
LISP
LORE:
A GUIDE TO
PROGRAMMING
THE LISP
MACHINE

Hank Bromley ^g.

LISP LORE: A GUIDE TO
PROGRAMMING THE LISP MACHINE

AT&T

LISP LORE: A GUIDE TO
PROGRAMMING THE LISP MACHINE

by

Hank Bromley
AT&T Bell Laboratories

W
KLUWER ACADEMIC PUBLISHERS

Boston/ Dordrecht/ Lancaster

Distributors for North America:

Kluwer Academic Publishers

101 Philip Drive

Assinippi Park

Norwell, Massachusetts 02061, USA

Distributors for the UK and Ireland:

Kluwer Academic Publishers

MTP Press Limited

Falcon House, Queen Square
Lancaster LAI 1RN, UNITED KINGDOM

Distributors for all other countries:

Kluwer Academic Publishers Group
Distribution Centre

Post Office Box 322

3300 AH Dordrecht, THE NETHERLANDS

Library of Congress Cataloging-in-Publication Data

Bromley, Hank.

Lisp lore.

Includes index.

1. LISP (Computer program language) I. Title.

QA76.73.L23B75 1986 005.133 86-7377
ISBN 0-89838-220-3

Copyright © 1986 by Bell Telephone Laboratories, Incorporated. Portions of this book are copyrighted

by Symbolics, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without

the prior written permission of the publisher, Kluwer Academic Publishers, 101 Philip Drive, Assinippi

Park, Norwell, Massachusetts 02061.

Printed in the United States of America

TABLE OF CONTENTS

LIST OF FIGURES

5.1

TABLE OF CONTENTS

10.4 Messing with the mouse blinker 186

10.5 The :drop-icon method 187

10.6 Setting up the comtab 188

10.7 Getting in the System Menu 188

10.8 The Program 189

10.9 Problem Set #9 194

1

1

MORE ADVANCED USE OF THE EDITOR 199

11.1 Keyboard Macros 199

11.2 Writing New Commands 201

1 1.3 Buffers and Streams 201

1 1.4 Reading from the Mini-buffer 204

11.5 A Real Example 206

11.6 Problem Set #10 207

12 A QUICK LOOK AT "THE NETWORK" 211

12.1 The "Gee-Whiz" Overview 211

12.2 The Beginning of the Real Explanation 213

12.3 The Ethernet 214

12.4Chaosnet 215

12.5 A Bit More on Serial Streams 217

12.6 The Role of the Namespace 2 1

7

12.7 Troubleshooting 219

APPENDIX: BASIC ZMACS COMMANDS 221

INDEX 225

LIST OF FIGURES

1 Flavor tree for lisp-listener 24

2 Structure of combined method 28

3 Transitions among window states 48

PREFACE

This book had its genesis in the following piece of computer mail:

From allegra!joan-b Tue Dec 18 09:15:54 1984

To: solalhjb

Subject: lispm

Hank, I've been talking with Mark Plotnik and Bill Gale about

asking you to conduct a basic course on using the lisp machine.

Mark, for instance, would really like to cover basics like the flavor

system, etc., so he could start doing his own programming without

a lot of trial and error, and Bill and I would be interested in this,

too. I'm quite sure that Mark Jones, Bruce, Eric and Van would

also be really interested. Would you like to do it? Bill has let me
know that if you'd care to set something up, he's free to meet with

us anytime this week or next (although I'll only be here on Wed.

next week) so we can come up with a plan. What do you think?

Joan.

(All the people and computers mentioned above work at AT&T Bell Laboratories,

in Murray Hill, New Jersey.) I agreed, with some trepidation, to try teaching such

a course. It wasn't clear how I was going to explain the lisp machine environment

Xii PREFACE

to a few dozen beginners when at the time I felt I was scarcely able to keep myself

afloat. Particularly since many of the "beginners" had PhD's in computer science

and a decade or two of programming experience. But the need was apparent, and

it sounded like fun to try, so we had a few planning sessions and began class the

next month.

From early January through late March we met once a week, about a dozen times

in all, generally choosing the topic for each session at the conclusion of the previous

one. I spent the last few days before each meeting throwing together lecture notes

and a problem set (typically finishing shortly after the announced class time). By

the end of the course, the students had attained varying levels of expertise. In all

likelihood, the person who learned the most was the instructor; nothing provides

motivation to figure something out like having committed oneself to talking about

After it was over, another co-worker saw the sizable pile of handouts I had gen-

erated and proposed that it would make a good book. He offered to contact a pub-

lisher he had recently deaft with. I was at first skeptical that the informal notes I

had hurriedly concocted would interest a reputable academic publisher, but after

taking another look at the materials that had sprouted, and discussing the matter,

we agreed that quite a few people would find them valuable. I've spent the last few

months filling out and cleaning up the pile, and Presto, change-o. My "set of hand-

outs" is "a book."

There are a number of people who have, in one way or another, consciously or oth-

erwise, helped create this book. Ken Church was instrumental in arranging my
first experience using the lisp machine, and later was responsible for bringing me to

Bell Labs. He also taught a course here, before I came, which laid some of the

groundwork for my own course. Eva Ejerhed, in a rare act of faith, hired me to

work on a lisp machine thousands of miles from the nearest expert assistance,

without my having ever touched one. Joan Bachenko and Bill Gale first suggested I

teach a course at the Labs. Many of my colleagues who served as experimental

subjects by participating in one of the three trials of the course provided useful

comments on the class handouts; among those whose contributions I particularly

recall are Mark Liberman, Jeff Gelbard and Doug Stumberger. Ted Kowalski first

broached the idea of making a book from the handouts, and also — with Sharon

Murrel — supplied lots of assistance with the use of their Monk text formatting

system. Wayne Wolf suggested improvements to my coverage of managing multi-

ple processes. Jon Balgley, of Symbolics, Inc.,* wrote a helpful review of one

Symbolics, Symbolics 3600, Symbolics 3640, Symbolics 3670, and Document Examiner are trade-

marks of Symbolics, Inc.

Zetalisp® is a registered trademark of Symbolics, Inc.

PREFACE Xlll

version of the manuscript. Valerie Barr introduced herself to the lisp machine by

actually working through an entire draft, making a great many valuable observa-

tions along the way. Mitch Marcus and Osamu Fujimura, my supervision at the

Labs, were most understanding about the amount of time I put into this project.

Carl Harris was an obliging and patient Publisher. Finally, Symbolics, Inc. gra-

ciously allowed me to quote extensively from their copyrighted materials, and

Sheryl Avruch of Symbolics made possible the distribution of a tape to accompany

this book.

I would like to hear about any problems readers have while working their way
through the text. Please don't hesitate to mail me any of your comments or sugges-

tions.

Hank Bromley

December, 1985

computer mail: US mail:

hjb@mit-mc (arpa)

AT&T Bell Laboratories, room 2D-410

alice 600 Mountain Avenue

research } !sola!hjb (uucp) Murray Hill, NJ 07974

allegra

LISP LORE: A GUIDE TO
PROGRAMMING THE LISP MACHINE

INTRODUCTION

The full 1 1 -volume set of documentation that comes with a Symbolics lisp machine

is understandably intimidating to the novice. "Where do I start?" is an oft-heard

question, and one without a good answer. The eleven volumes provide an excellent

reference medium, but are largely lacking in tutorial material suitable for a

beginner. This book is intended to fill that gap. No claim is made for complete-

ness of coverage — the eleven volumes fulfill that need. My goal is rather to

present a readily grasped introduction to several representative areas of interest,

including enough information to show how easy it is to build useful programs on

the lisp machine. At the end of this course, the student should have a clear enough

picture of what facilities exist on the machine to make effective use of the complete

documentation, instead of being overwhelmed by it.

The desire to cover a broad range of topics, coupled with the necessity of limiting

the amount of text, caused many items to be mentioned or referred to with little or

no explanation. It's always appropriate to look up in the full documentation any-

thing that's confusing. The manuals are perfectly adequate reference materials, as

long as you know what you want to look up. The point in this text is rarely to

explain what some specific function does in isolation — that's what the manuals are

good for. The focus here is on how to integrate the isolated pieces into real appli-

cations, how to find your way around the landscape, how to use the multitudinous

features described in such splendid detail in the 1 1 volumes. The manuals provide

INTRODUCTION

a wonderfully thorough, but static, view of what's in the lisp machine environment;

I've tried to provide a dynamic view of what that environment looks like in action,

or rather in interaction with a human.

The book assumes some background in lisp; the reader is expected to have experi-

ence with some dialect of the language. If you lack such experience, you may want

to do a bit of preparatory study.* This course concentrates on those aspects of lisp

machine lisp ("Zetalisp") which are not found in most dialects, and on the unique

overall programming environment offered by the lisp machine. No experience with

the lisp machine itself is assumed.

Finding an ideal order of presentation for the various topics would be difficult.

Many topics are interdependent, such that knowing either would help in figuring

out the other. Presenting them simultaneously would only confuse matters, so I've

had to settle on one particular linear sequence of topics. It may seem natural to

some readers and bizarre to others. I've tried to identify places where it might be

helpful to look ahead at sections further on in the text, but I'm sure I haven't found

them all, so don't hesitate to engage in a little creative re-ordering if you feel the

urge. One chapter whose position is problematic is that on flavors. Conceptually, it

is probably more difficult than both of the two subsequent chapters {More on Navi-

gating the Lisp Machine and Flow of Control). But I've chosen to put it first

because the flavor system is extremely characteristic of lisp machine programming,

making it important to discuss as soon as possible. The main barrier to mastering

the lisp machine is absorbing its gestalt, much of which is implicit in the flavor sys-

tem; covering that right at the beginning helps to set the tone for what follows. But

if you find flavors a bit much, feel free to look through Navigating and maybe Flow

of Control and come back to it.

I've adopted a rather informal tone for most of the text: people learn better if

they're relaxed. Just let me caution you that "informal" doesn't mean "sloppy."

There are few extra words. Lots of information is present in only one place, and

apparent only if you read carefully. If you get fooled by the informality into think-

ing you can scan half-attentively, you'll miss things.

It must be emphasized that learning to use the lisp machine is more a matter of

learning a way of thinking than of learning a set of specific programming con-

structs. No amount of time spent studiously poring over documentation can yield

the benefits gained from sitting at a console and exploring the environment directly.

Two widely available sources you may find well worth your time are Lisp (2nd edition), Winston and

Horn, Addison-Wesley, 1984, and Structure and Interpretation of Computer Programs, Abelson and

Sussman, MIT Press, 1984.

INTRODUCTION

Time spent examining various parts of the system software with no particular goal

in mind is anything but wasted. Once one has a feel for how things are done, an

overview of how things fit together, the rest will follow easily enough. Most lisp

machine wizards are self-taught; the integrated nature of the environment, and

ready access to the system code, favors those who treat learning the machine as an

interactive game to play.

With that in mind, a word or two of advice on the problem sets. Don't get too

wrapped up in finding the "right answer." Many of the problems are, shall we say,

"challenging;" they require knowledge not found in the text (and in some cases not

even found in the manuals). You will need to investigate, often without knowing

exactly what you're looking for. If the investigation fails to yield immediate results,

I strongly recommend that rather than head straight for my solutions, you continue

to investigate. Stick it out for a while, even if you don't seem to be getting much
closer. You can't learn to speak a foreign language by consulting a dictionary

every time you need a word you don't know — forcing yourself to improvise from

what you do know is the only way. Floundering is an unpleasant but absolutely

necessary part of the process, arguably the only part during which you're really

learning. Similarly, you can't become a lisp wiz just by assiduously studying some-

one else's code. Although seeing how an experienced programmer handles a prob-

lem is certainly useful, it's no substitute for struggling through it yourself. The

problem sets are largely a ruse to get you mucking around on the machine. I don't

really care if you solve them, as long as you come up with some ideas and try them

out with an open mind.

The examples in the text (barring typos) are known to work in Release 6.1 of the

Symbolics software for the 3600 family of machines. Only the "moving icons"

example requires additional support software not included in the text. That

software is available on a cartridge tape, which also contains all the code for the

"graph," "tree," and "moving icons" examples, as it appears here, and all problem

solutions which are too long to reasonably be manually copied from the text.

To order a copy of the tape, write to the following address (you may wish to use

the order form at the back of this book) and include a check for $40 made out to

Symbolics, Inc. Instructions for loading the tape will accompany it.

Software Release

Symbolics, Inc.

1 1 Cambridge Center

Cambridge, MA 02142

Chapter 1

GETTING STARTED ON THE LISP MACHINE

1.1 The Keyboard

Note that there are many keys which don't appear on a standard keyboard. Much
of what you need to know to start using a Lisp Machine boils down to knowing

what the various funny keys do.

Apart from the keys for the standard printing characters (white labels on grey

keys), there are two kinds of special keys. The beige keys with grey labels (shift,

control, meta, super, hyper, and symbol) are all used like the shift key — you hold

them down while striking some other key. These modifier keys may be used singly

or in combination. So "control-meta-K" means type K while holding down control

and meta. There is a standard set of abbreviations for the various modifier keys.

They're all just what you'd expect except that the abbreviation s stands for super

rather than shift. Shift is abbreviated sh.

The beige keys with white labels are special function keys, and are typed like stan-

dard printing characters. That is, "Select-E" means to strike Select and then strike

E. And "Select c-L" means to strike Select and then hold down control and strike

L.

GETTING STARTED ON THE LISP MACHINE Chapter 1

Use the Help key a lot. The information it supplies depends on the context, but it

usually tells you what sort of input is wanted by the program you're typing to.

You can think of the Lisp Machine as a collection of processes, analogous to the

different users on a time-sharing system. Each process is a program written in lisp

and running in a common environment which all the processes share. A process

typically (but not necessarily) has a window for user interaction. The Select key is

the easiest way to switch among processes. To find out what your options are, type

Select-Help. The display shows you that, among other programs that may be

reached in this way, you can get a lisp listener by typing Select-L, and an editor by

typing Select-E. This list is by no means fixed. Users may add their own programs

to the list quite easily. Here are brief descriptions of the programs that are already

in the select list on a freshly booted lisp machine:

X Common Lisp

C Converse

D Document Examiner

E Editor

F File System Maintenance

I Inspector

L Lisp

M Zmail

N Notifications

P Peek

T Terminal

X Flavor Examiner

a (Common Lisp) lisp listener [X = symbol-sh-L]

convenient way to send and receive messages

from users currently logged-in on other machines

(lisp or otherwise)

a utility for finding and reading online documen-

tation; everything in the 11 -volume manual is

available here

the powerful Zmacs editor, like Emacs plus

much more

various display and maintenance operations on

the file system of the lisp machine or of other

machines

structure editor for displaying and modifying lisp

objects

a (Zetalisp) lisp listener

a comprehensive mail-reading and sending pro-

gram, using many pieces of the Zmacs editor

displays a list of all "notifications" (messages

from running programs) you've received

displays the status of various aspects of the lisp

machine

use the lisp machine as a terminal to log in to

other computers

convenient way to find out about different flavors

(active objects), their message-handlers, and

their state variables.

The Function key, like Select, dispatches off the following keystroke. Function-

Section 1.1 The Keyboard

Help displays a list of the options. The most commonly used are Function-F

("finger"), to find out who's logged in on the various machines, Function-H ("hos-

tat"), for a quick look at the status of all the hosts on the local Chaosnet, and

Function-S to select a different window. The exact behavior of many of the Func-

tion options is controlled by an optional numeric argument; you pass the argument

by pressing one of the number keys after the Function key and before the chosen

letter, e.g., Function-O-S.

The Suspend key generally causes the process you are typing to to enter a "break

loop", that is, the state of its computation is suspended and a fresh read-eval-print

loop is pushed on top of the current control stack. The Resume key will continue

the interrupted computation. Suspend takes effect when it is read, not when it is

typed. If the program isn't bothering to check for keyboard input, pressing

Suspend will do nothing.

c-Suspend does the same thing as Suspend, but always takes effect immediately,

regardless of whether the program is looking for keyboard input.

m-Suspend, when read, forces the process at which you type it into the debugger.

The debugger is another story (see below), but when you're done looking around

you can continue the interrupted computation with Resume.

c-m-Suspend is a combination of c-Suspend and m-Suspend. It immediately forces

the current process into the debugger.

The Abort key is used to tell a program to stop what it's doing. The exact behavior

depends on what program you're typing to. A lisp listener, for instance, will

respond by throwing back to the nearest read-eval-print loop (the top level or an

intervening break loop). Like Suspend, Abort only takes effect when read. If the

program isn't waiting for keyboard input, you need to use c-Abort instead.

m-Abort, when read, throws out of all levels and restarts the top level of the pro-

cess, c-m-Abort has this effect immediately.

The debugger prompt is a small right-pointing arrow. Once you have that, all

kinds of commands are available for moving up and down the stack, getting infor-

mation about the different frames on the stack, restarting execution with or without

modifying arguments and variable values, etc. Try the Help key and see what you

can find out. Besides all the special commands, any normal text you type will be

evaluated by the lisp interpreter.

GETTING STARTED ON THE LISP MACHINE Chapter 1

1.2 Typing to a Lisp Listener

A lisp listener is a window with a lisp interpreter running in it. It reads a lisp

expression from the keyboard, evaluates it, prints the returned value (s), and waits

for another expression. Booting a machine leaves you in a lisp listener. Whenever

you're not in a lisp listener you can get to one by typing Select-L.

While waiting for input, lisp listeners usually display "Command:" as a prompt.

The presence of this prompt indicates that the Command Processor (CP) is active;

it provides a convenient interface to many frequently called lisp functions. (The

name of a CP command won't necessarily be the same as the name of the

corresponding lisp function.) CP commands don't use the same parentheses syntax

as lisp expressions do. You simply type the name of the command (one or more

words) followed by any arguments to the command, and finish with the Return key.

But you needn't type the name of the command in its entirety — all that's required

is enough to uniquely identify which command you mean. The CP command

Help (i.e., type out the letters h, e, 1, p, and hit Return) lists all the defined com-

mands. Pressing the Help key while partway through a command will display a list

of only those commands which match your input thus far. Section 3.2 in volume 1

of the documentation describes all the CP commands present in the software distri-

buted by Symbolics. You can define more of your own. One command which may

be particularly valuable to new users is Show Documentation. You specify

some topic you want looked up in the manuals and it displays a facsimile of that

portion of the documentation on your screen.

You may be wondering how the command processor knows whether you intend

your typein to be interpreted as a CP command or as a lisp expression. If you

begin with a letter, it assumes you're starting a CP command; with a non-

alphabetic initial character it tries to parse your input as a lisp expression. Since

lisp expressions usually begin with a left paren, it guesses correctly most of the

time. But what if you want to evaluate a lisp symbol — if the symbol's name

begins with a letter, the command processor will guess wrong and look for a com-

mand with that name. The solution here is to type a comma before the symbol's

name. The comma has special meaning for the command processor: it forces

whatever follows to be interpreted as a lisp expression, regardless of what the initial

character is.

If you'd like to know about some other features that are available whenever you're

typing to a lisp listener and you don't already feel as though you've seen more than

you can possibly remember, I suggest looking ahead at the section "The Input Edi-

tor and Histories" in chapter 3. It'll make life much easier as you take on the first

few problem sets.

Section 1.2 Typing to a Lisp Listener

1.3 Logging In

To login, you simply use the CP command Login with an argument of your user-

id. In my case, it looks like Login hjb. Alternatively, you could apply the lisp

function "login" to your user-id: (login 'hjb). The effect is the same, but the

former requires less typing (because of the automatic command completion). The

only reason I sometimes use lisp functions when there is an equivalent CP com-

mand is force of habit: the command processor is a fairly new feature, while my
fingers have been typing the lisp functions for years.

It's important to keep in mind the difference between a local login to the lisp

machine, and remote logins to other machines being used as file servers. Local

logins are controlled by a database called the namespace. To login locally with a

certain user-id requires that there be an entry in the namespace for that user-id. It

does not require a password, as there is no internal security on the lisp machine.

Many things on the lisp machine can be done with no one logged in. Some opera-

tions, however, do require that someone be logged in. Modifying the namespace,

for instance, is one of these operations. How, then, you may ask, do you create a

namespace entry for yourself if you can't modify the namespace unless you're

logged in, and you can't log in unless you're in the namespace? One option would

be to log in as someone else so you can create a namespace entry for yourself, and

then log in as yourself. But nothing so underhanded is really necessary. All lisp

machines have a dummy user in the namespace which the system itself uses when it

needs to do something which requires having someone logged in. (This situation

arises most notably while the machine is being booted — no one can log in until it's

finished booting, but it can't finish booting until it does a bunch of things that

require someone being logged in.) The dummy user is typically named "Lisp

Machine", with user-id "Lispm" or "NIL". Whatever it's called on your machine,

you can always use it by typing (si: login-to-sys-host). This is often a

handy trick to know about. You can now edit the namespace — use the CP com-

mand Edit Namespace Object — and create a user object for yourself. There

is introductory documentation on the namespace and the namespace editor in

chapter 11 of volume 1.

Whenever you log in to a lisp machine, unless you explicitly specify otherwise, it

tries to find your personal initialization file and load it into the lisp environment.

This is a file containing any number of lisp forms which customize the machine for

you. They will typically set some variable values and load some other files. Where
the machine looks for your init file depends on what you specified for your home
host in your namespace entry. If you specified a host running the UNIX*

10 GETTING STARTED ON THE LISP MACHINE Chapter 1

operating system, it will first look for a file named lispm-init .bn in your direc-

tory on that machine. If your home host is a lisp machine, it'll look for the newest

version of a file named lispm-init.bin.

The issue of remote logins arises whenever you try to do something from the lisp

machine on another computer across a network, like read or write a file. If the

remote host is a lisp machine, it won't ask for a password, and your local machine

can take care of establishing the connection with no intervention on your part. But

if the remote host is the sort that believes in security, say a UNIX system, it'll stop

your local machine from doing anything until you provide an appropriate login id

and password. Your local machine will pass the request right along to you. But

it's essentially a matter between you and the remote host — the local machine

doesn't care what username you use on the remote machine, or whether it's one

that exists in the namespace. The local machine is just a messenger in this case. It

will, however, try to be helpful. If you specify in your namespace entry what user-

names you want to use on the various remote hosts, the local machine will try those

first, even if those names are arbitrary nonsense as far as the local machine can tell.

And you can always override the default usernames.

And while we're on remote file systems, there's the question of whether you should

keep your files on a lisp machine or some other sort of file server. It depends on

what sort of set-up you have — how much disk space in what places, how many

users, etc. It's often the case that you'll want to keep as few files as possible on the

lisp machine disks, because the available space would be better utilized by virtual

memory and saved lisp worlds. Files can be kept on any machine you have an eth-

ernet connection to, with little loss of efficiency, so large file systems are effectively

dead weight on a lisp machine. If at all practical it makes more sense to convert

every available megabyte to virtual memory or room for saved worlds, which have

to be on the local disk.

1.4 The FEP

Having looked at the disk label brings up the Front-End Processor, or FEP. The

Fep is a 68000-based computer which handles starting up the main processor of the

lisp machine, and may also become active if the lisp machine enters an illegal state,

whether because of a hardware malfunction or system-software bug. You can tell

if your lisp machine is in the Fep if there's a prompt that looks like this: "Fep>",

and the clock at the lower left of the screen has stopped. For now, there are just

three Fep commands you should know. Continue, which may be shortened to

UNIX is a trademark of AT&T Bell Laboratories.

Section 1.4 The FEP 11

"con", tells the Fep to try having the lisp machine resume exactly where it left off.

If you were thrown into the Fep because of some serious system error, this is not

likely to work — you will probably be thrown right back into the Fep. But not

always. Start, which may be shortened to "st", does a warm boot. It tries to re-

start all of the machine's active processes while preserving the state of the lisp

environment (i.e., function and variable bindings). This is a something of a

kludge.* It can put things into an inconsistent state, and is something of a last

resort, but it is sometimes the only way to get a wedged machine going again, short

of wiping the environment clean, and losing whatever work was in progress. That is

the effect of the Fep command Boot, which may be shortened to "b". Boot does a

cold boot. It clears the machine's memory, reloads the microcode, restores one of

the saved worlds into the virtual memory, and does a start. This is how you get a

fresh machine.

There are times when you may want to get into the Fep so you can do a warm or

cold boot. Perhaps your machine has been used by someone else who has

significantly changed the lisp environment in unfamiliar ways, or who has used up

nearly all your virtual memory. Then you will likely want to do a cold boot. Or

perhaps, as often happens to me, you were playing with some critical part of the

system code (after all, it's written in lisp and is completely accessible), did some-

thing unwise, and now your machine is wedged, responding neither to keyboard

input nor mouse clicks. Then you may wish to resort to a warm boot, and salvage

what you can. So to get into the Fep, the preferred method is to use the CP com-

mand Halt Machine [or evaluate (si: halt)]. That'll do it. But if your

machine isn't responding to the keyboard, typing a command isn't an option. Then

you'll have to use hyper-control-Function. Yes, if you hold down hyper and control

and type Function, your lisp machine will enter the Fep under any conditions other

than hardware failure. This is not the preferred method because the lisp processor

will be rather rudely interrupted and may leave things in an inconsistent state. But

if all else fails, it is the appropriate action.

KLUGE, KLUDGE (Jclooj) noun.

1

.

A Rube Goldberg device in hardware or software.

2. A clever programming trick intended to solve a particularly nasty case in an efficient, if not

clear, manner. Often used to repair BUGS. Often verges on being a CROCK.

3. Something that works for the wrong reason.

4. verb. To insert a kluge into a program. "I've kluged this routine to get around that weird bug,

but there's probably a better way." Also "kluge up."

5. A feature that is implemented in a RUDE manner.

(The Hacker's Dictionary, Guy L. Steele, Jr., et at. Harper & Row, Publishers, New York, 1983.)

12 GETTING STARTED ON THE LISP MACHINE Chapter 1

1.5 Random Leftovers: the mouse, the monitor, the editor

A few observations on the mouse. The functions associated with clicking the mouse

buttons are completely context-dependent. It's up to the window the mouse is over

when you click. It is generally the case, though, that the current binding of the

buttons will be documented in the reverse video line near the bottom of the screen.

And it is also generally the case that clicking once on the left button will select the

window the mouse is pointing to, and clicking twice on the right button will get you

to the system menu. The system menu offers many useful operations, such as

creating windows, moving and reshaping existing windows, selecting some of the

programs which are accessible via the Select key, and some which are not, etc.

Play with it. It's a very good habit to keep an eye on the mouse documentation

line.

There is also a lot of other useful information available at the bottom of the screen.

From left to right, we have the date and time; the user-id of the currently logged in

user, if any; the current package (the set of all symbols is partitioned into pack-

ages, to minimize name conflicts — a cold-booted machine starts out in the "user"

package, which is where you'll probably do most of your work at the beginning);

the state of the current process ("Tyi" means awaiting keyboard input); and all

the way on the right, the names of any files that are open for reading or writing, or

a notice of what services have been invoked locally by some other machine. And
underneath the line of text you can sometimes see a few thin horizontal lines.

These are the run bars. The one immediately under the process state goes on when

some process is actively running. The one a bit to the left of that, midway between

the process state and the current package, indicates that you are paging, waiting

for something to be brought in from disk. The other two run bars, which appear

under the current package, you will see less often. They are related to garbage col-

lection.

One last bit of information on the monitor. We have some lisp machines which are

3600 models, and some which are newer 3670s. The two models are quite close in

most respects. One way in which they differ is how the brightness of the display is

controlled. The 3600 monitors have a knob on the bottom side of the console

cabinet, in the front right corner. To adjust the brightness of a 3670, hold down

the Local key and press "B" for brighter or "D" for dimmer. (3640s are like

3670s in this respect.)

The Zmacs editor. The built-in editor commands are multitudinous, and the total

number of available commands is continually growing because it's fairly easy and

very tempting to add new ones. The Appendix lists the most basic commands, but

by far the best way to find out what's around is to get used to using the online

Section 1.5 Random Leftovers: the mouse, the monitor, the editor 13

documentation. Some aspects of the lisp machine can be mastered by reading the

manuals, but the editor is not one of them. Type Help to an editor window, and

type Help again. Start exploring. The most commonly helpful of the help options

are A (Apropos), C (Command), and D (Describe). To get started, use Help-C on

c-X c-F and on c-X c-S. You should also try Help-A on "compile." And one of

the best sources of information on the lisp machine is the m-. command (meta-

period). It prompts for the name of something, then finds the file where whatever

you typed is defined. The something is often a function, but it can also be many
other kinds of lisp objects: a global variable, a flavor, a resource... Two other very

useful features of the editor that you might not run into right away are these: if

you type Suspend, you get a lisp listener which starts at the top of the screen and

grows as you need it. This funny window is called the typeout-window. Resume
returns to the editor. And m-X Dired, which is also invoked by c-X D, is a utility

for editing directories. Call it on some directory and type Help. (Keep in mind

that if it's a lisp machine directory, there's no security to keep you from deleting

absolutely anything.)

14 GETTING STARTED ON THE LISP MACHINE Chapter 1

1.6 Problem Set #1

Questions

This "problem set" is really just a sample programming session, to familiarize you

with basic operations on the lisp machine.

1

.

Create a namespace entry for yourself.

2. Log in.

3. Switch to the editor and create an empty buffer for a file in your home direc-

tory named "fact.lisp" (if your home directory is on a lisp machine) or

"fact.l" (if your home directory is on a UNIX machine with a 14 character

limit on file names).

4. Enter the text for a function named "fact" which returns the factorial of its

argument.

5. Compile the function from the editor with c-sh-C, and test it from the

typeout window.

6. When you're satisfied with the function's performance, save the buffer and

compile the resulting file.

7. Cold boot the machine.

8. Log in, and note that the function "fact" is now undefined.

9. Load the compiled version of your file.

10. Run your function successfully.

Section 1.6 Problem Set #1 15

Solutions

1. (si:login-to-sys-host), then Edit Namespace Object. Click on

"create," click on "user," enter your chosen login-id, fill in the required fields

(marked with *), if you wish fill in the optional fields, click on "save," click

on "quit."

2. Login yourid

3. Select-E, c-X c-F fact, lisp (or fact.l)

4. (defun fact (n)

(if (zerop n)

1

(* n (fact (1- n))))

)

5. Type c-sh-C while anywhere inside the text of the function to compile it.

Then hit the Suspend key to get to the typeout window, and evaluate (fact

5). The Resume key returns to the editor window.

6. c-X c-S, Meta-X Compile File (Actually, if you skip the c-X c-S, Compile

File will ask if you want the buffer saved first.)

7. Suspend or Select-L, then Halt Machine. Type b (then Return) to the

Fep prompt.

8. Login yourid, then (fact 5)

9. (load "host : >dir>subdir>fact") for a lisp machine,

(load "host : //dir//subdir//fact") for a UNIX host.

10. (fact 5)

Chapter 2

WHAT'S A FLAVOR?

(For a more detailed presentation of this material, see Part X, Flavors, in volume 2

of the Symbolics documentation. I have skipped many features of flavors which

you may find useful, and which are fully described there.)

The flavor system is the lisp machine's mechanism for denning and creating active

objects, that is, objects which can receive messages and act on on them. A flavor is

a class of active objects. One such object is called an instance of that flavor.

There are two primary characteristics of a flavor: the set of messages an instance

of that flavor can receive, and the set of state variables an instance of that flavor

has. The state variables are called instance variables. Every object of a given

flavor has the same set of instance variables, but the values of those instance vari-

ables are likely to vary from object to object. And for each message a flavor can

receive, it has a corresponding function to invoke. The function which gets called

to handle a particular message is called the flavor's method for that message. That

method is shared by all instances of the flavor.

So, for instance, the window you see on a freshly booted machine is an instance of

the flavor tv:lisp-listener Like any instance of lisp-listener, it can handle 286

18 WHAT'S A FLAVOR? Chapter 2

different messages (as of the current software). One of the messages it handles is

: expose. Its expose method is a function which makes the lisp-listener visible on

your screen, if it is not already. All lisp-listeners have the same expose method.

One of the instance variables of flavor lisp-listener is exposed-p. All lisp-

listeners have an exposed-p instance variable. If a given lisp-listener happens to be

exposed, perhaps because you just sent it the :expose message, the value of its

exposed-p instance variable will be t. Otherwise it will be nil.

2.1 Basic Usage

Flavors are defined with the defflavor special form. Here is a simple definition of a

flavor named "ship," which might be used in a program for a space wars game.

(defflavor ship
(x-position y-position
x-velocity y-velocity mass)

())

It states that all instances of flavor ship will have five instance variables, as listed.

(The empty list following the instance variables is related to a feature we'll consider

in the section "Mixing Flavors.") Here are two methods for the ship flavor, to han-

dle the messages : speed and : direction.

(defmethod (ship : speed) ()

(sqrt (+ (expt x-velocity 2)

(expt y-velocity 2))))

(defmethod (ship : direction) ()

(atan y-velocity x-velocity))

A defmethod looks very much like a defun. It has a function-spec, an argument

list, and a body. The body will be executed in an environment in which the names

of ship's instance variables will refer to the instance variables of the specific ship

object which received the message.

We might also wish to have methods which allow one to examine the values of

ship's instance variables. Like:

(defmethod (ship : x-position) ()

x-position)

Section 2.1 Basic Usage 19

Writing one of these methods for every instance variable would be tedious. For-

tunately there is an option to defflavor that automatically generates such methods

for all the instance variables. There is also an option which causes defflavor to

automatically generate methods for setting the values of all the instance variables.

Their definitions are as though one had done:

(defmethod (ship : set-x-position) (new-position)

(setq x-position new-position))

To get both of these options, our updated call to defflavor would look like:

(defflavor ship
(x-position y-position
x-velocity y-velocity mass)

()

: gettable-instance-variables
: settable-instance-variables

)

To make an instance of flavor ship, we use the make-instance function:*

(setq my-ship (make-instance 'ship))

This will return an object whose printed representation looks like #<SHIP

25564553>. (The funny number will be the virtual memory address, in octal, of

the instance.)

To send a message to an instance, you use the send function. (The effect of send is

in fact identical to that of funcall, but when funcalling an instance send is preferred

for reasons of clarity.) We can now do things like:

(send my-ship : set-x-velocity 1000)

(send my-ship : set-y-velocity 500)

(send my-ship : speed) - 1118.0339

In addition to the instance variables, another very important variable is bound dur-

ing the execution of a method. The value of the variable self will be the instance

object itself. It's often used to send the object another message:

(defmethod (ship : check-speed) ()

in the special case where the object is a window, you should instead use tv:make-window, which will

perform some necessary bookkeeping operations in addition to calling make-instance for you.

20 WHAT'S A FLAVOR? Chapter 2

(when (> (send self : speed) 3.0e8)
(ferror "travel at rates greater than the -

speed of light is not permitted"))

)

2.2 Initial Values for Instance Variables

Instances of our ship flavor start out with all their instance variables unbound.

Sending a newly constructed ship the :x-velocity message, for instance, would

result in an unbound-variable error. But there are two ways to arrange for initial

values to be assigned to an instance when it is made. If you have used the

: initable-instance-variables option to defflavor, then you may specify

the initial values in the call to make-instance. So with this defflavor:

(defflavor ship
(x-position y-position
x-velocity y-velocity mass)

()

: gettable-instance-variables
: settable-instance-variables
: initable-instance-variables

)

you could use this call to make-instance:

(make-instance 'ship : x-position 30 : y-position -150

:mass 10)

The instance variables mentioned in the call will have the specified initial values.

Instance variables not mentioned will be unbound, as before. Now suppose you

want all instances to have certain initial values for certain instance variables.

Perhaps you want the x-velocity and y-velocity of all new ships to be 0. You could

specify so in every call to make-instance. But there is an easier way. You can

specify in the defflavor what initial value you wish the instance variables to have.

Here's our next version of the defflavor for ship:

(defflavor ship (x-position
y-position
(x-velocity 0)

(y-velocity 0)

mass)

()

: gettable-instance-variables

Section 2.2 Initial Values for Instance Variables 21

: settable-instance-variables
: initable-instance-variables

)

Now all ships will start out with x- and y- velocities of — unless you specify oth-

erwise in the make-instance. An initial value specified in make-instance will over-

ride any default initial values given in the defflavor.

Here is a slightly more complex example, taken from p. 427 of the flavor documen-

tation:

(defvar *default-x-velocity* 2.0)

(defvar *default-y-velocity* 3.0)

(defflavor ship ((x-position 0.0)

(y-position 0.0)

(x-velocity *default-x-velocity*

)

(y-velocity *default-y-velocity*

)

mass

)

()

: gettable-instance-variables
: settable-instance-variables
: initable-instance-variables

)

(setq another-ship
(make-instance "ship :x-position 3.4))

The values of the new ship's instance variables will be 3.4 for x-position (the

make-instance specification overrides the default of 0.0), 0.0 for y-position (the

default), 2.0 for x-velocity and 3.0 for y-velocity (the values of the two global vari-

ables), and mass will be unbound.

It's useful to know that describe, a function which tries to print helpful information

about its argument, no matter what it is, lists the values of all the instance vari-

ables when applied to an instance:

(describe another-ship) would print

#<SHIP 40113625>, an object of flavor SHIP,
has instance variable values

:

X-POSITION: 3.4
Y-POSITION: 0.0

X-VELOCITY: 2.0

22 WHAT'S A FLAVOR? Chapter 2

Y-VELOCITY: 3.0

MASS

:

unbound

2.3 Mixing Flavors

The real power of the flavor system lies in its facility for producing new flavors by

combining existing ones. Suppose we wished to define an "asteroid" object. It

would need much of the same functionality as the ship flavor. In fact, all of ship's

instance variables and methods would be appropriate. But we do want to have two

distinct kinds of object, because we might wish to add more functionality to ship

and asteroid which would not be shared. Ship, for instance, could use an instance

variable for its engine power, or we might want to give each ship a name. And for

each asteroid we might want to characterize its composition (perhaps part of the

game requires replenishing resources by mining asteroids).

One way to handle the situation would be to duplicate the lisp code for the common
functionality in both flavors. Such duplication would clearly be wasteful, and the

program would become far more difficult to maintain — any modifications would

have to be repeated in both places. A better approach would be to isolate the com-

mon functionality and make it a flavor in itself. We can call it "moving-object."

Now the ship and asteroid flavors can be built on moving-object. We just need to

specify the added functionality each has beyond that provided by moving-object.

The defflavor for moving-object can be exactly like our existing defflavor for ship.

The new ship defflavor will have moving-object specified in its list of component

flavors, which up until now has been an empty list.

(defflavor ship (engine-power name)
(moving-object)

: gettable-instance-variables
: initable-instance-variables

)

And asteroid:

(defflavor asteroid (percent-iron)
(moving-object)

: gettable-instance-variables
: initable-instance-variables

)

Ship and asteroid both inherit all of moving-object's instance variables (including

their default values) and all of its methods. They are each specializations of the

abstract type moving-object. And the specialization could continue. We could

Section 2.3 Mixing Flavors 23

define a "ship-with-passengers" flavor, built on ship, with an added instance vari-

able passengers, and added methods for :add-passenger and : remove-
passenger.

A flavor is not limited to having only one component flavor — it may have any

number. So the set of components for a given flavor is actually a tree, consisting of

all the flavor's direct components, and all of their direct components, and so on.

Figure 1 shows the tree for the flavor tv:lisp-listener. (All are in the tv package,

unless otherwise noted.) As you can see, it can get quite elaborate. tv:lisp-listener

has 26 component flavors in all. Of the 287 handlers I mentioned earlier that

tv:lisp-listener has, only one of them is locally defined in tv:lisp-listener. The rest

are all inherited, about 150 from tvrsheet alone, and another 50 or so from

tv:stream-mixin.

2.4 Combined Methods

Saying simply that a flavor inherits all the methods of its components sweeps an

important issue under the rug. What happens if more than one of its components

define methods for the same message? Which gets used? It depends on the order-

ing of the component flavors. As it says on p. 432 of the documentation, "The tree

of flavors is turned into an ordered list by performing a top-down, depth-first walk

of the tree, including nonterminal nodes before the subtrees they head, and elim-

inating duplicates." So the for tv:lisp-listener, the ordered list starts with: lisp-

listener, listener-mixin, listener-mixin-internal, process-mixin, window...

If more than one component flavor defines a method for a given message, with the

kind of methods we have seen so far, the one which appears first on the list is taken

as the combined flavor's method for that message. In particular, this means that

any methods (again, of the type we have seen so far) defined locally in the new

flavor will supersede all methods (for the same message) defined in any of the com-

ponent flavors, since the new flavor is first on the ordered list. For example, the

flavors tv.lisp-listener and tv:essential-window both define methods for the message

: lisp-listener-p. The one in tv:essential-window always returns nil. The

one in tv:lisp-listener always returns t. So a window without tv:lisp-listener mixed

in will answer the : lisp-listener-p message with nil. But a lisp-listener

will answer t, because its local method overrides tv:essential-window's.

[There is an exception to the top-down depth-first rule. If you're

already confused, skip these two paragraphs for now and come

back later. If not, it's time to learn about the : included-
flavors option to defflavor. Suppose you're defining a flavor

24 WHAT'S A FLAVOR? Chapter 2

LISP-LISTENER

LISTENER-MIXIN

LISTENER-
MIXIN-

INTERNAL
/

PROCESS STREAM

BORDERS
MIXIN

MIXIN- MIXIN

WINDOW

SELECT-
MIXIN

MINIMUM-
WINDOW

LABEL-
MIXIN

GRAPHICS-
MIXIN

ESSENTIAL-
EXPOSE

ESSENTIAL-
SET-EDGES

ESSENTIAL-
WINDOW

ESSENTIAL-
LABEL-
MIXIN

ESSENTIAL-
ACTIVATE

ESSENTIAL-
MOUSE

MARGIN-HACKER-MIXIN

Sh INTERACTIVE -STREAM

ShLINE-OUTPUT
STREAM-MIXIN

ST.BIDIRECTION-
STREAM

ShCHARACTER
STREAM

SHEET

ShOUTPUT-
STREAM

ShSTREAM

SL-INPUT-STREAM

Figure 1. Flavor tree for lisp-listener

Section 2.4 Combined Methods 25

(call it my-flavor) which is intended to be used as a component for

other flavors (call one of them user-flavor). And suppose that for

the methods defined in my-flavor to work properly, it's necessary

that some other flavor (call it needed-flavor) also be mixed into the

user-flavor. And suppose further that needed-flavor is a rather

basic flavor, and so should appear towards the end of user-flavor's

ordered list. You could guarantee that needed-flavor always be

present whenever my-flavor is present by making it a component of

my-flavor. But then it would appear just behind my-flavor in

user-flavor's ordered list of components. (Possibly closer to the

front if some other component flavor uses it, but certainly no

further back.) And some of needed-flavor's methods might over-

ride methods of other flavors which were really intended to over-

ride needed-flavor's methods, expecting to find needed-flavor near

the end of the list. The solution here is the rincluded-
flavors option. My-flavor lists needed-flavor as an included

flavor. The effect is that when user-flavor uses my-flavor, needed-

flavor will appear in the ordered list immediately after my-flavor

only if no other flavors in user-flavor have needed-flavor as a com-

ponent. If some other flavor does — and the expected case is that

somebody near the end of the list will — then needed-flavor will

appear there, as though my-flavor never mentioned it.

An example: look back at the lisp-listener tree, and note the posi-

tion of process-mixin. It will be the fourth flavor in lisp-listener's

ordered list. The defflavor for process-mixin specifies that

essential-window is an "included-flavor," because for process-mixin

to work properly, any flavor which uses it must also use essential-

window. But if process-mixin specified essential-window as a nor-

mal component, essential-window would be brought all the way
from its current position near the end of the list to fifth position,

just behind process-mixin. Worse yet, sheet would be pulled from

last to sixth, because it is a component (normal) of essential-

window. But many of sheet's methods are supposed to be overrid-

den by the other flavors, e.g., select-mixin. If sheet were pulled in

front of select-mixin, the lisp-listener would never see many of the

select-mixin methods, and it wouldn't behave properly at all.

J

As I've hinted, there are more kinds of methods than we have so far seen. All our

methods have been what are called "primary" methods, and by default, when there

is more than one primary method for the same message in the ordered list of com-

ponent flavors, the one which appears first overrides all others. But sometimes you

26 WHAT'S A FLAVOR? Chapter 2

don't want to completely override the inherited primary method; sometimes you

would like to specify something to be done in addition to the action of the inherited

method rather than instead of. Then you would define a : before or an rafter
method, often called before and after daemons.

Here's how it works. Suppose I did the following defmethod:

(defmethod (asteroid rafter : speed) ()

(do-something-or-other)

)

Asteroid already has a primary : speed method, inherited from moving-object.

Once this new rafter : speed method is defined, asteroid will have a "com-

bined method" for r speed, consisting of a call to the moving-object primary

method followed by a call to the asteroid r after method. Any number of flavors

in the ordered list of components may provide daemons. They will all be included

in the resulting combined method. To quote from the documentation again,

"Before-daemons are called in the order that flavors are combined, while after-

daemons are called in the reverse order. In other words, if you build bar on top of

foo, then bar's before-daemons will run before any of those in foo, and bar's after-

daemons will run after any of those in foo." The primary method which appears

first in the list will be called after all the before daemons (even if some of the

before daemons appear later in the list than the primary method) and before all the

after daemons.

The value returned by a combined method is exactly the value returned by the pri-

mary method — before and after daemons are executed only for side effect, i.e.,

their return values are ignored. It is allowable to have before and after daemons

for a message which has no primary method; in such a case the combined method

will return nil.

Before and after daemons provide a lot of flexibility (perhaps more than you'd like

to have just yet), but sometimes not enough. Fairly frequently a situation demands

altering the context in which a primary method runs. A typical case would be

binding a special variable to some value around the execution of the primary

method, or putting the primary method into an unwind-protect or inside a catch.*

Or deciding in some cases to skip the primary method altogether. Before and after

daemons are unable to do any of these. The kind of method which can is called a

whopper.

Whoppers are best explained by example. Here are three which handle the cases I

* If unwind-protect or catch are unfamiliar, you might want to look them up in volume 2.

Section 2.4 Combined Methods 27

just listed. To understand them you'll need to know that continues hopper is a

system-provided function which calls the regular (non-whopper) methods for this

message.

(defwhopper (some-flavor : some-message) (argl arg2

)

(let ((some-special-variable temporary-value))
(continue-whopper argl arg2))

)

(defwhopper (some-flavor : some-message) (argl arg2

)

(unwind-protect
(progn (setup)

(continue-whopper argl arg2)

)

(cleanup))

)

(defwhopper (some-flavor : some-message) (argl arg2

)

(unless (some-special-test argl)

(continue-whopper argl arg2))

)

Unlike before and after daemons, whoppers have control over the value returned by

the combined method. They most commonly just pass up the value returned by

continue-whopper (which will be whatever the primary method returns, as before),

but they needn't. I could, for instance, do this:

(defwhopper (doubling-mixin : calculate) (argl arg2)

(* 2 (continue-whopper argl arg2)))

And since continue-whopper is just a function like any other, there's no reason you

couldn't do something like this:

(defwhopper (doubling-mixin-of-another-sort : some-message)
(argl arg2

)

(continue-whopper argl arg2

)

(continue-whopper argl arg2)

)

(defwhopper (yet-another-doubling-mixin : some-message)
(argl arg2

)

(continue-whopper argl (continue-whopper argl arg2))

)

One point about ordering needs to be clarified. A whopper surrounds not just the

primary method, but all the before and after daemons, too. So suppose flavor "out"

is built on top of "in," and both out and in have a whopper, a before daemon, an

after daemon, and a primary method for message : mumble. Out's combined

28 WHAT'S A FLAVOR? Chapter 2

method for : mumble would look like Figure 2.

out-before

in-before

out-whopper in-whopper out-primary

in-after

out-after

Figure 2. Structure of combined method

There is another kind of construct called a wrapper. This was the predecessor of the

whopper, but now that the whopper exists, which is easier to use, there is seldom

any need to use wrappers.

2.5 Other Ways of Combining Methods

All that I said in the previous section applied only to the default style of combining

methods, called the : daemon type. There are actually about a dozen different

types of method combination. Moreover, users can define additional types (with

some effort). Before despairing, though, note that at least 90% of the time the

: daemon type of method combination is used. All of the built-in types are dis-

cussed in chapter 53 of Symbolics volume 2, "Method Combination." I will

describe one of them, the : or type, both because it is a relatively simple example

of what can be done, and because I've actually seen it used.

First, in order to specify that you wish to use a type of method combination other

than daemon, you use the : method-combination option to defflavor. Here is a

Section 2.5 Other Ways of Combining Methods 29

defflavor pulled from the source code for the window system:

(DEFFLAVOR ESSENTIAL-MOUSE () ()

(: INCLUDED-FLAVORS ESSENTIAL-WINDOW)

(: METHOD-COMBINATION (:OR : BASE-FLAVOR-LAST : MOUSE-CLICK))

)

essential-mouse is one of the flavors that appears in the lisp-listener tree given

above. It's the mixin that enables a window to interact properly with the mouse.

As you can see, this flavor has no instance variables and no component flavors. It

has essential-window as an : included-f lavor, though that has no bearing on

the immediate issue of non-standard method combination. The : method-
combination option is what concerns us. It says that the : mouse-click
methods for all flavors built on this flavor should use :or style combination, and

that the order of combination should be base flavor (essential-mouse) last.

So what's :or combination, and what does base-flavor-last mean? In :or combi-

nation, all the methods appearing in the ordered list of component flavors are col-

lected, and each is called in turn. If a particular method returns a non-nil value,

the remaining methods are skipped. Otherwise (the method returned nil), the

next one is called. We just step through all the methods, stopping as soon as one

returns a non-nil value. Base-flavor-last means that the essential-mouse method for

: mouse-click will be the last one to be tried, i.e., the methods will be collected

and tried in the exact same order as their flavors appear in the ordered list of com-

ponents. The opposite ordering may be specified with :base-flavor-f irst.

Suppose I define a flavor built (directly or indirectly) on essential-mouse, and give

my flavor a : mouse-click method. Then whenever the : mouse-click mes-

sage is sent to an instance of my flavor, my : mouse-click method will be called.

If my method returns anything other than nil, no other : mouse-click
methods will be called. If my method returns nil, then any .-mouse-click
methods defined by flavors which are components of my flavor will get a chance. If

the only other : mouse-click method is essential-mouse's, or if all the others

return nil, then the essential-mouse method for : mouse-click will be called.

The : mouse-click message is sent to the window under the mouse blinker

whenever you press one of the mouse buttons. (The mouse process takes care of

sending the message — you don't need to worry about it.) If you want to do some-

thing special when the buttons are pressed, you simply need to define an appropri-

ate : mouse-click method. Now there are six different kinds of button presses

(three different buttons, and single or double clicks on each button). Maybe you

have something you want to do if there is a single click on the left button, but not

30 WHAT'S A FLAVOR? Chapter 2

if there is a double click on the middle button. One of the arguments to the

method will tell which kind of button press there was, so your method should test

the argument, and if it's the kind of button press you want to handle (single left),

do whatever you had in mind, and return something non-nil, so that the other

: mouse-click methods won't be called and possibly do something else with the

single left click, interfering with your action. If it's some button press that you

don't care about (double middle), return nil so that the other methods will have a

chance to handle it.

Here's essential-mouse's method for : mouse-click, which is called if no one else

handles the button press:

(DEFMETHOD (ESSENTIAL-MOUSE : MOUSE-CLICK) (BUTTONS X Y)

(COND ((AND (= BUTTONS #\MOUSE-L-1)

(NEQ SELF SELECTED-WINDOW)

(GET-HANDLER-FOR SELF ': SELECT))

(MOUSE-SELECT SELF)

(SEND-IF-HANDLES SELF : FORCE-KBD- INPUT
x

(: MOUSE-BUTTON , BUTTONS , SELF ,X ,Y)

T))

((OPERATION-HANDLED-P SELF : FORCE-KBD- INPUT)

(SEND SELF : FORCE-KBD-INPUT
*(: MOUSE-BUTTON , BUTTONS , SELF ,X ,Y)

T))

((= BUTTONS #\MOUSE-R-1)

(MOUSE-CALL-SYSTEM-MENU)

)

(T

(BEEP))

)

T)

You don't need to understand all the details to write your own : mouse-click
methods. All you need to understand is the general format of testing the "buttons"

argument and choosing some action accordingly.

2.6 Vanilla-flavor

shvanilla-flavor is the generic flavor on which all other flavors are built. Even if

your defflavor specifies no components, your flavor will still have vanilla-flavor

mixed in because the flavor system does it automatically (unless you explicitly

instruct otherwise with the :no-vanilla-flavor option to defflavor). But

Section 2.6 Vanilla-flavor 31

don't complain, because vanilla-flavor is very handy. It provides several extremely

important methods. The : print-self method is called whenever an instance is

to be printed. (The representation of the first ship instance we made, #<SHIP
25564553>, was actually printed on my monitor by ship's : print-self
method, inherited from vanilla-flavor.) The : describe method is used by the

describe function. (The example shown earlier, where the describe function listed

all of a particular ship's instance variables, was printed by ship's : describe
method, also inherited from vanilla-flavor.) The :which-operations method

returns a list of all the messages handled by the object. The :get-handler-

for method takes one argument, the name of a message, and returns the function

object which is the instance's handler for that message.

See chapter 52 in the flavor documentation for the remaining vanilla-flavor

methods.

2.7 Fun and Games

And from The Hacker's Dictionary, Guy L. Steele, Jr., et ah

FLAVOR noun.

1. Variety, type, kind. "Emacs commands come in two flavors: single-character

and named." "These lights come in two flavors: big red ones and small green

ones." See VANILLA.

2. The attribute that causes something to be FLAVORFUL. Usually used in the

phrase "yields additional flavor." Example: "This feature yields additional

flavor by allowing one to print text either right-side-up or upside down."

VANILLA adjective.

Standard, usual, of ordinary FLAVOR. "It's just a vanilla terminal; it

doesn't have any interesting FEATURES." When used of food, this term

very often does not mean that the food is flavored with vanilla extract! For

example, "vanilla-flavored wonton soup" (or simply "vanilla wonton soup")

means ordinary wonton soup, as opposed to hot-and-sour wonton soup.

This word differs from CANONICAL in that the latter means "the thing you

always use (or the way you always do it) unless you have some strong reason

to do otherwise," whereas "vanilla" simply means "ordinary." For example,

when MIT hackers go to Colleen's Chinese Cuisine, hot-and-sour wonton

soup is the canonical wonton soup to get (because that is what most of them

usually order) even though it isn't the vanilla wonton soup.

32 WHAT'S A FLAVOR? Chapter 2

2.8 Problem Set #2

Questions

Part I

1. Define a function of four arguments that draws a square. The args are the

window, the x and y coords of the square's center, and the size (length of

each side).

2. Define a flavor of window which handles a : draw- square message by call-

ing your draw-square function. Then create a window of that flavor, being

sure to keep a pointer to it, and verify that the : draw-square message

works.

3. Make the size argument to the method optional, defaulting to the value of a

global variable *square-size*. Make the default size 100 pixels.

4. Arrange it so that clicking left on the mouse while over your window draws a

square centered on the mouse position, using the default size.

5. A. Try these out — they temporarily bind the default size to 50 instead of

100, and then draw a square using the default size.

(let ((*square-size* 50))

(send w : draw-square 150 150))

(let ((*square-size* 50))

(process-sleep 300)) click left over my-window during the sleep

Why doesn't the second work? Why isn't the binding of *square-size*

to 50 being seen?

B. There is special form called let-globally which will get around this

problem. Look it up in the manual and use it with a process-sleep so

that clicking left over the window will make a square whose size is con-

trolled by the let-globally.

Making the default size an instance variable will get around the problem

addressed in (5), and has several other advantages. We no longer clutter

things up with an extra global variable. More important, with the default

size an instance variable, it's possible for each instance of my-window to

simultaneously have a different value for default-square-size.

Redefine your flavor of window (and make a new instance) so the following

works:

Section 2.8 Problem Set #2 33

(let ((old-size (send w :default-square-size))

)

(send w : set-default-square-size 50)

(process-sleep 300)

(send w : set-default-square-size old-size))

7. What would happen if, during the process-sleep in the let in problem (6), I

typed c-Abort? The reset of default-square-size back to its previ-

ous value would never happen. The let, which is intended to be without

side-effect, would have permanently changed the value of the instance vari-

able.

Add something to the let in problem (6) so that it will be guaranteed to reset

default-square-size to its previous value.

8. Without duplicating any code, define a new flavor of window, doubling-

window, which behaves just like the window you've already defined, except

that the squares it draws are twice as big as you ask for. That is, if you click

left the square will be twice the size specified by the window's default-

square-size instance variable, and if you explicitly send the : draw-

square message the square will be twice the size specified by the third argu-

ment to the message.

Part II

Not too long ago, I had to track down some bugs in the speech editor I was work-

ing on, related to the ordering of the components of one of my flavors. I had

switched the order of two components to fix one bug, and apparently introduced

some new ones. At least, the program was misbehaving in a way it previously

hadn't, and the only relevant change I'd made was the component reordering. It

was a sort of misbehavior that would have been difficult to debug by interrupting

the program while it was doing the wrong thing, examining the state of the world,

and working back to see which message-handler was responsible for the new

behavior. So I instead decided to find out what messages would be handled

differently with the new component ordering, and work forward to see which of

those changed handlers could be causing the odd behavior.

The Flavor Examiner (Select-X) has a facility for listing all the message-handlers

of a given flavor, together with the name of the flavor the handler was inherited

from. So all I had to do was list all the handlers for my two flavors, and compare

them. If only one of the two handled a particular message, it wouldn't matter in

which order the flavors were mixed in, since I would get the same handler either

way. And if they both handled a message, but handled it with the same inherited

method from a common component, the order of combination still wouldn't matter.

Any messages, however, which were handled by both flavors but with different

34 WHAT'S A FLAVOR? Chapter 2

methods, would be likely suspects. Which handler my combined flavor had would

indeed depend on the order of combination.

It would have been a simple task, except that the two flavors involved each had

between 190 and 200 handlers. Both included the flavor tv:window, which has 194

handlers. Nearly all of the handlers I had to wade through were internal to

tvrwindow (mainly from the flavors tvrsheet and tv:stream-mixin) , and shared by my
two flavors. There were only a handful of suspects, and once I found them it did

not take too long to realize that my mistake had been in using tv:window-pane

where I should have used tv:pane-mixin. The bugs went away. But it was a far

more painful experience than it would have been if we had a few simple utilities for

filtering the lists of handlers. This portion of the problem set asks you to write a

few such facilities.

1

.

Write a function of two arguments, to be called on two instantiated objects of

different flavors. It should return a list with four sublists: a list of handlers

in flavor- 1 and not in flavor-2, a list of handlers in flavor-2 and not in flavor-

1, a list of handlers in both flavors, and a list of pairs of corresponding

handlers, for messages handled by both flavors but with different handlers.

2. That's already enough to be useful, but often a flavor is not instantiated, and

sometimes may not even be instantiable without further mixins. The function

you've defined won't work on such flavors. Write a similar function which

will take as arguments the names of two flavors.

3. The answer to (1), and depending on how you did it, quite possibly the

answer to (2), are subject to a bug of sorts. They may decide under certain

conditions that two handlers are different, when for all practical purposes

they are not. Consider the following:*

FOO (foo)

1. interjection. Term of disgust. For greater emphasis, one says MOBY FOO (see MOBY).

2. noun. The first metasyntactic variable. When you have to invent an arbitrary temporary

name for something for the sake of exposition, FOO is usually used. If you need a second one,

BAR or BAZ is usually used; there is a slight preference at MIT for bar and at Stanford for

baz. (It was probably at Stanford that bar was corrupted to baz. Clearly, bar was the origi-

nal, for the concatenation FOOBAR is widely used also, and this in turn can be traced to the

obscene acronym "FUBAR" that arose in the armed forces during World War II.)

Words such as "foo" are called "metasyntactic variables" because, just as a mathematical

variable stands for some number, so "foo" always stands for the real name of the thing under

discussion. A hacker avoids using "foo" as the real name of anything. Indeed, a standard

convention is that any file with "foo" in its name is temporary and can be deleted on sight.

BAR
The second metasyntactic variable, after FOO. If a hacker needs to invent exactly two names

Section 2.8 Problem Set #2 35

(defflavor foo () ()

)

(defflavor bar () ()

)

(defmethod (foo : silly-message) () nil)

(defmethod (bar : before : silly-message) () nil)

(defflavor flav-1 (

)

(foo bar)

)

(defflavor flav-2 (

)

(foo bar)

)

Flav-1 and flav-2 each have a combined method for the message : silly-

message, and they use the same components for their respective combined

methods. I would like these two combined methods to be considered the

same, and fall into the third of our four sublists. But your functions may be

putting such pairs of methods into the fourth sublist. If so, modify one or

both of your answers to (1) and (2) to re-classify these methods accordingly.

Of all your answers to questions (l)-(3), select the one that seems to be the

most useful, and merge it into the Flavor Examiner.

for things, he almost always picks the names "foo" and "bar."

(The Hacker's Dictionary, Guy L. Steele, Jr., et al)

36 WHAT'S A FLAVOR? Chapter 2

Hints

Part I

1. Your function should either send the window the : draw- line message four

times, or the : draw- lines message once. You can find out about the

arguments to the : draw-line and : draw-lines messages by looking

them up in the index to volume 7.

2. Your flavor of window should be built on tv.window. The : draw- square
method will need to use the self variable.

Using the window brings up a somewhat subtle issue. At times you'll need

the lisp listener exposed so you can type commands. And at times you'll need

your new window exposed so it can display the squares being drawn. You

could, then, alternate between the two windows, but that becomes awkward.

Far better is to position and shape the two windows such that they can both

be exposed simultaneously. One procedure would be to first narrow the lisp

listener down to the left half of the screen (choose Edit Screen from the sys-

tem menu, then Move Single), then make your window with the following

form, choosing an area with the mouse that doesn't overlap the narrowed lisp

listener:

(setq w (tv: make-window 'my-window :edges-from : mouse

:expose-p t)

)

Now you're ready to try drawing squares, with (send w : draw-square
...).

3. The global variable should be defined with defvar or defconst, and initialized

to 100 in the call to defvar/const. The redefined method should include in its

arglist "^optional (size *square-size*)".

4. The window needs a : mouse-click method. Recall that :mouse-click
methods use : or combination, so your method should return t if it handles

the click, and nil otherwise.

5. A. Think about processes.

B. let-globally looks just like a let.

6. The flavor will have an instance variable named default-square-size,
and you'll need to use the rsettable-instance-variables option.

The new : draw-square method will have to access the instance variable.

7. Use unwind -protect

Section 2.8 Problem Set #2 37

8. Your new flavor should be built on the old one, and should have a whopper

for : draw- square.

Part II

1. You can get a list of all the messages an object handles with :which-

operations. And given a specific message, you can get the handler for it

with :get-handler-for.

2. The Flavor Examiner finds the methods from the flavor name, without having

an instantiated object. Find out how. As a simpler and nearly as useful

alternative, note that the editor command M-x List Combined Methods

(among others) can do the same thing as long as the flavor has been instan-

tiated at least once, and track down what it does. (Try meta-. on com-list-

combined-methods.) This won't help for uninstantiated flavors, but does

remove the need to have a pointer to an actual instance in cases where the

flavor has been instantiated.

3. If you're modifying your answer to (1), you're probably dealing with com-

piled function objects. Notice that the describe function, when applied to the

compiled function object for a combined method, prints the necessary infor-

mation under the title extra info, after :fdefinition-location-
hints. Find out how.

If you're modifying your answer to (2) you probably already have a data

structure containing the necessary information, and you just need to make

use of that information to re-classify the handlers.

4. The source code for the Flavor Examiner is in the file "sys: window; flavex."

38 WHAT'S A FLAVOR? Chapter 2

Solutions

Part I

x half-size)

)

y half-size))

)

1. (defun draw-square (window x y size)
(let* ((half-size (// size 2))

(xO (- x half-size)) (x1 (+

(yO (- y half-size)) (y1 (+

(send window :draw-line xO yO xO y1

)

(send window : draw- line xO y1 x1 y1

)

(send window : draw-line x1 y1 x1 yO

)

(send window :draw-line x1 yO xO yO))

)

(defun draw-square (window x y size)
(let* ((half-size (// size 2))

(xO (- x half-size)) (x1 (+ x half-size))
(yO (- y half-size)) (y1 (+ y half-size)))

(send window : draw-lines tv:alu-ior
xO yO xO y1 x1 y1 x1 yO xO yO))

)

2. (defflavor my-window (

)

(tv: window)

)

(defmethod (my-window : draw-square) (x y size)
(draw-square self x y size))

3. (defvar *square-size* 100)

(defmethod (my-window : draw- square)
(x y &.optional (size *square-size*

(draw-square self x y size))

4. (defmethod (my-window : mouse-click

(cond ((= buttons #\mouse-l-1)

(send self : draw-square (

(buttons x y,

5. A.

t)

(t nil)))

x tv: left-margin-size

)

(- y tv: top-margin-size)

)

prevent other .mouse-click methods

from being called (:or combination)

allow other kinds of clicks to fall through

It doesn't work because the : mouse-click method is called from

the mouse process, and different processes each have their own variable

binding stacks. The mouse process can see the global value of

square-size (100) which was set by the defvar, but not the let bind-

ing (50) which is in the binding stack of your lisp listener. (There is

Section 2.8 Problem Set #2 39

more information on processes in the next chapter.)

B. (let-globally (
(*square-size* 50))

(process-sleep 300))

6. (defflavor my-window
((default-square-size 100)

)

(tv: window)
: settable-instance-variables

)

(defmethod (my-window : draw-square) (x y ^optional size)

; ; can't default the optional arg because environment

; ; isn't set up yet - use "or" in body

(draw-square self x y (or size default-square-size)))

7. (let ((old-size (send w :default-square-size))

)

(unwind-protect
(progn (send w : set-default-square-size 50)

(process-sleep 300))

(send w : set-default-square-size old-size)))

kwc-letf, a macro written by Ken Church, does just this sort of thing, and

looks a lot nicer. (Its name was chosen to distinguish it from letf, a special

form provided by Symbolics which has similar, but slightly different, effects.)

The syntax is like that of let, except in place of the names of local variables

to be bound, kwc-letf accepts any reference which can be understood by setf.

It arranges for that reference to return the specified value if called within the

kwc-letf, and for the old value to be restored upon exiting. In our case, it

would be used like this:

(kwc-letf (((send w :default-square-size) 50))

(process-sleep 300))

This produces identical compiled code, but makes the intent much clearer —
you can see that I just want to evaluate the process-sleep in a context where

(send w :default-square-size) would return 50. The call to kwc-

letf macroexpands into:

(LET ((#:G0531 (SEND W : DEFAULT-SQUARE-SIZE))

)

(UNWIND-PROTECT

(PROGN (SEND W ': SET-DEFAULT-SQUARE-SIZE 50)

(PROCESS-SLEEP 300))

(PROGN (SEND W ': SET-DEFAULT-SQUARE-SIZE #:G0531))))

40 WHAT'S A FLAVOR? Chapter 2

8. (defflavor doubling-window ()

(my-window)

)

(defwhopper (doubling-window : draw-square) (x y ^optional size)

(continue-whopper x y (if size (* 2 size)

(* 2 default-square-size))))

An alternative whopper would be:

(defwhopper (doubling-window :draw-square) (x y &.optional size)

(let ((default-square-size (* 2 default-square-size)))

(continue-whopper x y (and size (* 2 size)))))

Part II

1

.

Here is a simple-minded implementation:

(defun sort-handlers (object- 1 object-2)

(loop

for message in (union (send object- 1 :which-operations)

(send object-2 :which-operations)

)

for handler- 1 = (send object- 1 :get-handler-for message)

for handler-2 = (send object-2 :get-handler-for message)

when (not handler-2) collect handler- 1 into only-1

else when (not handler-1) collect handler-2 into only-2

else when (eq handler-1 handler-2) collect handler-1

into both-and-same

else collect (cons handler-1 handler-2)

into both-and-dif ferent

finally (return (list only-1 only-2

both-and-same both-and-dif ferent)))

)

2. A partial answer: everything you need to know about a flavor is in the list

returned by (si: examiner-compute-magic-list (get flavor-name

'si : flavor)). The extraction of the info is done by the method

:compute-all-handlers-once of the flavor flavex:flavor. As for M-x
List Combined Methods, the crucial function is zwei:find-combined-methods

3. To follow up the describe hint, this is what describe uses:

(cdr (assq :fdefinition-location-hints

(si : cca-extra-inf

o

(si:compiled-function-cca function-obj)))

)

Section 2.8 Problem Set #2 41

So we might replace this line in my answer for (1):

else when (eq handler- 1 handler-2) collect handler-

1

into both-and-same

with:

else when (or (eq handler- 1 handler-2)

(equal (foo handler- 1) (foo handler-2)))

collect handler- 1 into both-and-same

where (foo handler) is:

(cdr (assq : fdefinition-location-hints
(si : cca-extra-inf

o

(si : compiled-function-cca handler)))

)

And if you used my partial answer for (2), the list returned by shexaminer-

compute-magic-list still contains everything you need to know, although it's

possible your answer to (2) threw away some of the information needed for

(3).

4. At the moment, this is an open problem — I don't know exactly what's

required to make such an addition. But it sure would be nice to have...

Chapter 3

MORE ON NAVIGATING THE LISP MACHINE

The last chapter discussed an aspect of programming with the lisp language, as

implemented on the lisp machine. This one is about some aspects of using the lisp

machine which are more or less independent of programming on it, i.e., what you

might call the operating system of the lisp machine.

3.1 The scheduler and processes

Switching back and forth among the different processes can be explicitly controlled

by the lisp machine programmer (read the documentation on Stack Groups), but

almost never is. A special module called the scheduler generally handles this

responsibility. Every l/60th second the scheduler wakes up and decides whether

the current process should be allowed to continue running, and if not, which other

process should get a chance.

If the current process has been running continuously for less than a second, and

wishes to continue, it is allowed to. (Note that a full second is a long time for this

sort of thing, compared to other timesharing arrangements.) Or if it's been running

for a second but no other process wishes to run, it is still allowed to continue. But

44 MORE ON NAVIGATING THE LISP MACHINE Chapter 3

if it's been monopolizing the machine for more than a second, and one or more

other processes want to run, it's forced to take a rest while the scheduler gives the

others a chance. The process chosen by the scheduler is now treated as the previ-

ous current process was: it will be allowed to run until some other process (es) wish

to run and the current process either volunteers to give the others a chance, or

passes the one second mark.

The way a process "volunteers to give the others a chance," or, in less emotionally-

laden terms, informs the scheduler that it doesn't need to run, is with the process-

wait function. Process-wait specifies a condition the process is waiting for. When
the condition becomes true, the process is ready to run. When the scheduler

decides to resume the process, the call to process-wait returns and the computation

continues from there. The first argument to process-wait is a string to appear in

the wholine (at the bottom of the screen) while the process is waiting. The second

arg is a function and any remaining args are arguments to the function. To see

whether the process is ready to continue, the scheduler applies the specified func-

tion to the specified arguments. The return value of the function is what the

scheduler uses for the "condition" mentioned above. This function is often called

the process' wait -function. Here is the process-wait which is responsible for "Tyi"

appearing in the wholine most of the time:

(PROCESS-WAIT "Tyi" SELF ':LISTEN)

This call is buried somewhere in the code windows (or anything with tv:stream-

mixin) use for reading from the keyboard. It says that the process will be ready to

continue when application of SELF to the argument : LISTEN returns non-nil.

Since funcall is equivalent to send when dealing with instances (see the previous

chapter), this process-wait will return when (send self : listen) is true.

The handler for .listen just checks to see if anything is in the io-buffer, so the pro-

cess which calls this process-wait will forfeit its turns in the scheduler until it has

something in its io-buffer.

Now a question for the bold: what happens if an error occurs in the scheduler? It

is, after all, just another piece of lisp code. And even if the scheduler code itself is

bug-free, all the wait-functions are called in the scheduler, and any loser* can

write a buggy wait-function. It's also the case that blinking of flashing blinkers

gets done from the scheduler. (There's a clock function list of things to be done

every time the scheduler runs, and by default the only thing on the list is blinking

the blinkers.) And any loser can also write a buggy :blink method for his/her

blinkers — I've certainly done it. So what happens when the scheduler runs into an

See hacker's definition at end of chapter.

Section 3.1 The scheduler and processes 45

error? The scheduler has no window to use. How can the debugger communicate

with you?

What happens is that the scheduler enters the debugger and uses what is called the

cold-load stream. This is a very basic stream which completely bypasses the win-

dow system. It uses the screen as it would a dumb terminal, with no regard for the

previous display contents, ignoring even window boundaries. There will be no

blinker (which makes typing somewhat disconcerting) and none of the input editor

commands will be active, apart from the rubout key. But you will be in a legiti-

mate debugger, from which you can attempt to set things right. So don't panic.

Our view of scheduling is now fairly complete. The current process owns the lisp

machine until it either does a process-wait, or uses up its second. When either of

these occurs, the scheduler calls the wait-functions of the other processes. The first

process whose wait-function returns a non-nil value gets to become the current-

process. If none of them do, the old current process remains the current process.

And if any errors occur while in the scheduler, the debugger uses the cold-load

stream.

Fine. Now it's time to complicate things again. At any given time a process is

either active or inactive. Inactive processes are not even considered by the scheduler

when it looks for an alternative to the current process. Their wait-functions aren't

called at all until they become active. And what makes a process active or inac-

tive? Two of the instance variables of a process are its run-reasons and its

arrest -reasons. An active process is one with no arrest reasons and at least one run

reason. Otherwise (at least one arrest reason or no run reasons) the process is inac-

tive. There are messages for looking at a process' run and arrest reasons, and for

adding to or deleting from them. A program might use those messages, but an

interactive user is more likely to arrest or un-arrest a process in one of the follow-

ing ways (all of which end up passing those same messages, but are easier to use)

:

1. The system menu has options for arresting or un-arresting the process in the

window the mouse is over.

2. If you click on the name of a process in Peek's display of processes, you get a

menu of useful things to do to that process. Two of them are arresting and

un-arresting.

3. Typing Function-A arrests the process the wholine is watching. (This is usu-

ally the selected window's process. But you can change which process the

wholine watches with Function-W.) Function-minus-A un-arrests it.

Another common operation to perform on a process is to reset it. This is very

much like typing c-m-Abort to it. It flushes everything on the process' stack and

46 MORE ON NAVIGATING THE LISP MACHINE Chapter 3

restarts it. (More exactly, it reapplies the process' initial function to its initial

arguments, but you needn't understand that just yet.) You can only type c-m-

Abort to a process when you can select its window, which isn't always possible, but

you can reset a process anytime. The options for how to reset a process are similar

to those for un-/arresting one. You can send a process the :reset message; you can

use the reset option in the system menu to reset the process in the window under

the mouse; you can use the menu in Peek's display of processes.

Note that all these ways of resetting, except for explicitly sending the :reset mes-

sage, depend on being able to use the mouse. So if the mouse process is the one

which is in trouble, they won't work. The only way out is to get a handle on the

mouse process and send it the :reset message. An extremely useful fact to

remember is that the value of the symbol tv:mouse-process is always the mouse pro-

cess itself (an instance of flavor si:process). So typing this will often unwedge the

mouse process: (send tv: mouse-process :reset).

One final note on resetting: (send current-process : reset) doesn't work.

(It just returns nil.) The usual method for unwinding a stack doesn't work from

within that stack. To reset the current process, you need to either spawn a new

process for the sole purpose of resetting your process (use process-run-function) , or

use an optional argument to the reset message: (send current-process
: reset : always) will work.

Before long you will probably have cause to create your own processes. Take a

look at Part III of Volume 8 of the Symbolics documentation when the need arises.

3.2 Windows

The entire set of existing windows is organized into several trees. The root of each

tree is a screen. (Screens are built on tv:sheet but don't have all the other mixins

that make a window.) Each window has a superior (towards the root of the tree)

and any number (possibly 0) of inferiors (towards the leaves) . The windows option

in Peek displays all the trees (subject to a restriction mentioned below).

The state of a window may be characterized in any of several ways. The window

may be selected or deselected, it may be exposed or deexposed, and it may be

activated or deactivated. The terminology is confusing and unfortunate. Selection,

exposure, and activation are not independent factors. In fact, they are closely tied.

Before a window may be selected, it must be exposed. And before it may be

exposed, it must be activated. So there are four possible states for a window:

deactivated; activated but not exposed (usually called deexposed); activated and

Section 3.2 Windows 47

exposed but not selected (usually called exposed); and activated, exposed, and

selected (usually called selected).

If a window is deactivated, the system will not keep track of it. More precisely, the

window will not appear in the array which is the value of tv:previously-selected-

windows. Many parts of the system software, including Peek, use that array when

they are expected to produce a list of all windows. And a deactivated window will

not appear in the inferiors list of its superior. The system will not keep any

pointers to such a window, so unless you have one, the window will be garbage-

collectible. (Ignore this point for now if you don't understand garbage collection.)

Once activated, a window may become exposed. Being exposed means roughly that

the window has somewhere for its typeout to go. Any window which is completely

visible on the screen, not even partly covered by some other window, is exposed. (It

is also possible for windows to be exposed without being visible. Such a window

must have somewhere for its typeout to go other than your screen — that place

would be a bit-array which could later be mapped onto the screen. See sections

11.4 and 11.5, Pixels and Bit-save Arrays, and Screen Arrays and Exposure, in

Volume 7. For now let's just assume that only visible windows are exposed.)

If a window which is not exposed is asked to type something out (perhaps with the

:tyo or :string-out messages), it won't be able to do it, since it has no place to send

the typeout. How it reacts is controlled by its deexposed-typeout -action, which is

an instance variable of tv:sheet. It may specify, for instance, that the window

should try to expose itself, or that an error should be signaled. The default value of

deexposed-typeout-action, : normal, specifies that the process doing the typeout

should enter an output hold state. That means it will do a process-wait (remember

those?) with a wholine state of "Output Hold" and a wait-function which essen-

tially waits for the window to become exposed:

(PROCESS-WAIT "Output Hold"
#' (LAMBDA (SHEET)

(NOT (SHEET-OUTPUT-HELD-P SHEET)))

SELF)

In addition to the usual ways of exposing the window (mentioned below), when an

output hold occurs there is one extra way which becomes available. That is to type

Function-Escape.

Now for selection. Although any number of windows may be simultaneously

exposed, as long as they can all fit on your screen without overlapping, only one

window at a time may be selected. The currently selected window is always the

48 MORE ON NAVIGATING THE LISP MACHINE Chapter 3

value of the symbol tv:selected-window. The selected window is the one to which

keyboard input is directed. It usually has a blinking rectangular cursor in it.

There must, of course, be a process running in the selected window for it to do any-

thing with the keyboard input. If the selected window has no process, typing on the

keyboard has no effect, except for special keys like Function and Select.

If we imagine the four possible window states (deactivated, deexposed, exposed,

selected) occupying a spectrum, the various messages for changing the state of a

window may be pictured as follows:

ACTIVATION EXPOSURE SELECTION

DEACTIVATED DEEXPOSEO EXPOSED SELECTED

ACTIVATE
EXPOSE
SELECT

DEACTIVATE
DEEXPOSE
DESELECT

Figure 3. Transitions among window states

The meaning of the arrows is that a window sent the given message will be pushed

all the way from its current state to the head of the arrow. So, for instance, if an

exposed window is sent the :deactivate message, it will be both deexposed and deac-

tivated. A selected window would be deselected, deexposed, and deactivated. The
messages only push in the direction of the arrows, they don't pull. That is, if the

window is already at or beyond the arrowhead nothing happens. If a selected win-

dow is sent the :activate message, there is no effect. It is not pulled back to the

deexposed state.

A freshly instantiated window, as is returned by tv:make-window, will be deac-

tivated, unless you specify otherwise. This is also the state of a window which has

been sent the deactivate or :kill messages. (Killing a window deactivates all of its

inferiors as well as itself.)

You can always change the state of a window by sending it an appropriate mes-

sage, but there are several ways to make these messages be sent without explicitly

sending them yourself. The system menu has an option for killing the window

Section 3.2 Windows 49

under the mouse, and one for selecting a window from the list in tv:previously-

selected-windows. The Edit Screen option in the system menu pops up another

menu with options for killing or exposing any partially visible window, and for

exposing any window in tv:previously-selected-windows. (The Edit Screen menu
also has options for creating, moving, or reshaping windows.) And if you click on

the name of a window while in the windows display of Peek, you get a menu with

options for selecting, deselecting, exposing, deexposing, deactivating or killing the

window.

There's another way to select a window which you are already familiar with: use

the Select key. For the kinds of windows accessible via the Select key (Select-Help

displays a list), the effect of the Select key depends on how many instances of that

flavor of window exist. Let's take Select-E (for the Zmacs Editor) as an example.

If there are no existing Zmacs windows, typing Select-E will create one and select

it. If there is exactly one Zmacs window, Select-E will select it (unless it is already

the selected window, in which case the screen will flash and it will remain the

selected window) . If there are more than one existing Zmacs windows, and none of

them are the selected window, Select-E will select the one which had most recently

been the selected window. Typing Select-E repeatedly will rotate through all the

existing Zmacs windows.

Typing Select-c-E (hold down the control key while striking E) will always create

and select a new Zmacs window, regardless of whether there are already some.

Windows can also be selected with the Function key. Function-S selects the previ-

ously selected window. Providing a numeric argument between the Function key

and S allows rotation of the selected windows in various arcane ways. Type

Function-Help and read about S for a full description.

Changing the state of a window will often cause the state of other windows to

change. For instance, if I select one window, the window which had been selected

necessarily becomes deselected. And if I deselect a window, some other window

(the previously selected one) becomes selected. Similarly, exposing a window may
partially or entirely cover some other window which had been exposed; the latter

window is forced to become deexposed. And deexposing a window may uncover

some other window, thereby exposing it. (A subtler point arises here. Simply send-

ing the :deexpose message usually does not have the intended effect. Since no other

windows will be covering the one which has just been deexposed, it will immedi-

ately be automatically re-exposed. It will look like nothing happened. What you

probably meant to do was either expose some other window [which will automati-

cally deexpose the first window], or send the first window the :bury message, which

in addition to deexposing it, puts the window underneath all the other windows, so

50 MORE ON NA VIGATING THE LISP MACHINE Chapter 3

that the window that ends up being auto-exposed is some other one.)

The interactions among windows can become terribly convoluted. There are several

kinds of locks intended to keep everything straight. If something goes wrong and

an error occurs while the window system is locked, the debugger won't be able to

expose a window to use. So it uses the cold-load stream, just as when an error

occurs inside the scheduler.

If you've been messing with the window system in unwise ways, it's possible to get

it locked up so that you can't do anything (I do it all the time). If the window

which appears to be selected isn't responding to typein, and c-m-Abort doesn't help,

and the mouse is dead, and you can't select some other window with the Select or

Function keys, it may be that you're hung up in a locked window system. Your

last resort in such a case (short of h-c-Function and a warm or cold boot) is to type

Function-control-Clear Input. This clears all the locks in the window system. It's

a sledgehammer, and can easily break some things, but it may revive your machine

without having to boot.

One last note about windows. When a window is sent more than one screenful of

typeout at a time, it may pause at the end of each screenful, type **MORE**, and

wait for you to press any key before continuing. This behavior is called more pro-

cessing. Whether more processing occurs (as opposed to continuous output) is con-

trolled by Function-M and Function-c-M. Type Function-Help for details. For

more processing to occur it must be turned on both globally and for the individual

window.

3.3 Debugging

The trace feature can be invaluable in finding out why your code isn't doing what

you expected. You can read all about it in chapter 4 of volume 4. The basic form

works like this: you turn on tracing for a function named foo by evaluating

(trace foo). From then on, every time foo is called, a line will be printed on

your screen announcing that foo has been entered and listing its arguments. And
when foo finishes another line will be printed, announcing the exit from foo and

listing the return value(s). You turn off tracing of foo with (untrace foo).

Some of the fancier features allow you to print the values of arbitrary expressions

upon function entry or exit, or to make tracing conditional on some predicate, or to

enter a break loop or the debugger upon entry. The syntax for these features can

be difficult to remember, so I'd suggest using the trace menu to select them. (You

get the trace menu by clicking on trace in the system menu or by doing Meta-X

Trace in the editor.)

Section 3.3 Debugging 51

Trace can be used on anything you can describe with a function spec (see chapter

27 of volume 3). Function specs are most often symbols, but can also be something

like (: method tv: sheet : expose), referring to the :expose method for flavor

tv:sheet.

One note of caution: you can instantaneously make your machine unusable by

tracing the wrong function. If, for instance, you'd traced some function that gets

called every time a character is read from the keyboard, with the feature that

throws you into the debugger upon function entry, you'd have a real tough time

typing "untrace." (On the other hand, the kinds of functions that can break every-

thing when traced are not ones the new user is likely to be interested in anyway, so

don't feel inhibited by this warning. Go ahead and play. You can always boot. I

just thought I should mention that I've screwed myself this way more than once.)

Advising is a more general facility similar to tracing. Here you supply an arbitrary

piece of code to be executed upon function entry or exit. Advice comes in three

varieties: before, after and around. The three kinds are very much like before

daemons, after daemons, and whoppers. Advising is explained in detail in chapter

4, volume 4.

The debugger itself is the main tool for discovering what went wrong. You should

remember a few things about the debugger from Chapter 1 : it is entered whenever

an error occurs, and may be entered manually with the function (dbg) or by typ-

ing m-Suspend. Once in the debugger, you can move up and down the stack with

c-P and c-N (for previous and next), and see the whole stack with c-B (for back-

trace). There are generally a series of restart handlers bound to the super keys,

and to Resume and Abort.

Now some debugger facilities that may be new. The arguments of the function in

the current frame are accessible via the function dbg:arg. It takes one argument,

specifying which of the current function's arguments you want (you may specify

either by name or by number). Suppose the current function has an argument

named "array," and I want to know what element #5 in the array is. I could type

(aref (dbg:arg 'array) 5). The best part about dbg:arg is that it can be

used with setf to change the argument. So if the first argument to the current

function were the string "now" and I wanted to change it to the string "then", I

would type (setf (dbg:arg) "then"). (Note that the numbering of argu-

ments begins at 0, not 1 .) The function dbg:loc is analogous to dbg:arg, but works

on local variables instead of arguments.

You can also use the debugger commands c-m-A and c-m-L to get the values of

arguments and local variables. Returning to the case where I wanted to see

52 MORE ON NAVIGATING THE LISP MACHINE Chapter 3

element #5 of an array which was an argument in the current frame, I could type

(assuming the array were the third argument) c-2 c-m-A, which would return the

array object and give me a fresh debugger prompt, then (aref * 5), using * to

access the previously returned value.

Once you've re-arranged the arguments to your liking, you may use c-m-R to rein-

voke the current frame with the new arguments. Another useful command is c-R,

for returning a specified value from the current frame (the value is prompted for

after you type c-R).

Another handy command is c-E. It finds the definition of the function in the

current frame and reads it into the editor. (Of course, it reads the whole file the

function is defined in. You will be positioned in the buffer at the place where the

function is defined.) Finally, c-M (for mail) will set you up for sending a bug

report. You'll be switched to a mail window, with both a complete stack backtrace

and information on what version of the system software is running on your machine

inserted as the initial contents of your message. Add whatever text is necessary to

describe the situation. Check the top line of the buffer to make sure the "To:" field

contains the name of an appropriate recipient, and edit it if necessary. Then just

hit the End key. (c-End if you have the Bell Labs/Murray Hill standard utilities

— we use End for another editing function.) Off goes your mail, you get returned

to the debugger, and you may continue as you please. The inclusion of the back-

trace makes life much easier for your system maintainer.

3.4 Who Does What

Here are a hodge-podge of lisp functions for finding out about functions and sym-

bols (see "Poking Around in the Lisp World," section 17.1 in volume 1, for some

more): who-calls takes one argument, usually a symbol. It searches all defined

functions and collects those which call the symbol as a function or use it as a vari-

able or constant. This takes a long time. You can limit the search to certain pack-

ages by using the optional arguments to who-calls. Apropos takes one argument, a

string, and finds all symbols whose print-names include the string as a substring.

This also takes a long time, and also can be limited to certain packages by using

the optional arguments. Disassemble takes one argument, the name of a compiled

function or the function object itself. It prints a human-readable version of the

compiled instructions. Grindef pretty-prints the definition of a non-compiled (inter-

preted) function.

See also the Zmacs Meta-X commands List Callers, Edit Callers, Function Apro-

pos, List Combined Methods, Edit Combined Methods, List Methods, and Edit

Section 3.4 Who Does What 53

Methods.

Section 17.1.1 of volume 1 also describes some variables whose values are automati-

cally maintained by the lisp command loop. *, for instance, is always bound to the

value returned by the last form you typed in, and can be extraordinarily helpful.

3.5 The Input Editor and Histories

The input editor is active in most contexts outside of the editor. Most notably, it is

active when you're typing to a lisp listener. c-Help lists all the input editor com-

mands. Most of them are similar to the Zmacs commands, so you can do all sorts

of editing of the input before it gets to the lisp reader. Two of the more helpful

features of the input editor are the histories it keeps, the input history and the kill

history. Every time you send a form off to be evaluated by a lisp listener, the form

is added to that lisp listener's input history. (Each lisp listener keeps its own input

history, even the editor's typeout window.) Pressing the Escape key will display the

input history of the window you are typing to. Every time you delete more than

one character of text with a single command (with, for example, m-D, m-Rubout,

Clear Input, c-W, c-K), the deleted text is added to the kill history. There is only

one kill history; it is shared by all the windows which use the input editor, and also

the Zmacs window (s). c-Escape displays the kill history.

In both the input editor and in Zmacs, c-Y yanks the most recent item off the kill

history and inserts it at the current cursor position. You can select an earlier ele-

ment from the history by giving c-Y a numeric argument. Typing m-Y immedi-

ately after a c-Y does a yank pop; it replaces the text which has just been yanked

with the previous element from the history. Repeatedly typing m-Y will rotate all

the way through the history. Giving m-Y a numeric argument will jump that many

items in the history.

Note that since all windows share the same kill history, it provides a simple way of

transferring text from the editor into a lisp listener: just push the text onto the kill

history while in the editor, perhaps with c-W or m-W or a mouse command. Then

switch to a lisp listener, type c-Y, and presto! There's your text.

In the input editor, c-m-Y yanks from the input history. (c-C also has this effect.

It is an older command which some people still prefer to use. I find c-m-Y easier

to remember.) m-Y again has the effect of rotating through the history. (m-C is

the corresponding older command — you used to need different commands for

rotating through the kill history and the input histories, but now m-Y does both.)

54 MORE ON NAVIGATING THE LISP MACHINE Chapter 3

In Zmacs, c-m-Y has the effect of yanking from what's called the command his-

tory, which is a history of all editing commands which use the mini-buffer.

Immediately after a c-m-Y, m-Y has the usual effect.

The ability to yank previous inputs into a lisp listener raises an interesting question:

how does the input editor know when you're finished editing and ready for the input

to be sent off to lisp? Normally, if you just type your input without any yanking,

the input editor knows you're done when you type some sort of delimiter at the end

of the input string, like a close paren, to complete a well-formed lisp expression.

But if you've yanked an already well-formed expression, how can you complete it?

The answer is that there is a special activation character. It is the End key. Press-

ing End while anywhere within a well-formed expression tells the input editor

you're done, and it sends your input off to lisp. So if you've yanked a previous

input with c-m-Y, you can type End immediately to re-evaluate the same expres-

sion, or you can edit it some and type End when finished, to evaluate the modified

expression.

There's one other input editor command of special interest. That's c-sh-A, which

displays the argument list of the function whose name you have typed. So if I type

"(with-open-file " to a lisp listener, and then type c-sh-A, the following will

appear on my screen:

WITH-OPEN-FILE (MACRO): ((STREAM-VARIABLE FILENAME . OPTIONS) &BODY BODY)

c-sh-A also works in Zmacs.

3.6 Fun and Games

More definitions from The Hacker's Dictionary (Guy L. Steele Jr., et at),

prompted by my spontaneous use of the term loser.

LOSE verb.

1. To fail. A program loses when it encounters an exceptional condition or fails

to work in the expected manner.

2. To be exceptionally unaesthetic.

3. Of people, to be obnoxious or unusually stupid (as opposed to ignorant). See

LOSER.

DESERVE TO LOSE verb. Said of someone who willfully does THE
WRONG THING, or uses a feature known to be MARGINAL. What is

Section 3.6 Fun and Games 55

meant is that one deserves the consequences of one's losing actions. "Boy,

anyone who tries to use UNIX deserves to lose!"

LOSE, LOSE interjection. A reply or comment on an undesirable situation.

Example: "I accidentally deleted all my files!" "Lose, lose."

LOSER noun. An unexpectedly bad situation, program, programmer, or

person. Someone who habitually loses (even winners can lose occasionally).

Someone who knows not and knows not that he knows not. Emphatic forms

are "real loser," "total loser," and "complete loser."

LOSS noun. Something (but not a person) that loses: a situation in which

something is losing.

WHAT A LOSS! interjection. A remark to the effect that a situation is bad.

Example: Suppose someone said, "Fred decided to write his program in

ADA instead of LISP." The reply "What a loss!" comments that the choice

was bad, or that it will result in an undesirable situation — but may also

implicitly recognize that Fred was forced to make that decision because of

outside influences. On the other hand, the reply "What a loser!" is a more

general remark about Fred himself, and implies that bad consequences will

be entirely his fault.

LOSSAGE (lawss'.j) noun. The stuff of which losses are made. This is a

collective noun. "What a loss!" and "What lossage!" are nearly synonymous

remarks.

WIN

1. verb. To succeed. A program wins if no unexpected conditions arise. Anto-

nym: LOSE.

2. noun. Success, or a specific instance thereof. A pleasing outcome. A
FEATURE. Emphatic forms: MOBY win, super-win, hyper-win. For some

reason "suitable win" is also common at MIT, usually in reference to a satis-

factory solution to a problem. Antonym: LOSS.

BIG WIN noun. The results of serendipity.

WIN BIG verb. To experience serendipity. "I went shopping and won big;

there was a two-for-one sale."

WINNER noun. An unexpectedly good situation, program, programmer, or

person. Albert Einstein was a winner. Antonym: LOSER.

REAL WINNER noun. This term is often used sarcastically, but is also

used as high praise.

56 MORE ON NAVIGATING THE LISP MACHINE Chapter 3

WINNAGE (win'.j) noun. The situation when a LOSSAGE is corrected or

when something is winning. Quite rare. Usage: also quite rare.

WINNITUDE (win':-tood) noun. The quality of winning (as opposed to

WINNAGE, which is the result of winning)

.

Section 3.6 Fun and Games 57

3.7 Problem Set #3

Questions

Evaluate (make-system 'funny-window rnoconfirm : silent). This

will load some code, and create and select a window of flavor funny-window, mak-

ing it the value of the symbol *funny-window*.

The funny-window flavor is built on tvrlisp-listener, so you can type forms to this

window and it will evaluate them just as a lisp listener would.

This window has two behavioral quirks, one which occurs just before it types out

the return value of whatever it evaluates, and one which occurs whenever you move

the mouse.

The assignment is to find out what's responsible for the odd behavior. You win the

game if you can get the code causing the behavior into a Zmacs buffer. Use what-

ever you know about looking into the state of the lisp machine. Several good tech-

niques are buried in the text of this chapter.

There's one restriction on what you may do: you should read the code into the edi-

tor by using some system-provided operation which finds the definition of a given

function. So you have to first figure out what function is responsible. It's cheating

to randomly read in files and scan them.

I would suggest starting on the typeout quirk — it should be a little easier to track

down than the mouse behavior.

58 MORE ON NAVIGATING THE LISP MACHINE Chapter 3

Hints

Note that there's a delay partway through the funny typeout. To find out what's

going on, you can simply do c-m-Suspend during the delay and look at what's on

the stack. (At this point you might want to (setq *funny-typeout-
delay*) for the duration.) Use c-E on the appropriate frame to pull the

offender into the editor.

Finding the mouse funniness isn't as easy. c-m-Suspend doesn't work — and not

only because there's no time for it. Try setting *funny-mouse-delay* to 1 (sec).

Now there's time to type c-m-Suspend during the funniness, but the stack shows

nothing revealing, because the action is in a different process. (When convinced,

you should probably set *funny-mouse-delay* back to 0.)

One possible way to proceed would be to put a trace (with :error) on the : draw-
circle method, which you can see is being called. [To get the method do

(get-handler-for *funny-window* : draw-circle), which you will see

turns out to be (: method tv:graphics-mixin : draw-circle) J. That

would force the process which is calling : draw-circle into the debugger.

Unfortunately everything gets fouled up when the mouse process, which turns out

to be the culprit, goes into the debugger. (The trouble starts because the mouse

process doesn't have a window to use, so it has to come up with one and expose it.

That in itself is okay [processes which run in the background generally have that

capability], but the real killer is that the mouse process has to be running in order

for most ways of switching windows to work. With the mouse process halted for

debugging, most window system operations are impossible, and the lisp machine is

suddenly in a terribly wedged* state! (It usually isn't necessary to re-boot if this

happens — try resetting the mouse process, with (send tv: mouse-process

WEDGED adjective.

1

.

To be stuck, incapable of proceeding without help. This is different from having CRASHED.
If the system has crashed, then it has become totally nonfunctioning. If the system is

"wedged," it is trying to do something but cannot make progress. It may be capable of doing

a few things, but not be fully operational. For example, the system may become wedged if the

disk controller FRIES; there are some things you can do without using the disks, but not many.

Being wedged is slightly milder then being "hung." This term is sometimes used as a synonym

for DEADLOCKED. See also HANG, LOSING, CATATONIA, and BUZZ.

2. Of a person, suffering severely from misconceptions. Examples: "He's totally wedged — he's

convinced that he can levitate through meditation." "I'm sorry. I had a BIT set that you were

responsible for TECO, but I was wedged."

(The Hacker's Dictionary, Guy L. Steele, Jr., et at)

Section 3.7 Problem Set #3 59

: reset). If you can't get to a window that will accept typein, do Function-

Suspend first.)

If you really want to make this approach work, here's something a little more

advanced (that's understated — it took two of us quite a while to come upon it)

that will produce the desired effect:

(advise (: method tv:graphics-mixin : draw-circle) : before nil nil

(send (send *funny-window* : process)

: interrupt #'dbg current-process)

(process-sleep 60.))

The basic idea is to force the process calling : draw-circle into the debugger by

calling the dbg function on it, but to do the call to the dbg function from the funny

window, using its process and its already exposed and selected window. Now you

can examine the stack and quickly find the : before : mouse-moves method

which is responsible.

But there's a much more sensible approach. You could think of the above force-it-

into-the-debugger approach as finding the set of functions which are being called

and filtering that set for functions which seem related to the funny-window flavor.

Turning that around is far more effective in this case. That is, first collect the

functions related to the funny-window flavor, which is much easier in this case than

getting access to the control stack, and then filter that set for ones likely to be caus-

ing the funny effects. So one idea is to do a :which-operations on the win-

dow and search for messages with suggestive names. You could, for instance, try

(loop for msg in (send *funny-window* rwhich-operations)
when (string-search "mouse" msg) collect msg)

[If you have the Murray Hill standard utilities, you could simply do (grep-msgs

"mouse" *funny-window*).! This will be a small enough set that they could

all be investigated. A more direct approach, and the clear winner for this problem,

is based on the observation that although the funny-window flavor has many

methods defined, the bulk of them are inherited from other flavors, and whatever is

responsible for its peculiar behavior must be somewhere in the relatively small

number of methods defined locally for funny-window. So all you have to do is enter

the Flavor Examiner (Select-X), and get the list of local methods for funny-

window. How about that. Two methods, one for each peculiarity. Now you can

edit them either by clicking mouse-right while pointing to one, and choosing "edit"

from the menu, or by clicking where it says "edit" on the extreme right.

60 MORE ON NAVIGATING THE LISP MACHINE Chapter 3

Solutions

Here's what causes the typeout funniness:

(defvar *funny-typeout-delay* 1)

; ;
; You found the funny typeout stuff

!

(defwhopper (funny-window : input-editor) (krest args

)

(let ((thing (lexpr-continue-whopper args)))

(format self "-&You entered something of type ")

(process-sleep (* 60 *funny-typeout-delay*)

)

(princ (typep thing) self)

thing))

And this causes the mouse funniness:

(defvar *funny-mouse-delay* 0)

; ; ; You found the funny mouse stuff I

(defmethod (funny-window : before : mouse-moves) (x y)

(format self "-&The mouse is moving . . .
")

(process-sleep (* 60 *funny-mouse-delay*)

)

(send self : draw-circle
(- x tv: left-margin-size) (- y tv: top-margin-size) 8

(send self :tyo #\ !)

)

Chapter 4

FLOW OF CONTROL

In this chapter we leave behind the "operating system" of the lisp machine and

return to aspects of the lisp language itself. In particular, we'll look at the various

constructs for determining the flow of control. The notes are a little sketchier than

usual, because this material is covered reasonably well in Part V of volume 2 of the

Symbolics documentation.

4.1 Conditionals

The cond special form is the basic conditional. The arguments to cond are any

number of clauses, where each clause is a list containing a predicate (the

antecedent) and zero or more consequents. The clauses are handled one at a time,

in order of appearance. If a clause's antecedent returns nil, its consequents are

skipped and the next clause is considered. When a clause is found whose

antecedent returns a non-nil value, that clause's consequents, if any, are all

evaluated. The value of the last consequent in that clause (or of the antecedent, if

there are no consequents) is the value returned by the cond, and the rest of the

clauses are skipped. If every clause's antecedent returns nil, the cond returns nil.

62 FLOW OF CONTROL Chapter 4

Beyond their value as logical operators, and and or can also be used as conditionals.

If one of the subforms of an and returns nil, the rest will be skipped. And if one of

the subforms of an or returns non-nil, the rest will be skipped. Here are two exam-

ples taken from the manual:

(and bright-day
glorious-day
(print "It is a bright and glorious day."))

(or it-is-fish
it-is-fowl
(print "It is neither fish nor fowl."))

Almost all of the remaining conditionals are really macros which expand into calls

to cond. when and unless take a predicate and any number of consequent forms. If

the predicate for a when returns non-nil, all of the consequent forms are evaluated

and the value returned by the last one is returned by the when. Otherwise (a nil

predicate value) the consequent forms are all skipped, unless works similarly: if

the predicate returns nil the consequents are evaluated, otherwise they're skipped.

Here are the definitions of the when and unless macros:

(DEFMACRO WHEN (TEST &BODY BODY)
N

(COND (, TEST (PROGN , @>BODY)))

)

(DEFMACRO UNLESS (TEST &BODY BODY)

"(COND ((NOT ,TEST) (PROGN ,@BODY)))

)

[Actually, I lied a bit in the previous paragraph. Although they could, and in fact

used to, have the given macro definitions, when and unless are now special forms

instead. I used the old macro definitions because they're easier to read, while for

our immediate purposes, any differences in behavior aren't important.]

Defining suitable macros is an extremely common (and effective) method for

extending the syntax of lisp. There are no extra levels of function calling at run-

time, and no modifications to the compiler are involved.

if is somewhat similar to when, and also macroexpands to a call to cond. If the test

evaluates to non-nil, the first body form is evaluated. Otherwise (test returns nil),

if there are any body forms following the first, they are all evaluated.

Three more macros based on cond are select, selector, and selectq. Selectq is used

most frequently. Here is its structure:

Section 4.1 Conditionals 63

(selectq key-form

(test consequent consequent . . .)

(test consequent consequent . . .)

(test consequent consequent . . .)

...)

The key-form is evaluated and checked against the tests. The tests are not

evaluated. Each test must be either a symbol, a fixnum, or a list of symbols and

fixnums. If the test (or one of its elements, if it's a list) is eq to the evaluated key-

form, then it matches. The symbols t and otherwise are special: a test consisting

of one of those two symbols always matches. As with cond, the consequents to the

first test which matches are evaluated, and the rest of the clauses are skipped.

Select is the same as selectq, except that the symbols in the tests are evaluated

before being compared to the (evaluated) key-form. Selector is like select except

that there is an additional argument (following the key-form) which is the name of

a function to use for the comparison in place of eq.

See also typecase, dispatch, cond-every, and selectq-every.

4.2 Blocks and Exits

block is the primitive for defining a piece of code which may be exited from the

middle. The first argument to block must be a symbol. It is not evaluated, and

becomes the name of the block. The rest of the arguments are forms to be

evaluated. If a call to return-from occurs within the block, with a first argument of

the block's name, the block is immediately exited. The rest of the arguments to

return-from are evaluated and become the return values for the block. (Beginning

with release 6.0, the preferred way of returning multiple values is with (return-

from name (values form...)), for compatibility with Common Lisp.)

The scope of the block is lexical, so the corresponding call to return-from must

occur textually within the block; it will not work to call return-from inside a func-

tion which is called within the block. The next section discusses that sort of nonlo-

cal exit.

Blocks may be nested; that's the whole point of naming them. A return-from

causes an immediate exit from the innermost block with a matching name.

Some other constructs (including do and prog) create implicit blocks. These blocks

64 FLOW OF CONTROL Chapter 4

have nil for a name, and so they may be prematurely exited with (return-
from nil (values value...)). They may also be exited with the return special

form, which always exits the innermost block named nil.

4.3 Nonlocal Exits

catch and throw are analogous to block and return-from, but are scoped dynami-

cally rather than lexically. This means that a throw may cause an exit from any

catch on the control stack at the time the throw is reached (unless an inner catch is

shadowing an outer catch with the same tag) . catch's equivalent to the name of a

block is its tag. The tag is the first argument to catch; it is evaluated, and may
return any lisp object. The first argument to throw is its tag. It is also evaluated,

and the throw causes the exit of the innermost catch whose evaluated tag is eq to

the throw's evaluated tag.

If a throw occurs, its second argument is evaluated and the value (s) returned will

be returned by the corresponding catch. If no throw occurs, the values returned by

the catch are the values returned by its last subform.

There are obsolete forms of catch and throw, called *catch and *throw. They differ

from the newer version mainly in what values are returned. *catch and *throw

should not be used in new code.

4.4 Iteration

There are three styles of built-in facilities for iteration. A group of operators are

available for mapping a function through one or more lists; the do special form

allows more general forms of iteration; and the loop macro provides even more

flexibility. (I should also point out that functions which make use of tail recursion

are compiled into iterative structures.) This set, of course, could easily be extended

by writing more macros.

When more than one of the iteration facilities is applicable to a particular task, the

choice is mainly a matter of personal taste.* All three are comparably efficient.

The key issue is readability, and on this score opinions differ. My own view is that

the mapping functions are succinct and to the point, and therefore desirable, within

the limited set of applications that are easily expressed as mapping operations. For

all other kinds of iteration, do is often concise but I find it somewhat obscure.
1

I

See hacker's definition at end of chapter.

Section 4.4 Iteration 65

think loop is much easier to read, but there are those who consider it wordy and

nebulous.

"Loop forms are intended to look like stylized English rather than

Lisp code. There is a notably low density of parentheses, and

many of the keywords are accepted in several synonymous forms to

allow writing of more euphonious and grammatical English. Some

find this notation verbose and distasteful, while others find it flexi-

ble and convenient. The former are invited to stick to do."

[The preceding, as well as parts of the discussion of loop below, is

taken from the loop documentation written by Glenn S. Burke:

MIT Laboratory for Computer Science TM-169.]

For the sake of comparison, here are four ways to print the elements of a list:

(defun print-eltsl (list) ; mapc

(mapc #'print list))

(defun print-elts2 (list) ; do

(do ((1 list (cdr 1))

)

((null 1))

(print (car 1))))

(defun print-elts3 (list) ; loop

(loop for elt in list
do (print elt))

)

(defun print-elts4 (list) ; tail recursion

(unless (null list)

(print (car list))

(print-elts4 (cdr list))))

4.4.1 Mapping

The mapping operators come in six varieties. They all take as arguments a func-

tion followed by any number of lists, and step through all the lists in parallel,

applying the function as they go. They vary along two dimensions: whether they

operate on successive elements of the lists or on successive sublists, and which of

t ditto.

66 FLOW OF CONTROL Chapter 4

three kinds of values they return. (Two x three = six.) The return value can be

simply the second argument to the mapping operator (implying that the mapping

was done for side effect only), or a list of the results of function application, or a

list formed by nconcing (destructive appending) the results of function application.

Here are a few examples:

Applied to successive elements, lists results

(mapcar #' + '(1 2 3 4) '(2 4 6 8))

-(369 12)

(mapcar #'list '(1 2 3 4) '(2 4 6 8))
- ((1 2) (2 4) (3 6) (4 8))

Successive elements, nconcs results

(mapcan #'list '(1 2 3 4) '(2 4 6 8))
- (1224364 8)

Successive sublists, lists results

(maplist #'(lambda (1) (and (second 1)

(+ (first 1) (second 1))))
'(1 2 3 4))

-(357 NIL)

(maplist #'(lambda (1) (list (first 1) (second 1)))
'(1 2 3 4))

- ((1 2) (2 3) (3 4) (4 NIL))

Successive sublists, nconcs results

(mapcon #'(lambda (1) (list (first 1) (second 1)))
'(1 2 3 4))

-(1223344 NIL)

4.4.2 Do

A do looks like this:

(do ((var init repeat

)

Section 4.4 Iteration 67

(var init repeat) . . .)

{end-test exit-form exit-form . . .)

body -form body-form . . .)

The first subform is a list of index variable specifiers. Upon entering the do, each

var is bound to the corresponding init. And before each subsequent iteration, var is

set to repeat. The variables are all changed in parallel. The end-test is evaluated

at the beginning of each iteration. If it returns a non-nil value, the exit-forms are

all evaluated, and the value of the last one is returned as the value of the do. Oth-

erwise the body -forms are all evaluated. Here's an example which fills an array

with zeroes:

(do ((i (1+ i))

(n (array- length foo-array))

)

((= i n))

(setf (aref foo-array i) 0))

Upon entry, i is bound to and n is bound to the size of the anay. On each itera-

tion, i is incremented, (n stays constant because it has no repeat form.) When i

reaches n, the do is exited. On each iteration, the ith element of foo-array is set to

0.

And another, which is equivalent to (maplist #'f x y):

(do ((x x (cdr x))

(y y (cdr y)

)

(z nil (cons (f x y) z)))

((or (null x) (null y)

)

(nreverse z))

)

Note that the preceding example has no body. It's actually fairly common for all

the action in a do to be in the variable stepping.

There are macros named dotimes and delist which expand into common do con-

structs. For instance, the following macroexpands into the first example above:

(dotimes (i (array-length foo-array))
(setf (aref foo-array i) 0))

68 FLOW OF CONTROL Chapter 4

4.4.3 Loop

loop is a macro which expands into a prog with explicit go statements, and often

with several lambda bindings. A typical call looks like this:

(loop clause

clause

clause . . .)

Each clause begins with a keyword, and the contents of the rest of the clause

depend on which keyword it is. Some clauses specify variable bindings and how the

variables should be stepped on each iteration. Some specify actions to be taken on

each iteration. Some specify exit conditions. Some control the accumulation of

return values. Some are conditionals which affect other clauses. And so on. A full

discussion of all the clauses would be lengthy and not particularly useful, as they're

all described coherently enough in the documentation. We'll just look at some

representative examples.

The repeat clause specifies how many times the iteration should occur. The key-

word is followed by a single lisp expression, which should evaluate to a fixnum.

And the do keyword is followed by any number of lisp expressions, all of which are

evaluated on each iteration. So putting the two together,

(loop repeat 5

do (print "hi there"))

prints "hi there" five times. The most commonly used (and complicated) of the

iteration-driving clauses is the for clause. The keyword is followed by the name of

a variable which is to be stepped on each iteration, then some other stuff which

somehow specifies the initial and subsequent values of the variable. Here are some

examples:

(loop for elt in expr expr is evaluated (it better return a list), elt is bound in

do (print elt)) turn to each element of the list, and then the loop is exited

(loop for elt on expr similar, but elt is bound to each sublist

do (print elt)

)

. . . for x = expr . . . expr is re-evaluated on each iteration and x

is bound to the result (no exit specified here)

. . . for x = exprl then expr2 ... x is bound to exprl on the first iteration

Section 4.4 Iteration 69

and expr2 on all succeeding iterations

. for x from expr ... x is bound to expr (it better return a fixnum) on the first

iteration and incremented on each succeeding iteration

. for x from exprl to expr2 . . . like above, but the loop is exited

after x reaches expr2

. for x from exprl below expr2 . . . like above, but the loop is exited

just before x reaches expr2

. for x from exprl to expr2 by expr3 . . . incremented by exprS

on each iteration

. for x being path . . . user definable iteration paths

When there are multiple for clauses, the variable assignments occur sequentially by

default (parallel assignment may be specified), so one for clause may make use of

variables bound in previous ones:

(loop for i below 10 i starts at when from isn't specified

for j = (* i i) . . .)

The with clause allows you to establish temporary local variable bindings, much like

the let special form. It's used like this:

(loop with foo = expr expr is evaluated only once, upon entering the loop

...)

A number of clauses have the effect of accumulating some sort of return value.

The form

(loop for item in some-list
collect (foo item))

applies foo to each element of some-list, and returns a list of all the results, just like

(mapcar #'foo some-list). The keywords nconc and append are similar, but

the results are nconc-ed or appended together. Keywords for accumulating numeri-

cal results are count, sum, maximize, and minimize. All of these clauses may option-

ally specify a variable into which the values should be accumulated, so that it may
be referenced. For instance,

70 FLOW OF CONTROL Chapter 4

(loop for x in list-of-frobs
count t into count-var "t" means always count

sum x into sum-var
finally (return (// sum-var count-var)))

computes the average of the entries in the list.

The while and until clauses specify explicit end-tests for terminating the loop

(beyond those which may be implicit in for clauses). Either is followed by an arbi-

trary expression which is evaluated on each iteration. The loop is exited immedi-

ately if the expression returns the appropriate value (nil for while, non-nil for until).

(loop for char = (send standard- input :tyi)

until (char-equal char #\end)

do (process-char char))

The when and unless clauses conditionalize the execution of the following clause,

which will often be a do clause or one of the value accumulating clauses. Multiple

clauses may be conditionalized together with the and keyword, and if-then-else

constructs may be created with the else keyword.

(loop for i from a to b
when (oddp i)

collect i into odd-numbers and do (print i)

else collect i into even-numbers)

The return clause causes immediate termination of the loop, with a return value as

specified:

(loop for char = (send standard- input :tyi)

when (char-equal char #\end)
return "end of input"

do (process-char char))

Please refer to the documentation for a more complete discussion of loop features.

Of particular importance are prologue and epilogue code (the initially and finally

keywords), the distinction between ways of terminating the loop which execute the

epilogue code and those which skip it, aggregated boolean tests (the always, never,

and thereis keywords), the destructuring facility, and iteration paths (user-definable

iteration-driving clauses)

.

Section 4.4 Iteration 71

4.5 A Bit More on Working with Macros

Since so many of the control structure constructs are macros, you'll probably find it

helpful in working with them to be able to see what forms they macroexpand into.

The most basic of the tools for expanding macros is the macroexpand function. It

takes a list as an argument and returns its expanded version:

(macroexpand '(if (test) (do-this) (do-that))))
-» (COND ((TEST) (DO-THIS)) (T (DO-THAT)))

The grind-top-level function, for pretty-printing, is also useful in conjunction with

macroexpand.

Rather than type (grind-top-level (macroexpand ...)) repeatedly, an

easier way to expand forms in a lisp listener is with mexp. Evaluating (mexp)

puts you into a macro reading and expanding loop. You type a form, and it

pretty-prints the expansion and waits for another input form. Exit by pressing the

End key.

But by far the easiest way to see what something expands into is the c-sh-M com-

mand in the editor. When you place the cursor at the beginning of a lisp expres-

sion and type c-sh-M, the macro-expansion of the form is shown in the typeout win-

dow. If you give c-sh-M a numeric argument, it inserts the expanded form into the

buffer. c-sh-M only expands the top-level form, not any of its subforms which are

themselves macros. m-sh-M expands subforms as well.

Of course, you can also use Meta-. on a macro to edit its definition, but it's often

more useful to see what a macro expands into than to see how it does it.

4.6 Fun and Games

From The Hacker's Dictionary, Guy L. Steele, Jr., et at

TASTE noun.

Aesthetic pleasance; the quality in programs which tends to be inversely pro-

portional to the number of FEATURES, HACKS, CROCKS, and KLUGES
programmed into it.

OBSCURE adjective.

Little-known; incomprehensible; undocumented. This word is used, in an

exaggeration of its normal meaning, to imply a total lack of

72 FLOW OF CONTROL Chapter 4

comprehensibility. "The reason for that last CRASH is obscure." "That

program has a very obscure command syntax." "This KLUDGE works by

taking advantage of an obscure FEATURE in TECO." The phrase

"moderately obscure" implies that it could be figured out but probably isn't

worth the trouble.

Fun and Games 73

4.7 Problem Set #4

Questions

1. A. Write a function called do-word which takes one required argument, a

symbol, and two optional arguments, both fixnums. If the symbol is

one of : point, : rectangle, : triangle, or : circle, the func-

tion should draw the specified kind of object on standard-output, at the

coordinates specified by the fixnum arguments (choose any size you like

for the figures). If the symbol is : reverse, the function should tog-

gle the state of reverse-video-p for standard-output. If the sym-

bol is : erase, the function should clear standard-output. If the sym-

bol is anything else, it should call the function beep.

B. Write another function, called read-chars, which reads a series of char-

acters from the keyboard. When the Return key is pressed, it makes a

string out of all the characters read (before Return), and returns a

symbol in the keyword package whose print-name is that string. That

is, if the characters "s," "a," "m," "p," "1," "e" and "<cr>" were

typed, the symbol : sample would be generated. (Normally, you

wouldn't write such a function because there are already several built-

in functions which do the same sort of thing and with more features.

But for the sake of demonstrating a point or two...)

C. Write a third function, called main-loop, which repeatedly calls read-

chars and then do-word on the result. It should provide the optional

arguments to do-word, and increment one or both each time so that the

figures are drawn across the top of the screen, and then in a second

row below the first, and so on, with each position 200 pixels from the

previous one. That is, if standard-output is a window whose dimensions

are 1088 by 749, the optional arguments should be (0,0), then (200,0),

(400,0), (600,0), (800,0), (0,200), (200,200) ... (400,800). (Don't

worry about resetting the coordinates after an : erase, or not step-

ping after a : reverse — just allow blank spots.) This version of

main-loop should iterate until it reaches the bottom right corner of the

window. You'll probably want to touch up do-word so that it draws

the figures centered in the 200 x 200 area whose upper left corner it is

given.

D. Alter main-loop and (read-chars) so that if at any point you press the

End key, even in the middle of typing a word, main-loop will return

immediately.

E. Make similar alterations so that the Line key will have the effect of

74 FLOW OF CONTROL Chapter 4

skipping any remaining positions in the current row and continuing at

the beginning of the next row.

2. Write three functions which meet the following spec, one using a mapping

operator, one using do, and one using loop: f takes one argument, a list of

fixnums, and returns a list containing only the even numbers from its argu-

ment. That is,

(evens '(12345)) -» (2 4)

3. Like (2), but this time the list which f returns includes only those elements of

the argument which are less than the succeeding element. That is,

(less-thans '(36725435)) - (3623)
4. Write a function which takes two arguments, a fixnum "n" and a list "1,"

and uses a mapping operator to return a list consisting of the elements of 1

incremented by n. Try to do this two ways, one using a lambda expression as

the function argument to the mapping operator, and one just using #
' +.

5. Write a function which takes one argument, a fixnum n, and returns the nth

fibonacci number, subject to the restriction that the time it takes should

increase linearly with n. I suggest using loop.

6. Write a function of no arguments which finds all prime numbers between 2

and 50000. (You might find it easier to have the function stop at the first

prime greater than 50000.) I suggest using loop again.

7. The function mexp only expands the initial operator in an expression. If one

of the arguments to that operator itself uses a macro, that doesn't get

expanded. That is,

(if test (do-this)
(if another-test (do-that)

(do-the-other))

)

expands into

(COND (TEST
(DO-THIS)

)

(T (IF ANOTHER-TEST (DO-THAT) (DO-THE-OTHER))))

instead of

(COND (TEST
(DO-THIS)

)

(T (COND (ANOTHER-TEST

Section 4.7 Problem Set #4 75

(DO-THAT)

)

(T (DO-THE-OTHER))))

)

Write mexp-all, which behaves just like mexp except that it macroexpands

subexpressions and thus would produce the second of the expansions shown
above.

76 FLOW OF CONTROL Chapter 4

Hints

A. The body of do-word should consist of a selectq (or a defselect, which

is a macro that expands into a selectq). The messages you'll need to

send standard-output are : draw-point, : draw-rectangle,
: draw-triangle, : draw-circle, :reverse-video-p,
:set-reverse-video-p, and : clear-window.

B. To read each character, send :tyi to standard-input or terminal-io

(usually the same thing). Collect the characters into a list, and use

string-append to combine the characters into a string, and intern to

make the string into a symbol. Make sure the characters are converted

to upper case, either before or after they're collected into the string.

C. The : inside-size message to a window returns two values, the

width and height of the interior, in pixels. (The difference between

inside-size and size is the margin area, which the usual output mes-

sages can't draw in.) Use these (actually, 200 less than these) as the

upper bounds on your iteration. You probably want two nested loops,

an outer one for the y coordinate and an inner one for the x coordinate.

D. Wrap the body of main-loop in a catch, and have read-chars do a throw

at the appropriate point.

E. Same technique. This time the catch goes around the inner loop.

The mapping operator should be mapcan. The do would need a structure

very much like that produced by the dolist macro (which you might even

want to use), combined with some parts of the do example in the notes which

was equivalent to maplist. The loop would use collect, conditionalized

with when.

This time the mapping operator should be mapcon. The do and loop can be

done in any of several ways. There could be one iteration variable which

took on the value of successive sublists, and then you could take its first and

second elements and do the comparison. But better (because it requires

fewer redundant cdr's and exits more cleanly) would be to have the value of

the "first" variable be directly set to the previous value of the "second" vari-

able.

The lambda expression adds n to its argument. A very nice way to do this

without a lambda expression is to use a circular list. (You can make one

yourself with rplacd, but the circular-list function is more convenient.)

Lots of choices here. You probably want to use a repeat clause to control

the loop termination. But the tricky part is that you need to have a value

Section 4.7 Problem Set #4 77

from one iteration hang around through the next one. So you might want

something like the loop answer to (3), where one variable always takes on the

previous value of another one. And you'll probably want to use a finally
clause with an explicit call to return.

You probably want a subroutine which tests whether a number "n" is factor-

able by any of a list "1" of potential factors. The loop keyword thereis
may be helpful in writing this part. Then you'll want to use this in another

loop which tests each number from 2 up for factorability. When it finds a

prime, it should add it to the list of potential factors.

The editor commands Macro Expand Expression (c-sh-M) and Macro
Expand Expression All (m-sh-M) display exactly the same difference in

behavior we wish to see between mexp and mexp-all. So you should be able

to pull some code out of Macro Expand Expression All, and use it as a black

box to help you create mexp-all.

78 FLOW OF CONTROL Chapter 4

Solutions

A. (defun do-word (message ^optional x y)

(selectq message

(: point (send standard-output : draw-point x y)

)

(: rectangle (send standard-output : draw-rectangle

100 100 x y)

)

(: triangle (send standard-output : draw-triangle

x y (+ x 100) y (+ x 50) (- y 87)))

(: circle (send standard-output : draw-circle x y 50))

(: reverse (send standard-output : set-reverse-video-p

(not (send standard-output

:reverse-video-p)))

)

(: erase (send standard-output : clear-window)

)

(otherwise (beep))))

B. (defun read-chars ()

(loop for char = (send terminal-io :tyi)

until (char-equal char Areturn)
collect (char-upcase char) into char-list

finally (return (intern (apply #' string-append

char-list)

"keyword")))

)

C. (defun main-loop (

)

(multiple-value-bind (width height)

(send standard-output : inside-size

)

(loop for y below (- height 200) by 200

do (loop for x below (- width 200) by 200

do (do-word (read-chars) x y))))

)

and in do-word

(: point (send standard-output : draw-point

(+ x 100) (+ y 100)))

(: rectangle (send standard-output : draw-rectangle

100 100 (+ x 50) (+ y 50)))

(: triangle (send standard-output : draw-triangle

(+ x 100) (+ y 57) (+ x 50) (+ y 143)

(+ x 150) (+ y 143)))

(: circle (send standard-output : draw-circle

(+ x 100) (+ y 100) 50))

Section 4.7 Problem Set #4 79

D. (defun main-loop (

)

(catch 'end-key

(multiple-value-bind (width height)

(send standard-output : inside-size

)

(loop for y below (- height 200) by 200

do (loop for x below (- width 200) by 200

do (do-word (read-chars) x y)))))

)

(defun read-chars ()

(loop for char = (send terminal -io :tyi)

until (char-equal char Areturn)
when (char-equal char #\end)

do (throw 'end-key nil)

collect (char-upcase char) into char-list

finally (return (intern (apply #' string-append

char-list)

"keyword")))

)

E. (defun main- loop (

)

(catch 'end-key

(multiple-value-bind (width height)

(send standard-output : inside-size

)

(loop for y below (- height 200) by 200

do (catch 'line-key

(loop for x below (- width 200) by 200

do (do-word (read-chars)

x y)))))))

(defun read-chars ()

(loop for char = (send terminal -io :tyi)

until (char-equal char Areturn)
when (char-equal char #\end)

do (throw 'end-key nil)

when (char-equal char #\line)

do (throw 'line-key nil)

collect (char-upcase char) into char-list

finally (return (intern (apply #' string-append

char-list)

"keyword"))))

(defun evens (list)

(mapcan #' (lambda (n) (and (evenp n) (list n))) list))

80 FLOW OF CONTROL Chapter 4

(defun evens (list)

(do ((sublist list (cdr sublist))
(item)

(evens-found)

)

((null sublist)
(nreverse evens-found)

)

(setq item (car sublist))
(if (evenp item) (push item evens-found))))

(defun evens (list)

(let (evens-found)
(dolist (item list)

(if (evenp item) (push item evens-found)))
(nreverse evens - found))

)

(defun evens (list)

(loop for item in list
when (evenp item) collect item))

3. (defun less-thans (list)

(mapcon #' (lambda (1)

(and (cdr 1

)

to avoid doing (< n nil) at the end

(< (first 1) (second 1)

)

(list (first 1)))

)

list))

(defun less-thans (list)

(do ((sublist list (cdr sublist))
(item) (good-ones))

((= 1 (length sublist)

)

(nreverse good-ones))
(setq item (car sublist))
(if (< item (second sublist))

(push item good-ones))))

(defun less-thans (list)
(loop for a = (car list) then b

for b in (cdr list)
when (< a b) collect a))

4. (defun add-to-list (n list)
(mapcar #' (lambda (elt) (+ elt n)) list))

Section 4.7 Problem Set #4 81

(defun add-to-list (n list)

(mapcar #' + (circular-list n) list))

5. I've fudged the repeat counts of these three so that they'll agree on which is

the nth fibonacci number.

(defun linear-fib (n)

(loop repeat n

for a = then b

for b = 1 then partial-sum
for partial-sum = (+ a b)

finally (return partial-sum)))

(defun linear-fib (n)

(loop repeat (+ n 2

)

for a = then b

for b = 1 then partial-sum
sum a into partial-sum
finally (return partial-sum)))

(defun linear-fib (n)

(loop repeat (1+ n)

with a = 1

sum (progl a (setq a partial-sum))
into partial-sum

finally (return partial-sum)))

6. This takes about 10 seconds to find all primes up to 50021 ("5100 of them).

(defsubst factorable? (n factors)

(loop for f in factors
while (< (* f f) n)

thereis (zerop (remainder n f))))

(defun primes (

)

(loop for n from 2

unless (factorable? n found)

collect n into found
and when (> n 50000) return (length found))))

7. The editor command Meta-X Macro Expand Expression All calls a function

named macro-expand-all to do the actual expansion. It's kind of messy, but

it basically does a recursive tree walk of the input form, expanding each part.

Understanding how it works, however, is not really necessary. All we need to

82 FLOW OF CONTROL Chapter 4

know is what it does; we can treat it as a black box. Here is the original

definition of mexp, and one for mexp-all, which modifies mexp to use macro-

expand -all.

(DEFUN MEXP (

)

(LOOP WITH (FORM FLAG)

DOING (FORMAT T "~2L")

(MULTIPLE-VALUE (FORM FLAG)

(PROMPT-AND-READ '
: EXPRESSION-OR-END

"Macro form - "
))

UNTIL (EQ FLAG ':END)

DO (LOOP AS NFORM = FORM

DO (SETQ FORM (MACROEXPAND- 1 NFORM))

UNTIL (EQ FORM NFORM)

DO (PRINC " -» ")

(GRIND-TOP-LEVEL FORM))))

(DEFUN MEXP-all (

)

(LOOP WITH (FORM FLAG)

DOING (FORMAT T "~2&")

(MULTIPLE-VALUE (FORM FLAG)

(PROMPT-AND-READ '
: EXPRESSION-OR-END

"Macro form -» "
))

UNTIL (EQ FLAG '
: END

)

DO (PRINC " + ")

(GRIND-TOP-LEVEL (zwei : macro-expand-all FORM))))

Chapter 5

THE GRAPH EXAMPLE

This chapter, rather than present some abstracted features of the lisp language or

of the lisp machine operating environment, will cover a programming example

which puts to use many of the features we have previously discussed. The piece of

code in question allows one to display and manipulate simple undirected graphs,

that is sets of nodes connected by arcs.

If your site has loaded the tape which accompanies this book, you can load the code

by using the CP command Load System graph [or evaluating (make-

system 'graph)]. Once the code has been read, start the program by evaluat-

ing (send (tv: make-window 'graph-frame) : select).

Please refer to section 5.5, which contains a picture of the program in operation

and a listing of the code. The first three sections will point out and briefly discuss

the interesting features of the code. The basic mechanism is contained in the first

half of the file. All the graph manipulation functionality is there, provided you're

willing to type in awkward forms to a lisp listener. The rest of the file provides a

more convenient user interface.

84 THE GRAPH EXAMPLE Chapter 5

5.1 The Nodes and Arcs

The four defvar's

These four declarations are for global variables that will be needed at various

places throughout the code. A defvar must precede the first appearance of the vari-

able so that the compiler knows the symbol refers to a special variable. Another

good reason for putting them at the beginning is so anyone reading the code can

quickly find out what hooks are available for modifying the program's behavior.

The node defflavor

All five instance variables are sellable (you may recall that settable implies get-

table and initable). The : required- init-keywords option specifies that

every call to make-instance must include initial values for xpos and ypos.

defun-method

This facility is sort of a cross between defun and defmethod. It's used for defining

functions to be called from inside methods, which need access to the instance vari-

ables. For defun-methods to be compiled optimally, they should be defined before

they are used.

The : init method

The last thing make-instance always does is call the flavor's : init method, if it

has one. Here you can specify operations to be performed on every instance of your

flavor, upon being instantiated. I use this one to set the radius of the new node

according to the size of its label, and to add the node to the list of all nodes. Note

that many of the window mixins already have : init methods, so if your flavor is

built on some of them you'd better use a before or after daemon rather than a pri-

mary method so you don't override the other one.

ignore as an argument

Use of ignore in a lambda-list for an argument which isn't going to be used

saves you from getting a compiler warning about an unused variable.

: send-if-handles

This method comes with si:vani!la-flavor. The specified message is sent only if the

object has a handler for it. This avoids unclaimed message errors in cases when

you can't be sure of the exact flavor of the object you're dealing with. The

Section 5.1 The Nodes and Arcs 85

: primitive-item message has to do with mouse-sensitive items. We'll get to

that a little later.

map-over-arcs

I wrote this macro to have a handy way to iterate over all the arcs. For each node

it runs through all its arcs. If it has already seen that arc it goes on. If it hasn't, it

executes the body forms with the specified variable bound to the arc, and marks the

arc as visited. Note the use of gensym to make sure the mark-var and node-var

don't shadow any variable bindings.

5.2 Managing Multiple Windows and Processes

We now have everything needed to make and alter graphs, but it would be very

awkward to do it by typing forms like

(make-instance 'arc

model (make-instance 'node :xpos 135 :ypos 251)

:node2 (make-instance 'node :xpos 338 :ypos 92))

The rest of the file is concerned with making it easy to do this sort of thing. First

we define a frame (an object composed of several windows). Our frame has two

panes, one for display of the graph, and one for typing lisp forms. Then we set up

a process in the graph pane which just watches for mouse clicks on the mouse-

sensitive items (the nodes) and dispatches appropriately. The lisp pane, by virtue

of being built on tvtlisp-Iistener, will automatically have its own process for reading

lisp forms, evaluating them, and printing the results.

Managing multiple processes is something people often find confusing, at least the

first few times. Windows, processes, and i/o buffers are all independent objects on

the lisp machine, so you can have nearly any number of each. A window can have

zero or one processes running in it, and any number of processes can exist indepen-

dently of windows; windows can each have their own i/o buffers, or any number of

them can share a single i/o buffer; any process can read from (or stuff characters

into) any i/o buffer. How do you decide how many you want? I'm not sure how

generally applicable they are, but here are some guidelines you can try out.

First decide on the windows: the number of windows is your number of distinct

output channels to the user, so you'll need as many as you have things you want to

display simultaneously. In this example we want to see the graph and our

86 THE GRAPH EXAMPLE Chapter 5

interaction with a lisp listener, thus we have two windows.

Next think about your input channels from the user. You'll probably want to use

one i/o buffer for each. In our case we need one for keyboard typein (lisp forms)

and one for mouse clicks on the mouse-sensitive items. Hopefully it will be obvious

how the i/o buffers and windows match up. For this example it is: we'll use the i/o

buffer of the window displaying the graph for mouse clicks, and the i/o buffer of

the window displaying lisp interaction for keyboard typein. (See chapter 7 for a

situation that calls for having two windows share an i/o buffer so that the process

running in one can see input from both.)

Now processes. For each i/o buffer there will have to be a process, generally one

running in the window to which the i/o buffer belongs. (Having several processes

read from a single i/o buffer would lead to undesirable "race conditions," where the

program's behavior randomly* depends on which of the processes happens to get to

a particular input first.) If there are leftover things to do which don't involve direct

communication with the user, you can create extra processes running without win-

dows.

In deciding how many i/o buffers and processes you need, keep in mind that some

tasks will be handled by the mouse process, for free. Think back to problem set

#2, problem 4, when you defined a : mouse-click method which drew a square

where the mouse was clicked. That window didn't have a process in it, and you

made no use of its i/o buffer. It was the mouse process that watched for user input

via the mouse and called your method when appropriate. Similarly, in this graph

example, we'll define a : mouse-click method to create new nodes at the mouse

position (see below), and this will happen independently of our own processes and

i/o buffers. The mouse process does it all. There are other tasks, however, for

which the mouse process only does some of the work. It turns out that handling

clicks on mouse-sensitive items fall into this category. The details are covered later,

but what's relevant here is that when a mouse-sensitive item is clicked on, the

mouse process simply stuffs something into the i/o buffer of the window under the

mouse, and does no more. Somebody else has to notice what's in the i/o buffer and

do something about it. That's why the window displaying the graph needs a pro-

See hacker's definition at end of chapter.

Section 5.2 Managing Multiple Windows and Processes 87

5.3 The Windows and the Mouse

The graph-frame defflavor

This defflavor uses the :default-init-plist option, which lists alternating

keywords and values. The effect is as though the keywords and values were present

in every make-instance for this flavor (unless explicitly overridden). The

: selected-pane init keyword means that whenever the graph frame receives a

: select message, it will pass it on to the the lisp pane. The : panes keyword

says that this frame has two panes, named "graph" and "lisp," and that they are

instances of the flavors graph-pane and tv:lisp-listener-pane, respectively. The

: configurations keyword specifies the layout of the frame. Configuration

specs are often very messy, and you should try to read up about them. This simple

spec states that the graph and lisp panes are stacked vertically, with the graph pane

occupying the top 60% of the frame's area, and the lisp pane occupying the rest.

Selection

The next two methods, :alias-for-selected-windows and

: selectable-windows, are ones which applications programmers don't usually

mess with. Although what these particular methods do is easy to see, the manner

in which they affect the behavior of the Select key and system menus is extremely

obscure. The only reason they're here is because I thought it would be nice if we

could use the lisp pane to make our frame accessible via Select L. Take a look at

the comments in the code, and don't worry about it too much if you don't com-

pletely understand. (Incidentally, the bug in the speech editor which I mentioned

in the introduction to Part II of the second problem set had to do with these mes-

sages.)

The graph-pane defflavor

This flavor is based on graph-window (defined below), with tv:pane-no-mouse-

select-mixin added. tv:pane-no-mouse-select-mixin itself is just a combination of the

flavors tv:pane-mixin and tv:dont-select-with-mouse-mixin. The former provides the

functionality a window needs to be a part of a frame. The latter fixes it so that a

pane won't show up in various system menus. Otherwise those menus would con-

tain separate entries for every pane in every frame, which is most inelegant. All

you really want is one entry for each frame. (As to exactly what that one entry

should be, see the previous paragraph.)

The graph-window defflavor

This is the definition of the window in which the graphs are to be displayed. It

88 THE GRAPH EXAMPLE Chapter 5

includes tv:process-mixin so that there will be a process running in the window, and

tvtbasic-mouse-sensitive-items, so the window can display items which will be mouse

sensitive. We use :default-init-plist again here. The : process key-

word gives the name of a function which will be called on one argument (the win-

dow) the first time the window is exposed. Such functions are typically written as

loops which never return. The : item-type-alist is an instance variable con-

trolling the behavior of the mouse-sensitive items. The contents of this list are

described below. The :blinker-p keyword specifies that this window is to have

no blinkers, and the : font-map keyword is a list of fonts this window is to start

out knowing about. In this case, the window's sole font will be Helvetica, 12 point

italic. (The default font we're all so familiar with is called "cptfont," so the font

object may be found as the value of the symbol fonts : cptfont.)

The : init method for graph-window

This is where the variable *graph-window* gets set. Note that this setup assumes

there is only one active graph-window around at a time. Whenever one is created

the old binding of *graph-window* is lost, and anybody trying to use the old win-

dow is likely to get confused. (If you wished to have several graph-windows around

simultaneously, you'd have to think of something more clever than a single global

variable to keep track of them. Similarly, the global variable *a!l-the-nodes* would

have to go if you wanted different graphs in the different windows.) Note also that

this is an after daemon, to avoid clobbering the important : init method defined

for tvrsheet.

The main-loop for graph-window's process

This loop simply reads blips from the window's i/o buffer and dispatches. The only

blips it's expecting are ones with a first element of : typeout-execute. These

blips are generated in the mouse process when someone clicks on a mouse-sensitive

item. The remainder of the blip will be a function name, dependent on the type of

item and type of click, and the item itself. This loop simply calls the function with

two arguments, the item and the graph-window. As we'll soon see, the items will

be nodes, and the functions will be ones like delete-node, rename-node. etc., all

defined below.

The : refresh method

This generates the picture. It sends each node and each arc the : draw- self
message. (Note the use of map-over-arcs.) This is an after daemon so we don't

override the : refresh method of tv:sheet.

Section 5.3 The Windows and the Mouse 89

The :who-line-documentation-string method

The response a window gives to this message is the string which is displayed in the

mouse documentation line at the bottom of the screen whenever the mouse is over

the window. : override is a kind of method combination we haven't discussed

before. It is similar to : or combination in that if it returns nil other methods get

a chance to run and if it returns anything else they don't. It's different from : or

combination in that some of the remaining methods may be before or after dae-

mons, which isn't allowed with :or combination. In this case, the intent is that if

the mouse is not over a mouse-sensitive item, the string supplied in this method

should be displayed. But if it is over a mouse-sensitive item, some other method (in

particular, the one on flavor tv:basic-mouse-sensitive-items) should be allowed to

specify the documentation string.

The : mouse-click method

If the mouse is not over a mouse-sensitive item, and if the click was a single one on

the left button, make a node at the mouse position and display it. Otherwise let the

other : mouse-click methods have a chance. (Recall that : mouse-click
methods have :or type combination.) The new node will have no label.

The guts of the mouse-sensitive items

For each type of mouse-sensitive item a window knows about, there is a set of pos-

sible operations. (Graph-window currently knows about only one type of item, the

:node type.) The item-type-alist (recall that this is an instance variable of

tvrbasic-mouse-sensitive-items) tells what the possible operations are for each type,

and also indicates that one of them is the default operation. The : mouse-click
method for tv:basic-mouse-sensitive-items is set up so that if you click left over an

item, a : typeout-execute blip is forced into the window's i/o buffer, listing

the default operation and the item itself. If you click right, it pops up a menu with

all the operations for that type of item, and when you choose one a : typeout-

execute blip is sent containing the chosen operation and the item. It's up to the

process running in the window to read these blips from the i/o buffer and do some-

thing with them. As we've just seen, the process in the graph window calls the

operation as a function, with arguments of the item and the window.

The internal structure of the alist is a bit of a mess, and it usually is not built by

hand. Instead, it is generally constructed with the macro tv:add-typeout-item-type,

which is called once for each operation defined for an item. The first argument is

the alist to be modified, the second is the type of item, the third is a string to name

the operation (this appears in the menu you get from clicking right while over an

item) and the fourth is the symbol which actually ends up in the blip if this

90 THE GRAPH EXAMPLE Chapter 5

operation is chosen. The fifth and sixth arguments are optional. If the fifth arg is

t, the operation becomes the default operation for this type of item. If the sixth

arg is present, it is a documentation string to appear in the who line while the

mouse is over this option in the click-right menu.

You can see that for the graph window the default operation (which you get if you

click left over a node) is the function mouse-new-arc. If you click right you get a

menu listing four other operations in addition to "New Arc," for deleting an arc,

moving a node, renaming a node (new label), or deleting a node.

The function definitions for the operations

All that remains are the definitions of the five functions which implement these

operations. The first two (mouse-new-arc and mouse-delete-arc) use a function

from the Edit Screen menu to choose an arbitrary point in the window, then see if

there's a node under that point, and if so, act accordingly. The delete-node function

is very simple. The rename-node function uses a built-in function named tv:get-

line-from-keyboard which pops up a small window and prompts the user to type in

a line of text. The function for moving a node uses the same piece of Edit Screen

as the earlier two.

: item and : primitive-item

The only thing I haven't explained is how the window knows that some portion of

its display is supposed to be a mouse-sensitive item, and of what type. The : item
and : primitive-item messages take care of that. If you look back at the

: draw-self method for node, you'll see the : primitive-item message we

glossed over before. What this one does is tell the window that there is an item of

type mode, with left, top, right and bottom edges as given. The window has an

instance variable which is a list of all the current mouse-sensitive items. The effect

of the : primitive-item method is just to push the given item on the list. The

: item method (which isn't used by graph-window) is an alternative to

: primitive-item for mouse-sensitive items which are text. The method will

take care of printing the item and figuring out its edges. With graphical objects

like our nodes it can't do that, so we display them ourselves, calculate the edges,

and send the : primitive-item message. To see whether there is anything on

the list at a given position, send the : mouse-sensitive-item message with

args of the x and y coords. If there's an item on the list matching those coords,

some information about it will be returned, including the item itself, its type, and

its edges. This method is primarily for internal use by the : mouse-click and

: mouse-moves methods of tv:basic-mouse-sensitive-items, so the window knows to

highlight the appropriate region when the mouse is over an item, and what to do if

there's a mouse click.

Section 5.3 The Windows and the Mouse 91

5.4 Fun and Games

From The Hacker's Dictionary, Guy L. Steele, Jr., et al:

RANDOM

1. adjective. Unpredictable (closest to mathematical definition); weird. "The

SYSTEM'S been behaving pretty randomly."

2. Assorted; various; undistinguished; uninteresting. "Who was at the confer-

ence?" "Just a bunch of random business types."

3. Frivolous; unproductive; undirected. "He's just a random LOSER."

4. Incoherent or inelegant; not well organized. "The program has a random set

of MISFEATURES." "That's a random name for that function." "Well, all

the names were chosen pretty randomly."

5. Gratuitously wrong; poorly done and for no good apparent reason. "This

subroutine randomly uses six registers where two would have sufficed."

6. In no particular order, though deterministic. "The I/O channels are in a

pool, and when a file is opened one is chosen randomly."

7. noun. A random hacker. This is used particularly of high school students

who soak up computer time and generally get in the way. The term "high

school random" is frequently heard.

8. One who lives at Random Hall at MIT.

J. RANDOM is often prefixed to a noun to make a "name" out of it (by

analogy to common names such as "J. Fred Muggs"). It means roughly

"some particular" or "any specific one." The most common uses are "J.

Random Loser" and "J. Random Nerd." Example: "Should J. Random
Loser be allowed to delete system files without warning?"

5.5 The Program

92 THE GRAPH EXAMPLE Chapter 5

Section 5.5 The Program 93

94 THE GRAPH EXAMPLE Chapter 5

Section 5.5 The Program 95

•H P
a a)

(V— .c
v m
p ••

0) >
rH P
a)

?.§
M

•d
o -d

£§!
o

d u
o n
.£ o
p .Q
0) «^
e
4-1 •
0) .-

T3

a> in
> ~ a;

0) to *d
M ~ O --'

ft CO u
O (0 *

O fc o
** «3.g
^ J u o
(0 J — c
> p I

Z P a)

w ~ Z .£
•H W P
,C J W I

Eh H

o cu a*
q o -P
o a>

0) <D

d -d
o o

fc TJ -dmoo
e c c

S-l V4

fl Hi

O ~
>
id

a> a)

•d -d
o o

0) OJ 0)

H rH rH rH
H .Q jQ £1
C <TJ it} rtj

-p +J p
P -H P
Q) (5 0)

Ill-ri (Jl

96 THE GRAPH EXAMPLE Chapter 5

Section 5.5 The Program 97

ft
o
p

TJ 0)

+» <M 0) >(OOP
CO TJ

CD P -H O

(0 -H +J

AH « «
c s

ft « sm^ ft (I

•HP 43
rH ft £<

CD CO ^
CD ^ -H
43 0J rH
P 6

0) 4J

CD CD 43 -H
CO M -P —
03 -H tO «-«

h mi —
>> > x v
CD CO <0 -H C
>! &>43 >M <0

C ft
P -H Tj CO I

O 43 rH -rl TJ
CD P C 43 CD UH O tn P
a; co £ u
CO 0) CD 4-1 it!

O P • rH II
CD TJ H — CD — HO)
43 a» co — a> ft
p 43 e •• * > £

O • 10 > O 0) P <—
c; 'H h ^ +j nj. i—i i 4»

>! 43 C «H - C Ig ri

<tj>a>i -h ft cd o —
S 6 43 — * OP — 2 -H

S ft C I +» -H — & >,
O Jl g fl -O 43 II— -H — P
+j +j CD P -- •* ft J43-H > ICOP&lp (0 OftCNP O r^
-O >n co — o P tjifl'-co d C
•rl CO >> CD — CO CD t? C P rH CD «3 <0

>C CO 43 •> rH CO -rl fr 43 P -rl>p?ocd i3 e>*--us >POCDOTJCO -H CD I CO -^ ^ ri IH^
CO TJ 43 P -d C I X +J43+JP -rl rH CD

C C P O C -H P -H -H ft CO C — C C CD P
•|-| -rl <M -rl > O 6 I (0 -rl rH O P O CO —

S <M > I »4H I CD P rH -H 4H -rl -H —»0 —
CD O 111 I 91 I P > &> <0 C >- C P ft T> CD —
S CD O rH rH CD O -H •— I » -H O O C X 4H

43 C C <0 43 6 CD P * CD ft •• £3 OCDCDrH
&HJ O O -H fl fl rH -H ftlft C rHCOICD
C -rl p p C a, CO CO >, p <0 P 4H I >- P CO

•HM-tP-OCO" co C copcdB CD i (3 3 _
43 O ft C CD CD I CD CD I ,!«! I -P —

•

rH -HMOS
p o id n h ai cd (3co o g c p mh— <d <o cdcd

SrH

CQCDC3 CO -HI O CD -rl C <0 4H >
p p <W CD CO <0 S *-»XCD h+JrHO •• H CD •

e
.-££.t

4*1 <0 O rH •• ft O -'H « ft -H 43 4-1 CD rrift CDP
<0 ft CD CD C I ~ 6 S C >C0 10 * P •• ft
CD rH CO O CD TJ «- I » I O O ftOO'HO
C CD CD P BCD O O CO B — P TJ* Ori T3 TJ
CO 43 CO -rl CO (0 P CD C >0 CO I ? CO C ? PI G ft 5 rH

+J -H p O CI C3CDOO-H -HO I C -HOSrH
CD CDP *M CD 03 (D •HU-H'OrH ? T3 5 -H > 0) n3

43 CO 43 O C* I rH ft C £ O CO C ft IC O <0 1-0*0
En CD P <4H C 43 CD 1(0 I P <fl -rl I 43 -ri TJ 6 43* C

co -Hftco co, 43ft4a*p ft> a • ftScrB
C P CD -d «J •• ft •• ft H <fl I -H fl CD CD <W•»wOO-HP> rfl> «>>>C P43 >S P >J ^ —>!CMHCP&)P PP U *J *J *J -r^ &>ft 10 C7> —CQOOP^ tp^tji^ I ^(0 43"O^CO

id O 10^ 0) TJ P pftC PCDTJ>>'OCP P r-i 'O&i<0-HTJO43prHOCDOOCD O O C O* P» Oiw?
x CD-OO43c0> > id 43 tj>43C>C-HCDP^m nJ *w PC -OPftOCD-H^PCD-rH rH CD CDPCCCDOQrH^plCB— <W IH T3 BCDSCDBO

4-|x_,l4H IW •• IMCO^HCOM-lrH
.-.».».» .^ CD ' CD CD •-' CD —' D w D —
. ^ . ^ .«-.«-.*- rrj frl irt trj irj tr)

98 THE GRAPH EXAMPLE Chapter 5

Section 5.5 The Program 99

o CO I

u xi = n
<t» co o

o -o i

S +j o coCO -H
u «h

CO (0 43 13
45 +J 0}

+J CU

H — -P o

*

o g <w *
4-1 CO M

-P O -H +J

<D -H 4-1 0) CO

o "d o> «^ ^ <o 43
C C <0 to — — h ra

O O O ~ <-* IViO CVht-csi cC CO

id cu <tf co co co

43 ~ CO h —
« •• •O •O" ^ 3

+j ^ _ CO ~ O O co o
O ~ fl- - C C -P E

>. <N B 4J >, g -. •• C ••

•P CO CO -P O CO W>
pi 43 * -d cx-p«j«j = -p

•H V O -H a) -Hoec o^e-o-o tj
o« co co •• h*j « t) B t! ^

to p -P C co co <0

>! O -h a> >JS-HOwcn O
O O I TJ U O I O — — 43
•H 43 CO O -H 43 CO CO >,puu>C Pn m > co co a> ~ co

= = -H =s-H— dT) — .*
£ 4-» <- S-POO — IOiH-HCU OrH-HTJCC — 6TJ-HCOTJ -d-HCOC! «— OCCCO fifl fi IID'D' — H
H CUC'- -H CO CO CO CO ~ *- *WS+jcq-^^>+jco— — ^^ 43 i

C I ~ ? fl I — w vrH-HCUO-— OrH-HCPCHOj CU C!— iHOCOW— -OrHOCO-HO ^M -H>njaDnj>C(Oft0 — c a) iw mOOI O^O-HOI O<0 h ^ -P <U -^ •— I•Ol-dE -d » I *d g $3 ft CO H S >-P
C £3 £3 •• COG £3 G •• H d) +J 0) H •• O O <D

•HCU-H O -rl CO CO -H O 43 <U CO 01 TJ TJ CJ>

s ~ 43 4-1 > c> -o — g <w s <«> na-o? c a • •

>,4JI O ~ <d O >, -P I O ~ — •• O -H -H >aii^'dft-PM-iCiU'Ofta «os S-p
d X -P O £3 CO to rH ^-X+JO (30)0 — O £3 — — -»
O — CO -P -H CU C <D — CO .p -H CO O O fc -rl CO « CO ~
£3 CO -rl £ 43 -H 10 O CO -rl £ 43 rH >H flj £ Tj 43 Tj rH 43^o x -d «-ii ^043'0 »-*- <a o co o co co

ficoco TJ co? nJCcoco -O "O -O £3~<U C43 co

O-HII £3— >J(fl l-HII C'-O 4JC3C —con — «J n
nxi+jfi coemn coxiP£3 coen ococo -p«w rH iw

it I CU 01 CO CD g T3 -PIC0CO CO CU (fl (3C0C0 CU CU CU CU I CO

i ai co cu —..p«_-.. cu cu co cu ^-+j^- ^«_-^ t) h ^ tJ-P ^>SIM -H rH^I^ -rl— O «» •• O <D ••COrHCOOg-d COrHCOOg <W flTJ J3C0
{3k)coco co-PC tj k) co n copp -h !••> I •• *
i > s •• +j o iii i > d •• 4J o « — cooco oQJIO>-H(3C0 (0IO>-HC3rH -PCOTJgaj'O
cocogp ^.w.^ cocog+J — «-' — cotJC (OtJ (3

3 rH •• - — pj H .. k w ,H Q -H £3 O -H
oft>=* <« o a > % M-i coj3>co(3>
g -H -p +> -H g -H +J P -H TJ M

+)^- d)^ 4J— CO— "OTJ "OTJ
(3iH rH J3i-i rH C3CJ3CJ3C
j30 ^ 00 ~ 0COCO0COCO
lUg <4-|g lw tfl CO 4-1 CO CO

<p^ cu_- co^^co— —

100 THE GRAPH EXAMPLE Chapter 5

0) ~ *-
to — "»
o 4> >—
ONI)
.C -rl N
O W -H
= I to

C i
= -H $3

•H Ifl H
o e <o

eu i e
•^ IM<H ft

O 0) o
•HH+J
pn

O H o o
•O -rl T) "O
c c n c
•rl -H -H
> -P 5 5

> H -ri T) fl
O rH O C C

c o I to w
H I >0 -' -'

* g -S X *
0) -- ^! M-i

•d :*p i " '

i u «-* «-

a x p o ~
^«- « |J 91 01'-

4) -H O O .C
0> T3 ,C TS ft 0< CO

•O G to 4> X >^ 4>

O -rl I I I IH
a a -p c +j +j M-i

1 | <D 4> CD <U 4>

0) CD 10 4> tQ 10 U
> 3 i nOH d) o
g id oi to 4i u ^
i > a •• *o tj o
a) i o > o o -o
to <u 6 -P C C fi

fl H ••' -H

O ft > % -o -o s
g -H +J C C _

+J ^ 4) 4) T3
C pH to CO C
g jj >_^ a)WE «

d

Section 5.5 The Program 101

5.6 Problem Set #5

Questions

1

.

Assure yourself that you understand the graph code.

2. Write a function that finds any nodes with no connections to other nodes and

removes them from the graph. Write another which clears the graph-window

then uses map-over-arcs to display only those nodes which are "nodel" for

some arc.

3. Extend the program to be able to deal with a larger area than will fit on the

window at one time. You'll need some mechanism for moving the graph win-

dow around within the entire space.

4. A. Write a : highlight method for nodes, which puts an already

displayed node in reverse-video. Now modify the functions mouse-

new-arc and mouse-delete-arc to highlight the first node that was

moused while the program is waiting for you to choose the second, and

un-highlight it when you've chosen. Fix up mouse-move-node similarly.

B. Write a new mouse-sensitive operation which has you pick two nodes

and then highlights all the nodes in the shortest path between the two

chosen ones (where "shortest" simply means containing the fewest

nodes — don't worry about ties).

5. {Hard.) Make the arcs mouse-sensitive too, but modify the mechanism so

that the area considered part of the item is not an entire rectangle, because

that would include too much area. Allow specification of parallelograms, or

something like that, so you can tighten the mouse-sensitive area to be just

around the arc.

6. There are a number of problems with the code as it stands. Here's your

chance to improve on the teacher's work.

A. Any operation which requires that some part of the display be erased

currently causes a complete redisplay. This is really unnecessary, and

quite unattractive, especially if there's a lot of stuff on the screen. Fix

the deletion commands to do minimal redisplay.

B. Currently, if two nodes are connected by an arc which cuts across

another node, the line for the arc just runs right through the node. Fix

the : draw-self method for arcs to be smart enough to go around

obstacles.

7. Write a new program, borrowing whatever portions of this one are

102 THE GRAPH EXAMPLE Chapter 5

appropriate, for displaying trees. One important difference should be that

instead of having the user specify the location of each node, your program

will determine their locations. That is, the root will appear at the top with its

inferiors spread out in some tasteful fashion below it.

Section 5.6 Problem Set #5 103

Hints

1. Play.

2. The first function should loop through all the nodes, sending the : delete
message to any which have no arcs, and then refresh the graph window. The

second should clear the graph window, then use map-over-arcs to loop

through all the arcs, sending "nodel" of each arc the : draw-self mes-

sage.

3. Give the graph-window flavor two new instance variables to indicate the x

and y position of the window relative to the graph area. Now the functions

concerned with node positions need to convert between a node's apparent

position and its real position by adjusting for the window position. Four of

graph-window's methods (: draw-circle, : draw-line, rdisplay-

centered-string, : primitive-item) will have to convert from real

node positions to apparent positions, while the : mouse-click method and

the function mouse-move-node will have to convert from apparent to real.

The former four are all inherited from some other flavor, so for them the

easiest thing is probably to define whoppers which adjust the arguments. For

the latter two, on the other hand, we did the relevant definitions ourselves, so

we can change them.

The whoppers converting from real positions to apparent positions should be

prepared for the apparent position being off the screen entirely. The

: draw-circle and : draw-line methods "clip" (they'll even do the right

thing if the circle or line should be partially visible), so you can just pass

along any bogus arguments without worry. The :display-centered-

string method, however, wraps around when given off-screen coordinates,

so in this case you should check the apparent position and possibly skip the

whopper continuation.

(You'll have to make a new instance of the graph-frame, because the new

graph-window defflavor, with two extra instance variables, is incompatible

with the existing graph-window.)

4. A. The : highlight method should draw a filled-in circle in xor mode.

The basic idea for the mouse-!...] functions is to use the : highlight
method once to highlight a node and again to turn it off, but there are

two kinds of complications to watch out for that could leave you with a

node turned on: the : refresh method clears the screen, thus remov-

ing any highlighting that may be present; the new-arc and delete-arc

functions have several failure modes (the parts with the beeps) that

skip portions of the code.

104 THE GRAPH EXAMPLE Chapter 5

B. Add a new type of typeout item to call the function mouse-find-path.

The control structure of mouse-find-path should look roughly like that

of mouse-delete-arc, and you'll probably want an auxiliary recursive

function, say find-path-to. A breadth-first search will be the easiest

way to find the shortest path (because the first path you find will be

the shortest); you can use the mark instance variable of arcs to

prevent looping in the search.

The key issue here, and the reason I call this a hard problem, is compatibil-

ity. We want to use the bulk of the existing mouse-sensitive-item code to

save us the trouble of duplicating its functionality, and we want to modify it

to provide the new features. But at the same time, other programs will be

using the ms-item code and counting on it to behave the way it used to.

My approach is to first replace the hollow-rectangular-blinker that is provided

by the basic-mouse-sensitive-items mixin with a polygonal-blinker, a new

flavor of blinker which can draw itself as any closed polygon (imitating

hollow-rectangular-blinkers as a special case). Then I define a line-item

object, and arrange for the polygonal-blinker to draw itself as a squashed

hexagon around ms items which are of type line-item (and as a rectangle

around all other ms items). A number of basic-mouse-sensitive-items

methods have to be modified, but most of the changes are of one very simple

kind: references to individual ms items are replaced with calls to a macro

which just returns the item if it's the normal type, and extracts the appropri-

ate information out of it if it's a line-item. The only substantive changes are

to the : mouse-moves method, because there's a new way for specifying the

shape of the blinker, and the typeout-mouse-item defun-method, because

there are new rules for determining whether the mouse is over a particular

item.

Now all I have to do is change the : draw-self method for arcs to provide

a line-item as an argument to the : primitive-item message, and define

the "Delete" operation on mouse-sensitive arcs.

(You'll have to make a new graph-frame to put all the changes into effect.)

A. The deletion commands should surgically erase exactly the nodes

and/or arcs being deleted, and leave the rest alone. You can erase the

nodes by drawing a filled-in circle in andca mode, and the arcs by

drawing over them in xor or andca mode.

B. Open problem. I haven't thought of a good way to do this.

Done as "The Tree Example," chapter 7.

Section 5.6 Problem Set #5 105

p

106 THE GRAPH EXAMPLE Chapter 5

Section 5.6 Problem Set #5 107

tJ> 4H g
a in -h
id en P
43 0) 43
o o en— O -H— - SH— » to A— 6 O Cn— o> >d oi -h

H -P — C > 43
O -H — -H
X > S 0> 0)

1 X> O — — H 43
2 (3 fl M-'- p 01 P
rH O CO— — 43 43
Id O -H M x- (N tn > to

iv ? <t3 a* a> -h w
> — 0) -- ••'dt) H (D«)
P -»_- = — POO43t00)— • — 43 — (3 C 0> *h
10 = >, (N =T3>>t7>e H O O
2 "O P 0> -d X) P 0) -H 01 43
•H 0) 13 X Xl 0) 0) C4J«H+)ldfl •• (DIM
•O" &1 -H OCn &1 -H 0) 43 -H 43 rH
•d J3 06CJ3 a O h 6 d> x« xi o> P oi

w ro o< — o> •• id id o*o>o>-hxii3i3xi to

43 = P 43 43 x» P 43 13 01 0) O (3 P
t0 O M • -H 0) O O 4* -H •• O 01 t0 fi -ri -H
o o o i xj o o> i o «— --
ft •- -H w 0) O — -H 43 0) <u <u -a ID 43
>, Pn 10 > G 0. > XI to 01 0) C too

= -H rO-HO---XlXlO>— 3-H
to SS+jt- SPPGOOto — <d43
O O H J) -ri IV OrH-H-Ofifi^— OS
ft •d-ncio'O xi -h o to >o (3 — ~a>
X CC C O fl fl H C fl Hi ffO1-- -fl -

•h iv u c -h <d o> oi to oi o> — ft — 43— o> s p 43 to ••— — s p toto^-^^njiu 43<vto
>ih J3-PI — > j3Q)i— ajtowiuOO rH-H a) O — O rH -H 43 0> (3w (343 0> 0> fc

•K3 U — rH O H 10 H— XI rH O -P tO — -HO H — — W 43 «W
(3 -h > id ft o 3 id* G (dft 3 ft--- rJ v <h o>

•HO O OliwO % O — -H O I M O 0) id +JCPIV+JW
»i -o— 1-d 6 -d— >— i flO Em C o> d> o> n 43 ••— C fi> C C 01 •• <VC» S B B ih •• fl H« H O H •• tJi

ri -ho oi -h xl o -h o o> o o> -h — o 43 u 01 -h id— I > -d — 43 <« O S C > Xl Xl Xl — 43 «H tt) > <wS ft-dSH
p-d i3 >. p i c o — id a ocj^Pi-doc — •• o 43 x>
430) 0> -H I U Xl ft -P <4H -H J3 -H I Vl CO tJ>ft Xl d> -H
0> rH T3»XPOMC0)t0rH> -'SXPOCCOO — OCI-HTJ
•Hi-I O ^<UP0)-Hll)l3a) ---01-P -HMO OM-H43
rH-H CP 0)-H43>43-Hl0+J OP <V-Hrl*ftrH U * & " Q>

43<w — 43 "d 43 T3 -P — I I 43 H43-d43 ,da> — — id >
tj>i d»i3tna)0'd 0)>o> ^011310(1)43^ d'dnJ
•H ^ O -H -H I I C — M Id -H I H -H I I +J C — O P C C
43ld VlrH43-P(3a>a>aidiHrH 11 H ,Q (J B O 11 g tl O 0) 0) P o
••>h <d43ia)a>43toa>E'd43 P43i<va> toaiid i3tatorJ>H
d i&i<D(oa>4J»--4J«-'"&i a)di<vtoa)tt)^-P»— ^^^ftm

0) •• > -H r> I H -H -H rH -H ^ I U 43 -H ^
XI 0)43rHil)Oa)e "d 43 0)43rH0)O-PE MH P13OS (3"idtototoaiPi3 •• d"idioto iv+ip -h toidco i >0-oPoa> i >0-*Poo) — s^d Q)a)lO>O-Hflt0 0) 0)<VlO>O-Hj3rH -nul

a io-da>eP43~ — — -d mfl m B+)^ a>

•d-H B O H •• * O ^ O 3 O H •• « W ^- P+J
0> OCft>*= im 13 OCft>%= iw ^0)
43 6 -H -P +J -H g -H P P -H BH
p*d "dP^- o)^- >o xi-p^- <v <~- <oo)0)CCC!rH rH CCfirH rH OT3
g tl B V B w O);30>rj w
MH 10 I4H W g 10 IM 111 E ••> •»

•d *d *d

THE GRAPH EXAMPLE Chapter 5

a -

z I U
"2 £ ~

0) G XI
~

O <w O >

0) fl *«

0) to — C

5 3 3 - ~*

O sO) X\ &•*
u~t j5 tj +J to tr —

o — — * £ D, &~
•H ~ — 03 +JO—&> —
jj ^ ^ -Q -H MT>-H~
•ho>— c^ £ 5 ~ ^ ~
"58 Z* u «"*
•> C I 0)0) 01 ^ ^ C T) C

tr -H flj <tf H "A -H +J _ ,G ' ~ -M

G

5

a

a ji i 1 * xi fc " "" 'd "P 5 ?

£ u • • • • « -p * ^ > "2 h tJ
'2

R_,00 ft P O H 01 'H O
rt £ -O T3 K £ -O-H-H03T3OH0)

El* So c2 cfiiflfl
.5 -H I ^ -H 0> 4> 01 O O

S+J 55 e ™_ ?
c o ?

™~~
"* jj irtfl +J0) S H 'H >, 41 OC"0
n 2 O C C -H .2 O rHO 01 — P-Hfi

.2— it) ~ ~ ft *o -h— i>d-HE<up ^

n.rliiu -^ ^ O-H i n +j tj tn G ft «>

5 ?
.2 « +j oioi-> ft

" ^<U+J0)-HV4>wO —

ti 0>g>t!)« a a m -n .G&>o>oia>.P~P~ft~
oSh i 3 tr> -P -H^iHttfOttig

t

»w

i » * w £ <u<i)* c g ^ "
IS S " S ?! ^, i

i > 2 •• T5T30 -H O I >3l'8^2^

a .j jj C C I I S "H +> 4J •"B
T3 -m i- §§A a 2 ^ "9 ii

w
iS
w

fiflH 0101CP-O gCH rH

ih a § tod*-
"S

016

5 . +J t3

Section 5.6 Problem Set #5 109

u •- a)

o -P 73
>w CO

o o

— o> 03 +j •• o <« 03~— +J .C -H M W 4-1 .C---X -h .p ,c p 73 oi -p

.C P >, O -P -H O •- ,C
+J (0 I-H-H73 4-I.C-P-P''me -p r-\ c <w i p w tn

«-• a -Hamo-paj-Hy-iaj
0) 1^ OX 01 BHIH 01

73 > p -hoj-ojo) o*aim rHg&i^aajojo
C C E ft C 03 fl 3 3 E
1 I gfl+J+J >0J0J0JH
73 03 -P -H -rl fi 4-» 3 3 ,C <H
C 0303 03 (0 03 O* O* -P «
0) P 03 ffl > +J > fc

0) •• ,£(CK73-H.p0)ftp
03 > +J^!03(0>wXX!OO
73 — 03 O (0 C I 03 -P ft fe
O £! P P ft fi 03 .C C
c+j g ~ to m n c+3 i iH-o— 1(0 — M rHOXiO-O-POC'

0) P ft P 73 « 4-> (0 03 (0 E
O03 CJiflfi -HO) 0) tT> -P 03

p x: oj ceo3 4->sp'P"C--p(O+j-o-hos vio-pxjo-p-h
••00 73 ~ •— (0 M-l X 73 P M••CC^ ftl) 1) -fiW-H+J
03 I « 'ri ^ O P 03 fi -P (0 rH X •

-oos+jihatj u-iss « 03 a»i-i
P 03 03 I E O-P0373PE.C03fi(C

fi ill C tJlX "fl O 3 03 -H 03 -P ,C O
1 M-PC 033D'3'«-P-P03-H
73-003(0(00(0 S ^ 0) I -H .C .p

C C C 4-> ft P 03+J03J-l£!l'4-l<4-(.PC
0303O (OX ^OI^SVOIWO 03

03 O 0) E -P C -P ft ft 73 O t* 73
73 ~ ~ 73 O 73 (0 rH 0)(0AJC-H— C O P C ft 03O.X0373--EO-H

M 9 I I fX «H 03 I ^hlllfl- OJUflOl
P 03 I I 03 S P -P 03 <U £ X) P -H

(0 — 03 X > C — 03 fi 73 03 ,C -P 3
E 73 -P 03 P G Jl O >iri 1I4J 11+)^

03—co(0C3O' >ofhsx! axojo
03 XX5-HCO,+J03+J (0 03OO(T>O-PP-P
45 +j+j 110*03^0 A 03 > A P C ft I

•P (0(OOSS03P03 > -H 03 (0 -rl O 03 ,fl

(0 ftftPO30)«-'-'O3rH C-H-P 0) >* 73 -P P -P
ft I 75 C C 03 iH (003(0^!03(OCCOlO
I rH P CO03O ,CPP-P03(0OMHft

rH <0(0PPP0373rHO — -P 3 03 (0 MH S 031
(0 -hoooox fi 03 o+jfto-p'Ojxi'O
H +J ~ 4H 4H <4H ? 3 73 H03-H CEC
P P O 03prH03>,O0)4J-H
P * ii ft C-- Xfim-o^+Jtniw
(0 ftO ~ 03 4-> 03 03 -rl fi 0} -rl -H —
ft 030 73 (flXX+J-H+JErHCO H ~ O Jh+J+JP^0103S03
P -HO— 03CMC (0 3 -P 03 03 303&1 C 7303 >,73ft-PT-l-HCXJa3
fr C X!lO> O 73 ~ •• ,Q rH C +J 3P-H -P73C fi O <N OlSX0373»03O<

(073 lOC-H ICO) 3..XOOP0303O-P
4J CO ft03O P73 -H O > -H 03 -P C -H p 03— -H+J fi 0) -* O 73(OX*4-lCiHOX3

03 <4H I PPO X'-C C+JOS<4-l03Xft03.p
,C I £ OOO ~4->03 •H00+J-HEO3W

+J+JX+J 4h 4H G <— O7303 *4H 10373033 3 M-l

l(0P(0-P ~ •• O 73 l03,C73rHft3OO
£! ft (0 ft 0) ft — CO— .CX-P-rl-Pft 0>!
•P I ft I t7> ^ O C~ -P-P(0O(0EC>i 03(0rH73PO P P 03 ~ (0 ft 03 ,C -H O -P 03

ftfllX C UH (0 flfl tTH ftCiT3-P >,+J 01 3
1 -H O -H +J — E^OOJ-H -H73 03 03 H
73 -P O <« C^C03C73O3£l+Jp-HO3
CPrH>- 73 > 73 -H rH -H 03 -H <4H 03

•H(0.Q OCW •H03l«CCP ,PI^
"Wft— ,C 03 -rl +JCOX(0-HI+J(0

+J ^ ^ fl.H SOO4-I4503E
C73 03 G(0'(0I-P03CC EM-i H-PO)0)0^4373XIX
y-iio <«-h 03fiS3P--p(0O
03— 03— +J-H0303ftOft03P-H
73 73 rH(0C3ft-P03POX— — <EO, O, (00373XJ<«»

1 10 THE GRAPH EXAMPLE Chapter 5

Section 5.6 Problem Set #5

1 12 THE GRAPH EXAMPLE Chapter 5

Section 5.6 Problem Set #5 13

14 THE GRAPH EXAMPLE Chapter 5

,-»

Section 5.6 Problem Set #5 15

116 THE GRAPH EXAMPLE Chapter 5

11

IS
U W

o> <
p
o p
<i) 2
rH W

fl w 0>

•p m &•rtODJSO 3 W 0, +J w
K rH -

x> i j a --
p 0) I <ozhehHO
S OJ W 2 W

0> I N •• H W
Pi En -H * «- ~
•rl P P
43 O H
p W O)

04 >
4J 5m -d

(V c
rH ZP
01 P
CO fa ••

«- CM
0) 0)

01 0)

*- cn
0> 0)

"8S
a ps

0) 0)

T3 TJ

H M

cn e
r- CN >,-H
Oi 0) M^ -^ -o tj cn a

> CN O O X ••

o >, Pi Pi

•o «- to e
a cn -o •o >> o> oi

•H X Pi Pi rj +J

S a> a> r- -o -h— r- (0 CO X Pi I <w
>,^ _ rfl 0) rH

CN

CN

CN

— CN

a*
(0 r-

3 X
rH
a x
-1

§*

rH X 0)

0) «- TJ
CO O
I -O Pi

5 Pi I

Id'ri mMAO
TJ i I

•• 01 CO
rj

ft)OH t)i

H nJ «0
«j > 0)^ i i

0> T)
•O rH Pi

O ft-H
J3 -rl <M
+J -P «-'

ID rH
6 a

p >*
0) A Pi oi <d

Pi i -h to to P PiHIHH a -H
rH >H I S -H 0) 6

I I 0) 0» T3 -H ^
J TJ * P <fl H
* fi < 'H H O -
H 0) 6 CN
•O to •• > > > X
.. .. > +j +j +j

o o
•O -O O Pi

Pi Pi U -H
•H -H (0 6
> * •• w

Pi Pi

0) 0*

Q £

01 o

&s
p

I CO

B -H
0) 43
P P
•H

I 0>

II
U 0)

Section 5.6 Problem Set #5 117

o
u
«}

to ->

"d **
.C to

p d)

i -» n

p -p a>

0) (U M
rH i-H ••

O -O >
I •• O
a» -owoe
9 * *

a -o
C C fi

3 0) a»

Chapter 6

STREAMS AND FILES

6.1 Streams

Since the mechanics of interacting with different kinds of peripheral devices vary

widely, and are often quite messy, it is desirable to shield programmers from having

to know the details of such operations. This shielding is accomplished by routing

all input and output operations through streams. A stream is a message-receiving

object (some use the flavor system and some do not). There are different kinds of

streams for the different kinds of peripherals. All streams accept generic com-

mands to perform some operation, and take care themselves of the details of per-

forming that operation on their particular sort of device. This way, knowledge

about how to perform I/O operations is segregated into the streams themselves,

freeing programs (and programmers) from the need to understand the details of

these operations. All a program needs to know is how to deal with streams; the

streams know how to deal with everything else.

6.1.1 General Purpose Stream Operations (3.2, Volume 5)

Some streams only handle input; some only handle output; some do both. There is

a small set of basic operations that all output streams are required to handle.

120 STREAMS AND FILES Chapter 6

Similarly, there is another set that all input streams are required to handle. Addi-

tionally, there is a somewhat larger set that all streams are guaranteed to accept,

even though they themselves may not handle them. This bit of magic works

through the default handler. Whenever a stream receives a message it has no

handler for, it passes the message on to the default handler. The default handler

then tries to use some combination of messages the stream does handle to produce

the desired effect. For instance, the :tyo operation is required of all output streams.

It outputs a single character. The :string-out operation, which outputs a string of

characters, is in the set that is guaranteed via the default handler. Some streams

handle this operation directly; for the ones that don't and pass it on to the default

handler, it achieves the same effect (albeit more slowly) by repeatedly sending the

stream the :tyo message.

Among the messages all streams handle is :which-operations. The list returned

includes only those messages handled directly by the stream. Messages handled by

the default-handler on behalf of the stream will not appear in the list.

Here are some of the more commonly used messages which are accepted by all

streams of the appropriate type (input or output), possibly via the default handler.

:tyo char

The stream will output the character char. For example, if s is bound to a

stream, then (send s :tyo #\B) outputs a "B" on the stream. (Recall

that "#\" is a reader macro that expands into the fixnum representation of

the character code for the given character.)

:tyi &optional eof

The stream will input one character and return it (as a fixnum). On an

interactive device this is likely to mean first waiting for input to become

available. The optional eof argument tells the stream what to do if it gets to

the end of the file (however end-of-file is defined for that kind of stream) . If

the argument is not provided, or is nil, the stream will return nil at the end

of file. Otherwise it will signal an error, and print out the argument as the

error message. (This is not the same as the eof optional argument to read,

tyi, and related functions.)

:untyi char

The stream will remember the character char, and the next time an input

character is requested (presumably via :tyi), the stream will return char.

Some restrictions: you are only allowed to runtyi one character before doing

a :tyi, and you aren't allowed to :untyi a different character than the last

character you read from the stream. Some streams implement :untyi by

Section 6.1 Streams 121

saving the character, while others back up the pointer into a buffer.

characters

Returns t if the stream is a character stream, nil if it is a binary stream.

direction

Returns one of the keyword symbols : input, : output, or : bidirec-
tional.

:listen

This is a test to see whether there is any input waiting to be read. On an

interactive device, :listen returns non-nil if there are any input characters

immediately available, or nil if there is no immediately available input. On
a non-interactive device, the operation always returns non-nil except at end-

of-file.

:tyipeek &optional eof

Returns the next character that is about to be read (without removing it

from the input buffer), or nil if the stream is at end-of-file. The eof argu-

ment is interpreted as for :tyi. :tyipeek is defined to have the same effect as

a :tyi followed by an runty i (if end-of-file was not reached), meaning that

you may not read some character, do a :tyipeek to look at the next charac-

ter, and then :untyi the original character.

:string-out string &optional start end

The characters of the string are successively output to the stream. Many
streams can perform this operation much more efficiently than the equivalent

sequence of :tyo operations. If start and end are not supplied, the whole

string is output. Otherwise a substring is output; start is the index of the

first character to be output (defaulting to 0), and end is one greater than the

index of the last character to be output (defaulting to the length of the

string)

.

:string-in eof-option string &optional start end

The stream inputs a number of characters, reading them into string, string

may be any kind of array, not necessarily a string, which can be very handy

for reading from binary files, start and end specify the substring to use,

defaulting to the entire string, eof specifies what to do if end-of-file is

encountered before reading the intended number of characters. If nil,

:string-in returns normally and sets the fill-pointer of string (if it has one) to

point just beyond the last character read. If non-nil, the condition sys:end-

of-file is signaled, with the value of eof&s the report string.

122 STREAMS AND FILES Chapter 6

:clear-input

The stream clears any buffered input, i.e., input sitting in its buffer, waiting

to be read.

rclear-output

The stream clears any buffered output.

:force-output

This is for output streams to buffered asynchronous devices, such as the

Chaosnet. Any buffered output is sent to the device, rforce-output returns

immediately, without waiting for the output to be completed. For that, use

rfinish. If a stream supports :force-output, then usage of :tyo, :string-out,

and the like, may have no visible effect until a :force-output is done.

: finish

The stream does a rforce-output then waits for the output to complete before

returning.

:close &optional mode
The stream is "closed" and no further operations should be performed on it.

If mode is : abort, and the stream is outputting to a file, and it has not

been closed already, the stream's newly-created file will be deleted, as

though it had never been opened.

6.1.2 Special Purpose Operations (3.3, Volume 5)

There are a wide variety of operations particular to streams for one or another of

the peripherals (files, Chaosnet, windows, etc). Most of these are not handled by

the default handler, and so would result in an error if sent to a stream which does

not itself handle them. The bulk of the special-purpose operations are documented

along with the type of device they're intended to be used with. Here are a few of

the more commonly-used of these operations.

:tyi-no-hang &optional eof

Just like :tyi except that if it would be necessary to wait in order to get the

character, returns nil instead.

:read-cursorpos &optional (units : pixel)
This operation is supported by windows. It returns two values: the current

x and y coordinates of the cursor. The optional argument is a symbol indi-

cating in what units x and y should be expressed; the symbols : pixel and

: character are understood.

Section 6.1 Streams 123

:set-cursorpos x y &optional (units : pixel)
This operation is supported by the same streams that support :read-

cursorpos. It sets the position of the cursor, x and y are like the values of

:read-cursorpos and units is the same as the units argument to tread-

cursorpos.

:clear-window (: clear-screen in older code)

Erases the screen area on which this stream displays.

tread-pointer

This operation, and the next, are supported by streams to random-access

devices, principally files. :read-pointer returns the current position within the

file, expressed in either 8-bit or 16-bit bytes, depending on the type of the

stream.

:set-pointer new -pointer

Sets the reading position within the file to new-pointer, where the units are

as with :read-pointer. This operation is for input streams only.

6.1.3 Standard Streams (3.4, Volume 5)

There are about half a dozen special variables whose values are streams widely

used by many system (as well as user) functions. Here are some of them.

standard-input

In the normal Lisp top-level loop, input is read from standard-input (i.e.,

whatever stream is the value of standard-input). Many input functions,

including tyi and read, take a stream argument which defaults to standard-

input.

standard-output

Analogous to standard-input; in the Lisp top-level loop, output is sent to the

stream which is the value of standard-output, and many output functions,

including tyo and print, take a stream argument which defaults to standard-

output.

terminal-io

The value of terminal-io is the stream which connects to the user's console.

In a process which is running in a window (keep in mind that each process

has its own binding stack, and thus can have its own value for a given spe-

cial variable), the value of terminal-io is likely to be that window. For

processes without windows, which don't normally communicate directly with

124 STREAMS AND FILES Chapter 6

the user (like the mouse process), terminal-io defaults to a stream which

does not expect to ever be used. If it is used, perhaps by an error printout,

it turns into a "background" window and requests the user's attention.

error-output

The value of error-output is a stream to which error messages should be

sent. Normally this is the same as standard-output, but standard-output

might be bound to a file and error-output left pointing to the terminal.

standard-input, standard-output and error-output are initially bound to synonym

streams which pass all operations on to the stream which is the value of terminal-

io. That is, they are bound to an uninterned symbol whose function definition is

forwarded to the value cell of terminal-io. So if terminal-io is re-bound {i.e., the

contents of its value cell change) the synonym streams see the new value.

User programs generally don't change the value of terminal-io. A program which

wants, for example, to divert output to a file should do so by temporarily binding

standard-output; that way error messages sent to error-output can still get to the

user by going through terminal-io, which is usually what is desired.

6.1.4 Making Your Own Streams (3.5, Volume 5)

While most streams are actually instances of some flavor, and handle their mes-

sages through the usual message-handling mechanism of calling the appropriate

method, all that's really needed for a simple stream is a function which dispatches

off its first argument (the operation) and calls the default handler if it doesn't

recognize the operation. Here's a simple output stream, which accepts characters

and conses them onto a list:

(defvar the-list nil)

(defun list-output-stream (op ^optional argl &rest rest)

(selectq op

(:tyo (push argl the-list))

(:which-operations '
(:tyo)

)

(otherwise (stream-default-handler

#' list-output-stream op argl rest))))

As an output stream, the stream is required to support :tyo directly, and to support

the other standard output operations (like :string-out) via the default handler. The

default handler is invoked by calling the function stream-default-handler, with argu-

ments of the stream, the operation, the first argument, and the rest arg.

Section 6.1 Streams 125

Here's a complementary input stream, which reads its characters from a list.

(defvar the-list)

(defvar untyied-char nil)

(defun list-input-stream (op ^optional argl &rest rest)

(selectq op

(:tyi (cond (untyied-char (progl untyied-char

(setq untyied-char nil)))

((null the-list) (and argl (error argl)))

(t (pop the-list))))

(:untyi (setq untyied-char argD)
(:which-operations '

(:tyi runtyi)

)

(otherwise (stream-default-handler

#' list-input-stream op argl rest))))

Note that :untyi must be supported, and that the stream must check for having

reached the end of the information, and do the right thing with the argument to the

: tyi operation.

6.2 Accessing Files and Directories

Some of the information in this section will make more sense after reading section

3, Pathnames.

6.2.1 Open, and Other Functions for Operating on Files (10, 10.1, Volume 5)

All reading from and writing to files is done through streams. To access a file you

must have an open stream to that file. The fundamental way to obtain an open

stream to a file, whether for reading or writing, is with the open function.

open pathname &rest options

Returns a stream connected to the specified file, pathname may be anything

acceptable to fs:parse-pathname, generally either a string or an actual path-

name object, options is a set of alternating keywords and values, controlling

such attributes of the stream as whether it is for input or output, and how

many bits there are per "character." Here are some of the more frequently

used option keywords:

direction

126 STREAMS AND FILES Chapter 6

usually either :input, to read from an existing file, or :output, to write

a new file.

:byte-size

the number of bits per byte; each :tyo or :tyi operation will deal with

this many bits of the file. Note that this need not agree with what

the host computer thinks the byte-size for the file is.

:if-exists (Warning: not fully supported by Version 8 UNIX.)

specifies what to do if the : direction is : output and a file with

the desired name already exists. Some of the possibilities are to sig-

nal an error, overwrite the old file, append to the end of the old file,

or write a file with a unique version number.

Most programs do not call open directly. They more commonly use the with-open-

file macro, which makes use of an unwind-protect to guarantee that the stream will

be closed when you're done with it. If you call open directly, you should also use

an unwind-protect to make sure the stream gets closed, because leaving around lots

of open streams can create problems.

with-open-file (stream pathname options...) body...

Evaluates the body forms with the variable stream bound to a stream open

for reading or writing to the file specified by pathname, pathname and

options are interpreted as in open. When control leaves the body, either nor-

mally or abnormally, the file is closed. If a new output file is being written,

and control leaves abnormally (i.e., because of an error or a throw), the file

is aborted.

So if I wanted to write a new text file in my directory on the UNIX host sola, which

contained only the string "Wow. I'm on a disk!" (without the double quotes), I

would evaluate:

(with-open-file (str "s : //usr//hjb//yippee" rdirection routput)

(send str :string-out "Wow. I'm on a disk"))

Or if I wanted to see how many characters into a certain file the first "a" occurred,

(with-open-file (str "s : //usr//hjb//.prof ile" :direction :input)

(loop for i from 1

for char = (send str :tyi)

when (char-equal char #\a) return i))

Section 6.2 Accessing Files and Directories 127

Here are some more functions for operating on files. They generally accept either a

string or a pathname object, and some of them also accept a stream open to the

appropriate file.

renamef file new-name &optional (error-p t)

Changes the name of the file. Meta-X Rename File in the editor uses this

function. If an error occurs and error-p is non-nil, the error is signaled. If

there's an error and error-p is nil, the error object is returned. See the

documentation for details on what happens with wildcard names and links.

deletef file &optional (error-p t)

The specified file is deleted, error-p is as in renamef.

fsrfile-properties pathname &optional (error-p t)

Returns a disembodied property list describing the file. The car of the list is

a pathname for the file's truename, the rest is alternating indicators and

values. See the documentation for fs:directory-Iist for a list of the possible

indicators.

fs: change-file -properties pathname error-p &rest properties

The properties arguments are alternating keywords and values. fs:change-

file-properties alters the attributes of the file accordingly, if possible. (Some
properties are not alterable. Which ones are is a property of the host file

system.)

viewf pathname &optional (stream standard-output) leader

Prints the file on stream. (Use this just for looking at a file, not for copying

it. Its output is not exactly the same as the contents of the file.)

copyffrom-path to-path &key (characters :default> (byte-size niU

(copy -creation-date t) (copy -author t)

(report-stream niU (create -directories :query>)

Copies one file to another. M-x Copy File in the editor uses this function.

See the documentation for the details of merging, wildcard names, and links,

and for the meanings of the keyword arguments.

probef pathname

If the specified file exists, returns a pathname for its truename. Returns nil

if the file does not exist.

load pathname &optional pkg nonexistent -ok -flag dont -set -default -p no-msg-p

Loads the specified file into the Lisp environment. (If it's a text file, load

128 STREAMS AND FILES Chapter 6

calls readfile; if it's a binary (compiled) file, load calls fasload.)

6.2.2 Special Messages for File Streams (10.3, Volume 5)

These are some of the operations handled by streams connected to files, in addition

to the general operations described earlier.

:pathname

Returns the pathname that was opened to get this stream. This may differ

from the original argument to open because parts of the pathname may have

been filled in with defaults.

:truename

Returns the pathname of the file actually open on this stream. This may
differ from what :pathname returns because of links, logical devices, mapping

of the "newest" version onto a specific version number, and so on.

:length

Returns the length of the file, in bytes. The number of bits in each byte

depends on how the file was opened. (See the :byte-size option to open.)

:creation-date

Returns the creation-date of the file, expressed in lisp machine "universal

time" units (see "Dates and Times," Part VI of Volume 7).

6.2.3 Directories (11.1, Volume 5)

fs:directory-list pathname &rest options

pathname may be either a string or a pathname object. fs:directory-list

finds all files matching pathname and for each one gets the information that

would be returned by fs:file-properties for that file. It collects all of these

into a list, and adds one element to the beginning of the list with information

about the file system as a whole. So the returned list has one more element

than the number of files. See the documentation for a description of the

options and more details on what information is provided for each file.

fs:complete-pathname defaults string type version &rest options

string is a partially specified file name. fs:complete-pathname looks in the

file system on the appropriate host and returns a new, possibly more specific,

string. Any unambiguous abbreviations are expanded out in a host-

dependent fashion. There are four full pages of documentation attempting

to explain how this happens (repeated in 12.7). Help yourself.

Section 6.2 Accessing Files and Directories 129

6.3 Pathnames

6.3.1 General (12.1, Volume 5)

Just as streams are intended to provide a uniform, device-independent interface

between programs and the different kinds of peripherals, pathnames are intended to

provide a uniform interface between programs and remote file systems. The idea is

to free the programmer from having to keep in mind the format for file names on

the various remote hosts. With pathnames, you should be able to manipulate files

on a file server without knowing anything about that server's syntax for file names.

All pathnames are instances of some flavor, and all the pathname flavors are built

on the flavor fs:pathname. Each pathname has six components which correspond to

different parts of a file name. The mapping of the components into the parts of the

file names is done by the pathname software, and is specific to each kind of host the

software knows about.

The six components of a pathname are the host, the device, the directory, the

name, the type, and the version. So, for example, the pathname corresponding to

the file /usr/hjb/mbox on the UNIX host sola is an instance of flavor fs:unix-

pathname which prints as #<UNIX-PATHNAME "S: //usr//hjb//mbox">. It

has a host of sola, a directory of /usr/hjb, a name of mbox, and a value of

:unspecific for device, type and version. The pathname corresponding to the

file >sys>site>notice.text.8 on the lisp machine glengarioch has a host of glen-

garioch, a directory of >sys>site>, a name of notice, a type of text, a version of

8, and :unspecific again for device.

A pathname need not refer to a specific file. #<UNIX-PATHNAME "S: "> is a

perfectly legitimate pathname, even though it specifies only a host and nothing else.

The conversion of a string into a pathname is usually done by the function

fs:parse-pathname The first thing it has to do is determine the host, since the

method for parsing the rest of the components depends on which host it is. If there

are any colons in the input string, everything appearing before the first colon is con-

sidered to be the name of the host. Parsing of the remainder proceeds according to

the type of the host, and its own syntax for file names. (If there are no colons,

some default value is used for the host — every pathname must have a host.)

Of course, there's no need to go through strings (and worry about the remote host's

file name syntax) at all. One of the selling points of pathnames is precisely that

you shouldn't need to do so. Accordingly, one may construct pathnames in this

manner:

130 STREAMS AND FILES Chapter 6

(f s :make-pathname :host "s" : directory '
("USR" "HJB"

)

:name "MBOX" :type runspecific)

which returns the same pathname whose printed representation was shown above.

Pathnames are interned, just like symbols, meaning that there is never more than

one pathname with the same set of component values. The main reason for main-

taining uniqueness among pathnames is that they have property lists, and it's desir-

able for two pathnames that look the same to have the same property lists.

6.3.2 Component Values (12.1.4, 12.1.5, Volume 5)

The host component is always a host object (an instance of some flavor built on

net:basic-host) . The permissible values for the other components depends to some

extent on the type of the host, but there are some general conventions.

The type is always either a string, or one of the symbols nil, :unspecific or

:wild. Both nil and :unspecific denote a missing component. The

difference is in what happens during merging (see below); nil generally means to

use the default, and runspecific generally means to keep that component

empty. The symbol :wild is sometimes used in pathnames given to fsrdirectory-

list, and matches all possible values.

The type field gives an indication of what sort of stuff is in the file. Lisp source

files, for instance, usually have a type component of "lisp," and compiled lisp code

a type component of "bin." Since there are some system-dependent restrictions on

how many characters may appear in this field, a canonical type mechanism exists to

allow processing of file types in a system-independent fashion. I quote: "A canoni-

cal type is a system-independent keyword symbol representing the conceptual type

of a file. For instance, a Lisp source file on a VMS* system will have a file type of

'LSP,' and one on a UNIX system will have a file type of '1.' When we ask path-

names of either of these natures for their canonical type, we receive the keyword

symbol :lisp."

The version is either a number or one of the symbols nil, runspecific,
:wild, : newest or : oldest. The first three have the same meaning as for

type. : newest refers to the largest version number that exists when reading a

file, or one greater than that number when writing a new file. : oldest refers to

the smallest version number that exists.

VMS is a trademark of Digital Equipment Corporation.

Section 6.3 Pathnames 131

The device component may be either nil or runspecif ic, or a string designat-

ing some device, for those file systems that support such a notion (VMS, TOPS-20,
ITS).

The name component may be nil , :wild or a string.

The directory component may be nil or :wild for any type of host. On non-

hierarchical file systems, a string is used to specify a particular directory. On
hierarchical systems, the directory component (when not nil or :wild) is a list

of directory level components. These are themselves usually strings. So the path-

name #<UNIX-PATHNAME "S: //usr//hjb//mbox"> has for its directory

component the list ("USR" "HJB"). The directory level components can also be

special symbols, as well as strings. :root, for instance, refers to the root direc-

tory on the given host. And : relative followed by one or more occurrences of

:up refers to a relative pathname. So the UNIX pathname #<UNIX-PATHNAME
"S: . .//foo//bar"> has a directory component of (:relative :up
"FOO"). And the lisp machine pathname #<LMFS-PATHNAME
"G:<<x>y>z. lisp"> has a directory component of (: RELATIVE :UP :UP
"X" "Y"). Other possibilities for directory level components are :wild (for any

single directory), : wild-inferiors (for any number of directory levels), and

partially wild strings, like "FOO*".

6.3.3 Case in Pathnames (12.1.7, Volume 5)

Since the various host systems have different conventions as to upper and lower

case characters in file names, most pathname functions perform some standardiza-

tion of case to facilitate manipulating pathnames in a host-independent manner.

There are two representations for any given component value, one in raw case and

one in interchange case. Raw case representation, which is used internally for the

instance variables of pathnames, corresponds exactly to what would be sent to the

remote machine to find the file corresponding to the pathname. Interchange case is

the standardized form, and is what you get if you ask a pathname for its com-

ponent values. It's also what functions like fs:make-pathname expect (unless you

specify that you mean raw case).

The standardization is simple. Each host is classified as to whether its preferred

case, or system default case, is upper or lower. Any raw component which is in the

preferred case for its host has an upper case interchange form. A raw component
which is in the non-preferred case has a lower case interchange form. A raw com-

ponent in mixed case has an identical (mixed case) interchange form. Since UNIX
hosts are classified as having lower case for the system default, this means that the

raw forms are case-inverted to get the interchange forms, and vice versa.

132 STREAMS AND FILES Chapter 6

The messages for accessing and setting the component values of pathnames assume

that you want to see or set the interchange form, unless you explicitly specify raw

case.

6.3.4 Defaults and Merging (12.2, Volume 5)

In most situations where the user is expected to type in a pathname, some default

pathname is displayed, from which the values of components not specified by the

user may be taken. Most programs maintain their own default pathnames, contain-

ing component values that would be reasonable in the particular context. For pro-

grams which really have no idea of what sort of pathname to expect, there is a set

of default defaults.

The pathname provided by the user (actually, the pathname constructed by

fs:parse-pathname from the string provided by the user) and the default pathname

are then merged by the function fs:merge-pathnames. The details are a little

messy, but the basic idea is that components which aren't specified in the user's

pathname are taken from the default.

6.3.5 Pathname Functions and Messages (12.7, 12.8, Volume 5)

We've already seen three of the most important pathname functions: fsrparse-

pathname, fs:merge-pathnames, and fs:complete-pathname. Here are some more.

fs:make-pathname &rest options

The options are alternating keywords and values, specifying the components

of the pathname. Missing components default to nil, except the host,

which is required. Options allowed are :host, : device, : direc-
tory, :name, :type, : version, : raw-device, : raw-
directory, : raw-name, : raw-type and : canonical-type. So

the device, directory, name and type may be given in either interchange case

or raw case, and the type may also be given in canonical form.

fs:define-canonical-type canonical-type default &body specs

This defines a new canonical type, canonical-type is the symbol for the new

type, the body is a list of specs giving the surface type corresponding to this

canonical type for various hosts, default is the surface type for any hosts

not mentioned in the body. Here is how the :lisp canonical type is

defined:

(fs:define-canonical-type :lisp "LISP'

((:tops-20 :tenex) "LISP" "LSP")

Section 6.3 Pathnames 133

(:unix "L" "LISP"

)

(:vms "LSP")

)

The :host message to pathnames returns the host component, which will always be

an instance of some flavor built on net:basic-host. The messages :device, directory,

.name, and :type return the corresponding component value, with any strings given

in interchange case. The messages :raw-device, :raw-directory, :raw-name, and

:raw-type are similar, but use raw case for all strings. The :version message returns

the version (case is not an issue since versions are never strings). The :canonical-

type message returns two values; together they indicate the type component of the

pathname, and what canonical type — if any — it corresponds to. (See the docu-

mentation for details.)

The messages :new-device, :new-directory, :new-name, and :new-type all take one

argument and return a new pathname which is just like the one that received the

message except that the value of the specified component will be changed. The
argument is interpreted as being in interchange case. You can guess what :new-

raw-device, :new-raw-directory, :new-raw-name and :new-raw-type do. :new-version

and :new-canonical-type also do the obvious thing, and have no "raw" form for the

obvious reasons.

:new-pathname allows wholesale replacement of component values; its arguments

are alternating keywords and values, with the same keywords accepted as by

fs:make-pathname.

There are a set of messages for getting strings that describe the pathname. The

returned strings come in different forms for different purposes. :string-for-printing

returns the string that you see inside the printed representation of a pathname.

:string-for-host shows the file name (not including the host) the way the host file

system likes to see it. There are several others.

:get, rputprop, :remprop and :plist all do the obvious thing with the pathname's

property-list. Keep in mind the distinction between the pathname's property-list

and the list returned by fs:file-properties, or the :properties message to pathnames.

The latter are the properties of a file, and require accessing the host's file system.

The former are the properties of a pathname, a lisp object which may not even

correspond to any files.

6.3.6 Logical Pathnames (12.9.10, Volume 5)

There are some pathnames which don't correspond to any particular file server, but

rather to files on a logical* host. The logical host may then be mapped onto any

134 STREAMS AND FILES Chapter 6

physical host, thus defining a translation from logical pathnames to physical path-

names. This feature improves transportability of code. Take the lisp machine sys-

tem software as an example. Every lisp machine site keeps the source code on a

different computer. But there are many functions that want to be able to find these

files, no matter what site they're running at. The solution is to use logical path-

names: all the system software is in files on the logical host "sys." Each site gives

the "sys" host an appropriate physical host, and then it works just fine to open a

file with a name like "sys: io; pathnm.lisp," which happens to be the file containing

the pathname code. At my site that corresponds to the file ">sys-6>io>
pathnm.lisp" on the lisp machine laphroaig.

The function fs:set-logical-pathname-host defines the mapping of file names from a

logical host to the corresponding physical host. The call to fs:set-logical-pathname-

host is supposed to be placed in the file "sys: site; host.translations." Then if you

call the function fs:make-logical-pathname-host with an argument of the host name,

it will look for and load the appropriate file, thus evaluating the fs:set-logical-

pathname-host. The format of the arguments to fs:set-logical-pathname-host is best

explained by example. This is an abridged version of the contents of "sys: site;

kwc.translations," which defines the "kwc" logical host:

(f s : set-logical-pathname-host
" kwc "

: physical-host "Sola"

translations
'

(

("distribution; "
M //lispm//kwc//rel6//distribution//"

)

("distribution;*; " "//lispm//kwc//rel6//distribution//*//"

)

("distribution;*;*; " "//lispm//kwc//rel6//distribution//*//*//"

)

("*;" "//lispm//kwc//rel6//*//")

)

: rules

mix
'

: new-pathname :name "PUBSYS")

:new-pathname :name "INPUT-ED")

' :new-pathname :name "COMTAB-EX")

.*" :new-pathname :name "CALL-MINI")

: new-pathname :name "MVG-ICONS")))

)

As you can see, the mapping is done on a directory-by-directory basis. Wild-cards

are allowed. For instance, files in the directory "kwc: distribution; new-class" are

mapped to the directory "/lispm/kwc/rel6/distribution/new-class/" by the second

entry in the : translations argument. The : rules argument allows us to

'
((: unix

Section 6.3 Pathnames 135

specify additional transformations to be carried out in special cases. Since our ver-

sion of UNIX doesn't allow filenames longer than 14 characters, we take advantage

of this facility to define shortened names for the UNIX physical filenames

corresponding to logical pathnames with long names.

Given a pathname for some logical host, the mapping to physical pathname is car-

ried out by sending the logical pathname the :translated-pathname message. An
earlier version of the text for this chapter is in a file whose logical pathname is

#<LOGICAL-PATHNAME "KWC: DISTRIBUTION; NEW-CLASS; STREAMS .TALK" >.

When that pathname is sent the : translated-pathname message, it returns

#<UNIX-PATHNAME "S : //lispm//kwc//rel6//distribution//new-class//
streams . talk" >.

6.4 Fun and Games

From The Hacker's Dictionary, Guy L. Steele, Jr., et al:

LOGICAL adjective.

Conventional; assumed for the sake of exposition or convenience; not the

actual thing but in some sense equivalent to it; not necessarily corresponding

to reality.

Example: If a person who had long held a certain post (for example, Les

Earnest at Stanford) left and was replaced, the replacement would for a

while be known as the "logical Les Earnest." Pepsi might be referred to as

"logical Coke" (or vice versa)

.

At Stanford, "logical" compass directions denote a coordinate system in

which "logical north" is toward San Francisco, "logical south" is toward San
Jose, "logical west" is toward the ocean, and "logical east" is away from the

ocean — even though logical north varies between physical (true) north near

San Francisco and physical west near San Jose. The best rule of thumb
here is that El Camino Real by definition always runs logical north-and-

south. In giving directions, one might way, "To get to Rincon Tarasco Res-

taurant, get onto EL CAMINO BIGNUM going logical north." Using the

word "logical" helps to prevent the recipient from worrying about the fact

that the sun is setting almost directly in front of him as he travels "north."

A similar situation exists at MIT. Route 128 (famous for the electronics

industries that have grown up along it) is a three-quarters circle surrounding

Boston at a radius of ten miles, terminating at the coast line at each end. It

136 STREAMS AND FILES Chapter 6

would be most precise to describe the two directions along this highway as

being "clockwise" and "counterclockwise," but the road signs all say "north"

and "south," respectively. A hacker would describe these directions as "log-

ical north" and "logical south," to indicate that they are conventional direc-

tions not corresponding to the usual convention for those words. (If you

went logical south along the entire length of Route 128, you would start out

going northwest, curve around to the south, and finish headed due east!)

Section 6.4 Fun and Games 137

6.5 Problem Set #6

Questions

1. A. There is a function named print-disk-label that, when called with no

arguments, prints on the screen a listing of the contents of the fep file

system. Find a way to print this listing to a file instead. (Hint: check

out the optional arguments to print-disk-label, and use with-open-file.)

B. There's another function named si:print-login-history that prints a list

of everyone who has logged in to the local machine since it was cold-

booted (and the contents of the login history when the world load was

made). This one has no optional argument for what stream to do the

printing on — it always prints to standard-output. How can you get it

to print the listing to a file? (Hint: make standard-output point to a

file.)

2. Suppose there is a file whose contents are numbers in the range

-2,147,483,648 < n < 2,147,483,647 (32-bit integers). How can we read

the file into an array of fixnums? It'd be convenient to open a 32-bit stream

to the file and just do : tyi's or a : string-in, but most file servers won't

allow a 32-bit stream. We'll have to use a 16-bit stream. One strategy is to

read two 16-bit bytes at a time and build a 32-bit number by shifting one

number 16 bits and adding them together. This will work, but it's awfully

slow. Can you think of anything better? (Hint: think about displaced

arrays of different types.)

138 STREAMS AND FILES Chapter 6

Solutions

1. A. (with-open-f ile (str "s://usr//hjb//disk-label"

: direction : output)

(print-disk-label si : *boot-unit* str))

B. (with-open-f ile (standard-output "s ://usr//hjb//logins"

: direction : output)

(si:print-login-history)

)

2. The slow way:

(defun foo (file ^optional array)

(with-open-f ile (str file :characters nil :byte-size 16.)

(or array (setq array

(make-array (// (send str : length) 2))))

(loop for i from

for c1 = (send str :tyi)

for c2 = (send str :tyi)

while c1

do (setf (aref array i) (+ d (lsh c2 16))))

array)

)

The fast way:

(defun bar (file ^.optional array32 array16)

(with-open-file (str file :characters nil :byte-size 16.)

(or array32

(setq array32 (make-array (// (send str : length) 2)

: initial-value 0)))

(send str : string-in nil

(or array16 (make-array (* 2 (array-length array32))

:type 'art- 16b

:displaced-to array32)))

array32)

)

Chapter 7

THE TREE EXAMPLE

This chapter is very much like the graph example two chapters back — a later sec-

tion contains a code listing, and this one describes some of the new features* of the

code. Much of the code was copied directly from the graph example (with "graph"

changed to "tree"). The most interesting of the new parts have to do with menus.

Once again, if your site has the tape for this book, you can load the code by using

the CP command Load System tree [or evaluating (make-system
'tree)]. Once the code has been read, start the program by evaluating (send
(tv: make-window 'tree-frame) : select).

7.1 The Nodes and Arcs

•root* and *the-real-root*

These two variables are declared at the very beginning of the file. Rather than

keep a list of all the nodes, as "graph" does, we simply keep track of the root of the

See hacker's definition at end of chapter.

140 THE TREE EXAMPLE Chapter 7

tree and follow the connections from there. The value of *the-real-root* is constant

throughout the lifetime of a given tree. It changes only when we throw away the

tree to start another. *root* refers to the node which is displayed at the top center

of the window. Initially, this is the same as *the-reaI-root*, but you can change it

to be any arbitrary node in the tree. That way you can move your window around

over a tree too large to be viewed at once.

The node defflavor

The connections between nodes {arcs, in "graph") are no longer real data objects.

Each node now knows directly which other nodes it's connected to, instead of know-

ing which arcs it's connected to. children is a list (possibly empty) of the direct

inferiors, and parent is the superior (nil for the node which is the value of *the-

real-root*). The x-pos and y-pos instance variables have been thrown out, since

nodes no longer have fixed positions. Each parent determines where its children

will be drawn. The space-requirements instance variable somehow packages up

everything a node's parent needs to know about the node and its children in order

to determine where to draw it. The first time this information is requested it is

recursively calculated, and saved for future requests. The saved info is flushed

whenever something happens that would invalidate it (such as a change in the

number of children), so that it is recalculated the next time someone asks for it.

Consequently, anyone needing the information should use the : get-space-
requirements method, which calculates if necessary, rather than looking at the

instance variable directly.

The :flush-space-requirement method

This method is called whenever the space-requirement info has been invalidated. It

sets the instance variable to nil, and recurses upward, because anytime a node's

space requirements change its parent's also do. It gets called whenever the node's

label is changed, and whenever a child is added or removed. (And whenever any of

these things happens to one of its descendants.)

Fancier format directives

The format statement inside the : print-self method uses two features you may
not have seen before. "- {...-}" is an iteration construct, which takes a list as an

argument, and repeats the interior of the { }'s until the list elements are exhausted.

"-©[...-]" checks the next argument, and if it is nil, does nothing. If it is non-

nil, the argument is not used up but remains the next one to be processed, and the

interior of the []'s is executed.

The effect here is to print a list of all the children (using -A so that only their

Section 7.1 The Nodes and Arcs 141

names are printed), with all but the last in the list being followed by "; ". Both
- { and - [exist in several forms, with and without : and/or @, allowing various

kinds of iteration and selection.

Drawing

The methods : draw-self-and-children and : get-space-
requirements have all the smarts. It's complicated, but I don't think it's partic-

ularly interesting. I won't go into it here since there's little of general value. Do
feel free, however, to look through the code on your own.

7.2 The Windows and the Mouse

As with "graph," the first half of the file is adequate if you're willing to type awk-

ward forms to a lisp listener. The second half provides a better user interface,

mainly using the mouse.

The tree-frame defBavor

This time we have three panes instead of two. The new one is a command menu.

Many system utilities based on frames have a command menu pane, including Peek

(Select P), Zmail (Select M), and File System Maintenance (Select F). Command
menus differ from other menus in that they stay exposed indefinitely, becoming

active only when you move the mouse over them, and in that they don't themselves

produce any action when you choose an item, but simply stuff a blip into

somebody's io-buffer. It's up to whoever reads from the io-buffer to do something

with the blip (often sending it back to the command menu with an : execute
message) . There are more details on how menus work later in the chapter.

Shared io-buffers

For the process running in the tree pane to see the blips from the command menu,

the two windows must share one io-buffer. The : after : init method on tree-

frame arranges this. I could have built tree-frame on tv:bordered-constraint-frame-

with-shared-io-buffer instead of plain tv:bordered-constraint-frame, but then the lisp

pane would also share the one io-buffer, and that wouldn't work. (Some input

intended for the tree-pane's process would be read by the lisp-pane's process, and

vice versa)

Tree-window's : main-loop

142 THE TREE EXAMPLE Chapter 7

There are now two kinds of blip to watch for: the familiar : typeout-execute
blips from the mouse-sensitive items, and new :menu blips, from the command
menu. For now, all you need to understand about the action taken for :menu
blips is that the command-menu itself is sent an : execute message with an argu-

ment of the menu item that was chosen.

Tree-window's : refresh

Drawing the tree is accomplished by sending : draw-self-and-children to

the current *root*, which will recursively send the same message to its descendants.

The initial arguments put the *root* at the top-center of the window.

The menu-item-list

Now we get into menus. First off, I should mention that the documentation on

menus — Part III of volume 7 — is not too bad. (In fact, much of this stuff I had

actually never messed with until the day before writing the first version of this

chapter. I just read the documentation and did it.) The basic idea is that menus

are special kinds of windows that maintain a list of items to choose from, and do

something appropriate if you click on one of the items. The list of items is kept in

the instance variable item-list; once a menu has the right item-list, the : choose
method does the rest: it exposes the window, waits for you to click on some item

(the : mouse-buttons method tells it when that has happened by setting the

chosen-item instance variable), and sends itself the : execute message with an

argument of the chosen item. The : execute message does something appropri-

ate, depending on the type of the item.

And now for the format of the items on the item-list, and what it means to "do

something appropriate" (the task of the : execute message). The simplest kind

of item is just a string or a symbol. The string or symbol is displayed in the menu
as itself, and executing such an item just means to return it. The item may also be

a list (or dotted-pair) of two elements; the first is the symbol or string to be

displayed, the second is what is returned by execution of the item. The most gen-

eral kind of item is a list of three or more elements. The first is what to display in

the menu, the second is a keyword for the type of this item, the third is an arbi-

trary argument whose interpretation depends on the type of the item, and the rest

of the list is alternating pairs of modifier keywords and values. The keyword in

position two may be any of: : VALUE, :EVAL, rFUNCALL, .-FUNCALL-

WITH-SELF, : NO-SELECT, : WINDOW-OP, :KBD, :MENU, or : BUTTONS.

The first three are the most commonly used. : VALUE means to return the argu-

ment (the third element of the list), :FUNCALL means to funcall the argument

(presumably the name of a function) and return its return value, and :EVAL
means to evaluate the argument (presumably a lisp form) and return its return

Section 7.2 The Windows and the Mouse 143

value. The only defined modifier keywords are :FONT and : DOCUMENTATION.
:FONT specifies which font should be used to display this item in the menu,

: DOCUMENTATION is what appears in the who-line when the mouse is over this

item.

If you look at the *tree-command-menu-item-list*, you'll see that all three items use

the general form. Two of them are of the rFUNCALL type and one is of the

: EVAL type.

tv:menu-choose

The easiest way to use menus is to call the function tv:menu-choose with an argu-

ment of a suitable item-list. This function will allocate and expose a menu, set its

item-list instance variable to be the argument you supplied, and send it the

.•choose message. Its : choose method then waits for you to click on an item,

and sends the menu : execute of the chosen item. If you look at the : mouse-
click method for tree-window, you'll see that clicking right anywhere except over

a mouse-sensitive item does just that. It calls tv:menu-choose with an argument of

tree-command-menu-item-list. (The use of process-run-function is necessary

because the : mouse-click method runs inside the mouse process — without it

the mouse process would be hung until tv:menu-choose returned, but tv:menu-

choose would never return because the mouse process is hung.)

The command menu revisited

The command menu pane uses exactly the same item-list, as you can see from look-

ing at the tree-frame defflavor, in the : panes section. But as I said earlier, com-

mand menus work differently; you don't send them the : choose message. They

stay exposed indefinitely, and when you click on one of their items they just stuff a

blip into their own io-buffer. In our case, that means the tree pane's io-buffer.

When the :main-loop finds it there, it sends the : execute message back to

the command menu (with most menus the : choose method does this for you),

and the chosen item is executed normally.

7.3 Fun and Games

From The Hacker's Dictionary, Guy L. Steele, Jr., et ah

FEATURE noun.

1. An intended property or behavior (as of a program). Whether it is good is

immaterial.

144 THE TREE EXAMPLE Chapter 7

2. A good property or behavior (as of a program). Whether it was intended is

immaterial.

3. A surprising property or behavior; in particular, one that is purposely incon-

sistent because it works better that way. For example, in the EMACS text

editor, the "transpose characters" command will exchange the two characters

on either side of the cursor on the screen, except when the cursor is at the

end of a line; in that case, the two characters before the cursor are

exchanged. While this behavior is perhaps surprising, and certainly incon-

sistent, it has been found through extensive experimentation to be what most

users want. The inconsistency is therefore a feature and not a BUG.

4. A property or behavior that is gratuitous or unnecessary, though perhaps

impressive or cute. For example, one feature of the MACLISP language is

the ability to print numbers as Roman numerals. See BELLS AND WHIS-
TLES.

5. A property or behavior that was put in to help someone else but that happens

to be in your way. A standard joke is that a bug can be turned into a feature

simply by documenting it (then theoretically no one can complain about it

because it's in the manual), or even by simply declaring it to be good.

"That's not a bug; it's a feature!"

The following list covers the spectrum of terms used to rate programs or por-

tions thereof (except for the first two, which tend to be applied more to

hardware or to the SYSTEM, but are included for completeness):

CRASH

Section 7.4 The Program 145

146 THE TREE EXAMPLE Chapter 7

Section 7.4 The Program 147

148 THE TREE EXAMPLE Chapter 7

to -h g»

Section 7.4 The Program 149

150 THE TREE EXAMPLE Chapter 7

Section 7.4 The Program 151

I

ft

B
n

p <« a» a> i

(0 o -p >
to c

cd p -h *o — a»

a w in o BE
(0 -H ,C 0)

ftrH CD P P AJ
CO) -H CO

a a) i« a i rtt

to 43 o. to eh +j a> a i^ ft ,g c
V (0 Eh CO

V M •<* -* OP
45 (0 rH -HP
p g p ~ 3

CD <U ,C P M <w
CD ,* P -rl ~ d)H B
CO -H — ft CD CD

t—I <U CO O to P
>, > a> a) -h ~cucoroxc a» —~ i

—

»

«t?^'H * ~- PftC —
G <W ft C 3 -H CD —

P-HT3 I O OrHCO —
O 43 rH 10 Tj -rl* llfl 0«
cd P 3 -h cd V U X ,C ft
rH O .C P OCO CU-dO-H
CD tO > E-l O C-H I M rH
coat a) 0i-i +j-hi3X3

O P rH «H « 9 A G
a) t3 h • at ii OPcu'd
4* ~ CO ~ rH CD CD — g G
p 43 cd •• ~ cd ft p, •• o

cu-h0(Opo cd p ^ p ft cd

>! 43 £3 M - Tj rHI CD •• -H CO 0)

<d U CD »4H fi I g U ^rH-H-^ggl^.H ft CD ~ O XI
g CD £3 £ O P ~ £3 CO D CD

OCDgCD O I P -rl ~ CJl -H TJ £3 P
p p CD M ~ -H CD II -H-H ~ £3 CD 3

CO P P — P CD £ CD <N 3 COOgO
•OJ^tO O U OCD^-P O gOCD
•H 10 >, CD ~ ~ CD P T> M rH CO TJ CD CD TJ X
fl m^ • »h co fi p 43 cd C -PcofiCD

> P > > CD a g -H * •• M -H -H — flj ••POCDOOCQ H CD S CO «4 2 g
CO TJ 43 M T3 Tl I X P IP -P ~ — rH ~ 0) rH * ~2CP0GCH -H -H CD 10 (3 -H-HgrHOft
•n -H IH -H -H O g I 41 'H H O - C G >> (tf -H

£ *W 3 3 <+H I CD M rH -H u-t p O P gOgrH
CD OCDIII P > P rf (3 ~ -rl -H — I O fi Ofl
> CD O rH CD CD O -H^l^ £3 p ft J*, M 3 M

43 £3 £3 flJ rH g CD P » CD ft -rl O O (3 <4H <4H 4H 43
&> p o o -h 43 m in -h ftio.- c o m- - +j
fi-rlplflC CD CO 0) >, M « 3 H •• P, IH (Oh
•H <+-l P t! C P •• CO £ (OPCDg M 4-1 I -H ft CD ft 3
A O A C 0) O I CD CD I >« I CD I ClHrH-HP-HO
P O <0 CO CD CD CD CM OgCP P -- rH ^H H XI H 3 H IH
P COrHfl 03 -HI OCD-rlfi <4-l ~ CD-- (fltt) A U X)

1* M P *4H CD CD ffl 3 X CD M P rH O K) U > "« glOP CD

M <fi O r-t tOft O — -H 01 a-H X) <M "rH CDft •• 10 <« X <« Tj
flJ ft CD CD £3 •• I g ~ g 3 CD HO TJHOCDOG
D H ffl O T) ~ I 10 >C0 IO>C-H I CD

GCDCDP CDCD — O > CO g — P O ft»H OCDMhPPPW
co jC to -h co g p C o oi i M TJ* Oi t) m ^ fl S fl) -
P -HiDO CDI THI O O 'H C» PC G~ gog

CD CDM MCD CCD CO-HTSrH -HO l-H -H 0*hCD^d
^ to^ O t7><nH (OC -HOtofift U-O ><0 SllPOftOC
E-«CDP<WCICD ftfl > h <tJ -H I IC Og I 0<4-l>,>4-ICD

0) -HCDtO Ift I ft XJ S P CD -H T3 •• CDftCD P g
fc CD TJ CD •• CD •• CD H CD > C CD -H t-l •- •• •- ••

•CWOO-HH> CD> CD>>>C Ml -H> HHO"---
M C <W C M P P MP hppp-H PCD SO P-Qtfl
010 OM-^ p_p^ I ^CD I t) - -
rCOlO— CD-O P MCDC U*> ,OCM M iH T3PCD-HTJOOPfHOCDOOCD O O O * M£ Oiw-O^CDt3O^03> > (0 X3 P 43C>C-HCDP^(0 (0 iw PO* -OPftOCD-H?MCD-rH rH CD CDPfiGCDOQrH>p(0g^4-l »w -O gCD 0CD gOIH^-CH <4H •• H 01 IH 01 UH
..* .,...,.. d) , qj q) >_, ci)

•—' CD —^ CD •

•« aw » •• « rQ ir^ frj rr^ »Q frj

152 THE TREE EXAMPLE Chapter 7

<rt ~ — fi ft 10 -H

v ~ * o i ** «
4J - C -H 2 S -H O
m (o * -p fi

,
i ft03 -

H 2*2
p, -h «h a g c p

£ 5 ~ ft -cog o
P G h

jj .. o jj nJ fi "O =

o 00- i 2 S £5
+J O o | « -P

•H P P O g 0> O CC+j 0) G O +J<1)
r< fl C U C fl -C -HI G P
+5 C o p -h o p .c ?> S

w p 3 *o »w o p <o

> J «j o — os-P a co

1 ^~. CCUPO^»'-~ >iO did)
U g p to t-t • ~ -h to .223— 3-HOO) 0) H •» O EG
+J G O »> .C ft *d 2 o s m-w+J o « p >> >, o a f „, 2

o * moag p 2 o

&
0)0 0)0) 0) o — — C C d _
cu in p g p o c >^r- •• c ^•H«J13 P <« O -n C ^ ^ * S * , , *J

C -H P O tO «TJ <W X _ * -P -H

P tO 10 I - P B = p .* fc £ S ?

0) (fl -3 -rl (O-drHrHrH Pi
"fl S E 1 ^ V m

<3o-HP |CpCfl> I PEh HJ P P

ocu p o tn >> = m r4 a \ a 00
~ .- 7 .C 3 rH P -H <2 \ +JJQWC ftv; «

me- toc+jop<w — johs V ft-PO)5>*-H0OP X ~ t* = II
ni+3pMtotoaje!<o * " -K tt - § 8 £lH4-l~COiH0,l3"P P OWC — (UXflJ

p \ r-l O PtO O CrHPq-H -H -H g ft

W\ I fi^H (J>- C P -» ^ •HOW P C lltQ
I
w gSPrHC O * ~ — ^ Pll O « « -d

to Siw p-sopifltu crto pto ototo^-3 p n^5
P HH
14_| t) V
(0 •• tO 3 CU CD M-l

'U U* ^J Wi -f Wl W W< V< ^- -»— f-l ^- w
H Cffl>Q PQJ O0> -H3!Dl<w to POPS
1=0)3=0)= (OP OP rHOOPI -H *g =

CQ)P"C C — a) 10) 3 •• •• 0> 3 «3 0)

P 0)PP 0=0 — P rjP '°^^2V «,
a

S O ge<= -HO) •H-'*" <0-- ^ 31 4) >%

O—O I >pprHP P 0) ' O &, O 10 P'*'TJ—P TjaOIOlUPtJ 0* P* PTJJgtO >i I

a * cScoppp a>o? —is ccw/o) p g
•HPTJ JoZtfC-HC PPO -0)0 rO-HtO^O I «
SOC g nJ 0)J0) -P i "O fi "O 'd ? o— g P
100 gPPg g IrHC PPC CI-OCOP— 0) -H

0PIO OP0>0)3l03 Z <H -ri 0*-H S0CCft— P I

«*«-' u m>j n u v u 00> o > t) « « o^+j -h p
n i-P(do>ooo CPi p*i 0ptop i g
JJ4J4J 0) 1)1 S d! fl Q 1) 110 I+J0 MP — PC Oi O O = = =••=: • • P P O — 3&i 0)

00 p — — — p.cp 0OP M _t!-fl P fl 81

a^fc +j>— flpptopp-H-dOP p>»
o— *» +)**o>** ociia *p
45 — t3 co p (o^i^^^- 1

±i a u W 0"0 -r\ ±) Pt3
0)P(0 <<J C+JCCPC430-O 5*2
gO)--- > S00300PgC ><0
IUH 4-1 M-ICOlOd-ltOtO <H<fl VW"
4)^, 0) O)^^^^0^^^' ,*0^-' 0>
<0 tj '0'0«- , «o +j

The Program 153

154 THE TREE EXAMPLE Chapter 7

o>

9) H - IW
d 0) >, >W
rd XI -O 3
O • O -Ph Ji O XI co

•O -P
91 O <U TJ
XI O <D .3 c

!-t -P 10

e T3 -H
CO 0) <4-l tT> >^
5 rH C T3
S -H P -HO

ft <0 -P XI
P B 3 3H O -P ft 0)

o 6 3
H OP

O P o o
U U 4-1 (1)

O 0) i+j 4_)

nj fc -d os
e n a) ft

o en v g
<o o c ho

i0 2 O
CO P M CO

+J 0> id M 0)
•h g 3 =

0*0 0) CO +J •

<u p c p p
O rO CO O •> rH
C TJ >> 'riH 3
•H tt) - CO • > -H COwh iii >, a» n v

•H rH = T> H H ~
ft -H (I) O ft CO —

• 6 <H J) XJ -HO) —•won a> xi >>0)O<UP — »W 3 O 4-> TJ
N P = >*, O P O OH CO (0 <0 H fi X>O-H H J) O-PCO u
g <03 J3htJ iw D
<1> <1> ft -P 3 rH H -PEh ti M» O a> C —

•

•HCOdJ Od)X! fc Cna)
«w *w >« o U • OS
O Art X) PT3C fc rH

CO g cdttJ-HlOQ)— ftlOg-HC .C 0)3— — >0XS-H3 o+JC+Jp---•h-p^o o a> co g a>

•H 4H O *- N P -rH G CO H O^CO-HC -H (OC «H->
•h +> a> «h o « "O a> > . --»

'mp-h.c in Eh id u tr « a)OJCOCS N « H «1 O - ^IH 3
X><l)-H .H gC0rH ~+JrH

n uh p o i (u ai io
a> a; co goc<uc!SOPco>£ mi) h oipoxj-h i-ioa)— -PXJ-H g C lUHH
P CO «W O C P > - —

CO -H O O CO <0 rH —•HW^Tl HrH-HOS—H
« P 01 CJ CO O

a>o T3 loaiopai-P —
Mfe-Ptf g CO O -H fc <D '
ttJW^O 4H D rH rH
K CQ ft rH a> = frjOi —

O 4H C 45— H (0 P

Section 7.4 The Program 155

7.5 Problem Set #7

Questions

1. Write a function which puts up a menu with five choices: "Truth," "False-

hood," "Confusion," "Panic," and "Mega-panic!." Clicking on "Truth"

returns the string "Truth;" clicking on "Falsehood" also returns the string

"Truth;" clicking on "Confusion" randomly returns one of the strings

"Truth" or "Falsehood;" clicking on "Panic" enters the Fep; clicking on

"Mega-panic!" enters the Fep and does a cold boot.

2. Use the tree code to display flavor component trees. Ignore "included-

flavors" if you like.

3. You may have noticed that in the editor (and in some other contexts), put-

ting the mouse in the top-right or bottom-right corners causes the mouse

blinker to change to a squat vertical arrow, and bumping it against the top or

bottom edge of the window causes scrolling. This behavior is called "flashy-

scrolling," and is controlled by the flavor tv:flashy-scrolling-mixin. Add this

mixin to the tree window and write the necessary methods so that bumping

the mouse against the top-right corner will "scroll," i.e., make the parent of

the current root be the root.

4. There's an awful lot of duplication in the graph and tree examples. The right

thing to do would have been to take out the common portions, and build

graph and tree on top of them. Re-implement graph and tree in that fashion.

(It sounds like a lot of work, but I'll bet it won't take more than an hour.)

156 THE TREE EXAMPLE Chapter 7

Hints

Your function need simply call tvrmenu-choose with an argument of an

appropriate item list. See section 14.3 of volume 7 for a description of the

possible forms for menu items. The last three menu items will have to be of

the "general list" form.

Constructing a tree which corresponds exactly to the ordered list of flavors

used for building combined methods is tricky because of "included-flavors."

But it's not hard to make a tree showing the regular components. Given a

flavor's name in the form of a symbol, (si : flavor-depends-on (get

flavor-name 'si: flavor)) returns a list of the components. Give the

node corresponding to a flavor one child for each of the flavor's components,

and recurse on them. To make the tree fit on the screen you'll probably want

to switch to a smaller font, and decrease the values of *vertical-spacing* and
* horizontal -spacing*

.

The best way to find out about tv:flashy-scrolling-mixin is to read the source

code. There isn't very much of it. You'll have to write methods to handle

the messages : scroll-more-above and : scroll-more-below (which

should return t when it is meaningful to scroll in the given direction and

nil when it is not), the message :y-scroll-to, which should do the

actual scrolling, the message :scroll-bar-p, which allows or inhibits

scrolling, and the message : handle-mouse-scroll. I suggest that

: scroll-more-above return nil when *root* is eq to *the-real-root*,

and t otherwise; that : scroll-more-below always return nil; that

:y-scroll-to call the function mouse-make-parent-root on *root* and

self; that :scroll-bar-p always return t; and that : handle-mouse

-

scroll always return nil. (The : handle-mouse-scroll method isn't

directly related to flashy-scrolling, but because our :scroll-bar-p
method returns t, the system is going to think that in addition to flashy-

scrolling, we have a standard scroll bar in the left margin. So every time the

mouse bumps against the left margin, our window will be sent that message.

The method needn't do anything, but it had better be defined or we'll get an

error. This may sound like a modularity problem, and in fact it is. It

appears that someone assumed only windows with scroll bars would use flashy

scrolling.) Don't forget to make another tree-frame, since mixing in

tv:flashy-scrolling-mixin will be an incompatible change to tree-window.

The basic part might define flavors node, node-window, node-pane and node-

frame, and methods for them. Graph would then build graph-node on top of

node, and graph-pane and graph-frame on top of node-pane and node-frame.

Tree would similarly build tree-node on top of node and tree-pane and tree-

Section 7.5 Problem Set #7 157

frame on top of node-pane and node-frame.

158 THE TREE EXAMPLE Chapter 7

Solutions

1. (defun silly-menu (

)

(tv : menu-choose
'

("Truth"
(" Fa 1 sehood " " Truth "

)

("Confusion" :eval (nth (random 2)

'("Falsehood" "Truth")))

("Panic" :funcall sirhalt)
("Mega-panic I " :eval (sirhalt (format nil "b~%")))))

)

2. Here is a crude first pass at making flavor component trees. It ignores

included flavors as well as duplication of components.

(setq *vertical-spacing# 5)

(setq *horizontal-spacing* 10)

(send *tree-window* : set-font-map '(fonts : tiny)

)

(defun show-flavor-tree (flavor-name)

(start-new-tree

)

(send *the-real-root* : set-label

(format nil' "~S" flavor-name))

(show-flavor-subtree flavor-name *the-real-root*

)

(send *tree-window* : refresh)

)

(defun show-flavor-subtree (flavor-name parent)

(loop for component-flavor

in (reverse (si : flavor-depends-on

(get flavor-name 'si : flavor))

)

for node = (make-instance 'node : label

(format nil "~S" component-flavor))

do (send parent :add-child node)

(show-flavor-subtree component- flavor node)))

We can avoid duplication by keeping a list of all the flavors seen so far, and

using a new flavor only if it isn't already on the list. (Modifications in upper

case.) If you want try accounting for all the vagaries of "included-flavors,"

look at the function si:compose-flavor-inclusion

(DEFVAR *SEEN-LIST*)

Section 7.5 Problem Set #7 159

(defun show-flavor-tree (flavor-name)

(start-new-tree

)

(send *the-real-root* : set-label

(format nil "-S" flavor-name))

(LET ((*SEEN-LIST* (LIST FLAVOR-NAME)))

(show-flavor-subtree flavor-name *the-real-root*)

)

(REVERSE-ALL-DESCENDANTS *THE-REAL-ROOT*

)

(send *tree-window* : refresh))

(defun show-flavor-subtree (flavor-name parent)

(loop for component-flavor

in (si :flavor-depends-on

(get flavor-name 'si: flavor))

UNLESS (MEMQ COMPONENT-FLAVOR *SEEN-LIST*)

DO (LET ((node (make-instance 'node rlabel

(format nil "~S"

component-flavor)))

)

(PUSH COMPONENT-FLAVOR *SEEN-LIST*

)

(send parent :add-child node)

(show-flavor-subtree component-flavor node))))

This function will make nonsense of any existing space requirement info.

Fortunately, we can be sure there won't be any, since these nodes were just

created and have never been displayed. (We couldn't just reverse the chil-

dren as we get to them the way we did above because then we'd keep the

wrong node when a flavor appears more than once.)

(DEFUN REVERSE-ALL-DESCENDANTS (NODE)

(SEND NODE : EVAL-INSIDE-YOURSELF

'(SETQ CHILDREN (NREVERSE CHILDREN)))

(LOOP FOR CHILD IN (SEND NODE : CHILDREN)

DO (REVERSE-ALL-DESCENDANTS CHILD)))

3. (defflavor tree-window ()

(tv:flashy-scrolling-mixin ; this was added

tv
:
process-mixin

tv: basic-mouse- sensitive-items

tv: window)

(:default-init-plist

: process ' (tree-window-top-level-function)

: item-type-alist *tree-item-type-alist*

:blinker-p nil

: font-map ' (fonts :hl12i))

)

160 THE TREE EXAMPLE Chapter 7

(defmethod (tree-window : scroll-more-above) nil

(neq *root* *the-real-root*)

)

(defmethod (tree-window : scroll-more-below) nil

nil)

(defmethod (tree-window :y-scroll-to) (ignore ignore

(mouse-make-parent-root *root* self))

(defmethod (tree-window : scroll-bar-p) nil

t)

(defmethod (tree-window : handle-mouse-scroll) nil

nil)

4. See the file "book: tape; graph &tree.lisp'

Chapter 8

RANDOM USEFUL TOPICS: RESOURCES & SYSTEMS

8.1 Resources

The documentation on resources (chapter 1 8 of volume 8) is not bad. What follows

is primarily a condensation of it.

In cases where a program uses and then discards large objects at a high rate, it can

be worthwhile to do the storage management manually, rather than relying on the

garbage collector to eventually clean up. The resource facility provides a simple

way to do so, and is widely used throughout the system software. The Chaosnet

code allocates and frees packets, which are moderately large, at a very high rate.

The window system allocates and frees certain kinds of windows, which are very

large, moderately often. Both use resources.

For each resource defined, there is a free list kept of suitable objects. Allocating a

resource involves checking the list of available objects and returning one if there are

any. If not, a new one is created and returned. Deallocating a. resource involves

returning a previously allocated object to the free list. So the storage space occu-

pied by a deallocated object is not really freed in the sense that the garbage collec-

tor reclaims free space; it does not become available to be used as part of any

162 RANDOM USEFUL TOPICS: RESOURCES & SYSTEMS Chapter 8

newly created lisp object. The original object continues to occupy the storage

space, but may itself be reused through being allocated again.

The four functions and macros which together compose the resource facility are

defresource, for defining a new resource, allocate-resource, for allocating an object

from a resource, deallocate-resource, for freeing an allocated object, and using-

resource, which temporarily allocates an object and then deallocates it.

A call to defresource looks like this:

(defresource name parameters

keyword value

keyword value

...)

name should be a symbol, which will be the name of the resource, and which will

get a defresource property of the data object representing the resource.

parameters is a (possibly empty) lambda-list of pseudo-arguments which will re-

strict the objects considered suitable to some subset of those on the free list. For

instance, a resource of 2D arrays might have two parameters, the number of rows

and the number of columns. When allocating an object from this resource, you

could specify how many rows and columns it should have. The free list would be

filtered for arrays with the requested dimensions — if all the arrays on the free list

had the wrong dimensions, a new one would be created.

There are seven possible keyword options. Only one is required, the constructor

option.

constructor

The value is either a form or the name of a function. It is responsible for

making an object, and is used when someone tries to allocate an object and

there are no suitable free ones. If value is a function, it is given the internal

data structure for the resource and any supplied parameters as its argu-

ments. If it is a form, it may access the parameters as variables.

initializer

Value is again either a form or the name of a function. If an initializer is

provided, it will be called on each object as it is about to be allocated,

whether the object was just created or is being reused. If value is a func-

tion, its arguments will be the resource data structure, the allocated object,

and the supplied parameters. If value is a form, it may reference the

parameters as variables, and also the allocated object, via the variable

object.

Section 8.1 Resources 163

rchecker

A form or the name of a function. The job of the checker is to determine

whether a given existing object is safe to allocate. If no checker is specified,

the default action is to consider an object safe if it is not currently in use

(i.e., has not been allocated without being deallocated). If you specify a

checker it will be used instead. A function here will be passed arguments of

the resource data structure, the existing object being considered for alloca-

tion, the value of in-use-p for that object, and the supplied parameters. A
form may reference the parameters as variables; the object under considera-

tion, as object; and in-use-p. As you can see, the free list for a resource is a

somewhat hypothetical object. When you ask to allocate an object, all of

the existing objects are initially eligible. The default checker creates the

functional equivalent of a free list by approving only those objects which are

in fact free, but you needn't have this behavior. Supplying your own
checker will change it. If, for instance, your checker always returned t, a

given object could be simultaneously in use in any number of places, because

it would always be considered safe for allocation, regardless of whether the

previous allocater had deallocated it. And if your checker always returned

nil, no object would be reused; every allocation request would result in the

construction of a new object.

matcher

A form or the name of a function. If no matcher is specified, an object is

considered to satisfy the supplied parameters if they are equal to the param-

eters supplied at the time the object was constructed. If you specify a

matcher, it will be used instead. A function here will be passed arguments

of the resource data structure, the existing object being considered for allo-

cation, and the supplied parameters. A form may reference the parameters

as variables, and the object under consideration, as object.

rfinder

A form or the name of a function. If this option is provided, the usual

method for finding an object to allocate will not be used. The finder will

instead be expected to somehow come up with an object. The checker,

matcher, and constructor will not be called, unless the finder does so expli-

citly. A form or function specified here will see the same arguments as the

constructor would.

:initial-copies

Value is a number, defaulting to 0. The specified number of objects will be

constructed when the defresource is evaluated, thus creating an initial free

pool of unallocated objects. If a resource has parameters and one or more

initial copies are specified, the parameters must all be optional; the initial

copies will have the default values of the parameters.

164 RANDOM USEFUL TOPICS: RESOURCES & SYSTEMS Chapter

:free-list-size

Value is a number, defaulting to 20. It specifies the size of the array used

to contain all the objects. (If the number of objects ever exceeds this size,

the array is automatically replaced with a larger one.) :free-list-size is a

misnomer, since the array contains both the free objects and the ones that

are in use. As the earlier discussion of the : checker option pointed out,

there isn't really any free list at all.

For all of the options which accept a form or the name of a function, if a form is

supplied it is compiled during the evaluation of defresource, and put on the property

list of the name of the resource.

allocate-resource resource-name &rest parameters

An object is allocated from the specified resource, matching the given

parameters. The exact procedure followed depends on which options were

supplied to defresource for this resource. If there is a finder, it is called and

whatever it returns is used. Otherwise the set of existing objects is searched

for one which satisfies both the checker (by default, is not in use), and the

matcher (by default, was constructed with parameters equal to the current

ones) . If none are found, the constructor is called to create one. Finally, no

matter which of the three routes yields an object, the initializer (if any) is

called on it, and the object is marked as being in use.

deal locate-resource resource-name object

The object is conceptually returned to the specified resource's free-list, i.e.,

its in-use marker is turned off.

using-resource {variable resource parameters ...) body ...

This macro, which calls allocate-resource and deallocate-resource, is pre-

ferred over calling those two functions directly. The body forms are

evaluated inside a context where variable is bound to an object allocated

from resource with the specified parameters. The object is deallocated at

the end. An unwind-protect is used to guarantee that the object is deallo-

cated before using-resource is exited.

Now an example. We define a resource of 2D arrays, with parameters for the

number of rows and columns, which default to 100 each. A matcher is provided

which accepts any array whose dimensions are at least as great as the given param-

eters. (The default matcher would require that the dimensions be exactly the same,

meaning that we would very rarely reuse an object.) And an initializer fills the

array with 0's.

Section 8.1 Resources 165

(defresource sloppy-2D-array (^optional (rows 100) (columns 100))

: constructor (make-array (list rows columns))

: matcher (and (^ (array-dimension-n 1 object) rows)

(^ (array-dimension-n 2 object) columns))

: initializer (fillarray object '(0)))

And to use our resource:

(defun do-complex-computation (x y)

(using-resource (temp-array sloppy-2D-array x y)

(setf (aref temp-array i j) (calculate-value i j))

.. .))

There are several other built-in functions for dealing with resources.

deallocate-whole-resource resource-name

Deallocates all allocated objects of the specified resource. Use with caution,

as it can lead to allocation of objects which somebody else is still using.

clear-resource resource-name

Makes the resource forget about all its existing objects. Future calls to

allocate-resource will result in creation of new objects. Useful if the

resource has been changed so that the old objects are no longer usable, or if

some of the old objects have been damaged.

map-resource resource-name function &rest args

Applies function to each object known about by the resource. The argu-

ments to function will be: the object, the value of in-use-p for the object,

resource-name, and any additional arguments as specified by args.

8.2 Systems

The system facility provides a mechanism for keeping track of multiple files which

together make up a single program. The group of files taken together is defined to

be a system with the defsystem macro. Loading and/or compiling some or all of

the files in a system is accomplished via the make-system function.

The system facility is far more complicated than the resource facility, and not

166 RANDOM USEFUL TOPICS: RESOURCES & SYSTEMS Chapter 8

necessarily very well-designed ("hairier than a breadbox," in the local parlance). It

is supposed to be completely redone in a forthcoming Symbolics software release, so

it's probably not worth your trouble to learn the more difficult features just now.

We'll talk about some of the basic features; just enough for you to be able to use

systems for your own programs.

The documentation on systems is Part II of volume 4, and is also quite extensive

but not necessarily very well-designed, so this portion of the notes will follow the

manual less closely than the resource section did.

Here is a typical call to defsystem:

(defsystem bar

(:
pathname-default "q : >george> "

)

(: module reader-macros "rdmac")

(: module other-macros "macro")

(: module main-program "main" "commands")

(:compile-load reader-macros)

(:compile-load other-macros (:fasload reader-macros))

(:compile-load main-program

(rfasload reader-macros other-macros)))

All four files involved are in the "george" directory on host "q." They are divided

into three modules: reader-macros and other-macros, which consist of one file

each, and main-program, which contains two files. The reason for this particular

division is that it reflects the dependencies among the files, as specified in the

: compile-load clauses. Each :compile-load clause states that the files in

the specified module should be compiled if necessary (if the newest source file is

more recent than the newest object file), and then loaded if necessary (if the newest

object file is more recent than the last one to have been loaded), possibly subject to

certain dependencies.

The reader-macros module (file "rdmac") does not depend on any other modules.

The other-macros module (file "macro"), on the other hand, does depend on

reader-macros. The (rfasload reader-macros) dependency for other-

macros means that the file(s) in reader-macros have to be loaded before those in

other-macros may be compiled or loaded. The reason is presumably that the file(s)

in other-macros contain calls to macros defined in reader-macros, which must be

loaded for the calling functions in other-macros to compile correctly. The files in

main-program are dependent on both the other two modules. Presumably they con-

tain calls to macros defined in both reader-macros and other-macros, and so require

that both modules be loaded before main-program may be compiled.

Section 8.2 Systems 167

Once the system "bar" has been defined in this manner, it can be loaded and/or

compiled with make-system, (make-system 'bar) will load any files that need

to be loaded, without doing any compilation. (make-system 'bar : com-
pile) will first do any compilations that are needed, and then do any loading that

is necessary. By default, make-system asks for confirmation before actually doing

any compiling or loading.

One bit of terminology: the operation of compiling or loading an individual file is

called a transformation. So a defsystem could be seen as defining what transforma-

tions a system is composed of, and a make-system as a command to see which of

the transformations are necessary, and to carry them out.

Now we'll go into some more of the various options for defsystem and make-system.

Many will be skipped entirely.

For defsystem:

We've already seen rpathname-default, :module, and :compile-load.

:component-systems

The mechanism for including other defined systems as parts of this one.

What follows the keyword is a list of systems. When a make-system is done

on this system, it will also be done on each of the component systems. By
default, the transformations for this system will be performed before the

transformations for each of the component systems. (Yes, that seems wrong

to me, too.) But the default ordering can be overridden. If some of the

local transformations depend on having the component systems done first,

you can use (: do-components nil). Put it at any position in the body

of the defsystem, and the transformations of the component systems will be

performed at a time corresponding to the chosen position in relation to the

local system's : compile-load transformations.

:package

Specifies a package in which the transformations are to be performed, over-

riding any package specifications in the attribute lists of the individual files.

:patchable

Allows the system to be patched* (incrementally updated). Appropriate for

PATCH

1. noun. A temporary addition to a piece of code, usually as a quick-and-dirty remedy to an

existing BUG or MISFEATURE. A patch may or may not work, and may or may not eventu-

ally be incorporated permanently into the program.

168 RANDOM USEFUL TOPICS: RESOURCES & SYSTEMS Chapter 8

large systems which are to be distributed to many users. The latest patches

for a patchable system may be loaded with the load-patches function.

And for make-system:

(Recall that the :compile keyword must be specified for any compilations to occur.

By default, only loading is done.)

:noconfirm

Assumes a yes answer for the questions make-system would otherwise ask

before performing transformations.

:print-only

Performs no transformations at all; just prints information about which

transformations would need to be done.

:version

Loads a particular version of a patchable system. There are many different

ways to specify which version — see the documentation.

One last issue remains with respect to systems. Since make-system only works

after the corresponding defsystem has been evaluated, it's important to have a con-

venient way to get the defsystem done. Knowing what file it's in and loading that

file manually before doing a make-system for the rest is not convenient. For-

tunately, there is something better. Whenever make-system is called on an

unknown system, i.e., one for which a defsystem has not yet been done, make-

system looks in a predetermined place for a file to help it out. If there is a file

named "sys: site; system -name.system" (a logical pathname whose physical transla-

tion depends on your site), make-system will first load that file, and then try to

make the system.

The file should contain either the defsystem itself, or a call to si:set-system-source-

file, which will tell make-system what file does contain the defsystem. The two

arguments to si:set-system-source-file are the name of the system and the file where

the system definition may be found. If you're the only person likely to be using the

system, another idea would be to put the call to si:set-system-source-file in your

login init file, thus eliminating the need to put a special file in the "sys: site;"

2. verb. To fix something temporarily; to insert a patch into a piece of code. See KLUGE
AROUND.

(The Hacker's Dictionary, Guy L. Steele, Jr., et at)

Section 8.2 Systems 169

directory.

170 RANDOM USEFUL TOPICS: RESOURCES & SYSTEMS Chapter 8

8.3 Problem Set #8

Questions

1. Find out about defwindow-resource. It's used many times in the file "sys:

window; sysmen", which contains the code for the system menu. It's also

used in the "Smiling Face" example, "sys: examples; smile". (If you have

Release 5 documentation, you can find a description of this example, includ-

ing a few comments on defwindow-resource, in WINDEX). Now think of

some sort of window for which it would be useful to have a resource, define it

with defwindow-resource, and use it.

2. Look through the "sys: site;" directory. Pay close attention to the system

definition files and the logical host definition files. (Recall that system

definitions are by default found in "sys: site; sys -name.system''' and logical

host definitions in "sys: site; host-name.translations" . Note also that if the

"sys:" logical host happens to translate at your site to a UNIX system with 14

character limit on filenames, then "sys-name.system" will be translated to

"sys-name.sy" and "host-name.translations" to "host -name. Id".)

Most of the system def files will probably not directly include the defsystem,

but will have a call to si:set-system-source-file, specifying some other file as

the system source file. Track down a few of these pointers, and examine the

defsystems. (Keep in mind that if si:set-system-source-fiIe uses a logical

pathname, the logical host must be defined with fs:make-logical-pathname-

host before you can find the file.) Assure yourself that you understand how

it is that make-system can find the defsystem for a new system. (You might

want to look at the source code and see how make-system calls find-system-

named, which calls maybe-reload-system-declaration, which calls make-

system-site-file-pathname.)

Section 8.3 Problem Set #8 171

Solutions (roughly speaking)

There isn't much to say about this.

Let's consider what happens if you do (make-system 'ip-tcp) on a

machine that so far knows nothing about "ip-tcp." Since a system named
"ip-tcp" has not been defined, make-system will look in the "sys: site;" direc-

tory for a file named "ip-tcp.system". At my site, the logical pathname "sys:

site; ip-tcp.system" translates to the physical pathname "l:>sys-6> site> ip-

tcp.system". Having found that file, make-system will load it. Here's what's

in the file:

;;; -*- Mode: LISP; Package: USER; Base: 10 -*-

(f s :make-logical-pathname-host "IP-TCP"

)

(si: set-system-source-file "IP-TCP" "IP-TCP: IP-TCP; SYSTEM")

The second form tells make-system where to find the defsystem for ip-tcp.

But the file is specified as a logical pathname, using host "ip-tcp," which is

not yet defined. Thus the necessity of the first form, the fs:make-logical-

pathname-host. Recall that this function, when given an unknown host, also

has a specific place to look for a file to define the logical host: "sys: site; ip-

tcp.translations". At my site again, that translates to "l:>sys-6>site>ip-

tcp.translations". So as part of the evaluation of (fs:make-logical-pathname-

host "ip-tcp"), that file will be (recursively) loaded. And here's what's in it:

;;; -*- Package: USER; Base: 10; Mode: LISP -*-

(f s : set-logical-pathname-host

"IP-TCP"

: physical-host "L"

translations '(("IP-TCP;" ">sys-6>ip-tcp>"

)

("IP-TCP; PATCH;" ">sys-6>ip-tcp>patches>"))

)

Now things begin to bottom out. This form defines the logical host "ip-tcp,"

and specifies which directories on physical host "1" (Laphroaig, one of our

lisp machines) the logical pathnames should translate to. As the loading of

this file is completed, the call to fs:make-logical-pathname-host will also

return, and we continue on to the si:set-system-source-file. But now the logi-

cal pathname "ip-tcp: ip-tcp; system" is meaningful, and translates to

"l:>sys-6>ip-tcp> system". So make-system is now informed as to which

file contains the defsystem for ip-tcp, and proceeds to load it. Here's what's

172 RANDOM USEFUL TOPICS: RESOURCES & SYSTEMS Chapter 8

in that file:

-*- Mode: Lisp; Package: TCP; Base

DOD Internet Protocol support.

10

Symbolics' copyright notice

(defsystem ip-tcp

:name "IP-TCP")

:maintaining-sites :scrc)

: pathname-default " IP-TCP : IP-TCP ;

"

)

:patchable "IP-TCP: IP-TCP; PATCH;")

: component- systems

tcp tcp-service-paths ip-tcp-applications!

:module chaos "chaos-unc-interface"

)

: module global "ip-global")

:module main ("ip" "ip-routing")

)

:module ip-protocols ("icmp" "udp" "egp"))

:compile-load chaos)

:compile-load global)

:compile-load main (:fasload global))

:compile-load ip-protocols (:fasload global))

: do-components (:fasload global)))

. . . defsystems for tcp, tcp-service-paths, and ip-tcp-applications . . .

There's all kinds of stuff at the tail end of this file, which is a perfectly legiti-

mate short-cut. We can assume that it will all be read the first time someone

does a (make-system 'ip-tcp). But the crucial part is that this file

must contain the defsystem for ip-tcp, which you can see above. Once the

loading of the file is complete, make-system will continue. It now knows how

the ip-tcp system is defined, and can proceed to load the files which compose

the system. The filenames are all specified with ip-tcp logical pathnames, but

that's okay since we've already defined the ip-tcp logical host.

This sort of bootstrapping may seem awfully baroque, but notice that the

whole mess can be transferred to some other site with a minimum of effort.

The only line of code that would need to be changed is : physical-host
"L" in the "sys: site; ip-tcp.translations" file.

Chapter 9

SIGNALING AND HANDLING CONDITIONS

9.1 Overview

The material for this chapter comes entirely from Part XI of volume 2 of the Sym-

bolics documentation.

An event is some set of circumstances a running program can detect. Some events

are classified as errors, but not all are. Division by zero is an event which is an

error. When an event occurs, the program reports that fact, and finds some user-

supplied code to execute as a result.

The reporting process is called signaling, and the user-supplied code which subse-

quently assumes control is a handler. The system software includes default

handlers for a standard set of events.

The mechanism for reporting an event relies on flavors. Each class of events

corresponds to a flavor, called a condition. Signaling is more fully described as sig-

naling a condition, which involves creating a condition object (an instance of the

appropriate flavor). When division by zero occurs and is signalled, the condition

object created is an instance of the flavor sys:divide-by-zero. The instance variables

174 SIGNALING AND HANDLING CONDITIONS Chapter 9

of the condition object will contain information about the event, including what

string to use if an error message becomes necessary.

Each handler is defined to be applicable only for a particular flavor of condition

object. It can be used only when the condition signalled is an instance of that

flavor, or one built on it. The set of conditions a handler can handle is thus deter-

mined by the flavor inheritance mechanism. Handlers have dynamic scope, so

finding a handler to invoke for a given condition involves stepping through the stack

and grabbing the first handler which is applicable to that condition.

There are several kinds of actions a handler can take. It may instruct the program

to continue past the point where the condition was signalled, possibly after correct-

ing the circumstances that led to the condition being signalled. This is called

proceeding. Or it may unwind the stack all the way to the point where the handler

was bound, flushing the pending operations. (This behavior is essentially equivalent

to what you'd get with a catch in place of the handler, and a throw — with the

correct tag — in place of the signaling of the condition.) Or it may partially

unwind the stack to some intermediate point and reexecute from there. This kind

of handler is called a restart handler.

There are three ways to customize the condition mechanism:

• Defining handlers for existing flavors of conditions which may be signalled by

the system code.

• Signaling existing flavors of conditions within your code, which may invoke the

system's default handlers or ones that you've written.

• Defining new flavors of conditions.

9.2 A Few Examples

(condition-case ()

(// a b)

(sys : divide-by-zero *infinity*)

)

This form binds a handler for the sys:divide-by-zero condition, and evaluates (//

a b) in that context. If the division finishes normally, its value is returned from

the condition-case. But if b turns out to be zero, the sys:divide-by-zero condition is

signalled, and our handler is invoked, which simply causes the condition-case to

return the value of the symbol * infinity*.

(defflavor block-wrong-color () (error))

Section 9.2 A Few Examples 175

(defmethod (block-wrong-color : report) (stream)
(format stream "The block was of the wrong color."))

This defines a new error condition. (To define a condition which is not to be

treated as an error, build it on the flavor condition rather than error.) The
: report method is required. If your program now executes (error 'block-
wrong-color), your new condition will be signalled. If there are no handlers

currently bound for this condition, a default handler will cause an entry into the

debugger and use the : report method to generate the error message. This par-

ticular error message, however, is not terribly informative. It would be nice to

know which block had the wrong color, and what color it had. Here:

(defflavor block-wrong-color (block color) (error)
: initable-instance-variables

: gettable-instance-variables

)

(defmethod (block-wrong-color : report) (stream)
(format stream

"The block ~S was ~S, which is the wrong color."
block color)

)

Now that we've added the block and color instance variables, we can do some-

thing like

(error 'block-wrong-color : block the-bad-block
: color the-bad-color

)

which will initialize the instance variable as specified, and thus allow the : report
method to get at that information.

Another function which may be used to signal conditions is signal. It has the same
syntax as error, but may be used with any flavor of condition, whereas error is re-

stricted to use with error conditions, i.e., conditions built on the flavor error (which

is indirectly built on the base flavor condition, via the intermediate flavor

dbg:debugger-condition) . There are two additional differences, signal allows

handlers to proceed the condition, and error does not. (Thus error is guaranteed

never to return to its caller.) And when called on a simple condition {i.e., one not

built on dbg:debugger-condition, as the flavor error is) , signal returns nil if there are

no handlers currently bound for the condition. (This is actually more a difference

in the behavior of different flavors of condition than a difference in the behavior of

the functions signal and error, but since error can't be used with simple conditions,

it works as well to think of it as related to the function used.) If you signal any

176 SIGNALING AND HANDLING CONDITIONS Chapter 9

condition built on dbg:debugger-condition, with either signal or error, and there are

no handlers bound for that condition, you always end up in the debugger.

The function most frequently chosen for signaling is actually neither of these, but

rather ferror. It's used to signal an unproceedable error when you don't particu-

larly care which condition is utilized, (ferror eventually calls error, with a condi-

tion flavor of ferror.) It allows you to specify a format control string and argu-

ments to be used to construct the error message.

The macros check-arg and check-arg-type are also very handy for signaling an

error in case a function has been sent inappropriate arguments.

9.3 More on Handlers

The following is (I believe) a complete list of the macros provided for convenient

binding of handlers: ignore-errors, condition-case, condition-case-if, condition-bind,

condition-bind-if, condition-bind-default, condition-bind-default-if, condition-call,

and condition-call-if. We will discuss four of the nine.

ignore-errors body...

This one's easy. It binds a handler which handles absolutely every kind of

error condition (not simple conditions) and does absolutely nothing. Upon

seeing the error, the ignore-errors form returns. There will be no indication

that the error ever occurred (except, of course, that any code within the

ignore-errors following the error will not have been executed), ignore-errors

is intended to replace the older forms errset and catch-error.

condition-case (vars...) form clauses...

form is evaluated in a context with handlers bound as specified in clauses.

If form returns without signaling any conditions, the condition-case also

returns (subject to one exception — see below). If a condition is signalled,

the clauses are checked for a handler bound for that condition. If one is

found, the rest of that clause tells how to handle the condition. If a condi-

tion is signalled for which the condition-case has not bound any handlers,

the signal continues up the stack.

Each clause is a list whose car is the name of a condition flavor (or list of

condition flavors) and whose cdr is a list of forms to evaluate. If a condition

is signalled matching the flavor (s) (i.e., equal to it or built on it) specified in

a clause, the "handler" consists of executing the forms in the dynamic

environment of the condition-case, not the environment where the signal

occurred. That is, the stack is automatically unwound before the handler is

Section 9.3 More on Handlers 177

executed. As a result, the handler may not proceed the condition. While

the handler is running, the first symbol in vars will be bound to the condition

object.

As a special case, the car of the last clause may be : no-error. Then if

no condition is signalled during execution of the body, instead of returning

form's return values, the vars will be bound to those values, the mo-
error forms will be evaluated in that context, and condition-case will

return whatever they return.

This example is essentially equivalent to (ignore-errors (do-this)):

(condition-case ()

(do-this)
(error nil)

)

And this one uses the condition object:

(condition-case (e)

(time rparse string)

(time: parse-error (format error-output

"-A, using default time instead."

e)

default-time*)

)

condition-bind bindings body...

Condition-bind provides similar functionality to condition-case, with the

additional capability of proceeding from conditions. Each binding in the list

of bindings is a list of two elements, the name of a condition flavor (or list of

flavors), and a form which produces a handler function. The form is typi-

cally a quoted symbol, with the symbol being given a function definition

elsewhere. But the form may also be a lambda expression. The body con-

sists of any number of forms. If a condition is signalled during the evalua-

tion of the body, the bindings are searched just as with condition-case. If a

match is found, the handler function is called with one argument, the condi-

tion object. The handler runs in the dynamic environment in which the

error occurred; unlike with a condition-case, the stack is not unwound.

The handler function has three options. It may return nil to indicate that

it doesn't wish to handle the condition after all. (The search will then con-

tinue for a willing handler.) It may use throw to unwind the stack to some

outer catch. Or it may proceed the condition by returning a non-nil value.

There are several things to keep in mind if you wish to proceed a condition.

First, the condition must be of a type which is proceedable; second, the

178 SIGNALING AND HANDLING CONDITIONS Chapter 9

condition must have been signalled with signal, rather than with error; and

third, the handler should send the condition the : proceed message (with

an appropriate argument) and return whatever values the : proceed
method returns, because the : proceed method may decline to actually

proceed and return nil, in which case the handler should also return nil.

Apart from being able to proceed conditions, the other advantage of running

in the environment where the condition was signalled is that you may exam-

ine the stack. A handler might choose from among its three options accord-

ing to what it finds on the stack, or it might print some message whose con-

tents is determined by the state* of the stack. Section 63.4 ("Application:

Handlers Examining the Stack") discusses the functions which are available

for this purpose.

condition -bind -default bindings body...

Beyond the regular bound handlers, you can also define default handlers,

with condition-bind-default. The list of current default handlers is checked

only after all the bound handlers have declined to handle a condition. Thus

by setting up a default handler you can allow outer bound handlers to take

precedence over your handler, but still have your handler invoked if there

are no appropriate bound handlers. (See chapter 65, "Default Handlers and

Complex Modularity.")

9.4 Restart Handlers

There are several macros for establishing restart handlers. Here's an example

taken from the chaosnet code:

(defun connect (address contact-name

^optional (window-size default-window-size)

(timeout (* 10. 60 .)

)

STATE noun.

Condition, situation. Examples: "What's the state of your latest hack?" "It's WINNING
away." "The SYSTEM tried to read and write the disk simultaneously and got into a totally

WEDGED state."

A standard question is "What's your state?" which means "What are you doing?" or "What

are you about to do?" Typical answers might be "I'm about to GRONK OUT" or "I'm

hungry."

Another standard question is "What's the state of the world?" meaning "What's new?" or

"What's going on?"

(The Hacker's Dictionary, Guy L. Steele, Jr., et at)

Section 9.4 Restart Handlers 179

&aux conn real-address (try 0))

(error-restart

(connection-error

"Retry connection to -A at -S with longer timeout"

address contact-name)

forms...))

This function evaluates forms and returns the last value if successful. But if the

debugger assumes control as a result of a chaosreonnection-error condition during

the evaluation, the user will be given the opportunity to restart by typing one of the

super keys. The debugger printout will include a line that looks something like

s-A: Retry connection to SCRC at FILE 1 with longer timeout

If the user then types s-A the body of the error-restart will be executed again from

the beginning. Now the full descriptions of two of the macros that may be used to

establish restart handlers:

error-restart {condition -flavor format -string format-args. . .) body . .

.

This form establishes a restart handler for condition-flavor and then evalu-

ates the body. If the handler is not invoked, error-restart returns the values

produced by the last form in the body and the restart handler disappears.

When the restart handler is invoked, control is thrown back to the dynamic

environment inside the error-restart form and execution of the body starts

all over again, condition-flavor is either a condition or a list of conditions

that can be handled, format-string and format-args are a control string

and a list of arguments to be passed to format to construct a meaningful

description of what would happen if the user were to invoke the handler.

format args are evaluated when the handler is bound. The debugger uses

these values to create a message explaining the intent of the restart handler.

error-restart-loop (condition -flavor format -stringformat -args. ..) body. .

.

Similar to error-restart, but with an infinite loop. If the handler is not

invoked, instead of returning the body is reexecuted. (The loop may be

exited with return.) This form is commonly used in the top-level function

for a process, with condition-flavor being (error sys:abort).

9.5 More on Proceeding

Chapter 68 ("Proceeding") is a cogent five-page discussion of what is involved in

programming proceedable errors. I recommend reading it. I will include just a few

highlights here.

180 SIGNALING AND HANDLING CONDITIONS Chapter 9

For proceeding to work, two conceptual agents must agree:

• The programmer who wrote the program that signals the condition

• The programmer who wrote the condition-bind handler that decided to proceed

from the condition, or else the user who told the debugger to proceed.

The signaller signals the condition and provides a set of alternative proceed types.

The handler chooses from among the proceed types to make execution proceed. A
proceed type is defined by giving the condition flavor a .'proceed method.

(: proceed methods are combined using the : case combination type, so that one

flavor may have any number of : proceed methods, each defining a different type.

The first argument to the method dictates which : case is to be called.)

The body of the : proceed method can do anything it wants, generally trying to

repair the state of things so that execution can proceed past the point at which the

condition was signalled. It may have side-effects on the environment, and it may
return values (which will then be returned by signal) so that the function that

called signal can try to fix things up. Its operation is invisible to the handler; the

signaller is free to divide the work between the function that calls signal and the

: proceed method as it sees fit.

Review: suppose a condition is signalled for which a handler has been bound with

condition-bind. The handler function is called with one argument, the condition

object, and it may throw to some tag, or return nil to decline to handle the condi-

tion, or try to proceed the condition. To proceed, it must first determine which

proceed types are valid for the condition object. This must be done at run-time

because condition objects can be created that do not handle all of the proceed types

for their condition flavor, via the :proceed-types init option, and because con-

dition objects created with error instead of signal will have no proceed types. The

handler may use the :proceed-types message to get a list of the available

proceed types, or it may use the :proceed-type-p message to check a particu-

lar candidate. Having chosen a proceed type, the handler sends the condition

object a : proceed message with one or more arguments. The first argument is

the proceed type, and the rest are the arguments for that proceed type. Sending

the : proceed message should be the last thing the handler does. It should then

return immediately, propagating the values from the : proceed method back to

its caller. Determining the meaning of the returned values is the business of the

signaller only; the handler should not look at or do anything with these values.

The signal-proceed-case macro provides a convenient way to signal a proceedable

condition, choose which of the defined proceed types for that flavor of condition

should be considered available to the handlers, and specify separate actions to take

Section 9.5 More on Proceeding 181

for each of the proceed types (after the : proceed method returns).

Chapter 10

THE MOVING ICONS EXAMPLE

The original version of the moving icons example was put together by Ken Church

for a class he taught in 1984. I've made some cosmetic modifications, and updated

it to take advantage of some more recently written support software. The basic

idea is that you have a frame split into two panes: a command menu of icons the

user may "pick up" with the mouse, and an initially empty pane where the user

may drop icons that have been picked up.

As before, if your site has loaded the tape that comes with the book, do Load
System moving-icons [or (make-system ' moving- icons)] to load the

code. But this time, to make a frame and start the action, get the system menu

and click on Moving Icons at the lower right. Click left over one of the icons to

pick it up, move the mouse over the main pane, and drop the icon by clicking left

again.

10.1 General

It's my impression that there are four concepts in this short piece of code which are

new: using Zmacs-style command tables ("comtabs"), pop-up mini-buffers,

184 THE MOVING ICONS EXAMPLE Chapter 10

typeout windows, and changing the appearance of the mouse blinker. Most of the

dirty work involved in getting the first three to work is taken care of by the "corn-

tab" system (locally written software which both Ken and I have worked on). The

zwei:window-with-comtab flavor captures most of the fruits of this work, and is

itself quite easy to use. Another portion of the support code redefines many inter-

nal editor functions for reading typein from the mini-buffer to also work outside the

editor, with pop-up mini-buffers.

A comtab associates characters with functions, so that whenever a certain key is

pressed the corresponding function is called. In the editor, for instance. #\c-F is

bound to the function corn-forward, which moves the cursor forward. ("Charac-

ters" includes mouse characters, so functions may also be bound to particular

mouse clicks.) In addition to single key commands, a comtab may include

extended commands. These are accessible via Meta-X. You then type in the full

name of a command to a mini-buffer. (Completion is active, so you frequently

need only to type a few characters.) If you're in the editor proper, the permanent

mini-buffer at the bottom of the screen is used. If you're using the window-with-

comtab, a temporary mini-buffer pops up.

The window-with-comtab flavor has a comtab instance variable, and also includes

the flavor tv:process-mixin. The top-level function for the process is a loop which

reads characters and looks them up in the window's own comtab, calling the func-

tions that are found. (It also does something appropriate if it sees a blip instead of

a character.) All you need do is define the functions and put them in the comtab.

By copying so closely the mechanism used by the editor, we are able to use many of

the editor functions without change (or with small changes), most notably the on-

line documentation features. The Help key is active in any window built on

window-with-comtab, providing various functions for finding out about the currently

defined commands. And a number of extended commands have also been brought

over from the editor, including Edit Key, Edit Extended Command, Lookup Key

Bindings, Describe Key Bindings, Set Variable, and List Variables.

Any window built on window-with-comtab will also have a typeout window associ-

ated with it. Just as in the editor, if you hit the Suspend key, the typeout window

will become exposed, and you will enter a break loop, so that you may type arbi-

trary lisp forms to be evaluated.

Let's take a look at the code now.

Section 10.

1

General 185

10.2 moving-icons-frame

We have two panes, the command menu and the main pane. The frame is a bor-

dered constraint frame with shared io-buffer, so that the process running in the

main pane will see the blips from the command menu. The only new stuff is in the

default-init-plist specified for the menu. The most interesting is the specified value

for : item-list. As in the tree example of three weeks ago, we've used the

"general" item type. Each element of the list, corresponding to one item in the

menu, is a list of five elements. The first is the string which will be printed to

display the item in the menu. As you can see from the form of the loop, the string

will be one character long for every item, with the character code ranging from to

127. Since each item is of type :eval, the effect of executing an item will be to

evaluate the form following the :eval keyword. And the form sends the main

pane the : pick-up-icon message, with an argument of the item's character

code. (It helps to know that the window-with-comtab code takes care of binding

the variable zwei:*window-with-comtab* to the object which has the window-with-

comtab mixin, in this case the main pane.) So if I choose the item in the upper left

corner of the menu, the main pane will receive a : pick-up-icon message with

an argument of 0.

The :rows init spec instructs the menu to display its 128 items in 4 rows of 32

each, implying that it must do some horizontal spreading. And the : default-
font spec is crucial. Since the items are really just one-character strings, the way

they appear depends on what font the menu uses for printing them. By default,

command menus use a standard variable-width alphabetic font called jess 14. But

we've specified the font named mouse, which happens to contain many of the char-

acters which are used for the mouse blinker in various situations. You could use

any other font — either an existing one or one of your own creation — by changing

the : default-font spec (or by sending the : set-icon-font message, which

is done by Meta-X Set Icon Font). You can read about using fonts in section 12.7

of volume 7. See also the Zmacs commands Meta-X List Fonts and Meta-X

Display Font. For modifying a font or creating a new one, use the Font Editor,

which is described in Part II of volume 3.

10.3 moving-icons-main-pane

This flavor is built on zwekwindow-with-comtab, with tv:pane-no-mouse-select-mixin

added, to make it a pane, and one which will not confuse the select menu. An
instance variable keeps track of the current icon. The default-init-plist specifies

what comtab to use (*icon-comtab* is defined at the end of the file) and what font

the window should print with. This font obviously needs to match the font of the

186 THE MOVING ICONS EXAMPLE Chapter 10

command menu.

The first two methods are quite simple. The : set-icon-font method sets the

default font of the command menu (which causes it to redisplay all the items in the

new font) and sets the window's own font-map to match (which affects only subse-

quent typeout — the current display is left alone). The : pick-up- icon mes-

sage, recall, is sent when a menu item is executed. The method sets the icon-

character instance variable, and sends the window the : mouse-standard-
blinker message, which we'll see has the effect of making the mouse blinker look

like the item which was just chosen.

10.4 Messing with the mouse blinker

The easiest way to alter the appearance of the mouse blinker (though not the way
we do it in this example) is with the function tv:mouse-set-blinker. It has one

required argument — a keyword symbol — and two optional ones. The keyword

tells what sort of blinker to switch to, and the system must already have been told

how to get a blinker of that type. Teaching the system about new types of blinkers

is not difficult, but it's also not necessary in this case, so we don't need to go into it.

The reason it's not necessary is that there's already a kind of blinker which is

sufficiently flexible for our needs, and that is the : character blinker.

This sort of blinker has two instance variables, one specifying a font to use and one

a character code. The blinker draws itself as the given character in the given font.

So by adjusting the values of the instance variables, a single blinker can be made to

look like any character in any defined font. This is exactly the reason for the

existence of the "mouse" font; most of the various mouse blinkers you're used to

seeing are actually the same : character blinker, set to varying characters in the

mouse font.

And finally we come to the function tv:mouse-set-blinker-definition, which is what

the example uses in place of tv:mouse-set-blinker. The former takes several addi-

tional arguments, which allow you to send an arbitrary message to the "new"

blinker (which may really be the same object as the old blinker). The message we

send is : set-character, which takes two arguments, the new character code,

and (optionally) the font to use. In our case the character is the value of the

instance variable icon-character, which will have been set by the : pick-up-icon
method, and the font is the main pane's current font (accessed via the instance

variable tv: current-font), which we have been careful to make sure is always

the same as the menu's font. For a slightly different effect, type this at a lisp

listener:

Section 10.4 Messing with the mouse blinker 187

(tv: mouse-set-blinker-definition : character t : set-character

#\M ' fonts :43vxms)

The second and third arguments to tv:mouse-set -blinker-definition specify the jc-

offset and y -offset for the blinker. By default, the offsets are 0, meaning that the

blinker draws itself with its upper left corner at the actual mouse position. Often

you would rather the blinker position itself differently, perhaps with its center over

the real mouse position. That's when you need to set non-zero offsets. In the

example, we use whatever offsets the previous blinker had, to minimize any

apparent motion of the mouse as we switch blinkers. And if you glance down at

the : drop-icon method you'll see we need to adjust for the offsets again when

drawing the icon on the main pane, so that the icon is placed exactly under where

the mouse appears to be.

But let's return to the : mouse- standard-blinker method. Why did I make

the : pick-up- icon method call this one to change the mouse blinker, instead of

just including the multiple-value-bind form directly in : pick-up-icon? And
why does : mouse-standard-blinker test whether icon-character has a

non-nil value when : pick-up-icon will have just given it one? The answer to

both questions is that the mouse process will occasionally be sending our window

the : mouse-standard-blinker message, and I want to do something

appropriate then as well as when : pick-up-icon sends the message. Exactly

when the mouse process sends : mouse-standard-blinker is difficult to

explain, but a reasonable approximation is that it will happen whenever the mouse

crosses into the window. There is a default handler for : mouse- standard-
blinker, which our window would have inherited, and its action is simply to pass

the same message up to the window's superior. (If all of the window's superiors

also follow the default route of passing the message up, it will eventually reach

tv: main- screen, which will restore the blinker to the familiar NNW arrow seen

in a lisp listener.) But our method supersedes the default one. If there is no

current icon-character, ours behaves just like the default; if there is an icon-

character, ours makes the mouse blinker look like the icon. Had I put the

tv:mouse-set-blinker-definition in : pick-up-icon and kept the default method

for : mouse-standard-blinker, we would have lost the special appearance of

the mouse blinker every time it crossed into the main pane, including the manda-

tory first trip down from the command menu.

10.5 The :drop-icon method

Dropping the icon involves setting the cursor position to the correct spot, outputting

the character, resetting the icon-character instance variable, and restoring the

188 THE MOVING ICONS EXAMPLE Chapter 10

mouse blinker to its usual form. The only tricky step is setting the cursor position

— the mouse position will be provided in terms of outside coordinates. These must

be converted to inside coordinates by subtracting the margin widths, and then

corrected for the blinker offsets.

10.6 Setting up the comtab

The way to define a command is with the defcom macro (in the zwei package).

The first argument is the name of the command, which should begin with "com-".

Then there's a documentation string, which the help key will know how to get at.

The third argument is a list of options which are not relevant outside the editor.

The rest is the body of the command. Note that there is no "argument list"; func-

tions defined with defcom are intended to look for their arguments as the value of

zwei:*numeric-arg*. Recall that "arguments" to editor functions are numbers,

struck with the control or meta keys down before the main command character is

pressed. The effect of the numeric control keys is to bind *numeric-arg* appropri-

ately.

Executing a defcom just defines a function and adds the name of the command and

its documentation to a list of all commands, but does not make the command
usable — it is not included in any comtab. What puts the command into a comtab

is the zwei:set -comtab function, set-comtab adds a list of character-command pairs

(its second argument) to an existing comtab (the first arg) . The third argument, if

present, is a list of extended commands, i.e., commands that will be accessible via

Meta-X. The list should be created with zwei:make-command-alist and may be

appended with the extended command list of some other comtab. A single com-

mand may appear in a comtab any number of times, paired with different charac-

ters and/or as an extended command. And it may simultaneously appear in any

number of different comtabs.

The function zweirset-comtab-indirection may be used to cause inheritance from

another comtab. Any characters not found in the current comtab will be looked up

in the second one. In particular, we need to inherit from *basic-comtab* (the one

defined with window-with-comtab) the numeric argument commands and the help

functions.

10.7 Getting in the System Menu

The last form in the file is what puts "Moving Icons" in the rightmost column of

the system menu. The function tv:add-to-system-menu-programs-column takes

Section 10.7 Getting in the System Menu 189

three arguments. The first, a string, is what you want to appear in the menu. The

second is a form to be evaluated should your item be chosen from the menu. This

is usually a call to the function tv:select-or-create-window-of-flavor, with the one

argument being the flavor of window you want created. Finally there's a documen-

tation string, which appears in the mouse documentation line whenever the mouse is

over your item in the system menu.

10.8 The Program

190 THE MOVING ICONS EXAMPLE Chapter 10

Section 10.8 The Program 191

d 5?« fl-9 * -a

o) -h = e C > H «,

2
N " 8 B

»

"

S3
C --* >— fl 1 •• — Q) 0>

m u en* <u 3 "O

•§ iS -H rH 3 O C <1> O U

O P gHH S ° ° ° i 6 CO

1 I 2 L£3 ti3s 3 is: 852*3 e

& i § * - 5 a S >~
g 2 2 8 * > *

2 •? Hss as » 13?l§?

£ O 0) o ^- -^ .0 3

+J 5 «S -P ««

0) C i-l +J 0)

B .

.

iw <D T>
<W > 4-1 01 ••

0) +J (U
•• ~

192 THE MOVING ICONS EXAMPLE Chapter 10

Section 10.8 The Program 193

XX

194 THE MOVING ICONS EXAMPLE Chapter 10

10.9 Problem Set #9

Questions

1. Make it possible to individually erase icons that have been drawn on the

main pane. (I think the best way to do so would be to use the mouse sensi-

tive items facility. You might also try doing it on your own, without mouse

sensitive items. That would probably entail duplicating some of the ms-item

stuff, but the limited functionality required here shouldn't involve too much
duplication.)

2. If you've chosen the mouse sensitive item route for (1), add some more func-

tions to the menu. For example, one option might ask for a keystroke then

change the icon to the one corresponding to that character code (in the same

font) . Another might prompt for the name of a font then redraw the icon in

that font (with the same character code)

.

3. In an earlier version of the window-with-comtab support code, the typeout

window didn't restore the image of the window underneath it upon being

deexposed. The main pane therefore needed to be able to regenerate the pic-

ture. Though it's no longer strictly necessary to have such a : redisplay
method, it's still a good exercise.* Your solution to (1) should give you some

way of knowing what icons are currently displayed and where. Use this

knowledge to write the : redisplay method — it should do a : clear-
window and then redraw the current icons. While you're at it, make the

: redisplay method accessible through the comtab, via #\c-L and

#\refresh.

Sorry for resorting to such a pedantic rationale. I didn't plan it this way, but at the last minute I

ruined what had been a perfectly good problem through my own industrious improvements to the

comtab code.

Section 10.9 Problem Set #9 195

Hints

Don't forget to put your code in the "icons" package!

1. Adding mouse-sensitivity involves the following steps: mix tv:basic-mouse-

sensitive-items into moving-icons-main-pane; make an item type alist with

tv:add-typeout-item-type, and put it on main-pane's default plist; write the

function(s) to be called when an item is chosen; and alter the : drop-icon
method to use the : item or : primitive-item messages. (Processing

the blip and calling the indicated function will be taken care of by the

window-with-comtab mixin; your function will be called with one argument,

the item.)

To erase the icon, draw over it in xor mode. It's probably easiest to use the

.-draw-char message. Since the icons themselves are just character codes,

and don't contain information about their screen position, you'll probably

want your mouse-sensitive items to actually be some sort of data structure

containing the x and y coordinates as well as the character itself.

2. Erase the icon as in (1), then redraw it with the new character or font.

: draw-char is probably the easiest way again.

3. Assuming again that you've chosen the mouse-sensitive-items route, you'll

need to get at the list of current items in order to redraw each of them. The

list is the value of the instance variable tv.item-list. (Remember to grab the

list before doing the : clear-window, because the : clear-window will

set the list to nil.)

196 THE MOVING ICONS EXAMPLE Chapter 10

Solutions

1 . The structure representing the item is a list of the character code, the current

font, and the x and y coordinates. The advantage of including the font is

that if Meta-X Set Icon Font is done, we can still properly erase old icons in

the original font.

(defflavor moving-icons-main-pane

((icon-character nil)

)

(tv:pane-no-mouse-select-mixin

tv: basic-mouse-sensitive- items new

zwei : window-with-comtab

)

: settable-instance-variables

(:default-init-plist :comtab *icon-comtab*

: item-type-alist *icon-item-type-alist*

: font-map '(fonts : mouse) \new

:blinker-p nil

:save-bits t)

)

(defvar *icon-item-type-alist* nil)

(tvradd-typeout- item-type *icon-item-type-alist* : icon "Erase"

erase-icon t "Erase this icon.")

(defmethod { moving-icons-main-pane : drop-icon)

(mouse-x mouse-y)

(if (not icon-character) (beep)

(multiple-value-bind (x-off y-off)

(send tv: mouse-blinker : offsets)

(send self : draw-icon

(list icon-character tv: current-font

(- mouse-x x-off tv: left-margin-size)

(- mouse-y y-off tv: top-margin-size)

)

:add))

(setq icon-character nil)

(send self : mouse-standard-blinker))

)

(defmethod (moving-icons-main-pane :draw-icon)

(char-info item-action)

(destructuring-bind (char font x y) char-info

(send self : draw-char font char x y tv:alu-xor)

(selectq item-action

Section 10.9 Problem Set #9 197

(:add (send self .'primitive-item

:icon char-info x y
(+ x (send self : character-width char font))

(+ y (font-char-height font)

(send self :vsp)))

)

(: delete (setq tv:item-list

(del #' (lambda (item list)

(eq item (second list)))

char-info tv: item-list)))))

)

(defun erase-icon (char-info)

(send zwei : *window-with-comtab*

: draw-icon char-info : delete))

(tv : add-typeout- item-type

icon-item-type-alist* : icon "Change Character"

change-icon-char nil

"Replace this icon with a different character.")

(defun change-icon-char (char-info)

(let ((new-char (read-single-char)))

(process-sleep 30)

When the typeout window is deexposed, it restores the window

underneath to how it was when the typeout window was first

exposed, so if we leave the typeout window exposed while we change

the display, our changes will be lost when it does get deexposed.

(send zwei : *typeout-window* rdeexpose)

(send zwei : *window-with-comtab*

: draw-icon char-info : delete)

(setf (first char-info) new-char)

(send zwei : *window-with-comtab*

:draw-icon char-info :add)))

(defun read-single-char nil this is borrowed from the code

zwei : (LET (CHAR

)

for Help-C (com -self-document)

(TYPEIN-LINE "New char: ")

(SETQ CHAR (TYPEIN-LINE-ACTIVATE

(EDITOR-INPUT :MOUSE :RETURN))

)

(TYPEIN-LINE-MORE "~:(5>C" CHAR)

char)

)

(tv : add-typeout- item-type

icon-item-type-alist* :icon "Change Font" change-icon-font

198 THE MOVING ICONS EXAMPLE Chapter 10

nil "Redraw this character in a different font.")

(defun change-icon-font (char-info)

(let ((new-font (read-font-from-mini-buf fer))

)

(send zwei : *window-with-comtab*

: draw-icon char-info : delete)

(setf (second char-info) new-font)

(send zwei: *window-with-comtab*

: draw-icon char-info :add))

)

where (read-font-from-mini-buffer) is the body of com-set-icon -

font starting at (cdr . . .) , and com-set-icon-font should be changed to

call read-font...

3. In addition to the redisplay, I've also thrown in a com-clear-window to

remove all the current icons.

(defmethod (moving-icons-main-pane :redisplay) nil

(let ((old-item-list tv: item-list)

)

(send self : clear-window)

(loop for (nil item) in old-item-list

do (send zwei : *window-with-comtab*

:draw-icon item :add))))

(zwei : defcom com-redisplay

"Regenerates display from current dropped icons"

nil

(send zwei : *window-with-comtab* : redisplay)

)

(zwei: defcom com-clear-window

"Removes all dropped icons from the window" nil

(send zwei : *window-with-comtab* : clear-window)

)

(zwei:set-comtab *icon-comtab*

'(#\c-L com-redisplay

#\refresh com-redisplay

#\clear-input com-clear-window)

)

Chapter 11

MORE ADVANCED USE OF THE EDITOR

The standard Zmacs commands are generally quite well documented by the on-line

help facilities. So there should be no difficulty in becoming fluent in the use of the

built-in commands simply by consulting the automatic documentation. Or, if you

prefer, many of the more common built-in commands are described on paper, in

Part I of volume 4.

The methods for adding new commands, on the other hand, are not documented so

completely. It is upon that topic that this class will concentrate.

11.1 Keyboard Macros

keyboard macros allow you to bundle up any number of keystrokes and execute

them all with one keystroke. (These actually are documented, but since they fit in

with the rest of today's chapter, I thought we should look at them as well.) The
Zmacs command "c-X (" starts a keyboard macro. Whatever keys you press

from then up until you type a "c-X)" are remembered while they are executed.

When you type the c-X) the macro will be defined. It can be re-executed by

typing c-X E. The effect will be as though you had typed all the keystrokes in

200 MORE ADVANCED USE OF THE EDITOR Chapter 11

the macro definition (but faster). Giving a numeric argument to c-X E will cause

the macro to be repeated that many times.

c-X E always executes the most recently defined macro, so if you define another

macro with c-X (, the definition of the first one will be lost, unless you have pre-

viously saved it somehow. One way of saving a macro is to give it a name, with

M-x Name Last Kbd Macro. Once a macro has been named, you can install it on

a key with M-x Install Macro. The name of the macro and the keystroke on which

to install it will be prompted for in the mini-buffer. From then on (until you dein-

stall the macro, or install some other command on the same key), typing that key-

stroke will execute the macro. When M-x Install Macro asks for the name of the

macro to install, if you just type a carriage return instead of the name of a macro,

the one most recently defined will be installed on the specified key. It's therefore

unnecessary to ever name your macros, as long as you install them before defining

another.

Here's a simple example, something which I often did while working on the early

versions of these lectures, in the troff text formatter. I'll define a keyboard macro

for inserting the troff directives for switching to an italic font and back, and install

it on super-I.

c-x (start keyboard macro definition

\fi\fp insert the text

c-B c-B c-B move the cursor back to the correct position for inserting

italic text

c-x) end macro definition

M-x install Macro [prompted with "Name of macro to install (CR for last

macro defined):"]

<return> [prompted with "Key to get it:"]

s-i [menu pops up for choosing which comtab to use]

<click on Zmacs>

The next step, one which I've been too lazy to ever take, but really should, would

be to put something in my login init file to automatically define this keyboard

macro every time I login. As things stand, I have to run through the above

sequence of commands whenever I start writing a text file (unless the machine

hasn't been booted since the last time I defined the macro). The way to define a

keyboard macro in lisp code is with the function zwekdefine-keyboard-macro. The

first argument is the name the macro will have, the second (usually nil) indicates a

repeat count, and the rest are the character codes for the keystrokes. Once the

macro has been defined, you can insert it into a comtab. So if I weren't so lazy, I

would add this to my init file:

Section 11.1 Keyboard Macros 201

(zwei: DEFINE-KEYBOARD-MACRO italic-font (nil)

#\\ #\f #\I #\\ #\f #\P #\c-B #\c-B #\c-B)

(zwei : command-store (zwei : make-macro-command : italic-font

)

#\s-I
zwei : *zmacs-comtab*

)

If I were adding several macros at one time, and to the same comtab, I would use

set-comtab rather than command-store. And as for the choice of comtab, specify-

ing *zmacs-comtab* is equivalent to clicking on "Zmacs" in the menu that M-x
Install Macro pops up, and *standard-comtab* is equivalent to clicking on "Zwei."

Each editor has its own comtab, but they are all indirected to *zmacs-comtab*, so

putting a command there means that it will be accessible in all instances of the

Zmacs editor, unless of course the command is shadowed by a binding to the same

key in an individual editor's comtab. And *zmacs-comtab* is indirected to

standard-comtab, as are all the other zwei-based editors* (e.g., Zmail and Con-

verse). So a command inserted in *standard-comtab* will be available in all the

zwei editors, unless shadowed.

11.2 Writing New Commands

Most extensions to the editor are not expressible as a sequence of keystrokes. For

these you need to write a function, with defcom, and then add it to the comtab of

your choice with command-store or set-comtab. Among the things you may want to

do from your function are: insert text into a buffer, read text out of a buffer, get

user input from the mini-buffer, and send text to the typeout window. All of these

are reasonably straightforward, once you know about a few key variables and func-

tions.

11.3 Buffers and Streams

The functions zwekopen-editor-stream and zwei:with-editor-stream open a bidirec-

tional stream to an editor buffer. They are analogous to open and with-open-file in

that open-editor-stream simply creates the stream and returns it, while with-editor-

stream puts a call to open-editor-stream inside a useful wrapper, and so is prefer-

able if your control structure allows it. (The wrapper in this case guarantees not a

As I understand it, eine and zwei, apart from being "one" and "two" in German, were the names of

the first two text editors written for lisp machines. They are acronyms, respectively, for Eine Is Not

Emacs, and Zwei Was Eine Initially.

202 MORE ADVANCED USE OF THE EDITOR Chapter 11

close, which isn't meaningful for editor streams, but a : force-redisplay, so

any changes to the buffer will be apparent.) Either of these functions ultimately

ends up calling interval-stream, which does a make-instance of flavor interval-

stream. For more control over how the stream is made, you may wish to call

interval-stream directly. But in general, open-editor-stream provides a good

higher-level interface.

There is some documentation on these two functions in chapter 44 of volume 7,

mainly on the various options for specifying which buffer the stream should point

to, and where in the buffer it should initially point. You must specify at least one

of the following options: : interval, : buffer-name, : pathname, : win-
dow, or : start. : buffer-name and : pathname are easy enough. If a

buffer exists which matches the given information, it is used; if not, one is created

(unless the :create-p option has been used to specify otherwise). Understand-

ing the others requires knowing a bit more about the editor data structures.

The base flavor for all buffers is zwekinterval. The value of the variable

zwei:*interval* will be the current buffer, an object whose flavor is likely to be

something like zwehfile-buffer, which is indirectly built on interval (via node, top-

level-node and buffer). Thus references to the current "interval" mean the current

buffer. An interval may also be created to contain any portion of a buffer; some

intervals are actually buffers, while many others are temporary objects used to

point to arbitrary regions of text. An object of flavor interval-stream (see above) is

simply a stream whose "peripheral device" is an interval.

The interval flavor has (among others) two instance variables, for the beginning and

end of the text it refers to. These two are represented as buffer pointers, a type of

object defined by the zweirbp defstruct. A bp is a list consisting of three elements:

an object of type line (defined by the zwekline defstruct), an index into the line,

and a keyword we needn't be concerned with here. A line, in turn, is a string (the

text of the line) with all kinds of information in the string's array-leader, most

importantly pointers to the next and previous lines in the buffer. So given an inter-

val you can get bp's for the first and last character positions in the buffer, given a

bp you can tell what line it refers to (as well as which character in the line), and

given a line you can find the preceding and following lines.

The value of the variable zwei:*window* is an object of the type defined by the

defstruct zwei:window (not to be confused with objects of type tvrwindow). It con-

tains information about the portion of the buffer currently visible. Among its slots

are a pointer to the interval (buffer) that window is displaying part of, a bp for the

position of point (the cursor), a bp for the first character in the line currently

displayed at the top of the screen, and a count of how many lines are visible. The

Section 11.3 Buffers and Streams 203

window defstruct uses the : array- leader type, meaning that the object is an

array, with all the slots going into the array-leader. The array itself contains a row

of information for each line in the area the window maps to, including the "line"

object.

The macro zwei:point, called with no arguments, returns the bp for the current

point. As you might expect, the macro expands into (ZWEI : WINDOW-POINT
ZWEI : *WINDOW*), the accessor for the "point" slot of the current window. A
similar macro, zwei:mark, returns a bp for the most recently dropped mark, which

is another slot in the window defstruct.

Now back to the options for open-editor-stream. The ones we delayed discussing

were : interval, : window and : start. We're now in a position to make
sense out of these. If you use the : interval option, the value supplied should be

an interval; you may use zwei:*interval* or any of a number of functions which

exist to create an interval pointing to an arbitrary text area. The stream created

will read from and write to the given interval. The : window option is similar; you

provide a (zwei) window, and open-editor-stream returns a stream into that win-

dow. The : start option is a little more complicated. It may be used either

alone or in combination with other options. If the value you provide is a bp, the

stream will begin at the specified bp. In this case no other options need be sup-

plied, and the stream's "end of file" will be at the end of the buffer containing the

bp. (You can force some other termination point with the : end option.) The

other possible values for : start are all keywords, and all require that some other

option (like : interval or : window) indicate which buffer to use. The effect of

the : start keyword will be to determine where within the buffer the stream will

start. Among your choices are : beginning, :end, :mark, : point, and

: region.

There are quite a few other options to open-editor-stream to control various details

of its behavior, but the ones we've already seen are sufficient to write all sorts of

useful applications. You'll find many examples in the editor code to use as models.

These are likely to use interval-stream directly, rather than through open-editor-

stream, because open-editor-stream is a relatively new feature. Your own functions

will probably be clearer and easier to write if you use open-editor-stream (or with-

edi tor-stream)

.

Here are a few trivial examples, to illustrate the basic concepts. (All assume the

current package is zwei.)

(with-editor- stream (str : interval *interval*)

(send str : string-out

204 MORE ADVANCED USE OF THE EDITOR Chapter 11

"surprise text inserted at end of current buffer"))

(with-editor-stream (str : interval *interval* : start : beginning)

(send str : string-out

"surprise text inserted at beginning of current buffer"))

(with-editor-stream (str : start (point))

(send str : string-out "surprise text inserted at point"))

(with-editor-stream (str :buffer-name "mbox //usr//hjb// S:"

: start : beginning)

(send str : line-in)) returns first line of buffer containing my mbox file

One slightly subtle point to keep in mind is that the variables *interval* and •win-

dow* are not global; they're bound partway down the stack in the Zmacs process.

This makes no difference if you're writing editor commands, because they'll be exe-

cuted in the same process. But it does mean you'll have to be careful if you write

code intended to interact with the editor's buffers from another process, because

those variables will then be unbound. In particular, of the four examples just given,

the first three would bomb if evaluated in a lisp listener (the third because point

has to access *window*), while the fourth would work. All four work fine from the

editor's typeout window (as long as the package is correct), since the typeout

window's break loop is in the Zmacs process.

11.4 Reading from the Mini-buffer

Another set of tools often used in writing editor commands are the functions for

reading from the mini-buffer. There are many — their names generally begin with

"typein-line-," and the varieties differ in how they know when the typein is com-

pleted, and in what form they return the typein. Here are a few of them (all in the

zwei package):

typein-line-readline ctl-string &rest args

A prompt (created by format using ctl-string and args) is printed in the

typein line (just above the mini-buffer — you've seen it used frequently),

and keyboard input is directed to the mini-buffer. When the Return or End

keys are pressed, a string is constructed out of all the preceding characters

and returned. The behavior is analogous to that of the readline function.

typein-line-read ctl-string &rest args

Section 11.4 Readingfrom the Mini-buffer 205

Same as above except the lisp reader scans the string before it is returned,

and the lisp object returned by the reader is returned from typein-line-read.

The behavior is roughly analogous to that of the read function.

typein-line-form-to-eval prompt &optional initial-contents initial-char-pos

Similar to typein-line-readline except that the Return key does not terminate

input — it simply moves to a new line. Only the End key terminates input.

A string is returned (possibly containing Return characters).

typein-line-multi-line-read ctl-string &rest args

Combination of typein-line-read and typein-line-form-to-eval. Multiple lines

are read, terminated by End, and the input is scanned by the lisp reader

before being returned.

read-buffer-name prompt default &optional impossible-is-ok-p

Prints prompt in the typein line, and does a completing read in the mini-

buffer, using the names of all the buffers as the set of possible completions.

default is chosen if the user just types Return. The actual buffer object

corresponding to the selected string is returned.

typein-line-completing-read history default blank-line-defaults prompt alist

&optional ...

The function called by read-buffer-name (and many others) to do the com-

pleting read. It has more options than you even want to think about (until

one of them turns out to be exactly the thing you need), all of which are

described in great detail at the function definition. It allows for the use of a

history as well as a default, so you can pop your way through the history to

reuse earlier inputs.

com pieting-read-from -mini -buffer prompt *completing-alist* &optional ...

The function called by typein-line-completing-read (and many others) to

really do the completing read. You may want to call it directly because it

has a somewhat simpler interface, if fewer facilities.

read-defaulted-pathname prompt *reading-pathname-defaults* &optional ...

Used by c-X c-F (and many others) to read a pathname and merge it

206 MORE ADVANCED USE OF THE EDITOR Chapter 11

with some set of defaults.

11.5 A Real Example

Here's something taken out of the editor code, the definition for M-x Evaluate Into

Buffer.

(DEFCOM COM-EVALUATE-INTO-BUFFER
"Evaluates forms from the minibuffer and inserts the

results into the buffer. You enter Lisp forms in the minibuffer,
which are evaluated when you press END. The result of each

evaluation appears in the buffer before point. With a numeric

argument, it also inserts any typeout that occurs during the

evaluation into the buffer." (KM)

(LET ((FORM-STRING (TYPEIN-LINE-FORM-TO-EVAL

"Lisp forms to evaluate:"))

(OUTPUT-STREAM (INTERVAL-STREAM- INTO-BP (POINT)))

FORM)

(WITH-INPUT-FROM-STRING (INPUT-STREAM FORM-STRING)

(LOOP DO (CONDITION-CASE (ERROR)

(SETQ FORM (READ INPUT-STREAM)

)

(SYS:END-OF-FILE (RETURN DIS-TEXT))

(SYS: READ-ERROR (BARF ""A" ERROR)))

(FORMAT OUTPUT-STREAM "-{-&-S-}"

(LET-IF *NUMERIC-ARG-P*

((STANDARD-OUTPUT OUTPUT-STREAM)

)

(MULTIPLE-VALUE-LIST (EVAL FORM))))

(MOVE-BP (POINT)

(FUNCALL OUTPUT-STREAM ' :READ-BP)))))

)

typein-line-form-to-eval returns a string, presumably containing lisp forms.

(interval-stream-into-bp (point)) is like (open-editor-stream
: start (point) :end (point)). We make input-stream point to the

string of forms, and then loop, reading one form at a time from the string. For

each one, assuming there are no errors, we use format to print the results of

evaluating the form into the buffer, via the open editor stream, and move point.

Section 11.5 A Real Example 207

.6 Problem Set #10

Questions

1. Write com-comment-out-lines-in-region, and com-uncomment-lines-in-region,

to insert (and remove) semi-colons at the beginning of each line in the region.

(Both of these already exist as parts of com-comment-out-region, but that

version includes lots of hair for handling messy cases. Write something sim-

ple.)

2. Write com-insert-text-into-other-buffer, which should read any amount of

text from the mini-buffer (terminated by #\End), prompt for the name of a

buffer, and append the text to the end of the given buffer.

3. Write a macro to be used either inside or outside the editor, which redirects

all typeout during execution of its body to a newly created editor buffer.

208 MORE ADVANCED USE OF THE EDITOR Chapter 11

Solutions

(This all goes in the zwei package.)

1. (defcom com-comment-out-lines-in-region
"Comments out each line in the region." nil

(region-lines (start end)

(loop for line = start then (line-next line)

until (eq line end)

do (insert (create-bp line 0) #\;)))

dis-text)

(defcom com-uncomment-lines-in-region

"Removes semi-colons from beginning of each line in

region." nil

(region-lines (start end)

(loop for line = start then (line-next line)

until (eq line end)

when (char-equal (aref line 0) #\;)

do (let ((end-idx (string-search-not-char

#\; line 1))

(start-bp (create-bp line 0)))

(delete-interval

start-bp

(if (null end-idx) (end-line start-bp)

(forward-char start-bp end-idx))))))

dis-text)

Don't forget to add the commands to a comtab so you can use them. Do
something like:

(set-comtab *zmacs-comtab*
' (#\s-; com-comment-out-lines-in-region

#\h-; com-uncomment-lines-in-region)

(make-command-alist
'

(com-comment-out-lines-in-region

com-uncomment-lines-in-region))

)

2. (defcom com-insert-text-into-other-buffer

"Appends text from the mini-buffer to the end of

any buffer." nil

(let ((text (typein-line-form-to-eval

"Text to append to other buffer:"))

Section 11.6 Problem Set #10 209

(buffer (read-buffer-name "Buffer to append text to:"

: other))

)

(with-editor-stream (str : interval buffer)

(send str : string-out text)))

dis-none)

3. Anything sent to standard-output during execution of body will be inserted

into a buffer named buffer-name. There will also be messages inserted

before and after body is executed.

(defmacro with-output-to-editor-buffer ((buffer-name)

Sibody body)
* (with-editor-stream (standard-output

: buffer-name , buffer-name)

(format t "-2X;;; Diverting to buffer (~\datime\) ~2%"

)

, @>body

(format t "-2%;;; End of diversion (-\datime\) "))

)

Sample usage:

(with-output-to-editor-buffer ("test"

)

(princ "The contents of the FEP file system follows:")

(print-disk-label)

)

Chapter 12

A QUICK LOOK AT "THE NETWORK"

Although it is common to refer to a lisp machine's connections to the rest of the

world as "the network," as if the machine were connected via a single mechanism

to a unified system of linkages, such is not the case. There are several means of

communication, operating via several different hardware and software protocols.

And there is considerable overlap, with different software protocols operating simul-

taneously over the same hardware. It's not really very complicated, but it's easy to

become highly confused if the basic issues are not kept clear.

12.1 The "Gee-Whiz" Overview

The first distinction to keep in mind is between hardware and software. The

hardware basis for any given network service will be something like coaxial cable

and transceiver boxes, or a serial line. The software utilizing this hardware, say

"Internet" or "Chaosnet," must itself be viewed as composed of several theoreti-

cally independent levels. The various pieces of this modularity are coordinated by

the namespace database. The terms used by the namespace for the different levels

are service, protocol, and medium. (Don't be concerned if the exact meaning of the

various concepts is not clear at this point; all that matters for now is that you have

212 A QUICK LOOK A T "THE NETWORK" Chapter 1

2

a general understanding of what sorts of entities the terms refer to.) The distinc-

tions may at times appear somewhat strained or artificial, but in general a service is

the highest level entity, describing what the user wants out of the network connec-

tion. A service may be discussed without reference to which network is providing

it. Typical services are file transfer and remote login. Each network has its own

protocol (s) for providing any particular service. Chaosnet provides file transfer ser-

vice via the "qfile" protocol, while Internet provides the same service via the "tftp"

protocol. A medium is a mode of connection, like "byte-stream" or "chaos"; each

protocol requires some medium as the minimal type of connection which must be

present for the protocol to operate. A connection can be made to a remote host in

order to request a certain service when both the local and remote hosts are on a

network of a type adequate to support the medium required by the protocol under

which the remote host offers the desired service.

Let's look at excerpts from the namespace descriptions of two machines to see some

of this terminology in action.

HOST JONES
SYSTEM-TYPE UNIX
MACHINE-TYPE VAX
ADDRESS CHAOS 1015

ADDRESS INTERNET 192.11.39.9
ADDRESS TAMDHU-SERIAL 3

SERVICE FILE CHAOS QFILE
SERVICE LOGIN SERIAL-PSEUDONET TTY-LOGIN
SERVICE LOGIN TCP TELNET

This (partly fictional) fragment states that the UNIX host "jones" has addresses on

the chaos, internet and tamdhu-serial networks, and that it offers the file service

(file transfers) via the qfile protocol on the chaos medium, and the login service

(remote login) via either the tty-login protocol on the serial-pseudonet medium, or

the telnet protocol on the tcp medium.

HOST TAMDHU
SYSTEM-TYPE LISPM
MACHINE-TYPE LISPM
ADDRESS CHAOS 1003

ADDRESS TAMDHU-SERIAL
ADDRESS INTERNET 192.11.39.5

And this fragment tells us that the lisp machine "tamdhu" is on the chaos,

tamdhu-serial and internet networks. Combining this with the description of jones,

Section 12.1 The "Gee-Whiz" Overview 213

we can tell that from tamdhu a user could invoke file transfer service on jones,

since both machines are on the chaos network (and chaosnet supports the chaos

medium) . As for remote login service, the user gets a choice: s/he could invoke it

on the network called "tamdhu-serial" (which both hosts are on, and which sup-

ports the serial-pseudonet medium) or on Internet (which supports the tcp

medium)

.

12.2 The Beginning of the Real Explanation

Until recently, what most people had in mind when they said "the network" with

reference to lisp machines was Chaosnet, a local area network developed in 1975 by

the MIT AI Lab, specifically for use as the medium for communications among lisp

machines. But as it was designed to minimize the difficulty of bringing other kinds

of machines into the network, by now quite a variety of computers — as well as

peripherals — may be connected via Chaosnet. The "chaos" in the name refers to

the lack of centralized control.

The hardware and software portions of Chaosnet, although designed for each other,

are logically independent. The Chaosnet software may operate on media other than

the Chaosnet hardware, and the software for other network protocols may use the

Chaosnet hardware. The transmission medium is sometimes called ethernet, which

can be misleading because the same term is applied to a type of network (including

hardware and software) developed by Xerox. But since the Ethernet hardware and

the Chaosnet hardware are largely compatible, the term "Ethernet" is frequently

applied to the hardware for any network using this sort of transmission medium,

regardless of which software protocol is in operation.

We'll return to Chaosnet shortly, but first let's complete the overview of the lisp

machine's network connections. Coexisting with Chaosnet on the ethernet cable is

the Internet, an entirely different software protocol. The hardware requirements of

the two types of network are compatible; although some kinds of computers use

different boards for the two interfaces, everything external to the individual

machines is identical. In the case of the lisp machine, even the internal hardware is

shared, so the distinction between the two networks is solely what happens to the

transmitted information in software. The software for Internet is not, however, part

of the basic lisp machine system. It's another product which must be purchased

separately, as "ip-tcp." The Bell Labs/Murray Hill lisp machine community has a

site license, and ip-tcp is installed on all our machines. As with Chaosnet, Internet

is understood by a wide variety of computers. In fact, Internet has become a

Department of Defense standard, so one may reasonably expect virtually all

manufacturers to support Internet in their new products, while Chaosnet may be

214 A QUICK LOOK AT "THE NETWORK" Chapter 12

expected to gradually fade from view.

The third means of communication available to the lisp machine is the serial i/o

facility. Each lisp machine has three serial ports, which may be used to communi-

cate with any device that understands the RS-232 protocol. At my site we connect

these ports to a VAX* terminal line, to allow use of the lisp machine as a terminal

logged in to a UNIX system, or to speech synthesizer boxes, or a modem. Because

the related software uses a construct called a serial-pseudonet, it appears from the

user's point of view that each lisp machine is the center of its own star-shaped net-

work (on an equal footing with Chaosnet and Internet) connecting it to the devices

at the other end of the serial lines.

So all together there are two kinds of physical connection to the outside world (eth-

ernet and serial line), and three kinds of conceptual connection (Chaosnet and

Internet via the single ethernet, and serial-pseudonet via any number of serial

lines). The term "network" — now that Chaosnet no longer stands alone — usu-

ally refers to these three conceptual connections, either one of them taken individu-

ally or the set of them considered collectively. It is possible, though unusual, to

define additional types of conceptual networks, sharing the existing physical connec-

tions.

Most of the physical and conceptual connections are documented in volume 9 of the

Symbolics manuals, from which I have borrowed for this chapter. Chaosnet, both

hardware ("ethernet") and low-level software, is covered in chapter 15. Part I of

volume 9 describes the namespace database and how the namespace manages

requests for network services. Serial i/o is in Part III of volume 5.

12.3 The Ethernet

The transmission medium (the ether) which supports both Chaosnet and Internet is

1/2 inch coaxial cable, with a transceiver box at each point where a machine joins

the cable. A single ether must be a linear cable, with no branches or loops. The

maximum length of an ether is about a kilometer. Multiple ethers may be joined

by bridges, i.e., machines on both of two ethers, which relay packets from one to

the other, so that the two subnets may act as one large ethernet without exceeding

the length limitation. For example, the portion of the Murray Hill ethernet that

local lisp machine users need to be concerned with has three single ethers joined by

bridges. One connects all the building 2 lisp machines (except Churchill), about

five VAXen and some Sun workstations; one (the "tempo net") connects a variety

VAX is a trademark of Digital Equipment Corporation.

Section 12.3 The Ethernet 215

of machines in building 3; the third (the "backbone") runs for about a mile (with

repeaters inserted at strategic points, since a mile is more than a kilometer) con-

necting the other two subnets and who knows what else, hitting about fifty

machines along the way. Sola (a VAX in building 2) serves as the bridge between

the building 2 subnet and the backbone; Vivace links the backbone and the tempo

net. The current list of subnets can be found in /etc/networks on any UNIX
machine running Internet.

Returning to the operation of a single ether, one machine at a time may seize the

ether and transmit a packet with the address of some other machine. The packet

will be seen by every machine connected to the ether; it is up to each to check the

address in the packet and decide (in hardware) whether it is the intended recipient.

If the address is correct, the packet is received and relayed up to the appropriate

software (Chaosnet or Internet, depending on the type of the packet). Otherwise it

is ignored.

The ether can tolerate temporary breaks in the cable for about a minute — long

enough to splice a transceiver in or out of the ether. The effects of longer breaks

vary with the type of the machine, but can be disastrous for some — VAXen crash

when reconnected after a long break. If such a machine is to be spliced out of the

network while running, a pair of terminators should be attached to its transceiver.

The terminators present an impedance similar to that of an intact ether, so the

machine sees what appears to be a legitimate ether which just happens to be com-

pletely inactive. It can later be reattached with no difficulty.

Lisp machines are insensitive to ether disruptions. To physically remove a lispm

from the network it is safe and easy to disconnect the transceiver cable where it

plugs into the back of the machine. You may reconnect at any time. Actually, it's

rarely necessary to physically disconnect the machine. The equivalent may be done

in software by evaluating (neti : reset), which disables the ethernet interface,

(neti: enable) starts it up again. The CP command Reset Network does a

reset immediately followed by an enable.

12.4 Chaosnet

The previous section discussed the portion of Chaosnet which is shared with Inter-

net, i.e., the Ethernet hardware. Now a bit about the portions which are unique to

Chaosnet.

Chaosnet addresses are simple numbers, consisting of three or more octal digits.

The least significant eight bits indicate the machine's address on its own subnet, or

216 A QUICK LOOK AT "THE NETWORK" Chapter 12

single length of ethernet cable. The higher order bits indicate which subnet the

machine is on. The subnet codes used in Murray Hill are 1 for the backbone, 2 for

building 2, and 3 for the tempo net. So an octal address of 406 (Pancake's

address) means machine 06 on the backbone. Note that the numbering of

machines on a subnet has no relation to their physical order. A lisp machine's

opinion of what its own address is comes from the "Set Chaos-address" fep com-

mand. Every boot file should have one of these. The machine's opinion as to its

name is derived from its address: it believes whatever the namespace database says

is the mapping between names and addresses. So all that's required to make

Abelour (address 1002) believe that it's really Glengarioch (address 1006) is to

boot Abelour from a boot file that contains the line "Set Chaos-address 1006." No
physical alterations to the network connections are involved. Then Abelour will

receive and answer any packets intended for Glengarioch. There is no sense in

which Abelour will not, in fact, be Glengarioch. (To avoid having two Glen-

gariochs, this stunt should only be pulled when Glengarioch is down, or itself

booted as somebody else.) The file "fep0:> namespace.boot" on Abelour does

exactly this. We boot Abelour as Glengarioch if the real Glengarioch (our

namespace server) is down, so that Abelour will act as the namespace server until

Glengarioch is fixed.

The same method for address-swapping allows us to transform Laphroaig (1001)

into Ghost-of-Laphroaig (401), but since the new address implies being on a

different subnet, the switch additionally involves plugging the machine into a nor-

mally unused transceiver on the backbone. This trick allows us to transfer large

files (like world loads) to machines on the backbone without having to go through

the bridge. Executing a band transfer through a bridge takes at least twice as long

as going direct, as well as completely tying up the chaos server on the bridge for

the duration.

A UNIX machine's idea of who is at what address is based on the contents of its

host table. The Chaosnet host table is in the file

/usr/chaos/lib/libhosts/hosts. local. (The Internet host table is in /etc/hosts.)

From volume 9, 15.3: "The principal service provided by Chaosnet is a connection

between two user processes. This is a full-duplex reliable packet-transmission chan-

nel. The network undertakes never to garble, lose, duplicate, or resequence the

packets... When first establishing a connection, it is necessary for the two commun-
icating processes to contact each other... One process is designated the user, and the

other is designated the server. The server has some contact name [indicating the

type of service] to which it listens. The user process requests its local operating

system to connect it to the server, specifying the network address and contact name

of the server. The local operating system sends a message (a Request for

Section 12.4 Chaosnet 217

Connection, or RFC) to the remote operating system, which examines the contact

name and creates a connection to an existing listening process, or creates a new

server process and connects to it, or rejects the request."

The first option (an existing process) is used for simple requests that can be

answered quickly and easily, such as a request for the current time. The main

server process handles these itself. More elaborate requests, which require

extended attention and multiple interchange of packets, are handled by spawning a

new process for that purpose. On a UNIX chaos server, this means simply execut-

ing a file in the /usr/chaos/server directory. The name of the file will be exactly

the contact name that was used to request the connection. So, for example, if a lisp

machine wants to read a file from a UNIX machine, it would send an RFC packet

to the UNIX machine, with contact name "FILE." The chaos server on the UNIX
end, upon receiving the packet, would start up a process running the contents of the

file /usr/chaos/server/FILE. The chaos server would then route any further pack-

ets related to the file transfer to this new process. The effect is as though the FILE
process on the UNIX system and the process requesting the file transfer on the lisp

machine were communicating directly with each other.

From a lisp machine, the easiest way to establish a connection with a server process

on a remote host is with the function chaos:open-stream. The two required argu-

ments specify the host and the contact name. (Several optional keyword arguments

offer more detailed control of the type of connection.) If a connection is success-

fully established, chaos:open-stream returns an open stream object. You may then

use all the usual messages to read characters from and write characters to the

stream. Conversion to and from the packet level is completely transparent — all

the user sees is a character stream.

12.5 A Bit More on Serial Streams

The programmer interface to the serial i/o facility also works via lisp stream

objects. The function si:make-serial-stream returns an open stream to one of the

serial ports (which one may be specified with the :unit keyword argument). The

usual messages for reading and writing may again be used. Details are in chapters

21 and 22 of volume 5.

12.6 The Role of the Namespace

The namespace database coordinates interaction with the various network facilities.

It is always possible to directly manipulate the stream connections as outlined

218 A QUICK LOOK AT "THE NETWORK" Chapter 12

above, but this is necessary only if you are adding a new type of network service.

To invoke any existing service which has already been integrated into the

namespace, you may use the higher-level interface provided by the namespace.

This interface insulates the user from having to know any details about how the

connection is established, or even which network is used. The namespace takes care

of finding an appropriate path.

The simplest way to invoke a network service through the namespace is with the

function net:invoke-service-on-host. The first argument is the name of a defined ser-

vice, and the second is a host object. The local host will find the best path to the

target host, over all available network connections, and use it to invoke the named
service. So to obtain Sola's idea of what time it is, I could do (net: invoke-
service-on-host :time (si

:
parse-host 's)). (Seeing as how Sola's

namespace entry says that it provides the time service via the time-simple
protocol on the chaos-simple medium, we can tell this will end up being a

Chaosnet transaction, but we needn't be concerned with that level of detail.)

In cases where you need some service but don't care on which host it is invoked, the

function net:hnd-paths-to-service (called with an argument of the service name)

returns a list of service access paths, one for each host which provides the service.

The list is sorted by decreasing desirability. Having decided which path to use, you

may invoke the service by calling net:invoke-service-access-path on the chosen ser-

vice access path.

Another option is to invoke a service simultaneously on more than one host, with

service futures. You can then pick the first or best of several responses without a

long waiting period. The handiest way to manipulate service futures is with the

macro net:invoke-multipIe-services. This example prints every host's idea of the

current time, ignoring those which fail to respond:

(defun all-hosts-time ()

(net : invoke-multiple-services

((net :find-paths-to- service :time) (* 60 10) "Time")

(host time)

(sys : network-error nil) ; catch the error and do nothing

(: no-error

(format t "~&~A: ~
: [unknown- ; ~\TIME\-]

" host time time))))

Section 12.6 The Role of the Namespace 219

12.7 Troubleshooting

Typing Function-H [or evaluating (hostat)] will show which machines your

lispm is able to contact via Chaosnet. If you can't reach any remote hosts, some-

thing is probably wrong locally. If you can reach some and not others, something is

probably wrong out in the network somewhere. Here are a couple of hints:

Don't forget about netirreset and neti:enable. If a reset has been done, hostat will

fail everywhere.

The transceiver cable locks into place, at both the machine and transceiver ends,

with a tab which is slid sideways after the connector is pushed into the socket. A
fairly common cause of "network failure" is for the cable to fall off the back of the

machine because the tab wasn't used (or was defective).

Check the state of the process called "3600 Ethernet Receiver" in Peek. If it's not

"Ethernet Packet," something's wrong — maybe you ignored a Function-0-S

notification.

For more elaborate troubleshooting, try the "network" option in Peek.

APPENDIX: BASIC ZMACS COMMANDS

While it is true that there are a great many Zmacs commands, and trying to learn

them all would be a close to hopeless task, it is also true that the situation is really

much less difficult than it might at first appear. For one thing, you can edit files

quite effectively with a relatively small subset of the Zmacs commands. (This

should not be taken to imply that the remaining commands are superfluous; the

"quite effective" editing you can do without them is transformed into astonishingly

effective editing with them.) Another saving grace is that there is some pattern to

the pairing of keystrokes with editing functions. For instance, control characters

often act on single letters or lines; meta characters on words, sentences, or para-

graphs; and control-meta characters on lisp expressions. Thus c-F moves forward

one character, m-F moves forward one word, and c-m-F moves forward one lisp

expression. c-K means "kill" (delete) to the end of the line, m-K means kill to the

end of the sentence, and c-m-K means kill to the end of the current lisp expression.

So the amount of memorizing you have to do to start editing is really not very

great.

I can't overemphasize the utility of the Help facility in Zmacs. It can be a real

lifesaver, both when you don't know what commands there are to do something,

and when you've forgotten how to invoke a command you know about. So don't

limit yourself to the commands listed below. Consider the list a crutch, to help get

222 APPENDIX: BASIC ZMACS COMMANDS

you started, but try to leave it behind as soon as possible.

Movement Commands

C-F
c-B
C-N
c-P
C-A
C-E
mous e left

Move forward one character

Move backward one character

Move down one line ("next")

Move up one line ("previous")

Move to the beginning of the line

Move to the end of the line

Move to mouse position

m-F
m-B
m-A
m-E
m-[

m-]
m-<
m->

Move forward one word

Move backward one word

Move to the beginning of the sentence

Move to the end of the sentence

Move to the beginning of the paragraph

Move to the end of the paragraph

Move to the beginning of the buffer

Move to the end of the buffer

c-m-F
c-m-B
c-m-A, c-

c-m-E, c-

m-[

m-]

Move forward one lisp expression

Move backward one lisp expression

Move to the beginning of the current definition

Move to the end of the current definition

Deletion Commands

c-D Delete forward one character

Rubout Delete backward one character

Clear Input Delete to the beginning of the line

c-K Delete to the end of the line

m-D Delete forward one word

m-Rubout Delete backward one word

m-K Delete forward one sentence

c-m-K
c-m-Rubout

Delete forward one lisp expression

Delete backward one lisp expression

APPENDIX: BASIC ZMACS COMMANDS 223

C-Y

m-Y

Restore ("yank") text deleted with any of the above, except c-D

and Rubout

Immediately following a c-Y or another m-Y, replace the yanked

text with the previous element of the kill history

c-Space

c-W
m-W
mouse middle

mouse drag left

Region Commands

Set the mark at the current position, and turn on the

"region." Subsequent movement commands will define the

region to be the area between the mark and the new

position.

Delete the region, putting it on the kill history

Put the region on the kill history without deleting it

Mark (make into the region) the object the mouse is

pointing at

Mark the area dragged over (between button press and

button release)

File Commands

C-X C-F

c-

224 APPENDIX: BASIC ZMACS COMMANDS

c-sh-C

M-x Evaluate Buffer
M-x Compile Buffer

End, s-E

it's active, or the current definition if it's not

Compile the region or current definition into the Lisp

environment

Evaluate the entire buffer

Compile the entire buffer into the environment. This

has no effect on the file system. (Compare to M-x
Compile File.)

Murray Hill Standard Utilities only. Evaluate the

region or current definition and insert the result into

the buffer.

Miscellaneous

Suspend Enter the typeout window. (Resume returns.)

m- . Find the definition of a given function

c-X D Directory edit — shows a directory listing and enables manipulation

of the files in it

Help A Apropos — list all commands containing a given substring

Help C Describe the command associated with a given keystroke

Help D Describe a command specified by name

INDEX

* variable 52-53

*catch special form 64

*throw function 64

: activate method 48

: alias-for-selected-windows
method 87

:blinker-p init keyword 88

: bury method 49

: byte-size open option 126

: canonical-type method 133

:case method combination 180

: character blinker 186

: characters stream operation 121

: checker defresource option 163

: choose method 142-143

: clear- input stream operation 122

: clear-output stream operation

122

: clear-screen stream operation

123

: clear-window
method 76, 195

stream operation 123

: close stream operation 122

: compile make-system option 167

:compile-load defsystem clause

166

: component- systems defsystem

clause 167

: compute-all-handlers-once
method 40

rconfigurations init keyword 87

226 INDEX

: constructor defresource option

162

: creation-date stream operation

128

: deactivate method 48

rdeexpose method 48-49

: default-font init keyword 185

:default-init-plist defflavor

option 87-88

: describe method 31

: deselect method 48

rdevice method 133

: direction
open option 125

stream operation 121

: directory method 133

: do-components defsystem clause

167

: draw-char method 195

: draw-circle method 76

: draw- line method 36

: draw-lines method 36

: draw-point method 76

: draw-rectangle method 76

: draw-triangle method 76

: execute method 141-143

: expose method 48

: fasload defsystem clause 166

: finder defresource option 163

: finish stream operation 122

: force-output stream operation

122

: force-redisplay method 202

: free-list-size defresource

option 164

: get method 133

:get-handler-for method 31

: gettable-instance-variables
defflavor option 19

; host method 133

; if-exists open option 126

; included-flavors defflavor

option 23

: init method 84

; initable-instance-variables
defflavor option 20

; initial-copies defresource

option 163

; initializer defresource option

162

; inside-size method 76

litem method 90, 195

: item-list init keyword 185

ikill method 48

: length stream operation 128

: listen stream operation 121

: matcher defresource option 163

:menu blip 141-143

: method-combination defflavor

option 28

: module defsystem clause 166

: mouse-buttons method 142

: mouse-click,
essential-mouse's method for 30

method 29, 86, 89-90, 143

: mouse-moves method 90

: mouse-standard-blinker
method 186-187

:name method 133

: new-canonical -type method

133

: new-device method 133

: new-directory method 133

: new-name method 133

: new-pathname method 133

: new-raw-device method 133

: new-raw-directory method 133

: new-raw-name method 133

INDEX 227

: new-raw-type method 133

: new-type method 133

: new-version method 133

: no-error condition-case clause 177

rnoconfirm make-system option

168

: or method combination 29, 89

: override method combination 89

: package defsystem clause 167

: panes init keyword 87

: patchable defsystem clause 167

: pathname stream operation 128

: pathname-default defsystem

clause 166

:plist method 133

: primitive-item method 90,195

: print-only make-system option

168

: print- self method 31,140

: proceed method 178,180

:proceed-type-p method 180

:proceed-types method 180

: process init keyword 88

: properties method 133

: putprop method 133

: raw-device method 133

: raw-directory method 133

: raw-name method 133

: raw-type method 133

:read-cursorpos stream operation

122

: read-pointer stream operation

123

: remprop method 133

: report method 175

: required-init-keywords
deffiavor option 84

:reverse-video-p method 76

:rows init keyword 185

select method 48, 87

selectable-windows method 87

selected-pane init keyword 87

send-if-handles method 84

set-character method 186

set-cursorpos stream operation

123

set-pointer stream operation 123

set-reverse-video-p method

76

settable- instance-variables
deffiavor option 19

:
string-for-host method 133

:
string-for-printing method

133

: string- in stream operation 121

: string-out stream operation

120-121

: trans lated-pathname method

135

: truename stream operation 128

:tyi

method 76

stream operation 120, 126

: tyi -no-hang stream operation 1 22

: tyipeek stream operation 121

:tyo stream operation 120, 124, 126

: type method 133

:typeout-execute blip 88-89

: untyi stream operation 120,125

: version
make-system option 168

method 133

: which-operations
method 3

1

stream operation 120

: who- line-documentation-
string method 89

-[format directive 140

228 INDEX

~ { format directive 140

Abort key 7, 51

activation in the input editor 54

active processes 45

advising functions 51

after daemon 26, 84, 88-89

allocate-resource function 162,

164

allocation, resource 161

always loop keyword 70

and
loop keyword 70

special form 62

append loop keyword 69

apropos function 52

arrest-reasons instance variable

45

arresting processes 45

background window 124

base-flavor-first 29

base-flavor-last 29

beep function 73

before daemon 26, 84, 89

bit-save array 47

blinker

: character 186

mouse 184-186

blip

:menu 141-143

: typeout-execute 88-89

block special form 63

boot

cold 11

warm 1

1

Boot Fep command 1

1

bp 202

bridge 214, 216

brightness, display 12

buffer

i/o 85, 89

pointer 202

shared i/o 141

bugs, reporting 52

c-A Zmacs command 222

c-Abort 7

c-B
debugger command 51

Zmacs command 222

c-D Zmacs command 222

c-E
debugger command 52

Zmacs command 222

c-Escape input editor command 53

c-F Zmacs command 222

c-Help input editor command 53

c-K
input editor command 53

Zmacs command 222

c-M debugger command 52

c-m-[Zmacs command 222

c-m-] Zmacs command 222

c-m-A
debugger command 5

1

Zmacs command 222

c-m-Abort 7

c-m-B Zmacs command 222

c-m-E Zmacs command 222

c-m-F Zmacs command 222

c-m-K Zmacs command 222

c-m-L
debugger command 51

Zmacs command 223

c-m-R debugger command 52

c-m-Rubout Zmacs command 222

c-m-Suspend 7

c-m-Y
input editor command 53

Zmacs command 54

INDEX 229

C-N
debugger command 5

1

Zmacs command 222

c-P
debugger command 5

1

Zmacs command 222

c-R debugger command 52

c-sh-A
input editor command 54

Zmacs command 54

c-sh-C Zmacs command 223

c-sh-E Zmacs command 223

c-sh-M Zmacs command 71, 77

c-Space Zmacs command 223

c-Suspend 7

c-W
input editor command 53

Zmacs command 223

c-X
(Zmacs command 199

) Zmacs command 199

B Zmacs command 223

c-B Zmacs command 223

c-F Zmacs command 13, 223

c-S Zmacs command 13, 223

c-W Zmacs command 223

D Zmacs command 13, 224

E Zmacs command 199

c-Y
input editor command 53

Zmacs command 53, 222

canonical type 130

case in pathnames 131

catch special form 64, 76

catch-error macro 176

chaos : open- stream function 217

Chaosnet 211, 213-215

addresses 215

check-arg macro 176

check-arg-type macro 176

chosen-item instance variable 142

circular-list function 76

Clear Input
input editor command 53

Zmacs command 222

clear-resource function 165

clock function list 44

cold boot 1

1

cold-load stream 45, 50

collect loop keyword 69, 76

combined methods 23

command
Edit Namespace Object 9

extended 184, 188

Halt Machine 11

history 54

Login 9

menu 141, 143, 183

Reset Network 215

Show Documentation 8

Command Processor 8

Common Lisp 6

Compile

Buffer, M-x 223

File, M-x 223

component flavors 22, 155

comtab 183-184, 188

cond special form 61

cond-every macro 63

condition 173

simple 175

condition flavor 175

condition-bind macro 177,180

condition-bind-default macro

178

condition-case macro 174, 176

condition-case clause, : no-error
177

230 INDEX

conditional 61

conditions

proceeding 174-175, 177, 179

signaling and handling 173

Continue Fep command 10

continue-whopper function 27

control, flow of 61

Converse 6, 201

Copy File, M-x 127

copyf function 127

count loop keyword 69

current process 43

resetting the 46

daemon

after 26, 84, 88-89

before 26, 84, 89

dbg function 51, 59

dbg : arg function 51

dbg: loc function 51

deactivated windows 46-47

deallocate-resource function

162, 164

deal locate-whole -resource
function 165

deallocation, resource 161

debugger 5

1

command, c-B 51

command, c-E 52

command, c-M 52

command, c-m-A 51

command, c-m-L 51

command, c-m-R 52

command, c-N 51

command, c-P 51

command, c-R 52

debugging 50

deexposed windows 46

deexposed-typeout-action
instance variable 47

default

handler 178

handler for streams 120, 122, 124

pathnames 132

defconst special form 36

defflavor option

:default-init-plist 87-88

: gettable-instance-
variables 19

: included-f lavors 23

: initable-instance-
variables 20

: method-combination 28

:required-init-keywords 84

: settable-instance-
variables 19

defflavor special form 18

defmethod special form 18

defresource option

: checker 163

: constructor 162

: finder 163

:free-list-size 164

: initial-copies 163

: initializer 162

: matcher 163

defresource macro 162

defselect macro 76

defstruct

zweirbp 202

zwei:line 202

zwei: window 202

defsystem

clause, :compile-load 166

clause, ."component- systems
167

clause, : do-components 167

clause, :fasload 166

clause, : module 166

INDEX 231

clause, : package 167

clause, rpatchable 167

clause, : pathname-default
166

dependency 1 66

transformation 167

defsystem macro 165

defun-method macro 84

defvar
macro 84

special form 36

defwhopper macro 27

defwindow-resource macro 170

deletef function 127

dependency, defsystem 166

describe function 21

Describe Key Bindings, M-x 184

device pathname component 131

Dictionary, Hacker's 11, 31, 34, 54,

58, 71,91, 135, 143, 167, 178

directory 128

directory pathname component

131

Dired 13

disassemble function 52

dispatch macro 63

display brightness 12

Display Font, M-x 185

do
loop keyword 68, 70

special form 63-64, 66

Document Examiner 6

dolist macro 67, 76

dotimes macro 67

edit screen menu 36, 49, 90

Edit Namespace Object com-

mand 9

Edit

Callers, M-x 52

Combined Methods, M-x 52

Extended Command, M-x 184

Key, M-x 184

Methods, M-x 52

editor, Zmacs 6, 12, 53-54, 199, 221

else loop keyword 70

End
input editor command 54

Zmacs command 224

End key 71

error
flavor 175, 179

function 175

error-output variable 124

error-restart macro 179

error-restart-loop macro 179

errset macro 176

Escape input editor command 53

essential-mouse's method for

:mouse-click 30

ethernet 213-214

Evaluate

Buffer, M-x 223

Into Buffer, M-x 206

example

graph 83

moving icons 183

tree 139

exposed windows 47

extended command 184, 188

FEP 10

Fep command
Boot 11

Continue 10

Set Chaos-address 216

Start 11

ferror function 176

fibonacci numbers 74

file 125

232 INDEX

File System Maintenance 6

finally loop keyword 70, 77

finger 7

flashy scrolling 155

flavex: flavor flavor 40

flavor 1

7

condition 175

error 175, 179

f 1avex : f 1avor 40

fs:pathname 129

f s :unix-pathname 129

net: basic-host 130, 133

si : vanilla-flavor 30,84

sys: abort 179

tv: basic-mouse- sensitive-
items 88-90, 195

tv : bordered-constraint-
frame 141

tv : bordered-constraint-
frame-with-shared- io-
buffer 141

tv:dont-select-with-
mouse-mixin 87

tv:flashy-scrolling-mixin
155

tv: lisp-listener 17,85

tv: lisp-listener-pane 87

tv:pane-mixin 87

tv:pane-no-mouse-select-
mixin 87, 185

tv:process-mixin 88, 184

tv: sheet 47, 88

tv: stream-mixin 44

zwei: buffer 202

zwei : file-buffer 202

zwei : interval 202

zwei: interval-stream 202

zwei: node 202

zwei: top-level-node 202

zwei :window-with-comtab
184-185

Flavor Examiner 6, 33, 59

flavors

component 22, 155

mixing 22

flow of control 61

font-map instance variable 88

Font Editor 185

for loop keyword 68, 70

format directive

-[140

-{ 140

format function 140

frame 85

Front-End Processor 10

f s : change-file-properties
function 1 27

f s : complete-pathname function

128

fs:define-canonical-type func-

tion 132

fs:directory-list function 128

fs : file-properties function 127

f s : make- logical-pathname-
host function 134,171

f s : make-pathname function 1 32

fs:merge-pathnames function 132

fs:parse-pathname function 129

f s : pathname flavor 1 29

f s : set-logical-pathname-host
function 1 34

f s : unix-pathname flavor 1 29

function

throw 64

allocate-resource 162, 164

apropos 52

beep 73

chaos : open- stream 217

INDEX 233

circular-list 76

clear-resource 165

continue -whopper 27

copyf 127

dbg 51, 59

dbg:arg 51

dbg:loc 51

deallocate-resource 162,

164

deal locate-whole -resource
165

deletef 127

describe 21

disassemble 52

error 175

ferror 176

format 140

f s : change-file-properties
127

f s: complete-pathname 128

f s : def ine-canonical-type
132

fs:directory-list 128

f s :file-properties 127

f s : make-logical-pathname-
host 134, 171

f s :make-pathname 132

f s :merge-pathnames 132

f s
:
parse-pathname 129

f s : set-logical-pathname-
host 134

gensym 85

grind-top-level 71

hostat 219

intern 76

load 127

load-patches 168

login 9

macroexpand 71

make-instance 19, 84

make-system 165, 167-168

map-resource 165

mapcan 66, 76

mapcar 66, 69

mapcon 66, 76

maplist 66

mexp 71, 74

nconc 66

net : find-paths-to-service
218

net : invoke-service-
access-path 218

net : invoke-service-on-
host 218

netirenable 215, 219

neti:reset 215, 219

open 125, 201

probef 127

process-run-function 46,

143

process-wait 44, 47

read 205

readline 204

renamef 127

rplacd 76

send 19

si : examiner-compute-
magic-list 40

si:halt 11

si:login-to-sys-host 9

si rmake-serial-stream 217

si:parse-host 218

si : set-system-source-file
168

signal 175, 180

spec 51

stream-default-handler 124

string-append 76

234 INDEX

tv : add-to- system-menu

-

programs-column 188

tv:get-line-from-keyboard
90

tv: make-window 19, 48

tv: menu-choose 143

tv: mouse-set-blinker 186

tv : mouse-set-blinker-
definition 186

tv: select-or-create-
window-of-flavor 189

viewf 127

who-calls 52

zwei: command-store 201

zwei : completing-read-
from-mini-buffer 205

zwei : find-combined-
methods 40

zwei: interval-stream 202

zwei : interval-stream-
into-bp 206

zwei :make-command-alist
188

zwei : open-editor-stream
201

zwei: read-buffer-name 205

zwei : read-defaulted-
pathname 205

zwei : set-comtab 188,201

zwei : set-comtab-
indirection 188

zwei : typein- line

-

completing-read 205

zwei : typein-line-form-to-
eval 205

zwei :typein-line-multi-
line-read 205

zwei:typein-line-read 204

zwei :typein-line-readline
204

Function

Apropos, M-x 52

key 6, 45, 47-50; 59, 219

gensym function 85

go special form 68

graph example 83

grind-top-level function 71

grindef special form 52

Hacker's Dictionary 11, 31, 34, 54,

58, 71, 91, 135, 143, 167, 178

Halt Machine command 11

handler 173-174

default 178

restart 174, 178

Help Zmacs command 13, 221, 224

Help key 6, 184

history

command 54

input 53

kill 53

host

logical 133

physical 134

table 216

host pathname component 130

hostat 7, 219

hostat function 219

hyper-control-Function 1

1

i/o buffer 85, 89

shared 1 4

1

if macro 62

ignore variable 84

ignore-errors macro 176

inactive processes 45

inferiors instance variable 46

init keyword

:blinker-p 88

: configurations 87

: default-font 185

INDEX 235

: item-list 185

: panes 87

rprocess 88

:rows 185

: selected-pane 87

initial values for instance variables 20

initially loop keyword 70

input

editor 53

editor, activation in the 54

editor command, c-Escape 53

editor command, c-Help 53

editor command, c-K 53

editor command, c-m-Y 53

editor command, c-sh-A 54

editor command, c-W 53

editor command, c-Y 53

editor command, Clear Input
53

editor command, End 54

editor command, Escape 53

editor command, m-D 53

editor command, m-Rubout 53

editor command, m-Y 53

history 53

Inspector 6

Install Macro, M-x 200

instance 17

variable, arrest-reasons 45

variable, chosen- item 142

variable, deexposed-typeout-
action 47

variable, font-map 88

variable, inferiors 46

variable, item-list 142

variable, item-type-alist
88-89

variable, run-reasons 45

variable, superior 46

variable, tv: current-font 186

variable, tv: item-list 195

variable, x-offset 187

variable, y-offset 187

variables 1

7

variables, initial values for 20

intern function 76

Internet 211, 213-214, 216

interval 202

ip-tcp 213

item, menu 142, 185

item-list instance variable 142

item-type-alist instance variable

88-89

iteration 64

key

Abort 7, 51

End 71

Function 6, 45, 47-50, 59, 219

Help 6, 184

Local 12

Resume 7, 51

Select 6, 48-49, 87

Suspend 7, 184

keyboard 5

macro 1 99

keys, modifier 5

kill history 53

kwc-letf macro 39

let special form 69

let-globally special form 32

letf special form 39

line 202

lisp listener 8, 53

List

Callers, M-x 52

Combined Methods, M-x 37, 40,

52

Fonts, M-x 185

236 INDEX

Methods, M-x 52

Variables, M-x 184

load function 127

load-patches function 168

Local key 1

2

locks, window 50

logical

host 133

pathname 133

login function 9

Login command 9

Lookup Key Bindings, M-x 184

loop keyword

always 70

and 70

append 69

collect 69, 76

count 69

do 68, 70

else 70

finally 70, 77

for 68, 70

initially 70

maximize 69

minimize 69

nconc 69

never 70

repeat 68, 76

return 70

sum 69

thereis 70, 77

unless 70

until 70

when 70, 76

while 70

with 69

loop macro 64, 68

m- . Zmacs command 13, 71, 224

m-< Zmacs command 222

m-> Zmacs command 222

m- [Zmacs command 222

m-] Zmacs command 222

m-A Zmacs command 222

m-Abort 7

m-B Zmacs command 222

m-D
input editor command 53

Zmacs command 222

m-E Zmacs command 222

m-F Zmacs command 222

m-K Zmacs command 222

m-Rubout
input editor command 53

Zmacs command 222

m-sh-M Zmacs command 71, 77

m-Suspend 7, 51

m-W Zmacs command 223

M-x
Compile Buffer 223

Compile File 223

Copy File 127

Describe Key Bindings 184

Display Font 185

Edit Callers 52

Edit Combined Methods 52

Edit Extended Command 184

Edit Key 184

Edit Methods 52

Evaluate Buffer 223

Evaluate Into Buffer 206

Function Apropos 52

Install Macro 200

List Callers 52

List Combined Methods 37, 40, 52

List Fonts 185

List Methods 52

List Variables 184

Lookup Key Bindings 184

INDEX 237

Name Last Kbd Macro 200

Set Variable 184

Trace 50

m-Y
input editor command 53

Zmacs command 53-54, 222

macro 62, 71

catch-error 176

check-arg 176

check-arg-type 176

cond-every 63

condition-bind 177, 180

condition-bind-default 178

condition-case 174, 176

defresource 162

defselect 76

defsystem 165

defun-method 84

defvar 84

defwhopper 27

defwindow-resource 170

dispatch 63

dolist 67, 76

dotimes 67

error-restart 179

error-restart-loop 179

errset 176

if 62

ignore-errors 176

keyboard 199

kwc-letf 39

loop 64, 68

net : invoke-multiple-
services 218

select 62

selector 62

selectq 62, 76

selectq-every 63

setf 51

signal-proceed-case 180

tv: add-typeout- item-type
89, 195

typecase 63

unless 62

using-resource 162, 164

when 62

with-open-f ile 126, 201

zwei: defcom 188, 201

zwei : def ine-keyboard-
macro 200

zwei: mark 203

zwei: point 203

zwei :with-editor-stream
201

macroexpand function 71

make-instance function 19, 84

make-system function 165,167-168

make-system option

: compile 167

:noconfirm 168

: print-only 168

:version 168

map-resource function 165

mapcan function 66, 76

mapcar function 66, 69

mapcon function 66, 76

maplist function 66

mapping operators 64-65

margins, window 76

maximize loop keyword 69

medium 211-212

menu 142

command 141, 143, 183

edit screen 36, 49, 90

item 142, 185

system 12, 36, 45-46, 48, 50, 188

trace 50

merging pathnames 132

238 INDEX

method 1

7

: activate 48

: alias-for- selected-
windows 87

:bury 49

.•canonical-type 133

: choose 142-143

: clear-window 76, 195

: compute-all-handlers-
once 40

: deactivate 48

rdeexpose 48-49

rdescribe 31

rdeselect 48

.•device 133

: directory 133

: draw-char 195

: draw-circle 76

: draw-line 36

: draw-lines 36

: draw-point 76

: draw-rectangle 76

: draw-triangle 76

: execute 141-143

: expose 48

: force-redisplay 202

:get 133

:get-handler-for 31

:host 133

:init 84

: inside-size 76

:item 90, 195

:kill 48

: mouse-buttons 142

: mouse-click 29,86,89-90,

143

: mouse-moves 90

: mouse-standard-blinker
186-187

name 133

new-canonical-type 133

new-device 133

new-directory 133

new-name 133

new-pathname 133

new-raw-device 133

new-raw-directory 133

new-raw-name 133

new-raw-type 133

new-type 133

new-version 133

plist 133

primitive-item 90, 195

print-self 31, 140

proceed 178, 180

proceed-type-p 180

proceed-types 180

properties 133

putprop 133

raw-device 133

raw-directory 133

raw-name 133

raw-type 133

remprop 133

report 175

reverse-video-p 76

select 48, 87

selectable-windows 87

send-if-handles 84

set-character 186

set-reverse-video-p 76

string-for-host 133

string-for-printing 133

translated-pathname 135

tyi 76

type 133

version 133

which-operations 31

INDEX 239

:who-line-documentation-
string 89

combination, :case 180

combination, :or 29, 89

combination, : override 89

for : mouse -click, essential-

mouse's 30

methods

combined 23

primary 25

mexp function 71, 74

mini-buffer,

pop-up 183-184

reading from the 204

minimize loop keyword 69

mixing flavors 22

modifier keys 5

more processing 50

mouse

blinker 184-186

documentation line 89

process 29, 46, 58, 86, 88, 143,

187

mouse
drag left Zmacs command 223

left Zmacs command 222

middle Zmacs command 223

mouse-sensitive items 85, 88-89

moving icons example 183

multiple windows and processes 85

Murray Hill standard utilities 52, 59

name pathname component 1 3

1

Name Last Kbd Macro, M-x 200

namespace 9,211,214,216-217

nconc
function 66

loop keyword 69

net: basic-host flavor 130,133

net : find-paths-to-service
function 218

net : invoke-multiple-services
macro 218

net : invoke-service-access-
path function 218

net : invoke-service-on-host
function 218

neti tenable function 215,219

neti: reset function 215, 219

network 211

never loop keyword 70

nonlocal exits 64

Notifications window 6

open option

:byte-size 126

: direction 125

:if-exists 126

open function 125, 201

or special form 62

output hold 47

package 1

2

user 12

pane 85

pathname 129

component, device 131

component, directory 131

component, host 130

component, name 131

component, type 130

component, version 130

components 1 30

logical 133

physical 134

pathnames

case in 131

default 132

merging 132

Peek 6, 45-47, 49, 219

physical

host 134

240 INDEX

pathname 134

point 202

pop-up mini-buffer 183-184

primary methods 25

prime numbers 74

probef function 127

proceed types 180

proceeding conditions 174-175, 177,

179

process 43, 85

current 43

mouse 29, 46, 58, 86, 88, 143, 187

process-run-function function

46, 143

process-wait function 44, 47

processes

active 45

arresting 45

inactive 45

multiple windows and 85

resetting 45

un-arresting 45

processing, more 50

prog special form 63, 68

protocol 211-212

race condition 86

read function 205

reading from the mini-buffer 204

readline function 204

renamef function 127

repeat loop keyword 68, 76

reporting bugs 52

Reset Network command 215

resetting

processes 45

the current process 46

resource 1 6

1

allocation 161

deallocation 161

restart handler 174, 178

Resume key 7, 51

return
loop keyword 70

special form 64, 77

return-from special form 63

rplacd function 76

Rubout Zmacs command 222

run bars 12

run-reasons instance variable 45

s-E Zmacs command 224

scheduler 43

screen 46

scrolling, flashy 155

select macro 62

Select key 6, 48-49, 87

selected windows 47

selector macro 62

selectq macro 62, 76

selectq-every macro 63

self variable 19

send function 19

serial

lines 214,217

streams 217

serial-pseudonet 214

service 211-212, 218

access path 218

futures 218

Set Chaos-address Fep command

216

Set Variable, M-x 184

setf macro 51

shared i/o buffer 141

Show Documentation command 8

si : examiner-compute-magic-
list function 40

si :halt function 11

si : login-to-sys-host function 9

INDEX 241

si :make-serial-stream function

217

si: parse-host function 218

si : set-system-source-file
function 168

si : vanilla-flavor flavor 30, 84

signal function 175, 180

signal-proceed-case macro 180

signaling and handling conditions 173

simple condition 175

site directory 134, 168, 170

spec, function 51

special form

catch 64

and 62

block 63

catch 64, 76

cond 61

defconst 36

defflavor 18

defmethod 18

defvar 36

do 63-64, 66

go 68

grindef 52

let 69

let-globally 32

letf 39

or 62

prog 63, 68

return 64, 77

return-from 63

throw 64, 76

trace 50

untrace 50

standard utilities, Murray Hill 52, 59

standard- input variable 123

standard-output variable 123

Start Fep command 1

1

stream 119

cold-load 50

operation, : characters 121

operation, : clear-input 122

operation, : clear-output 122

operation, : clear-screen 123

operation, : clear-window 123

operation, : close 122

operation, : creation-date 128

operation, : direction 121

operation, : finish 122

operation, : force-output 122

operation, : length 128

operation, : listen 121

operation, : pathname 128

operation, :read-cursorpos
122

operation, : read-pointer 123

operation, : set-cursorpos 123

operation, : set-pointer 123

operation, : string-in 121

operation, : string-out 120-121

operation, : truename 128

operation, :tyi 120, 126

operation, :tyi-no-hang 122

operation, :tyipeek 121

operation, :tyo 120, 124, 126

operation, :untyi 120, 125

operation, :which-operations
120

synonym 1 24

stream-default-handler func-

tion 124

streams, default handler for 120, 122,

124

string-append function 76

subnet 214-216

sum loop keyword 69

superior instance variable 46

242 INDEX

Suspend Zmacs command 13, 224

Suspend key 7, 184

synonym stream 124

sys : abort flavor 179

system 165

menu 12, 36, 45-46, 48, 50, 188

terminal-io variable 123

Terminal window 6

terminator 215

thereis loop keyword 70, 77

throw special form 64, 76

trace menu 50

trace special form 50

Trace, M-x 50

tracing functions 50

transceiver 214

transferring text between windows 53

transformation, defsystem 167

tree example 139

tv : add-to-system-menu-
programs-column function 188

tv:add-typeout- item-type
macro 89, 195

tv: basic-mouse- sensitive-
items flavor 88-90, 195

tv : bordered-constraint-frame
flavor 1 4

1

tv : bordered-constraint-
frame-with- shared- io-
buf fer flavor 141

tv: current-font instance variable

186

tv:dont-select-with-mouse-
mixin flavor 87

tv:flashy-scrolling-mixin
flavor 155

tv:get-line-from-keyboard
function 90

tv: item- list instance variable 195

tv: lisp-listener flavor 17, 85

tv: lisp-listener-pane flavor 87

tv: main- screen variable 187

tv: make-window function 19, 48

tv: menu-choose function 143

tv: mouse-process variable 46

tv: mouse-set-blinker function

186

tv: mouse-set-blinker-
definition function 186

tv : pane-mixin flavor 87

tv:pane-no-mouse-select-
mixin flavor 87, 185

tv
:
previously-selected-
windows variable 47, 49

tv: process-mixin flavor 88,184

tv: select-or-create-window-
of- flavor function 189

tv: selected-window variable 48

tv: sheet flavor 47, 88

tv : stream-mixin flavor 44

type pathname component 1 30

typecase macro 63

typein line 204

typeout window 13,184

un-arresting processes 45

unless
loop keyword 70

macro 62

until loop keyword 70

untrace special form 50

user package 12

using-resource macro 162, 164

variable

* 52-53

error-output 124

ignore 84

self 19

standard- input 123

INDEX 243

standard-output 123

244 INDEX

command, m-> 222

command, ra-[222

command, m-] 222

command, m-A 222

command, m-B 222

command, m-D 222

command, m-E 222

command, m-F 222

command, m-K 222

command, m-Rubout 222

command, m-sh-M 71, 77

command, m-W 223

command, m-Y 53-54, 222

command, mouse drag left
223

command, mouse left 222

command, mouse middle 223

command, Rubout 222

command, s-E 224

command, Suspend 13, 224

editor 6, 12, 53-54, 199, 221

Zmail 6, 201

zwei : *interval* variable 202,

204

zwei : *numeric-arg* variable 188

zwei : *standard-comtab* variable

201

zwei : *window* variable 202, 204

zwei : *zmacs-comtab* variable

201

zwei : bp defstruct 202

zwei : buffer flavor 202

zwei : command- store function 201

zwei : completing-read-from-
mini-buf fer function 205

zwei :defcom macro 188,201

zwei : define-keyboard-macro
macro 200

zwei : file-buffer flavor 202

zwei : find-combined-methods
function 40

zwei: interval flavor 202

zwei : interval-stream
flavor 202

function 202

zwei : interval-stream-into-bp
function 206

zwei : line defstruct 202

zwei :make-command-alist func-

tion 188

zwei :mark macro 203

zwei mode flavor 202

zwei : open-editor-stream func-

tion 201

zwei : point macro 203

zwei : read-buffer-name function

205

zwei : read-defaulted-pathname
function 205

zwei : set-comtab function 188,

201

zwei : set-comtab-indirection
function 188

zwei: top-level-node flavor 202

zwei : type in- line

-

completing-read function 205

zwei : typein-line-form-to-
eval function 205

zwei : typein-line-multi-
line-read function 205

zwei : typein-line-read function

204

zwei : typein-line-readline
function 204

zwei : window defstruct 202

zwei :window-with-comtab flavor

184-185

zwei :with-editor-stream macro

201

Please send me a copy of the examples tape that accompanies Using the

Lisp Machine. Enclosed is my check for $40.00, plus applicable sales tax,*

made payable to Symbolics, Inc. This fee includes domestic postage and

handling. (Outside North America, add $10.00 for postage.)

Ship the tape to the following street address (no PO boxes, please):

(name)

(company)

(street)

(city) (state) (zip)

()

(phone)

Residents of the following states add appropriate sales tax: AZ, CA, CO. CT, FL, GA, IL. K.S. MA,

MN, NJ, NM, NY, OH, PA, TX, VA, WA.

LISP LORE: A GUIDE TO PROGRAMMING THE
LISP MACHINE is a course in programming a Lisp

machine. The book presents a readily understandable

introduction to several representative areas of interest,

including enough information to show how easy it is to

build useful programs on the Lisp machine. A graduated

series of exercises, with hints and solutions, is also

included in the text.

The book assumes some background in LISP and experi-

ence with some dialect of the language; however, no

experience with the Lisp machine itself is required.

Kluwer A cademic Publishers 0-89838-220-3

