 4 ,

where Z" is derived from the substitutions 230),
while $4 merely multiplies xlf y^ 0^ %2 , 2/2 ,

#2 hy constants. After r

such steps, we reach a substitution of the form 231).

Corollary. Any substitution leaving 4>3 invariant may be

expressed as a product AI>, where A is of the form 231) and B is

derived from the substitutions 230).
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213. The preceding methods may be employed
1

) to investigate
the group Gq of linear substitutions S on rq indices with coefficients

in an arbitrary field which leave absolutely invariant the function

For q > 2, it is seen that S = AB, where A merely multiplies each

index |/^ by a constant, while S is a permutation on the indices I,,

having the imprimitive systems
2

)

232) n , |12 ,
. .

., l9 ; |21 , 22 ,
. .

., J-22J ; 8rl> r2, .
., %rq-

The substitutions A form a commutative group which is transformed

into itself by every substitution S and is therefore self- conjugate
under G

q
. The quotient-group is the group of the substitutions B.

The latter has a self-conjugate subgroup R formed by the direct product
of r symmetric groups, the general one being on the q letters |fl,

!**>?&) ^ne quotient-group {L}/R is a symmetric group on

r letters, viz., the r sets 232). The structure of the group Gq , q>2,
is therefore completely determined. The result is essentially different

from that for the case q = 2 (see 195).

CHAPTEK X.

CANONICAL FORM AND CLASSIFICATION OF LINEAR
SUBSTITUTIONS.

Canonical form of linear homogeneous substitutions*), 214 216.

214. Consider a substitution with coefficients in the GrF[p
n
],

S: tt

In order that S shall multiply by a constant K the linear function

we must have

or

Kfy (j
=

1, . .
., m).

1) Proceed. Land. Math. Soc., vol. 30, pp. 200 208. On pp. 203 204 the

numerical factors are incorrect; C should equal tj_l
t
t

\ . . . ttl The proof
however is valid.

2) S replaces the indices of any set &i, |2, . . ., &? by indices all in one set.

3) For n = l, the results are due to Jordan, Traite, pp. 114 126. The

simple proof by induction of the fundamental theorem is due to the author,

American Journal, vol. 22, pp. 121137.
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Hence K must be a root of the characteristic equation

CCooK. cc2m

Corresponding to each root K, we may determine at least one set

of solutions fa of the above linear equations and hence one invariant

function 77.

If A(-ZT)
= has m distinct roots K17 K2 ,

. . ., Km (not necessarily

in the initial GrF[p
n
], we reach m linear functions %, %, . .

., tyw,

which S multiplies by) JS^, J5T
2 ,

. .
., Km respectively. These functions

are linearly independent with respect to the variables (;. For, if

constants exist such that

Ml + ft% H-----H = 0,

we have on applying the substitutions S, S 2
,

. .
.,

identities

+ ^2^2% H-----H -^m^OT ^m
=

0,

+ jqpa% + + JE^^EE 0,

1 1 the further

But the determinant

1 1 .1
f, j==l . . . 771

Hence
0.

Introducing the linear functions ^ f as new indices in place of

the I,- the substitution /S takes the canonical form

S': ,..., m).

If we take in place of % a suitable multiple of ^, we may suppose
the reduction of 5 to $' to be accomplished by a transformation of

indices of determinant unity.

Suppose, however, that the roots -of A(JST)
= are not all

distinct. Let
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... (ka + I ft + - =
m)

where Ji(JE), JF,(Z), . . . are the distinct factors of A (JT) which

belong to and are irreducible in the GF[pn
]. Designate the roots

of Fk(E) = 0, and of Ft (L)
=

0, etc., by the notations

j T TV" T TP*
n

T jP
n (l
-l

\
4to> -^i -^o > -^2 = -^o *.! *'' i -^o i

-

Theorem. By a suitable transformation of indices, S can be

reduced to a canonical form of the following type:

ftj
= Kifa + rja-!) (j

-
2, . . .,

+j+ *li a,+j- 1) (j
=

2, . . .
,

$1 = Z/&i , &= Li(&j -f gfy-0 (J
= 2

; ; &i)

+j = ^(?j*i+>+ ?*

(^
= 0,1,...,?-

where the

indices have the properties:

1) The indices ??o* (s
=

1, . .
., a) are linear homogeneous functions

of the initial indices & having as coefficients polynomials in K with

coefficients in the GF\_p
n
~\\

2) TAe indices ^ are conjugate to the ^ , being obtained by re-

placing KQ by KI in the coefficients of ^ ;

3) The indices fo* (s
=

1, . . ., |8)
are linear homogeneous functions

of the indices & w/iose coefficients are polynomials in LQ with coefficients

in the
ffJftlf];

4) T/ie indices ,-, are obtained from the Jo* &2/ VV$MCMQ L by Lf ;
e^c.

5) TAe fca indices ^- 8 (i
= 0, 1,*. .

.,
& 1; s 1, . . ., a) may &e

replaced by ka linear homogeneous functions yi, of the initial indices (;,

wra& coefficients in the 6rF[p
n
~],

such that S replaces each yit by a

linear homogeneous function of the yis with coefficients in the GrF[p*]]

6) The I fl
indices & may be replaced by an equal number of linear

homogeneous functions zi* of the |,- with coefficients in the 6rJP[_p
w
], such

that S replaces each by a linear homogeneous function of the zis with

coefficients in the field; etc.
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For the case =
/3
= =

1, we obtained above the canonical form

( 0,1,...,*-!)
Ci-Zifci (t-o, i,...,z-i)

where
t?01
=

/"(! , ...,; J ) anc*
ty'i
=

/Xi> -> i5 ^)> an^, similarly,

g,-i are conjugate with g01 . The new indices therefore have the

properties 1) 4).

We will prove the general theorem by induction, supposing it

true for every substitution belonging to the GrF[p
n

~]
whose char-

acteristic determinant has no irreducible factors other than Fk (K\
Fi(K\ . .

.,
and has these to a degree at most a 1, /?,

. . . respec-

tively. We will prove that the theorem is true for any substitution S
for which these factors occur to the degree a, /3, . . . respectively,

where a > 1.

Corresponding to the distinct rootsKQ ,
Kv . . .,

Kk i ofFk (K) = 0,

we obtain as above a set of linearly independent conjugate functions

A
,
A
A ,

. .
., Ajfe_i which S multiplies by 7T

,
K

,
. .

., Kk i respectively.

We may introduce these in place of an equal number of the original

indices, e.
g., |TO_i+i, .

., m- The substitution S then takes the form

ti = Kih (i
=

0, 1, . . .,
k - 1)

or; m k1
1 1 ^1 ft t I NT1 1 (A 1 O 1\
%i /t

Pijfy ~T/ t
Vij^j ^ ==

1, /,..., m K).

coefficients fa belong to the GF[pn
]. Indeed, we may set

(<-0, !,...,*-!)

where the X,- are linear functions of the | f with coefficients in the

6r-F[jp"]. Since the A* are linearly independent, the X must be

linearly independent functions of the &. Since

the Xj- can be expressed as linear functions of the A,-. Taking the X,-

as new indices in place of the
A,-, $' takes the form /S"', a substitu-

tion on the indices X,- and , with coefficients in the 6rF[jp
n
].

But

>S"
f

replaces gt
- by

mJc kl

for * = 1, . .
., m k. Since these functions belong to the field for

arbitrary ^ and X,, the coefficients /3^-,
dfj

must belong to the field.
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Since the determinant of a linear substitution is not altered by
a linear transformation of indices ( 101), the determinant of S'

equals the determinant of S:

,&!... &-! \fa\-D.

We may, therefore, consider the following substitution in the GF[pn
]:

m k

S,: IS

of determinant =j= 0. Also, the characteristic determinant A(JT) of S

equals that of the transformed substitution /S", viz.:

k 1 Al

021

Hence, the characteristic determinant of $x
is

Hence, by hypothesis, ^ can be reduced to a canonical form of the

above type. Applying the same transformation of indices to S', it

takes the form S:

*

Wi 0'-2,,

CJ-2,

the expression for
??[ being derived from that for

r]'o s by replacing

KQ by J5Q; the expression for Q s from Jo* upon replacing L by L z-,
etc.

To simplify the form of S, introduce as new indices

k 1

To, =
i=0
* 1

(s
=

1, . , .
, a),

(s

=0

and their conjugate functions Yis ,
ZiS) . . . Then S replaces F01

,

YQZ, YW by
DlCKSON, Linear Groups. 15
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* i

^o^oi + "10*0 +
1̂=1

F02)

respectively. By choice of the ^ f ,
we can make the terms in brackets

all zero; those of the first sum by choice of An ,
. .

., Aiki, those

of the second by choice of A1Q ,
A21 ,

. .
., A^kit those of the third

by choice of A20 ,
A31 , ...,^.3^1. A like result holds for the remain-

ing Y0s (s
=

1, . . ., a).

S replaces Z01 ,
ZQ%, ... by respectively

k 1

Since Ki L =|= 0, the coefficients of A,- may be made to vanish by

choice of the 2?i,-. Hence, /S takes the form $2
:

0, 1, ...,*- 1)

i,.(^.+^-i) (j-^.-.A)
Li (Zii>l+j+Zi ^+:j-1)

w -%...,

0, 1, . . ., J - 1)

If the constants qp(^i), ^(Ki) y %(Kt), are all zero, no further

reduction is necessary. If any two are not zero, as <p and ^, suppose
for definiteness that <% ^ a

2 ,
and introduce in place of YU, . . ., Yia^

the new indices
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The substitution S2 replaces Yu, Yfj (j
=

2, . .
., ax) by respectively

KtYn, Kt&j + Yv-d (j
-

2, . .
., Oi).

Hence, the introduction of the Y^- has the effect of setting q>
=

in $
2

. Proceeding similarly, we can suppose that y, #,#,... are

all zero but one, say ^ =j= 0. In the latter case, we set

and find for S2 the canonical form

27

In every case we reach a canonical form of the type given in

the theorem, for which the indices Yi, have the properties 1) and 2).

But the indices Zij are linear functions of the
,-
with coefficients

which certainly involve Lt and apparently
1

) also Kt . If the JKJ be

involved, we proceed as follows. From the canonical form actually

reached, S YSlf where Y is the partial substitution on the indices

Yij f
not altering the indices Ztj 9 etc., while S does not involve the

indices Yij, but affects the Z
ijf

etc. Setting

Yt .
= y,+ y\K,+ tfKf + y

(^K?~\
(s
=

1, . . ., a; % - 0, . .
., % - 1)

where the 2/'s are linear functions of the ^ with coefficients in the

6rF[#
n
], we can evidently introduce the y's as new indices in place

of the Y{ 99 so that Y takes the form of a substitution belonging to

the 6r.F[#
ra

] and affecting only kcc indices. Likewise, by introducing
in place of the Z^ etc., an equal number of linear functions %, etc.,

belonging to the &P[jp^j, it is possible to give to S the form of a

substitution in the field and affecting only m ka indices. Its

characteristic determinant is [Fi(KJ]P . . . Hence, by the hypothesis
made for the induction, S can be reduced by a linear transformation T
to a canonical form

1) By the considerations in the text, we may dispense with the difficult

proof, analogous to that of Jordan, Traite% pp. 121 122, that the Zij do not

involve Ki, but the single imaginary Li.

15*



228 CHAPTER X.

where the f^-
are linear functions of the , with coefficients involving

the imaginary it
-

only. As the transformation T does not alter the

indices which Y affects, we obtain the desired canonical form.

215. Consider as an example the substitution in the GF[pn
~\, p

n

of the form 4Z 1
,

8: 61- -26, -I., 6J-6i, 6J-6,, 61 -I,,

having the characteristic determinant

where ^T 2 + 1 is irreducible in the field. A root of i*= 1 belongs
to the GF[p2n

] but not to the GF[pn
]. The functions which 8

multiplies by i and i are readily found to be respectively

^ = ^ 4- #2 *#3 + #4, ^2 = *X 4- #2 + *#3 + #4-

Introducing A1; A
2

in place of the indices x
2 ,

#
3 ,
S takes the form

The partial substitution of determinant unity,

X^
=

X^j X^
= X

multiplies y^
=

x^ i x by i and multiplies y%
= x

t + ix by i.

Introducing yl
"and yz

as new indices in place of x
1
and x, S takes

the form

A< ===
IrA-^y

A9
-

^A2

Introducing as new indices,
_ Q -* _ Q -"

S takes the canonical form

^i
= ^i> ^'

=
^(2/1 + ^1)^ ^2

= -*%; 2/2
= %2 + ^2);

where At and A
2

are conjugate linear functions of |1? |8 , |3 , |4 ,
and

likewise for ^, ^2
.

216. Theorem. Two linear homogeneous substitutions S and T
in the GF[pn

~\
on the indices '%lf |2 ; > %m have the same canonical

form C iff and only if, T is the transformed of S by a linear homo-

geneous substitution W in the GFlp**] on the same indices.

If T= W~~ 1SW9
then 8 can be reduced to T by the introduc-

tion of new indices defined by the transformation W and therefore S
and T have the same canonical form.
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Suppose , inversely, that two substitutions S and T in the GF[pn
~]

on the indices f can be reduced to the same canonical form by the

respective transformations S' and T'. Let I' denote the transforma-

tion from the indices |1? . .
., | OT to the indices

rjis , ,-,,
. .

., where

n,.
~ Y,+ TlKt + Y,"K? + --- + Y^K,1'1

(s
=

1, . . ., a; i = 0, 1, . . ., k 1)

&, = zs + Z;L, + Z,"LJ + --- + z,
('-v

L'r
1

(-!,...,/; -0, 1,...,Z -1)
;

Y",, I
7

"/,
. .

., Zs , ZJ, . . . being linearly independent linear functions of

the & with coefficients in the GF[pn
'\.

Denote by r the trans-

formation of indices from yi8 , is ,
. . . to 3T,, JT/, . . .,

Zs ,
. . . By

hypothesis, T' transforms T into the canonical form C. Let x trans-

form C into Cr . Then T'r is a substitution in the GF[pn
] which

transforms T into (7*, likewise in the GF[pn
~\. Similarly, let S 1

denote the transformation from the indices
t ,

. .
., m to the indices

'ntt, 5/, .,
where

Denote by <? the transformation of indices from
17,-,, ,-,... to

Y,, . . ., 4̂, . . . By hypothesis, $' transforms /S into the canonical

form C, which in the same substitution on the indices ??;,, & s ,
. . .

that C is on the indices ^ity &,, . . . Let 6 transform C into Ca.

Then, if E be the substitution in the G-F[p
n
] which transforms

Ya ,
. .

.,
Zs ,

. . . into Ys ,
. . .,

Zs ,
. . . respectively, then

It follows that the product T r

rE(S'ff)~
l

is a substitution on the

indices | t

- with coefficients in the G-F[p
n
] which transforms T into S.

217220.
Substitutions commutative with a given linear substitution 1

).

217. Let the given linear homogeneous substitution S on m
indices g t

- with coefficients in the GF[pn
] be brought to its canonical

form S . For definiteness, suppose there are three sets of new indices,

where

1) J.mer. Journ., vol. 22, pp. 121137; Proceed. Lond. Math. Soc., vol. 32,

pp. 165 17Q.
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In order to express more compactly the canonical form S
f
we let

a, b, c denote an arbitrary one of the respective sets of integers

a) 1, A + 1, a
x + a2 + 1, . .

., % + a2 -\
-----h ar + 1;

b) 1, &A + 1, Z^ + fca + l,..., ^ + 65,+ +&, + !;

c) 1, q+1, q + c^ + l,..., Ci + ca H-----he, + 1.

Also let A denote any integer ^ a not an a, J5 any integer <^ ft

not a &, C any integer < y not a c. The canonical form 8j_ may
now be written as follows:

-l (i
=

0, 1, . .
., Jc 1)

I (i
=

0, 1, . .
., Z
-

1)

-i (i
=

0, 1, .
., q

-
1).

An arbitrary linear homogeneous substitution l
l
on these indices

replaces ^- by a linear function

233) ZDi^x + Z JEi'i &. + Z^;i^w ,

where (as henceforth) the summation indices have the series of values

*-0,l,...,*-l5 A = 0, 1,...,Z-1; ^ = 0,1,...^-!;
w= !,...,; t; = 1, . .

., |3; w = 1, . .
., y.

Jw onfer ^fea< Tx &e commutative with $x
^ is necessary tliat 233)

involve only the indices
rjiu (u

=
1, ...,). Equating the functions by

which jTjjS^ and
/S^
J

x replace ^,- a ,
we get

Equating the coefficients of the ^'s and 's in this identity, we get

i^ LI BIB i + LI BIS*

Since Jff =(= i^, the third equation gives Ell\ = 0, where & is

any integer > 1 of the set b). If 6 1 is a J5
;
the fourth equation

gives JE3?_a = 0. In the contrary case, & 2=)=5 1, and the third

equation gives EH2= 0. Similarly, according as & 2 is or is not

a J5, the fourth or third equation gives J3&_ 3
= 0. Proceeding in

this manner, we find that every JEJ J = (A
=

0, ...,? 1
;

v = 1, . . ., /3).
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By a similar argument, the first and second equations give

Equating the coefficients of the ^'s in the above identity, we
find analogously that every F^ = Q. Hence T^ replaces rjia by

a
a

>W (X = 1, i + 1, a, + a2 + 1, . .
.).

Consider any a such that a + 1 is an A and equate the functions

by which T
l
S

l
and Sj^T^ replace ^a+i- Among the relations occur

- JD^
1

!
= X, Dft-

zi^i;
+1 -ii.E:+1

ip- TTna-fl r T7t* + l
i T 771*0+1

,/Lj JZ/J _i = JLa JEtf J5_i -f* JL/^ JZ/^ ^

From these three pairs of equations we find (as above) respectively

Hence T
A replaces iy,- +i by a function of the ^ tt only.

Considering any a such that a + 1 and # + 2 are of the set A,
we find by the same method that T replaces ^< a+a ^y a function

of the
rii u only. We readily verify that, if T

x replaces ^f a+j by a

function of the ^- M only, the same will hold for ^ a _j_d_|_i.
Since the

series a, a + 1
?
a + 2, a + 3, ... yields every integer, we have proven

that T! must replace each ^ by a function of the ^/w only, if jPj

shall be commutative with >S
1

.

Similarly, T must replace each &j by a function of the g/ r only
and each ^ by a function of the il>iw only.

When we return from the indices ^^-, ^, ^ to the initial

indices |1; . . ., |m , ^ becomes, by hypothesis, a substitution $ having
its coefficients in the G-F[p

n
~].

Under what conditions will T, Tt
in

the indices |,, have its coefficients in the GF[pn
]? We have shown

that 2\ replaces % by a function of the form^ Dl^^u- Recurring

to the properties 1) and 2), 214, of the indices 17^, we must have

as the Dl

/u certain polynomials in the quantity Kt with coefficients

in the GF[pn
], such that
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Similar remarks hold for the indices
g,-^

and
ifj/y.

We may now state

our results in the following form:

Theorem. To determine tlie most general linear homogeneous
substitution T on m indices with coefficients in the GF[pn

~\
which shall

be commutative with a particular one S, we apply the transformation

of indices which reduces S to its canonical form S
1
and T to some

form Tv Then S
1 may be expressed as a product

S =
7? ^l . . .

1?* ! go l &-1 #0 #1 . . . #9 1

where each substitution ??/, /, #,- is defined thus:

rii\ tfia
=

KiVjia, rfiA
= K^A + -K^ 4-1 (for every a, A)

/: gi6=jLfgt-&, tiBL&B+ I'&Bi (for every b, B)
#: il>ic= Qifac, ^ic=Qi^ic+Qi^ic-i (for every c, C).

The most general T
v
must be expressible as a product

TI = H H
x . . . HA _i Z Z-t . . . Z;_i YO^ . . . M/

?
_ 1;

e individual substitutions have the forms:

Z,: a-=><> 0' -!-. ft
0=1

^e coefficients dju , QJV ,
<5jm being polynomials in K

, L^ QQ) respectively,

with coefficients in the GF[pn
~]. Furthermore, H must be commutative

with ?/ ,
Z with g , VQ w^ # .

Inversely, if these conditions on H^ Zz
-

; Vf &e satisfied, then the

substitution T corresponding to the product T will be commutative

with S and will have its coefficients in the GF[pn
~\.

218. In order that the substitutions H and
T/O

be commutative,
it is necessary and sufficient that, for every a, A and A',

234) daA = 0, d^la_! = 0(a>l), ^_la= 0, 8A-iA'-i-8AA:

Indeed, ^ H and HO T/O replace ^ by the same function only if

every 3aA =0. In order that they shall replace ^ A by the same

function, we must have

If u is not of the form A' 1, it must be of the form a 1 or else a.
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To take an example, let r = 2 and a
t
=

3, a
2
=

3, a3 2. Then

S1A = <?4^= <?7^= (4- 2, 3, 5, 6, 8); d2u = <?5w = (u
=

3, 6, 8)

*AA> - ^-i ^'-i (^, ^f -
2, 3, 5, 6, 8).

Setting i]o u
=

yu ,
we find that H has the following form 1

):

87

Its determinant is readily seen to equal

77

In the general case, H is seen to take the form:

r

01
f

02
f

03

l 21 d"

If e^
= a

2 ,
d'= d

fli+11 and

and

. If %> 2 ,
we have

! fll+i
=

2 fll+1
= -

i
_

2 fll+1
= 0. Finally, if a

l <ai9 we have

1) ^17, ^47 1 ^83 1 ^86 are zero
i
bein^ 6(lual to *" ^58 1 ^2 1 ^75 respectively.
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The matrix of the coefficients of H is made up of (r + I)
2

rectangles,

of which the general one EIJ is of height a f and of base %. Let t

be the smaller of the integers i, j or their common value if i = j.

Then EIJ includes at its left or bottom a square array St of coeffi-

cients at to a side. The coefficients in its diagonal are all equal;

likewise those in any parallel to the diagonal. All the coefficients

in Rij which lie above or to the right of the diagonal of the square

Sf are zeros.

219. The results of 218 will be applied only in such simple
cases that the determinant D of HQ can be simplified by inspection.

It will therefore be sufficient to state without proof
1

) the simplest

expression which can be given to D. Our notations may be fixed

so that a, *> > > & !> > &/-4-1 - Let

where

The determinant D equals DfcDf* . . -D^*, where, if (i,j} =

'< -i\ f-\ A I l\ /-j o A I 1^ ("i 5 A A I 1 ^X* J. J \^1 "^1 ~l / \ 7 "^1 "T" / \"^1 *M. ^1 -^J-1 "|" Xy

-4 + 1, i) (1,4-4 + 1, i) ... (1,4-4 + 1, 1,4-4

. . . (1,4+1,4-4+1, 1,4+1,4-4+1)

(1,4+1,4+1, 1,4+124+1) . . .(1,4+1,4+1, 1,4+1,4+1,4-4+1)

,-4+1,1,4+1,4+1) . . . (1,4+1,4+1,4-4+1, I^^A^I^-A^

Since the coefficients dy are functions of KQ ,
a root of an

equation of degree Jc belonging to and irreducible in the 6rF[jp*],

the number of sets of values for the $ coefficients entering DIO
for

which this determinant is not zero is ( 99)

Excluding the coefficients of H
Q
which are always zero, there

remains the following number of distinct coefficients d/^:

1) A method of proof is given by the author in the American Journal,

vol. 22, pp. 133134.



CANONICAL FORM AND CLASSIFICATION OF LINEAR SUBSTITUTIONS. 235

* = K + a
2 + <*3 H

-----h <*r+ l) + (2 2 + 8 H
-----H r+l)

- - -f

the #
th

parenthesis giving the number of such d
{j

in the #
th row of

rectangles. On account of the equalities among the a's, we find

CD = ^ A| + 4, A
2 (A, + 2AO + 4,A3 (A8 + 2 A

x + 2A
2) + -

Excluding also the A* + A| H-----h A? coefficients in the determinants

Dio ,
there remains the following number of wholly arbitrary d

{j
:

Q =ti(Aa- 1) + 2^*! + 24 ^3(^2 + AO +

Each one of these Q coefficients may take pnk values. The total

number of substitutions H is therefore

f(alt . .
., ar+1 , ft, j) = Q (Au p) Q (A,, JB-*) . . . Q (i,, ^*) . p*.

T/^6 ^a? number ofm-ary linear homogeneous substitutions T in the

GF[pn
] commutative with a particular one S, whose canonical form is

expressed in the notations of 217, is given ~by the product
1

)

f(aly . .
.,
or+1 , JG, p

n
) f(bl9 . .

., 6-+i, I, p
n
)

-

f(c1} . .
., (%+1 , g, ^w

) . . .

Recurring to the above example, ^ =3, a
2
=

3, 3
=

2, we have

f(a,, a,, as , Jc, p")
=

(p***- 1) (p* -^) , (p* - 1)
- ^*,

as is directly evident from the form of H and its determinant.

220. As an important example, suppose that S has the canonical

form

The most general substitution Tj commutative with /S replaces ?? ,

Jb>--v^o by ^(^0)^0? ^(-^oKo^-v (>(Co)^o respectively, in which

the coefficients of the functions x, A, . .
., p belong to the 6r.F [jp

w
].

If jK", i, . . ., Q be primitive roots of the Galois fields of orders pnk,

pnl
,

. . ., pn *
respectively, we may set

1) This result is in accord with that of Jordan, who treats the case n = l.

His method of proof is merely illustrated by the consideration of a particular

example, Traitd, pp. 128 136. Moreover, it does not give the explicit form of

the commutative substitutions.
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If, upon returning to the initial indices
,- upon which S is a sub-

stitution with coefficients in the GF[pn
~],
T shall become a sub-

stitution with coefficients in that field, T
t
must have the form

2.. (i
-

0, 1, . .
.,
k - 1)

nl

(i
=

0, 1, . . ., q
-

1).

Distribution of the substitutions of the general linear homogeneous

group into complete sets of conjugate substitutions, 221 223.

221. The substitutions of the 'group Gm = GLH(m, pn
) are to

be classified into complete sets of conjugate substitutions and the

number of substitutions in each set determined. Although a complete
solution of this problem is furnished by the preceding general theorems,
their generality and complexity make it desirable to consider in detail

the special cases m = 3 and m = 4 .

The classification employed is based upon the canonical forms

of the substitutions of Grm . These in turn depend upon the character-

istic determinants of the substitutions vz.

cc

CU__iA Kr

Furthermore, Gm contains a substitution in whose characteristic

determinant the coefficients a19 c^
2 ,

. . ., am are any preassigned marks

of the G-F[p
n
] such that am =|=0. The required substitution is

a
l
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(not necessarily in the GF[pn
]) to one of the following five types

of canonical forms:

A: x'=}ix, y'

B: x'=[tx, y=y,v
n
y, s'= az

C: x = aXj y'
=

fly, z = yz

D: x'=ax, y'=py, z'=p(
E: x'=ccx, y'=a

where A satisfies a cubic equation and ft a quadratic equation each

belonging to and irreducible in the GF[pn
], while a, /3, y denote

marks 4= of the GF[pn
].

Upon replacing A by ApW or by W ",
we obtain from A a sub-

stitution conjugate with A. Any other replacement of A leads to a

substitution not conjugate with A ( 102, Corollary), since its

characteristic determinant differs from that of A. Hence the type A
includes

-^(p*
n pn

) distinct sets of conjugate substitutions, those in

different sets being not conjugate under 6r3 .

Let S be a substitution of 6r3 having the canonical form A,
where A is a definite mark of the GF[p* n

] not in the GF[pn
~].

If

a substitution T of G3 be commutative with S and if we apply to T
the same transformation of indices which reduces S to the form A,
then ( 220) T will take the form

x' = e r
x, y'

= a rf>n
y, J = tf

r*2 n

z,

where a is a primitive root of the GF[p*
n
] and r is some positive

integer <^p
3n 1. Hence S is commutative with exactly p3n 1

substitutions of G3 ,
so that S is one of JV-j-(>

3 "
1) conjugate

substitutions within 6r3 . The total number of substitutions of G3

reducible to the canonical forms A is therefore

a) (p*"-p}(p**-p)(p*"-p*).

Type B includes y (p*
n pn

) ( p
n

1) distinct sets of conjugate

substitutions. In fact, the replacement of ft by pP
n

leads to a sub-

stitution conjugate with B, while any other replacement of ft or any

change in a leads to a substitution not conjugate with B. A sub-

stitution of 6r3 commutative with a particular substitution reducible

to a type B has the canonical form
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where p is a primitive root of the GrF[p
2n

]
and d belongs to the

G-F\_p
n
], r being an integer <jp

271
1. The number of such sub-

stitutions is (p*
n

T)(p
n

1). Hence the total number of substitu-

tions of 6r3 reducible to the canonical forms IB is

Type C includes pn 1 canonical forms with a =
/3
=

y-

(#
n

1) (#
n

2) canonical forms with a =
/3 =4= y; a like number with

=
y=}=/3; a like number with

/3
= y=)=a; and (p

n
Y)(p

n
2)(p

n
3)

with a, /J ; y all distinct. By a suitable transformation of indices the

multipliers a
? /3 ? y in are permuted in an arbitrary manner. We

have therefore the following numbers of distinct sets of conjugate
canonical substitutions C:

pn 1 of type C with a =
/3
=

y;

(p
n

l)(j)
n

2) of type 6T

2
with only two equal multipliers,

say a = /?=+= y;

yOn
l)(jP

n
2)(jp

w
3) of type C

3
with all three mul-

tipliers distinct.

The most general substitution of 6r3 commutative with (7
3

is

x'=ax, y'=by, z'= cz (a, &, c in the 6rF[j)
n
]).

Hence (7
3 is one of JV-i- (p

n
I)

3
conjugate substitutions within 6r3

The most general substitution of 6r3 commutative with (7
2

is

x' = ax + ly, y'
= cx + dy, z' = ez.

Hence C
2

is one of N-r (p
2w

1) (p
2n pn

^(p
n

1) conjugate sub-

stitutions. Finally, C is commutative with every substitution of 6r3

and thus is conjugate only with itself. The total number of sub-

stitutions of Gr reducible to the canonical forms C is thus

+ (r- 2) (.P"
-

3) d*"- 1) Op- + l)p".

Of the substitutions of type D, there are p
n 1 with a

/3
and

n
1) ( j)

w
2) with a 4= P> no two being conjugate under G3

. A
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substitution D with a =
/3

is commutative only with the p*
n
(p

n
I)

2

ns of 6r3

ex, y'
= ay, z' = by + az + ex (a, I, c,d,em the G-F[p

n
~]).

substitutions of 6r3

A substitution D with a =|= /3
is commutative only with the pn

(p
n

I)
2

substitutions of 6r3

x' = ex, y'
= ay, z' = l>y-}-az.

The total number of substitutions of 6r3 reducible to the types D
is thus

d) (p-l) (p-l) (p'+l) + (|-1) (p"-2) (jp--l) (r+1)^".

No two of the jp
n 1 substitutions of type E are conjugate under 6r3 .

Each is commutative only with the p*
n
(p

n
1) substitutions of 6r

3

x' = aa;, 2/'
= bx -f a?/,

f == ex + &$/ + ^^

The number of substitutions reducible to the canonical forms E is

e) (^

A check on the above enumeration of the substitutions of 6r3

consists is verifying that the sum of the numbers a), b), c), d), e)

equals the order N of 6r3 .

223. Consider next the group
1

) 6r4 of order

By 221, 6r4 contains a substitution in whose characteristic deter-

minant A (A)
=

>l
4 a^ cc

2
h 2 a3 A a4 the coefficients a19 a

2 , 3,

4 are arbitrary marks of the 6rF[p
ra

], 4 =|=0. According to the

possible factorizations of A (A) in the GrF[p
n

'\ )
we distinguish the

cases: I) irreducible; II) linear factor and irreducible cubic; III) two

distinct irreducible quadratic factors; IV) equal irreducible quadratic

factors; V) irreducible quadratic and two distinct linear factors;

VI) irreducible quadratic and two equal linear factors; VII) XI) four

linear factors, according to the number of equal factors. Denote by

A,, p t marks of the GF[pnf
] not in the GF[pnt

], r < t. For simpli-

city, the subscript unity is omitted from the marks a, /3, y, d of the

GF[pn
]. The types of canonical forms of the substitutions of 6r4

may be exhibited in the following complete list:

1) Cf. T. M. Putnam, Amer. Journ. Math., vol. XXTTI, pp. 4148. For the

author's treatment of the case n = 3, ibid, pp. 3740.
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Type
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Table giving the form and number C of the substitutions of the

group 6r4 commutative with the various types of canonical forms:

I

II

III

vn

HI,

ra,

IX,

ix
s

K
3

X,

XI,

XI
a

QX

QX

ax

ax

ax+by
ax

ax

ax

ax

ax

ax

ax

ax

ax-\-ez

ax

ax

ax

ax-\-by

by

cx-\-dy

by

by

by

by

by

bx-\-ay

l)x-\-ay-\-fz-}-ew

bx-\-ay-\-fz-\-ew

bx + ay

bx-{-ay

gx-\-hy

GZ

P
Q
P W

QZ

QZ

QZ

CZ

cz

cz-\-dw

cy + bz

cx-{-by-\- az-\-ew

gx+cz + l

arbitrary

cz

cz-\-dw

cz-\-dw

aw

dw

dz-\-cw

ez + fw

dy-{-cz--bw

fy + dw

dx -\-cy-\-bz-\-aw

fx-\-dw

hx+gy+dz+cw
hx-\-dz-\-lw

ez-\-fw

ez-\-fw

i

1) (p2n 2?
n
) (pn -

N

Here ;, belongs to the GF[p^ n
]^ ^ to the G-F[p*

n
], Q, <5, x, x to

the GF[p* n
], and a, b, c, . .

., j belong to the G-F[p
n
~].

If M denote

the number of distinct canonical forms in a general type, and C the

number of substitutions of 6r4 commutative with each, the number
of substitutions of 6r4 reducible to that type is MN/C. The sum
of these numbers is found to equal N, the total number of the sub-

stitutions of 6r4 .

DlCKSON, Linear Groups.
16
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OHAPTEE XL

OPERATORS AND CYCLIC SUBGROUPS OF THE SIMPLE

GROUP LF(3, p
n
^)

224. By 108 the group G = LF\Z,pn
)

of all substitutions of

determinant 1,

8: x'=^-

in which the coefficients # belong to the 6rJP[^)
n
], is a simple group

of order

where <Z is the greatest common divisor of 3 and pn
1, so that

d = 1, if pn => 3 or 3? - 1; d = 3, if # 3Z + 1.

The equation T3= 1 has in the G-F[p
n
] a single root =

1, if d = 1;

but has three roots 0, 6
2
,

3 ^ 1, if c? = 3. Hence, if e2 = 1, there is

a single homogeneous substitution of determinant unity

Z: |5
= a |i + / 2 | 2 + ,-3i3 (*

=
1, 2, 3)

which, when taken fractionally, leads to the non-homogeneous sub-

stitution 8. If d = 3, let denote the homogeneous substitution of

determinant unity which multiplies each index by 6. Then there are

exactly the three homogeneous substitutions of determinant unity,

Z, 0Z = I0,
2ZEEZ02

:

0T: gj - 6r (ali + o^fei + ,- 8 |) (*
=

1, 2, 3),

which, when taken fractionally, lead to the non-homogeneous sub-

stitution 8. Combining the two cases, we may employ the group
of ternary linear homogeneous substitutions of determinant unity in

place of the group 6r provided we consider to be identical the d sub-

stitutions Z, 0Z and 2 Z. Under this convention concerning the

homogeneous substitutions, we employ henceforth the homogeneous
notation for the substitutions of the group 6r.

225. Any substitution of 6r can be reduced by a linear ternary
transformation of indices (not necessarily in the GF[pn

] and not

necessarily of determinant unity) to one of the canonical forms A
y

jB, (7, D, E of 222. In the present case, the determinants of

A, . .
.,
E must be unity.

1) For n = 1, Burnside, Proceed. Lond. Math. Soc., vol. 26, pp. 58106;
for general n, Dickson, Amer. Journ., vol. 22, pp. 231252, where certain errors

in Burnside's paper are pointed out.
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If two substitutions S and T of the grouj) G have the same

canonical form, there exists (216) a ternary homogeneous substitu-

tion W belonging to the GF[pn
~]

such that T = W~ l SW. It

remains to consider whether or not there exists a ternary homogeneous
substitution W belonging to the GF[pn

] and having determinant

unity such that W transforms S into I. If the canonical form be

A
9 B, C or D, such a W will be shown to exist; while for the

canonical form E such a W does not always exist.

It is first shown that any one of the types A, B, C, D can be

transformed into itself by a substitution V of determinant equal to

an arbitrary mark =(= of the GF[pn
~]
and obeying the same laws

in regard to the conjugacy of its indices as does the canonical form

in question. For type A we may take as V the substitution

where (5 is a primitive root of the GF[pBn
~\

so that % = a

is a primitive root of the GF[pn
]. The determinant of V is thus rr

,

which by suitable choice of r may be made equal to ,an arbitrary

mark =^Q of the GF[pn
]. For types S and C we may take,V to be

x f =
x,

For type D we may take as V the substitution

1 = 0.

Let W have the determinant w and choose V so that its deter-

minant is w~ l
. We may take as the required substitution W the

product F! W, where Fx
is the form taken by V when expressed in

the initial indices. In fact V and W have their coefficients in the

GF[pn
], while the product V W transforms S into T and has the

determinant w~ l - w = 1. Hence, if two substitutions of G have the

same canonical form A
9 B, C, or D, they are conjugate within the

group G .

For type E there arise two cases. If d = 1, so that 3 is prime
io pn

1, every mark of the GF[pn
] is a cube ( 63, Corollary).

Hence an integer r may be determined so that T Sr shall be an

arbitrary mark =|= in the field. Hence the above argument holds

if we choose as V the substitution

For e2 = 3, only 4-O"-- 1
)

of the marks 4= of the GF\_p*]
i>

are cubes. Their products by /3
and

/3

2 will be not-cubes, if
/3

be

any particular not -cube. We can therefore determine V, of deter-

minant a cube, such that I is the transformed of S by the sub-

16*
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stitution ViW=Wj belonging to the GrF[p
n
] and having as deter-

minant one of the three marks 1, /3, /3

2
. Consider the three sub-

stitutions of G
Er : x' = x, y'

= y + p
r
x, z' = e + y (r

=
0, 1, 2).

The following substitution of determinant
/3:

E: x' = fix, y'
=

y, z' = z

transforms E into E
Q
and E

2
into JE . If E has determinant unity,

it is identical with E in the group G. It follows from the proof
above that any substitution T of G, which can be transformed into

E by a linear substitution W belonging to the GrF[p
n
], can be

transformed into E
Q by a similar substitution W of determinant

fit (t
=

0, 1 or 2). Also R~* transforms E into Et . Hence T is

transformed into Et by the product WE~ t

which belongs to the

GrF[p
n
] and has determinant unity. Hence every substitution of G

of canonical form E is conjugate within G to one of the types

We next prove that no two of the types E ,
E

,
E

2
are con-

jugate within G, i. e., by means of a substitution of determinant unity.
The most general ternary homogeneous substitution which transforms

E into E is seen to be

of determinant /3~~
1 c

3
,
which can not be made unity. Transforming

the latter by E
,
we obtain the most general substitution which

transforms E into E
z , viz.,

x' = fl~
1
cx, y'

= cy + fibx,
f= cz + by -j- pax,

of determinant ^
1 c

8

4=l- Finally, by 102, E can not be trans-

formed into 0_E17 nor E into QE
2 , by a linear substitution. The

results now proven may be stated in the explicit form:

Every substitution of G can be reduced by a ternary linear homo-

geneous transformation to one of the canonical forms

D: x'=a-*x,y
f

=ay, 0'=*a(e + y)

E : x 1 =
x, y'

= y -f fix, #' = + y (/3
not-cube in CrF[p

n
]}

E
2

' x = Xj y'
= y -f- fi^x, 2* = z -f~ y,

in which I satisfies a cubic and ^ a quadratic equation each belonging
to and irreducible in the G-F[p

n
], while a, /3, y ~bdong to the GF\_p

n
].
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Of flie substitutions of G reducible to the forms A and B, those and

only those are conjugate within G which are reducible to the same

form A or to tJw same form B. Every other substitution of G is

conjugate within G to one of the types C, D, E ,
E1} E2 and no two

of the latter types are conjugate within G.

226. Type A. The substitution of determinant unity

x'= a x -f- a2 y -f #, y' %, 8 1==y
has the characteristic determinant

A(T) EE - A 3
-f a^2 + K^ + 1.

Hence
cc^

and cc
2 may be chosen in the GF[pn

] so that a root >l of

A (A)
= is a primitive root of the equation

235) ^ n+"+ 1 =l.

The order of the corresponding substitution A is the least

integer m for which

i.e., for which m(pn
1) is a multiple of p*

n
-\-p

n
-\- 1. But the

greatest common divisor of pn 1 and p*
n+ pn

-}- 1 is also that of

pn 1 and 3 and therefore equals d. The order m is consequently

Moreover, the roots of any irreducible cubic of the form A
(>l)
=

may be written A*, kspn
,
1*$

n
,
so that the corresponding substitution

is the sth power of the substitution just considered. Hence the orders

of all substitutions having irreducible characteristic determinants are

factors of i (p*
n + pn + 1).

Consider a substitution S of G of canonical form A for which A,

is a primitive root of equation 235). By 220, the only substitu-

tions of G which are commutative with S have, simultaneously with

the canonical form A of S, the canonical form

x' = <s
r
x, y'

= G rPn
y, z' = G r^ n

z (V(1+*>
n+/ n > ==

i)

where a is a primitive root of the GF[p*
n
~].

Hence r(l -\-p
n +p2n

)

must be divisible by pSn 1 and therefore r divisible by jp
n 1.

Setting r = Q (p
n

1),

since (?^
n 1 is a primitive root of 235) and hence equal to some power

t of Z. The only substitutions of G which are commutative with S
are therefore the powers of S. It follows that S is one of a set of
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N
s =

distinct conjugate substitutions
,
N being the order of Gr.

The only distinct powers of S which have the same character-

istic determinant as S are evidently S, SpH and Sp
. To each set

of three substitutions such as Sr

,
Srp

,
S rp contained in the cyclic

group generated by S and all belonging to the same characteristic

determinant, there corresponds a set of s distinct conjugate substitu-

tions. Hence there exist in Gr

such sets of 5 conjugate substitutions. It follows that G contains in all

236)
- - ri^ps + +!) _ 1^

substitutions not the identity whose orders are factors of

(jp
2

-f- pn
-j- 1) .

Hence G contains
2

, . ^ distinct conjugate cyclic subgroups oforder

1 /

227. Type J5. Since G contains substitutions in whose character-

istic determinant tf -j- a
1
12

-f a
2
1 + 1 both a and a

2
are arbitrary

in the GrF\_p
n
~\,

we can choose

so that

where 7 and d are arbitrary in the GrF[p
n
]. In particular, 6r contains

a substitution ;Z whose characteristic determinant has an irreducible

quadratic factor which vanishes for a primitive root ^ of the GrF[p*
n

~\.

The canonical form of I is then ~B. The order of T is therefore

the least integer t for which

i. ev for which both t(p
n

T) and t(p
n

-\- 2) are divisible by^)
2ra

1.

But 3tf and t(p
n

1) are both divisible by^9
2n

1, for t a minimum,
if and only if

= w or

Hence the order of T is -4(>
2w

1).
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By 220, the most general substitution of G commutative with T
has the canonical form

x' = yi
r
x, y*

=
ii

rf
n
y, 0' = n~

r (p
n+V z

and hence is T r
. Hence T is one of a set of dN'-f- (p*

n
1) distinct

conjugate substitutions. The only distinct powers of S which have

the same multipliers as S are S and Sp
. Hence G contains 2n_ l

distinct conjugate cyclic subgroups of order -r(p*
n

1).

The number of substitutions of G whose orders are factors of

-r(l>
2w

1) without being factors of
-^-(jp

n
1), and hence not of

p*l, is

237)

In fact, such substitutions form in all

different sets, those in each set having the same characteristic deter-

minant. Each set contains dN~(^p2n
1) distinct conjugate sub-

stitutions. The product of the two numbers gives formula 237).

228. We can exhibit G as a permutation-group on p2n +pn
-\-l

letters. Every linear function A% + B%2 -f C 3 ,
in which A, B, C

are marks not all zero of the 6rJF[_p
n
], can be put into one of the

forms,

where p, 0, a are marks of the GF[pn
~]
and /& 4= 0- Combining into

one system { J.|A +-^2 4- C'Ss) the pn 1 linear functions

/u, denoting in succession the pn 1 marks =|= of the field, we
obtain p^

n
-f ^)

n
-f 1 distinct systems,

{ |3 + Q |g -f a |x } , { |8 + 9 1! }, { ^ } [p, <* arbitrary marks].

Any ternary homogeneous linear substitution replaces the functions

ft (A^-{- J5
2 + Cls)> comprising one system, by linear functions

all belonging to a single system. Hence it permutes the above

p2 n
-f pn+ 1 symbols amongst themselves. It follows that G is

isomorphic with a permutation-group 6r
f on these symbols. But a

homogeneous substitution altering none of the symbols must have

the form ,. .
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If it have determinant unity, it corresponds in G to the identity.

Hence G is simply isomorphic with G'.

The permutation -group G 1

is doubly-transitive. We need only

prove that G' contains a permutation converting { ^ }, { 2 -f- ^ }
into

respectively

the latter being any two distinct symbols, viz.,

For the corresponding homogeneous substitution, we may take

where a, /3, y are chosen in any manner such that the determinant

of the substitution is unity, viz.,

B C

B' C'

C A
V A 1

A B
A! B'

= 1.

By hypothesis the determinants are not all zero, so that solutions

, /?, y in the GF[pn
] certainly exist.

229. Type D for a 3

=(= 1. Let a be a primitive root in the

GF[pn
], the cases pn=2 and pn =2* being necessarily excluded.

For such an a, substitution D generates a cyclic group of order

Considered as an operation of the isomorphic permutation-group,
D belongs to a subgroup of G which leaves fixed the symbols {x}
and {y}. The general substitution of G possessing this property has

the form
R: x' = yx, y'

=
fty, z

1 = az -j- a'y -\- a"x (/3y = 1).

In order that R shall have the order
-j-p(p

n
l}, it is necessary

and sufficient that a ~be a primitive root in the GF[pn
] and that either

(i)
a'+ O,

= ^ + r; or(ii) "+0, = r + /3.

In fact, if both
/3
and 7 differ from a, R may be given the form

whose (p
n

l)
st
power is unity, by introducing in place of 8 the index

x.

Hence, if a =(= /3,
we may take a = y. Then "=f= 0; for, if a" = 0,

R multiplies z -\ j t/ by a, so that R would have as order a factor
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of pn
1. Similarly, if a =j= 7, then must a = /3,

'

=j= 0. Finally,

if a = p = 'y,
each may be taken equal to unity. Then, by induction,

j^r. ft*
__ x if

1 = I/ s' = z -I- TK'IJ I rafl x

so that 12 would have the period j?. Hence either (i) or (n) must

be satisfied.

Suppose, inversely, that relations (i)
are satisfied. Setting

y__ _</_ y_ ,

tt
" X

a "'

E takes the form
f 2 ~\7~f ~V f7lx == a x, JL === a JL

j
== ex,

and is thus of period -jp (p
n

1) if, and only if, a be a primitive

root of the GF[pn
~\. Interchanging x with y, the proof follows for

case (H).

Using the theorem just proved, we proceed to determine the

number and conjugacy of the cyclic subgroups of order
-^p (p

n
1)

which leave the symbols {x} and {y} fixed. For case (*),

E: x'=a~ 2
x, y'^ccy, tt' = az + a'y + a" x (a' 4= 0, a3

=f= 1),

where a is a primitive root of the GF[pn
~\. By induction we find

a'e _
I

In order that QrE t shall be identical with the substitution

x'= a~*x, y'
= ay, z'= az + qty + ()

ff

^,

it is necessary and sufficient that

Let J^- denote any one of the (p
n

l)/(p 1) distinct marks M^
Jf

2 ,
. . . such that no two have as their ratio an integral mark 1

).

If a be a fixed mark =j=0 and Jfan arbitrary mark, ihep
n
(p

n
l)/(p 1)

substitutions

238) x'=a-*x, y'-xxy, e' = as + My + MX

have the property that no power of any one of them reduces to one

of the set. We therefore obtain that number of cyclic subgroups of

order ^p(p
n
-l).

Furthermore, every substitution V of the subgroup leaving {x}

and {y} fixed, and having a= /3,
and of order a divisor of

-^p(p
n

1)

1) The marks Mlt MS1 . . . are evidently the multipliers in a rectangular

array of the marks =J= of the GrF[p*], the first row being formed by the

integral marks 1, 2, . . ., p 1.
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without being a factor of p or pn
1, is contained in one of the

above cyclic subgroups. In fact, by the earlier argument, we may set

V: x' = a~ 2s
x, y'=^=a

s

y, z' = asz + a'y + a"x (a
r

4=0, aBs ==
1)./ i/ t/7 * *J * \ I /

1 /

Let Mi be a mark =)= such that its ratio to a'a 1~ s
is an integral

mark. The power s -+- k (p
n --

1) of 238) gives

x' = a- 2s
x, y'

= as

y,

\,cT~
3

1 /

By choice of & and _M, we can make the coefficient of y in z' equal a f

and that of x equal a".

Hence there are pn
(p

n
T)/(p 1) cyclic subgroups of 6r of

order
-y_p (p

n
1) for which a = /?, and as many more for which

a. = y, each leaving the symbols {x} and {y} fixed, and together

containing all substitutions having the last property and having an

order not p nor a factor of pn 1.

These cyclic subgroups are all conjugate within G and, indeed,

within the subgroup which leaves fixed {x} and {y} or merely

permutes them. First, the substitution

M'-M

transforms 238) into a like substitution with M f in place of M. Also

transforms 238) into the substitution

y'
=

ay,

Hence the cyclic subgroups given by a
/3

are all conjugate within

the group leaving fixed {x} and {?/}. These symbols are interchanged by

'=y, y
r =-%> *' = *,

which transforms 238) into the substitution

x' = ax, y
f = a~ 2

y, z
! = a# My + MiX.

Hence the set of cyclic subgroups given by a = /3
are conjugate to

the set given by a = y within the group leaving fixed the symbols

{x} and {y} or permuting them. The latter group consequently
contains 2pn

(p
n

l)/(p 1) conjugate cyclic groups of order

-jp (p
n

1) and those substitutions of these groups whose orders are

not divisors of p or pn 1 are all distinct. Since the permutation-

group isomorphic with 6r is doubly transitive, it contains
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l) (!" + 1*")

conjugate subgroups leaving fixed or permuting the two symbols.

Hence there are altogether

i

conjugate cyclic subgroups of order -r>(jp
n

!) Each contains

p + -i-
(p

n
1) 1 substitutions of period p or a divisor of

-^ (p
n

1).

There remain in each cyclic group (_p 1) (p
n

1) 1 sub-

stitutions. Hence 6r contains

239) N(pn-l-d)-rpn
(p

n-
1)

substitutions whose orders divide
-j-p (p

n
1) but not p or pn

1.

For the cases ^)
n= 2 and ^)

n= 2 2 above excluded, formula 239)
reduces to zero. Hence the result is always true.

230. Type D when 3 =1. We are to consider substitutions of

period p having the canonical form:

D': x' = x, y'
=

y, z
] = z + y.

From the investigation at the beginning of 229 it follows that the

only substitutions of period p which leave fixed the symbols [x]
and [ij] have the form

240) x' = x, y'
=

y, z
1 =

-{- ax + fly ( and /3 not both zero).

There are p2 n 1 distinct substitutions of this form. They are all

conjugate to D f within 6r. In fact, if
/3 =f= 0, the substitution

transforms 240) into

y'
=

y, z'=

By choice of p, we can make a /3p
= 0. If ft

= 0, we trans-

form 240) by , , r

x' = y, y'
= x, z'= z,

and get
x' = x, y'

=
y, z''=2 ay.

In either case we reach a substitution of the form 230) .but having
a = 0, /3 =J= 0. It is transformed into D 1

by the substitution of 6r
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The p2 n 1 substitutions 230) determine (p
2 n

1)1(p 1) con-

jugate cyclic subgroups of order p contained in the subgroup of G
which leaves fixed the symbols {x} and [y] and hence also {x + gy},

Q being an arbitrary mark of the CrF[p
n
].

Each such group therefore leaves fixed pn
-{- 1 (and no more)

symbols. But the jp
2 n + p

n
-f 1 symbols furnish

such sets of symbols. Hence G contains

(tfn , p. , iNd*"-!)-' -

conjugate cyclic subgroups, all of whose substitutions are con-

jugate under 6r. Each such subgroup is therefore contained self-

conjugately within a subgroup of order -^p
3 n

(p
n

1) (p 1) . The

total number of distinct substitutions of G of order p of the type
considered has thus been shown to be

941 ^

231. Types Et . By induction we find that

Hence EQ is of period p or 4 according as p > 2 or jp
= 2. The

most general substitution of 6r transforming J into itself is

Exactly ^)
2n of these substitutions are distinct in the group 6r.

Suppose first that p > 2. For any positive integer t<.p, the

substitution

242) *'--f*, '--*, '-<

is of determinant unity and transforms I? into JEJ. Taking

we see that 6r contains exactly p2n
(p 1) distinct substitutions

which transform into itself the cyclic group generated by EQ
. The

cyclic group {E } is, for p > 2, owe o/ N/p
2n

(p 1) distinct conjugate

subgroups of G. In particular, 6r contains N/p2n distinct conjugate
substitutions of the type EQ .

Suppose next that p = 2. Then _E is of period 4. Since

El: x'= x, y'
=

y, z' = + x

leaves fixed the 2 W +1 symbols {x}, {y-{-^x}, A any mark of the

GF[2n
], while E leaves fixed but one symbol {x}, the two sub-
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stitutions are not conjugate under G. But E
Q

is transformed into

E* by the substitution 242) for t = 3, viz.,

The cyclic group generated by E is therefore transformed into itself

by exactly 2>22n substitutions of G. For p = 2, {EQ }
is one of a

complete set of N/22n+ l
conjugate cyclic subgroups of G. Just two of

the four substitutions of every such cyclic group are of type E ,

while the remaining one not the identity is of type D with 3= 1.

Hence, for p = 2, G contains N/22n distinct substitutions conjugate

with E .

Since Ei
and E% are conjugate to E within the general ternary

linear homogeneous group in the GF[pn
], the number of substitu-

tions of G conjugate to E within G equals the number conjugate

to E! or the number conjugate to E
2

. Hence G contains altogether

243) 3N/p2n

distinct substitutions of the canonical forms Efi they form three

distinct sets of conjugate substitutions under G. Also, EOJ Ely E2

each lead to the same number of conjugate cyclic subgroups of G.

232. Type C. The substitutions of canonical form C are of

order a divisor of pn 1. Of the (p
n

I)
2 sets of solutions in the

GF[pn
~]

of a/ty = l, d sets have a =
/3
=

?>
and hence each equal to

0r(r= o, 1, or 2). If a be any mark different from 0, 1, 0,
2
,
and

if
/3
= a, then y= a- 2

=%=a. Hence there are 3(p
n d 1) sets of

solutions in which two and only two of the quantities a, /3, y are

equal. There remain

4 + 2d

sets of solutions in which a, /3, y are all distinct. Dividing this

number by 6 to allow for permutations, we obtain the number of

distinct sets of unequal multipliers of ternary homogeneous sub-

stitutions C.

If, for d= 3, K, ft y do not form a permutation of 1, 0,
2
,
the

three sets

a, ft, r, , 00, e^; 0X 0*P, 0V,

are not equivalent sets of multipliers in the homogeneous group, but

are equivalent in the non-homogeneous group G. The number of sets

of unequal multipliers in (r is therefore

r d_ 3.
^.
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We proceed to prove that the total number of substitutions of 6r

Of canonical form C with a, /3, y distinct is, for d = 1 or 3,

, JT ff2n
- 2

"

By 220, the only ternary homogeneous substitutions commutative

with C with a, /5, y distinct are the (p
n

I)
2 substitutions

T: x'=ax, y'=by, z'=cz

For <$= !, each set of unequal multipliers therefore leads to

conjugate substitutions, so that we obtain the number 244). For

^= 3, the substitutions T give only ~^(p
n

I)
2 distinct substitutions

in 6r. Furthermore, by 102, C can be transformed into 0(7 if,

and only if, the multipliers a, /3, y form a permutation of 1, 6
7
6

2
.

The special substitution (7,

is transformed into C, 0(7 or 2
(7 by exactly the 3(y I)

2

products

Tj (xyz)
r
L, (xzy)T. The corresponding substitution is therefore one

of N! (p
n

I)
2 distinct conjugate substitutions under 6r. Each of

the remaining substitutions (7 with unequal multipliers is one of a

set of N -T- ~o-(p
n

I)
2
conjugate substitutions under 6r.

Corresponding to the pn d 1 sets of multipliers a, /3, y of

which two are equal, there are ~^(p
n d 1) substitutions C" of 6r,

no two of which are conjugate. Such a substitution

(7': x'=ax, y'
=

ay, 2'=ys (a
2
y = 1, y 4= a)

cannot be transformed into 0(7'. By 218, the most general ternary
linear homogeneous substitution which transforms C' into itself is

x^ax + by, y' a'x + &'?/, 2
r =c f

2.

The number of such substitutions in the 6rJP[jO
n
] of determinant

Unityis

Hence the total number of substitutions in 6r of the canonical form C' is

1 / -4 \ -iV

245) _

233. As a check upon the accuracy of our enumeration of the

substitutions of 6r, we may verify that the numbers given by the

formulae 236), 237), 239), 241), 243), 244) and 245), together with

unity, to count the identical substitution, give as total sum the

order N of the group 6r.



OPERATORS AND CYCLIC SUBGROUPS etc. 255

234. To complete the enumeration of the cyclic subgroups of G,
it remains to determine those generated by substitutions of the

canonical forms C. The method will be sufficiently illustrated if we

confine the investigation to the case d = I.
1

) If be a primitive

root of the GrF[p
n
], we may set

C: x'=ar
x, y'=as

y, z'=--ar r- 8
2,

where r and s are integers chosen from the series 0, 1, . .
., pn 2.

Let g denote the greatest common divisor of r and s. The period

of C is the least positive integer I for which Ir and Is, and therefore

also Ig, are multiples of pn
1. Hence C is of period pn 1 if, and

only if, g be relatively prime to pn
1. In general, C is the g

ih
power

of a similar substitution with the multipliers cf^, a.*/9
,

( r~ *)/^
?
the

latter of period pn
1. Hence, for d = l, the substitutions of type C

are all included in the cyclic groups generated by those substitutions

of type C which have the period pn
1. We may therefore confine

our attention to these largest cyclic groups. The exponents r, s in

the expression of any substitution G of period pn 1 must occur

among the sets of two positive integers less than pn 1 and having
their greatest common divisor prime to pn 1. Denote by F(pn

1)

the number of such sets. A similar remark holds for the couples

s,r-: r, r s; r s, r; s, r s; r s, s; provided r s

be replaced by its least positive residue modulo pn
1. If r,s, r s

be distinct, the above couples form six of the F(p
n

1) sets, but

lead to the same set of three multipliers in C. If two of the

exponents be equal and therefore different from the third, we may
take them to be r, r, 2r. Then the couples r, r; r, 2r; 2r, r

form three of the F(pn
1) sets, but lead to the same set of

multipliers in C. Here r may be any one of the (p
n

1) integers

less than and prime to pn
1. Hence there are 3 <J> (p

n
1) sets

leading to <t> (p
n

1) distinct sets of multipliers two of which are

equal, while the remaining sets lead to [F(p
n

1) 3<$>(p
n

1)]

distinct sets of three unequal multipliers, together yielding all the

substitutions C of period pn 1. The value of F(pn
1) is given

by the following theorem. 2

)

The number of sets of two integers, not loth zero, chosen from the

series Q,l,...,klso that their greatest common divisor is prime tokis

,

where ql} q2 ,
. .

., qK are the distinct prime factors of k.

1) The case d = 3 is more intricate and the results quite complicated.

The results are given in the Amer. Journ., vol. XXII, p. 251
;
the proofs in vol. XXIV.

2) Jordan, Traite, p. 96.
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Of the Jc
2 sets of two integers each < k, k2

/qj have their integers
chosen from the &/9> multiples of gi and are to be excluded. We
thereby exclude, in particular, the sets of integers each of which is

one of the k/%iC[j multiples of qiq_j. Hence, in afterwards excluding
the sets of integers each of which is a multiple of #y, we subtract

the number k2
/qj k2

/qjq
2

. After the required exclusions have all

been made, there evidently remains the number of sets indicated

Among the latter sets, the couple 0, does not occur since

1-2 1-2

235. A cyclic group generated by a substitution C of period

pn 1 will be called special if two of its substitutions C a
}
Cb of

period pn 1 are conjugate within 6r, i. e., have the same set of

multipliers. Since a and b must be prime to pn 1
,

the condition

requires that C and Cbcti shall have the same set of multipliers,

where % is determined from afl^^l (mod pn
1). It thus suffices

to investigate when C and Cm have the same multipliers, m being

prime to pn 1 and 1< m < pn
1. The three distinct ways in

which the two sets

ar as
a*- amr ams amt

may be identical in some order will be considered in turn.

i) If amr= ar
,
ams= as

,
amt= a', then r (m 1), s(m 1), and

therefore also </(w 1), are divisible by pn
1. Since g is prime

to pn
1, m 1 must be divisible by pn

1, contrary to hypothesis.

ii) If Kmr=as

,
ams=ar

, a^^a*, then must

w
1).

Then r must be prime to pn 1
;
for a common factor would divide s

in virtue of the first congruence, whereas the greatest common divisor

of r and s is prime to pn
1. Hence, by the last congruence,

246) w 2 EEl (mody-1).

Inversely, if m be any solution of 246) and if r be any integer

less than and prime to pn 1 and if s be determined by

s = mr (mod pn
1),

then (7 and Cm have the same multipliers. Moreover, C is the rih

power of a substitution with the multipliers a, a, a~m ~~l
,
which

may therefore be taken in place of C as generator of the special

cyclic group.
If 2k be the highest power of 2 contained in pn 1 and if %=

when & = or 1, H =1 when & = 2, ?c= 2 when k ^> 3, and if ^ be
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the number of distinct odd prime factors of pn
1, then the con-

gruence 246) has exactly 2x+<" solutions m. 1

)
The solution m E^ 1 is to

be excluded. Consider the 2x +<" 1 substitutions with the multipliers

a, am
,

a.
1
,
m > 1. They generate as many cyclic groups. In fact,

(a
m
)
x=K requires x = m (mod pn

1); while (a~
m ~~l

)y
= a is im-

possible since m + 1 has a factor > 1 in common with pn
1.

Moreover, the sets of multipliers of the substitutions of period pn 1

in each cyclic group are the same in pairs. Hence these special cyclic

groups contain altogether yO(^
TC

1) (2
X +/*

1) distinct sets of

unequal multipliers.

(iii) If amr =a', ams =at

)
amt=ar

,
we find that

=
(mod ^>

w
-l).

Hence Jf = m2
-f m -f 1 must be divisible by j9

n
1. Since m (m -f 1)

is even, M is an odd number. Hence pn 1 must be odd and there-

fore pn = 2W. Since d = 1, 3 is not a factor of p
n

1. Hence each

prime factor g of ^)
w 1 is of one of the forms 6&-J-5, 6& + 1.

Now .M" and hence also w3
1 must be divisible by q. If #= 6&-f 5,

Fermat's theorem gives w6 *+ 4=l (mod #). Since w3
=l, we have

m = 1 (mod g')
and therefore Jf=3^0 (mod g), which is impossible.

Hence must q= 6fc -f 1. Inversely, if ^ = 67^+ 1, m6 * 1 = (mod q)
has 6& distinct integral solutions. But the left member is divisible

by m3 1 and therefore by M. Hence M= (mod #) has two
distinct solutions. Each of these solutions leads to one, and but one,

solution of M= (mod (f). To give a proof by induction from
T = e to r = e-fl, let w3 -l = ^. Then

(m + x(f 1 EE Qq
e+ 3m2

xq
e

(mod 2
2e
)

and will therefore be divisible by ge+1 if, and only if,

::^Q (mod q).

Since 3 and m are prime to q y
x is uniquely determined mod q.

Hence each m determines one solution y^.m-\- x<f of

if 1 = (mod 2
e+1

).

Hence, if m2 + m -f 1 be divisible by #
e
, </ 1 will be prime to q

and hence y
2+ / + 1 w^ ^e divisible by #*+

1
. Supposing that the

prime factors of 2n 1 are all of the form 6& -f- 1 and that the

number of distinct ones is y, it follows that M=Q (mod 2n 1)

has 2y solutions m. But, if m be a solution, then m 1 will be

1) Dirichlet, Zahlentheorie, 37.

DlCKSON, Linear Groups. 17



258 CHAPTER XL

a second solution. Hence C is the rih power of one of the 2 7
~~ 1

sub-

stitutions with the multipliers a, am
,
a~m~i

. These generate distinct

cyclic groups, since (a
rn

)
r=a requires x = m 1. Hence there

are 27
" 1

of these special cyclic groups and the substitutions of period

pn 1 in each give just <t> (p
n

1) distinct sets of multipliers.

Excluding the special sets of multipliers of types (ii) and (iii),

there remain

sets of unequal multipliers, the last term occurring only for certain

values ofp
n

. The corresponding substitutions C lie in sets of <$>(p
n

1)

in cyclic subgroups not conjugate under 6r. Noting that F(pn
l)

is divisible by <$>(p
n

1), giving the quotient

where q , #2 ,
. .

., #x
are the distinct prime factors of pn

1, we may
combine our results in the theorem:

If pn 1 be not divisible by 3, the substitutions C generate the

following types of cyclic groups of order pn 1 not conjugate under 6r:

a) one group generated by the substitution with multipliers

a, a, a- 2
;

b) 2X+^ 1 generated by substitutions with multipliers a, a,
a m 1

}
where m2^! (mod p

n
1), K and p defined in (ii);

c) 2y ~~ 1

generated by similar substitutions with

w2+w + 1^0 (mod pn
1),

occurring only when ^)
n 1 = 2n 1 has only prime factors (y distinct

ones) of the form 6j + 1
;

d)
~

[Y (^ - 1)
-

3]
-

-|- (2*+^
-

1)
-

4- ' 2>
'~ 1

further S1
"

011?8 -

236. As a first example, let pn=
8, so that f*

=
1, 3c = 0, y= 1.

There is just one cyclic group of each of the first three types. The

generators have the sets of multipliers a
;
a

?
er~ 2

; a, a"" 1
, 1; a, a 2

,

a~ 8
respectively.

As second example, let pn= 17, so that ^ = 0, % = 2, while the

third type of group does not occur. There are three cyclic groups
of the second type determined by the sets of multipliers a, a" 1

, 1;

a, a 7
,
a8

; a, a9
,
a6

. The two cyclic groups of the fourth type may
be determined by the sets of multipliers a, a2

,
a13

; a, a3
,
a12

.
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237. It remains to determine the number of cyclic subgroups
of G conjugate with each group of the types a), b), c), d). Type a)
is generated by the substitution

x' = ax, y
1 =

ay, z' = a~ 2# (a
- 2

=|= a)

and is commutative with exactly (p
2n

1) (p
2n pn

) substitutions

of G, viz., ,
. .

x = ax + by, y'
= ex + dy, z' = ez.

The cyclic group of order pn 1 generated by the substitution

x' = ax, y'=am y, z
1 = a-m- l

z, m*= 1 (mod pn
1)

is transformed into itself by 2 (p
n

I)
2

substitutions, viz.,

S: x'=ax, y'
=

by, 0*
' = cz

and the products TS, where T replaces x by y and y by x.

When cyclic groups of the third type exist, each is transformed into

itself by the 3(_p
n

I)
2
substitutions S, (xyz)S, (xzy)S. Each cyclic

group of the fourth type is transformed into itself by exactly the

(p
n

I)
2 substitutions S.

238. For pn = 2 2
,
the simple group G has the order N= 20160.

There is, by 244), a single canonical form C, not the identity, its

multipliers being 1, 0,
2
. The N/ (p

n -
I)

2 = 2240 substitutions

of G of period 3 are therefore all conjugate and generate a single
set of conjugate cyclic groups. Applying the results of 226 231

to the case pn = 2 2
,
we see that G contains

960 conjugate cyclic groups of order 7 with 5760 substitutions ofperiod 7

2016 5 8064 5

630 4 1260 4

630 4 1260 4
630 4 1260 4

1120 3 2240 3

315 2 315 2_^_ rt 1

20160

The substitutions of period 2 are all contained in the cyclic groups
of order 4.

The group G differs in structure from the alternating group on

8 letters, likewise of order 20,160. Indeed, the latter contains 5760

substitutions of type (1234567), 3360 of type (123456) (78), 1344 of

type (12345), 2688 of type (12345)(678), 2520 of type (1234)(56),
1260 of type (1234)(5678), 112 of type (123), 1120 of type (123)(456),

17*
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1680 of type (123) (45) (67), 210 of type (12)(34), 105 of type

(12) (34) (56) (78), and the identity. The alternating group has sub-

stitutions of periods 6 and 15, while G does not. Both groups
contain the same number of substitutions of period 7, the same

number of period 4, the same number of period 2. But the distribu-

tion into sets of conjugates of the substitutions of period 2, or of

period 3, or of period 4, differs in the two groups. In particular,

G is not isomorphic with the alternating group on 8 letters, each group

being simple and of order 20160. 1

)

CHAPTER XII,

SUBGROUPS OF THE LINEAR FRACTIONAL GROUP LI (2, ^).
2

)

239. In 108 was defined the group of linear fractional sub-

stitutions

on an arbitrary variable z with coefficients in the G-F[p
n

~].
We

proceed to represent it as a permutation-group on pn
-\-l letters.

Suppose e runs through the series of marks of the GrF[p
n

~\.
For

y = 0, z
1

will also run through the series of marks. For y =j= 0, the

value z = d/y gives 0'= /)> so that z' can not be determined

as a mark of the field. We may, however, obtain a set of elements

which are merely permuted by S by adjoining to the series of marks

a new element 00=-^? necessarily the same for every mark
ji =(= 0,

since = ^-r =
-|p

and assumed to combine with the marks A =j=

of the field according to the laws

oo-f Z= A + oo = oo, Aoo = ooA= oo, A/ Qo = 0, oo/A=oo,

while the indeterminate fraction
, ^ is assumed to equal a/y.

y QO-f d

Setting henceforth s=jpw
,

the group LI(2,s) of linear fractional

substitutions of determinant unity in the G-F[s] may therefore be

1) Miss Schottenfels established this theorem by direct calculations, Annals

of Mathematics, (2) vol. 1, pp. 147152.

2) Moore, Mathematical Papers Chicago Congress of 1893, pp. 208 242,

Math. Ann., vol. 55 (56?); Wiman, Sweedish Acad., vol.25 (1899), pp. 147;
Burnside, Proc. Lond. Math. Soc., vol. 25 (1894), p. 132. The work of Galois,

Mathieu and Gierster is cited in the exposition for n = 1 in Klein -Fricke,

Modulfunctionen I, p. 411 and pp.419 491.
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represented concretely as a permutation-group G'M^ on s -f 1 letters

and having the order

247) M (s) =
* (*

>

.~
1)

(
2

;
! according as p > 2; p = 2).

The group of all substitutions S has the order (2; 1)M(s). For p > 2,

it may be represented as a permutation-group (rSiJ). For # = 2, it

is the former group.

The group G3^ is doubly transitive. It is only necessary to

prove that a substitution T with coefficients in the field and of

determinant unity may be found which will replace two arbitrary

distinct elements Q, 6 by the elements 0, oo. If both Q and a are

marks of the field, we may take as T
r = *(g-g) x

_ _L_.
z G Q a

If Q is a mark and <? = oo, we may take T to be z
1 = z Q.

(R\
1 /A -

-2-
)
of determinant unity is $~ =

(
!

y, */ V-TI
so that S is of period two if and only if a -f d = 0.

240. A substitution S, not the identity, of the group G 9)
leaves

fixed at most two elements. The fixed elements are given by the

equation

248) y*
2 + (<?-)* -0 = 0.

By 15, it has at most two roots in the field GF[s~] unless y= =
0,

a = $
f
when S is the identity. Now S leaves oo fixed only when

oo = a/y, whence y = 0. The other fixed elements are given by

(d a) s ft
= 0, which, for S =4=^ is satisfied only by z = oo or

z = mark according as d a = or =|= 0.

If S leaves fixed two distinct elements #
t
and #2 ,

it can be trans-

formed by a suitably chosen substitution T of the group into a sub-

stitution with the fixed elements and oo, having therefore the form

Its period is a divisor of y (p
n

1) or pn 1 according as p > 2

or p = 2.

If 8 leaves fixed a single element ^ EE #2 ,
it can be transformed

int
s' = z + p (ft

in field)

leaving fixed the single element oo. Its period is therefore p. But

the condition for a double root of 248) is (a + d)
2= 4

If S leaves no element fixed, the quadratic 248) is irreducible

in the GF[pn
~}. By the corollary of 31, its roots

1
and gt are
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marks of the GF[p2n
] conjugate with respect to the GF[pn

~].
Now S

multiplies the function (# #j)-i- (0 #
2) by the constant a/&, where

The product a& reduces to ad /3y
= l. Also a and & are con-

jugate ( 73). Hence
-1= -.*"

Hence 5 can be transformed into a substitution of the form X, whose

period is a divisor of
-y (p

n +1) or j)
w + 1 according as p > 2 or jp

= 2.

In particular, the substitutions of period p are characterized by
the invariant (a + <?)

2 = 4.

241. Commutative subgroups of order pn
. The substitutions

* in the

form a commutative subgroup G^ of order 5 = #w
, containing all the

substitutions of GM (S) leaving the single element oo fixed and con-

taining no other substitutions. Each of its substitutions except the

identity is of period p. Hence there are (p
n

l)/(j> 1) cyclic sub-

groups G-p of order p in the 6ril To determine the conjugacy of

these substitutions and subgroups under GM (S},
we transform

S^, (ft =4=0)

by V ==
(~$} and (see formula of composition at end of 108)

obtain the substitution 1

)

This substitution belongs to 6rJ^ if, and only if, y = 0, when it

becomes 5^^. In particular, S^ is transformed into itself only by

the substitutions
(^-jj-

Within GM(S) any substitution S^ (ft =%= 0) ^s

self-conjugate in exactly the G^\ while the G^ is self-conjugate in

exactly the G^(s ^ composed of all the substitutions leaving the element oo
2 1

invariant, vis.,
(

*

i)-
^s t the order of the latter group, ft may

\0, a )

be any mark of the GF[pn
] and a any mark =J= 0; but a,

-

/3

gives the same substitution as + a, + /3
.

1) This order of the factors of a product is employed by Wiman, the

reverse order by Moore.
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Within 6rj/(s), S/* is conjugate only with the substitutions Sa^^
Hence the s 1 substitutions, not the identity, of G-, are all con-

jugate if p = 2, but separate into two sets of (s 1) conjugate sub-

stitutions if p > 2 . The p 1 substitutions of a cyclic group Gp
generated by S^ belong half to one and half to the other set if p > 2

and n be odd, but all belong to the same set if n be even ( 62).
In place of oo the fixed element may be any one of the p

n marks

of the GF[pn
~\.

Since GM(S) permutes the pn
-{-\ elements K trans-

itively, it contains pn
-f 1 conjugate commutative groups G^\ This

result also follows from the numerical identity

s(s*-l)_s(s-l) =
2; 1

'

2; 1
~ P

Each Gg is defined by any one of its substitutions not the identity

as fhe group in which that substitution is self-conjugate. These

pn
-f 1 groups have therefore no substitution in common except the

identity and contain in all p2 n 1 distinct substitutions of period p.

242. Cyclic subgroups of order -^r- If p be a primitive root

of the 6rF|j)
n
], the substitution

generates a cyclic group of order
y(j>

w
1) if p>%, but of order

pn 1 if p = 2. It contains all the substitutions

m the

Since it contains all the substitutions which leave fixed the elements

oo and and no other substitutions, it will be denoted by G> i

2;1

Any new substitution transforming this cyclic group into itself must

interchange the elements oo and and hence have the form

Inversely, every B transforms Z into its reciprocal Z" 1
. These

^ substitutions B of period two together with the substitutions Z
2; 1

form a dihedron- group
1

) 6r
(

*'-S, which is the largest subgroup of

G~M(S) within which the above cyclic group is self-
conjugate.

1) See the definition given in 245.
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Since oo, form only one of the ~pn
(p

n
-f 1) pairs of the

pn +l elements, GM(s)
contains exactly pn

(p
n + 1) conjugate cyclic

groups 6rs-j\ each self-conjugate in exactly a dihedron G(

*l-i. Each
~27T

2
Ti

of these cyclic groups is defined by any one of its substitutions not

the identity as the largest cyclic group containing that substitution.

These ~pn
(p

n
-f- 1) groups have therefore no substitution in common

except the identity and contain in all ~ s (s -f 1) (s 3) or

Y s (s 4- 1) (s 2) substitutions (not the identity) according as p > 2

or p 2.

243. Cyclic subgroups of order
s

^~- By 144, LF(Z,p
n
) is

holoedrically isomorphic with the group H~HO(2,p2n
)

of binary

hyperorthogonal substitutions of determinant unity in the GF[p* n
]

when taken fractionally, viz.,

where A=AP
is the conjugate of A with respect to the GF[pn

].

The reciprocal of V is, by 142,

If J be a primitive root of Jr*>n+1 = 1
y

so that J= J ^ the

following substitution of H,

o,

generates a cyclic group 6r,_j_i composed of the substitutions

Any substitution V of H transforms Q
y

into

This substitution belongs to the cyclic group generated by Q if and

only if AB = 0. Two cases arise.

If J5 = 0, then AA= 1 so that F= (^) belongs to the cyclic

group and evidently transforms every Q
g

into itself.
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If A= 0, then JB =
1, so that F= - The latter trans-

forms Q
9

into ( !

) = Q~
g
,
which is distinct from Q

y
unless the

latter be of period two.

The largest subgroup of H within which the cyclic group G9+\
2;1

is self-
conjugate is therefore a dihedron- group of order 2 -57-7-

Hence JET, and consequently also 6rjf(,),
contains

s (s
2 -

l) . 9 s -fi ___!_/ -,
\_______ j __ ==

s(s-

cyclic groups conjugate with 6r,+i. Each of these is defined by any
2;1

substitution lying in it (the identity excepted) as the largest cyclic

group containing that substitution. The s (s 1) groups have there-

fore only the identity in common and contain in all s (s I)
2 or

-y
s
2

(s 1) further substitutions according as p > 2 or p = 2.

244. To verify that we have now enumerated all the individual

operators of GM(S) and consequently all the largest cyclic subgroups,
we note that

It was shown that if any substitution S of a cyclic Grs +i be of

2;1

period > 2 (viz., S 4= $"*), then $ is transformed into itself by no

substitutions of GM() other than those of the cyclic Gt +1. Hence
2;1

the latter is the largest commutative subgroup of GM(S) which con-

tains the substitution S. A commutative subgroup containing an

operator of period > 2 and different from p is therefore a

cyclic group. A commutative group containing an operator of

period p contains only operators of period p ( 241). Hence if a

commutative subgroup of GM()> P> <

%, contains an operator of period

> 2, it contains at most one operator of period 2.

245. Cyclic and dihedron groups and their subgroups. The abstract

dihedron-group 6r2ifc may be generated by operators A, ~B subject

only to the generational relations
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From the latter two follow tlie relations (holding for any integer r)

The cyclic subgroup G-k generated by A is therefore self-
conjugate

under G^. The latter is said to have the cyclic base Gk . The ~k operators

BA* (*-0, 1,..., fc-1)

are of period two. For & odd, they are aU conjugate under G^
since B transforms BA into BA~ 1 =BAk~ 1

,
which belongs to the

series B, BA2
, BA*, . . . For Jc even, they form two sets of con-

jugate operators
.,

BA, BAS
,

According as Jc is odd or even, they generate cyclic groups 6r
2 forming

one set or two sets of conjugate subgroups.
For every divisor d of Jc, Gk contains a single cyclic subgroup Gdy

which is formed by the operators

As
,
A2

*, A^,...,Add= I (d = Jc/d).

If ^ be a given one of the integers 1, 2, . .
., d, the following d operators

extend the cyclic group Gd to the same dihedron G% d . There are

exactly d such dihedron -groups. If Jc be odd, these G$ d are all

conjugate under G% j. If d be odd, but & be even, the exponents kw,

^ + d, [i + 2$, are alternately even and odd, so that each G% d

contains operators of both of the sets 249)*, the groups G% d are

therefore all conjugate under 6r2 jt. If d be even and hence & even,

the exponents are all even or all odd, so that the operators all belong
to a single one of the two sets 249); the groups G% d thus belong
to two distinct systems of conjugate subgroups of Gr2 k.

If d > 2, Gz d has a single cyclic Gd and G^ a single cyclic Grk,

so that the above process furnishes every dihedron subgroup G^ d

of 6r2jfc. The theorem stated below therefore follows if d > 2.

We consider next the case d = 2, k even and > 2. The only

operators of period two in G^ are then A*/ 2 and

BA (^
=

0, !,...,& -1).

Hence any dihedron 6r4 must contain two operators BAr
,
BAS

(r =f= 5)

and therefore their product BArBAs^As~ r
. Hence every 6r4 must

contain Ak/ 2 and may therefore be based on the subgroup 6r
2
of Gk .

The theorem then follows as before. The jfc/2 possible groups 6r4

in &2k are given by the formula

{I, A*'*, BA', BA'+*i*\ (r~ 0,1,...,-!-
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Theorem. For every divisor d of Jc the diliedron 6r2A contains

exactly Jc/d dihedrons G% d forming one system or two systems of con-

jugate subgroups according as Jc/d is odd or even.

246. Cyclic and dihedron subgroups of GM(S)
whose cyclic bases

are subgroups of the cyclic 6r,+i. By 242 243, GM (S)
contains

!
"aTT

s(sl) conjugate cyclic subgroups Gs +i each self-conjugate in a

"271

dihedron subgroup G ,+i, but self- conjugate in no larger subgroup
2
~2il

of GM(S}- Hence these dihedrons are all conjugate under the main

group.
1

) Let d+ be any divisor of ^y- and denote the quotient
-t

'

by d+. GM(S}
contains s (s 1) conjugate cyclic groups G^ ,

each

of which is
( 245) the cyclic base for d+ dihedron subgroups G-^d^.

Under G ,+i they form one system or two systems of conjugate sub-
2
"27I

groups according as d+ is odd or even.

For d+> 2, two subgroups 6r2d- of G ,+1 are conjugate within

2; 1

the latter if conjugate within GM(S), indeed, the transforming sub-

stitution must be commutative with Gd-, the only cyclic group of

order d+ in either 6r2d-, and therefore commutative with the cyclic

s T 1

6r,+i determined by it. Hence if d+ le any divisor > 2 of -^j-
2;1

and the quotient be d+, 6rjf(,)
contains in all M(s)/2d+ dihedron G2d^

forming one system or two systems of conjugate groups according as d+
is odd or even. In the former case, a Gzd+

is self-conjugate only

under itself; in the latter case, self-conjugate under a dihedron G2 . Zd-.

These G% d- are all conjugate within G^-^M^-
For d+ = 2, we have p > 2 since s 1 is not divisible by 2

for p = 2. Then s~pn is of the form 4/& 1 according as the

Jacobi-Legendre symbol (-JH
is 1; hence \s

f-j-j
ig even

?

say =2(7. Then all the substitutions F2
of period two of GM()

belong to the conjugate cyclic 6r2a . It remains to study the four-

groups 6r4 ,
each a dihedron 6r2 .2 containing three cyclic 6r

2
. Now

GM(s} contains ys|"s+ (
z
^)l conjugate cyclic G2

. Each G2
lies in

JV--Y Yl four -groups G4 . Hence, ifp>2, GM() contains in

1) For every operator commutative with a group G is transformed into an

operator commutative with G' by the operator which transforms G into G' .
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all Jf (s)/12 four -groups. Also the 6 four-groups contained in a

dihedron 6r4(r form (under the latter) one system or two systems of

conjugate subgroups according as 6 is odd or even, viz., according
as s~pn has the form 8ft 3 or Sh 1. Since the 6r4ff are all

conjugate within GM(S), it follows, for 6 odd, that all the four -groups
of GM (s)

are conjugate; while, for tf even, they form at most two

systems of conjugate subgroups under GM(S)- For a even, each 6r4

is one of 0/2 conjugate subgroups of a certain 6r4(T and is therefore

self-
conjugate under a subgroup of order 8 of G a . Suppose that,

for (? even, the subgroups 6r4 of GM(S) form a single system of con-

jugate subgroups. Then each 6r4 would be one of M(s)/12 conjugate

subgroups and consequently commutative with exactly the 12 operators
of a subgroup 6r12 . By an earlier remark, the G is commutative

with a subgroup 6r8 . Since 8 is not a divisor of 12, our hypothesis
is untenable. Hence, for a even, the 6r4 form exactly two systems
of conjugate subgroups of GM(S}-

For 1

) j) > 2, the Jf(s)/12 four-

groups 6r4 contained in GM(*} form one system or two systems of con-

jugate subgroups according as s ^p n has the form 8ft + 3 or 8ft 1.

In the former case, a 6r4 is self-conjugate under a 6r12 ; in the tatter

case, under a 6r24 . In the G^M (s)
the G form a single system of

conjugate subgroups and each is self-conjugate under a 6r24 . Each 6r12

is not a commutative group by 244 and so is of the tetrahedral

type ( 247). Likewise, each 6r24 contains a tetrahedral subgroup 6r12 .

The latter is of index 2 and consequently self-conjugate under 6r24 .

Since 6r12 contains a set of 4 conjugate 6r3 ,
the 6r24 will contain a

complete system of 4 conjugate 6r3 . Each is self-conjugate under

a 6r6 ,
which is a dihedron since it is not commutative ( 244).

Finally, no operator of period 2 is self-conjugate under 6r24 ;
for it

is self-conjugate only under a dihedron Gs + i which contains no

tetrahedral subgroup and hence none of the present 6r24 . Then by
248 each 6r24 is an octahedral group.

247. A non- commutative group of order 12 having a self-conjugate

four-group is of the tetrahedral type.

Let the operators of the four-group be J, F2 ,
F2 ',

F
2", so that

they are commutative and the product of any two F's gives the

third F. The 6r12 contains at least one operator F3 of period 3.

The products .

, _
*3> >

2
F 3> K

2
K 3> ^2*3 V/ V,L,6)

are all distinct and so give all the operators of 6r12 . The 6r12 would

be a commutative group if F
3
were commutative with F2 ,

F2 ',
F2

".

1) For p = 2, the four-groups are determined in 249. There are

i(2_i)(2 -2) sets.
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Since therefore V3 does not transform each V into itself and since

it does not permute two of them, its period being =J= 2, it must

permute them in a cycle. Fixing the notation, we thus have

-'

- 1

F3-'F2
'F3=F2

" F3-F2"F3
= F

2 ,

(F.F,) = F^FT 1

F,-
1

F,F, F
2
= F2

"
F,' F2

= I.

Hence F3 ,
F

2 generate 6r12 and satisfy the generational relations

F3
3 =

I, F,'-I, (F3 F2)
3= I.

of the tetrahedral group, an abstract group of order 12 holoedrically

isomorphic with the alternating group on 4 letters ( 265).

248. A group of order 24 having no self-conjugate operator of

period 2 and having a set of 4 conjugate G
3
each self-conjugate in a

diliedron G6 is of the octahedral type.

The 4 conjugate 6r3 are transformed into each other by the

operators of 6r24 . Hence 6r24 is isomorphic with a substitution -group
on 4 letters. The isomorphism will be holoedric and consequently
the latter the symmetric group G$, if the identity be the only

operator of 6r24 which transforms each 6r3 into itself, i. e., if the

four 6r
6
have only the identity in common. But if a substitution of

period 3 were common to the dihedron 6r
6 ,

it would be common to

the 6r3 ,
and these would be identical contrary to hypothesis. If

the G6 contain in common two substitutions of period 2, they would

contain in common the product of the two which is a substitution

not the identity of the cyclic bases 6r3 ( 245). Finally, if the con-

jugate G
6
contain in common a single substitution of period 2, it

would be self- conjugate under 6r24 contrary to hypothesis. Now the

G$ is of the octahedral type

249. Subgroups of the s -f 1 commutative G*?\ Since these groups
are all conjugate under GM(), it suffices to determine the subgroups
of G^ formed of the commutative substitutions 8ft of period p. If

a subgroup contain S^, /S^, . . ., S^, it will contain ^, where

f*
= ci Pi + C

2 1*2 H
-----

1~ c f*<;
^e c running independently through the

series 0, 1, . .
., p 1. Hence to every subgroup Gpm of order p

m
<^p

n
,

there corresponds an additive -group in the GF[pn
] of rank m with

respect to the GF[p] and inversely. Hence, by 69, the number

of distinct subgroups Gpm of Gp
n is

(pm - 1) (pm -p) (pm - p*) . . . (pm -pm-1)

Let Gp be one such group composed of the substitutions &,
where A ranges over an additive -group [A1; . . ., Am] of rank m with
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respect to the GF[p~\. By 241
,
Gp

m is transformed into itself

only by substitutions of the form V=
(

'

_-,] Since F transforms
\o, K V

& into S&JL, a further condition is that a 2 1 and A should run

simultaneously through the series of marks of the [A1; . . ., AJ.
Suppose that there are in the GF[pn

] exactly e marks f17 . .
., se

such that [At ,
. . ., AJ = [? AI, . .

., 4AJ. Then, according as p > 2;

^)
=

2, the
^

substitutions

where
/3 ranges over the GF\s\, constitute the largest subgroup H

of GM (s)
under which Gp

m is self-conjugate. But the multipliers K

of the additive -group [Aj, . .
.,
AmJ

are
( 70) the marks K =j= of the

multiplier GF\_yF\, k being a divisor of m and w. It remains to

distinguish which of them are squares of marks Si of the GF[pn
~\.

For the respective cases

p > 2 with n/Jc even, p > 2 with w/& odd; p = 2,

there are ( 62) exactly e = (2, 1; !)(#* 1) marks
/,

so that If is

of order Hence Gp
m is one of a system ofJ

;
1 1, J; 1

(*--l)-T-ftl;l)(p-l)

conjugate subgroups of GM(s)-
Here the value of ~k depends on the

individual 6Jy chosen. Given ^, the number of the corresponding
sets of Gpm follows from 71.

250. Non-commutative subgroups of the s + 1 conjugate 6r$_i) .

2; 1

It suffices to study the group G given by ^ = oo. It is composed
of the substitutions

For a given mark a =[= ? ^ and
/3

run simultaneously through the

series of marks of the GF\s\. A rectangular array of the substitu-

tions of G may be formed by taking as the first row the substitu-

tions Sp, which form the self-conjugate subgroup 6r, ,
and as right-

hand multipliers the substitutions Pa
=

(
-\ of the cyclic 6r^i

0)
.

\0, a J yr^

In any subgroup G' of G the totality of substitutions of period p
give rise to a commutative group Gpm of substitutions ft, where A

ranges over an additive -group [A1; . .
., AJ. Hence 6iyn is self-

conjugate under 6r'. A rectangular array of the substitutions of G'
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with those of Gpm in the first row has the property that the sub-

stitutions in each row are all found in a corresponding row of the

rectangular array for G. In fact, two operators A, B of G' lie in

the same or in different rows of the array for G' according as

AB~ l
is or is not in Gp

m
. But AB~* belongs to G' and hence

belongs to Gpm if, and only if, it occurs among the substitutions in

the first row of the array for G. Hence each row for G' lies wholly
in a row for G. The quotient-group G' / Gp

m is therefore a subgroup

6r<j_ of the quotient-group G/Gg\ the latter being a cyclic 6r,_i.

"all

Indeed, these quotient-groups may be obtained concretely as groups
of the permutations of the rows of G induced by applying as right-
hand multipliers the substitutions of G or G'. But all the substitu-

tions in the same row of G (and, a fortiori, all in the same row
of G f

) give rise to the same permutation. Hence Gd-. is an abstract

cyclic group. Now G contains s cyclic 6?J i ,
where x runs through

Tjl
the series of marks of the GrF\s\ 9

all conjugate under the trans-

formers Sp. Leaving different elements t fixed, they have no sub-

stitution other than the identity in common. Counting also the s 1

substitutions of period p, we have accounted for all the substitutions

of G. Besides the cyclic subgroups of G^\ G therefore contains no

cyclic subgroups other than the G (

a'*\ for the various divisors d
n -t

of -zr' Among these cyclic groups occurs one whose substitutions
p-i

-1

may be chosen as the right-hand multipliers in forming the above

array for G'. In fact, within the row of G 1

corresponding to the

generator of the quotient cyclic Gd there must exist a substitution A
such that Ad

,
and no lower power, belongs to the group Gpm whose

substitutions form the first row. The right-hand multipliers for the

array may thus be chosen to be J, A, A2
,

. .
.,
Ad~ 1

. Hence G' is

given by the extension of the Gpm by a certain G(

'*\ within which

Gpm is self-
conjugate. But the largest subgroup of GM(S) within

which Gpm is self-conjugate is ( 249) the group H of order sK,

K^ ^, given by the extension of G by a cyclic G?' 0)
. In

particular, d must be a divisor of K, so that d depends upon the Gyn.

The cyclic 6rj?'
0)

contains a single cyclic 6rrf'
0)

. Hence, by trans-

forming G' by a suitably chosen /S^,
we obtain a group Gpmd (con-

jugate with G' under 6r) given by the extension of Gpm by the sub-

group #ST'
0) of #' 0)

. The substitutions & of Gpm transform that

subgroup into pm conjugate cyclic 6$'
0)

,
since Si replaces the fixed

elements oo, by elements oo, I. These pm groups together with

Gpm contain all the substitutions of Gpmd ,
as shown by simple
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enumeration. The largest subgroup of GM(S) transforming Gpmd into

itself must therefore transform Gpm into itself (and thus be a sub-

group of H) and transform the groups of the single set of con-

jugate 6rrf'
^

amongst themselves. Of substitutions of period p, it

must therefore contain only the &. The required group is thus a

subgroup of the group H' of order pmK given by the extension of

Gp
m by (r^

3
' 0)

. Moreover, it is H' itself since any substitution

of G(

K'
Q

\ cc such that 2 A = A' is of the [A1? . . ., Am],

0, a

replaces the elements oo, A by elements oo, A
f and consequently trans-

forms 6r' into Qr&* . Hence the group ^wd is one of a system of

conjugate groups. Finally, if the subgroup G' contains no substitu-

tion of period p, it is a cyclic subgroup (%*'
x) of one of the cyclic

/nf(, x)
Or,,! .

2;1

251. Subgroups of GM (S) containing operators of period p.
- - The

substitutions of period p of a subgroup GQ of the GM (S]
distribute

themselves over certain s -f- 1 subgroups Gr^ of the s -f 1 con-

jugate G^ ( 241). By hypothesis at least one of the orders p?V
is > 1. By suitable transformation within 6rj/(s) ,

we arrange it so

that pm> 1, m = m^ > 0. Under the pm transformers Sp of the G^h ,

the remaining G^m with m^ > (^ =|= 00), if any, arrange them-

selves in sets each consisting of pm conjugate groups. Under the GQ
the G(

*m is then one of a set of 1 -f- fp
m

conjugate groups, f being
(/*)

a positive integer or zero. The G$ contains no group Gpm^ (m^ > 0)

other than the 1 + fp
m

groups of this set. For, any such group
would be one of a set of n^ conjugate groups, where n^ would

necessarily have at the same time the forms 1 + f^p
m
^ and f^p

m
.

Hence: Every GQ which contains operators of period p contains these

(M)

operators in 1 -f fp
m

groups Gpm conjugate under G$, where for each

(TQ, f and m are properly determined integers /"> 0, m > 0.

The groups GQ with f= have been enumerated in 249 250.

Consider the group GQ with f^> 1, m > 0. It contains 1 -f fp
m
groups

(oo)

conjugate with a certain Gpm formed of the substitutions Si, where
(oo)

A ranges over the an additive-group [A1; . .
., Am].

The Gp
m is

( 250)
(oo)

self-conjugate within GQ under a certain largest subgroup Gp d . Hence

250) Q = (1 + fp
m
}p

m d.
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As in 250, we transform 1

) by a suitable S^ and obtain a Crpmd

given by the extension of the group Gp
m of the S* by the cyclic

group (r^
' 0)

of the substitutions P
n

contained within the cyclic

group G7(?i) f substitutions Pe .. The group Gpmd is thus composed
of the substitutions 2

)

I, *\ fa

Since
t?

and + y lead to the same P
n ,

there are (2; T)d marks
77,

the distinct powers of a primitive root of
rfa
= 1. Since each

77
is

an {, each
77

2
is a multiplier of the additive-group [A1? . . .,

Am].

To normalize (TQ we transform by Pa :

P-MP

Taking (? = "/A"
1
,
the transformer Pa is a substitution (2?

r = A^
1^ of

the 6r(2; i)j/(,); ^"JfW ^s transformed into itself and G-Q into (^'^. The
new additive -group [Aj, . . ., A^] contains the mark 2A = 1 and hence

all the marks =|= of its multiplier GF[pk
]. We suppose this trans-

formation to have been made and the primes dropped from 6r
f

, A/.

(oo)

The G-Q of order 250) is obtained by extending the Gpmdj formed

of the V^i, by certain fp
m extenders Vj (j

=
1, . . ., fp

m\

(v(r

It was shown above that G$ contains (1 + fp) (p
m

1) sub-

(oo)

stitutions of period p. Of these pm 1 are the Sn lying in Grp m.

The remaining fp
m
(p

m
\) are substitutions V^iVj satisfying the

necessary and sufficient conditions for period p ( 240),

251) ajn + djir
1 + m* - 2.

Given Fy (y$ =j= 0) and
7y (77 =)= 0), there are at most (2; 1) values A

satisfying 251). For a given P} (% =j= 0) there are consequently at

most (2; l)d substitutions F,
;> A = F_ , s

a such that V^iV$ is of period^)
Hence the various V

3 lead to at most fp
m
(2; T)d such substitutions.

1) For jp*=3, w/A; odd, we have d = l, so that this transformation is here

unnecessary and is reserved for use in 252.

2) The non- fractional substitutions (viz., with y = 0) of GQ are all of the

form Fq, *. Indeed, they form a group G' leaving the element oo invariant.

Its substitutions of period p form the subgroup Gr^m
which must be self-

conjugate under G'. Hence G' G md
-

DlCKSON, Linear Groups. 18
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Comparing this maximum with the actual number fp
m
(p

m
1) ;

we
nave pm 1 < (2; 1) d. Since each of the corresponding (2; l)d
marks q must be one of the e marks at

- of 249
,
then (2; l)d^e,

where e = (2, 1; 1) (p
k -

1) Finally (70), k is a divisor of m.

Hence

252) ^-1^(2; 1)^(2, l

Since the third number is always <; 2 (p
k

1) < 2jp* 1, we have

pm <2pk
,

so that m =
It, m being a divisor of k. The additive-

group [/L1? . .
., AJ is therefore its own multiplier CrF[p

k
] and every

A is zero or a multiplier %.

There are in all two cases:

[A] ro-fc, !*-l=(2;l)d, Q = (1

[B] m = ~k, p>2, n/Jc even, p*
- 1 = d, Q= (1

where for (2; 1) we read 2 or 1 according as p > 2 with nf~k odd

or p = 2.

The following lemma finds repeated application below:

If Vj (y$ =(= 0) be of period 2, the ratio &jlyj differs from the

of every other Vf and so is a characteristic invariant of the V^ 2.

For i =%=j, ViVj is not of the form V,h i, since otherwise

contrary to the choice of the extenders Ff. Hence in V,-Yj the term

corresponding to y is =j= 0, viz., a^ -f- y* ^y H= '0 . Dividing by
and applying 8j

=
a, (Vf being of period 2) we find that

*/y<
-

Vyy 4= -

252. For case [A] w^ j5
fc > 2, ^e ^rowp G^Q is the group GM (P^

of all linear fractional substitutions of determinant unity in the CrF[p
k
].

For pk =
2, G-Q is a dihedron 6r2 (i+2/), which for /*=! is the G-M&)-

For pk > 2, it is shown that every Vj may be chosen so that

a
j> $h Yi> dj all belong to the GrF[p*]. Hence G-Q is a subgroup

of G-M(ifi). But, if f> 1, Q >MO*). Hence must /"= 1, Q Jf (_p*),

SO that GTQ
=

G'M(pk
)'

For case [A], relations 252) become equalities, so that the earlier

argument shows that, for Vj and
rj given (3^ =j= 0, 97 =|= 0), there

exist exactly (2; 1) marks A of the [^, .-, ., AJ which satisfy 251).
The given 77 may be any one of the multipliers x, since the number

(2; \)d of
i?'s equals the number pk 1 of >c's.

The extender Vj may be replaced by any one of the products

VfyiVj and in particular by one of period p, having therefore

K
j + $s

= 2. Changing if necessary the signs of all four coefficients
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of Vj, we may take
cry -f dj

= 2. With this normalized Vh the condi-

tion 251) becomes (upon setting 77
=

x)

253) y (x
- x- 1

) + yyx* = 2 - 2X- 1
.

For any given j and any given mark x =J= of the 6r.F[jp*] and for

each sign +, this equation must determine a mark A = AyjXf + of the

If p > 2, 253) for x = 1 gives

so that yy belongs to the G-F[p
k
~\.

For p* > 3, x has a value different

from + 1 and from zero; for such a x 253) requires that y belong
to the 6rF[jp*]. Then dy=2 KJ belongs to the field. The deter-

minant being unity, ft also belongs to the field.

For _p*=3, the non-vanishing marks yy, 77 may be restricted to

the value + 1. Since
, + fly

= 2 in F>, the a -f d of FM F;-
=

l^-'

has the value
y + fy + 1 = in the field. Hence V] takes the form

The TF may be taken as extenders in place of the Vj. The sub-

group Gpmd is here composed of three substitutions FI,*, I = 0, 1.

Hence every substitution of (TQ has as its y and a -\- d marks of the

6r.Fjj)*]. Transforming the group by $_ ao ,
where is a particular a,

each F^;i
= & is transformed into itself and each Wa into Wa- ao .

Hence, in the transformed group each y and a -\- d belong to the

GF[pk
~\. Among the new extenders Wa=Wa -. ao occurs TF . Hence

6r contains

so that the mark a, being in the position of a y, belongs to the

For jp
= 2, fc > 1, there exist marks x different from and

1 (-f 1 ==
1); for such a x, 253) shows that y/yy is a mark Ay of

the GF\W\. Since p = 2, ,- + dy
- 2 gives a,

=
tfy,

and dj/yj
= ^.

There are fp
k substitutions Vs and /y > 2. The product F* Fy (*+j)

belongs to 6rQ and is not of the form FX,A since Vi=^VjVx,i and

since Vj is of period 2. Hence we may set Ft FJ
= Fx

,
* Fj . Since

i =^j } A, + A,- 4= (end of 251). We find that

j+yft ^-S- ,

1 %
" =

Hence every ft/.yy belongs to the F[j>*]. Then ydy ftyy
= 1

requires that y| belong to that field and hence also y,-, # being 2.

Then ay, ft, dy belong .to the field since their ratios to yy do.

18*
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For p = 2, Jc = 1, the group GQ of order 2 (1 + 2/
1

) is given by
the extension of 6rJ), formed of the substitutions S = I and ^, by
certain 2f extenders V$ (j

=
1, . .

., 2/*) each of period 2. By 251,
all the substitutions of period 2 in GQ form one set of 1 -f- 2f con-

jugate substitutions. Setting F =$1? the substitutions of period 2

in GQ are F} (j
= 0, 1, . .

., 2f~) and the remaining substitutions

F Vj = Uj are of period =f= 2. Hence no U is conjugate with a F.

The product Fj-C/J- cannot be a Z7; for the substitution of GQ which
transforms F/ into VQ transforms the product into F 7;=F, but

transforms the U into some U. Hence F/C/J- is of the form Vj" so

that Fo /;'/,-
= F Z7/'.

Hence every product CJ-CJ is a CJ-. TAe
substitutions U form a group GI . Since 7J-=FoF}, we have, for

every j,
2

254) TT^Ti-lT1
.

For
7J-
and

C/J' arbitrary, there exists in the 6ri a
7j- such that

a
K

^^(^^-^-^(Rr^Fo-^^o^Fo-^Q-^-^Fo^^^
The group Gi+%f of the Z7

J

s is therefore commutative and contains

substitutions of period > 2. By 244, it is a cyclic subgroup of

6rs q:i. In view of 254) the group GQ is a dihedron 6r2 (i+2/) based

on the cyclic 6ri+ 2 f ( 245). These groups G$ have therefore been

enumerated in 246 and may be dropped from further consideration.

253. For case [B], p > 2, n/lc is even and pk l = d. The
2d marks

r\
are the square roots of the pk 1 marks K and hence

are the distinct powers of ^ = y^o; where 3C is a primitive root of

the GF[pk
~\.

In particular, there is a mark
77
=

}/ 1.

Within (r^ there are exactly 1 -f fp
k
groups conjugate with the

Gp^(pk_ 1 ).
The latter contains p* conjugate cyclic 6rp*'_i and hence

in all pk substitutions T of period 2, each conjugate with

x o,

Under GQ of order Q = (1 + fp
k
)p*(p

k -
1), this T is one of a

system of (1 + fp
k
)p

k or (1 -j- fp
k
)p

k
conjugate substitutions T

according as T is within GQ self-conjugate under the cyclic 6r^*'_i
or under a dihedron obtained by extending the former by a sub-

stitution TO which interchanges the elements <x>, ( 242, 246). In

the respective cases there would be at least fp
zk or (fp

k
1)p

k

substitutions F^jF} (j > 0) of period 2, necessarily satisfying the

relation 251),
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For each of the fp
k extenders Vj (j > 0, % =(= 0)? eac^ Yalue f n

gives a single value of A, which may or may not belong to the GF[pk
~\.

Hence there are at most fp
k
(p

k
l] substitutions V

n^Vj of period 2.

The second alternative therefore holds, so that G-Q contains a sub-

stitution of the form

o,
-

Also (1-j- /!>*) is an integer so that /"
is odd.

In case a Fj (j > 0) gives rise to one or more substitutions

T = V^iVj, we replace Vj by one such T, so that the new Vj has

ccj -f d
;
= 0. Let N denote the number of these Vj for which there

exists a product V^iVj distinct from Vj and of period 2. For such

a Vj the equation

will be satisfied by a pair 77, A =)= 1, 0, such that rf and A belong

to the GF[jf\. Hence wiU

belong to that field. Inversely, if ,/% belong to that field, and rf

be an arbitrary mark =|= of that field, there exists an unique

solution A in the field, so that there will be pk 1 substitutions

V^\Vj of period 2. By the lemma at the end of 251, the N sub-

stitutions Vj have distinct values for Oj/yj, here shown to belong to

the 6r.F[_p*]. Hence JV<^p*. Let M denote the number of the Vj

leading to a single V^Vj of period 2. Then M<^fpk-N. The

total number of the V
n^Vj (j > 0) of period 2 is therefore

^(.pfc- 1) + M^ JV(jp*
-

1) + fp
k- N.

The second member is greatest when N has its maximum value pk
.

By comparing the minimum and maximum numbers for the

.

of period 2 in GQ ,
we have

255) |(/y- l)p
k
<iP

k
(p

k-
1) + (f-

Hence must /*= 1 or 3, leading to the two cases:

(/-=!) _p>2, n[k even, Q = (p* + Dp*(l>* 1) = 2

(f-3) p = 3, fc=l, n even, Q = 60.

Consider first the case /*= 1. 6r^ contains the transformed of

Tl by &,
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Letting A run through, the series of marks of the GF[pk
] f

the ratio

ajy
= AT/T = A takes pn distinct values. By the lemma at the end

of 251, the T{ may be chosen as the pk = fp
k extenders Vj. For

each Vj the ratios fly/yy, dj/yj are marks Ay, A" of the 6r.F[_p*]. As
in case [A] for p = 2, & > 1, the ratio /Jy/yy is a mark Ay of the field.

The determinant being unity, yf belongs to the field, so that yy is

some . Hence

According as % is an even or an odd power of
7]Q
=

Y*Q> Vj or

F^oFJ has its coefficients in the 6rF[jp*]. The one having this

property is denoted by Vj
1

. These pk substitutions F/ serve to extend

the group Gfif k k
of the Vx^ to the group G-M (P^ of all linear

fractional substitutions of determinant unity in the 6rjF[j?
fc

].
It is

transformed into itself by

p /*7o,
" " V o, m

whose square P^o
= PXo belongs to GM (p

k
)-

Hence P,;O
extends the

latter to the group G%M(pk
)

of all linear fractional substitutions in

the G-F[p
k
~].

The latter is a subgroup of G-Q and is of order Q.

G-Q.is therefore identical with the linear fractional group 6r2 j/( p*).

For the case f= 3, pk=
3, the relation 255) becomes an equality,

so that there are exactly 12 -f- 3 = 15 substitutions T of period 2

in 6r60 . At the beginning of the section, each T was shown to be

self- conjugate within 6r60 under exactly a dihedron 6r4 . The 15 sub-

stitutions T are therefore all conjugate under 6r60 and form 5 con-

jugate four-groups 6r4 , By 251, 6r60 contains one set of 1 +^=10
conjugate 6r

3
. Hence, if the 6r60 exists, it is of the icosahedral type

( 254). For n even, 5 =y (3
2 + 1) divides y (3

2 * -
1), so that the

existence of icosahedral subgroups of 6rj/(3) follows from 259

The question of the conjugacy of the icosahedral subgroups is

answered in that section.

254. A group of order 60 is of the icosahedral type if it contains

exactly ten conjugate 6r3 and exactly 15, operators of period 2 lying

in 5 conjugate four-groups.

Since there is a complete set of 5 conjugate 6r4 within the 6r60,

each 6r4 is self-conjugate under exactly a subgroup 6r12 . The latter-

is of the tetrahedral type by 247; for if commutative it would

contain a self-conjugate 6r
3
which would be one of a set of at most
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5 conjugate subgroups of 6r60 . Hence 6r60 contains a set of 5 con-

jugate tetrahedral 6r12 . No two of them are identical since each

contains a single four-group. They have only the identity in common.

Indeed, their common operators form a self-conjugate subgroup of

6r60 and hence a self-conjugate subgroup of each 6r12 . Aside from

the identity and 6r
12

itself (cases requiring no further discussion), the

only self-
conjugate subgroup of a tetrahedral 6r12 is its four-group.

But the 5 four -groups are all distinct. Hence the identity is the

only operator of 6r60 which transforms each 6r4 into itself. Applied
as transformers, the operators of 6r60 permute the 5 conjugate 6r4,

so that 6r60 is holoedrically isomorphic with a substitution-group on

5 letters. Being of order 60, the latter is necessarily the alternating

group on 5 letters.
1

) Hence the 6r60 is of the icosahedral type ( 267).

255. It remains to study the conjugacy of the linear fractional

subgroups G-M(pk) and 6r2 #(*>*) of GM(*)* Within GM (i)
the GM (Pk ]

is

self-conjugate exactly under &jf(p*), GM (P*)\ GM (P
k

) according as p>2
with n/Jc even, p > 2 with n/k odd; or p = 2, and hence is one of a

system of M(s)/(2, 1; l)JC(j^) conjugate groups. In proof, we note

that a substitution V= -} of #j/() transforms
( 240) the sub-

stitutions
(77-7)

a]Q-d
(~
L
~i)
^ respectively

If (? belongs to the GrF[p
n
'],

these substitutions belong to that field

if, and only if, a and y are each marks ^ of the GF[yfi} or are

each of the form pYv, where v is a not-square in the GrF[p
k
],

and
/3,

^ are each marks ^ or are each of the form pYv. Since

ad fly
=

1, a, /3, y, d are all of the form ft or all of the form p^v.
Hence V is either a substitution 5 of Gu(pk

)
or else a product SPy*.

The latter alternative does not occur if p = 2. Also, if ^? > 2, ]/V

belongs to the GF[pn
~\ if, and only, if n/k is even. Hence Gia(pk )

is self-conjugate within GM() in a larger group, viz., (ra^^), if and

only if p > 2 with w/Jfc even.

Within GM(S)
the GzM(P

k
) y

when existent, is self-conjugate only

under itself. For any substitution of the former which transforms

the latter into itself must transform its self-conjugate subgroup

1) If a G$ contained odd substitutions, it would have a subgroup G($
of even substitutions. The latter would be of index two under the alternating

group G$ and hence self- conjugate under it, whereas it is simple.
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into itself and hence belong to Gr*M(^). The latter thus forms one

of a system of M(s)/2M(p
k
) conjugate subgroups.

It remains to determine the number of systems of conjugate

subgroups of these two types; indeed, in 251, there entered the

transformer
PT/^TI

which belongs to GM(S)
if and only if A is a

square in the G-F\_p
ti
].

For p = 2, A is necessarily a square; for

p > 2, nfk odd, A may be chosen as a square, since every additive-

group [A1; . .
., AJ with the multiplier GF[pk

~\
has half of its non-

vanishing marks squares in the GF[pn
].

In these two cases there

is evidently but one system of conjugate subgroups GM (P
Je

)
of GM(S ).

For p > 2, n/Tc even, all the marks of [A1; . .
., A*] are squares or all

are not-squares in the 6rF|j?*]; indeed, they are all obtained from a

single one by multiplication by the pn marks of the multiplier GF[pk
~]

and the latter are all squares in the GF[pn
]. In this case there are

consequently two systems of conjugate subgroups GM(P*) and two

systems of conjugate G^M(pk ) 7
the systems of each type being inter-

changed upon transformation by P-i/7, belonging to GZM(S), where v

is any not- square in the GF[pn
~\.

Hence there are (2, 1; 1) systems

of conjugate GM (P
k

)
and (2, 0; 0) systems of conjugate G^ M(pk) within GM (Sy

256. Subgroups of G-M(S) containing no operators of period p.

Every substitution of such a subgroup GQ lies in and determines a

largest cyclic subgroup G-d of 6r$ ( 242 243). Two such groups
G-d have only the identity in common. According as Gd is self-

conjugate within G$ only under itself or under a dihedron G% d based

on Gd} it is one of a system of Q/d or Q/2d conjugate subgroups
of GQ. Let r denote the number of such systems. The enumeration

of the substitutions of G leads to the relations

256) Q - 1 +,.-l) (#_ i or 2)

257)

If two non- conjugate cyclic Gd .,
Gd . of odd order are present

in (TQ, there are at least dj groups in the system determined by Gd{9

viz., the transformed of the latter by the operators of G
djJ

and vice

versa, so that

258) Q^di (dj
-

1) + dj (dt
-

1) + 1.

Solving 256) for 1/Q, we get
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Since = 1 or 2, the least value of (dt 1)//5A is 1/4. Since 259)
must be positive, there can be at most three terms in the sum,
whence r <J 3 .

For r = 1, the reciprocal of 259) is not an integer if /i
= 2.

For /*!==!, & = dly and the 6r^ is a cyclic group considered in

242-243.
For r = 2, we have

If /i
=

/g
==

1, the left member is < 1 and the right member is > 1.

** M*"* /i ****** 9 -r 1 9 1

Hence these two cases are to be excluded. The case
/j_
= 2, = 1

differs only in notation from the case /J
=

1, /*2
= 2. In the latter case,

JL _Lo.J_
~

"Q
==
^

"h 2^
""

2 < ^ 4
'

so that ^ < 4. For d = 2, Q = 2d
2 ,

so that G^Q is a dihedron 6r2(fa

with d2
odd ( 245) yielding a group considered in 246. For d^

=
3,

d2 must be 2, whence Q = 12. The operator of period df2
= 2 is

self-conjugate within 6r12 under exactly a dihedron 6r4 ,
so that 6r12

is not a commutative group. Since the operators of period 2 fall

into a single set of 3 conjugate operators, there is a single sub-

group 6r4? so that it is self-
conjugate under 6r12 . By 247, the 6r12

is a tetrahedral group.
For r = 3, then /i

= =
/*3
= 2. For if /;

=
1, for example,

259) becomes
i (d,

-
1) (ds

-
1) ^ l JL ^o

^
"

64, 6^s
< ^

""
4

"

4 < U

Setting each ff
=

2, equation 259) may be written

i + l-i + i + r
If every df > 3, the right member would be < 1. Setting dB

=
2,

JL + A..JL + JL.
2 Q ^ da

If either d^ or (?
2

is 2, we may take d2
=

2, whence Q = 2d and

G^Q is a dihedron 6r
2rfl

with ^ even ( 245) yielding a group consid-

ered in 246. In the contrary case, d
1 > 2, d

2 > 2. Then both

do not exceed 3, since otherwise the right member would be at most

-1+ JL= -i. Taking d
2
=

3, we have

L A -i
6

""
Q

'"
d
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Hence d < 6. For ^ = 3, 4, 5 we find Q = 12, 24, 60 respectively.
But di =3, d2

=
3, d3

=
2, Q = 12 is excluded by 258). For d = 4,

^2
= % d3 = 2, the 24 is of the octahedral type ( 248). For ^ = 5,

d% =3, e?
3
=

2, the 6r60 is of the icosahedral type ( 254).

257. The tetrahedral and octahedral subgroups of the Gu(y A.

group of either type must contain a self-
conjugate four- group. For

p > 2, the desired groups are therefore given by the theorem at the

end of 246. For p = 2, they contain operators of period 2 and

are therefore to be sought among the subgroups determined in

250253. But for p = 2, the dihedron 2 (i+2/ )
and the GM (fa

are neither of the tetrahedral and neither of the octahedral type.

There remain for consideration only the subgroups of the 6r%i) of

250. There is no octahedral subgroup of G^i) since the sub-

stitutions of period p = 2 in the latter are all commutative. In a

tetrahedral group the three substitutions of period 2 are all commu-

tative. Hence if there be a tetrahedral subgroup of 6r^-i), p = 2,

then must 2m =4, d=3 and n even (since 3 must divide 2" 1).

Inversely, if m = 2, p= 2, n even, there exists a subgroup G$nd = 6r12

of 6rJ(a _i). The 6r12 is not commutative, since it would then contain

only operators of period p = 2
( 241), and therefore 6r12 has the

tetrahedral type ( 247). We may state the complete theorems:

For s=pn=8hl,the GM (s)
contains two systems each of M(s)/24:

conjugate octahedral groups 6r24 and two systems each of Jf(s)/24 con-

jugate tetrahedral groups 6r12 . Every 6r12 is self-conjugate under a 6r24.

The two systems are conjugate under G^M(y
For s = Sh + 3 or s = 2n

,
n even, the GM (*)

contains no octahedral

6r24 but contains one system of Jf(s)/12 conjugate tetrahedral 6r12 .

For p>2, tJie 6r2 j/(.$)
contains one system of M(s)/l2 conjugate octa-

hedral 6r24 each containing one 6r12 . For s 2n
,
n odd, GM(S)

contains

no octahedral and no tetrahedral groups.

258. Icosahedral subgroups of GM(S) for p = 5. An icosahedral

6r60 is generated by two operators F
5 ,
F2

different from the identity
and subject to the generational relations (267)

GM($) contains 4 (5 + 1)
= 24 substitutions of period 5 and each

is conjugate within GM($) with one of the substitutions ( 241)
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The only substitutions F
2

of period 2 of GM(&) which satisfy the

condition 1

) (F5
F

2)
3= J are seen to be the following five

L 1

Hence GM (5)
is an icosahedral group

2

)
and contains 24 5 = 120 pairs

of generators F
5 ,
F2

. By 255, 6^/(5 )
contains Jf(5

n
)/60 icosahedral

subgroups forming two systems or one system of conjugate groups accord-

ing as n is even or odd.

259. Icosahedral subgroups of GM(} for p=\=5. The order

^(j?2 l)/(2; 1) of GM(S)
is divisible by 60 if, and only if, p*

n 1

be divisible by 5 and hence either pn
-\-\ or pn 1 divisible by 5.

In either case G-M(s)
contains cyclic subgroups 6r

5
all of which are

conjugate ( 242, 243).

(i) Lei pn 1 be divisible, by 5 and set A ={jp* 1)/5'. Let

be a primitive root of the GrF[p
n
~\,

so that p* is of period 5. Setting

260) -a2
-/3^ = l,

we seek the conditions under which the product

/q^, ppi \

,

6 s

Vy^V-r-*y
shall be of period 3. The necessary and sufficient condition is

The upper sign may be chosen, changing if necessary the signs of a,

/3, y in F2
. Hence a is determined uniquely. Combining with 260),

Indeed, if the second member vanish, $** p
2 *

-f 1 = 0, so that

06* _j_ i _ o and therefore $
2i= -f 1, whereas Q* is of period 5. Hence

to each of the pn 1 values 4= of
/3 corresponds a single value

of y. But 6rjf (,)
contains ( 242) exactly yjp

w
(jp

n + 1) distinct cyclic 6r
5

.

J3ewce ^ere or/e 2p
n
(p

2 n
1) pairs of generators F

5 ,
F2 of icosahedral

subgroups.

1) It is readily verified that a substitution
f^

2

^)
f determinant unity

is of period 3 if, and only if, a-f d = l. ^ y '
tf ^

2) Cf. 280.
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(ii) For pn + 1 divisible by 5, let g = (p
n + l)/5 and set ( 243)

0,
'/ -B, -A

JJ=1, -A* + BB=l, A = -A.

The condition (F5
F

2)
3= I is satisfied if, and only if,

A(jy-J ff

)=l.

The A thus determined satisfies the condition A = A. Then must

BB =Bpn+l= 1 + ^L2= 1 + (J
9 - P)-

2
.

The last term is a mark p 4= of the 6F[j>*]. Hence Bpn+i=n
has a solution .Z? in the GrF[p*

n
~\

and consequently >
n + 1 distinct

solutions JB
,
B J, B J 2

,
. .

.,
B JP But

6rj/(s)
contains exactly

__^n ^pn
__

i) conjugate cyclic 6r
5 ( 243). Hence there are 2p

n
(p

2n
1)

pairs of generators V5 ,
F

2 of icosahedral subgroups.

Since each icosahedral group contains
( 258) exactly 120 pairs

of generators F
5 ,
F

2 ,
it follows that, for p2n 1 divisible by 5,

G~M(pn )
contains in all pn

(p
2n

I)/ 60 icosahedral subgroups.
For p = 2, 22 -l is divisible by 5EE22 +1 if and only if n

be even. If w be even, GM (2
n

)
contains a single system of Jf(s)/60

subgroups 6rjf(a) ( 255), the latter being icosahedral by case (ii).

Hence GM (^
n

)
contains no icosahedral groups if n be odd, but, for n

even, contains 2'*(2
2n

1)/60 icosahedral groups forming a single

system of conjugate groups.

To determine, for p > 2, the distribution of the icosahedral sub-

groups into sets of conjugates within GM(s)
and within G-%M(S), consider

first the case
(i) and set 2

Q, so that only the even powers of e

belong to the GF[pn
]. Then will

transform F5 into itself, but transforms F2

, ivy
e, a)

Hence the groups 6rgo are all conjugate under GZM(S) and form at

most two systems of conjugate subgroups under GM(S)> But if there

were a single system, their number would be at most Jf(s)/60,
whereas it is lf(s)/30. Hence there are two systems each of M(s)/60
conjugate icosahedral groups within GM(S) and each is self-conjugate

only under itself.
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For case 1

) (ii), let E 2= J, so that EE= J(p
n+V/*= - 1. Then

transforms F5 into itself and transforms F
2

into

/ A, SJ e
\

\-BJ-\ -A'

Taking e = 0, 1, . . ., pn
,
we reach the various pn

-f 1 substitutions F2
.

If e be even, the transformer belongs to the hyperorthogonal group
i

since J= J . For e odd, it may be given the hyperorthogonal
form with determinant a not -square. In fact, there exist in the

solutions of X*"-^ 1, so that X = -X. Then

/-E, \ = (Ei 0_\ _ _ (XE, 0_\ = /Xff, _0_
\

\0, JT"1/
"

\0, -E/
" "

\ 0, -X^/ ~~\ 0, JO?/

of determinant X 2
. Sewce $e groups 6r60 are all conjugate within

G~2M() but form two systems of conjugates within 6rj/(s).

260. Summary of the subgroups of GM^), s=pn
:

s -f- 1 conjugate commutative groups of order s
;

ys(sl) conjugate cyclic groups of order
^t^-? 2; 1 according

as p > 2
; p = 2

;

1 s ~T~ 1
-r- s (s 1) conjugate cyclic Crd- for every divisor cZ+ of

J|" ;

conjugate dihedron 6r2rfx ?
for

c?q: odd;

two systems each of M(s)/d+ conjugate dihedron 6^-, for df+ even

and > 2;

for pn= Sh 3, one set of M(s)/12 conjugate four-groups;

for pn=Sh 1, two sets each of Jf(s)/24 conjugate four-groups
2
);

1) *)2 TI _ 1

4 * each of
(2 , 1f 1)(yt _ 1)

conjugate

commutative groups of order pm,
where (2, 1; 1) is read 2,

or 1 according as p > 2 with w/& an even integer, p > 2

with nfk an odd integer, or p = 2 with n/Jc an integer, and

where k is a divisor of m depending on the particular Gpm^

1) This case may be made to depend on (i) since 5 divides p%n i. Hence

each 6?60 is self-conjugate only under itself within the group GM(SI
)
and so

within its subgroup 6r2jr(). Hence each 6r60 is one of a system of 2JT()/60

conjugate groups within G%M(S), so that the icosahedral subgroups all form a

single system of conjugates within 6r2J/(). They fall into two systems in GTM(*).

2) For p = 2, the four-groups occur among the groups of order pm= 2*

given later.
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certain sets of im-i) conJugate G>md_? where k and d_

depend on m\

(2, 1;1) sets each of M(s)/(2, 1; 1) M(f) conjugate GM(ft, ~k a

divisor of n, each group being isomorphic with the group
of linear fractional substitutions of determinant unity in the

two systems each of M(s)/2M(pk
) conjugate 6r2 */(/>*), p > 2, n/Jc an

even integer, each group isomorphic with the linear fractional

group in the r_F[jp*];

for s = Sh 1, two sets each of Jf(s)/24 conjugate octahedral 6r24 ;

for s = 8A 1
;
two sets each of Jf(s)/24 conjugate tetrahedral 6r12 ;

for s = Sh 3 or s = 2n
,
n even, M(s)/12 conjugate tetrahedral 6r

12 ;

for s = 101 + 1, two sets each of M(s)/6Q conjugate icosahedral Cr^.
1

)

261. Theorem. If pn > 3, the linear fractional group G-M() is

simple.

Indeed, the only cases in which the number of groups in a set

of conjugate subgroups is unity are the following two:

pn=
2, d+ = 3, M(s}/2d+ = 1, when the 6r

6
has a self-

conjugate 3 ;

j?
n=3, M(s)/ 12 = 1, when the 6r12 has a self-conjugate four- group.

262. Theorem. 2

) T/ie group GM (S) always has subgroups of

index s -f- 1, but has subgroups of lower index only when

s = 2, 3, 5, 7, 3 2
,

11.

Every subgroup of GM (S)
is contained in one of the following:

G
(s i),

dihedron (r, + i (p > 2), 6rjf(/) (w/jfc an odd integer ifp>2\

(p > 2, n/Jc an even integer), Cr^(s= Sh 3), 6^24 (5
= 8/^ + 1),

^eo (s
= 10? + 1). The first group is always of order greater than

the GM(pk
)
and G^M( P

k
)] indeed, since Jc^n/2,

Also s(s-l)/(2;l)>s+l>s-l if s>3 and s(s-l)/(2;l)>60
if s > 11. Hence (rs (s _i) of index s -\- 1 has the maximum order

2;1

if s > 11. The same result holds for s = 23 since the G-M(y)=.G-6Q
is then not a subgroup; likewise for s = 2 2 since it is

( 257) then

1) For p = 2 or jp
= 5 the icosahedral subgroups are of the type GM (2

2
)

or 6rjf(5) given earlier.

; 2) For n = 1, this is the celebrated theorem stated without proof by Galois

in the letter to his friend Auguste Chevalier written before the fatal duel, For
references to the proofs by Betti, Gierster, etc., see Klein, Math. Ann., vol, 14.

;
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the tetrahedral 6r12 . For s = 11, 3 2
, 7, 5, the subgroups of maximum

order are 6r60 ,
6r60 ,

6r24 ,
6r12 respectively, the index under GM^ being

11, 6, 7, 5 and hence < s + 1. For s = 2, 3 the G-M(t)
is a dihedron 6r6 ,

a tetrahedron 6r12 , respectively, and has a subgroup of maximum
order 6r3 ,

6r4 respectively.

263. A simple group can be represented as a transitive sub-

stitution-group on N letters if, and only if, it contains a complete

system of N conjugate subgroups.
1

) For s > 3, GM ()
is simple ( 261).

Hence GM (a)
can be represented as a transitive group on < s -f- 1 letters

only when s = 5, 7, 3 2
,
11. For s = 2, 3 it can be represented as a

transitive group on 3, 4 letters respectively, but on no fewer, being
of order 6r6 ,

6r12 . If a simple group be represented as an intransitive

substitution-group on D letters, D must equal the sum of the degrees

of two or more transitive representations; for GM(S) we have always
_D > s 4- 1. Hence the linear fractional group G-JJ(S) may be represented

as a substitution-group on s -f 1 letters but on no fewer number except

when s 5, 7, 9, 11, for which the minimum number of letters is 5, 7,

6, 11 respectively.

CHAPTER XHL

AUXILIARY THEOREMS ON ABSTRACT GROUPS. ABSTRACT

FORMS OF VARIOUS LINEAR GROUPS. 2

)

264. Theorem. The symmetric substitution-group on k letters

is holoedrically isomorphic with the abstract group G(k) generated by

the operators Sly B2 ,
. .

., JRt_i with the generational relations

261) 5f =^ = ... = jg|_ 1
=

J,

262) BtBj^BjB; (i
=

l, 2, . .
.,
k- 3; j= i + 2, i + 3, . . ., fc-1),

263) S
j
Sj+1Sj

=Bj+lSj
Sj+l O'

= l,2, ...,&-2).

The symmetric group 6r*? on the letters Z1? ?
2 ,

. . ., Z* may be

generated by the transpositions

which satisfy the relations 261), 262), 263) prescribed for the

generators Bd of the abstract group 6r(fc) and conceivably also other

1) For a proof of this theorem due to Dyck see Burnside, The Theory of

Groups, 123.

2) The theorems of 264, 265 are due to Professor Moore
,
Proceed. Land.

Math. Soc., vol. XXVIII, pp. 357 366. The proofs given in 264, 266 are due

to the author; for that in 264 see Proceed. Lond. Math. Soc., vol. XXXI,

351353; for that in 266 see Math. Ann., volt 64, pp. 564 569.
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relations not derivable therefrom. The order 0(ti) of 6r(&) is

therefore 5> &
Denote by G the subgroup G(k 1) generated by B19 B2) . .

.,

142 and consider the following sets of operators
1

)
of

It will be shown that these sets of operators are merely permuted

amongst themselves upon applying as right-hand multipliers the

generators Br (r
=

1, . .
.,
& 1). Since B? = I, we have

Or+1Br = GBk-i . . . Br+lBr = Or ,

OrSr EE GrjBjei . . . SrSr EE Or _j_i.

If * > r + 1, we find, on applying 262) to move Br to the left of

^ . . . fi= 0,-.

If ^ < r, we find, on moving l?r to the left of B
if -B/+i, . .

.,
Br 2>

OfJBr= GBk i . . . BiJBr=

By 263), we may replace BfBr-iBr by Br^SrBr-^ We then

move the first ^r_i to the left of
JB/--{-i>

. . ., -B^- i and merge it

into G and get

QJ&r = GBki 5/-+i5rJ5r_iJ5r_2 . . . jB^ EE O/.

Hence the right-hand multiplier 5r gives rise to the transposition

(OrOr+i) on the k sets O
x ,

. .
.,
Ok . It follows that the product of

any operator of these ~k sets by an arbitrary operator of 6r(&) is an

operator belonging to these sets. Taking for the former operator
the identity, we see that these & sets include all the operators of the

group G(Jc). The number of operators in 6r(&) is therefore at most

~k times the number in G(k 1). Hence

Combining this result with the earlier one, we have 0(k) = kl

The proof of the holoedric isomorphism of GQt) and 6 is there-

fore complete.

The relations 261), 262), 263) may be combined into the formulae

264) J=Bf=(JB, ;+1)
3

1) It turns out that these sets form a rectangular table for Gr(K) with the

operators of Cr in the first line.
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265. Theorem. Tlie alternating group on k letters is holoedrically

isomorphic with the abstract group G[k) generated ~by the operators
E

, E%, . .
.,
Ek 2 subject to the generational relations

265) /=^}=J0,+1-(^.Ei+I)-(^) (w=l,...,fc-2;j>J+l).
The abstract symmetric group G(k) may be generated by Bt and

266) Ed
= Sd+1S, (eZ

= l,2,...,fc-2).

From the relations 264) we readily derive 265) together with

267) BJ = JT, EtBi-SiET
1

(d
=

l, 2, . . ., fc-2).

Inversely, from 265) and 267), we can easily get relations 264).
Hence S19 E19 E2 ,

. .
., JEt_2, subject only to the relations 265) and

267), generate the abstract group G(ti). Upon extending Cr(k} by
the operator B subject to the relations 267), we obtain a group
whose operators are of the form E or ES1} E being derived from

E
,
E

2 ,
. . ., -Z^-g, and hence" of order 20(k}. But the extended

group was shown to be 6r(&). Hence G(k] is a subgroup of 6r(&)

of order y&! It is readily shown to be the abstract alternating

group 6ri . Since the generational relations 264) involve the

generators Si evenly, the various expressions for an operator of

in terms of its generators involve all an even or all an odd number
of the generators, so that its operators may be classed into even and

odd operators. By 266), the operators of the subgroup 6r{&) are all

even, so that it is a subgroup of 6ri . Since its order is y&! ?
it

is identical with the latter.

266. The last theorem may be readily proved by the direct

method of 264. The generational relations 265) are seen to be

satisfied by 'the substitutions

Ad
=

(fc+ik+0 (WO = SH-I& (d
=

1, ...,&- 2)

which generate the alternating group on Z
t ,

1
2 ,

. .
., lk . Hence

".
.'.,

'I,
,,',;.:

:-."" <?{*}> Y* 1

The theorem being evident if Jc = 3, we take Jc > 4. Denote by f

the subgroup G-{k 1} generated by E ,
E2 ,

. . .,
Ek- S and consider

the following sets of operators of G{k}\

The reader may readily verify, as in 264, that E
l
and Er (r > 1),

when applied as right-hand multipliers to the above sets, give rise

DlCKSON, Linear Groups.
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to the permutations (EiEkE^ and (ErEr+i)(EiEt) respectively. The
sets E-L, . .

., Ek therefore include all the operators of G{k}, so that

2

Combining this result with the earlier one, 0{k}= ir&!

267. Theorem. The abstract alternating group G may be

Y5!

generated by two operators V and W subject to the generational relations

For &= 5, the relations 265) defining GI may be written

The group contains two operators V=EiE%Ezy W=E3 such that

W 2=
I, (VW)*= (E^E^^I. To prove that F 5=

7, we apply 269)
and find that

,
= V~\

Inversely, if F, W satisfy 268) and we set
1

)

the relations 269) will foUow. We have at once Ej = I, El = Jr
J, (E E,y= I. Also (E,E^= I and El = I. In fact

- V~WV 2

= V- VWV 2WV- V 2WV~ 1WV 2=V 2WV 2WV 3
- VWV - F 2

= V 2WV 2 - VWV- V s= V 2WV~ 2 WV~ l=V~ 2WV 2W=E~ l
.

268. Theorem. 2

)
The general linear homogeneous group GLH(^ 2)

?'s holoedrically isomorphic with the alternating group on 8 letters.

1) The later reductions depend upon the formulae

2) Jordan, Trait6 des substitutions, No. 516; Moore, Math. Annalen, vol. 51,

pp. 417444; Dickson, ibid vol. 54, pp. 564 569.
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The following substitutions of GLH(4, 2)

1111] 'oion roiii
0001 0010 0101
i i o o '

E*~ 6 i o o '
^3== 1100

0101
v
l 1 0, ^0001

1010^ ro o i o^ ro i i i

0100 0101 0010
0010' E

*
= 1000' EG= 0100

0101; (o ij il 1 1

satisfy the relations 265) for ~k = 8 and therefore generate a sub-

group L which is isomorphic with the alternating group on the

letters 1, 2, . .
., 8. The latter group being simple, the isomorphism

is holoedric. Since the order of GLH(4, 2) equals -i-8! by 99, it

coincides with its subgroup L. The correspondence of generators of

L= GLH(4:,2) and G is as follows:
8!

270)
(23) (12),

(56) (12), E
5

(34) (12), E
B

(67) (12), E
6

(45) (12),

(78) (12).

269. To effect the inversion of 270), so that we shall be able

to pass readily from an arbitrary substitution of L to the correspond-

ing substitution of GI ,
we begin with the simple identities,

Since these relations can be solved for E
5 , E, E

z ,
E

6 , E, E&
in

order, their left members may be chosen as generators of L. By 270),
we have

B^B^ ~(34)(78), (|

a = (U2 ) (i,|4) ^,-(67) (2354).

From these generators of L, we obtain in succession the substitutions

(|2 !S)2?3S
= S

S,S1S
- o-Kfe 61) (feW (fefe) (fefe),

(fefefefe) --[(fefe)^,]-
1
,

(fefe)^,
=

(fefefefe) (fefe)^ (fe felJahS

(fefe)^,' = BuBn* (fefe)^, (fefe)^,,

^(fefe)-
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These results lead at once to the following correspondences:

(ys)I?82 ~(265)(347), (y2 |4y~(27)(3645), (8,WJ^~(24)(17),

(y8)(|si,)~(18)(34), (U*)^- (187) (234),

;
JS32 ~(23)(45)(67)(18), (|2y~(18)(27)(35)(46).

By simple transformations, we complete the proof of the

Theorem. - - The correspondences 270) give reciprocally

(y2)
~ (13)(27)(48)(56), (ys)

~
(16)(27)(34)(58),

(|] y~(18)(27)(36)(45),

(y3)
~ (18)(27)(S5)(46), (y4)

~
(15)(27)(34)(68),

(I3i4)~(14)(27)(38)(56),
512

~ (12)(38)(47)(56), S
sl
~

(17)(25)(34)(68),
S

32
~ (18)(23)(45)(67),

14
~ (18)(23)(46)(67), S24

~ (17)(26)(34)(58),
J?48 ~(12)(37)(48)(56).

By 100, tfAese relations enable us to pass from an arbitrary sub-

stitution of the linear group on 4 indices modulo 2 to the corresponding
even substitution on 8 letters.

Abstract form of the simple group _FO(5, 3)
1

), 270274
270. By the notation of 194, F0(b, 3) denotes the group 0[(5, 3).

By 189 and 181, it is of order 25920 and is generated by the

substitutions 2

)

City, (!,&)(&&)> = "^i2S4 (^,j, *,? = !,... ,5).

It has a commutative subgroup L16 composed of the substitutions

I) @1@2> ^1^3? ^1^4; ^1^5; ^2^3; ^2^4; Q@69 ^3^4? ^sQ? ^4^5>

^iQC8C4 , C&C&, C C
BC,C5 and C

2
C

3 4(75 . The (&fe)(|*gO generate
a subgroup Z60 of the even linear substitutions on |1? . .

., |5 . The

groups Z;16 and Z^
60

are commutative with each other and have only
the identity in common; hence they generate a subgroup ^60 of

FO (5, 3). We readily determine the abstract forms of these sub-

groups. By 265, we have the theorem:

1) Taken from the author's papers, Comptes Rendus, vol. 128, pp. 873 875;
Proceed. Lond. Math. Soc., vol. 32, pp. 3 10. In the earlier paper, Proceed.

Land. Math. Soc., vol. 31, pp. 30 68, another set of generators was determined

by a more complicated analysis.

2) For pn = 3, 0?>f
is either the identity, C-C,, (i.-iy)^

or
(1^)0,.,

the

first two alone being of the form
Q.j.

Here (1^) denotes the linear substitu-

tion
|[-
=

|y, i^
= i f

. They are to be compounded as linear substitutions; for

example, (iii8)(i1i2 )
=

(i1 is i8 ). Also C
i
denotes the substitution changing the

sign of the index |
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The abstract group 6r60 generated by E ,E2 ,
E

3 subject to the relations

271) E*= E;= ES= I, (E1
E

2^= (E2E^= (E1
E3y= I

is put into holoedric isomorphism with Z/60 by the correspondences

272) jsi~(5j,y, #
2 ~(i3 i;4)(ua), #3 ~(i4 i5)(y2).

The following theorem is quite evident:

The abstract group 6r16 generated by Blf B2 ,
B

3 ,
_Z?4 subject to

the relations

273) Bf= I, BtBj^BjBi (i, j = 1, 2, 3, 4)

is put into holoedric isomorphism with Li& by the correspondences

274) B^C^C,, B
2
~C

2 CB ,
J08 ~<78

C4 ,
#4 ~<74C5

.

If we impose the relations 275) below, the two groups 6r60 and

6r16 will be permutable. Writing the analogous relations between

the corresponding orthogonal substitutions 272), 274), we readily see

that they are satisfied. We have therefore the theorem:

The abstract group generated by E ,
E

2 ,
E

s ,
Blf B%, B3 ,

B subject

to the generational relations 271), 273), and

E
i

275)
<

is of order 960 and is holoedrically isomorphic with the linear group A$6Q .

271. Theorem. - The abstract group 6r960 of 270 may be

generated by the operators Ely E2 ,
_E

3 ,
S

1 subject to the generational

relations

These relations foUow immediately from 271), 273), 275), with

the exception of (B^E^)
3= I, which is derived from the first two of 275):

E ~BE
1
= B,

E~ B1
E3
=B

1 ,
E

5
B2
E

3
=B

1
B

Z ,
E

3

B
1
E

1
B

1
= B

2
= E^B^E^ ,

together with Ef= B*= I. Furthermore, we have by 275),

277) Bi =E
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Inversely, if B
2 ,
B

3 ,
B be defined by 277), the relations 271),

273), 275) all follow from 276). Since B^ is of period 3,

EfEtB^EiB^EgEiEsE* (interchanging B^E2
wi

E*E
2

- EfB^E* - E*E
2
E* - E*= E,E,E,B,E,

E
2
EE

2 Si E%E?E2
=E

2
E1
B

1
E

Upon setting S1
E

2
=E

2
S

i ,
S

1E^S1
E

i
=E

1
S

lEl>
we find that

= E
2 E?E2S E2EL

E
2
= E.

2EfB^E^ = E~
!

Since E
2
E

V
E

2
E* =E

1
E

2
E*E

2 ,
we get

Since E^E2E?E2
- E

3E^E2
E*=E

2
E E

2
E*

=E
2
E

1E,E1

=E,E,E,E,

we find by 277) that

7?- 1= A -

upon setting E^EZ
= B^= E2B^, E?E2

E E
2
= E E.

2
E* and

applying also the equation given by taking the reciprocals of the

last substitutions. Using 277) and the last result,

E~

In order to prove that E~ 1BE
i
= B, we note that

or
E

But the left member equals B2
B

3
B. Indeed, by the earlier results,

E-^B^E^B.B,
Heace



AUXILIARY THEOREMS ON ABSTRACT GROUPS, etc. 295

Finally,

We have now derived from 276) all of the relations 275). It remains

to derive 273). Since B
2 ,
B

s ,
B4 are conjugate with B

t by 277),

they are of period 2. By 275), B^BZ
is conjugate with B19 B2

B
3

with jB
3 ,
B

3
B with B

s
. Hence they are of period 2 and therefore

B
3

is commutative with B
2
and J54 , B^ with B

z
. Since E

is its own reciprocal, we have

so that B
1
B3
=B

S
B

1
. Since B^B^B^ was shown to be the trans-

formed of B3 by E*E%, we have

Hence J5
2

is commutative with B. Since B is commutative with

B3 ,
Ez

and E
z ,

it is commutative with B by 277).

272. Theorem. Every substitution of FO (5, 3) is given once

and 'but once l)y the following 27 sets, in which A denotes the sub-

group J,60
:

Since w; is not in J., a substitution of Et belongs to Rg if and only
if t = r. If a substitution of Et belong to E9itJ the product

must belong to A, whereas it replaces |5 by a linear function of

li, |a , |8 , |4 , every coefficient being 1.

If a substitution of JS, f< belong to R
j<t,

the product

8 = w^WCfeWw (feWftWw-
must belong to J.. Supposing first that ^ r =)= 0, we show that S
replaces |5 by a function involving more than one index and there-

fore does not belong to A. In fact, w~~ sS replaces |5 by a function

of the form

where a, Z>, c are three of the integers 1, 2, 3, 4. Then w* replaces /

by /i |5 ,
where ^ is a linear function of ! Ij, |s , 4 with coefficients

not all = (mod 3). Hence S replaces 5 by /i |5 , involving two

or more indices. Suppose, however, that = r. If then i=%=j,
S replaces 5 by a linear function of $lf |2 , |3 , ^4 with coefficients 1.

If ^=j, S = w- a
,
which belongs to J. only if s = 0. But in the

latter case, the two sets P3it and E jt are themselves identical.
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273. Theorem. The abstract group generated by the operators
1

)

E
, JEg, E3 ,

B19 W subject to the generational relations 271) and

278)
W^ Iy

279) WBW=

B
2
and B ~being defined Toy 277), is Jioloedrically isomorphic with

Writing these relations for the corresponding orthogonal sub-

stitutions as defined by 272), 274) and W^>w, we obtain relations

which reduce to identities modulo 3. The order Q of is therefore

^> 25920. The holoedric isomorphism will be established when it is

shown that Q < 25920. To prove this statement, consider the

following 27 sets
2
) of operators of 0, those of the first set being

the operators of G E^ 6r960 :

3W f

,
Rs3t =GWsE

3
E

2W t

It is shown in the next section that the generators E ,
E

2 ,
E

3 , W,
and therefore an arbitrary operator a of the group 0, gives rise to

a mere interchange of the above 27 sets when applied as a right-

hand multipliers. Since the first set G contains the identity 1, the

product la = a lies in one of the 27 sets. Hence contains at

most 27 960 ^ 25920 operators. In particular, it follows that the

27 sets form a rectangular table for with the operators 6r960 in

the first row.

We make use of the formulae derived from 271), 278), 279),

280), 277):

281)

E
2
EiW=WE2

E
1

.

1) For simplicity B1
is retained. It may be dropped since

B, = TF~X TF^r
1 = TF-X WE^.

2) They correspond in F0(5, 3) with the 27 rows of the rectangular table.
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274. Theorem. When applied as right-hand multipliers to the

above 21 sets, the generators W, Elf E2 ,
Es give rise to the respective

permutations :

[W]:

l] : (-B* 10Es 30Es 2o) (Ea 21 B, 81

-2 5 12

) (-^211-^242) (^221^132) (-^112-^222

^ = 1, 2, 3, 4 <md s = l, 2
7
wMe ^e ^rs^ subscript 2s is to

~be reduced modulo 3.

The form of [TF] is evident. Consider the multiplier J
2̂

.

BslQE2
= GW*
= GW*

Rs3QE2
=GWSE

3
E

2

[by 281)].

Bs21

[by 281)].

by 279) ;
since

S B,W= GW 2E3W= #241
.

Next, EME^GWEiEtEi B3
E

2
E

1W=GWSE
3 (E2

E
1 )

2W
=GWE

1
E3
E

2W=B33i, upon applying 281).

2 - B,EL
W

BsllEL=GW'E3
E

2
E 2 - B^E.W^ GWE3E2

E 2
- E

2E^W
[by 281)]

The remaining cases follow immediately.
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For the right-hand multiplier E3J the calculations are not so

simple.

121 3 3213 321 121 L J /-I"

JR291E3
= GW(E 2E

2
E3
E

2 E^ WE3
E

2
E W)

= GWE3E2 E, WE3
E

2 E, W.
= GWE3E2

E
1W-E2

E
1W=GWE3

E
2
E

1 .E2
E

1
W 2= B132 .

\Ei - E
3
= GW 2E

3
E

2 E,WE3E,E 2

E,E 2= GWE3
E

2
E

1
E

2
E

2
E 2W 2

V* W 2=GW 2E
3W 2= B242 .

?3= GW 2E
3
E

2 E, WE 2E
L

. E
3
= E^E.E.B, = B^E.E,

^E2
W 2= (

,E, [by 280)]

#232
= GW 2E3

- W 2B
3 -E3

=
o o o

[by 281)1.

=
^242 ^3 ^3^4= ^211 ^3^4

= (^ W*E
3
E

2
E 2

- E
2
E

L
- E^E^E 2 W 2

= GW 2E
1
E

3
E

3
E 2E

2
W 2= E232 .

^ = GWE3E2 W 2E3E 2= GWE3
E

2
.

=GW 2E3
E

2
-E

i W 2E
1

-

7? T? W 2 7? 7^ 2

-^^232^3^1 tlaS2-c'l
~

GW 2E
3
E

2
W 2E

3
E 2

B1UE3

= GWE3
E

2E, E
3
E

2 W= G WE3E2E,E2 W= Bin [by 281)].

= GWE3
W 2E3

= GWE3
E

2
W 2E

3
E

3

= GWE3 E^

= GW 2B
2
BE3E 2 W 2=G

275. Theorem. The simple group HA(4:, 2 2
) is put into holoedric

isomorphism with the abstract group by the correspondences of

generators

0110'



AUXILIARY THEOREMS ON ABSTRACT GROUPS, etc. 299

1 / 2 '



300 CHAPTER XIII.

278. Theorem. 1

) The special linear homogeneous group SLH(2,p
n
}

of binary linear substitutions of determinant unity in the GF[pn
~\

is

holoedrically isomorphic with the abstract group L generated by the

operators T and Si, where I runs through the series ofpn marks of the

field, subject to ike generational relations

a) S = I, 818^=81+^ (A, p any marks)

b) T*= I, SiT*=T*Si,
c) SiTS^TS^-i TS-dp-vTSt-- T= I (A, p any marts,

Since the relations a), b), c) are satisfied by the substitutions

*-(-!) M;;;)
which ( 100, Cor. II) serve to generate SLH(2,pn

}, the order I of

the abstract group is at least pn
(p

2n
1). We proceed to prove that

I is at most pn
(p*

n
-l). Then will SLH(2,pn

) and L be of equal
order and so holoedrically isomorphic.

Consider the following sets of operators of L
SGTSaTS-\ SaTSaTS.T (a, a, % arbitrary, 4= 0).

At most pn
(p

n
1) + p2 n

(p
n

1) = (P
n

^)P
n
(P

n + 1) of them are

distinct. If it be shown that every operator of L occurs in these

sets, it will follow that I <pn
(p

2n
1). The proof consists in

showing that the product of any operator of the sets by T or by

any Si equals an operator of the sets. Since an arbitrary operator X
of L is derived from T and Si, it will follow that JX = X belongs
to the sets.

In view of a) the reciprocal of Si is Si. For A = 1, ^ =|= 1,

c) gives

d) S T s S TS, T EE (SL
T 3

)
3= L

Applying T as a right-hand multiplier, the product of any

operator of the first set by T gives one of the second set. We
next show that

SaTSaTSal T ' T= S 2a~ i TS a TS^a~ l -

Applying a) and b) the condition for this identity is seen to be

For p = 2, it reduces to an identity. For p > 2, we have by c)

From this e) follows upon replacing S-iTS-iTS-i by T 3 as

allowed by d).

1) Due to Professor Moore, who gave a different proof.
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For operators of the second set with a =(= 0, r =(= or
1
,
we prove that

SaTSaTStT - T= S
0l
TSai

TS
tl T,

where o
lf a,, T

X
are suitably chosen marks, c^ =}=0. The equivalent

condition
8.18,18^18^18.^.1=1

may be satisfied by c) by proper choice of r1? al9 Gly with

G^EEar-1 4=0.

We next apply S
Q

as a right-hand multiplier. Sa TSa TSa-iS<>
will be of the form S

0l
ISai IStl

T s
,
and consequently belong to the

sets by the previous proof, if we have

Since ^(a^ + e)
= 1 + KQ 4= 1? ^s condition is of the form c) if

ai> i> r
i
be suitably chosen. If Q

= a/(ar 1), so that at 4= 1>

we have, by c),
O T1 C 'FC T1 Q C T'O T'Qf
/JO JL /!) JL O|;-L

'

IOQ
= & 1 f -L Uat 1 J- O 1 .

a+^=i ^zi
For the case A~ a Q(CCX 1)=|=0, we prove that

If ar=^=\j we replace TSaTS^T by its equivalent derived from c)

and find that condition f) becomes

at 1 at 1

and hence is satisfied from c). If, however, ar = l, so that A=a,
then f) takes the simpler form

f
')

TSaTSa-iTSQ
= Sa-2 Q

TSaTSa-iT.

If also Q =(= a, we replace TSa iTS
Q by its equivalent derived from c)

and find the condition, where v = a" 1
^ 1

This reduces to the identity c) for I a~ 2
Q, /u

= a, whence

In particular, f
') is true if Q = a -f- 5c

?
x =(= 0, so that

The products in the parentheses are identical and so f) is true for

Q
= a, if the following condition be true for any particular mark jc =(=0,

The latter is of the form f
'

) for Q
= K and hence is true if x =J= a.

But marks x =f= 0, a exist if jp
w > 2. For pn =

2, a = 1, so that f
')

is true for any Q by d).
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Corollary. The quotient-group LF(2,p
n
) is Jioloedrically iso-

morphic with the abstract group F generated ~by the operators T and Si

subject to the relations T 2 = I togetlier with a) and c).

279. For A = or 1 or for ft
= or 1

,
relations c) always

reduce to d) upon applying a) and b). For the group LF(2,p
n
\

d) becomes

D) ft r) = I.

If neither A nor p is or 1, the product of any two consecutive

subscripts in c) is not unity, the first subscript A being regarded as

consecutive with the last subscript ({* l)/(Aft 1). Using any two

consecutive subscripts as the initial A, ft, the resulting identity c) is

seen to be an immediate consequence of the given identity c). Taking
for I any one of the pn 2 marks =(= 0, 1 and for ^ any of the pn 3

marks =[= 0, 1, A" 1
,
the remaining subscripts in c) are different from

and 1. Hence those identities c) which do not reduce to D) are

equivalent in sets of five, an exception being those with all subscripts

equal to A, where A 2 -j-A=l. If the latter has 6 solutions in the

GrF[p
n
'\,

it follows that there are exactly

distinct identities c) not immediately reducible to D) . For p = 2,

6 = or 2 according as n is odd or even; for p = 5, tf=l; for

p =)= 2, 4= 5,
= or 2 according as pn= 5k 2 or pn= 5k 1.

280. For the group LF(2, 5) of order 60, the N= 2 relations c) are

(S2 T)
5= J, S2 IS*TSB TS3 TS T= I.

These may both be derived from a), D) and T 2=
I, so that LF(2, 5)

is generated by A^S-L, ~B = T subject to the relations

282) J.5= 7,
2=

I, (AB)*= I.

In proof, we apply D) repeatedly and find that

Hence also (T$3)
5=

J, so that the second relation becomes

TS,T= S1 (S, T^S, (SL T)
2 =

281. The group LF(2, 22

) of order 60 may be generated by
A = TS{ and B = S^ subject to the relations 28*2), where i and i*

are the roots of x2
-f- # = 1 (mod 2). Indeed, the N=G = 2

relations c) to be considered in addition to D) are
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The latter only serves to define the operator I in terms of A and Bi

The resulting expressions for S
i}
Si} 8? are seen to be commutative

and of period 2, so that relations a) follow from 282).

282. The group LF(2, 7) of order 168 is defined by relations

a), D), I 2 =
I, together with the following N = 4 relations

8
6 T8^T86

T=I
f

SB TS5TS2
TS6

TS
2
T= I,

Applying a), D) and T 2 =
1, the second and third relations become

SiZS^TSs - S
l
TS

l
T8l

- Ss
= TS5 1S5

.

The first relation may be written S9
T8

t
TS S^TS^TS^ - 8^1= 1 or

The fourth relation becomes an identity if we replace S$TS5
I by

ZS5
TSTS5

as derived from the first relation. Hence the 6r168 may
l)e generated ~by 8L

and T subject only to the generational relations^)

283) T* = I, 81
= I, (^T)

3 =
J, (8}T)*

= I.

Corollary. The group LF(3, 2) of order 168 is isomorphic

with LF(2, 7). In fact, the relations 283) are satisfied by the sub-

stitutions

100]
1

, 8,=
1 iJ
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2. Any two triangles ABC and AfB J C' having no side in

common determine uniquely a third triangle A"B" C n such that the

corresponding sides of the three triangles intersect and form three

new triangles AA'A", BB'B", CC'C". The former set of three

triangles is said to constitute a trieder, which will be designated

{ABC, A'B'C',A"B"C"~].
These two properties completely define the configuration of the

45 triangles formed by the 27 lines on the cubic surface.

Denoting the lines by Et ,
Esit (s

=
1, 2; i = 1, 2, 3, 4; t = 0, 1, 2),

it will be shown that the 45 triangles are given by the notation 1

)

[s
=

1, 2]

[t
= 0, 1, 2; * = 1, 2, 3, 4]

R.*tR.*tR,&t+i [5
= 1,2; *EE 0,1,2 (mod3)]

[s
=

1, 2; j = 2, 3, 4; * EE 0, 1, 2]

where the subscript 2s is to be replaced by 1 when s = 2.

Each element E lies in exactly five of these sets. Thus Et lies

in the sets RQ
R

L
Ri) RtRiitRsit (i

=
1, 2, 3, 4); R9lt lies in the 5 sets

Es u)EsiiEs i2, RfRuLfRsitf RtltRajtlRsiijt+l {j
=

2, 3, 4);

finally, Esjt
lies in the following 5 sets, in the last two of which %

is to be suitably chosen modulo 3:

Hence each element can be associated with exactly ten other elements

to determine a set. Property 1 thus holds for the 45 sets.

The set E E
1
E

2
lies in exactly the following sixteen trieders:

1. ^2 > -^110 ^111 -^112 9 -^210 ^211 ^212] 7

where j = 2, 3 or 4, t = 0, 1 or 2 (mod 3). Property 2 therefore

holds for the set E E
1
E

2
in conjunction with any set no one of

whose elements is EQ ,
E

L
or E

2
. It is next shown that the property

holds for an arbitrary pair of sets ABC, A'B'C 1 which have no

element in common. By the next section the 45 sets are merely

permuted by the substitutions [TF], [.EJ, [J 2 ], [Es ~] given in 274.

The latter generate a substitution-group [0] holoedrically isomorphic

1) The connection with the 27 sets of orthogonal substitutions exhibited

in 272 will be shown in the sequel/
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with the abstract simple group of 273. From its origin [0] is

transitive and hence contains a substitution S which replaces E by
an arbitrary element A. We proceed to prove that [0] contains a

substitution 8
t
which leaves JR fixed and replaces EL by an arbitrary

one of the ten elements Elf E^, ft z-o, ft*o (i
=

1, 2, 3, 4) which lie

in sets with E . The substitutions [E3], [E3][E2], [E9][E9][EJ,
[^slKlfJEJ

2
replace Et by J?140 ,

E1ZQ , E^ ,
^110 respectively, without

altering E . The transformed of [Jy by [TF] gives the substitution

(ftnft 31Es 21) (ft 22ft 32ft 42) (Es 20ft a 10Es 30)

which replaces .R120 by E.210 ,
B110 by E230 . Then [.EJ and [j 2] replace

JR230 by JR220 and I?240 respectively. Finally, [Es] replaces E^^ by E%.
It follows that [0] contains a substitution yS^/S which replaces the

set E^E^E^ by a set J..Z?(7 in which A is any one of the 27 elements

and B any of the 10 elements which lie in sets with A. Hence [0]
contains a substitution Z replacing the set E E

1
E2 by an arbitrary

one of the 45 sets. Then Z 1

replaces the given pair ABC, A'B'C'

by a pair EQEl E^ y
A

1
B1 C1 having no elements in common. The

latter sets determine a trieder by the earlier proof. Applying to it

the substitution Z, which was derived from [W] and [_EJJ and there-

fore replaces sets by sets, we obtain a trieder containing ABC,
A'B'C* and determined by them. Hence the above distribution of

the 27 elements E into 45 sets is a suitable notation for the con-

figuration of the 45 triangles formed by the 27 lines on a general

cubic surface.

284. The next step is to verify that the substitutions [W],
[E2 ~\

and [E3]
of 274 permute amongst themselves the 45 triangles.

[W] gives rise to the following even substitution:

where i = 1, 2, 3, 4; j = 2, 3, 4; s = l,2.

[E2 ] gives rise to the even substitution on the 45 triangles:

! ,
E -R120 ^220) (-K* 10EsnEg 12 , Eg 20EsnE% a 22)

EQEi4Q J224o) C^ 10^* 22E% g 21 , Eg 20^2 * 12

12 ; -^2 -^122 ^222) C^ 20 -R* 31^ 42 ; Eg 10ft 81ft 82)

! 82 32 ,
E

2
E

L^E242 ) (Eg 20ft 32ft 41 , ft 10ft 42ft * 4l)

(ftllftsoft*32, ftllft40-ft42)(ft2lft32ft40,

(ft 22ftsoft41, ft s 12 ft 40 ft 4l) (ft 22ft 81 ft 40, ft 12ft Slftso)-

Similarly [E^] and [J 3̂] give rise to even permutations of the

45 triangles.

DlCKSON, Linear Groups. 20
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285. Theorem. The group G- of the equation for the 27 lines

on a general cubic surface is of order 51840 and has a subgroup of

index 2 holoedrically isomorphic with the abstract group 0.

The group G is formed of the substitutions on the 27 elements E
which permute the 45 triangles. These substitutions can replace RQ

by at most 27 elements. Those leaving RQ fixed can replace EL by
no element other than the ten lying with R in some triangle;

namely, _R1; R2 , RUO, ftio (i
=

1, 2, 3, 4). The substitutions leaving
RQ and Rt fixed and consequently the triangle R R

1
R

2
cannot alter

R
2
and must replace -R130 by one of the 8 elements

which enter the four remaining triangles containing R . The sub-

stitutions leaving R ,
Rlf J?130 fixed cannot alter _R

2
or R2ZQ ,

and

must permute amongst themselves the triangles which contain j^ and

likewise the triangles which contain -R130 . Hence they must permute
the pairs Rni ,

.R211 ;
-Rm ,

-R221 ;
-R131 ,

-R232 5 -^ui; ^24i5 and likewise

permute the pairs Rln ,
^232 ;

.R212 ,
.R231 ;

R122 ,
RU1 ;

J?121; JR142 . Hence

the elements J?m , -^121? ^231? -^141 common to the two sets must be

permuted amongst themselves, which can be done in at most 24 ways.

Finally, a substitution of 6r which leaves fixed R
Q ,

JR1; _R
2 ,

-R130 ,
-R

2307

^m, -Biau ^231 and -Bui must not alter -Rgu; ^221; Asi; ^i, ^232.

JR212 ,
.R122 and R142 and therefore must leave fixed the third element

in each of the triangles 2^u^ 12^10 , ^241-^232 -^220 , ^221^122^110;

-^210-^121-^222^ -^230-^131-^112? ^230-^221-^242; -^131 -^142 -^120 ;
-^ 22-^531-^*40?

and ^m-Ruo^m- Such a substitution therefore leaves fixed every
element and is therefore the identity. The order of 6r is therefore

at most 27 10 - 8 - 24 = 51840.

But G contains the subgroup [0] of order 25920 whose sub-

stitutions permute the 45 triangles evenly. Also G contains

which gives rise to the following odd substitution on the triangles:

RtRutRut)
w ti> RutRn t+1-^24 1 i)

(Rs2tRs3 f+1^4 t I, Rs2 tlRsltRsS t+l)

containing 3 + 3 + 3 + 6 = 15 transpositions. The order of G is

therefore at least 2 - 25920. The order is consequently 51840.

286. Certain subgroups of the abstract group of order 25920

appear at once by considering the various isomorphic linear groups.



CHAPT.XV. SUMMARY OF THE KNOWN SYSTEMS OF SIMPLE GROUPS. 307

By 118 and 133, the simple group #4(4, 2 2

), which is isomorphic
with by 275, has a complete set of 36 conjugate subgroups

4(4, 2) holoedrically isomorphic with the symmetric group on 6 letters.

By 136, HA(4, 2 2

) has a complete set of 216 conjugate subgroups
LF(%, 22

), holoedrically isomorphic with the alternating group on
5 letters. By 270 274, has a subgroup 960 of index 27.

The quotient-group -4(4, 3) of the special Abelian group $4(4, 3)
is

( 189) holoedrically isomorphic with _FO(5, 3) and therefore with

the abstract group 0. By 114, 4(4,3) contains 33

(3
2

-l)3
substitutions which leave ^ fixed, so that 4(4, 3) contains a sub-

group of index 25920 8 34 = 40. By 121, 4(4, 3) contains

exactly (3
2

-fl)3
2 substitutions conjugate with TI,_I. But the latter

is conjugate with T2,_i, the two being identical in the quotient-

group 4(4, 3). Hence 4(4, 3) has a subgroup of index 45. Hence

the simple group has subgroups of indices 27, 36, 40, 45, 216. By
a lengthy analysis

1
), it has been shown that contains no subgroup

of index < 27. The problem of the determination of the 27 straight
lines on a general cubic surface has therefore resolvent equations of

degrees 27, 36, 40, 45 but none of degree < 27.

Since is isomorphic with 4(4, 3), our problem is identical

with the problem of the trisection of the periods of hyperelliptic

functions with four periods.
2

)

CHAPTER XV.

SUMMARY OF THE KNOWN SYSTEMS OF SIMPLE GROUPS.

287. In the preceding chapters were derived the following systems
of simple groups, with the specified restrictions upon the prime
number p and the positive integers m and w 8

):

where pn > 3 if m = 2, and d is the greatest common divisor of m
and pn

1.

H0(m, p2n): [p
nm

( r)
m
~\p

n(m

where pn > 3 if m = 2, pn > 2 if m = 3, and g is the greatest

common divisor of m and pn+ 1.

1) Jordan, Traits', pp. 319 329.

2) Jordan, pp. 354 369.

3) The notations were introduced in 108, 119, 148, 194 and end of 209.
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A (2m, p
n
)l (

where pn > 3 if m = 1, pw > 2 if w = 2, and a = 1 if^) = 2, a = 2

ifp>2.

F0(2m + 1, #w
): yOn(2m) -

1) jp-P*"-

(p
zn

T)p
n

where p > 2 and, for w = 1
7 pw > 3.

where j) > 2 and m > 2
7
while = + 1 according as pn= 4Z + 1.

,

where ^) > 2 and m > 1
?
= 1 according as p

n= 4? + 1.

FH(2m, 2): (2
MW

where w > 2.

SH(2m, 2n): (2
ram + 1) (2

2w (m - 1 ) -
1) 2

2*(-1 )
. . . (2

2 w -
1) 22

% m

In addition to these systems may be added the cyclic groups of

prime order and the alternating group on n > 4 letters.

288. Between certain of the above groups there exists holoedric

isomorphism, a relation indicated by the symbol ~. For p > 2
7
the

following isomorphisms were established in 178, 187 190,
197_198:

,p
n
}; F0(6,p

n
)
~ LF(4=,p

n
), for #= 4Z + 1;

w
) ;

/S 0(6, p
n
)
~ LJP(4, p

n
), for ^= 4? + 3;

the latter holding also for jp
n=

3, a case not treated in 197 198.

For any p,

LF(2, pn
)
~ A(2, p

n
)
- H0(2, p*

n
).

For p = 2, it was shown in 198, 206, 207 that

#(4,2*)~Z.F(2,2
2

)

By chapter XIII,

,
2 2

), Zr^(4, 2)
- G

, iF(3, 2)
- Z^(2, 7).

8 1
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289. Theorem.1

)
-- The simple groups A(^m,yf) and

F0(2m + l,p), P>2,
of equal order are not isomorphic if m > 2.

.The proof consists in showing that the orthogonal group contains

a greater number of sets of conjugate operators of period two than

the Abelian group. By 122, A(2m, pn
), p>2, has exactly

(m + 2) or y (m -j- 1) distinct sets of conjugate operators of period

two according as m is even or odd. But F0(2m+l,pn
) contains

the following m distinct substitutions of period two,

C^C^j C-f)^C^C^ . . ., C^CjC/jt/a . . . C^m iCsm?

having the respective characteristic determinants,

(1 +KY (1
- X)

2 - 1
, (1 + K)* (1

-
)
2m- 3

, ., (1 + E)*
m
(1
- #)

By 102, no two of these m substitutions are conjugate under linear

transformation.

For m = 1 or for m = 2, the corresponding groups are iso-

morphic ( 288).

290. The following table gives the 53 known simple groups of

composite order less than one million. The alternating group on

n letters is designated by its order ^n\ The isomorphisms indicated

in 288 are not given in the table.

60
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51888
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INDEX OF SUBJECTS.

(The numbers refer to pages; g or Gr denotes group.)

Abelian g, 89, 110, 115, 117, 151, 179,

200, 201, 299, 309.

abstract field, 9, 13.

abstract g, 287, 289, 292, 300.

additive -field, 5.

additive -#, 49, 269.

alternating gr,
4 letters, 269.

5 letters, 279, 290.

8 letters, 259, 290.

Jc letters, 289.

basis -system, 49.

Betti-Mathieu g, 64, 67, 69.

canonical form, 221, 237, 244.

characteristic determinant, 80.

equation, 222.

class of quantic, 29.

residue, 3, 6, 7.

commutative g, 262, 265.

substitution, 193, 229.

compound of g, 145.

configuration 27 lines, 303.

congruent, 3.

conjugate, 52, 100, 236.

cubic surface, 303, 306.

cyclic base, 266.

dihedron g, 265.

doubly-transitive, 248, 261.

exercises, 19, 42, 70, 216.

existence of Galois F, 14, 19.

exponent of mark, 11.

- of function, 19.

factors of composition, 81, 91, 94, 191,

192.

Fermat's theorem, 4, 11.

field, 5.

first hypoabelian, 201, 208.

first orthogonal, 131, 159, 191, 292,

299, 309.

four- group, 267.

Galois Field, 6, 14.

general linear homogeneous g, 69, 75,

77, 124, 146, 147, 235, 290.

group, 65; 168 , 303; 20160 , 259;

GWo ,
293, 296; 61840 , 306;

see alternating, icosahedral,

dihedron, tetrahedral, octahedral,

symmetric, linear, general,

special, simple.
Hermite's theorem, 59.

homogeneous, see general, special.

hyperabelian g, 115, 183, 209, 298.

hyperelliptic, 307.

hyperorthogonal g, 131, 264.

hypoabelian, see first, second.

icosahedral, 278, 283, 302.

index of subgroup, 286, 307.

infinity (mark), 260.

invariant, quadratic, 144, 153, 156,

191, 194, 197, 206.

of degree 2, 126, 218.

irreducible, 10, 15, 44.

isomorphic, 99, 164, 174, 183, 194,

208, 209, 287, 298, 308.

linear independence, 10, 52.

linear fractional g, 87, 126, 132, 164,

174, 179, 193, 194, 208, 242,

259, 260, 286, 302, 303.

mark, 9.

modulus, 3, 6.

multiplier Galois F, 61, 270.

Newton's identities, 53.

non-isomorphic, 260, 309.

not -square, 44, 48.

octahedral g, 269, 282.

order of field, 5, 10.

orthogonal, see first, second.

period of mark, 11.

Pfaffian, 147, 172.

primitive root, 13, 36.

irreducible quantic, 21, 35, 44.

quadratic equation, 46.

,
see invariant.

rank, 49.

reduced quantic, 63.
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representation of substitutions, 55.

residue, 3, 6.

self-conjugate, 82, 117, 279.

second hypoabelian, 201, 209.

orthogonal, 159, 191, 194.

simple g, 87, 97, 100, 120, 138, 152,

191, 212, 260, 286, 307, 309.

special linear homogeneous g, 82, 125,

147, 151, 153, 300.

squares, 44, 48.

substitution-quantic, 55, 63.

surface third order, 303.

symmetric g, 6 letters, 99.

Jc letters, 287.

tetrahedral g, 268, 282.

transformation of indices, 80.

transformed subst., 81, 288.

transitive, 248, 261.

trieder, 304.

EKKATA.

Page 14, line 12, read GF[p
m
] for GF[p*].

17,

20,

48,

71,

78,

93,

95,

102,

113,

132,

139,

152,

172,

189,

209,

221,

227,

267,

272,

300,

! i

31, read y = xp *
for y = xp 1.

21, read q. for qi.

2 of 67, read number of squares.

5 of Ex. 6, read JT 1

^ for IT 1 L

15, read Brs A
for B

r>s^

6, read yJ2 ,
cc'lm ;

line 2, read M
l

for

30, read or21 for aai .

17, read T^l^^; line 16, read

3, read
jfj

for j.

28 and line 33, read - - for -

8, read

5, read 139) for 139,.

16, p. 175, 1. 14, read for
2

.

3 of 192, delete comma before "are

1, for hyperabelian read hypoabelian.

14, for {L} read {s}-

read T
i
= y3 + y

f

t
K

i +yS*+ +
line 10, for Gs_ read G

d_.

3 from bottom, delete "an".

16, for 8~l read 8a_v
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