
pict gsi Chet a 
H 4 
be Mig oe way 

nie 
f 

inane 

‘ Be 

ae tai his 
th nis hy 
Hire tte las 

At 7 Ant 
tr ia 

int A ip 
Ht Nn 

Ay ” i tt 
oe ae Gi ae 

Oita 

a i an Ait i i HK Ne 

abe bet alee 

ea Ne Phar ri i 

rene upsien My 

Ak f 

| at As ty 

\ " 

{it iif ea 

ia Pad i { ae hie 
; Wi a ue ‘Siesta es = 

Fs. 

Ea aneeee ae 

nei eee AR 
iit Ura Pate VA 

bitty 
ees 

os 

, 
i af a ; 

way hi rh nv Mia 

Vy tenia i) 

Aa iG ut Wea 

ney 
mt 

ee 
ray pee 

reo 
att eS 

sf 

| re hy 

ean tt ri a 

Wit dadh rel 

th eee Ass Le eee eee Uh thts set tag AB i ik ie 
| aie by hin Oh a SR uhN ME eae cin BLY. DAH Deas EMER aD oth ied 
eRe ae ue ee i i Piatt ot sel hate teeatomts 

ial 

ee 13 ie ae } ay Se ct " ie 

sh Pera 

s 

} i i $F . 
thd ht fA Ki beh pr ; 4 BEB 900) ’ se aie 

| rah Del ADA aL bie bn kD { F } ty Ss t Said 

PAHs a ert ri ‘ it iad Emad hy st oc ount in Nien ae ui a4 , on q 4 A“ ij vs Arie ie a 4 A Hal pea ek a ' aa Oe Daw cri 

we oy 
wert , iter Seek 

} wa ttt bey ara fy 444 
wer mt a 

ait ne nee 
Hi Ih at 

ie as 
WaLaHR 

mung Sieh RE 
Avs 

Dye a ye ‘ ) ¥ 
Ne pt ay i ater ‘ bes aman | \, ' C j an yee Medios + A ia # 

‘ Finish ait ae) yee IMAL Leet nest Fight itt aie ena ih Pane 
Ba ER tabi? Bie Ee ae a / AK , ie 

yrs i sh 

ay “f ee raed Ai) ih 

ki 

ini a4 it 
wie fh 

ail i At : i 

Dea sae tis 



554 

OR AORIOR ICRA ORISA ORICA IAIN 
S 
x) 
x 

MMaMMamBMmMamwmwmMamMBwwMwVaE 

CIDR RON ONIONIO RIO ONIO ONIN 

7; 

rs & 
(ay 

%Q ) : é 
@ <4] ey : : s0 g 8 OX 
a oS 2 
SMM Mr MBMBAMw« 

GOVERNMENT PRINTING OFFICH 11—S625 





‘ : 

Ye 

a
e
 



‘ + || 
* 7 [6S 7$2 ) 
: | 

nb THE dnt i 
) ¥ | 

LONDON, EDINBURGH, ann DUBLIN | 
i | 

, a 
PHILOSOPHICAL MAGAZINE { 

AND ae | 

JOURNAL OF SCIENCE. ( 

CONDUCTED BY 7 | 

pif OLIVER JOSEPH LODGE, D.Sc., LL.D., F.R.S. : 

_ SIR JOSEPH JOHN THOMSON, 0.M., M.A., Sc.D., LL.D., F.R.S. || 
: JOHN JOLY, M.A., D.Sc., F.B.S., F.G.S. | 
| GEORGE CAREY FOSTER, B.A., LL.D., F.R.S. i 

AND } 
WILLIAM FRANCIS, F.L.S. i 

| { 
} “ Nec aranearum sane textus ideo melior quia ex se fila gignunt, nec noster 

vilior quia ex alienis libamus ut apes.” Just. Les. Polit. lib.i. cap. 1. Not. 

VOL. XXX VI.—SIXTH SERIES. 

(e | bY eet |) 

LONDON: 

TAYLOR AND FRANCIS, RED LION COURY, FLEET STREET. 

q SOLD BY sIMPKIN, MARSHALL, HAMILTON, KENT, AND CO., LD. 
SMITH AND 8O0N, GLASGOW :— HODGES, FIGGIS, AND CO., DUBLIN;— 

AND VEUVE J. BOYVEAU, PARIS. 



— eee = 

x SSS eee 

““Meditationis est perscrutari occulta; contemplationis est admirari 
perspicua .... Admiratio generat questionem, questio investigationem, 

investigatio inventionem.”—Hugo de S. Victore. 

“Cur spirent venti, cur terra dehiscat, 
Cur mare turgescat, pelago cur tantus amaror, 

Cur caput obscura Phoebus ferrugine condat, 

Quid toties diros cogat flagrare cometas, 
Quid pariat nubes, veniant cur fulmina ccelo, 
Quo micet igne Iris, superos quis conciat orbes 
Tam vario motu.” 

J. B. Pinelli ad Mazonium. 

‘@ 
ALERE ; q FLAMMAM- 



CONTENTS OF VOL. XXXVI. 

(SIXTH SERIES). 

NUMBER CCXI.—JULY 1918. 

Prof. J. Joly on Scientific Signalling and Safety at Sea. 

VLRO Tah ORME UES eye ie AST, Sontip et ers A en ee 

Prof. Barton and Miss Browning on Variably-Coupled Vi- 

brations: III. Both Masses and Periods Unequal. (Plates 
1 =) Re ae oe COG GEA SUG ALON Gis Varn Mee Rea a 

Dr. G. Green on Ship- Waves, and on Waves in Deep Water 

due to the Motion of Submerged Bodies .............. 

Dr. J. T. Tate and Dr. P. D. Foote on Resonance and 

Jonization Potentials for Electrons in Metallic Vapours .. 

Mr. Megh Nad Shaha on the Dynamics of the Electron .... 

Dr. B. van der Pol, Jr., on the Value of the Conductivity 

of Sea-water for Currents of Frequencies as used in Wireless 
GREW E DUE OO AREING IRIS: hc Grr) Oh ae ae mr a PL 

Dr. L. Silberstein on General Relativity without the Equi- 

BREMEN AOU ICCIS Smee iets ate ate oul aus gos tuleiwe Sy os 

Mr. H. A. Webb and Dr. J. R. Airey on the Practical Im- 

portance of the Confluent Hypergeometric Function. 

PE ATTEN 2 ER AS AR a 

Page 

1 

36 

88 

94 



lv CONTENTS OF VOL. XXXVI.—-SIXTH SERIES. 

Page 
Notices respecting New Books :— 

J. Duncan and 8. G. Starling’s A Text Book of 

PHYSICS oc. oR a oy 142 

J.W. French’s translation of Steinheil and Voit’s Applied 
Optics: The Computation of Optical Systems ...... 142 

Intelligence and Miscellaneous Articles :— 

Angle Trisection, byslg i iempe. je. oye 143 

NUMBER CCXII.—AUGUST. 

Prof. E. Taylor Jones on the Potential generated in a High- 

tension Magneto. (Plate Vil.) ..... 2.7 eee ae 145 

Prof. Barton and Miss Browning on Forced Vibrations Ex- 

perimentally Hlustrated. (Plates VIII. & 1X.) ........ GS) 
Dr. Harold Jeffreys on Problems of Denudation .......... 179 

Mr. R. Hargreaves on a Diffraction Problem, and an Asym- 

ptotie Theorem jmBessel’s Series... ... .¢ 3) see 191 

Messrs. M. N. Shaha and 8. N. Basu on the Influence of the 
Finite Volume of Molecules on the Equation of State .... 199 

Dr. Harold Jeffreys on the Secular Perturbations of the Inner 

Planets ae as Meals cn ose eos t wares kr 203 

Prof. A. D. Fokker on Relativity and Electrodynamics .... 205 

Proceedings of the Geological Society :— 

The President's Anniversary Address... .. |.) .eeemee 206 

Prof. W. M. Davis en the Geological Aspects ef the 

Coral-Reet Problem”... . 086 ee 207 

NUMBER CCXIIT.—SEPTEMBER. 

Mr. G. A. Hemsalech: A Comparative Study of the Flame 

and Kurnace Spectra or trom) (Plate Xe eee 209 

Lord Rayleigh on the Theory of the Double Resonator .... 231 
Dr. J. R. Airey on the Addition Theorem of the Bessel 

Functions of Zero and Unit Orders ......... 5A oe ee 

_— 



CONTENTS OF VOL. XXXVI.—-SIXTH SERIES. Vv 

Prof. G. A. Schott on Bohr’s Hypothesis of Stationary States 
of Motion and the Radiation from an accelerated Electron. 2438 

Prof. A. Anderson on Kirchhoff’s Formulation of the Prin- 

Peep, EA iin mete eyes = sino! wit )e Wd LG as ov aleuaiesns witha’ t 261 

Dr. M. Wolfke on a New Secondary Radiation of Positive 

Si es os ss fa oe ede eb esldadyy os 270 

Prof. A. Anderson on the Coefficient of Potential of Two 

Memmi SOneres 8 ue) Teles ialae  uk! ojerd 271 

Major R. W. Wood on the Scattering of Light by Air 
hl FL SSL et aii SO A ALE ALANIS Rca A SR EN er 272 

Mr. W. G. Bickley on some Two-Dimensional Potential 

Problems connected with the Circular Arc. IJ........... 273 

Proceedings of the Geological Society :— 

Mr. J. F. N. Green on the Igneous Rocks of the Lake 

JUSTE ET A yell 2 UR aa RO UNAS ra AMEN a a ena ee 279 

NUMBER CCXIV.—OCTOBER. 

Mr. G. A. Hemsalech on the Origin of the Line Spectrum 

emitted by Iron Vapour in an Electric Tube Resistance 

Furnace at ‘Temperatures above 2500° C. ....... Ci eU tie” cl | 

Dr. J. Prescott on the Buckling of Deep Beams .......... 297 

Lord Rayleigh: A proposed Hydraulic Experiment........ 315 

Mr. R. Hargreaves ona Diffraction Problem. Supplementary 
DE, CORB Se SRI AR oa Si 317 

The Hon. R. J. Strutt on the Scattering of Light by Air 
2) SOIC RIG. . - ZaREEURS 1 RIES SRE Se Me nn eae a 320 

Prof. D. N. Mallik on Elastic Solids under Body Forces..... 321 
Dr. A. W. Stewart on Atomic Structure from the Physico- 

iemical Stand polymer ss. Oe a at 326 
Mr. H. Bell on Atomic Number and Frequency Differences 
MEIC CURA OEINCS emu loaf. Nakiatl oo vb Ne 337 

Prof. R. A. Sampson on the Genesis of the Law of Error .. 347 
Dr. J. R. Ashworth on the Caleulation of Maenetic and 

PICCPRICNOADUEALION VaMTeS hy oe ee oe ool 

i = 

Sr 



vi CONTENTS OF VOL. XXXVI.—SIXTH SERIES. 

Page 

Notices respecting New Books :— 

Dr. L. Silberstein’s Elements of the Electromagnetic 

Theory of Light 2. cee: .... oS 361 

Dr. Sydney Young’s Stoichiometry..........4 eae 361 
Dr. W. H. Bragg and Mr. W. L. Brage’s X Rays and 

Crystal Structure toes ee: ao ial ee 362 
Proceedings of the Geological Society :-— 

Dr. W. F. Smeeth on the Geology of Southern India .. 362 

NUMBER CCXV.—NOVEMBER. 

Lord Rayleigh on the Dispersal of Light by a Dielectric 

‘Cylinder. so 2) Oe o's sles 365 

Prof. G. N. Antonoff on Interfacial Tension and Complex 

Molecules... y2 Pee a 377 
Mr. 8. Ratner on some Properties of the Active Deposit of 

Radium: 2 20006520 eee es. rr 397 

Mr. T. Smith on the Correction of Telescopic Objectives.... 405 

Dr. L. Silberstein on the Electron Theory of Metallic Con- 

ductors applied to Electrostatic Distribution Problems.... 413 

Mr. F. J. W. Whipple on Diffraction of Plane Waves by a 

Screen bounded by a Straight Hdge ..........7 2. eee 

Notices respecting New Books :— | 

Prof. H. C. Plummer’s An Introductory Treatise on 

Dynamical Astronomy ©... .... 0...) 3 425 

Proceedings of the Geological Society :— 

Dr. A. H. Cox on the Relationship between Geological 
Structure and Magnetic Disturbance .............. 426 

NUMBER CCXVIL—DECEMBER. 

Lord Rayleigh on the Light emitted from a Random Distri- 

Gutionof Luminous Sonrees,. 2 24. .. ae 429 

Prof. J. C. McLennan and J. F. T. Young on the Ultra- 

violet Spectra of Magnesium and Selenium. (Plates XI. 

a0, LL) DE Sr APS ,. 450 



CONTENTS OF VOL. XXXVI.—SIXTH SERIES. vil 

Prof. J. C. McLennan and H. J. C. Ireton on Fundamental 
Frequencies in the Spectra of Various Elements. (Plates | | 

| mee: Vis ere ele a's hn ola. dee wos wove b/aseeel wie 461 

Dr. F. A. Lindemann on a Geometrical Construction for ) 

pechryvimesammonrce OF a Circle 0) lc. lee sek ce ee 472 | 

Prof. Ganesh Prasad on a Peculiarity of the Normal Compo- | 

nent of the Attraction due to certain Surface Distributions. 475 

Mr. L. Southerns on the Double Suspension Mirror ...... ae// J) | 

Notices respecting New Books :— | 

Dr. L. Silberstein’s A Simplified Method of Tracing Rays | 
Rieu any Opticalisystem | )j2 ieee. <i). Rees 486 J 

Dr. H. Bateman’s Differential Equations ............ 487 i 

Dr. F. J. Moore’s A History of Chemistry .......... 487 / 

Proceedings of the Geological Society :— d 
Dr. BR. L. Sherlock on the Geology and Genesis of the | 

Mromiv byrives: Deposit). 2.60060). i ey aire wes ...- 488 Hi 

eM icy |. A EN ee a a at oho A 489 



PLATES. 

I. Illustrative of Prof. J. Joly’s Paper on Scientific Signalling and 
Safety at Sea. 

If.-V. Illustrative of Prof. Barton and Miss Browning’s Paper on 
Variably-Coupled Vibrations: Ill. Both Masses and Periods 
Unequal. 

VI. Illustrative of Mr. H. A. Webb and Dr. J. R. Airey’s Paper on 
the Practical Importance of the Confluent Hypergeometric 
Function. 

VII. Illustrative of Prof. E. Taylor Jones’s Paper on the Potential 
generated in a High-tension Magneto. 

VILE. & IX. Illustrative of Prof. Barton and Miss Browning’s Paper on 
Forced Vibrations Experimentally Illustrated. 

X. Illustrative of Mr. G. A. Hemsalech’s Paper on a Comparative 
Study of the Flame and Furnace Spectra of Iron. 

XI. & XII. Illustrative of Prof. McLennan and Mr. Young’s Paper on 
i the Ultraviolet Spectra of Magnesium and Selenium. 
i XIII.-XV. Illustrative of Prof. McLennan and Mr. Iveton’s Paper on 
1 Fundamental Frequencies in the Spectra of Various Elements. 



LONDON; EDINBURGH, ann DUBLIN 

PHILOSOPHICAL MAGAZINE 

AND 

| 

| 

JOURNAL OF SCIENCE. i 

[SIXTH SERIES.] | SSN. | 
Oe ie = Se Oa: a XN | 

Sat a aula 4 \\ iF 
IBN OLS Pe Bi IAB a 

XS ie, | i ; { 8 

I. Scientijie Signalling and Safety at Sea. 
By Prof. Joun Jouy, JLA., D.Se., FRS., GS 

| 

(Plate I.] | " 

I. APPROACHING THE COAST. 

a HE most common-place and often one of the most urgent 
of the problems which confront the sailor is the deter- | 

mination of his position upon near approach to the coast. | 
We may, indeed, say that the determination of latitude and | 
longitude at any time is solely in preparation for that stage 
of the voyage when the ship draws near the land. The | 
special difficulties sometimes attending the solution of this | 
problem are known only to those who have endeavoured to | 
make a landfall or pick up a lightship in wild or thick a 
weather or in the calm obscurity of a fog. | 

In our Admiralty Sailing Directions or Pilots we read that | 
there is no help for the sailor ina fog save unreliable fog- 
signals and the use of the lead. The whole passage as 
ordinarily given is intimately connected with our subject | 
and highly instructive. “Sound is conveyed in a very 
capricious way through the atmosphere. Apart from wind, 
large areas of silence have been found in different directions 
and at different distances from the fog-signal station, 
in some instances even when in close proximity to it. }) 

= Communicated by the Author. Being the Tyndall Lectures | | 
delivered at the Royal Institution, April 1918. | 

Phil. Mag. 8.6. Vol. 36. No. 211. July 1918. B il 
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““The Mariner should not assume— 

. That because he fails to hear the sound he is out of 
hearing distance. 

6. That, because he hears a fog-signal faintly, he is at a 
great distance from it. 

That because he hears the sound plainly he is near it. 
. That, because he does not hear it, even when in close 

proximity, the fog-signal has ceased sounding. 
e. That the distance from and the intensity of the sound 

on any one occasion, are a guide to him for any future 
occasion. 

g 

RS 

Taken together, these facts should induce the utmost caution 
in closing the land in fogs. The lead is generally the only 
safe guide.” 

It would be, of course, entirely wrong to conclude that 
such drastic warnings are intended to imply the general 
worthlessness of aerial sound signals. It is probable that 
the disuse of such signals would not find favour. Our 
present purpose is rather to consider additional aids to 
navigation whereby the sailor escapes the special dangers 
arising from the failure of aerial fog-signals, and is supplied 
with other signals at once more reliable, heard at greater 
distances, and giving him information beyond the power of 
aerial fog-signals to convey. Such modern methods of 
signalling are based on recent advances in science. 
We shall consider first what may be called “synchronous 

signalling,” that is the use of signals propagated in different 
media but timed so as to start at the same instant. 

The principles of synchronous signalling have for lone 
formed a part of familiar household science. When timid 
people see the flash of lightning and hear the crash of thunder 
they feel reassured when they perceive an appreciable 
interval separating the one phenomenon from the other. 
On the other hand, when both occur together they infer, and 
rightly so, that there is more danger. And most people are 
aware of the principle underlying this inference. If the 
seat of the electric discharge, the flash itself, in fact, is 
remote, the sound originated ‘by it, 7.e. the thunder, takes an 
appreciable time to reach the ear. Travelling nearly 1100 
feet in a second, this time interval may amount to several 
seconds. On the other hand, the velocity of propagation of 
light is so enormous that we may consider that we see the 
flash at the very instant of its occurrence however remote it: 
may be placed. Hence if one second intervenes between 
the moment of seeing the flicker of the lightning and hearing 
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the thunder, the scene of the discharge must be about 1100 
feet distant. If two seconds elapse the distance is 2200 
feet, andsoon. The whole theory of synchronous signalling 
is involved in this time-honoured chapter of domestic science. 

For suppose a gun to be fired from a lightship guarding 
some peril of the coast, and simultaneously with the explosion 
a light be flashed from the lantern of the lightship ; a vessel 
afar off sees first the flash—at the very instant of its 
occurrence—and later she receives the scund of the gun. 
For every second of interval between the seeing of the flash 
and hearing of the gun about 1100 feet may be allowed. 
If the interval was 34 seconds then the ship is 1100 x 33. = 
3850 feet distant from the lightship. But this is just the 
information which the mariner approaching at night values 
above all other and which is most conducive to his safety. 
It gives him the means of determining not only his distance 
from the danger guarded by the lightship but also it gives 
him his actual position. 

On the existing system of coast signals the mariner is 
given the light and the sound in no way co-ordinated one 
with another. Hach of these signals, therefore, is aimed 
at accomplishing the same thing, i.e. telling the sailor the 
direction in which the danger lies. They give him, also, 
some idea of his distance as being within the limits of 
visibility or audibility of the one or other of the signals. 
But the inference of distance is so affected by weather con- 
ditions as to be uncertain and even deceptive in character. 
Tt is possible to hear the gun of the lightship and to think 
it sometimes close by and again far off, and for the direction 
of the sound to remain quite uncertain. The bearing of the 
light is indeed certain when it is visible. Our coast signals, 
as at present ordered, therefore, give the mariner at best the 
bearing of the danger and but a rough and uncertain in- 
dication of distance. But the synchronized signals we have 
described give him not only the bearing but a determination 
of distance sufficiently accurate to enable him to fix his 
position. 

In order to understand this clearly let (PI. I. fig. 1) mark 
the position of the lighthouse. The circle struck round it is 
to the radius d, which is the distance as determined by the 
synchronous signal. The ship must be located somewhere 
on this circle. If now the bearing of / from the ship is 
S.W., the ship is at x. It cannot be anywhere else. And 
evidently the bearing of the light and the distance must, 
similarly, in every case give the sailor his position. 

There are objections, as we have seen, to the use of sound 
B2 
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signals propagated through the atmosphere. They are 
difficult to pick up in stormy weather ; more especially when 
the wind is blowing from the ship ‘towards the source of 
sound. The sound appears to be weakened by these 
conditions, and if the wind is making much noise on the 
ship it may not be heard at a sufficient distance. It has to 
be listened for in the open. A more serious objection is the 
strange and, fortunately, not very common phenomenon of 
silent areas as referred to in the Admir alty Sailing Directions 
quoted above. A ship may be well within the range of 
audition ; the weather may be calm, even windless, and the 
sound may be mute over certain areas. The phenomenon is 
a remarkable one, and a full explanation cannot be said to 
exist. It has been investigated by Tyndall and by Lord 
Rayleigh. The nature of the sound seems without influence. 
Even the very beautiful elliptic trumpet of Lord Rayleigh, 
whereby the sound is caused to spread laterally and its 
vertical dissipation prevented, cannot counteract the evil 
when the necessary conditions prevail. There appears to be 
-suvh a deviation of the sound as causes it to rise and arch 

over certain areas. It may be heard ten miles from the 
source and be entirely mute close to it. Or, again, when 
approaching the source we may find more than one silent 
area as if the sound waves followed a sinuous path, rising 
and again sinking to the surface of the sea. In such cases 
the value of the synchronization may be lessened in another 
way. The sound which is heard outside a mute area will 
not have travelled directiv from its source. The question 
is: how much has its journey been lengthened ? Probably 
the increase of distance is not much. Nevertheless there 
may be appreciable error here. Again, the use of light- 
flash has, of course, the drawback of being invisible in fog 
or thick weather. Hence only under certain conditions 
and at certain times is the combination of synchronized 
light and sound signals of value. 
Notwithstanding these limitations such a system would 

undoubtedly prove very useful. To condemn it in advance 
is as senseless as to condemn all our lighthouses and fog-signal 
stations because conditions arise when they are useless. And 
it should be considered by all responsible authorities if, for 
the general use of small craft—fishing boats, small coasters, 
and the like—a system of buoyage based on light-flash and 
bell-stroke would not be valuable’) We may profitably 
consider here, before going further, how such a “system may 
be worked so as to meet the requirements of untrained 
observers. 
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Automatic bell-buoys are common around our coasts at the 
present time ; and buoys which show an occulting light are 

also common. Very often both functions are performed by 
the one buoy. ‘The bell-stroke is operated by energy derived 
from the motion of the waves. There is, even under 
conditions of apparent calm, considerable energy available 
from this source. It is not necessary for the bell to be 
struck at regular intervals, but it is of importance that the 
blow upon the bell ; should always be given with the same 
force, so that the sound emitted should be of uniform 
loudness. We may suppose, then, that the up and down 
movements of the buoy, however gentle and slow, are 
resisted by a horizontal vane immer sed in the water beneath. 
This vane, as it oscillates respecting the buoy with the rise 
and fall of the latter, compresses, by means of a ratchet, a 
spring which when stressed to a certain degree is released 
and its stored energy expended in actuating the hammer. 
As we shall see later very similar mechanism is in frequent 
and successful use. We have, then, a bell-stroke in air, at 
intervals, and made with a pean constant force. It is 
matter of observation that even in calm weather three or 
more strokes will be given per minute. We would require, 
in fact, a certain contr rolling mechanism limiting the number 
of strokes to, say, 3 per minute. 

I assume now that a light-flashing system is also installed 
apon this buoy similar to many of the blinking or occulting 
hehts marking sand-bank or other danger close to the shore. 
A connexion between the mechanism actuating the hammer 
and that causing the occultation of the light is arranged, of 
such a nature that simultaneously with the stroke of tle bell 
there is a sudden flare-up of the light, or sudden luminous 
flash, followed by a succession of ” flashes spaced at short 
r egulated intervals. 
‘We-can so order the slonals that the sailor making 

harbour requires no stop- -watch to measure the lag of the 
sound upon the light signal. The light flashes, repeated at 
regular intervals, themselves afford the measure of the lag of 
the sound waves. For suppose 20 successive light flashes 
spaced at such an interval of time as the sound takes to travel 
one-tenth of a nautical mile—that is one cable. [lashes so 
timed are easily counted, this interval (0'°53) being very 
little over one-half second. Then if the first flash is emitted 
0°53 second later than the instant of the first bell-stroke, 
when the first flash reaches the ship the sound has already 
travelled one cable, and if the sailor is at the distance of 
one cable he hears the stroke of the bell at the instant at 
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which le sees the first light-flash. If the sound comes to 
him along with the 2nd flash he must be 2 cables distant, 
and if with the 10th flash he is 10 cables from the 
buoy. Thus he has only to count up the flashes till he hears. 
the bell, and the result is the number of cables which 
separate him from the buoy. 

The value of this buoy to small craft is more especially 
evident when we remember that such craft are to a great 
extent debarred from the use of wireless and submarine 
signals. Expert knowledge denied to the humble skipper is 
required for the care and use of the for mer; and the small 
draught reduces seriously the efficiency of the latter. 
We can picture now the working of this simple and 

inexpensive substitute for the lightship on dark and wild 
nights. When the sailor picks up the light he is, maybe, 
some three or four miles away. It may be of serious import- 
ance to determine his distance: either for laying his course 
along the coast or the making of harbour. He sees the 
distant flash and he knows it is safe to stand in till he hears 
the bell. Presently he picks this up. He now waits for the 
next group of flashes and he counts them as they come in :— 
one, two, three... . till he hears the clang of the bell. It 
may come with the ‘15th flash. If so he knows he is 15 
cables or 15 mile distant. Nothing can be simpler. As 
mere indicator of direction the light: and-bell buoys of our 
coasts possess nothing like the value of this synchronized 
light-and-bell buoy. “The first cost would be small and the 
cost of upkeep, compared with that of a lightship, trifling. 

Modern advance has given us signals of other kinds which 
—as all know—have already afforded invaluable help to the 
sailor. Wireless is a sort of light signal against which fog 
and snow and thick weather are powerless. Its velocity of 
propagation is practically instantaneous. Submarine sig- 
nalling utilizes the propagation of sound through water, and 
this may be regarded as furnishing a sound signal which 
also is unaffected by weather conditions. The sound of a 
bell-stroke beneath the water travels at about 4800 feet 
(1463 metres) per second. Hence the submarine bell- 
stroke lags behind the wireless “dot” by 1:2 seconds for 
each nautical mile traversed, if both signals are started 
together. If an air-sound and a water-sound be started 
synchronously from the same point, the lag of the atmospheric 
sound on the submarine is 4°3 seconds for each nautical mile 
traversed. 

For the benefit of those unacquainted with recent advances 
in this branch of applied science a word may be said here 
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about the advent of submarine signalling. The idea is really 
an old one. It has long been known that sound travels 
under water with remarkably little loss of clearness and 
intensity. In 1826 Collodon and Sturm carried out their 
well-known experiment on the Lake of Geneva. The object 
of this experiment was to ascertain the velocity of sound in 
water. A submerged bell was used. The hammer which 
struck the bell was so connected with a trigger above the 
water that a charge of gunpowder was ignited at the instant 
of the striking of the bell. An observer in a boat at a 
certain measured distance listened at a hearing trumpet 
immersed in the lake. He heard the sound of the bell as 
propagated through the water and saw the flash of the 
explosion as propagated through the ether. Assuming the 
velocity of the latter to be comparatively infinite, the interval 
between the seeing of the flash and the hearing of the bell 
affords the velocity of sound in water. Obviously we can 
reverse the objective of this experiment. Knowing the 
velocity of sound in water and measuring the interval of 
time elapsing between the flash and the sound, we can 
determine the distance over which the latter has travelled. 

The fact of the easy propagation of sound through water 
is an old discovery of the diver. The perfect audibility is 
even startling. It is said that a lost watch, which being 
watertight continued to go, was recovered by a diver tracing 
the tick of the watch to its source ™*. 

Many years ago I experimented on the audibility of ex- 
plosive sound signals beneath water. The object in view 
was to test a method of determining the depth beneath a ship 
travelling at full speed, by the dropping of a sinker which 
would detonate a small charge of explosive on contact with 
the bottom. The time interval between the moment of 
releasing the sinker and hearing the explosion, knowing the 
rate of descent of the sinker, gives the depth with sufficient 
aceuracy. In order to test the distance to which the 

* We may note parenthetically the curious fact that marine animals 
do not seem to avail themselves of this property of the medium in which 
they live to the extent we might have expected. The organism appears 
to be ever ready to avail itself of every advantage which the nature of 
the medium offers it. In this case evidence that it does so seems. 
wanting. ‘True it may develop listening orgaus but, whether it seeks 
to preserve the secrecy which is the chief protection of the submarine, 
or whether its silence benefits it in some other way, the fact remains 
that the sounds emitted by rattlesnake or cricket do not appear to be 
emulated by fish or crustacean. Our sensitive microphones must have 
discovered the existence of any such devices. The matter deserves. 
further investigation. 
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sound of the explosion would be propagated, small metal 
cartridges containing about half an ounce of gunpowder 
were exploded at the bottom off the coast of Dublin. The 
explosion was heard with astonishing distinctness at least 
a mile away in boats unprovided with any form of sound- 
recelving apparatus. The sound was perceived in an open 
boat as an apparent blow or percussion against the bottom 
of the boat.* 

The apparatus both for sending out and receiving submarine 
signals has been developed to a high pitch of reliability, 
largely due to American initiative and to the scientific 
methods of the Submarine Signal Company. As may be 
imagined, a long period of suggestions, initial experiments, 
and abortive patents preceded the existing apparatus. The 
submarine bell has taken its place as a standard means of 
sound-production, although invention in other directions has 
produced wonderful results as we shall see. Repeated trials 
of various types of bell have resulted in a pattern weighing 
220 lb., made of bronze, and with a period of 1215 
vibrations in water. This bell is now doing duty in every 
part of the world: on lightships ; bell buoys ; on the bottom 
of the sea ; at the pier-head or on ships. 

The striking mechanism is contained in a cylindrical bronze 
ease attached above the bell (Pl. I. fig. 2). The striking is 
generally operated pneumatically. A twin rubber-hose pipe 
connects the bell, which is suspended by a chain at a depth 
of about 18 feet, with a reservoir of compressed air on the 
lightship, or shore station. This reservoir is kept pumped full. 
of compressed air by means of a small oil or steam engine. 
The mechanism for operating the bell-stroke is simple. 
An air-driven code regulating valve forms part of the over- 
water plant and determines the frequency and character of 
the submarine signal. Some 30 or 35 strokes may be struck 
per minute. In 1906 the United States Government tested 
five of these bells for 51 days; the ringing being continuous, 
six seconds between the blows. Their introduction into 
England was slower than in the States. The British 
Admiralty tested the system later that same year and 
reported as fellows: “ . . The submarine bell increases 
the range at which the fog signal can be heard by a vessel, 
until it approximates to the range of a light-vessel’s light in 
clear weather, and moreover its bearing can be determined 

* A patent was obtained at the time (1890) for this form of sounding 
machine. Failing any encouragement from the Admiralty, it was 
abandoned. Some years later the method was independently re-patented 
by an officer in H.M. Navy. 
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with guite sufficient accuracy for safe navigation in fog, 
from distances far beyond the range of aerial jog signals if 
the vessel is equipped with receivers. If the light-vessels 
round the coast were fitted with submarine bells it would be 
possible for ships fitted with receiving apparatus to navigate 
in fog with almost as great certainty as in clear weather.” 
In spite of this report the multiplication of submarine bell 
stations was slow in ingland. The first was installed off the 
Mersey in December, 1906. The Irish Lights Commissioners 
placed a submarine bell on the Kish Bank Lightship in 1909. 

The submarine bell is in some cases operated electrically ; 
more especially for use off tie coast on the floor of the sea. 
A power station on the coast supplies the requisite current. 
The bell is suspended from the apex of a steel tripod about 
25 feet high and weighing 3 tons, a cable being taken 
ashore. The depth varies down to 25 fathoms. Such a bell 
is located off the Stack Lighthouse, Holyhead. The fre- 
quency of the bell-stroke is coutrolled by rotary time 
‘switches. In the United States this system came into use as 
early as 1901. 

Finally the submarine bell-buoy claims our attention. 
‘Thisisa simple and effective signalling machine and one which 
may be maintained at small annual cost. The buoy carries 
the bell and its simple mechanical mechanism housed beneath 
it in a boiler-plate receptacle which is open below, the bell 
alone partly protruding. Thus the mooring chain cannot 
foul the bell or its operating mechanism. The motive power 
is entirely derived from the wave energy of the sea. The 
mechanism is such that the energy imparted by the rising 
and falling of the buoy toa hinged vane immersed beneath 
is accumulative. A spring is compressed by the movement 
‘of the buoy, whether this be up or down. Each oscillation 
thus compresses the spring a little more till when a certain 
compression is produced the spring is released and in the 
act of release causes the hammer to strike the bell. The 
uniform intensity of the blows is thus secured. The fre- 
quency of the strokes depends on the state of the sea, but, 
-as already mentioned, is never less than three or four strokes 
per minute. To secure the mechanism against the rusting 
effects of sea-water the chamber holding it is filled with oil ; 
any leakage of which is made good from a small tank above. 

The recognition of sound by those on the vessel presents 
-a problem of equal importance with that which we have been 
considering. It is requisite not only to receive the sound, 
but to receive it in such a manner as to enable the sailor to 
-determine the direction from whence it proceeds. 
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The earlier attempts were directed mainly to develop: 
listening devices which could be towed astern of the ship or 
could be attached without to her sides. It was expected that 
the noises on the ship would render any other mode of 
listening ineffective. Later results showed that listening to. 
such acoustic vibrations as the walls of the ship pick up 
from the sea is the most effective method. This method,. 
too, permits of determining the direction whence the sounds. 
proceed. It was ascertained that the deeper the listening 
device was located in the ship the better. A small vessel is 
thus at a disadvantage in hearing the bell, and over-board 
receivers will not do. 

As finally worked out+the listening arrangements are 
simple. A small cast-iron tank is screwed on to the inner 
wall of the ship, being open against the ship’s plates. This. 
tank is filled with water. In it two microphones are 
immersed near each other, but one forward, the other more: 
aft. One such tank holding two microphones is fixed to- 
starboard, another to port. The sound gathered by the iron 
walls of the vessel passes directly to the water in these tanks, 
and this in turn conveys it to the microphones. The best 
position for the tanks is well forward, nearly in the bow,,. 
tbis being the most frequent presentation to the source of 
sound. The best position of the tank is found by direct 
trial and varies with various peculiarities of the particular 
vessel. 

Leads from the microphones pass upwards to the bridge. 
There two telephone receivers are used for listening: one 
being applied to each ear. One of these telephone receivers. 
goes to the forward, the other to the after microphone in the 
one tank. A switch enables either the port or starboard 
tank to be put on to the telephones. A semaphore tells the 
sailor to which side he is listening. The operator listens 
alternately to the sound received on port and starboard. If 
the signal station lies to port the telephones when switched 
on to the microphones on that side are loud while the star-- 
board microphones are mute. If the bell is right ahead both 
microphones speak equally loudly. For obtaining an accurate 
bearing of the bell it is usual to swing the ship till she is 
bow on to the bell as judged by the equality of the sound in 
the microphones. The course of the vessel is then the 
bearing of the bell. 

The conditions which are most favourable to the receipt 
of the sounds involve the presentation of the surface 
of the ship where the tanks are placed towards the source of 
the sound. It follows that the loudness of the sound and 
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the distance at which the bell is heard depend on the bearing. 
of the bell from the ship. If the bell is right aft no sound 
is heard save at close quarters. In this case the stoppage. 
of the sound is assisted by the action of the propellers in 
breaking up the medium. A _ bearing right abeam_ is, 
generally, the best. ‘The sounds weaken when well forward. 
Sounds coming {rom the opposite side of the vessel are not 
heard save at small distances from the bell. 

While weather conditions affect to some extent the picking 
up of the signals—chiefly owing to noises developed by the 
pitching of the vessel—the signals are recognizable at long 
distances in any weather. 

jt is evident that of all modes of synchronous signalling 
which may be suggested, the combination of under-water 
sounds and “pel aes dot is the most free from liability to 
failure. True the sensitiveness is not so great as we obtain 
by other combinations. But facilities for receiving such 
signals are confined—it may be said—to the larger vessels, 
and these approach at such speeds that they obtain all they 
require if they can determine their distance from the shore 
to an accuracy of one quarter of a mile or even of half a mile. 
oe should be able to effect the more accurate determination 
by this combination. If the radio dot is sent out at intervals 
of about 0°6 second the submarine bell-stroke lags the 
interval between two dots for each half sea-mile traversed. 
Jf the ship is 5 miles off the coast the sound lags 10 such 
intervals, and the bell comes in with the 10th dot, supposing 
that the first dot is emitted 0°6 second later than the first 
bell-stroke. In this case the sailor counts up the dots, and 
so obtains the number of half sea-miles separating his ship 
from the signal station. As it is quite possible to tell when 
the bell-stroke falls somewhere between two consecutive 
radio dots, estimation to the + sea-mile is feasible. 

In these operations the receipt of the signals is effected by 
listening with one ear to the bell sounds and with the other 
to the radio sounds,—a telephone receiver covering each ear 
of the operator. 

In September 1911, the United States Hydrographic 
Department snderioae an experiment on the use of 
synchronized signals in air, water, and ether. The signals 
were sent out nae the Nasik et Isehislip near New Worl 
(see fig. 3, Pl. 1.). The aerial sound signals were created by 
blast from a steam whistle and those in water by submarine 
bell. At the instant the whistle blew, a wireless tick of two. 
or three seconds’ duration was sent out, and simultaneously 
with the making of the contact the valve of the striking 
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mechanism of the submarine bell was tripped and a stroke 
was given to the bell. The coincidence of all three signals 
was tested by observation close to the lightship. 

On board the U.S.S. ‘ Washington’ the interval between 
the arrival of the aerial sounds and the wireless tick was read 
and recorded to one half second ; and that between the bell- 
stroke and the wireless to tenths of seconds. It was assumed 
that the velocity of sound in air at the prevailing temperature 
(68°°5 F.) was 1132 feet per second, and in water (at 66° F.) 
A794 feet per second. The weather was calm and hazy. 

The course steered was first due West from the lightship 
for a distance of 8 miles, then turning and heading H.8.E., 
the lightship being passed on the port beam at a distance of 
3450 yards. Standing on for 8 miles further she turned to 
the N.W., passing the lightship on the port beam at about 
4600 yards; and thence back to the lightship on a 8.H. 
course. 

At starting the whistle and bell were right astern. The 
bell was lost at a distance of about 2 miles, and the whistle 
at, it is stated, about half a mile. The loss of the sound of 
the whistle can only be ascribed to the phenomenon of silent 
areas. The loss of the bell is a consequence of the defective 
presentation of the receiving tanks towards sounds coming 
from right astern. As might be expected, the bell was not 
again picked up till the ‘ Washington’ turned to go eastward. 
It was then picked up at a distance of about 7°6 miles, the 
lag of the sounds on the radio dots being 9°5 seconds. The 
sounds were then reaching her on the port bow. The whistle 
was not recovered till the ‘ Washington’ had approached much 
nearer to the lightship—a distance of about 4 miles. Bell 
and whistle were held on this course till the lightship was 
passed and left well astern, the bell sound being lost when 
the distance from the lightship was about 53 miles, and the 
angle of approach of the sounds was 19° with the course and 
approaching on the stern of the ‘Washington.’ This, again, is 
to be expected as a consequence of the lessening presentation 
of the receiving tanks. ‘The whistle was held on this H.S.E. 
course. till the ‘ Washington’ was about 74 miles from the 
lightship. Here the whistle had the advantage. The bell 
was recovered immediately on turning N.W., and when the 
distance was 8°6 miles. The whistle was picked up on the 
N.W. course when 6 miles from the lightship. The real 
superiority of the submarine transmission of sound is here 
plainly shown. Both sounds were then held till the 
finish. 

The course of the ship and each observation are recorded 
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ona chart: a zig-zag red line connecting the determinations 
of distance by the bell and a similar bine line those by the 
whistle. Both these lines cross and recross the true course, 
which appears asa straight black line. The true course was. 
found by range-finder and compass. 

The experiment is highly instructive. The outstanding 
features are (a) the fact that both bell and whistle when 
heard suffice to determine the distance with fair accuracy : 
(>) the failure of the aerial sounds when the ‘ Washington’ 
was quite close to the lightship, the bell being still audible 
in spite of the unfavourable presentation: (c) the distance. 
of hearing the bell being cut down to 2 miles owing to. 
sternward presentation: (d) its audibility on favourable 
bearings over a wide angle to 84 miles, and (e) its audibility 
at 52 miles when the approach of the sound was sternward 
at 19° with the course: (7) the maximum carriage of the 
aerial sounds—74 miles—is exceeded by that of the submarine 
bell. The ultimate limit of audibility of the latter was not. 
reached. 

The general conclusion must be that with favourable. 
presentation the submarine sound affords a more reliable 
signal than aerial sound. The causes of its failure can be 
foretold and are not capricious. It is certain that if at any 
time the‘ Washington’ had been swung into a more favourable. 
course the sounds would again have been heard. On the 
other hand the loss of aerial signals is capricious and cannot 
be anticipated, and swinging the ship must fail to recover 
them. 

That the U.S. Government were satisfied with the results. 
of this experiment is shown by the recent establishment 
on Fire Island Lightship, off New York Harbour, of a 
synchronized signal station, involving the emission of sub- 
marine bell-sounds and wireless dots. 

Synchronous signalling is, therefore, in practical use. 
This first installation professes to be in a sense experimental, 
“although this station has proved accurate on test.” Ship 
captains are asked to report their experience to the Hydro- 
graphic Department. The British Board of Trade has 
recently issued to mariners the requisite notice and descrip- 
tive particulars. “The apparatus will be in operation during 
fog, mist, rain or falling snow. The range of this apparatus 
is limited to the receiving range of the submarine bell 
recelving equipment employed on shipboard, and in all 
practical cases this is within six or seven miles. The sub- 
marine bell strikes six strokes, pause, then eight strokes 
once every 38 seconds.’ ‘The series of radio signals begins. 
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about 4 second after the first of the group of six bell- 
‘strokes. The distance is determined by counting up these 
radio dots until the first stroke of the six submarine signals is 
received. The number of dots thus determined gives the 
distance in half sea-miles. It will here be seen that two 
unsymmetrical groups of bell-strokes are emitted. This 
appears to have in view the certain identification of the 
station and of rendering it easier to first pick up the signals. 
The number of the lightship is stated to be spelled out by 
the signals. Numerical examples are added showing 
readings of distance to the quarter mile. In this installa- 
‘tion the size of the radio antenna is designed to send out 
‘signals which will not be heard much beyond the range of 
the submarine bell, in order to avoid unnecessary inter- 
‘ference with near-by radio stations. 

We may now picture to ourselves the practical application 
-of this system of synchronized submarine bell-strokes and 
‘radio dots installed at Fire Island. Weare on board a liner 
going westward and—we will suppose—are deep in a fog 
‘oank. Our whistle emits prolonged and far sounding blasts 
-every two minutes. In former years, when the present 
writer experienced just such conditions approaching New 
‘York, frequent determination of depth was the only means 
‘available for fixing with any approach to accuracy the 
position of the ship, and hours were thus wasted, gradually 
‘stealing closer to the land. Jet us now, however, imagine 
the little instruments on Fire Island busy tapping out to the 
mariner the knowledge he so anxiously desires to obtain. 
The speed of the ship is but little reduced, for ample warning 
by wireless dots and submarine bell stroke may be counted 
‘on. And now upon our ship the wireless operator reports 
to the bridge the first wireless dots. Then the bell-strokes 
are picked up. There are the six—pause—eight strokes 
-once every 40 seconds. ‘There can be no doubt as to what 
he is listening to. He waits for the first of the group of 
radio dots and counts them up till he hears a bell-stroke. 
He finds that the bell-stroke falls—say—just between the 
12th and 13th radio dot; that is to say he must divide 124 
by 2 for the distance in knots. He reports, accordingly, 
‘64 miles from Fire Island Lightship, the signals being heard 
on the port bow. The land fall is made. 

That radio signals and submarine bell could be worked 
reliably from a buoy, and, if desired, in combination with 
light flashes, seems very probable. The emission of the 
instantaneously propagated signals would be started by the 
‘bell-stroke. The wireless would have a range comparable 
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with the carriage of the bell-sound ; the light flashes being 
probably of lesser range and for the use of smaller vessels 
which can generally approach with safety nearer to the coast 
owing to shallow draught. The emission of wireless signals 
at intervals of one or two minutes would be quite adequate, 
‘and economy of current would be attained. 

The Fessenden Oscillator has long been a potential rival 
to the submarine bell as a means of generating sound waves 
in water. But lately such developments of the Oscillator 
have been made that it seems highly probable that on the 
more important ships it will take the place of the bell. 
Professor Fessenden has, in short, by his recent improvements 
rendered possible uses of submarine signalling almost 
unhoped for, although often wished for in the past. On the 
results of the experiments claim has been made to— 

(a) Increased radius of audibility up to 30 miles or even 
more. | 

(6) The easy signalling by Morse code over these great 
distances by an ordinary telegraph key. 

(c) The receipt and emission of the signals by one and 
the same apparatus located in the ship or lowered 
overboard. 

To these may be added the following, provisionally on 
further experiments proving as successful as those already 
made :— 

(d) The determination of depth beneath the moving vessel 
by echo from the bottom. 

(e) The location of icebergs by reflected sound from the 
submerged part of the berg. 

The transmission of speech over short but useful distances 
is, in addition to the claims founded on experiments, a 
highly probable development. What these claims involve 
may not at first be fully realized. Hven if we accept the 
first three only we approach the consideration of the instru- 
ment on which these are founded with considerable interest. 

The new Oscillator is not in principle different from the 
earlier invention of Professor Fessenden. The sound 
generated in the water originates in the rapid in-and-out 
vibration of a metallic diaphragm. This diaphragm may 
form part of the side of the ship. Now, obviously, the 
difficulty to be overcome in making such an apparatus 
successful is to generate and apply a force of sufficient 
intensity to overcome the inertia of the diaphragm and other 
moving parts (weighing in point of fact over 100 lb.) as 
well as that of the water, in a space of time measured in 
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hundredths or even thousandths of a second. In order to 
transmit 20 words per minute by code about 100 compressional 
waves are required per minute, and to transmit speech 
several thousands of waves. 

This power is, of course, applied electrically, an armature 
being excited by a powerful alternating current having a 
frequency of about 500 per second. 

It is remarkable that this instrument, in spite of the great 
inertia and accelerations involved, can act as a receiver 
to sound waves reaching the ship through the water ; 
functionating then as a generator. Hence itis only necessary, 
when the oscillator is being used both for the transmission 
and reception of sound, to set over a switch with each change 
in the nature of the operations required. The sounds may 
also be received by ordinary microphone as fitted for the 
submarine bell. (An interesting account of the improved 
oscillator is issued by the Submarine Signal Company.) 

In an early test the oscillator was lowered 12 feet off 
the Boston lightship. The signals were plainly heard by 
microphone 31 miles away. They have been emitted also 
from moving ships and heard more than 20 miles away. 
Tt is evident that on vessels and in situations where an 
alternating current of sufficient power is available the use of 
this new device possesses great advantages. For not only 
is the range of the sound greatly increased over that claimed 
for the bell, but code signals can be easily transmitted. 
And there are also new possibilities as regards synchronous 
signalling. A vessel moving at the high speed of 25 knots 
may learn her distance from the land, the bearing of the 
signal station, and hence the correct course to steer, more 
than an hour before she makes her harbour. Remember, too, 
that this information comes in in any weather. It has not to 
be listened for in the open but is quietly whispered in the 
cabin. 

Of great interest, too, are the applications of the oscillator 
as a depth-finder and as a protection against icebergs. In 
both cases the reflexion of the sound and its return to the 
observer are used. 

The depth-finder is admirably simple. Imagine a com- 
mutator-wheel with one conducting segment leading to 
the armature of the oscillator. Two brushes touch this 
wheel, one connected to the alternating current generator, 
and the other to the telephone-receiver. As the wheel is 
rotated the oscillator is excited while the brush connected 
with the source of current is passing over the conducting 
segment. Excitation then ceases and the sound from the 
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oscillator travels to the bottom of the sea, comes back by 
reflexion, and acting on the oscillator generates a current in 
it. This will be heard in the telephone receiver if the brush 
connected to the telephone is in contact with the segment 
just at the instant when the reflected sound impulse reaches 
the ship. The setting of the telephone brush will, therefore, 
determine the depth. In a depth of 8 fathoms beneath the 
oscillator the time for the sound to travel to the bottom and 
back will be about the one-fortieth of a second. ‘The echo, 
according to the results of a trial made from a U.S. Revenue 
Cutter, may be heard in the ship without the use of the 
receiver. A stop-watch used to determine the interval 
between the start and return of the sound afforded a good 
approximation tu the depth. 

Experimenting trom the same vessel, the distance of an 
iceberg 450 feet long and 130 feet high was determined by 
echo from the submerged part of the berg at various distances 
from one-half mile to two and one-half miles. The echoes 
were not only heard in the oscillator receiver, but in the 
officers’ wardroom and elsewhere in the ship. The distances 
agreed with those determined by the range-finder. The 
prosecution of the experiments was hindered by rough 
weather, the oscillator not being permanently installed but 
lowered overboard. The echoes were loud at 24 miles. It is 
stated that as regards the intensity of this underwater echo, 
it made no difference whether the face of the berg was 
presented to the ship or otherwise. It must be remembered 
that the immersed volume of the berg was some ten times as 
bulky as that presented to view. 

Marvellous as all this undoubtedly is, the purely sensational 
part of it is surpassed by the achievements of wireless 
telephony. ‘The wireless telephone can speak in plain words 
to the sailor, telling him the name of the signal station he is 
approaching and warning him of his danger if he comes 
too close. The speaker is a machine, a dead thing, and 
eether waves carry the energy, translated out of its rightful 
medium, through miles of wild weather, to the ship labouring 
far off the coast, and there it is again restored to the medium, 
whereby it reaches the sailor’s cognizance. He listens at a 
telephone in his cabin or wireless room and hears the words 
reiterated over and over again by the machine in the light- 
house. Atthis latest achievement of Science, we feel inclined 
to say: ‘Hold! Enough!” 

The wireless telephone is no very recent achievement. 
Speech has been transmitted by its means from stations in 

Phil. Mag. 8. 6. Vol. 36. No. 211. July 1918. C 
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the United States to the Hiffel Tower. The system of Dr. 
de Forrest is, I believe, used in the maritime application of 
which I am speaking. ‘The installation is at Point Judith 
at the western approach to Narraganset Bay. Here, in out- 
line, is how this marvel is accomplished : 
A phonograph speaks the words. It cries the name of the 

lighthouse or lightship into the transmitter. The system is 
entirely automatic. The movement of a switch starts the 
phonograph into operation. The voice, translated into ether 
waves, reaches the antenna on the ship and is there re- 
translated to the spoken words by a detector and telephone. 
No training in Morse signals is required. The sailor hears 
the words just as the householder hears the message in his 
telephone. It is stated in an account of this system kindly 
sent to me by the Submarine Signal Company :—‘ The 
receiving apparatus is so small and requires so little tuning 
that for small ships with no operator, the Captain with a few 
minutes’ instruction could pick up and use the signals.” At 
Point Judith “ the intensity of the sound and radiation of 
the transmitter are so designed that ships equipped with the 
ordinary antenna will hear the signals the same approximate 
distance that the light would be seen in clear weather.” 
There is heard first a voice which cries the name of the 
Station every five seconds. After every third repetition of 
the name of the Station a much feebler voice speaks the 
warning “ You are getting closer; keep off.” This signal 
the sailor will only hear when close in to the lighthouse. 
The instrument accomplishing this marvel has been called 
the Radiophone. It is intended to set up Radiophones at 
several stations on the Atlantic and Pacific coasts. 
When in addition to this instrument you fit the vessel 

with the wireless compass or goniometer—an instrument 
whereby the directions from which wireless messages are 
approaching the ship may be approximately determined,— 
you have an equipment which replaces the use of the light- 
house in fog or thick weather. It must, however, be 
remembered that this system, interesting and wonderful as 
it is, possesses some of the defects of the light signals. Even 
if the wireless goniometer gave him his angles as accurately 
as he obtains them by station pointer in clear weather— 
which is very doubtful—the distance indications can only 
depend on the strength of the wireless signal. But here the 
influence of atmospheric conditions in affecting the amount 
of absorption of the transmitted energy must introduce 
capricious variations. Position cannot be fixed without 
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reliable distance determinations. With stations so distri- 
buted as to give simultaneous readings of angles by wireless 
goniometer, the seaman can, indeed, proceed by wireless 
alone from headland to headland, hearing the name of each 
proclaimed in plain language and laying his course by the 
use of the radio-goniometer. 

It is evident that the last few years have opened up won- 
derful prospects to coastal navigation. And surely those 
voices, crying to the Mariner through darkness and storm, 
reassuring him and guiding him on his way, captivate the 
imagination beyond any other of the marvels of applied 
science in our time. 

IL. AvorpIne CoLuision. 

The existing rules for avoiding collision at sea have been 
in force for more than one generation and, it is needless to 
say, have done inestimable service. They date from a period 
when the resources of science were much less than they now 
are. Wireless telegraphy was unthought of, and submarine 
signalling, if occasionally mooted as a possibility, had not 
been put to any practical trial. These time-honoured rules 
tell the sailor what he is to do when he sights another ship 
with which collision may occur. In general one only of the 
ships may alter course, and their relative pesition decides 
which of them is to do so. The compulsory use of certain 
regulation lights on vessels enables these rules to apply also 
to night time in clear weather. 
When the weather gets thick, or fog or snow comes on, it 

is assumed that all methods save those of whistling and 
listening fail. A prolonged blast must be emitted at 
intervals of not more than two minutes. The ship must slow 
down to “a moderate speed.’ The great problems then 
confronting the sailor are to hear the sound on the other ship 
in good time; to locate it; and then do the right thing ; at 
the same time letting the other ship know what he has done. 
The trouble is, mainly, that the relative position of the ships 
is difficult to determine. Sound directions are liable to 
deceive and in very wild weather to carry badly, or to be 
inaudible owing to the noise and uproar upon and around 
the ship. For a happy issue out of all these afflictions the 
mariner can only trust to his vigilance, to his presence 
of mind, and to a considerable measure of luck. These 
failing him his own ship or the other ship may be los:. The 

C9 + he 
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circumstance may be such that the iast factor only—luck— 
determines the result. 

The time has come when a complets.re-consideration of 
the whole matter in the light of modern advances in 
signalling is desirable if not indeed imperatively necessary. 
Not that existing rules need be abrogated. In close trafiic 
these may well prove essential, especially when small 
coasting craft are concerned. Nor are the modern methods 
and the older ones mutually exclusive. The chief danger, 
however, is really in the ocean routes where high speeds 
must be maintained and the risk taken. There is little doubt 
that with the compulsory use of such methods of signallmg 
as are now available high speeds could be maintained and very 
little risk remain. It is irrational to suppose that educated 
officers who have been trained in far more difficult — 
navigational methods could not use the methods we have to 
consider. ‘he actual taking in of the signal will probably 
always fall to the wireless operators on board: men who hold 
certificates of proficiency ia dealing with such matters. 
Alone the interpretation of the signals lies with the Officer 
of the Watch. And as a fundamental regulation the Board 
of Trade would require continuous watch in the wireless room 
on all ships during thick weather. 

1 With the advent of wireless telegraphy at sea—due in the 
‘| first instance to Admiral Sir Henry Jackson—the sailor 
i | inherited a means of speech which is available in almost 
4 every state of the weather. And in submarine signalling yet 
i another mode of communication is open to him, whereby 

ship may speak with ship over distances from 6 to 20 or 
more miles in all weathers. Directions may be determined 
approximately by both these methods of intercommunication. 
But when the problem of avoiding collision in all circum- 
stances is fully considered it will, I believe, be recognized 
that determination of distance—that is, the distance between 
the vessels—is an essential element for safety. 

And this brings us back to synchronous signalling as the 
only means whereby distance from ship to ship can be safely 
determined. 

There is no doubt that the combination of submarine 
sound signal and wireless signal is the most reliable one 
available. True, the sensitiveness is no more than will 
determine the distance to the half-knot although the quarter- 
knot may be estimated. Practice would doa great deal in 
such a matter, as everyone who has observed small time 
intervals in the laboratory soon finds. And it is also to be 
remembered that we are dealing with ships moving at 

i 
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considerable speeds; so that they may cover a half-knot 
in 14 minutes, or even in one minute when the relative velo- 
cities of the vessels are taken into account. As the mutual 
avoidance of such vessels cannot safely be left to less than 
the last minute, the sensitiveness of the method is quite 
adequate to the use required of it. 

It will not, probably, be superfluous to say something as 
to the available means of submarine signalling between ship 3 
and ship as apart from the mere reception on the ship of a |) 
submarine signal sent from the shore. The latter subject we 
have already considered, but nothing has been said as to the 
emission of submarine sionals from the ship. | 

There is first of all the use of the bell. The sound of the i 
bell may normally be taken as carrying 7 or, at least, 5 i 

iy 
miles. It gives a sharp, unmistakable sound; and the Ht 
apparatus concerned has the advantages of compactness and 
simplicity of construction. Its application to ships would 
appear to involve the provision of a recess somewhere in the 
ship’s bottom. The bottom is assuredly the best position ; 
for the radiation of the sound is then not interfered with in 
any direction by the ship herself. The provision of the | 
recess is a protection to the bell, which is supposed to be ! 
raised into the recess and housed therein when not required | 
for use. ‘This construction has, I understand, already been | 
applied to submarines. 

The rival sound-signailing machine is the [essenden i 
Oscillator. This is an instrument for which a much greater 
range is claimed, and is, in addition, highly adapted for 
transmission of code sionals. i 

Whether bell or oscillator are employed we may suppose 
the signals completely controlled from the room of the wire- ft 
less operator and the easy possibility of securing mechanical | 
control of the signals, so that by clock-work their emission | 
may be accurately regulated and timed to the signals sent i] 
out by wireless in the wtherial medium. We may, in short, 
discuss the use of synchronous signalling in avoiding j 
collision, with our minds at ease as to the complete practical | 
possibility of putting the method into operation. Both the | | 
bell and the oscillator have, in fact, already been applied to | 
moving vessels. | 
We shall assume that ships navigating in fog or thick | 

weather are required by (future) Board of Trade regulations | 
to emit a certain low-power wireless signal at intervals, say, | 
of 5 minutes, and that when two ships become aware of | 
each other’s sionals they may, if they deem it necessary, 
exchange the usual code signals giving course and speed. The | 

} 
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communication of these data is a simple matter. It forms a 
familiar part of the preliminary correspondence of .a ship 
station with a coast station after the latter has been called. 
Both are numbers. The course is given in degrees from (0° 
to 360° reckoned from North round by E. S. and Wiis aie. 
clockwise. The speed is signalled in nautical miles per 

to) 

hour. - The signals are emitted at the rate of some 20 words 
can) 

per minute, or a word of five letters in 3 seconds. Thus, to 
fix our ideas, we may suppose that ship A learns that ship 
B is proceeding South (180°) at 164 knots, and B learns 
that A is holding a course NE. 2 EE. (say 53°) at a speed of 
11 knots. 

Additional to these means of dealing with the problems 
presented by methods of averting collision, it must be recalled 
that in the radio-goniometer or wireless compass and in 
submarine signals t the mariner possesses a means of finding 
the bearing of another ship with approximate accuracy. 
Now there are four criteria which enable the sailor to say 

in advance whether a particular ship in his locality, but 
assumed to be quite invisible to him, is moving so as to 
collide with his ship or whether she is not. Let us first 
write down what these criteria are. 

If two ships, A and B, are moving so as to collide :— 

(1) The mutual bearings of the ships are determined by and 
deducible from the courses and speeds of the vessels. 

(2) The rate of mutual approuch of A and B—i. e., the 
relative velocity—is fixed and determined by the courses 
and speeds and is the maaimum possible for these 
courses aad speeds. 

(3) The bearing of ship from ship is constant and invariabie 
up to the moment of collision. 

(4) The rate of mutual approach remains constant up to 
the moment of collision. 

It is convenient to first consider those two criteria which 
are dependent upon and deducible from the prevailing courses 
and speeds; 7. e., the bearing which indicates threatened 
collision and the relative velocity which indicates threatened 
collision. How may these two criteria be used by the 
mariner? The matter may be stated thus :— 

With the knowledge in his possession of the course and 
speed of each ship the navigator, by simple methods to be 
presently described, determines what the bearing of the 
ships from each other mae ibe if collision is threatened and 
what the relative velocity or rate of mutual approach of the 
vessels must be if collision is threatened. These criteria are 
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decisive on the question of collision or no collision. By 
comparing what may be called the “danger bearing” and 
the “ danger rate of approach” with the actual bearing and 
actual rate of approach he obtains complete assurance on 
the serious issue before him. ‘Thus, for example, with the 
courses and speeds cited above the ‘navigator finds that B 
will bear NNE. from A, and A will bear SSW. from B, 
and the rate of approach of the ships towards each other 
will be 24 knots per hour: 2 collision is threatened and only 
if collision is threatened. 

Accordingly, the navigator can tell whether collision is 
threatened or not (a) by observing the actual bearing of the 
other ship or (b) by determining the rate of approach of the 
ships. 

A very large percentage of cases presented to him may be 
at once ‘lismissed by determination of bearing. The bearing 
of the other ship may be determined by ae goniometer or 
by submarine signalling. I do not think the accuracy of 
sucli determinations will suffice for all cases of threatened 
collision. This point must be further considered later. But 
fairly accurate determination of bearing would suffice to 
rule out many cases. Suppose, for instance, in the case of 
A and B above, that the bearing of B from A is observed 
to be more than a point divergent from NNE., 7. e from 
the danger bearing; it is then certain that collision will 
not occur. The Officers on A and B might exchange a short 
code signal expressing understanding on this point. And, 
of course, both know that the existing courses and speeds 
which insure safety must be carefully held and maintained. 

But if there is any close approximation of the observed 
bearing to the pre-determined danger bearing, then the 
determination of the rate of approach of the vessels would be 
entered on at once. For one thing there is nothing in the 
observation of bearing to tell the navigator the distance of 
the other ship. Guessing this distance by the strength or 
intensity of the signals may prove seriously inaccurate. And 
with no knowledge of distance the sailor is placed in a very 
anxious position, and one which may compel him to alter 
course quite needlessly—as we shall see. 

The determination of the rate of approach is got by 
successive determinations of the distance separating the 
vessels. Now, knowing the danger rate, the sailor can tell 
from the very first determination of distance when collision 
would be due, supposing it to be threatened. And this tells 
him whether he must act at once or whether he has plenty of 
time. He knows, in fact, “there are so many minutes to go 
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before collision can occur.” ‘The second determination of 
distance compared with the first tells him whether the actual 
rate of approach approximates to the danger rate of approach. 
If it does, and continues to do so on a few more observations 
by synchronous signal, one of the ships must give way 
in good time. 

In short, the procedure whereby collision may be averted. 
in all weather involves :—(a) exchange of signals, wireless 
or submarine, giving courses and speeds: (6) finding from 
these data the “‘danger bearing” and “danger rate of 
approach”: (c} ascertainment of the actual bearing and rate 
of approach. 

These operations, even if called for in their completeness, 
are simple and easily carried out: characteristics of value 
under conditions which may involve hurry and anxiety. 
It is necessary now to consider the successive steps more in 
detail and to enter briefly on the principles upon which the 
operations are based. 

What are the conditions determining collision? Suppose 
ships A and B are moving on paths which intersect. Then 
the conditions for collision involve that A and B are, ata 
given instant, at distances AO and BO from the point 
of intersection, O, such that their speeds will carry each ship 
over the respective distances AO and BO in the same 
interval of time. In other words courses, speeds, and 
positions are involved. When these three factors are such 
as to lead to collision then is the following important 
condition fulfilled:—the direct distance between the ships 
will decrease at the maximum rate possible for the given 
courses and speeds. In other words, the relative velocity is 
a maximum for the courses and speeds. ‘This is evident, for 
its entire velocity is then carrying each ship directly towards 
the other ship at the only point where they can meet: that 
is, the point of intersection of their courses. 
We may reverse the steps of our reasoning and say, if the 

relative velocity of the vessels is the maximum for the 
courses and speeds, then is collision sure to eccur, and if it 
is not the maximum, collision cannot occur: the ships will 
pass clear. 

In order to find the maximum relative velocity or “danger 
rate of approach” of the ships, knowing the courses and 
speeds we may construct a triangle of velocities. Two of 
the sides of the triangle are parallel with the courses; and 
the lengths of these sides are proportional to the speeds of 
the ships. The third side, completing the triangle, gives us, 
now, by its direction the bearing of A from B and of B from 
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A, and by its length the relative velocity of A and B. The 
conditions are now the same as if A was at rest und B 
moving with this velocity towards A. LHvidently the 
distance between them will diminish at the maximum rate, 
for B is moving straight towards A. But this procedure for 
finding the maximum rate of approach is one which we 
cannot expect the seaman to carry out in the urgent circum- 
stances of his position. We suppose, instead, that he is 
provided with a simple instrument which may be named 
a Collision Predictor. 

This instrument (Pl. I. fig. 4) consists of a circle upon 
which compass bearings and angles measured from N, clock- 
wise, are engraved. It carries two limbs, a and }, which 
rotate independently about the centre; which are divided 
to read speeds in knots per unit time; and which can be 
clamped in any position. An arm, c, is pivoted upon a sliding 
piece or cursor, which can be slipped along the limb a. 
This arm carries centrally a transparent divided scale, as 
shown. 

When the sailor is given the courses and speeds he 
proceeds as follows:—One limb, say a, he sets round to the 
course of his own ship A. The other, 0, he sets to the 
course of the other ship B. He then slides the cursor along 
a till it reads on aa number which is proportional to the 
velocity of his own ship A. He next inflects the arm ¢, so 
that it intersects the limb 6 ata distance from the centre 
proportional to the speed of the other ship B. He has now 
constructed his triangle of velocities, and he reads on the 
transparent scale of the arm ¢ the relative velocity he seeks: 
that is, be reads on it the relative velocity when collision 
is threatened: which, as we have seen, is the maximum for 
the courses and speeds. 

It is convenient to read on ¢ the rate of approach or 
relative velocity in terms of the amount by which the direct 
distance separating the vessels diminishes in two minutes; 
or one minute, according to the interval separating the 
observations of distance by synchronous signalling. 
I assume that this is 2 minutes. Then, reverting to our 
example, baving set the limb a NE.2K., and the limb 6 due 
South and slipping the cursor along a till it reads the speed 
of A—+. e., 11 knots—and inflecting c to read on b 164 knots 
(i. e., the speed of B), the navigator finds that the scale on ¢ 
is cut by its intersection with 6, at the reading 0°8. What 
is this? It is the distance in knots by which the ships A 
and B, in our example, must approach towards one another 
in two minutes if collision is threatened, 7. e., eight-tenths of 
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a knot. This is the danger rate of approach; and is the 
same as 24 knots per hour as given above. 

We have incidentally found also the danger bearing. The 
arm c¢ in fact points from A to B; that is, if we moved it 
parallel to itself till it crossed the centre of the divided com- 
pass circle, then it would read the bearings required. It is 
easy to arrange for the attachment of a parallel motion to e, 
which can be moved so as to cross the centre of the divided 
circle and read the bearings. In the example chosen, for 
instance, it shows that B bears NNE. from A, and A 
SSW. from B if collision is threatened. We here use the 
instrument as a means of constructing a triangle ot displace- 
ments rather than of velocities: which is obviously legitimate. 
Thus the navigator by merely setting the limbs on this 
instrument to the courses, and setting the arm c¢ to the 
speeds, obtains the danger rate of approach and the danger 
bearing. 

It may be helpful to some to consider a quite simple case. 
Suppose the courses of the ships are directed exactly oppo- 
site. Suppose X is going due south and Y is going due 
north. Let the speeds be 20 and 10 knots respectively. 
Now the fact of the courses being opposed does not involve 

collision. The bearing of X from Y or of Y from X may be 
anything at all so far as courses are concerned. For instance, 
the ships might be passing abeam of one another. But there 
is one particular bearing of X from Y and one of Y from 
X which denotes collision:—when X bears north from Y and 
Y bears south from X. The ships are then approaching end 
on and collision is threatened. These are in this case the 
danger bearings of ship from ship. 

Again, the rate of approach of X and Y may be anything 
at all, within certain limits, so far as courses and speeds are 
Goncuencd: Thus the distance between the vessels would be 
shortening quite slowly supposing Y bore somewhere for- 
ward of the beam of X ; or, it might be, actually increasing 
if Y bore aft of the beam of X. It is evident that only when 
the vessels are approaching end on is the distance decreasing 
at the mnaximum rate: that is, the relative velocity is a 
maximum ; and it must amount to 20+10=30 knots. This 
is the danger rate of approach, and it is evidently associated 
with collision. If observations of distance are taken every 
two minutes this rate would involve the distance between 
the vessels diminishing at each observation by one knot. 
We see then that there is a danger bearing and a danger 

rate of approach peculiar to collision. The Collision Pre- 
dictor applied to the above case would give the danger 
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bearings as north and south and the danger rate as one 
knot. 

As we have already seen, the knowledge of the danger 
bearing may rule out the pos sibility of collision. For if the 
actual bearing is decisively different from the danger bearing 
there cannot ‘be collision. By radio-goniometer—an oe 
ment we must refer to again later on—the bearing may be 
found, at least approximately. Or by submarine sounds an 
approximate bearing may be taken. If the Fessenden 
Oscillator is carried on the ships the bearing could be deter- 
mined while yet 10 or more miles separated the vessels. If 
the bell is carried the bearing could be found some 6 or 7 
miles away under normal conditions. The determination ot 
the bearing will, probably. be the first procedure. But we 
will suppose that the bearing as observed — however 
determined—is doubtful; that it cannot be safely dis- 
eriminated from the danger bearing. And as the sailor 
knows not with any certainty at this stage the distance 
separating the vessels, he regards it as unsafe to undertake 
prolonged observations of the bearing, and decides on finding 
the distance and the rate of approach. 

When he determines on this he makes a code signal 
announcing to the other ship that he is about to find the 
distance by synchronous signals. If this is announced by A, 
B prepares to listen. When at length B picks up the 
oscillator or bell she teils A the distance as so many miles. 
This first observation of distance assures to the sailor a 
knowledge of the time at his disposal. For suppose— 
reverting to our example—that B says “our distance is 
5 miles.” Then both on A and B it is known that collision 
cannot oceur sooner than 12 minutes from that instant. 
For on A and B it is already known that the danger rate or 
maximum rate of approach for the courses and speeds is 0°8 
knot in 2 minutes, or 0°4 knot in 1 minute. Hence we have 
to divide 5 by Ord to get the interval in minutes before 
collision can occur ; and this gives 124 minutes. In this 
way the sailor Pact at the earliest Ee Tae at which the 
submarine signals are audible from ship to ship how much 
time is available for further observation. 

Two minutes after the first observation of distance, a 
second synchronous signal is sent out—say from A—and B 
says “our distance is 4 miles.” This looks like danger. 
For there is some error certainly seeing that the approach 
cannot be so much as 1 mile in 2 minutes. There is now 10 
minutes to goand there is no reason why several more 
distance determinations should not be made. The emission 



28 Prof. J. Joly on Sctentzjie 

of the signals is automatic. On receiving the third signal B 
says “our distance is 3f miles.”’ This also is evidently quite 
in keeping with the danger rate. There is now 8 minutes to 
go. On the 4th signal the distance falls, we will suppose, to 
2°5 miles with 6 minutes to go. The danger may now be 
regarded as established. But there is no reason why further 
signals should not be exchanged, before B gives way to A. 

The successive observations of distance may be recorded 
on paper as they come in, and be compared with the successive 
danger distances written down upon the finding of the 
initial distance. Or they may be observed and followed 
one by one on the Collision Predictor. Taking the former 
method first we may suppose a ruled sheet with columns 
set out to take the figures thus :-— 

Course A 53°. Course B 180°. 
Speed A 11. Speed B 164. — 
Danger Bearing NNE. ‘Obs. Bearing NNE. 

Danger Rate 0°8. 

Danger Observed 
Sic. Distance. Distance. Ff, 

i 5) 12 

2 4 4 10 

3 oie orn 3 
4 2°6 745 6 
i) 1°8 20 4 
6 1-0 10 2 
if 0:2 0 
3 
9 

10 

In the two minutes interval between the Ist and 2nd 

observation of distance the Officer of the Watch fills in 
columns 2 and 4. : 

We assuine here readings typieal of threatened collision. 
JE collision is not going to occur the observed distances will 
disagree with the danger distances already written down. 
In what way will they differ? We have seen that the 
danger rate is the maximum for the courses and speeds. If 
then collision is not threatened the vessels will be approaching 
more slowly than if collision is threatened. The difference 
between the rates will give rise to a cumulative increase in 
the distance separating the vessels. As the observations 
progress it will be found that danger distances and safety 
distances differ more and more widely. 

a i Peal Be 
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And there is another reason why this difference between 
danger entries and safety entries in- the table will increase. 
We must anticipate here the reasons for the 4th criterion 
denoting collision. It is easy to see that only in the case of 
coming collision is the velocity of approach constant. If we 
place A in the centre ofa series of concentric circles described, 
say, at radial distances of one knot; then if collision is 
coming B is traversing these circles radially in its advance 
towards A and her velocity of approach is constant. But if 
B is not aiming for A she is not advancing radially. Her 
velocity of approach towards A cannot be constant. When 
she is far from A her rate of approach to A is greater than 
when she draws near. When she gets abeam of A there is 
a moment when there is no further diminution of distance. 
The relative velocity is then zero. After this B begins to 
recede from A. 

Now this must come out in the successive observations of 
distance between A and B and will tend to further accen- 
tuate the difference between danger and safety readings of 
distance. This cumulative and increasing distinction in the 
character of the two sets of figures—those which have been 
written down on the assumption that collision is threatened 
and those which come in if it is not threatened—is a feature 
of much value. It tends to redress the want of sensitiveness 
of the readings and to distinguish true from fictitious safety, 
Danger readings cannot be confounded with safety readings 
as observations multiply. 

There are advantages in keeping the observations on paper 
as described above. ‘here must be ample time for several 

observations if a good look-out has been kept. The obser- 
vations are actually made by the wireless operator. The 
Officer of the Watch has only to write them down. His own 
ship’s course and speed are already entered. The fact that 
the signals are sent out and read by one individual, who has 
no responsibility beyond reporting them, and that they are 
interpreted by another, is an element of safety, for it leaves 

each operator free to give his attention to one matter only. 
The Collision Predictor is intended to give the navigator 

the means of following the approximation of the two ships 
step by step as the readings of distance come in, and per- 
mitting him to appreciate the imminence of danger in 
case of threatened collision by merely looking at the 
instrument. 

These functions it accomplishes in virtue of the fact that 
if the cursor is slipped along the limb a, keeping the arm ¢ 
clamped on the cursor at the angle determined by the first 
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setting of c, the gradual mutual approach of the -ships is 
traced out on the scale carried by the arm ¢c at its intersection 
with the scale on }. ‘Thus, suppose when the second reading 
is made we move the cursor along a a total distance cor- 
responding to the run of A in 4 minutes, then the arm c 
shifts on the limb 6 to the corresponding run of B (as it 
moves parallel to itself) and twice the danger distance is 
read on c*. Now if we have a mark on the arm ¢ at the 
reading of the initial distance separating the vessels—2.e. 
5 miles—then as we shift forward the cursor at each 
synchronous signal, that is to say at intervals of two 
minutes, we can by simply looking at the reading on ¢ at its 
intersection with 6, observe upon it the total distance which 
has so far been run and the distance which remains to be 
run if collision is really threatened. For example, if collision 
is actually approaching, in the first position of ¢ we read on 
it 0°8 knots as run and 4°2 knots stili to run. In the second 
position 1°6 knots run and 3°4 knots to run, and soon. The 
navigator compares these readings one by one with the 
actual readings of distance coming in. If they show a ten- 
dency to sustained agreement he knows for certain there is 
danger, and by a glance at the scale on ¢ he infers how 
much time remains before collision can oceur. He has, in 
the still remaining length of the scale on c, a visible and 
tangible indication of the time left to him for action; and 
with each reading a simple and definite mechanical opera- 
tion has to be effected which necessitates his attention being 
fixed on the lie of the two ships relatively to each other. 
Tf he holds the Collision Predictor in its true compass position 
he sees at once the direction in which the other ship is 
approaching, this bemg the direction in which the arm ¢ is 
pointing, and at the same time he has indicated on the arm ec 
at once the distance separating the ships and the time taken 
to cover this distance. It 1s like as if he followed the approach 
of the vessels wpon a chart. 

Incidentally we may observe here that the Collision 
Predictor finds a use even in clear weather for averting 
collision. For suppose two ships sighting each other and, 
uncertain as to the risk, exchange courses and speeds. Then 
the Predictor tells immediately the danger bearing. If the 
ships show that bearing towards one another then is collision 
threatened. Otherwise there is safety. 

The foregoing description, embodying as it does an account 

* This is the position of ¢ as shown in the figure. 
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of an unfamiliar instrument, may create the impression that 
the proposed system of averting collision is one involving 
rather complicated operations ; and these too at a time when 
simplicity and clearness of procedure are above all desirable. 
In order to show how unfounded this impression is we shall 
now follow the necessary steps as they would be taken 
on an adequately equipped ship in order to ascertain if there 
was risk of collision with another vessel. We may continue 
to call our own vessel A and the other vessel B. 

The scene is once more in the North Atlantic. The 
weather is thick and night falling. Vision is restricted to a 
couple of ship’s lengths. The Officer of the Watch has at 
hand a Predictor which is already set to the course and speed 
of his own ship. 

The operator in charge of the wireless room has started 
into action a clockwork contact-maker which automatically 
sends out, periodically, the wireless fog signals required by 
(future} Board of Trade rules. i 

Presently he hears the characteristic radio signals of 
another vessel. He calls the other ship ; communicates his 
own course and speed and learns hers in exchange. These 
he reports at once to the Officer of the Watch who adjusts 
the other limb of the Predictor accordingly, and reads 
forthwith the danger rate and danger bearing proper to the 
courses and speeds of the two vessels. : 

Meanwhile the wireless operator has signalled to the other 
ship asking for signals whereby the bearings may be 
determined. He makes an estimate of the bearing; informs 
the other ship “ You bear NNH.”; and then reports this 
bearing to the Bridge. 

The Officer of the Watch is now able to say right off that 
the signals must be continued. For on comparing this 
bearing with the danger bearing he perceives that they are 
indistinguishable. On board the other ship the same decision 
is come to. 

Our ship now signals to B, by code, ‘‘ Bearing dangerous : 
prepare to receive distance signals.”’ Then when B acknow- 
ledges this the wireless operator on our ship sets in operation 
the automatic emission of synchronous signals. These 
continue to be emitted till B reports “ Distance 5 miles.” 
When this is reported to the Bridge the Officer marks the 

arm c of his Predictor at the reading 5 miles, and makes in 

his own mind an estimate of the minutes still to run before 
collision can occur. He finds there are 12 minutes. He may 
note the time or start a stop-watch. 
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After 2 minutes B gets the second distance signal and 
tells A ‘Distance 4 miles.” And the Officer on A sees 
that this also points to danger, for the distance of approach, 
as observed, obviously has an error of excess and may easily 
represent the danger distance of 0'8 mile. And in this way 
he continues to compare the successive announcements of 
distance with the readings he gets on his Predictor by setting 
forward at each announcement the cursor on a the distance | 
which A travels in 2 minutes. 

All this tome he has a clear mental picture of where B is. 
He can point to her compass direction and say she is there 
ai such a distance. Finally B alters her course so as to pass 
clear of A and lets A know what she has done. The danger 
Is Over. 

It is not improbable that the future extension to large 
numbers of vessels of the powers conferred by recent 
improvements in submarine signalling will result in a con- 
siderable amount of the signalling between vessels being 
carried out by this means: in this way reducing the number 
of wireless messages required. 
We shall now consider the use of the 3rd criterion—that 

which seeks to foretell threatened collision by observation of 
the constancy of bearing. This criterion does not involve a 
knowledge of the courses and speeds of the vessels. 

The wireless goniometer—which in late years has been 
much improved—is claimed to afford a means of finding the 
direction whence a wireless message proceeds, with much 
accuracy; and this even with the use of considerable wave- 
lengths. It is difficult to discuss these claims or to pronounce 
on how far they may extend to conditions of hurry, anxiety, 
and bad weather. Readings to a single degree have been 
claimed. The polar diagram of the energy transmitted by 
the Bellini-Tosi Directive Transmitter shows that some 10 
or 11 degrees from the maximum of 88 microvolts the reading 
may be still 86 microvolts. Taking the distribution of 
intensity, when the system is used as receiver, to be similar, 
it would appear that the loudness of the sounds must vary 
but slowly near the maximum. The setting depends entirely 
on the discrimination of the direction of loudest telephonic 
sound. Most of us find difficulty in determining maxima 
when the senses, either of hearing or sight, are appealed to 
quantitatively and by consecutive impressions. 14 

There must apparently exist a similar bar to attaining 
reliability of goniometric readings in the case of finding 
bearings by submarine signals. And the fact that an altered 
course must, in general, be held while the bearing is 
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being watched is a serious objection to the use of submarine 
signalling for the purpose now in view. refer to these 
difficulties because prima facie one might think that by 
merely determining the censtancy of bearings by wireless 
goniometer or submarine signals the danger of collision can 
be always foretold and averted. 

The principle involved in this method is familiar to every 
sailor. If the bearing of B from A is steady, collision is 
threatened. Represent the courses of A and B by inclined 
lines, intersecting at O. Now suppose that A runs the dis- 
tance A O in the time that B runs the distance B O: then 
collision must occur. And it follows that when A has run 
half the distance A O, B must have run half the distance BO. 
If we join the simultaneous positions of the two ships we get, 
therefore, for the bearings lines which are parallel. That 
is, the bearing of ship from ship remains constant. 

Even when used in clear daylight it is often objected to 
this method :—‘‘ While you are looking for a change of 
bearing the ships may collide.’ And the answer. sometimes 
given is “‘there is no other method.” Now, whatever may 
be said against this objection when the sailor can guess 
his distance from the other vessel by visual observation, it 
must be remembered that the proposed use in this way of 
the wireless goniometer leaves the sailor without any reliable 
estimate of distance. [For the strength of the wireless 
signals must afford but a doubtful estimate of distance. 
They suffer not alone from instrumental sources of variation 
but from variations, due to atmospheric causes, quite out of 
the control of the operator to alter or to predict. See on 
this subject, more especially, the observations of Admiral 
Sir Henry Jackson which showed a capricious reduction 
of carrying power from 65 to 22 miles ; or again, those of 
Captain Wildman who obtained frequent successive varia- 
tions in audibility of 1 to 5 and rising to 1 to 10 or even 
more. The cause of these variations may most probably be 
traced to changes in the conductivity of the atmosphere due 
to mist, spray, etc., whereby variations in the absorption of 
the energy of the electric waves are brought about. Judging 
from these observations any dependence on the strength of 
wireless signals as giving an estimate of distance must be 
attended with danger ; just as much as judging the distance 
of a light by its brightness. 

The wireless compass may indeed under certain conditions, 
in addition to other inestimable benefits conferred by it 
upon the sailor, be a valuable means of discriminating 
between safety and danger. For if there is a rapid 

Phil. Mag. 8. 6. Vol. 36. No. 211. July 1918. D 
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alteration of bearing there must be safety. The question is : 
can it always be reliably employed? It isa fact that just 
when the courses of the vessels are so directed as to cause 
the ships to rapidly approach one another, there may be 
only a small change of bearing in a given time; and for 
the sailor to spend valuable minutes in setting the wireless 
compass to the loudest sound in the telephone when the 
ships are rapidly approximating one towards the other, 
and when it is not known for certain whether 10 miles 
or 3 miles separate them, is not a safe procedure. The 
complete and final solution of the problem of collision 
would appear to involve the determination of the distance 
separating the vessels. Otherwise the navigator must make 
his observations under conditions of anxiety ; and in the fear 
lest worse should happen must frequently be driven to alter 
needlessly the course of his ship. 

The 4th criterion—that foretelling collision by constancy in 
the rate of approach, asin the case of the method by constancy 
of bearings, does not involve knowledge of courses and speeds. 
But it possesses the very great advantage of keeping the 
sailor informed all the time of the distance separating the 
vessels; obviously an important element of safety and 
conducive to the peace of mind of all concerned. 

The application of this method involves simply the 
periodic emission from one of the ships of synchronous 
signals, the other ship receiving them and reporting the 
distance. Or each ship may alternately emit the signals 
and make its own observations of distance. When A hears 
the regulation fog signals of B the synchronous signalling is 
commenced and the signals sent out, say, at intervals of two 
minutes. Or the method might be applied under Board of 
Trade regulations enjoining the periodic emission of 
synchronous signals in thick or foggy weather. When the 
vessels come within hearing of the submarine sounds the 
Officer writes down the distances as his wireless operator 
reports them to him. If they continue to show a constant 
rate of approach even when the vessels draw near one 
another there is danger. If the rate of approach diminishes 
there is safety. If the vessels are approaching so as to pass 
close to one another the change of rate will be very marked 
as the distance diminishes. The most valuable feature 
of this method is that the sailor knows all along what time 
must remain for action. supposing collision is really 
threatened. A rough determination of bearing completes 
his observations and tells him how he must act. 

Trial of all these available methods should be made by the 



7 

Signalling and Safety at Sea. 35 

Authorities and rules framed according to the results 
-of experience so obtained, dictating to the mariner when and 
under what conditions one or the other method is best 
employed. 

The problem presented when three vessels are in the area 
-of audition requires careful consideration and would involve 
‘special Board of Trade regulations. Generally we must 
suppose the entry of a third ship, C, into the area occupied 
by A and Band while the latter were exchanging signals. 
It would seem reasonable for C, under these circumstances, 
to have to keep out till A and B are clear of one another. 
Again, while C is waiting for the decision between A and B, 
she must be restricted as to wireless and submarine signals 
if confusion is to be avoided. She might be restricted to the 
-emission of the aerial sound signals now in vogue. These 
could not create confusion with the other signals. And 
when, finally, she enters on an exchange of signals with the 
-other ships, it should be a rule that each vessel emits her 
distinguishing signal in conjunction with her other signals, 
-so as to avoid confusion as to the origin of the signals. 

If such general rules were observed there does not seem 
to be any serious difficulty in conducting the signalling 
betweenall three vessels. Afterexchanging coursesand speeds 
‘C sends out “ bearing”’ signals and A reports thus : “C bears 
fom A.) . .” and B reports: ““€ bears from B.. ..” 
‘The Officer on C now finds, using two Predictors, that he 
‘is clear of A but not certainly of B. This is also known 
on A and B. OC makes sure of this by saying “C is clear 
-of A,” and A replies “A is clear of ©.” The signals are 
now restrictedto Cand B. After this all proceeds as before. 
When the time for giving way arrives the ship which is 
giving way takes account of the position of A. The latter is 
probably quite clear, but whether she is or not her position 
would be sufficiently known to B or C to avoid risk attending 
alteration of course or speed. 

The congress of more than three vessels must be rare. 
The difficulties involved can only be met by clear and definite 
rules framed by experienced seamen. 

One thing stands out clearly from our review of available 
methods: Modern improvements in signalling may be utilized 
to reduce the risks of collision enormously, no matter what 
‘the circumstances. Future developments of wireless tele- 
phony may even further simplify the sending and receipt of 
-signals. A vessel’s distinguishing signal may be her own 
mame dictated from the “phonograph. In tog and thick 
«weather she proceeds over the ocean calling her own name at 

D2 
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regulated intervals; and at longer intervals she cries, to all 
whom it may concern, her course and speed. All possible: 
courses and speeds might be dictated from two phonographs. 
Timed with these wireless announcements she sends out sub- 
marine signals also which enable ships 10 or 20 miles away to. 
estimate her distance. She is as it were surrounded by an 
aureole of radiations transmitted both in matter and eether,. 
proclaiming to such other vessels as enter that aureole what 
she is; how far off she is; where she is going to; and at 
what speed she is approaching or receding. 

This is no fancy picture—It could be made reality to-day.. 
And doubtless the time will come when it will be made 
reality. The fabled wonders of Jason’s Argo fade to common-- 
place compared with the accomplished wonders of our day. 
The miraculous gifts of Lynceus were not so marvellous as. 
those powers of vision and audition which Science confers. 
upon the sailor. 

Il. Variably-Coupled Vibrations: Il. Both Masses and 
Periods Unequal. By pwiy H. Barton, D.Sce., FAS... 
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I. Dyrropvuction. 
i the work described in previous papers t, the double- 

cord pendulum was experimented with: (1) when the 
masses of the bobs and the periods of vibration of the 

* Communicated by the Authors. 
+ Phil. Mag. [6] vol. xxxiv. no. 202, pp. 245-270 (Oct. 1917); Phil. 

Mag. [6] vol. xxxv. no, 205, pp. 62-79 (Jan. 1918). 
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separate pendulums were equal ; (2) when either the masses 
of the bobs or the separate periods were unequal. The 
present’ paper deals with the cases where the masses of the 
bobs and the periods of the separate vibrations are both 
unequal. 

This mechanical case may be regarded as somewhat 
analogous to the electrical case of coupled circuits in which 
the inductions and periods are both unequal. 

A series of photographs was taken from sand _ traces 
obtained when the masses were 20:1 and the length of 
the pendulum with the heavier bob as 4:3 of that with the 
lighter bob. The ratio of the frequencies then slightly 
exceeds 8:7, 2.¢., to put the matter in acoustical terms, 
the pendulums are out of tune by 248 logarithmic cents 
or approximately a tone and a quarter. 

Other photographs were taken with masses 20:1 and 
pendulum lengths as 9:8, the lighter bob still being on 
the shorter pendulum. The ratio of the frequencies slightly ' 
exceeds 21:20, 2. ¢., the pendulums are out of tune by 
102 logarithmic cents or approximately an equal-tempered 
semitone. 

In both cases it was noticeable for small couplings that 
very little of the energy of the heavy bob was required to 
build up in the lesser bob an amplitude nearly equal to that 
of the heavier bob. Further, that for couplings about 
30 per cent. the curves obtained were almost identical in 
the two cases and almost indistinguishable from that of 
30 per cent. coupling shown in Paper II. for masses 20: 1 
and lengths equal. 

The pendulum with the heavy bob was altered in length 
until it was 3:4 times as long as that with the light bob, 
the masses remaining as 20:1. The results of theory and 
experiment were rather striking. The ratio of the fre- 
quencies of the separate pendulums slightly exceeds 8: 7. 
As the coupling was increased from one to about six per cent. 
the ratio of the frequencies diminished to about 13: 12, and 
the two pendulums had greater action and reaction on one 
another. When the coupling was further increased, the 
ratio increased to 2:1 at coupling about 30 per cent. as in 
the other cases. 

Quenched Spark.-—Prof. J. A. Fleming has pointed out 
that by means of a rapidly damped spark discharge in a 
primary circuit a slowly damped electrical vibration may 
be produced in the secondary or antenna. In this paper a 
photograph of a mechanical analogue of such a discharge 
is reproduced from a sand trace. 
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Il. THrory oF GENERAL CASE. 

Equations of Motion and Coupling. — The Buneteee 
pendulum was shown in figs. 1 and 2, p. 253, of the first 
paper (Phil. Mag., Oct. 1917). The " equations of motion 
and coupling were there given as equations (25), (26), 
and (29) (pp. 253-254). ‘They may now be rewritten as: 
follows :— 

P = =F P9 =p (1) 

(Q) a + Qoy=0, ote Se eee (2) 

ee ee a 
Y™ (P+Q4+6Q)(P+6P+Q) °° 

The ratio of the masses of the bobs may be expressed by 
p=Q/P and the lengths of the suspensions for the y and z 
vibrations by / and / respectively, the droop cf each bridle 
being @l. 

Then — Blow z—- Blo 
yee ; VS ai ° e e e (4) 

Further, neglecting masses of suspensions, connector, and: 
bridles, @ must satisfy 

OS oo aN 

py —e) =9(o—@). 
Then (4) in (5) gives : 

Pee ca a Mee 4 
“B+ n+p + Bop - 

or (9) 

And (6) in (4) gives 

(tip 8e)y— 8p: | (7) 
(B+ 7+np + Ben)’ 
(B+ + 1p)2— By = me aS 

i UB ++ np + Spy) (8) 
Inserting frictional term 2/Pdy/dt in (1), putting g/l=m? 

and dividing (1) by P and (2) by Q, then (7) and (8) in (1). 
and (2) give 

dy a 1+p+8p 9 Bpm’ 9), 

dt? las * B+n-+np + Bap mee Ban+np+Bnp” @) 

ae Bi ym pets ere Uae 
dt * B+n+np+Pnp B+n+1p+Brp 
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Further, the coupling may be written 
lomo) 

igh 
~ (+p +Bp)(B ++ mp)" a 

To simplify, (9) and (10) may be abbreviated thus: 

a? d Se +2k 2 tay=pbz, . . . . (12) 

a CS =U a ok en ploy 

Where 
oe ep + 8p fee Bm? 

B+n+np+Bnp: 8+n+np+Bnp 
B++ np 2 and c= mes a OvAN 

” °~ B+n+np+ Bap oy, 
Equations (12) and (13) are the same as (6) and (7) of 

Paper II., but the values of a, b, and ¢ are different. 
Solution and Frequencies. To solve (12) and (13) we 

write 

eet. | 
y= (Ste ( Sy Roce ro BLS). 

From equation (11) of Paper II., we see that the values 
of x may be written 

eae cand, —strig. . .°..\. CLG) 

Hence, gee small quantities, we have 

=[ebat /{(o—o)? +40") 
ek =|c+a— v7 {(a—c)?+4b’} | 

a—c+ /{(a—c)?+4pb"} ,- 

QV {(a—c)! + dpb} 
e—a+WV{(a—c)? +46" , 

2/7 \(a—c)?+4pb"} 

Thus using (15) and (16) and introducing the usual con- 
stants, the general solution may be written in the form 

z=e-"(Ae™ i Be) fe e “(Cet zs Dea), : (19) 

Then 

(17) 

(18) 
s= 

and 
te : : es ; : y= PES) oat Betty 4 (ETE) (Cet 4 Doty 

= Pm Ae + Be?) + =I 6G 4 De, - (20) 
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When small quantities are further neglected, these will 
simplify to 

z=He-"sin (pt+e)+Fe-*sin(gt+@), ~. (21) 
and 

y = Ge-" sin (pt+e) + He-*sin (gt+¢). . (22) 

(21) and (22) are each equations of two superposed 
vibrations, of which the frequency ratio is 

pis a J {(a—c)? + 4pb?} 2 (23) 

q Leta Vie= 4 4oe 
where a, b, and ¢ are given by (14). 

Initial Conditions—Let the heavy bob of mass Q on 
the pendulum of length J be pulled aside a distance f by 
a horizontal force, the light bob on the other pendulum 
hanging freely at rest. The displacement of the light bob 
can then be written at once from equation (31) page 67 of 
the January paper, since the length of this pendulum makes 
no difference to the quantity in question. Hence we have 

For t=0, : 
Bef B z=fp y= > = SS nearly 

1l+pt+ 14-8 a p+ Bp 7 for a . (24) 

Gai ay 
ak == 0, and dt ie 

Then, introducing these conditions in (21) and (22) and 
into the differentiations of these with respect to the time 
and, as before, omitting small quantities, we find 

jf =HEsine+F sin 4, 

Sse athe F i (25) 
eacin sine-+ H sin ¢. 

0=Ep cos e+ FQ cos ¢, 9 COS € oe . (26) 

0=Gp cose+ Hq cos @. , 

Equations (26) are satisfied by 
7 T \ 

Cpe b= 5° ould fon Stee aite (27) 

From (17), (20), and (22) we have 

au aD Cn Cem / {(a—c)*+ 4ph?} E, 
b 2b 

r- (28) 
Lo OP ee eat V{(a—c)? + 4pb"} | 
a Fiz oF F J 
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Equations (27) and (28) in (25) give 

ae EE Dee eR eae em era O42) 

and 1 SONOS v{(a—c)? + 4pb*} 

1+ 8 2b 

vi ¢—at+ Bia al = C80) 

whence Bye e0)) 8) — 208. (31) 
FU (—e+a+d)(1+f)+20—8? °° ¢ 

and Ge __ Apb*(1+ 8) + 2bB(c—a—68) (32) 
H™ 4p0?(1+@)+208(e—a+6)’? °° 

where =e a)?+-4 p05) 8) GB) 

These give the values of the ratios of the vonstants deter- 
mined by the initial conditions in question, and this is all 
that we need to check the records experimentally obtained. 

Ill. ExpermMextat RESULTS. 

Masses 20:1, Lengths 4:.3(n=3:4).—The relations were 
ealculated from the theory given so as to obtain any desired 
values of the coupling and frequencies, the results are shown 
in Table I. For the longer pendulum the sum of pendulum 
length and droop of bridle was 229 cm., and it had the 
heavier bob. . 

TaBLEe I.— Masses 20:1, Lengths 4:3 (n=3: 4). 

. Bridle Droo Frequenc Coupling - = Ratio i 
iy Xe Long Pendulum Length. pid. 

Per cent. 
0 0 1-154 
4°245 0:2 1255 
9°96 0°5 1-403 

17-07 1 1:62 
28 2°12 2 
34:43 3 2°29 

Figures 1-5 (Pl. II.) show photographic reproductions of 
the double sand-traces simultaneously obtained, with masses 
20:1, 72.e., p=20 and the length of the pendulum carrying 
the lighter bob 3: 4 of that with the heavier bob. The first 
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four photographs (with couplings 4 per cent. to 28 per cent.) 
were obtained by drawing aside the heavy bob and allowing 
the lighter one to settle in its more or less displaced position, 
according as the coupling was tight or loose. The fifth (with 
coupling 28 per cent.) was obtained by holding the light 
bob in its undisplaced position and pulling the heavy one 
aside. 

In all the curves it is noticeable that there is very little 
fluctuation of the amplitude of the heavier bob, although the: 
amplitude of the lighter one waxes and wanes considerably. 
Comparing fig. 1 of this paper with figs. 6 and 21 of the 
January paper, it is seen that the amplitude of the lighter 
bob in fig. 6, Paper II., is much greater than that attained 
when the lengths are unequal as well as the masses. But the 
shorter pendulum in fig. 21, Paper II., has an amplitude. 
much less than that of the shorter pendulum in the present 
case. Fig. 4 in this paper is almost identical with fig. 8 of 
Paper II., the amplitudes in the two cases are nearly the same 
and the couplings are almost alike. Fig. 5 of this paper is: 
also similar to fig. 9 of Paper IT. 

Masses 20:1, Lengths 9:8 (n=8:9).—Table II. shows 
the frequencies for certain couplings with the masses of the 
bobs 20:1 and the lengths of the pendulums 9: 8, the longer 
one having the heavier bob and being 229 cm. long if the 
droop of the bridle were zero. 

TasiEe I{.—Masses 20:1, Lengths 9: 8. 

coupine a ae ae 
= i)/< Long Pendulum Length. Pg: 

Per cent. 
0 1:06 

4 019 1162 
10 | 0:55 | 1°32 
15°75 1 : Dee 29-5 2°6 | = 

| 

Figs. 7-12 (PJ. III.) show photographs taken with masses: 
still 20:1, but the length of the pendulum with the lighter 
bob 8/9 that of the one with the heavier bob. Again we 
see very little fluctuation of the amplitude of the heavy bob 
throughout. Figs. 7-9 were taken with the heavy bob held 
aside and the light one free to hang in its more or less dis-- 
placed position. Fig. 10 was taken with the light bob held 
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aside and the heavy one allowed to hang freely. Figs. 11 
and 12 were obtained with the heavy bob drawn aside and 
the light one held in its zero position. It may be seen that 
fig. 6 in Paper II. is more like fig. 7 than like fig. 1, both. 
ot the present paper. On the other hand, fig. 21 of Paper II. 
is less like fig. 7 than like fig. 1, both of this paper. This is. 
because the separate frequencies of the component pendulums. 
are more nearly in tune with each other. Fig. 10 shows the- 
effect of drawing aside the lighter bob, little energy is given 
to the heavy bob and there is but little action or reaction of. 
the one bob on the other. Fig. 12 is almost identical with 
fio. 5 of the present paper and with fig. 9 of Paper II., and. 
the couplings in all cases are very nearly the same. 

Masses 20:1, Lengths 3:4 (n=4:3).—'Table ILI. shows- 
the frequencies, couplings, and bridle droops with bob. 
masses 20:1 and pendulum lengths 3:4, the longer one 
having the lighter bob, and its ‘length being 187, em. if 
the bridle droop were zero. 

TaBLe I1].—Masses 20: 1, Lengths 3: 4. 

| Bridle Droop requoney | Ratio of Amplitudes. 
=6 pee es FE aS A Coupling d ead 

mie Short Pendulum Bene. p:4q. E:F. | G:H. 

Per cent. | ae 

0 Peele ves NS eR 
1-76 01 | 1-106 104-6 —0'809 
337 | 0-2 ee OF, 12°9 
435 | 0°3 |  1:054 2°283 —0:893 
6:3 0-4 | 1:065 
TD 05 1090" fe 2870 —0°836 
99 O7 PotD Ay 
1297 | 1:0 | 1:248 | 0:0696 —0°640 | 
pit( | 4:0 | 1°952 | 

| | | 

The figures illustrating the cases in Table III. were- 
obtained with the new portable apparatus shown in fig. 13 
(Pl. V.) and which is described in detail later. Figs. 14—22: 
(Pls. LV. & V.) show traces taken with masses 20: 1 and the 
length of the pendulum with the heavy bob 3/4 of that with 
the light one. Figs. 14-21 were obtained by drawing aside: 
the heavy bob and allowing the light one to rest in its more 
or less displaced position. In figs. 14-17 it is seen that the: 
light bob is almost undisplaced. In fig. 22 the light bob. 
was held undisplaced while the heavy one was drawn aside. 

It is noticeable that with couplings between 2 and 13. 
per cent. the fluctuations of amplitude of the heavy bob are- 
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‘distinctly marked especially about 6 per cent. In this case 
the heavy bob gives up nearly all its energy to the light bob, 
which then attains an amplitude more than three times that 
with which the heavy bob started. For very small or very 
large couplings there is very little fluctuation of amplitude 
in the vibration of the heavy bob. ‘This is seen in figs. 14, 
15, and 20-22. ‘This is in accord with the theory. For the 
ratio between Hf and F, the amplitudes of the driver’s super- 
posed vibrations have been calculated for the initial con- 
‘ditions in use. The results are given in Table III., which 
shows that H/F has values near “unity for couplings about 
six per cent. Whereas for very small couplings much ex- 
-ceeding six per cent. H/F is very small. And either a large 
Or el value of H/F means inappreciable fluctuation of the 
driver’s resultant amplitude. 

Let us now consider the question of the ratio (p/q) of 
ies of the superposed vibrations and the variation frequencies of the superposed vibrations and tl lati 

of this ratio with coupling. When the coupling is zero this 
ratio naturally has that value which applies to the pendulums 
when separate. When the bobs were equal and lengths 
unequal, the value of this ratio increased with the coupling 
until p/g almost merged into the value for equal pendulum 
lengths (see fig. 2,.p 75, Phil. Mag. January 1918). When 
the bobs were unequal as well as the lengths but the heavy 
bob was on the long pendulum, the same behaviour was 
noticeable in the ratio p/q and its dependence on coupling 
(see Tables I. and I1.). 

On the other hand, when bobs are unequal as well as 
lengths but the heavy bob is on the short pendulum, a quite 
new feature is theoretically predicted (see Table IT1.). Thus 
when the coupling is gradually increased from zero, the 
value of p/g at first diminishes, reaches a minimum and 
then increases. ‘These striking features are to a first 
approximation upheld by the experiments. Hor, as seen 
in passing along figs. 14-20, the number of vibrations in 
the beat cycle at first increases and then decreases. The 
maximum number of vibrations in the cycle is about 13 
‘and occurs in fig. 17 for a coupling of 6°3 per cent. 
Accordingly this coupling should correspond to a minimum 
value of about 1:08 of the ratio p/g. From Table UL., 
however, it is seen that the minimum value of p/g¢ is about 
1:054 and occurs for a coupling of about 5 per cent. These 
slight discrepancies are easily accounted for by the presence — 
of the sand in the funnels and a possible error in estimating 
the lengths of the simple pendulums equivalent to those 
in use. Thus, if with the average amounts of sand in the 
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funnels the masses were in the ratio 19: 1 and if the lengths. 
were really 11: 16 (instead of 20:1 and 12:16 respec-- 
tively), the minimum value of p/g as calculated would be 
in sensible agreement with that experimentally observed and 
would occur for practically the same coupling as that in 
actual use. Table LV. is calculated from the above data 
and is found to agree fairly well with the observations. 

TasLe [V.—Masses 19:1, Lengths 11: 16. 

Coupling Pade ia Le 3 Pees 

per Short Pendulum Length. p:q. 

Per cent. 
| 0 1-21 

1-724 0-1 1:155 
3301 | 0-2 1115 
4:758 0:3 1-086 
6112 ' O-4 1-072 
7-379 | 05 | 1-076 

Figs. 21 and 22 show traces with 32 per cent. coupling,. 
which gives a ratio of p/g almost equal to 2:1 or a tone and 
its octave. In fig. 21 the conditions of starting masked the 
compound character of the vibrations, but this is clearly 
revealed in fig. 22. 

Quenched Spark.—Fig. 52, p. 714 of Professor J. A. 
Fleming’s ‘Principles of Electric Wave Telegraphy and 
Telephony,’ 2nd ed., shows “the electrical beats produced 
in the primary and secondary circuits when a sustained 
primary spark is used and the single periodic oscillations. 
in the secondary circuit when the Quenched Spark is 
employed.” The mechanical analogue of beats was obtained 
on the double-cord pendulum (see figs. 1 and 2, Plate V.,. 
Phil. Mag. October 1917). The damping was not so marked 
as in Prof. Fleming’s case, because our damping factor was 
almost negligible. 

To produce the effect of the quenched spark the masses of 
the bobs were equal and also their separate frequencies ; 
further their coupling was 10 percent. One of the bobs. 
was drawn aside and the other allowed to hang in its 
slightly displaced position. The bob was then freed and 
its oscillations were quickly diminished by the transference. 
of its energy to the other pendulum, which in about six 
vibrations had attained an amplitude equal to that with. 
which the other pendulum started. The first pendulum had, 
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-at this instant lost all amplitude, and it was then suddenly 
raised by hand and held in this position while the other bob 

oscillated with the single period. Fig. 6 (Pl. Il.) is a 
photographic reproduction of the sand traces thus obtained. 
The lower trace represents the quenched spark and the upper 
‘one shows the vibrations set up in the secondary circuit or 
antenna. 

ITV. PortTaBLeE APPARATUS. 

The work with the double-cord pendulum up to fig. 12 
‘inclusive was done with a rough apparatus suspended trom 
beams of the roof. At thus “point it seemed desirable to 
‘have an apparatus that was portable and so arranged as 
‘to facilitate the various adjustments required. This was 
-accomplished by the new apparatus shown in fig. 13 (Pl. V.). 

It consists essentially of a braced framework of deal, 
-one and a half inches square, the main rods being each 
six feet long. ‘The bridles are of whipcord and fastened 
off on cleats fixed on the end frame. The pendulum suspen- 
sions in actual use are wires of various lengths with hooks at 
-each end, the fine adjustment being attained by a thin cord 
and tightener as used for tent ropes. In the photograph 
these working bridles and suspensions would have been 
-searcely visible and so were replaced by coarse white cords. 
The two longitudinal rods at the base of the frame are 
provided with rails made of hoop-iron set edgewise and let 
‘into saw-gates along their length. These rails carry four 
ball- bearing sheaves, which are fixed on the under side of 
‘the board 31 by 23 inches arranged to carry the detachable 
ecards which receive the sand APA ges: To draw this board 

-along, a cord passes from the centre of one end through two 
. e . al e 

‘tension-eyes to a bobbin on one side of the end frame. This 
hobbin is turned by a handle slowly or quickly as may be 
desired for the purpose in view. 

V. Courting GRAPH FOR CoRD AND LATH PENDULUM. 

Both in the electrical case and for the double-cord 

‘pendulum the coupling may approach but cannot reach 
the value unity. But in the case of the cord and lath 
pendulum the conditions are somewhat different (see 
‘pp. 258 and 259, Phil. Mag. October 1917). Thus we have 
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where y is the coupling and » is the ratio in which the 
second suspension divides the lath. 

So that here also with increasing positive values of a, 
‘y only approaches but never reaches unity except for c=a. 
But for negative values of a we see that y may reach unity 
for a= —-1. 

This suggested plotting a graph giving ¥ as ordinates, 
being the abscisse. This is shown in fig. 23 (PI. V.). The 
graph has a maximum and a minimum at a= —2 and points 
of inflexion at a= —0°344 and —2-906 nearly, and it also 
asymptotes to y=+1. 

VI. PossipLe FurTHER WorkK. 

The vibraticns of two coupled pendulums have hitherto 
been developed for their own sake and as an analogue to 
electrical vibrations in coupled circuits. It appears, how- 
ever, that by modification of the pendulums the analogue 
may be usefully extended so as to illustrate phenomena in 
various other branches of physics. 

The following have occurred to us as worthy of investi- 
‘gation and plans of attack of several have already been 
matured :— 

1. Kater Pendulum for ‘‘ g ” and the possible disturbance 
-of period due to vibration of bracket. Theory and experi- 
ment will enable us to evaluate the possible error and 
-eliminate it. 

2. Large vibrations with restoring forces not simply 
proportional to the displacement but involving its squares 
-or cubes. 

3. Such a system under double forcing. 
4. Optical Dispersion. 
5. Dynamical Analogies to Colour Vision and Hearing. 
6. Any of the above but further specialized by damping 

avhere necessary. 

Nottingham, 
March 16, 1918. 
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TIT. On Ship- Waves, and on Waves in Deep Water due 
to the Motion of Submerged Bodies. By Grorce GREEN, 
D.Se., Lecturer in Natural Philosophy in the University of 
Glasgow”. 

Note by Professor GRAY. 

THE followimg paper was ready for publication at the be- 
ginning of 1916, but was putaside on account of war work.. 
It was further deferred by Dr. Green’s appointment to the. 
Royal Engineers and his departure to France on military 
service. Recently, when he was in Glasgow on leave, I 
advised him to revise the MS.in order that, if possible, it 
might be published without further delay. The paper may 
be regarded as a continuation of Lord Kelvin’s work on 
Waves, with which Dr. Green was associated for some time: 
before Lord Kelvin’s death in 1907. 

Glasgow, Feb. 16, 1918. A. Gray. 

i ae present paper may be regarded as a continuation 
of Lord Kelvin’s work on Ship- Waves. It deals first. 

with the fundamental problem of Ship-Waves, which is—to. 
determine the wave-motion produced by any arbitrary applied 
surface-pressure. ‘lhe method used to obtain the solution of 
this problem is virtually that used by Lord Kelvin in his last 
paper on Water-Waves,—but here extended to apply to any 
arbitrary conditions of applied surface-pressure. The paper 
then proceeds to indicate how we may use the solution given 
for the case of an arbitrary surface-pressure to obtain the 
solution of any problem involving the motion of submerged 
bodies; and a complete discussion is given of the wave-dis- 
turbance due to a cylinder and a sphere moving with con-. 
stant velocity at a considerable depth bencath the surface. 

§ 1. ARBITRARY SuRFACE PRESSURE. 

Taking an origin in the free undisturbed surface of an 
infinitely extended mass of liquid, with x and y axes in the. 
surface and the z axis drawn downwards, we can express the 
conditions to be fulfilled by the velocity-potential, $(z, y, z, ¢), 
corresponding to any possible motion of the fluid by the 
equations— 

Vie =0) 50.03. Oe 

pip = 9(z+8)— Sf, ea 

* Communicated by Prof. A. Gray, F.R.S. 
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where p denotes the pressure, p the density of the fluid, at any 
point (2, y, z),and € denotes the vertical component displace- 
ment of the particle of fluid whose equilibrium position is at 
point (x,y,z). When the upper surface of the liquid is 
free from applied pressure equation (2) takes the form 

_lo¢ ep foe 
Core or Oz 9 OF 3 Sil Aeouusarien) Vee (3) 

for all points on the free surface. If the velocity-potential 
@ satisfies equation (3) at all points of the fluid, each surface 
which is level when the fluid is undisturbed is a surface of 
constant pressure in the motion corresponding to this velo- 
city-potential. Equations (2), and (3), also each involve the 
assumptions that the motion is small and irrotational. The 
first of these requires that the squares of velocities of the 
fluid particles should be negligible, and the latter is evidently 
fulfilled in all the cases of motion to be considered, since in 
each case the motion is produced from rest by pressures 
applied to the boundary. 

When a particular motion is such as could be produced 
from rest by impulsive pressures applied to the boundary of 
the fluid there is a relation between $(4, y, z, t), the velocity- 
potential of the motion at any instant, and the impulsive 
pressure II(z, y) which caused the motion. This relation is 
expressed by the equation 

a pd (ayys 25 8). het a (4) 

with z=0, and t=0, if we exclude from consideration pres- 
sures which are uniform over the whole free surface. An 
application of this relation, which is of special importance in 
connexion with the type of problem with which we are 
dealing, is to the case where a finite pressure p(z, y) is 
applied to the surface for an infinitesimal period of time 
dr. ‘The impulsive pressure is in this case p(x, y)dt, and 
the velocity-potential of the motion to which it gives rise is 
—(1/p)p(2, y, z, t)dt, where p(a, y, z, t) must be deter- 
mined to satisfy equations (1) and (3) in addition to the 
equation 

pa, ys 0, O)=p(my). - . . . « (5) 
As we may regard any continuous application of pressure to 
the surface as equivalent to a series of impulsive pressures 
delivered in consecutive infinitesimal intervals dt,, dt, dts, 
&c.,it is clear that a summation of velocity-potentials, similar 
to that expressed by —(1/p) .p(x,y,2z,t)dr for the interval 

Phil. Mag. 8. 6. Vol. 36. No. 211. July 1918. E 
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dt, can be obtained to represent the motion due to any 
system of applied pressure. . 

In working out the application of this process to ship- 
waves, we may, without loss of generality, take the case of 
4 pressure symmetrical about a vertical line, represented by 

p(2, y)=f/@), where o’=2'? +7. 2 ee 

Let this pressure be applied to the surface at time t=0, with its 
mid point at the origin, and let it move with uniform velocity 
v, in the positive direction of the xaxis. At time 7 from the 
commencement of its motion, the moving pressure has reached 
the point (vt, 0, 0), and in the ensuing interval dv it applies 
the impulsive pressure /{(e—vt, y}dr to the surface. The 
corresponding velocity-potential at any point in the fluid, at 
any time ¢ from the commencement of motion, is represented 

by 
1 

dd = = pod Ve 7); z,t—rh, Beg ha (2) 

where the complete function /(z, y, <, t) is determined to 
satisfy equations (1) and (3). The velocity-potential of the 
resultant motion due to all the impulses delivered up to 
time ¢ is therefore 

t 

la, en ; { drf{e—vt, y, z,t—T}. . (8) 
0 

In an exactly similar way we can make a summation of the 
vertical component velocities, or of the vertical component 
displacements, corresponding to each increment d@¢ of velo- 
city-potential appearing in the above summation. From (7) 
above, with df used to denote the vertical component velo- 
city corresponding to dd, we have 

fe Fi Se ars. ffle—"), y2,(¢—7},- - 2) 
or in virtue of (3) above: 

e 1 2 

df= — sans f{(2—v7), y, 2, t—T;, 0) 

eet) 
= — —di— f{{«—21), y, 2, ta and dé oe xe fi{a—ert), y, 2 T} (11) 

provided the function (a, y, 2, t) satisfies the equation 

of = 0.96) io aay ee = 0, when t=0 (12) 
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Accordingly, in the resultant motion, the vertical velocity 
and vertical displacement at any point in the fluid are given 
by am 

= — an dsj '\(e—vz), y, z, ¢—7)}, + (13) 
IP Jo 

and 

Ee are’ L—vT), Y, 2, (t—T p= — 2 [ay emo), ys (i-nh . ay 
From the equations (8), (13), and (14), it appears that the 
solution of our problem is reduced to the determination of 
f(a, y, 2, t) to satisfy equations (1), (2), (3), and (12): and 
this determination is easily made by means of the theorem 
analogous to Fourier’s double integral theorem, according to 
which 

«a 

fis)=5-( To(hesyk dk ( Pele kelada. Glo) 
“TJ 0 7.) 

and 

PH D= se) 6 olka). boos (ohet)'ak 
[F@ONbaade., i 7 rot LO)) 

The complete solution of our problem to determine the 
velocity-potential and vertical component displacement, at 
any point in the fluid, due to moving pressure, f(a), which 
is appliedéat the origin at time ¢ =0, is thus contained in the 
integrals 

il é eee 1 (2, y,2,t) = — Al a) ore Jo(ka')k cos {gk(t—7)?¥4dk 
a 0 0 

f(s oat OR! ay 

Fe 1 i ee ae 2 
C(a,y,2,t) = + | ar e'* J(ka') k? sin { gk(t—7)?}4dk 

(7 Fe Wee sles day} wllve ae 618) 

in which w’”?=(a—vrT)?+y’. 
When v is put equal to zero in these formulas we obtain 

the solution corresponding to the case where the pressure 
j(@) isapplied at the origin at =0 and kept applied without 
change of position till time ¢. If we indicate the velocity- 
potential and vertical-component-displacement for the case 
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where the pressure is impulsively applied by ¢o(a, y, 2, ¢) 
and (2, y, z, ¢) respectively, the corresponding results for 
the same pressure in motion with velocity v are given by 

Binman={ dt dy\(a—vt),y,2,(t—T)}, ~ (19) 

and 

E(0,y,20)= ‘ dr &,{(@—vt),y,2,(t—1) te. (20) 
By means of these equations the solution for any moving 
pressure problem may be derived from the solution of the 
corresponding impulsive pressure problem by a single inte- 
gration. All that is required is to change s into (a—vr) and 
t into ({—7) in the expressions representing the motion due: 
to an impulsive pressure, and then to integrate with respect 
to T. | 

() 2. GENERAL TREATMENT oF F'LurD MoTION DUE TO 
Motion or SUBMERGED BopiEs. 

We now proceed to eonsider the application of the results: 
contained in § 1 to the problems in which the wave-dis- 
turbance is due to the motion of a submerged solid. The 
velocity-potential in this case, in addition to satisfying 
equations (1) and (2), must satisfy 

». = 0, at the free surface, . 4) 32) .eeneene) 

and the condition that the fluid in contact with the solid has. 
no velocity normal to the surface of the solid, 

98 = veos(n, 2), EMP ee 

where v is the velocity of the solid in the direction of z. 
Let us assume that the solid is moving at a uniform 

velocity, its centroid being at a constant depth beneath the 
free surface, large in comparison with the dimensions of the 
solid. A velocity-potential satisfying all required condi- 
tions can then be obtained by the following system of suc- 
cessive approximations. 

(a) Find first the velocity-potentzal ¢,, corresponding to 
the motion of the given solid in an infinite mass of liquid. 
This fulfils required conditions at the boundary of the solid, 
but involves a certain impulsive pressure at the free surface 
when the motion of the solid commences and also a certain 
surface-elevation. Hach of these leads to a violation of 
condition (21). 
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(6) Take next the velocity- potential of the image of the 
given solid in the tree surface from that already obtained. 
This term, —¢,', involves an equal and opposite impulsive 
pressure applied to the free surface at the commencement of 
motion, and an equal surface elevation subsequently. The 
total elevation of the surface at each point is now double that 

- due to the velocity-potential (a2), and in addition the term 
added in (0) violates (but to a much smaller degree) the 
conditions required at the surface of the solid (22). 

(c) Find by means of (2) the pressure acting at the free 
surface required by the fluid motions referred to in (a) 
and (6). ‘This is the pressure applied by the fluid above the 
surface which is to be the free surface ultimately to the 
fluid below it. This pressure must be applied to the surface 
to maintain the two motions represented by the terms in (a) 
and (6) when the infinite mass of fluid until now assumed to 
be above this surface is removed. further, this system of 
pressure must move along the surface so as to accommodate 
itself to the motion of the solid, that is, it moves along the 
surface with the same velocity as the solid. The terms 
$i—¢;' of the velocity potential imply that this pressure 
system acts on the surface. We must therefore apply 
to the surface a system of pressure equal and opposite 
to that required by the terms introduced in (a) and (6) ; 
and the surface then becomes a free surface. The motion 
due to this system of pressure can readily be expressed 
by means of the results obtained in §1. The resultant 
fluid motion given by the three terms which have been 
indicated above fulfils all the required conditions except 
that contained in equation (22); which is however satisfied 
to a first approximation, since the solid is assumed to be at 
a considerable depth beneath the free surface. 

(d) To proceed to a higher order of approximation we 
must add a motion giving a normal velocity at the surface of 
the solid equal and opposite to that given by the resultant 
of the terms introduced in (b) and (c), with zero velocity at 
infinite distance. This term in turn violates the condition 
for a free surface (21): the next term introduced to fulfil 
the requirements of a free surface violates conditions at the 
surface of the solid; and so on. ‘The whole process amounts 
to finding a series of reflected motions tounded on the motion 
due to the solid and its negative image in the free surface; 
and it may of course be applied to all cases where the solu- 
tion for translational or rotational motion of a solid in an 
infinite liquid has been obtained. ‘The case of viscous liquid 
can be treated in the same way. 
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§ 3. Fiurp Motion pur to Movine SuBMERGED 
CYLINDER. 

As a first illustration of the above process we may write 
down the first three terms of the solution for the case of an 
infinite cylinder moving with velocity v in the direction of 
v positive, its axis being parallel to the y axis. The terms | 
referred to in (a) and (0b) of § 2 are readily obtained from 
the well known solution for the fluid motion due to the 
steady motion of a cylinder in an infinite liquid :— 

od = — av cos O/r =— a*valr?, «ie le ee 

in which the coordinates are referred to an origin coinciding 
with the instantaneous position of the axis of the cylinder. 
The surface elevation, ¢, required by (2) to determine the 
most important part of the pressure term referred to in (c) 
of §2 is more readily obtained from the corresponding 
stream function, representing the fluid-motion relative to 
the cylinder, 

v= — vsin O(r—a’|r) = — ve+a7ve/r. 

At an infinite distance from the cylinder each stream-line is 
practically horizontal and each particle traversing the line 
retains its initial vertical coordinate. Hence taking the 
particles in the plane at s=/h above the cylinder, we have 
ar=—vh as the constant value of the stream function for 
the particles of fluid lying in the free surface. Accordingly 
the equation to the surface as determined by the (a) term 
alone is 

—C=2—h=¢2/r’, ee 

and, to the degree of accuracy we are aiming at, we may 
replace z by honthe right. The surface elevation due to the 
(a) and (6) terms together is then given by 

b= — YaPh|(ar?+)2). . . . (25) 
To the same order of accuracy, the pressure which must be 
kept applied to the surface to maintain the motion repre- 
sented by terms referred to in (a) and (6) of § 2 is given by 

p= — 29p¢eh/ (vw +i) oe 

This pressure must maintain a constant relation to the 
cylinder, that is, in (26) we may regard zw as measured from 
an origin in the surface vertically above the instantaneous 
position of the axis of the moving cylinder. In order to 
make use of (17) and (18), however, it is convenient to use 
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an origin in the free surface vertically above the initial 
position of the axis of the cylinder in expressing the motion 
due to the pressure equal and opposite to that given in (26). 
If we use ¢,;—¢,' to represent the solution corresponding to 
the motion of the solid and its negative image, and @, to 
represent the motion due to the moving surface-pressure, 
equal and opposite to that given by (26) above, then, 
according to (17) and (18), 

é © es Be 
$,(x, z,t)=— (oath) | ar é cos {gk(t—7)?}2dk 

0 0 

Pg iz ae) *I QD 

oy. a +h? 

1 t (lu —kz Pit : 

bla, 2, )=Qutathjm) | ar e — ktsin {ghk(t—1)*}2dh 
0 0 

+0 

cos k{(a—vr)—a} 28 

freetgomaet aa... 08 
The integrations with respect to @ can readily be performed, 

and we obtain 

: ° 6 —k(e+h) : 

po= — 24a dr) é cos k(a—vt) cos {gk(t—7) dk. 
Oo 

29) 
gag: on ete ae : * 

f= 2h | ar| e eaeia eat sin {gk(t—7)*}?dk. 
70 0 

(30) 

The motion here represented may be regarded as that 

reflected from the free surface when a cylinder moves 

steadily with velocity v ata fixed depth h. Hquations (29) 

and (30) may be interpreted to mean that this reflected 

motion is the same as that produced by a line pressure 

acting on the surface which contains the axis of the image 

eylinder and coinciding at each instant with that axis. 

This brings our solution into line with the usual interpre- 

tation of the motion given by (23) as equivalent to a 

line pressure acting at each instant at the axis of the 

cylinder. 
The integrations required in (29) and (30) can in each 

case be carried out by means of the stationary phase principle.. 
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The first integration gives 

o(x, “5 t)= , 

_ go(t'—r)(h+z) 
: He ude ne) (t—7)? calyes ae aale 4(c—vr)? pu) Me g T) eee 

g*a nf TE (w—vr)i cos i - 

(31) 

_ gt—7T)h+2) 
1 a poe 4(2—vr)2 (tate g(t—T)? 7 

eas { ae Cae a A(a—vt) 4? 

(32) 
each of these calculations being subject to the condition that 
(t—r)/(w—vr) is large, and that (w—vt) is large in com- 
parison with the space over which the applied pressure is a 

_ first order effect. These conditions, which are explained in 
a former paper ™*, are fulfilled in the present case where we 
are considering places and times at which the motion has 
become steady. On proceeding to the final integration, we 
find that, corresponding to each value of ¢, only one value of 
7 fulfils the condition for stationary phase—that given by 

(e—o7)=(et— 2). 2 2 ee 

In this, values of x oreater than vt are evidently inadmissible 
as they require that 7 should exceed ¢, hence we may con- 
clude that the effective part of the wave-disturbance is 
behind the mid line of the applied pressure at each instant, 
the forward part being negligible in comparison. ‘The final 
evaluations of (31) and (32), obtained by means of the 
stationary phase principle, are 

Y — 2% (h+e 

o(a, 2,t) = — (Aga?a/v) e at Noe { Seta) f Kee) 

—J. (ite) . } 
C(a, By t) = (4¢a7a/v") é v sin ff (vt — 2) a aate (35) 

These results are valid at all points well behind the moving 
pressure at which steady motion has been established. In 
the immediate neighbourhood of the mid line of the applied 
surface-pressure the complete solutions of (29) and (30) are 
required. ‘he problem of the moving line pressure has 

* See short note at end of this paper, or Proc. R.S.E. vol. xxx. 
p. 247, 



Deep Water due to Motion of Submerged Bodies. 57 

been dealt with by Prof. Lamb*, and we can avail our- 
‘selves of his results for the. surface elevation €. We can 
now write down the complete solution for the motion due to 
a moving cylinder. With X=(vt—.) in the above equa- 
tions, we refer the motion to an origin in the free surface, 
vertically above the instantaneous position of the axis of the 
moving cylinder. For values of X that are considerable 
our approximate solution is given by 

) =$1— $y + he 

a?uX a?uX aie 5 

ar if — (Agatnfr) e ® cos S.X 7 Xp (—Ap? X24 (24h) Ja T1/UvU) € OF ee 

SHO + Se 
g 

2a*h SOA) 
——— SS 4 2 4 ” u b Bae: ° e ° . Kae (4ga°s7/v?) e sin ae (37) 

In the region in front of the moving cylinder the train of 
regular waves represented by the periodic terms in these 
-equations is absent. 

§ 4. Fiuip Motion pur to Movine SupmMercEeD SPHERE. 

The corresponding investigation of the wave-disturbance 
due to a sphere moving with constant velocity v, at a uniform 
depth h beneath the surface, proceeds exactly as in the case 
-of the cylinder. ‘he velocity-potential ¢, of the fluid 
motion due to a sphere moving steadily in an infinite liquid 
in the positive direction of w is given by 

3 Bee peel te SoS a Ea | (38) 

2r 2r 

* For the moving line pressure represented in (380) above 
ie : 

= Ke i f mcosmh—Kksinmh _ x 
,(X,0, t)=4eaTe ~~ sink X —2ea? H ee e dm, 

_at distance X behind the moving line pressure, and 

-mcosmh—« sin mh 
€2(X,0, 2) = — ea) ee 

-at distance X in front of the moving pressure; with «=(g/z?): ‘Hydro- 
dynamics,’ 3rd edition, p. 385. 

T This result differs from that given by Prof. Lamb (Annali di 
Matematica, tome xxi, serie iii. p. 237) in the sign of the term representing 
the system of regular waves, but gives the same value for the wave- 
“making resistance of the cylinder: R=47°gpa‘xe ah given in equation 
(78) of his paper. 

e 2X dm : 
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a being the radius of the sphere, and the coordinates being 
referred to the instantaneous position of the centre of the 
sphere as origin. The corresponding stream function for 
the fluid motion relative to the sphere is 

va® sin? 0 
vy = — vr’ sin? 8 + > (39). 

We have first to determine from this the stream surface con-- 
taining the fluid particles which, when at rest, lie in the- 
plane at vertical distance z=h above the centre of the 
moving sphere. On transferring to polar coordinates (2, a),. 
« in the line of motion, and w (=,/y? + 2”) perpendicular to. 
the line of motion, we obtain the stream function in the 
form 

vaca? 

27 

On any stream line at infinite distance from the sphere,. 
@ has its value the same for any fluid particle as when the 
particle is at rest. Putting o=oa, at r=, we have 
v= —va,", an equation which enables us to write (40)- 
in the form 

Wry = — vot (40): 

a 
S— ay = 952 (41). 

If we assume, as in the case of the cylinder, that the depth 
of the centre of the sphere hf is large compared with the 
radius, on this standard we may replace a by wp on the 
right-hand side of (41) and on the left-hand side we may 
put o+a)=2a,. This leads to 

aa, 

4y? 

at the plane z=h. The change in the z coordinate of any 
point on this surface, being (a—a@)h/a, is now easily 
obtained in the form 

rPaarty?th?,. . (42) @B— B= 

_ ath 
~ Ay? 

An equal elevation of surface at each point is produced by 
the image sphere. This enables us now to obtain the principal 
term of the pressure system which must be kept applied to the 
upper surface to maintain the motion represented by b,— > 

in the fluid beneath— 

p=—lopeh/r?; P=aetyth. . . - (4p 

Party fh, . aay aa G— 2 
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To fulfil the condition of a free surface, we must apply a 
pressure equal and opposite to that given by (44)—that is, 
a pressure symmetrical about a point in the surface at each 
instant vertically above the instantaneous position of the 
centre of the moving sphere. Referred to an origin ver- 
tically above the initial position of the centre of the sphere, 
the expressions representing the fluid motion due to the 
moving pressure system are—— 

3h ct 2 _he | 

$2(2,y, 2,1) =— a | dt | e Jo(ka’) 
e/0 0 v 

—7)2t2dp ) ———. . .. . (45 k cos {gk(t—7)*} n| Eee (45) 

Ly a: ee 

&(2, y, 2,1) = — a anf Bie) 
e 0 0 

Sita dia 
(a2 + #2)E in DE ) ke sin {okt—a) Fae) (46) 

Jo 
with ow? =(a#—vt)’ +7’. 

These become, on integration with respect to a, 

gal? "© —K(2+h) 
2(2, Ys; t) sar re | dt | é Jo(ka’) 

0 ~0 

k cos {gk(t—7)?}2dk, . . . . (47) 

gaa’ t - -— k(z+h) : 

€, (2, Ys *; meee dey. é J (ka ) 

feasim tgk(t—7)2dk,"" . . . (48) 

which correspond to (29) and (30) above and are open to an 
interpretation similar to that given for the motion reflected 
from the free surface in the case of the moving cylinder. In 
this case the reflected motion is the same as would be pro- 
duced by a point pressure, acting on a free surface at a 
height h above the free surface in our present problem, and 
coinciding at each instant with the centre of the image 
sphere. An important part of the motion can again be 
obtained by applying the principle of stationary phase to the 
integrals contained in (47) and (48)*. Corresponding to 

* T. H. Havelock, Proc. R.S, 1910. 
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(31) and (32), we have, by one integration, 

Lous T)*(z+h) 
Sie t 9 t—T)? t—7’? 

Do (2, 4%) t) aa: oe i dt € cai Soi) ° cost) 

ew ee ES 

gt—T)"(e+h) 
el Geen Mn Cr Cy 

O2( 2, Y, 2, y= | dt é€ Cn 

(50) 
These integrals are well known in connexion with the 
ship-waves problem. ‘To obtain the motion at any point of 
space at any fixed time ¢ we have now to consider for each 
value of ¢ two values of 7 at which the phase is stationary, 
namely those given by 

e—ot=}|(vt—2) + V(vt— 2)? —8y|=4(X+R). (51) 

With 7, and T, to represent the values of 7 given by (51), our 
final results for the motion due to the applied surface 
pressure indicated in (c) of § 2 are 

Qear2 com 

oir 
/ 2 . COS (6+ a) Be: (52) 

Or? 

ny g(t--ry(e+h) 
eat 22.3 1D Pe 3 

Cola, y, z, ii De "Vee 2 4m AG 7) 

T=T2 

Sipe a ee 9 
T=T 2a Angy'? t—-T)* 

ho( 2, Ys ~; t)= = ') GaN ee 6 : ( 

T=T» gem (OMe 

ied r 
: WAL .sin(0+ c) 5 ae ne ee 

OT? 

where 6 = a NcoatD, 
Aa’ 

These results are valid in the regions well behind the mid 
point of the moving pressure which is included by the planes 
X?— 8y?=0, but are not valid along, or in the immediate 
neighbourhood of, these planes. Along each of these planes 
the correct evaluations of the integrals in (49) and (50), 
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obtained by means of the principle of stationary phase, are 

gt 3 — gt—r (2+) 
a aa DERE 

hy 2, YZ, t) = — ela? ce val xe 

Mr = FD cos 8 Nie een Ci 

or 

og ee eo! 
Cy (a, y, 2,t)= a tomes: 

“Ouenndee 
</ spsind. Lp antes paltene) 

on 
The value of + applicable in these expressions is that for 

which the two values 7, and 7, coincide, namely 

1 
T= 5, Ga—v), 

and these expressions then reduce to 

Ny a pss 3g h 1 1 
32 gra* at ) An Dai 2 9g = 

(X,¥,2) = abuse _€ RB X _cOs isp x 

22 ars 4 (sé 

06): 

a) Gea? — e+) 1 97\3 } | 
7 EARS 3 v2 4 + , © 3 9g 

ee oe) = aF eo? -xe-sinf (55) p> 

(57) 
the motion being now referred to an origin in the free sur- 

face vertically above the instantaneous position of the centre 
of the moving sphere. ‘The approximate solution we have 
obtained for the fluid motion due to a submerged sphere 
moving with velocity v is accordingly 

b=i—1 + be 

ih a®uX aux 58 

23X24 y?+(2—h)*f? DM 4y?t (eri tom ( ) 

eG er + Cs 

ah | 
= ~ 2x4 pepe to Meio as Oy. (59) 

where d, and ¢, are given by equations (52) to (57) above. 
In a later paper we hope to carry the investigation further 

and to calculate the wave-making resistance of the sphere. 
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NovrE ON THE PRINCIPLE OF STATIONARY PHASE.- 

The meaning of the process which we have employed to 
‘evaluate the integrals in the preceding paper is illustrated in 
its application to the diffraction integral of the type 

J = (“Asingds a=20 (1-2), ee 
Ne % HAS | 

Here S may denote any wave-surface, and p the length of 
path from an element of surface to any point P at which the 
resultant disturbance due to the disturbances arriving from 
all the elements of Sis required. By Taylor’s theorem we 
may express @ in the form 

00 (s—s9)?/070 (s—so)’? (0° 
= A > (s— So) (5: | + 2 ! ea) + 3 ! (Ss),+ etc. 

(2) 
near any element of the surface S at which the argument 
has the value s, and the phase has the value @, 

The various elements of area ds in (1) are not equally 
effective in contributing to the resultant disturbance at P. 
If the phase 0 varies rapidly from element to element com- 
pared with the amplitude term A, then the various elements 
provide contributions which are nearly equal in value but 
are alternately positive and negative and thus give a very 
small resultant effect. ‘The effective elements in (1) are 
those for which the phase is stationary for small variations 
in s, that is, those in the neighbourhood of which (00/ds)=0. 

In the optical problem thisis the same as (dp/ds) =0, so that 

the condition of stationary phase for the effective elements 

is equivalent to the usual condition for a ray—that the 
optical path is either a maximum or a minimum. Thus 
the principle of Stationary Phase or Group-velocity in the 
wave-theory is the equivalent of the Law of Least Path for 
the rays, if we look at the matter from the point of view 
of geometrical optics. 

Then again, in the neighbourhood of any value of s, sa 
So, at which the stationary phase condition is fulfilled, the 
range of values of s—so which provide the main contri- 

bution to the value of the integral, may be regarded as very 
small, so that the corresponding values of @ may be taken as 

‘sufficiently represented by 

9 = 6+ =) (82) =0, 40%, ee 
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provided (070/Qs?) is large compared with the greatest range 
of (s—sy) to be considered. This implies a large number of 
-oscillations from positive to negative in the sine term in (1) 
within the effective range of s—sy so that the limits of o 
may be taken to be +2 with only slight error, while the 
-amplitude term may be considered constant and may be put 
-equal to its value at s=s. Under these conditions the 
integral (1) becomes 

at +2 ; 

(em ' A s0°| sin (0) 4 7) tof 

Os? apc S=55 

bs fa SVs (a+) nu tiaial (4) 
Ost S=aS0 

‘The value or values of s) to be taken are determined by the 
roots of (06/ds)=0, and, corresponding to each root, a term 
‘similar to (4) must appear in the expression for the value of 
the integral. When two roots of this equation coincide, then 
(06/d0s) and (970/ds*) vanish simultaneously and we must 
take, instead of (3), 

$— 59)? 030 
gaens 3 B ae IOGear) 

‘This gives us finally for (1) 

one -F oo 

r= 4/90. int Gyo as | 

Os? =, =) 

See Ch)... 

OS al a 0s° S255 

‘Equation (3) cannot be employed when (070/0s”) is small 

or zero. The two conditions (94/ds)=0=(076/ds"), or 

(Op/ds)=0=(07p/9s?) in the optical case, are the conditions 

that two rays coincide at the point P. The effective 

elements are then in the neighbourhoed of a point of 

inflexion on the wave-surface §, and the point P at which 

the rays coincide must lie on the wave-caustic, which 

-scorresponds to a line of cusps in the wave-system. 



IV. Resonance and Tonization Potentials for Electrons in 
Metallic Vapours. By Joun T. Tats, PA.D., and Patt 
Doh oor, Pho 

T has been shown by Franck and Hertz and others that 
when electrons are accelerated through gases or vapours 

there are, especially for gases having small electron affinity 
such as the inert gases and metallic vapours, well-defined 
potentials at which a large transter of energy takes place 
between electrons and gas atoms. The evidence for this 
transfer of energy is in the emission at these definite 
potentials of radiations having frequencies characteristic of 
the gas. 

This absorption by the atom of the kinetic energy of the 
electrons only at definite velocities of the electrons is to be 
expected from a purely meckanical standpoint. A consi- 
derable transfer of energy from the electron to the relatively 
heavy atom can be explained only by assuming that there 
are in the gas atom certain vibrational degrees of freedom of 
which the characteristic period bears some simple relation 
to the time of encounter between the electron and atom. 
Evidence of the existence of these characteristic vibrations is 
seen in the absorption spectra of gases, and it is therefore 
to be expected that, when the potential accelerating the 
electrons reaches a value such that the time of encounter 
between electrons and atoms is simply related to the natural 
period of vibration of an absorption line of the gas in 
question, a loss in the kinetic energy of the electrons and 
an emission of a radiation of the frequency of the absorption 
line will be observed. The essential similarity between the 
phenomena of the absorption by a gas of radiant energy and 
of the absorption of the kinetic energy of motion of electrons 
should be emphasized. 

The experimental results thus far obtained indicate that 
there are in general two types of inelastic encounter between 
electrons and atoms—first, those encounters which are accom- 
panied by the emission of a radiation of a single frequency 
without ionization of the gas, and second, those encounters 
which ionize the gas and excite the radiation of a composite 
spectrum of frequencies. The potential giving the first type 
of encounter may be termed a resonance potential, that 
giving the second type of encounter, an ionization potential. 

* Communicated by the Director, United States Bureau of Standards. 
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It has been shown that the resonance potentials may be 
calculated from the quantum relation 

hv=eV, 

where vy is the frequency of the radiation excited at the 
potential V. It is interesting to note that it is possible from 
the experimentally observed values of V and v to calculate 
the order of magnitude of the diameter of the sphere of 
interaction between the electron and the gas molecule, 
assuming that the time of interaction is simply related to 
the period of vibration of the light emitted. Taking mercury 
as a typical case, it is observed that one of the principal 
resonance potentials, exciting the line 2537A (period (7) 
= 8°46 x 107%), is 4:90 volts. Assuming that the electron 
is completely stopped by the encounter, and that during the 

: Pea oh 
encounter it travels with an average velocity v= 5 2—V, 

where V =4:90 volts, we find that ina time equal to 7/4 it 
will have travelled a distance c=1'4x10-' cm., a value 
comparable with the diameter of the molecule as calculated 
from other data. It should also be noted that, if we assume 
as an experimental fact the validity of the relation hyv=eV, 
we must conclude that o is not constant but is given by an 
expression of the form . 

eal es 

nA 2Qmv- 

-and we are led to the conclusion that there are, for the 
different characteristic frequencies of vibration in the atom, 
differing spheres of interaction with the moving electron, a 
conception which might be regarded as pointing to an atomic 
structure such as Bohr’s. 

The experimental values of the ionization potentials are 
found also to satisfy a relation of the form /hv=eV, except 
that in this case v is the limiting frequency of the series of 
lines excited at the potential V. Conversely, it may be con- 
cluded that this frequency is also the long wave-length limit 
of the photo-sensibility of the gas, and experiments are now 
in progress which, it is hoped, will determine whether or not 
this is true. Unfortunately the data on the photo-sensibility 
of gases and metallic vapours are rather unreliable on 
account of possible surface effects, and it is obviously not 
permissible to apply the results obtained on metallic surfaces 
to the metal in the form of vapour. 

Phil. Mag. 8. 6. Vol. 36. No. 211. July 1918. iy 
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The present paper is an account of an experimental deter- 
mination of the resonance and ionization potentiais for 
electronsin cadmium, sodium, potassium, and zinc vapours. 
The results for cadmium and sodium have been published 
elsewhere*, but are included here for the sake of 
completeness. 

«<- Cooling Cell 

—s 

< Heating Coils 

Diagram of Apparatus. 

The method employed was that of Franck and Hertzt for 
determining the resonance potentials with the modification 
described by Tate} for determining the ionization potentials 
and initial potentials. The arrangement of apparatus is 
shown in fig. 1. The metal was vaporized at the bottom of a 
pyrex glass or glazed porcelain tube, and the vapour, after 

* Tate and Foote: Sodium, J. Wash. Acad. Sci. vil. p. 517 (1917) ; 
Cadmium, Bulletin Bu. Standards, 1918 (in press). 
+ Verh. d. Phys. Ges. xvi. pp. 457-467 (1914). 
t Tate, Phys. Rev. vii. p. 686 (1916); idem, x. p. 81 (1917). 
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passing through the superheated ionization-chamber, con- 
densed in the upper half of the tube. The source of elec- 
trons was a hot platinum, tungsten, or molybdenum wire 
cathode A, of low resistance, coated withlime. Surrounding 
the cathode was a cylinder of nickel net B, and outside and 
coaxial with this a cylinder of sheet nickel ©. ‘The apparatus 
was evacuated by means of a Langmuir condensation- pump 
or by a Stimson* two-stage condensation-pump. ‘The latter 
pump was very kindly made for us by Dr. Stimson of this 
Bureau. In general the pressure employed, as registered by 
a McLeod gauge, was about 10-? cm. He. The experimental 
procedure consisted in applying a constant retarding potential, 
usually from 1 to 3 volts, depending upon the metal used, 
between the net and the outside cylinder and measuring both 
the total current from the hot wire and that portion of it 
which reached the outside cylinder, against the retarding 
field, as functions of a varying accelerating potential applied 
between the hot wire and net. 

The results obtained with the four vapours are shown 
graphically in the curves of figs. 2 to 10, and the analyses 
of the curves are given in Tables I. to IV. 

The curves showing the variation of the partial current to the 
outside cylinder with the accelerating potential show maxima, 
or at least pronounced changes in curvature, at successive 
points which differ in potential by a constant amount. This 
constant difference gives the resonance potential directly, 
eliminating any consideration of initial velocities. 

The curves showing the variation with accelerating potential 
of the total current from the hot wire show a rapid increase 
in slope at a point for which the potential, corrected for the 
initial velocity of the electrons as obtained from the partial 
current curves, gives the ionization potential. The inelastic 
nature of the encounters producing ionization is shown in the 
case of cadmium, fig. 2-curve 7, and sodium, fig. 5 curves 5 
and 6, by the occurrence of secondary maxima at potentials 
differing from the ionization potential by multiples of the 
resonance potentialf. 

The accelerating potential was applied at one end or the 
other of the hot wire, and the values given in the Tables for 
the initial velocities therefore include the drop in potential 
between the point of application of the potential and the 

* Stimson, J. Wash. Acad. Sci. vil. p. 477 (1917). 
+ The method of interpreting the curves is discussed in more detail by 

the writers in J. Wash. Acad. Sci. vii. p. 517 (1917). 

F 2 
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centre of the hot wire. The curves of fig. 7 for potassium 
were obtained with the potential applied at the positive end ° 
of the hot wire, while those of fig. 8 were obtained with the 
potential applied at the negative end. It will be seen that — 
the initial velocity of the electrons correcting for the drop in 
potential along the hot wire must have been 1°6 volts, a sur- 
prisingly high value. This is interesting in connexion with 
the recent experiments of Wood and Okano*, who found 
that an applied potential of 0°5 volt was sufficient to excite 
the D-lines in sodium vapour, indicating, if the resonance 
potential exciting the D-line in sodium vapour is taken as 
2:1 volts, that the initial velocity of the electrons in their 
experiments must have been 1°6 volts. It is our opinion 
that the appearance of the many-lined spectrum in metallic 
vapours at potentials lower than the ionizing potential is due 
to the presence of high-speed electrcns rather than to a 
decrease in the value of the critical potentials. In no case 
was there any evidence of a decrease in the value of the 
resonance potential even under conditions which allowed the 
striking of the visible arc at applied potentials considerably 
lower than the ionizing potential. 

The curves obtained for zine, figs. 9 and 10, deserve special 
attention. It will be noted that the points a to g form a 
double series of points, a,c, e,g, and b, d, f, having a common » 
difference in potential of 4:1 voits, This common difference - 
is taken as the value of the resonance potential. An expla- 
nation tor the double series of points is lacking, however. 
It is possible that there are two groups of electrons pos- 
sessing differing initial velocities, or that there is a se- 
condary resonance potential at 2°3 volts. The fact that 
there is no evidence of a succession of points differing in 
potential by 2°3 volts would indicate that the first explanation 
was the correct one. A consideration of the total current 
curves, 7 and 8, fig. 10, however, leaves the question very 
much in doubt. The total current shows a rapid falling off 
in rate of increase at the points a...e for which no 
satisfactory explanation has been found. At all events, 
however, the points P indicating ionization of the zine 
vapour are very definitely located at an effective potential 
of 9°5 volts. The fact that there are not two such points P 
on each curve indicates that there are not present two groups 
of electrons having different initial velocities. Further work 
is being carried out on zine vapour with a view to clearing 
up some of these difficulties. 

* Wood and Okano, Phil, Mag. xxxiv. p. 177 (1917). 
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TABLE 1.—Resonance and [Ionization Potentials for Cadmium. 

Referring to figs. 2 and 3. 

; Applied | 85 | ih. ee 
Applied Potentials at Resonance. Potentials! $-% | |; ae [NOEs 

eet) SS Ne ee (SS. | ep 
3 a Ionization) So | 8 | G2 | as | ‘s 

Curve.| a. b. C. Ge: ii PaIPS | ce ey eae |e 

eee 3°6 76 8-5 40 | 1 9 8°9 l 
ae oun 2°8 68 76 +0 1 #8) |) teks I 
ees) oO 76 8:2 ale ioe 6 88 1 
Ei este 2°8 6°8 Se Seat Sie non | 
eee 3°6 Poe ies CuO Pig eay a! ‘9 86 1 
Dee 3-4 75 on ee WeetOrOs Shea aie eben 9-2 J 
2) 36 7-7 | 112 | 14-4 | 18-4 eee) | oes) Ons 
Popes 8:6 (7) | 18-0(j) 16°8 “) PAU TAC) ena SO7t | 3921 2 06x | 9°03T| 3 
ee it | Total current curve... |... Me S70 CENT alas ‘06x | 8°96 

Weighted Mean ...... 3°88 volts 8°92 volts 

* Least square reduction of 5 points. 
t Least square reduction of 4 points. 
{ Not used in average because this point was involved in obtaining the value 

immediately above. 

Fig. 2.—Cadmium. Total and Partial Current Curve. 
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Current (Stale Divisions ) 

Resonance and Ionization Potentials. 

Fig. 3.—Cadmium. Partial Current Curves. 

Accelerating Potential (4 div = % Volts) 

TasLE II.—Resonance and Ionization Potentials for Sodium. 
Referring to figs. 4, 5, and 6. 

F . | Resonance! Initial 1 alsa : | : : Applied Potentials at Resonance | Potential. | seater 

Curve.| a. b. c d. é. h. | g- | b—a 

Oe ae aS Rae ie i 
Dae) oan 6°5 wih 
3.0) L4 | 34 Orn nae 20 06 
Bea A oie OOK veces ba 2a 09 
Dicer Asie G 56 | 78 | 10:0 Sea Ree 2-2 08 
Ome ipl, Gor Oma Ove O70 12-2 7), Ace 271 08 
Toa NAL Ged al red 6-0 oe sess phe ave 2:2 0-9 
SB cee (eee Wille. 78 | — —|—__—_—__- 

Mean 2°12 0°80 
| +0:06 

9a... 4:3 |Appled potential for ionization. F 
1Qa...| 4:3 |Applied potential for ionization. 
lla.... 44 |Applied potential for ionization. 

4°33 |Mean applied potential. 
0:80 |Initial potential. 

5°13 |Ionization potential. 



Fig. 4.—Sodium. Partial Current Curves. 
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Fig. 5.—Sodium. Partial Current Curves. 
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Fig. 6.—Sodium. Total Current Curves. 

Current (Scale Divisfons ) 
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Curves 9a, 10a, and lla are curves 9, 10. and 11 plotted to the same 
scale as the partial current curves. 

The applied potentials at which ionization occurs, as indicated by these 
curves, are corrected for initial potentials similarly selected from the 
partial current curves. By plotting both types of curves on the same 
scale, the arbitrariness in the method of selection of points produces no 
effect upon the magnitude of the corrected potentials. 

TaBLE I]I.—Resonance and Ionization Potentials for Potassium. 

Referring to figs. 7 and 8. 

Partial {Applied Potential | Resonance 
Current.| at Resonance. | Potential. Tnitial 

Potential. 

Curve, a. b. b—a. 
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Fig. 7—Potassium. Total and Partial Current Curves. 
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Fig. 8.—Potassium. Total and Partial Current Curves. 
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Tasin TV. 

Resonance and Ionization Potentials for Zinc. 

Referring to figs. 9 and 10. 
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Fig. 10.—Zinc. Total and Partial Current Curves. 

Current ( Scale Divisions ) 

2 4. we. 
Accelerating Potential (Volts i) 

Conclusions.—The final results are grouped together in 
Table V. 

TABLE V. 

Summary of Resonance and Ionization Potentials. 

: fui eee : Limitin Resonance Potential. | Wave-length | Ionization Potential. 8 
Metal. - of Bettie eee ee hay 

Observed. | Calculated. '| Observed. Calculated. j 

Cadmium ...| 3-88 3°79 326017 || 8:92 8-95 137869 | 
Sodium ...... Tt 2-10 5898° | Onley 513 2413- 

Potassium... 155 160) Vit 716sa; | 4-] 4:32 | 2856 

| * 402 | 307599 || 95 | 985 | 131995 
| l 

The agreement between the experimentally observed 
values and the values calculated from the relation hyv=eV 
is in all cases within the limits of experimental error. We 
have here further striking evidence of the fundamental cor- 
rectness of deductions based upon Bohr’s theory of atomic 
structure. 

Bureau of Standards, 
Washington, D.C. 

November 24, 1917, 
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V. On the Dynamics of the Electron. By Mucu Nap SAHA, 
M.Sc., Lecturer on Theoretical Physics, University College 
of Science, Calcutta * 

N ASS as a fundamen physical concept has been in- 
troduced into Physics by Newton’s Second Law of 

Motion, which may be said to form the corner-stone 
of classical Mechanics. But in spite of its splendid suc- 
cess, physicists have always encountered some difficulty in 
realising mass as a fundamental physical concept in the 
samme sense as the concepts of time and space. The funda- 
mental object of mechanics is to provide a scaffolding by 
means of which the motion of material bodies can be sur- 
veyed and followed, when these are subjected to various 
disturbing influences. Some hypothesis must be introduced 
for taking into account the influence of these disturbing 
agencies. The question is: “ Are Newton’s Second Law of 
Motion and the ideas underlying it quite sufficient for all 
possible cases of motion, or are we to search for some more 
general principle?” Some physicists are in fact in favour 
of introducing Energy as a more fundamental physical con- 
cept than Mass, thereby basing the Science of Mechanics on 
various Hiner oy-theor ems. 

So long as we hold to the principle of invariability of mass, 
there can of course be no question about the utility of the 
second Jaw. Butinthe electron we havea physical entity which 
defies this limitation. If we want to survey its motion, and 
haye no other means of doing so than classical mechanics, we 
must ascribe to it a certain mass, but for aught we know this 
mass is neither definite nor invariant during motion. Conse- 
quently the scaffolding which enables us to “study and survey 
the motion of material (i. e. non-electrical) particles breaks 
down in this case. Some other system of Mechanics other 
than Newtonian must be formulated. In this attempt, we 
must remember that the electric charge is the only invariant 
physical quantity, consequently in place of mass, this quantity 
ought to appear in the equation of motion. We must also 
take cognisance of the newly discovered relations between 
time and space which are embodied in the Principle of 
Relativity. 

I may be allowed to remark at this place that though the 
inadequacy of classical mechanics for studying the motion 
of electrons is now admitted on all hands, and many attempts 
are being made for formulating the exact dynamics of the 

* Communicated by Prof. A. W. Porter, F.R.S. 
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electron,—the authors of many of these theories have not 
been able to rid themselves of the preconceived ideas of 
elassical mechanics. I shall, in the first place, explain my 
own method, point out the characteristic features of my 
theory, and then compare it with other theories. 

ius 

The equations of motion of a material particle are derived 
from Newton’s Second Law of Motion—rate of change of 
momentum is proportional to the force applied. Combining 
this principle with the principle of constancy of mass during 
motion, we obtain 

a7 dy : dz 
moe =X, ee mM = LA. 

ait - rade diz 
The terms m aa a Ma 

ponents of the “Effective Force,” and the law may be 
expressed by saying that the ‘“ Effective Force” is equiva- 
lent to the ‘‘ Impressed Force.” 

In the case of the Electron, we hold to the axiom that the 
“¢ Hiffective force is equivalent to the Impressed force.” No 
prima facie reason can be given for the introduction of this 
hypothesis, just as in the case of the motion of material 
bodies. It is to be justified by its success in dealing with 
the problem at hand. 

2, 
The Impressed force on the electron can be easily calcu- 

lated with the aid of Lorentz’s Theorem of ponderomotive 
force. If (X, Y, Z) be the components of the electric field, 
(L, M, N) be the components of the magnetic field at any 
point, and p be the density of electricity, the components of 
the force per unit volume at the point are 

=p [X+ ; (oN eM] 

are known as the com- 

Jy=p | ¥+ * (vl a nN) | 

=p [Z + ‘(ol a vl) | | 

(v1, V2, v3) being the components of the velocity with which 
the charge moves. 



78 Mr. Megh Nad Saha on the 

The rate at which work is done is given by the equation 

Si=far + fyeo + favs 

==p| Xv + Yu, == Lys |, 

In accordance with the ideas of the Principle of Relativity 
we can write the components of the force-four-vector in the 
form 

Jz= pol. + JygW2 + W313 + Wa fra | | 

Ty = pol for + Wa fos + Waf'os | ce (1) 

Sz= Pol Wifi + Wofs2 + wzfs4 | hve 

Si = pol ifs + Wess + Ufa ty, 

these equations are obtained by writing * 

F035 fais Siz for Li, M, N, 

Tiss Foss S34 for ae Y;, Ae 

W}, Wo, W3, W4 for os ve =Lu/¢, U/C, v3/¢, il, 

Po. tor ip V1—v"|e?. 

For finding out the total force on the electron, we have to 
integrate the above expressions for the force-four-vector over 
the whole volume of the electron. Supposing that the com- 
ponents of the electric and magnetic force do not vary 
throughout the volume of the electron, the force-components 
are obtained by writing simply (e) the invariant charge 
instead of (po) in equations (1). 

3. 

The calculation of the Effective force is a matter of some 
difficulty. The question is: “If an electron moves with a 
variable velocity, what are the terms corresponding to the 

2, 2 2, 
quantities (moe moe, m a) in particle dynamics ? 

Einstein solves the difficulty by saying that instead of the 
observer’s time dt we have to introduce here the proper time 

* The notation used throughout the paper is that of Minkowski, wide 
Math, Ann. vol. \xviil. p. 472 et sey. § 12, where this particular theorem 
occurs in an abbreviated form. 

ae 
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(Eigenzeit) of motion of the electron. This conclusion * is 
reached in a general way from his theory of the equivalence 
of the forms for equation of motion of material particles 
when referred to systems moving with uniform velocity past 
each other. Minkowski f practically uses the same hypo- 
thesis as I have done (Effective force is equivalent to the 
Impressed force), but in case of the electron he begins by 
implicitly ascribing a rest-mass to the electron. But the 
method adopted by me is fundamentally different, as will 
appear in due course. Elsewhere, Minkowski { deduces it 
from the Principle of Least Action, combined with the 
principle of conservation of mass in a space perpendicular 
to the axis of motion. Besides, the investigation has a direct 
bearing on the theory of Electromagnetic momentum as 
developed by Lorentz and Abraham. 

4, 

Let us now concentrate our attention on a single electron 
moving with a velocity v. The force components at an 
external point due to the motion of the electron are given 
by the equations (1). Generalizing, or rather recasting 
Maxwell’s theorem of stresses into new forms, Minkowski 
has shown that the force components (/,, f,, f:, fz) can be 
put into the forms 

ON ee | OX, OX, | 
Ie oe Oy ga. ol 

ae) OY. BY, 
Sea ee f 3h | 

» LOBE OF,) 8%. 3%, i ae) 

| 
Jz= Ou + Oy + Oe == Ol 

es Ole OL OL, Oly 
hi Ae =F a ae ag a 

where 

<< = eee + fsa” + fis? —f2” —f; safe | 

| ees) 

J 

* A. Kinstein, Jahrbuch der Radioaktivitat, vol. iv. 1907. 
Tt H. Minkowski, ‘‘ Raum und Zeit,” § iv. Phys. Zeit. 1911. 
t H. Minkowski, Math, Ann. vol. Ixviii. Appendix. 

~— = | fisfset+fis Sas | 
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The theorem is proved by substituting, in equations (1), 
the values of poW1, PoWs, Pos, Pow, obtained from the 
fundamental equation 

lor i Amp) (Wy, W2, W3, W,) 

and effecting the necessary transformations with the aid of 
the second fundamental equation 

longi 0: 

In the present case, the field is due to a single moving 
charge. The quantities [X,, X,...] can be easily calcu- 
lated from the Potential four-vector a, for the six-vector / is 
equivalent to curl a. 

In a paper * communicated some time ago to the Philo- 
sophical Magazine, I have shown that the Potential four- 
vector a at an external space-time point (2’, y’, z', l') due to 
the motion of a charge e occupying the point (a, y, 2, l) is 

ew 
equivalent to R? where 

ds’ °@8?.) dee maaak 

and R is the perpendicular distance from the external point 
on the line of motion of the electron. We have 

R= (e— a! + yy)? + (2 2!)? + (IU) 
+[(e—2')wy + (y—y') wet (2—2z') ws + (l—l') uy, }?. 

dz . dukedc ame ; 
w = velocity four-vector = 

We have now 

_ O& 0% vit 
Ta Sr ag Uo Ieee 

_/ 08 Oa 0 (‘e)-e 7) 
Jvu= Ox’ Oy Oa" R Oy’ R 

= e(a 12 =— oteW ) 5 

where 

a= 2(h) a= 2(g) «Sq «-BG)- 
* It seems to have escaped the notice of investigators on this particular 

subject that the Potential four-vector in the form given by me is im- 

plicitly contained in a statement of Minkowski’s (“ Raum und Zeit,” § 5). 

The passage came to my notice only recently when I was making a 

critical study of Minkowski’s works. 
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Therefore we have 

A,= a [ (4203 — atgWWg)” + (gd — 2403)” + (4, — 94)” 

— (a4W— HW)? — (24,3 — 431)? — (a4 — 441)” |. 

Now putting 42 a2 + a? + ag + ot? 

and using the identity 

OW + cyWe + 33 + a4W, = 0, 

we easily prove that 

XG - [ — a®(1 + 2?) + 20? |. 

Similarly 
2 

Y= g- | —a(1 + Buy") + 2a", 
2 

= a [ —W Woe -b tye |, &e. 

We shall now calculate the total force on the space exterior 
to the electron. According to the Principle of Relativity, 
this space must be uniquely defined. In our case, this space 
is perpendicular to the axis of motion of the electron, and is 
bounded on the inside by the surface of the electron. The 
external boundary is at an infinite distance. Let dQ denote 
an element of volume of this space. Then the total force is 

OX, Ox OX 

given by 

Z L B= (rao=|[ at ae 7 | a0. (4) 

Now since a, and ee Jie) fo3--Ja---> are functions 
of the relative distance [(w—2'), (y—y’'), (e—2'), (I—l’)], 
we have 

OX; OX, 
Ceo 08 vine 

Therefore 

F.=—[2. {x.ao+ o | xdo4 ele Malia! 

Phil. Mag. 8. 6. Vol. 36. No. 211. July 1918. 
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Now 

X,d0= = A —22(1 + 20,2) + 2oy? dQ, 

(xao=~ = re) ee + aj4,|dQ, &e. 

We have now to calculate the value of the integrals 

j adQ, Jan2dQ, ) a a,0Q,, &e. 

We have 

1 
m= a (x)= Fal lee wi) + wii (ea!) wy 

+ (y—y')we + (2 — 2!) 03+ IU), FJ. 
Now let us introduce a Lorentz-transformation by means 

of which the axis of motion becomes the new time-axis. Let 
(&, 7, ¢, v) denote the new coordinates. We have then 

bat) 
An Ay. Ay Ay ei 

Gia) As, Age As; Avy 

(G2) VO aa ee 
eae) A BAU ie Je Ace ‘e ee , 

where 

and 
Agi + Ao? + Ag? + Ag? = 1, a 

Aip Ain + Ay, Aor + As, Asn + Av, Ane = ig 

Since the line of motion is the new time-axis, we have 

(v—v') =| w,(e—2') +. w2(y—7') +, (e—2') + w, (1-1) ]; 

we have therefore 

A= Ae =O) As = ee 

Now using the above transformation, we have 

Woe) hn) aie at): 
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and . 

(@—2') + w,[ (a—2')w, + (y—y') wt (2—2/)wst+ (I—-V/) wy] 

eee 6 gaa 7) b Balt) Ay —y') 

—iw,(v—v') 
—Ante 6) ray) + An(e~—¢), 

for Apes 0 

Then 
* IND 
{210 =a, (E—8Y (— aie dO+ A, ue dQ 

Weis ey dO,+2Ay,A af FD a4. 

Now we have, since the integration extends over the space 
internally hevinided by the sphere 

(2—4)) Sn) + (C—G) =a’, 

(GPa = (SP a0 = G=8y a0 = Me 

and from symmetry, 

Ss VIE) gh { ee oe, 

Now we have a dO Aap 

es a 
a ar~dQ = aT Aa? + Ag? + Az)? |= — x (1+ wy Ds 

and {(° 
| aA = [ Aya Agi + Aye Ago + Ay3 Ag; | 

Aor 
Re [AuvAgs |= —s- ww 

pe 
X,= =| mee oy 2. (oy )| 

2e? 5 

and 3 e? An Agr 2e? = Te | = wi20s a oh a 20 | ae W 2. 
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Then we have similarly 

26? 7 2 26 14 2 
Yy= 3 ate ee 2 3, (at Us )s 

Qe? Qe? 
Lj= Ba (44 w,”), .G— Og te &e. ‘) 

Now we have 

2 2 

252 
r= = [(m 2 +102 $052 aa 

The second term = 0 from the condition Diva=0, for 
this gives 

ait) + gpl tt) + 52(e!) + UR) =O 
Ea yy 
R Div w + (wye; + Woe + W343 + Wye.) = 0, 

from which Div w=, 

for the last term is identically zero. 

The X-component of the force on the external space 

2e? aX 
= = qe for “= me +. mare +08. - () 

We may interpret this force as the reaction of the electron 
on the external space, which is supposed for purposes of sub- 
stantiation to be composed of zether. The effective force on 
the electron is equal and opposite to this force, and has 
therefore the components 

26 da Dea 26? de hee dal 

OG, ds°°" waandser| 30 dsaemaond sat 
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(N.B.—- We have for small velocities ds=cdt approximately, 

Chara id e dx 

gods too ac dt"? 
&e. 

Oy! bo 

e2 ee 
We therefore observe that the quantity 3 oa plays here the 

Dee same part as the mass mp. We can therefore call 5 ac 

the rest-mass of the electron, and put it equivalent to mp.) 

5. 

Now a few remarks on the equations (2). These were 
first introduced into Mathematical Physics by Maxwell 
about 1865. lHver since their introduction, various efforts 
have been made by different investigators for getting some- 
thing out of them, and in certain cases they have yielded 
very valuable information, and led to many important 
results. We may cite tor example, Maxwell’s prediction 
of the existence of Radiation Pressure. The close analogy 
of the equations (2) with the equations of elasticity led 
Maxwell to propose his famous theory of “ Stresses,” 2. e. to 
imagine that the electric forces are due to a distribution of 
the stresses (X,, X,...) in ether, which behaves in this case 
like an elastic solid. But this theory is fraught with many 
difficulties, which have been pointed out from time to time 
by several investigators*. In a paper f communicated to 
the Phil. Mag., the author observed that though the forces 
can be well aecounted for, the Energy of Hlectrification 
cannot be accounted for on Maxwell’s hypothesis. 

Another direction in which the equations (2) have been 
exploited is the subject of Hlectromagnetic mass of an 
electron. When an electron moves with a certain velocity, 
it creates round it an electric as well asa magnetic field. 
We can say with Maxwell that the energy is stored in the 
ether, and the electron by its motions exerts a force on 
every particle of ether. 

If we now integrate this force over the whole space ft 

* Maxwell, ‘ Electricity and Magnetism,’ third edition, vol.i. chap. v., 
footnote p. 165. 

+ Phil. Mag. March 1917. 
{ N.B. This space is the absolute space of the Pre-Relativity 

Period. 
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exterior to the electron, the first three terms involving 
DONA a 

ey 
bounding surface is taken to be at an infinite distance, 
thereby the surface integrals are made to vanish. The 
total force on the ether thus comes out in the form 

dM 19M 
anole Ot 7 

\ can be reduced to a surface-integral. The 

Now assuming that the force exerted by the zther on the 
electron is equal and opposite to the force exerted by 
the electron on the ether, the reaction of ether on the 

10M 
le OO 
iM 

Classical Mechanics, we can call (=) a momentum. 
c 

electron becomes equivalent to — In analogy with 

This is, in brief, the theory of Electromagnetic momentum 
as developed by Abraham, Lorentz *, and others. We do 
not enter into a discussion of the rival theories of Lorentz 
and Abraham on the shape of the electron during motion. 
The Electromagnetic mass is obtained from either of the 

relations Bye and peor m:, and m, denoting 
Cv COV 

respectively the transverse and longitudinal masses of the 
electron. 

But several objections can be raised to this theory of 
Hlectromagnetic momentum. In the first place, the in- 
tegration is extended over the space of the observer, 
whereas the Principle of Relativity requires that it should 
be extended over the space perpendicular to the axis of 
motion of the electron, and external to the volume occupied 
by the electron. This is what I lave done in the foregoing, 
and I believe that this is quite in keeping with Minkowski’s 
ideas of equivalence of time and space. Secondly, the volume 
of integration is supposed to be bounded by a sphere at an 
infinite distance only, and no notice is taken of the internal 
boundary which must coincide with the surface of the elec- 
tron. In fact, it looks as if the surface-integrals had to go, 
because the authors wanted to get rid of them. 

In the theory proposed by me, I have refrained from 
putting any interpretation on the quantities (X,, X, ...). 

_* Lorentz, ‘ Theory of Electrons,’ chap. 1, § 26 e¢ seq. 
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Taking the theorem as it is, the total effective force on the 
ether has been obtained by integrating f over the whole 
space perpendicular to the axis of motion of the electron, the 
space being bounded on the inside by the surface of the 
electron. The “ Hffective force” on the electron has been 
taken to be equal and opposite to this force. 

I may be allowed to point out here that this procedure by 
by no means confers substantiality upon the ether. It isa 
fictitious creation, introduced for the sake of arriving at 
a result which, from its very nature, can be attempted only 
by indirect means. 

It is remarkable that none of the quantities §X,dQ, &c. 

vanish in this case, as in the other theories. The ‘ Hifective” 
force on an electron, instead of simply being the rate of change 
of “Momentum” becomes the sum total of the time-rate of 

change of the quantity | Sa0 plus the space-rates of 

changes of the quantities { a dQ, | 5140, se 

These latter quantities involve “velocity”? in the second 

Xy 
order, whereas \e <7 &Q involves “ velocity” in the first order, 

fo 
so that when the velocity is a small fraction of the velocity 
of light, the theorem approximates to Newton’s Second Law of 
Motion. 

The rest-mass calculated on this basis is equivalent to 
2 Ea : — and as such coincides with the value obtained by 

Sir J. J. Thomson for slow-moving electrons, and with that 
obtained by Lorentz and Einstein. The variation of mass 
with velocity is determined by the Principle of Relativity 
as in the theories of Lorentz and Hinstein. 

In conclusion, I wish to express my thanks to my friend 
and colleague Mr. Satyendra Nath Basu, M.Sc., for much 
help and useful criticism. 

Calcutta University Colleve of Science, 
Physical Dept., July 10, 1917. 
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VI. On the Value of the Conductivity of Sea-water jor Cur- 
rents of Frequencies as used in Wireless Telegraphy. By 
BALTH. VAN DER Pon, Jun., Docts. Sc. (Utrecht)*. 

NHE materials of the earth’s crust, over and through 
which the electromagnetic waves sent out by a wireless 

telegraphy station travel, have an important influence on the 
variations of the wave amplitude with distance from the 
sending station. This fact was first found experimentally, 
but was afterwards confirmed by some theoretical in- 
vestigations f. 

When a plane bounding surface is assumed to exist between 
the air and the earth, the magnitudes of the conductivity of 
most materials of which the earth’s crust consists are such, 
that for the range of wave-lengths used in wireless telegraphy 
and for the dielectric constants these materials possess, apart 
from the divergence diminution, another decrease of wave 
amplitude with distance, due to absorption, can in general be 
expected. This latter diminution is principally determined 
by the conductivity of the materials over which the waves 
travel. 

When, on the other hand, the above-mentioned boundary 
surface, in closer approximation to the actual circumstances, 
is supposed to be a sphere, consisting of sea-water, and if the 
value of the conductivity of the latter as found under direct 
or slowly alternating currents is used in the calculationsf, it 
appears that a greater wave amplitude for the same sender 
can be expected than would be obtained if the sphere were 
made up of an infinitely good conducting material, though 
the difference is small. 

The greater part of wireless trafic being conducted over 
sea, an exact determination of the value of the conductivity 
of sea-water for alternating currents of high frequencies 
may be of importance, especially in connexion with the 
divergence between the decrease of wave amplitude with 
distance predicted by theory and values of the latter found 
experimentally. 

That the conductivity of all materials is independent 
between wide limits of the frequency of the currents in 

* Communicated by Sir J. J. Thomson. 
t+ Zenneck, Ann. d. Phys. Bd. xxiii. p. 846 (1907). Sommerfeld, Ann. 

d. Phys. Bd. xxviii. p. 665 (1909). 
t Macdonald, Proc. Roy. Soc. (Ser. A). vol. xcii. p. 493 (1916). 

Love, Roy. Soc. Phil. Trans. (Ser. A) vol. cexv. p. 105 (1915). See also 
a paper shortly to be published in the Proc. Roy. Soc. by G. N. Watson. 
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them cannot generally be said, though the researches of 
Sir J. J. Thomson on the conductivity of electrolytes under 
very rapidly alternating currents of frequencies up to 10° * 
would lead one to expect the conductivity of sea-water 
to be constant within the range of frequencies between 0 
and 10°. 

Professor J. A. Fleming and Mr. G. B. Dyke, on the 
other hand +, found the conductivity of various materials as 
glass, celluloid, paraffin-wax, mica, paper, slate, and sulphur 
to be a function of the frequency and increasing with the latter, 
so for instance they found the conductivity of ebonite under 
4600 cycles per second 6°4 times greater than under 920 
cycles. For gutta-percha under a frequency as low as 800 a 
conductivity was obtained already 100,000 times greater than 
the value usually given for direct currents in the handbooks, 
while at higher frequencies this ratio still increased{. 
Professor Fleming therefore suggested to me to determine 
the conductivity of sea-water under frequencies as used in 
wireless telegraphy, and to compare it with the value found 
under steady or slowly alternating currents. 

A simple calculation shows, assuming the conductivity of 
sea-water has its normal value o~5.10-", that up to the 
frequency 10° the dielectric displacement current in sea- 
water (the dielectric constant being «assumed e=81) can be 
neglected in comparison with the conduction current, the 

ratio of the two being = o where p is the angular frequency 

and ¢ the velocity of light. For the material under consi- 

deration this ratio amounts to oh =—1:4.10-4: 
Ag .5.10—".9.107° ; d 

so that in order to measure the conductivity of sea-water a 
method can be applied in which the latter is treated as only 
having a resistivity. 

To use a bridge method as employed by Fleming and 
Dyke (modified Wien bridge) did not seem advisable for 
high frequencies, as serious errors introduced by the inductive 
effects of the arms had to be avoided. The following sub- 
stitution method appeared to be very reliable and exact (see 
fia. 1). 

* J. J. Thomson, Roy. Soe. Proc. vol. xlv. p. 269 (1889). 
+ Journal Inst. Electr. Eng. London, vol. xlix. p. 823 (1912). 
} See paper cited. 
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fis an oscillatory circuit in which high-frequency currents 
are generated by the aid of a three-electrode vacuum-tube. 
These currents induce oscillations in circuit JJ which is tuned 
to I by aid of the Duddell thermo-galvanometer Th, having a 
heater resistance of 3°8 O. By means of the paraffin switches 

abcd and efghk either S or R can be connected across 
the terminals of the condenser C,. R consists of a fine con- 
stantan wire about 12 metres long having a diameter of 
about ‘025 millimetre mounted zig-zag in such a way that the 
distances between the eight parallel parts (each of 138 centi- 
metres length) were 26 millimetres. This form was given 
to the wire in order to avoid parts at appreciably different 
potentials being near together, so that a minimum chance was 
present for dielectric currents shunting parts of the wire. 
The other shunt S across the terminals of the condenser C, is 
made up of a glass tube (5°8 millimetres diameter and 170 
centimetres long) filled with an electrolyte the conductivity 
of whichis to ve determined. Of the two platinum electrodes 
in § the lower one was fixed while the top one could be moved 
to a greater or less depth in the electrolyte. 

The experiments were carried out as follows. For a 
constant coupling between / and J// first a reading of the 
galvanometer Th was taken with the constantan wire re- 
sistance across the terminals of C, (connexions between b-c 
and f-g), This resistance was then replaced by the tube 
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filled with electrolyte by connecting a-b and e-f. The 
length of the path of the current through the latter was 
then altered by moving the top electrode till an equal 
deflexion of Th was obtained. The high-frequency resistance 
of S was then equal to that of R. Immediately afterwards, 
in order to avoid changes in temperature, connexions were 
made between d—a-c, e-h, and g-k so that S and R formed 
two branches of an ordinary Wheatstone bridge, the re- 
maining two branches being P and Q, one of which was 
variable. A slowly alternating current of about 90 cycles 
per second, drawn from a small transformer fed by the town 
supply, was afterwards sent through the bridge, which was 
balanced by aid of the telephone T. The ratio of the resist- 
ances R and § for slowly alternating currents at once gave 
the ratio of the resistance of the electrolyte for high- 
frequency currents to the resistance for low-frequency or 
direct currents. 
A word may be said about the accuracy and the possible 

errors inherent to this method. The resistance of the con- 
stantan wire is assumed to be the same for high and low 
frequencies. The skin effect in such a fine wire of a com- 
paratively high specific resistivity does not alter the apparent 
resistance for a frequency of 10° more than one part in a 
million compared with the value for steady currents, and the 
same reasoning can be applied to the tube filled with sea- 
water. It is further well known that the conductivity of 
metals is independent of the frequency in the range of 0 
to 108, so that no error is introduced by assuming the 
resistance of the constantan wire to be constant over the 
range of frequencies used. The unavoidable differences 
of self-induction in 8 and R have only a very small in- 
fluence on the results, as can be seen from the following 
consideration. | 

Fig, 2. 
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With the notation of fig. 2 the currents 2; and 2 in the 
main circuit and the shunt across the condenser C respectively 
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have to satisfy the equations 

di 5 (ig al maeamer.e 
L, = + Ryt, + Git e2jdt= — H cos ot, 

di ve ae - » @) 
L, =e Rete as CG (i, -- do at = 0, 

where Ecos wt is the impressed E.M.F. For simplification 
we take two special cases ; when 

A. L,=L, and under resonance condition 

(L,C,=L,C,=0 -?) 

the solutions are, leaving oui the transients, 

js Esa ace a PRN Gy) ane | 
2s ; . ° e (2) 

= ad .E si pal 
bg Ryle Seley, ee 

B. If, on the other hand, when the shunt has no appreciable 
inductance, L, in (1) is assumed to be zero, we get the 
following expression for the currents under resonance 
condition : 

di, HORA! 1 
\ 2 

aoe Ge 4 oC Ly i= —B| RC 

af R,R,C + L, 

= E| & cos wt +. = sin at |, 
NS A 

310 ait | ’ 

where R,? A= (Ly, + CR,R.)?+ 5 
Ne 

© 

When now the resistance R, in the main branch of the 
oscillatory circuit is decreased till it finally reaches the ideal 
value R, =0, we see that in both cases a: L,=L, and 8: L,=0 
the current i, in the shunt circuit reaches the asymptotic 
value 

l= ——sin wt to Ally Ol, 

being independent of the resistance R, of the shunt across 
the condenser. 
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On the other hand, with the same ideal approximation 4 
takes the values: 

menor) lj,— ti. 

ei conrat, Ite Weapal ay ita C2} 

and 

Be ror bin; 

i= — PE cos ot—@CB sin ae. . Sih cin Go’) 

The latter expression (5) approaches the former one (4) as 
@ . . e e e 

soon as a is small, this being the case in the experiments, 
2 

and 7, becomes proportional to the resistance of the shunt, 
the value to be measured. 

This fact at once suggested the insertion of the thermo- 
galvanometer in the main branch of the oscillatory circuit, 
instead of in the shunt; and as R, in the experiments was 
kept very low, it follows at once that the deflexions of the 
thermo-galvanometer being proportional approximately to 7,2, 
and therefore to the second power of Re, furnish a very 
exact means of comparing the high-frequency resistances 
of different shunts. Moreover, (4) and (5) prove the 
approximate independency of 2, on the value of the self- 
inductance L, of the shunt, within the limits L,=0 and 
L,=1,, this fact being confirmed experimentally. The 
insertion of an extra self-inductance of a coil of six adjacent 
turns of diameter 15 centimetres in the shunt circuit did not 
aiter the galvanometer deflexion, while, on the other hand, a 
variation of the length of the path of the current through 
the tube filled with the electrolyte of 1 millimetre, already 
gave a considerable variation of deflexion. 

The results of the measurements of the conductivity of sea- 
water, taken from a sample obtained from Hastings, are as 
follows. When the conductivity for very slowly alternating 
currents is called o,, and o, represents the conductivity for a 
current of a frequency corresponding to a wave-length of x 
metres, it was found (each o being taken as the mean of 
several observations) 

03400 = 1:001 Ge 

01870 = 0:999 On 

Ginza = 1002 Ge 

O600 — 1°003 Own 

0975 at) Giga 
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These values show that the conductivity of sea-water for all 
frequencies as used in wireless telegraphy is very nearly 
equal to the value of the same for steady currents to within 
less than half a percent., the small differences obtained 
most probably being due to a small capacity effect of parts 
of the shunt on other parts. 
A calculation of the true direct current conductivity from 

the resistance and the dimensions of the tube yielded the 
value 

0377 O—! per centimetre cube 

at 12°'5 C. corresponding to 

o=3'77.107" electromagnetic unit. 

As the conductivity varies very much with the temperature 
and the origin of the sample, a value of o between 1 and 
5 .10-" is therefore appropriate to form the numerical basis 
for the theory of propagation of electromagnetic waves over 
the surface of the sea. 

In conclusion I wish to thank Sir J. J. Thomson for his 
valuable advice and kindness in putting at my disposal the 
instruments of the laboratory. 

Cavendish Laboratory, 
Cambridge. 

VIL. General Relativity without the Equivalence Hypothesis. 

By lL. SirBersten, Ph.D., Lecturer in Natural Philosophy 

at the University of Rome”. 

1. Purpose and scope of the present mquiry. 

fHVHE generalized theory of relativity as proposed by 

Hinstein in 1912, and since that time repeatedly modi- 

fied by himself and by his followers, has one very strong 

point, the requirement of general covariance of all physical 

laws, and one weak point, to wit, the originally so-called 

“ equivalence hypothesis” which places gravitation on an 

entirely exceptional and privileged footing, bringing 1t into 

intimate connexion with the fundamental tensor which 

appears in the line-element of the world. I propose to 

retain the strong point and to reject the weak one, and thus 

to develop the implications of the general principle of 

relativity without the equivalence hypothesis, in fact, without 

privileging gravitation at all. This is the purpose of the 

* Communicated by the Author. 
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present paper. And its scope will be a limited one, viz. to 
treat only some chief aspects of the physical implications of 
the Principle and to illustrate them to a certain extent, but 
by no means to try to embrace in a few generally covariant 
formule all the marvels of Nature. The strength of the 
“strong”? point is indisputable and does not call for lengthy 
remarks ; it amounts, in its ultimate analysis, to claiming 
that real, phenomenal, contents should be expressed, or 
expressible at least, in a way showing their independence of 
the particular language or scaffolding adopted. The weak- 
ness of the “weak” point, however, does require some 
explanations. Tirst of all, then, independently of agreement 
or disagreement with experimental facts, the equivalence 
hypothesis is a vulnerable point because of its very special 
nature and of the great number of assumptions which 
it tacitly implies. Im the next place, however, serious 
doubts with regard to its acceptability arise, according to 
my opinion, from the obstinately negative results quite 
recently obtained by St. John at the Mount Wilson Obser- 
vatory *. The mean displacement (which according to 
Hinstein should be about 7}, A.U. towards the red) is at 
the sun’s centre for 25 lines —°001, and for 18 lines 
+0014 A.U., with a mean of zero for the 43 lines in ihe 
band spectrum of nitrogen (cyanogen); again, the mean 
displacement at the limb is 0:000 for 17 lines, and + 0:0063 
for 18 lines, with a mean of 4-°0018 for the 35 lines. The 
final conclusion is that ‘‘ within the limits of error there is 
no evidence of a displacement to longer wave-length, either 
at the centre or at the limb of the sun, of the order -008 A.” 
(loc. cit. p. 265). This negative result certainly outweighs 
the much more dubious and less numerous figures quoted in 
1914 by H. Freundlich (Phys. Ztschr. xv. p. 370) in favour 
of Einstein’s prediction. Asa matter of fact, Einstein him- 
self, while mentioning Freundlich’s star-spectra testimony, 
is of the opinion that “a final verification is still [1916] 
outstanding” (Ann. d. Physik, xlix. p. 820). Notice also 
that the masses of Freundlich’s stars can only be guessed in a 
rough manner while our sun’s mass is sufficiently well known 
(M/c?==1'5 km.) to be substituted into Hinstein’s shift for- 
mula. Whence the obvious superiority of St. John’s results. 
It is well-known that the predicted shift was one of the most 
immediate consequences of the equivalence hypothesis, even 
in its original form of 1911; in Hinstein’s recent theory 

* Charles E. St. John, “The Principle of general Relativity and the 
Displacement of Fraunhofer Lines, etc.,” Astrophys. Journ, xlvi., Noy. 
1917, p. 249. 
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that shift or the decrease of vibration frequency is directly 
embodied in the tensor component g,,4, the: coefficient of 
c’dt?, produced by the gravitating centre, viz., in a first 
approximation, 

Another consequence of the theory, the bending of light 
rays by a gravitating mass (represented by the above in 
conjunction with other tensor components) still awaits its 
verification. Hitherto there is not the slightest evidence 
for the reality of such a phenomenon. It constitutes one of 
the chief points of the programme for the 1919 Solar Helipse 
Expedition which seems particularly favourable for the pro- 
posed observations, as was pointed out by Sir Frank Dyson. 
Thus far the only positive and, one must confess, very 
conspicuous and fascinating success of Hinstein’s theory 
is the formula it gives without difficulty for the perihelion 
mction, amounting for instance in the case of Mercury to 
43" per century, the famous excess which has occupied the 
attention of astronomers since the times of Le Verrier. But 
it so happens that this remarkable result relating to the 
secular motion of the perihelion is most vitally conditioned 
by the same tensor component, g,,*, which—to everybody’s 
true regret—has thus discredited itself at the Mount Wilson 
Observatory. 

Such being the state of things, one is justified, if not in 
condemning the equivalence hypothesis, at least in doubting 
its validity and in not attributing to it anything like the im- 
portance one cannot help ascribing to the general principle of 
relativity. Whence the natural desire of the writer to draw 
a sharp line between the two utterly heterogeneous elements 
and, rejecting the former, to investigate some general physical 
problems from the point of view of the latter alone. It may 
be well to notice that the importance and utility of the 
requirement of general covariance has been felt, and ex- 
pressed with much force, by the mathematicians many years 
ago and in a much wider field, viz. that of “the geometry ” 
of manifolds of any number of dimensions as represented 
by quadratic differential forms,—of which the physicist’s 
“world” or space-time is but a particular example. Is not 

* The perihelion motion, as a delicate feature of planetary motion, is, 
of course, given by gu in co-operation with the remaining coefficients, 
To drop the variable part of gu. itself, after the others have been 
neglected, would make it impossible to get even the ordinary Keplerian 
planetary motion. In short, the second term of gu is the chief term 
involved in that motion. 
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this need—of studying properties intrinsically connected 
with the manifold itself and of developing appropriate 
methods—clearly and with much emphasis expressed in such 
purely mathematical tracts as that * of Prof. Wright? But 
a strong tendency of that kind, together with great expec- 
tations for the future, manifests itself even in the old book 
of Lamé on curvilinear coordinates (1859); see the con- 
cluding paragraph, p. 367, of these memorable Lessons. 

2. Space-time (world) of any constant curvature. 

What is here called curvature is a certain invariant of the 
manifold and, as such, an intrinsic property of the manifold, 
as real as and possibly more real than the mass of a lump of 
matter. Whatever its value, nil, positive, or negative, it 
cannot be settled either by mere reasoning or by convention, 
but has to be found out by experiment or observation. 
Being ignorant as to its sign or amount, the best way is to 
leave it undetermined and to develop all formule with the 
corresponding degree of generality. Its ‘evaluation is the 
task of the future physicist or, more likely, the astronomer. 
On the other hand, the reason why it is enough to limit one- 
self to constant curvature, i.e. the same through all times 
and everywhere, will be readily seen. Again, as concerns 
the mathematical technicalities, it is almost as easy to study 
a four-manifold of any constant curvature as a non-curved 
or homaloidal one (from dwaddés = even; an old name for 
flat or Euclidean space, of any number of dimensions). To 
deprive ourselves of generality would thus be a badly 
compensated sacrifice. 

Let £1, 22, 3, %, the first three space-like, and the fourth 
time-like, be any coordinates fixing a world-point, and let 
the invariant line-element, determining the metric properties 
of the four-dimensional manifold, be given by the quadratic 
differential form 

ds’ = 2> gydajdx;, 

where gij=9;; are, in general, some functions of all the 
coordinates. If we pass to any other system 2;', then the 
new giz will be linear homogeneous functions of the gi, 
viz. in the usual abbreviated notation f, 

ax. Ox, 
Bee 

WY aed da) 9X 
* Cambridge Tracts, No. 9; ef. especially pp. 3-4. 
+ In which the sum signs are omitted, the tacit prescription being 

that the sum, from 1 to 4,is to be taken over each term in which a suffix 
occurs at least twice. 

Pil. Mag. §. 6. Vol. 36, No. 211, July 1918. - A 
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The gj thus constitute what is called a (covariant) tensor of 
rank two, viz. a symmetrical one, since gy=g;;. Any array 
or matrix of 4x4 constituents aj which are transformed 
according to the same rule is a covariant tensor of the 
second rank. ‘The differentials of the four coordinates them- 
selves, which are transformed into 

constitute a contravariant tensor of rank one or a four-vector. 
The reader is supposed to be acquainted with these and 
higher tensors and with their transformational properties ~. 
Here, therefore, it will be enough to recall that the import- 
ance of all tensors consists in the linearity and homogeneity 
of their transformation formule; whence, if all the con- 
stituents of a tensor vanish in one system, they will vanish 
also in any other system of coordinates (provided, of course, 
that Oa«/Az,’ are not infinite). Thus, it a physical law is 
written entirely in tensors, it will retain its form in passing 
from one system of reference to any other. Tensors, and 
tensors only, thus furnish the material for writing down such 
laws. (This does not imply, of course, that they necessarily 
will, but only that they may be obeyed by Nature.) The 
fundamental tensor, gi, will manitfestiy play a prominent 
part. 

Now, to come to our subject. In Einstein’s theory the 
tensor gj is intimately connected with gravitation so that 
the latter codetermines the metrical properties of the world 
or space-time. If there is no gravitation, or as we will say, 
far away from heavy masses and disregarding the feeble con- 
tribution due to electromagnetic and other energy, Hinstein’s 
world, at least that of 1916, is Huclidean or homaloidal, 
amounting to ds?= —dwa,?—da,’—da;7+dr7, x,=ct, or to 

I= 922 = 933= 1s. Gu=1 (others zero) ee 

In presence of gravitation this is changed. To make things 
plain by an illustration, suppose there is but one conspicuous 
body in the universe, say, our sun of mass JM, the gravi- 
tational contribution of a testing particle or ‘‘ planet” being 
negligible. Then, far away from the sun, and the farther 

* Those readers who are not familiar with the subject can inform 
themselves in the easiest way by reading §§ 5-15 of linstein’s paper, 
Ann, d@. Physik, xlix, (1916), and Uhaps. I. and If. of Wright's 
‘Invariants,’ Cambr. Tract No. 9 (1908). 
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the more exactly, the tensor is as in (a). On approaching 
the sun we have instead, sensibly, 

Den 2a x," Qa 24x 4 Ww) ere a ee, * 
I4s=1— Prey gu=—1— i, 2? IJ: po pee & etc. gyi (d) 

where 7? = #,?+ x2? + #3” and a= M/c?, which is about 1°5 km. ; 
and this departure from the previous tensor cannot, of 
course, be transformed away; the change due to the sun 
is an essential one, a change of the metric properties all 
around that body. The eqs. of motion of a particle which in 
absence of the sun were given by the geodesic d\ds=0 with 
the tensor (a), expressing uniform motion, are now again 
given by the geodesic 8\ds=0 with the modified tensor (6), 
however. It is this system of eqs. which yielded the 
remarkable result concerning the motion of the perihelion as 
a welcome accessory of the classical planetary motion. But 
what mainly interests us here is that according to Hinstein’s 
theory the tensor gj; is changed not only within the sun but 
in all the cireumjacent region of the world, the supplementary 
terms fading away with distance. And similarly in the 
presence of two or more lumps of ‘ matter,’ which includes 
net only ordinary matier but also the electromagnetic field, 
for instance. ‘The tensor components thus modified, as (d) 
for instance, are (approximate) solutions of Hinstein’s “ field 
equations,’ certain generally covariant differential equations 
of the second order written down by him in terms of a 
tensor derived by contraction from the famous Riemann- 
Christoffel tensor of rank four. The particular form of his 
eqs. is here of no avail. It is enough to notice that, accord- 
ing to these eqs., within matter not only the several gj; but 
also a certain differential invariant, the world-curvature, is 
changed in value, while outside of matter the modified gi 
are so distributed that the world-curvature remains nil as in 
absence of matter. To repeat it, however, even outside of 
matter the modification of gj is an essential one and cannot 
be transformed away. 

To illustrate it by a bidimensional picture, imagine an ordinary 
surface populated by one-dimensional beings using one cvordinate wu for 
their space or extension, and another v for their time; their sun will be 
a line segment, Aw, and the world-tube of the sun a certain strip of the 
surface. Let our surface (and ther “world”), in strict analogy to the 
above, be an ordinary plane in absence of the sun; then, in presence of 

* In Hinstein’s formule (70), doc. crt. p. 819, w is a misprint for 2, 
as the reader will readily convince himself. 

H 2 
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that body, the Gaussian curvature within the strip will differ from zero’ 
while outside it will remain nil, the neighbourhood of the solar strip 
being bent and possibly strained somehow but remaining developable 
upon a plane, as is a piece of a cylinder, say, or of a cone*. The geodesic 
lines of the surface, and therefore also the eqs. of motion in the vicinity 
of the strip, will then be changed correspondingly. 

Now, what I propose is to emancipate the fundamental 
tensor, at least outside ordinary matter, from the influence 
of gravitation (as well as of any other agents), in spite of the 
well-known exceptional properties of gravitational fields. 
In other words, I propose to reject the gravitational 
‘equivalence hypothesis,” but to retain the postulate of 
general covariance of physical laws. 

But here, at the very outset, a fundamental question pre- 
sents itself. If the coefficients of the invariant line-element 
ds*=gqyda;dx; are not manufactured or moulded by gravi- 
tating bodies, what does determine them physically? What 
determines the values of those tensor components, 2f in 
different cases they were to be essentially different, 7.e. not 
reducible to one another by mere transformations of coordi- 
nates? A radical answer to this question easily suggests 
itself, and is already announced by having emphasized the 
“ah.e7 oaiteis dis: 

Let the fundamental tensor gj; be not different in different 
physical circumstances but always, under all circumstances 
(at least in vacuo) essentiaily the same. In other words, let 
us assume that ds? is, in vacuo, throughout the world essen- — 
tially the same quadratic form, or that it is always possible 
to choose such coordinates 21, %, %3, #,=cl in which ds? 
acquires a certain standard form, no matter whether suns or 
galaxies are near at hand or very remote. ‘This amounts to 
postulating homogeneity of the four-manifold, which—in 
view of the principle of causality, in its heuristic aspect— 
seems to be a perfectly sound requirement. 

Now, our world, as any multi-dimensional manifold, has 
a host of invariants, the differential invariants of various 
orders of its line-element. ‘hus, if the world is to be 
homogeneous (always im vacuo, at least), clearly all of its 
invariants must each have throughout one and the same 
numerical value; and since one of them (and even pro- 
minent amongst them) is the differential invariant of 2nd 

* The idea of reducing physical phenomena to changes of curvature, 
especially in connexion with particles of matter, is not altogether new. 
It was suggested nearly fifty years ago by Clifford, with the only 
difference that Clifford had no opportunity of associating the time- 
coordinate with the remaining three. Cf Clifford’s ‘Math. Papers,’ 
p- 21, and his ‘Common Sense of I’xact Sciences,’ 5th ed. p. 224 et seq. 
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order repeatedly called worid-curvature, we shall claim for 
our world a constant curvature. ‘This will henceforth be 
denoted by 

ie = YS 

Not pretending to know, or to be able to decide a priori 
what its sign or value might be, we shall leave them 
undetermined. 

If & is positive, R is a real length, and if negative, then iF is a real 
leneth. It _R|=o, the world is homaloidal. Notice that, whatever 
the results of future observations, they can not lead to the conclusion 
that the world is strictly homaloidal but can give only a lower limit 
of | Rj, say 10° astr. units or more ; this under the assumption that the 
results of observation will be nil-effects, as in the case of Hinstein’s shift 
and of all the ether-drift observations and experiments. It may, how- 
ever, happen that some observations will point to a lower and an upper 
limit of | R| together with a definite sign of R°. Then, whatever the 
actual sign of R*, the result will be a very positive and an interesting 
one. It may run thus, for instance: R*< 0, and 10°< |R |< 10”, 
stating that the world has a negative curvature and fixing its amount 
between two, more or less narrow limits. I must warn the reader, now- 
ever, that if he lives long enough to hear of such a result, he must not 
say that “the three-space” is negatively curved or hyperbolic of cur- 
vature k=—107' astr. un.~”, but only that the four-manifold or the 
world is so. In fact, if such be the world, he can choose in it a space * 
just of the curvature = —107'’ (but not below it), as well as a linear 
infinity of hyperbolic spaces, the homaloidal and all positively curved 
spaces without upper limit. This freedom of conventional or opportunist 
choice, limited only at the lower end by the invariant 4, is based upon 
a remarkable and very general theorem on manifolds of any number of 
dimensions proved 35 years ago by Killing t and in part before him by 
Beltrami, which may shortly be rendered thus :— 

Every n-dimensional space of constant curvature contains in itself 
spherical space forms (Kugelgebilde) of less dimensions (v) whose 
Riemannian curvatures form a continuous manifold having no maximum 
but a minimum, viz. equal to the curvature of the n-space, this minimum 
curvature belonging to the v-dimensional plane. 

For our case it is enough to put in this admirable theorem n=4 and 
v=. After this lengthy but (in view of certain recent misunderstand- 
ings) not altogether needless digression, let us return to our subject. 

Having assumed a homogeneous world we have eo ipso 

accepted one of constant curvature, k= pe (This being at 

any rate a necessary condition, it will be still incumbent to 
show that the line-element to be written down presently 
leads also to all other constant invariants,—which task may 
be postponed to another opportunity.) Now, to obtain the 

* And a homogeneous one, or hypersphere of three dimensions. 
+ W. Killing, Dre Nicht-Eukhdischen Raumformen, Leipzig, 1885, 

pp. 79-88. This excellent old book will be helpful to every student of 
general relativity. 
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corresponding quadratic form for the line-element let us 
take, with Beltvarne: -Killing’s theorem as guide, for our 
particular three-space Just the extreme appearing in that 
theorem, viz. a space of constant curvature equal to that of 
the sum The line-element dX of such a space, no matter 
what the sign of A?, can be written, as is well-known, in 
polar coordinates 7, ¢, @, for instance, 

dn? =dr? + R? sin’ (dd? + sin? dé). 

Such being the space part of the line-element, let us use a 
system in which 914=9,=93,=0, which is always possible, 
and let us tentatively take gy=1. Thus, with a2,=ct, the 
required expression for the line-element will be da?~—dn’, 
1. @. 

ds?= cdi? —dr*— KR? sin? (dg? + sin?pd6). . . (1) 

Attaching (mentally) the suffixes 1, 2, 3, 4 to the radial, the 
meridional, the latitudinal, and the time- direction, respec- 
tively, the ‘equivalent fundamental tensor will conveniently 
be written, with gu=qi, 

n=—l, go= —R sin? IJs= Join’ h, Y=, . (2) 

all other components being zero. That the form (1) or the 
corresponding tensor (2) do actually express (in a ee 
convenient reference system) the said four-manifold, will be 
seen hereafter in more than one way. 

Qur original assumption is now reduced to the assumption 
that, outside of matter, it is always possible to choose such a 
system of coordinates in which the line-element takes the 
form (1). We shall refer to such variables by the short 
name of natural coordinates. 

It will be well understood, however, that we do not 
postulate the invariance of the particular form (1) or of the 
corresponding tensor (2) which, of course, could be preserved 
only with respect to certain very pa transformations, 
whereas we require all physical laws to be generally covariant. 
Thus, in any not “natural” system of coordinates, which 
we will generally denote by w, ue, us, v4, the line-element (1) 

co) 

will assume the form 

ds =gipduiduj, i. io. 0.) eens 

where gij will be some linear homogeneous functions of the 
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natural components gj,..-9, given in (2), viz., by the 
general transformation rule already quoted, 

a og ari tence eishe CE) 

the office of () being to remind us that the values (2) are 
meant, if 2, 22, £3, 2, stand for r, ¢, 9, ct. Similarly we 
shall have for the contravariant tensor g¥=y; in any 
u-system, remembering that (g) =1/(9), 

Bow Ou; | 
Was ans aac (cy es Fe rete er glie (4a) 

to be summed over «=1 to 4, as before. Thus, whenever 
required, it will be easy to pass from the above to any other 
system of reference. 

Even taking for granted that (1) does represent a world 
of constant curvature and is thus equivalent to a generally 
covariant way of defining that manifold, yet the reader may 
feel formally unsatisfied by seeing the fundamental tensor 
gi thus to assume a variety of forms in different reference 
systems. It will be well, therefore, to give here already 
certain properties of that tensor which do preserve even 
their outward form in all systems of coordinates. In fact, 
let, in the very old notation, (4wer) be the four-index 
symbols of Riemann belonging to the general quadratic 
form (3), certain differential expressions in gj; to be quoted 
later on. These “symbols” are themselves the constituents 
of a tensor of rank four; in the case of 7 dimensions there 

¢ 2 
: v ae 

are in the most general case only D (n?—1) linearly 

independent Riemann symbols*, which makes 20 for the 
four-dimensional world. Now, by a most remarkable, 
although half forgotten, theorem of general geometry f, the 
necessary and sufficient condition for a manifold to be deve- 
lopable upon a “sphere,” 7. e. to have constant Riemannian 
curvature, is that all the Riemann symbols (¢ux«r) should 
bear a constant ratio to the expressions gugur.— Juargpe ; that 
ratio being precisely what we have called the curvature of 
the manifold in question. 

Thus, in our case, (3) being only (1) transformed, we have 
in any reference system, natural or not, 

1 
(wR) = Fe (JuuJuX—Jrgue)- - + + + (5) 

* Cf. Wright, /.c. pp. 11 & 23. + Killing, J. c. p. 282. 
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Passing from a system u to any other, wu’, we shall have 
jas! 

(LEN), = R? (Gee Gur gir'Gpx'). The left-hand members being 

properly developed, (5) are ultimately partial differential 
eqs. for the gj. It is still to be proved that our above tensor 
components (2) do actually satisfy all these differential 
equations. ‘This will be shown in the next section. 

To conclude the present one, notice that by (1) the velocity 
of light, given by ds=0, becomes, i in natural coordinates, 

en 
7 oi 

that is, constant and independent of direction, throughout 

1 
the natural space (vacuum) of curvature ree whatever the 

value or the sign of the latter. The “rays” of light will be 
straight, shortest, lines in that particular space. Remember, 
however, that it is only a space, among many others at your 
disposal. In view of the above property we can call it visual 
or optical space. If then, by convention, we desire to choose 
as our reference e space that among an eaittar of others which 
has the above property, then there is certainly no objection 
to calling it simply space as a short for “ optical space.” 
And since all more remote objects are explored by optical 
means, such a choice will manifestly be by far the most 
convenient one. If R?<0, so that 

Rsin p=|R| sinh; 7 

then the optical space will be hyperbolic or Lobatchewskyan, 
i.e. infinite but showing a defect in the angle sum of a 
triangle proportional to its area, and so on; if, in spite of 
the negative value of the invariant &?, somebody would 
prefer to use Huclidean geometry, there would be nothing to 
prevent him doing so; only in that case his optics will not be 
so simple. Similarly, mutatis mutandis, for k=O or k>0. 
To put it in a few words: The world is so or so (to be 
explored), while space—even with the requirement of homo- 
geneity—is, in very wide limits, a matter of convention, 
much as was predicted \ears ago by Poincaré. 

Positive constant world-curvature is a feature of Einstein’s 1917- 
theory ; of course, only in absence of gravitation, and with the unavoid- 
able cooperation of a certain hypothetical ‘‘world-matter.” An inter- 
esting modification of Einstein’s newest theory due to de Sitter will be 
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found in Monthly Notices R. A.S., for Nov. 1917. The latter is espe- 
cially interesting because it does without the “ world-matter,” but has 

on the other hand gis=cos* ® instead of 1, to suit the gravitational 

field equations slightly amplified by Einstein. At any rate both authors 
are under the strange impression that the world cannot be infinite. 

Finally, notice that in the case of a homaloidal world 
the theorem expressed by (5) gives (yuxr)=0, as it should 
be, this being the well-known necessary and sufficient con- 
dition for ds? to be reducible to a form with all constant 
coefficients. 

3. Mathematical Supplement to the preceding section. 

In order to obtain the promised suppert for (1) as the 
expression for the line-element of a four-manifold of constant 
curvature, take 94,=9.=93,=0 and measure wy, Us, us along 
the principal axes of the three-dimensional linear vector 
operator gx (1, 2, 3). This operator (which itself is no 
relativistic entity, of course), being self-conjugated, has 
always such orthogonal axes, and three corresponding prin- 
cipal values, say, 91, 9,, 93 thus, w, ue, us being in general 
curvilinear coordinates, the expression for the line-element 
will become 

ds? = g,du;" + goduy? + g3dus’+ gaduy?, . . (6) 

and det.gij= 9929394, so that the components of the contra- 
variant tensor will be, simply, 

y= and nil for 1). 

As space-coordinates of this kind can be employed con- 
veniently the polar coordinates 7, @, 8 or any other orthogonal 
curvilinear coordinates known since the times of Lamé. 
Now, what has been repeatedly called the curvature of that 
world which is given by the above differential form is itself 
an invariant (one of many) of the differential form, viz. 
proportional to 

é= y Jefe 

that is, in our case, to 

where 
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These are the constituents of a covariant tensor of rank two, 
derived by Hinstein from the Riemann-Christoffel tensor 
by “contraction” (equating two indices to one another and 
summing over them). 

In (7a), the general definition of the three-index symbols 
of Christoffel is 

{Pt age[V]aome [2]... - @ 

ie]niQiesder-te. 
and, therefore, for the form (6), and with uj=a;, say, 

21,25 3,4=7; P, O, ct, as in the preceding section,— 

and [| =() when i, 7, « are all different. In our case (8) 

becomes {iv \ Lave (} 

so that finally, 

(po Wee yu) | 1 ogee 
Les © 29; 02; ea 3, We)» + (0) 

and oy =( when all indices are different. Thus far g, 

where 

etc. were any functions of 2, etc. or 7, ¢, 0, ct. Hence- 
forth it will be enough to develop the sub-case in which 

N=IM\"), Go—J9")> G3=—92510°h, Js—G. se 

where, however, 91, 2, 9, continue to be any functions of 
y=; Then, by (7a) and (10), with dashes used for deri- 
vatives, and introducing the abbreviations 

2 

hy=log(—gy), hoa=log(—gs), hy =logg,, h=log?# O 
co} 

By = hg! + 3g! + ¥ (hg! —Iy')hg! + tha (Ag' —hy') ) 

ie 1 me) Hh ay a A | 
Paar a3 Dy, Fahy h) ene) 

Crepe sales 
Byu= jg, (ie tbh) ; Bue=O0U#«), 
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and the corresponding expression for the curvature will be, 

by (7), : ; ; 
6=—Byt—Bn+t—By... . (13 n 11 92 22 Ga 44 ( ) 

This is valid for any fundamental tensor of the form (11) ; 
our case, given by (1) or (2), is but a sub-case of (11). 
Taking, as in (2), g;=—1, we have 

é= —_ | 2h" + hit + 3h,” + th,!? <b hs ha S 5 } SLs (13 a) 

2 

where h,=log (—g,), hg=log g, are still any functions of 
z,=r. ‘These more or less general formule have been given 
here since they may be useful in some other connexion. For 
the present, however, our purpose is only to show that the 
element (1) actually belongs to a world of constant curvature. 

Now, putting, as in (1) or (2), gp>= —A#? sin? = we have 

2 if 2 i: 
hy'= cot, h,!’= — =, cosec! 

Rk dt Re 

and, equating @ to a constant, the differential equation for 
hy=log gs becomes 

6 | 
Re She ately oh,’ —6—<onst.” .” 1 (13:0) 

This equation can be satisfied by g,=cos’ar, a=const., 
which would give 

2a7 + = tan ar cot = = G— os 
r * 

and this can be satisfied either by a=1/R, 7. e. G1= C08" 7, : 

with @=12//”, or more simply by 

a= Oyands C= RY 

* This is mentioned here because Prof. de Sitter’s element, in absence 

of gravitation (M. N., Nov. 1917) has precisely g1s= cos? a And this, 

with go.——R’ sin’ t was de Sitter’s only possibility, since he has had 

to satisfy not only Z=const. but also the four (amplified) “field equa- 
tions” of Hinstein, 2. e. without ‘‘ world-matter,” 

Bi=¢ Goi, 
and these cannot be satisfied by a=0 or gis=1. (With appropriate 
“world matter,” as in Einstein's case, quoted also by de Sitter, the 
equations are so modified as to admit gis=1.) In the theory we are 
proposing, it will be remembered, there are no “ field equations” to 
satisfy ; the fundamental tensor has here nothing to do with gravitation. 
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and, therefore, g,=1, which is precisely the case of the 
element (1). ‘Thus, that line-element characterizes a space- 
time of constant curvature, the value of k=1/A? being one- 
sixth of @, the above differential invariant. Q. EH. D. 

Such being the case, we know beforehand that the 
theorem (5) will hold. Yet it may be well to verify it by 
calculating directly some at least of the Riemann symbols 
corresponding to the tensur (2), in part also to make the 
reader more familiar with the handling of these remarkable 
symbols. Now, their general definition may be put into 
the form 

cy SUB-D LEHR eh 
to be summed as usual. Thus, with the normal form (6), 
and therefore, with the values (10), we find, for instance, 
remembering that g,=const.=—1, 

Mia O92 O92 
aia O02, + a9, 495 ate 

which becomes in the case of (2), with a=r, (2112)= 

a Most symbols vanish, as for ex. all (a2), and 

more generally all (ykk),—this in virtue of the general 

property (yhk)=—(ykh); again, many symbols that in 

general would not vanish do so in our case owing to a =o. 
3 

and so on. Finally we find, f. ex., another non-vanishing 
symbol, 

€ 0793 093 = Z if = 2 Se i i (3118) ve 2) = (52 ‘= in’ =, . sin g, 

and soon. Thus we have 

(2112) = Fags) + (3113)= jae 
as it should be; for, by (5), (2112) = Fa(gns? nag) and 

in our system g;2=0, 9,;=—1; and so on. Having thus 
verified (5) in a pair of examples, we can safely apply that 
theorem to the tensor gj; transformed from (2) to any system 
u;. If we use, for instance, normal coordinates, 7.¢. such 
that ds?=Sygiduz , then all Riemann symbols vanish with 
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the exception of those of the type (?kzk), and these become 
_ eu y (ikik) = Fegugue=—(hitk), . . . (15) 

for 7k. The most useful, of course, is the formula (5) 
itself, since it enables us to write at once all the constituents 
of the Riemann-Christoffel tensor for the assumed world in 
any system of reference. 

4, Natural Systems of Reference. 

In Section 2 the coordinates r, ¢, 0, ct in which ds? 
assumes the simple form (1), and in which, therefore, light 
is propagated uniformly and isotropically, were called natural 
coordinates. Now, it is interesting to inquire whether, in a 
world with any acca curvature, there is but one ora whole 
class of natural systems,—apart from such, of course, as can 
be derived from the original one by mere three- -space trans- 
formations. From the older Relativity we know that for 
R=x, when ds? becomes 

dt? — di? — 1? (dd? + sin?h d@*) = dt? — dx? —dy? —d2, 

there is an infinity of natural systems all derivable from 
x, y, 2, ct by the Lorentz transformation. It can be expected 
that something analogous will hold for any finite FP, real 
or imaginary. Let us, therefore, try to find such natural 
systems. More definitely, starting from the form (1), let us 
ask for such transformations r=r(1’, ¢', 6’, ct’), ete. which 
turn (1) into 

edt? —dr'? — R? sin? 7 (dg? +sin’g dé"), 

Then, at least all these systems Ge no others) will share with 
the original one the “natural”? property of simple optical 
behaviour and other properties therewith connected. In short, 
let us find the generalization of the Lorentz transformation 
for a space-time of any constant curvature. 

It will be formally convenient to introduce | R| as the 

unit of length *, and similarly ee as the unit of time, no 

matter how long these units might turn out to be when 
compared with those usually employ red by the physicist or 
the astronomer. 

In these units, and therefore with the light velocity c=1, 
further with ae 

l= —6,/ —1; 

* With the exception, of course, of the case of | R| =o 
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and with Sin written for sin or sinh according as R?>0 or 

R? <0, the original line-element becomes 

— ds? = dr? + Sin’r (dg? + sin’h dé} + dl?, . . (16) 

all four variables being now pure, dimensionless, numbers ; 
and the required natural systems will be defined by 

dr? + Sin’ (dg? + sin’hd@) + dl? = dr? + Sin?r' (dg? + sin’h’d@"”) + dl’?. 

In order to find them it will be most convenient to use 
Weierstrass coordinates, viz. to introduce a fifth, auxiliary, 
coordinate #;, such that (with w,=1=1t) 

ay ee es ee tas HPS te ee 

then our standard form will become 

—ds=de+du?+dry+dretdas.. . . (18) 

The upper sign in (17) will correspond to an elliptic, and 
the lower to a hyperbolic, world which thus appears, in 
@,+...5,1,as a four-dimensional sphere or pseudosphere, 
respectively *. 

The well-known connexions between the z, and 7, ete. 

will be given presently. Whatever these are, if we require 
that, for the natural systems of reference, 

da? +... ¢da¢=da,?+....+da,7 er 

and at the same time, 

Ce ee i 

then if #,/ are retransformed into 2”, etc., thus getting rid of 

the temporary or auxiliary fifth variable, the natural form 
(16) will reappear in dashed letters, as is required. 

Now, (A) and (B) can be satisfied only by taking for «! 
linear functions of the w,. Let us write, therefore, 

! —_— “a Di Cay ct igh, ++ Cyt weber 

or, in the usual abbreviated notation 

Leo t=1,2,.. oy See 

where a,, are thirty constant coefficients. Such, however, 
being the case, we have also 

Ai) niles ~ Uv, =a, ta 
Uk 

” / — yy? dz, =a, dx, 

so that all the equations yielded by (A) are already contained 

* That is to say as the four-dimensional analogy of the ordinary two- 
dimensional sphere or pseudosphere. In the variables «,, ete. and ¢ 
(real) equation (17) represents a one-sheeted hyperboluid for R*>0, and 
a two-sheeted hyperboloid for R?<0. 
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among those required by (B). These equations, common to 
(A) and (B), are 

2 2 pret, Ga + Good i. ae — 1, five eqs., 

and 
G,,A,, + Ay,%,+...-+a,a, =0, ten egs., 

in all 15 equations. In addition to these (B) itself gives 
the condition 

Gn, teas. - + +o. U, 

and five more equations of the type 

yp? aaglgg ek © nein + O20. =O... (20) 

The latter, however, being a system of homogeneous equa- 
tions for the dy, we have “either det. ( (20) =0, when (20) are 
reduced to four independent equations only, or det. (20) 0, 
a — C5 ,— .... =a,,—0. In the former case we have in 
all 154-1+4=20 equations for 5x 6=30 coefficients, and 
in the latter case, the first 15 equations only for 25 conde 
cients. Thus, in eee ease the coefficients can be expressed 

by 10 free parameters, or the transformations in question 
are ten-parametric. Without sacrifice of generality we can 
take the second case, 7. é. ay=0, and therefore, the humo- 
geneous transformations 

yO Nhe Dy WP) 1 695 2h ALO) 

with 15 equations 

By 2 oe GO) Pes ea G1, 

0d; Ge Ge aes aa, =0, 

for the 25 coefficients ay, @yy,...d55. And, as every pair of 
transformations (19a) can be replaced by a single trans- 
formation of the same kind, the said natural transformations 
constitute a group, viz. a ten-par amutric one. The relations 
(21) are exactly of the same form as the six equations which 
are well-known in connexion with the ordinary transforma- 
tion of Cartesian coordinates by a rotation of the system, or 
the 10 equations connected with the Lorentz transformation 
(with jived origin of time and space). In fact, (21) taken 
by themselves would correspond to a typical orthogonal 
transformation in five variables. Since, however, our five 
coordinates are not independent but bound to one another 
by (17), our case is better expressed by saying that it is the 
four-dimensional analogy of the (rotation or) motion in 
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itself of an ordinary two-dimensional sphere ; the differ- 
ence, even with R?>0, being that the coordinate #,=l=ut 
is imaginary. Keeping this well in mind one ean charac- 
terize the required transformations by saying that any one 
of them is a rotation of the world, sphere or pseudosphere, in 
itself, similarly as the Lorentz transformations were described 
as rotations of the Minkowskian, homaloidal world. Thus, 
notwithstanding the world-curvature, the said group of 
transformations is characterized in much the same way as 
the Lorentz group (with one difference to be explained 
presently). The details of its analytical expression will, of 
course, be different for non-vanishing curvature. 

The result can now be stated shortly by saying that all the 
natural systems of reference are derivable from one another 
by a rotation of the world in itself, whatever its curvature. 
To pass from a natural system of coordinates 4, etc., 2,=/ 
to any non-natural, w,...u,, is to distort the world sphere or 
pseudosphere (without changing, however, its invariant 
curvature), while to pass from that system to any other 
natural system is to effect a mere rotation of the sphere or 
pseudosphere, according to the sign of A?. The correspond- 
ing group of transformations, deriving one natural system 
from another, could appropriately be called the natural group, 
of which then the Lorentz group would be a particular case 
corresponding to kh? =o. It must be expressly stated that 
I do not propose to limit the theory to the natural group ; 
on the contrary, I require every physical law to be covariant 
(or contravariant) with respect to any transformations of the 
coordinates. The “‘ natural” ones are treated here at some 
length only because of their eminently simple properties, as 
a class of reference systems among an infinity of others. 

Now, as to the difference in relation to the Lorentz group, 
hinted at a moment ago. It is well known that the so-called 
general Lorentz transformations, viz. including pure space 
rotations, constitute a s¢v-parametric group *, while our 
natural group is a ten-parametric one, since (21) are but 
fifteen equations for the twenty-five coefficients ay), ay9,...d55. 
This, however, is only an apparent discrepancy. For the 
Lorentz group just mentioned relates to a jixed origin of 
L,Y, 2, l5 OF tO” put it shortly, to a fixed world-origin O. 

When we add the four degrees of freedom to choose a world- 
point as O, the result will precisely be 6+4=10. That is 

* The narrower or three-parametric Lorentz transformations do not 

constitute a group, although they contain the subgroups for parallel 
velocities, Cf. the author’s ‘Theory of Relativity, Macmillan (1914), 
p- 170. 
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to say, including pure space-rotations and shifts of origin, 
the Lorentz group is a ten-parametric one, exactly as the 
above group. It remains only to show that the latter does in 
fact include free shifts of the origin of the four coordinates 
Ly, Vg, Xz, Ly (the fitth being only an artifice for simplifying 
the investigation). 

Now, return to (19a) which, written out fully, are 

I , a Uy =A 2+ Ato + .... FAs; 

gel MOD a8) 
/ 

vy = Ag, X%1 + AgyLe Per a esis + A452; | 

! ? Vs A510} + As9Vo spate ates + Assvs J 

The origin O of the w-system is #4, =a2,=x23;=2,=0, and by 
(17), 2;?=R?, say z;5=+R= VW +1, according as the world 
should be elliptic or hyperbolic. Thus the origin (’ of the 
z'-system will be 
re ies Yee a 

2 =F, Lo =a, etc., #; =a55,F, 

satisfying (17) in virtue of the fifth of (21). Thus by 
ascribing appropriate values to aj5,....d4; any world-point 
can be made the origin of the new system. Q.E.D. 

An interesting feature is that (19a) with (21), although 
having the outward form of an ordinary rotation with 
‘fixed origin,” yet contain also shzfts of the world in itself, 
unlike the Lorentz transformations if written, in four vari- 
ables, w,/=a,,v,. The simple reasonis that our formule 
do express a rotation round a fixed point; a point not of 
the world, however, but an extraneous one, in the fifth 
dimension, or, to speak figuratively, “inside” the sphere 
whose surface represents the world. The contrast with the 
Lorentz six-parametric ‘“rotation”’ can perhaps be best 
illustrated by comparing an ordinary plane with an ordinary 
spherical surface. And the analogy fits because the Min- 
kowskian world is flat, while that which concerns us here 
is assumed to have some constant curvature. 

Having thus ascertained the properties of the full, ten- 
parametric, group of natural transformations in their simple, 
“ kinematical?’ form, it will be enough to develop the 
analytical expression for the sub-group only, corresponding 
to a fixed origin O of 2, xo, 23, 2. To obtain O'= 0, write, 
in (19 a), 

Ay5 = Mp5 = A35= O45 =0, Ags=1. 

Phil. Mag. S. 6. Vol. 36. No, 211. July 1918. I 
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Four of the eqs. (21) will then become as; =as.=a;3 =a;,=0, 
so that the group ultimately becomes 

a, Sage (6, K=1,...4) 5. 25 a5: = ene 

There being now 10 conditions for 16 coefficients, the group 
with fixed origin is six-parametric. Moreover, apart from 
%5=2;|, the eqs. (19 5) are now exactly of the form of those 
expressing the Lorentz transformation. 

In short, the natural systems, for any constant world- 
curvature, are obtained by subjecting the Weierstrass co- 
ordinates of any one of them (with x;'=a;) to a Lorentz 
transformation. 2 

Of the six-parametric group the pure space-rotations are 
of no interest. It will thus be enough to take the case of 

(ils ee hi a 
vy = 9, v3 = 3 5 vs = U5. 

The conditions (21) then become 

2 Noe o) Ope pee ae) 
yy +g? Hy tay Hl 5 ayy G44 + O43 44,=0, 

and are satisfied by a); =d4,=€08 ®, d,= —A4,=sin @, with @ 
as the only parameter, so that the transformation ultimately 
becomes 

(22) 
ay! a 14! = cio (wy == Wen), 

fie aie te Sul . y 
vo 9 v2 3 Us = V9, v3, a5. 

The first line is familiar from the older relativity, the only 
difference being that now it holds for the Weierstrass co- 
ordinates of the world-point. To translate this result into 
our original coordinates, put 

Aue : 
ike Aiey, Goals, SOL GIA, SIO P Leos , sin d cos @, sin } sin 6], 

e,=tt=R eos; w3=R sin w. cos — 
R 

so that : g 
PP +2," +23" + 05°= Rh? sin >h, and 2? 

1 
identically, as required. Then we get, as a translation of 
(22), keeping for the moment R, to avoid confusion”, the 
following equations between r, ¢, 0, ww and their dashed 

* Since | & | was taken as unit length, R will here stand for 1 or 
/ —1 according as the curvature is positive or negative, 

. (23) 
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correspondents, with @ as parameter, 
! ; l 

sin g'=tan 5, sin oh; siny’ C08 =sin cos 5, i a =6¢ ; tan 7 

sin Y’. sin id 
/ 

Te BS Ne a ~ e e 1 . ~ 

pee g¢ =cos@. (sin w sin 7, cos g¢)+sin@.cosw >- . (24) 

cos Wr =cos @.cos p—sin B.(sin ar .sin O08 #): i) 

The first of these equations, expressing axial symmetry, 
needs no further remarks. The third may be put aside for 
the moment (one of the 5 eqs. being a consequence of the 
others), but will be useful hereafter. The second, fourth, 
and fifth can be written, remembering that cos p=it/R 

b) 

t2! 1/2 : y! t? 1/2 rey el 

(2 + =) Fsin Roos p' =cos @ (1 + Bz) fF sin =,cos + 7 sin ‘ 
Iie 1 

bs abe ci t? 1/2 _ 

t!=t.00s+ésin @. (1+ am) Lf sin = Cos >, > 

me (ako | 
& tan p.sin ¢' =F tan» . sin >. ; 

(25 

These are the required transformations valid for any 
~~” 

constant curvature k= of the world. If the world is 

elliptic, we have, with | # | as unit length, 

(1+¢'?)"’sin r' cos 6’ =cos ®.(1+#?) sin 7. cos d + it sin , etc., 

and if hyperbolic, then 

(1—¢'?)!? sinh 2’ cos d'=cos @.(1—?*).’? sinh r cos @ + it sin @, ete. 

The detailed discussion of the several interesting terms may 
be left to the reader. If the world is homaloidal, 27. e. 
Minkowskian, we have, as the simplest particular case of 

(25), 
r' sin d'=rsin d; 7 cosg’=rcos d.cos ® +2 sin @, (25°) 

t'=tcos@+isin®.r cos, } 

which are the well-known formule of the older relativity 
theory * ; the first of (25°) expresses conservation of lateral 

dimensions, and the two others, with @=arc tan (=) and 

* See, for instance, my book, p. 127 et seq. 

12 
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2=r cos d, are identical with Hinstein’s famous formule of 
1905, for uniform relative motion with velocity v along a, 

Ux v\ le 
a’ =y(«e—vt), !=o(t—"3); y=(1- a ; 

It is but natural that for a non-homaloidal world the rela- 
tions, as in (25), should be more complicated. It will be 
remembered that in appropriate, viz. Welerstrassian co- 
ordinates, toe relations are as simple as in the case of a 
homaloidal world. 

Let us once more return to the full, 10-parametric group 
of natural transformations. Its equations, collected from 
(19a) and (21), are 

/ 
Ly = 4,01 + AyQXo te tie $s + Qy5U5 | 

Bs) =Asiiby + sg +... + A555 | a (a hen MIO) 
| 

Aig + eoe 2 gg = 

Ay,Ai, + ..s.+5,05,=0, J 

the number of conditions, written for convenient reference 
below the equations, being 15. It willbe well to rewrite also 
the translation of these Weierstrass coordinates into 7, @, 0, t, 
in a somewhat simpler way than in (23). Remembering 
that the factors of sin yin the expressions (23) for 2, #, 
#3, #; are the Weierstrass coordinates of a point of space 
(three-space), 2. e. of a natural space r, @, ¢, eall these 

factors &), &, &, &s, 2. e. put &,= Asin = cos ¢, etc. Then 

the Weierstrass world-coordinates will be expressed by these 
Weierstrass space-coordinates & and by the time coordinate t 
as follows: 

t? 

Xj, XQ, V3, vy=(14 Fe 12(&,, E, Es, ¥¢ 

(27) 

For a homaloidal world (or better, for any world, provided 
that t?/F? is a negligible fraction) the first three z’s become 
identical with the &s, and the auxiliary fifth « becomes 
unnecessary. With || as unit length the factor becomes 
V1+t? according as the world is elliptic or hyperbolic. 
Everything concerning the 1° natural systems is thus con- 
veniently expressed by (26) and (27). 
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The differential equations of the geodesics or shortest lines 
of the four-dimensional world are immediately seen, by (18) 
and (17), to assume in Weierstrass coordinates the simple 
form 

2 
Boies, Ve 1s. 5, 5 5 sl 9.028) 

where s is measured along the geodesic itself. Needless to 
say that these lines are of prime importance, first, because 
—owing to their definition $\ds=0—they are invariant, and 
then because they offer the first example of generally co- 
variant laws, viz. the law of motion of a free particle. 
Notice in passing that, in any coordinates u the eqs. of a 
geodesic will be 

du, {Kr i duy 

Dae A ds ite 
the g,,, entering through the Christoffel symbols, being always 
as in (4), since they are not moulded by gravitation or by 
any other agent. ut let us return to the eqs. (28). Their 
general integrals are 

BANE Ew MMO US 
=a, c0s( 6) +8, sin( 4), AYO A 4 (7-51) 

where a,, 6, are ten constants satisfying, by (17), the con- 
ditions 

0, 

aa =—bb =R?*, andab=0, . . . (30) 

to be summed according to the usual rule. These are the 
equations of a geodesic of the world, for any constant 
curvature. In natural units, 

z =a. coshs—b_ sinhs, for R?>0, 
K K K 

d Ae 
ce z =a,coss+1b sins, for A?<0. 

In order to find the shortest distance s between any two 
world-points * whose Weierstrass coordinates are x, and y,, 
write (29) for the former and for the latter, multiply 
them in pairs and add; then, in virtue of (30), the result 
will be 

is i 
C08 = Fe (%Ye)s By as. ente Sack gabe eR) 

a well-known formula of multidimensional non-euclidean 

* Not exceeding certain obvious limits. 
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geometry *. According to the sign of the world’s curvature 
we have, in natural units, (w,y,.)=cosh s or —cos s. 

Without insisting any further on these formule let us only 
draw from the last one this simple but interesting conse- 
quence :—The shortest distance of two world-points being 
manifestly an invariant, so is also w,y,. That is to say, in 

passing from one to any other natural system (for in such 
only we have the above Weierstrass coordinates with all 
their simple properties), the sum of products of such co- 
ordinates of two world-points retains its value. This simple 
property, although arrived at by following upon the shortest 
path from «x to y, is at any rate independent thereof, and 
belongs to that pair of world-points as such. This restricted 
invariant + (#,y,) Which, by (27), can be written, with 

t,=It,,, Ys=u, 

t? 1/2 

des (1 +2) (Ent Fone + Fans + Esns)— tt, - (32) 

must, of course, follow also from the group equations (26). 
So, in fact, it does. As an instructive verification of the 
above line of reasoning write the first five eqs. (26) for the 
point x, and then for y, add the products of corresponding 
pairs of coordinates and take account of the 15 conditions 
between the a,, immediately derivable from those given in 
(26). Then the result will be 

LOY bY ys i rer) 

which was the property to be proved. This is the non- 
homaloidal analogy of the invariance of the “ scalar product” 
of two four-vectors well-known from the older relativistic 
vector algebra. The property (33) will follow even more 
immediately by considering *, 7, as five-vectors in a five- 
space, restricted by (17) to have the fixed “size” A, and by 
remembering that the transformations in question are rota- 
tions of the world-sphere or pseudosphere. With the aid of 
(26) we can at once develop the whole vector algebra for a 
non-homaloidal world, as an obvious generalization of the 
older one. It is needless to show in detail how this is to be 
done. We shall construct the entities of this kind together 
with the rules of operating upon them every time these 

* The circumstance that the usual “s” is here replaced by 2s is due 
to the negative sign in (18), which I retain for the sake of uniformity 
with the present notation of most authors. 

+ J. e. invariant with respect to the 10-parametric natural group of 
transformations. 
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should be particularly required. It will, of course, be always 
kept in mind that these entities are applicable only when the 
employed reference system is a natural one. But then they 
will offer conspicuous analytical facilities. 

Having thus sufficiently explained the properties of this 
particular, but important, class of systems of coordinates, let 
us now pass to physical laws endowed with covariance for 
any transformations of the four variables. We shall begin 
with the fundamental electromagnetic laws since these 
embrace a vast and ever growing domain of phenomena. 

5. Electromagnetic Vacuum-Equations. 

Even before the publication of Hinstein’s outlines of a 
generalized theory of relativity, Kottler *, although confining 
his investigation to the Minkowskian world, has made the 
capital discovery that Maxwell’s amplified equations, now 
generally known as the “ vacuum-equations ” or the funda- 
mental equations of the electron theory, were generally 
covariant, 1. e. with respect to any coordinate transformations. 
More correctly, this property belongs not to the usual four 
equations OE/d¢+pv=curl M, etc. containing (beside v) only 
the two vectors E, M, but to the broader system of equations, 
with wu, as time coordinate, 

Oe a 80. div =O; Nt eS (I) 
Ou NG 

curl uo =pr, div €=p, sia wer CL) 

containing four vectors which will be shortly referred to as 
electric and magnetic forces (E, M) and polarizations (©, M). 
The latter appear as certain linear vector functions of the 
former, the nature of the corresponding vector operators 
being dependent upon the choice of the system of the four 
coordinates. In the homaloidal world and in any “ legiti- 
mate” or Lorentz system these operators degenerated into 
idemfactors, so that C=E, S*?=M, reducing (1) and (II) to 
their usual form. The said property is based upon the 
familiar assumption of the invariance of electric charge. 

It will be enough to recall here Kottler’s proof but briefly, 
giving however at the same time an explicit translation of 
the involved tensors into components of E, etc. taken along 

* F. Kottler, ‘Raumzeitlinien der Minkowski’schen Welt,’ Vienna 
Sitzungsber., vol. cxxi. IL a, Oct. 1912, pp. 1659-1759; see especially 
p. 1685 et seq. 
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any orthogonal curvilinear coordinates, such coordinates 
being indispensable for the treatment of a non-homaloidal 
world. 

Let F,, be a six-vector or a covariant antisymmetric tensor 
of rank two, so that F,=0, F,=—F,. Then, with any co- 
ordinates w,...u,, the four equations 

O Buc gs OF a +. OFu 22) dd a) 

OH, 1) Ot, Otek 7 
are generally covariant, because their left-hand members are 

| the (only four different) components of a tensor, to wit of 
| an antisymmetric one of rank three. Using ordinary Car- 

tesians, for instance, it will be seen at once that (Ia), 2. e. 

| OF o3/Ous4 + OF 34/OU2— OF 4/0u3=0, etc., 

| OF 23/du1 + OF 3)/Ou2 + 0 i2/du3=0, 

are exactly of the form of the group (IL) of electromagnetic 
| equations. It requires, however, some care to find the 
1 correct translation of F',, etc. into the electro-magnetic com- 

ponents along coordinates of a more general kind. Such 
translation will be given presently. Meanwhile, to cover 

i the group (II) of equations, consider the contravariant of 
TY’ ,, that is, with the usual prescription as to summations, 

il| Pe oitg's Fi Vee le Bak ye ee (a9) 

where y,, is the contravariant fundamental tensor corre- 
sponding to the chosen system u,. Further, let o, be a 

' contravariant four-vector, embodying in its space-part the 
convection current, and g the determinant of the g,. Then 

| : the four equations 

ii | i ) ST } e/g A | eee | Wma 3021) 
i whose left hand members are the components of a contra- 
il variant four-vector, will again be generally contravariant *. 

| That these equations are exactly of the form of the group 
if (II) of electromagnetic equations is seen at a glance, at 
(| least for Cartesians, and with some attention, also for more 
AN general coordinates. 
i Thus, the eight equations contained in (La), (IL a), together 
i with the six relations (35) express a set of electromagnetic 

Hh * Einstein usually employs a system with y= —1, so that (I a) are 
simplified to OF'"/Qu,—=c,. But to fix thus the value of the funda- 

Mt mental determinant would hamper us unnecessarily. 
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vacuum-laws which are covariant with respect to any trans- 
formations of the four coordinates. It will be remembered 
that in Einstein’s theory the linear relations (35) depend, 
among other things, also upon the gravitational field. But, 
as we have rejected his “ equivalence hypothesis,” our g,,, and 
therefore also the relations between the polarizations and the 
forces, will depend only upon the chosen system of reference 
and, of course, upon the assumed fixed properties of the 
world. 

It remains to write explicitly the components of the six- 
vectors F,, and F™ in terms of the components of QM, etc. 
along the curvilinear axes of the system u,, and thus to find 
also the explicit relations between the Prizes and the 
forces. [Then the original form (1), (II) of the Maxwellian 
equations, with w, as time, may be readopted and conveniently 
applied to any electromagnetic problem concerning empty 
space. | 

It will be enough to do this for orthogonal curvilinear 
coordinates wy, U2, Uz, Withany u,as time. ‘The corresponding 
form of the line-element then becomes, as in (6), 

ds* = IG, = du? + Jooduy? + Sais + Gasdu,”, A (36) 

and g=g11.-.944- In order to compare (La) with (1), with 
our purpose in view, remember that, A,, A., A; being the 
components of any three-vector A along the curvilinear co- 
ordinates in question, its divergence is 

div A=wyw.w; Ee (+) + ete. i; 

which covers the second of (I), and that the first of (I), with 
u, for t, splits into 

Bu oe ™:) + = ie) at a a) 7 
and two similar equations, where w,, etc. are defined by 

d 
so - ; ds,, dso, ds; being the components of the 

K 

(space) line-element. By (34), ds,?=—4g,,du,’, etc., so that 

> =/—g, etc. Keeping this in mind, a glance at (Ia) 

will suffice to see that these eqs. become identical with (1) 
if we put 

F3= WM, a aia: etc. 5 Fy= Hy / G14 etc. 
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Again the fourth of (Ila), for +=4, compared with the 
second of (II) gives 

pes pete i, (€,, etc. 
VA = 9119 44 

and at the same time o,= a P- Finally, the first of (II), 
G44 

compared with (Ila) for .=1, 2, 3 gives, as the remainder 
of the required dictionary, 

F3—=M,, / 74, etc. ; 7 , etc, 
g Vv 91948 

The relations between the forces and the polarizations, which 
are obviously of prime importance, follow at once. In fact, 
by (35) which for orthogonal coordinates becomes 

Bie — ii / ong J ose eal Fe a) 

we have M,=My/ gu, Hy =C1/ gag, and so on. 
Thus, for any orthogonal systein of curvilinear coordinates 

wt, collecting the scattered formule, 

Re ie MV 9229/33 etc.; fae, / 9s etc. ‘) 

ae 1 
Ns etc. ; CG, / oo 

i ede die 
: “/ — 9119 44 

etc. 04 — ae 9 *9 4— Bian. 
V 944 

where 2, v:, v3 are the components of v along the curvi- 
linear “ axes ”’ uw, v2, v3 and similarly for the remaining four 
vectors ; and the relations between the forces and polariza- 
tions assume the remarkably simple form 

Y= ae ay G _ E 38) a Va <— vale ( 

These latter are the simple relations supplementing (1) 

and (II). If wu, is used as time, 7= plays the part of 
744 

magnetic “ permeability,” and at the same time of dielectric 
permittivity.” Of course, according to (36), dt=dug Vo44 

would be the more appropriate time-element in the system 
under consideration. And if gs, is 1 or any constant, then 
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by a mere change of the time unit the equations (I), (II) 
will assume their usual form 9M/d¢+ curl E=0, etc. This 
is certainly the case, without further assumptions, in any 
natural system, for then we have, as in (2), gu4=g,=1. The 
dictionary, (37), is then also considerably simplitied, giving 
7, 53=pvV, o,=p, and soon. Remember that if 2,...24 be 
natural coor dinates, say: r, , etc., then for any other system 
the value of g4, to be substituted in (38) is, by (4) and (2), 

su= (555) 9°=(5u,) — (3a) 
eRe F(t) + sin $(2) |. SOC Ey 

Thus, not only in all natural systems but also in an in- 
finity of others, for which this expression has a constant 
value (say, 7, , @ independent of uw, although arbitrary 
functions of oe Ug, Uz, and t=wu,), the polarizations become 
identical with the forces, and the Maxwellian equations retain 
their ordinary form, no matter whether the world is homaloidal 
or curved. And for any system of orthogonal coordinates 
whatever the broader form, (1), (11) of Maxwell’s equations 
is retained, with the reciprocal square root of (39) as perme- 
ability and permittivity. 

Maxwell’s equations will thus occupy a unique position 
in General Relativity, hitherto at least unparalleled by any 
other physically satisfactory laws, since they not only are 
generally covariant (as, for instance, Hinstein’s gravitational 
equations), but have also, unlike Hinstein’s recent products, 
the remarkable property of not being hitherto contradicted 
by any experiments or observations. 

Questions relating to ponderomotive forces, electromag- 
netic energy etc. must for the present be omitted. 

Here it will be enough to add that (I) and (11) give, in 
any natural system (owing to (=E, ){=M) for the velocity 
of propagation of electromagnetic waves the constant value c, 
in agreement with the definition ds=0 of the velocity of 
light (cf. p. 104), as it should be,—since light consists in 
such waves. Needless to repeat, that this vacuum velocity 
after our rejection of “‘ equivalence”—is not modified by 
gravitation. And until any such phenomenon is discovered 
we are fully justified in adhering to the propesed purified 
theory. 
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6. Dynamics of a Particle. Haample of a covariant 
law of motion. 

Return to the general expression ds’=g,du,du,, where 
) Uj,...U, are any coordinates. Since du; is a contravariant 
| four-vector and ds an invariant, du,/ds is again a contra- 

variant vector; similarly d?u;/ds?, and so on. Such expres- 
| sions could, therefore, be employed for the construction of 
i generally covariant or contravariant laws of motion of a 
| particle, endowed, say, with some invariant “mass” or 

inertia-coefficient. It seems more convenient, however, to 
adopt another method. 

As was already mentioned, the equations of motion of 
a free particle are contained in 6\ds=0, the variational 

| equation of the world-geodesics. And the idea easily 
suggests itself to derive possible laws of motion of a non- 
free particle (or one “‘acted on by external forces”) from 
similar variational equations after an appropriate amplifica- 
tion of the integrand. ‘The purpose of the present section 

| is to give only a very simple example of a generally covariant 
i law of motion obtainable by this method (but by no means 

to develop the general dynamics of a particle or of a system 
of particles). 

i Let ®, a function of all the u;, be a tensor of rank zero or 
mi what is called a scalar, and therefore a general invariant. 

: Then @ds will again be invariant, and the laws of motion 
1 embodied in an equation of the form 

SL 20)ds20 

| will obviously retain their form in any reference system 

| whatever, or will be generally covariant. Understanding 

| by u; the space-time coordinates of the particle in question, 
and considering wu; as fixed at the limits of the integral, 

al develop (40) by the usual methods. Then the result will be 

i a system of four differential equations, one of which is a 

MW consequence of the others, 

d Os : si ban OL 
i = [a 2b) | +(Q@b-1) 5° =-S 7. . (a) 

hal where 3?=g;;u;u;, the dot denoting the derivative with 

respect to a parameter which is ultimately made to coincide 

with s itself. Thus, for instance, if r, ¢, 0, ¢ are used as 
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coordinates, 

fa 2@) = = +i(1—20) [ Se gr+ 8 ous 262] = ~. etc. (41a) 

where $=dd/ds, etc. The eqs. (41) can also be written 
without trouble in Weierstrassian or any other coordinates. 

Tt is seen at once that the (invariant and, say, constant) 
mass m of the particle is Oat in the “momentum ” by 
(1—2@)m, and that ® plays the part of a scalar potential 
of the “ force ” solliciting the particle. 

Without entering, for the present, into a detailed inter- 
pretation of these equations of motion let us concentrate our 
attention upon the potential ®, and let us see whether it is 
possible to construct a single differential equation for ®, 
preferably of the second order, which would be generally 
covariant. 

In order to obtain such an equation, start from 
2 i 

WOUe r~J Ou 

which (® being a scalar) is a covariant tensor of rank two, 
: LN LK Kb 

viz. a symmetrical one, fie=/, since Lay = eee 

Equatine the ten different constituents of this tensor to 
those of some other tensor (say, within matter) or to zero, 
in empty space, we should have at once a covariant system 
of equations for our potential. But these would be too 
many for our purpose, seeing that there is but one function 
to satisfy them. What we require is a single differential 
equation. In order to obtain it, the idea easily suggests 
itself to build up the mixed tensor of rank four othe and to 
derive from it by a twofold “ contraction ” a tensor cf rank 
zero or a scalar, thus :—Put «=e and sum over «from 1 to 4, 
so that the result will be a mixed tensor of rank two 

HE = Xg'B fer 3 

t 

here put @=« and sum up over «, obtaining the scalar 

LS H= > Kk tks 

Kl 

or in abbreviated notation 

= 9 fic = Yur; 
yu being, as always, the contravariant fundamental] tensor. 

Corot 

ae ee 
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Tt fe is as in (42), H is a genuine scalar or general in- 
variant. It is in fact Beltrami’s second differential para- 
meter A,® whose definition can, obviously, be retained for 
a manifold of any number of dimensions. 

Dropping the operand, ®, we thus obtain the Su 
simple invariant differential operator 

gee fe | eae O. =n Bou r in = = ee Mec (43) 

terms to be summed up as before. Operating with this 
upon a scalar, as is the above ‘‘ potential,” and equating the 
result to another given scalar 7’, say, we shall have in 

QS=T . .., es 

a differential equation of the second order for ®, invariant 
with respect to any transformations of the coordinates. The 
scalar 7’ can, for example, be zero outside of matter and, 
say, proportional to appropriately measured ‘‘ density of 
mass” p within matter. Ido not say that ® is the gravita- 
tional potential ; Iam only constructing an example of an 
abstract generally covariant law of motion of a particle. 

Having thus ascertained the general invariance of the 
operator © it is obviously interesting to see what its form is 
like in some simple reference system, more especially in a 
natural system. Tirst of all, in any system of orthogonal 
coordinates we have, with y,,=1/9,,=1/g,, 

a= 7 (2,- eye), ce 

and, in the natural system 7, d, etc., for instance, developing 
the second term of (43a), with the tensor (2), and c=1, 

n= 2,- rie (ze sina, Sim Pas S| 

RR? sin? — PR 

ae a oe ea 

In the second part of this operational equation the reader 

will easily recognize the Laplacian, y’=div ¥, for a space 
i 3 

of constant curvature ee thus, in any natural reference 

system the whole operator assumes the simple and familiar 
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form 0Q=07/dt?—VY", and the differential equation (44) 
becomes, with T=47p, 

°D e Le Bs Aree 8 2k loo (AB) 

where the scalar p is to be considered as some given function 
of the four variables. The ‘“ potential” ® is thus propa- 
gated, in any natural system, with light velocity c, here 
assumed as unit velocity. Jf p30 within a certain region, 
then apart from waves (satisfying the reduced equaticn), 
® can be represented as the retarded potential of that 
distribution, or it can be treated by the well-known four- 
dimensional method. This completes the eqs. of motion 
(41) or (41a). Ima first approximation we should have 
Newtonian planetary motion, with obvious complications in 
higher approximations. As has already been said, the above 
is intended merely as an example of generally covariant laws 
of motion of a particle. Yet, after all, (45) or, in general 
coordinates, (44), with (41) may turn out to be helpful in 
describing gravitation. Itis true that in Hinstein’s “ Ent- 
wurf” of 1913 (§ 7) the question about the possibility of 
reducing the gravitational field toa scalar is answered in 
the negative. Hinstein’s objections, however, are based upon 
various assumptions which are by no means unavoidable. 
Again, his chief objection (oe. cit. p. 22) is based upon the 
restricted (Lorentzian) covariance of that reduction to a 
scalar which he had in mind when writing that paragraph, 
while our set of equations is generally covariant. 

At any rate the above example has seemed sufficiently 
interesting and instructive to be inserted here. Notice that 
if the “attracting body,” 2. e. the region of p30, with all of 
its distributional properties, is itself at rest in a natural 
system, then this can with advantage be taken as the reference 
system, converting the retarded potential into an ordinary 
one. In general, however, this will not be the case, and— 
if higher approximations are at all contemplated—the simple 
potential would have to be replaced by an appropriate solu- 
tion of the general equation (44), with (43) as the differential 
operator. 

March 25, 1918. 

Note, added June 16th.—If the central point-mass M is at rest in a 
natural reference system, we have, by (48 8), 

M d 1 
o= R cot RP a lec on atone oy Vrs ite (46) 
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i The equations of motion of the planet, which can easily be written down 
| according to (41a), yield a plane orbit. If this a is taken to be 

¢=const. = 7/2, then, with e=1, and u= z cot 7 the differential 
| 

i y) 

: | equation of the ones: 19 R 
| 

| M 
aa U+y)u= he 9 = (47) 

where 

h= R? sin? ~ yee =const., 
R dt 

| y= M?2/h2, 

| The solution is 

= RG PLE i +ecs OW 14 y)}, 1 eck A aS) 

i where e=const. With appropriate “initial” data this is an ellipse, with 
| eccentricity e and with moving perihelion, The motion of the perihelion 
| is, per period 7’ of revolution, - 

e=—2r J1— if 
V1+y 

i 2, e. rejecting y? and higher powers, and replacing c, 
i} 
| 2 3 72 | pe aM. Area (49) 

i mie "et Tsay 
where ais the major semiaxis. Thus, the proposed equations give a 
negative (or retrograde) secular motion of the perihelion, equal to nunus 
one sixth of that ‘yielded by Hinstein’s gravitation theory. 

i | By (49) we should have, per century, ‘the perihelion motion multiplied 
| by the eccentricity, 

eow= —1''48 for Mercury, 

and —0":010, —0":011, —0"-021 for Venus, Earth, an Mars respec- 
|| tively. According to Newcomb (‘Astronomical Constants’) the secular 

| excess for Merewy, not accountable for by the perturbation due to all 
| | the other planets of our system, is +8" 48+0:43. Thus, if the above 

equations of motion are accepted, the true excess for Mercury would be 
still greater, viz. 

ed@ =8''48+-1'"48=9''96 (40°48), 

Ht | or d@—48'"'44. I understand from a conversation with Mr. Harold 
Jeflreys, who has already found a satisfactory representation of Mer- 

| cury’s 848 and of the motion of the node of Venus by means of a 
| modification of Seeliger’s zodiacal-light matter (M.N., R.A.S., December 

OG ps lili alae; “the above, increased, excess of about. 10” could 
| equally well, and possibly ‘ more easily,” be accounted for by an 

appropriate distribution of the said disturbing matter. 

| 
| 
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VIII. The Practical Importance of the Confluent Hypergeo- 
metric Function. By H. A. Wess, M.A., and Joun 
R. Arrey, .A., D.Sc.* 

[Plate VI] 

§ 1. Introduction. 

T is well-known that many physical and engineering 
problems depend for solution on differential equations 

of the type 

d? yeas 
= + f(a). PUG) =O, Yo ie ae 

where /(x) and }(x) are given functions of a. For example, 
the investigation of the periods of lateral vibration of a 
flexible non-uniform rope or chain+, or the periods of 
vibration of a circular disk {, leads to an equation of this 
type. Again, the whirling speed of a non-cylindrical shaft, 
or the period of lateral vibration of a non-cylindrical bar, 
such as an air-screw blade, can be found, with two-figure 
accuracy, by the solution of such an equation§; and in fact 
many vibration problems in various branches of physics lead 
to such equations. To take another illustration, the crippling 
end-load of a tapered aeroplane strut, whatever law of taper 
is adopted, could be found if we could solve equation (1); 
other problems of elastic instability lead to equations of this 
type, and may be brought into prominence in aeronautics by 
the urgency of saving weight. | 

In structures, such as aeroplanes or bridges, the liability 
to secondary failure (2. e. elastic instability) must be foreseen 
and estimated, as well as the liability to primary, or stress, 
failure. In running machinery it is important that the 
period of free vibrations shall be well above, or below, the 
given running speed, to avoid resonance; in instruments for 
producing sound, on the other hand, it is required that the 
period of free vibrations shall have a given value, to secure 
resonance. 

In any of these cases, the problem presents itself to the 
designer somewhat as follows. The main outlines of the 

* Communicated by the Authors. 
t Airey, “ The Oscillations of Chains,” Phil. Mag. June 1911. 
{ Airey, “The Vibrations of Circular Plates,” Proc. Phys. Soc. April 

1911. 
§ Webb, “ The Whirling of Shafts,” Engineering, November 1917. 

Phil. Mag. 8. 6. Vol. 36. No. 211. July 1918. K 
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design, including probably the over-all dimensions, are 
already settled by various considerations with which we 
are not now concerned. But we are allowed some latitude 
in detail design, which we are to use to avoid elastic failure, 
or to avoid, or to secure, resonance, as the case may be. We 
want therefore to be able to calculate, roughly but quickly, 
the effect on the crippling load, or the period, of various 
possible alterations. We want in fact to make several trials— 
the more the better—and choose the one we like best. Finally, 
when the design is complete, we wish to check it carefully by 
a more accurate calculation. 

The functions f(z) and ¢(z) in equation (1) are to be 
considered, for a tentative design, to be defined by their 
graphs, which must be represented, for the range of values 
of x required, by empirical formule, the closeness of the 
representation giving some idea of the accuracy to be 
expected in the solution. These empirical formule should 
be of the simplest type, e. g. polynomials, or the ratios of 
linear or quadratic functions of 2, otherwise time is wasted 
in constructing them. What is required therefore is a list 
of suitable equations of the type (1) that are soluble in terms 
of tabulated functions. The two important characteristics 
are that f(z) and ¢() should be of a simple type, and that 
they should contain several arbitrary constants; we can then 
hope to make them fit our graphs fairly well without much 
trouble. 

When f(z) and (2) are constants, the solution in terms of 
circular and exponential functions is well-known. A useful 
list of equations soluble by Bessel functions, with appropriate 
tables, has been given by Jahnke and Emde™*. It is the 
object of this paper to show the value, from this point of 
view, of the confluent hypergeometric function, tables and 
graphs of which are given in § 4. For quick work graphs 
are more convenient than tables. A list of differential 
equations likely to be useful to designers, and soluble by 
means of these tables and graphs, is given in § 3. Some 
properties of the functions that were used in constructing 
the tables, and would be useful in extending them, are given 
in § 2. | 
h may perhaps be argued that few engineers have the 

mathematical ability for such scientific methods of design. 
But it should be remembered that many engineers acquire at 
their technical college or university a high degree of mathe- 
matical skill; and if they lose it afterwards, it is because 

* Funktionentafeln, Teubner, 1909. 
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they find mathematical works of reference rather indigestible, 
and gradually cease to consult them. For example, an 
excellent summary, from a purely*mathematical point of 
view, of the properties of the function we are going to 
consider is given in Whittaker and Watson’s ‘ Modern 
Analysis ’*; but it would be hard reading for engineers. 

Or if it is objected that the engineer can hardly be 
expected to be familiar with the function theory of linear 
differential equations and may get into trouble over singu- 
larities, he might reply, if sufficiently well read, that the 
equation can’t have singularities in the range of x considered, 
unless f(z) or d(#), or both, become infinite, and he would 
notice that from the graphs. Or he might say that he is not 
looking for a rule to which there are no exceptions. He 
wants a rule that generally works quickly, and he is prepared 
to risk an occasional failure, because he intends to refer the 
finished design for a final check to an expert mathematician. 
Divergent series have often been used by physicists in much 
the same spirit, and with few, if any, failures. Finally, 
many expert mathematicians have vome into contact with 
engineering work recently under war conditions; they may 
have opportunity and inclination to assist in design on the 
lines we have indicated. 

§ 2. Properties of the confluent hypergeometric function. 

We define the function M(a, y, x) as follows :— 

: ys a(a+1)(a+2) 
M 9) "5 acy =) s e LU+ alae cd s =) 23 ee iy eG ot 188 yt DG ED” 

fetal to mmilinitye | 305 <2) 

The series is absolutely and uniformly convergent for all 
values of «, y, and 2, real or complex, except only when y is 
zero or a negative integer; this case is supposed to be 

excluded. , 
The function M(«, y, «) has been discussed under various 

notations by several writerst. The following is a list of 
such properties of the function as are of use for our purpose; 
most of them are easily verified from the definition (2). 

* Second edition, 1915, Chapter X V1. 
+ For a list of references see Whittaker & Watson, loc. cit. 

K 2 
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I. y=M(a, y, x) 

satisfies the differential equation 

a? d 
a +(y—2) = —ay=0. 20) ee 

II. The complete solution of the differential equation (3) is 

y=A.M(a, y, 2) +B. 2 -y. M(e—y+1, 2—y, 2), (4) 

which we shall write for brevity 

ys Ma, y, 2), +4 se 

where A and B are arbitrary constants of integration; except. 
only when x is a positive integer, in which case* the coefficient 
of B is either infinite or identical with the coefficient of A. 
In this case the complete solution of (3) may be written 

y=(A4+Clog v].M(a, yx, z) 

9 2 eS Gee ex ca 1 De 
y(y41) 1.2\e "ati 7 eee 

a(a+1)(a+ 2) a ( 1 1 1 1 1 

v(ytl)(yt+2) 1.2.3 

2 

atatl’ «+2 9 ogee 

1-1-1) 
+... to infinity ], ee 

where A and C are arbitrary constants of integration. 

iil, Me sy, 2)=e.Miy—a,y, —2) . 2 aa 

w-YM(a—yt1, 2—-y, w) =e’. 2'-”. M(1—a, 2—y, —«). (8) 

From (7) and (8) it follows that tables will not be required 
for negative values of «2, if the tables cover wide enough 
ranges of « and y. 

IV. The asymptotic expansion of M(a, y, 2) for large 
values of « is 

*“ The situation is similar to that which arises with Bessel’s equation 
when is a positive integer, and a new function is required for the second 
solution. 

) 
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M(a, 9, 2) 

=F. (—2)-" {i-* ak 1) = 

aeeMienpa terns 1 

+p. eee |) Gale 

eee Get et, (9) 

Both these series diverge for all values of x, but they have 
the property that the error involved in taking the sum to 2 
terms to be the value of the series, is less than the nth term. 

Ne a a» fee ee eT Ty 1 2). gos a EO) 

(1-2). 4M y, &).dxv=(1l—y).M(a—1, y—1, 2) +(y—1). 

2=0 5 4 ee) 

Hence the function can easily be differentiated or in- 
tegrated. 

VI. The following difference relations would be useful for 
extending the tables :— 

.M(at+l, y+1, #2)=M(a+1,y, x) — M( A, Ys ¢ “), 

.M(@t+1,y+1, 2)=(@—y)-MG@,y+1, 2) +7. M(a, 4,2), 

(at+ez).M(e4+1,y4+1, ~)=(4-y). a We L) 

+y.M(a+1,¥, «), 

R 218 

ay.M(e4+1, 7,2) =y(«+2) .M(a, y, 2) 

| 
| 

—x(y—#).M(a,y7+1,2), ie 

| 
| 
J 

a.M(e«+l,y, 2) (2+ 2a~y). M(a at, Y, X) 
+ (y—a).M(a—1,¥, 2), 

ae aan a, &) 

+(1—y).M(e;y—1, 2). 
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VII. If ec=4y, M(e, y, x) can be expressed in terms of a 
Bessel function. In fact 

1-y 

M(ty,7,0)=2". iS *) eo. y-1 (30 (13) 
5 

“VIII. The Error Function=(«) 

MC, 3,2). 

The Incomplete y Function=y(n, x) 

als \° ea or dt 

0 

iL ie 

moe 2" M(1,n+1,2).) 3) Sees 

Sonine’s Polynomial =T " (2) 
ne 

Us i .M(—n, m+1, 2)... 3 ee 
m!n! 

The Function of the Parabolic Cylinder 

=D, (2) 

n iy” ad” ao 
== (11) - == (2 

“da” 

= (if n is even) 

(Gx) ra ae at( 9) 2 10"), (17 a) 
NAL 

n—1 2 fl 

(-2)? 7 (5) 2 *. ne M(—S* 3, 40°) Mees. 
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We will also, following Jahnke und Emde*, define Z,(x) 
as 

AJ (v) + BN (2), 

where A and B are arbitrary constants, andjJ, («), ¢N,(2) 
are Bessel functions, in the usual notation. So that 

Peel e's 3h One GIB) 
is the complete solution of the differential equation 

a? 1 dy *) 
Tata det (I Sal=0.. ae 

Reference should be made to Jahnke und Emde’s tables. 
and graphs of these functions f, which are presented in a 
form convenient for engineers. 

§3. Soluble differential equations. 

The following differential equations are soluble by means 
of Bessel functions or M functions, a, b,c, a, y, 1, m, 2, p, 
g, ’; 8, t being any numerical constants whatever. 

d 
(A) oa + pz ty=0. 

2 4 

1 ial gS 

{ q i BN) oe (C) 5442.24 (143 )y=0. 

alr di Ae 
(D) ae = a = (lar +n)y=0. 

a? di 
(#1) = +(p#+q) = +(me-+n}y=0. 

ad d m (F) 54+ (p+ Ae + (i+ y=. 

a?) d 
(G) ~, == (px =e q) = == (lia? +met+ n)y =(, 

meet ee at Bl (H) na Cae a ars rh ye }Y u e 

* Loc. cit. p. 165, 
+ Loc. cit. pp. 106-168. 
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d* dy 
(K) daa t (patat «oe + + 4g (la?+pe+n+ © y=. 

: ad? At r d 1 or r 
(L) a PAC sc) + pille +ma'+n)y=0. 

The solutions are as follows :— 

d*y dy 
(A) dx tp ae a+ (n? +4p*)y=0 

y=e*?*(A cos nw +B sin nz). 

, ay | pt+idy 
ce) ey a dete =" 

ee es (2 V mx) : 

() OS) ieee 2a Le (4 

dx? en her 

y=u" Liye). 

d’y 1—2a dy 1 
OD) Gat a det gt re 

y=2" .Z,(y2"). 

d’y dy si ae (E) 52 +2(pt ga) a ty [4aqtp’—g'm' + 294(p + gm) ] =0 

ger esa .M[e, 3 4, —q(@—m)’]. 

d?y ‘ y\ dy 2_ 42 1 ‘ (F) at (27+ Ae +y[p?—t+ - (yp + yt—2at)]=0 

y=e-@tOr , M(a, y, 2t 2). 

d*y dy 
(G) Fat2tqe)a tylqted—4e) 

+ (p+gz)?—c'(e—m)*]=0 
y = e~ PERG helm)? M[a, 4,¢(@—m)?]. 

- : 

t+y|~ a z (byt yt— Lat) + 5 = (y— q) (2—q—y) ]=0 

Y= OE ae = .M(a, y, 2t). 
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d*y 2y—1 5 dy (K) Gat | + 2at20b—o)e = 

a 
+y[2er— + (a? + 2by—4ac) +2a(b—c)a + b(6—26) 22 | = 0 

oe rere, M(a, Y; ne 

a 
(L) ase (pat gr—rt 1 

2 See 
+3r(y—9)(2—q—y) ]=0 

Se Sere oF 
ss) aes ae al q) at or 

y=e M(a, Ys = 2), 

§ 4. Tables and Graphs of M(a, y, 2). 

The following tables of M(a, Ys x) were calculated, for 
small values of wv, from the series in ascending powers of 
this argument, and for lar ge values, from the “asymptotic 
expansions. When @ and y are positive integers, two or 
three values of M, for a particular value of z, are required 
to give the other results by means of suitable recurrence 
formule. The last two formule of (12) were employed to 
find further values of M along vertical columns and _hori- 
zontal rows; the first four, to ‘turn the corners” and fill 
in the results in the rectangle of values thus obtained. 
When « is a negative integer, the M function is a poly- 
nomial which is easily evaluated. A similar procedure 
was adopted in the case of « equal to half an odd positive 
or negative integer, only two preliminary calculations of M 

_ being required to give the remaining 47 for each value of 
the argument z. 

Four significant figures are given in the tables. The 
numbers, however, must be multiplied by the power of 
ten indicated by the figure after the comma. Thus, 

M(4, 1, 4) =2603; M(3, 2, 10) =132200 ; 

and M(—3, 4, 10) =—3°419. 
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IX. Notices respecting New Books. 

A Text Book of Physics. By J. Duncan and S. G. StaRuine. 
Pp. xxui+1081. Macmillan & Co. Ltd., 1918. Price 15s. 

YP'HIS book covers, in an elementary manner, practically the 
whole of physics, being divided into five parts, Dynamics, 

‘Heat, Light, Sound, and Magnetism and Electricity. It is written 
‘somewhat more from an engineering standpoint than such text- 
books usually are, and devotes much attention to the mechanical 
application of physical principles, as exemplified by freezivg- 
machines, internal combustion engines, and the like. The general 
arrangement of the matter follows much the usual lines: the 
diagrams, however, seem to be all new, and are very clearly drawn 
-and reproduced. Mention is made of much work, recent or 
topical, which has not yet appeared in text books: we may 
instance the descriptions of Gaede’s molecular pump, the peri- 
‘scope, and the Barr and Stroud range-finder, and the reference to 
the utilization of volcanic heat in Tuscany. It is a pity that no 
account is given of the sound phenomena accompanying moving 
‘projectiles, which are of special interest to-day, and are instructive 
to the student. 

Unfortunately, while much care is given to description of details 
-of machinery, the fundamental conceptions are dealt with very 
perfunctorily, and important phenomena (such as osmotic pressure) 
which present difficulties ta the learner, are handled in a very 
-superficial and unconvincing way. The part devoted to dynamics 
is particularly open to criticism—such definitions as ‘‘ mass means 
‘quantity of matter,” given without further discussion, are pernicious 
and unscientific. While we heartily approve the many descriptions 
of various machines and mechanical devices based on physical 
reasoning, we could wish that more space and more thinking had 
‘been devoted to indicating and explaining the nature of the 
general laws and basic phenomena of physics. 

Applied Optics: The Computation of Optical Systems. (Steinheil 
and Voit.) Translated and edited by J. W. Frencu, B.Sc. 
Volume I. Blackie & Son. 

‘Tue Advisory Council on Scientific and Industrial Research has 
‘had under consideration a number of scientific and technical 

problems arising out of the war. Several recommendations were 
made for the improvement of the optical industry, and special 
attention was drawn to the urgent need of standard text-books on 
those parts of optics which at present are greatly neglected in this 
‘country. ‘In our opinion the quickest and most effective manner 
of dealing with this requirement is by publishing translations of 
-existing foreign books and abstracts of foreign papers on this 
subject.” Mr. French has given an excellent translation of 
* Applied Optics’ by Steinheil and Voit, and has rendered a 
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‘service which will be greatly appreciated by those who are investi- 
gating the problems of the optical workshop. He has added 
considerably to the value of the original work, especially by the 
addition of diagrams elucidating the meaning of the various 
‘symbols and sign conventions adopted. The formule given are 
those due to von Seidel, which require little knowledge of 
mathematics beyond the elementary parts of trigonometry. Even 
the practical optician with a slender mathematical equipment 
should be able to acquire without difficulty the power to undertake 
computations of the kind dealt with in this volume. In any case, 
Mr. French has provided, under exceptional war conditions, an 
excellent handbook, which we commend to the serious attention 
of every student of technical optics. 

X. Intelligence and Miscellaneous Articles. 

ANGLE TRISECTION. BY H. R. KEMPE, M.INST.C.E. 

s&s the course of some quite recent geometrical investigations I 
evolved the following arrangement for trisecting an angle 

mechanically. The arrangement, so far as 1 am aware, is original, 
‘is geometrically correct for all angles, and is exceedingly simple. 

Fig. 1. Fig. 2. Fig. 3. 

Fig. 4. Fig. 5. 

In fig. 1, Aisa transparent disk (of celluloid), and in fig. 2, 
B is a straight-edged link or radial lever (also, conveniently, of 
-celluloid). 
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On the disk A a line FH is scored, this line being at right 
angles to the second line BC, and bisecting BC. 

The link B turns on a pivot at A, on a board C (fig. 3), and the 
disk (which is placed over the link) turns on a pin at C, AC being 
equal to CB. A pin B projects slightly through the under side 
of the disk and is fixed to the latter, so that when the disk is turned, 
the pin presses against the straight edge of the link and moves 
the latter through an angle which bears a certain proportion to 
the angular movement of the disk, as is obvious. 

In order to trisect any angle, say the angle 2°, fig. 4, the link 
would first be moved to the position where it banks against the 
pivot pin C (fig. 3), and then the disk rotated (thereby moving the 
link) until it is observed that the intersection of the line FH with 
the straight edge of the link comes on the radial line CP (fig. 4); 
when this is the case, then the line BC will trisect the angle «° 
in all cases. 

The proof of the foregoing is as follows :— 
From C as a centre (fig. 5), describe the semi-circle ABG. 
Draw Al at any angle 3°, cutting the semi-circle at B; join BC ;: 

bisect BC at D; draw DF perpendicular to BC, cutting AB 
at E. 

Since DE is perpendicular to BC, and CD is equal to DB, the 
angles OBE and BCE are equal. 

Also, since CA is equal to CB, the angles CAB and CBA are 
equal. 
The angle AEC equals the sum of the angles EBC, ECB, 

i. €., equals 26°; and the angle ECB equals the sum of the 
angles AEC, EAC, z. e., equals 36°. 
Now CB being the radius of the semi-circle, is a length of 

constant value, and its extremity B is in contact with the line Al 
under all conditions, and FD (or FD prolonged to H) cuts Al 
at E, and, as proved, if ECG equals 3°, then ECB equals (°;. 
hence the arrangement effects the trisection of the angle ECG. 

For convenience of construction the line FD is drawn through 
to H, though actually the intersection of AI with FH does not 
extend beyond D, that is to say if the angles to be trisected do not 
exceed 180°; theoretically the principle involved covers all angles. 
up to 360°. 

Air Inventions Committee, 
2 Clement’s Inn. 







Fig. 3.—DETERMINING DISTANCE FROM A WIRELESS STATION EQUIPPED WITH SouND SIGNALS. 
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XI. On the Potential generated in a High-tension Magneto. 
By H. Taytor Jonzs, D.Sc., Professor of Physics in the 
University College of North Wales, Bangor*. 

[Plate VII.] 

1. Introduction. 

4 ee arrangement of circuits shown diagrammatically in 
fig. 1 is that now usually adopted in the high-tension 

magneto, as used for ignition in motor-car and aeroplane 
engines. It consists of a primary coil P and a secondary 

F it" 

t 2 C, | | 

F 

Diagram of the circuits of a high-tension magneto. 

coil S, both wound on the armature core, and a contact- 
breaker I in parallel with which is the condenser C,. While 

* Communicated by the Author. 

Phil. Mag. 8. 6. Vol. 36. No. 212. Aug. 1918. L 
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essentially similar to the ordinary induction-coil, it differs 
from it in the following respects :— 

(1) One terminal of the condenser, one of the contact-pieces 
of I, one end of the primary winding and one side of the 
secondary spark-gap G, are all connected together. This is 
effected by connecting each of these four points with “earth,” 
2.e. with the frame of the machine. 

(2) The secondary wire is connected at one end with the 
primary, from this point of junction J being led the connexion 
with the contact-breaker and the condenser. The secondary 
coil is thus “‘ earthed” through the primary. 

(3) Instead of a battery, the rotation of the armature 
between the poles of the permanent magnet serves, while the 
contacts I are closed, to establish the primary current. Ata 
certain point in the revolution, at or near which the primary 
current would have its maximum value if the contacts 
remained closed, the contact at I is broken; thereupon the 
high-tension effect is produced in the secondary coil. The 
rotation has also the effect of inducing electromotive forces, 
in both primary and secondary coils, which are maintained 
after the contacts are separated. 

It is generally admitted that the secondary potential 
causing the spark arises mainly from the interruption of the 
primary current, and is only contributed to in small measure 
by the induced E.M.F. due to rotation. Thus in any given 
machine the secondary potential depends mainly upon the 
current % in the primary coil at the moment of break, and is 
in fact, as in the induction-coil, approximately proportional 
to this current. 

With regard to the value of 2, a graphical method has been 
given by A. P. Young” for determining this current when 
the open-circuit primary voltage curve, the resistance of 
the primary circuit, and the primary self-inductance in 
various positions of the armature are known. The value 
of z) determined by the graphical method is said to agree 
substantially with that shown by an oscillograph. We may 
therefore conclude that the manner of growth of the primary 
current after ‘‘ make ” is well understood, and that methods 
are available for determining with sufficient accuracy the 
value of this current at the moment of ‘‘ break.” 

The present communication is mainly concerned with what 
goes on after the contacts are separated, and especially with 
the manner in which the secondary potential rises and in which 
its value depends upon the properties of the circuits. The 
constants and coefficients upon which the secondary potential 
depends may be enumerated as follows :— 

* ‘The Electrician, Sept. 14, 1917, p. 923. 
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(1) The self-inductance of the primary coil, Ly. 
(2) The self-inductance of the secondary coil, L;. This 

coefficient is defined as the total induction through the 
secondary coil due to the current in this coil, divided by 
the value of the current at the end J. Owing to the fact 
that during the oscillations which occur after break the 
current is not uniformly distributed along the secondary 
wire, but is greatest at J and zero at the sparking-plug end 
(until sparking begins), the value of L, is somewhat smaller 
than that found by experimental methods in which the 
current is uniformly distributed. 

(3) The inductance of the primary coil on the secondary, Lg). 
(4) The inductance of the secondary on the primary, Jup.. 

This coefficient is defined as the induction through the primary 
winding due to the secondary current, divided by the value 
of the latter at J. Owing to the non-uniform distribution of 
current in the secondary [,, is somewhat smaller than L,. 

(5) The capacity of the primary condenser, Cy. 
(6) The capacity of the secondary circuit, C,. This is 

defined as the charge on the secondary coil and the bodies 
(distributor segment, sparking-plug terminal, etc.) connected 
with it, divided by the difference of potential at the sparking- 
plug. The capacity C, is distributed along the secondary 
wire, and its value is doubtless largely influenced by the 
proximity of the surfaces of the pole-pieces and the core 
which are at zero potential. 

(7) Finally there are the effective resistances R,, Re, of 
the primary and secondary coils. 

Probably none of the above quantities are strictly constant 
during the oscillations subsequent to break. The inductances 

Fig. 2. 

Showing armature in position of maximum inductances. 

vary with the magnetic state of the core and with the position 
of the armature ; they are greatest in the position shown in 
fig. 2. The secondary capacity also varies with the position 

1,2 
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of the armature. The effective resistances include variable 
factors depending upon eddy currents and hysteresis in the 
core and pole-pieces. It is to be understood that the above 
symbols represent mean values of the various quantities during 
the short interval of time between break and the moment of 
maximum secondary potential. 

2. Calculation of the Secondary Potential. 

Calling the current in the primary coil 7%, the current 
entering the secondary coil at J i%, the current entering 
the condenser i; (the directions being as shown in fig. 1), 
the potential difference of the plates of ©, Vj,’, that at the 
sparking-plug V.’, we have the following equations :— 

di Fa 
eet eee = E, PRC ED Siidinerh | (1) 

Ly P+ Lg t Ret Vi—Vi'= gE, . . . @ 

where Hi and gE are the induced E.M.F.’s in the primary and 
secondary coils due to therotation. gis approximately equal 
to the ratio of the secondary and primary turns. 

Further, 1,—le—ls = 0, ° ° A ° c e . ° (3) 

ONG 
2. = C, ee 3 71 oc aa Ree omar (4) 

dV.’ 
oe = Coa . ; 5 = 3 5 (9d). 

Tai dV,’ 
Thus hah +GS2. . . . (6) 

Substituting for 7, and 2, in (1) and (2) we have 

aN 6 d?V, av, Paae 
L,C, i + (L,+ Ly,)C, oe +h, (Ci ae + Ora) 

+YV, = Hy 

PV gay, aV,! 
(Lg+ L1) Ce a) + Ly, C; ae. ty RO, 

+V,'—V,' =qH. (8) 

We shall now make two assumptions with the object of 
simplifying the calculation, viz. :— 

(1) That the resistances are negligible: this may be 
assumed if our object is limited to the calculation of 
frequencies, initial amplitudes, and the determination of the 
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effect on the secondary potential of varying one or other of 
the inductances or capacities. The expressions for the 
damping factors are given later. 

(2) That E and gH may be treated as constant during 
the short interval with which we are concerned. These 
quantities are in any case small in comparison with the 
values attained by V,' and V,’, and no great error can 
be introduced by regarding them as constant. 

Thus, omitting the resistance terms in (7) and (8), and 
introducing two new variables defined by V;=V,'—E and 
V,= V.'—(¢+1)E, we have 

< GeNe eV 
LC, aah (L, + Ly2) Cy qe +V,=0, .« -Q) 

VON. a7Vv 
(Lig + L,3)Ce “a IsiC) Ge + Ve— Vi = (Oy 95 G0) 

Adding (9) and (10) and writing sL, for the sum 
L,+ L.;+ Ly.+L;, where s is a fraction not much greater 
than unity, we find 

?V av 
(Ly + Lg1)C; ape + sh,0, wat 

The assumed solutions V,= Ae’?‘, V.= Be’?*, substituted in 
(9) and (11) give 

Ati) — By + liys)Cop?, . .,,.., (12) 

ACL, + Lg) hp? = BO—sL,.C,p?), Say aie (13) 

leading, after elimination of the ratio B/A, to the equation 
for p (=2mn), 

pth, C,L,0,(1 —k?) —p?(,C,+sL,C,)+1=0. . (14) 

Here £? is the coupling Ly.Lo,/L,L,. 
The system has therefore two frequencies, 7, n2, given by 

the equation 

82r?n?(1—k’) 
ee s Ay 1 se ae) 
SG, Te eetn,c,' 0G) 1,000, 0) 

In the extreme case Cy=o (primary closed) one of the 

frequencies is zero and the other is n,=1/27,/L,C,(1—?). 
In the other extreme case, C;=0, one frequency is infinite 
and the other is given by ny=1/21/sL.Cy, that is, it is the 
frequency of the primary and secondary oscillating together 

eA eh Feu 
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as one coil. The ratio of the squares of the frequencies in 
these cases is 

9 e e e » e e 

Ne (16) 

a result which suggests an experimental method for deter- 
mining the coupling. 

In general, if we write uw for the ratio L,C,/L,C,, the 
frequency-ratio is given by 

ny stut+V(stu)’—t(1l—k)u 
a) = To IS See ° e (17). 

ny stu—V(s+u)?—4(1—k)u 

For any given value of k? the frequency-ratio is least 
when u=s, 2. e. when L,C,=sL.Co. 

In order to find the amplitudes multiply (11) by any 
factor X and add its terms to those of (9). We then have 
the equation 

av; 
{Ly + ACL + Lg;) § OC, =e dE a 4(y = Typ) ae sl, Oe L 

+V,+ AV, = 0. 

If X is so chosen that 

h (Ly + Ly, + Ashe) C,=A4 Ly +A(Ly + Lg) $ Ci, . (18). 
then 

£15, 0s, + Linn) }O, = (V, + AV.) 20a Lge S ml 

The two values of A, viz. A; and A, may be calculated 
by (18) in terms of the coefficients of equations (9) and (11). 
They may also be expressed in terms of the frequencies n, 
and 7, for, by (19), 

i 
dan? {1 +Ay(Ly + Le) } Cr, 

{Li + Ag(Ly + Lg;)} Cy. 
Amn,” he 

1 1 
ie aime Bw ‘ny! -1,C:), | 

ee 
a Se C1). 

(L,+ Li)C, \ 4a” Moe 

The solution of equation (19) is represented by the twe 
normal vibrations 

Vi + a = Ay sin (2rn4t + ) ys 

Vi + Ny NG = Ay sin (27rngt + bo). 

Thus 

(21), 
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Hence the solutions for V, and Vj are 

Aaa AES 
= = ae sin (2n,t + 6;) a =, sin (27n t+6,), (22) 

— poe — (2anyt +6,)— Ask sin (27ngt+6,). (23) 
2 Ay— My 

The coefficients A,, Aj, and the phase angles 6,, 6, are to 
be determined from the initial conditions. These express 
that at the moment of break 

(1) the P.D. of the plates of the condenser is zero, 
(2) the potential at the free secondary terminal is gH, 
(5) the current in the primary coil is %, 
(4) the current entering the secondary coil at J is zero. 

The last depends of course upon the assumption already 
_ made, that during the period considered the E.M.F. due 

to the rotation may, owing to its comparative smallness and 
slow rate of variation, be regarded as constant.. 

I 

Thus, at i=, V7 =o. V.'=gb, cae = dy oP =0, or, 

in terms of V, and V,, 

Vi = —H, ui 

V, ri =. 

dV, | 
= Mey AGES NORE KO ikl A = ot es 

dV 5 | 
yey. ) 

Substituting in (21) we find 

Ay sin Oy = —(1 +21), | 

A, sin om = — H(1+A,), | 

27, A, cos 1 = o/C1, r ; ; (25) 

27NgAz COS Oy = ip/C,. a 

Consequently, 
1g? 

Ay’ = rere aC era te @! +24)? ’ 

2 2 ; 2 Ag = ng + B2(1 +22)’. 
Amn ?C,? 
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_ If we neglect the square of E in comparison with that of 
19/2mrnC, and of %/2an2C,, these become approximately 

2any Cy 
2 eee eee is j 

se Dea Oe 

Also, by (25), 

G2 Oy == tke 00 | 
to 

rs 47) 

tan 69 = — en Tees sett | 
0 

and by (20), : cane 
AN, us No — Ny 

4m? (Li, + Lg1)C, ° nn" " 

Equations (22) and (23) therefore give the following 
solutions for V, and V,; :— 

, 2 

Vix eel (2arnyt + 8,) 
‘lop eal 

> 2 

2 Meee (2arngt +6), . (28) 
me 

Pak 27129 NN" ( iL . 
ve = oy ° ne — ne Tn ba") sin (Qarn,t + 6;) 

. 2 Danity ny na 1 —1,,) sin @mngt +8) (29) 
nO ; Ng? a ny" Anr*n,? 

where 

fa y Pee Zorn Hh Lig C, + 1/47?n,? 

t0 L, a Lig, (30) 

¢ tind GA 2, 2 
teat S, ae a 2Q7rn Kh L,,C,+ 1/4 Ng 

1 ° Ly, + Ibis 

After break, therefore, there are set up in each circuit 
two oscillations differing in frequency, amplitude, and 
initial phase, and the potential at any moment in either 
circuit is the sum of the potentials in the two oscillations, 
as represented by equations (28) and (29), to which must be 
added the potential due to the rotation. 

If the resistance terms had been retained in the equations, 
the expressions for the oscillations in each circuit would have 
contained factors e~** and e—*# representing the decay of the 
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amplitudes. Itcan be shown that the values of the damping 
factors k, and k, are 

~ 

ky = Amn? (7 5 Os —8), | ( 

ip} 12 CER ema eee) 
6,+86 | 

ko = An*n,? Gee +8), ; 

6, = £R,C,, 0, = ERC, . . . e (32) 

where 

and 

poe as {(6,—6,)L,C, + (6,+6,)sL,0,}. (33) 

The phase ae 6, and 6, would also have been modified 
by the resistances. We shall, however, for the present 
retain the condition that the resistances are neglected, and 
also neglect the small angles §,, 6,, given by (30). 

The theory now proceeds as in the case of the induction- 
coil*. The greatest value of V, occurs when 27n,é is not 
far from 7/2, and the conditions are most favourable if 
positive maxima of the two oscillations represented in (28) 
occur simultaneously, z. e. if sin 27n,t=1 and sin 27n,t= —1 
for the same value of ¢. This requires that the frequency- 
ratio should have one of the values given by 

eo, ae BAUR Re (3) 
ny 

Assuming this condition to be fulfilled, the expression for 
the maximum value of V, is, by (28), 

= 
Vo 277i, (Ly or oe (395) 

Expressed in terms of wu, k?, and s AC means of (15) this 
becomes 

/TgC, Vues — 2 /A—F,)u 

Let ee 1 (37) 

Juts—2 /(1—ku 
For given values of k? and s, U has a maximum value of 

at 
A/S Leh 

; 2) seid EAE i leon dela Re (38) 

* See Phil. Mag. Aug. 1915, p. 224. 
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The two conditions (34) and (38), determining the most 
effective adjustments of the system from the point of view 
of spark-length, are the same as those which hold in the 
case of an ordinary induction-coil, for which it has been 
shown ™* that they are also the conditions that the energy 
should exist, at the time ¢=1/4n,, entirely in the electrostatic 
form in the secondary circuit. The value of U, however, 
in the magneto differs from that in the induction-coil problem 
in that in the latter s is replaced by unity. 
When the value of s is known we can, by combining 

equations (17) and (38), find the value of &? corresponding 
with any of the values of n/n, given by (34). For example, 
if s=1:04 we find for nojnj=—3, =0°5945 for wa 
k?=0:832.; for no/mj—11,) k?=0°897. i the yeouplinegics 
one of these values, and if the capacity of the condenser is 
such that L,C,/L,.C,=1—?, Vo, is then given by the 
equation 

inet L, L,+ La, 
Vom — to ae i ii eS e e e ° (39) 

The expression on the right of (39), with (¢+1)H added 
to it, represents the greatest secondary potential attainable 
by any magneto in which the circuit connexions are 
arranged as in fig. 1. 

If k? has not one of the above special values Vom is not. 
given by equation (39), but it can always be expressed 
in the form T 

fies (L,+ La, Vom J Ty ee a i at 2n VAC, sin @ (40) 

where U is given by (37), and 

) 

o= a7" if “ is between 1 and 5, | 
Ny + Ng Ny 

| 

ey Aan, 

1 gees 4 ’ 99 D oP) 9, c (41) 

67rn, 
| == 9 or) ’ 9 ”? 13, $ N+ No 
J 

and go on. 

* Phil. Mag. Jan. 1915, p. 2. 
t Phil. Mag. Aug. 1915, p. 226. 
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The equations (37) and (41) allow the optimum value 
of u (= L,C,/L,C,.) to be calculated for any given values of k? 
and s, and therefore the optimum capacity of the condenser 
when L, and L,C,are known. They also allow the theoretical. 
curve to be determined showing the relation between the. 
capacity of the condenser and the maximum secondary 
potential, or, which comes to the same thing, the curve of. 
which wu is the abscissa and U sin ¢ the ordinate. 

3. On the Curves showing the relation between Primary 
Capacity and Maximum Secondary Potential. 

Examples of these curves, calculated for the case of an: 
induction-coil (s=1) have been given in a former paper ”*. 
The curves consist of a series of arches which touch the 
curve (wu, U) at points corresponding with the frequency-. 
ratios 3,7, 11,..., and intersect one another at the points. 
for which n;/nj=5,7,9,... The relative proportions of the 
arches and the number of the one in the series which stands 
highest depend upon the coupling. Thus if 4? is less than 
0-71 the first arch (containing the 3/1 point of contact). 
stands highest ; if k? is between 0°71 and 0°87 the second 
arch contains the highest point of the curve. The value of u 
at the summit of the highest arch determines the optimum 
primary capacity for any given induction-coil, and a table. 
has been given containing the optimum values of wu for 
various values of k? +. 

Similar curves may be obtained experimentally by ob-.- 
serving the spark-length of the coil for a constant current 
and for various values of the capacity of the primary 
condenser, or, better, by observing the least value of the 
primary current at break which will cause a spark to. 
pass across a gap of constant width. This plan is much 
more convenient, and it is also more accurate, because the- 
primary current at break is more nearly proportional to. 
the maximum secondary potential than is the potential 
to the spark-length. The secondary (sparking) potential: 
being constant, the reciprocal of the least sparking current 
is thus proportional to the maximum secondary potential 
per unit current. 

An example of a curve obtained in this way for an. 

* Phil. Mag. Aug. 1915, pp. 229, 230. 
{ L. epee: 
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induction-coil, for which k? was 0°768, is shown in fig. 3 
(cf. l. c. p. 229, fig. 1). The gap used in this experiment 
was 0°96 cm. wide, between brass balls 2 cm. in diameter. 

‘Fig. 3. 

“= 10-1 110725; 0-5 0-75 ie) 

C, 

Capacity-potential curve for an induction-coil. 4?=0°768. 

‘The abscissa represents the capacity of the primary con- 
denser, the ordinate the reciprocal of the least sparking 
current in amperes. Values of u, found from measurements 
of L,0; and L,C,, are shown above the diagram. 

Fig. 4. 
u =0058 0-155 0-448 

3 Mierofarads. 

‘Capacity-potential curve for an induction coil with secondary condenser. 
k?=0'815. 

Another example is shown in fig. 4. This was obtained 
with the same coil when a Leyden jar (capacity 0°00104 
microfarad) was connected with the secondary terminals 



generated in a High-tension Magneto. 157 

in parallel with the gap, the gap being in this experiment 
2°31 mm. wide between zinc electrodes. In this curve 
the first arch (counting from the right) has been much 
reduced in importance—a feature characteristic of increasing 
coupling,—its intersection with the second (at C;=6°2 miero-. 
farads) being, however, well marked. The curves of figs. 3 
and 4, when compared, illustrate the fact that if the oscillating 
current in the secondary coil changes from one of non-uniform 
to one of uniform distribution (as it does when the secondary 
terminals are connected with a condenser) the coupling is 
increased *. In these two experiments the primary coil was. 
in the same position within the secondary, and the currents 
employed were not very different. In the experiment of 
fig. 4 the coupling was 0°815. 

A number of other such curves have been determined for 
an induction-coil; and in all cases in which the comparison 
has been made substantial agreement has been found, in 
regard to the form of the curves and the values of u at which 
the various maxima and minima occur, between the experi- 
mental curves and those calculated from the function U sin d, 
although it should be remembered that in the calculated curves 
no account is taken of the effects of the damping resistances. 

Consequently the form of the curve, when determined,. 
enables us to estimate the coupling; and if the primary self- 
inductance is also known, we can calculate the oscillation 
constant of the secondary coil. 

4, Determination of the “ Capacity-Potential” Curve for 
a Magneto. 

With these objects in view I have attempted to determine 
the capacity-potential curve for a certain H.T. magneto. 
The machine was of the rotating armature type, with the 
condenser attached to the armature and rotating with it. 

The armature having been fixed so that with the timing- 
lever in its most advanced position—a position slightly 
in advance of that shown in fig. 2—the contacts were just 
separated, preliminary measurements by Rayleigh’s method 
gave the following values for the self-inductances at about 
the same ampere-turns in both circuits :— 

L, = 0°0153 henry at 1/50 ampere, 
Ly, = 30°7 Pee Are 200" 5. 

The mutual inductance Ly, by comparison with a standard, 
was found by a ballistic galvanometer method to be 0°64 henry 

* Compare Phil. Mag. April 1914, Table II. p. 570. 
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vat 1/50 ampere in the primary. The mutual inductance was 
-also determined for various other vaiues of the primary 
-eurrent up to 1°5 ampere, at which value it appeared to have 
reached its maximum value, viz. 1:07 henry. 

Thus for steady currents and with 1/50 ampere in the 
primary, the coupling is 

2 
ue Lp} 

2 — e k wie 0°87, 

2 

-and s= eS sxx Hee 
2 

With the lever in the most retarded position and the 
-contact-pleces just separated—in which position of the 
armature the trailing horns of the core were well clear of 

the pole-pieces—the coupling was found in the same way, 
-and at the same currents, to be 0°81. 

The above values of the inductances are applicable when 
‘the currents are steady, and must not be assumed to 
hold during the rapid oscillations which take place in the 
magneto circuits after the interruption of the primary 

~Gurrent. 

For the purpose of determining least sparking currents 
for various capacities, the condenser attached to the armature 
was disconnected from the primary coil and a separate lead 
connected with the wire leading to the junction J (fig. 1). 
A circuit was then formed including the primary coil, 

-a battery, a rheostat, a Kelvin graded galvanometer, and a 
mercury-oil interrupter worked by hand, the circuit being 
completed through the frame of the magneto and the 
armature core. Connected directly in parallel with the 
‘interrupter was a mica condenser of variable capacity 
ranging from 0:001 to 1 microfarad. 

After numerous trials it was found advisable to remove 
the high-tension connecting rod and its carbon collecting 
brush, and to replace them with an insulated copper wire 
pressed into contact with the collecting ring and connected 
with one side of the H.T. spark-gap; also to insert a 
-connecting wire between the armature core and the frame 
to ensure good electrical contact. The H.T. spark electrodes 
consisted of two cylinders terminating in a plane and a 
spherical cap (radius about 8 mm.), the gap between them 
being finely adjustable. With these changes, and with 
-clean mercury under paraffin oil in the interrupter, the 
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spark could be depended upon to appear regularly—on 

a given occasion and with a given capacity—at practically 
the same value of the primary current. 

Included in the primary circuit was also an air-core coil 

of small self-inductance (0:00099 henry). Without this 

it was not found possible to obtain a curve having any well- 

marked features ; the optimum capacity was very small— 

apparently between 0-01 and 0-02 microfarad—and it could 

not be determined with any accuracy. Probably the spark 

method is not sufficiently delicate to enable one to detect 
small fluctuations in the curve when the capacity is very 
small. | 

With the series inductance, however, a curve showing 

clear indications of the arches was easily obtained. The 

curve is shown in fig. 5. In this experiment the gap was 

09 ‘| Microfarad. 

C, 

Capacity-potential curve for a magneto. 

0:1 mm. wide, and the points on the curve were obtained by 
adjusting the current until the spark passed at one-half the 
number of breaks. A curve showing the same features was 
also obtained with a gap of 0°'2 mm. The points may also, 
less conveniently, be determined by finding the smallest 
current required to produce the spark. 

The curve shows two maxima, at about C,=0°0475 and 
C,=0:0115 microfarad, the minimum between them being 
at about C,=0°018 microfarad. The rise in the curve from 
0:018 to 0°0115 microfarad was verified on many occasions, 
and there can be no doubt that it corresponds with one of 
the arches of the (wu, U sing) curve. 
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In fig. 6 is shown a part of the calculated (u, U sin d) curve 
for the coupling 4?=0°7, s being taken as1‘05. The highest 
point of the first arch occurs at w=0°465, the minimum at 
u=0°19, and the second maximum at u=0°095. So far as 

Fig. 6. 

FP am 
. oe 

6 Of 6203 04 05 06 G7mGBnneo 
Uu 

Calculated ee U sin ¢) Curve for a Magneto. 
i2—=O7. s=l-0o: 

the proportions of the first arch (on the right) are con- 
cerned, the curves of figs. 5 and 6 are very similar: there 
is much the same percentage drop in both from, say, the 
maximum to a point of double or one-half its abscissa, and 
the ratio of the abscisse at which the maximum and the 
minimum occur is not very different in the two curves. 
The chief point of difference between the curves is in the 
ratio of the two maxima. In this respect the calculated 
curve for k?=0°66 would agree much better with the experi- 
mental curve, but it would show considerably greater 
deviations from it in other features, especially in the 
ratio of the capacities at which the two maxima, and at. 
which the first maximum and the minimum, occur. 

On the whole, the curve for the coupling c= 0 7 Gee) 
appears to be in closest agreement with the experimental 
curve ; and the relative smallness of the second maximum 
in the latter may arise from several causes which would 
operate more strongly at the higher frequencies—e. g., the 
“Jag” of the spark, the influence of frequency on the 
inductances, and the difficulty of securing good interruptions. 
when the capacity in parallel with the break is very small. 

Additional evidence in support of the view that the 
coupling—with the small series inductance in the primary 
circuit—is not far from 0°7 is found in the manner in which 
the optimum capacity varies when the series inductance is: 
altered. If this inductance (L;3) is increased the optimum 
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capacity Cy diminishes, and the product (L,+L3)Cy shows 
little variation over a wide range. For example, with the 
small coil the optimum was 0°0475 microfarad, and the 
product (L,+L;)Cy was 0°689.10-°; with a series in- 
ductance of 0°00527 henry the optimum was 0:0325 mfd., 
and (L,+L;)Cy = 0°611.10-°; with L;=0-0104 henry 
Co was 0:0225, and (L,+ L3)Co=0°538.10-® c.g.s. But 
when the series inductance was omitted altogether the 
optimum fell to below 0°02 mfd., and the product of 
the primary self-inductance and the capacity to less than 
0°27.10-*. Thus a marked diminution occurs in the 
product of primary self-inductance and optimum capacity 
when the small series coil is omitted ; and this is precisely 
what we should expect when the optimum changes—owing 
to the shrinking of the first arch with increasing coupling— 
from the first to the second arch of the curve, which change 
occurs at about k?=0°7. That the change is from the first 
arch to the second, and not, for example, from the second to 
the third, is shown by the comparatively small variation in 
the product (L,+Ls3)Co as the series inductance is largely 
increased (cf. Phil. Mag. Aug. 1915, p. 231, Table I.) *. 

We shall therefore take 0°7 as the coupling with the small 
auxiliary coil in the primary circuit ; and on comparing the 
abscissee of the highest point of the first arch in figs. 5 and 6, 
we find 

(Li, + Ls)Co 

LC, 

Thus the product of self-inductance and capacity for the 
secondary coil is 

LC, = 

= 0-465. 

Pos Or. tg 
““Qaeg 1°46.107° ¢.9.s. 

5. Measurement of the Inductances, the Coupling, and the 
Effective Resistances by Oscillation Methods. 

When the magneto was connected with the electrostatic 
oscillograph f it was found that, as was to be expected, no 

* It can be shown that when a series inductance L; is connected 
between the point Tae 1) and the ‘atvieiihes the expression for the 

124401 (s— 1) - (L:+L3)C, 
coupling becomes RE a) PR and that the ratio Lil 

takes the place of uw in the equations. For the purposes of the present 
experiments, however, the effect of an auxiliary inductance in reducing 
the coupling was determined experimentally (see Section 5 below). 

+ Phil. Mag. Aug. 1907, p. 238, 

Phil. Mag. 8. 6. Vol. 36. No. 212. Aug. 1918. M 
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curves showing the oscillations of the circuits could be 
obtained. The frequencies of the circuits are so high that 
probably no oscillograph with material moving parts would 
be suitable for the purpose. The difficulty cannot be over- 
come by merely connecting condensers of large capacity with 
the circuits in order to increase the periods, for since the 
effective resistances are very considerable the logarithmic 
decrements of the oscillations then become too great. 

When, however, a suitable coreless coil was connected in 
series with the primary or the secondary coil, as well as a 
condenser, the damping factor was so far reduced that 
curves suitable for the measurement of frequency and 
effective resistance could be obtained. This method was 
accordingly adopted in the following determinations of 
the inductances and effective resistances of the circuits. 
Although the results were thus obtained for frequencies 
considerably below those which the circuits possess when 
unprovided with such additional inertia and capacity, they 
nevertheless correspond much more closely with actual 
working conditions than would results obtained by the use 
of slowly alternating curreuts or by other “ slow ” methods. 

In the following experiments the various coefficients of 
the circuits, as well as those of the coils used as auxiliaries, 
were all determined for frequencies of about 600 oscillations 
per second. ‘The quantities regarded as known and used as 
standards in the measurements were the frequency of a 
certain tuning-fork, the capacities of certain standard mica 
condensers, and the self-inductance of a certain air-core 
coil. 

The self-inductance of the primary coil of the magneto 
was determined by connecting in the primary circuit, 
between the point J and the condenser (fig. 1), an air- 
core coil the self-inductance, Ls, of which was 0°0609 henry. 
Across the interrupter was connected a mica condenser of 
0°6 microfarad. The oscillograph was connected to the 
H.T. terminal and to the frame of the machine. In these 
circumstances the circuits are loosely coupled and the 
oscillation-constant of the secondary is very small in com- 
parison with that of the primary. Consequently, the 
frequency, n, of the oscillation—excited by interrupting 
a measured current in the primary circuit—gives the value 
of (L;+L3)C, subject to a small correction for the effect of 
the secondary. The expression is 

Waheed _G-14+F)1,0, (Ly + Ls)Ci = Goa 2 “Tee 
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the second term in the brackets amounting in the present 
ease to 0°005. Thus Ls and C, being known, L, can be 
calculated. The result was L;=0-0135 henry at 0°-4ampere. 

This value of L, is considerably smaller than that found by 
the galvanometer method, which was, moreover, determined 
at a much smaller current. 

For the determination of the self-inductance of the 
secondary coil, the H.T. terminal of this coil was connected 
through a large air-core coil (70°15 henries) with one plate 
of an oil condenser (0°00088 microfarad), the other plate of 
this condenser being connected with the frame of the 
machine. The oscillograph was connected with the plates of 
the condenser. The primary circuit contained neither series 
inductance nor a condenser. In these circumstances the 
period of the oscillation is equal to 274/ (sl, +1L4)C., where 
©, is the capacity of the’ oil condenser with certain small 
additions for the capacities of the coils and the oscillo- 
graph, and L, represents the self-inductance of the air- 
core coil. The total value of C, in this experiment was 
0:00091 microfarad. The value of Ly being known, and 
s being taken as 1:05, L, was calculated trom the observed 
frequency. ‘The result was L,=19°3 henries, which value 
is again much smaller than that determined by the galvano- 
meter method. ; 

In this experiment the oscillation was started by inter- 
rupting a primary current, but it may instead be started by 
sparking with a small induction-coil to the terminals of the 
oil condenser. The value of L, found from the oscillation 
excited in this way was found to be 1 per cent. less than the 
value given above, and this difference is probably to be 
accounted for by a slight difference in the degree of 
magnetization of the core, the amplitude of the oscillation 
being smaller in the sparking method than in the other. 

It should be observed that the value of L, given above 
holds for oscillating currents which are nearly uniformly 
distributed along the secondary wire ; when the secondary 
terminals are not connected with a condenser, the value 
of L, is still smaller. 

The sparking method of excitation, still with the oil 
condenser and the large air-core coil, was also used for 
the determination of the coupling. By equation (16) the 
ratio of the squares of the frequencies of the system with 
the primary coil open and with it closed is (1—A?)/s’, 
where s’ now refers to the whole secondary inductance, 
including that of the air-core coil. The value of k? so 
found was 0°199. Hence without the air-core coil the 

M 2 
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coupling is O-199 x ti 0°92. This is the coupling 
2 

when the secondary terminals are connected with the 
oil condenser. The mutual inductance L,, is therefore 
0:49 henry. 

The same experiment was repeated with the primary circuit 
closed through the small auxiliary coil (0:00099 henry) used 
in the determination of the curve of fig. 5. The result in 
this case was k?=0°80. Now from fig. 5 we concluded that. 
the coupling in the experiment in which that curve was 
determined was 0:7. Hence the removal of the oil con- 
denser from the secondary circuit, by rendering the secondary 
current less uniformly distributed, reduces the coupling from 
0-8 to 0'7,and we may assume that the same proportional 
reduction will take place whether the auxiliary coil be 
present in the primary or not, sinee the presence of this coil 
cannot affect the coefficients L,,, Ly:, or Ly. 

Thus without series inductance in either circuit, and 
without a secondary condenser, the coupling of the magneto 
circuits is 

Beare fC an, k = 0°92 x Gg = 0°80. 

The effective resistances of the primary and secondary 
circuits were determined from the logarithmic decrements 
and periods of the oscillograph curves, with due allowance 
in each case for the resistance of the auxiliary coil, which 
was determined independently for about the same frequency. 
It was found that the effective resistances of the magneto. 
circuits for frequency 600 were very much greater than the 
steady-current values. Thus the resistance of the primary 
coil for steady currents was 0°85 ohm, and its effective. 
resistance at frequency 600 was found to be 49 ohms. The 
secondary coil gave for steady currents 2115 ohms, for the 
oscillations 42,670 ohms. These very great differences 
arise mainly from core losses occurring during the oscilla-- 
tions, and are not found in air-core coils. For example, 
the large air-core coil had a steady-current resistance 
of 14,000 ohms, and an effective resistance at frequency 600: 
of 15,300 ohms. : 

Specimens of the photographic curves used in these 
measurements are shown in Plate VII. figs. 7 and 8*. In 
these cases the oscillations were started by the sparking 

* Full details as to the manner in which the frequencies are deter- 
mined from the photographs have been given in a former paper (Phil. 
Mag. Aug. 1907, p. 242). 
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method, the secondary circuit including the large air-core 
coil and the oil condenser. The oscillograph being used 
idiostatically, the deflexion is proportional to the square 
of the difference of potential, and each elevation in the 
curve represents a half-oscillation. The first half-wave or 
two represent the period during which the exciting spark 
is passing, tle remainder the free oscillation of the magneto 
circuit. In fig. 7 the primary circuit was open and un- 
connected with a condenser. In the case of fig. 8 this 
circuit was closed. The curves illustrate the large 
damping-effect of the core, which is much reduced when 
the primary is closed owing to the fact that the core is 
then partially shielded from the magnetic action of the 
secondary current. 

6. Calculation of the Capacity of the Secondary Circuit. 

We are now in a position to form an estimate of 
the value of the capacity of the secondary circuit of the 
magneto. Since 

ee 48) LO een and, | 1, =, 19°3.. 10? ¢.p.s., 

we have 

C, = 0°000077 microfarad. 

This estimate is, however, rather too low gn account of the 
fact that we have assumed too great a value for L,— 
the value for uniformly distributed currents. Probably the 
secondary capacity does not fall far short of 00001 micro- 
farad,a value which is not exceeded by that of the secondary 
of a very large induction-coil. It is about equal to the 
capacity of a spherical condenser of radii 3 and 3:1 em, 
Large secondary capacity must be a feature of all HT. 
magnetos, owing to the fact that the coils are closely 
surrounded by metallic surfaces at zero potential; and 
this fact must exercise a great influence, not only on the 
spark-length, but also on the character of the spark and 
the quantity of electricity discharged in it. 

In the case of an induction-coil, when a condenser is 
connected with the secondary terminals in parallel with 
the gap, the discharge at moderate currents—currents which 
are considerably greater than the minimum required to 
produce the discharge—takes the form of a “multiple 
spark,’ a large number of sparks sometimes passing (all 
in the same direction) at each break of the primary 
current. When the primary current is increased to a 
certain value the discharge changes to the type usually 
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found when there is no secondary condenser—a single 
spark followed by an arc. 

In the magneto also the discharge at moderate currents 
may take the form of a multiple spark (see Plate VII. 
fig. 10), doubtless owing to the large capacity of its 
secondary coil. 

Another effect of connecting a condenser with the 
secondary terminals of an induction-coil is to cause, for 
a given small or moderate current and a given spark-gap, 
a large diminution in the quantity of electricity discharged 
in the spark. 

In some ways the large capacity of the magneto may 
act beneficially: for example, by increasing the periods of 
oscillation, and thus lengthening the duration of the high 
potential, it enables the spark to appear more readily ; 
again, a large secondary capacity involves a large optimum 
primary capacity, which is an advantage, since the inter- 
rupter works better when associated with a condenser of large 
capacity. It should also be remembered that, other things 
being the same, an increase in the secondary capacity does 
not necessarily cause a diminution of the secondary potential 
for a given primary current; from the point of view of 
secondary potential there is an optimum secondary as well as 
primary capacity. It is also said that condenser-discharge 
sparks are specially favourable to the production of ignition. 

7. Oscillations during the Discharge. 

Some photographs were taken of the magneto spark by 
focussing the image on a sensitive plate with a rotating 
concave mirror. Two of these are shown in Plate VII. 
figs. 9 and 10. 

The photograph in tig. 9 was taken at the interruption of 
a primary current of 1°8 amperes. It shows an initial spark 
followed by an are on which are superposed a number of 
fine regularly-spaced bands representing small oscillations. 
Six or eight of these bands are visible on the negative, and 
though faint they could be measured with fair accuracy 
under a low-power microscope. Their frequency is about 
15,800 per second. These are the oscillations of the system 
with the secondary closed by the are, and their period is, 
by equation (15) with C;=, given by the expression 

where k? is the coupling for uniformly distributed currents 
of the mean value used in this experiment. 
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In the experiment the primary condenser was of capacity 
C,=0°2 mfd.—-rather greater than that of the condenser 
attached to the armature; and taking L,=0:0135 henry, 
s=1:05, we find ?=0°959. This value of the coupling 
is greater than that found by the other methods ; but when 
we remember the difference in the circumstances of the 
experiments, and especially in the value of the current, 
it is probably not inconsistent with them. 
A similar photograph was obtained with a primary capacity 

of 1 microfarad, and the frequency in this case was about 
7300 per second. The ratio of the two frequencies is about 
2°16, which is not far from the inverse ratio of the square 
roots of the capacities, 7. ¢. /5. 

Fig. 10 was obtained at the interruption of a weaker 
primary current, in this case about 1:0 ampere. In this 
photograph the bands are much more clearly separated, 
reminding one rather of a “multiple spark”? than of a 
“pulsating arc.” As already remarked, this effect arises 
from the large capacity of the secondary coil. 

8. Calculation of the Maximum Secondary Potential from 

the Constants of the Circuits. 

We can now calculate the frequencies, amplitudes, and 
damping factors of the oscillations of the magneto circuits, 
and hence the maximum secondary potential. 

The capacity of the condenser attached to the armature is 
1=0°175 microfarad, and with L,=0-0135 henry we have 

ie 2780. 105° c.c.8. 

Also LC, = 1°48 . LO? 39 

L.; = 0°49 henry, 

he s058) 

Se — 0) 

Ray how 2 
a 1815, 

Ry 
ee 1100. 

Hence, by (15), the frequencies are 

nm; = 2607 per second, 

ng 1624 
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and by (28) the amplitudes are (with ij3=1 ampere) | 

aS 2m (Lig + Lay) toreyg? _ 8680 volts, 
No”? — ny,” 

B 2a (Ly + Lig; 2017229 — 1950 
| , Ne — ny Hi 

Further, 
R 

O,= WT, tas = 4:29 .1078, 

R 
0, = SL, LCs = 1°63 e 1078, 

Hence by (33) B= 21805 L0ns 

and by (31) by SURO. 

4120) 

The expression for the secondary potential is therefore 
(in volts) 

V2 = 8680 e~ !980¢ sin 938500¢ — 1950 e- 47 sin 41850008, 

¢ being in seconds and the angles in degrees. 
The phase angles 6,, 6, are here neglected. Thee are 

small, and being appmiy miele proportional to the fre- 
quencies their effect is merely to alter slightly the time 
at which the maximum potential occurs without altering its 
value to any appreciable extent. 

The maximum value of Vz, is 8530 volts att=0°000069 sec. 
(p= 64° 45’). 

If damping had been neglected the maximum would have 
been 9710 volts at t=0-00007 sec. If, further, the circuits 
had been better adjusted, so that the positive maxima in the 
two oscillations occurred simultaneously, the maximum would 
have been (for the same amplitudes) 10,630 volts. 
We may therefore say that there is a drop of 9 per cent. 

in the maximum secondary voltage due to difference of 
phase, and a drop of 12 per cent. due to damping. 
Now the least current observed to produce a 0°2 mm. spark 

was 0°232ampere. Taking the sparking potential at 0°2 mm. 
as 1550 volts, the smallest, primary current required to give 
this spark is, ‘according to the above expression for V2, about 
0°182 ampere. The actual potential generated by the magneto, 
as estimated from the spark-length, therefore falls short of the 
value calculated by the above expression by about 25 per cent. 
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This difference must be attributed to 
(1) the “lag” of the spark, 
(2) imperfect interruption of the primary current, 
(3) the fact that the inductances were determined for 

frequencies considerably below those of the actual 
magneto circuits. 

If the inductances had been measured for a frequency 
of several thousands per second the values obtained would 
presumably have been all considerably smaller, and the 
theoretical value of the secondary potential would have 
been correspondingly reduced. 

If the steady-current values of the inductances had been 
used in the calculation of the secondary potential the result 
would, on the other hand, have been considerably greater— 
probably about 50 per cent. greater than the calculated value 
given above. It is clear, therefore, that only a small pro- 
portion of the initial magnetic energy $1ijio? (Ly being here 
the primary self-inductance for slowly varying currents) 
appears as electrostatic energy in the secondary circuit. 
Regarded as an arrangement for producing high potential, 
the magneto is therefore a machine of low efficiency. In 
view of the fact that high secondary potential is the chief 
condition for spark production, and that in the opinion 
of some authorities it is also one of the controlling factors in 
the process of ignition—it has been suggested that a sufii- 
ciently high potential will produce ignition even though 
no spark actually passes,—there appears to be need for 
improvement in this respect in the design of high-tension 
magnetos. 

XI. Forced Vibrations Experimentally Illustrated. By 
EH. H. Barron, D.Se., F.R.S., Professor of Physics, and 
H. M. Browntne, B.Sc., Lecturer in Physics, University 
College, Nottingham’*. 

[Plates VIII. & IX. ] 
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I. INTRODUCTION. 

ie is well known that forced vibrations play an important 
part in most branches of physics. We may mention 

in this connexion: resonance tubes, fluorescence, Lodge’s 

* Communicated by the Authors. 
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syntonic jars, Hertz’s oscillator and resonator, wireless. 
telegraphy. Possibly we might be justified in adding to 

_ this list the sensitive parts of the ear and eye. 
It accordingly seems desirable to have some quite simple 

vivid mechanical illustration that exhibits qualitatively and 
quantitatively the chief phenomena concerned. Types of 
such experiments are here described. 

The apparatus consists of a single heavy driving pendulum 
and a number of light driven ones, of graduated lengths all 
suspended from the same tightly stretched cord. Thus the 
various effects of tuning and mistuning may be observed 
simultaneously. Bya steady view the variation of amplitude 
with tuning is seen in spite of the phase differences involved. 
By a stroboscopic view (or illumination) the variation of 
phase with tuning is exhibited to a small class (or a larger 
audience). 

The above remarks refer to the experiment in various. 
forms. For confirmation of exact quantitative relations the 
experiment needs arranging with special attention to certain 
details. It is then found to confirm the theory in every 
respect. . 
By changing to responding bobs of greater density the 

increased sharpness of resonance with smaller damping is 
shown. 

Photographic reproductions are given. showing four time 
exposures and eight instantaneous views of the responding 
pendulums. These exhibit all the features enumerated above. 

II. GENERAL THEORY. 

The equation of a single particle of mass m with restoring 
force s times its displacement y and r times its velocity 
under the action of a sustained harmonic impressed force, 
may be written 

d*y da 
mo trae + sy =F sin at, PS 

or d? d*y dy 9 
TD ae py fsin nt, | eee ey 

where s 
2 = 2 = a rg =—. . e e 3 ; 

ee me i m — v m ( ) 

The solution of this may be written 

f sin (nt —6) ae 4), 
~ /i{ (p?—n2)2-+ (Qkn)?! + He sin (gt +e), : . ( ) 

or, 

<a = (Forced Vibration) + (Free Vibration). 
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In equation (4) 

2kn 
tan 6= Pon g=p—k’, | Me ae teeta (9) 

and E and e are arbitrary constants to be chosen to fit the 
initial conditions. 
As indicated, the first term on the right side of (4) represents 

the forced vibration with which we are here chiefly concerned.. 
The second term denotes the free vibration of the system, 
aud this must be present to complete the solution. If the 
responding particles were at rest in the zero position when 
the impressed force was started, then the values of H and € 
would have to be such as to express a free vibration which 
would annul both displacement and velocity as given by the 
forced vibration, whose amplitude and phase have nothing 
arbitrary. 

If the forced and free vibrations coexist of differing 
periods and comparable amplitudes, beats will occur between 
them. These are easily obtained but are usually best 
avoided. 

When, in virtue of the damping factor involving 4, the 
free vibration has practically disappeared, the forced vibration 
is left in possession of the field. No beats are then possible.. 
While the free vibration is dying away, the resultant motion 
which is under observation grows from nothing to the fixed 
amplitude and phase of the forced vibration. 

Considering now the forced vibration itself, we may note, 
from the first term on the right side of equation (4), the 
following points. 

1. The period of the forced vibration is identical with that 
of the impressed forces whatever the period natural to the 
responding system. 

2. The best response occurs for the hest tuning. This is a 
brief statement which may convey the right idea with sufficient 
accuracy for our present purpose. To make the statement 
precise we must define best as applied both to response and 
to tuning. This has already been done by one of the present 
writers in “ Range and Sharpness of Resonance, &c.’’ (Phil. 
Mag. July 1913). 

3. The phase of the forced vibration varies continuously 
between 0 and 7 with the tuning. Thus the phase angle 6 
is almost zero for p? much greater than n?, 2. e., for a 
responding system whose natural frequency is much greater 
than that of the impressed force. On the other hand, $ is 
almost 7 for p? much less than n?, i. e., for a responding 
system of natural frequency much ee than that of the 
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impressed force. Finally, for p?=n’?, 6=/2, and this 
corresponds with the case of maximum amplitude of 
response. 

4, The smaller the damping of the responding system the 
sharper is its resonance, the greater the damping the greater 
is its range of resonance. ‘That is to say, the smaller the 
value of & the greater is the falling off of the response for a 
given mistuning, and vice versa. For it is seen from the 
first term on the right side of equation (4) that when p?=2 
the amplitude is a maximum, for x constant while p varies. 
Further, when p?—vn? is finite and of a given value it has a 
less effect on the amplitude if the other term in the deno- 
minator (2kn)? is large. : 

By reference to the second term on the right side of 
equation (4) we see that the ratio of successive amplitudes 
of the free vibrations is e"Y¥=e*"? nearly. But the 
logarithmic increment > (per half wave) for this system is 
the logarithm to the base e of this ratio. Hence we have 

ee ee 
i 

ee 
vis v9 

where A,= the log. dec. for the responding pendulum of the 
same period as the forces. Thus by observations on the free 
vibrations of a responding pendulum the value of & may be 
found. 

It might be urged that in the experimental arrangement 
specified we have strictly speaking an instance of coupled 
vibrations, and have not reached the ideal of forced vibrations. 
That this is not the case may be ascertained as follows. 

On reference to *‘ Coupled Vibrations, II.” (Phil. Mag. 
Jan. 1918) we see that in coupled systems two superposed 
vibrations occur, the ratio of their frequencies being 
pla=VvV (1+). Also by equation (24) p. 65 and (43a) 
p- 68 of the same paper, we see that the ratio of the 
amplitudes of these quick and slow vibrations for our re- 
sponding systems is given by 

Me —ket 
ae ne ee a nearly for p large. . (7) 

In our experimental case p exceeds 2000 (being 700 gm. 
/0°3 gm.), & is of the order one fifth, and @ about one third. 
Thus after 20 and 40 seconds, the ratio in question has fallen 
to 1/20 and 1/1000 respectively. 
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Ill. InLustRATIVE EXPERIMENTS. 

In fig. 1 is shown an experimental arrangement that was 
found convenient when exact quantitative work was not the 
aim but rather a lecture demonstration of the general features. 
involved was required. 

Forced Vibration Apparatus with Differing Forces. 

The tightly stretched cord AB is drawn down to a peak 
at C by the weight of the driving pendulum CD about 
60 cm. long with bob of iron about 6 cm. diameter. The 
responding systems are pendulums of graduated lengths and 
with very light bobs so that their free vibrations are quickly 
damped. ‘These pendulums should be placed fairly near to 
the driver andthe point A kept far from them, so that their 
points of suspension all have approximately the same motion 
trom the vibrations of the heavy bob D. ‘The bobs of these 
responding pendulums may be— 

(a) of solid cork about 2°3cm. long, 1°2 cm. diameter, and 
0-4 om. mass. 

(6) of hollow paper cones, semi-vertical angle 20°, of mass 
0-2 gm. 

(c) of paper cones, semi-vertical angle 45°, of mass 0°3 gm. 
(d) of blown-glass spheres in imitation of pearls, diameter 

6 mm. 

The attachments to the cord AC may be made by passing the 
cotton suspension through it with a needle and leaving 
theend free. They are then sufficiently held by friction and. 
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may be adjusted, at will, by simple pulling. The paper 
cones may each have a little soft wax inside and the cotton 
‘suspension passed through by a needle and the end left free. 
The cone may then be slid up and down the cotton at pleasure 
‘to adjust in line with the others, and will stay where left. 

The white paper cones are much easier seen (or photo- 
graphed) stroboscopically than the corks, and are on the 
whole more satisfactory than the corks or the blown-glass 
-spheres. p 

Since the phase of the forced vibration varies with the 
natural period and therefore with the length of the re- 
‘sponding pendulum, the full displacements are not attained 
simultaneously. But on viewing the apparatus steadily 
from one end, A say, the full displacements are seen to be 
reached successively. Hence one may see a resonance curve 
in which the squares of the various periods or lengths of the 
pendulums are disposed vertically while the corresponding 
-amplitudes exhibit themselves horizontally. Thus the limits 
to which the light bobs swing on each side form there a 
resonance curve in which the squares of the periods are the 
vertical abscisse and the amplitudes are the horizontal 
‘ordinates. Thus a time exposure will give a photograph 
exhibiting this resonance curve in duplicate to right and left 
of the central line. The effect 1s shown for various types of 
responding pendulums in figs. 1, 2, and 3 of Plate VIII. It 
is seen that the blunt cones (fig. 1) give curves showing the 
‘sharpest resonance, the small blown-glass spheres (fig. 3) 
give the greatest range of resonance, and tle sharp cones 
(fig. 2) show an intermediate type of resonance. This is in 
accordance with theory, since the values of & for these three 
‘kinds of bob (as found from their logarithmic decrements 
when vibrating alone) are 0°16, 0°265, and 02 respectively, 

In order to appreciate the various phases of the vibrating 
‘systems of differing periods an instantaneous view of the 
bobs isneeded. The motion is so slow that it seemed quite un- 
necessary to make any elaborate electric timing arrangement. 
At first the camera was instantaneously exposed 40 times at 
the desired instant as judged by sight, and this gave the 
result reproduced in fig. 4 (Pl. VIII.). Better results shown 
in figs. 5 and 6 were obtained by the ordinary flash-light 
process. One of these, fig. 5, corresponds to the central 
‘position of the driver, and exhibits what may be called an 
exaggerated resonance curve. This is because when the 
.driver is at the centre, the driven bob of about the same 
length and having maximum response is then at one end of 
its swing and therefore shows its full amplitude. But as we 
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pass to pendulums shorter or longer than this one, we 
gradually change to like phase with the driver or opposite 
phase respectively. Hence the horizontal ordinates of the 
curve rapidly diminish from their maximum both because 
the amplitude is less and the phase is not right to exhibit it 
fully. The comparison of fig. 5 with fig. 2 makes this 
point clearer. 

Special interest attaches to the instantaneous view shown 
in fig. 6, and taken when the driving bob was at one end of 
itsswing. The responding bob of about the same length as 
the driver is then at the centre, the much shorter responders 
are nearly in phase with the driver, the much Jonger ones in 
the opposite phase nearly. The resulting curve may be 
approximately represented by 

ee at 

ae bce 

Other powers of zw would be needed to represent more pre- 
cisely the exact curve for any given arrangement of the 
experiment. This will be dealt with later, ; 

To exhibit these instantaneous effects to a single observer 
stroboscopic vision is desirable. This was easily arranged by 
using a card with a vertical slit in its centre, each end of the 
ecard being carried by a pendulum. The period of this 
pendulum should bear a simple relation to that of the driver. 
In the actual experiments it was made of four times the length 
of the driver, as that suited the position of a purlin in the 
roof. The moving slit at the middle of its swing passes a 
slit of the same size in a fixed card. The period of coin- 
cidence of these slits can be shortened at will by increasing 
the amplitude of the pendulums carrying the moving card. 
For about six observers we may use a camera and focussing 
screen instead of a fixed slit, For a larger audience the 
same arrangement of fixed and moving cards may be used as 
for a single observer, but the light from an arc-lamp should 
be passed through the slits on to the bobs while the room is 
otherwise in darkness. 

TV. Dertrartep THEORY. 

Let us now pass from general ideas as illustrated by the 
apparatus in fig. 1 to an experimental arrangement more 
suitable for a strict quantitative examination of the phenomena 
involved. Referring to equations (1) to (3) we see that in 
the set of responding pendulums we naturally keep m 
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and r constant throughout the series but vary the natural 
periods. For quantitative work it is also desirable to keep f 
constant throughout. 
Now the period depends upon s=mp?=mg/« where z is 

the length JK of the pendulum in question. Further, 
F=mq x (inclination of JK) due to full amplitude of heavy 
driving bob D. 

Now this inclination of JK (to the vertical) is the dis- 
placement of J divided by the length JK=a. Hence to keep 
F and f of same value for all the responding pendulums 
we must have their inclinations equal for a given displacement 
of D. And this is obviously obtained by arranging the bobs 
so that the straight line AK passes through them allas shown 
in fig. 2. For when the pendulum length is halved the dis- 
placement of the point of suspension is halved also, and thus 
the inclination retains the same value. 

Forced Vibration Apparatus with Equal Forces. 

Again, to have on the photographic plate coincidence of 
all the points J we must have the camera-lens in the line 
AJC when all is at rest. This coincidence is desirable so 
that the length x for each pendulum shall reckon from a 
definite invariable origin. Further, to have the displacements 
of the bobs K measured from the same vertical line on the 
plate, we must have the centre of the camera in the vertical 
plane through ABCD when at rest. But this has already 
been secured. 
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Finally, to avoid unequal treatment of the displacements 
of the various bobs K, their distances from the camera must 
be nearly equal. Hence they should be set well away from 
the camera but as close together as will avoid entanglement. 

As regards the length JK for the best tuning with DE, it 
should be noticed that no equality will be apparent on the 
photographs. First, because HE is not shown at all, and 
second, because the length DU which is shown is greatly 
magnified relatively to the lengths JK. To confirm the 
theory in this respect actual measurements of these lengths 
should be made on the apparatus itself. 

Consider the time after the dying away of the free 
vibrations. Then equation (4) has reduced to 

te f sin (nE—8) 

oS JA (pm) (Bken Pp 
which expresses the forced vibration only. 

Case I. Take first the variation of amplitude y, of the 
forced vibration with frequency natural to the responding 
system. We have already from (6), k=nA;/7, let us now 
write 

(8) 

por.) nai wen kn—gNhofmrl.! sn 2)' (9) 

And (9) in (8) leads to 
elie is) a 

c= eee: Agee) ny (10) 

Case II. For the second case take the instant when the 
heavy bob D is undisplaced but is moving in the positive 
direction. Then we may write sinnt=0, and cosnt=1. 
Inserting these in (8) we have 

ie —fsin 6 a —f(2kn) UW 

B= Tp Gin} (Paw ine * OY 
Then using (9), (11) becomes 

Fyne —2rfrola* 

TO ma) + Dey 
Case III. Consider next the instant when the heavy 

bob D has its maximum displacement in the positive 
direction. Then we may write cosnt=0, and sinnt=1. 
Substituting these in (8) we have 

(12) 

aks 2 aa a, 
aT Jeet Omny (pnt Oin)® * 

Phil. Mag. S. 6. Vol. 36. No. 212. Aug. 1918. N 
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Inserting the values of p?, n?, and kn given in (9), 
equation (13) becomes | 

Hens mf l(l—a)& 4 

43 oin2(l—2)2 + 4a yh (4) 

VY. EXPERIMENTAL RESULTS. 

The photographs shown in figs. 7-12, Pl. 1X., were taken 
with the apparatus arranged as in fig. 2 so as to keep the 
value of f due to the big bob the same for each responding 
pendulum. One kind of light bob only was used, viz. the 
sharp-angled paper cones. The curves obtained on the plates 
differed so little from those used in the first arrangement 
that it seemed unnecessary to repeat experiments with bobs 
having different dampings. Fig. 8 represents the resonance 
curve in duplicate to the right and left of the central line, and 
was obtained by a time exposure. The maximum swing of 
the lower cones is seen to be greater than that of the upper 
cones. ‘This is because the vertical abscissee are lengths as « 
in (10) and not the squares of the frequencies as p? in (8). 
These curves agree with equation (10). 

Figs. 7, 9, 10, 11, 12, show instantaneous views taken 
‘by flash-powder. Fig. 7 shows the state when the heavy bob 
was passing the centre towards the right. The figure shows 
the bob slightly beyond the centre, but this isa small fraction 
of the amplitude and involves a still smaller fraction of the 
quarter period. Then itis well seen from the curve (a) that 
the upper responding bobs are in phase with the driving bob 
and therefore at the middle of their swing towards the right, 
(b) that the lower ones are also at the middle of their swing 
though they are in opposite phase and moving to the left, 
and (c) the middle bobs are at the end of their swing with a 
lag of about 90° phase angle behind the driver. 

Fig. 9 shows the curve obtained with the large bob at the 
end of its swing to the right. It will be noticed that the 
upper bobs are less displaced from the centre than the lower 
ones. This asymmetry was to be expected from the form of 
equation (14), with which it is in entire accord. 

Figs. 10-12 are intermediate stages with the large bob 
partly displaced. They show the gradual melting of the 
curve from the case of exaggerated resonance with the bobs 
all on one side, fig. 7, to the state of fig. 9 with half the 
bobs on each side. The set of figures 7, 10, 11, 12, 9 corre- 
spond to intervals of about the tenth of a second in the 
motions of the actual pendulums. 

Nottingham, 
May 28, 1918. 
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XIII. Problems of Denudation. By HARoLDd JEFFREYS, 
M.A., D.Sc., Fellow of St. John’s College, Cambridge*. 

| aaa major phenomena of physical geology may be 
divided into three main groups, namely crust-move- 

ments, denudation, and sedimentation. They are closely 
interrelated ; the occurrence of sedimentary rocks in high 
mountains and the frequency of synclinal mountains show 
further that they are of the same order of magnitude. Their 
dynamical treatment has not been extensive in the past, and 
geologists have, as a rule, been content with qualitative 
explanations of the observed configurations of the surface 
rocks. Such treatment is, however, highly desirable; for a 
mathematical investigation enables us to specify accurately 
the causes we are taking into account, and the correspondence 
or divergence between the effects it predicts and the actual 
phenomena indicates the extent to which we have succeeded 
in tracing the most important causes. The differences re- 
vealed may then lead to the discovery of further causes, and 
thus observed facts may gradually become understood in 
greater completeness and detail. 

The present paper deals with problems of the flow of surface 
water during rain. The ground is supposed completely 
covered with a thin layer of water, supplied at a known rate 
all over it. The movement of the water is found to be com- 
pletely determinable in ordinary conditions. It must be 
carefully distinguished from the flow of a stream; in the 
present problem the surface of the water may be considerably 
inclined, for it closely follows that of the ground, whereas in 
a stream the section of the free surface by a plane across the 
lines of flow is always nearly horizontal however much the 
bed may be inclined. In English conditions the frictional 
resistance to the motion is usually mostly due to viscosity, 
turbulence being important only in mountainous regions. 
The form of an ideal peneplain that would sink at a uniform 
rate all over owing to the denudation caused by such flow is 
then determined, and its stability considered. 

I. The Flow of Surface-water during Rain. 

During rain water is supplied at a fairly uniform rate over 
wide areas, and as fast as it falls it runs away to lower ground 
under the action of gravity. The supply being practically 
continuous, the whole surface is always covered, the depth at 

* Communicated by the Author. 
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any point depending on the shape of the neighbouring ground. 
The present problem is to find out how the water will flow. 

Consider any particular small portion of the surface, of 
area dS, and let the depth of the water be € and its density p. 
Then the forces acting on the element of water of mass pfdS 
and affecting its movement over the ground are:— 

(1) The tangential component of gravity, of amount 
gpcdS sina, along the line of greatest slope, where « is the 
angle between the normal to the surface and the vertical. 

(2) The friction of the ground; when the velocity is con- 
siderable it has the value fpV°dS, where / is a constant of 
order 0:004 and V is the mean resultant velocity of the water 
within the element. The direction is against the resultant 
velocity. 

(3) The pressure of the surrounding water. Now the 
pressure is zero at the upper surface of the water, and as 
there is practically no movement perpendicular to this 
surface, the normal component of gravity must be almost 
exactly balanced by the pressure. If v be the distance from 
the surface of the ground, this makes the pressure equal to 
gp(€—v) cosa; and therefore the difference between the 
pressures at two points ds apart and at the same distance 

from the bottom is of order gp = (€ cos «)ds. Thus the whole 

thrust on the element dS in the direction of ds is of order 

ope. ({ cos a) dS. 

The resultant of these three forces is the rate of change of 
momentum of the element of water pfdS. 

Now the ratio of the third force to the first is. 

2 (eos a): sin «, and provided that the depth of the water 

does not change rapidly in comparison with the height of 
the ground above sea-level, which is obviously a legitimate 
assumption, it appears that the pressure variation can be 
neglected. 

Next, suppose for a moment that most of the force of 
gravity is used in producing acceleration, friction never 
exceeding a certain definite fraction of it. Then the velocity 
acquired in descending through a vertical height Ais given 
by V?=2gh, less a correction for friction. This makes the 
frictional force equal to 2fgphdS, whose ratio to the force due 
to gravity is 2fh : {sin a, which is of the order of the ratio of 
008 of the linear dimensions of the area to the depth of the 
water, and is obviously very large in all ordinary cases. 
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Thus on these hypotheses friction would considerably exceed 
gravity, which contradicts the initial assumption. Hence 
the hypothesis that friction is less than a fraction of gravity 
which never approaches near to unity is untenable, and 
therefore friction must be nearly equal to gravity, and the 
accelerations can be neglected in the equations of motion. 

This holds for any depth of the liquid; when the depth is 
small enough to make viscous resistance (simply proportional 
to the velocity) exceed the type here considered, the resistance 
here assumed is still great in comparison with the accele- 
rations, and a fortéore the viscous resistance is more im- 
portant than the accelerations. 

The forces acting on the element of fluid therefore reduce 
to two: gravity acting down the line of greatest slope, and 
friction acting opposite to the velocity, these two being prac- 
tically equal and opposite. It follows at once first, that the 
motion of the liquid is always down the line of greatest slope, 
and second, that the velocity is given by 

FV?= 96 sin a. 

For a different law of resistance the velocity will have a 
different value. 

The equation of continuity has not yet been considered. 
Consider the surface of the ground covered by two orthogonal 
systems of curves, specified by X=constant and ~=constant, 
where \ and ware functions of the position. Let the elements 
of length along these curves be ds, and ds., where 

h,ds;=dx and hods,=dp, ° ° ° ° (1) 

h, and h, being in general functions of » and p. 
If the velocity at any point has components (w, v) in the 

directions of dX and dy respectively, the amount of liquid 
crossing ds, in unit time is v€ds;;-and accordingly it is seen 
that the a of ee is 

ul 11 [ol4 

= rae Ov 2 (E)= hyhg (A Si): ithe (2) 

where A is the rate of supply of water per unit area. When 
the motion is steady 0¢/O¢ is zero. Now wand vare known in 
terms of €, so that this becomes a partial differential equation 
to find ¢. Again, € only enters through the combination CV. 
Jf the law of resistance were different from that assumed 
here, the equation would still hold, but V would be a different 
function of €; nevertheless the equation would be satisfied 
by the same value of V, so that the solution for one law of 
resistance can easily be deduced from that for any other law. 
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So far the systems of orthogonal curves are unspecified ; 
tlie contour-lines, or lines of strike, will be taken to be 
\=constant, and the dip-lines will be w= constant. Thus 
u=V, v=0. Now if ds denote an element of length in any 
direction on the surface, and rectangular coordinate axes are 
chosen, the axis of ¢ being upwards, the contour-lines are 
specified by the condition that z= constant along them. If 
the surface has the equation z=/(z, y), then along a 

contour-line = =0, and therefore or rr av oy 0. 

Thus A can be taken equal to z, and as the contours are 
parallel to the plane of (a, y), it follows that their projections 
on the plane of (a, y) will also satisfy the differential 
equation 

Gyan. OF | OF 
‘a 8a] OY eee e ° ° . ° (3) 

Now the projections of the dip-lines must be perpendicular 
to those of the contour-lines, and therefore along them we 
must have 

Agee OF /Or | 
dx oe Oy Ou ee e ° ° ° ° e (4) 

The solution of this equation can be put in the form 

Known function of # and y=arbitrary constant, . (9d) 

and this function can then be taken to be p. 
The element of length on a dip-line measured in the 

direction of the flow is cosec edz, and therefore h;=—sin @. 
hg is as yet undetermined. ‘The equation of continuity is 

sina 2 (7°) +2 = OQ. RSet 

The above treatment is independent of the form of the 
surface considered, and shows thatif the value of V¢is known 
along any contour, it can be found along any other by an 
integration along the dip-lines. Thus a general solution can 
always be found. 

At this stage the law followed by the friction may be 
investigated. 

As long as V is a function of ¢, V€ must be of order 
\A cosec « dz, or Al, where / is of the order of the horizontal 

‘dimensions of the area. The condition that the friction 
may be proportional to the square of the velocity is the 
Osborne Reynolds criterion, that Vf shall be greater than 
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1000%, where & is thetkinematic coefficient of viscosity, prac- 
tically 0-02 cm.?/1 sec. Thus we must have Al>20 cm.?/sec. 
A moderate rainfall would be one centimetre in an hour, or 
about 3x10-*cm./sec. For the law to be correct / must 
then be greater than 0°7 kilometre. Again, using the 
relation fV?=9€ sin a, we have 

f V?=0* (gAl sin «) 

= O(gAh), 

where h is the height of the highest point. Thus we have 

t= of ay 

SOMA VERT. as ee ie RD 

with the above data. Taking h=10° cm. and /=10° em., 
these figures corresponding to a mountainous region, we 
have €=O(0°7) cm.; thus a steady depth under a moderate 
steady rainfall would be attained after a time of the order of 
an hour. In fat regions, on the other hand, we may have 
h=10* cm. and /=10'cm.; then €=0(30) em. This is 
evidently incorrect, for rain does not ordinarily last long 
enough to flood the ground to this depth. It follows that 
Vé must be less than 10004, and the friction is not due to 
turbulence, but to ordinary viscosity. 

Now if wu be the velocity at distance v above the solid 
surface, the equation of viscous motion is 

2 
po = —gsina, Ese EMA ee tat Te 

while w=( when v=0, and Oe =() when y=6. 
Ov 

These give 

w= 5 (2v6—v"). FES ENN GRE 

In the equation of continuity we can take V to be the mean 
value of uw over a norma! section. Then 

2) 1 2) “ 

MO Ge Sh a 

V= —ludy=- g , ; 
C 

(10) 
Os 

Thus bo SE ee a eat 

* O(x) denotes a “ quantity of the order of x.” 
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The equation of continuity therefore reduces to 

ee 3kh, {As2* a, eR 

g sin & hg 

the integration being along the lines of greatest slope. At 
the top of the slope VE must evidently be zero, so that the 
lower limit of the integral must correspond to the summit. 
The problem is thus reduced to one of quadratures. 

Il. Denudation by Surface Water. | 

The friction of surface water on the ground tends to remove 
the finer particles and carry them away. Solution also occurs 
in certain cases, but the purely mechanical effect is always 
one of the most important, and will be considered first. If M 
denote the mass of a particle of density p’, it will be detached 
when the frictional force on it reaches a certain proper fraction 
of the normal force between it and the surface. The velocity 
in its neighbourhood being wu, and the linear dimensions of 
order a, the frictional force is O(kpua) in the case of pure 
viscosity. Now uw is practically adu/dv evaluated for v=0, 
and thisis agfsina/k. Thus the frictional force is O(pa’gfsin«). 
The normal force is O{(p’—p) ag cosa}. The ratio of the two 
being a definite number, say A, we see that the size of a 
particle that would just be moved is given by 

=OJ—? _ ¢tan, ag a Of rm Simp ae (1) 

Hence the mass ofthe largest particle that can be transported 
by viscosity without sticking in the first small hollow it 
comes to is proportional to > tan? «. The rate of denudation 
is therefore a function of Cian, its form depending on the 
distribution in the soil of particles of different sizes. It is to 
be noted that when the depth and slope are the same the 
limiting mass is independent of the kinematic viscosity. 

An interesting case arises if €tane and a are constants, 
a being small. The surface sinks at a uniform rate all over, 
retaining its size and shape, but progressively sinking. ‘his 
represents one case of the “ peneplain.” When the surface 
is such that all the contour-lines are parallel to the axis of y, 
its form canbe found. For I. (12) when € is proportional to 
cot« and A to cose, corresponding to rain falling, on the 
average, vertically, becomes 

\cotadz=—Bsinacot*a, . ss. hota 
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where B is a constant ; then 

a = BQ cot 2 COSEC a + COS Be) sited Phish. me sc eh eA) 

dx a ibite : | 
a = B(2 cot? a cosec a+coseca—sina), . . (4) 

i= 2p me eoseee oma) se hla aD) 

x=a)—B(cosecacota—cosa),. . . . . (6) 

where 2 and zy are arbitrary constants. 
When z=2z)— B, we have e=ia and e=a. For smaller 

values of a, x and z become steadily smaller; and when 
ais small z behaves like 2) —2B/e and # like z»—B/a«?. Thus 
the surface is very steep near the top, the slope gradually 

decreasing as we recede trom this. Again, if the surface is 
flatter at a distance from the ridge than the peneplain form 
and steeper near the ridge, we see that €tan @ is greater near 
the ridge and lessaway from it; thus the inside will tend to 
sink more slowly than the outside, the peneplain conditions 
being thereby restored. For displacements of this type the 
peneplain is therefore stable. 

Hixcept close to the ridge, where the surface is nearly 
vertical, the form is practically parabolic, the axis being 
horizontal and the latus rectum being 4B. The depth and 
the mean velocity are both zero at the top, the water running 
away as fast as supplied; at other places both increase like 
cota, or practically like the square root of the horizontal 
distance traversed. The amount of water crossing a contour 
in unit time is proportional to the product of the depth and 
the mean velocity, and therefore to the horizontal distance. 
Thus it steadily increases the further we go down the slope, 
the increase being supplied by the rain gathered on the way. 

Evidently the theory cannot be expected to hold close to 
the ideal ridge; the removal of solid matter would cause the 
surface alter a short time to be at a uniform normal distance 
from the original surface, and not vertically below it. As 
long as the slope is small this will not make much difference, 
but when it is great there will bea considerable cutting back 
in a horizontal direction; any sharp angle will therefore be 
exposed to denudation on two sides, and will tend to be 
rounded off. This effect will be accentuated by the fact that 
rain falling on a steep slope would retain for some time part 
of the velocity acquired in its fall through the air, so that the 
velocity would be greater than on the theory. As long as 
we are concerned with only moderate gradients, however, 
the theory will hold. In dealing with the summits of hills, 
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other factors must be taken into account which can be safely’ 
neglected in the present problem. 

All: peneplains with parallel contours produced by surface: 
water must be geometrically similar, for the only arbitrary 
quantities involved in the equations ‘obtained are % and Zp, 
determining the position, and B, determining the scale. 

In the actual character of the motion produced in the soil-- 
particles this viscous flow would be expected to differ con- 
siderably from the ordinary turbulent flow of a stream. The 
latter involves great vertical agitation, and particles are lifted 
up and down ‘by the vertical movements, travelling con- 
siderable horizontal distances during each jump. In viscous 
motion there is little or no turbulence, and little chance 
therefore of particles being romened from contact with the 
surface of the soil. The effect of the tangential forces will 
be merely to roll the particles along rather (hana carry 
them. The actnal rate of denudation will depend on the: 
frequency in the soil of particles of different sizes, and 
accordingly while it will be a function of the frictional force 
its form cannot be predicted without a knowledge of the 
soil-composition. So far it has only been assumed uniform, 
requiring the rate of shearing at the bottom to be constant, 
so that the question of the effect of variations in the soil- 
composition has not arisen. When changes of the topography 
are considered, on the other hand, precise information on 
the relation between the rate of denudation and the rate of 
shearing at the surface will be needed. 
When the denudation has proceeded a considerable time 

the lowest parts may reach sea-level. They will then cease 
to be denuded, while the inland parts will continue to sink. 
This will proceed till the whole is reduced to so low a level 
that surface-water can no longer attain sufficient velocities to: 
earry débris with it. This corresponds to the “ base-level ” 
of geologists. Its form will naturally depend on the size of 
the particles of the soil. The length : € tan « is somewhat less 
than @ on account of the factor X: we have, in fact, 

ol B=0(55 3) he ies 

Thus B increases rapidly with a. In other words, since at a 
given horizontal distance from the ridge & is pr oportional to: 

B®, we see that the larger the particles the greater is the 
slope needed to transport them when the water supply is 
the same. The variations in height would therefore be- 
expected to be greater on a coarse soil than on a fine one : 
at the same time we see that a heavy rainfall will act in the 
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same direction as a fine soil. If asa preliminary estimate 
we assume A*=,!,,a=0'l cm. (corresponding to a sand), 
£602 cm.?/sec., A=3 x 10-4 cm./sec., we find B= 
O(200) cm. Thus at a distance of 10 km. from the high 
ground the depression of the surface would be of order 
200 metres. Witha finer soil it would be less, and the 
scales indicated appear to be of the same order of magnitude 
us those observed. 

Ill. The Stability of the Peneplain. 

It was shown in the last section that a peneplain with 
uniform soil could retain parallel contours indefinitely if 
there were no external disturbance. Suppose, however, that 
on account of some local irregularity in the rainfall or the 
soil or some other factor the perfect peneplain form were. 
slightly altered, would subsequent denudation increase or 
decrease the alteration? Ifit decreased it, the peneplain 
would be stable, and would be expected to persist for long 
intervals without considerable change. If it increased it, on 
the other hand, the peneplain would be unstable ; the par- 
ticular type of variation that increased most rapidly would 
become the most important, and in time would dominate all 
others. 

Let the equation of the peneplain be z=z, where z isa 
function of x only, and suppose it to be slightly disturbed, so: 
that its equation is changed to 

6S 25) ae ee eae aca 

where ¢ and all its derivatives are small quantities of the first 
order. Then neylecting second-order terms, we see that the 
dip-lines satisfy the equation 

dy _ 0 /0z Fa Saar EMEA RN A 

Hence to this order y- JS oo de is constant along a 
Al 

dip-line, and can be put equalto w. ‘The integral is to be 
taken along the dip-line or (with a second-order error) along 
a section of the surface by a plane parallel to the axis of w. 
ae ds, is the element of length along a contour, and we 
have 

ds. = da + dy’. 

* We should expect X to be less than the ordinary coefficient of sliding 
friction, for the motion is partly rolling, and the water must have some 
lubricating action. Experiments on traction in channels concern tur- 
bulent friction, and give no information on the present problem 
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As et is small when we move along a contour we can put 

dsy=dy, and as hydsp=dp, we find ‘ 

197d as 
bg \> Oy? U ( ) 

Again, the direction cosines of the normal to the surface are 

ax’ oy 
oe, Og BO ; 

cos a= 41+ (a + of) fr 2. eh ee ene 

sin a= (<1'+ oy it (21+ o) a ee 

If A=Aj cos a, the equation of continuity now becomes 

proportional to 2,’ + o¢ og —l respectively. Thus 

gS tan? a ; da ; 
Ceaipk. =h, tan? «seca i 0 (6) 

[ 2 2 ‘ d 1 
— Lv tan a SeC a | = ho tan’ a SCC AL Wis ( adv. 

(7) 
It is fairly evident without mathematical treatment that 

the greatest instabilities, if any, will occur for displacements 
forming corrugations along or down the slope, and not for 
those running obliquely. Consider first those running along 
the slope, so that ¢ does not involve y. Then h,=1 and 

162 tan? é 

eA sa tan? seca, Lhe pate aie. hy) 

where w is the horizontal distance from the top of the slope. 
Thus where the distortion increases tan? asec it will in- 
crease tana, and hence the erosion. So long as the slope 
is not very great the variation in sec e will always be small 
compared with that in tana, and thus the surface will 
sink fastest where the relative increase in tana is greatest. 
Now considering a series of elevations of the same height 
and horizontal extent down the slope, we see that tane 
is greatest on the lower side of each, and the relative 
amount by which it exceeds the undisturbed value ig 

greater the greater : o is. Thus if A be the top of one 

ridge, C that of the next in order downwards, B the bottom 
of the intermediate hollow (the depth being measured 
normally to the general slope), and D that of the hollow 
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below, the denudation in AB is less than that in CD, for 2’ 
is lessin CD. Thus the denudation in AC is less than that. 
in BD, and therefore the ridges are more denuded than the 
hollows and the system is stable for corrugations along 
the slope. 

Consider next the case of ridges running down the slope.. 
The line of greatest slope starting at any point wili ascend. 
rapidly towards the nearest ridge and gradually turn round, 
till at a great enough height it is almost parallel with it and 
near the topof it. Thuslines of greatest slope equally spaced: 
at the top of the general slope will tend to rearrange them- 
selves lower down, so as to be more densely packed in the. 
hollows and less densely on the ridges. Now water cannot cross 
a line of greatest slope, and as it is supplied uniformly all over- 
it must tend to congregate in the hollows. Thus denudation 
is greatest in the hollows, since the slope there does not 
differ appreciably from that on the ridges, and therefore the 
peneplain is essentially unstable for distortions consisting of 
corrugations running down the slope. Again, @ is inde-. 
pendent of y to the first order, and therefore the difference 
in €* between ridges and hollows can only arise through the 
term in 07/dy° in fy. This, other things being equal, is. 
evidently proportional to a/X, where a is the average extent 
of the elevations above the peneplain and 2X the distance- 
between consecutive ridges. So long as this is small, the 
difference between the rates of denudation in the ridges and 
hollows is proportional to a/A?, and thus the relative rate of 
increase of any disturbance is proportional to 1/7. The. 
shorter the distance between consecutive crests, then, the 
more rapidly the disturbance will increase. As any type of 
disturbance is initially possible, it follows that surface-water- 
alone is capable of cutting up a uniform surface into an 
indefinitely complicated pattern if no other agency exists. 
that can counteract the instability. 

This result does not agree with the observed frequency of re- 
markably uniform peneplains, and some stabilising cause must 
therefore exist. One possible cause is the friability of soils, 
which would soon cause local irregularities of considerable 
steepness to break up and spread themselves out again under 
the action of gravity. Sand spreads itself out when wet in 
a similar way. On a tenacious clay soil such irregularities 
can persist for a considerable time, and then the result is 
well confirmed by the extremely rough and angular forms 
developed by exposed masses of bare clay *. Clay covered 

* See, for instance, Pirsson and Schuchert, ‘Texthook of Geology,” 
fies. 19 & 21. 
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with vegetation is not affected in the same way, and-it seems 
likely that vegetation does have a stabilising influence. It 
~reduces the rate of denudation as a whole, and when the soil 
under a grass or other plant with fibrous roots is removed 
it is possible that the exposed roots may act as a filter, thus 
increasing redeposition and counteracting denudational in- 
stability. The general result that the rate of denudation is 
a function of €tana thus ceases to hold for these distortions 
of short wave-length, but remains true when areas large 
compared with the size of the plants are considered. The 
form of the peneplain deduced in Section II. will therefore 

still hold. 

Summary, 

In Section I. it is shown that the movement of surface 
water is controlled by gravity and friction ; hydrostatic 
pressure and inertia are ordinarily negligible. In con- 
sequence of this the water always moves along the lines 
of greatest slope. In mountainous regions the friction 
may be due to turbulence, but in ordinary cases it is due 
to ordinary viscosity ; in either case the motion is com- 
pletely determinable when the form of the land and the 
distribution of rain are known. 

In Section IT. it is shown that in the case of viscous flow 
the rate of denudation with uniform soil is a function of 
€tana, where € is the depth of the water and « the slope. 
Thus, if €tane is a constant, the whole surface will sink at 
a uniform rate: an example of this is a surface with straight 
contours and almost parabolic dip-lines with the concavity 
upwards and the axis horizontal, agreeing in general 
appearance with ordinary peneplains. 

In Section III. the peneplain already described is shown 
to be stable for corrugations running along the slope; but 
corrugations running down the slope tend to increase in 
depth, and the shorter the distance between consecutive 
rests the more rapidly will this increase occur. This 
corresponds well with the complicated character of the 
surface of weathered clay ; the smoother types of peneplain 
are probably able to persist because the instability is 

-counteracted for these disturbances of short wave-length by 
‘friability and vegetation. 
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XIV. A Diffraction Problem, and an Asymptotic Theorem in 
Bessel’s Series. By R. Harcreaves, M/.A.* 

TINAE first diffraction problem to which exact methods 
have been applied with success, is the problem in two 

dimensions solved by Sommerfeld. Its solution is here 
presented in a form which is, I think, in a sufficient degree 
simpler and more convenient than the original, to justify an 
independent statement of the arguments. I add also a 
solution of the problem in three dimensions, which arises 
when the plane of the incident wave is not parallel to the 
edge of the barrier. The solution appears first in the form 
of a definite integral, anda direct algebraical transformation 
is made toa series of Bessel’s functions and Trigonometrical 
functions. When the latter form is got independently the 
crux of the problem lies in the asymptotic value of the 
series, 

§ 1. The coordinates in the plane being (xy), the barrier 
occupies the half of the XZ plane for which z is positive. 

The condition at the barrier may be = =0 (i. e.r=0), or 

. =(); the first corresponding to zero pressure, the second 

to zero velocity in the acoustical problem. In constructing 
the functions it is convenient to take an incident wave 
cos k(Vt+y); the transition to oblique incidence is imme- 
diate and presents no difficulties. This form of incident 
wave involves two asymptotic conditions. For « infinite 
and negative, y finite, yy must approach the limit cosk(Vt+y). 
For # infinite and positive, y finite, the asymptotic value 
must be zero for y negative, cos k(Vt+y) = cos k(Vt—y) 
for y positive according as we are dealing with the barrier 

Ov _ condition =O or a ==ity 

The solution is based on the function 
r+y k 7 u 

sn=zee | cos} Fr k(Vety—u) }, Cet ky 

which for r+y very great approaches the value 

4 cos k(Vt+y). 

The physical conception suggesting the form of function 
is that a wave of type Vt+y must be converted to one of 
type Vi—r, which will correspond to divergence from the 

* Communicated by the Author. 
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k(Vtt+y) edge. We therefore try a function of form e v(r+y), 

and with p for r+y the differential equation yields 
x" 1 

aco me eT ee. 

mR 
which corresponds to a function of the type in (1). 

The function $(7, y) vanishes for r+y=0, 7. e. on the 
axis OY’. The use of r+y involves a certain disability in 
respect to change of sign, which must be directly imposed 

if demanded by the continuity of el oe or oe . The first 

two vanish on OY’, but | 

do | VE: & COS {T+h(Vt—7) | 

2 er 
while z=+ “(r+y)(r—y) according as x is positive or 
negative. Thus on the two sides of OY’ we have 

Ta ve B9 a / sh cos {7 +k(ve—n) t 

a finite quantity except at r=0. The continuity of oP 

therefore requires the change from +¢(r, y) to —d(r, y) 
in crossing OY’. 

Corresponding to the reflected wave we have a similar 
function with —y for y, and here the change of sign occurs 
on the axis OY. We have now the material for construct- 
ing the solution, which, for the condition y=0 on the 
barrier, is 

= 4 cos k(Vt+y)—3 cos K(Vi—y) + (7, y) — P(r, —y) 
in 1st quadrant (region A) 

= 9s 9 ” +4(7, y) + $(7, —¥) 

in 2nd & 3rd quadrants (region C) 

— ny ” ” — PG, y)t+h(r, 3) 

in 4th quadrant (region B) 

For the problem with zero velocity on the barrier, the 
signs of terms 4 cos k(Vi—y) and $(r, —y) must be changed 
throughout. In the solution (2) it will be noted that for 

y=0 in C, = has the value due to the incident wave only. 

Tn the other solution y has the value for incident wave only 
for y=0 in C. 
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To pass to the case of oblique incidence we write 

asina+ycosafor y incosk(Vt+y) and in d(r, y ) |] 

«sin a—y cos «for —yin cos k(Vt—y) and in d(r, —y) (i ( 
Thus for example ¢(r, y, «) being 

_ft+rsina+y cosa 

Uf k ( d Vil cos YT +h(Ve-ta sina ty cosa—u) toe (4) 

d(r, y, «) replaces ¢(7, y) in (2). The regions B and C are 
now separated by the line of the incident ray through O in 
place of OY’; the regions A and C by the line of the ray 
reflected from O instead of OY. These are the only changes 
needed. 

Lastly for an incident wave cos k(Vt+le+my-+nz), let a= V2 +77, n'= V¥1—n’, and (/,m)=n'(sin «, cosa); then 

h(a, y, n') being 

@W+trsinatycosa 
it hg, d eal cosy T+ h(Vi+ lz+my+nz—n'u) 7 (5) 

d(a, y, n') replaces (7, y) in (2), while the opening terms are 

4 cos k(Vt+lx +my+nz)—% cos k(Vt+la—my+nz). 

These are the only changes needed, the separation of regions 
being as in the last case. 

2. The above constitutes a solution in terms of definite 
integrals the evaluation of which depends on well known 
seties. To pass to the second solution in terms of Bessel’s 
functions we set out from these series, which are therefore 
briefly quoted. If 

P cosudu ) (* 25% = P(p) cos p+ Q(p) sin, Jo Mu 

P sin udu a , \ - (6 a) 

Va =P) sin p—Qip) cos | 
then 

2) Be. ee, yd Bi sie ee) 
= 20% — 3 se Ea Ae ne eg 5.59 gee ae 3 5 7tt (ta) 

series convergent for all values of p. For p great, asym- 
ptotic values are 

oe (cos p+sin p)+P., Q=,/7 (sinp—cosp)+Q,, 

Phil. Mag. 8. 6. Vol. 36. No. 212. Aug. 1918. O 
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where 

! Lea 1 Saal ne, wale = eA CM P, Qo? 9999 ae ie Q.= 9 ona Ce 

series ultimately divergent for any value of p. Tor p great 
evidently 

i oon —P(p) cos p—Q,(p) sin p, | a . a 
b. (6b 

( Sin We EP (9) sin p4-O,(9) cocked 

The pairs (PQ) and (P,Q,) both satisfy equations : 

dQ dP mc 
“> —P=0, Ties + Say, 

dp pe vp 
whence 

dQ tee a’ Ph a a dp? Q= a dp? +P= sae (7c) 

The nature of the wave expressed by (7, y) is revealed 
more intimately by the use of (6a), giving as connected 
forms 

(1, y) 

=395 -| {PCp) cos (pie) ain kp} cos _ +1(Vety) | 

+ {PClp) sin he—Q(hp) cos tp} sin J T +a Ve-+y) |] 
=5—- [ Pp) cos {T +i(Vi—r) | Q (kp) 

con {Fa 
TD ie Vo xo-| (Pe) cos kr-+ 

Q(kp) sin kr cos (7 +kVt) 

| (8) 

| + { P(Kp) sin kr—Q(kp) cos knpsin (7 +eVe) |. 

We have here the change from plane to divergent wave, 
and in the last line the forms of the stationary solution. 

By use of the series P and Q we obtain solutions in 
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Bessel’s functions, viz. for the boundary condition ~=0 

=tcos k(Vt+y) —$ cos ie 

aay 56 + V2c08(7 +kVt) [ Jz(4r) sin ee Lo) in +... | 

> MeN etc) 
— A/2sin (F +hVt) | Ts (er) sin +J:(kr) sin + ae 

(9 a) 
while for a =() on the barrier 

w= cos k(Vi+y) +hcos k(Vt—y) 

+ /2 cos(F +hV0) | J3(4r) cos S +Js(kr) 008 + | 

+ /2sin ( +hVt) [ Is(r) cos +J2(kr) cos se } 

(9 b) 

§ 3. The first step is to obtain expressions for P, Q, and 
thereafter for the stationary forms, in which the variables 
vy and @ are separated. We have 

ice —Wt 0 ge p=rty=r(1+4+ sin @)= =3(" a © ) where w= 5—F (10) 

and then 
m+4 Oe m+3 m 2m + 1 

The series changes sign with cos @, 2. e. we have the 

positive sign on the left from 0=0 to Sn and the negative 

sign from a to 2a. Linking (11) teen (7a) we get when 

the left- ad member of (11) has the positive sign 

P(p)= =P, (r) cos (2p+ Lo, Q(p) == Q,(r) cos (2p + 1a, } 
where ; : 

Ly2n 2(2r)20+3 
- ise ae 
ie, \2n—p 2n+p+1’ nee one 

— 1) "|2n See) 2" s | eee ae 
Q, n Pn—p+12ntp+2° "+ 1*P- J 
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| These last Rs 

| | 
= (—1)?2 WV rJop42(7) Cos 7, ) 

| 
tt | oe 1 P9 V 7 Jap 43 (7 ) sin Tr, Fe: 

4 ) Go, 
A Poppi =(—1)? 2 V7Iops3(") 807, 

| | Qep41=(—1)?2 Vr Jon+3(") CosT. J 

a It will be sufficient to sketch the argument by which the 
Bi) | results in (13) were reached, as I have since found they are 
ie particular cases of formule given in Nielsen*. Since 

| =(P, cos7+Q, sin 7) cos (2p + Lye, 
ig é 
| | and (P,sinr—Q, cos r) cos (2p+1)a 
| p : 

i are solutions of (y?+1)/=0, and w= : = - we conjecture 

i | that one of the brackets with p as index will vanish and the 
a | other be proportional to J,,,, since the function of type 

J_,—3 18 not admissible. If the expression for J, pes in terms 
\ of sin r and cos r with polynomial costa gene is used, an 

expression for J,,,,(r) cos7 with polynomials multiplying 
i sin 2r and 1+ cos 27 results, which gives for coefficient of 
H| the general term a finite series. This is identified with that 

required for (13) by means of 

i BOR =s (<1)? 196 Cl ees ee eae ilee) 
i =0 n+pt+1ln+qt+1 p-l-¢9 

| which can be readily steal by a repeated use of 

nu, = C>— ae, and’ ,C), = Ome 
a+1lr+l n r+l n+1 n+1 

so applied that each step raises by 1 the value of the prefix. 
i From (13) follow 

, P(p) cos 7+ Q(p) sin r= 2V 7E(—1)? Jon4 4 (7) cos (4p+ Lo, 
i and : (15) 
| P(p) sin r—Q(p) cos r=277E(—1)? +135, 4 5(7) cos (4p +3) a, 

H and then (8) gives ‘ 
if (7, y) = cos & =f Ve) [J (er) cos o—Js cos dw+... | 

(16) 
— sin G +kV¢) [Js Cos 30—Jd, CGS TO ther 

* Nielsen, Cylinder Functionen, p.20. W a y=2p+d and v=2p+3 

in (5) and (6) to obtain the four results. 
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Thus in view of w= ghee — we get 

d(7, y)—do(r, —y) | 
] 

=,/2 cos S +kVt)| J,(br) sin$ en : 5 a ie 

—V/2sin(7 +kVe)[J, ing +J, sin — | 

and 

$(r,y)+6(7, —y) 

r 
=1/2008(7 FkVt) (J, 0085 +Js Book te 

ig 2 (176) 

+/2sin(T+ave)(J, cose +I, cos O . ), 

Recalling the statement in connexion with (11), the formule 

(15) represent the left-hand members from @=0 to = and 
3 

from = to 2a the left-hand members with sign changed. 

Thus in (17a) the series represents the part of formula (2) 
which contains ¢, with the signs attached for the different 
regions; and (170) gives the corresponding forms for the 
9nd solution. Thus (9a) and (96) represent the original 
solution. 

§4. For oblique incidence r+ sine+y cosa takes the 
place of r(1+ sin@), ee so in passing from ¢(r, y) to (7, y, ), 

 ischanged to a 43 and in like manner ’ is changed to 

ae L" Thus we get in the region A 

f(", Ys %)— PT, — Ys 4) 

=\/2.cos(™ + £Vt)| J, (kr) sin - § (cos — sing) 

Oa Fos | Ja 

sie (os —sin a ‘ly, 

— v2sin(7 +hVt)[ J, sin * (cos + sin 

: a Dele 
+ J, sin (cos sin 5 ze 



| 
| 

| 
| 
} 

| 
| 
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and 

p(r, Y a) a (7, —Y; a) ) 

ed T 6 ot Aut | 
=,/2 cos G +kVt) oe cosy (cos oe sin 5 ) | 

+5, cos (cos % + sin) 4... ] (185) 

+ 79sin ie +2V') [ J, c08 5 (cos — sin) 
2 2 a 2 | 

+d, cos (cos — sin +) + sth} 

In dealing with the three-dimensional wave and ¢(a, y, n’) 
the right-hand member has kn’ as argument for the 
Bessel’s functions, and also Vi+nz takes the place of Vé. 
The connected forms shown in (8) are for the 3-dimensional 
case 

! 1 
b(a, 4,0) = Ben | { P(dn'p) cos kn'p + Q(kn'p) sin kn'p} 

X cos 1f +h (Vit la +my-+nz) b + i 

a iA ipa ) cos {E4+Mve 7 ) } we et p i +nz-—n'o 

| — ()(kn'p) sin {Etk(Vitne—n'a) | 

iL 
= 2a E P(kn'p) cos kn'a + Q(kn'p) sin kn'a} 

| 
: 

| 
+k(Vt+n2) } bos, | X Cos j te 

4 

where 

p=atesina+tycosaand so n/p=n'at+lxe+my. 

In the plane oblique case write n=0, n’=1, o@=r in (80). 
§ 5. The asymptotic values of the series containing Bessel’s 

functions are assigned by their equivalents in terms of 
P, Q, or ¢. An asymptotic value attaches to positions for 
which p (r+y in the simplest case) is sufficiently great ; it 
is not essential that y should be finite, but a finite angular 
space must be excluded on both sides of the critical line, 8 
say without further precision. 
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The position in respect to P, Q, or ¢, is that for r very 
great, outside an angle @ on each side of a critical line, a 
single asymptotic value exists. For the series we have 
diferent asymptotic values in the different ranges. Thus the 
series (17 a) has asymptotic values :— 

in A, 4 cos k(Vity)—4 cos k(Vi—y) ; 

in CG, 1 cos k(Vt+y)+4cosk(Vi-~y) ; 

andin B, —£cosk(Vt+y)+4cosk(Vt—y). 

v0 
These values hold in A from 0=0 to 6= o — Pp, 

in C from 5; +68 to — 8, and in B from > + to 27. 

The modifications needed for (176) and (18 a, b) are of 
an obvious character. It will be noted that the range of 
validity of the asymptotic forms is wider than we were 
justified in demanding at the outset as a condition of 
solution. The simplicity of the changes needed to pass to 
the 3-dimensional plane wave is also noteworthy. 

XV. On the Influence of the Finite Volume of Molecules on 
the Equation of State. By MucH Nap Suaua, IZ.Sc., and 
SatTyvenpra Natsu Basu, J/.Sc., Lecturers on Mathematical 
Physics, Calcutta University *. 

if is well known that the departure of the actual behaviour 
of gases from the ideal state. defined by the equation 
NK@ 

is due to two causes :—(1) the finiteness of the = 

volume of the molecules, (2) the influence of the forces of 
cohesion, 2. e., the attractive forces amongst the molecules. 
van der Waals was the first to deduce an equation of state 
in which all these factors are taken into account ; according 
io van der Waals, we have 

WKO. a 
— : as we ° ° . . ° . (1). 

where 6=8 x volume of the molecules, a defines the forces 
of cohesion. 

In all subsequent modifications of this equation (Clausius, 
Dieterici, or D. Berthelot), the changes which have been. 

* Communicated by the Authors. 
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proposed all relate to the influence of the cohesive forces ; 
the part of the argument dealing with the finiteness of 
molecular volumes is generally left untouched. 

But it has been found that the results of experiments 
do not agree with the predictions of theory if we regard a 
and 6 as absolute constants. Accordingly it has been pro- 
posed to regard both a and 6 as functions of volume and 
temperature *, 

But before proceeding to these considerations, it is neces- 
sary to scrutinize whether the influence of finite molecular 
volumes is properly represented by the term 6. From 
theoretical considerations, the conclusion has been reached 
that this is not the case. The argument is as follows: 
According to Boltzmann’s theory, | 

the entropy S=K log W+C, 

where K = Boltzmann’s gas-constant, W = probability of the 
state. Let us now calculate the probability that a number 
N of molecules originally confined within the volume Vo 
and possessing finite volumes, shall be contained in a volume 
V. Neglecting the influence of internal forces, the pro- 

bability for the first molecule is o for the second molecule 

the probability is - 2 , where ga 8 x volume of a singte 
0 

molecule, for when the first molecule is in position, the 
space enclosed by a concentric sphere of double the radius 
of the molecule will not be available for the second molecule. 
The available space is therefore V— 8, whence the pro- 

bability is # e . Introducing similar considerations for the aus 
rest of the molecules, we have 

Vive vee v-N-i¢ 
| ViNo= 8 Neae VANeIe 

We are, of course, neglecting those cases in which partial 
overlapping of the regions occupied by two or more mole- 
cules occurs ; for the number of such cases can at best be a 
small fraction of the total number. Even cases of actual 
association do not include these, for in that case, two discrete 
molecules become merged into one, without their outer 
surfaces being actually in contact. 

* Compare van der Waals, Proc. Amst. 1916; Van Laar, Proc. Amst. 
vol. xvi. p. 44. 
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From the relations S=K log W 4-C 

BOs 
and (S7 iaaie 

we can easily verify that 

K@ V—n@ 
Pa BB log V 

RO, V—2b ie 
= ae log ae (GEC)! ene (3) 

As a first approximation, when (/ is small compared to », 
NK@ 

we obtain p= — (Boyle—Charles-Avogadro Law), and 

as a second approximation we obtain 

_NK@ 
= (van der Waals correction). 

We also note that 

WweNKG see nea | pV=NKe {ees where «= Tear ene (4) 

To account for the influence of internal forces, we multiply, 
following the lead of Dieterici, the above expression (3) by 

a 

e-NKév, a having the same significance as before. 
From this equation of state, we can easily verify the 

following results for the critical point : 

2e 
Critical volume, Ve= Peas b= 37166 3, 

os es =o dLd: 
PeV e 

The corresponding values of V, from the van der Waals and 
the Dieterici equations are (3), 2b) respectively, and of 

ca (5 te 5 = 3-695) caapenr rae. 

Asa matter of fact, for the simpler gases, tlhe value of 
“ K? obtained in this paper agrees better with the experi- 

mental results than the Dieterici value = we have for 

oxygen * K=3'346, for nitrogen | K=3°53, for argon ft 

* Mathias and K. Onnes, Proc. Amst. Feb. 1911. 
+ Berthelot, Bull. de la Soc. France de Phys. 167 (1901). 
{ Mathias, Onnes, and Crommelin, Proc. Amst. 1913, p. 960, vol. xv 
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K=3: 424, for xenon * K==3°605. We need notteansiden the: 

van-der-Waals value . for it fails entirely. 

The most serious drawback to Dieterici’s equation is, 
according to Prof. Lewis (wide Lewis’s Physical Chemistry, 
vol. ii. p. 117) that it makes 6 or the limiting volume 

6 

sag, while the limiting volume, obtained by the extra- 

polation of Cailletet-Mathias mean density line to the tempe- 

rature 0=0° K is about JG The value of 6 obtained in 

this paper, viz., = therefore agrees better with this value- 

It is yet premature to predict what influence this investi- 
gation will have on the speculations concerning the vari- 
ability of the volume of molecules with temperature. A 
more detailed investigation dwelling upon this point, and 
the application of the formula (4) to Amagat’s (pv, p) 
curves, will be communicated shortly. Meanwhile we point 

out that the factor e NKw has been introduced into the 
expression for ‘p’ only as a provisional measure, though it 
is considered that this step, though not quite exact, is one in 
the right direction. In the next paper an attempt will be 
made to introduce energy into probability calculations. 

Sir T. N. Palit Laboratory of Science, 
Calcutta. 

Note added in proof.—On consulting the literature on the 
subject, we noticed that in several papers in the Amsterdam 
Proceedings (vide vol. xv. p. 240 e¢ seq.), Dr. Keesom 
of Leyden had also made attempts to deduce the equation 
of state from Boltzmann’s entropy principle. But, in the 
expression (2) for W, he introduces, before differentiation, 

NEA ne HN 
an approximation in which terms up to second order in - are 

v 
retained only. In this way, he arrives at the van der Waals’ 
form v—b for the influence of finite molecular volumes. In 
obtaining our present equation of state (4), no such approxi- 
mation has been made. (M. N. SHana and 8. N. Basv.) 

* Paterson, Cripps, Whytlaw-Gray, Proc. Roy. Soc. Lond. A. lxxxvi. 
p. 579 (1912). 
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XVI. The Secular Perturbations of the Inner Planets. 

Note by Harotp JEeFFreys, MW. A4., D.Sc.* 

pa ING to Dr. Silberstein’s theory ¢ the values: 
d 

of ae for the four inner planets are as follow, the. 

unit being 1'’ per century :— 
Mercury. Venus. Earth. Mars. 
—1°48 —()01 —0-:01 —(°02 

The observed values of the excesses above the perturbations 
calculated on the simple Newtonian law are 

+8-48+°43, —0°054+°25, +010+°138, +0:75+°34. 

Thus if we adopt the new theory instead of the old, the- 
excesses becomie 

+9°96+°43, —0°044°25, +0°114°13, +0°7724°34. 

The eccentricities and the planes of the orbits are not 
affected by the alteration, and the other residuals are 
therefore the same as those found by Newcomb. 

The question to be decided is whether they can, as a 
whole, be accounted for by the attraction of other matter. 
As I have pointed out in an earlier paper (M. N. Roy. Astr. 
Soc. Dec. 1916, p. 112), any such matter must be very near 
the sun; so that the disturbing function can be expressed 
in the form 

R = far? {7r?—3(le + my+nz)’t, 

a, 1, and m being unknown constants. 
Taking B=1-:296 x 108a, I showed that the perturbations 

produced by such a distribution of matter are given by the 
formule in the third column of the following table :— 

Calculated Observed 
Element. perturbation. perturbation. Mean error. 

GOAL = 205 263% (— 49°9/—52"Fm)3 ...... 0:33 0-80 
Mercury 4 sinidQ/dt... (52°7/—49°9m—8°79)6 . 061 0-51 

edw/dt ...... (0°667—0'61m+14°72)6. 9:96 0°43 
DUG se. (—2'57/—10714m)B ...... 0:38 0°33 

Venus ... } sinidQ /dt... (10°14/—2:57m—0°62)8. 0°60 O-17 
eda /dt .....- UU? | es, Sa — 0-04 0:25 

GH OG i. caer (—0°36/—0°42m)B ...... —0°01 0:20 

Mars 4 sinid Q/dt... (0°427--0°367 —0:012)3 0:03 0-22 
edar/dt ...... LO? 5/68 pie 2 ie 0-77 0°34 

Nine equations of condition are thus obtained to determine 
B, l, and m. They are then divided by their respective 

* Communicated by the Author. 
+ “General Relativity without the Equivalence Hypothesis,” Phil. 

Mag. for July 1918, pp. 94-128. 
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mean errors to make them all of equal weight, and solved 
by the method of least squares. The method adopted being 
the same as in my former paper, the best solution is 
found to be B=0°67, 1=0:102, m= —0-09727) Mnnee me 
inclination to the ecliptic of the equatorial plane of 
the disturbing matter is 8° 9’ and the ascending node is 
in longitude 46° 24’. The calculated perturbations pro- 
duced by this matter are compared with observation in 
the following table :— 

Element. a Observed. Residual. rae a ae 

MN OE os sentions 0:02 0°38 0:36 0:80 0°4 

Mercury / sin id 3 /dt.. O94 0-61 — 0°33 051 —0°6 

edw/dt ...... 9°95 9:96 0-01 0:43 0:0 

QU GL aacen se 0°49 0°38 —O11 0:33 0:3 

Venus ... } sin 7d 3 /dt... 0°45 0°60 0°15 017 0-9 

edt/dt ...... 0:05 — 0:04 — 0:09 0:25 —O0-4 

WH ChB ecanboabe 0:01 —0-01 —0-02 0:20 —0'1 

Mars ... | sinid 8 /d¢t... 0-04 0:03 —0-01 0:22 —0:0 

WAG RAVE. ash ic 0:03 0-77 0:74 0°34 2°2 

It is seen that all the residuals except one are less than 
their mean errors. This result is of course better than we 
are entitled to expect; for of nine observed quantities, 
three would be expected to deviate by more than their 
mean errors. It shows, however, that the observed excesses 
corresponding to Dr. Silberstein’s theory are very easily 
accounted for by an oblate distribution of gravitating 
matter around the sun, and that the actual distribution will 
not be very different from that found on this theory. 

The progression of the perihelion of Mars has still a 
residual which is more than twice its mean error. It is 
impossible to state on such a small margin of safety whether 
any considerable part of this is real. It was shown by 
Newcomb that the earth’s attraction contributed 21/4 per 
century to edaw/dt for Mars. Thus a mass 1/25 of the 
earth’s, and equally favourably placed, could account for 
the residual. Newcomb pointed out that the known 
asteroids could not attain anything like such a mass, but 
if the invisible matter very much exceeded the visible 
it might be possible to explain the motion of the perihelion 
ot Mars. Hven if it were not so possible, however, the 
residual is not large enough to invalidate the theory. 

The nodes of the ecliptic on the equatorial plane of the dis- 
turbing matter would at the same time be expected to regress 
0''-28 in a century, the inclination to this plane remaining 
unaltered. This would give rise to small changes in the 
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inclination of the equator to the ecliptic and in the planetary 
precession, but these would be within the probable errors. 
We can conclude therefore that Dr. Silberstein’s theory, 

combined with gravitating matter near the sun, can give 
an excellent representation of the secular inequalities of 
the inner planets. 

June 22, 1918. 

XVII. On Relativity and Electrodynamics. 

To the Editors of the Philosophical Magazine. 

GENTLEMEN,— 

| ie your number for Apri] 1918 Mr. G. W. Walker discusses 
the transverse inertia of an electron. After quoting 

“experiments by Kaufmann, Bestelmeyer, and others” which 
“‘have been offered as experimental proof that the formula 
for transverse inertia of a contracted electron on relativity 
doctrine is correct,” he expresses himself as follows :— 

“TJ doubt if many people in this country realize the very 
meagre character of the experimental results, and I therefore 
give a full-sized reproduction of the photographic plate from 
which Kaufmann made his measurements.” 

One is led to suppose that some important researches, 
achieved since the time Mr. Walker was working side by 
side with Mr. Kaufmann in the laboratory in Gottingen, 
must have escaped his notice. Moreover, the statements. 
quoted above tend to raise a feeling of ‘surprise, if one 
reinembers that Bestelmeyer’s experiments failed to decide 
either against or in favour of the Lorentz-Hinstein formula, 
and that Kaufmann finally considered his (“‘ meagre ’’) results. 
to plead against this formula. 

It seems therefore to be worth while to draw attention to. 
the experiments of G. Neumann *, who improved a method 
devised by Bucherer in order to meet the criticisms raised 
by Bestelmeyer against Bucherer. He obtained results. 
which fully confirmed Bucherer’s view and which appear to 
establish beyond doubt the correctness of the Lorentz-Hinstein 
formula for electrons moving with speeds from U'4 up to 0°7 
of the velocity of light. 

More recently Prof. Ch. E. Guye and Mr. Ch. Lavanchy +,. 

* G. Neumann, “Die trage Masse schnell bewegter Elektronen,” Ann. 
d. Phys. xv. p. 529 (1914). See also Cl. Schaefer, Verh. d. D. Phys. 
Ges. xv. p. 935 (1915) and Phys. Zschr. xiv. p. 1117 (1913). 
+ Ch. E. Guye et Ch. Lavanchy, “ Véritication expérimentale de la 

formule de Lorentz-Einstein par les rayons cathodiques de grande vitesse,” 
Arch. d. Sc. phys. et nat. xlii. (1916). 
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in Geneva, verified experimentally the Lorentz-Hinstein 
formula for cathode-rays with speeds from 0°25 up to 0°48 

‘of the velocity of light. They found it in excellent agree- 
ment with their measurements of a great number (over two 
thousand) of observed electric and magnetic deviations of 
the rays. 

Of course one would wish a further verification for 
velocities below 0:25 or beyond 0-7 that of light, but the 
‘experimental evidence obtained so far in favour of the 

incriminated formula leaves nothing to be desired. 

Yours sincerely, 
University of Leiden, A. D. FoxKEr. 

26th June, 1918. 

XVIII. Proceedings of Learned Societies. 

GEOLOGICAL SOCIETY. 

[Continued from vol. xxxv. p. 507.) 

February 15th, 1918.—Dr. Alfred Harker, F.R.S., President, 
in the Chair. 

a PRESIDENT delivered his Anniversary Address, giving first 
obituary notices of H. Emile Sauvage (elected Foreign 

‘Correspondent, 1879), W. Bullock Clark (For. Corr. 1904), 
“T. McKenny Hughes (el. 1862), Edward Hull (1855), R. H. 
Tiddeman (1869), G. A. Lebour (1870), Arnold Hague (1880), 
Robert Bell (1865), G. F. Franks (1890), G. C. Crick (1881), 
H. P. Woodward (1883), Upfield Green (1889), C. O. Trechmann 
(1882), A. N. Leeds (1893), R. Boyle (1911), A. M. Finlayson 
(1909), and others. 

The PrestpENnT went on to discuss the present position and 
outlook of the study of metamorphism. The rapid de- 
velopment of physical chemistry and the successful application 
of experimental methods to petrological questions have greatly 
changed the situation during recent years, and for the first time it 
seems possible to approach the subject of metamorphism sys- 
tematically from the genetic standpoint. For the geologist this 
implies the critical study, not only of the great tracts of crystal- 
line schists and gneisses, but equally of metamorphic aureoles, of 
pneumatolysis and other contact-effects, and of the phenomena, 
mechanical and mineralogical, related to faults and overthrusts. 
It implies, moreover, the recognition that these are all parts of one 
general problem, that of the reconstruction of rocks under varying 
conditions of temperature and stress. In practice, this problem is 
complicated by the fact that perfect adjustment of chemical 
equilibrium cannot be assumed, either in the rocks prior to meta- 
morphism, or during the process of metamorphism itself. 
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Some consideration was devoted to the solvents which play an essential part in metamorphism and to the limits of migration of dissolved material within a rock-mass. The Address proceeded to the discussion of what is the most fundamental characteristic of metamorphism: namely, that recrystallization takes place in a solid environment, and so may be profoundly affected by the existence of shearing stress. Stress of this type, on the one hand, arises from the crystal growth itself, and on the other hand is called into play by external forces. The automatic adjustment of the internally ‘created stress to neutralize that provoked from without affords the key to all structures of the nature of foliation. The mineralogical peculiarities characteristic of the crystalline schists must find their explanation in kindred considerations ; for it can be shown that the chemistry of bodies under shearing stress differs in im- portant respects from the chemistry of unstressed bodies. The result is seen in the appearance of a certain class of ‘stress- Minerals’ where the dynamic element has figured largely in metamorphism, while in the same circumstances the formation ‘of minerals of another class seems to have been inhibited. But, while some of the general principles governing the effects can be formulated, the explanation on these lines of the observed asso- ciations of minerals is a task for the future. It may be that many of the particular problems involved will jin time be brought within the scope of laboratory experiment. | 

The conditions governing metamorphism are temperature and shearing stress, with uniform pressure as a factor of less general importance. If the orogenic forces are sufficient to maintain ‘shearing stress everywhere at its maximum, the stress itself becomes a function of temperature, since this determines the elastic limit, and the principal conditions of metamorphism come to depend upon a single variable. This degree of simplification, however, is not to be expected universally. One disturbing factor is the local rise of temperature sometimes caused by the mechanical generation of heat in the crushing of rock-masses. 

February 20th.—Mr. G, W. Lamplugh, F.R.S., President, 
in the Chair. 

The following communication was read :— 

‘The Geological Aspects of the Coral-Reef Problem.’ By Prof. ‘William Morris Davis, For.Corr.G.§. 

The communication is a critical review of the various theories that have been put forward up to the present time to explain the origin of coral-reefs. A voyage in the Pacific, made in the year 1914, enabled the author to collect new evidence bearing upon the question, and to make observations that have influenced him in his Support of Darwin’s theory. 
After laying stress upon the embayment of shore-lines as a proof -of subsidence, the author expresses the opinion that all theories 
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that postulate a fixed relation between reef-formation and ocean- 
level are disproved, and are probably inapplicable to the case of 
atolls. It appears certain that reef-upgrowth is intimately associated 
with submergence wherever the matter can be tested. The solution 
of the coral-reef problem turns, at present, upon some means of 
discriminating between a submergence caused by subsidence, and a 
submergence caused either by a general rise of the ocean-level due 
to the uplift of the ocean-floor beyond the coral-reef region, or to 
the melting of the Pleistocene ice-sheets. Although no means of 
such discrimination are known, the author presents reasons that 
lead him to regard changes in ocean-level as of secondary importance, 
and that have caused him to attribute the submergence demanded 
by self-encireled islands to local subsidence, in accordance with the 
views of Darwin and Dana. He regards the theory that pre- 
supposes the raising of the ocean-level by uplift as extravagant in 
its demands, and he finds the theory of ‘ Glacial Control’ inadequate 
when applied to barrier-reefs and encircled islands. 

Stress is laid on the highly-significant unconformable relationship 
that exists between reef- and lagoon-limestones and their foundations. 
—a feature that presents the strongest testimony for subsidence. 
In such a case the foundations must have suffered erosion for a 
considerable period before they were submerged, in preparation for 
the unconformable deposition of reef-limestones upon them. From 
a consideration of such unconformable relations it is concluded that 
fringing-reefs do not mark stationary or rising islands so generally 
as Darwin supposed. 

With regard to elevated reefs, the author demonstrates the 
impossibility of explaining their features by regarding them as 
having been stationary while the ocean-surface was lowered, and 
holds that they must be due to local and diverse uplift affecting 
the islands themselves, following on epochs of subsidence which 
were the epochs of reet-formation. The theory that such reefs 
were formed during pauses in the elevation and emergence is 
considered to be seriously defective, and is contrary to Darwin’s 
views. 

The author discusses the studies of Semper on the reefs of the 
Pelew Islands, the origin of atolls as propounded by Rein, the views 
of Murray on barrier-reefs and atolls, and of Wharton on the 
truncation of atoll-foundations; but forms the opinion that the 
geological evidence for subsidence has been overlooked by these 
investigators, who paid no attention to the evidence afforded by 
uncontformable contacts or embayed shore-lines. 

The author feels that scientific opinion in regard to the origin 
of coral-reefs has been guided rather by subjective preference than 
by objective logic. He considers that Darwin’s theory of inter- 
mittent subsidence is the most competent to explain the facts, and 
while he holds that other theories than Darwin’s deserve cordial 
consideration, he feels that the burden of proof should be laid upon 
those who assume that reef-foundations have not subsided. 
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Fig. 7.—Oscillations with primary open. 

Fie. 8.—Oscillations with primary of magneto closed. 

Fig. 9.—Magneto discharge Fie. 10.—Magneto discharge 
showing pulsating are. showing multiple spark. 
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XIX. A Comparative Study of the Flame and Furnace Spectra 
of Iron. By G. A. Humsatecu, Honorary Research Fellow 
wn the University of Manchester*. 

[Plate X.] 

§ 1. Introduction. 

oe principal laboratory means of vaporizing substances 
at definite temperatures are provided by the flame 

and the electric-tube resistance furnace. If the determining 
factor in the emission of luminous radiations by a metal 
vapour in these two widely different sources of light were 
the same, namely heat, then the spectra observed in the 
various flames should be the same as those given by the 
furnace at corresponding temperatures. Thus at 1850° C. 
the furnace should emita similar spectrum as the mantle of 
the air-coal gas flame, or at 2700° C. the furnace spectrum 
of a metal vapour should be the same as that observed in the 
oxy-acetylene flame. Now Dr. King, who has made a most 
exhaustive examination of the spectrum of iron as given by 
a tube furnace at various temperatures, has compared his 
results with those found for the flame-spectra of the same 
element by Dr. de Watteville and myselff, and, in con- 
clusion, he has assigned certain values to the effective tempe- 
ratures of our flames, which do not at all agree with those 
generally attributed to these flames. There is no doubt that 
a comparison of observational results obtained with different 

* Communicated by Sir E. Rutherford, F.R.S. 
+ A. 8. King, Astrophysical Journal, vol. xxxvii. p. 275 (1918). 
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spectroscopic appliances (Dr. King used a high-dispersion 
grating spectrograph, whereas our observations were made 
with an ordinary prism apparatus) presents some diffi- 
culty, inasmuch as a high dispersion will bring out a 
greater number of lines than a low dispersion, especially in 
the presence of a continuous spectrum. Asa result of his 
comparison Dr. King has arranged the several flames used 
by Dr. de Watteville and myself in the following order with 
regard to their effective temperatures in producing radiations 
from iron vapour, as compared with the furnace :-— 

Effective Temperature Actual Flame 
as derived by Temperature 

Flame. Dr. King. (Dr. Bauer). 

Air-coal gas (mantle). below 1800° C. 1850° C. 

Oxy-hydrogen. about 1800 ,, 2550 ,, 
Oxy-coal gas. about 2000-2100 ,, 2450 ,, 

Oxy-acetylene. about 2000-2100 ,, 2700 ,, 

Air-coal gas (cone), about 2200 ,, <0 

Thave added to Dr. King’s values those found by Dr. Bauer 
for the same flames by direct determinations*. . Now it is of 
importance to mention here that Dr. Bauer used the same 
methods of colouring the flames as were devised and applied 
to their spectroscopic examination by Dr. de Watteville and 
myself. Moreover, in his final experiments on the high- 
temperature flames, namely the oxy-coal gas, oxy-hydrogen 
and oxy-acetylene flames, Dr. Bauer made use of our burners 
and, working for the time being in our laboratory, availed 
himself of our original equipment for the application of the 
spark method. Also I had the honour of assisting him in 
producing these high-temperature flames, and I am therefore 
in a position to state definitely that the flame conditions 
under which Dr. Bauer carried out his temperature determi- 
nations were identical with those used by Dr. de Watteville 
and myself in our spectroscopic researches on the same flames. 
But when we compare the results obtained by Dr. Bauer 
with those derived by Dr. King, we find discrepancies which 
appear to be very much in excess of any experimental errors 
that could reasonably be expected to affect Dr. Bauer’s 
figures. With regard to the air-coal gas cone I have already 
shownf in two previous communications that the line emission 
is not due to temperature, but to chemical action. It is 
indeed inconceivable that the temperature of the cone film 

* KE. Bauer, Théses de Doctorat, Paris, 1913. 
+ Hemsalech, Phil. Mag. vol. xxxiii. p. 1 (1917)—I.; ibid. vol. xxxiy. 

p. 221 (1917)—I1. 
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could be so much higher than that of the mantle; for if it 
were so, the temperature in the zone of the mantle in im- 
mediate contact with the cone would naturally, by reason of 
convection, be at least of the same order of magnitude as 
that prevailing in the cone, and the luminous vibrations, if 
really they were controlled by temperature, would be ob- 
served to die out only gradually as the radiating centres 
passed from the cone into the surrounding mantle. But, as I 
have shown, this is not the case; for the characteristic cone 
emission stops abruptly at the boundary surface of the 
‘cone. 

With regard to the mantle of the air-coal gas fame and 
those of the high-temperature flames, it is not possible to 
reconcile the figures given by Drs. King and Bauer on the 
basis of the experimental data so far available. It seemed to 
me thai the only way in which the question could be settled 
was by a direct comparison between flame and furnace 
spectra made by the same experimenter. An opportunity 
for carrying out this test presented itself last autumn at the 
electro-chemical laboratory of this university, and with the 
kind permission of Sir Ernest Rutherford I was enabled to 
avail myself of the heavy current plant laid down specially 
for furnace work. I may say from the ontset that the results 
ofmy investigation have established the existence of complete 
analogy between the characters of the flame and the corre- 
sponding furnace spectra of iron up to a temperature of 
about 2400° ©.; and, further, they have shown that 
Dr. Bauer’s results are in entire harmony with my own 
observations. Above the boiling-point of iron, namely at tem- 
peratures of over 2500° C., the furnace spectrum undergoes 
avery radical change. I had always suspected that when 
the furnace-tube is completely filled with metal vapour, the 
latter, if of adequate conductivity, would of necessity, in 
accordance with the fundamental electrical laws, carry part 
of the electric current which is supplied to the furnace. My 
experiments have brought most forcible evidence in favour 
of this view, and J have now no hesitation in ascribing the 
cause of the so-called high-temperature furnace emission of 
iron vapour to electric actions ; it should indeed be classed 
as a low-tension are spectrum. 

The present and also the subsequent communication will 
contain an account of my own observations and experiments 
on the electric-tube resistance furnace. My observations, as 
will be noted, go to corroborate in many respects those made 
by Dr. King; butas a result of supplementary experiments 
and thanks to the experience gained in connexion with 
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researches on flame and spark spectra, I have arrived at | conclusions which differ materially from those advanced by | Dr. King, and my interpretation of the phenomena will be found to present the whole question as to the origin of both i) flame and furnace spectra in a new light. 

HH § 2. Description of Furnace. 
The furnace employed in this research was of a simple type and very similar in design to that used by Messrs. Duffield and Rossi*. Carbon tubes from 6 to 12 inches long with 

20 mm. external and 14 mm. internal diameter, are tightly 
clamped between two pairs of graphite bars 1 inch thick by 
2 inches high each. The lower bars are about two feet long, 

Fig. 1. 

Graphite Bars 

Brass Tube 

Gases 

Sectional View of Furnace. 

Fig. 2, 

Method of clamping Furnace Tube. 

and are joined to the mains which communicate with the 
dynamos ; the upper bars are one foot long. The clamping 
arrangement is easily understood from figs. 1 and 2. The 

* W.G. Duffield and R. Rossi, Astrophysical Journal, vol. xxviii. 
p. 871 (1908). 
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space between the bars surrounding the exposed portion 
of the carbon tube is filled up with carborundum powder. 
An observation tube of carbon, about 2 inches long and 
having a bore of 2 inch, is fitted into the furnace-tube end 
facing the projection-lens. The object of this tube is to 
prevent the brilliant light, radiated by the walls of the furnace, 
from reaching the lens. The other end of the furnace-tube is 
likewise provided with a carbon tube of 2 inch bore and 
about 3 to 4 inches long. Into the free end of this tube is 
fitted a brass one, through which gases can be passed into 
the furnace. At first, furnace-tubes 12 inches in length 
were employed; but, after some trials, it was found that 
for the purpose of the present research tubes only 6 inches 
long did equally well. ‘Thus with these shorter tubes the 
heated length of furnace was only 4 inches. The furnace 
was always set up in such a way that the axis of the tube was 
in a line with the optic axis of the spectrograph collimator, 
the middle part of the furnace and the spectrograph slit being 
at the foci of the projection objective. The spectrograph was 
the same one as that used n my work on flame spectra*. All 
experiments were conducted at atmospheric pressure. The 
furnace was heated by means of continuous current ranging 
from 160 to 600 amperes. The potential difference between 
the ends of the effective portion of the 6-inch tube varied 
from 6 to 13 volts. The temperatures were measured by 
means of a Wanner pyrometer, which could be directed upon 
the middle part of the interior furnace-wall after withdrawal 
of the carbon inlet tube from the end of the furnace. The 
range of temperatures employed was comprised between 
1500° and 2700° CU. Measurements were made in each 
ease, and, during long exposures, readings were taken at 
regular intervals of time and, whenever necessary, the 
current was readjusted in order to keep the temperature 
constant. The pieces of metal to be vaporized were placed 
along the bottom of the furnace-tube. In the case of iron 
the are method, formerly used for feeding flames, was suc- 
cessfully applied to the furnace. As will be remembered, 
this method consists in passing a steady current of air or 
oxygen through a glass bulb, which encloses an are burning 
between iron poles. The issuing air, which carries in sus- 
pension the finely divided material from ithe arc (oxide of 
iron), is slowly passed through the furnace-tube. 

* Hemsalech, J. c. I. p. 7. 
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§ 3. The Luminous Phenomena exhibited by the Furnace 
as the Temperature gradually rises. 

Up to a temperature of about 2500° C. the aspect presented 
by the interior of the tube containing metallic iron is the same 
as when no iron is present. At low temperatures the space 
inside the furnace is filled with fumes or vapours giving out 
a strong continuous spectrum, which obliterates all but the 
strongest lines of the iron emission. It isnot certain whether 
this continuous spectrum is actually emitted by these vapours, _ 
or whether it is merely reflected light from the inner surface 
of the white-hot carbon tube. It is, however, possible to 
greatly reduce the obnoxious effects of these vapours by 
passing a slow current of air or hydrogen through the tube. 
The velocity of the gas should be such as to produce only a 
very small flame at the opening of the carbon observation 
tube; this precaution is of special moment in the case of long 
exposures, because the too generous supply of fresh gas 
rapidly wears away the inner surface of the furnace, owing 
to chemical combination of the gases with the carbon 
(see § 10). As the temperature rises these luminous vapour 
clouds gradually dissipate and the tube appears fairly clear 
even without being constantly washed out by a current of gas. 
Up to a temperature of about from 2400° C. to 2500° C. the 
interior of the furnace, when free from clouds, glows in a 
beautiful purple tint. With cobalt metal in the tube, at 
about this temperature, a long luminous cloud of approxi- 
mately cylindrical shape was observed to remain suspended 
in a position along the axis of the tube, as though held there 
in equilibrium by something expelled from all round the wall 
of the furnace-tube; its spectrum was continuous. The free 
space between this cloud cylinder and the furnace wall 
remained perfectly clear of mist and was of the same purple 
tint as before. When the temperature is raised to about 
2500° C. the whole interior space gives out a white light 
showing strong continuous spectrum. I presume that this 
white light is caused by incandescent carbon particles shot 
off en masse in consequence of the more rapid disintegration, 
through the higher temperature, of the inner walls of the 
furnace. At 2700°C. the interior of the furnace is a blaze 
of dazzling white light, and the spectrum now shows the 
carbon bands in the green and blue; this band emission I take 
to indicate that an electric current now actually passes through 
conducting carbon vapour. 

As already stated, the phenomena observed inside the 
furnace when the latter is charged with metallic iron, are the 
same as those described above when no metal is present, up 
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to the temperature of about 2500° C., 2. e. in the neighbourhood 
of the boiling-point of iron. Above this temperature, after 
the furnace space is completely filled with iron vapour from 
the boiling metal, the interior of the tube emits an extremely 
brilliant white light of greenish hue. An intensely bright 
line-spectrum, projected upon a most luminous continuous 
spectrum, is now visible, and among the lines those of classes. 
If. and III. stand out more prominently. As will be shown 
in the next communication, at this stage, the metal vapour in 
the furnace carries part of the electric heating current, and 
the line-spectrum of iron as emitted under these conditions is 
of electric crigin. 

§ 4. Origin of the Iron Spectrum enutted by the Furnace 
at Temperatures below 2500° C. 

The first traces of iron lines were obtained at a temperature 
of only 1500° C., or at about the melting-point of the metal, 
and the question naturally arises whether this emission is. 
really caused by the action of heat on iron metal or on some 
compound of it. The number of lines and also the intensity 
of the spectrum increase rapidly as the temperature is raised, 
but the general character of the spectrum changes but slowly 
up to a temperature of about 2500° C., namely the boiling- 
point of iron, after which a great change occurs. Now it 
was found that iron spectra of precisely the same character 
were obtained when iron metal was in the tube or when no 
metal was present. Also the finely divided iron oxide blown 
through the tube gave an identical spectrum, only, if anything, 
alittle more intense all round, as compared with the spectra 
observed in the first two cases. Hence when the furnace is 
run empty the iron spectrum emitted must be due to the 
existence of iron in the substance of the furnace-tube. There 
is little doubt that the iron, as well as most of the other im- 
purities met with in the carbon, is chemically combined 
with the latter in the form of carbide. Thus, as the furnace 
gradually disintegrates in the interior, the iron carbide is set 
free, and under the action of the prevailing heat the com- 
pound molecule is dissociated or decomposed, which change 
is accompanied by the emission of luminous radiations. Since 
the spectrum emitted in this way is exactly the same in 
character as that given by the action of the furnace heat on 
iron oxide, the origin of the spectrum must be the same in 
the two cases, namely dissociation of an iron compound. It 
will be remembered that Dr. de Watteville and myself found 
a similarity of the like kind to exist between the spectra given 
by different compounds of iron when fed into flames. Now, 
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as will be shown presently, a direct comparison between the 
spectra emitted by iron compounds in various flames and in 
the furnace at corresponding temperatures, has disclosed the 
interesting fact that these spectra are identical in character, 
from which we may conclude that the mode of excitation 
must be the same in these two very widely different sources 
of light. Jt seems therefore evident that the furnace spectra of 
tron, up to a temperature of about 2500° C., are caused by the 
action of heat on a chemical compound, and not simply by 
vaporization of the metal which is placed in the furnace-tube. 
The spectrum can therefore not be of purely thermal origin, 
because its emission necessarily involves also some process 
connected with the chemical change which the compound 
molecule undergoes as it is acted upon by heat. In order to 
better distinguish this mode of excitation from that which is 
supposed to represent the direct thermal action on a simple 
metal vapour, it will henceforth always be referred to as 

_thermo-chemical excitation. In like manner the cone emission 

of iron in the air-coal gas flame will be considered as caused 

by chemical excitation, because in this case chemical actions 
evidently play the more important rdle. 

~ § 5. General Character of the Furnace Spectrum 
of Iron. 

Most of the information regarding the character of the 
iron emission as excited by thermo-chemical actions in the 
furnace and in flames, was derived from an exhaustive exami- 
nation of the many photographic records secured. All these 
photographs were taken on ordinary plates, and therefore 
they do not include the red end of the spectrum. This 
deficiency is, however, justified in the present circumstances 
because the low dispersion of my spectrograph did not allow 
of accurate observations in this part of the spectrum. The 
most objectionable factor in connexion with the low-dispersion 
spectrograph is the relative intensification, especially in the 
less refrangible region, of the continuous spectrum, which is 
always present at furnace temperatures above 1500°C. This 
continuous ground renders the observation of the line spectrum 
most difficult, especially in its denser parts. 

As compared with the flame spectra of iron, the furnace 
spectra of this element are less well developed in the violet 
and ultra-violet parts of the spectrum; many of the lines in 
this region reverse at the higher temperatures, and it seems, 
as has already been remarked by Dr. King, that possibly the 
shorter wave-lengths suffer an appreciable absorption in 
passing out of the furnace through the cooler vapours near 
the end. It is well to remember in this connexion that the 
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light radiations coming from the centre of the furnace, where 
we may rightly assume them to be of maximum intensity for 
a given temperature, have to pass in the present case through 
at least 2 inches of vapours, of which the last inch or so is 
probably well below the temperature prevailing at the centre. 
In flames the radiations do not traverse such a thick layer of 
cooler vapours, for practically the whole of the active volume 
of radiating vapour is confined within the limits of the flame 
envelope, which in the high-temperature flames rarely exceeds 
one centimetre in diameter. This fact no doubt accounts for 
the flame spectrum being so much better developed in the 
ultra-violet than the furnace spectrum, and it also explains 
the absence of reversals in the former. On the other hand, 
the furnace seems to be more efficient as regards line-intensity 
in the visible part of the spectrum, as though the longer 
wave-lengths were less absorbed than the short ones. This 
might indeed be the correct explanation, for the column of 
radiating vapour, even in my small furnace with an active 
length of 4 inches, must extend to at least 2 inches, as com- 
pared with an active depth of only from 5 to 10 mm. in 
flames. Hence, in judging the results of intensity estimations 
in flame and furnace spectra, account should be taken of the 
above considerations, and, further, it should always be re- 
membered that it isnot the real intensity of a line which 
counts, but its relative intensity and, particularly, the relative 
behaviour in each source of the various definite groups of 
related lines. The estimation of line intensities would, in the 
presence of a strong continuous background, be on a lower 
scale throughout than when this disturbing factor is absent. 
Thus it would be of no consequence if, for example, both 
group y and the triplet at ) 4384 were observed to be intrin- 
sically brighter in the flame spectrum than in the furnace 
spectrum at the same temperature, provided that the relative 
intensities of the triplet lines with regard to those of group y 
be the same in the two cases. Hence in using the compa- 
rative table of flame and furnace spectra, which has been 
established as a result of my intensity estimations, these 
recommendations should be borne in mind, and attention be 
directed more specially to the relative intensities of the lines 
in any one particular spectrum, than to the real intensities of 
the lines in one spectrum as compared to those of the same 
lines in another spectrum. 

The scale of intensities adopted is the same as that outlined 
inaformer communication*. All wave-lengths are expressed 
in international units. A horizontal bar — means that no 
line has been observed. Ad or trattached to the wave-length 

* Hemaalech, 7. ¢. I. p. 9. 
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Ware- 
lengths, 

3981°20 
3618-77 
3631°46 
3647°84 
3679-92 

3687°54d 
3705°56 
3707°91 
3709°24 
3719-93 

3722°57 
372763 
3733°32 
373486 
373713 

3743°37 — II. 
3749°73d_ I. 
3148°25 1. 
374947 IT. 
375823 ‘II. 

763°80 IT. 
ale 49: To. 
3787°88 IT. 
379500 Il. 
798°50 II. 

3799°55 ™ TT, 
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number indicates that the line is double or treble, but has not 
been resolved by my spectrograph ; in all these cases the 
mean value of the wave-lengths of the components has been 
given. An r attached to the intensity number signifies that 
the line is reversed. The class and therefore the character 
otf each line is given in a separate column in accordance 
with the classification which Ll have proposed in the paper 
referred to. The numerical results are arranged in order of 
ascending temperatures, irrespective of source; this arrange- 
ment has the advantage of enabling the reader to follow in a 
convenient manner the gradual development of the spectrum 
of iron as the intensity of the thermal actions on the com- 
pounds involved increases. 

§ 6. Remarks on the tabulated Results. 

The emission of lines begins at the remarkably low tempe- 
rature of 1500° C., and the spectrum, which consists of about 
seven lines, is practically identical with that given by iron in 
an air flame burning in an atmosphere of coal gas*. Thus 
already from the first signs of response to the thermal 
actions the luminous vibrations set up by the iron atom, 
both in flame and furnace, are of the same character. The 
next higher temperature, namely 1600° C., marks an inter- 
esting stage in the development of the iron spectrum, for at 
this point class I. quintets y and e (see § 8) form the most 
prominent feature in the visible part and the grouping of 
the lines is strikingly revealed. Asthe temperature rises the 
number of lines increases, as does also the brightness of the 
spectrum, but some lines gain more rapidly in intensity than 
others. The spectrum of the air-coal gas flame at 1850° C. and 
that of the furnace at 1900° C. are practically identical ; so 
are also the spectra given by the furnace at 2400° C. and the 
oxy-coal gas flame at 2450° C. It wil! be noticed that in a 
number of cases feeble lines appear relatively more intense 
in the furnace spectrum than in the corresponding flame 
spectrum. ‘This might be due to the fogging of the plate 
caused by the continuous spectrum always present in the 
furnace emission; for, as Professor R. W. Wood has shown, 
faint impressions on a photographic plate always show u 
in a remarkable manner when the background is slightly 
fogged. 

The effect of temperature on lines of different character is 
well illustrated by the relative behaviour of class I. group y 

* Hemsalech, /. c. II. § 8, p. 233. 
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at 4376 and class II. triplet at 4384. At the low tempe- 
rature of 1600° C. group y stands out conspicuously, the 
line 14376 being much more intense than its neighbour 
X4384; at 2100° C. 4384 is brighter than 4376, and the 
relative intensities of the triplet lines with respect to those 
of group y increase considerably at still higher furnace and 
flame temperatures. 

The furnace spectra, as has already been explained, extend 
a little farther towards the red than the flame spectra. But 
it should also be remembered that I was unable for the 
reasons given elsewhere* to work the high-temperature 
flames to their full thermal advantage. Thus in the 
oxy-hydrogen flame spectrum of iron published by Dr. de 
Watteville and myselft, and in which we included for want 
of space only the lines down to intensity 2, the lines 5328 
and 5371 are marked 5 and 2 respectively, so that most 
undoubtedly the other lines which are weaker, namely 5397, 
5405, and 5430, should be expected to exist among those of 
intensities 1 to 000. As further evidence to the effect that. 
my high temperature flames in the present experiments were 
not quite developed to their utmost perfection may be men- 
tioned the fact, that no traces of class III. lines were observed 
with the oxy-acetylene flame. Their presence in this flame 
was, however, particularly noted by Dr. de Watteville and 
myself. Since the appearance of lines of this character in 
the oxy-acetylene flame is of the utmost importance for the 
true appreciation of furnace spectra, | have added them to 
the present list from the data previously published{. None 
of these lines are observed in the furnace spectrum below 
2500° C., nor in any flame below the temperature of 2700° C. 
But they are easily emitted by chemical excitation in the 
air-coal gas cone, and some of them attain considerable pro- 
minence under the influence of electric actions, as for 
example the group at 4957. The fact that these lines 
appear only as feeble traces at the high temperature of the 
oxy-acetylene flame is another proof that the mode of 
excitation which is prevalent in the furnace up to 2400° C. 
and in the several flames examined is absolutely different 
from that which underlies their emission in the air-coal gas 
cone, arc, or spark. On the other hand, as is clearly demon- 
strated by my results, the mode of excitation in the furnace 

* Hemsalech, /. c. I. p. 7. 
+ Hemsalech and de Watteville, Comptes Rendus de l Académie des 

Sciences, vol. cxlvi. p. 962 (1908). 
t¢ Hemsalech and de Watteville, Comptes Rendus del Académie des 

Sciences, vol. cl. p. 830 (1910). 
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must be the same as in flames. Also the close agreement 
between the progressive development of the iron spectrum 
with the rise in temperature, both in furnace and in flames, 
testifies to the accuracy of Dr. Bauer’s figures concerning 
the temperatures of the flames involved. 

It should be possible with the help of the results here 
given for iron to estimate the temperature of a source of 
light in which thermo-chemical excitation prevails. Thus 
we may conclude that the temperature of an air flame 
burning in coal gas is about 1500° C. 

§ 7. Note on the Spectrum of Iron as excited by 
Chemical Actions. 

Whereas complete similarity has been found to exist 
between the spectra of iron as given by the mantles of 
various flames and those observed in the furnace up to a 
temperature of about 2400° C., no spectrum has been met 
with in the furnace corresponding to that given by chemical 
-excitation in the air-coal gas cone. To judge by the deve- 
lopment of this spectrum as regards mere number of lines, it 
‘seems to occupy a position intermediate between that of the 
oxy-acetylene flame and that of the self-induction spark, as 
is shown by the following figures derived from observations 
that were all made with the same spectrograph and therefore 
bear comparison :— 

Mode of Excitation. Number of Lines. 

Thermo-chemical ......... 100 

Chemically gy es 220 

WecnnCal geet: 66 oc, Seana 44.0 

The origin of the cone emission has already been fully 
discussed in a previous communication. 

§ 8. Additions and corrections to the Line Groups of 
Class I. 

In the course of a previous research on flame spectra 
attention was directed to the existence, in the several classes 
of iron lines, of curious groupings of apparently related 
lines. In particular, among the lines of class I. several 
quartet groups were found in all of which the lines converge 
‘towards the red. The present experiments with the furnace, 
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which as already explained in § 5 provided better opportunity 
for observing the less refrangible end of the spectrum, have 
disclosed the existence of a new outstanding group of five 
lines having its head at 15270. It will hereafter be de- 
signated as groupe. This group is also observed in all the 
flames, but its less refrangible lines do not show on photo- 
graphs taken on ordinary plates, and it had therefore escaped 
my attention. It was further found that group y¥ also consists 
ot five lines and not of only four, as hitherto believed. Groups 
6 and e overlap partly and some of their lines form close 
doublets, which it would have been impossible to separate 
with the low dispersion employed. But since I have now 
shown that the furnace spectra of iron up to 2400° C. are of 
identical character with the flame spectra of the same element, 
it has become possible to take advantage of Dr. King’s most 
carefully prepared table of furnace lines based on observations 
made with a high-dispersion spectrograph. It was found 
that nearly all the lines of groups y and e belong to class IB 
of Dr. King’s classification; those of group 6 all with one 
exception to class II. I feel now, however, rather doubtful 
whether the lines of group 5 are genuinely connected, but the 
decision must be left to further investigation. In any case 
group 6 is not so prominent as the other two, which indeed 
seem to belong to the fundamental vibrations of the iron 
atom. ‘The fifth line of group 6, namely 5341, has not been 
observed in any of the flames. A list of the revised groups 
vy and 6, and of the new group e¢ is given below. 

Ware- Oscillation Dr. King’s 
lengths. Frequency. 7a AS: classification. 

4375:93 92852'3 i TB. 
Pees, 225871 cena 91-3 IB. 
} 4461°65 224132 103"1 70'8 IB. 
| 4482-27 223101 37-1 66:0 IB. 
| 4489-74 22273:0 LAS 

“5012-07 199518 Lae IB. 
| 5167-49 19351:7 377°6 999-5 Te 

8.4 527035 189741 507-2 170°4 nie 
| 5328-54 18766°9 ras 163°3 II. 
| 5341-03? 18723:0 00 

(5269-53 18977:0 2084 IB 
| 5328-06 18768'6 1518 566 IB. 

e.{ 5371-50 18616°8 38-4 63-4 IB. 
| 5397°12 18528°4 58-7 IB. 
| 5405°78 18498-7 29°7 IB. 
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§ 9. Observations on the Spectra of some other Elements 
contained as Impurities in the Carbon Tube of the 
Furnace. 

It is highly probable that all the foreign substances found 
in the carbon of the furnace tubes are in the form of carbon 
compounds, no doubt carbides, which are formed in the course 
of the heating to which the tubes are subjected during the 
process of their manufacture. The mode of excitation which 
gives rise to the spectra emitted by these substances will 
certainly be the same as that found for iron, namely dis- 
sociation of the carbide through the action of heat. In 
addition to sodium the presence of the following elements 
has been particularly noted :— 

Relative Intensity at 
nN 

EG li aN 

Klement. Wave-leneth. 1500° C. 2400° C. 
Po 3944-03 00 6r 

eeestcecence 3961°54 3 8r 

( 3933-67 —_ 00 
| 4226°72 5 15 

C } 430253 — 1 
Cimacialelalstercieraintoie 4 431 8-6 4 Bhs5 00 

| 4485°32d — 1 
| 4454-78 = 2 

r 4030°80 iL 2 
Minit sae 4033-06 4 13 

403448 = 1 

404415 2 + 
K sec cesvccsescos { A047 oF) iL 1 

Sire iieans 2a cect 4607°34 0 6 

Pip y siiseseesseue 405784 000 1 

CG { 4254:°34 — 2 
Ty ielojeieie'sjevelelerein 4989: rf 9 fein 1 

The appearance of the aluminium lines at so low a tempe- 
rature as 1500° C. is most remarkable in view of the fact that . 
all attempts to obtain them in the air-coal gas fame have so 
far proved unsuccessful. It may be that the carbide of 
aluminium is more readily dissociated than those compounds 
of this element which are generally employed in feeding 
flames. 
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§ 10. Note on the Carbon Bands observed in the Furnace. 

No special attention was given to these bands, but the 
few observations made of them en passant are worth re- 
cording. The bands met with under various furnace con- 
ditions are those generally attributed to hydrocarbons, 
cyanogen, and carbon monoxide (Swan spectrum). Of these 
the last-named bands have been observed only at tempe- 
ratures above 2500° C. in the presence of a strong ionization 
current. No bands were obtained at 1500° C. The relative 
behaviour of the hydrocarbon and cyanogen bands at various 
furnace temperatures is seen from the following table. At 
the lowest temperature, namely 1600° C., the observations 
were made with a current of hydrogen passing through the 
furnace. In all the other cases the furnace contained 
stagnant alr. 

Relative Intensity at 
“A ae aS 

Edge. Wave-length. 1600° 1900° 2100° 2400° 

7 ee ee 3871 att 0 1 
A ea 3883 ae i 2 3 
Wioloti......... 4241 a te 1 1 
Violet ......... 4260 2 ue os! 2 

When a current of ammonia is passed through the furnace 
at 2400° C. the cyanogen bands become most intense and 
show a high degree of development. With a current of 
hydrogen at the same temperature they still show plainly, but 
their tails are imperfectly developed. 

With regard to the origin of these bands, the following 
observations may possibly provide a clue. It was found 
that when air, hydrogen, &c. were passed through the carbon 
tube, the latter burnt through always near the end where the 
gases entered. ‘This of course indicates a marked wear of 
the tube at the place upon which the gases impinge first. 
When no gases are passed through the furnace tube, the latter 
burns through almost invariably near the middle. ‘There is 
no doubt that the wear noted in the former case is caused by 
the gas combining with the carbon at the lower temperature 
of the tube end. The newly formed compounds then enter 
the hot central region of the furnace, where they undergo 
dissociation. It may be the process involved in this dis- 
sociation which causes the emission of these bands, and the 
excitation would thus be due, as in tle case of iron, to 
thermo-chemical actions: On the other hand, the Swan 
spectrum, which appears only at the highest furnace tempe- 
ratures, seems to owe its emission to electric actions. 

Phil. Mag. 8. 6. Vol. 36. No. 213. Sept. 1918. Q 
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§ 11. Relative Merits of Flame and Furnace as a means 
of obtainng the Spectrum of Iron by Thermo-chemical 
Excitation. 

Although the spectra given by the furnace are of the same 
eharacter as those observed in flames, there are occasions 
when it is of advantage to give preference to either one or 
the other of these two light sources. Thus the furnace, for 
the reasons already suggested (§ 5), gives a better developed 
spectrum in the visible part. On the other hand, all the 
flames are superior to the furnace in the ultra-violet, where 
the latter absorbs a large percentage of the radiations. Also, 
with low-dispersion apparatus the flames give a purer 
spectrum of the metal owing to the relatively much smaller 
range of the continuous background. Moreover, the oxy- 
acetylene flame provides a means of investigating ‘the effects 
of thermo-chemical excitation at a much higher temperature 
(2700°) than is possible with the tube furnace, since the 
latter exhibits a totally different phenomenon above 2500° C. 
Again, from the point of view of manipulating these sources 
of light, the flames possess this further advantage that their 
temperatures can be kept constant for any length of time 
without the least trouble, whereas the furnace has to be con- 
tinuously watched and readjusted, because the gradual dis- 
integration of the walls of the carbon tube entails changes in 
resistance and, consequently, in temperature. And, last not 
least, the spectra given by flames are free from the countless 
impurities which infect every furnace spectrum. On the 
other hand, the furnace permits to carry out the experiments 
at low or high pressures, as has been so effectively done by 
Dr. King, whereas flames can not be so conveniently sub- 
jected to such experimental variations. 

With regard to the practical working of the furnace for 
spectroscopic purposes, it seems to me that improvements in 
several directions are possible. Thus the spark method, 
which has proved so successful with the high-temperature 
flames, might with advantage be applied to the furnace. 
Also the Gouy sprayer should give satisfactory results. 
Another method of obtaining the furnace spectra of metals 
would be to add these latter to the carbon or graphite from 
which the furnace tubes are made and turn them into 
carbides. With the disintegration of the tubes, these carbides 
would be set free and exposed to the thermal actions in the 
furnace. 



of the Flame and Furnace Spectra of Iron. 227 

§ 12. Huplanation of Plate X. 

The photographs here reproduced are enlarged copies 
(4 times) of the visible portion of the iron spectrum obtained 
under various conditions of excitation. Nos. 1-5 sbow the 
development of the iron spectrum at various stages of tem- 
perature both in furnace and flames. At the higher furnace 
temperatures, namely 2100° (No. 3) and 2400° (No. 4) a 
strong continuous spectrum impedes the distinctness of the 
iron lines. But if,as has been explained in § 5, attention be 
directed more par ticular ly to the relative behaviour of class I. 
group y and class II. triplet at 4384, it is easy to see that 
the latter gains steadily and continuously in relative intensity 
as the temperature rises. Thus at 1600° (No. 1) the line 
4384 is much weaker than its neighbour 4376; at 2550° 
(No. 5), on the other hand, it is considerably brighter than 
4376. No. 6 shows the spectrum of iron as emitted in the 
explosion region of the air-coal gas flame. This spectrum 
was obtained with burner No. 1 and the method of screening 
already deseribed*. The most striking feature of this 
spectrum, although emitted at a temperature of less than 
1700° C., is the presence of class III. group at 4957, which 
is entirely absent from the spectra given by flames, or the 
furnace up to 2500° C. As already mentioned in § 6, a mere 
trace of some of the lines in this group is observed in the 
oxy-acetylene flame at a temperature of 2700° C. In the 
explosion region, as will be seen from an inspection of No. 6, 
the lines in this group are quite as intense as those of 
class I. group y. Class II. triplets at 4272 and 4384 are 

likewise relatively very bright as compared with group y. 
The last spectrum, No. 7, was obtained with the self-induction 
spark, and represents an example of electrical excitation. It 
is characterized by the outstanding prominence of the groups 
of class II. and III. lines. 

§ 13. Summary. 

1. The spectra ofiron as given by an electric-tube resistance 
furnace at atmospheric pressure and up to a temperature 
of about 2400° C., are caused by the action of heat on a 
chemical compound of the metal and not on the free 
metal itself. Hence these spectra are not of purely 
thermal origin. § 4. 

* Hemsalech, /. c. I. pp. 9 & 10. 

Q 2 
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2. An iron spectrum has been observed at the low temperature 
of 1500° C©., the spectrum being the same as that given 
by an air flame burning in coal gas. § 6. 

3. The spectra emitted by iron compounds in flames are 
identical with those given by the furnace at corre- 
sponding temperatures up to about 2400° C. From this 
and other considerations it has been concluded that the 
mode of excitation must be the same in the two cases, — 
namely, chemical dissociation of an iron compound by 
the action of heat. §§ 4, 5, 6. 

4, The character of the spectrum is independent of the nature 
of the iron compound, which is acted upon by the thermal 
forces in either flame or furnace; thus chlorides, oxides, 
&e. always give the same kind of spectrum in either of 
these sources at a given temperature. § 4. 

5. The name thermo-chemical excitation has been adopted in 
order to designate the cause of emission of these spectra 
both in flame and furnace. They differ completely from 
the spectra given by the same compounds in the explosion 
region of the air-coal gas flame where the emission is 
due to chemical excitation at a comparatively low 
temperature. §$4 & 7. 

6. A new group composed of class I. lines and possessing 
similar character as group ty, has been found with head 
line at X5270. § 8. 

7. The aluminium lines AX3944 and 3962 have been observed 
at so low a temperature as 1500° C. § 9. 

§ 14. Concluding Remarks. 

Without entering into a fruitless discussion concerning the 
mechanism involved in the generation of the atomic vibrations, 
I hope, however, that a useful purpose will be served by 
briefly considering the possihle changes in the state of the 
compound molecule when it is subjected to thermal actions. 
From all the evidence to hand it appears to me doubtful 
whether the iron atom in the compound is actually liberated 
either in the furnace or in flames. Thus, for example, if we 
heat iron oxide in a flame the product would hardly con- 
stitute a mere mixture of oxygen gas and iron vapour. 
I rather believe that in the particular case under consideration 
chemical affinity exerts its force even up to the temperature 
of 2700° C. and that the compound molecule, although un- 
doubtedly changed in so far as the relative positions and the 
orbital motions of its component atoms are concerned, is not 
broken up, but retains its individuality throughout. The 
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luminous vibrations set up by the iron atom forming part of 
a compound should, if my view were correct, show signs of 
the eftects of the chemical forces which bind the atoms in the 
molecule. Now it has been shown in the course of this 
investigation that the line spectrum emitted by an iron 
compound at a temperature of 2700° C., although exceedingly 
intense, is nevertheless most appr eciably restricted in range, 
it being composed almost entirely of class I. and II. lines 
only, as though some extraneous force were preventing the 
natural development of the luminous vibrations. This cur- 
tailment of the luminous vibrations could be satisfactorily 
accounted for if we accept the view expressed above, namely. 
that the iron atom, even at the temperature of 2700°, is to 
some extent still associated with the other atoms in the 
compound. On the other hand, it is legitimate to assume 
that under the action of the powerful electric forces prevailing 
in the are or condenser spark, the iron atoms are really set 
free and therefore enabled to execute their vibrations 
without restraint. This assumption seems to be amply borne 
out by the very high degree of development which cha- 
racterizes the spectra emitted by iron vapour in these sources 
of light. 

In this connexion itis interesting to compare the spectrum 
of the high temperature oxy-acetylene flame with that given 
by the low-temperature Bunsencone. It will be remembered 
that I explained the origin of the cone emission by assuming 
the existence of a strong chemical aftinity between the metal 
and the nitrogen, resulting in the formation of a nitride. 
Now if this hypothesis were well founded the iron atom 
would leave its partners in the original compound, which is fed 
into the flame (oxide, chloride, &e. ), and join that of nitrogen. 
Hence, during the process of changing partner, the iron 
atom may be conceived to be quite free for a short moment 
and thus to be capable of executing its proper vibrations 
without hindrance. We should therefore expect, in accordance 
with the views put forth above, that its spectrum in this case 
would be better developed than in any of the high-tempe- 
rature flames up to 2700° C., in all of which the iron atom 
is supposed never to be completely liberated from its partner 
in the compound. This conclusion is indeed substantiated 
by the facts observed, for the very lines which appear as 
mere traces with thermo-chemical excitation at 2700° C. 
stand out plainly in the spectrum of the cone emission, which 
as regards development approaches that of the self-induction 
spark. 

Conversely, we may assume that at the lower flame and 
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furnace temperatures the component atoms of a molecule 
become more firmly united, which, as has been shown, is 
accompanied by further restrictions in the line emission, and 
it is reasonable to conclude that the final extinction of the 
luminous vibrations would coincide with the completion of 
the chemical union of the atoms concerned. ‘Thus the 
extinction of light which I observed* on passing a stream 
of oxygen or nitrogen through a coloured flame given by a 
weak gas mixture, receives a satisfactory explanation by 
supposing that the relaxed atoms of the heated salt molecule 
had completely recombined as a result of the cooling effected 
by the stream of gas. Moreover, the supposition that 
chemical union arrests the luminous vibrations of the atoms 
would at once enable us to account in a most plausible 
manner for the abrupt extinction of the cone emission as 
observed in the air-coal gas flame: namely, the emission 
of this spectrum would, in conformity with this view, stop 
instantly on the completion of the chemical union between 
the atoms of iron and nitrogen. 

The hypothesis here developed is in short as follows:— 
The iron atom is never completely liberated by the action of 
heat either in flame or furnace, but remains »lways more 
or less chemically associated with the other atoms in the 
compound molecule; the light radiations which the atomic 
system of iron is capable of emitting under these conditions 
of restraint are always appreciably curtailed in development. 
On the other hand, in the explosion region of the air-coal 
gas flame the iron atom, thanks to its strong affinity for 
nitrogen, is severed from its partner in the original compound 
and the luminous vibrations, which are emitted whilst the 
atomic system is in the free state, show a high degree of 
development comparable to that observed in the are and 
spark. Completion of chemical union is accompanied by 
the instant extinction of the line emission, as is shown 
by the abrupt cessation of the cone spectrum as the 
formation of the nitride is accomplished. 

In conclusion I have great pleasure in placing on record 
my high appreciation of Dr. King’s pioneering work on 
furnace spectra. It is mainly to the inspirations received 
through the medium of his important publications that the 
present research owes its origin. 

Manchester, May 16th, 1918. 

* Hemsalech, Phil. Mag. vol. xxxy. p. 887 (1918). 
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XX. Note on the Theory of the Double Resonator. 
By Word Rayuetcu, O.M., F.RS.* 

[* my book on the ‘Theory of Sound’t I have con- 
sidered the case of a double resonator (fig. 1), where 

Fig. 1, 

two reservoirs of volumes 8, 8’ communicate with each 
other and with the external atmosphere by narr.w passages 
or necks. If we were to treat SS’ as a single reservoir 
and apply the usual formula, we should be led to an 
erroneous result; for that formula is founded on the 
assumption that within the reservoir the inertia of the air 
may be left out of account, whereas it is evident that the 
energy of the motion through the connecting passage may 
be as great as through the two others. However, an investi- 
gation on the same general plan meets the case perfectly. 
Denoting by X,, Xo, X3 the total transfers of fluid through 
the three passages, we have for the kinetic energy the 
expression 

hi fo aaa NA): Ld Rah?) 
mm —— 1 aie (peneease-- aa pee ae (genie \ 

ac 4 (| +3 (a ) el dt iy: ; (1) 

and for the potential energy 

— 2 — a V = goat { Saal sae So a) Bday 

Here p denotes the density of the fluid, a the velocity of 
~ sound, while cj, co, c3; may be interpreted as the electrical 
conductivities of the passages. Thus for a long cylindrical 
neck of radius R and length L we should have c=7R?*/i. 

* Communicated by the Author. 
+ § 310, first edition 1878, second edition 1896, Macmillar, Also 

Phil. Trans. 1870; Scientific Papers, vol. i. p. 41. 



232 Lord Rayleigh on the 

An application of Lagrange’s method gives as the differential 
equations of motion, 

dak 9 Xi Xe a 

c, dt? hese 
1 @X, MX X—Xs) _ : 
mas te i. 
Idx me NX , jb 

me Oe 5 

By addition and integration 

oh ORS 
at = 050 ee, 

C3 

since in the case i free vibrations all the quantities X 
may be supposed proportional to e%, so that d/di may be 
replaced by p. 

From (3) and (4) by elimination of X3, 

HES ia igen i Bete) ag 8 

mee ee 1 = the: 
(<5- 5) %+(- a an: 

whence as the equation for p’ 

£ po fete . Gte Ete | ee Bac ooh e gg {e1(Co+ cs) + eo¢3} = 0. (6) 

In the use of double resonance to secure an exalted effect, 
as in the experiments of Boys and of Callendar, we ma 
suppress the direct communication between fhe second 
resonator 8’ and the external air. Then ¢;=0, and (6). 
becomes 

cee 2 | oe in ec) 

To interpret the ¢’s suppose first the passage between 
S and S! abolished, so that c.=0. The first resonator then 
acts as a simple resonator, and if p, be the corresponding p, 
we have p;?/a?= — ¢,/S, as ‘usual. Again, if S be infinite, we 
have for the second resonator acting alone, p,?/a?= — ofS; 
and (7) may be written 

S’ 

pp" rit p+ p?)+ pipe = 0. 2 
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In (8) if S/S be very small, p? approximates to p,’ 
to p,”, and this is the case of greatest importance in 
experiment. 

If p,? and p,? differ sufficiently, we may pursue an 
upproximation from (8) founded on the smallness of S’/S. 
But it is of more interest to suppose that p,? and p,? are 
absolutely equal, which nothing precludes. Then 

; S 
p—p (2p2+= ps?) + py" a 0, > OS nine (9) 

Bois (= en). | Z=1 eee / (st ee) 

or, if S’/S be small enough, 

= 14+4/ (5), LMR i (110) 

p’ differing but little from p,’ or p,”. 

whence 

Referring back to (5), we have 

Sy ea a) 

». S/o = = 

when we introduce the value of p? from (11). Thus 

= t4/(5).- 2 RE eM (SE, 

We may now compare effects in the two component 
resonators, and here a certain choice ae itself. The 
condensations in the interiors are (X,;—X,)/S and X,/8’, and 
the ratio of condensations is 

XESS) att S ) (13) 
(X,—X,)/S~ 1—v(S//8) — Ae are aN te 

approximately. It appears that the condensation in the 
second resonator may be made to exceed to any extent that 
in the first by making the second resonator small enough, 
which sufficiently explains the advantage found in expe- 
riment to attend the combination. 

In some forms of the experiment we may have to do 
rather with the flow through the passages than with the 
condensations in the interiors. In (12) we have the ratio of 
the total flows already expressed. But we may be more 
concerned with a comparison of flows reckoned per unit of 
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area of the passages. In the case of passages which are 
mere circular apertures of radii R and R’a simple result 
may be stated, for then c¢.:c.=R:R’'; and, since pr’=p,*, 
€1:¢2=8:8'. Accordingly 

XR, e/ S’, 8? /8)\3 
xe = V(s) sea (g)> + + Ob 

and the advantage of a small 8’ is even more pronounced 
than in (13). 

XXI. The Addition Theorem of the Bessel Functions of Zero 
and Unit Orders. By Joun R. Airey, M.A., D.Se.* 

THE APPLICATION OF THE ADDITION THEOREM TO THE. 

CALCULATION OF BgssEL FUNCTIONS OF ZERO AND 

Unit ORDERS. 

HE earliest form of the Addition Theorem of the J,(«) 
functions was found by Bessel. In his notation, 

te=(149) {HT (i+5,}+1 i 5g ae 

“welche Reihe zur Berechnung und Interpolation einer 
Tafel dieser Functionen angewendet werden kann” f. 

The expressions given by Lommel and others, 

Tole tb) = Jn(edy(h) — 25 ,(z)T1(h) + 2d) ee 
Ji(e+ h) = Jo(e)Jy (h) —Ji(2)Jo(h) + Jol z )J3(h)—. a2 

+5,(2)J{h} —Jo(z) Jk) +Js(z)Jo(A) —.-., 

do not appear to have any useful application in the con- 
struction of tables. 
A form of the Theorem, applicable over a wide range of 

values of the argument, can be found in which one of the 
terms in the argument is a root of a Bessel or Neumann 
function of zero or unit order. 

The first differential coefficients of the functions satisfying 
Bessel’s differential equation 

1 ay dy (1-%)y = ay 

da ' vw dx 

* ees by the Author. 
+ E. g., Meissel’s tables of Jn(x); 2=1, 2, 

landiews, ‘Bessel F unctions,’ pp. 266- 979, 
co , 0024, Gray andi 
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can be expressed in the form 

aZ,, 

dx 

where Z, is written for Jn, Gr, Yn, and other Bessel and 
Neumann functions. In the particular cases where n=0 
and 1, 

nr n 

— ee LZy+ Zn—-1 == Ln — Lins 

wom Wie 
ah Tite and Woe 7 em 

From these results, addition theorems of Z) and Z, can 
be obtained. They are usually employed in connexion with 
tables of these functions where the intervals of the argument 
are small—say, 0-1 or 0:01; but as the formule can be 
expressed in a simple and concise form, the calculation can 
be a out even when the increment or decrement is as 

great as = > Which i is approximately half the difference of two 

ee roots of the functions. Consequently, to evaluate 
any one of the Cylinder Functions, of the first or second 
kind, for values of the argument as far as 60, a short table 
of the first 19 or 20 roots of the Z, or Z, functions and the 
corresponding values of Z, or Z for these arguments is 
required. 

Bessel and Neumann Functions of Zero Order. 

By Taylor’s Theorem, 

ZL(e+h) = Z(2)+hZy’ (2) +54 FD! (x ) + 

and substituting for Z)’, Z,"’, etc. their values in terms of Z, 
and Z, we find 

he: Reale 3 
Zy(« +h) = wee 9 * bet za(- 3) aie a 

Na ie Me 

If x is a root of eee a value of Z)(p+h) 
becomes 

bee 2 igh Soe © pL DS ~ | i—- resi)” ee 4) 

ere h? = (1 at a—6 er a +5): es (p). 
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The expression in the bracket can be considerably simplified 
by comparing it with the series for sink. In fact, the 
coefficient of Z,(p) 

=- (fe) = ( Wn ea: sin h - 5 x att-+) 

hi 3h’ ae 

h? bh. 12h ok: 
=-|f loge( 1+: 5) sin h— = Pie ip? ait) 

hi 3h 69h oh? 3) 
9. oe) sia 

This is approximately equal to 

a Pelee *) 5 [Flog-(1+7 sin h 

Was ae ah Ee ey 
~ 360p7\ a an ( 

h , h3 3h e x [ines inta fdebne 8. Need] 
Hence 

Zj(p+h) = —[ao sin h—Byn]Z;(p), 

where p lle Nae 
» =F log. (145 ) Bo Fate lle 9 

3 
and 7 ao h+h— oe on 2) 

When the value of p is comparatively large and h not 
greater than 1°6, the expression for Z,(e+h) reduces to 
one term, 

a Z(o-+h) = —F log. (1 +2 )-sinh. Za(p), 

and Zoi(e—h) log (ep—h)—log p 

Zj(pt+h)  log(e+h)—logp 
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Bessel and Neumann Functions of Unit Order. 

The Addition Theorem for the Cylinder functions J,(z), 
Yi (2), ete., can be found by expanding Ly (a +h) by Taylor’s 
Theorem, and substituting the values of Z,'(z), Z,''(x), etc., 
in terms of Zp and Z, ; ib is thus easily ieee that 

tet A) p25 (1 -5)+5 iH 5 (1-5 ) +... |Za(a) 

+[h—-5- =F (1- <)+ ae Jee] Zy(a). 

If xis a root of Z,(a), say r, then 

he he a 
Ly (e+ b)= Ca (i= eae 5, (1- =)+ 20 | Zo(7) 

i he he oh. 2h? 
=|(1-s.+50-- . sr a(1—3e Toes a) 

dh! 3h 43h? 6)9 3h. 
—53(1- ste é el ee id = : _|Z0(7). 

Therefore we have, approximately, 

Z,(r+h) = [e,sinh+8n|Zo(r), 
where 

h h? Thy 7 
ec oe emmene (PL ee.) 

As in the case of the Z) functions, for large values of 
the argument or for small values of h, the following simple 
formulee may be derived :— 

AA h Z(r+h) = Sean | _ sinh . Zo(r), 

Litsh) ee ee +h) 

Lir+h)  (2r+h)(r—h)’ 

Z,(z) and Z,(«x) could be calculated by means of the above 
ee to seven places of decimals for values of « Aaa 

than twelve. The following tables of "log. (145 ) etc. 

and 

/ 
have been computed for values of ; and = from 0°10 
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to —0°10, so that Z(x) and Z,(x) can be found to six places 
of decimals when x is greater than 15°5, the largest value of 
the argument in Meissel’s tables *. Lommel gives Jo(z) 
and J,(#) to six places of decimals from e=0°1 to 20°0 by 
intervals of 0-1; Jo'(#), 339 (x) and $J,/’’(a), ete. are also 
tabulated for purposes of interpolation. 

In order to increase the accuracy of the tables, the last 
‘figure is given with, or without a “point.” This point 
means that the residue is greater than 0°25 and less than 
‘0°75 units of the last place and is exactly equivalent to 5 in 
the first place of rejected decimals. 

Values of a and «,, &) and £#,, with first and second 
differences A,, A, in units of the sixth place of 
decimals. 

t ) 
eo ao. A, e a, Bos A,. A,. 

0,00 | 1,000000 0,000000 
; —4967 Qe 

0,01 | 0,995033 He ong OER 002+ legs 
0,02 | 0,990131 - i, 63« 009, Nig 
0,03 | 0,985293 ie 62° 020+ Cie es 
0,04 | 0,980518 ee 61 036 veep 

5808 e Bean 055 « ( : 

ie hoe we c | 078 ae : 

a0 0 966552 "4596 BT 105 a 3 
07 — 4539 heist 

0,08 | 0,962013 i 1859 ee 
0,09 | 0,9575380 55 169 1 seme 

4498 37 
0,10 | 0,958102 b4 206 3 

im 000000 0,000000 0,00 | 1,000 a | 0 Be 
—0,01 | 1,005033 « Me Bee | 0026 Ne 5 

& je 

ik 135 e 69 010 
soe aoe OO ne |) 

nai 1020850 ee we ie 
oe ee Boh ea 084 ee 
mee BOON ot ans Ih aI 
0,06 | 1,031256 « Be! i 0 E- 
0,07 | 1,086724 ee es 130 Ge 

—0,08 | 1,042270 80 « 172 « Wao 
5626 « 49 

—0,09 | 1,047896 « 82 999 > 
5708 « 5G e 

—0,10 | 1,053605 84 278 « 7° 

* Gray and Mathews, ‘ Bessel Functions,’ pp. 247-266. 



= a). A,. Av. 

0,00 | 1,000000 : 
001 | 09950992 oor 
0,02 Govowe Wm of. 
0,08 | 0.985437 mae oi 

_ 4668 
0,04 0,080769 hee) 9 
0,05 dada cs ee 86 

4 etoet cee 
eABPG es 

0,08 | 0,962963 79 
0,09 | 0,958715 77° 

p —4170 
0,10 | 0,954545 « 76 

ee ass 4 CGR ane 103 
0.02 1.010204 a 106 « 
0,03 | 1,015464 Fe 08 « 
004 1,020833 « e113 
0,08 1.026316 ee 16 

‘ 5599 
—0,06 | 1,031915 GEA 120» 
=0,07 | 1,037634- 124 
0,08 | 1,043478- 128 
—0,09 | 1,049450- 138 
—0,10 138 1.055555 
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836 

The following short table gives the values of » when 
h varies from 0°1 to 1°6. 
of course negative. 
beyond the third place of decimals :— 

h. 
0,05 
0,10 
0,15 
0,20 
0,25 
0,30 
0,35 
0,40 

1). 

0,000 
0,000 
0,000 « 
0,001 
0,002 
0,003 
0,005 
0,007 

| 

| 

h. 
0,45 
0,50 
0,55 
0,60 
0,65 
0,70 
0,75 
0,80 

7. 

0,010 » 

0,014 « 

0,019 

0,024 « 

0,031 

0,038 « 

0,047 

0,057 

h. 

0,85 

0,90 

0,95 

1,00 

1,05 

1,10 

1,15 

1,20 

n. 

0,06 

0,080 « 

0,093 

0,108 « 

0,124 « 

0,142 e 

239 

By. AEN sagas 

0,000000 
007 < 14 
028 12. 

33 « 
O81 « ilies 
108 | dae 

58 
166 Ls 
235 Cart 
Sib pei 
407 Ona 
BOE 9 

110 
618 « 9 

0,000000 ! 
OF =) oe 
029 « 16 
G67 0 Pie 
a ee ae 
one ae 
880s) i ae a 
a) ee on 
Pig ene. on 
GBeh? he ieee 

170 
23 

0,161 « 

0,182 

h. 
1,25 
1,30 
1,35 
1,40 
1,45 
1,50 
1,55 
1,60 

— 

For negative values of h, 7 is 
It is not necessary to extend this table 

UB 

0,203 e 

0,227 

0,251 

0,278 

0,305 

0,334 e 

0,364 e 

0,396 « 

The values of sinh, the angle h being expressed in radians, 
are given in Burrau’s tables* to six places of decimals 

* Burrau, Tafeln der Funktionen Cosinus und Sinus (Reimer). 
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and in the Report of the Mathematical Tables Committee of 
the British Association (1916) to eleven places for h=0,001 
to 1-600. 

The first forty roots of Jo{«) and the corresponding 
values of J,(@) were published by Willson and Peirce *,. 
J,(a) being given to eight places of decimals (see p. 241). 
This table, in conjunction with those given above, can 
therefore be employed in calculating Jo(#) for any value of wv 
between 15:0 and 126-0 to six places of decimals. 

The first fifty roots of J,(v) and the maximum and 
minimum values of Jo(a) have been calculated by Meissel 
to sixteen places of decimals (see p. 241). J,(x) can therefore 
be found for values of # from 15:0 to 159-0. 

These tables, to four places only, are given in Jahnke u. 
Emde’s Funktiontafeln. | 

The most complete tables of Jo(#) and J,(a2) are those 
calculated by Meissel t from ihe ascending series to twelve 
places of decimals: w=0°00 to 15°50 by intervals of 0-01: 
for larger values of w, the asymptotic series can be employed 
where the calculation is not earried beyond the least term 

ot P,(2), Qo(x), etc. 

Jo(«) = af 2 [Pate) COs (-F)-Q@) sin (7-7) 
S 

and aL 

Ji(w) = af 2[ Pie) sin (ef) + Q:(a) cos («-7) | 

From a consideration of the divergent part of these series, 
it has been shown § that a greater degree of accuracy can be 

obtained by resolving these into series which can be evaluated 
by Euler’s method of summation. In this way it is found 

that the divergent part of an asymptotic series of the first 

kind, where the signs of the terms alternate, is equivalent to 

the least term multiplied by a “converging factor.” In 

these cases the term independent of w is 3. 

When wz is an integer n, the “converging factors” for 

P(x) and Qo(a) are: 

so 
9 8n | Sn?  128n? " 1024n*°” 

and MeO 9. 159 

2 bn! Bn? 12803 * L024 ia 

* Willson and Peirce, ‘Bulletin of the American Mathematical 

Society,’ vol. iii. 1896-97, pp. 153-5. 

+ Gray and Mathews, ‘ Bessel Functions,’ p. 280. 

+ Gray and Mathews, ‘ Bessel Functions,’ pp. 247-266. 

§ Archiv der Math. u. Phys. 1914. 
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eg Roots of J,(x); p. Ji(e). Roots of J,(2); r. J,(7). 

Moc cise 2 4048256 +0°5191475 3°8317060 —0°4027594 

gr 5°5200781 —0°3402648 7°0155867 +0°3001 158 

Tyee 8°6537279 +0°2714523 10°1784681 —0:2497049 
A Setece  AETOVDBAL — 02324598 13°3236919 +0°2183594 

Bay aes as 14:9509177 +0°2065464 16°4706301 —0°1964654 

TL eee 18°0710640 — 0:1877288 19°6158585 +0°180063 4 

Pe leon 21°2116366 +0°1732659 22-7600844 —0°'1671846 

2) COA 24°3524715 —0°1617016 25°9036721 +0°1567250 

| Ree 27°4934791 +0°1521812 29:0468285 —0°1480111 

128 See 30°6346065 —0°1441660 32°1896799 +0°1406058 

1 Cae 30°7758202 -+0:1372969 35°3323076 —0:°13842112 

oes 369170984 — 0°13813246 38°4747662 +0:1286166 

(i ae 40°0584258 +0°1260695 41°61709 42 —0'1236680 

| ee 43:1997917 —0°1213986 44°7593190 -+0°1192498 

WS xc. 46°3411884 +0:1172112 47-9014609 —0°1152737 

| ee 494826099 —0°1134292 51°04385352 +0°1116708 

Ps ones 52°6240518 +0°1099911 54°1855536 —0°10838853 

Lisa) ee 55:7655108 —0°1068479 57°38275254 +0:1053741 

SO. 58°9069839 +0°1089596 60°4694578 —0-1026006 

7 | a 62°0484692 —0°1012935 63°6113567 +0°1000351 

Zee te 65°1899648 +0°0988226 66°7532267 —0-0976530 

DO BS c's 68°3314693 —0:0965240 69°8950718 + 0°0954333 

woe. | £47 29816 +0:0943788 73°0368952 —0:0933585 

ae 746145006 —0-0928705 76:1786996 +0:0914133 

ee 77°7560256 +0°0904852 793204872 — 00895848 

7 80°8975559 —0°0887108 82°4622599 +0:0878619 

=f ae 84:0390908 +0°0870369 85°6040194 — 0:0862347 

io 7:1806298 — 0°0854542 88°7457671 +0°0846946 

= a 90°3221726 +0°0839549 91°8875043 — 0:08323438 

2) 93°4637188 —0-°0825319 95°0292318 +0-0818469 

37 a ee 96°6052680 +0°0811788 98°1709507 — 0:'0805267 

=o eae 99-7468199 —0°0798902 = 101-:3126618 +0°0792684 

33 102°8883743 +0°0786610 104:4543658 —0:0780673 

32 ee 106:0299309 —0°0774869  107°5960633 +0°0769192 

2 109°1714896 +0°0763591 110°7377548 — 0:0758203 

ies. cs 112°3130503 —0°0752882 113°8794408 +0°0747672 

37 Coe 115°4546127 +0°0742568 117:0211219 — 0:0737568 

eee. 118°5961766 —0°0732667 120°1627983 +0:°0727863 

SS ee 121°7377421 +0°07238152 123°38044705 —0:0718531 

1 i 1248793089 —0°07138997 1264461387 +0-0709549 

or in the general case, where r=n+a: 

= ieliaee Bie PO. ten 
for P,(2), when a i ax A+ 39, 5 

ey L\. oe ee ey ete Lot 

ala os) a (a 8 ee? eo eat eve 
Phil. Mag. 8. 6. Vol. 36. No. 213. Sept. 1918. R 
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1k a 
and for Qo(x), when aA tson — 1+39n°° ‘ 

cay a. i. (GA -3 ;, Sie 
2 C B) use \ 6 eee ae 

Similar expressions have been given for P,(#) and Q,(a). 
When #=9 and the calculation is limited to the con- 

vergent parts of the asymptotic series, the values of Jo(9) 
and J,(9) can be found to about eight places of decimals. 
The following table has been calculated by the above 
method, and gives results correct to fourteen places :-— 

a = 8) (== 10) 

Jw) .... —0°09033 36111 8287 —0-24593 57644 5134 

G(w).... —0:39259 96475 9739  —0-08744 80650 7746 

Y,a).... 038212 713513807 —-0:05893 63591 5000 

Sw) .... 024531 178657332 004347 27461 6886 

G(x) .... —0°16385 695155017 —0-39115 25136 5956 

Y,(a)... 0:19229 63187 7649  —-0:39619 23750 1275 

Consequently the ascending series need only have been 
employed for values of « from 0°01 to 8:00 to give Jo(z) 
and J,(x) to twelve places of decimals. 

The Zonal Harmonic P,,(@) can be expressed in terms of 
Jo(z) and J,(z), where z=0,/n(n+1). Lord Rayleigh’s 
formula, 

P,(0) = Jo(<) + ier Ph) 20}, 

has been extended and employed in the calculation of 
P,,(@) when v is large and @ is a small angle; the extended 
formula, however, gives results correct to six places of 
decimals even for comparatively large angles, e. g. when 

6=5 and n= 20. 



XXII. On Bohr’s Hypothesis of Stationary States of Motion 
and the Radiation from an accelerated Hlectron. By G. A. 
Scott, B.A., D.Se., Professor of ees Mathematics, 
University College of Wales, Aberystwyth *. 

fi; OHR’S theory of the Balmer Series is based upon 
several novel hypotheses in greater or less contra- 

diction with ordinary mechanics and electrodynamics, and 
amongst them the hypothesis of stationary states of motion 
occupies a prominent position. In his latest paper f on the 
subject Bohr states it in the following form :— 

“A. An atomic system possesses a number of states in 
which no emission of energy radiation takes place, even if 
the particles are in motion, and such an emission is to be 
expected on ordinary electrodynamics. The states are de- 
noted as the states of stationary motion of the system under 
consideration.” 

Although Nicholson’s{ criticism of the theory indicates 
that it cannot be applied in its present form to elements 
other than hydrogen, and perhaps helium, yet the repre- 
sentation afforded by it of the line spectrum of hydrogen is 
so extraordinarily exact that a considerable substratum of 
truth can hardly be denied to it. Therefore it is a matter 
of great theoretical importance to examine how far really it 
is inconsistent with ordinary electrodynamics, and in what 
way it can be modified so as to remove the contradiction. 
The object of the present investigation is to consider Bohr’s 
hypothesis A from this point of view. 

2. In 1897 Liénard § published his well-known expression 
for the irreversible radiation from an accelerated electron. 
It is essentially positive and only vanishes when the accele- 
ration vanishes, a possibility which is obviously excluded in 
the case of an electron movin g@ in any way inside the atom. 
Thus it contradicts Bohr’s hypothesis A unavoidably, and we 
must inquire how far Liénard’s expression is a necessary 
consequence of ordinary electr odynamics. 

An examination of Liénard’s proof shows that it merely 
presupposes the usual expressions for the retarded scalar 
and vector potentials together with Poynting’s expression 

* Communicated by the Author. 
+ Bohr, Phil. Mag. ser. 6, vol. xxx. p. 394 (1915). 
t Nicholson, Phil. Mag. ser. 6, vol. xxvii. p. 541, and vol. xxviii. 

p- 90 (1917). 
§ Liénard, L Eelairage Electri aque, July 1898. Also Schott, ‘ Electro- 

magnetic Radiation,’ p. 251, § 231. 
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for the energy flux. It will doubtless be admitted generally 
that the retarded potentials represent those solutions of the 
equations of the electromagnetic field which are specially 
appropriate to the case of tie accelerated electron. Hence 
in order to remove the contradiction with Bohr’s hypo- 
thesis A, as it stands, only two alternatives appear to be 
possible: either we must reject the Poynting flux, or we 
must reject the retarded potentials together with the field 
equations of which they are the appropriate solutions. 

3. Let us begin by considering the first alternative. It is 
well-known that neither the Poynting flux, nor the usual 
expressions for the energy densities, at any rate that for the 
magnetic energy density, corresponding to it, are at all 
unique. Livens* has recently examined this question in 
detail and gives several possible expressions for the energy 
flux, together with the corresponding ones for the magnetic 
energy density. At the same time he arrives at the conclu- 
sion that the Poynting energy flux and the classical energy 
densities corresponding to it are to be preferred to all others 
for physical reasons. It is, however, worthy of notice that 
there is one form of the energy flux which is consistent with 
Bohr’s hypothesis A, viz. the expression ¢C, where ¢ denotes 
the retarded scalar potential, and C the total electric current. 
It follows from what Livens calls the Macdonald theory 
generalized and corresponds to the magnetic energy density 

\(CdA)/e, where A denotes the retarded vector potential. 

This form for the energy flux, like the current C itself, is. 
transverse to the radius vector at an infinite distance from 
the electron, and therefore merely gives rise to a flow of 
energy along the wave-front and no radiation across it, being 
fully consistent with Bohr’s hypothesis A. 

4, Unfortunately, quite apart from the physical reasons 
adduced by Livens, there are two strong reasons for pre- 
ferring the Poynting energy flux to all other definitions of it. 

In the first place, the Poynting energy flux and the cor- 
responding expression for the density of electromagnetic 
momentum occupy a prominent place in the Theory of 
Relativity, and it is difficult to see how such an expression 
for the energy flux as that derived from the Macdonald 
theory generalized can be used effectively in this connexion. 

Again, Liénard’s expression for the radiation is perfectly 
consistent with the electron mechanics founded on the ac- 
cepted equations of the Hlectron theory, and this fact 
constitutes a strong reason for preferring the Poynting flux, 
which is presupposed by Liénard’s expression. 

* Livens, Phil. Mag. ser. 6, vol. xxxiv. p. 386 (1917). 
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It may be objected that the electron mechanics itself pre- 
supposes the classical expressions for the energy densities 
and the Poynting flux corresponding to them, so that its 
agreement with Liénard’s expression is to be expected 
a priori and cannot be used as an argument for the correct- 
ness of their common foundations. 

5. Itis indeed true that Abraham * in his classical deduction 
of electron mechanics uses the Lagrangian method with the 
classical expressions for the energy densities, the Poynting flux 
and the corresponding expression for the density of electro- 
magnetic momentum, but none of them are really essential for 
the deduction and theyare used merely for shortening thework. 
The true foundations of the theory are the equations of the 
electromagnetic field, the expression of Lorentz and Larmor 
for the mechanical force on a moving charge, and the defini- 
tions of force and m:ss afforded by Newton’s first and second 
law of motion. Using these as « basis I have shown else- 
where { that the equations of motion of the electron can be 
obtained by direct integration over the space occupied by it 
in the form of series, which proceed according to ascending 
powers of a length determining the linear dimensions of the 
electron, with coefficients formed of multiple integrals ex- 
tending over the electron and depending on its velocity, 
acceleration, and the other quantities determining its motion. 
The first approximation gives the electromagnetic momentum 
and mass; the second gives in addition the reaction due to 
radiation in the form first found by Abraham f by an indirect 
method. 

For our purpose it is important to observe that the equa- 
tion of energy obtained from these equations of motion 
enables us to define the kinetic energy of the electron and 
the radiation from it without any assumptions as to the 
proper expressions for the energy densities of the sur- 
rounding field and the energy flux. In fact, the reaction 
due to radiation consumes work irreversibly as well as 
reversibly ; the rate at which it consumes work irreversibly 
is given exactly by Liénard’s expression for the radiation. 
Hence this expression is proved independently to be con- 
sistent with the ordinary electron mechanics, and the same 
thing follows for the Poynting flux. 

6. Thus we are driven to consider the second alternative 

* Abraham, Ann. d. Phys. ser. 4, vol. x. p. 105 (1903). French 
translation in Abraham et Langevin, ‘Ions, Electrons, Corpuscules,’ 
p- 1 (1905). 

+ Schott, ‘Electromagnetic Radiation,’ Ch. XI. and App. C, D, 
and F. 
t Abraham, Elektromagnetische Theorie der Strahlung, p. 128 (1905). 
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and inquire whether it is possible to modify the equations of 
the electromagnetic field in such a way as to annul the radia- 
tion derived from the Poynting energy flux. We cannot 
change the Maxwell-Hertz equations for the distant field 
without risking the loss of the.accepted theory of electro- 
magnetic waves together with all that it implies; but 
perhaps it may prove possible to modify the electromagnetic 
equations tor the interior of the electron so as to attain the 
desired object. The retarded potentials do depend on the 
form of the equations within this region, and there appears 
to be no reason @ priori why a suitable modification should 
not enable us to annul the radiation from the electron. Only 
a calculation can decide, and we shall proceed to carry it 
out; it may, however, be stated at once that the result will 
prove to be negative. 
We shall make use of a method of calculating the radiation 

on the basis of electromagnetic equations modified for the 
interior of the electron, together with the Poynting flux, a 
method developed for another purpose by Oseen*. For the 
outside space we write as usual 

diay ‘onus AK aes 
Ave Samira a a ae divd=-0; div dU} 

where d and h denote the electric force and magnetic force, 
and ¢ the speed of light. For the interior of the electron 
we write 

curl h— Le =C, cwld+ oe =K, divd=e, divih— jaa 

The equations (1) may be regarded as defining the scalar 
quantities e and w and the vector quantities C and K for the 
interior of the electron, and every part of space where they 
do not all vanish is to be regarded as part of an electron. 
They may be interpreted as densities of electric and magnetic 
charges and currents, but this must be revarded as a matter 
of terminology. In the usual electron theory we have 

w=0, Cxev/e, K=0, 

where e denotes the electric density of any element of the 
electron, and v its velocity. These relations are not sup- 
posed to hold in the present investigation, and in fact the 
only relations which will be assumed to subsist between 
the four quantities e, w, C, and EK are the following two 

* Oseen, Ann. d. Phys. ser. 4, vol. xliii. p. 639 (1914). 
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obtained by eliminating d and h between equations (1) : 

€ : 
SX + dive=0, St — div K=0, Bho Py) 

In all other respects the four quantities are to be regarded 
as completely arbitrary, so that there is no limitation of the 
generality of the electromagnetic equations for the interior 
of the electron. For convenience of analysis we shall sup- 
pose that surface distributions are to be treated as limiting 
cases of surface layers in the usual way, so that the electric 
and magnetic forces, d and h, are continuous everywhere 
together with their first differential coefficients. 

7. Using the Poynting energy flux Oseen derives the 
following expression for the radiation across any fixed 
surface 8 enclosing the radiating system :— 

16n'eR =|) 0-20, Siem | 

where U= {\{ Tar“ ay fa as | — —( Shas. 1) th 

aed) f==2, +4 (r1)/c. oa eamennt Midakne 

Square brackets denote vector fu eoenitean round scalar 
multiplication as usual, dQ denotes an element of solid angle 
in the direction of the unit vector 1, r denotes the radius 
vector drawn from the origin to the vector element of sur- 
face d§, whilst t, is a constant time, the same for all surface 
elements, and ¢ a time varying from element to element as 
indicated. The units are Lorentz units. 

By means of (1) we can express the vector U in the 
following more convenient form : 

u= (if) (42 ne |}a av |, cn ey 

where dV is an element of volume of the electron, that is, 
of the region throughout which C, or K, or both differ 
from zero. 
ein applying Oseen’s formule (3) and (4) to our problem 

we shall find it convenient to use cylindrical coordinates 
(z, a, x) and to choose e¢, the speed of light, as the unit of 
velocity to save writing. 

Let @ denote the colatitude and ¢@ the longitude of the 
unit vector 1; then the time ¢ is given by the equation 

t=t,+zcos0+a@sinOcos(p—-y). . » « (5) 
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Moreover, denoting vector components in the directions 
1, 0, and ¢ by subscripts, and similarly for other directions, 
we find 

Ui, Vox fC Lav, yn f{20rPKe a 
ae 

Lastly, as we shall have to deal with periodic motions 
involving one or more incommensurable periods, we shall 
calculate the average radiation by means of the equation 

LémTR=f ("("{UP4 Up fsin 6 dOdp ah, . (7) 

where I’ denotes the period, when the motion is mono- 
periodic, and an interval of time long compared with the 
longest period when it is polyperiodic. This equation is 
easily derived from the first equation (3). 

9. Since the coordinate y is the longitude, the quantities 
C and K, whatever their nature may be, must of necessity be 
periodic functions of y with the period 27. For the sake of 
generality we shall assume that they are also sums of periodic 
functions of the time, whose periods are not necessarily com- 
mensurable. Hence we may expand the components of C 
and K in series of exponentials of the longitude y and the 
time ¢ of the form 

J 

where & is restricted to integral values, whilst 7 is not, but 
may take any values, whether they be commensurable with 
each other or not, whilst the coefficients C,, &c., are explicit 
functions of z and a, but not of y or ¢. 

10. For the sake of brevity we shall write 

p=y-b—7/2, TH th(bt+q/2). . - (9) 
With these expressions we may write (5) in the form 

jt tky=t+jzcosO0+khp—jasin@siny. . (10) 

Substituting from (8) and (10) in (6), omitting the para- 
meters 7, k from the coefficients C,, K,, &c., as no longer 



U,=27>> exp it 7 {{-(Kije sin @+ 

U,=27>> exp ir. \\{-« — ( Cyjo sin @ + - 
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necessary and putting for the volume element dV its value 
adzdadiy, we obtain in succession 

Bee = — >> w{C, sin 8+ (Cy sin w+ C; cos yr) cos 6} 

exp {7 +2 cos 0+ kyp—ja sin 6 sin WH, 

= — TX y{—C,cosp+ C3 sin vy} 

expl{T +72 cos 0+ Inp—ja sin sin w}, 

with similar expressions for QK,/dt and OK g/At ; and also 

ee) DD) Oxp eT . \\\{- C,cos vv +- iia 

+ (K, sin ~+ K; cosy) cos 6} . 4 

.expe{jzcos 6+ kyr—jasin Bo da dyp, (11) 
b. 

g= —>D expt. AN) {Cy sin 6+ (C, sin 

+ C; cosy) cos 0+ Ky cos— Kz sin} . uo 

.expt{jzcos@+hky—jasin Osiny }dzdadwy J 

On the assumption which we have made the limits for pr 
are 0 and 27; hence we find from (11) with the usual 
notation for Bessel Functions of order &, 

K, cos9—C | 2 in k) Te (j@ sin @) 

C ee 

sin 

+ (C3 + K, cos @)jad x! (jo sin 6) | exp ujzcos@.dadz, f 
(12) 

t) Jx(j@ sin @) 

+ (K;—C, cos 6) jad x'(j@ sin 0) t exp uz cosé . dadz, i 

where the summations with respect to 7 and & are from 
—x to “ as before, and we must remember that & is an 
integer, whilst 7 is not necessarily so. The limits for w and 
z are determined by the form of the cross-section of the 
ring-shaped region swept out by the electron in its motion ; 
each element of charge has heen implicitly supposed to 
describe a circle with its centre on the axis of z, otherwise 
we should have had to assume @ and z to depend on y in an 
assigned manner. The motion is not, however, assumed to 
be uniform. 
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11. We now substitute from (12) in (7) and integrate with 
respect. to ¢; from 0 to T and with respect to @ from 0 to 27.. 
All terms vanish except products of terms of U, and Ug in- 
volving reciprocal time factors exprr and exp(—vir), and 
these acquire the factor 27T, which cancels out from (7). 
From (9) we see that these pairs of terms correspond to 
equal and opposite pairs of values of j and k; clearly the 
reality of the motion requires that the coefficients C,, &c.,. 
belonging to such pairs should he conjugate imaginaries. 
Moreover, the signs and magnitudes of the functions 
Jx(j@ sin 8) and Jx'(j@ sin @) both remain unaltered when 
the signs of bothy and & are changed. Under these circum- 
stances the complex integrals in (12) change into their 
conjugate imaginaries, and each integral when multiplied by. 
its conjugate gives a term of R. 

In order to express these terms explicitly we write 

Cy, k)=A,+ 6B, Cae —k)=A,— 1B, ; 13 

KC), k)=L,+eM,, SG) —k)=L,—.M,, ( , 

with similar equations for the remaining coefficients. Then 

the double integral in the first equation (12) becomes 

\\ [ (A; + L, cos 0) jaJdx'(
 ja sin @) 

— (Qhje sin 0+ paces Or Bs k) Jx(j@ sin @) ; 
sin 0 

+4 ' (By + M, cos 0) jad x! (ja sin 0) 

+ (In jersin @ + 8° ET At ) Jy jor sin 8) b ] 
EXD UpsCOne Na@aonde.. >.) « (14) 

.For the conjugate we must of course change the sign of 4,. 
but in addition it is convenient to replace the variables of 
integration, z, @, by 2’, a’, the coordinates of a second 
element of the electron, and to write in place of the co- 
efficients A,, &c., the corresponding functions Ay’, &e., of 
the new variables 2’, a’. 

On multiplying corresponding conjugate integrals together 
we obtain a fourfold integral with respect to the four vari- 
ables z, w, 2’, and a, the integrations with respect to z and 
@, as well as with respect to <' and a’, being extended over 
the area of the meridian plane swept over by the electron in 
its motion. This fourfold integral is itself complex, but the 
conjugate integral is obtained by changing the signs of 
the parameters 7 and &, and the two fourfold integrals 
together contribute their real part only to the radiation. 
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Treating the terms arising from Ug, in the same way 
we find 

R=jn33 |" ((\\ | | (A; + L, cos 0) jad x'( ja sin 0) 

ei _, Mycos0—B ne —(Mje sin 0+ aa Fe *k) Sxl joo sin @) } 

{ (Ag! + Le! cos 0) jar'Jxe'( jo! sin 8) 
M;' cos 0— By, 

sin @ 
(hi jo'sin 0+ ) SC j=" sin 8) } 

a { (B;+ M, cos @)jaJx'(j@ sin @) 

pine) Leos A Se ‘+ (lije sin @+ eee 6 hI joo sin @) } 
/ 

| (Bs! + M,/ cos 6) jo'Ix/( jor’ sin 0) 

Ls’ cos 0 — A,’ 

sin @ 
a (ajo sin 6+ t) Jx( ja’ sin @) \ 

‘ J 

+ | (Es Ay co 0) jord (jor sin 8) 
B;cos0+M 

sin 6 
+( Bije sin 9+ *k) Jx( jm sin @) } 

{ (L;'— A,’ cos |) ee sin 0) 

B,’ cos 0+ M 
sin @ 

+(Bilje' sin 6+ : bY Sa jo sin @) } 

a | (M,—B, cos @)jaJx'( jar sin 8) 

— (Avje sin 0+ As as se k) Jx(jo sin 0) 

| (M;' —B,' cos 0)jar'J.x'( ja’ sin 6) 

er A;' cos 0+ L,' pecan —(A: yo sin 0+ — — 7; 2 hk) Jel jo sin 0) \ | 

. c08 {7(z—2) cosO} .dadzda'dz'sinOdé.. . . (15) 

The summations must be taken for all positive and negative 
values of j and k, and both sets of integrations with respect 
to w, z and a’, z’ over the area swept out by the electron. 



| 
ly i 

252 Prof. G. A. Schott on Bohr’s Hypothesis 

12. It is not difficult to reduce the Bessel Function 
integrals in (15) to simpler forms, but the results are 
complicated and not easy to interpret. Fortunately this 
reduction is not necessary for our purpose owing to the 
smallness of the electron. If p denote the radius of the 
circle described by the centre, and a a length comparable 
with the linear dimensions of the electron, for instance its 
radius if assumed spherical, which is, however, not neces- 
sary, then the coordinates a and oa’ differ from p by 
quantities of the order a, and s—z2! is of the same order of 
smallness. Thus, if we suppose the integrand of (15) 
expanded in a series of terms of increasing order of small- 
ness, the first term will determine the sign of the radiation h, 
unless it should happen to Tee To find this principal 
term we need only put @ and a! each equal to p and z—z 
equal to zero in the Bessel Function and cosine terms 
respectively, but we shall refrain from doing this in the 
coefficients A,, &., because we know nothing as to their 
form. For the sake of brevity we shall write 

ay(j, k)=)\ Aa(j, b) da dz=\\ Ay'(j, )da'de’ . (16) 

for all values of 7 and &, with similar expressions for the 
integrals of the remaining coefficients. Then we find toa 
first approximation 

R=3n3s | [ { (a3 + 1, cos @) jpJdx'( jp sin @) 
0 

kay 2 
— (mp sind +—3 oe be t) Jx(jp sin @) } 

+ (b3 + my cos 0) jp) x'(jp sin @) 

3 COS 0 — Ao 
2 

+(! jp sin @ + 208 Ok) Seip sin @) } 

+ {aosnehede nin 
b; cos 0 + meg 

sin 0 

\ : 2 
+(dsjp sin 6 + k \Ix(7e sin 8) } 

+ { (m— by 008 8)joIx'(jpsin 8) 
oe O+/ ae 1? 

—(a,jpsin + Lee) ag Eat esa | 

‘sinode eM | eee 
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The new coefficients a,, &c., are all real constants ; hence 
each term of the integrand of (17) is essentially positive 
throughout the whole range of integration, the only excep- 
tion being when j vanishes, in which case each term vanishes 
identically. Therefore the principal term (17) in the radiation 
R can only vanish if each of the four functions inside the 
curly brackets vanishes identically for every value of @ 
between 0 and a, and for every pair of values of 7 and k 
excepting only ;=0. 

13. There are two possible cases :— 

PE) p—0. 

The principal term in R vanishes identically whatever 
values the coefticients a,, &c., may have, and the radiation 
becomes small of order a at least. This occurs for a uni- 
form spherical electron rotating, or even oscillating about 
a diameter, a case already considered by Herglotz and 
Sommerfeld *, provided only that the period of oscillation 
be properly adjusted, and the electron have a surface- 
charge ; also under similar conditions for a pair of spherical 
electrons oscillating about a common diameter (Oseen, loc. cit. 
p- 646) ; and lastly, as is well known, for an axially sym- 
metrical system rotating uniformly about its axis. In all 
these examples, however, the centre of the electron remains. 
at rest, and consequentiy not one of them has any bearing 
on Bohr’s theory. 

14. (2) a,=0, &e., for all pairs of values of 7, k except 

j=0. 
We can express these conditions more conveniently by 

multiplying (8) by dwdz, integrating over the area of the 
meridian plane swept through by the electron and using (13) 
and (16). The only terms left in the result are those for 
which 7=0, and these are independent of the time ¢, so that 
we obtain 

BG Co, Cl dads : 

== {an + tb49, og + thao, Ago + Ubzof exp eky 

SJ {K., Kw, K,}derde r. (18) 

oi = {ho + UM39, leq + 4Mg9, 139+ UM39} EXP Lky J 

The zero suffix indicates that in each coefficient j=0, whilst 
k takes all integral values between +o. 

* Sommerfeld, Gott. Nach. p. 431 (1904). 
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Corresponding conditions can be obtained for ¢€ and pw by 
multiplying (2) by wdadz, integrating over the area swept 
-out by the electron, employing the usual expression for the 
operator div in cylindrical coordinates, and bearing in mind 
that C and K vanish at the surface of the electron by defini- 
tion. Using (18) we find 
5 a woe. dale ee : S\\eadad:= el | 02 zs 0a + Sy pede 

ae (b; — tas )k exp ky, 

with a similar equation for wu. In order that the integral 
involving e, w may not increase indefinitely with the time, 
which is clearly physically impossible, we must have 

39 = bay = lap = M29 = O tor all integral values of k. (19) 

Also performing the intevrations and indicating initial 
values of €, w by a zero suffix we obtain 

\erdadz=\leyadadz, \\podadz=\\ madeadz. (20) 

15. The conditions (18), (19), and (20) may be interpreted 
-as follows :— 

The radiation from an electron, which either moves uni- 
formly or executes an oscillatory to and fro motion in a 
circular path, or from a system of electrons, which move in 
this manner in coaxal circular paths, can only vanish to a 
first approximation when the following conditions are 
satisfied : 

(1) The mean values of the electric and magnetic currents 
for the whole area of a meridian plane swept out by the 
-electron, or electrons, must be independent of the time, but 
may vary from one meridian plane to another. (2) The com- 
ponents of the currents perpendicular to the meridian plane 
must vanish on the average for each meridian plane and at 
each instant. (3) The mean values of the electric and mag- 
netic densities for the whole area swept out by the electron, 
or electrons, on any meridian plane must be independent of 
the time, but may vary from one meridian plane to another. 

Obviously these conditions cannot possibly be satisfied for 
any discontinuous distribution of charge in circular motion 
about an axis common to the whole distribution, such as a 
single electron moving in a circle of radius large compared 
with its own, or a stream of electrons following each other 
round such a circle in succession at distances apart large 
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compared with their radii. If the radius of the path, or the 
distances between the electrons of a stream, were of the order 
of the electronic radius, the radiation would also be smal! ; 
it would of course vanish if the stream of electrons coalesced 
into an anchor ring revolving about its axis, such as the 
Parson magneton, but not if the ring moved as a whole with 
acceleration. 

Thus we see that for any discontinuous distribution of 
electrons, of the kind with which we are concerned in an 
atomic model such as is contemplated in Bohr’s theory, 
radiation unavoidably results if we adopt the equations of 
Maxwell und Hertz for the field at a distance from an elec- 
tron, together with Poynting’s formula for the energy flux, 
at anv rate for electrons moving in coaxal circles. When 
the paths are not circular, so that there is generally a tan- 
gential as well as a normal acceleration, we have every 
reason to suppose that the radiation is increased on that 
account, and there is little doubt that a formal proof could 
be given, although it would be much more complicated. 
There would be no alteration needed as far as §11 and 
equation (12), but the approximation used thereafter would 
no longer apply, because the values of <, a, 2", a’ would no 
longer be restricted to a small area of the meridian plane for 
the single electron or stream, or several such areas for a 
system, but would be spread over a finite area bounded by 
the extreme values of these coordinates reached during the 
orbital motion. 

16. Before proceeding to a consideration of the changes 
needed in the fundamental assumptions in order to remove 
the contradiction that we have found, we shall consider the 
case of a uniform spherical electron, which moves in a circle 
of any finite radius with uniform speed. We shall adopt 
the conventions of the accepted electron theory and write 
C=ev, K=0. Hence we have C,=ev=3ewa/4ra for all 
points which lie inside the electron at the time ¢, and Cy=0 
for all outside points, whilst all the other components 
Ooi. KK; Ke, Ky vanish. 

In order to express this condition more precisely let us 
suppose the longitude of the centre of the electron at time t 
to be wt; then Cy is a function of the variables y—ot, 2, 
and w, and vanishes unless y—at lies between the limits +a, 
where « is the least positive angle given by 

a= 27 +a" + p’—2pa cos a, 
(21) sin ja= v {a?—2—(w—p)?}/2 v (wp). 
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We easily find by Fourier’s method 

2 dewe@ sin ka Cy= = Lip OP Hole ee 

Comparing (22) with (8) we see that all the coefficients 
vanish except C3(7, &), which takes the real value 

3eoe sin ka/4a7a?k when j= —ka, 

but vanishes for all other values of 7. Using (13) and (16) 
we find 

3 roe rales ka. ado@dz tor j= —kw, 

=0 for all other values of J, 

whilst all the other coefficients 63, &c., vanish identically. 
To evaluate the integral we put 

Weep) 2", 9) oa leans 

neglecting higher powers of a/p we obtain from (21) and (22) 

oe an A ota sin {kV (a? —9")/phgdfdg} 
08 dara 7 {g?—(f—29)} | (93) 

= eget T0087) where y=ka/p. 

Since 7=—ko, and all coefficients vanish except a3, we 
find from (17) on putting wp=, the unit of speed being 
still that of light, 

R= rsagh? { : | Bi Jn! (kB sin 0) 
1 0 

+ cot?@ . {Jx(kB sin 6)!?] sin 0d0. 

The coefficient of a2 in the sum is equal to twice the in- 
tegral I,, introduced and evaluated by me elsewhere * with 
l=m=k; substituting its value and using (23) we obtain 

e"w” @ sin y — Y cos ¥ } 
3 

ac 878 4 ze ap a 
B 

[i8"Jax’(2h8)— 8") | Jox(2ha)dx]. (24) 
0 

In order to convert to electrostatic units we must replace 

* ¢ Electromagnetic Radiation,’ pp. 136, 137. 
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e by e,\/47, w by B/p and introduce ¢ as a factor; then we 
obtain one-fourth of the value given elsewhere *, which is 
apparently due to an error in Oseen’s equation for R, the 
first equation (3), where the factor 16 should be 4; this 
error, however, does not affect our argument, and the agree- 
ment in form, apart from the trigonometrical factor in (24), 
verifies the substantial correctness of the expression (17) for 
the radiation. 

When y, i.e. ka/p, is small, the trigonometrical factor is 
practically unity, but when & is comparable with p/a, i.e. of 
the order 50,000, this is no longer true. Its presence ensures 
the convergence of the series for all real values of 8. Fora 
surface charge the trigonometrical factor becomes 

{sin (ka/p)/(ka/p)}?, 

but this does not suffice to secure convergence when # | 
exceeds unity f. 

17. By the method of the last section we can also estimate the 
error committed in the present example by the approxima- 
tion used in obtaining (17) from (15). To obtain an estimate 
we put o=a'=p+a in the Bessel Function factors, and 
z—< =a in the cosine in (15). Expanding in powers of alp 
and retaining only the first power in addition to the principal 
term represented by (17), we see that the cosine term contri- 
butes nothing to this order, whilst the Bessel Function factors 
contribute additional terms, which in the present example 
reduce to 

27ra = 
a > agua |” [1—? sin? 6 + cos? 6| 

1 0 

x Jx(k@ sin 0) J! (kB sin 8) dd. 

The coefficient of a2 in the sum is 2k times the integral I; 
introduced and evaluated elsewhere, with /=m=k; using 
this value together with (23) we obtain for the additional 
term 

eo) a] aye 2 

E 4 BRITE a6") Sox (248) 
1 

: 
+ (1 +5" Jon (2ha)da]. 

0 

The form of this expression is quite similar to that of (24), 
and the same properties may presumably be predicated of it 

*: Loc, ct. p. 110. 
+ For these convergence results lam indebted to Prof. G. N. Watson. 

Phil. Mag. 8. 6. Vol. 36. No. 213. Sept. 1918. Ss 
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as regards convergence, so that we conclude that the error 
committed in using (24) as a first approximation is relatively 
only of the order a/p. 

18. Returning to the consideration of our main problem 
we must insist particularly on the fact that the contradiction 
we have found subsists between hypothesis A in the form 
adopted by Bohr on the one hand, and the four electro- 
dynamic equations of Maxwell and Hertz for space at a 
distance from all electric charges, together with the 
Poynting energy flux, that is to say, not merely with the 
fundamental equations of the modern electron theory, but 
with those of the classical electromagnetic theory for the 
free ether, formulated by Maxwell and established by 
the experiments of Hertz and all the experience of wire- 
less telegraphy. Doubtless no one will be willing to 
renounce so useful a theory as this is until much stronger 
reasons are forthcoming; hence there only remains the 
choice between the Poynting energy flux, together with 
the classical expressions for the electric and magnetic 
energies and the electromagnetic momentum which it im- 
plies, and Hypothesis A in its present form. Although the 
position as regards the Poynting flux is not so clear as that 
respecting the theory of Maxwell, yet, as we have seen 
above, there are very strong reasons for retaining the 
Poynting flux, so that it becomes necessary to consider 
the possibility of modifying Bohr’s hypothesis A. After 
mature consideration the following wording has suggested 
itself to me as one which is sufficient for our purpose and at 
the same time satisfies the requirements of Bohr’s theory in 
all essential respects :— 

A. Anatomic system possesses a number of states in which 
its electromagnetic energy continues unchanged, even if the 
particles are in motion and an emission of energy radiation 
is to be expected on ordinary electrodynamics. The states 
are denoted as the states of stationary motion of the system 
under consideration. 

19. It will be seen that here the stress is laid on the con- 
stancy of the electromagnetic energy in spite of radiation, 
instead of on the total absence of emission of energy radia- 
dion. The emission of energy radiation in consequence of 
acceleration is supposed to take place continuously, not in 
quanta, and this may be objected to as contradicting the 
quantum hypothesis assumed by Bohr for the series spectrum 
emission in his hypothesis B. In reply, it may be urged that 
the original form of the quantum theory, in which all energy 
was assumed to occur only in quanta, has been abandoned 
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by most physicists; wherever emission in quanta occurs, it 
is attributed to some cause arising from the constitution of 
the atom rather than that of the radiant energy itself, a 
position taken up by Barkla* in his recent lecture on X-ray 
phenomena. We have sufficient reason for supposing that 
the emission of spectrum series is a process of a very special 
kind, to which the quantum hypothesis may perhaps be 
peculiarly applicable, whilst it may not hold for the ordinary 
emission of energy radiation which we have found to 
accompany all motions of electric charges involving acce- 
leration. 

20. It should be noticed that in our restatement of hypo- 
thesis A the constancy of the electromagnetic energy of the 
electron is expressly postulated, in spite of the fact that I 
have myself mentioned elsewhere two possible internal 
electromagnetic sources of energy from which the radiant 
energy might conceivably be derived. It is, however, easily 
shown that neither of these sources is available when we 
adopt Bohr’s theory. 

The first source of this kind is the acceleration energy, as 
I have called it elsewhere T, which is equal to 

— 2¢?8B/3c(1 — 8?)?. 

But in a stationary motion, such as is postulated in Bohr’s 
theory, secular changes of 8, B are clearly excluded, so that 
the acceleration energy cannot undergo any such change and 
therefore cannot supply the energy radiated. 

The second source is the electrostatic energy of the elec- 
tron, which can be tapped when the electron suffers a secular 
expansion, as I have shown elsewhere. But in this case the 
motion is only quasistationary and is subject to a secular 
variation, which however is much too fast to be recon- 
cilable with the remaining hypotheses of Bohr’s theory, in 
particular with Nicholson’s hypothesis of constant angular 
momentum. In order to prove this we shall make use of 
the equations of motion of the electron {, adapted to the case 
of a fixed equal positive charge, but shall neglect the assumed 
small secular changes of the speed @ and the radius of curva- 
ture of the path p wherever they occur in the small radiation 

* Barkla, Proc. Roy. Soc. vol. xcii. A. p. 504 (1916). 
+ Schott, Phil. Mag. ser. 6, vol. xxix. p. 49 (1915); ‘ Electromagnetic 

Radiation,’ p. 177, 
t Schott, ‘Electromagnetic Radiation,’ pp. 188-192; loc. cit. p. 179, 

eq. (219). 

S 2 
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terms. We find for a plane nearly circular orbit 

demB Baya ellis)! e8.cos b cms esind _ ep 
dt 3p?(1—B?)? a ye? p OM ly ye ? 

(25) 
where p denotes the perpendicular from the positive nucleus 
on the tangent, and ¢@ the angle between that tangent and 
the radius vector ry. For the sake of brevity we shall write 
for the angular momentum of the electron 

H = emBp. ie 

Since p=rdr/dp, and r=c8cos¢, we find from (25) and 
(26) | 

e’cosd_  Hdp de: 26? Bp 
mo pdt? dt Bp eNe 

We have 7?6=c@p; hence changing the variable from t to 0 
we find by means of (25) and (26) 

aH Deep! 
3H" ed — a 

26° ('?|, \ prae By cel 2 Ng 
ay H oe > (L—B?)2r*" 

(27) 
Thus the angular momentum of the electron, H, diminishes 

continually, instead of remaining constantly equal to h/2z, 
as it should do on the hypothesis adopted by Nicholson and 
Bohr. With the usual values of e and c we have 

20° /c = 88 . 10-88, 

ptt h/Qm= 1:05 . 10-27; 

hence if Hy be equal to A/27, H will diminish to one-half 
of Hy in about 180,000 revolutions, provided f? can be 
neglected, and the orbit is so nearly circular that we may 
put p/r equal to unity. So rapid a change of the angular 
momentum can hardly be regarded as consistent with sta- 
tionary motion, and therefore the hypothesis of the expanding 
electron must for this reason alone be considered as incom- 
patible with Bohr’s theory. 

The proof given here is extremely general; it assumes 
nothing whatever concerning the mass of the electron—its 
variation with the speed, or a possible secular change due to 
expansion or any other change of structure of the electron— 
or the force acting on it, beyond the faet that the latter must 
be central. Hence we cannot account for invariability of 
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angular momentum by variation of mass, but must assume 
a force component in the direction of motion. 

21. The considerations of § 20 make it clear that we 
cannot look to the electromagnetic energy of the electron 
itself as the source from which the energy lost by radiation 
is derived. There remain three possible sources to be dis- 
cussed: (1) external electromagnetic energy, (2) internal 
nonelectromagnetic energy of the electron, and (3) external 
nonelectromagnetic energy ; but the consideration of these 
sources must be reserved for a future communication. 

In conclusion we may summarize the results of the present 
investigation as follows :— 

(1) Bohr’s hypothesis A is incompatible with the electro- 
magnetic equations of Maxwell and Hertz, together with the 
Poynting energy flux for the free ether, at least for the 
ease of uniform circular motion of the electron, and almost 
certainly tor any other motion of translation. 

(2) The hypothesis A can be rendered compatible by a 
restatement postulating no change in the electromagnetic 
energy of the electron in spite of the emission of radiant 
energy. For neither the acceleration energy, nor the 
electrostatic energy of an expanding electron, is available 
as a source of the radiant energy. 

XXII. On Kirchhog’s Formulation of the Principle of 
Huygens. By Prof. A. ANDERSON *, 

‘i Bee usual method of establishing Kirchhoff’s formula 
- is to start with a function V(z, y, z, t) of the 

co-ordinates of a point and the time, that satisfies the 
equation 

ihe 

qeowen 
and to show that, if ti" be written for ¢ in V, we get 

a new function of 2, y, z, 7, and t, which satisfies a certain 

differential equation. A closed surface is then drawn 

bounding a space at every point of which the differential 

equation holds, and a point O is taken in this space. 
Both sides of the equation are then integrated throughout 

the space between the closed surface and the surface of 

a small sphere whose centre is O. ‘his leads to an 

expression for the value of V at the point 0 in the 

* Communicated by the Author. 
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form of an integral taken over the surface. The formula 
thus obtained can then be applied to the case of a single 
source or that of several sources of light emitting vibrations 
which travel through the ether with constant speed. It 
is, however, instructive and interesting to proceed dif- 
ferently, and begin with the case of a single source. It 
is assumed that the vibrational velocity or vibrational 
displacement at a distance r from a source of disturbance 

is equal to = $(«—2), where M is a constant and a the 
a 

velocity of propagation. 
Let S, fig. 1, be a closed surface, and A, B two points 

outside it, and let 7,, 79 be the distances of A and B from 

an element dS of the surface at P, n being the outward 
drawn normal at that point. Many integrals whose 
subjects of integration depend on 7, and 7 and their 
rates of variation along the normal vanish when taken 
over the surface S. Thus, if Fy(7,79) and F,(7, 79) be 
two functions of 7, and ry that are finite, continuous, and 
single-valued throughout the space §, 

\ (FSF as 

will vanish if the integrand can be separated into a number 
of terms 

, OVi 1 OU OV> ),, OU Vs) (OUe 
On mh aa U2 On V2 ane Us On ~ Vere i 

GG 3) sila 5 
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pyeeren U4. U,, Us i/ WV a5 Vo, Va, . 3. are such’ that the 
volume integral 

ea (UvV;— ViV7U;) 
+ (U.V?7V,— V,V7U,) +...] dx dy dz 

taken throughout the space S vanishes. This is merely 
a simple and obvious generalization of Green’s theorem. 

Hit 19 
a 

Consider now a function o(t- i‘ where é¢ and a are 

for the present merely algebraic symbols, but which, subse- 
quently, will be identified with the time and the velocity 
of propagation. We proceed to show that the surface 
integral 

1 dry i dro ik dd ‘dry =) 

\\ les ner, dn Vien dn ) ? age dt \dn dn ds 

vanishes when taken over the surface S. 
Hxpanding the integrand by Taylor’s theorem, we obtain 

for the surface integral the expression :— 

#( “ Wer 2 = 2 wn) 
(- ary lu 7) (r+ (m+ — +7] dS 

Papi: 1 al E dn ro dn 

Gare i ore 4 a8 
T 903 dt? Pear =| fay dn ‘a Yo dn Gn +70) 

=2(F 9) (m+70) | a8 

TSG) CC loin vi ane 
3a a? dt? {\= | Tr) dn ir, dn ( ; a 0) 

mia di 

ee 

(<Iy alt) (( AFL ds_1 2»), 9 
dt” \\{ me es ae n! a” Tro L\r, dn 1) dn 
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Each of the surface integrals in the above vanishes. The 
first is 

ie = ( ry dn\ry 

which evidently vanishes, . equal to 

\\\ [29 leg 4 —-7(2 )] dx dy dz. 

The vanishing of this surface integral leads at once to the 
expression for Green’s Equivalent Stratum; and we shall 
see that the vanishing of all the integrals leads to Kirchhoff’s 
formula. The second integral is equivalent to 

{| =e) a = ] dome 

which also clearly vanishes. ‘The third reduces to | 

We paiva i diy ee (“) iL = 

\ E dn i. dn dn 1 ne dn am 

which is equal to 

Stim = if 
(VL v?(- )=— Vin—nV?(—) + = V0 | du dy dz 

, Vo, Yo Ty Gs 

=| = _* \dedyde = =e 
Us CA A) 

The fourth becomes, after a little reduction, 

(( [ord (2) behead (2) 42d a gaa 
Ones To adn dn\r r, dn dn Yo 0 1 1 

and the subject of integration of the equivalent volume 
integral is, consequently, 

a Vint += V7 —38V? + 3V Po, 
0 ‘1 

which is equal to 

EO ac cai eg a) 

We must now show that the surface integral of the 
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general term vanishes. The integrand is 

oa oie | aa ie 0 ee ae _ ne 
an 2 2 YF To T1190 du M6 1170 

oi —2 al a 
=7[a-»" ey +n(2—n)rf P+ gee t=) (3—n)rk ee 

Ld Sl Game ieee) 1) n—3 4 
+ 2:3 mah) 

dr Tes n— a n— 
~F"1 (1=n) "— +n(2—n) ro ee o 5 (Bars te ees 

1 

n(n—1)(n—2)(—2) nig = n(n—1) pens Te 
Do. peer 8 Ts ore +o | 

1 d n—1 n—1 d 1 ih d n—}) n—1 d i : 
—_——_- —— a 4 fA 

mano dn % rdn° Pt dines 

d n—2 d n—2 Oi yi ye ae ae ano 

n(n —1) d n—3 adn, 

1.2 [» fori oe =| 

n(n—1) E & n-8 mood 
1 ee tan ° 0. dn 

mena 1)(n—2) pe ea drs 
epee’ Esa mel Z| 

n(n—1)(n—2) > 2 n—4 eel 

mors |" war wont ge 

= ae ANTE 

Remembering that V7r=n(n+1)r"-?, we see that the 
subject of integration of the equivalent volume integral is 

n—3 2-8 

n(n —1)~" = n(n 1) —n(n—1)(n—2)(r7~ ee) 

Eee! YT a- Ee ae sy 

aie 2 | (n— 2)(n—3)riro aa pa | 
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n n—1 —? n— n—4 MOI) (4-9) 4 Arde 230 
n(n — 1) (n—2) 
OS 

n(n—1)(n—2)\(n—3 n— n— 
a) | (n—A4) (n— 5)ro ri T__2Anori | 

4 2r—Dm—2;(n—3) 
1.2.3.4 

aN Fe 5: 

which vanishes identically. 
Thus we have proved that the surface integral 

; lies ar, | a) (1-22) 
Tony Oil Oa an. a 

1 o_o) 24 (-4=") dS = 0 
arr \dn dn 

+ [(n—3)(n—4)ri ro 9-23 70] 

[(n—4) (n—5)riro —3-4riro y 

for any closed surface S, 7; and 7 being the distances. 

of a point P of the surface from two points A and B 

both lying outside it, f(t) being such that, in the interval 

(2, co the conditions for the validity of 

Taylor’s series are satisfied. 

Fig. 2. 

S 

Now let A, fig. 2, be inside the surface and B outside it, 

and surround A by a small sphere of radius p and centre A. 

A and B are both outside the space between the surface 

of the sphere and the surface 8. The part of the 
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surface integral pertaining to the sphere tends to the 
An R 

value —+>- $(t- a) as p approaches zero, and we have, 
R 

therefore 

R 

=e eee R ~ Ad J) L\r2r, dn yr? dn : a 

Le (dr; = Ps) ( ae) 

aaa — de at? aE a a 

M being any constant. If we suppose A to be a source 
of disturbance, the vibrational velocity or displacement 
due to which at any point at a distance r can be expressed 

by = o(¢-"), t being the time and a the velocity of 

propagation, the above equation expresses the equivalence 
of the direct effect at B due to A at any instant to that due 
to a source distribution on the surface 8, the secondary 
disturbance being sent out from each element of surface at 

. ¥: ° 4 To 
a time — after it was sent out from A and at a time a 

a 

previous to its arrival at B. 
It is usual to write the surface integral in the form 

Fano ie $(:—2% o(e-% 
alles \ aA ja = ee (tin) | 

In the first term the differentiation with respect to the 
The 

a 
normal operates on 79 only and in the second term t — 
, y , : ee : is written for tg after differentiation with respect to the 

normal ; but although there may be a gain in conciseness in 
writing the expression in this way, there is perhaps some 
loss in clearness. 

Remembering now that at every point in space we have 

foc V 
Wey = ee gr 

where V denotes the vibrational displacement or velocity, 
and ¢ is a function of the co-ordinates of a point and the 
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time which vanishes except at points where there are 
sources, and that the solution of the equation is 

V= (pets) de dy dz 

throughout all space, we have Kirchhoff’s formula for the 
most general case by writing V for @. If, in addition to 
volume distributions, there are surface distributions of 
sources at which = 

or 
ewe a, AT == (3 

rm ff capac ff 
Thus Vo the value of V at any point outside a surface 

enclosing all volume and surface distributions of sources is 
given by the formula 

. 
1 aA’ al tio Wee (2 nee ds, 

Aqr on r PO ane 
(Ca) 

r being the distance of the point from an element of the 
surface. In the first term the differentiation with respect to 
the normal is performed on r alone and, in. the second term, 

is written for ¢ after differentiation. Kirchhoft’s 

formula has thus been shown to follow directly from a 
generalization of Green’s theorem. 

As remarked above, the development of o(—-2=*) 
a 

by Taylor’s theorem must conform 

to the conditions of validity, and these conditions must hold 
in the application of the series to any question considered. 
The time ¢ is the time at which the actual disturbance 

reaches B, while pe" is the time at which a secondary 

disturbance starts from A. The resultant at B of the 
secondary disturbances is made up of components which 
start from A at different times, and what is shown is 
that this resultant is the same as the actual disturbance at B 
at the time ft. 
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Asan example, let there be a single source at A the centre 
of a sphere of radius 0, fig. 3, and let PB=r, and denote the 
angle BPN by @. 

Fig. 3. 

The formula gives 

Bo! =z 4)3 a ie +) 8 (“2”) 

i pe S r («— | dS. 

ae — = =sin“Z"(1—7), 

M an 7 ( io COS °) s nee Wii 

R r ~*) “(at br mae" in 

+5 —— ae + cos 6) cos a aks ds. 
Xr a 

If b is very small in comparison with the other linear 
magnitudes involved, the right-hand side of the equation 
becomes 

=" ( r+b 
mee ie sin ie en a) ds 

_M 2ara 
Wie Sina 74 (+2), 

If all the linear magnitudes are large in comparison. 
with XA, the We hand side becomes 

I +cos 0 27a b+ 
ax ml) os (t— )as, 

which is Stokes’s expression for the secondary disturbance.. 
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If we make R=p+ b, write ¢ for — and make 6 inde- 

finitely great, we get a plane wave-front, the distance of 
the point B from the plane being p. The right-hand side 
becomes 

M L 2a a 2 " 
al [ cos @ sin — (1-7) +57 (L008 0) cons" (t—Z) | dS 

a Wh 

M(° fcos@ . 22a; r\ Qn... 27a r 
= a [ z cin -2(t—") 4 (1+ cos 0) C08 a (¢—*) Jar 

By Oi an —_ 2a p 2a r 

-F{ Ea aN ha + (144) eos "(3 us 
Whew) 

== ill sin (t—2). 

XXIV. Ona New Secondary Radiation of Positive Rays. 

To the Editors of the Philosophical Magazine. 

GENTLEMEN, 

i a recent publication (Phil. Mag. (6) xxxv. p. 59, 1918) 
on this subject I have expressed the belief that the 

penetrating radiation then observed was the characteristic 
radiation of tin and lead, and this conclusion was based on 
the marked differences observed in the intensity of the photo- 
graphs according to different positions of the foils (see 
figure /. ¢.). 

Further experiments have not, however, confirmed this 
supposition, but have led to the discovery of a source of 

error in my previous researches. When this source of error 
—was eliminated, a uniform slight imprint only could be 
observed on the photograph. 

Careful investigation of the nature of this radiation was 
carried out, and the effect of magnetic deflexion on the — 
positive rays shows that the new secondary radiation is 
excited by the positive ions. From an approximate valuation 
‘the coefficient of absorption of the new radiation is estimated 
to be of the order of that of the characteristic K-radiation of 
aluminium. 

Yours very truly, 

The Physical Laboratory, M. Wo.urkKE. 

“Technical High School of Zurich. 
February 1918. 



XXV. On the Coefficient of Potential of Two Conducting 
Spheres. 

To the Editors of the Philosophical Magazine. 

GENTLEMEN, 
| ie my paper ‘“‘ On the Coefficient of Potential of Two Con- 

ducting Spheres” (Phil. Mag. March 1918), there is 
an error in the determination of the values of one of the two 
series in terms of a, b, and e¢. 

Denoting ab by p? and c’— a?—0? by k”, the series G is 

Ren p r 
itp * Bop P22 Pape tpt 

where each denominator is obtained from the two preceding 
ones by multiplying the immediately preceding one by #? and 
subtracting the other multiplied by p*. | 

Similarly, 
9 4 

ry oe P- p Pp 
= c— 6? E - h2 == hh? h? ae hk? (2h? — p') — ph? + oeeee | 

j 2__ 2__ $2 ae 

where h? denotes ie ae sa ) and the same rule 

holds for determining the denominators inside the brackets. 
Any number of terms of gy and gj, can be written down 
without difficulty. 

Thus, 
ny a7b 4 a®b? 

toa ot 3 7p (2—-P+ac)(e—V—ac) 

a*b? 

~ (e? —b? + ac) (c? — b?—ac)(c? —a?— b?) —a*b? (c? —b?) 

aab4 

* @-a@—P)| (e—8 +ac)\(@—P —ac)(P—& —P) —a(F—1)] 
—a’*b?(c? —b? + ac)(c? — b? —ac) 

a, 3 es and 

ab ab a’b? 

eg E c? —q?—}? 15 (c? —a? —b*)? —a?b” 

oe ab? 

(c? — a? —b*)3 — 2a7b?(c? — a? —b”) ae | ; 

Yours faithfully, 
ALEX. ANDERSON. 
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XXXVI. The Scattering of Light by Air Molecules. 
By R. W. Woon, Major U.S.R.* 

A RECENT paper by Strutt (Proc. Roy. Soc. (last 
number) 1918) on the scattering of light by sup- 

posedly clean air makes it appear worth while to publish 
the results of some experiments which I made on the same 
subject in 1902, but did not publish at the time, as it was 
found that they were spurious. ‘he apparatus, method, and 
results were identical with those of Strutt, in fact the 
diagram of his apparatus might have been a drawing made 
from the apparatus which I employed. This is merel 
coincidence of course, resulting from the fact that the 
apparatus is the obvious one to use. 

In my work I employed a spark instead of an are, wishing 
to have available the shortest possible waves. Photographs 
of the cone of scattered light appeared in air which had been 
forced through long tubes filled with tightly packed cotton 
and dried over phosphorus pentoxide. The cone was also 
seen. visually if the eyes were thoroughly rested in the 
dark. 

This made me suspicious, and I varied the conditions under 
which the experiment was made employing eye observation. 

Tt was soon found that if the spark was stopped and the 
tube thoroughly washed out with the purified air, absolutely 
no trace of cone of scattered light was visible on turning on 
the spark. In about ten seconds, however, a trace of the 
cone appeared, and after the spark had been in operation for 
a minute it was well developed. Interposition of a glass 
plate prevented the formation of the cone, if I remember 
correctly. This appeared to prove conclusively that the 
ultra-violet light caused a precipitation of something from 
the air, causing a slight cloud. 

Substitution of sulphuric acid for the phosphorus pent- 
oxide only made matters worse, a dense cloud forming in ten 
or fifteen seconds after starting the spark. I was unable to 
secure air in which the light of the spark failed to develop 
a visible fog, and consequently abandoned the experiments, 
which were designed to test experimentally Lord Rayleigh’s 
theory of the bluesky. It would be well to try air vaporized 
from the liquid using no drying agents or cotton. Some six 
or seven years later some experiments were described by a 
French physicist, whose name I do not recall at the moment, 
which showed similar effects ascribed to the formation of 
nuclei by the ultra-violet light. 

* Communicated by the Author. 
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In view of these facts it appears to me that Strutt’s expe- 
riments should be repeated before we recognize the scattering 
of light by air molecules as demonstrated. It would be well 
to employ sunlight and a glass lens, and look for the cone 
with the eve. Its absence would prove that Strutt’s results 
were due to a cloud resulting from the action of the ultra- 
violet rays on the air. 

XXVIT. Some Two-Dimensional Potential Problems connected 

with the Circular Arc. Il. By W. G. Bicxiny, B.Sc.* 

§ 1. i a recent paper + the author has given the solution 
of some potential problems connected with the 

circular arc, and interpreted the results in terms of elec- 
tricity and hydrodynamics. In particular, the velocity 
potential and stream functions for circulatory flow about an 
infinitely long lamina in the form of a circular are, and for ° 
the disturbance of a stream due to such a lamina, were 
determined. It is now proposed to give drawings of the 
stream-lines in the latter case, to examine the case of rota- 
tion of the are, and to give a brief discussion of the motion 
of the are when free to move, and acted upon by the con- 
sequent fluid pressures. 

§ 2. The stream-lines were obtained by first mapping out 
the z-plane by a system of orthogonal coordinates given by 
the relation 

a 
1+se 

eter ses? . oP achest titi 6 (ie) 

where t=p+ v0, and s is written, for brevity, for sin = The 

results of the preceding paper show that for circulatory flow 

LDS O09" UU ea ot ne rae 62). 

so that the figure of the last paper is the requisite map, for 
the particular case of the semicircle. Making the substitu- 
tion (1) above, in equation (14) of the preceding paper, we 
obtain for the case of flow past the are 

w—ssian(s—t6), . : »-. + (3) 

giving w=2ssinhpcos(o—f).. . . . (4) 

* Communicated by the Author. 
+ Phil. Mag. [6] vol. xxxv. p. 8396 (May 1918). 

Phil. Mag. S. 6. Vol. 36. No. 213. Sept. 1918. i 
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Corresponding values of p and o are readily calculated 
and the stream-lines easily plotted on tracing-paper over the 
map above referred to. ‘In this way figs. 1 to 4 have been 

drawn, for the values of 8, 0°, 90°, — 45°, and 60° respec- 
tively, turned for convenience so that the undisturbed 
direction of the stream is horizontal. The third of these | 
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exemplifies the case of the stream dividing at the edge of the 
lamina, noted at the end of the preceding paper. (It may 

tf. = piesa a 

cy 0 aT sf +2 ee ere it 
ie dag ae 

be noted that equations (3) and (4) are in agreement with 
the results given in a recent paper by Dr. J. G. Leathem.) 
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§ 3. The method of sources used in the preceding-paper is 
not effective when the motion due to rotation of the boundary 
is desired. For that purpose a method outlined in a recent 
note* by the present writer can be employed. The arc being, | 
as before, that part of a circle of unit radius given by 
z= —ve%, for which —a<0@<a, the doubly connected space 
outside is transformed into the up; er half of the ¢-plane by 
the transformation 

067+ 2us+¢ 
——=b : 

CC —2usE+c’ a 

where c=cos4a. On the arc, we have »rp=to|2z—Zz)|?, where 
w is the angular velocity, and <j) the axis of rotation. The 
choice of this axis is a matter of convenience, and is for 
simplicity chosen as z3=—+. So that on the &-axis of the 
-plane, on using (5), we get 

uae 16s°& 
p= zo ‘(E+ 1p hae (6) 

The corresponding value of w, free from infinities in the 
upper half of the z-plane, is then, except as to an irrelevant 
constant, 

vee a aes L6s*22 ae ae 
w= Al 20 (EF +1)? 4 498 C-E me (7) 

The integral is easily evaluated by the method of residues, 
and may be expressed in the three forms :-— 

ent aasie | 
eae? PM 

= 249 (24) —vPFReeose—l}, +» (82) 
—9r 1+¢e" 

— ts? — use aah ; e e e e e ° e (8 C) 

eeiscoe 

by the use of (5) and (1) above. Form (8 c) is convenient 
to enable the stream-lines to be drawn, and these are given 
for the case of a semicircle in fig. 5. An alternative, but 
special, method of obtaining the result is furnished by the 
fact that a rotation about the centre of the circle leaves the 
liquid undisturbed. ‘This may be regarded as instantaneously 

* Phil, Mag. June 1918. 
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compounded of a rotation about z=—z and a translation 
parallel to the w-axis. The application of equation (14) of 
the preceding paper once more gives equation (8 8). 

Fig. 5. 

§ 4. On the boundary, z= —ue'®, s0 that 

w=2osing | V/ sine — sin’ +esing} ] 

ey we 
d= +2 cing J sin? — sin” 5; = 2a sin’, 

(9) 

where the positive value of the root refers to the convex 
surface. For the energy of the motion, we have 

2T = \ ody taken round the boundary 
: a Ee 2 sint i = 27@* sin*s, upon evaluation. 

Introducing the radius a instead of unity, and the density 
p of the liquid, 

T= pw?! sin’ = Fok EL Say 
N | 
» 

q 
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Proceeding to the limit of a plane lamina of breadth 20, 

= |,7po"b', a known result. 

The calculation of the fluid pressures on the lamina is not 
difficult, but the ‘end pressures” of the preceding paper 
must be taken into account. ‘The final resultant is a force 

2m pw*at sin’ S acting along the y-axis. The result is also 

deducible from the general equations of motion now to be 
briefly discussed. 

_ §5. Refer to moving axes O'X’, O'Y’, fixed with respect 
to the lamina as in fig. 6. Let the 

Fig. 6. coordinates of O' with respect to 
axes fixed in space be a, y, and the 
angle between O'X’ and OX be 
denoted by 6. A rotation @ does 
not disturb the liquid, and so con- 
tributes nothing to the kineticenergy. 
Denoting by U, V, the velocities 
of translation along OX", Oe 
respectively, equation (18) of the 

preceding paper gives 

} 

21 = 2mrpaty U' sin? a(2+ GOS s)+ V2 sin’ | (11) 

(his has also been deduced from 2T =| ddyp.) The usual 

methods now give the forces acting on the lamina. For 

brevity, denote by A, 27pa?sin* = and by 8B, spa? sin? a. 

Then 

22 =(A+B)U?+ 8V?, 2) 2 eee 

giving the forces and couple 

X=—(A+B)U+AVO, ) 

Y=—AV—(A+B)U6, iin ten) 
Iie Je) OA 

These have also been deduced from the general pressure 
equation. On forming the general equations of motion — 
from (11’), the consequences of the fact that T’ is independent 

of 6 are at once apparent, for these equations will be found 
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incompatible unless U=V=0. However, ithis was ‘to ‘be 
expected, as there is, if the lamina be massless, nothing 
to enable it to disturb the fluid, so that the only possible 
motion is one which leaves the fluid undisturbed, 7. e. for 
which U=V=0. Moreover, in consequence of its lack of 
inertia, any other motion, even if it could be started, would 
be instantaneously converted into the above type by the 
action of the finite pressures on the unsubstantial lamina. 

If the lamina be supposed uniform, and of mass M, its 
kinetic energy T; is given by 

a 
2 <M U4 Vip at6e4 20 vet (13) 

By transference to a “ centre of inertia” C, given by 

fl sine ! Wg ; O C=aary ree the total energy assumes ‘the 

value given by 
© 82 

sin ‘a At MC — a ba sape 
re 2 My) V2 2T=(A+B+M)U?+(A4+M)V?+ Aa Wt 

and the motion of C is known (¢/. for instance Lamb’s 
‘Hydrodynamics,’ 4th ed. p. 165), and so is that of the 
lamina. If wa is sufficiently great compared with the 
velocity of translation, the path of A (in fig. 6) is looped, 
otherwise it is, in general, sinuous. 

Loughborough, 
June Ist, 1918. 

XXVIII. Proceedings of Learned Societies. 

GEOLOGICAL SOCIETY. 

[Continued from p. 208.] 

March 6th, 1918—Mr. G. W. Lamplugh, F.R.S., President, 
In the Chair. 

Mr. J. F. N. Green delivered a Lecture on the Igneous 
Rocks of the Lake District. He first drew attention to some 
of the manuscript 6-inch maps of the Lake District, prepared 
nearly fifty years ago, by the Geological Survey, and pointed 
out that, although undoubtedly most accurate, they differed greatly 
in the volcanic area from his own. He suggested that the reason 
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was that there was a fundamental difference in the classification 
of tuffs and lavas. A large proportion of the Lake-District rocks 
were brecciated, and had been supposed to be altered tuffs. With 
the unbrecciated rocks into which they passed they had been 
mapped as ashes. A number of specimens and photographs were 
shown, indicating that the brecciation and apparent bedding were 
due to flow. Specimens were also shown of explosion-breccias, of 
the normal tuffs (which the Lecturer believed to be mainly the 
result of erosion between eruptions), and of rocks simulating true 
tuffs, but actually sandstones and conglomerates, composed of 
detrital igneous material. Attention was drawn to the criteria for 
distinguishing the various types. Recently, manuscripts had been 
found in the possession of the Geological Survey proving that 
Aveline, whose maps were extraordinarily accurate and detailed, 
had anticipated by thirty years the Lecturer’s separation from 
the voleanic rocks of the basal beds of the Coniston Limestone 
Series. 
When re-mapped on this basis, the Borrowdale Series appeared 

as a simple and regular sequence, strongly folded and cropping out 
in long bands. An interesting history of vulcanicity was revealed, 
beginning in many places with explosion-tuffs followed by a great 
series of pyroxene-andesites over the whole district. Then there 
was a pause during which fine-grained andesite-tuffs, with a 
tendency to produce true slates, accumulated. This was succeeded 
by a vast outpouring of andesites, of great thickness in the central 
mountain region, but dying out southwards and eastwards. Next 
a series of peculiar mixed tuffs, of special value in mapping, was 
covered by another mass of andesites dying out south-westwards. 
After this, soda-rhyolites covered the whole district, nothing later 
being preserved—with one possible known exception. These 
voleanic rocks were intersected by a varied series of intrusions. 

The solfataric phenomena were of interest, including the pro- 
duction of garnet and graphite, and a remarkable ‘streaky’ 
structure in the rhyolites. 

An important question related to the age of the large acid 
intrusions associated with the volcanic rocks. Were they of the 
same age as, or later than, the Devonian folding? A sketch was 
given of the evidence on which the Lecturer assigned the Eskdale 
and Skiddaw granites to the Ordovician volcanic episode, and it was 
suggested that the great Skiddaw anticline was not due to regional 
folding, but a local structure connected with the vulcanicity. 

Lantern-slides of Lake District country were shown, and the 
manner in which the volcanic rocks entered into the scenery was 
pointed out. 
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XXIX. On the Origin of the Line Spectrum emitted by lron 
— Vapour in an Electric Tube Resistance Furnace at Tempe- 

ratures above 2500°C. By G. A. Hemsatecu, Honorary 
Research Fellow in the University of Manchester*. 

§ 1. Introduction. es 

T was shown in the preceding communication (this volume 
page 209) that the spectrum of iron as observed in the 

carbon tube resistance-furnace up to 2500° C. and in flames up 
to 2700° C. is caused by thermal actions on a compound of this 
metal and not by the direct action of heat on the pure metal. 
Now, as far as flames are concerned, the character of the 
spectrum changes only slowly, though progressively, as the 
temperature rises to 2700° C. Butin the case of the tube 
furnace a great change is observed soon after the boiling-point 
of iron has been reached and the gases from the boiling metal 
have diffused into the interior space of the tube. These facts 
have led to the conclusion that the mode of excitation under- 
lying the emission of the high-temperature furnace spectrum 
of iron is no longer the same as that which prevails in the 
furnace below 2500° and in flames up to 2700° C. Further, 
the appearance, at the high furnace temperature, of lines 
which are characteristic of the arc and spark, and their 
absence in flames of the same temperature, has suggested 
the idea that the spectrum of iron as emitted by the furnace 
under these conditions is of electric origin. ‘The experiments 
described in this paper were accordingly based on this idea, 

* Communicated by Sir HK. Rutherford, F.RS. 

Phil. Mag. 8. 6. Vol. 36. No. 214. Oct. 1918. U 
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and, as will be seen from the various results obtained, there 
can be little doubt left, that the so-called high-temperature 
emission of iron vapour in an electric tube resistance-furnace 
is actually caused by the passage of .an electric current 
through the vapour. 

§ 2. General Observations on the Furnace Spectrum of 
Iron Vapour at 2700° ©. 

As has already been recorded, the interior of the tube 
furnace, working at atmospheric pressure, emits a purple 
light up to about 2400°; above this temperature and up to 
about 2500° the light emitted is of brilliant white, due no 
doubt to carbon particles, since it givesa continuous spectrum. 
Above the boiling-point of iron, when the gaseous metal has 
pervaded the whole interior of the furnace, the colour of the 
brilliant light emitted is of a decided greenish tint. Spectro- 
scopic examination at this stage reveals, superposed on a 
bright continuous ground, a most brilliant iron spectrum, in 
which the group at 4957 is quite a prominent feature. Also 
the Swan bands at 4737 and 5165 are now visible. Owing 
to the low dispersion of my spectrograph, the finer details 
of the iron spectrum are unfortunately more or less destroyed 
by the continuous background which, even with short ex- 
posures of one second or less, is an annoying attribute of the 
photographic records secured. Nevertheless the general 
character of the spectrum is well brought out, as are also its 
distinguishing features as compared with the corresponding 
flame spectrum. | 

The spectrum of iron given by the furnace at 2700° 
differs entirely from that observed at the same temperature 
in the oxy-acetylene flame. Thusalarge number of class III. 
lines and, further, lines so far only obtained by means of 
electric discharges, have been detected in this spectrum. 
Of class III. lines the four doublets ’X4872, 4891, 4920, 
and 4957 stand out prominently. It will be remembered 
that at the flame temperature of 2700° only traces have 
been observed of three of these doublets ; they constitute, 
however, an important group in the spectrum of the explosion 
region of the air-coal gas-flame, and they are particularly 
marked in the self-induction spark where electric actions 
prevail. Now in electrical sources, such as are and spark, 
both components of each doublet are well developed, whereas 
with chemical excitation in the explosion region only one 
component is brought out. The low dispersion employed 
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has not enabled me to resolve these doublets, but according 
to Dr. King’s observations of the high-temperature furnace 
spectrum of iron, made witha high dispersion, both com- 
ponents of each pair show in the furnace spectrum with 
approximately similar relative intensities as in the arc*. 
Hence the behaviour of these lines in the furnace is such as 
to suggest their emission being governed by electric rather 
than thermo-chemical or chemical actions. 

§ 3. Probable Mode of Excitation. 

The forcing of heavy electric currents through the carbon 
tabe resistance-furnace entails the establishment between its 
extremities of a certain potential difference, the value of 
which depends upon the resistance of the tubejand the tem- 
perature to which it is to be raised. Now, if with the rise in 
temperature the gases or vapours enclosed in the furnace 
became progressively ionized to a high degree, a stage should 
be reached at which part of the heating current will be 
carried by the ionized vapours according to the fundamental 
laws of electric conduction. The well-known experiments 
by Drs. Harker and Kayet on thetionization in tube resistance- 
furnaces have furnished most important data on this point, 
and their results leave no doubt as to the relatively high 
conductivity of the ionized gases within the furnace-tube. 
In a first experiment these physicists showed that it was 
possible to send an electric current across a gap between two 
carbon rods held concentrically in the middie of the tube. 
With small potentials (up to 6 or 8 volts) measurable values 
of the current were obtained when the temperature rose 
above 1400° C., and at 2000° furnace temperature it reached 
the value of several amperes. In their own words: ‘‘The 
magnitude,of the ionization currents indicated that, although 
the pressure was atmospheric, the atmosphere of the furnace 
was ionized to an unusual degree at high temperatures.” In 
a further experiment, and one of. still greater importance 
from our point of view, Drs. Harker and Kaye measured the 
current which leaks across the highly ionized space sur- 
rounding a heated carbon rod passing concentrically through 
a carbon tube. In this case the ionization current is part of 
the heating current supplied to the rod, and it flows across 
the ionized space when one end of the rod is joined to the 

* A.S,. King, Astrophysical Journal, vol. xxxvii. p. 259 (1913). 
+ J. A. Harker and G. W. C. Kaye, Proceedings Royal Society, 

Series A, vol. Jxxxvi. p. 879 (1912); ibid. vol. Ixxxviil. p. 522 (1913). 

U2 
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carbon tube. Under these conditions, and with a rod tem- 
perature not far from 3000° C., they obtained a steady 
ionization current of about 34 amperes. It seems to me 
that this experiment proves conclusively that at the higher 
furnace temperatures an electric current must pass through 

_ the ionized vapours contained between the extremities of the 
resistance-tube. 

I have repeated the second experiment of Drs. Harker 
and Kaye with a slight modification, so as to approach more 
nearly the actual working conditions prevailing in the present 
investigation. The furnace was of the type already described 
in the preceding paper (§ 2), the carbon tube having an 
internal diameter of 14 mm. and an effective length of 
4 inches between the graphite bloeks. A carbon rod 4 mm. 
in diameter was mounted in such a way that it could be 
moved along the axis of the furnace whilst remaining in a 
concentric position with regard to the tube. Thus the radial 
distance between the carbon rod and the inner furnace-wall 
was alwaysas nearly as possible 5mm. The carbon rod was 
connected to one end of the furnace-tube with an ammeter in 
the circuit, as shown in fig. 1; and it was provided with a 

Tiere ae 

+ Furnace Tube ep 
Fe? MAE Re Ee 

Carbon Rod 

Method of measuring Ionization Current. 

division, so that the amount of its penetration into the tube 
could be ascertained. The experiments were made at a 
temperature of 2200° C.; at this temperature the carbon rod 
does not bend but remains perfectly straight throughout the 
time necessary for the various manipulations and readings 
involved. The difference of potential at the ends of the 
furnace-tube, at this temperature, was about 9°5 volts, or 
equal to a voltage drop of 1 volt per centimetre approximately. 
The following table gives the values of the ionization currents 
obtained under these conditions for various positions of 
the rod. , 
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Amount of penetration 
of rod into heated fonization 
portion of tube. . Current. 

(ORT SG) Sink. el QO ampere 

eeeres eet ee eee eee rene 

Sse anes agar Oo eS) OS) Si ey 

Wy tO DOLD HH OD Koawonoart Ke S sees eee eee ee ee ese se eoe 

From these results it will be seen that an appreciable 
current is obtained when the rod penetrates only 4 inch. 
The current then increases rapidly as the rod penetrates 
farther into the tube, partly on account of the higher tempe- 
rature with consequent higher degree of ionization prevailing 
near the middle of the tube, and partly also on account of 
the increasing area of active rod surface and the rising 
potential difference between the extremity of the rod and the 
opposite furnace-wall. After the rod has passed 2°5 inches 
into the tube the rate of increase of the ionization current 
diminishes, no doubt because the rod now enters cooler 
regions of.the furnace, in which the intensity of ionization 
declines again. It should of course always be borne in mind 
that the ionization current does not pass only between the 
extremity of the rod and the wall, but that the flow of elec- 
tricity takes place, more or less, all along that portion of the 
rod which is within the heated zone of the furnace-tube. 

A further set of experiments was carried out at higher 
temperatures, the extremity of the rod being at the middle 
of the furnace, namely 2:0 inches from the end of the heated 
portion of the furnace-tube. At the highest temperature 
observations were made both with and without iron vapour 
in the tube. The following values were obtained :— 

Furnace Lonization 
Temperature. Current, 

9A 00°: Cun eae 3°0 pope | Without 
2UOO Hee (eae oa s),, >. {Iron vapours 

2100" 502) ouuemenee oe en With iron vapour. 

The last result shows that a heavy ionization current 
passes even when iron vapour is present, and I suppose that 
the higher value obtained is due to part of the current 
being now carried by iron vapour. 
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From the results of these experiments we may safely 
conclude that at temperatures above 2500° a column of iron 
vapour in the furnace will carry a small portion of the heating 
current supplied to the tube. Also it is highly probable that. 
some connexion exists between the flow of electricity through 
the iron vapour and the brilliant line spectrum observed 
under these temperature conditions. The interior of the 
furnace-tube may in effect be regarded as a low-tension are, 
in which the necessary degree of ionization and the gaseous 
state of the metal are maintained by the heat from the carbon 
tube. The spectrum of iron emitted under such conditions 
should therefore approach that given by an ordinary are. 
between iron poles, which indeed it does. 

§ 4. Persistence of the Iron Line Emission after the 
Electric Current through the Furnace is broken. 

As has been observed by Dr. King, the iron lines remain 
visible for some time after the current feeding the furnace is 
broken, and he has therefore concluded that the furnace 
radiation does not depend upon the existence of a potential 
difference. I quite agree that this conclusion holds as 
regards these lines which are caused by thermo-chemical 
excitation, and there is little doubt that a spectrum, com- 
posed of these lines, would be observed if the tube were 
heated by other than electrical means, as in fact it 1s observed 
in the mantles of the several flames examined. But with 
regard to the so-called high-temperature lines, which become 
prominent only after the metal has passed into the gaseous 
state and fills the interior of the furnace-tube, does their 
persistence, after the potential is taken off, really prove 
that they were not, in the first place, excited by electric 
actions ? 

I have shown in a series of experiments that in an electric 
‘ spark discharge between metal electrodes the emission of 
luminous radiations by the metal vapour continues for an 
appreciable time after the discharge has passed*. In these 
experiments the spark employed was of the simplest ty pe, 
consisting of only one single oscillation, so that the metal 
vapour, which was carried away from the spark-gap by 
means of a current of air, was no longer under the action 

* Hemsalech, Comptes Rendus del’ Académie des Sciences, vol cl. p. 1743: 
(1910); 2b2d. vol, cli. p. 220 & p. 668 (1910). 
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of an electric field. Furthermore, I have furnished experi- 
mental evidence to the effect that the luminous vapour 
produced in these spark oe is not the result of a 
vaporization of the electrodes by heat, but of some direct 
action of the discharge current upon the molecules on 
the surface of the electrodes*. Now in view of the fact 
that a small quantity of luminous metal vapour, although 
undergoing rapid cooling by a current of air, is capable of 
emitting light radiations for a measurable time after the 
exciting agent has ceased to act, should we not, by anaiogy, 
actually anticipate a continuation of the line emission, 
after the breaking of the electric current that caused it, in 
the case of a vapour which is completely shielded from the 
surrounding air by a slowly cooling furnace-tube? With 
his well- protected furnace Dr. King has been able to observe 
some of re iron lines for as long as 5 minutes after breaking 
the current. In my small furnace the luminous radiations 
die oui much more rapidly, and the successive extinctions of 
the varlous groups of lines is most interesting to follow. 
The group of doublets at 4957 disappears first at from 5 to 
10 seconds after the current is broken. The strong con- 
tinuous spectrum, which until then masks many of the lines, 
begins now to clear, and at about 15 seconds after the 
breaking of the cuecen class I. groups y and e stand out 
most conspicuously for a few moments on a dark background. 
These changes present quite abeautiful spectacle. Thanks 
to the relativ ely high luminosity of my spectrograph, it 
has been possible to secure photographic records, with 
exposures of only 1 or 2 seconds, at intervals of 10, 15, and 
20 seconds after the interruption of the current. ieee 
temperature determinations of the inner surface of the furnace 
tube were made at corresponding intervals of time which 
furnish some interesting data with reference to the rate of 
cooling of the furnace. The values of these temperatures, 

oS 

which are the means of two readings, are as follows :— 

Furnace temperature after an interval of 
Initial Furnace — is ae fides Apia AEE 
temperature. 10 seconds. 15 seconds. 20 seconds. 

2700° C. 2300° 2100° 2000° 

In an additional series of experiments the field was left on 
partially, the current being dropped to about 180 amperes. 

* Hemsalech, Comptes Rendus de lV Académie des Sciences, vol. cliv. 
p. 872 (1912). 
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In this case the mean values were: 

Furnace temperature after an 
interval of 

Initial Furnace -_—— eee eee 
temperature. 10 seconds. 15 seconds. 

2700° C. 2200° 2100° 

Thus the values obtained with part of the current on are, 
for the first 15 seconds and allowing for probable errors 
which amount to about + 50° ©., practically the same as with 
the current completely off. 

As has already been stated above, according to visual 
observations the strong group at 4957 is the first to disappear 
after the current is broken, and this fact agrees with my 
former observations on the behaviour of these lines in the 
spark. Now the photographic records show this group after 
an interval of 10 seconds, but no longer after 15 seconds 
from the moment of breaking the current. But, as my 
observations indicate, the temperature of the furnace after 
an interval of 10 seconds is down at 2300’, that is to say 
well below the temperature at which these lines will appear 
in ordinary circumstances. Hence the spectrum in this case 
does not at all correspond to the temperature conditions of 
the furnace, and it seems therefore not to be controlled by 
temperature. Furthermore. when the current, instead of 
being broken, was only reduced to 180 amperes so that a 
slight potential gradient remained, the group at 4957 was 
photographed after an interval of 15 seconds, 2. e. at a 
furnace temperature of only 2100°, and a trace is even 
visible on a photograph taken 20 seconds after the drop in 
current. ‘These facts would seem to indicate that the 
potential, which subsisted after the current had been dropped, 
was still sufficient to appreciably prolong the life of this 
group in spite of the low temperature of the furnace-tube. 
The spectrum which remains visible after these lines have 
disappeared is caused by thermo-chemical excitation and is 
identical with that described in the preceding paper. 

All the observations recorded in this paragraph are quite | 
consistent with the view that the so-called high-temperature 
furnace spectruni of iron is of electric origin. 

§ 5. Observations on the Furnace Spectra of Zinc, Copper, 
Silver, Cobalt, and Nickel. 

Most of these spectra have already been investigated by 
Dr. King, and my observations go to corroborate in a general 

way his results. Thus, like Dr. King, I have been unable 
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to obtain a spectroscopic reaction with zinc, even by sub- 
jecting it to furnace temperatures up to 2700° C. The open 
ends of the furnace were in this case provided with mica 
windows in order to exclude air, the presence of which 
caused a blue glow to appear near the opening, due no doubt 
to oxidation of the metal. This glow emitted only a strong 
continuous spectrum. 

When copper was heated in the tube a band spectrum 
appeared in the blue and green at a temperature of about 
2000° C. This band spectrum persisted after the boiling- 
point of the metal had been passed. But at no time was [ 
able to observe or record photographically a line spectrum. 
The origin of the bands has not yet been investigated, but it 
may be connected with. the formation and subsequent dis- 
sociation of a compound. Similarly, silver gave no line 
emission whatever, not even at the highest temperature. On 
the other hand, both nickel and cobalt emitted line spectra 
at 2700° C. 

Thus there are, including iron, two groups of metals which, 
as regards their spectroscopic reaction in the furnace at high 
temperatures, behave very differently, namely zine, copper, 
and silver which show no reaction, and iron, nickel, cobalt 
which give well-developed line spectra. It is interesting to 
inquire whether this difference in behaviour is consistent 
with the idea that the high-temperature furnace spectrum 
is caused by the passage of an electric current through the 
vapours of these metals. It will be remembered that in the 
course of my researches on the effect of self-induction on 
the lines emitted by metal vapours in the electric spark, I 
established the existence of two groups of metals which 
exhibited striking dissimilarity in so far as the appearance of 
nitrogen bands in their spectra was concerned*. One group, 
to which belong zine, copper, and silver, showed the nitrogen 
bands very strongly in addition to the lines of the metal, and 
the other group, which includes iron, cobalt, and nickel, gave 
hardly a traceofthem. Thus in the case of the former group 
the electric current in the discharge was partly carried by 
nitrogen ions, whereas in the second case almost entirely by 
metal vapour. These facts receive a plausible explanation 
by supposing that the vapours of iron, cobalt, and nickel 
are better conductors of electricity than those of the 
metals of the other group; and, if this were the right inter- 
pretation in the case of the spark spectra of these metals, it 
would equally well explain their relative behaviour in the 

* Hemsalech, Theses de Doctorat, p. 111, Paris, 1901. 
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furnace. For the better conducting vapours of iron, cobalt, 
and nickel could thus be conceived to convey an electric 
current under the pressure of the small potential gradient in 
the furnace-tube more easily than the less conducting vapours 
of zinc, copper, and silver; the first three metals would 
therefore be able to emit a line spectrum at lower potential 
gradients than the last three metals. Thus the inability of 
the vapours of zinc, copper, and silver to emit a spectrum 
at the highest furnace temperature can be satisfactorily 
accounted for by assuming them to possess a low degree of 
electric conductivity. 

§ 6. Observations on the Spectrum Emission of Metal 
Vapours in the absence of Electric Actions. 

All the facts observed so far point to electric actions as 
being the determining factor in the line emission of metal 
vapours in the high-temperature resistance-tube furnace. 
It was therefore felt desirable to devise a test experiment 
with a furnace in which electric actions were, if not 
altogether suppressed, at least reduced toa minimum. After 
several trials the following type of furnace was constructed 
which seemed to fulfil these conditions (fig. 2). A graphite 

Sectional View of Plate Furnace. 

plate AB, 245 mm. long, 20 mm. wide, and 1-9 mm. thick, 

is clamped in a horizontal position between two pairs of 

stout graphite bars which carry the current from the mains. 

On the middle part of AB, at C,a small furnace is built up 

of the small graphite plates a, a’, and 6; each of these plates 

is 20mm. wide, and a, a’ are about 20 mm. long each, 

b somewhat longer. The lower edges of a and a’ are cut 
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in sucha way asto reduce the contact surfaces with the main 
plate to a few sharp points only, thus preventing any large 
currents from passing through the plates a, v, a’. Further, 
the plates a and a’ are inclined at an angle of 60° or less, so 
that any potential gradient existing between a and a’ would 
decrease rapidly in value on passing from the bottom of the 
furnace upwards. ‘Two observation-tubes of carbon, each 
having wn internal diameter of 14 mm. and a length of ‘about 
4 inches, are placed ina line, one in front and the other 
behind the furnace, as indicated by the dotted circle. Obser- 
vations are made through these tubes, which afford an un- 
interrupted view of the metal vapours in the furnace. The 
whole space both beneath and above the main plate, furnace, 
and observation-tubes is filled up with carborundum-powder 
to a depth of at least two inches all round, so that this 
furnace is as efficiently protected as was the tube- furnace in 
a former experiment. The metal to be examined was laid 
on the bare portion of the plate AB comprised between the 
inclined plates a anda’. The plate was heated by means of 
direct current of over 300 amperes. As the temperature 
rose luminous vapours from the walls and carbon particles 
caused by the disintegration of the graphite gave out a strong 
continuous spectrum on which were visible the absorption- 
lines of Na, Ca, and Sr. When iron was boiled in this 
furnace the interior emitted a brilliant light, but at no time, 
even up to tlie burning through of the plate at C, was hoes 
observed any trace of an emission spectrum of this element, 
such as was beheld in the tube-furnace at 2700°. Nor were 
the Swan bands ever seen with this furnace. 

Similar negative results were obtained with copper. 
With thallium, however, the green line was observed first 

as an emission-line and then, at the higher temperatures, as an 
absorption-line. It is, however, doubtful whether in this case 
the emission was due to purely thermal excitation ; it was 

indeed found that the metal, already at lower temperatures, 
rapidly formed a compound which adhered to the furnace 
walls in flaky masses; and it seems to me more probable that 
it was the action of heat on this compound which caused the 
emission of the green line; the emission would therefore 
have been due to thermo: cliemical excitation. 

§ 7. Observations onthe Spectrum Emission of Metal Vapours 
under the Influence of an Electric Field by Means of a New 
Type of Electric Furnace. 

Having failed to excite the line emission of the vapours of 
iron and copper by purely thermal actions, it was of course 
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natural to try and obtain the desired effect by the simul- 
taneous application of both thermal and electric forces, thus 
reproducing the particular conditions which are believed to 
exist in a resistance-tube furnace. To this end a special type 
of plate-furnace was built which permitted the establishment 
within the metal vapour of a potential gradient of any 
required strength. The principle of this furnace is illus- 
trated in fig. 3. Two graphite plates AB and CD are placed 

Fig. 3. 

Principle of Two-plate Furnace. 

with their flat sides parallel to each other at distances varying 
from 3 to 10 mm. or more. At one end, A and GC, the plates 
communicate by means of a graphite block of the requisite 
thickness. At the other end the plates remain insulated 
from each other, and the extremities B and D are connected 
to the mains. Now it is evident that when an electric 
current is sent through the plates under these conditions a 
potential gradient will be established within the space between 
the plates, owing to the resistance of the latter. This gradient 
will have a maximum value between Band D and it will 
vanish at HE. The magnitude of the gradient at the extre- 
mities b and D for a given value of tbe heating current and 
for graphite plates of given sectional area, will vary directly 
as the lengths of the plates, and inversely as the distance 
between them. If the current sent through the plates 
be of such strength as to raise the temperature of the 
plates sufficiently to ionize the space between them, an 
ionization current having a maximum value near the free 
ends B and D will pass across the space. Further, if the 
temperature attained be high enough to cause a piece of 
metal, placed on the lower plate near D, to boil, the whole or 
part of the ionization current will be carried by the metal 
vapour, provided that both the electric conductivity of the 
latter and the strength of the potential gradient be of the 
requisite magnitude. Hence if the so-called high-temperature 
line emission of iron vapour be really caused by the passage 
of an electric cuyrent through the vapour, we should with a 
furnace of this type observe its spectrum. Now, this is 
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indeed what I have observed. Iron showed a most brilliant 
spectrum in which the group 4957 was as marked as in the 
tube-furnace at 2700°. Moreover, copper which gave no 
line spectrum in the tube-furnace, emitted one under the 
action of the stronger electric field which could be brought 
to bear upon it in the two-plate furnace. 

A fuller discussion of these results, together with the de- 
scription of a new and more practicable form of plate-furnace, 
based on the principle explained above, will be reserved for a 
subsequent communication. Suffice it to point out here that 
the mode of excitation under these conditions is similar to that 
underlying the emission of line spectra in the ordinary are. 
But whereas in the present case the necessary ionization 
current is secured and maintained by special means at a 
relatively low potential gradient, in the are it is produced 
and upheld automatically thanks to the existence of a high- 
potential gradient. The high-temperature furnace spectrum 
of iron as emitted either by a tube or a two-plate furnace 
should. therefore be regarded as a low-tension are spectrum. 
The line spectrum as obtained under these conditions is 
brought about by the simultaneous actions of heat and of 
electricity, and the process involved in its emission will be 
referred to as thermo-electrical excitation in distinction from 
the more purely electrical mode of excitation which occurs 
in the spark discharge as already mentioned in § 4. 

§ 8. Summary. 

J. All the results of the several observations and experiments 
earried out in the course of this investigation harmonize 
with the conclusion that the so-called high-temperature 
furnace spectrum of iron, which is emitted above the 
temperature of the boiling-point of this metal, is not 
caused by purely thermal actions, but requires for its 
emission the co-operation of electric forces. This con- 
clusion is supported by the following observed facts :— 

a. The furnace spectrum of iron at 2700° C. is entirely 
different from its flame spectrum at the same tempe- 
rature. §§1 & 2. | 

b. The relative behaviour of class III. lines, especially the 
group of doublets at 4957, indicates that the high- 
temperature furnace spectrum of iron approaches in 
character that of the are spectrum of thiselement. § 2. 

c. Direct experimental evidence has been furnished to the 
effect that an ionization current will easily pass through 
iron vapour in a tube-furnace. § 3. 
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As in the electric spark, the line emission of iron vapour 
in the furnace does not stop abruptly on the electric 
field being removed, but continues for some time after, 
and the extinction of the luminous vibrations is accom- 
plished gradually, class LIL. lines disappearing tirst. § 4. 
The spectrum emitted after the current is broken is not 
controlled by the temperature of the furnace, as is 
evidenced by the observation of class III. group 4957 
at 2300° C.; no trace of this group is szen in ordinary 
circumstances even when the temperature of the furnace 
has been raised to 2400°. § 4. 
If, instead of completely breaking the current, the latter 
be only reduced to about 180 amperes, so that a feeble 
potential gradient is left on, class 1II. group 4957 
remains visible much longer, and it has been photo- 
graphed when the furnace temperature had fallen to 
2100° ©. § 4. 

. The absence of a line emission when the vapours of 

copper, silver, and zinc are subjected to thermo-electrical 
actions in the electric tube resistance-furnace at 2700°, 
receives a satisfactory explanation by supposing that 
they possess a low degree of electric conductivity 
as compared with the vapours of iron, cobalt, and 
nickel, which easily emit a line spectrum under the 
same furnace conditions. This supposition is supported 
by observations regarding the spark spectra of these 
metals. § 3. 
The attempt to excite a line spectrum in iron vapour by 
purely thermal actions in a furnace of special con- 
struction has led to a negative result. § 6. 
A brilliant line spectrum of iron, similar in character to 
that observed in the tube-furnace at 2700°, was obtained 
with a new type of electric furnace in which a potential 
gradient of any desired strength could be established. §7. 

Il. As a result of my researches on flame and furnace 
spectra some light has been thrown on the various ways 
in which light radiations may be excited in iron vapour. 
For the sake of convenience, and also in order to facilitate 
the distinction between the several modes of excitation 
which prevail in the flames, furnace, are and spark, the 
following denominations have been adopted :— 

a. Thermal excitation. By this is understood the emission 
of luminous vibrations by the application of heat alone 
in the absence of chemical or electric actions. No 
line or band spectrum has been observed with iron 
vapour. 
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b. Thermo-chemical excitation. Here the emission of light 
radiations is caused by the action of heat on a chemical 
compound of iron. The component atoms in the com- 
pound remain chemically associated and therefore the 
vibrations emitted are observed to be restricted in 
development. This mode of excitation prevails in the 
mantles of all the low and high temperature flames so 
far examined, as also in the electric tube resistance- 
furnace vp to a temperature of nearly 2500° C. 

c. Chemical excitation. This involves the complete de- 
composition, at a relatively low temperature, of an 
iron compound and the formation of a new one, owing 
to the existence of a strong chemical affinity between 
iron and nitrogen. This mode of excitation has been 
met with for the first time in the explosion region of the 
air-coal gas flame. The spectrum to which it gives rise 
presents a high degree of development. 

d. Thermo-electrical excitation. This accompanies the 
discharge of electricity through iron vapour, which has 
previously been strongly ionized through the action of 
heat. It occurs in the electric tube resistance-furnace 
at temperatures of over 2500°C. and also in the two- 
plate furnace. The ordinary electric are between iron 
poles may be regarded as a special case in which the 
necessary degree of ionization is maintained auto- 
matically by the application of a high voltage. 

e. Electrical excitation. QOecurs in the capacity and self- 
induction sparks passing between iron electrodes at 
ordinary temperature. The radiating vapour is produced 
by a direct action of the electric discharge on the 
molecules in the surface-layer of the electrodes. The 
vapour is hurled into the spark-gap with definite 
velocity and its luminous vibrations, started in the 
first instance by the disruption of the molecules at the 
surface of the electrodes by the initial discharge 
(capacity spark) or the first oscillation (self-induction 
spark), are maintained or further developed by the 
subsequent oscillations. 

§ 9. Concluding Remarks. 

In considering all the various facts observed in connexion 
with the emission of the spectrum of iron we arrive at the 
general conclusion that temperature, although often playing 
an important role in bringing about conditions favourable to 
the effective actions of other agents, does not in itself suffice 
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to excite characteristic line radiations. It would therefore 
appear premature to establish a temperature classification of 
the spectrum lines of iron which would embrace the lines 
observed in such sources as the high-temperature furnace 
and the are, in both of which the prevalence of electric 
actions is so manifest. We know practically nothing about 
the state of temperature of the radiating atoms in these 
sources because all the measurements that have been made 
refer to the inner wall of the furnace or, as in the case of the 
arc, to the surface of the electrodes only. Further, all the 
experimental evidence seems to point against the view that 
the line emission in these sources is caused by direct thermal 
actions. As my experiments show, iron vapour may indeed 
be in a state of high temperature without emitting a line 
spectrum. Both the high degree of temperature in the 
vapour and the luminous vibrations of its atoms may, in the 
are and furnace, represent concurrent manifestations of 
electric actions. On the other hand the results obtained 
with thermo-chemical excitation, both in flames and furnace, 
have revealed a gradual progression in the development of 
the iron spectrum as the temperature rises and, between the 
limits of 1500° and 2700° C., it should be possible, wherever 
this mode of excitation exists, to determine the state of 
temperature in the source from the degree of development 
of its spectrum. But whether we should be justified in 
deriving the state of temperature in an electrical source 
by extrapolating the values found for flames, is not at all 
certain. But supposing we did so, this would give us 
roughly for the high-temperature furnace spectrum of iron 
values of the order of at least 3000° if we judge by the 
development of class III. lines. This figure represents no 
doubt a possible result and, if such temperature determi- 
nations could be confirmed by more direct methods, it might 
perhaps lead to a closer coordination on the basis of equi- 
valent temperature conditions, of the various modes of 
excitation discussed here. 

Before concluding I desire to express my heartiest thanks 
to Sir Ernest Rutherford for the many acts of kindness with 
which le has favoured me and for the encouraging interest 
he has taken in the work. 
My thanks are likewise due to Dr. Newbery for the 

cordial welcome extended to me in the electro-chemical 
laboratory. 

Manchester, May 20th, 1918. 
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XXX. The Buckling of Deep Beams. 
By J. Prescort, M.A., D.Sc. (Manc.) *. 

[ is a very well-known fact that a loaded beam may 
buckle sideways if the depth is much greater than the 

breadth, but so far no one seems to have given the mathe- 
matical theory of the subject. That theory is supplied in 
this paper. It is essentially a question of stability of the 
same type as Huler’s problem of the strut but of rather more 
complexity. A sketch of a buckled beam is shown in fig. 1: 
it is drawn to suit Case 2. 

It will be seen that the buckling load depends on the 
torsional rigidity of the beam as well as on the flexural 
rigidity for bending in a horizontal plane. 

The first case to be considered, and one which leads to 
quite simple mathematics, is the case of a beam under a 
uniform bending moment. To make the problem quite clear, 
suppose a long strip of steel, such as a steel rule a yard long, 
is acted on at its ends bya pair of opposite couples the planes 
of which are parallel to the faces of the strip. If the couples 
are increased gradually there will be a certain limiting mag- 
nitude of the couples tor which the strip is unstable, and at 
this stage it will bend sideways; that is, bend in a plane 
perpendicular to the one in which the couples are acting. 
The magnitude of this buckling couple will depend, of 
course, on the way in which the ends are held. 

The method of attack is to assume that buckling has 
actually occurred and to find what couples at the end will 
maintain the buckled state of the beam. 

~ * Communicated by the Author. 

Phil. Mag. 8. 6. Vol. 36. No. 214. Oct. 1918. xX 
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Case 1.—A pair of equal and opposite couples G act at the 
ends A and B ina vertical plane, as shown in fig. 2 a, causing 
the beam to buckle like a strut, toa greater extent on the thrust 

Fig. 2a. 

Plan of Central Line of Section. 

side than on the tension side, as fig. 2 aindicates. The deflexion 
of the beam in the vertical plane is assumed to be negligible, 
while the deflexion of the central line of the section in the 
horizontal plane is comparatively large. This means that 
the beam is twisted and bent, the curve of the central line 
being nearly a horizontal curve. Moreover, the amount of 
twist is so small everywhere that the displacement of a point 
on the central line may be considered to be perpendicular to 
the faces of the beam. 

The couples G are represented as vectors in fig 2b so that 
they can be resolved in the required directions. 

Let E denote Young’s modulus for the beam, C the least 
moment of inertia of the section, Kn the torsional rigidity, 
n being the modulus of rigidity. 

rv is the angle of twist at any point R the coordinates of 
which are 2, y, with A as origin. 

Since the upper edge of the section through R is bent 
further out than the lower edge it follows that the couple G 
at the end A has a component about a line parallel to the 
twisted depth at R. This component has 4 magnitude Gr 
and tends to increase the curvature of the central line. 
Consequently, by the usual equation for a loaded beam, 

d? 

EC7 4 =—Gr. . Mares Wa ci.) 
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The couple G has also another component, of magnitude 

Ge about the tangent at R, and this component twists 

the beam just as it would twist a straight prism. Therefore 

Ke si dy 
dx Ni + Ga r) ° ° ° e (2) 

The couple N is introduced as a twisting couple at the end 
to maintain the upright position of the end section if any 
couple is necessary for this. 

Eliminating y from (1) and (2) by differentiating (2) and 
2 

using thejvalue of from (1) we get 

Bee OF 
an nC” 

c 2 

pane oT = mtr, BS GM tM), 

where | G? 
m? = EnCK et ree Vale ° ° ° . (4) 

The solution of this equation is 

T=Asinmex+Bcosmxr. . . . . (5) 

The conditions to {be satisfied at the ends in the present 
case, since we have assumed that the end sections are held 
upright, are that 

tT=0 when c=0 

and when 2=/, 

1 being the length of the beam. 
The first of these conditions gives 

B=0, 

and the second Asin ml=0, 

which means that either A is zero, in which case the beam 
is not buckled at all, or 

sin ml=0, 

from which ml=n, 

that is, Gleam EnCK. .. . « (6) 

This gives the couple G for which the beam is unstable 
Me 2 
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when the ends are constrained in no way except that the end 
sections are maintained upright. 

Case 2.—The problem just worked out is similar to the 
strut problem with pin joints at the end so that the direction 
of the elastic central line is not fixed at the ends. In the 
buckling question, just as in the strut question, we have also 

the case where - is zero at the ends. In order to maintain 

these end conditions there must be applied at the ends of the 
beam another pair of couples, which we shall denote by M, 
these couples acting in a horizontal plane. Then the equa- 
tions for the equilibrium of the portion AR become 

dy BO +4 = —Gr+M, ee 

ON x dy | 
Kn =N+G >. ° ° ° ° ° (8) 

From these we get Dr M : 
Ee age a lai ee) 

the solution of which is M 

7+=Asinma+Bcos mxr+ Gq: 

The condition T=0 when 2=0 gives 

M B=~q. 
Therefore M T=Asinmer+ G (1—cosme). . . . (10) 
From (8) and (10) 

' d \ 

Ge =Knm (A cosma + sin ae Pas CE 

We have still to satisfy the three conditions 

dy 

da 

and 5 when #«=0. 
da 

7™=0 and =() when v=l1 

The last of these gives 

N=KnmA. 2) eee lees 
Therefore 

ee = Kam | asin ma —A(1--cos mz) i ‘ 
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The other two conditions give 

0=A sin ml + a (1—cos ml), 
G 

M. 
0= osin ml— A (1—cos ml). 

From these last two equations we get 

AM ,, 
sin? ml = — ee (1—cos m/)?, 

or sin? m/+ (1—cos ml)?=0, 

which can only be satisfied when the two following equations 
are simultaneously true: 

sin ml=0, 

1—cos ml=0. 

Therefore ml=2r, 

or Gir WnOK. 2. 1 GB) 
Thus the buckling couple is twice as great as when the 

ends were not constrained in the y direction. 
There is one condition we have not: used in arriving at the 

last solution, namely, that y hus the same value at both ends. 
If we do make use of this condition it only tells us that the 
couple N is zero. The same is true for the first case we 
dealt with. 

Case 3.—A beam is built into a wall at one end and is 
Fig. 3. 

Fe 

Pian of Central Line. 

quite free at the other. A load P is applied to the middle 
of the section at the free end. For the equilibrium of the 
whole beam in the buckled state there must clearly be a 
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couple N at the fixed end exerting a torsion on the beam, in 
addition to the couple G whose magnitude is Pl. 

The bending moment equation at R is 

; 2 

BOS =Gr—Par, . «oa hole teenie 

x being measured from A. 
The twisting moment on the section at R of the force P 

acting at A is 

di AF x P=(27 -y)P. 

The twisting effect at R of the couple G is the component 

of G about the tangent RF, that is, -oo nearly. There- 

fore the equation for the torsion at R is | 

iN oe dy dy Kn Fi =N+(9! -y)P-GS", 2 GS 

Differentiating this last equation we get 

Gam fo, ey dy 
Kn 7s = Pes —GFs 

d? 

=(P2—-G) 3. 
i d? 

a the value of = from (14) we get, on putting 
or G, 

Grp 
Kn Ta =— ga—2)7 

2 
or o1 = — mi(I—a)"r, ota (17) 

Pp? vide (moe 
It is clearly more eonvenient to measure x from the free 

end of the beam. This means using « for (J—x). Then, 
: 27 l 

since —— remains unaltered, 
ada? 

ar 
Fe ae ers reels) 
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If we make the substitutions 

s=4m?2? 
and then 

ipa Se 

the resulting differential equation is 

+= + a3?) didz iL 

ds?" s ds 1 1¢3)2=9 
. (20) 

which is the equation for Bessel Functions of order }. 
The solution is 

z=aJa(s) +63 _1(s). SPE TSE UREE KY (21) 

It is quite easy to solve (19) at once by a series of powers 
of xz. The solution in series form, obtained either by using 
(21) or directly from (19) is 

mix? ms 
T=A 5,2 I 

a } 

ens 4 5 89. 

4,4 8,8 +6 {1 mix mz e 

em 304 728 

At the free end, where #=0, there is no twisting couple 
and therefore 

dt 
—_=(0 when x=0. 
dx 

This makes a=0. 

Another condition is that 7=0 at the fixed end where 
x=l, This means that m is given by the equation 

mil4 mél§ 

TT SENT. 8 
An approximate solution of this equation can be got by 

dropping all the terms except the first three. The result 
can then be improved by using the approximate result in 
the remaining terms. This method is not very laborious. 
Or we can get the solution from a formula for the zeros 
of Bessel functions, for this last equation amounts to the 
same as 

SWC Bt en es tae 

eee Oe Rill ae ky 

The solution of this eyuation is approximately 

4n72?=2-006, 

whence Pa Ban. uc) tac, eslne 2B) 
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Case 4.—The beam carries a load P at the middle and is 
supported at the ends, the only couples at the ends being 
such torsional couples as will keep the depth vertical 
there. 

To make the conditions precise it should be stated that the 
load at the middle and the supporting forces at the ends are 
applied at the central points of the sections. 

In this case a couple N acts at each end as shown at the 
end A in fig. 3. Also a force +P acts at each end to support 
the load. The couple G does not act in this case. 

Measuring w from one end the equations for the equi- 
librium of a portion of the beain, obtained in the same way 
as equations (14) and (15), are 

ae 
MC hae Me 

at NI aaa dy Be Re Kn =Nii(a4 jie. er, 

From these we get 

eee ee 

or mere CHE 
that is 

pie! eG e 
dx? 4BnCK” * 

= — mint, ee 

where now 

54 1 les 29 
mn TH nel e = . e 3 5 eteite ( ) 

Equation (28) differs from equation (19) only in having 
+P instead of P. The conditions to be satisfied in this case 
are, however, 

7™=0 when c=0 

dt 
— =0 when «=H. 
ax 

This latter condition makes the twist a maximum at the 
middle, which is clearly the actual state of affairs in the most 
stable position of the beam. 

The series for 7 are exactly the same as in equation (22), 
and the condition that r=0 when v=0 makes the constant 6 
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equal to zero. Then 

mi et m8 mr}? gl4 \ 

r=ae {1-7 Tears 045 8.0 et fe OY 
Therefore 

dt mi xt m3z8 ! 

=a 1- Bouse f< ae 

This has to be zero when #=3l. 
Writing s for ,'-m*l* the equation for ¢ is 

s s? 33 geS) iis) =0. . (32 
fai aes 6.9127 oe 

It is worth while to show how this can be solved. 
The equation can be written, after multiplying up by 

te Di. St 
; s? st 

aie) eee? 9.42 .13.16 7...” 
that is 

Diagn clang agne 8 oe. (s— 20)? = 400-1604 9, 

p40 pee 
eo). Om 

Neglecting the cube and all higher powers of s we get 

s—20=+ 7 240=+15°5 approximately. 

Since we are seeking the smallest root of our equation, this 
smallest root being the one that corresponds to the most stable 
state, just as in the case of Huler’s strut problems, we must 
take the negative sign on the right. Then 

s=4:5 approximately. 

If we now use this approximate value of s in the terms 
containing s* and s*, and add the correction for these terms 
on to the 240, we get 

4-53 4°54 

(igh 2—9 [oT Al Go Wa ae (2D) eam 619.13. 16 
= 240°83, 

s= 20 — /240°83 

AAS 



306 Dr. J. Prescott on the 

Now using the last value of s in the s* and s¢ terms we get | 

20 

= 240°814, 

s=20— / 240-814 

= 20—15:518 

a 4482. i oa 

This is probably correct to the last figure. It follows that 

Plt = 64 x 4-482 EnCK, 

P?=16:94 7 EnCK. 2 ees 

Case 5.—The beam carries a concentrated load at the 
middle as in the last case, but the ends are constrained as in 
Case 2 ; that is, a pair of couples act on the ends in a hori- 
zontal plane preventing the ends from bending sideways. 

The difference between this and the last case is that there 

is an unknown horizontal couple M at each end, and a is 
zero at the ends. 8 

Measuring 2 from one end the equations of equilibrium are 

dy i | : 
ECT 3 =—$Paert+M, 2 2 3 tS) 

aT d Kn =N+3 (25! —y)P. i Sg NBO) 
From these we get 

ica ne Se) 
AM ad FP das 

Oe ea a 2 
| SEC ae 

2 

ie oa —nier+bbr,. . . . 8D 

where AMR Ne ae 
m= ARnCK 3 e ° e e e (38) 

6) PM 
= Fin ° 
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The solution of equation (37) in series is 

a {4 Tene Te | 
ae ae 8) eg 
; mita* mee8 oat 

+ae {1-75 + ase 87 9 

mat mz28 ! 
3 Tacs pe ee De eS — 

ee GO?) 

The conditions to be satisfied are 

Tt == 0) 

ami ee =, 

dy 
div oo 

dt O} 

da? | 
dy oo v=4/ 

day) 5) 

To satisfy the first of these aj must be zero. In order to 
make use of all the other conditions we have to find y. 
From (36) 

Pea reek x?’ 
— ee ie 

that is, 

d (y)_2Kn 1 dr _ 2N 
io) = IPS aed ks 

2Kn bs oe ane 1 me x® 

a ie es TO as hee 

mi at m8 

ea {3 mG! 6. 70 
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Therefore 

Ue ee 
ae ek Px 

2Kn a, | ib mig? mea! 

P i 2° 340° oe } 

mix mse9 } 

+073 ~ 56) een ae 
and (41) 

dy 2Kn nae ema mgt OY es yaa Le Lo de Dee as} 3 ey eT | 
mix? mex? 

po fo — ee 
(42) 

The condition 
y=0 when 7=0 

is satisfied by making 

2N 2Kn 

eee 
The condition 

ay =0(0 when z=0 
dx 

is satisfied by making H=0. 

We have now satisfied all the conditions except those at 
4 

the middle. If we write s for ee the remaining conditions, 

namely, 

oT 0 and o =0 when #=32l, 

are equivalent to 

a Annan 4 5. 8.9 ; 

SEO aS UREN Ge 
mean 13 6'6.7.10 6.7: 1 

and 

{s+ Soa 
SR ea oe 

2 3 
= +e {OF + go : st eo tr aearaat +} 
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Writing, for the sake of shortness in the argument, 

s is a 
te £5.8.9.13 7 

wba lt oe 
fb eee, 6.7. ae Crea 

s s? s° 

Pee Aue) 8911 
2 3 chee pS eee s s 

i 
at 
| 
) 5) eas 10.11.13) 

equations (43) and (44) become 

@x=—be7Y, » . (43) 

Gos W.  . . (44) 
By division 

any) 
Vom NV 

or Ma 0. 8... AB) 
Hquation (46) has to be solved for s, we this will give the 
critical load. 

The smallest value of s satisfying (46) ; is 

s=10°47 approximately. 
Therefore 

Pe 
64nUK ~10* 

or PP =8 x 3:236 /HnCK 

eo AN EnCK. ko aon (40) 

Case 6.—The beam carries a load W uniformly distributed 

Fig. 5. 

Plan of Central Line AB. 

along its length, is quite free at one end, and held rigidly at 
the other. 
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Let w be the load per unit length, so that 

W=uvul. 

The origin is taken at the end B, x being measured to- 
wards A, and y upwards in the figure. TRg is the tangent 
at R. 

Consider the equilibrium of the portion RB of length Be 
The moment about Rr of the weight RB is 4wa’, and this 

has a component about the depth of the twisted section at R 
of magnitude 4wx?r. This causes bending in the zy plane. 

Therefore 
2 

bo == —— Sry ee ae ee 

Let the coordinates of Q be (2’, y'). Then the twisting 
couple on the section at R due to the weight wdz’ near Q is 

wdx' X Qg. 

Since 7 decreases as w increases it follows that the total 
twisting couple at R is 

dt id | 
= Kn = ( “wQgae’ ey oN) 

Differentiating this with respect to the upper limit «, 

dr te ade 
—Kn73 = E ; Qa +0 Ee 

But Qq = y—y'—rq' xtand 

Bee iy uae, 
YY = (x wa 

whence ee ao ay d?y 
£ (4 q)= ee Oe ee 

and | val Wa 

Therefore 
ar “eB g? 

5 ee —w \ (e—a!) dar! 

ae : 
= = wires | 22" —ir | 

od?y =—twe FPR 
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From equations (48) and (50) we get 

d? : 
n qa =~ THO" ES 

i = = — m°a*r, (52) 

where Bak fe BP 
1 =D ey ar ac (53) 

The solution of (52) in series is 

méxo my? 

Bo ee | 
mx? m2 gl? | 

tae | 1— erg 1h . (54) 

At the free end, where z is zero, the twisting couple is 

zero ; that is, a is zero. This makes a,=0. 

At the other end, where 2=1, the twist 7 is zero. 
Therefore 

0 l m*[6 m2] 2 8/18 

math | 5. elinetee 5.6.11 12.17.18 *°""* 
The smallest root of this is 

m&l6= 41°30; 

that is, wae es, 
iRnGiegh 

from which Wi =2 /41°30 V EnCK 

meee V MnOK..°. 2 . (55) 

Case 7.—The beam carries a total load W distributed as a 

Fig. 6. 
f Yovu) F ‘awl 

A R B 

Plan of Central Line. 

uniform load w per unit length and is supported at tle ends 
as in, Case 4. 
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Here the origin is taken at one end A, and y is measured 
towards the side to which the beam buckles. For the 
point R on the central line Ar=a, Rr=y. 
A pair of couples N act at the ends in this case to keep 

the twist zero there. 
The moment about R» of the forces on the part AR is 

twle—4w2’. 

The component of this about the depth of the twisted section 
at R is 

4wa(l— 2x). 
Therefore 

ay. 
EC 3 = — pwa(l—2)r. a OS), 

The twisting couple at R due to the uniform load on AR 
is expressed by the same integral as in the last case. The 
twisting couple due to the force and couple at A is 

di 
N—uwl (y—#%2). 

In the present case 7 increases as x increases so that 

positive. The total twisting couple at R is 

at d 2 
Kn =N— tel (y—2 | + wQgda= ot) 

Therefore 

> 

dx 
1s 

d?r dy d* 
Kn 73 = ula, 00 

2 

=twa(l—2z) a 

Wiaul! 2. 2 =— FRG" U2), ra 6h 5) (SS) 

and consequently 
d? 

= Salar, on 

where BON oN Ug 
We CK °c 

Putting X = #—%Jl, 

thus measuring X from the middle of the beam, our dif- 
ferential equation becomes 

d? 

ie = —m?(X?—4/?)7, : ; y i (61) 
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Now putting 
X = lls 

a get a?r m*(6 Lt ae 
ds? 64 

israel Tt ke a Ny) 
where 

5 ws 
~ 16?EnCK o . ° . ° . (63) 

We want a solution of this last equation which will make + 
a maximum at the middle of the beam, where s=0, and t zero 
at the ends, where s= +1 or where s?=1. 

Assuming 
T=Ay taps? +a,s* tagsot+ . 2. . . (64) 

and substituting in the differential equation we get 

2agt4. days? +6. 5agst*+ 

= —6?(s°— 2s? + 1) 3a +098" + ays + agse+ ....h. 

Hquating coefficients of like powers of s we find 

2a, = —C'Ap, | 

A .3ag = —0?(ag—2ap), | 

6 .5a, = —C?(a4—2ag+a),  F (65) 
8. Tag = —c?(ag—2a,t+ a2), | 

ete. 4 

By means of these equations each of the coefficients can 
be expressed as the product of ay and a function of ec. 
Thus 

Css eet 4), ey ee ee ae OM Cee) 

S Since this involves only even powers of s it follows 
that + must be either a maximum or a minimum when 
s=(, and if we choose the proper value of c then r will be 
a maximum. 

To make tr=0 when s=+1 we have to satisfy the 
equation 

C= 1-6 |. ie cee (67) 

or 

Opa te oe) ky GRD 
Tos Oy hy 

The terms z a etc. are functions of c? only, the 

Phil. Mag. 8. 6. Vol. 36. No. 214. Oct. 1918. Y 
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numerical values of which are quickly calculated for a 
given value of c? by means of equations (65). If we write 

Goi) ce Cee Kes Dt aa 

then /(2), f(3), f(4), can be calculated and the results 
plotted. The curve gives an approximate root of equation (68). 
The rootis, in fact, very near 3. By this process and then 
by successive approximations it was found that 

@=31381. +)... 
Therefore 

wl = 16/3131 / EnCK ; 
that is 

WP = 28°31 V7 Hn Kk. eee 

The foregoing are the simplest cases. There are still 
many more cases to be worked out, as, for example, the 

' beam with uniform load and clamped ends ; the beam with 
a single load not equidistant from the ends; or again, the 
cases of a load applied at the top or bottom of a section 
instead of at the middle of a section. But most or all 
of these new cases will lead to troublesome equations for the 
critical loads, such equations as Case 5 led to, or worse. 
Time and assiduity are, however, all that are necessary for the 
solution of fresh cases. 

It ig worth while to make one comparison with Euler’s 
strut formule. 

The critical thrust R, applied at each end of a rod of 
length /, for which the rod just fails when the ends are not 
constrained in any way, is given by 

R? = w7EC. 

Thus R is proportional to the flexural rigidity of the beam 
and to the inverse square of the length. 

The case of buckling that may be compared with the strut 
is Case 4. Here ‘ 

P? = 16°94 / ECKn. 

Thus P is proportional to the geometric mean between 
the flexural rigidity EC and the torsional rigidity Kn, and 
to the inverse square of J. Also 

oe Be ety AG 
7 ee EO a 1°704 EC" 

That is, the ratio of the buckling load to the Huler thrust is 
proportional to the square root of the ratio of the torsional 
rigidity to the flexural rigidity. 
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XXXII. A proposed Hydraulic Experiment. 
By Lord Rayuziex, O.1., F.RS.* 

ote an early paperf Stekes showed “that in the case 
a homogeneous incompressible fluid, whenever 

uda + he, ae is an exact differential, nee only are 
the ordinary equations of fluid motion satisfied, but the 
equations obtained when friction is taken into account are 
satisfied likewise. It is only the equations of condition 
which belong tothe boundaries of the fluid that are violated.” 
In order to satisfy these also, it is only necessary to suppose 
that every part of the solid boundaries is made to move with 
the velocity which the fluid in irrotational motion would 
there assume. Thereisno difficulty in the supposition itself; 
but the only case in which it could readily be carried into 
effect with tolerable completeness is for the two-dimensional 
motion of fluid between coaxial cylinders, themselves made 
to rotate in the same direction with circumferential velocities 
which are inversely as the radii. Experiments upon these 
lines, but not I think quite satisfying the above conditions, 
have been made by Conette and Mallock. It would appear 
that, except at low velocities, the simple steady motion 
becomes unstable. 

But the point of greatest interest is not touched in the 
above example. It arises when fluid passing along a uniform 
or contracting pipe, or channel, arrives at a place where the 
pipe expands. Itis known that if the expansion be suffi- 
ciently gradual, the fluid generally speaking follows the 
walls, or, as it is often expressed, the pipe flows full ; and 
the loss of velocity accompanying the increased section is 
represented by an augmentation of pressure, approximately 
according to Bernoulli’s law. On the other hand, if in 
order to effect the conversion of velocity into pressure more 
rapidly, the expansion be made too violently, the fluid refuses 
to follow the walls, eddies result, and mechanical energy is 
lost by fluid Friction. According to W. Froude’s generally 
accepted view, the explanation is to be sought in the loss of 
velocity near the walls in consequence of fluid friction, which 
is such that the fluid in question is unable to penetrate into 
what should be the region of higher pressure beyond. 

It would be a difficult matter to satisfy the necessary 

- * Communicated by the Author. 
t+ Camb. Trans. vol. ix. p. [8], 1850; Math, and Phys, Papers, vol. iii, 

p. 73 
Ve 
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conditions for the walls of an expanding channel, even in two 
dimensions. The travelling bands of which the walls would 
be constituted should assume different velocities at different 
parts of their course. But it is quite possible that a very 
rough approximation to theoretical requirements would 
throw interesting light upon the subject, and I write in 
the hope of pursuading some one with the necessary 
facilities, such as are to be found in some hydraulic labo- 
ratories, to undertake a comparatively simple experiment. 

What I propose is the observation of the flow of liquid 
between two cylinders A, B (probably brass tubes), revolving 
about their axes in opposite directions. The diagram will 

sufficiently explain the idea. The circumferential velocity 
of the cylinders should not be less than that of irrotational 
fluid in contact with the walls at the narrowest place. The 
simple motion may be unstable; but, as I have had occasion 
to remark before”, the critical situation would be so quickly 
traversed that perhaps the instability may be of little 
consequence. If no marked difference in the character of 
the flow could be detected by.colour streaks, whether the. 
cylinders were turning or not, the inference would be that 
Froude’s explanation is inadequate. In the contrary event. 
the question would arise whether practical advantage could 
be taken by specially stimulating the motion of fluid near 
the walls of expanding channels, e. y. with the aid of 
steam jets. | 

* Phil. Mag. vol. xxvi. p. 776 (1913). 
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XXXII. A Dijiraction Problem. Supplementary Note. 
By KR. HARGREAVES"™. 

CORRESPONDENT writes with reference to my 
paper in the August number, “ Your formula in terms 

ot one potential applies I presume to electric waves as well 
as sound waves, when oblique.”” The formula does apply 
to electric waves ; the function which for sound is a poten- 
tial, is for electric waves a stream function. Also where 
the incident wave implies a third dimension, something 
more than the normal use of a stream function is involved. 

As no reference to electric waves was made in the paper, 
it may be of advantage to supplement it by showing how 
the electromagnetic quantities are derived from the func- 
tion, and what is the polarization in each case. The plane of 
polarization is, in general, subject to deflexion : a test could 
therefore be made by the use of short electric waves and a 
metallic screen fT. 

§1. If independence of z is assumed in Maxwell’s equa- 
tions of types 

LM Oeeprmacs: Ob 

Voge, | 0: (1) 

and 

Wideen Sere ks (2) 

the first two of (1) are equivalent to expressions for cXY in 
terms of wf, viz., 

mee Or Oy a he ey Ai” x Sy Y= ae LZ) a=O b= 0.) (a) 

The third equation of (2) then gives 

LO on.) 0’ A) 
Va ~ O27 or” 

The components Zab are unconnected with cXY, and may 

* Communicated by the Author. 
+ My correspordent is Sir Joseph Larmor, to whom I am indebted for 

the suggestion of this experimental test, as well as for the reminder that 
it may be of service to the physicist to make an explicit statement on 
the electrical problem. 
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be taken as zero to form the system written in (3a). The 
form of (3a) and the connexion with the diver gence equa- 

tion = of 5 -0 for Z=0, show that w is a stream 

function in two dimensions. The condition oF on the 

barrier gives X=0 as wellas Z=0,7 e., tangential electrical 
action vanishes. For sound waves where w is a potential, 
this is the condition of no velocity at right angles to the 
barrier. 

Also the use of Wo= cosk(Vt+a sin cue cosa) in (3a) 
for the incident wave, makes 

c=—ksink( ), X=—kcosasink( ), Y=ksinesink( ). 

The electric vector is therefore perpendicular to the axis of 
z and of amount 

Y sina—Xcosa=ksink(Vitasina+ycos 2). 

A second group has 

Lag evan By — a= SS SO ES X= y= i b Z, Tae? a ae 0, 0, Y=0.0) (ae 

Here the condition oy =( gives a zero value for tangential 

electrical action on a barrier, while for sound it gives zero 

pressure. The electric Beto in the incident wave is 

parallel to the axis of <. 
To deal with an arbitrary plane of polarization, we 

may write Wwo= cosycosk(Vt+asine+ycosa) in (8a), 
sinycosk ( ) in (3b), and add the values of XYZ derived 
from the two solutions. For the incident wave then 

X=—k cos acosy sin k(Vi+a sin a+ycos ae), 

Y=ksinecosysink&( ), Z=—ksinysin X( ). 

§ 2. Where the incident wave is 

y= cos k(Vt+le+my+nz), 

there cannot be complete independence of zas in the preceding 
work. It isa matter of intuition to perceive that the rdle of z 
is limited to its phase-effect. os mathematical expression 

of this limitation is that o =! V 2 in the equations (1) 
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and (2). The first case is now 

x= Oh y.—St, zo; 
OY x 1-7? PS) 

=n, boa—nX, c= - V a 2) ea) 
where 

Lan? By Dy | DY 
eA ae 02" Oy’ 

or 1 oy _ ow 1 On O° ae (6) 
V2 primo. Oy" + 32 Cea ae 

Thus, for example, the first of (2) is 

hoe ahr 20% 
V Ot: Cea Of? 

‘The polarization corresponds with that for (3a) and the 
electric vector in the incident wave is 

or a=ny. 

(WY —mX)/ V1—n®, or ky/1—n? sin k( Vit le + my+nz). 

The second case is 

Ov b= ow 60); Oy I oz 

Om i 1 GA X= —nb, Y=na, Z= Vv ee (5B) 

Here X=—n ee, and when > or oy is made to vanish 

for all points of the barrier, X and Z also vanish. In 
the incident wave X=hkinsink( ), Y=kmnsink(_), 
Z=—h(1—n*\sink( ); the magnetic vector is perpen- 
dicular to the axis of z, the electric vector has direetion- 
cosines 

{In, mn, — (1—n?)}/ /1—n?, 

and is of amount kV 1—n’? sin k(Vt+la+my+nz). 
It is clear that (6) corresponds to the solution given in 

the paper, and that the same modification is applicable to 
other plane problems to meet the case where the incident 
wave has motion in a third dimension. 
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XXXII. The Scattering of Light by Air Molecules. 
By The Ton. R. J: STRUTT, Phas 

ROF. R. W. WOODf has made some comments on my 
paper on this subjectt to which it seems desirable to 

reply. I may say that at the time the paper was written 
I was fully aware of the pitfall which Wood refers to. J was 
working in the Cavendish Laboratory at the time that 
C. IT. R. Wilson made his experiments there on the preci- 
pitation of clouds from moist air by ultra-violet light §, and 
have always borne in mind that this might occur, even with 
air that had been passed over phosphorus pentoxide: for 
complete drying is known to be a slow process. 

On referring back to my paper, I see that I did not 
adequately explain the precautions taken on this point: 
thus Wood’s demand for more evidence is quite justified, and 
it only remains to meet it. 

Many of my experiments, including some of the earliest, 
have been made with a glass lens (a cheap plate-glass 
lantern condenser), and the visual intensity of the scattered 
light was not perceptibly less than with the quartz one, 
though I did not attempt any strictly quantitative comparison. 
I also found that a cell of quinine solution, which cuts out all 
rays more refrangible than 4000, made no difference to 
the visual intensity, though naturally it reduced the photo- 
graphic intensity considerably. 

Another test often employed (and this 2s mentioned in my 
published paper) is to have a rapid current of filtered air 
going through the apparatus. This would prevent the 
accumulation of fog, and should at any rate greatly reduce 
the intensity of the scattered light, if due to fog; but in fact 
the intensity was the same as when the air was still. 

In later experiments in course of publication by the Royal 
Society, I have worked with a variety of gases other than air, 
and in some cases the formation of fog has proved troublesome. 
There is not much uncertainty in practice as to whether a fog 
has been formed or not, in any given case; for in a series of 
exposures, the intensity varies with time, as Wood remarks. 
Frequently, too, a streakiness is observable in the photo- 
graphed image of the scattered beam. I have gone into 
these questions more fully in the paper referred to, which was 

* Communicated by the Author. 
t+ Phil. Mag. vol. xxxvi. p. 272, Sept. 1918. 
t Proc. Roy. Soc. A. vol. xciv. p. 453 (1918). 
§ Phil. Trans. A. vol. cxcii. p. 412 (1899). 
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communicated to the Royal Society early in July. It is 
shown in that paper that the intensities from different 
gases are pretty closely proportional to the square of their 
refractivities as theory requires. Obviously this result 
could not be reconciled with the notion that the effects were 
spurious. 

I do not think it is surprising that Wood could not observe 
any effect visually, in the absence of a fog. He does not tell 
us what was the photometric intensity of hisspark; but unless 
with very special arrangements, it would probably not be 
more than a few candle-power. The are I used was perhaps 
a thousand times as much: and even with that the scattered 
beam was not more than 20 times the minimum visible with 
well rested eyes. Thus the genuine effect would probably be 
considerably below the limit of visibility under the conditions 
of his experiment. 

Finally, it may be asked, why did I not obtain a fog in air, 
when using a quartz lens, whereas Wood did obtain one? 
Probably because of the richness of his source in extreme 
ultra-violet rays. 

XXAIV. Hastie Solids under Body Forces. 

By WD. Nepean ScD: #R AS E* 

il a equations of equilibrium of an isotropic solid under 

body forces (X, Y, Z) are 

(A+, w( 2, S OVA tHV% aon) p( XN; L)=0; (1) 

where A is the cubical dilation, 

u, v, w, displacements, 

pm is rigidity, 

and + 4u= modulus of compression. 

Differentiating (1) with regard to w, y, s and adding, we 
get, since 

Ou av Ow 

ou Oy Oy ED a 

ex (0Y 04 2 - = (A+2u)V*A+p cS 25, + 52) 0. 

* Communicated by the Author. 
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Hence 

Me Poe x OY! Oe dal i dz' 

Am eae 7m On v a r " 

the integration extending over all space Vda’ a yl de 
Integrating by parts, 

| ay dz' + +]. 

(7) we oh SUL DL dean imate | 1% Sa! + + j dx dy’ dz’, 

DNS ae + 2u 

where r= (w— a’)? + (y—y')? + (2—2')?. 

Now, since Sate & 

Be be”? ®° 
1 

=F, oe, + | de’ dy’ dz 
 Agr(A+ 2p) \ On \ cea 

if the surface integrals vanish on the implied condition for 
the existence of body forces alone. 

If X’, Y', Z’ are constant over a sphere of radius a, and 

| P dx! ay) dz =e ; 
then, since 

V= Sor pe if R>a where Rate 

and is = 2rrp(3a’—R?*), if R<a, 

p / o ) ie mat ), b= 3 ne aoe ater Le (R>a, Rea). 

For an ellipsoidal distribution (uniform), we shall have 

A=; 3 (A ee +) ie Q-4y- - 

dn 
i ve (BF +2) (2 +r)}” 

a 2p Ye an = or ws (where 2" can tas ey 

according as the point is inside or outside. 

Po Te ee ee a as os 

ee 
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2. Returning now to the equations for displacements (1), 
let us put U=Uj tu, &e., 

so that w72u, + (A+ pL) oA =) 

and BYU, + pX=0, 

Let further A=V’"¢, 

where @ is a function of a, y, ¢ to be determined. 

ee pr +Ortn) SF =0 SC., 

as a particular solution, as also 

ee x ie ae a Ug = 2) : dx' dy’ dz’. 

Again, since 

0 J 

2 Sys da! dy' dz! 

= Pe ee ° de! dy! de $ oe St + f dal dy! de 

y= 
(At+p)p Oo AS) 

Tru eee 
Hence finally 

_ p(x Ate)p 0 re oA da! dy) de! — oe anes pata +) de dy ae | 

The result was originally obtained by Lord Kelvin. His 
method was to find uw, v, w for a distribution of body 
forces through the volume of a sphere as a potential problem 
and then reduce the sphere to a point. [See also Love’s 
‘ Hlasticity.’ | 

3. In the case of uniform distribution of body forces through 
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a sphere of radius a, we have to evaluate |X! da’ dy' dz' 
over a sphere. For a point outside, this is 

f ie 
TN ro sim ae: 

; + 

where 7, 7) are the distances of the point at which the 
displacements are to be found from the surface, measured 
in the direction 6, and R the distance of this point from the 
centre. 

Now, since 7,, 7, are the roots of r?+ R?—2rR cos 0 =a’, 
the integral becomes, putting a? — R? sin? =O, 

9) 7 0 

zs | ©{40 +2(R2—a?)}dO 
az 

if R>a, taking p=1, 

3y!/ 3 { : ee 2 (oe +)(Re+ Fat). oy 3u or 6M 2") Oz Ow 

if R<a, 

\r da' dy' dz' over a sphere, 

Ty 4 4 

=| ga a sin 6 dé, 
0 4 

where 7;, 7, are the roots of 7? —Rrcos 6+ cos 0=a’. 

Be Pet ee 
This is =—7 ce —> a? Ra" ) : 

owe 

4. If X', Y', Z’ are derived from gravitational potential, 
we may take 

fees ! 

Or (2 OG 

Or O02 
since X , and we have to evaluate, 

(> da! dy' dz’ {se ; — 22> dx' dy' dz'. 
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The first is = — at da’ dy' dz! 
0 

sin~ | g 

fe) rp—re. 
<i. Que eae miner. g sin 0 dé 

(with the same Seen as before), 

=" oe ip {1602+ 160p' +3p"}/O, 

where a’?—R’sin?0=9, as before, 

and h?—a@=p)', 

re) os 16 16 ) ee So ey (eae anita pe) 12 a EB (7 ut eete ie 

R being greater than a. 

5. For an ellipsoidal distribution (uniform) we have to 
evaluate 

2 
2. r dx’ dy’ dz’ 

over an ellipsoid. 

Sah vis (6 or Pope get 
This lis = ~ehoe dy dz 

al eee 

= 2 {eV-V.}, 
where 

/ E 

= =potential due to a uniform distribution 

a =mate| (1- aay oh 
ae 

and Vax (Ede dy' dz’ 

= potential due toa distribution of density varying as & 

fe 
=7ra ee oy OG oan . 

and Q?=(a?+A)(b?+A)(C7 +2). 
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6. { 
q Sas ot ke, = ordi 

we have to evaluate 

oA rat’ da! dy' dz’. 

e— a! 
This is = ( “dg dy idee 

, 

=wV,—V., 

where V,2= potential due ‘to a distribution of density 
varying as 2 

aa? EF an 

a+r } (a2 +2)Q’ 

a ae ae LY Rt 

ee ee eS ee 

=arbde | {aa .H?2+ 

and 
pe { ihe Coie" \ [ Routh, ‘Statics,’ 

a GEN GN ce? EN vol. i1.] 

A generalization of the above theory as well as its appli- 
cation to the case of the earth will be considered in a later 
paper. 

XXXV. Atomic Structure from the Physico-Chemical 
Standpoint. By ALFRED W. Stewart, D.Sc.* 

afl Hata theories put forward up to the present with regard to 
the structure of the atom have been based mainly upon 

physical data; but since the problem is a two-fold one, it 
appears possible that further light may be thrown upon it by 
a consideration of the chemical side of the question. Neither 
view alone will suffice to cover the whole ground ; and the 
following is put forward with the idea of showing the 
essentials of the matter from the chemical standpoint, in the 
hope that it may prove suggestive to those who have hitherto 
regarded the problem chiefly from the physical aspect. 
Any complete theory of atomic structure must account for 

the following facts concerning the elements :— 

(1) That a- and B-ray changes are independent processes. 
(2) That the electrons involved in valency changes oc- 

curring during ordinary chemical reactions originate 
in a region of the atom different from that occupied 
by the electrons which are ejected during (-ray 
changes. 

* Communicated by the Author, 

] 
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(3) That the “‘ valency” electrons are easily removable in 
chemical reactions; whilst the §-ray electrons are 
ejected spontaneously.and cannot be withdrawn from 
the atom by any process under our control. 

(4) That the atomic number of an atom can be altered by 
either an a- or a @-ray change. 

(5) That in ana-ray change the ejected material is always* 
a helium atom carrying two positive charges. 

(6) That a change in the valency of an element produced 
by chemical means alters the chemical properties of 
that element in a manner similar to that which is 
observed when a §-ray is ejected ; but that there is a 
difference in degree between the effects produced in 
the two cases. 

(7) That certain atoms possessing different atomic weights 
show the same chemical properties, whilst other atoms 
having atomic weights identical with one another 
exhibit totally different chemical characteristics. 

The model atom which will now be described covers 
these points; and it appears to possess certain features of 
novelty. 

At the centre of the structure is a group cf negative 
electrons travelling in closed orbits which, for the sake of 
clearness, may be assumed to be circular. Closely sur- 
rounding this negative group lies another series of orbits 
occupied by positive electrons t which, in some cases, are 
associated with negative electrons in a manner to be dealt 
withlater. These orbits areassumed to be circular also: their 
extreme diameter may ke taken, according to Rutherford’s 
viewi, as not being greater than 107’ cm.; and, as in the 
Rutherford atom, the mass of the system is assumed to be 
concentrated in this portion. Further still from the centre, 

_ other electrons move in orbits of an elliptical character, the 
ellipses being much elongated, so that the electrons travel 
in paths like those of comets in the solar system. The 

* The neon discovered in certain mineral springs is not yet proved 
to be of radioactive origin; and it is therefore left out of account 
here. 

7 This assumption as to the relative positions of the positive and 
negative zones is made purely for convenience. ‘The general argument 
is not affected by an inversion of their positions, or even by assuming 
that they form a kind of double-star system, 

t Rutherford, ‘ Radioactive Substances and their Radiations,’ p. 621 
(19138). 
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general appearance of the atomic mechanism is shown in 
hoy dl: 

ron) 

Fig. 1. 

. Orbits of negative electrons. 
. Orbits of positive electrons. 
Cometary electronic orbits. CO bh 

It is now necessary to consider each part of the system in 
detail. The central negative core is the point of origin of 
the §-rays ; and since the electrons ejected by the atom 
during the 8-ray changes travel at extremely high velocities, 
although they have passed through the positive zone during 
their flight, it is simplest to assume that under normal con- 
ditions they are moving at high speeds in their intra-atomic 
orbits. Charges moving with such high velocities would be 
difficult to deviate from their normal paths by external forces; 
and this accounts for the fact that chemical reactions fail to 
affect the intimate chemical structure of atoms. During 
phases of atomic instability. however, these electrons would 
leave the atom at high speeds. 

The intermediate positive zone of the atom is occupied 
mainly—and in the non-radioactive elements exclusively— 
by positive electrons, the number of which is equal to the 
atomic number of the element. In the case of radioactive 
elements, a further complication most be postulated in order 
to account for the ejection of x-particles. In the case of 
these active elements it is assumed that in the positive zone 
some of the orbits are occupied by complex groups composed 
of two positive and one negative electron which together 
form a “ planet and satellites’ arrangement circulating as a 
whole about the central negative core. The number of these 
complexes depends upon the nature of the atom in question : 
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in the uranium atom, since it ejects eight «-particles in suc- 
cession, there will be at least sixteen such systems. The 
ejection of the charged helium atom is supposed to take place 
when two of these complexes collide with one another either 
owing to a crossing of their orbits or by a disturbance of the 
stability conditions within the atom; and the collision pro- 
duces a group of four positive and two negative charges, the 
arrangement of which will be clear when the next zone of 
the atomic structure has been considered. 

The atomic number of the element and the general chemical 
character of the atom are governed by the nature of the two 
inner sections of the atomic system. A change in either the 
negative core or the intermediate positive zone alters the 
nature of the intra-atomic system and thus brings about a 
modification of the structure as a whole. 

The external zone of the atom is the portion influenced by 
normal reactions resulting in chemical change or alteration 
in valency. The assumption that the orbits of the electrons 
in this zone are cometary in ty pe has been made for the 
following reason. When the “ cometary ” electrons in their 
paths about the centre of the atom reach a position of aphelion 
to the nucleus, they will be travelling slowly in their orbits 
and hence will be less resistant to forces tending to remove 
them from the atom. Further, since they are far away from 
the centre of attraction a alen these conditions, the forces 
uniting them to it will be weakened ; and it will be possible 
to abstract or insert electrons at this point much more readily 
than is the case with electrons in either of the other two 
zones. ‘This serves to account for the ease with which the 
valency of certain elements can be altered by chemical or 
electrical means. In the case of elements which show no 
changes of valency, it may be assumed that the electronic 
orbits in the outer zone are more nearly circular inform than 
is the case with elements exhibiting variable valency. The 
inertness of the argon series is accounted for by assuming 
that in their case the attraction of the nucleus under normal 
conditions is insufficient to retain any electrons in an external 
Zone, 

At this point it may be well to indicate the conditions of 
attraction within the systems of ordinary elements; and the 
point may be illustrated by means of a metallic atom such 
as tin. In this case, the negative charges at the centre are 
assumed to be fewer in number than the charges in the 
positive zone. Owing to this preponderance of positive 
charges, the positive-negative nucleus as a whole will have 
a positive charge; and, acting as a unit, it will suffice to 

Phil. Mag. 8. 6. Vol. 36. No. 214. Oct. 1918. Zi 
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retain in their orbits the ‘‘cometary ” negative electrons 
which circulate around it. 

With regard to the expulsion of charged helium atoms 
from radioactive elements, it is assumed that the a-particle 
consists of four positive and two negative electrons: the pair 
of negative electrons being situated at the foci of an ellipse 
around the circumference of which two positive charges 
revolve. The extra pair of positive charges travel in longer, 
“cometary ” orbits; so that they are easily detachable when 
in aphelion. It must be admitted that there is a difficulty in 
accounting for their attraction by the atomic nucleus, which 
in this case is electrically neutral ; but as this attraction is a 
matter of practice and not of theory, it must be admitted as 
possible even if no theory can be adduced to account for it. 

The formation of the a-particle is due, as has been said, 
to the collision of two systems each containing two positive 
and one negative electron. ‘This does away with the necessity 
for postulating the presence of actual helium atoms within 
the structure of radioactive elements, an hypothesis which is 
fraught with difficulties owing to the fact that the helium 
atom has a volume of 26°6, whilst the uranium atom, which 
emits eight helium atoms, has a volume of only 12°8. The 
collision hypothesis also accounts for the presence of the two 
extra positive charges which invariably accompany the helium 
atom in its ejection. 

In this model atom, as in most others, the valency of an 
element is taken as the difference between the total positive 
and the total negative charge of the atom; but the variation 
in valency caused by a- or B-ray changes is assumed to be 
brought about by alterations in the inner zones of the atomic 
structure, whilst chemical changes of valency are accounted 
for on the assumption that the number of the electrons in the 
cometary orbits is altered. No definite conclusions can be 
drawn with regard to the relative numbers of electrons in 
the various zones, beyond the suggestion put forward above 
that the number of electrons in the innermost negative core 
of metailic atoms is less than that of the electrons in the 
intermediate positive orbits ; though probably, as Soddy has 
indicated, the surplus number of positive charges in the two 
inner zones combined is equal to the atomic number of the 
atom. 

In order to test still further this conception of the atom, it 
is necessary to examine evidence in a different field. Among 
the radioactive elements, two classes can be distinguished. 
In the first place there are certain groups of elements which 
are chemically inseparable out which differ from one another 
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in atomic weiglit. Since they are chemically indistinguishable 
from each other, they occupy the same place in the Periodic 
Table ; and on this account Soddy named them isotopes 
(from isos equal, and topos a place). A second type of 
the radio-elements is exemplified by mesothorium-1, meso- 
thorium-2, and radiothorium. These elements differ com- 
pletely from one another in chemical character ; but they 
ail possess the same atomic weight. Tor this reason the 
name isobares* (from zsos equal, and baros weight) is here 

suggested for them. 
These isobaric elements result from the operations of 8-ray 

changes in the radioactive series; and the generation of one 
element from another in this way is spontaneous and 
irreversible. On the other hand, a somewhat similar process 
occurs among the non-radioactive elements when an atom 
changes its valency; but in the latter case the process is 
controllable in the laboratory and is reversible under proper 
conditions. The two actions, then, are not identicalt; but 
they appear to display a certain parallelism which is of con- 
siderable importance from the point of view of atomic 
structure. Unlessa model atom is capable of throwing light 
upon this matter, itis evidently incomplete; and as the point 
forms a crucial test of the theory of atomic architecture, 
some details of it are given here, though the merest outline 
must suffice. 

Ferrous iron and ferric iron will serve as a convenient 
example of the effects of changing the valency of an element 
by chemical reactions. Ferrous iron is divalent, whilst 
ferric iron is trivalent: the absorption spectra of the two 
materials are different from each other; and in chemical 
properties ferrous iron shows a close analogy with mag- 
nesium, whilst ferric iron is akin to aluminium in its 
reactions. A difference in chemical character such as this 
should, according to modern ideas of the atom, involve 
certain changes in the atomic nucleus; but at the same 
time it is hard to imagine that any changes in the nucleus 
can occur in ordinary inactive elements. 

Turning to the case of the radioactive isobares, it is found 
that a very similar state of things prevails. Mesothorium-1 
is divalent and resembles in its chemical relations the 
members of Group II. of the Periodic Table, which also 
contains magnesium. Mesothorium-2 is trivalent, and shows 
a close kinship with elements in the aluminium group. 

* TIsobars would be a better word, but unfortunately it is already in 
use in meteorology. 

+ Soddy, ‘ Nature,’ xcii. p. 899 (1913) ; Fleck, Chem. Soc. Trans. cv. 
p. 247 (1914), 

Z 2 
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At first sight the main difference between the two phe- 
nomena appears to lie in the fact that the @-ray change is 
spontaneous, whilst the chemical change of valency is a 
controllable process; but even the spontaneity of the @-ray 
change finds its parallel among certain of the stable elements. 
Thus when the chloride of monovalent indium is dissolved in 
water, it is spontaneously converted into metallic indium and 
the chloride of trivalent indium. Reduced to its essentials, 
this change corresponds to the loss of two negative electrons 
from two of the monovalent indium atoms; and no external 
forces are required to bring about the phenomenon*. The 
case of indium is not an isolated one, as this type of reaction 
appears to be the most general which is exhibited by inorganic 
compounds. 

Another parallelism between the @-ray change and the 
conversion of an ion into a new one of higher valency may 
be adduced. In several cases, elements are found which exist 
in monovalent and trivalent forms, or in the divalent and 
quadrivalent condition only, instead of yielding a complete 
series of mono-, di-, tri-, and quadrivalent varieties. Thus 
thallium forms the chlorides TIC] and TICI;, but does not 
give rise to the intermediate TIC],. It may be asked why 
these intermediate forms are not isolated when electrical 
charges are removed step by step from substances of lower 
valency. 

The state of affairs among the radio-elements throws some 
light upon this point. The conversion of TIC] into TICl, is 
paralleled by two consecutive 6-ray changes in the radio- 
elements; and in the following table the results of such 
successive changes are given. These examples have been 
selected in which no disturbing factor in the form of an 
alternative a-ray change occurs. The figurest give the 
average life of the element. 

NE Tey 
Group N change ———-> Group (N+.1) ee Group (N+2). 

Uranium-X, Uranium X, Uranium-2 

39°95 days 1:65 minutes 3x 10° years 

Mesothorium-1 Mesothorium-2 Radiothorium 

7-9 years 8°9 hours 2°01 years 

Radium-D Radium-E Radium-F 

24 years 7:20 days 196 days 

* Even when solvent action is assumed, the spontaneity of the change 
retains its importance from the present point of view. 

+ Soddy, ‘The Chemistry of the Radio-elements.’ 
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Hxamination of the figures shows that the intermediate 
product in the double @-ray change has an average life very 
much shorter than those of the parent and the disintegration 
product. Applying the same reasoning to the ease of the 
salts of thallium, it might be expected that when monovalent 
thallium loses an electrical charge and passes into divalent 
thallium, the latter substance readily loses an electrical 
charge and changes almost immediately into trivalent 
thallium, the intermediate stage TIC], being too unstable 
for isolation. 

Looking at the matter in its essentials, it is clear that both 
the @-ray change and the alteration of valency by chemical 
means produce a marked change in chemical character which 
is similar in both cases; and a true theory of the atomic 
structure must account for these phenomena. 

The model atom described above furnishes a satisfactory 
explanation of the facts. In their paths, the ‘ cometary ” 
electrons periodically come into close proximity to the 
positive-negative system of the nucleus; and while they are 
in this position they will affect the centre of the atomic 
structure just as if they were travelling in the innermost 
negative orbit. In other words, at this stage in their career 
they behave as if they formed part of that portion of the 
atom in which the general chemical character is supposed to 
reside. At the same time, since their presence in this 
position is only periodic and temporary, they will not exert 
so much influence as is produced by the electrons of 
the innermost zone, which are always in touch with the 
positive electrons and which thus exert a permanent effect 
upon the atomic character. | 

This hypothesis, therefore, accounts for the fact that 
changes in the valency of an atom induced by chemical 
reactions do not completely and irreversibly alter its cha- 
racter as do modifications due to the expulsion of an e- ora 
8-ray; for in the last case the change takes place in the very 
core of the atomic structure, and its results are deep-seated 
and permanent. 

Thus the model atom furnishes a solution of the questions 
arising from the chemical resemblances traceable between 
the uranous salts and the salts of thorium. The atomic 
number of thorium is 90, whilst that of uranium is 92; so 
the two elements are not isotopic. Uranium occurs in the 
hexavalent form and also in another modification which is 
quadrivalent like thorium. Quadrivalent uranium resembles 
thorium with a closeness approaching isotopy; but the 
similarity does not reach the point of identity, since the two 
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substances are separable from one another by chemical 
means*. Qn the above view, the “ pseudo- -isotopy ” is due 
to the influence of the “ cometary ” electrons upon the 
atomic nucleus of which they form a temporary part at 
certain points in their orbits. The removal of two positive 
charges from the intermediate zone of hexavalent uranium 
produces uranium-X,, which is actually isotopie with thorium 
and has the atomic number 90; but the abstraction of two 
charges from the “cometary”’ orbits, although it has the 
same effect upon the total residual charge, is only sufficient 
to bring about a close resemblance between the product. 
(quadrivalent uranium) and thorium ; and is not enough to 
produce total identity and a change in atomic numbery. 

Taken in conjunction with the experimental evidence, the 
model suggests that those atoms which change their valency 
should really be regarded as ‘* pseudo- -elements, ’ since they 
are capable of exhibiting two or more sets of distinct chemical 
characteristics according to the number of electrons which 
revolve in their ‘ ‘cometary ”? orbits. They are not “ meta- 
elements ” of the type suggested by Crookest; for they have 
definite atomic weights. They should rather he regarded as 
a new type of isobares similar to but not identical with 
the radioactive isobaric elements like mesothorium-1 and 
mesothorium-2. 

The dynamic conception of the model atom set forth above 
suggests a possible solution of the problem of the atomic 
weights of the elements, though at the present stage the 
following suggestion must be treated with reserve. 

The fact that negative electrons exist apart from matter 
as we know it, whilst positive electrons are never disso- 
ciated from masses of at least atomic magnitude, suggests 
that there is a close relation between mass and positive 
electricity. Further, the connexion between the two factors 
appears to be strengthened by the recognition that the atomic 
weight of an element is ‘approximately twice its atomic 

* Fleck, Trans. Chem. Soc. ev. p. 247 (1914). 
+ Similar reas oning may be applied to other cases. For example, 

Allen ‘Trans. Chem. Soc. exiu. p. 889 (1918)) has pointed out that the 
“molecular number ” of the ammonium group (NH,) is 11, which is the 
same as the atomic number of sodium: and he has drawn the conclusion 
that this coincidence in value has some bearing upon the known resem- 
blances between sodium and ammonium. Inthe model, the attachment 
of four hydrogen atoms to the nitrogen atom would entail the intro- 
duction of a corresponding number of electrical charges into the 
“cometary ” orbits: and to the effect of these upon the central nucleus 
may be ascribed the change in character of the nitrogen atom. 
¢ Crookes, Trans. Chem. Soc. liii. p. 487 (1888). 
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number. This correspondence in values is, however, only a 
rough one. The ratio of atomic number to atomic weight for 
calcium is found to be 1: 2°00. For strontium it is 1; 2°31; 
for barium it falls to 1: 2°45; for radium it is still smaller, 
1: 2°57; and with uranium it reaches 1: 2°59. In order tu 
connect the number of positive charges in an atom with the 
atomic weight, therefore, it is necessary to provide some 
mechanism which will decrease the ratio of charge to mass 
from 1-2 to 1 : 2°59. 

This can be done in the following way. The mass of an 
electrical charge depends upon the velocity with which the 
charge is moving, provided that this velocity be made 
approximate to that of light. Inthe model atom suggested 
above, it was assumed that the positive electrons were moving 
in their orbits; and if the further assumption be made that 
these charges revolve at speeds comparable with that of light, 
then the masses of the charges will vary according to the 
velocity with which they move*. 

In tlie calcium atom, the positive electrons may be assumed 
to be travelling comparatively slowly; and as the series is 
ascended through strontium, barium, and radium, the intra- 
atomic velocities may be assumed to increase; with the result 
that each positive charge will gain in mass, and thus the 
ratio of charge to mass could be brought into accordance with 
the known data. 

For example, the atomic number of radium-B is 82, whilst 
its atomic weight is 214. If the intra-atomic charges were 
moving within the radium-B atom with the same velocity as 
those of calcium, then the atomic weight of radium-B would 
be 164: so thatit is necessary to calculate the velocity which 
will raise the mass of these charges from 164 to 214. This 
can be done by means of the Lorenz equation :— 

Mo a v" 

G 

in which m, is the mass of the charge moving at a low 
velocity; mis the mass of the same charge at the required 
velocity, v; andc is the velocity of light. Taking my as 
164 and m as 214, the equation yields v=0'64, when the 
velocity of light is taken as unity. 

This velocity may appear very high; but there is experi- 
mental proof that negative electronst emerging from the 

* The same question has been approached from a different standpoint 
by Comstock, Phil. Mag. [6] xv. p. 1 (1908). 

+ Owing to the assumptions made above, it is difficult to deduce intra- 
atomic velocities from the speed of the «-particles. 
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atom of radium-B do actually attain speeds of this order of 
magnitude; for it has been found that the B-rays from 
radium-B travel at velocities ranging between 0:36 and 0°70, 
when the speed of light is taken as unity. The value 0:64, 
calculated from purely theoretical considerations, certainly 
agrees closely with what is actually established with regard 
to those electronic velocities with which we are acquainted. 

The velocity hypothesis furnishes an explanation of the 
case of the isotopic elements which, up to the present, have 
presented an unsolved problem. If it be assumed that in two 
isotopes the internal mechanism of the atoms is identical in 
every way, then the chemical inseparability of the two 
elements can be explained; and if it be further assumed that 
the intra-atomic velocities are different, then the masses of 
the two systems will also differ; all of which is exactly what 
ig found in practice. 

Further, a point of some interest arises when the Geiger- 
Nuttall relation is considered in this connexion. This empirical 
relationship establishes the fact that atoms throughout their 
various stages of disintegration still preserve a feature which 
is characteristic of their origin. ‘This common characteristic 
pervades each of the three radioactive series and differentiates 
its members from those of the other series. It cannot bea 
chemical factor, for the elements belonging to the same 
series differ widely from each other in chemical character. 
It seems not unreasonable to suppose, however, that throughout 
the changes which the radio-elements undergo, one or more 
of the orbits within the atom remain unaffected by the 
process ; and that the velocity of the electrons in these 
orbits may be the “distinctive feature”’ which survives the 
catastrophe of atomic disintegration. 

The foregoing is sufficient to show that the suggested model 
atom meets the demands made upon it from the chemical 
side; and to this extent it justifies further consideration. 
An examination of it from the physical standpoint would be 
‘of interest. In the meantime, it may be pointed out once 
more that this view of atomic structure is to be regarded as 
suggestive rather than constructive. 

The Physical Chemistry Department, 
The University of Glasgow. 
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XXXVI. Atomie Number and Frequency Differences in 
Spectral Series. By Hersert BELL *. 

T is a well-known law f that in the visible spectrum the 
wave-number differences vy between the components of 

a doublet series, and the differences v,, vo between the com- 
ponents of a triplet series vary from element to element 
in such a way that, for the same family (column of the 
Mendelejeff table), the v’s are roughly proportional to 
the squares of the atomic weights. We have, for example, 
in Baly’s ‘Spectroscopy,’ p. 624, the following table t where 
the argument is 1000 v (or v,)/(atomice weight)? :— 

Na 323 Mg688  Al1528 0 145 
eo S | (Categtye  Gal686 8 177 
Rb 323 Sr 515 =n 1721 ~— Se 16°6 
Cs 816 Ba468 Ti 187-0 

If the law were accurate the arguments in the several 
columns would be constant. Perhaps the most thorough 
discussions from this point of view have been given by 
Rudorf § and Hicks ||. 

An attempt was made by Runge and Precht { to show 
that the outstanding discrepancies in the above table, 
e.g. the case of thallium, are removed by assuming a 
different law. They stated that the logarithm of v is linzar 
in terms of the logarithms of the atomic weights. We shall 
have to refer to its correctness later. 

Since Moseley’s** discovery that the square root of the 
frequencies of the X-ray series is linear in terms of 
the atomic number, for all elements, more attention has 
naturally been turned to it than to atomic weight. In 
particular, Runge and Precht’s method was modified in 
this direction by Ives and Stuhlmanf{ with a decided im- 
provement especially in the case of potassium. Their paper 
contains no constants for the straight lines so that the 
agreement is only graphically demonstrated. 

* Communicated by the Author. 
+ Due to Kayser and Runge, and Rydberg. 
t Due to Rydberg, Intern. Reports, ii. p. 217 (Paris, 1900). 
§ Zt. Phys. Chemie, 1. p. 100 (1904). 
| See e.g. Phil. Trans. A. cex. (1910), ccxii. (1912), cexiii. (1913), 

cexvii. (1917). 
q] Phil. Mag. v. p. 476 (1903). 
*#* Phil. Mag. xxvii. p. 703 (1914). 
TT Phys. Rev. v. p. 703 (1915). 
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In connexion with the discovery of triplet differences in 
the Radium spectrum, the Misses Anslow and Howell * have 
reinvestigated the alkaline earth column, plotting, however, 
against log (atomic number), not log (doublet difference}, as 
was done in the above paper, but the logarithm of (1+ v2). 
They obtain graphically good agreement with this law. They 
state also that the linearity is between alternate members of 
the same Mendelejeff column, a point of view which we shall 
have to modify. 

There is reproduced below for reference a form of the 
atomic number table as given by Kossel t. 

0. i cis UTS Dina EN V3 VES vale Vie 

H 
1 

He Li Be B C N O Fl 
Pa 3 a 5 6 7 8 9 

Ar K Ca Se Ti V Cr Mn Fe Co, Na 
18 19 20 21 } 23 24 PAD, 26. 27 328 

Kr Rb Sr Y Zr Nh Mo Ru Rh Pd 
36 37 38 39 40 41 42 43 44. 45 46 

xX Cs Ba = Earths Ta Ww Os)’ Teer Ps 
54 5d 56 he 73 74 75 16: TT as 

Au He Tl Pb Bi 
79 80 81 82 o 84 85 

Eman. Ra Th U 
86 87 88 89 90 91 92 

In the two diagrams shown herewith the square root of 
wave-number difference per cm. is plotted against atomic 
number WV as abscissa. Unless otherwise stated, the data 
have been taken from Dunz’s Bearbeitung unserer Kentnisse 
von den Serient, with the result that, in general, the wave- 
number differences refer, not to any particular member of a 
series, but to the calculated limiting frequencies. 

Fig. 1 shows the result for the Lithium column, the con- 
stituents having only doublet series. /v is seen to be linear. 

* Proc. Nat. Acad. Sciences, ili. p. 409 (1917). 
+ Ann. d. Phys. \ix. p. 247 (1916). 
{ Dissertation, Tubingen, 1911. 
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in WV for Li, Na, K, Rb, Cs, although the Cs value is slightly 
too great. Furthermore, two other elements in the column, 
Cu and Ag, fall on a branch line passing through K. There 
is thus a two-fold collinearity in the same vertical column of 
the table, one line branching of from the other just where the 
column itself seems to divide. A similar feature will be met 
with again in the next column. Au forms an apparent 
exception. It is sometimes regarded as having doublets 
(although no series is claimed) with /v= 1/3817 as shown 
by the cross, whereas the straight line indicates /v= /3167. 
This point will be discussed later. 

In the alkaline earth column there are both doublets and 
triplets (v1, v.) and the resulting collinearities are shown in 
g. 2. As regards the v-line a lower value for Mg would 

fit in better with Ca, Sr, and Ba. It is noticeable, from the 
table below, that such a modified value falls well in line with 
the ‘‘ branch”? elements Zn and Cd. For the triplet series 
there is a pair of straight lines for each of v, and v9, due to 
branching at Mg, as the table itself suggests. In the case 
of v, Ba has too low a value, 370 cm.~! instead of 401 em.7}, 
and Mg is again anomalous. A dotted line has been drawn 
for v, as being more hypothetical ; it appears to branch off 
for Zn and Cd to the right of Mg, and the usually accepted 
series for Hg give differences that lie too high *f. 

For the next column Al, Ga, In are collinear (fig. 1), but 
doubt has been expressed { that the doublet intervals for Ga 
are known. The same remark applies still more strongly to 
Be. v for Tl is certainly not collinear with Al and In, 
being 7792 cm.~* instead of 6323 cm7!.. We might plead 
in extenuation that the rare earths intervene in this column, 
but the explanation given below seems more probable. Series 
for-Scandium § and Ytirium are not known. 

Differences in the Carbon column are so little known that 
it is not possible to discuss it in this manner. 

In the Nitrogen column no series have been found, but in 
As, Sb, and Bi Kayser and Runge || discovered a new type 

* It is noteworthy that the interval 154545 cm.—1, stated by Dunz, 
loc, cit., as being preferred by Paschen, agrees fairly well with the value 
1598 cm. required by the Zn, Cd line. 
+ The branching phenomena in these two columns is analogous to a 

result obtained by Rudorf, Joc. cit. Plotting v/A* against A, where A is 
atomic weight, he obtained curves for these families intersecting at these 
elements. There is no numerical test applied. 

1 Kayser, Spektroscopie, ii. p. 547. 
§ The series in Se suggested by Hicks, Phil. Trans. A. ccxiii. p. 408, 

give an interval of 320 cm.—1!; the line would give 350 em.-1. 
| Abk. Akad. Wiss. Berlin, 1893. 



Frequency Differences in Spectral Series. 341 

of regularity. This consists in the recurrence of constant 
frequency differences between corresponding members of 
certain groups of lines, so that if A, be the frequency for 
any line r in group A, then we have the frequency B, in 
group B by adding a constant frequency 8 (say). Using 
this notation the groups for As are A,+461, and A,+8058. 
It is plain that besides the intervals 461 and 8058 there 
exists also 8058—461=7597. For Sb, Kayser and Runge 
give A’+ 2069, A'+ 8613, A’+ 9955, A’+ 12460, and 
A'+15023, and for Bi, A’+ 6225, A’’4- 10245, and 
A'’+ 21667. By subtraction we have in Sb, 1342 and 
in Bi, 4020. In fig. 1 itis seen that these values, viz. 461, 
1342, and 4020 for As, Sb, and Bi resp. lie on a line 
(very exactly as appears from the calculation below) passing 
nearly through a zero value for WV and indicating a value 
41-2 cm.-! for P. Hxamining Gautier’s spectral measure- 
ments in P as quoted in Kayser’s Spektroscome we find 
the set 

r) 6 
0) 
3) 

4649-23 (4) 41°83 4658-29 ( 
4575-08 (3) 41°88 4583-86 ( 
4475°43 (3r) 41:86 4483-83 ( 
4102-3 (0) 41:8  4109°34 (5 

The interval 41°8 cm. is in good agreement, but the number 
of cases is too small to warrant any great confidence. There 
are about 150 differences within the range 40 cm.! to 
50 em.~!, so that the odds against four of these falling 
within a given region of :05 cm.7? is * 

Oa 1+ ara == FO): 

Hence the odds against this group being within °60 cm.~! 
on either side of the given line is only about 13 to 1. 

In the Oxygen column triplet series occur again and the 
values for v, and vr, for O, S, Se are shown in fig. 1. 
Collinearity exists in y, but not in vy, For the remainder of 
the column we have no data. 

For the halogen column, again, the data are insufficient. 
In the last column frequency differences have been found 

by Kayser + for Ru, Pd, and Pt, but none in the first row 
Fe, Co, and Ni, so that it is not possible to apply a test. 

Turning now to the first column, He, Ne, dc., there is a 
further possibility of linearity. Rydberg ¢ has found in 

bmi Lae 
* Using the formula re *, where x is the average density. 

t Abh. Berl. Akad. 1897. 
} Astroph. Journal, vi. p. 239 (1897). 
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Argon a relationship similar to that in As, Sb, Bi, the fre- 
quencies being A,+846°47, A,+1649°68, and A,+2256°71. 
In Neon, again, according to Watson { there are triplets, one 
of the intervals beiny 417°45 cm.~'. The line joining 
(164968, A) to (417:45, Ne) has for equation 

Vn=m(N—N,)=2'523(N —1-90). 
This indicates for He (N=2) the value v=-06 cm.~* instead 
of about unity (Dunz gives 1:05). The line has not been 
drawn in the diagram ; it requires for Krypton the interval 
7402 cm.7?. 

The following tables contain the wave numbers whose 
square roots have been Plotted 3 in the diagrams. The first 
of the columns marked “vy calc.” gives the values calculated 
from the equation »/y=m(N—N,), m and N, having the 
values indicated. Least square methods were employed 
where more than two points were used to determine the 
line. The second ‘vy calc.” column is calculated from 
logv=plogN+g. In each case only two pairs of values 
of v and N were used to determine p and q; the results 
show clearly which values were chosen. 

/v=m(N—N,). log v=p log N+4@. 
Deoublets. 

y obs. veale. vy cale. yobs. veale. vy cale. 

DTN EN ES “34% "25 1:03 ey aenee 57°90 58°1 95:2 

IN@ hese Law aya b 16°48 1721 Cage 24813 247-6 248°] 
Gee 57°90 58:0 56°17 Ag (122) 920756) O20 920°6 
133) oa en 93771 244:0 Pond A a a 3817:°20 31720 37710 
Os ane. 56410 5583 560'8 

Hi ALA fe WN =) Walton Oe m= S117, Nese. 
p =2:1645, g =—1°01832. p-=2°71512,) ¢\=—Tsfaol 

Berwin 11°4 14°6 

Migs. .2:) 92-0* 84°5 81'6 Mess 92:0* 85:2 113°4 
Cae Me 22239 225°5 222°9 Zn ee 872°4 872°4 872°4 
Sree 801°3 7947 788:2 Ca aii 24841 24841 2484-1 
acess 1690°5 1699:0 1690°5 MS Role Maclay (?) 73870 6904:0 
Rae 4858:0% 4162°0 41140 

HW het; N,= — 630. m= 1'1280, N,= 3817. 

p=196T77, 9g = —21202. p =2:22639, ¢ =— 34798 

CBee 6°14 
YA ie 112:07 LUO, a2 

Gia (os oes 823'6* 831°3 790°6 m=1:0136, N,= 2°56. 

a Bahan eee 9912°63 2212-63 2212°6 p =2°24798, g =— 45462. 
EP Stent 7792°45* 6323°0 6859°0 

+ Camb, Proc. xvi. p. 180 (1911); Astroph. Journal, xxxiii. p. 399 
(1911). 
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Triplets, v1, v2. 

yv obs. veale. vcale. vobs. veale. yrcale. 
io eee 2°50 2°35 
Me... 19°89 19°59 19°89 MMe oa: 19°89 19°62 19°89 
OW cc... 52-11 52°8 53°7 ATH ore 189-78 191°5 1767 
Nicaea 187:05 186°6 187°1 Ofs ee 541°86 540-4 541°86 
Lee 370°3* 40272 397°6 lige oie): 1767'19* 1598:0 1831°0 
Ba ees Se 1036°15* 987-0 957°3 

m= -3052, N,=—*459. M—-O227,. | Nj) so o2ne 
p =1'94433, g =—°'79965. p =2°38390, g =—1°37403. 

Bek... 3°67 4°73 
Dae 40°95 38°06 40°95 5 eee 40°95* 27°26 45°34 
eed. 10599 1086 111-74 a os sabhe 38891 388°9 388°91 
hale 39444 = 399°3 39444 Cd te PL OS: SALTO ALT 1505 
RAL LS 2 8784 872'9 845:03 alee nate 4630°31* 3600°0 3880-0 
ie UO 2016°64* 2166°3 2054:°0 

Reels |.) Ng) o0Gs i= Sa)  INo= iho ola 
p =1°96502, g =—-50836. p =2'°34534, g =— °87430. 

SOOT) Feasts 3°38 3°12 The vy, values for O, S, Se 
rs OE ee 17:90 18°89 m = 8382, are resp. 2°76, 11:26, and 
Oh eet 10366 103-0 Nj =7°347. 44-82 cm—!. 
di gee 2540 

N 
BY eh an 3: 41-8* 41:2 
Wey ascehs 461°36 462°5 
| ee 1342:26 133971 m=8382,  N,=7347. 
asc 4019°73 4021-7 

Values marked « are not used in determining m and N,. 

Au. ‘The value given is criticised by Quincke, using later measurements. 
Zt. f. Wiss. Phot. xiv. p. 249 (1914). 

Ba. Later measurements are by Schmitz, Z¢. Wiss. Ph. xi. p. 209. Also by 
Lorenser, Dissertation. Tubingen, 1913, Bectrdge zur Kenntnis der 
Erdalkalien. The latter contains a critical study of Mg, Ca, Sr, 
and Ba. 

Hg. A detailed study of the Hg spectrum is given by Cardaun, Z¢. Wiss. Ph. 
xiv. p. 89. The above values for v,, v, are not much altered, 

Sb. From later data by Schippers, Z¢. Wiss. Ph. xi. p. 241, we have the 
interval 1341:17 cm. in better agreement with the straight line. 

An examination of the above diagrams and tables shows, 
in general, an upward curvature of the observed points 
relative to the straight line, especially for large values of N. 
We notice further that, with the exception of two lines, 
N, is everywhere positive. This readily suggests that a 
curve passing through the origin and two of the given points 
might be an improvement. Runge and Precht’s law men- 
tioned above is in this direction, for, assuming vy =AN, 
where sand A are arbitrary, we can choose s nearly equal 
to 0°5 and the necessity for passing through the origin gives 
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the upward curvature. The tables contain values calculated 
on this assumption, and it will be seen that an improvement 
results, especially for large values of N. 

This exception is to be expected, for, if 

/v=m(N—N,.)=mN(1—N,/N) 

be the actual locus of the given points, 7. e. 

4 logv=logm+log N—N,/N, 

then, on a logarithmic diagram, the points will be above the 
logarithmic straight line (N,/N being negative), 7. e. the loga- 
rithms curve downwards relatively to the actual observations. 
This is seen to be the case from the tables, the logarithmic 
set of values being worse than the others. We are therefore 
compelled to regard Runge and Precht’s law as being of the 
nature of an empiricism, especially since the improvement, 
where it exists, is not great. The logarithmic method fails 
to show graphically the branching relation of the columns, 
as is clearly shown by a reference to the papers already 
cited. A further empirical improvement would plainly be 
effected by assuming v*= A(N—N,). 

The question of doublet and triplet differences has recently 
been gone into extensively by Sommerfeld *. Tf we write 
the equation to a series as 

1 1 
rates G: (m+ ae) A 

where m has integral values and w, a, and A are curve-fitting 
constants, then his theory ascribes the constant doublet dif- 
ferences to the term 1/a’. The above expression for n is in 
fact proportional to the loss of energy for a revolving electron 
when falling from an outer to an inner Bohr ring. If the 

_ inner ring for the series be in reality double (of different 
eccentricities according to Sommerfeld) then a has two 
possible values, and we have the constant frequency 
difference 

ei 
ay? (m+ mp)? 

1 1 
yen—m=A(— a) —A( 

Now Moseley’s equation 

n=R(N—1)?(1/1?—1/2?), 

where R is Rydberg’s constant and in which Sommerfeld 

Vania. Phys. li. (Ole): 
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substitutes N—3°5 for N—1, gives a good account of the 
X-ray spectra (K,-line). This leads us to expect that the 
constant A contains (N—N,)” as a factor, where Ny may be 
interpreted as the shielding effect on the outer electrons by 
the inner ones, the nuclear positive charge being Ne. Hence 
by the above equation, since a may be a constant for a given 
family, we might expect an equation of the form 

/y=m(N—N,), 

asisfound. Against this point of view stands the fact that 
the limiting frequencies for the series, v,, = A/a’, decrease 
in a given column with increasing atomic number. 

In discussing the X-ray series Sommerfeld finds that the 
electron’s increase of inertia with speed has to be taken into 
account. Bohr* had shown that the divergence of the 
observed frequencies, in the case of hydrogen, from 
Balmer’s formula 

n= R(1/2? — 1/m?) 

could be explained in this manner and corrected the 
formula to 

n= R(1/2?—1/m?) {1 + 2?/8(1/2? + 1/m?)}. 

Here a? is the small quantity (27e¢?/hc)?, (where e is the 
electronic charge, 4 Planck’s constant, and c the velocity of 
light) occurring again as a universal constant in the discus- 
sion of the fine structure of lines. Paschen 7 measures it 
more exactly and finds, in the case of helium, that it has the 
value 2?=5-°30 x 107" in our units. Sommerfeld ft develops 
this idea in the case of X-rays and shows, inter alia, that the 
divergence of the observed frequencies for the K and L series 
can also be explained in this way. If the frequencies of the 
K series be written 

n=A(1/a?—1/n’), 
he finds that 

wen) Det eoiys J 
where :=1° : cs p=1. We may therefore surmise a com- 
plete expression for Wv of the form 

Vy=n(N—N,)| 1 +u(N—N,)?+0(N—N,)*4+ ....], 

where w,‘v, .... are decreasing small quantities and wu is of 
the order of 10° or less. 

* Phil. Mag. xxix. p. 332 (1915). 
¥ Ann. d. Phys. L, p. 901 (1916). 
t Loe. cit. 

Phil. Mag. 8. 6. Vol. 36. No. 214. Oct. 1918. 2A 
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Now it is not possible with so few points to determine ~ 
such an expansion with certainty, but we can obtain an 
approximation as follows :—Solving the equation 

(1) N=N,+4+ qv)? —rv?? 

for /pv we obtain 

(2) 
= — r ee) s “y a) a Le ae a eh, Vv ( j | al . +3(7 ( : + ] 

The constants in (1) may be obtained from three points. 
If, for example, we take the values for Ga, In, TI, we find 
that the series obtained from 

N=-6843 + 1:07367 v¥/2—2-1024 x 107-5 p3?, 

i.e. Vv=N'(14+1:9581 x 10-5N’24 1°1503 x 10-9N44 ....), 

where N’ has been written for Car 107375) ; 1s satisfied by 

all three points. Substituting N=13 for Al we obtain 138°5 
instead of 112;07 cm. It is plainly possible to obtain an 
expansion of the form (2) passing through the Al point as 
well. What interests us is the fact that the first coefficient 
is of the same magnitude as Sommerfeld’s calculation (107°) 
ascribes to the inertia effect. The exact values obtained have 
no particular interest at this stage, being so dependent on 
the particular function chosen, but a calculation shows that 
the same order of magnitude for r/g corrects the points for 
Au and Hg. It is noticeable, on the other hand, that Bi 
falls into line with Sb and As without this correction, but we 
are dealing here, perhaps, with a phenomenon of a different 
kind. 

Summary. 

The law of Rydberg, and Kayser and Runge that the 
square root of the doublet and triplet differences is propor- 
tional to the atomic weights, has been subjected to numerical 
tests, substituting, however, atomic number for atomic 
weight. 
A similar relationship has been found among Kayser and 

Runge’s frequency intervals in the nitrogen column, and 
a frequency difference of 41°8 cm.~’ in the phosphorus 
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spectrum seems to fall into line. A further linearity is 
indicated for the helium column. 

It is found that Runge and Precht’s logarithmic law is 
not an essential improvement. The required correction is 
apparently necessitated on Relativity grounds. 

It is shown that in two of the columns of the table there 
is a two-fold linearity, the lines branching definitely at one of 
the elements. 

The Physical Laboratory, 
The University of Michigan, 

June 1918. 

XXXVII. The Genesis of the Law of Error. 
By Prof. R. A. SAMPsON™. 

N the issue of this Journal for May of the present year, 
Prof. F. Y. Edgeworth does me the honour to criticise 

a paper on the law of distribution of errors which I con- 
tributed to the Fifth International Congress of Mathe- 
maticians in 1912 and have published in their Proceedings, 
vol. i. p. 163. In the course of his remarks he points to an 
error in one of my formule, for which I desire tothank him. 
My excuse must be that the formula in question was thrown 
out collaterally and was unnecéssary to support the point 
which I wished to make. Therefore it escaped, I suppose, suf- 
ficient examination. Apart from this,—and in itself it hardly 
seems sufficient reason,—after reading Prof. Hdgeworth’s 
paper somewhat carefully, I am a little at a loss to know 
why it was written; for while it certainly shows little 
agreement between us, the points of difference appear to me 
equally unsubstantial. The basis which he dubs my “ peculiar 
notion of the nature of an error of observation”’ seems to me 
identically the same thing as he refers to earlier under the 
name of ‘‘some instructive remarks on the nature of errors 
in astronomical observations” by Morgan Crofton, in Phil. 
Trans. 1870; while fora text for the whole of my paper 
I might have taken, had I chosen, a sentence from his own 
article on ‘“ Probability ?’ in Hne. Brit. 11th edition, p. 376— 
“the paths struck out by Laplace and Gauss have hardly 
yet been completed and made quite secure,’—and indeed 
would prefer this to his present statement that my “attack 
on the proof given by Poisson after Laplace strikes at all the 

* Communicated by the Author. 
ZA 2 
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applications of the law.” I have, I feel, failed to convey 
my point to Prof. Edgeworth. Within ten minutes of the 
delivery of the paper at the Congress he had banned every 
detail of it, and now six years afterwards he puts into print 
his matured objections. J am not able to write more clearly 
than that paper is written; but in the hope that I may succeed 
better with those who view the subject with a less magisterial 
eye, I shall take the occasion to make a few supplementary 
remarks. 

What is an Error, and why is an Error, of all things, 
subject to a Law? Has our notion of the nature of an 

error a definable character from which such a law may be 
deduced, or must we accept the existence of the law as a fact 
or as an axiom, without attempting to derive it as implicitly 
contained in an adopted definition of an error? ‘There can 
hardly be a doubt as to the right answer to this question. 
The law is an approximation, and must follow as such, from 
some rough and ready, tacitly accepted, notion of what con- 
stitutes an error,—however difficult it may prove to assign 
the least restricting notions from which it can be shown to 
arise. The trouble is that proofs are in existence that seem 
to dispense, more or less completely, with any definition of 
an error, and which therefore derive without anterior con- 
ditions the conclusion that unconditioned errors occur 
according to a law of frequency of definite form. One 
must not hesitate to put such proofs aside, including any 
which begin by postulating the eaistence of an error function. 
Among these, to mention no more, are Gauss’s original 
proof in the Theorta Motus, Herschel’s proof from the distri- 
bution of shots on a target, and Morgan Crofton’s proof by 
means of differential equations. The question isa logical one 
of the highest moment and weil deserves a few sentences to 
make it clear. 

If we postulate the existence of a law of frequency ruling 
the unknown and unknowable domain of errors, we so far 
limit Reality. We add to our view of the Nature of Things 
a new restriction. An exact analogue may be found in the 
domain of geometry. If we accept as an ascertained fact 
the twelfth of Euclid’s ‘‘common notions,” we make an affir- 
mation as to the nature of real space, which in the same 
way has the character of a limitation of Reality, for we 
know that asa logical axiom it need not exist. This obstacle 
has been visible from the beginning. It did not escape the 

ee et 
a 
— 
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penetrating logical instinct of Gauss or of Jiaplace. Though 
Gauss wrote little to clear it up, it is quite evident through 
his terse expressions that he saw it exactly in its right 
position, and considered the postulated existence of a 
frequency function not as an axiom but as an hypothesis, 
while Laplace offered a proof that the known law of 
frequency would emerge from the mere superposition of 
indefinite numbers of small errors, which had arbitrary laws 
of frequency of their own. Poisson gave the same proof ina 
revised form. Sucha theorem would relieve us of all difficulty, 
for though we may seem to have got something out of 
nothing, if the demonstration holds this paradox can only be 
apparent. It is a theorem of convergence, and must be 
judged so. It is either true or false. Such phrases as 
“a trés-peu pres,” ‘ suivra sensiblement la loi de Gauss,” or the 
charitable English equivalent ‘ practically,” with its power 
to cover a multitude of logical sins, are not in the first place 
admissible. It they are required to help the demonstration 
out, that means, the theorem is false; for Poisson in particular 
seems to have held that no conditions were necessary to 
impose upon the frequencies of the elementary contri- 
buting errors,—“‘la fonction fx aura telle forme que Von 
voudra.” 

I imagine that no one believes that the theorem is true in 
the form tiiat Poisson gaveit. Certainly not Prof. Edgeworth, 
who refers to instances given by himself in which it is falsified, 
and states conditions under which it may be true. Such con- 
ditions are an admission that the law does not exist unless the 
errors possess a defined character. They constitute implicitly 
a definition of errors as restricted to such a form as may be 
necessary to produce the law. That is to say the law is a 
consequence of limits tacitly imposed by accepted notions as 
to the nature of errors. 

Where then does the Law of Error come from, and why 
does it apply, on the whole, so unerringly to the most diverse 
and unselected material? Thatit does not apply always and 
of necessity, may be taken as admitted. That it does apply 
very closely and very commonly is a matter of experience. 
Without questioning that Laplace’s theorem, subject to restric- 
tions the precise character of which it is at the moment im- 
material to specify, gives with great generality an account of 
the origin of the law which is sufficient in the sense that on the 
whole itis analytically convincing, can we add anything from 
another point of view that will make its genesis and its pro- 
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gress as an approximation more visible ? It is only here that a 
few remarks in my paper may claim some novelty. Yet so 
much has been written on the theory of errors that even for 
these I should not be surprised to find an anticipator. 

If we take a distribution of errors subject to the regular 
law, that is to say occurring proportionately to exp (—h?2”), 
and replace each element of this by another distribution, 
also subject to the law, and collect the results, in the order of 
their magnitude, a third final distribution emerges which 
again is subject tothe law. This is the reproductive property 
of the law of error, which has been proved apparently by a 
number of people. By itself such a property leads us 
nowhere, for its application is liinited to domains already 
subject to the law. Therefore we must travel outside it to 
find the genesis of the law. But I make two further points. 

First, if we take a distribution not strictly under the law 
exp (—h?z?), but under one fluctuating about it, say 
exp (—/?x?).(1+acos kx) and go through the same ope- 
ration of disturbing it by a second distribution of the same 
kind, say under the law exp(—hx?).(1+a/cosk’x), we 
get a third resultant distribution in which the fluctuating 
element tends to efface itself. Hence if we go on piling error 
upon error, provided each has the fluctuating character indi- 
cated above, we shall as a limit converge to the pure law of 
Gauss. My other point is that to obtain an approximation 
to a set of numbers fluctuating about the law of distribution 
exp (—h?x?), where / is an adjustable constant, nothing more 
is requisite than to take as originating the error, say for 
precision, any holomorphic function and then to get the 
frequency curve register the number of times individual 
values occur, disregarding at the same time the order in 
which these values arise naturally. With a single-valued 
function possessing one maximum and one minimum, the 
resulting frequency graph will be two portions of the axis of 
« extending from plus and minus infinity respectively and a 
portion parallel to the axis between them. For example, a 
sine curve for the generating function gives such a distribution 
which may be considered the first rude approximation to an 
error curve modified by fluctuations. If Prof. Edgeworth’s 
criticism of my treatment of this point implies that when 
observations are vitiated by the occurrence of a neglected 
term of the form asin kt, we should find among them infinitely 
more cases of occurrence of maxima than of zeroes, as it 
appears to do, then I beg to differ. I think all values within 
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the limits +a would be equally likely, and that is what the 
frequency graph described above would imply. If then we 
suppose that errors are not of mysterious character, sw? generis, 
but are simply the mass of numberless neglected disturbances, 
each occurring according to regular law and order of its 
own, it isseen that we obtain the approximation to Gauss’s law 
which is necessary to begin with, by the operation of neglecting 
the circumstances and order of their or igin, and scheduling 
merely in sequence of magnitude the number of times that each 
particular value occurs. Itis this operation that is the signi- 
ficant act which effaces the individuality of the contributing 
elements and permits us to obtain, apparently from nothing, 
the law of Gauss; for if we go on repeating it for more and 
more sources of error, we obtain the law with greater and 
greater purity. This is the view of the actual logical basis 
of the Error Law which I endeavoured to convey in my 
paper. It does not escape, of course, the difficulties of con- 
vergence which present themselves in Laplace’s theorem, 
for these are inherent, and in a strict sense, fatal to absolute 
generality. Nor does it oust any other proof. But I offer 
it as a view by which we can see the law coming into existence, 
which I submit the other forms of proof one and all fail to 
supply. 

XXXVITIL. On the Calculation of Magnetic and Electric 
Saturation Values. By J. R. AsHworts, D.Sc.* 

ee principal object of this paper is to show how it 
is possible to calculate from two well-known constants 

the limiting value of the magnetic intensity of a magnetic 
substance for which Curie’s law holds good,and by the same 
reasoning to estimate the limiting current density which a 
conductor can carry in the case of those metals in which 
the resistivity is directly proportional to the absolute 
temperature. 

Magnetic Intensity. 

In genera], paramagnetic substances at all temperatures, 
and ferromagnetic bodies above their critical temperatures, 
obey a simple Jaw which is analogous to the gas law. 

* Communicated by the Author. 
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Let I = Intensity of Magnetization, 

H = Field Strength, 

T = Absolute Temperature, 

and R’= a constant. 

Then, if I is small compared with the saturation value (Ip), 

H 
ne = Jed be = . < e = 4 H (1) 

Here R’ is the reciprocal of Curie’s constant (A)—that is 
to say, is the reciprocal of the product of the susceptibility 
into the absolute temperature. 

If, however, I becomes appreciable compared with I, 
equation (1) must be extended to express the fact that 
I may reach a limiting value (1,). 
When the mutual control of the magnetic molecules 

is negligible compared with the external force the more 
general equation is 

H 7) )=RT me 

To change the magnetic energy from HI) to HI when 
H is constant thermal energy must be supplied which 
may be expressed in terms of R, the gas constant, and 
T, the absolute temperature, RT being double the energy 
corresponding to each degree of freedom of the molecule. 

Since there are two degrees of freedom which affect the 
magnetic moment, the mean kinetic energy under con- 
sideration will be RT, assuming that the vibrations and 
rotations take place with the same freedom as the translatory 
movements of the molecules of a gas. 

1 
Putting eae at temperature T, then equation (2) 

becomes 

H I" | po RE Mr 

and multiplying throughout by I? we have 

HT (m1) = RITES os ee eee 

The left side of this equation is the kinetic energy 
required to reduce the magnetic intensity from I) to 
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1 sie 
ss Ip at constant field-strength, and as it is proportional to 

the temperature , it may be put equal to RT. Hence 

[i S35 se me Merced nO 3) 

and therefore 

R 
I, = me (3) 

Thus the calculation of the limiting intensity of magneti- 
zation (I,) ovly involves a knowledge of the well-known 
gas constant and the reciprocal of Curie’s constant. 

The truth of equation (5) may be tested by comparing 
the calculated values of the limiting magnetization with the 
experimentally determined maximum values of magnetization 
where they are known with approximate accuracy. 

As exainples the ferromagnetic metals Iron, Nickel, and 
Cobalt will be selected. 

Iron. 

The constant R must be taken for one cubic centimetre. 
Putting the gas constant equal to 83°15 x 10° ergs per 

degree centigrade for a gram molecule, and taking the 
atomic weight of iron to be 55 85 and the density to be 7° 86, 
then 

B= 222? x 786 x 108 = 11-7 x 105 

assuming there is one atom in the molecule of iron in the 
solid state. 

RB! = 3°56 when A = 0-281 (Curie, Géuvures, p. 327) ; 

therefore 117 
i cir a Io = 3-56 rol Or VOLE: 

This number for the calculated limiting magnetization 
compares favourably with the following experimental 
saturation values : 

1706 Weiss, J.de Phys. ix. p. 373. 1910. 

1730 Ewing, Phil. Trans. clxxx. p. 221. 1889. 

1798 Taylor Jones, Phil. Mag. xli. p.161. 1896. 

1798 Williams, Phys. Rev. vi. p. 404. 1915. 
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Nickel. 

e126 x 10° 

if the atomic weight is 58°68, the density 8&9, and if the 
molecule contains one atom. 

R/ = 20°8 when A = 0:048 

(Weiss & Bloch, Arch. des Se. t. xxxiil. p. 293) ; 

therefore 12-6 F 
i 90-8 * 10? = es 

This value for I) is considerably higher than what has 
been observed. The calculation has been made on the 
supposition that the molecule of nickel contains one atom ; 
if, however, the molecule contains two atoms, then, putting 
the molecular weight equal to 2 x 58°68 instead of 58°68, 
the formula gives 

lye BRE 

and this is in reasonable agreement with the facts. Experi- 
mental values are : 

I 

479 Weiss, J. de Phys. ix. p. 161. 1910. 

040 Ewing, Phil. Trans. clxxx. A. p. 221.. 1889. 

Cobalt. 
les = BOIS UU 

if the atomic weight is 58°97, the density 8°6, and if there is 
one atom in the molecule. 

R' = 6:0 when A = 0°166 

(Weiss, Arch. des Sc. 4 ser. t. xxxi. pp. 5 & 89). 

Hence 12°14 
‘ lye hh — x 10? = 1422, 

which is very nearly the maximum magnetization which 
different observers have found, namely, 

ily 

1310. Hwing, Phil. Trans. clxxx. A. p20 es: 

1412. Weiss, J. de Phys. ix. p. 373. 1910. 

1421 = Stifler, Phys. Rev. xxxiii. p. 268. 19 
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Electric Current Density. 

At ordinary temperatures and for pure metals in which 
the resistivity is proportional to the absolute temperature 
the law of conduction of electric currents is analogous to the 
gas law. 

Let E = Fall of potential per cm. in c.g.s. units, 

; = Currene mi ¢.2-8. units per sq. cm., 

T = Absolute temperature, 

and S =a constant. 

Then "co SUR aaa 05 (9) 
a 

If o is the resistivity in c.g.s. units, Ohm’s law is 

E = 0, = e . ° ° 7 (7) D 

and therefore yee * MPN bin eet nae CO) 

This quantity S has the same importance in electrical 
theory as Curie’s constant has in the thecry of magnetism. 

If, however, 7 can reach a limiting value i) then equa- 
tion (6) must be written more generally as in magnetism, 
thus 

ice 
= pr eae ae B(- = Sa (9) 

0 

Putting i=? zo the equation becomes 

= (n—) Sto) a eee 4040109) 
0 

and multiplying throughout by 72 we have 

Kay(n—1) = ST22. SL ey eis St 2) 

The left side of this equation when E is constant is the 
variation with temperature of electrical energy per unit of 
time, and according to a theory of metallic conduction to be 
referred to later on we may write this change of energy per 
unit of time in terms of its thermal equivalent, as in the 
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magnetic problem, and put it equal to RT-, where R is the 

gas constant and ¢ is the time. 
Hence 

RITZ = STig,. iss 

and if vis written for 2 we obtain 

Re 
lo = a Ue iis ‘ 3 ‘ ¢ p (13) } 

Thus the maximum current density can be calculated from 
a knowledge of the censtants R and S, which can easily be 
obtained for most of the pure metals, and from a know- 
ledge of v the velocity of the electron as it passes along 
a conductor. 

For the sake of estimating a limiting value to the current 
density the velocity of the electron will be taken to be of the 
same order as that of the cathode ray, namely, 10° cm. per 
second, 

The following, then, are some examples of the calculation of 
%o, the maximum current density, according to equation (13), 
expressed as amperes per sq. cm., the other quantities in the 
table being in C.G.s. units. 

Metal. Atomic Density. Re 8. dW. 
weight. per cb. cm. 

Silver li ease 107°9 10°5 8:09 x 10° 57 3°8 X 10° 

Copper 2.2.00: 63°57 8°93 11°66 x 10° 5°59 4°5 x 10° 

Aluminium ... 27-1 2°65 6-60 x 10° 10°1 2°35 X 10° 

SRO ROSE ae 1191 7:29 5:08 x 10° 38'8 12> 10° 

Tigads nate tu. 207°1 11:37 4°56 X 10° 71-4 0°8 x 10° 

The calculation is made on the supposition that the 
molecule contains one atom; if it contains n atoms R must 

be divided by n and i by Wn. 
Nernst (‘ Theory of the Solid State,’ p. 81) states that 

silver, copper, aluminium, and lead are probably monatomic 
in the solid state, and, if so, 7) for these metals must be 
of the order 10° amperes per sq. cm. 

These examples include good and bad conductors of elec- 
tricity, metals of high and low atomic weight, of high and 
low valency, and of high and low density. The temperature 
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coefficient of resistivity is nearly the same for all, namely, 
about 0:0038, a number which shows that the resistivity is 
approximately proportional to the absolute temperature. 

According to the calculation the saturation current 
density in these metals is of the order 10% amperes per 
sq. cm., and this is considerably in excess of any obser- 
vations of high current densities which have been recorded. 
A recent experiment by Trauenberg (Trauenberg, Phys. 
Zeits. xvill. p. 75, 1917) shows that Ohm’s law holds good 
up to 8x 10° amperes per sq. cm., presumably for silver ; 
but this enormous current density would have to be increased 
more than tenfold before Ohm’s law would fail. There is 
nothing then in this experimental value to make the 
saturation current densities which have just been calculated 
at all improbable. 
A direct proof that Ohm’s law wil] fail for current 

densities of the order 10% amperes per sq. cm. seems at 
present beyond the reach of experimental demonstration. 

Theory of Metallic Conduction. 

In his Presidential Address to the Physical Society 
(Miemsen, Ehys. Soc. Proc vol. xxvii. part 5, p. 527 ; 
Phil. Mag. xxix. pp. 192-202; also ‘Corpuscular Theory 
of Matter, p. 86) Sir J. J. Thomson has outlined a theory 
of metallic conduction based on the hypothesis that in a 
metal there are electric doublets which under an electric 
force can be orientated, and this is a principal function of 
an electromotive force. These doublets, like the magnetic 
molecules of a magnetic substance, have their alignment 
with the direction of the force opposed by thermal agitation, 
and according to the conditions of field-strength and tempe- 
rature they may be free from each other’s control or subject 
to each other’s influence. So far the theory would apply 
to electric insulators as well as to conductors, but the 
distinguishing feature of a conductor is that the doublets 
very easily part wih electrons, which pass from atom to 
atom of a polarized chain “like a company in single file 
passing over a series of stepping-stones.” 

If the intensity of the polarization and the charge deter- © 
mined by it can be calculated, the strength of the current 
will be given by multiplying this charge by the velocity of 
movement of the electron. 

The problem is solved in the same way as for the deter- 
mination of the intensity of magnetization of an assemblage 
of magnetic molecules. 
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In general symbols, 

Let Y= The component of intensity of magnetization, 
or, of electric polarization parallel to the 
directive force, 

X = The applied force, 
T = The absolute temperature, 

x 
a=, where # is the magnetic or electric Rot 

moment of the molecule and R, the gas 
constant for one molecule, 

then Y 1 
YX; = coth (5 a ° ° ° e e (14) 

Y, being the maximum value of Y. 
For small values of Y this becomes 

You SS Youd 
i — — Bie ° e e e e (15) re 

or xX 
Y= OT; ic 

C being the constant ae 
0 

This equation has the same form as the gas law. 
In passing it may be noticed that if w be multiplied by 

the number of molecules in unit volume and the product be 
put equal to Yo, and if the appropriate value of R be used, 
then aR 

a ? 

a formula which differs from the one employed above in the 
calculation of maximum values by the insertion of the 
factor 3 in the numerator under the root sign; when it 
is applied, all the saturation values given above must be 
multiplied by “3. In magnetism the agreement between 
the theoretical and observed saturation values would remain 
the same as before if it be assumed that iron and cobalt 
have each three atoms in the molecule and that the molecule 
of nickel contains sta atoms. (See Kunz, Phys. Rev. 
VOL XKX. Daoooe) 

Yo= 
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Super- Conductivity. 

The fundamentally important experiments of Kamerlingh 
Onnes, which show that there is a critical temperature for 
electric conductivity in some metals and that below this 
temperature they pass into a state of super-conductivity, can 
be explained by an extension of the theory given above. The 
state of super-conductivity,in which it is possible for a current 
to continue after the removal of the applied electromotive 
force, is analogous to residual magnetization in a ferro- 
magnetic body which persists after the applied magnetizing 
force is removed, and it may be explained, as for magnetism, 
by the hypothesis that there is an intrinsic field in action, 
which is a function of the polarization, in addition to the 
externally applied force. Thus in equation (16) X must be 
replaced by X+/(Y), and then, although X may become 
zero, the intrinsic field f(Y) may persist, under proper 
temperature conditions, giving rise to a persistent electric 
current. 

The problem may be treated in the same way as when the 
gas law is made to include liquids by the introduction of an 
intrinsic pressure. 

The extended gas law in general symbols will then be 

(X+/0O)(y-y,) = KD ameeayc oe 

K being a constant analogous to R, * 

and if van der Waals’s expression for /(Y) be adopted we have 

fdas a (X+a¥9) (5 Y, 

This equation when applied to ferromagnetism yields 
numerical results which meet with the same success as 
those derived from the kinetic theory, and it represents 
in the main the chief experimental facts of magnetism, 
so that it may be applied with some confidence to electric 
polarizations and currents the theory of which is like the 
theory of magnetism. Equation (18) then becomes 

ECE oe aie dy ehh C18) 

(B+ai)) (7-7) = 87, a es hahaa 

and this equation implies that there are critical constants 
for electric polarizations and currents. 
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The critical temperature will be given by 

8 ary 

tne B 
from which it is possible to estimate a and therefore to 
estimate the magnitude of the intrinsic field. The caleu- 
lation can only give an upper limit to a, since the critical 
temperatures for conductivity determined up to now are not 
far above the absolute zero, and at such low temperatures 
the atomic heat is a very small quantity and the kinetic 
energy in question is no longer equal to RT. 

Taking Lead as an example in which the critical tempe- 
rature is a little less than 4° absolute, and using the c.g.s. 
values of 7 and S found above, then a must be less than 
1-2 x 10~-* and consequently the maximum intrinsic field (a7) 
is less than 7:9 x 10° c.g.s. units or 79 volts percm. As 
the current densities commonly employed are only about a 
millionth of the limiting values calculated above, it follows 
that the intrinsic field in such a conductor as Lead, when it 
carries even a high current density at temperatures above 
the critical temperature, must be extremely small, indeed 
negligible compared with the applied electromotive force. 
This, however, is to be expected since Ohm’s law is obeyed 
with very great accuracy at ordinary temperatures, which 
would not be the case if the intrinsic field made itself felt. 
Below the critical temperature current densities approaching 
the maximum should be attainable, and it is of interest to 
find that Kamerlingh Onnes has observed a current density 
in mercury at 2°45 absolute, which is lower than the critical 
temperature, of more than 10° amperes per sq. cm. (K. Onnes, 
Hlect. lxxi. p. 855, 1913). 

From what has been said above, it is seen that the facts 
of electric conduction at very low temperatures as well 
as the like facts of ferromagnetic induction are in agree- 
ment with the ideas which underlie the fluid equation, and 
thus both magnetic and electric experiments give to the 
fluid law a generality wider than has commonly been accorded 
to it; and in the particular case in which it becomes the 
gas law it may be said that it governs not only the free 
translatory movements of molecules which determine the 
behaviour of a gas, but also the free vibrations and rotations 
of molecules which are manifested in the magnetic and 
electric behaviour of substances in general. 

(20) 
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XXXIX. Notices respecting New Books. 

Elements of the Electromagnetic Theory of Light. By Lupwik 
SinperstHIn, Ph.D. Pp. viit+48. Longmans, Green & Co. 
Price 3s. 6d. net. 

[i this elegant little volume of 48 pages are condensed the chief 
consequences which follow mathematically from the Hertz- 

Heaviside form of Maxwell’s equations. The vectorial treatment 
effects a great economy of space as compared with the old Cartesian 
splitting of every vector into its three components, and, since the 
time has now been reached when, it is hoped, the elementary 
vectorial operations are familiar to every student, the method is 
the natural one to adopt in expounding the subject. Plane waves 
only are considered, and their reflexion and refraction, polarization, 
and double refraction in crystals handled briefly yet convincingly. 
This development of the simple theory is clear and satisfactory, 
and likely to be extremely useful to one whose acquaintance with 
the subject is not very deep: to the maturer student the chief 
interest of the book is the excellent historical account of the work 
preceding the electromagnetic theory, which occupies the first 
fifteen pages or so. In this the successive difficulties met by the 
elastic solid theory are succinctly exposed, and the many inge- 
nious hypotheses put forward to solve the vexed question of 
the longitudinal waves are detailed. The striking advantages 
of the electromagnetic theory are thus thrown into relief. There 
are, we think, few who will not find something new to them in 
this well-planned critical sketch of one of the most interesting 
chapters of physics. 

Storchiometry. By Sypney Youne, D.Sc., F.R.S. Longmans, 
Green & Co. Sevond Edition. Pp. xii+363. Price 12s. 6d. net. 

Ir is eleven years since the first edition of Professor Young’s book 
appeared, and during that time the discovery of isotopes, the 
other developments of the study of radioactivity, and the mea- 
surement of X-ray spectra have led to considerable modifications 
of and additions to previous ideas on the subject of atomic weight. 
In this second edition Professor Young has introduced a short 
discussion of the modern views of the nature of an element and 
the existence of isotopes, and gives an account of Soddy’s theories, 
but it is remarkable that he contents himself with a passing 
reference, which is not even indexed, to X-ray spectra, and has 
no word of Moseley’s atomic nwmbers, which confirm the im- 
pression given by the chemical properties of the elements con- 
cerned that there is something wrong in the position of Argon and 
Potassium, Tellurium and Iodine, Cobalt and Nickel in the periodic 
table, when the elements are arranged in order of the atomic 
weight. The physicist will also miss the lack of any reference in 
the sketch of the kinetic theory to recent experimental con- 
firmation, or to Ramsay’s determination of the atomic weight of 

Phil. Mag. S. 6. Vol. 36 No. 214. Oct.1918. 2B 
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radium emanation by the density method where that method is 
treated. Recent work on osmotic pressure is well discussed. 

The book possesses all the valuable features of the first edition, 
and the larger format in which it is now printed shows a great 
improvement on the old in both appearance and convenience in 
handling. 

X Rays and Crystal Structure. By W. H. Brage, M.A., D.Sc, 
F.R.S., and W. L. Braee, B.A. George Bell & Sons. Third 
Edition. Pp. vii+229. Price 8s. 6d. net. 

Ir is pleasant to find that, in spite of the war, a third edition of 
this book has been called for. No alteration of any importance 
has been made since the first edition, which gave a wonderfully 
clear and concise account of the researches which led to the use of 
crystals as diffraction gratings for X rays, and afterwards revealed 
so much of the structure of crystals ; researches to which Professor 
Bragg and his son contributed so much. Itis to be hoped that 
the next edition will see the war ended, and the authors, at 
present employing their ingenuity in the fight against the common 
enemy, continuing their investigations in a field which they have 
cultivated to such purpose. ) 

XL. Proceedings of Learned Societies. 

GEOLOGICAL SOCIETY. 

{Continued from p. 280. ] 

March 20th, 1918.—Mr. G. W. Lamplugh, F.R.S., President, 
in the Chair. . 

Dr. W. F. Smeets delivered a Lecture on the Geology of 
Southern India, with particular reference to the Archean 
Rocks of the Mysore State. With theaid ofa map, prepared 
by the Geological Survey of India, the Lecturer pointed out the 
general character of the geological formations of Southern India, 
which consist, very largely, of a highly folded and foliated complex 
of Archzan gneisses and schists, followed by some considerable 
patches of pre-Cambrian slates, limestones, and quartzites; with 
these are associated basic lava-flows and ferruginous jaspers. The 
remaining formations consist of remnants of the Gondwana Beds 
(coal-measures of Permo-Carboniferous age), a few patches of 
Cretaceous rocks, some Tertiary and Pleistocene deposits, and 
recent sands and alluvium, all situated along the coastal margins 
of the Peninsula. He contrasted the scanty post-Archean record 
of Southern India, the apparent non-submergence of the greater 
portion of the area and its freedom from great earth-movements 
since Archean times, with the widely-extended formations of 
Northern India which recorded oft-repeated movements of de- 
pression and elevation, culminating in the rise of the Himalaya 
in Tertiary times and accompanied by igneous activity on a 
gigantic scale, as proved by the outpourings of the Deccan Trap. 
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In discussing the Archean complex, the Lecturer traced the 
history of the various views which have been held. Newbold 
(1850) regarded the complex as formed of Protogene schists and 
gneisses intruded into by granites. Bruce Foote (1880) separated 
the schists (to which he gave the name ‘ Dharwar System’) from 
the gneisses, and regarded them as laid down unconformably upon 
the gneisses and granites which, for many years thereafter, were 
embraced in the term ‘Fundamental Gneissic Complex.’ He 
regarded the Dharwar System as transition-rocks between the 
old gneisses and the older Paleozoic rocks (Cuddapa, ete.). 
Holland (1898) differentiated the Charnockites, showing that 

they formed a distinct petrographical province with intrusive 
relations to the main members of the gneissic complex, and in 
1906 he proposed to regard the Cuddapa System as pre-Cambrian, 
and separated by a great Eparchean Interval from the Dharwar 
System which, together with the gneissic complex, he classed as 
Archean. In 1913, Holland added a group of post-Dharwar 
eruptive rocks, and produced a classification of the pre-Cambrian 
rocks of India which exhibits a remarkable parallelism with that 
given by Lawson (1913) for the pre-Cambrian of Canada. 

The work of the Mysore Geological Survey from 1899 to 1914 
had gradually eliminated the Fundamental Gneissic Complex, and 
shown that within the area of the Mysore State—representing 
some 29,000 square miles of the Archean complex—the oldest 
rocks were the Dharwar System, which had been intruded into by 
at least four successive granite-gneisses, namely: the Champion 
Gneiss, the Peninsular Gneiss (forming the greater part of the 
area), the Charnockites, and the Closepet Granite Series. If we 
compared this succession with Holland’s 1918 classification, without 
assuming any real correlation with the Canadian rocks, but viewing 
the Dharwar rocks as Huronian, as suggested by Holland, then his 
post-Dharwar eruptive series (Algoman) included the whole of 
the gneisses of Mysore, while equivalents of the Laurentian and 
Ontarian formations were wanting. On the other hand, if the 
Dharwar rocks were regarded as Keewatin, then the gneisses of 
Mysore might represent Laurentian and, possibly, Algoman 
formations, while representatives of the Huronian would be non- 
existent. Obviously, therefore, the Mysore Archean succession 
was either very incomplete, or it did not fit in with the classi- 
fications of Holland and Lawson. It was to be remembered 
that Holland’s classification dealt with a much wider area than 
Southern India, and the essential problem appeared to be whether 
his Bundelkhand gneiss (Laurentian) and the Bengal gneisses 
(Keewatin) were really older than, and unconformable to, the 
Dharwar System—as represented by him—, or whether they were 
post-Dharwar eruptives corresponding to portions of the Mysore 
gneissic complex. In favour of the latter view it was noted that 
observers acquainted with both have appeared to recognize the 
Bundelkhand and Bengal types of gneisses in and around Mysore, 
and that all of these gneisses have, until recently, been regarded as 
forming part of the great Fundamental Gneissic Complex of India. 
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The Lecturer then described the map of Mysore which, on a 
scale of 8 miles to the inch (1:506,880), presented a simplified 
summary of the work of the Mysore Geological Survey. On 
lithological grounds the Dharwar System was divided into an 
Upper and a Lower Division. The former was composed largely 
of basic flows and sills with their schistose representatives. 
Whether some of the chloritic schists, slates, phyllites, and argil- 
lites were of sedimentary origin was still doubtful. In the series 
as a whole, chlorite predominated and hornblende was subordinate. 
The presence of carbonate of lime, magnesia, and iron was a 
strikingly prevalent feature. The Lower Division was composed 
of dark hornblendic epidiorites and schists, which were distinguish- 
able from the greenstones of the Upper Division by their dark 
colour and practical absence of chlorite. Many of the greenstones 
and schists of the Upper Division appeared to resemble Keewatin 
rocks of Lake Superior, such as the Ely Greenstone series (save 
that augite is conspicuously absent in the Mysore rocks), and it 
had been suggested that the dark epidiorites, which naturally crop 
out between the rocks of the Upper Division and the intruding 
gneisses, might be merely metamorphosed portions of the green- 
stones and chlorite-schists. This might be true in some cases, but 
the independent existence of the dark hornblendic rocks of the 
Lower Division was supported by the fact that they do not exist 
in many places where the gneisses come into contact with the 
greenstones; that many of the former retain original igneous 
structures, which would be unlikely to survive the chloritization 
and the subsequent change to epidiorite; and, finally, that the 
amphibolitization of the rocks of the Lower Division appears to 
have been complete before the intrusion of the earliest of the 
gneisses which, with its associated pegmatites and quartz-veins, 
has developed secondary augite in the hornblendic rocks along 
intrusive contacts. 

The Lecturer referred briefly to the autoclastic conglomerates 
which were usually associated with intrusions of the Champion 
Gneiss, to the intrusive character of some of the quartzites or 
quartz-schists, and to the evidence that the limestones were, partly 
if not wholly, due to metasomatic replacement of other rocks by 
carbonates of lime and magnesia. 

The Dharwar schists of Mysore contain a widely extended series 
of banded quartz iron-ore rocks, very similar to those of the Lake 
Superior district, the origin of which has been the subject of 
much discussion, and is still very perplexing. -Some of the earlier 
American geologists considered them to be directly igneous in 
origin, but these views are now discredited, and replaced by an 
interesting and ingenious theory of chemical precipitation from 
liquids associated with subaqueous lavas. The Lecturer suggested 
that some of these rocks might be pegmatitic intrusions of quartz 
and magnetite, and that some might be the metamorphosed relics 
of igneous rocks composed, largely, of highly ferruginous amphi- 
boles (such as cummingtonite) or other chemically allied minerals. 
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XLI. The Dispersal of Light by a Dielectric Cylinder. 
By Lord Rayurtes, O.1., F.RS.* 

dj Does problem of the incidence of plane electric waves on 
an insulating dielectric cylinder was treated by me as 

long ago as 18817. Further investigations upon the same 
subject have been published by Seitz f and by Ignatowski § 
who corrects some of Seitz’s results. Neither of these 
authors appears to have been acquainted with my much 
earlier work. The purpose of the present paper is little 
more than numerical calculations from the expressions 
formerly given, but in order to make them intelligible it 
will be well to quote what was then said. The notation is 
for the most part Maxwell’s. 

“ We will now return to the two-dimension problem with 
the view of determining the disturbance resulting from the 
impact of plane waves upon a cylindrical obstacle whose 
axis is parallel to the plane of the waves. There are, 
as in the problem of reflection from plane surfaces, two 
principal cases—(1) when the electric displacements are 
parallel to the axis of the cylinder taken as axis of <, 
(2) when the electric displacements are perpendicular to 
this direction.” 

* Communicated by the Author. 
t+ Phil. Mag. vol. xu. p. 81 (1881) ; Sci. Papers, vol. i. p. 533. 
t Ann. d. Physik, xvi. p. 746 (1905) ; xix, p. 554 (1906). 
§ Ann. d. Physik, xviii. p. 495 (1905). 

Phil. Mag. 8. 6. Vol. 36. No. 215. Nov. 1918. 2C 
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“Case 1. | From the general equation with conductivity 
(C) zero and magnetic permeability (w) constant], 

a2 a2\ h ‘ ha : * 

or if, as before, k=2a/), 

2 2 (Sat cath) gad. Lee ey 

in which / is constant in each medium, but changes as we 
pass from one medium to another. From (2) we see that 
the problem now before us is analytically identical with 
that treated in my book on Soundt, § 343, to which I 
must refer for more detailed explanations. The incident 
plane waves are represented by 

gint pikx — pint pikr cos 0 

=e"! Jo(kr) + 2J5,(kr) cosO+... 

+ 21" Din(kr) COS m0. ee een) 

and we have to find for each value of m an internal motion 
finite at the centre, and an external motion representing a 
divergent wave, which shall in conjunction with (3) satisfy 
at the surface of the cylinder (r=c) the condition that the 
function (h/K) and its differential coefficient with respect to 
r shall be continuous. The divergent wave is expressed by 

Bovro+ Bw; COs 0 + Bary COs 20 © ise) vy : (4) 

where Wo, Wr, &c. are the functions of kr defined in § 341. 
The coefficients B are determined in accordance with 

AN LW Nepal ay i d ONE t 

ee deen 

= 211 k’c Jin (ke) Jim (Kc) — ke Jm(k'c) ee (ke) Ve Sian (5) 

tie Bay k 

except in the case of m=0, when 2.” on the right-hand side 
is to be replaced by «ft. In working out the result we 

* The uumbering of the equations is changed. h is the component of 
electric displacement parallel to z, K the specific inductive capacity, and 
A the wave-length. 

+ ‘ Theory of Sound,’ vol. 11. Macmillan, 1st ed. 1878, 2nd ed. 1896. 
t Here k’ relates to the cylindrical obstacle and & to the external 

medium. 
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suppose kc and k’c to be small ; and we find approximately 
for the secondary disturbance corresponding to (3) 

4 : M2n2__ [Pp2n2 [2 22 REDD We 2 ae 
v=(57; ) ei(nt—kr) = ae oe cos @|; (6) 

2ikr 

showing, as was to be expected, that the leading term is 
independent of 6.” 

‘“‘ For case 2, which is of greater interest, we have (from 
the general equations) 

GAG aml a ie ve 

(eeu a nae) 

This is of the same form as (2) within a uniform medium, 
but gives a different boundary condition at a surface of 
transition. In both cases the function itself is to be con- 
tinuous; but in that with which we are now concerned the 
second condition requires the continuity of the differential 
coefficient after division by k?. The equation for B,, (or B,,/ 
as we may write it for distinctiveness) is therefore 

5 {ies Yn co om k'e) Sr aes a 

De. m( Ke) Jim (k'c) — keV in(k'c) Im’ (ke) }, . . (8) 

with the understanding that the 2 is to be omitted when 
m=0. Corresponding to the primary wave e+), we find 
as the (approximate) expression of the secondary wave ata 
great distance from the cylinder, 

ae k2¢? = aly i(nt—kr) | __ ae ke 2 pf? 2 

‘ul ea i [ 16 ues ) 

j/2 — J? i ge — hl? 
— Mery 75008 0 — 5 Ge a 773008 20 |. ape CO) 

The term in cos @ is now the leading term; so that the 
secondary disturbance approximately vanishes in the direc- 
tion of the primary electrical displacements, agreeably with 
what has been proved before. ‘It should be stated here 
that (9) is not complete to the order k*c* in the terms con- 
taining cos@. The calculation of the part omitted is some- 
what tedious i in general ; but if we introduce the supposition 
that the difference boos k’? and k? is small, its effect is to 
bring in the facter (1— thre?) 

* In (7) ¢ is the magnetic component, and not the radius of the 
cylinder. So many letters are employed in the electromagnetic theory, 
that it is difficult to hit upon a satisfactory notation. 

J a 
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“Extracting the factor (?—k?), we may conveniently 
write (9) — 

kl? — ON fe eP enee 
pe OL ana, er (nt—hr) yi ae 

van pre (ai) a 16 J 

k2¢" : == i, me) ony 
in which 

ec? + he? ke? 
ao ee 20 cos @ ié 3 cos 

| Me cared REMMI GER 3 
moo? ae en aq, ee ePrice 1) 

‘In the direction cos 0=0, the secondary light is thus not 
only of high order in kc, but is also of the second order in 
(k'—k). For the direction in which the secondary light 
vanishes to the next approximation, we have 

kee? K!—K 
on O= 75 (hte — Pe) 

This ...is true it kc, k’c be small enough, whatever may be 
the relation of k’ and k. For the cylinder, as for the sphere, 
the direction is such that the primary light w ould be bent 
through an angle greater than a right angie.... 

“TE we suppose the cylinder to be extremely small, we 
may confine ourselves to the leading terms in (6) and (9). 
Let us compare the intensities of the secondary lights emitted 
in the two cases along @=0, 7. e. directly backwards. From 

(6) 
ap of 5 (kl? ake), 

while from (9) 
wre — hh? — 22) (kh? +12). 

The opposition of sign is apparent only, and relates to the 
different methods of measurement adopted in the two cases. 
In (6) the primary and secondary disturbances are repre- 
sented by A/K, but in (8) by the magnetic function ¢....” 

It may be remarked that lgnatowski’s equation agrees 
with (5) for this case, and that his corresponding equation 
(11) for the second case also agrees with (8) after correction 
of some misprints. His function Q corresponds with my yw, 
at least when we observe that the introduction of a constant 
multiplier, even if a function of m, does not influence the 
final result. 

In proceeding to numerical calculations we must choose a 
refractive index. I take for this index 1:5, as in similar 
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work for a transparent sphere*, so that k'/k=1°5. And 
before employing the more general formule, I commence 
with the approximations of (6) and (9), assuming kc=°10, 
k’c='15. When we introduce these values into (6), we get 

h Cee = — u(nt—kKr) [| » S ° —4 : 

in response to the incident wave h/K=e"+t™, Again, 
from (9) 

Ft ra ef, Je 2 u(nt—kr) [ —4/. 5 P=o—(5 7) e [10-4(-0781 + -0481 cos 26) 

eOUSS:) COS'O |...) Ve een (14) 

corresponding with c=e*™*™) for the incident wave. 
In using the general formule the next step is to express 

rm, representing a divergent wave, by means of functions 
already tabulated. JI am indebted to Prof. Nicholson for 
valuable information under this head. It appears that we 
may take : 

We None) ald m(S)5 6 i) » CLO) 

where z is written for kr, and the real and imaginary parts 
are separated. When zis very great 

im wa=(Z)e*- PSL GHG 

Jm(z) is the usual Bessel’s function ; the G-functions are 
tabulated in Brit. Assoc. Reports t. The Bessel’s functions 
satisfy the relations 

2m 
A ie Im —Im—t ° ° ° ° (17) 

mM 

In oy =In 5 CMe RO AGA IAR ic (18) 

and relations of the same form are satisfied by functions G. 
When m=0, Jj =—J,, St Ss —G). 

Writing z for ke and 2’ for k'c and with use of (18), we 
have for the coefficient D,, of 27” on the right-hand side 
of (2) 

Died ahelemenenie 2 lps dae al2ys 3° LQ) 

and for the coefiicient of B,, on the left 

N,»+di7D,,, 

* Proc. Roy. Soe. A, vol. Ixxxiv. p. 25 (1910); Sci. Papers, vol. v. 
p. 547. 

+ Reports for 1913, p. 30; 1914, p. 9. 
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where Nm=2 Gm’ (2) Im(2') —2’ Gl 2) Im’ (2') 

=2 Gm_1(2) Im (2') —2'Gin(2) Im-1(2'). . (20) 

gim 
N,| Dine Sean 

where, however, the 2 is to be omitted when m=0. Thus 
by (4) and (16) the divergent wave at a great distance r is 
expressed by 

Thus 

B= (21) 

aie hi 2. 2(—1)”" cos mO WK =| 55) eee | ies) 
i eS c N,/Do+ 327 _ > NDF 407 2 ) 

Here N,,, D,, are given by (19), (20), and are real. 
In like manner (8) may be put into the form 

Q im 

LN ee 
NT, [Dat oh Sue | 

(23) 
where . 

Ni 2 din(e ) Gn (2) — 2d 5 Gale 

= 2d ne) Gin e) Fone Jie» Gn(z) 

=m (= — 5) In(e") Gale), pe 

Dien or m— i(2 ‘y=! J m(z (2') Jen ae) 

And, as in (22), the expression for the diverging wave at a 
distance is 

Ga ena 1 = 2 De a 6 
= (sam) & | Nyyp,4din t= N, De eee 

When we fix the refractive index at 1°35, the value of 
z'/e—z/z' in (24), (25) is 5/6. 

The values of Ny, Ny’, Di, Dj,’ may be deduced from the 
corresponding quantities with m=0 by means of the 
relations 

N,=N,; N,/=N,—41(2') Gi(z), foe (27) 

D,=Dy, D,’=D)+ 3J,(z’) J1(z) othe (28) 

For numerical calculation we have also to specify the 
values of z, or ke. For this purpose we take z=°4, °8, 1°2, 
1:6, 2:0, 2°4, where z denotes the ratio of the circumference 
of the cylinder to the wave-length in air ; the corresponding 
values of (N/D + 43i7r)7! and of (N’/D'+ 4i7r)“1 may then be 
tabulated. 



Light by a Dielectric Cylinder. 

TAREE fl. 

[N,/D, acs ne [No/D,' +37] 

10624 — z x ‘01825 
"29104 — 7 x ‘18940 
°31827 — 7 X °32283 
381745 — i X 34157 
31565 — 7 x °35939 
"26905 — 7 X “48842 

[N, /D,+ ze |? 

‘00202 — i x ‘00001 
03397 — 7 x 00182 
"17667 — 2 X °05353 
31764 — i X *33892 
*23337 — 7 X 538480 
"19953 — 7 X °56634 

[N/Dy'+3¢0]~* 

00202 — 7 x ‘00001 
03397 — 7 X 00182 
"17667 — 7 X 05353 
‘31764 — 7 X °383892 
23337 — 7 X 53480 
"19953 — 7 X °56634 

[N,/D, sre ie 

‘00001 —z x O 
"00084 — z xX O 
"00946 — z x ‘00014 
°05510 — 7 X ‘00481 
213852 — 7 X -08223 
"28583 — 7 x *45838 

[N, /D; +5ir|~* 

‘00001 — zi x O 
00027 — z x 0 
00259 — z x ‘00001 
‘01514 — 2 X 00056 
‘06724 — z x ‘00718 

LN, / D,+327] i 

x 00148 ‘03066 — 7 
"10872 — i x v1914 
18711 — « x 06080 
‘24560 — «7 x 11581 
80426 — ¢ x °22477 
‘27720 — @ x 47478 

(eee e eer ete eesseresstessesseseesesesesesser 

"00008 — zx O 
‘00071 — z x O 
"00415 — z x ‘00003 

[N;/D;+3¢7]~* 

ae ee eee eer eres seeesseSBetseseesesssesses 

"00002 —z x 0 
‘C0019 — zi x 0 

[N,/De+3tm]" 

EOP eee SSeS HEH TSH E Eres eesetesesesessee 

‘00001 —z x 0 

[N,’/ Dy +37] ae 

‘00061 — ix 0 
00931 — 7 x ‘00014 
‘04392 — 7 x 00304 
"12114 — 7 x 02395 
22506 — 7 x ‘09321 
30204 — 7 x ‘21784 

[N,'/D,'+ zi |~* 

POC eee PSE H ES EEE STH HH SH SHEHETOHS EEE ESE/FEEESEFOS EES EE eTe~SeEtesEseesssesessees 

700025 — z x 0 
00262 — z x ‘00001 
01346 — 7 x 00028 
04636 — 7 x °00339 
"12088 — 7 x *02384 

EN / Dat = ; 

00008 — zi x 0 
00072 —z x 0 
00388 — z x ‘00002 
01482 — z x -00035 

[N,'/ D,’ +3517] a 

"00002 — zi x 0 
700020 —7 x0 
(00109 —z x 0 

[No/D+2ir]~ 

‘00001 — 7 x 0 
"00005 — z x 0 

oUe 
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The next step is the calculation of the series included in 
the square brackets of (22) and (26) for various values of 
§ from 6=0 in the direction backwards along the primary 
ray to €=180° in the direction of the primary ray produced. 
If we add the terms due to even and odd values of m sepa- 
rately, we may include in one calculation the results for 0 
and for 180 —4@, since (—1)” cos m(180 —0@) =cos m@ simply. 

In illustration we may take the numerically simple case 
where 6=0 and @=180, choosing as an example z=2°4 
in (22). Thus 

™m || WM. | 

0 ‘26905 — 7 x °48842 it *39906 — z x 1:138268 

2 57166 — i x ‘91676 Hotes | "18448 —i x ‘01436 

4 - 880-—7x °- 6 9) 38 — 2 0 

6 2 0 

S(even)="84908 — i x 140524 | Soaay = 53392 — i x 114704 

Accordingly for @=0, we have 

Piven —eicad TO LOLI = x 2aeee 

and for @=180° 

Sooo, + Sega = 1°38295—4 x 2°55298. 
These are the multipliers of 

( ul a ei(nt—kr) 
2ikr. 

in (22). For most purposes we need only the modulus. 
We find Pn ei 

(3151)? + (°2582)?= (4074), 

and (1-383)?-+ (2°552)? =(2°903)?, 
As might have been expected, the modulus, representing the 
amplitude of vibration, is greater in the second case, that is 
in the direction of the primary ray produced. 

For other angles, except 90°, the calculation is longer on 
account of the factor cosm@. The angles chosen as about 
sufficient are 0, 30°, 60°, 90° and their supplements. For 
2 or 3 of the larger z’s the angles 45° and its supplement 
were added. The results are embodied in Table II., and a 
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| 0| 10222 —2 x 01823 
30 | *10275 — i x 01824 
60 | 10421 — i x ‘01824 

| 90 | 10622 — 7 x 01825 
| 120] -10825 — 7 x 01826 
150 | 10975 — i x 01826 
180 | °11030 — i x ‘01827 

0. Betan (22). 

| 0} -22476 — i x “18576 
| 30 | -23303 — 7 x -18625 
| 60] -25625 — i x “18758 

90 | -28936 — i x “18940 
120 | -32415 — i x -19122 
150 | -35071 — i x -19255 
| 180 | -36068 — i x “19304 

| 

0. | Esiin (2): 

0 |—-01669 — i x 21605 
30 |+:02173 — i x -23024 
60 | “13268 — i x :26916 
90 | -29935 — i x °32255 

120 | -48494 — 7 x -37622 
150 | °63373 — i x °41570 

180; -69107 — ¢ x °43017 

a. | [ J] in (22). 

O |—-21265 +2 x -32667 | 
30 |—"17770 +. i x 24065 
45 |—-12896-+4+ix 13772 
60 |—-05019 ++i x -00214 
90 |4+:20741—i x °33195 

| 120 | -57473—ix -67566 
| 135 | -76284—i x -82086 
| 150 | -92264—72>x 93341 
| 180 | 106827 — z x 1-:02905 
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| 

TABLE II. 

ett 

Modulus. [ ] 4m (26). 

1038 ||—-05808 -- i x -00295 
1044 ||—-05048 +. 7 x -00255 
1058 ||—-02925 + ¢ x -00147 
1078 ||-4-00080 — ¢ x -00001 
1098 || 03207 — 4 x ‘00149 
1113 || -05574 ~ ¢ x -00237 
1118 || -06456 — 7 x -00297 

oS. 

Modulus.) sim (26): 

| -2916 | —-16535 + 4 x 03618 
2983 | —-14502 + i x 03119 
3176 ||—-08356 + i x -01746 
3458 ||4-01535 — i x 00154 

| 3763 (|| 13288 — 7 x -02082 
| 4001 | 23158 — 2 X -03511 

4091 | 27058 — i x -04038 

ae? 

Modulus. a me(26).; 

‘2167 ||—-11469 + 7 x -06201 
2313 ||—°103857 +7 x° 04872 
‘3001 ||—-04920 + i x 01029 
‘4401 ||-4+--08899 — 7 x ‘04745 
6138 || 31454 — 4 x °11127 
‘7579 || -54459 — i x (16188 
‘8141 || -64413— 7 x "18123 

z=1°6 

Modulus. | [ ] in (26). 

-8898 || 04320 —7 x (15464 
2991 || -01272—7 x 16229 

| +1882 |—-01207 — zi x (17555 
0502 || —:02292 — i x (19972 
3914 | +:07680 — i x °29102 

| -8870 || -41448— 2 x -43022 
| 1-112 64445 — i x 50229 
1312 | 86340 —7 x ‘56345 

61900 11-483 | 107952 —7 x: 

373 

Modulus. 

"0582 
| 0505 
| °0293 

‘0008 
0321 
0558 
"0646 

Modulus. 

| °1693 
| °1483 
| "0854 
0154 

| *1345 
ore 

(, S273 

Modulus. 

"1305 
1145 
‘0503 
-1009 
°3337 
“5681 
6691 

Niggas: 

1606 
"1628 
"1760 
‘2010 
‘3010 
“5974 
‘8171 

1:031 
1244 
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ee 27(). 

0. [A an) Modulus. [ ]in (26). Modulus. 

QO | 24705 +4 x -54647 | 5997 ||--01037 —4 x -26494 | -2651 
30 | °12429+7x 48468 | 5004 ||—-07211—2x 23868 | °2493 
60 |—°10169 +7 x +25692 | :2768 ||—-20729—2 x °22858 | -38049 
90 |—"10997 —7 x -19493 | -2238 ||—°20901—72 x °34842 | -4063 

120 |+°30453 —7 x 81124 | 8665 |/+°21619—7 x -65956 | 6941 
150 | -93263 — 2 x 1:36792 | 1:656 98119 — ¢ X 1:017380 | 1:413 
180 | 1:24117 — 7 x 1:59417 | 2:020 1:39291 — ¢ * 1:17758 | 1°824 

Br 2k, 

a | era O22): Modulus. [ >] ims @6): Modulus. 

0} -31511—ix 25820 -4074 | -03501 2x -00548 | -0354 
30 | *20547+ 7x ‘03416 +2083 || °00846+72>x ‘03851 | -0394 
45; ‘07387 +7 ‘380240 3113 |---04963+2 x ‘07206 | 0875 
60 |—-08615 +7 52197 5290 ||—"153876+2x ‘07895 | -1728 
90 |—:29433 + 7x 42828 +5196 |--°37501—72x °18136 | ‘3973 

120 |+ 04433 —71 x °f8199 5837 ||—"08070—%4X “77525 | “7794 
1385 | -44763 —7 xX 1:27912 §1°355 +-°88943 — 7 X 120336 | 1:265 
150 | ‘89597 —7 x 192770 | 2-126 96494 — 7X 1°60617 | 1°874 

| 180 | 1°38295 — 2 X 2°55228 | 2°903 || 163169 —z x 1°99996 | 2°581 

plot of most of them is given in fig. 1, where the abscissa 

180 

is the angle @ and the ordinate the corresponding modulus 
from the table. The curve marked N corresponds to{(22) 
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and that marked N’ to (26). A few points have been 
derived from values not tabulated. From the nature of 
the functions represented both curves are horizontal at the 
limits 0° amd 180°. 
When <=°8, the curves show the characteristics of a very 

thin cylinder. At 90° N’ nearly vanishes, indicating that in 
this direction little light is scattered whose vibrations are 
perpendicular to the axis. When z=1-2, the maximum 
polarization is still pretty complete, but the direction in 
which it occurs is at a smaller angle 0. For z=1°6 the 
polarization is reversed over most of the range between 45° 
and 90°. By the time ¢z has risen to 2°4 a good deal of 
complication enters, at any rate for the curve N. 

In fig. 2 are plotted curves showing the variation with z 
at given angles of 2=0°, 60°, and 90°. At 0° the polariza- 
tion is all in one direction over the whole range from 0 to 2°4. 

At 60° there are reversals of polarization at z<=1°5 and 
2=2°05. At 90° these reversals occur when z=1°7 
pene, 

The curves stop at <=2°4. It would have been of interest 
to carry them further, but the calculations would soon 
become very laborious. As it is, they apply only to visible 
light dispersed by the very finest fibres, inasmuch as ¢ is 
the ratio of the circumference of the cylinder to the wave- 
length of the light. 
When z, or kc, is greater than 2°4, we may get an idea of 

the course of events by falling back upor the case where the 
refractivity (w—1) is very small, treated in my 1881 paper. 
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In our present notation the light dispersed in direction 0 
depends upon 

TC? 
LN 2 ~ a ae mean 30). a EE 

When 0=180°, i.e. in the direction of primary propa- 
gation, 

J,(2z cos 30) = z cos 30, 

and (29) reduces to mc?. In this direction every element of 
the obstacle acts alike, and the dispersed light is a maximum. 
In leaving this direction the dispersed light first vanishes 
when 

cos 40 = 3°8317/2z, 

and afterwards when 

22 cos 40 = 7:0156, 10-173, 13°324, &e. 

The factor (29) is applicable, whether the primary vibra- 
tions be parallel or perpendicular to the axis of the cylinder. 
The remaining factors may be deduced by comparison with 
the case of an infinitely small cylinder. Thus for vibrations 
parallel to the axis, we obtain from (6) 

'.— as 2 i(nt—kr) (kie— ke)J(2ke COS 39) 

ia (sim) : i cos $6 ae) 

applicable however large ¢ may be, provided (4’—k) be 
small enough. 

In like manner for vibrations perpendicular to the axis 
we get from (9) 

(ON coe). ee — F eheor td ea 
u ( k Je € cos $0 7) 2ikr 

vanishing when @=90°, whatever may be the value of ke. 
It will be seen that (30) and (31) differ only by the factor 
—cos@, and that this is unity in the direction of the 
primary light. 
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XLII. Interfacial Tension and Complex Molecules. 
By Prof. G. N. ANTONOFE *. 

§1. A Theory of Surface Tension. 

ie order to explain the phenomena of surface tension, it 
is usual to postulate the existence of forces, sensible 

only at very small distances, between the molecules of a 
liquid. ‘The distance at which these forces are still effective 
is known as the radius of molecular action. They are as- 
sumed to be inversely proportional to a sufficiently high 
power of the distance apart of the molecules. Several 
writers, after Lord Kelvin, have regarded them as propor- 
tional to the inverse fifth power of distance, but Sutherland t+ 
has given strong evidence, based mainly on experimental 
results, that the inverse fourth power is more suitable. 

Theories of surface tension based on the existence of such 
forces involve of necessity the conception of ‘* Molecular 
pressure.” Bnt while surface tension is a real and tangible 
phenomenon, the same cannot be said of the molecular pres- 
sure. The absence of direct methods for its determination 
has even led some writers { to regard it as a purely meta- 
physical magnitude, and no clear account has apparently 
been given which expresses precisely the mutual dependence 
of molecular pressure and surface tension. 

One of the most widely known of such theories, which 
undoubtedly plays an important role, is that of Laplace, 
which is, however, of a very general type. But at the 
present time, our knowledge of the nature of the molecule 
and the forces which can be associated with it, is much more 
definite, and it is desirable to work out the consequences of 
a more definite hypothesis of molecular action which is in 
general agreement with the present conception of the mole- 
cule. For it is possible to explain the existence of attractive 
forces between molecules, diminishing rapidly with distance, 
without making any special hypothesis for the purpose §. 
We may suppose that the forces exerted by atoms and mole- 
cules are essentially of electromagnetic origin, for into the 
composition of atoms and molecules apparently enter only 

* Communicated by Prof. J. W. Nicholson, F.R.S. 
+ Phil. Mag. [5] xxvii. p. 305; zbed. [5] xxxv. p. 112 (1898). 
t Kapillarchemie, Leipzig, 1909, p. 9. 
§ See also Crehore, Phil. Mag. xxvi. p. 25 (1913), 
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positive and negative charges of approximately equal magni- 
tude on the whole. On the other hand, molecules must 
apparently be regarded as asymmetric, and therefore in 
many cases can be treated as mathematical bipoles or 
doublets in which the positive and negative charges are 
effectively concentrated in points at definite distances apart, 
such distances being characteristic of the molecules con- 
cerned. ‘These distances may as usual be called the lengths 
of the molecular doublets. The use of molecular doublets, 
as a means of interpreting the phenomena of surfaee tension. 
was suggested by Sir Oliver Lodge*. In the following 
calculations, these doublets may be regarded as purely elec- 
trical in type, and the paper, in one of its aspects, indicates 
the extent to which a purely electrical theory of the forces 
operative in liquids between contiguous molecules can account 
for the observed phenomena. Bunt magnetic polarity, if pre- 
sent, would also be subject to the same laws of action between 
neighbouring doublets. The investigation therefore does not 
preclude the existence of magnetic forces also. Their only 
effect would be to alter the absolute values of surface tension 
and molecular pressure, and not their ratio or the nature of 
the laws regulating their action. It is not without interest 
that this theory, or even the combined electrical and mag- 
netic theory, at once necessitates that the molecular attrac- 
tions must be proportional to the inverse fourth power of 
the distances in agreement with the conclusion reached by 
Sutherland on experimental grounds f. 

If it be supposed that the molecules of liquids act as 
doublets,—in all the considerations advanced in this paper, 
only transparent liquids are under review,-—they must be 
arranged in such a manner that the extremities of opposite 
sign are adjacent. Let the length of a doublet be J, 
and the charges on its poles +e. The component forces 
between two such doublets in any relative positions are 
known. 

A single doublet at the origin O, pointing along the axis 
of x, produces an external field whose potential at a point P 
lor ye 2) 1s, i t= OP, 

WV = ela)? 

If a second doublet is situated at P, in the plane wy, and 
if the projections of its length parallel to the axes are dz, dy, 

* Proc. Inst. Elec. Eng. Part 159, vol. xxxii. (1903). 
+ Loe. cit. 
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theimutual potential energy of the two is. 

peda ON W=e(<de+ aye) 

But d2=lcos 0, Sy=/sin O, if 0 is the angle between the 
axes of the doublets, and accordingly 

V 
W =el (cos gov + sin 92 Ne 

Ox oY 

For our purposes in the present theory, it is only necessary 
to consider parallel doublets, for which @=0, so that we may 
write 

Waa’ nar 2 (2) 
Ou Oz \r3 

ay) 

= ¢*/? = — =) ‘ 
op ”? 

The force acting on the second doublet, parallel to the axis 
of 2, is X where 

2) x= >) Rae = ¢?/? 
relax? 

and that on the doublet at the origin is equal and opposite 
to this, or 

22)? = Bs =) 3e°P Leelee ee ek Sal ans ON 
yT Fa fa (5a dar”) Aa (22? —3y’”). 

The extremities of opposite sign being adjacent, the force is 
au attraction. 

Fig. 1 shows two doublets whose distance apart has two 

H(z e ma 

components md, nd, where m and n are integers. We can 
regard d as the average distance apart, in an assemblage 
arranged in regular order, of two adjacent doublets. 
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In this case, we have at once, writing e=md, y=nd, 
r=d/m? +n?, the expression for the force 

3me7l? = 2m? —3n? 

ee oe (m? + n?)4/2* 

It is understood that if the lengths of the doublets have 
different values (/,, J), 1? is replaced by 2,/, in this formula. 
The law is that of the inverse fourth power as already stated, 
and as could in fact be shown at once from a consideration 
of dimensions. 
When m=0, we have practically a very simple case with 

the doublets facing one another, the force in the perpen- 

dicular direction being of order =. When n=0, the 
d? 

doublets are in line, and at distance md apart, the force 
; 6e?/? 

becoming ——. 
(md)* 

For a given value of nd, a line of doublets is specified, and 
the whole attraction of this line on one side of the original 
doublet, is 

> m( 2m? — 3n*) 

Ey PE 
ais 2—3n? 2(8 — 3n?) 3(18 —38n’) t 

(1+n? l+n?)i2 © (44n7)i? (9+n?)i? a 

This ser ies cannot be summed in a convenient manner, but 
a suflicient approximation may be obtained by noticing hat 
each term decreases as n increases. When n=O, the terms 

are of order m~*, and the second is only about 1/16 of the 
first. Thereafter the convergence is very rapid, and it is 
sufficient for our purpose to ignore all but the first two 

terms. 

The bracket changes its sign when n=1. Thus its values 

are effectively, for n=0, 1, 2, 

16 ; 
2+ Fie = 2h= 2125 

1 a Lee 
(ORE SOS AO oly A i 

Oe TS 
— Bip — qt? 



Tension and Complex Molecules, 381 

and rapidly decrease. Only the first two values of n need 
to be retained, and we may write, for the total attraction of 
a doublet towards one side, along its length, 

Seer yt ol? A {24 ie—an =613 5. 

This does not differ appreciably from the force due to the next 
consecutive doublet in line. The force in the perpendicular 

272 

direction similarly is effectively — or half the above 

value. The problem so far has been two-dimensional, but 
it is evident that the three-dimensional problem gives the 
same approximate solution, and we may conclude that when 
such a doublet is one of a regularly disposed arrangement, 
all doublets being parallel, it is pulled in each direction in its 

6e7/? 
own line by a force ae 
by half this force. 

In a length nd parallel to the doublets or perpendicular to 
them, » doublets are situated. The number in unit length is 

and ina perpendicular direction 

= and if p is the number of doublets or molecules in unit 

volume of the liquid, 

ih 
aR Ie * 

If the surface doublets were arranged parallel to the surface, 
the surface tension, or attraction along the surface per unit 
length, would be 

6e7/? 
7 be —_ 6671? p*/ 

in one direction, but only half this value in the perpendicular 
direction along the surface. We must therefore reject 
this case, and adopt, on the other hand, that with all the 
doublets arranged normally to the surtace, the poles in any 
line being alternately positive and negative. ‘The surface 
attraction per unit length is then 3¢7/?p*? and the inward 
normal attraction is 6¢7/?p** on each doublet. It is not, of 
course, implied that the surface poles form a rectangular lattice 
arrangement at any instant. The magnitude d is the average 
distance apart of contiguous poles belonging to different 

Phil. Mag. 8. 6. Vol. 36. No. 215. Nov. 1918. 2D 
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molecular doublets, which are in fact continually in a state 
of vibration and of translatory motion with a definite free 
path. The surface force in either direction on a row of 
doublets is a mean value and actually must on the average 
be the same in every direction, thus producing the ordinary 
phenomenon of surface tension. 

The number of doublets in unit area of the surface is 
so that the inward pull per unit area is 

bel pt 

qd? 

if 
a2? 

(OG aps 

The inward pull 6¢7/?»? on unit surface is the molecular 
pressure, which. we denote by the symbol P. The surface 
tension is a. Thus 

iE =e"? pe, a= Jel’ pl) 

Thus a haps, 

where & is a numerical quantity, practically equal to 2 
if the magnetic forces are negligible compared with those of 
electric origin. As an example we may calculate the value 
of P for benzene, assuming the following data :— 

Weight of an atom of hydrogen = 1°64 x 10-™ gr. 

Molecular weight of benzene ... = 78. 

Specific gravity of benzene at 
ordinary temperature ...... Oo 

Thus 
0890 

PB x 16x10 Fe 
At ordinary temperature, the surface tension of benzene is 
32 dynes percm. ‘Therefore 

P=32k(6°8 x 107!)!®=12 x 108 dynes per sq. cm., 

with k=2. This is approximately 1200 atmospheres, and 
its order of magnitude is in accord with indirect evidence. 
The expression for the molecular pressure can be somewhat 
modified. Write 6e?=J. The length / of a doublet is a 
magnitude which cannot exceed the molecular dimension. 
Some evidence exists which tends to show that / is the same 
for various liquids at corresponding temperatures, and in 
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particular therefore at absolute zero which is a corresponding 
temperature for all liquids. 

When the temperature rises the effect on the liquid can 
be represented by an equivalent diminution in the effective 
value of J, which approaches zero in the neighbourhood of 
the critical point. In order to express the diminution of the 
attractive forces between the doublets when the temperature 
rises it is sufficient, for example, to suppose that the doublets, 
instead of being arranged vertically, commence to move in 
such a manner that their charges describe circles while their 
centres remain stationary, so that their areas in fact describe 
cones. 

As the temperature rises, these cones tend to become 
flatter, until finally the two charges are describing the 
same circle, and the entire doublet moves in a horizontal 
plane. If we recollect that this type of movement must 
increase with the temperature, it is evident that the effec- 
tive value of | must decrease, and reach the value zero 
when the doublet no longer exercises attractive forces on 
the average. 

As for the magnitude p, it is merely the specific gravity 
of the liquid divided by its molecular weight. For certain 
reasons, however, it is necessary to replace this specific 
gravity by a smaller value, the difference between the 
density of the liquid d, and that of its saturated vapour dg. 
In this case the formula for the normal pressure becomes 

P=Jstt) (“Fr2) Mae tra G95 

where f(t) replaces /?, and J is constant. The molecular 
weight is M. In a paper by Kleeman * a formula very 
similar to this is derived from considerations of a quite 
different character. 

According to Kleeman, the surface tension is 

Ms alist P1— P2 ‘ raNe n= KI (PEP) (SCay, 

where (2a)? is a constant, K'’’ is a quantity which is the 
same for all liquids at corresponding temperatures, p; and pe 
are the densities of the liquid and of its saturated vapour, 
and m is the molecular weight of the liquid. This expres- 
sion for the surface tension accords with the properties of 

* Phil. Mag. xix. p. 784 (1910). g Pp 
2D 2 al 
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liquids in so far as it vanishes at the critical point. More- 
over, d,—d, becomes indefinitely small near the critical 
point and appears in the expression to the second power, 
while f(t) also approaches zero at the critical point. The 
formula, in fact, indicates the same phenomenon which is 
found in practice, for the surface tension is effectively zero 
somewhat before the critical point. Laplace’s theory, while 
embracing a whole series of phenomena, is not satisfactory 
in this respect, and the theory of van der Waals, which is 
based on the conception of a continual passage from the 
liquid to the gaseous state, appears to be more suitable; we 
must admit also that the density of the liquid is variable, 
and that near the surface it passes by degrees into the 
density of the vapour of the same liquid. 

Let us consider how such phenomena can be represented 
from the point of view of the kinetic theory. 

The particles of a liquid are in motion like those of a gas, 
but are characterized by a much smaller mean free path. 
Some particles, with a velocity greater than the mean, 
detach themselves from the liquid surface and enter the 
surrounding medium to form a ‘saturated vapour. When 
equilibrium is reached, equal numbers of particles enter the 
surface and are detached from it. In this manner, the sur- 
face is in continual bombardment on two sides, and it is 
therefore quite natural to attribute special properties to it. 

But in this case the properties of the surface must change 
radically, if it is in contact with another liquid instead of its 
own vapour. In fact, in the latter case, particles approach 
the surface which have, in the two media, very different free 
paths, whereas at the boundary of two liquids, the molecules 
in the two media have mean paths of the same order of 
magnitude and characteristic for the two liquids. 

The available evidence appears to support the opinion, that 
the surface of a liquid, when in contact with another liquid, 
retains the same properties which it had while in contact 
with its own vapour (opinion of Planck) *. The opposite 
view does not, in fact, lead us to results in agreement with 
experiment (Kantor) }. ‘’ammant considers that if the 
liquid passed to the gaseous state by jumps the law 

iP, 
— = const. 
a 

should be true. But according to the theory developed in 

* Thermodynamk, Leipzig, 1905, p. 175. 
+ Wied. Ann. lxvii. p. 687 (1899). 
{ Ueber die Beziehungen, p. 175, 



Tension and Complex Molecules. 385 - 

this paper, even admitting the sharp passage from the liquid 
to the gaseous state, the constancy of this ratio cannot occur, 
for, as we have seen, 

in which p is not constant, but in all cases is a function of 
the temperature. 

We shall see later that systems consisting of two liquids 
in contact (liquids with limited mutual solubility) can throw 
some light on the nature of the liquids and we shall discuss 
their properties a little more completely. 

§ 2. Some Properties of Two Superposed Liquids. 

Considering liquid systems with limited solubility we 
have difficulties in explaining some laws governing that 
phenomenon and in understanding how the two layers can 
coexist without having the tendency to mix completely. It 
can be shown for example in certain cases (near the critical 
point of dissolution), that we can have two liquids of very 
different concentrations, but equal {within the limits of 
experimental error) as regards surface tension *. Two layers 
obtained when the liquid is disturbed correspond to this con- 
dition if the critical point is gently departed from. ‘T'wo 
liquid layers have, according to Konovaloff tf, an equal 
vapour tension as well as the same vapour composition, 
while their own composition is very different. If certain 
properties of a solution remain the same, even with change 
of concentration (for example, surface tension and vapour 
tension), we can suggest, as an explanation, the hypothesis 
that at the surface of a solution the concentration of the dis- 
solved body is different from that in the interior. If, in 
general, it be admitted that such a change of concentration 
can occur in the surface layer, the formation of two solu- 
tions of different concentrations but identical surface tensions 
becomes admissible, and it is only necessary to suppose 
equality in the surface concentrations. 

Such an interpretation is necessitated otherwise, in that 
there exists a theory according to which the surface concen- 
tration of solutions must differ from that of the deeper layers. 

* G. N. Antonoff, J. Ch. Phys. v. p. 872 (1907). 
+ D. Konovaloft, Wied. Ann. xiv. (1881). See also Nernst, T’heor. 

Chemie, p. 525 (1913). 
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The origin of this theory is due to Gibbs * and Thomson f, 
who have applied it to gaseous mixtures, but its detailed 
development in the application to solutions is dne to 
Freundlich ¢, Milner §, Lewis ||, and others. 

On the basis of the theory of Gibbs and Thomson, 
Freundlich and Lewis have given the formula 

me 
C MeOR TT gee 

where w is the excess of the mass of dissolved body, expressed 
in grams per square cm. of the surface, e=concentration of 
the dissolved body in the depth of the solution, R= gas 
constant, T=absolute temperature, «=surface tension, 

ee =change of surface tension with the concentration of 
C 

the dissolved substance. 
It is usual to apply the term “adsorption” to this change 

of concentration at the surface of a liquid. Let us consider 
some consequences of applying this formula to the critical 
points of solutions. We have seen that for a whole series of 

, da 
concentrations, = =0, and therefore we should also have 

de 

0) 

In other words, with the increase of concentration the new 
substance introduced distributes itself in the interior of the 
liquid and does not enrich the surface layer. 

But Lewis.f], in order to verity this formula, has made 
some researches on the subject and arrived at results which 
do not agree with the theory. 

With the experimental results of Lewis as a basis, 
Arrhenius** has been led to conclude that the phenomena 
of absorption are not in simple dependence on those of 
eapillarity, and all attempts to relate these phenomena 
directly are, in his opinion, doomed to failure. However, 

* Thermod. Studien, p. 271. 
+ J.J. Thomson, ‘ Applications of Dynamics to Phys. & Chem.’ p. 191. 
{ Kayllar chemie, D. 50. 
§ Phil. Mag. [6] xiii. p. 96 (1907). 
| Lewis, Phil. I Mag. [6] xvii. p. 466 (1909). 
q Ibid. 
** Meddelanden f. K. Vetenskapakademiens Nobelinstitut, Band 2, 

No. 7 (1911). 
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in order to explain the possibility of the existence of 
solutions of various concentrations, but the same vapour 
tensions, the equality of superficial concentration is not the 
only possible hypothesis or condition. For it is quite con- 
ceivable that near the critical point, the concentration of the 
surface layers plays a certain réle in the phenomenon of 
equilibrium of two layers. Lffectively if the two concen- 
trations come to be equal for two different solutions, the 
equality of vapour tension and of surface tension becomes 
admissible. Nevertheless it is not possible by this hypo- 
thesis to explain a whole series of properties of these 
systems. 

{In a departure from the critical point, the surface tensions, 
as is known*, commence to differ sensibly for the layers, 
while the vapour tension remains in all cases the same for the 
two layers. It is also known that the two superposed liquids 
boil at an equal temperature and have the same freezing 
temperature. These properties obviously cannot be accounted 
for from the standpoint of the above theory. Evidently, in 
order to explain these phenomena, it is necessary to take into 
account the molecular state of the body dissolved in the 
solution. 
A satisfactory hypothesis can be found, however, on the 

basis of the following considerations exposed in the next 
section. 

$3. Zhe Tension at the Interface of Two Liquids with 
Limited Solubility in a State of Equilibrium. 

In the following we are going to call a, the interfacial 
tension, 2, and a, the surface tensions against the air of two 
superposed layers ina state of equilibrium; we will call them 
solutions land 2. Thus a and a are not tensions of separate 
liquids but of the saturated solutions the two liquids form 
when in equilibrium. 

The attempts to formulate a law connecting the surface 
tension at the limit of the two liquids (#.) with the tension 
of the different phases (a; and a.) have not up to the present 
given any very satisfactory result. The theory of Rayleigh 
has led to this result : 

based on certain hypotheses regarding the layer of transition 
which do not agree with the experiments. 

* See G. N. Antonoff, loc. cit. 



388 Prot. G. N. Antonoff on Interfacial 

We will take it for granted that when two liquids which 
do not completely mix are in equilibrium at the limit of 
separation, the following must hold good : 

Pre = P, ae P,, 

where P,, is the resulting normal pressure at the interface, 
P, and P, the normal pressures of the solutions 1 and 2. 

According to the present theory there must be a definite 
relation between such quantities as P and a. For the 
solution 1 there must be 

a= kop. 

For the solution 2, 

ie = hap? 5 

and similarly at the interface of the two layers an expression 
must hold good of the following type : 

Pi»= hoop, 

Thus 

ea — le aah Nes = k( aq p41 = aop,/?). ° ° e (3) 

We will show in the subsequent paragraph that when two 
liquid layers are in equilibrium both superposed solutions are 
equimolecular, i.e. contain an equal number of molecules per 
unit volume, or we may put 

OP 28 

From the expression (3) we shall then obtain 

Pig = kp? (a; —a), 

but since Bio hao pt, 

therefore Big Sy — ge el hy er 

This is perhaps the most fundamental result required by 
the theory outlined above. 

The equations (3) and (4) are identical provided that 

Pilg 22's 

which means that in two layers there are an equal number of 

j 
7 

( 
b: 
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particles per unit volume (AvocapRo’s Law). That is, 
however, only possible if there are phenomena of associa- 
tion in the solutions. This will be further discussed and a 
definite proof given in the subsequent paragraph. 
We shall now show that the relation (4) is in agreement 

with the experimental evidence. This can be illustrated by 
the following table, where the figures are given for a state 
of complete equilibrium ™. 

TABLE I. 

ee UD Aiirratte ao 

Water-isobutyl alcohol .................. 23°9 22°5 1-4 176 

peranconmylic alcohol 4.) jes. os 25°7 21°1 46 4:4 

cc, |v) E/E aera aT eRe an AS eo: f 17°3 9°4 or 

AMPERES 8 ic saa alae’ sccied Meeweeennee: 44-4 40°0 4°4 Bk 

Py MHEHPLOMOLORMY O16. 020. ..csbccaeadeeeene 54:0 26°6 274 27-7 

MATIN CILE) (ohio seu as ak eae oa eee 60:0 28:2 31°8 32°6 

It is not easy to extend the above table for the following 
reasons. The pairs of liquids with considerable mutual 
solubility give saturated solutions with nearly equal surface 
tension, ¢. g. aniline-amylene (trimethylethylene), isobutyric 
acid-water, carbon disulphide-methyl] alcohol, whose critical 
points of separation into two layers are not far from the 
ordinary temperature. In the proximity of that point the 
tensions of both layers are nearly equal, and a, is nearly 
zero 7. No accurate results can be obtained under such 

* G. N. Antonoff, J. Ch. Phys. v. p. 372 (1907). 
+ Insuch a case the meniscus of the separation of two layers is nearly 

flat. Asa rule the meniscus is curved according to the values of # and 
c,, the liquid with higher tension wets the glass at the interface and forms 
a concave surface. The explanation of these phenomena can be given 
by means of the above theory. The theory of the doublets can also 
permit of the explanation of the phenomena of humectation and of 
adsorption that both result in molecular attraction. We have seen 
that the attraction between two doublets of the same nature is 
expressed by 

8e7l? 

dys 

Here d is the distance between the molecules. For a liquid of which 
the doublets /,/, are of a different size, the attraction between the particles 
will be expressed by 

3e7l, 1, 
dy* 



390 Prof. G. N. Antonoff on Interfacial 

circumstances. ‘To obtain more or less reliable results only 
liquids with considerable differences a,, must be chosen to 
prove theabove law. For this reason in the above table water 
exists as one of the constituents in all pairs. Water has an 
exceptionally high surface tension of the order of magni- 

tude 70 mes and the majority of other liquids about 

20-30 Ee Therefore only in solutions having water as 
(G 4 

It is apparent that the liquid will wet the glass in the case where the 
value of the attraction between .the elas and the liquid is eteater 
than between the particles of the liquid, 7. e. if 

It must be admitted that d, and d, are little different from each other 
(and in all cases different less than /, and /.), and in this case the condition 
of humectation will be 

i Sle 

Let us try to explain the fact observed empirically that when two 
liquids are in contact with the glass (each of which wets the glass), the 
liquid possessing the highest surface tension will wet the glass replacing 
the other liquid. 

Let us designate by 4, é2, and J; the reciprocal dimensions of the 
doublets of the first and second liquids and of the glass. We shall have 
that the attraction between the glass and the first liquid will be given by 

The attraction between the glass and the second liquid will be 

DC lols 
ae 2 

It is evident that the first liquid will wet if 

L > 

However, experience shows that the condition of humectation ds 
always 

a, > Oo. 

If we assume Pi = Pr, 

then the condition Lite 

is equivalent to a, > ao. 
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one constituent can considerable differences be expected pro- 
vided the mutual solubility is not very high. But in systems 
with low solubility there arises another difficulty which is 
not so easy to overcome. .g., for the pairs of liquids like 
water-benzene and water-chloroform, both «, and a, can be 
determined pretty accurately, whereas a, cannot be estimated 
by ordinary methods, e.g. the capillary method cannot be 
used at all. To explain this, general properties of systems 
with limited mutual solubility have to be considered. 
Asa rule, the surface tension as a function of concentra- 

tion varies in the following way, as can be seen on fig. 2 and 
fig. 3, where the concentrations are plotted along the abscissee 

Fig. Oe Fig. 3. 

> Surface Tension. 

Ae, 

es 

—-- > Surface Tension 
Rresnerncar. 

——-> Concentration. ——-+ Concentration. 

and the surface tensions along the ordinates. The dotted 
curves represent the solubility curves inside which there is a 
region of two layers. Ifthe mutual solubility is considerable, 
the solubility curve intersects almost horizontal parts of 
the surface-tension curve as in fig. 2. Whereas when the 
mutual solubilities are small, the solubility curve intersects 
a nearly vertical part of the surface-tension curve on the 
side where the liquid with the higher surface tension is in 

; da . excess, 7. ¢. near B on fig. 3. In such a case — is large, 
de 

where @ is the surface tension and ¢ the concentration, 
1. €. the slightest change in the concentration provokes a 
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considerable change of the surface tension. If, moreover, 
one or both of the components are volatile at the tempera- 
ture of the experiment, as in the case of water-henzene and 
water-chloroform, it is almost impossible to obtain the right 
value of surface tension for the aqueous layer. This can be 
demonstrated by the following table :— 

TABLE IT. 

Layer with higher Layer with smaller 
surtace tension. surface tension. 

as mn Ta iar soar Aas 
Ma 7 a 

Liqurps. Solu Hae Solu da, 
bility, (1 ats de” bility. ne de” 

Isobutyric alcohol-water ... 5°49/, 28°9 9°4 15 °/, 22°7 nearly 0 

Amilame-warter ica) escemeees 32 44:0 10 4°5 40:0 “4 

Water-isoamylic alcohol ... 2°6 PAST NN IIS) 42 21°1 m5y5) 

Chloroform-water ............ 8 540 24 1:2 26'6 3 

Benzene-water ........ Joan aL 60:0 100 ra 28'2 nearly 0 

It is obvious from the above that in the case of almost 
immiscible liquids the experiment is unable to settle the 
question definitely. 

For the same reason the so-called Gibbs-Konovaloft’s law 
cannot be proved for immiscible liquids. Konovaloft*, who 
first,succeeded in proving the law experimentally, could only 
show qualitatively that in the system water-carbon disulphide 
the aqueous layer gives off vapours containing very much 
more carbon disulphide than was to be expected as the result 
of small solubility in water. All the same, that law proved 
experimentally for miscible liquids is generally accepted and 
is believed to be true for all pairs of liquids forming two 
layers, however small their mutual solubility may be. This 
law is an essential condition of equilibrium, so that it is 
bound to be extended over nearly immiscible pairs. 

For the same reasons I believe also the relation 

nis lms 

to be a general law. 
It can only be deduced theoretically if a definite assump- 

tion be made with regard to the molecular construction of 
the solutions. The equality of molecular concentration in 

* Konovaloft’s law:—Two equal layers in equilibrium have equal 
vapour pressure and equal composition of vapour. 
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both layers is in this ease the essential condition of equi- 
litrium. ‘All the above considerations must be true for 
almost immiscible liquids if they are true in the case of the 
liquids with finite solubility. 

The experiment may fail in proving the correctness of the 
above law for almost immiscible liquids, and yet it will not 
convince me that it does not hold true. 7 

For that reason I do not attribute much importance to the 
remark by W. B. Hardy * that it is nota general law, not 
being applicable in the case of immiscible liquids. He does 
not give any examples nor figures. It would also be im- 
portant to know how the figures were obtained, and whether 
all the necessary conditions to maintain equilibrium were 
satisfied. 

§ 4. The Existence of Complex Molecules in 
the Solutions. 

In the preceding paragraph we admitted that the equality 
of molecular concentration of two coexisting liquid phases 
must be an essential condition of equilibrium from the stand- 
point of the above theory, only under those conditions two 
layers of different composition may coexist permanently 
without having the tendency to mix with one another by 
diffusion. 

However absurd this may appear at first sight, the 
assumption may be demonstrated to be quite necessary in 
the following way :-— 

It is known that the two superposed liquid layers in equi- 
librium boil at the same temperature and they have the same 
freezing-point. for the systems forming two layers the 
following types of freezing curves are known (see figs. 4 
and 5)+, where the concentrations are plotted along the 
abscissee and the freezing-points along the ordinates. (By 
the freezing-point is understood the temperature at which 
the solution can coexist with very small quantity of its 
ice. ) 

Consider first the curve of fig. 4. 
Point A gives the freezing-point of substance A, and B, 

that of B. Between A and C the substance A freezes out, 
and between ( and B the substance B, C being the so-called 
eutectic point where both A and B fall out simultaneously. 

* Proc. Roy. Soc. Ixxxvili. 1913, A, p. 325. 
+ The dotted curve shows the limits of solubility of one liquid in 

another, inside which there are two layers. 
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The substance which freezes out from the solution is gene- 
rally called the dissolvant. The points m and n represent 
the freezing-point of the two saturated layers. At m the 

Fig. 4. 
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solution becomes saturated ; further addition of substance B 
produces a second layer which increases in quantity until 
oint B is reached where only the second layer is present. 

On further addition of B, the solution again becomes homo- 
geneous and its freezing-point begins to rise. 
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The points m and n, which correspond to the concentra- 

tions of the two saturated layers, are situated on one side of 

the eutectic point and must be regarded as solutions in the 

same dissolvant. Jf two solutions in the same dissolvant 

have the same freezing-point (resp. boiling-point) they 
must contain an equal number of molecules per unit volume. 

Such is only possible if the molecules of B form a com- 
pound with some of the molecules in the solutions, and 
further addition of B would not increase the number 
of molecules present in .the solution and all properties 
depending on the number of molecules (and not their 
dimensions) would remain invariable. The Phase Rule 
specifies some conditions under which monovariant systems 
can be formed *, e.g. in a system water-salt, the addition of 
salt to its solution alters the properties thereof, until the 
solution is saturated. Adding more salt has only one effect, 
it only increases the quantity of solid salt with which the 
solution is in equilibrium. The properties of the solution 
are monovariant (2. e. they only depend upon the tempera- 
ture) until the solid phase and liquid are coexisting. In 
this case the system remains monovariant while it is 
heterogeneous. 

But if the molecules of the added substance, instead of 
forming a precipitate, adhere to the molecules in solution 
forming complex molecules, then the same monovariance 
may be attained in a quite homogeneous system. 

Such cases of monovariance (7. e. when some properties 
remain invariable with a change of concentration at a given 
temperature) are actually known for some pairs of liquids 
not far from the critical point of the separation into two 
liquid layers t. Such properties may be the vapour pres- 
sure, the surface tension, freezing-point, Ke. 

All the above considerations are equally applicable to the 
case represented in fig. 5. In this case the points m and n 
are situated between the two eutectic points, and in this 
region the ice formed at the freezing-points is not one of the 
substances A or B, but a compound of A, B,. 

The solutions m and n are therefore also solutions in the 
same dissolvant whatever it may be with regard to its 
chemical nature, and must also contain equal numbers of 
molecules per unit of volume. 

The above must also be true for pairs with very small 

* Systems for which some; properties depend upon the temperature 
only being independent of the concentration. 

+ G.N. Antonoff, Joe. ezt. 
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mutual solubility. In this case the eutectic point corre- 
sponds to a very low concentration, 7. e. approaches very 
closely to one of the ordinates. But such a point must exist 
if the liquids are at all soluble in each other. It is obvious 
that if the eutectic point exist 

ye Pe 

must certainly hold true and the relation 

GO) ana Wir (a7 

must necessarily be satisfied. 

Summary. 

1. A theory of molecular attraction has been developed. 
The theory detailed above follows from the ordinary 
modern representation of the nature of atoms and mole- 
cules. Starting from this point of view, the phenomena of 
molecular attraction depend on the same forces as chemical 
affinity. 

2. A relation between surface tension and molecular 
pressure has been deduced. 

3. It was deduced theoretically that the interfacial tension 
a2 is equal to the difference of the surface tensions against 
the air of both superposed liquid layers «,—a, in equilibrium, 
which is in agreement with experiment. 

4, Two superposed layers in equilibrium must be regarded 
as solutions in the same dissolvant. 

5. They must contain anequal number of molecules per 
unit volume (Avogadro’s Law). 

6. Statement (5) is a result of formation of complex mole- 
cules in the solution. | 

7. The so-called monovariant systems may be obtained 
without fulfilment of the requirements of the Phase Rule, 
if the molecules of the component added combine with 
those in solution without increasing their number. 

The author, in conclusion, wishes to express his sincere 
thanks to Prof. Svante Arrhenius and Prof. Arthur Schuster, 
both of whom have kindly read this paper and made valuable 
criticisms and suggestions. 

26 Chester Square, 
London, S.W. 1. 



XLII. On some Properties of the Active Deposit of Radium. 
By 8. Ratner (Petrograd), Research Student, University 
of Manchester. 

1. JNTRODUCTION.—The phenomenon of the spreading 
of the active deposit of Radium has been observed long 

ago, and recorded by a large number of experimenters. In 
some cases (for instance, in that described by Miss Brooks) 
the phenomenon is now easily explained by the action of 
radio-active recoil; in other cases, however, it appears to be 
of a more complicated nature, and some further assumptions 
are required for its explanation. Fajans{ and others have 
assumed that the active deposit of radium is slightly volatile 
at ordinary temperatures, while Russ and Makower § sug- 
gested that the radio-active atoms are partly deposited on the 
surface in groups which may be set free by recoil when an 
a-particle is ejected from one of the atoms in the group. The 
phenomenon, however, has never been subjected to special 
investigation, and is recorded only as a source of error. 

In the present paper the results are given of various expe- 
riments undertaken with the purpose of a detailed study of 
the phenomenon. 

2. Procedure of experiments.—For the greater part of the 
experiments a simple apparatus was used, consisting of two 
insulated brass plates A and B (fig. 1), the distance between 

Bie, 

). ees aoa ones 

Ri 
B — eens ces a RR oe oe 

which could be varied from zero toafew cm. The central 
part of the upper plate A consisted of a disk C which could 
easily be removed from the apparatus and replaced by a 
similar one. In the centre of the platé B a small plate R 
coated with the active. deposit of radium could be fixed. 
The active matter was always found to expand from the 
plate R to the disk C; and the experiments mainly consisted 
in analysing the activity acquired under different conditions 
by the disks. When RaA was expected to be present on the 
plate R, a strong electric field (of the order of 10,000 v/em., 

* Communicated by Prof. Sir E. Rutherford, F.R.S. 
+ Miss Brooks, ‘ Nature,’ 1904. 
{ Fajans, Phys. Zeit. xii. p. 369 (1911). 
§ Russ and Makower, Phil. Mag. xix. p. 100 (1910). 

Phil. Mag. 8. 6. Vol. 36. No. 215. Nov. 1918. 2H 



398 Mr. 8. Ratner on some Properties of the 

was established between A and B, A being positively charged) 
in order to prevent the recoil atoms of RaB from reaching 
the disk. The experiments were carried out in air at atmo- 
spheric pressure. 

As far as the radioactive products constituting the active 
deposit can be separated from each other, the phenomenon 
has been investigated for each product separately. Thus 
sufficiently pure RaA was obtained by exposing the plate R 
to emanation for a short time and quickly removing it to the 
testing apparatus. RaB was obtained by recoil from RaA, 
and RaC by dipping a nickel plate into a solution of the 
active deposit. A great number of experiments, however, 
have been also carried out with radium (B+C) on the 
plate R. 

As in the course of this work activities were dealt with 
varying in strength as 1 to 100,000, great care had to be 
taken to protect the disks from contamination with the radio- 
active matter from the plates. The amount of emanation 
used varied in different experiments from 10 to more than 
200 millicuries. The activities of the disks were usually 
measured by a Wilson’s tilted electroscope, that of the plates 
by a @- and y-rays electroscope of the ordinary type. 

As shown later, it was very important in the course of 
these experiments to be able to follow the rate of change 
with time of the quantity of active matter acquired by the 
disk C. This was realized by exposing to the action of 
the active plate Ria number of disks at. definite intervals 
one after another, and by measuring their activities. Inthis 
way the period J could be easily determined during which 
the quantity of active matter reaching the disks per unit 
time falls to a half value. If this quantity were proportional 
to the amount of active matter present on the plate R, 
T would be equal to the half-value period of the corre- 
sponding radioactive product. The experiments show, how- 
ever, that these two periods as a rule differ from each other. 

3. Experimental results.—In the first place it appeared 
necessary to ascertain whether the active matter acquired by 
the disk © belongs to the same product as that on the plate R. 
The activity of the disks was carefully analysed and identified 
beyond doubt with the active matter on the plate R. Thus, 
in the case of RaA on R the active matter on the disk was 
found to be an a-ray product with a half-value period of 
3 min., giving up RaB by recoil. In general, the curves 
of decay or recovery drawn for the activities on the disks 
were found to coincide with the characteristic curves of the 
products covering the plate R, 

— 
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Further, the question of the charge of the radioactive 
atoms expanding from the plate has been investigated. The 
amount of active matter deposited on the disk increased 
many times when an electric field was established between 
the plates A and B, but was found to be independent of the 
direction of the field. On the other hand, a stream of air 
maintained between A and B seemed to sweep away the 
active matter in spite of a strong electric field between the 
plates. In connexion with some experiments described in 
another place it must be supposed that the expanding atoms 
are uncharged, and are brought to the disk © by the electric 
wind*. | 

A great number of experiments have been carried out with 
the object of determining the relative quantity of active matter 
expanding from the plate. Since the plates R during the first 
experiments were usually slightly heated in a Bunsen flame or 
washed in alcohol before being introduced into the apparatus, 
it seemed necessary to find out to what extent the phenomenon 
is affected by the process of heating or washing. It was 
found that when the plate is introduced into the apparatus 
without being heated or washed, the amount of active matter 
expanding to the disk increases enormously, reaching in 
some cases 20 times its normal value. It may be shown, 
however, that this effect is not due to traces of emanation 
which could adhere to the plate after its removal from the ex- 
posure vessel and then diffuse towards the disk. Apart from 
the fact that this supposition is not justified by the analysis of » 
the activity of the disk, the same effect can be observed when 
the plate used is coated with RaB by recoil from RaA, and 
has never been exposed to emanation. The experiments have 
shown, however, that the activity given up by a plate once 
slightly heated or washed decreases but slowly with further 
heating or washing of the plate. 

Further experiments have been greatly complicated by the 
lack of constancy in the relative quantity of active matter 
given off by the plate R. When the experiments are carried 
out under similar conditions, the ratio of activities on the 
disk and the plate is sufficiently constant and independent of 
the amount of emanation used; but this ratio varies within 
large limits with the time of exposure of the plate R to the 
emanation, increasing considerably in case of small exposures. 
This is more marked in the case of RaA, when the total 
amount of active matter received by the disk is almost inde- 
pendent of the time of exposure, so that a plate exposed to 
emanation for a small fraction of a second gives up as much 

* Phil. Mag. xxxiv. November 1917. 
2H 2 
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RaA as a plate exposed for several minutes. This effect is | 
always observed whether the plate is heated or not. As 
stated above, however, the quantity of RaA received by the 
collecting disk is proportional to the amount of emanation 
used. 

In the case of very short exposures the relative quantity of 
RaA expanding from the plate is so large that it becomes 
comparable with the amount of RaB projected from the 
plate by recoil. This is clearly shown in curve I (fig. 2), 

Fig. 2. 
[RE ASE AO AE ACIS RET ES A 2S TA Ls A ERE PR SO = TE 

Time in rninutes 

which is a curve of decay of the active matter collected by 
the disk, in the case when the plate R is exposed to emanation 
for a small fraction of a second*, and the direction of the 
electric field in the apparatus is such as to enable the recoil 
atoms of RaB to reach the disk. If under the same conditions 
the field in the apparatus be reversed, the curve III is 
obtained for the activity of the disk. Curve Lis evidently 
the sum of the two curves, II and III, corresponding to Rab 
and RaA, and it may be easily seen from the curves that the 
amounts of RaB and RaA deposited on the disk are as 
10 to 1 respectively. Putting 0:6 for the efficiency of 

* This may be easily realized when Wertenstein’s exposure vessel is 
used. Wertenstein, Thése, Paris 1912. 
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recoil of RaB from the surface of the plate, it appears that 
the relative quantity of RaA expanding from the plate under 
the described conditions is about 3 per cent. In the case 
when the plate is exposed to emanation for several minutes, 
the same quantity was found by direct measurements to be 
of the order of one ten-thousandth. To obtain distinctly the 
first part of curve I the disk must be exposed in the apparatus 
for a short time not exceeding one minute. 

The order of magnitude of the amount of expanding active 
matter in the case of Ra(B+C) is well illustrated ‘by the 
following experiments. Ifthe plate R coated with Ra(B+C) 
be thoroughly washed in water and alcohol and then strongly 
heated for a considerable time in a Bunsen flame in order to 
reduce as much as possible the amount of expanding matter, 
the activity of the collecting disk, when measured by B-rays, 
shows a well-marked decrease during the first 3 or 4 minutes. 
This is undoubtedly due to the presence of RaC, on the disk, 
since the effect is observed only when the disk is negatively 
charged. When the plate is but slightly heated this fall 
in the activity of the disk cannot be detected. It appears 
that the amount of active matter expanding from the plate is 
usually large compared with the amount of RaC, given up 
by recoil from the active deposit, and that only under special 
conditions does it diminish to the same order of magnitude. 
Direct measurements show that the relative quantity of 
Ra(B+C) expanding from the plate varies from ws 
0 5. 

eta eanenis were also made with a plate coated with 
a strong layer of polonium (in equilibrium with RaD). No 
traces of activity could be detected on the collecting disk 
after an exposure of more than two weeks. 

For a more complete study of the phenomenon, it appeared 
necessary to investigate the rate of change with time of the 
amount of active matter expanding from the plate; and for 
this purpose experiments have been undertaken in order to 
determine the period (see Sec. 2). Most surprising results 
were obtained in case of RaA, when this period appeared to 
be of striking regularity and constancy under different expe- 
rimental conditions. The same period T, viz. 1:4 min., for 
RaA was found in the preliminary, as well as in the final, 
experiments, although they were carried out in two different 
laboratories and after an interval] of more than three years. 
In Table I. the results are shown of one series of these expe- 
riments. Four disks, I, I], IJJ, and IV, were exposed in the 
apparatus to a plate coated with RaA for 1 min. each and 
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1 min. 25 sec., one after another. Column Ag, shows the 
activity of the disks measured immediately after their re- 
moval from the apparatus, columns A;, Ag, and A, their 

PABLe I, 

A. We ASS ce 
Te Dee. 95 48 25 13 

Dc ie eM | 48 24 13 7 

AT aa a HEE: 25 14 75 4 

AVEC eee ee 15 8 5 3 

activities measured 3, 6, and 9 min. after the first mea- 
surement. From column A, the period T for RaA can be 
deduced, while the rows J, I, III, and IV give the analysis 
of active matter on the corresponding disks. On the disk IV 
the presence of RaB and RaC is well marked, since at the 
time of its exposure the RaA on the plate had already 
disintegrated to a large degree. 

In the case of RaB and RaC the period T is by far not so 
constant, and varies from one series of experiments to another 
within large limits, viz. 10-40 min. Some experiments 
carried out with pure RaB and RaC show that on the average 
the period T is smaller for RaB than for Ra©. This is clearly 
seen in the case of Ra(B+C) on the plate R, when the 
analysis of the activities on the disks usually shows that in 
the active matter expanding from the plate the ratio of RaC 
to RaB increases with time. In some experiments, when 
the plate R was introduced into the apparatus 3 or 4 hours 
after its exposure to emanation, almost pure RaC could _be 
obtained on the collecting disks. It must be pointed out, 
however, that this effect is not always observed. 

4, Discussion on the nature of the Phenomenon.—tThe results 
given in the previous section seem to be very complicated, and 
throw but little light on the nature of the phenomenon. It 
appeared of interest therefore to test experimentally different 
assumptions which may be put forward for the interpretation 
of the phenomenon. First, the usual assumption that the 
active deposit of radium is slightly volatile at ordinary tem- 
peratures was investigated. In a series of experiments the 
disks, while exposed in the apparatus, were heated in a gas- 
flame to about 500°—400° C., and the amount of active matter 
deposited on them compared with that acquired by cold disks 
under the same conditions. It was found that the high 
temperature of the disks does not prevent the active matter 
from being deposited on them. It is obvious that the 
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assumption must be rejected, since the volatilization of the 
active deposit at lower, and its condensation at higher, tem- 
peratures would contradict the fundamental principles of 
Thermodynamics. 

The suggestion made by Russ and Makower (loc. cit.), 
namely, that groups of radioactive atoms may be set free by 
recoil when an e-particle is ejected hy one of the atoms in 
the group, was tested in the following way. A number of 
disks were exposed in the apparatus, 3 min. one after 
another, to a plate covered with RaB. It is evident that 
with the increase of RaC on the plate the chances for the 
groups to be set free also increase, and therefore the 
quantity of active matter expanding from the plate should 
be expected to increase with time, if the assumption were 
true. The experiments show, however, that this quantity 
decreases with a certain period T varying within the limits 
given above. 

The striking regularity of the phenomenon in the case of 
RaA led to the assumption that the spreading of the active 
matter is not a secondary mechanical effect on the surface of 
the plate, but is due in some way to interatomic forces in the 
active deposit. With the knowledge now available one could 
easily imagine that a number of branch products are present 
insmall quantities in the active deposit of radium, giving up 
by recoil the active matter found on the collecting disks. 
The period T=1-4 min. for RaA, for instance, would be 
nothing else but the half-value period of the unknown branch 
product giving up RaA by recoil. This assumption seemed 
to be a very promising one, since it could serve as a guide 
for the investigation not only of the phenomenon itself, but 
also of the supposed branch products of radium. The results 
of numerous experiments carried out in this direction failed, 
however, to be in favour of this theory; and some of them, 
on the contrary, furnished sufficient evidence against it. 
Thus, as mentioned above, the amount of active matter given 
off by RaA does not depend on the time of exposure of the 
plate to emanation, though one can hardly imagine a radio- 
active product accumulating from the emanation to its full 
value during a small fraction of a second and decaying with 
a half-value period of 1-4 min. Further, the collecting disk, 
after being exposed to a plate coated with RaA, was put in 
place of the plate, and was found to give off RaA in its turn, 
though it is evident that this disk could not contain the 
branch product giving up RaA by recoil. 

It could also be suggested that some of the radioactive 
atoms (or particles) are but slightly attached to the active 
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surface of the plate, so that small air-disturbances could 
easily set them free. This is apparently supported by the 
fact that the washing or heating of the plate considerably 
reduces the effect. It must be remembered, however, that 
the phenomenon has been chserved by Russ and Makower 
(loc. cit.) at high vacua where no air-disturbances could 
arise. Furthermore, the plate after being repeatedly heated 
and washed several times still continues to give off the active 
matter. In some experiments the active surface of the plate 
(not heated or washed) was exposed to a violent stream of gas 
coming from a high-pressure bottle at 80 atmospheres, and 
this did not reduce appreciably the amount of expanding 
active matter, although the stream of gas was certainly 
strong enough to remove the slightly attached particles from 
the active surface. 

A number of experiments have been made in order to 
ascertain whether the phenomenon is affected by physical 
or chemical conditions on the surface of the plate. The 
results were entirely in the negative. A clean and well- 
polished platinum surface was found to give up the same 
amount of active matter, and with the same period T asa 
rough surface of brass oxidized in air or covered with 
grease. 

d). General Conclusions.—If the experiments carried out in 
this work have failed to disclose the nature of the phenomenon, 
they give nevertheless a detailed description of some occur- 
ences taking place in the active deposit of radium, which for 
some time now have served as a grave source of error in 
many investigationsin radioactivity. In the work of Fajans 
this source of error could be overcome owing to the fact that 
the amount of the branch product given up by RaC is not 
too small compared with the quantity of RaC expanding 
to the collecting disk. In other cases, however, this source 
of error renders the investigation impossible. That, for 
instance, is the case in some work carried out with the 
object of investigating the recoil phenomena due to #-rays. 
Various experiments described in this paper show clearly 
that, if the recoil of RaC from RaB does exist in reality, the 
amount of RaC given up by this process must be vanishingly 
small, compared with the activity expanding from the surface 
coated with the active deposit. A survey of the work 
dealing with the questions of recoil of RaC from Rab 
leads to the conclusion that this phenomenon has hardly 
ever been observed. Unless the source of error referred 
to above is completely eliminated, all attempts to detect 
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recoil phenomena due to @-rays must be considered as 
hopeless. 

The results given in the present paper also throw some 
light on the question of the charge of the recoil atoms. 
Apart from the fact that the recoil atoms from the emanations 
are usually believed to be partly negatively charged in order 
to explain the origin of the anode activity, the atoms of RaB 
given up by RaA were also found to carry partly a negative 
charge. To account for the activity of a positively charged 
collecting disk placed over a plate coated with RaA, 
Wertenstein* and others have assumed that from 2 to 
Dd per cent. of the recoil atoms of RaB carry a negative 
charge. In all these cases the activity of the collecting disks 
(probably consisting of RaA) was not analysed. In some of 
the experiments described in this paper, when the disk has 

collected about +4559 of the total amount of RaA on the 
plate, no traces of RaB could be found on the disk. Since 
the presence of RaB in the proportion of 5!, of the amount of 
active matter could easily be detected on the disk, it follows 
that the proportion of recoil atoms of RaB carrying a 
negative charge is certainly less than 1 to 100,000. 

My best thanks are due to Prof. Sir Ernest Rutherford 

for his kind interest in this work and for the supply of large 
quantities of radium emanation. 

XLIV. The Correction of Telescopic Objectives. By T. 
SmirH, B.A., Optical Department, National Physical 
Laboratory Tt. 

i i the Philosophical Magazine for June Mr. A. QO. Allen 
has pointed out the possibility of expressing in a small 

compass all the information contained in the N. P. L. tables 
of constructional data for small objectives, and much more 
besides, by means of a few formule and other methods. He 
gives expressions for this purpose and works out a number of 
numerical illustrations. The formule as he presents them 
are open to criticism, and the same may be said of several 
statements made in the course cf the paper. I propose in 
this note to deal briefly with a few of the more important of 
these. 

* Wertenstein, 7hése, Paris 1912. 
+ Communicated by the Author. 
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Formule for the purpose of such calculations, though not 
usually expressed in a form resembling that adopted by 
Mr. Allen, have been known for many years. Although a 
simple calculation by known formule would furnish equi- 
valent information, it was considered desirable, in view 
of the special circumstances existing at the time, to 
publish tables in the form of those issued by the National 
Physical Laboratory. These appear to have served satis- 
factorily the limited function for which they were intended, 
and any value they still possess may be regarded as 
accidental. 

It has been customary for a maker of telescopes or other 
optical instruments, when working out a new objective, to 
rely upon his previous experience to enable him to set 
down approximate curves on which to base his calculations. 
Under favourable conditions a very limited amount of trigo- 
nometrical ray tracing enables him to reach a satisfactory 
final solution. This method works satisfactorily in expe- 
rienced hands, but such experience becomes quite unnecessary 
if other methods are adopted. Without any experience 
whatever it is possible, with the aid of a little algebra, to 
obtain in a few minutes an approximately correct form for | 
an objective provided the conditiens to be satisfied are stated 
in a suitable form. Mr. Allen’s formule enable such cal- 
culations to be made, but they are cast in a form which 
involves an unnecessary amount of arithmetical work. 
Fourteen coefficients occur in his two expressions for the 
spherical aberration and the sine error. It is obvious that 
many of these do not involve separate computation—for 
instance, several identical relations exist between A, B, C, 
D, E, F, P, Q, and R. It seems preferable to express the 
fundamental quantities in a form which takes advantage of 
these relations. 

The writer has pointed out elsewhere * that all the first 
order aberrations of any thin objective for light of a given 
wave-length are determined by three quantities which depend 
upon the refractive indices of the glasses and the curvatures 
of the surfaces, but not on the position of the object. If the 
three quantities be denoted by a, 8, and wf the factors 
which involve the constructional data of the objective in the 
expressions for the spherical aberration, the coma, and the 

* Proc. Phys. Soc. vol. xxvii. p. 489. 
+ In the standard notation these quantities are denoted by 4C+2w+1, 

B'—B, and a respectively. 
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departure from the sine condition are 

a—4BM+(2a+4+3)M’, . 1 Amaia secre lle} 

a—6(3M+S)+oM(M+4+8)+M(M+28), . (2) 

and a—B(3M—1)+oM(M—1)+M(M—-2) . . (8) 

respectively, where 
M l+m anes 

ft me Les 

mand s being the magnifications for the object and for the 
aperture stop respectively. It will be noted that (3) may 
be derived from (2) by putting S=—1, 72. e. s=a, showing 
that apart from the satisfaction of an aberrational condition 
the coma and the departure from the sine condition are only 
measured by the same expression when the centre of the 
aperture stop is situated at the first principal focus *. 

If = and : are substituted for m and s, M and 8 are 

changed in sign but not in magnitude. This is sufficient to 
indicate that «, 8, and @w are symmetrical t functions of the 
curvatures and refractive indices of the system. It is easy 
to show that if the system is reversed, thus changing the 
sion of the curvature of every surface, « and w are unaltered 
and @ is only changed in sign. 
When the form of the lens is varied by making the same 

change in the curvature of each surface, @, which is the 
Petzval sum, remains unchanged, but the other two quantities 
are altered. By choosing a suitable zero conformation to 
which such deformations may be referred, the change in @ 
and @ due to the impression of the additional curvature 7 on 
each surface of the system may he expressed in the form f 

Cte M eo ec ae ei (A) 

(ete) Sy, yi ge nO nem 5) 

which involve no new constants. Although it does not 
appear in these equations there is in effect one additional 
constant involved, inasmuch as a standard conformation for 
the system has been introduced by imposing the condition 

* A detailed discussion of the relation between the spherical aber- 
ration, the coma, and the sine condition is given in Proc. Phys. Soc. 
vol. xxix. p. 293. 

+ In Mr. Allen’s expressions nine unsymmetrical coefficients occur. 
t Proc. Phys. Soe. vol. xxvii. p. 485. 
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that there should be no term in 7 on the right side of 
equation (4). 

The substitution of the above values for « and 8 in (8) 
yields a value for the departure from the sine condition 
which should be comparable with Mr. Allen’s second con- 
dition. The fact that their character is essentially distinct 
shows that one of them at any rate is not the sine error. As 
a matter of fact his second expression is comparable with the 
coefficient of S in (2). One of the factors multiplying (2) in 
the complete expression for the comatic displacement of a 
ray is 1—s, and the coefficient of 8 therefore takes the place 
of (2) as the important factor in the value of the coma when 
the aperture stop is in contact with the objective. The 
statement that this expression only measures ‘the amount 
of coma provided there is no spherical aberration” is 
incorrect. 

The expressions quoted above for spherical aberration and 
coma hold for any thin system, no matter how complex its 
structure may be, and whether the surfaces are cemented 
together or there are air-gaps. It is a simple matter, if 
desired, to introduce additional variables to show the effect 
of varying the curvature differences bounding these gaps. 
There will be no change in a, but « and @ will be respectively 
quadratic and linear functions of such curvature differences. 
This follows at once by noting that such gaps are created by 
bending part of the system relatively to the rest, thus causing 
alterations in the aberrational coefficients of the two parts of 
the kind indicated in equations (4) and (5). The additional 
coefficients in a and B are necessarily of a symmetrical form. 
When the objective is a doublet with one air-gap, one* 
additional coefficient will occur in the general expression 
for «, one in the expression for 8, and one in the formulee 
for the curvatures of the system in its zero conformation. 
Thus in the most general case considered by Mr. Allen 
only seven quantities are needed in place of the fourteen he 
tabulates. As a rule, however, there is not much point in 
taking the air-gap into consideration as a separate variable. 
It is usually possible to employ cemented objectives, and in 
most instruments this is very desirable on account of the 
better light transmission so obtained. 

‘The reduction in the labour of calculation obtained by the 
arrangement described above does not exhaust the advantages 
of the system. If a triple lens is to be calculated in place of 
a doublet the «) and Qp of the triple objective may be derived 

* Tf g is the gap the coefficient of g* in & is one quarter the coefficient 
of r?, 
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very simply from those of the doublet*. The @ is the 
same for both forms. Again it will be obvious from earlier 
remarks that the same coefficients apply to a doublet with 
the flint component leading as to one with the crown in 
front. But perhaps more important than either of these is 
the indication afforded by the magnitude of «, of the purpose 
for which a given combination of glasses will be useful. 
The value of @ always lies between very narrow limits ; 8) 
is always small, being zero for a single lens or for a cemented 
combination of different glasses of the same refractive index, 
and a small positive quantity if, as is usual, the component 
made from glass with the greater dispersive power has the 
higher refractive index. On the other hand a varies through 
a wide range of values. For a single lens of refractive 
index pw its value is p?/(u—1)?.. In a doublet of the usual 
cemented type it falls from this value as the difference 
between the refractive indices of the two glasses increases. 
The rate of fall increases with the power of the components 
relative to that of the complete lens. Generally speaking 
the possibility of obtaining similar corrections with two dif- 
ferent combinations of glasses depends upon their having 
approximately equal values of a. For example, the simul- 
taneous correction of spherical aberration and coma for unit 
magnification (m= —1, M=0) requires, from equations (1) 
and (2), «=8=0, and from equations (4) and (5) it follows 
that it will be necessary for a to be approximately zero 
since @y is small. 

This property of «, in determining the type of correction 
that is possible leads to a novel method of designing instru- 
ments which are built up of a number of separate lenses 
when each may be regarded as approximately thin. Each 
lens is assumed to have the same value of wa—a value about 
the middle of the possible range is chosen. The #, of each 
lens is assumed to be zero, and the conditions to be satisfied 
then lead to connected series of values of a for the various 
component lenses. As the types of glass available do not 
form a continuous series it will not be possible to realize the 
majority of these series, but a few can usually be selected 
with very little difficulty in which these simplified conditions 
are very approximately satisfied. The most favourable case— 
often determined by the magnitude of the curvatures in- 
volved—may be adopted for more detailed investigation with 
corrected values of 2, Qo, and aw based upon the glasses 
selected. This method of calculation is the inverse of that 
usually employed, the selection of the refractive indices of 

* Proc. Phys. Soc. vol. xxviii. p. 232. 
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the glasses being the last step to be taken instead of being 
assumed initially. 

The selection of glasses for this purpose is greatly facili- 
tated by drawing on tracing-paper a chart containing curves 
corresponding to constant values of a. This is used in 
conjunction * with a diagram on which the available kinds of 
glass are plotted, the variables employed being the refractive 
indices for a definite wave-length—usually the D line—and 
the logarithm of the vt. The chart on the tracing-paper is 
moved over the glass diagram in slide-rule fashion, and 
suitable pairs of glasses are selected by noticing that when 
the zero of the chart lies on the point representing one of the 
glasses the other glass lies on the line corresponding to the 
required value of « a. This is one of the few directions in 
which I have found graphical methods of distinct value 
in lens calculations. I do not regard Mr. Allen’s graphical 
suggestion as a useful one for the practical computer, because 
it is not only much easier to solve a quadratic equation 
directly than by graphical methods which involve the con- 
struction of a templet, but also, as will be explained later, 
there is a very good reason for solving the spherical 
aberration equation with greater accuracy than a graphical 
method will generally afford. 

Before leaving the discussion of the detailed formule it 
may be pointed out that Problem (2) is not stated in a satis- 
factory form, for the result obtained will depend upon the 
interpretation given to “least aberration” as the object point 
is varied. ‘The boundary condition may be that the lens 
aperture subtends a definite angle at the object, or at the 
theoretical image point. The most natural assumption in 
the absence of any statement would be that the linear 
aperture of the lens is kept constant. In all cases, however, 
it is to be remembered that expressions such as (1) are 
multiplied by other factors which involve m, or the position 
of the object, and these factors must be taken into account 
when the expression for the aberration is differentiated to 
find the stationary values. The result obtained will vary 
with the criterion adopted for the measurement of the 
aberration. For instance, the position of the object which 
gives minimum longitudinal aberration will differ from that 
for which the latitudinal aberration is least, and both will 
be distinct from the one for which the difference of ba 
between axial and marginal rays is a minimum. 

* Proc. Phys. Soc. vol. xxvii. p. 220. 
+ When the ordinary type of colour correction is not desired a modified 

quantity is substituted for », 
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I now turn to an entirely distinct question—the reliability 
of the results of the calculations and their subsequent treat- 
ment. Is the solution of the algebraie equations simply an 
equivalent of ‘“‘ experience” in affording a favourable basis 
on which subsequent trigonometrical work is grounded, or is 
it more? On this score Mr. Allen is very decided : ‘both 
the tables and the equivalent calculations lead to figures 
such as no manufacturer with a reputation to keep up would 
employ.” 1am bound to differ from Mr. Allen. So far as 
my experience goes a manufacturer’s reputation will be quite 
safe if he solves the algebraic equations (not graphically, 
since the solution will not be sufficiently accurate) for a thin 
cemented objective, inserts the necessary thicknesses without 
altering the curvatures found for the surfaces, and leaves the 
objective as it is without troubling about trigonometrical 
caleulations*. Naturally this only holds within limits, 
and may fail for abnormal combinations of glasses or for 
abnormal apertures. It applies, however, to the general run 
of objectives which are required in large numbers. In cases 
where this procedure does not yield the particular type of 
correction which the maker finds most pleasing, a slight 
alteration should be made in the conditions imposed on the 
thin objective. 

The low esteem in which Mr. Allen holds the algebraic 
solution can hardly occasion surprise in view of a subsequent 
statement. In obtaining his algebraic expressions he says 
it is assumed “that all the angles in the calculation are,so 
small that the excess of any angle above its sine is exactly 
equal to a sixth of the cube of the angle. In other words 
the rays could all travel within a capillary tube lying along 
the axis of the lens.” In saying “exactly” a somewhat 
unhappy word has been chosen. To give a meaning to the 
statement we may consider that what is meant is that, when 
a definite number of figures are retained, the error resulting 
from the neglect of the next term would only involve an 
alteration of the last decimal place by unity, or alternatively 
would just fail to alter it, the error not exceeding five units 
in the next decimal place. Let four and five figures be 
taken as illustrations since these are the number of figures 
used in the majority of optical calculations by trigono- 
metrical methods. The subjoined table gives the angles for 
which the errors due to the neglect of (a) the second term in 
the cosine expansion, (6) the second term in the sine expan- 
sion, (c) the third term in the cosine expansion, and (d) the 

* For the theory underlying this use of the algebraic solution of the 
first order conditions see Proc. Phys. Soc. vol. xxx. p. 119. 
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third term in the sine expansion, amount to the values given 
at the head of the respective columns. 

Error.... ‘000005 ‘00001 ‘00005 °0001 

a ey 0° 11° 0° 15’) 0° 34 aan 
Cine 1° 46, 9° 15' 3° 50 avalon 
(aya ae 6°. 0°) 7°. 8!) 10° 40" agen 
Cu 10° 49' 414° 56! 17°) (ah eaan 

It is evident that the figures in the last row correspond to 
rays which are very far from travelling within a capillary tube 
lying along the axis of the lens. ‘The figures of row (6), on 
the other hand, indicate that the number of figures used for 
trigonometrical calculations may frequently involve the 
neglect of aberrations altogether, though these would not 
be omitted in the corresponding algebraic operations. The 
table shows that the statement made above in discussing the 
reliability of results derived from algebraic calculation shouid 
occasion no surprise. It is, however, important that more 
should not be read into that statement than it contains. The 
field over which such calculations are reliable does not extend 
to the limits given in line (d) of the above table or indeed to 
line (c). The neglect of the third term in the cosine series 
(not the sine series) defines the theoretical limit of accuracy, 
but this limit is not applicable to the algebraic expansion for 
a series of surfaces owing to the neglect of product terms 
which are not necessarily of little account. Mr. Aller has 
simply taken the traditional view of algebraic calculations 
without investigating its accuracy. The true position I 
believe to be that the importance and reliability of algebraic 
calculations in the determination of aberrations has been 
underestimated, and that of trigonometrical work as it is 
usually carried out overestimated. In both methods of cal- 
culation it is desirable to employ about two more figures 
than can be said to correspond in the final rays with the 
mechanical accuracy attainable in the concrete instrument. 
When the calculations are completed the last two figures 
may be neglected. The reason for this is that aberrations 
are eliminated by opposing aberrations of different signs 
and necessarily large magnitude, A typical illustration is 
afforded by the values found by Mr. Allen for the coefficients 
L of a doublet and of one of its components. It is an 
instructive exercise to carry out calculations for corrected 
systems retaining in turn four, five, six, and even seven 
figures. The values of the outstanding aberrations given by 
the earlier calculations will occasionally be found to require 
appreciable modification. 
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XLV. The Electron Theory of Metallic Conductors applied to 
Electrostatic Distribution Problems. By lL. SILBERSTEIN, 
Ph.D * 

| aa electron theory of metallic conductors, as propounded 
by Riecke and Drude, and developed by J. J. Thomson, 

Lorentz, and others, has almost exclusively been treated in 
connexion with problems of current-conduction and allied 
questions, this being undoubtedly the most vital and 
promising field of application of the theory, especially for 
the experimentalist. From a more theoretical standpoint, 
however, electrostatic applications may not be devoid of 
interest. As far as I could gather, investigations of this 
kind are limited to an incidental rough estimate of “the 
thickness” of the layer of electricity in a conductor, due to 
J. 3. Thomson ft. 

It has seemed, therefore, worth while to represent the 
general problem of electrostatic distribution in terms of 
the electron theory. This, together with a full solution 
in the case of some of the most simple illustrative problems, 
is the object of the present paper. 

1. Consider a metallic conductor or, more generally, any 
system of insulated conductors at uniform absolute tempera- 
ture 7. The latter will enter into our formule through a 
magnitude fundamental in every kinetic theory, viz. the 
average kinetic energy of a molecule or of a free electron, 
per degree of freedom, 

1 
K= 3 aT’ ah gre AC. mae SOMCET (1) 

where « is the “universal”? constant, equal to 3 of the gas 
constant divided byAvogadro’s number, 2. e. about 2.10~! erg 
per degree centigrade t. The classical problem of distri- 
bution caa be put as follows: Given the total charge of each 
conductor and the potential ¢, of the external field, due to 
charges fixed outside the conducting masses, find the electro- 
static or equilibrium distribution of electricity over each of 
the conductors. ‘The solution of the problem in its classical 

* Communicated by the Author. 
+ ‘The Corpuscular Theory of Matter’ (1907), p. 82. The example 

treated by Thomson, which concerns an infinite plane as boundary of the 
conductor, has more recently been taken up again and dealt with on 
almost identical lines by Lorentz, who does not seem to have noticed 
Thomson’s estimate; cf. Vortraege ueber die kinet. Theorie d. Materie & 
Elektr. Leipzig (1914), pp. 191-192. 

+ The symbol & used by some authors stands for 3a. 

ae Mag. S. 6. Vol. 36. Now215.. Nov. 1918. 2F 
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aspect is ultimately reduced to finding appropriate integrals 
of Laplace’s equation and adapting them to the surfaces of 
the conductors, or, equivalently, to solving a linear integral 
equation in which the unknown function appears under an 
integral to be extended over the surfaces of the conductors. 
In its electronic form the problem relates essentially to the 
interior of the conducting bodies. No matter how rapidly 
the density of charge decreases with increasing depth below 
the surface, the problem is here, mathematically as well as 
physically, a volume problem. 

2. By a fundamental theorem of the general kinetic 
theory *, and by the well-known assumptions of the current 
electron theory of metallic conductors, the number of free 
electrons whose velocities and positions fall within the 
element doa=dudvdw of the velocity-space and within the 
element dt=dxdydz of ordinary space oceupied by metal 
will, in electrostatic statistical equilibrium, be proportional to 

Cee wy 
5g (5 ae 2 gel ee eames e 

where « is as in (1), m the mass, ¢ the resultant velocity ef 
an electron, and wW, here an unknown function of a, y, z, the 
potential energy of the electron in the resultant field of 
force. Integrating (2) over the velocity-space, the number 
of free electrons per unit volume will be 

1 
Ce ee = Cpt ee 

where e¢ is the absolute value of the charge of an electron, ¢@., 
as above, the given potential of the external field, and ¢; the 
potential of the (unknown) distribution of resultant charge 
within the conductors. The constant factor C will be 
determined presently. 

Let n be the number of free electrons per unit volume of 
each conductor, in absence of the external field and in the 
(macroscopically) neutral or unelectrified state of the con- 
ductors. ‘Then, by the assumption of the theory, 7 is also 
the number per unit volume of positively electrified atoms 
(which will be assumed to be rigorously fixed), each carrying 
the charge +e. Thus the resultant density p of electric 
charge at a point a, y, 2, within any conductor of the system 

* See, for instance, J. H. Jeans’ ‘ Dynamical Theory of Gases’ (1916), 
p. 89, and passvm, 
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will be equal to the difference of ne and the expression (3), 2. e. 
€ ¥ 6) 
5 (Pet Fi 
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where 6=¢,+¢; has been written for the resultant potential. 
If the conductors are neutral and if there is no external 
field, we have p=0, @=0, and therefore C=ne. Thus, 
ultimately, the equation for the unknown density of distri- 
bution p=p(z, y, 2) becomes 

log (L—pine) = 5-$=5- (+9). - - - &) 
If p’ be the density in any element dr’ and r’ the distance 

of dr’ from the point 2, y, z, then, taking the charges in 
rational units, 

1 (‘p’dr’ 
oi= Arr | As 

integrated over the volume of all conductors of the system. 
Thus the equation (4) becomes 

log (1—pjne)= 5b. + g— Se eet BS 

This is an integral equation of the second kind, with 
be-=-(x, y, Z) as the given, and p as the unknown, function., 
Since, on the left hand, p appears through the log, our 
equation is a non-linear one, and thus ditfers from those 
hithertu studied by Fredholm, Hilbert, H. Schmidt, and other 
mathematicians. 

Owing to its non-linearity, the solutions of this rigorous 
integral equation would obviously be deprived of the classical 
property of superponibility. On the other hand, we know 
from experience that this property does hold, at least—it 
would seem,—with a good approximation. If so, and if the 
assumptions of the electron theory of conductors are essentially 
sound, we can draw from the experimental facts the con- 
clusion that, at least for such inducing fields, charges, etc., as 
are at our disposal, the left-hand member of (5) has to 
become sensibly linear—that is to say, that p is a small 
fraction of ne, i.e. that the defect or the excess of free 
electrons in a given volume is but a small fraction of the 
normal number of free electrons contained in that volume *. 

* Tf the degree of accuracy with which superponibility holds were 
ascertained by experiments especially undertaken then one could form 
an idea of the upper limit of p/ne (with the greatest attainable p, say) 
and therefore of the lower limit of m, the number of free electrons per 
em.*. I do not know whether such an (electrostatic) estimate of the 
lower limit of m has ever been contemplated. 

22 
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Let us therefore make the assumption (which, as far as I 
know, has actually been made by the leading electronists) 

that p/ne is a small fraction. Then log (1—pjne) =F, and 
eq. (5) becomes 

2K Lapin 

vee > a re. ar 

The coefficient on the left hand is a certain squared length, 
since such is the dimension of the ratio of @ and p. Calling 
the coefficient in question L”, we have, by (1), 

2a 
oo — 3 nee ° . : ° . ° . (6) 

The length Z is identical, in fact, with J. J. Thomson’s 1/p 
which he takes as the measure of the thickness of the layer 
in the example mentioned above. As concerns the value of 
the fundamental length L, we have, by (6), for, say, 
300 ior 27 Cs). 

eae eee 
os) ee 

2. €. In round figures, 

TL? 

L=130//n. 

Thus, for instance, if there is one free electron per each 
atom of the metal, say, of copper, or n=10”, then L is of 
the order of 1°3.107°. But as far as is known, there may 
be only one free electron for every 1000 or 10,000 atoms; 
in the latter case we should have L107‘ cm. Asa matter 
of fact the number n is not even coarsely known, so that all 
such estimates, especially in the domain of electrostatics, are, 
for the present, pretty useless. (See aiso the preceding 
footnote.) 

With the above notation the last approximate equation 
for p becomes 

1 (p'dt’ 
—Lp=$.+ 7 a ee (1) 

or written shortly, 
—I’?p=¢.4+ pot P, 

a linear integral equation of the second kind, the integral on 
the right hand to be extended over the volume of all con- 
ductors of the system which, with ¢, and the total charges 
of the conductors given, suffices for the determination of p. 
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The circumstance that there are three independent variables 
instead of one or two does not, mathematically, make much 
difference, so that (I) could be investigated in concrete cases 
by the usual methods of the theory of integral equations. 
That task, however, will be left to the specialist in this new 
and promising branch of mathematics. Here it is enough 
to state that, the square and the higher powers of p/ne being 
neglected, all cases of electrostatic distribution treated on the 
lines of the electron theory will obey the linear integral 
equation ([). 

Introducing, as before, the resultant potential 6=¢. + ¢i, 
that equation amounts to ‘ 

Moe Ones SO Sa (a) 

On the other hand, we have, by the very definition of @, 

v'o—— p, 
so that V?¢= ne or to eliminate the auxiliary potential 

altogether, again by (7), 
1 

SS 7? Pennies \ ken’ Wars rte oe nits (II) 

This is a common partial differential equation * for p of a 
form familiar from many chapters of mathematical physics. 
It is a consequence of the integral equation (1), but does not, 
of course, replace it completely. For in (IIL) every trace of 
the given external field and of everything that concerns the 
shape, the size, and the configuration of the conductors has 
disappeared. In short, (II) is more general than (1). 
However, although the equation (II) does not fully replace 
(1), it may help us in solving (1), if we are not in the 
position of solving it systematically by the methods of 
integral equations. In fact, it is enough to find a sufficiently 
general integral of (II) and to determine its more particular 
form or its coefficients by substituting it into ([) and by 

using the given total charges iy pat. = g- 
In order to explain the latter method and to illustrate, at 

the same time, the meaning of the above general equations, 
let us work out a pair of examples of the most simple kind. 

* The equation obtained by J. J. Thomson, loc. cit., is a special (one- 
dimensional) case of the general equation (II). 

+ Another way would be to attempt to supplement the differential 
equation ({[) by some plausible general surface-conditions. Such con- 
ditions, however, would seem to be artificial from the point of view of 
the electron theory. It is therefore that any conjectures about such 
supplementary conditions are here omitted. 
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4, Full spherical conductor.—Let the conductor have the 
total charge \ pdt=q, and let there be no “ external” field. 

Then p is obviously a function of r alone, r being the distance 
from the centre O of the conducting sphere. Under these 
circumstances the differential equation (IL) becomes 

d? i} © (rp) =73 (09), 
and its most general integral 

p= (det 4+ Bent). 2... (8) 

Both of the arbitrary constants A, B could be determined 
from the integral equation and from the given g. In the 
present case, however, the procedure can be simplified by 
noting that to avoid p=« we must have B=—A*. Thus, 

A. p= (cvE—_ 72), 

and the single constant A will be determined from the total 
charge. (Notice that the relation between Band A could, 
but the value of A could not, be determined from (1), since, 
in the present case, d.=0, it 1s a homogeneous equation.) 
If & be the radius of the sphere, the total charge is 

CR 

q=4r | ” odr, 
PVA) 

which on substitution of the above 9 gives A without 
trouble. It is convenient to replace A by the density po at 
the centre of the sphere, which is py=2A/L. ‘Thus the 
final solution becomes 

LN 
p=po sinh, RMP en et ih) 

where po=q/4aL* (F cosh —sinh - 

In order to bring into evidence the rapid decrease of density 
below the surface, compare p with the density p, at the 
surface, thus : 

pfu sinh (rj): 
pot sink (2): 

* We shall see, in fact, from the next example that the relation 
B=—A would follow automatically from the integral equation. 

| 

F 
: 

{ 
4 

: 
; 

' 

| 



Theory of Metalic Conductors. ALS 

or denoting by x the depth R—7, and neglecting the square 
£ 

of =’ 
R p =( me is (==*): = R 

a 1+ > sinh ae :sinh = , 

i. €. ultimately, remembering that A/L is at any rate a very 
large number, 

a\ -= 
plen=(1+ Rye *, 

which, for any a equal to several L and to a small fraction 
of &, reduces simply to the exponential decrease e~*/4, agree- 
ing with Thomson’s result. 

5. Hollow sphere-—Again, let there be no charges outside 
the metal (nor in the cavity), 7. e. ¢-=0 or const. Then we 
have again (8) as the general solution of the differential 
equation. In this case there is, of course, no reason for 
rejecting any of the constants A, B. Both have to be 

_ determined, from the given charge and from the integral 
equation (1), which in the present case becomes 

! ! 

Lp + ab a =const., 
dor 

the value of the constant being irrelevant. Substituting p 
from (8), denoting the inner and the outer radii of the 
conductor by A, and A, respectively, and throwing the 
constant term of the space integral upon the “ const.” on 
the left hand, the reader will easily find 

Ayer bs 
I 

Bee T, : 

the required ratio of the coefficients”. Jt is remarkable 
that this ratio contains only the inner radius of the conductor. 
The solution (8) becomes 

pa 2lty 
p=—(e # ene ). SS) ARGON) 

The remaining factor 6 can easily be determined from 
the given total charge, but this need not detain us here. It 
is interesting to notice that the particular law of distribution 
depends only upon the inner and not on the outer radius 
(the latter entering only through the factor & and being thus 

* For a full sphere, z. e. for R,=0, this reduces to d=— B, as stated 
before. 
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related solely to the total charge). Practically, for any 

fh ae 1*, so that (10) becomes for appreciable cavity, i = 
any hollow sphere, 

rr BRy 
paa(eF te = ) J Viel ie MO 

The ratio of the densities at the inner and outer surfaces 
is, with Z as unit length, 

pe Qe-Fr 2R,|R, 

where A=#,—R, is the thickness of the spherical shell. 
If A contains many units (LZ), we have simply 

Bi ots 

and if the shell is comparatively thin (A/R, small), the ratio 
becomes 2e74. 

Some further points of the subject of the present paper, 
and especially those concerning a_ possible electrostatic 
estimate of m in connexion with the rigorous non-linearity 
of the integral equation (non-superponibility) may be reserved 
for a later opportunity. 

4 Anson Road, N.W. 2. 
October 8, 1918. 

XLVI. Diffraction of Plane Waves by a Screen bounded by a 
Straight Edge. By ¥. J. W. Wuiprret. 

| an article by Mr. R. Hargreaves in a recent number of 
this Magazine { the diffraction of plane waves by a half- 

plane is discussed. Mr. Hargreaves is concerned primarily 
with the case of wave motion according to the simple har- 
monic law. His method can be adapted, however, to the 
problem of the diffraction of waves of arbitrary type. The 
solution of this problem does not appear to have been derived 
hitherto in terms of such simple analysis §. 

* Only for a full sphere this coefficient becomes —1, as before. 
+ Communicated by the Author. 
f Phil) Mao ser, 6) volixexyvin p. 191. 
§ Cf Lamb, Proc. London Math. Soc. ser. 2, vol. vill. p. 422, and 

Whipple, zdem, vol. xvi. p. 106. 
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It will be assumed that the wave-fronts are parallel to the 
diffracting edge and that the disturbance has lasted only for 
a finite time. We take rectangular axes, the diffracting 
edge being the axis of z and the axis of y perpendicular to 
the wave-fronts, the waves approaching along the negative 
half of this axis. The distance from the diffracting edge 
will be denoted by aw, ¢ will be written for the time, and 
c for the speed of propagation of the disturbance. 

V, the measure of disturbance, must satisfy the differential 
equation 

2 

[v-< =) sy Camb. Gala 

The incident wave is determined by an equation such as 

Petes Uyak ik eG) 

where yf is any continuous function satisfying the condition 
that, for all values of T greater than some constant K, 
W(—eD) and its derivatives are zero. 

It is proposed to construct an expression suitable for 
representing the disturbance diffracted into a shadow. For 
this purpose consider the integral 

Fa) or—y—ney Ue, est BS 

in which € represents oa—y and U is a function of w. 
The parameters of yin this integral range from ct—a@ 

to —x and suggest the passage of elementary waves by the 
direct line from the edge to w, y, z and by longer routes. 
If the integral f can be made to satisfy the fundamental 
differential equation (1) it may serve for constructing the 
solution of the diffraction problem. 

It is easy to verify that 

[v8 SH 2 foce vey" wy’ tan, 4) 
differentiation of yw me represented by dashes. 

The integration can be effected if the expression in the 
larger brackets is a perfect differential. The condition for 
this, viz., 

2 {22 n)U}=WU, . wil elieee tl Soatatnea) 

is satisfied if 

Be ee LY eo 6) 
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or C 
U = Qu(u—1j”’ . ° ° ° (7) 

where C is a constant. 
On making the substitution and integrating, it is found | 

that 
Uo 

[Via Safe [De —y—) |]. ©) 
i=l 

Since by definition yy’ vanishes for large negative values of 
its parameter, its product by (w—1)!? is also zero for such 
values and remains zero as u proceeds to infinity. Ac- 
cordingly the right-hand side of equation (8) vanishes and 
therefore 

where 

: Ny du 
al ap (ct —y —u&) me (9) 

this expression being derived from (3) by substitution of its 
C 

value Ju(u—1)'2 for Ul 

The integral in (9) assumes a neater form if sec?a be 
written in place of u, when it becomes 

f=0{ “Ab (ct ~~ E doc! ada nn 

It is convenient to take 1/7 as the value of C so that 

faa. dct - y—Esec?ajda, . . . (1) 
0 

It has been shown that / satisfies the wave-equation ; it 
reduces to $4(ct—y) when €—0, 2.e. on the + axis of y. 

Tt can be seen that of =( at points on the same axis whilst 
du 

- reduces to —4y'(ct—y). 

It follows that if we make V=/ in the shadow, and 

V=wa-—/ outside the shadow, 

V will satisfy the wave-equation throughout the whole space. 
This solution provides for waves approaching the screen but 
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not for any reflected waves, 1. ¢. it is correct for a screen 
which absorbs all the energy of the waves falling on it. 

In the cases more usually dealt with allowance must be 
made for the reflected waves. 

To retain symmetry in the notation let the axis of y, be in 
the direction of propagation of the incident waves and the 
axis of y. in the direction of propagation of waves reflected 
according to the laws of geometrical optics. The reflecting 
plane is given by yy=¥%2. 

Write 

T 

wW=V(c—m), at | 

a se 1D) 
A= : :! “(ct —y, —E, sec? «)da, 

To 

with a similar definition for jo. 
In the case in which the boundary condition to be satisfied 

on either face of the diffracting half-plane is V=0O the 
required solution is / 

V=v,—/i—vet+fe in the region A, where the 
ordinary reflected waves occur, 

V=/\—/. in the region B, the geometrical +(13) 
shadow, 

and V=wWv,—/;—/2 in the remaining region ©. i) 

The conditions of continuity of V and its differential co- 
efficients are satisfied, the values of V on the boundaries 
between the regions A and ©, B and C being W4—/, —4v. 
and tr, —/, respectively. 

The tormula (11) is equivalent to one found as a special 
case in my paper * on “ Diffraction by a Wedge and Kindred 
Problems.” ‘Lhe weakness in the present demonstration lies 
in the vagueness of the argument which leads to the trial of 
the integral (3) proposed in the first instance. As a matter 
of fact, in the integrals which serve for the solution of the 
problem of diffraction by a reflecting wedge, the factor corre- 
sponding with the U of equation (8) is not merely a function 
of u, it depends on the azimuth. 

The proof that f of equation (9) satished the fundamental 
diiterential equation was based on the condition that the waves 
had been passing for only a finite time. If this condition 
is removed then (w—1)"*b'(ct—y—u&) does not vanish as 
E>0. From the physical point of view the limitation can 

* Proc. London Math. Soc. ser. 2, vol. xvi. at the foot of p. 106, 
u 

tan a sin e being written for sinh 5 
2 
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not be fundamental, and it should be possible to modify the 
mathematics to allow for an infinite train of waves. The 
most important case is that of a simple harmonic disturbance, 
and it is found that in this case our solution reduces to 
Sommerfeld’s and is therefore justified. 

If the approaching waves are represented by 

Vecose@—y) . . |) Oe le 

we have to investigate 
7 

2 
= =| cos k(ct—y—Esec?a)da. . . (15) 

: 0 

We have 
viv 

1 2 tx(ct —y—é sec? a) 
f=Real Part Hee \|\ 2 da 

T Jo 
Tv 

tk(cé—y) (°9 
é —ué Sec? a ] 

aaa 9 é Ube 
T 0 

Now 
é 

ze 2 = 2 a ax€ sec ‘alu 0 UKU SEC @ ac? ae 

0 

é 
Bes. Snr 2 

=1-«| anos Me eclawes 
0 

Hence 
7 
= Vs 

=e € V/ 1 7 pe ma : 
Pie I A Ea e "~~ ==¢ am dv, : 

F Z Ve 27 KU 

and, finally, 

‘é Nib va 
U = 500s K(ct—y) — a/ it). cos {2 = e(c—y 2) a 

(16) 
As this formula can be identified with that of Sommerfeld 

as quoted by Mr. Hargreaves*, the demonstration 1s 

complete. 
The result is of interest, not only as containing the first 

complete solution of a diffraction problem but also as — 

showing that Fresnel’s integrals, devised for an approxi- 
mate solution of the problem, suffice for the complete one. 

This aspect of the subject is discussed at length in Drude’s 

‘ Optics.’ 
* The change in the direction of the axis of y should be noted. 
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XLVII. Notices respecting New Books. 

An Introductory Treatise on Dynamical Astronomy. By H. C. 
Prummer, M.A. Pp. 3438+xix. Price 18s. net. Camb. Univ. 
Press. 

ae publication of an English work on dynamical astronomy is 
a rare event, and it is with more than usual anticipation that 

we examine Prof. Plummer’s treatise ; for there can be few branches 
of science which have suffered so much from the lack of a suitable 
textbook. The scope of the book is wide, the title ‘“ Dynamical 
Astronomy ” being interpreted liberally. About half the pages are 
concerned with the subject of planetary and lunar perturbations ; 
the remainder treat, amongst other matters, of the determination 
of orbits, including orbits of double stars and spectroscopic 
binaries, the libration of the moon, the phenomena of the earth’s 
rotation, and the formulse of numerical interpolation and quad- 
rature. In each case the subject is developed far beyond an 
elementary stage, and it is surprising that the author has been 
able to keep the work within moderate compass. The general 
design will be especially welcomed by those who have at one time 
gained some acquaintance with the subject, and desire to revise and 
extend their knowledge. For the university student also, it will 
prove a valuable supplement to oral teaching, and assist in system- 
atizing knowledge. Perhaps the reader who is trying to begin the 
subject unaided will at first be less appreciative. Some parts 
indeed are well adapted to his needs, and we would especially 
commend the two chapters on the lunar theory. But in general 
he may prefer to make his first approach to the subject through 
the leisurely expositions of Tisserand and Klinkerfves; he would 
certainly feel himself “ hustled” by Prof. Plummer. For a sub- 
sequent reading-—and the subject needs to be read again and 
again—the conciseness of the present work is an advantage. 

The brevity is partly gained by the entire omission of worked 
examples; this is referred to in the Preface, and is a deliberate 
policy. Yet we wish that the author could have departed from 
his rule in some places at least. Worked examples of the calcu- 
lation of orbits and of special perturbations are essential for a 
proper appreciation of the results obtained; and the inexperienced 
reader will find great difficulty in supplying these for himself. 
It is not that we lay stress on learning the best form of com- 
putation ; the labour-saving devices of the computing-bureau are 
only necessary when large numbers of applications of the formule 
have to be made. But the unassisted reader will fail to provide 
himself with satisfactory examples, if only because he will in- 
evitably make numerical mistakes in the lengthy computation. 
On much the same principle the author often leaves his analytical 
results to speak for themselves, where a few words of comment 
might have been helpful. ‘thus a novel theorem due to 
E. T. Whittaker is given in § 217, but we are left in doubt 
whether it is inserted solely for its theoretical elegance or is 
appropriate for practical application. In some parts of the 
subject we should have preferred a more geometrical treatment ; 
but there may well be divergence of view as to this, The extent ta 
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which Prof. Plummer relies on analytical methods may be gauged 
by the fact that there are only eight diagrams in the book. We need 
not dwell further on these minor points in which we happen to 
take a different view from the author; but rather would hasten 
to express our gratitude to him for a book which we have placed 
on the shelf reserved for those in most constant use. : 
A subject on which so many of the great mathematicians of the last 

century have laboured tends tu take a stereotyped form; but the 
author has succeeded in introducing much freshness of treatment, 
and he dispels any impression that the subject is played out. Many 
results are included that are not readily found elsewhere; and 
good use is made both of modern researches and half-forgotten 
results of the past. The account of the determination of spectro- 
scopic orbits meets a need of recent growtu. The collection of 
interpolation and numerical integration formule in Chapter XXIV. 
is the best we have seen, thongh we miss our own particular 
favourite (the quadrature formula of Darwin, ‘ Collected Papers,’ 
vol. iv. p. 17), which has yet to find a place in any textbook. 

The writing of this treatise must have cost a vast amount of 
labour, and we congratulate Prof. Plummer on a most successful 
result, which should aid and stimulate the study of dynamical 
astronomy in this country. 

XLVIII. Proceedings of Learned Svcieties. 
GEOLOGICAL SOCIRBTY. 
[Continued from p. 364. | 

May Ist, 1918.—Mr. G. W. Lamplugh, F.R.S., President, 
in the Chair. 

Dr. A. Hupert Cox, M.Sc., F.G.S8., delivered a Lecture on the 
Relationship between Geological Structure and Mae- 
netic Disturbance, with especial reference to Leicestershire 
and the Concealed Coalfield of Nottinghamshire. 

Before the Lecture, at the request of the President, Dr. A. 
Strahan, F.R.S., Director of the Geological Survey, briefly out- 
lined the circumstances that had led to an investigation into a 
possible connexion between geological structure and magnetie dis- 
turbances. The magnetic surveys conducted by Riicker and Thorpe 
in 1886 and 1891 had proved the existence of certain lines and centres 
of disturbance, but those authors observed that ‘the magnetic 
indications appear to be quite independent of the disposition of the 
newer strata,’ and he (the speaker) had not been able to detect any 
obvious connexion with the form and structure of the Paleozoic 
rocks below. In 1914-15 a new magnetic survey was made by 
Mr. G. W. Walker, who confirmed the existence of certain areas of 
disturbance. It was suggested that the effects might be due to 
concealed masses of iron-ore, and the matter was referred to the 
Conjoint Board of Scientific Societies, who appointed an Iron-Ores 
Committee to consider what further steps should be taken. The 
Committee recommended that attention should be concentrated 
on certain areas of marked magnetic disturbance, and that a more 
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detailed magnetic survey of these areas, accompanied by a petro- 
logical survey and an examination of the magnetic properties of 
the rocks of the neighbourhood, should be made. He (the speaker) 
had been approached with a view to the petrological work being 
undertaken by the Geological Survey, and it had been arranged by 
the Board of Education, with the consent of H.M. Treasury, that 
a geologist should be temporarily appointed as a member of the 
staff for the purposes of the investigation. Dr. Cox had received 
the appointment, and the lecture which: he was about to deliver 
would show that results of great significance had been obtained by 
him. The new magnetic observations had been made by Mr. Walker, 
and the examination of the specimens collected, in regard to their 
magnetic susceptibility, had been conducted by Prof. Ernest Wilson. 

Dr. Cox then described the selected areas, which lay on Lias and 
Keuper Marl between Melton Mowbray and Nottingham, and in 
the neighbourhood of Irthlingborough, where the Northampton 
Sands are being worked as iron-ores. ‘The Middle Lias iron-ores, 
consisting essentially of limonite, which crop out near Melton 
Mowbray, have been proved incapable, by reason of their low 
magnetic susceptibility, of causing disturbances of the magnitudes 
observed, while the distribution of the disturbances showed no 
correspondence with the outcrop of the iron-ores. Nor was any 
other formation among the Secondary rocks found capable of 
exerting any appreciable influence. It appeared, therefore, that 
the origin of the magnetic disturbances must be deep-seated. 

Investigation showed that the disturbances were arranged along 
the lines of a system of faults ranging in direction from north-west 
to nearly west. The faults near Melton Mowbray have not been 
proved in the Palzozoic rocks, and, so far as their effects on the 
Secondary rocks are concerned, they would appear to be only minor 
dislocations. But farther north, near Nottingham, faults which 
take a parallel course, and probably belong to the same system 
of faulting as those near Melton Mowbray, are known from 
evidence obtained in underground workings to have a much grcater 
throw in the Coal Measures than in the Permian and Triassic rocks 
at the surface. It appears therefore that movement took place 
along the same lines at more than one period, the earlier and more 
powerful movement being of post-Carboniferous but pre-Permian 
age, the later movement being post-Triassic. Accordingly, it is 
probable that the small dislocations in the Mesozoic rocks indicate 
the presence of important faults in the underlying Paleozoic. 

The faults can only give rise to magnetic disturbances if they 
are associated with rocks of high magnetic susceptibility. It is 
known from deep borings that the concealed coalfield of Nottingham- 
shire extends into Leicestershire, but how far is not known. Deep 
borings have proved that intrusions of dolerite occur in the Coal 
Measures at several localities in the south-eastern portion of the 
concealed coalfield and always, so far as observed, in the immediate 
vicinity of faults. It has been established that dolerites may exert 
a considerable magnetic effect; and the susceptibility of those that 
oceur in the Coal Measures is above the generalaverage. Further, 
no other rocks that are known to occur, or are likely to occur 
under the area, have susceptibilities as high as the dolerites found 
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in the Coal Measures. These facts suggest the possibility of the 
occurrence of dolerites intrusive into Coal Measures beneath the 
Mesozoic rocks of the Melton Mowbray district. 

The distribution of the dolerites actually proved, and of those the 
presence of which is suspected by reason of the magnetic dis- 
turbances, appears to be controlled by the faulting. Moreover, 
whereas the character of the magnetic disturbances is such that 
it would not be explained by a sill or laccolite faulted down to the 
north, in the manner demanded by the observed throw of the 
principal fault, it would be explained by an intrusion that had 
arisen along the fault-plane. The faulting itself is connected 
with a change of strike in the concealed Coal Measures, and the 
incoming of doleritic intrusions in the concealed coalfield, in con- 
trast with their absence from the exposed coalfield, appears to 
depend upon the changed tectonic features. The change of strike 
is apparent, but to a less degree, in the Mesozoic rocks which, in 
the neighbourhood of Melton Mowbray, have suffered a local twist 
due to the development of an east-and-west anticlinal structure. 

In view of the evidence that later movements have, in this district, 
followed the lines of earlier and more powerful movements, it 
appears possible and even probable that this post-Jurassic (probably 
post-Cretaceous ) anticline is situated along the line of a more pro- 
nounced post-Carboniferous but pre-Permian anticline. In this 
connexion the isolated position of Charnwood Forest has a consider- 
able significance. The Forest is situated on the prolongation of the 
east-and-west line of uplift, and just at the point where this uplift 
crosses the line of the more powerful north-westerly and south- 
easterly (Charnian) uplift. Where the two lines of uplift cross 
the elevation attains its maximum, and the oldest rocks appear. 

The main line of faulting and of magnetic disturbance is parallel 
with and on the northern side of the east-and-west anticline, and 
the faulting is of such a nature that it serves to relieve the folding 
while accentuating the anticlinal structure. It is possible that 
this belt of magnetic and geological disturbance marks the southern 
limit of the concealed coalfield. The results obtained by joint 
magnetic and geological work have thus served to emphasize the 
real importance of a structure which, when judged merely from its 
effects on the surface-rocks, appears to be of only minor importance. 

A further series of observations was carried out on the Jurassic 
iron-ores of the Irthlingborough district of Northamptonshire. 
The ores occur in the form of a nearly horizontal sheet of weakly 
susceptible ferrous carbonate partly oxidized to hydrated oxides. 
They give rise to small magnetic disturbances which are quite 
capable of detection, and these may be of use in determining the 
boundaries of the sheets in areas not affected by larger disturbances 
of deep-seated origin. 

The results obtained by the joint magnetic and geological work 
in the two areas show that this method of investigation may be 
used to extend our knowledge of the underground structure. It 
appears also that an extension of the method to other parts of 
the country would yield information of considerable scientific and 
economic importance. 
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XLIX. On the Light emitted from a Random Distribution of 
Luminous Sources. By Lord Rayueten, O.W., F.RS.* 

ECENT researches have emphasized the importance of 
a clear comprehension of the operation under various 

conditions of a group of similar unit sources, or centres, of 
iso-periodic vibrations, e. g. of sound or of light. The sources, 
supposed to be concentrated in points, may be independently 
excited (as probably in a soda flame), or they may be con- 
stituted of similar small obstacles in an otherwise uniform 
medium, dispersing plane waves incident upon them. We 
inquire into an effect, such as the intensity, at a great 
distance from the cloud, either in a particular direction, or 
in the average of all directions. For convenience of calcu- 
lation and statement we shall consider especially sonorous 
vibrations ; but most of the results are equally applicable to 
electric vibrations, as in light, the additional complication 
being merely such as arises from the vibrations being trans- 
verse to the direction of propagation. 

If the centres, supposed to be distributed at random in a 
region whose three dimensions are all large, are spaced 
widely enough in relation to the wave-length (A) to act inde- 
pendently, the question reduces itself to one formerly treatedt, 
for it then becomes merely one of the composition of a large 

* Communicated by the Author. 
+ Phil. Maz. vol. x. p. 73 (1880); Scientific Papers, vol. i. p.491. For 

another method see ‘Theory of Sound,’ 2nd ed. § 42a, and for a more 
~ complete theory K. Pearson’s Math. Contributions to the Theory of 
Evolution, XV, Dulau, London. 

Phe. Mag. 5. 6. Vol. 3620. 216. Dec. 1918... 2G 
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number (n) of unit vibrations of arbitrary phases. It is 
known that the “expectation” of intensity in any direction is 
n times that due toa single centre, or (as we may say) is 
equal ton. The word “expectation” is here used in the 
technical sense to represent the mean of a large number of 
independent trials, or combinations, in each of which the 
phases are redistributed at random. It is important to 
remember that it is infinitely improbable that the expectation 
will be confirmed in a single trial, however large n may be. 
Thus in a single combination of many vibrations of arbitrary 
phase there is about an even chance that the intensity will 
be less than *7n. The general formula is that the probability 
of an amplitude between r and r+dr is 

Dy 1 
=e-P iP rdr= —e Vedl, |) ye ee) 
nr nN 

if I denote the intensity *. 
As regards the “expectation” of intensity merely, the 

question is very simple. If 6, 6’, 0".... be the n individual 
phases, the expectation is 

2m (°2r 20 
/ he e 

i { ( dé dé oy . «+. | (COS @ 4760810 —pameya 

0 0 . On Qa 2a 

+(sind6+sin 6’+....)?]. 

Hffecting the integration with respect to 6, we have 

Po Doe ie 2 

1 2a 2Qar / Ut { | dO! dO ... [1+ (cos 6’ + cos 6" +....) 
0 

+ (sin 6’ +sin 0" +....)?]; 

and when we continue the process over all the n phases we 
get finally 

Expectation of Intensity =n. 

The same result follows of course from (1). The ‘“‘ex- 
pectation ”’ is 

{ 1t.atn=n 9: ao UME a ne 
0 

But if we are not to expect any partizular intensity when 
a large number of vibrations of unit amplitude and arbitrary 

* An interesting example of variable intensity when phases are at 
random is afforded by the observations of De Haas (Amsterdam Pro- 
ceedings, vol. xx. p. 1278 (118)) on the granular structure of the field 
when a corona is formed from homogeneous light. The results of various 
combinations are exhibited to the eye simultaneously. 

Sete Sr 
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phase are combined, what precisely is the significance to be 
attached to this result? As has already been suggested, we 
must look to what is likely to happen when we have to do 
with a large number m of independent trials, in each of which 
the n phasesare redistributed at random. By (1) the chance 
of the separate intensities I,, I,,...1,-lying between I, +d], 
I,+d1,, &e. is - ; 7 

moemer aaa Ald les, d1in 3 

and we may inquire what is altogether the chance of the 
sum of intensities, represented by J, lying between J and 
J+dJ. Over the range concerned the factor e~3” may be 
treated as constant, and so the question is reduced to finding 
the value of 

V(ace@indh,...,dly 

under the condition that I,+1,+.... lies between J and 
J+dJ. This is* 

: jae 

(m—1)! 

so that the chance of 1,+1,+....lying between J and 
J+dJ is 

dJ ; 

eee! gd) 

i (m—1) 1 ©) 
or, if we employ the mean value of the I’s instead of the 
sum, the chance of the mean, viz. (Ij +1,+....)/m, lying 
between K and K+dK is 

po ie aK 

wan | (4) 

We may compare this with the corresponding expression 
when m=1, where we have to do with a single I, to which K 
then reduces. The ratio 

e7 (mK in prt Km-l 

= (4):(1) = ——______—_-... ... .. () 
ae oe em | . 2 

When we treat m as very large, we may take 

m l= mia tem). e™, 
so that (5) becomes 

en,/m e7~Ba-) K , m-1 

J/(2r) n Beek 

* See for example Todhunter’s Int. Calc. § 272. 

2G 2 
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If in (6) K=n absolutely, the second factor is unity, and 
since the first factor increases indefinitely with m, there is 
a concentration of probability upon the value n, as compared 
with what obtains for a single combination. 

In general we have to consider what becomes of 

ft. {eer eyent 2) a re, 

when m=, and 2, written for K/n, is positive. Here 
a éi\-* yanishes when x=0 and when z=, and it has but 
one maximum when x#=1, x2e!~7=1. We conclude that 
xve'~* is a positive quantity, in general less than unity. The 
ratio of consecutive values when m in (7) increases to m+ 1 
is # e1-*,/(1+1/m), and thus when m=o, (7) diminishes 
without limit, unless z=1 absolutely. Ultimately there is 
no probability of any mean value K which is not infinitely 
near the value n. 

Fig. 1 gives a plot of R in (5) as a function of a, or K/n, 
for m=2, 4, 6. It will be observed that for m > 2, dR/dz= 
when c=0, but that for m=2, dR/dz=4. 

The correspondin g question for J may be worth a moment’s 
notice. We have 

mym—* 
R =(8): (1)= nie ee Sen) 

so that R’ goes to zero as m increases, if J be comparable 
with n, as might have been expected. 

It must not be overlooked that when the random distri- 
bution of phases is due toa random spatial distribution of 

(8) : 

.m! 
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centres, it fails to satisfy strictly the requirement that all the 
centres act independently, for some of them will lie at dis- 
tances from nearest neighbours less than the number of wave- 
lengths necessary for approximate independence. The simple 
conditions just discussed are thus an ideal, approached only 
when the spacing is very open. 

We have now to consider how the question is affected 
when we abandon the restriction that the spacing of the unit 
centres is very open. The work to be done at each centre 
then depends not only upon the pressure due to itself but also 
upon that due to not too distant neighbours. Beginning 
with a single source, we may take as the velocity-potential 

o= 

where a is the velocity of propagation, k=2z/X, and r is the 
distance from the centre. The rate of passage of fluid across 
the sphere of radius r is 

4orr?dd/dr=cos k(at—7r) —kr sin k(at—7) oo (10) 

If 5p denote the variable part of the pressure at the same 
time and place, and p be the density, 

dd pkasin k(at—r) 

__ cos k(at—7r) 
Anr  ” (9) 

I | —— el A eee er e e (11) 

The rate at which work (W) has to be done is given by 

aW 24 _ pkasin k(at —7) 
ee eine 

x [kr sin k(at—r)—cosk(at—r)], . . (12) 

of which the mean value depends upon the first term only. 
In the long run 

Worseea/Sr. ... « 2... (13) 
It is to be observed that although the pressure is infinite at 
the source, the work done there is nevertheless finite on 
account of the pressure being in quadrature with the prin- 
cipal part of the rate of total flow expressed in (10). 
When there are two unit sources distant D from one 

another and in the same initial phase, the potentials may be 
taken to be 

cos k(at—r) 

ae 
__ cos k(at—r’) Wai SS Ns GED) 

4nrr 
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At the first source where r=0 

Anrr* dd/dr=cos kat —kr sin kat, 

db , dy __kasinkat , ka 

dt dt = 4arr * 4D 

The work done by the source at r=0 is accordingly pro- 
portional to 

sin k(at—D). 

sin kD | 
iD? % 7 tt fe ee) 

and an equal amount of work is done by the source at 7/=0. 
If D be infinitely great, the sources act independently, and 
thus the scale of measurement in (12) is such that unity 
represents the work done by each source when isolated. If 
D=0, the work done by each source is doubled, and the 
sources become equivalent to one of doubled magnitude. 

If D be equal to $A, or to any multiple thereof, sin k:D=0, 
and we see from (12) that the work done by each source is 
unaffected by the presence of the other. This conclusion 
may be generalized. Jf any number () of equal sources in 
the same phase be arranged in (say a vertical) line so that the 
distance between immediate neighbours is $A, the work done 
by each is the same as if the others did not exist. The whole 
work accordingly is n, whereas the work to be done by a 
single-source of magnitude n would be n?._ Thus if sound be 
wanted only in the horizontal plane where there is agree- 
ment of phase, the distribution into n parts effects an 
economy in the proportion of n: 1. 
A similar calculation would apply when the initial phases 

differ, but we will now take up the problem in a more general 
form where there are any number (7) of unit sources, and by 
another method *. The various centres are situated at points 
finitely distant from the origin O. The velocity-potential 
of one of these at (a, y, z), estimated at any point Q, is 

_ __ cos (pt +e—kR) 
o= 4arR, 9 * e ° o 

where R is the distance between Q and (2, y, 2). Ata 
great distance from the origin we may identify R in the 
denominator with OQ, or Ry; while under the cosine we 
write 

1+ 

(13) 

R=R)—(le+my+nz), . . » . (4) 

* “On the Production and Distribution of Sound,” Phil. Mag. vol. vi. 
p- 289 (1903) ; Scientific Papers, vol. v. p. 1386. 

: 
| 
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1, m, n being the direction cosines of OQ. On the whole 

—4arRyb= cos {pt te—kRyo t+ hk(lat+my+nz)}, . (1d) 

in which Ry is a constant for all the sources, but ¢, x, y, z 
vary from one source to another. The intensity in the 
direction (/, m, n) is thus represented by 

[X cos fe+h(la+my+nc)} ]?+[S sin je +h(le+my+nz) 5)’, 

or by 

n+ 2>,cos[€;— e+ kf lay — 22) 4 m(y1— Ys) +n(z1—22)} |, (16) 

the second summation being for all the 4n(n—1) pairs of 
sources. In order to find the work done we have now to 
integrate (16) over angular space. 

It will suffice if we effect the integration for the specimen 
term ; and we shall do this most easily if we take the line 
through the points (2, ¥;, 21), (#2, Y2, 22) a8 axis of reference, 
the distance between them being denoted by D. If (l,m, n) 
make an angle with D whose cosine is p, : 

Du=I(a,— 24) +m(y1— Yn) H2(%1— 22), « =(17)* 

and the value of the specimen term is 

+1 
{ cos (€¢;—eg +k Dy) dy, 

—1 

that is 

2 sin kD cos (e,—€2) 
77 le (18) 

The mean value of (16) over angular space is thus 

sin iD cos (€—€2) 
n “= 2> — e e ° e (19) 

where €, €, refer to any pair of sources and D denotes the 
distance between them. If all the sources are in the same 
initial phase, cos (e,—€,)=1. If the distance between every 
pair of sources is a multiple of 3A, sinkD=0, and (19) 
reduces to its first term. 

We fall back upon a former particular case if we suppose 
that there are only two sources and that they are in the same 
phase. 

* In the paper referred to, equation (19), ~ was inadvertently used in 
two senses. | 
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If the question of the phases of the two sources be left 
open, (19) gives 

sin kD 
2 + 2, COS (€ oe E>) ra) eo daue = - = (20) 

If D be small, this reduces to 

2+2 cos (€,—€9), 

which is zero if the sources be in opposite phases, and is 
equal to 4 if the phases be the same. 

If in (20) the phases are 90° apart, the cosine vanishes. 
The work done is then simply the double of what would be 
done by either source acting alone, and this whatever the 
distance D may be. IE this conclusion appear paradoxical, 
it may be illustrated by considering the case where D is 
very small. Then 

—AdR,¢= cos'( pt +e—kRo) + cus (pt te+4a—kRo) 

= /2.cos(ptte+ia—R,), 

representing a single source of strength 4/2, giving intensity 
2 simply. 
We have seen that the effect of a number » of wit 

sources depends upon the initial phases and the spatial dis- 
tribution, and this not merely in a specified direction, but in 
the mean of all directions, representing the work done. We 
have now to consider what happens when the initial phases 
are at random, or when the spatial distribution is at random 
within a limited region. Obviously we cannot say what the 
effect will be in any particular case. But we may inquire 
what is the expectation of intensity, that is the mean intensity 
in a great number of separate trials, in each of which there 
is an independent random distribution. 

The question is simplest when the individual initial phases 
are at-random in. separate trials, and the result is then the 
same whether the spatial distribution be at random or pre- 
seribed. For the mean value of every single term under the 
sign of summation in (19) is then zero, D meanwhile being 
constant for a given pair of sources, while 

” Dar 

COs Gua 
E95 

3 zynez()); 
ec 0 aT 

The mean intensitv, whether reckoned in all directions, or 
even in a specified direction (16), reduces to n simply. 

If the sources are all in the same phase, or even if each 
individual source retains its phase, cos(e€;—é€,) in (19) 
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remains constant in the various trials for each pair, and we 
have to deal with the mean value of sinkD~+£D when the 
spatial distribution is at random. We may begin by sup- 
posing two sources constrained to lie upon a straight line of 
limited length /, where, however, / includes a very large 
number of wave-lengths (A). 

If the first source occupies a position sufficiently remote 
from the ends of the line, so that the two parts on either 
side (/, and /,) are large multiples of A, the mean required, 
represented by 

h("sinkD dD , ly (sin kD dD en) 
ete) AD a, 

may be identified with w/kl, since both upper limits may be 
treated as infinite. Moreover, w/kl may be regarded as 
evanescent, kl being by supposition a large quantity. 

So far positions of the first source near the ends of the 
line have been excluded. If the neglect of these positions 
ean be justified, (20) reduces to 2 simply. 

It is not difficult to see that the suggested simplification 
is admissible under the conditions contemplated. If a, 2’ be 
the distances of the two sources from one end of the line, 
the question is as to the value of 

Ydx {dz sin k(a' —z) 
Saale 7 Lk fs 1 ae Ls ee 5 . e e e agit 

\ l \ L  k(#'—a) ou 

where the integration with respect to v may be taken first. 
Let X denote a length large in comparison with X, but at 
the same time small in comparison with J. If x lie between 
X and /—X, the integral with respect to x’ may be identified 
with z/kl, and neglected, as we have seen. We have still 
to include the ranges from x=0 to e=X, and from e=/—X 
to w=l, of which it suffices to consider the former. The 
range for 2’ may be divided into two parts, from 0 to a, and 
from # tol. For the latter we may take 

i sin k(e'—ax) 3 

wo by ke — a4. QKI” 

so that this part yields finally after integration with respect 
to x, 

» RE a" 
ay ° ae ° e e e . ° (23) 
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As regards the former part, we observe that since 6~! sin 0 
can never exceed unity, 

“2 da! sin k( a’ — a) 
! oe 2 ane alee 

in which again e< X. The result of the second integration 
leaves us with a quantity less than X?//?. The anomalous 
part, both ends included, is less than 

2N(X oF 
7 (7 + au): Wee 

which is small in comparison with the principal part, of the 
order m/kl and itself negligible. We conclude that here 
again the mean intensity in a great number of trials is 2 
simply. It may be remarked that this would not apply to 
the mean intensity in a specified direction, as we may see 
from the case where the initial phases are the same. In a 
direction perpendicular to the line on which the sources lie, 
the phases on arrival are always in agreement, and the 
intensity is 4, wherever upon the line the sources may be 
situated. The conclusion involves the mean in all directions, 
as well as the mean of a large number of trials. 

Under a certain restriction this argument may be extended 
to a large number n of unit sources, since it applies to every 
term under the summation in (19). But inasmuch as the 
evanescence is but approximate, we have to consider what 
may happen when vn is exceedingly great. The number 
of terms is of order n?, so that the question arises whether 
n'ar/kl can be neglected in comparison with n. The ratio is 
of the order nA/l, and it cannot be neglected unless the 
mean distance of consecutive sources is much greater than 2X. 
It is only under this restriction that we can assert the 
reduction of the mean intensity to the value n when the 
initial phases are not at random. 

The next problem proposed is the application of (19) when 
the n sources are distributed at random over the volume of 
a sphere of radius R. In this case the distinction between 
the mean in one direction and in the mean of all directions 
disappears. If for the moment we limit our attention to a 
single pair of sources, the chance of the first source lying in 
the element of volume dV is dV/V, and similarly of the 
second source lying in dV’ is dV'/V. As the individual 
sources may be interchanged, the chance of the pair 

é 

~ ee 
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occupying the elements dV, dV’ is 2dV dV'/V’, so that from 
the second part of (19) we get for a. single pair the expect- 
ation of intensity 

fi sin kr dV dV' 
NON 

and for the 4n(n—1) pairs 

2n(n—1) ({ sin kr 5x, ayy) : ne UV ea Fa Dae cid 18) 

Here V is the whole volume of the sphere, viz. 47R*, and 
y is written in place of D. The function of r may be 
regarded as a kind of potential, so that the integral in (26) 
represents the work required to separate thoroughly every 
pair of elements. As in ‘Theory of Sound,’ § 302, we may 
estimate this by successive removals to infinity of outer thin 
shells of thickness dR. The first step is the calculation of 
the potential at O, a point on the surface of the sphere. 

Fig. 2. 

The polar element of volume at P. is 7?sin@dw dé dr, 
where r=OP, 0=angle COP. The integration with respect 
to w will merely introduce the factor 27. [or the inte- 
gration with regard to 7, we have 

oo Ae ke ; 

7 now standing for OQ. In terms of pu (= cos 4), r=2Ry, 
and we have next to integrate with respect to u. We get 

lsin kr—kr cos kr 1—cos 2kLR—£R sin 24R 
: I3 i 7zR ; 

WE sinkr , sin kr+krcos kr 
rdr= 

which, multiplied by 27, now expresses the potential at O. 
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This potential is next to be multiplied by 47R*dR and 
integrated from 0 to R. We find 

kr 

Ln 2 Ws kr ay av'= "7" (sin kR—kR cos kR)?. a (27) 

We have now to divide by V’, or 167°R‘/9 ; and finally 
we get 

9n(n—1) 
one 

where £R will now be regarded as very large. When nis 
moderate, or at any rate does not exceed /*R*, the second 
term is relatively negligible, that is reduction occurs to n 
simply, provided n be not higher than of order R*/\}, 
corresponding to one source for each cubic wave-length +. 
But evidently n may be so great that this reduction fails, 
unless otherwise justified by a random distribution of initial 
phases. 

At the other extreme of an altogether preponderant n, the 
second term in (19) dominates the first, and we get in the 
case of constant initial phases and a very large £R, 

9n? cos? kR 
aa Pa tsi e (Co 

Under the suppositions hitherto made of a random spatial 
distribution within the sphere (R), and of uniformity of 
initial phases, there is no escape trom the conclusion that 
the reduction to the simple value n fails when 7 is great 
enough. Nevertheless, there is a sense in which the reduction 
may take place, and the point is of importance, especially in 
the application to the dispersal of primary waves by a cloud 
of small obstacles. In order better to understand the 
significance of the term in 7’, let us calculate the intensity 
due to an absolutely uniform distribution of source of total 
amount over the spherical volume. Since there is complete 
symmetry, it suffices to consider a a single specified direction 
which we take as axis of z. Asin (15), we have 

net BI (CC, 
—47Ry) d= ep ‘da dy dz, sateen 

as the symbolical expression for the velocity-potential, from 

(19)=n+ (sinkR—kReooskR)?,. (28)* 

* We may confirm (28) by supposing AR very small, when the right- 
hand member reduces to 7. 

+ The number of mulecules per cubic wave-length in a gas under 
standard conditions is of the order of a million. | 
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which finally the imaginary part is to be rejected. The 
integral over the sphere is easily evaluated, either as it 
stands, or with introduction of polar coordinates (r, 0, @) 
which will afterwards be required. Thus with pw written 
for cos 6, 

i Gee Biel 
{ (de dy dz= 2m i es? dr dp 

: Geer 
R 

== an brn dr= 27 (sin KR—R cos EBS. 2 Gt 
0 

Accordingly 

—4rRy d= 7p; (sink R—AReoskR), . . (32) 
3n 
PR, 

reducing to n simply when £/R is very small. The intensity 
due to the uniform distribution is thus 

2 

Fins (sin KR—ER cos kR) PTA RNS (25) 

exactly the n? term of (28). The distinction between (28) 
and (32), at least when &R is very great, has its origin in 
the circumstance that in the first case the n separate centres, 
however numerous, are discrete and scattered at random, 
while in the second case the distribution of the same total is 
uniform and continuous. 
When we examine more attentively the composition of 

the velocity-potential ¢ in (30), we recognize that it may be 
regarded as originating at the surface of the sphere R. 
Along any line parallel to z, the phase varies uniformly, so 
that every complete cycle occupying a length » contributes 
nothing. Any contribution which the entire chord may 
make depends upon the immediate neighbourhood of the 
ends, where incomplete cycles may stand over. And, since 
this is true of every chord parallel to z, we may infer that 
the total depends upon the manner in which the volume 
terminates, viz. upon the surface. At this rate the n? term 
in (28) must be regarded as due to the surface of the sphere, 
and if we limit attention to what originates in the interior 
this term disappears, and (£R being sufficiently large) (19) 
reduces to n. 

When we speak of an effect being due to the surface, we 
can only mean the discontinuity of distribution which occurs 
there, and the best test is the consideration of what happens 
when the discontinuity is eased off. Let us then in the 
integration with respect to r in (31) extend the range beyond 
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R to R’ with introduction of a factor decreasing from unity 
(the value from 0 to R), as we pass outwards from R to R’. 
The form of the factor is largely a matter of mathematical 
convenience. 

As an example we may take e-*"-®), or e~#C-®), which 
is equal to unity when r=R and diminishes from R to R’. 
The complete integral (31) is now 

R R’ Vee 
sa sinkr.rdr+ = eke) sin kr pdr. ’ (84) 
k No k Jr 

From the second integral we may extract the constant 
factor e®, and if we then treat sinér as the imaginary part 
of ¢”", we have to evaluate : 

tp 

{ e—Mkrn dp, 
R 

We thus obtain for (34) 

“7 (sin ER—ER cos BR) 
Aqre—h (R’-R) : 

= BOR [cos AR’ {(2? + 1)ER!-+ 2h} 
4+sin kRU{(W2 + LAER! + 2-13] 

Aq 5 eal LkR+ 21 + (1+ h?)? [cos ARi(h? + ) us 

+sin kR{(W2 + DakR+12—1}]. . (35) 

When we combine the first and third parts, in which R’ 
does not appear, we get 

ay [cos AR{2h—h?2(h?+1)kR} 

+sin FRyht+ 3h?+h(R?+1)kR}]. . (86) 

The first part of (35), representing the effect due to the 

sphere R suddenly terminated, is of order AR; and our 

object is to ascertain whether by suitable choice of A and R' we 

can secure the relative annulment of (35). As regards (36), 

it suffices to suppose h small enough. In the second part of 

(35) the principal term is of relative order (Ri / Renae as 

and can be annulled by sufficiently increasing R’, however 

small h may be. | ‘ 

Suppose, to take a numerical example, that h=jgq,, and 

Hatem a isl also aie Then 

phi Gs nomena es TE oe 
a Ominloainie | ht 
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With such a value of R’—R the factor R//R may be 
disregarded *, 

It appears then that it is quite legitimate to regard the 
intensity due to the simple sphere, expressed in (33), as a 
surface effect; and this conclusion may be extended to the 
corresponding term involving n?” in (28), relating to discrete 
centres scattered at random. 

This extension being important, it may be well to illustrate 
it further. Returning to the consideration of n sources in 
the same initial phase distributed at random along a limited 
straight line, let us inquire what is to be expected at a 
distant point along the line produced. The first question 
which suggests itself is—Are the phases on arrival distributed 
at random? Not in all cases, but only when the limited line 
contains exactly an integral number of wave-lengths. Then 
the phases on arrival are absolutely at random over the 
whole period, and accordingly the expectation of intensity is 
n precisely. if, however, there be a fractional part ofa 
wave-length outstanding, the arrival phases are no longer 
absolutely at random, and the conclusion that the expecta. 
tion cf intensity is n simply cannot be maintained. Suppose 
further that n is so great that the average distance between 
consecutive sources is a very small fraction of a wave-length. 
The conclusion that when an exact number of wave-lengths 
is included the expectation is m remains undisturbed, and 
this although the effect due to any small part, supposed to 
act alone, is proportional to n*. But the influence of any 
outstanding fraction of a wave-length is now of increased 
importance. If we donot look too minutely, the distribution 
of sources is approximately uniform. If it were completely 
so, the whole intensity would be attributable to the fractions 
at the endst, and would be proportional to n?._ In general 
we may expect a part proportional to n? due to the ends and 
another part proportional to n due to incomplete uniformity 
of distribution over the whole length. Whenz is small the 
latter part preponderates, but when n is great thesituation is 
reversed, unless the number of wave-lengths included be very 
nearly integral. And it is apparent that the x? part has its 
origin in the discontinuity involved in the sharp limitation of 
the line, and may be got rid of by a tapering away of the 
terminal distribution. 

Similar ideas are applicable to a random distribution in 
three dimensions over a volume, such as asphere, which may 
be regarded as composed of chords parallel to the direction 

* The application to light is here especially in view. 
7 It is indifferent how the fraction is divided between the two ends. 
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in which the effect is to be estimated. The n? term corre- 
sponds to what would be due to a continuous uniform 
distribution over the volume of the same total source, and 
it may be regarded as due to the discontinuity at the surface. 
In addition there is a term in x, due to the lack of complete 
uniformity of distribution and issuing from every part of 
the interior. 

Thus far we have been considering the operation of given 
unit sources, by which in the case of sound is meant centres 
where a given periodic introduction (and abstraction) of fluid 
is imposed. We now pass to the problem of equal small 
obstacles distributed at random and under the influence of 
primary plane waves. It is easy to recognize that these 
obstacles act as secondary sources, but it is not so obvious 
that the strength of each source may be treated as given, 
without regard to the action of neighbours. I apprehend, 
however, that this assumption is legitimate ; in the case of 
aerial waves it may be justified bv a calculation upon the 
lines of ‘ Theory of Sound,’ §335. For this purpose we may 
suppose the density o of the gas to be unchanged at the ob- 
stacles, while the compressibility is altered from m to m’, so 
that the secondary disturbance issuing from each obstacle is 
symmetrical, of zero order in spherical harmonics. The 
expressions for the primary waves and of the disturbance 
inside the spherical obstacle under consideration remain as 
if the obstacle were isolated. But for the secondary dis- 
turbance external to the obstacle we must include also that 
due to neighbours. On forming the conditions to be satisfied 
at the surface of the sphere, expressing the equality on the 
two sides of pressure (or potential) and of radial velocity, 
we find that when the radii are small enough, the ob- 
stacle acts as a source whose strength is independent of 
neighbours. 

The operation of a cloud of similar particles may now be 
deduced without much difficulty from what has already been 
proved. We suppose that the individual particles are so 
small that the cloud has no sensible effect upon the progress 
of the primary waves. Hach particle then acts as a source of 
given strength. But the initial phase for the various par- 
ticles is net constant, being dependent upon the situation 
along the primary rays. This is, in fuct, the only new feature 
of which we have to take account. 

Perhaps the most important difference thence arising is 
that there is no longer equality of radiation in various direc- 
tions, even from a spherical cloud, and that, whatever may 
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_ be the shape of the cloud, the radiation in the direction of 
the primary rays produced is specially favoured. In this 
direction any retardation along the primary ray is exactly 
compensated by a corresponding acceleration along the 
secondary ray, so that on arrival at a distant point the 
phases due to all parts are the same. But, except in this 
direction and in others approximating to it, the argument 
that the effect may be attributed to the surface still applies. 
If in a continuous uniform distribution we take chords in 
the direction, for example, of either the incident or the 
scattered rays, we see as before that the effect of any chord 
depends entirely on how it terminates*. In forming au 
integral analogous to that of (30), in addition to the factor 
e* expressive of retardation along the secondary ray, we 
must include another in respect of the primary ray. If the 
direction cosines of the latter be a, 8, y, the factor in ques- 
tion is e*@z+ey+y), y being —1 when the directions of the 
primary and secondary rays are the same. The complete 
exponent in the phase-factor is thus 

ik{aw + By +(y+1)z} La Bylsepitay tas AL YAY + Le ee!) a Gy 1 

The fraction on the right represents merely a new co- 
ordinate (€), measured in a direction bisecting the angle 
between the primary and secondary rays, so that the phase- 
factor may be written e'¥@+?)-4, y being the cosine of the 
angle (y) between the rays. In integrating for the sphere 
the only change required in the integrand is the substitution 
of 2kceos4xy for k. With this alteration equations (31), 
(32), (33) are still applicable. When the secondary ray is 
perpendicular to the primary, 

2k cosky=/2 .k, 

In order to find the mean intensity in all directions we 
have to integrate (33) over angular space and divide the 
result by 47, It may be remarked that although cos*4y 
appears in the denominator of (33), it is compensated when 

* It may be remarked that the same argument applies to the particles 
of a crystal forming a regular space lattice. Ifthe wave-length be large 
in comparison with the molecular distance, no light can be scattered 
from the interior of such a body. For X rays this condition is not 
satisfied, and regular reflexions from the interior are possible. Com- 
parison may be made with the behaviour of a grating referred to below. 

Phil. Mag.’S. 6. Vol. 36. No. 216. Dec. 1918. 2H 
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coszy=0 by a similar faclor in the numerator.. In the 
integration with respect to y 

sin ydy=—4 cos $x .d (cos ty). 

If we write Ww for 2kRcosdy, the mean sought may be 
written 

9n? ( (sinw—vwW cos wr)? Pe i en ve a 

the range for W being from 0 to 24R. The integration can 

be effected by “‘ parts.”” We have 

(sin ~—¥ cos yr)? ae sin? yp — 2y sin yr cosp+y" 

Ly! 7 
(38) 

When 7 is small, the expression on the right becomes 

bas 

id age 
so that the integral between 0 and W is 7/18 simply. In 
general, the mean intensity 1s 3 

9n? 2h sin cos w—sin? y—A? +4 
8k? R? afr* ? ¥ (39) 

in which wy stands for 2/R. 
That the intensity, whether in one direction or in the 

mean of all directions, should be proportional to n? is, of 
course, what was to be expected. And, since the effect is 
here a surface effect, it may be identified with the ordinary 
surface reflexion which occurs at a sudden transition between 
two media of slightly differing refranyibilities, and is pro- 
portional to the square of that difference. If, as in a former 
problem, we suppose the discontinuity of the transition to 
be eased off, this reflexion may be attenuated to any extent 
until finally there is no dispersed wave at all *. 
When we pass from the continuous uniform distribution 

to the random distribution of n discrete and very small 
obstacles, the term in n? representing reflexion from the 
surface remains, and is now supplemented by the term in n, 
due to irregular distribution in the interior. It is the latter 
part only with which we are concerned in a question such as 
that of the blue of the sky. 

It must never be forgotten that it is the ‘‘ expectation ” of 

* Conf. Proc. Lond. Math. Soe. vol. xi. p. 51 (1880); Scientific Papers, 
vol. i. p. 460. 
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inteusity which is proved to ben. In any particular arrange- 
ment of particles the intensity may be anything from 0 to 
n*. But in the application to a gas dispersing light, the 
motion of the particles ensures that a random redistribution 
of phases takes place any number of times during an interval 
of time less than any which the eye could appreciate, so that 
in ordinary observation we are concerned only with what is 
called the expectation. 

It is hoped that theexplanations and calculations here given 
may help to remove the difficulties which have been felt in 
counexion with this subject. The main point would seem to 
be the interpretation of the n? term as representing the sur- 
face reflexion when a cloud is supposed to be abruptly 
terminated. For myself, I have always regarded the light 
internally dispersed as proportional to n, even when n is 
very great, though it may have been rather by instinct. than 
on sufficiently reasoned grounds. Any other view would 
appear to be inconsistent with the results of my son’s 
recent laboratory experiments on dust-free air. 

The reader interested in optics may be reminded of the 
application of similar ideas to a grating on which fall plane 
waves of homogeneous light. If the spacing be quite uni- 
form, the light behind is limited to special directions. Seen 
from other directions the interior of the grating appears 
dark. Butif the ruling be irregular, light is emitted in all 
directions and the interior of the grating, previously dark, 
becomes luminous. 

* 

In the problems considered above the space occupied 
by a source, whether primary or secondary, has been sup- 
posed infinitely small. Probably it would be premature to 
try to include sources of finite extension, but merely as an 
illustration of what is to be expected we may take the ques- 
tion of n phases distributed at random over a complete period 
(2cr), but under the limitation that the distance between 
neighbours is never to be less than a fixed quantity 6. All 
other situations along the range are to be regarded as equally 
provabke..*  - 5 0 : 

As we have seen, the expectation of intensity may be 
equated to 

nt2h{f.... Ecos (G2—Ar)d0, dO, .+..d8, 
Ble dO, 22 d0,, 2 (40) 

and the question turns upon the limits of the integrals. 
The case where there are only two phases (n=2) is simple. 

Ze 2 
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Taking @,, 0, as coordinates of a representative point, fig. 3, 
the sides of the square OACB are 27. Along the diagonal 

OC, @,and 6, are equal. If DE, FG be drawn parallel to OC, 
so that OD, OF are equal to 6, the prohibited region is that 
part of the square lying between these lines. Our integra- 
tions are to be extended over the remainder, viz. the 
triangles FBG, DAE, and every point, or rather every 
infinitely small region of given area, is to be regarded as 
equally probable. Evidently it suffices to consider one 
triangle, say the upper one, where @, > 04. 

For the denominator in (40) we have 

i dO, d0,= area of triangle FBG = 4(27 —6)?. 

In the double integral containing the cosine, let us take first 
the integration with respect to 02, for which the limits are 
6,+6 and 27. We have 

27 

( cos (6,—6,)d@,=cos 6—1—(27—6) sind; 
eis 

and since the limits for @, are 0 and 27—6, we get as the 
expectation of gee 

1—cos 6+(27—6) sind 
2— (Qa —5) » eile euiaee en 

If & be neglected, this reduces to 

ZL —S/ar)e ee) ee (42) 

If 5=7, we have 2(1—4/7”) ; and il 6=27, we have 4, the 
only available situations being 6,=0, 0,.= 298 equivalent to 
phase identity. 

This treatment might perhaps be extended to a greater 
value, or even to he: general (integral) value, of n; but I 

content myself with she simplifying supposition hak oO 1S 
very small, 

In (40) the integration with respect to 0, supposes 



Random Distribution of Luminous Sources. 449 

0), 02....On-1 already fixed. If 5=0, every term such as 
vb 

(Vf. «008 (Or —80)d0, . 6. ae. \\\ edo ad, 

=| feos (6r-—0,)d0, dO-= (a0, dé, 

27 

={ d6,{sin (27 —o@) + sin o}+47?=0, 
Jo 

andthe expectation is m simply, as we have already seen. 
In the next approximation the correction to n will be of 
order 6, and we neglect 6”. | 

In evaluating (40) there are $n(n—1) terms under the 
sign of summation, but these are all equal, since there is 
really nothing to distinguish one pair from another. If we 
put o=1, r=2, we have to consider 

ike + C08 (O,—0;) dO; d0,.... dO, 

ma (=. -@0;d0,..:.40,, 4 (Ca) 
The integration with respect to 6, extends over the range 
from 0 to 27 with avoidance of the neighbourhood of 
91, 02,°...On-1. For each of these there is usually a range 
26 to be omitted, but this does not apply when any of them 
happen to be too near the ends of the range or too near one 
another. This complication, however, may be neglected in 
the present approximation. Then 

J cos (0, —0;)d0,,=cos (0.—9;) . {2r—25(n—1)}, 

and in like manner 

{d0,=247—28(n—1), 
so that this factor disappears. Continuing the process, we 
get approximately 

\Jcos (0,—0;)d0, dO, =\{dd, dbo, 

as when there were only two phases to be regarded. 
Accordingly, the expectation of intensity for n phases is 

n{l—(n—1)d/7}, . . « . . (44) 

less than when 6=0, as was to be expected, since the cases 
excluded are specially favourable. But in order that this 
formula may be applicable, not merely 5, but also nd, must 
be small relatively to 2zr. 
A similar calculation is admissible when the whole range 

isi2mz, instead of 27, where m is an integer. 

Terling Place, Witham. 
Nov. 1. 
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‘L. On the Ultraviolet Spectra of Magnesium and Selenium. 
By Professor J..C. McLennan, 7.4.S., and I> Meas 
Youna, M.A., University of Toronto *. 

[ Plates XL & AT] 

Introduction. 

N view of the fact that a number of the theoretical con- 
siderations being put forward at the present time 

regarding atomic structure are intimately related to spectral 
series which for many of the elements lie far down in the 
ultraviolet, it has become desirable to make the observations 
on the spectra in that region as extensive and as complete as 
possible. With the object of doing so a systematic study of 
the spectra of the elements in the ultraviolet and Schumann 
regions was recently begun by one of us. It was proposed 
to ‘investigate the region between 3000 A.U. and 2000 A.U. 
with a Hilger quartz spectrograph, Type C, that between 
2200 A.U. and 1850 A.U. with a Hilger quartz spectrograph, 
Type A, and that between 2000 A. U. and 1400 A.U. with a 
specially constructed fluorite, spectrograph. The Schumann 
region to slightly below 600 A.U. it was proposed to examine 
with a vacuum grating spectrograph recently designed and 
constructed for the Physical Laboratory at Toronto by the 
Adam Hilger Co. 

The results obtained with silicon + and with cadmium f 
have already been published elsewhere, and the present paper 
contains an account of the work done so far by the writers 
on the spectra of magnesium and selenium. With the 
former element the quartz spectrograph Type C was used, 
and with the latter the quartz spectrograph Type A. In all 
some fifty-eight new lines have been observed below 2600 A. 
in the spectrum of magnesium, and some fourteen new ones 
in the spectrum of selenium. 

MAGNESIUM. 
I. Haperiments. 

In studying the spectra of magnesium, the spark in air, 
the are in air, and the are in vacuo, were used in turn. 
The spectrum for the spark in air was obtained from the 
condensed discharge of a Clapp-Hastham half-kilowatt trans- 
former rated to give 10,000 volts at the secondary terminals. 
With this arrangement ‘the spark was quite thick and many of 

* Communicated by the Authors. 
+ McLennan and Edwards, Phil. Mag. vol. xxx. p. 482 (1915). 
t McLennan and Edwards, Proc. Roy. Soc. Canada, vol. ix. ser. ii. 

p. 167 (1915). 
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the lines below 2852 A.U., especially the one at 2026A U., 
could be observed visually with ease by means of a fluorescent 
eyepiece. 

The are in air was obtained by putting rods of magnesium 
metal in the carbon-holders of an ordinary hand-feed rect- 
angular arc-lamp. The potential fall used was that of the 
mains, 110 volts, and the current varied from four to six 
amperes. For the arc zn vacuo a quartz lamp of the type 
developed by McLennan and Henderson * was used. The 
side tubes were supplied with magnesium rod electrodes, and 
the arc was started by bombarding the magnesium vapour 
with electrons from the auxiliary incandescent tungsten 
cathode. The vapour condensed on the walls of the tube 
near the arc, but the lamp carried an additional side tube 
provided with a crystal quartz window and through it the 
light passed into the spectrograph. 

With 220 volts across the magnesium terminals and a 
current of from 8 to 10 amperes, it was found that a brilliant 
are could be maintained for an hour or two without the con- 
tinued use of the Wehnelt cathode. The latter was therefore 
always cut out of the circuit as soon as the arc struck. 

In taking photographs of the different spectra Schumann 
plates, made by the Adam Hilger Co., were used. When 
suitable precautions were taken to avoid fogging these gave 
spectrograms with sharp lines and clear definition over the 
whole range in the ultraviolet covered by the optical train. 
Some of the results obtained are reproduced in fig. 1 (Pl. XI.) 

In the illustration, the upper spectrum is that of the spark 
between zine terminals in air. The next is that of the 
magnesium spark in air; and the third and fourth spectro- 
grams are respectively those of the arc in air and the arc zn 
vacuo. In the spectrogram of the spark in air, the line 
N= 2852 A.U., of which the frequency is given by v=(1°5,8) 
—(2, P), sometimes appeared reversed. In the arc in air 
this line showed a broad though faint reversal, and the line 
X= 3838 A.U. was always strongly reversed. The spectrum 
of the are in vacuo was readily obtained without any reversals 
showing on the plates. The line X=4571 A.U. was never 
observed to exhibit reversal either in the are or the spark 
spectra. 

In the absorption spectrum of non-luminous magnesium 
vapour tov, no absorption was ever observed at N=4571 A.U. 
This result is rather interesting since it will be recalled that 
with the non-luminous vapours of mercury,zinc, and cadmium, 

* McLennan and Henderson, Proc. Roy. Soc. A. vol. xci. p. 485 
(1915). 
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when suitable densities were used, absorption was always 
obtained for the frequency v=(1'5, yee (2, p2), which in the 
magnesium spectrum is the series frequency of the line 
A=4571 ALU. 

Some difficulty seems to have been experienced in observing 
ae spectrum of magnesium in, the region lying between 
=2600 A.U. and »=2000 A. shee for while Handke * 
Tae t, and Saunders { record lines between 120000 aml 
and X¥=1700 A.U., the only one who appears to have recor ‘ded 
any line in the fir st-mentioned region is Saunders. 

Lorenser § in his Inaugural Dissertation gives the second 
line of the series y=(1°5 S)—(m, P) as X=2026 A.U., and 
this line Saunders || reports that he observed. 

From the illustrations given in fig. 1 it will be seen that 
in the region between A= 2500 A.U. and 2=2000 A.U. the 
spark-lines are rather.faint. In the spectrum of the arc in 
air the line X=2026 A.U. is very strong, but the rest of 
the spectrum in this region is faint. In the spectrum of the 
are in vacuo the line A=2026A.U. is clearly marked, as,aiso 
are some lines between X=2500 A.U. and A= 2200 A.U. 
The rest of the spectrum below X= 2600 A.U. is faint. 

In working out the spectrum of magnesium in the present 
investigation a great many plates were taken with each 
source of light, and different samples of magnesium were 
used in order to eliminate any lines due to impurities which 
might be present as traces in the metal. In determining 
the wave-lengths four of the best plates obtained with each 
source were selected, and only lines common to all four were 
measured up. 

The wave-lengths of the lines were determined from a 
calibration curve constructed for the spectrograph by using 
the following prominent zinc spark-lines :— 

Wave-lengths of Zinc lines 4]. 
oO Cc 

A=6588'65 A.U, A=2658-27 A.U. 
636298, 2502:20 ,, 
6103-58 ,, 2418-95 ,, 
5675°30 ,, 2346'80 _,, 
492537, 296508 ,, 
398875, 213866, 
328249, 2100:06_,, 
3076-03 ,, 906208 ,, 
280115 ,, . 202556, 

* Handke, Anaug. Diss. Berlin, 1909, p. 18. 
+t Lyman, ‘Spectroscopy of the Extreme Ultra-Violet’ (Longmans, 

Green & Co.), p. 117. 
t Saunders, The Astrophys. Jl. vol. xliii. no. 3, p. 234 (1916). 
§ Lorenser, Inaug. Diss. Tubingen, 1913. 
|| Saunders, doc. e7t. 

4] Eder and Valenta, Atlas Typischer Spectren, Wien. 
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The wave-lengths of the lines measured and their relative 
intensities are given in Table I. (p. 454). In the same table 
the lines recorded by other observers for the range of wave- 
lengths shorter than X= 2852°22 A.U. are included. 

II. Series Relations. 

The most recent work on the series spectra of magnesium is 
the Inaugural Dissertation recently published by E. Lorenser 
of Ttibingen. In this paper he draws attention to a series 
calculated from the formula 

A—v=(m, X)— 2 eee ees ene 

(m +X+ =) 
m 

where A=56098°8, and for which the wave-lengths of the 
different members are :— 

Mm = 2 3 4 D 6 

= 2852:22, 2219°8 (?) 20192 (?) 19380°9 1886°3 

The first member of this series is well known, and the fifth 
and sixth it will be noted were observed by Handke. 
Lorenser, however, was not able to observe the second and 
third members, and concluded that the series as calculated 
was based on false assumptions. The results of the present 
investigation, as the table of wave-lengths shows, goes to 
support Lorenser’s view, for no lines were ovserved with 
wave-lengths which could be supposed to represent X= 2219°8 
A.U. and A=2019°2 A.U. 

A series of single lines and represented by v=(1°5, 8) 
—(m, P) has been calculated by Lorenser as follows :— 

m= 2 3 i dD 6 7 8 

A = 2852°22 202508 18281 174809 17073 1683°64 1€6804 

For this series X= 2852°22 A.U. is well known. ‘The line 
A=2025°08 A.U. was observed by Saunders and is brought 
out clearly in the present investigation as a prominent 
line. Both Lyman and Saunders have observed the line 
hea bee: 1 ALU. No line has been observed as yet exactly at 
A=1748:09 A.U., but Handke gives two which are close 
to it. The lines \ = 2852-22 A.U. and A=2025:08 A.U. have 
been shown by one of us to be strongly absorbed by,non- 
luminous magnesium vapour, and the line AX=2852°22 A.U., 
it will be recalled, is easily reversed. 

Moreover, it will be recalled that when magnesium vapour 
is bombarded by electrons*, the line X=2852°22 A.U. is the 

* McLennan, Proc. Roy. Soc. A. vol. xcii. p. 574. 
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TaBLE I. 

Kayser and EXNER and 
RunGe. HASscHER. EpDER. 

Caan a oe oS) 7 pias 
Are. Arc: Spark. Are. Spark. 
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one most easily stimulated. It is also the only line which 
comes out in the spectrum of the light from a gently burning 
bunsen flame* fed with magnesium vapour. All these 
considerations point to the series y=(1°5, S)—(m, P) as 
given above by Lorenser as being correct. The evidence 
goes to show further that this series represents frequencies 
of fundamental importance in the spectrum of magnesium 
just as corresponding series have been shown to do for the 
spectra of mercury, zinc, and cadmium. 

Assuming the wave-lengths given above for the series 
y=(1'5,8)—(m, P) as being correct, one may calculate the 
series given by v=(1°5, S)—(m, p,). 

This has been done by Lorenser, and the wave-lengths of 
the different members are as follows :-— 

i— 3 eS oo e 

A\=4571:27 . 2090:08 1843:°08 1621-00 

Although series given by v=(1°5, S)—(m, p,) have been . 
identified in the spectra of mercury, zinc, and cadmium, no 
such series, with the exception of the first member of 
A=4571:27 A.U., has as yet been observed with magnesium. 
The real existence of the series in the spectrum of magnesium, 
moreover, has been questioned. It will be noted, however, 
that both in the spectrum of the arc in air, and in that of 
the spark in air, a faint line was observed ‘at X=2091 A.U. 
As the calculated value of the second member of the series 
X= 2090°08 A.U. is within the possible error of measure- 
ment of this line, it would appear therefore that it represents 
the second member. The series would then seem to have a 
real existence. 

Summary. 

1. The spectra of magnesium for (a) the spark in air, 
(b) the are in air, and (c) the are im vacuo, have been 
investigated in the region between X=2852-22 A.U. and 
r= 2000 A.U., and in all some fifty-eight new lines have been 
measured. d 

2. The existence of the line X=2026 A.U., first measured 
by Saunders, has been confirmed and considerations have 
been brought forward supporting the view that the series 
v=(1°5, S)—(m, p,) has a real existence. 

* McLennan and Thomson, Proc. Roy. Soc, A. vol. xcil. p. 584. 
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SELENIUM. 

1. Spark Spectrum Experiments.—The most important 
work on the emission spectrum of selenium appears to have 
been done by Messerschmidt* and by Berndtf. The 
electrical conductivity of metallic selenium, as is well known, 
is exceedingly low, and as a consequence it is impossible to 
produce an are or a spark in the usual manuer. In his 
experiments Messerschmidt used a strong condensed discharge 
through a quartz Geissler tube containing a small bead of 
selenium. 

Berndt investigated the spark spectrum by melting small 
globules ot selenium on the tips of platinum wires about 
1-2 mm. in diameter and then passing a condensed discharge 
across the terminals. The selenium metal was vaporized by 
the heat of the spark, and its spectrum was obtained as well 
as that of the spark spectrum of platinum, According to 
Kayser’s Handbuch der Spectroscopie, the lowest limit reached 
was about A=2340 A.U. 

In the present investigation the selenium spark spectrum 
was obtained superimposed upon that of carbon. Two com- 
mercial solid carbons were used. The lower one was cratered 
and filled with a bead of grav vitreous selenium metal, 
while the upper electrode was pointed and placed centrally 
over the lower one. When the condensed discharge from a 
Clapp-Hastham half-kilowatt transformer of 10,000 voits 
was passed across the gap, it gave a cone of light reaching 
from the tip of the upper electrode to the periphery of the 
crater of the lower one. Owing to the fact that carbon is a 
poor conductor of heat, the energy in the discharge was 
sufficient to boil the selenium in the crater and the vapour 
passed out through the cone discharge. The spectrum of 
the carbon spark alone was first photographed and then that 
of the carbon and selenium combined. As stated already 
the spectrograms were taken with a quartz Hilger spectro- 
graph type A. In all the photographs of the spectrum 
taken in this way no lines due to selenium were obtained of 
wave-length longer than 2200 A.U. Berndt’s method was 
also tried with aluminium wires in place of platinum ones, 
but with the same result. This lack of lines in the longer 
wave-leneths was probably due to the way the spectrum 

* J. Messerschmidt, Dissertation, Bonn, 1907 ; Zs. Wiss. Photographie, 
p. 249 (1907). 

ge G. Berndt, Ann. der Phys. xii. p. 1115 (1908). 
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was excited, for the voltage used was only a fraction of that 
employed by Berndt in his experiments. 

In order to make certain that no chance impurities were 
the cause of lines coming out which were observed in these 
experiments below X= 2200 4.0. , different pieces of selenium 
were used as well as different carbon electrodes. The same 
spectrum, however, was invariably obtained. Many plates 
were taken, and four of the best of them were used in 
measuring up the wave-lengths of the lines. Twelve lines 
in all were obtained and ascribed to the selenium spark. 

In determining the wave-length of the selenium lines the 
following pr gmamene alniaininn: © , zine f, and cadmium T 
lines were used :— 

Aluminium lines. Zine lines. Cadmium lines. 
ie) oO oO 

A=1990°57 A.U. A=2558'20 A.U. \=2748'68 A.U. 
3590 hu | 02-200. aie ee 

166281 2138-66 ,, Zola SOK 
Breau I. / 00:06 |. 2288 12 
54:80, 2062080 2265°04 _,, 

| 257 pilaies 2194-71, 
44-44, 

i 

In fig. 2 (Pl. XII.) the first reproduction, “a,” is the 
spectrum as the aluminium spark in air, the second, “0,” 
that of the carbon spark in air, and the third, CG, Ellelb of 
the combined carbon and salleTate spark in air. 

In measuring up a plate the distances of the various 
aluminium, zinc, cadmium,,and selenium lines from the 
aluminium line »A=1854°8 A.U. were carefully measured 
with a Hilger comparator. The distances of the aluminium, 
zine, and cadmium lines given above from the aluminium 
line N=1854°8 A.U. were “used as the ordinates of a eali- 
bration curve and the wave-lengths of the lines as abscisse. 
This calibration curve was then used to determine the wave- 
lengths of the selenium lines. 

The results are probably accurate to one Angstrom unit. 
The relative intensities of the lines were Geum by giving 
the strongest line the arbitrary value 10 and referring to 
this as ie standard. The mean values of the measurements 
of all the selenium spark-lines observed are given in 
Table II. 

* Handke, Dissertation, Berlin, 1909, p. 18. 
+ Jider and Valenta, Atlus Typischer Spektren, Wien. 
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TaBLE [[.—Selenium Spark Lines. 

Wave-length. Intensity. Wave-length. Intensity. 
12) 

A=Q5HAU. 1 | A=1960A.U. 10 
203°, 3 LDP es 3 
63s 8 1897; 3 
38, 8 | 93); 2 
ol ie 2 | 58, ie 

1993 ,, 5 | se ner 7 

2. Are Spectrum Experiments.—An investigation was also 
made of the spectrum of selenium in the carbon are. Solid 
carbons were used and a small bead of selenium metal was 
placed on the vertical carbon. The contact was then made 
and the selenium boiled away in the arc, which was fed 
with a current of 10 amperes from the 110 volt direct- 
current mains. The spectrum was photographed with the 
same instrument as in the experiments with the spark, and 
tests were made with different carbons and pieces of 
selenium. 

The fourth reproduction “d,” in fig. 2 is the spectrum of 
the carbonarce in air, and the fifth, “e,” is that of the carbon 
und selenium are in air. 

Four of the best plates taken were used in making the 
measurements, and the observations showed that but five 
lines, all occurring in the ultraviolet, were due to the 
selenium are. Their wave-lengths are given in Table III. 

TaBLeE I[I].—Selenium Are Lines. 
Wave-length. Intensity. 

A=2073 AU, 8 
63 ,, 8 
38, D 

1988 _,, 1 
60 , 10 
30 D 

3. Absorption Spectrum Experiments.—An attempt was 
also made to see if an absorption spectrum for selenium 
vapour could be obtained. 

The absorption spectrum of selenium vapour under various 
conditions has been exhaustively studied by Evans and 
Antonoff *, who found that for high vapour-pressure there 
is continuous absorption below A=5800 A.U. As the 
vapour-pressure decreased they found that absorption bands 
appeared in the green, blue, and violet, and for low pressure 
values in the ultraviolet. No bands were discovered below 

* Evans and Antonoff, Astrophys. Jl. xxxiv. p. 277 (1911). 
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1=3200 A.U. The approximate wave-lengths of the bands 
found in the ultraviolet are given as X=3240, 3255, 3280, 
3295, 3317, 3338, 3363, 3387, 3412, 3435, 3460, 3483, 3510, 
3537, 3592, 3614, 3640, 3663, 3684, 3700, 3715, 3730, 3742, 
37595, 3763, 3774, and 3802 A.U. 

As none of these bands are in the region in which the 
emission lines, given above, were found, some experiments 
were performed to find if absorption did take place at any 
of these wave-lengths. Some selenium metal was enclosed 
in a fused quartz tube, highly exhausted and sealed off. 
But owing to the difficulty of obtaining a continuous 
spectrum in the region from X= 2200 A.U. to AX=1850 ALU., 
this method was abandoned. The photograph (f) on the 
plate showing a clear reversal of the selenium line X=1960 
A.U. was obtained in the carbon are. Two solid carbons 
with flat ends were used. A large bead of selenium metal 
was placed on the vertical carbon and then the are was 
struck behind the selenium metal. As the carbons became 
hot the selenium boiled up in front of the are and gave a 
sharp but narrow reversal-band at X=1960 A.U. This was 
the only absorption band observed, and it is possible that this 
frequency on account of its intensity and easy reversal is 
intimately connected with one of the series v=(1°5, 8) 
—(m, P) or v=(1'5, 8)—(m, pz), the remainder of the series 
lying below A= 1850 ALU. To investigate this further 
work with a fluorite or a vacuum grating spectrograph will 
be necessary. 

Summary. 

1. Twelve new lines have been recorded in the selenium 
spark spectrum between A= 2200 A.U. and X=1850 ALU. 

2. Five lines in the selenium arc have been found between 
the same limits. 

3. In the sources used no part of the spectrum longer in 
wave-length than 7»= 2200 A.U. was present. 

4. The absorption spectrum of selenium metal in the 
carbon arc was investigated and a reversal was found at 
y= 1960 INGO which is the strongest line in both the are 

and spark spectra. 
5. If the absorption of selenium vapour should prove to 

be analogous to that of mercury, zinc, and cadmium, this 
would indicate that the two series v=(15,8)—(™, P) and 
y=(1'5,S8)—(m, pz) for selenium are in the extreme ultra- 

violet. 

The Physical enhances. 
University of Toronto. 
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LI. On Fundamental Frequencies in the Spectra of Various 
Elements. By Professor J. C. McLennan, F.R.S., and 
H. J. ©. [reron*. 

[Plates XIIL.-XV.] 

Part I. 

1. Introduction. 

N a series of papers by McLennan and Henderson+ and 
others it has been shown that when the vapours of 

mercury, zinc, cadmium, and magnesium were subjected to 
bombardment by electrons whose velocity was gradually 
increased, these vapours were stimulated to the emission of 
a monochromatic radiation. With mercury the radiation 
emitted had the wave-length X=2536°72 A.U., with zine 
X=3075°99 A.U., with cadmium N=3260°17 A. U., and with 
magnesium \= 2852-22 A.U. Inorder to bring the vapours 
to the emission of these respective radiations, it was found 
that the bombarding electrons had to have kinetic energy 
corresponding to a tall of potential given by the quantum 
relation Ve=/v, where v is the frequency of the mono- 
chromatic radiation emitted. 
When the velocity of the electrons was increased beyond 

that given by the quantum relation for these frequencies, 
there did not appear to be any radiation emitted of shorter 
wave-length than those given above by any of the vapours 
mentioned until the electrons possessed the requisite energy 
to ionize the vapours. When this occurred arcs were struck 
and the many-lined spectra were obtained. 

In order to obtain the many-lined spectra it was found 
that the electrons required to have kinetic energy corre- 
sponding to a potential fall given by the quantum relation 
Ve=hy where v was the frequency, v=(15, S) ae that 
of the shortest wave-length of the series y= (1° B S)—(m, P). 

It was thought that, in these experiments in which an 
incandescent limed ;platinum cathode was used, it might be 
possible, by giving the electrons kinetic energy intermediate 
between that which would bring on the monochromatic 
radiation and that which sufficed for striking the arc, to 
cause the vapours to emit radiations which became shorter 

# Communicated by the Authors. 
+ McLennan and Henderson, Proc. Roy. Soc. A, vol. xci. p. 426 

(1915). 

Phil. Mag. §. 6. Vol. 36. No. 216. Dec. 1918. 21 
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and shorter in wave-length as the speed of the electrons was 
increased. In particular, experiments were directed to this 
end with mercury vapour, but it was found that when the 

electrons were given kinetic energy corresponding to 4:9 volts, 
the radiation of wave-length 7=2536°72 flashed out; and 
then, as the velocity of the electrons was increased no photo- 
graphic record was obtained of any wave-lengths shorter 
than X= 253672 A.U., until the velocity corresponding to 
10-2 volts was reached, when the are struck and the many- 
lined spectra came out. 

The question has, however, been re-examined by Bergen 
Davis ani Goucher *, and ina series of brilliantly designed 
experiments in which the photoelectric effect was used for 
detecting the existence of particular radiations, they have 
shown that when mercury vapour of very low density was bom- - 
barded by electrons, radiation of wave-length X= 2536°72A.U. 
was emitted without ionization at an impact voltage of 4:9 
volts, and that when the impact voltage was increased to 
6°7 volts a radiation of wave-length 7X=1849 A.U. came out 
as well. With still higher impact voltages no additional 
types of radiation appeared before ionization amie vapour 
occurred, which took place with an impact of voltage of about 
10-4 volts. 

With a view to confirming this result by the photographic 
method the original experiments of one of us have been 
repeated by the writers and extended to include vapours 
other than mercury. The following paper contains an 
account of these experiments. 

II. Huaperiments. 

In carrying out the experiments, the form of vacuum arc- 
lamp used is shown in fig. 1, similar to the one described 
by McLennan and Hendersont. It consisted of a tube of 
fused quartz possessing three arms, R, 8, and MN, anda 
receptacle L. Some of the metal to be used in produeing 
the vapour was placed in the receptacle L. The arms were 
about 40 em. long, so that when the receptacle was heated 
all wax joints remained quite cool. A. short piece of tungsten 
was attached to two wires which constituted a heating circuit, 
these being passed through an ebonite plug and sealed in at A. 
A short iron tube, in which was sealed a crystal quartz plate, 

* Bergen Davis and Goucher, Phys. Rev. vol. x. no. 2, p. 101. 
+ McLennan and Henderson, Joc. cit. 
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was sealed on the end B. Connected to this iron tube, a 
small iron rod passed along 8. At the farther end it had 
a ring from which a small chain dipped into the mercury. 

BiG: 1. 

This was to keep the mercury in electrical contact with the 
iron electrode. The tube was then highly exhausted by a 
Gaede pump through a brass tube sealed on MN, and when 
a low vacuum was reached the metal was vaporized by 
heating the receptacle L with a Bunsen burner. When the 
tube was in operation, the terminals of an auxiliary heating 
circuit were attached at H and K. The impact voltage was 
applied between K and B, the latter being the positive 
terminal. In taking photographs, the tungsten was brought 
to incandescence by means of the auxiliary heating circuit, 
the metal in L was heated by the flame of a Bunsen burner 
to produce vapour of the metal, and the collimator of a small 
quartz Hilger spectrograph of type A was lined up with the 
arm 8 in front of the window at the end B. 

(a) Mercury Vapour. 

With mercury vapour, the results obtained were no better 
than those published originally by McLennan and Henderson. 
With an impact voltage of about 5 volts it was found an easy 
matter to obtain the monochromatic radiation of wave-length 
A= 253672 A.U. With still higher impact voltages, no 
trace of shorter wave-lengths even with long exposure was 
obtained until the impact voltage was sufficiently great to 
cause the arc to strike. Reproduction No. 2, fig. IL, (Pl. XIIL.) 

212 
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shows the single line \ =2536°72A.U. obtained with an impact 
voltage of 6'1 volts. Although Schumann plates were used, 
exposures as long as 10 hours, with an impact voltage of from 
8 to 8:5 volts, failed to give any trace of the line A= 1849 6A.U. 
In view of the results obtained by Bergen Davis and Goucher, 
we can only conclude that in all our experiments the density 
of the vapour used was too great. [tis known that radiation 
of wave-length 7>=1849°6 A.U. is strongly absorbed and 
scattered by mercury vapour even of low density, and it is 
possible that this accounts for the non-appearance of any line 
at this wave-length. 

(b) Zine. 

With zine much better results were obtained. When the 
vapour of this metal was bombarded with electrons whose 
impact voltage was about 4 volts, monochromatic radiation 
of wave-length X%=3075:99 A.U. was recorded. As the 
impact voltage was increased no additional indication was 
observed until about 6 volts was reached, when the line cor- 
responding to 7~=2139:33A.U came out on the plates. 
Reproduction No. 1, fig. III. shows the many-lined spectrum 
of the zinc spark. Reproduction No. 2, fig. IIL. shows the 
line X=3076°00 A.U., which was brought out when the 
impact voltage was 5°6 volts. The plate for this spectrogram 
showed in addition the line corresponding toXA=3260°17A.U., 
which would indicate, since the line was extremely faint, that 
a trace of cadmium was present as an impurity in the zinc. 
Reproduction No. 3 shows both the lines corresponding to 
X= 3075'99 ALU. and A=2139°33 A.U., and was obtained 
with an impact voltage of 7°5 volts. 

(c) Cadmium. 

With cadmium vapour, results were obtained similar in 
characler to those recorded with zinc. No photographic 
record was obtained of any radiations until an impact voltage 
of about 4 volts was reached. Under these circumstances, 
the line at wave-length 1=3260:17A.U. came out on the 
plates. With still higher impact voltages no additional 
radiation appeared until an impact voltage slightly less than 
6 volts was obtained. With this impact voltage the line at 
N= 2288°29 came out on the plates in addition to the line 
ab h—=o200 17 AN: 

Reproduction No. 1, fig. IV. is that of the many-lined 
spectrum of the cadmium spark. No. 2 shows the single line * 
at X=3260'17 A.U., and was obtained with an impact voltage 
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of 5:2 volts. No. 3 shows the lines at X=3260-17A.U. and 
A=2288-79 A.U. It was obtained with an impact voltage 
equal to 7°5 volts. 

III. Discussion of Results. 

The results described above combined with those of 
Bergen Davis and Goucher go to support the view that 
it is possible to stimulate the atoms of mercury, zinc, and 
cadmium to the emission of definite and distinct types of 
monochromatic radiation by choosing definite impact voltages 
which are given by the quantum relation. A view has 
been put forward that when the kinetic energy of the im- 
pinging electrons is sufficient, to bring out the radiations 
A=2536°72 A.U, X=3075°99 A.U., and »=3260:17 A.U., 
for mercury, zinc, and cadmium respectively, other coylbaioms 
of still shorter wave-length are present, but their intensity 
is too weak to produce records of their presence on the 
photographic plates. The experiments we have carried out, 
however, do not support that view. [Even with exposures 
as long as 10 hours no trace of lines at A=2139°33 A.U. for 
zine and at 7=2288°79 A.U. for cadmium came out when 
the impact voltage was less than that given by the quantum 
relation for their respective frequencies. When impact 
voltages corresponding to their frequencies were applied, 

these lines were at once obtained on the plates even with 
comparatively short exposures. 

From Table I. it will be . noted that the wave-lengths 
W-290012 AU, A—307D 99 A.U., and 7 =3260° 17A.U. 
are respectively the first members of the combination series 
v= (1°5, S)—(m, pe), and the wave-lengths X=1849°6 A.U., 
A= 2139-33 A.U., and X=2288°79 A.U., the first members of 
the singlet principal series v=(1:5, S)—(m, P). The other 
members of both these series for the three metals are all 
beyond the range of wave-lengths which can be recorded 
by a spectroscope with an optical train of quartz. It would 
be interesting to extend the experiments described in this 
paper so as to see if the higher members of these two series 
came out on the plate one by one as the impact voltage of 
he electrons was increased to that given by the quantum 

relation for their frequencies. To do this it would be 
necessary to use a fluorite spectrograph or a vacuum grating 
spectrograph for the range intermediate between A= 1900A.U. 
and 7=1400A.U., and a vacuum grating spectrograph for 
the range below A=1400 A.U. 
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Series Spectra. 

15, S—m, po series. 

Mercury. Zine. Cadmium. MN. 

253672 3076°99 3260°17 2 

1435°59 163208 1710°58 3 

1307°83 1468:90 — 1537°89 4 

1259°31 1408°86 1474-06 5 

1235-91 1379°38 1442-60 6 

1229-44 1362-59 1424°40 7 

1213-97 — 8 

Lt 1188-0 1320-0 1378°7 a 

1:5, S—m, P series. 

Mercury. Zine. Cadmium. MN. 

1849-6 2139°33 2288°79 2 

1402-71 1589-64 1669°3 3 

1268-9 1457-64 1526-73 4 

1250°6 137697 1469°35 5 

Lt 1188-0 1320-0 1378:7 a 

To work in this direction some experiments were set on 
foot by McLennan and Ainslie with a fluorite spectrograph, 
and others by McLennan and Lang with a vacuum grating 
spectrograph. It was found that with both instruments 
much time was consumed in working out technical details. 
The results obtained to date with them will be published 
shortly, and they will show that with the fluorite spectro- — 
graph it ,is now easy to obtain spectrograms down to 
A=1400 A.U. With the vacuum grating spectrograph 

spectrograms well below » = 600A.U. can be readily 
obtained. 

LV. Fundamental Series. 

From the experiments described above it will be seen that 
it is possible with the vapours of mercury, zinc, and cadmium 
to stimulate at will the radiation—and this radiation only— 
given by the first member of the combination series 
v=(1'5, S)—(2, p.). It is also possible to cause the atoms 
of the same vapours at will to emit the radiation given by 
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the first member of the singlet principal series given by 
v=(1'5, 8)\—(m, P). 

The question naturally arises then as to which of these two 
series is the more fundamental in character from the point 
of view of atomic structure. 

It is impossible as yet to decide, but everything goes to 
show that, while the radiation given by v=(1'°5, S)—(2, pro) 
is the more easily stimulated by electronic bombardment of 
mercury, zinc, and cadmium atoms, the series of wave-lengths 
given by p=(1- 5, 8)—(m., P) is the one which corresponds 
fo some very simple type of electronic vibrations within the 
atom. 

It has been shown by McLennan and Edwards * that with 
the vapours of mercury, zinc, and cadmium absorption is more 
marked in the region corresponding LO) yl 5, S)—(, P) 
than it is in the region about yv=(1-5 S)—(2, p,). With 
magnesium vapour ‘too, McLennan t has shown that ab- 
sorption at y=(1°5, 8)—(2, P) is very much more marked 
Gay: ib, 1s’ at. p= ar 5, S)—(Q, po). More recently still 
McLennan and Youngt hoe shown that with the vapours of 
ealcium, strontium, and barium, absorption and reversal can 
be obtained much more readily at v=(1°5, S)—(2, P) than 
it can at v= (1'5, S)\—(2, po). 

Tt will Ae be recalled that McLennan § has shown that 
when magnesium was bombarded by electrons whose kinetic 
energy was eradually increased, no radiation of wave-length 
at N=4571A.U. was ,obtained rail the are struck, while the 
line at X= 2852-22 ALU. ,v=(1'5,8)—(2, P) came out on 
the plates as soon as the electrons attained kinetic energy 
corresponding to the impact voltage given by the quantum 
relation for the frequency of this wave-length. 

It would appear, then, that of the two series y= (1'5,8) 
—(m, pr) and v=(1°5, S)—(m, P), the latter is the more 
fundamental in character, and that through it our attention 
is directed to vibrations within the atom which are of a 
principal or main type. 

* McLennan and Edwards, Phil. Mag. vol. xxx. p. 695, Nov. 1915. 
t+ McLennan, Proc. Roy. Soe. A, vol. xcii. p. 307. 
t McLennan and Y oung. Communicated to the Royal Soc. Oct. 1918. 
§ McLennan, Joc. cit. 
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Part II. 

1. Introduction. 

In a paper by McLennan and Thomson on Bunsen Flame 
Spectra some experiments are described which were designed 
to throw light. on the question of which of the two series 
v= (15, 8)—(m, p.) and v=(1'5, S)—(m, P) was the more 
fundamental from the point of view of vibrations within 
the atom. A Bunsen flame was chosen as being perhaps 
the most simple method of stimulating atoms to the emission 
of radiation, and the vapours of pure metals rather than 
those of their salts were used with a view to realizing the 
simplest possible conditions within the flame from a chemical 
point of view. 

With mercury vapour, the monochromatic radiation of 
wave-length %=2536°72 A.U., v=(1°5, 8) —(2, p.) was ob- 
tained, but no trace of the line at X=1849°6A.U., v=(1'5, S) 
—(2, P) appeared, even when the Bunsen flame was strongly 
forced. With cadmium vapour the line at X= 3260°17A.U., 
v=(1'5, 8)—(2, 7.) came out when the flame was burning 
gently, and the line at X= 2288-79 A.U., v=(1°5, S)—(2, P) 
as well when the flame was forced. With magnesium 
vapour the line al A=2852:22A.U., v=(1'5, 8)—(2, P) 
was obtained, but no trace of the line at A=4571A.U., 
v=(1'5, 8)—(2, p.) appeared on the plates unless the 
many-lined spectrum appeared. With zinc no photographs 
belonging to the spectrum of the metal were obtained unless 
the metal was very strongly heated so that a copious 
supply of vapour was sent into the flame. Under these 
latter circumstances oxidation was intense and the vapour 
frequently took fire. The spectrum of zine which was then 
obtained consisted of a large number of lines of greater or 
less intensity. From these results it will be seen that while 
the importance of the two series v=(1°5,S)—(2, p.) and 
v=(1°5, S)—(m, P) was emphasized, there was little evidenee 
brought forward as to which of the two series was the more 
fundamental. 
Ramage * in his admirable paper on “ Relations of Spectra, 

etc., to Atomic Mass,” was the first to identify the line 
X=3075°99A.U .in the flame spectrum of zine. It appears, 
he pointed out, among the series of lines constituting the 
strongest water-vapour group. Our attention has also been 

* Ramage, Proc. Roy. Soc. No. 459, vol. Ixy. p. 1 (1901). 

a. 
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called by Hemsalech * to the fact that Charles de Wattevillet 
in his exhaustive paper on Flame Spectra has recorded that 
the wave-length 71=3075:99 A.U. was the only radiation 
belonging to the zinc spectrum which was emitted by the 
flame of a burner supplied with the spray from a solution of 
zine chloride. In view of these results, it was thought that 
the line X=3075-99 A.U. should have come out on the plates 
of McLennan and Thomson when the Bunsen flame was fed 
with the vapour from heated metallic zine. 

The experiments with zinc were therefore repeated by us, 
with the result that the line was identified among those con- 
stituting the water-vapour group referred to by Ramage. 

In these experiments the particular type of Bunsen burner, 
fio. V., used by McLennan and Thomson was adopted. To 

FIG. Vv. 

the top of any ordinary Bunsen burner Qa brass cylinder Kh, 
3°8 cm. in diameter and 8 em. high, was soldered. The top 
was closed by a lid containing an aperture about 2 cm. in 

* Hemsalech, Phil. Mag. vol. xxxiv. p. 221 (1917). 
+t De Wattey ile, Phil. Trans. Roy. Soc. ser. A, vol. cciv. pp. 139-168 
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diameter. Another brass cylinder, 2°8 cm. in diameter and 
7 cm. in length, was supported in the centre and coaxially 
with KL by means of three brass plugs placed between the 
cylinders. The inner cylinder contained a quartz tube F 
about 7 em. in length. A coil of nichrome wire MN was 
wound around this tube, and the ends were led through 
openings fitted with small porcelain plugs in the bottom 
of KL. A layer of asbestos paper was placed around the 
wire, and the whole space between the quartz tube and brass 
cylinder packed with asbestos powder. When the gas was 
lighted a clear Bunsen flame was maintained above the 
mouth of the burner. The metals to be vaporized were 
placed within the quartz tube I’, and the furnace was raised 
to whatever temperature was desired by applying a current 
of suitabie strength to the circuit MN. The photographs 
were taken with a lar ge Hilger quartz spectrograph, type C. 
Wratten and Wainwri ight Pancbromatic plates manufactured 
by the Hastman Kodak Co. of New York were used. 

The spectrograms taken are shown at the end of this 
paper. No. 1, fig. VI. (Pl. XIV.) is a reproduction of the 
spectrum of the zinc spark taken from a condensed discharge. 
No. 2 was obtained with zinc vapour in the Bunsen flame, and 
No. 3 shows the spectrum of the Bunsen flame free from the 
zinc vapour. Inaddition to the ordinary Bunsen flame spec- 
trum, spectrogram No. 2 shows that the zine line X=3076-03 
A.U. came out strongly. ‘This is well shown in No. 2 of the 
enlarged reproduction in fig. VII. (Pl. XV.). Inno case did 
the flame spectrum show any trace of the line A=2139°33 
A.U. Some experiments were also made with calcium, 
using the same type of Bunsen burner, and No. 1, fig. VIL. 
(Pl. XIV.) is the spectrogram of the calcium are in vacuo, 
taken with an arc-lamp similar to the type described by 
McLennan and Henderson*. No. 2, fig. VIII. is a spectro- 
gram of the Bunsen flame fed with calcium vapour. In 
addition to the ordinary flame spectrum, it shows the calcium 
line X= 422691 A.U. of frequency v = (195.9) eee 
Another line is shown at about \=4059 A.U., but this line 
must have been dué to an impurity in the calcium metal, as 
no line is given at this wave-length by Hder and Velo te 
No. 3, fig. VIII. isa spectrogram of the ordinary Bunsen 
flame. i 

Since the line A= 2288°79 A.U. came ont in strong flames 
with cadmium vapour, it was thought the corresponding line. 

* McLennan and Henderson, loc. cit. 
t+ Eder and Valenta, Atlas Zypischer Spektren, Wien. 
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in the zinc flame spectrum %=2139°66 A.U. might come 
out too. No trace of it, however, was found. With calcium 
no trace of the line X=2721 A.U. of frequency v=(1'5, 8) 
—(3, P) was found in the flame spectrum. It is also of 
interest to. note that with calcium no trace of the line 
X= 6598 A.U. of frequency v = (1°5, S)—(2, po) was 
obtained. Since the line 7X=4226'91A.U. of frequency 
v=(1'5, 8)—(2, P) came out so feebly, it was scarcely to 
be expected that the lineX= 2721 A.U., v=(1°5, S)—(3, P), 
or others of higher frequency in the seriesy=(1°5, S)—(m, P) 
would have been obtained. It should be remembered, how- 
ever, that even in the spark or the are spectrum of calcium 
the line A= 2721 A.U. possesses relatively small intensity. 

The results obtained with flame spectra in the present 
investigation as well as those obtained by McLennan and 
Thomson, it will be seen, do not afford much information as to 
the relative importance of the two series y=(1°5, $)—(m, py) 
and v=(1'5, S)—(m, P) from the point of view of funda- 
mentality. 

Summary of Results. 

1. It has been shown that when zine and cadmium vapours 
respectively are bombarded by electrons whose kinetic energy 
is gradually increased, monochromatic radiation is suddenly 
emitted by the vapour when the impact voltage is that given by 
the quantum: relation for the frequency v=(1°5,S)—(, po). 
When the impact voltage was increased beyond this amount 
no additional radiation was observed until that corresponding 
to the frequency v=(1°5,8)—(2, P) wasapplied. When these 
conditions were realized the wave-lengths whose frequencies 
are given by y=(1°5,8)—(2, yp.) and v= (1°5,S)—(, P) were 
then recorded on the plates. 

2. It has been shown that when a Bunsen flame is fed with 
the vapour of heated zinc, it is possible to obtain monochro- 
matic radiation of wave-length ) =3075°99 A.U. 

3. The evidence adduced goes to show that the series of 
wave-lengths given by v=(1:5,8)—(m, P) is probably 
fundamental from the point of view of electronic vibrations 
within the atoms of the elements mercury, zinc, cadmium, 
magnesium, calcium, and probably also strontium, and barium. 

The Physical Laboratory, 
University of Tororto. 



a 

[ 472 | 

LIT. Notes on a Geometrical Construction for rectifying 
any Arc ofa Circle. By F. A. LinpEMANN™*. 

ING have been published recently by M. de Pulligny 
and by R. . Baynes giving geometrical constructions 

for the ratio 7 or some simple function of 7. All of these are 
based upon some numerical coincidence which enables 7 or the 
function in question to be represented very closely by a ratio 
of fairly small whole numbers such as 355/113. The following 
construction may perhaps be of interest as it allows any are 
of a circle to be rectified, and as it is based upon no such 
numerical coincidence but represents an extremely rapidly 
converging series. In principle, an extraordinary degree of 
accuracy is obtainable in a very short time; im practice, 
it need scarcely be said, it is of no more value for this 
purpose than any of the constructions whose accuracy can 
only be verified a posteriort. 

Let AB he the are whose length is to be determined. 
Draw AT the tangent to AB at the point A. 
Continue OB to D and draw BC parallel to OA. 
Bisect € DBC by line BF and £ BAT by line AE which 

cuts BF at HE. 
Draw EG parallel to OA. 
Bisect ¢ FEG by line EH and < EAT by line AH which 

cuts HH at H. 
This process may be repeated as often as desired. In the 

present instance, for the sake of clearness in the diagram, no 

* Communicated by the Author. 
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further bisection will be undertaken, and the point H will be 
used to determine the final result. 

Draw HK parallel to OA meeting AT at K and continue 
EH until it cuts AT at [. 

Divide KI in the ratio 1: 2 at point P. 
Then the straight line AP will be very nearly equal in 

length to the are AB. 
It is easy to demonstrate that this result istrue. If ¢AOB 

is called a and OA=1, then AI= 2" tan x where 7 represents 

the number of times (in the present instance 2) that the 
process of bisecting the angles took place. Similarly 

AK= 2 sin = 

Therefore 
AP=2"4 sins + 1/3 (tan = —sin =) : 

Expanding this one finds 

AP = 2"{ (a/2") —1/6(a/2”)? + 1/120(a/2")5—.. 

+ 1/3((a/2) + 1/3(e/2")3 + 2/15(a/2")P +... 

— (a/2”) + 1/6(a/2”)* —1/120(a/2")5 + ...)} 

m= 2"{ (a/2") + 1/20(a/2”)? + ...} =a(1 4+ 1/20(a/2”)4). 

The residual error 1/20(¢/2")+ is obviously reduced to 
1/16 by-each repetition of the bisecting process, and may 
therefore in theory be made very small indeed in a very short 
time. Hven with but two bisections as in the above diagram, 
the error is only of the order of 1 part in 5000. A similar 
construction with a 90° are would give 7 to 6 places of decimals 
if the bisecting process were repeated 5 times.; 

Farnborough. 
June 8th, 1918, 

[Norts. 

The method is interesting though hardly practical. 
The details seem to be these :— 
(1) The angles ABH, ANH are right angles. 

For ABC=BA0=90°— > as is seen by dropping a 

perpendicular from O on AB. 
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Whence also, incidentally, BAT= La, 

HAT= fat, 

HAT= eee 

Now, ABC=90°~3 | f 
: yu “ + therefore ABH=90°. 

and CBE == \ 

Similarly 

AEH=AEG+GSH=EA0+GHH 

9002 2 aan nas =) men G02 

(2) AB = 2) sim . seen by dropping same perpendicular 

from 0 on AB. Therefore 

ABR=2sin ~ ~ cos ee 2?sin 5, =AK 
2 A 

(A H=2? sin o cos os == 2? cis = not needed here 

though) 

AI=AE—cos e = 2? tan _ 

It is interesting to note that with A as origin and AT the 
initial line, the points B, H, H,... all lie on the curve whose 

asin 0 
polar equation is r= For, taking any one of the 

radii vectores, say AH, when O= 5s then 23 = 7 whence 

AH= sin 0.] 
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LIT. On a Peculiarity of the Normal Component of the 
Attraction due to certain Surface Distributions. By 
GanEsH Prasad, M.A., D.Sc., Professor of Mathematics 
and Principal in the Hindu University of Benares * 

FHNHE object of this paper is to point out certain surface 
distributions for each of which the component N of 

the Newtonian attraction at a point P along the normal, 
which passes through P and meets the surface at a point O, 
tends to no limit as P approaches 0 along the normal. 
It is believed that such surface distributions have not been 
pointed out by any previous writer. 

1. At P, let N be equal to N,+N>, where N, corresponds 
to a small area 8 round O, and N, to the remaining part of 
the surface. Then it is obvious that the limit of N, is 
existent; we have to consider the limit of N,. For the 
sake of simplicity, the surface may be taken to be regular 
in the neighbourhood of O and, consequently, S may be 
taken to be a circle of centre O, radius a, and density o. 

1 
Case 1. c= cos log —. 

YI 

2. First let a= cos log : where 7 is the distance between 

O and the point Q where ae density iso. Then it will be 
shown that the limit of N, is non-existent. 

Divide the circle § into thin concentric rings. Then, 
taking the origin at O and the axis of z as the normal at O, 
we have 

ala al oe _ cor dr 

es +97 (22 4 92)3* 

Thus we have to investigate 

p : , az 
Lim N,, i.e, —2m Lim i a 
z=0 z=0 i (1+ 2)" 

where zt=r. 

3. Now let C be a sufficiently large quantity independent 
of z, Then 

al) toa =|" + ef to dt 

; +2)” Gea 

* Communicated by the Author. 
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But 

Therefore 

approximately, where 

m0 t 
| t cos log : 

R cos = eee 
N [2 3 

5 dlgat). 

Bo gt 1 
sin log : 

Rsin a (Teen 

0 
Again, 

az to dt 
Faas tae 

Ne (1 +2?) 

az tdt ; 1 1 
<= ( 1 i 42)3/? t. @, | Vie at ae 

‘ VJ 145 
which can be made as small as we please by choosing z to be 
sufficiently small and C to be sufficiently large. Thus it is 
proved that N, behaves as 

—27K cos | log = +9 E 
oe 5 

as z tends to 0. 
Therefore the limit of Nj, and, consequently, that of N 

are non-existent. 

Case II. c= cos y(r). 

4. Take the general case in which c= cosy(7), where 
Lim y (7) is infinite. Then the same peculiarity is noticed 
—— 

as in Case I, if 
Lim (7) 
a—O 1 

log” 

is zero or a finite quantity different from zero. For the 
proof of this statement, see a paper of mine which will 
appear shortly in the ‘ Bulletin of the Calcutta Mathematical 
Society,’ vol. ix. 
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LIV. The Double Suspension Mirror, By L. SourHerns, 
M.A., B.Se., Assistant Lecturer in Physics in the Uni- 
versity of Sheffield *. 

URING the course of a series of experiments with a 
very delicate balance, in which a modification of the 

“¢ double suspension mirror” method of observing deflexions 
was used, it became necessary to consider in detail the effect 
of the suspended system on the sensitiveness of the balance. 
As the method is capable of other applications, and especially 
as the attachment employed affords a convenient means of 
varying the sensitiveness through any required range, a 
description may be of interest to other users of sensitive 
instruments of the balance type. 

A small mirror ab is suspended by two fibres as indicated 
in fig. 1—the plane of the diagram being the vertical plane in 
which the knife-edge of the balance lies—from Q, the end of 
the balance-pointer, and P, a support capable of adjustment, 
by means of a screw, in a horizontal line parallel to the 
knife-edge. A second screw for adjusting P perpendicularly 
to the plane of the figure is sometimes necessary. We shall 
first consider the deflexions of the balance-beam, and in this 
case the mirror will act merely as a weight causing tension 
in the fibres. Afterwards deflexions of the mirror itself will 
be considered, these of course being much greater than those 
of the beam. Inthis latter case, but hardly in the former, it 
is necessary to damp the vibrations of the mirror by means 
of a vertical wire projecting downward from it, carrying at 
its extremity a disk or set of vanes dipping into a small vessel 
containing oil. The viscosity of the oil should be as small 
as is consistent with effectiveness in stilling the vibrations. 
A good deal probably depends on the design of this damping 
arrangement, but the matter has not yet been investigated. 
Itis desirable for practical reasons to arrange the points P Q 
at different levels; they can then be brought as nearly as 
may be required into the same vertical line without danger 
of actual contact of the fibres. The inclination of the fibres 
to the vertical has an important bearing on the theory of the 
method. 
We suppose then for the present that ab represents a 

weight attached to the fibres, and giving rise in them to 

* Communicated by Dr. W. M. Hicks, F.R.S. 

iil Mag. S. 6, Vol. 36. No; 216. Dec. 1918. 2.5 
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a tension [. In fie. 1 represents the inclination of either 
fibre to the vertical and h the horizontal distance between P 

and @. The distance P Q is supposed to be small compared 

Niles Ne 

1 a 
with the length of the fibres, but great with respect to h, 
Small motions of P or Q will not appreciably affect either 6 
or rata fig. 2, which represents a plan of the arrangemen t; 

His, 2) 

the point Q has moved perpendicularly to the plane of fig. 1 
from its normal position @ by reason of a small deflexion, 
say vr, of the balance-pointer and beam. The deflexion of the 
mirror is represented by $. H represents the horizontal 
component of the tension in the fibre Qd; this and the 
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vertical component, say V, we shall regard as unaltered by 
small motions of Pand Q. The component H cos ¢ of H is 
parallel to the knife-edge and does not tend to deflect the 
beam. The component H sing tends to increase this de- 
flexion, while V tends to diminish it, the moment about the 
knife-edge being H/ sin é—Visinw, where / is the length 
of the pointer. 

It will be convenient to compare the effect on the sensi- 
tiveness with that due toan imaginary alteration of the level of 
the centre of gravity of the beam, which may be effected by 
raising an imaginary weight w originally coincident with the 
knife-edge, through a distance r along a vertical wire attached 
to the beam. Tor a deflexion y the moment due to w will 
be wrsiny. ‘Thus the effect of the tension will be equal to 
that due to w provided that 

Hisin d— Visin p=wr sin , 

or, since and ¢ are small, 

Bh Net kg ew cate lig ae Ca) 

But Q Q, or Atan ¢ is equal to / tan or say 

1 SS UCAS Pa RR am ELS ie" A Sa (2) 

thus (1) becomes 

wrh 
BED Viel py ee 2) 

ity \ h —_ / 3 ri ° 5 fe 4 7 (3) 

and we may say that for small values of @ the effect of the 
fibre on the balance is the same as that which would be due 

to a weight w placed at a distance + above the knife-edge, 

r being given by (3). 
Since V is proportional to H and / is a constant, we may 

: ae a Wie i 
write V=nlH; then putting &° for—— the above condition 
becomes 4 

Tere "5 gh tiny aya oss (AD 

where n and i? are constants. It is represented in fig. 3 by 

a rectangular hyperbola, whose centre is nk’ below the axis 

of h. The part of the curve below Oh represents cases in 
which the fibres are separated so far as to diverge upwards, 

when they cause a reduction of sensitiveness instead of an 

increase. But our conditions do not apply to these extreme 

eases, since evidently H would not remain constant. 
dr -AP 

The variation of r with h is given by Tet Res f 

Zs, 2 
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h=0, r=; thus if P is brought into the same vertical 
as Q, the effect is equal to that of raising w to infinity. Thus 
whatever (finite) stability the beam may have when the fibres 

are at an initial distance say ho apart, 1t will become unstable 
or infinitely sensitive for some smaller but still finite value 
of h. If the balance is originally very stable, this of course 
will only apply to extremely small values of yf, since the above 
only holds for smail values of ¢, which is great compared 
with x when / is very small. In order then to make the 
stable balance as sensitive as we please, we need only move 
up P towards the vertical through Q by means of its adjusting 
screw. This may be done from the outside of the balance-case 
without touching or even arresting the beam. 

Now suppose that in a given case, in order to reduce the 
balance to the point of instability, it would be sufficient to 
raise w to a height 7’ above the knife-edge. The same result 
will be produced by decreasing the value of h to h', as shown 
in fig. 3. Short of this, say for the value h, the sensi- 
tiveness as measured by the deflexion of the beam for a given 

small load in one scale-pan will be proportional to on 
I 

AB 
the diagram, for AB represents to some scale the vertical 
distance of the centre of gravity of the beam below the 
knife-edge, which is clearly zero when w is at the level A. 
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Let Sy denote the sensitiveness as defined above, then 

i il 
K 

yp k? 
 — — + nk? 

h 

ae east s( of Ae mee DR 

eh, 

where 

Fee aes (7). oo A en a ne en (6) 

and g’ is a constant. This equation may be written 

je? g” gk? 

fee hy ee oa 
( p Sy a: 

and is represented by the rectangular hyperbola in fig. 4, its 

Fig. 4. 

| H 
Sy 

| \ 

ke 

aii = 

/ a 
/ 

rh 

a TMV 
7 O ! 

/ i 
+e qe 

/ pP 

i 

Mn aM ES OR a) i oN 
JG A 

2 Py 2 ae 

centre O’ being at the point (— T) and its constant eae 
eB vee 

y) 

As the fibres are separated the sensitiveness tends to the 
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value — , but the law will alter for such wide separation. 

Actually this value will be reached when the fibres are 
2 

parallel. When h is reduced to a the sensitiveness becomes 
infinite. a . 

Such a curve as that given in fig. 4 may be plotted from 
the results of experiment. Distances OA will not be known 
accurately, but if the ordinates be plotted against differences 
of Oh, which may be taken to be proportional to rotations of 
the adjusting screw, the position of O' may be found by 

g 

graphical (eae thus giving the value of £ and also of the 
jn2 

constant ~ L — from which a and thus the position of O, can 

be baa 
Now suppose the balance to be made less sensitive by 

lowering the centre of gravity of the beam. ‘This corre- 
sponds to an increase in r’ the distance which w must be 
raised to give infinite sensitiveness. This means an alteration 
of the centre O' in fig. 4, both its co-ordinates being reduced 
in the same ratio, as reference to (6) will show. ‘Thus the 
locus of O'isastraight line through O. This fact affords 
another means of obtaining the position of O, and the 
absolute horizontal distance between P and Q. 

Fig. 5 gives a series of curves obtained by experiment on 
a Curie balance hastily fitted with roughly adjustable fibres 
carrying a small weight. Deflexions of the beam were read 
by means of the microscope which is permanently fitted to the 
balance. Ordinates of the curves represent deflexions for a 
small weight added to one scale-pan, and abscissee rotations 
of the adjusting screw of the fibres. The curves are not 
perfect hyperbolas, but deflexions in some cases were by 
no means “small.” The three curves correspond to three 
separate adjustments of the centre of gravity of the beam, 
the lower the centre of gravity the nearer the curve ap- 
proaches to coincidence with the axes of h and Sy. The 
centres lie approximately on a straight line which cuts the 
axis ata point corresponding to 3°4 turns from the initial 
position of the screw. ‘Thus 3:4 turns would bring P, fig. 1, 
into the same vertical as Q. 

Next consider the effect of increasing the weight of a6, 
fio. 1. It is clear from fig. 2 that the tendency will be‘to 
increase the sensitiveness, for a greater pull in the direction 

ne 
of increasing yy will result. An increase of fe ( = ——) takes 

Ww 
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Q2 

i ae ; 0 
h=0 

place due to increased tension of the fibres. From (5) and 
(6) we obtain 

iI 

e 2 At, 
OF Bee ke? 

ORT: 

2 1 ! 
a Sy (;, —n) 

7. 

or if W be the load ad, 

OSu ‘ 
(Sw), erate gh 
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Tf ; —n is positive, Sy increases with 4? or W. This con- 

dition roughly indicates that the fibres must be inclined 
sufficiently to the vertical to cause always a divergent force 

on the pointer. 
A curve obtained by loading the fibres of the Curie 

balance is given in fig. 6. It should be part of a rectangular 

36 Fig. 6 

- —— nn 

xX+2 M+4 MHS 

Load on Fréres. 

Fic. 7. 

— 

O 0, | ia 

hyperbola in the left-hand upper quadrant. A finite load of 
this kind will produce infinite sensitiveness. From (5) and 

hr' 
ee 

(6) we may easily show that this will occur when h?= 
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So far we have been concerned with sensitiveness as 
obtained by measuring deflexions of the beam itself. If now 
we consider ab to represent a mirror whose deflexions are 
to be observed, a little further consideration is necessary. 
By (2) the deflexions @ of the mirror and y of the beam 

have the relation Tg and our new sensitiveness S6 will 
ti. Da ul 

be similarly related to Sy or Ames Sq then ey the 

original sensitiveness multiplied by the magnification j which 
; U 

becomes great when Ais small. From this combined with (5) 

Ean S9(i— = SIG meMt i's Mes $ ) ; ( 
which is a rectangular hyperbola whose centre O,, fig. 7, is 

we obtain 

on Ok at distance trom O. It lies vertically below O' the 

Big. 8.) 

: STS 

a eenmnana 

> O 

Po a 

Se 
ie 

\ ay 
He. eee idan 

centre of the hyperbola giving deflexions of the beam under 
the same conditions of experiment. The two hyperbolas 

i Pa: 

| le 

eos a er aa 

ee 

eS ee ee ee 
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would intersect for the value A=1/, but this is far beyond the 
range within which the above relations hold. 

_ IE we consider the values of Sg for different positions of 
the centre of gravity of the beam, i. e. for different values of 
r’ or of p, we shall obtain different hyperbolas of the type 
(7) whose centres lie on Oh. The constants of these hyperbolas 
vary directly as O O,; and as they can be determined graphi- 
cally for curves plotted from experimental values of the 
sensitiveness, the position of O can readily be obtained. 

Fig. 8 gives a set of such hyperbolas obtained by means of 
the balance referred to at the beginning of thisnote. The 
mass of the beam is over 200 grms. The deflexions were 
observed by means of a telescope and scale. The vertical 
scale of the diagram represents deflexions in ems. caused 
by a load of =}5 mgm. at one end of the beam. The hori- 
zontal readings are taken from the graduated head of the 
adjusting screw. The position of O derived graphically 
from the 1st and 3rd curves corresponds to 106°. Using this 
value, and the constant of the 2nd curve obtained graphi- 
cally, the centre of this curve is found to correspond to 
46°°7 instead of 48°°8 as obtained from the curve alone. 
This gives an indication of the degree of approximation of the 
experimental values to the theory. 

LV. Notices respecting New Books. 

A Simplified Method of Tracing Rays through any Optical System. 
By Loupwik Siupersrein, Ph.D. Pp. vu+37. Longmans, 
Green & Oo. Price 5s. net. 

(oats little book deals with a subject which is of the utmost 
practical importance to ali concerned with optical instruments. 

By using throughout the vectorial method the author has effected 
a considerable simplification of what is usually a laborious and 
complicated task, namely, the following of a ray through a system 
composed of any number of lenses, prisms, and mirrors. The 
knowledge of vectors required to enable the reader to make 
effective use of the book can be obtained in a few hours by anyone 
possessing the mathematical acquirements of the average worker 
in optics. The deduction of the vectorial form of the refraction 
(which really includes the reflexion) formula and the transfer 
formula for spherical surfaces occupies only a few pages, and the 
rest of the book is devoted to showing how the formule may 
be applied to numerical cases, and to expounding the author’s 
dyadic operator for multiple reflexions. Jt is an original and 
suggestive little book, and we note with interest thatit is written 
from the research department of Messrs. Hilger, whose name 
stands for so much in the realm of optical instruments. 
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Differential Equations. By H. Baveman. Pp. x1+306. Long- 
mans, Green & Co. Price 16s. net. 

In his preface the author states that he has endeavoured to 
supply seme elementary material suitable for students studying 
the subject for the first time, and some more advanced work for 
mathematical physicists. We scarcely think that the book will 
appeal to young students, for such elementary matter as it contains 
is handled in a way too general and too little explicit to be 
srasped by a mind of small mathematical experience. To the 
more practised mathematician, however, the author offers an 
attractive treatment of the differential equations of types most 
commonly met with in physical problems, together with a chapter 
op mechanical integration which contains an account of Pascal’s 
recent work. The book is completely in touch and sympathy with 
the most modern methods, and frequently introduces applications to 
recent work in mathematical physics, such as the author’s treat- 
ment of the system of linear equations governing successive radio- 
active transformations, and Lorentz’s electron theory equations. 

There is an excellent selection of problems taken from a wide 
range of sources, and ample references for those who wish to 
pursue deeper the study of any particular subject. While the 
book is, perhaps, not well suited to form a first introduction to the 
subject, it is admirably adapted to be used in conjunction with 
one of the standard textbooks, and cannot failto be usetul to 
students of mathematical physics, especially those interested in 
research on this subject. 

A. History of Chemistry. By F. J. Moorn, Ph.D. Pp. xiv+292. 
McGraw-Hill Book Company, New York, and Hill Publishing 
Company, 6 & 8 Bouverie Street, London, E.C. 4. Price 
12s. 6d. net. 

Tue value of a knowledge ot the history of science in studying 
modern theories is fast being realized, and nowhere more so than 
in America. It is hard to find a subject of greater intrinsic 
interest, and on the history of chemistry Professor Moore writes 
with a knowledge and enthusiasm that makes his little book a 
fascinating one. A prominent feature are the illustrations, which 
not only include a wide range of portraits, from Basil Valentine to 
Sir Ernest Rutherford (this last a most excellent portrait), but 
also pictures of historical apparatus and laboratories, which give a 
clear idea of the conditions in which the older investigators carried 
out fundamental experiments and measurements of surprising 
accuracy. A praiseworthy effort is made to concentrate on work 
which has proved really basic in character. The book is notable 
in that the early developments, which receive much attention in 
most histories of chemistry, are comparatively briefly treated, 
attention being concentrated on the hard task of giving some idea 
of the great work of the nineteenth century and after. This has 
been very successfully carried out, with a good sense of proportion. 
The account is carried right down to the present day, and includes 
a description of the recent work on X-ray spectra and Moseley’s 
atomic numbers. No student of science can fail to be interested 
by this book. 
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LVI. Preceedings of Learned Societies. 

GEOLOGICAL SOCIETY. 

[Continued from p. 448.] 

June 5th, 1918.—Mr. G. W. Lamplugh, F-.R.S., 
President, in the Chair. 

i following communications were read :— 

‘The Kelestoming, a Sub-Family of Cretaceous Cribri- 
ee ‘Polyzoa.’ By William Dickson Lang, M.A., F.G.S. 

2. ‘'The Geology and Genesis of the Trefriw Pyrites Deposit.’ 
By Robert Lionel Sherlock, D.Sc., A.R.C.S8c.; F.G.S. 

This pyrites deposit is worked at Cae Coch Mine, on the western 
side of the Conway Valley (North Wales), about 1 mile north of 
Trefriw. 

A band of pyrites, about 6 feet thick, and of considerable purity, 
rests on the inclined top of a thick mass of diabase which is shown 
to be intruded into the Bala shales that cover the ore-body. 
The shales immediately above the pyrites are shown by the grapto- 
lites contained to belong to the zone of Nemagraptus gracilis, and 
are the equivalents of the Mydrim Limestone of South Wales and 
of part of the Lower Cadnant Shales of the Conway Mt. succession : 
that is, they are near the base of the Bala Series according to the 
Geological Survey classification (Carmarthen Memoir, 1909). 
Northwards. the intrusive is bounded by an overthrust mass ot 
voleanic ash, which itself is cut off by an east-and-west fault 
against rhyolite, well seen in a roadside quarry and in the crags of 
Clogwyn Mawr. Intrusions of dolerite of much later age, pro- 
bably late Devonian, or Carboniferous, are found in the rhyolite, 
and form the plateau above the mine, passing over shales, diabase, 
ash, and rhyolite in turn. 

Pyrites deposits are classified by Beyschlag, Vogt, and Krusch 
in four groups:—(1) Magmatic segregations, (2) formed by 
contact-metamorphism, (3) lodes, (4) of sedimentary origin. 
None -of these modes of origin, however, will account for the 
Trefriw pyrites. The conclusion arrived at is that the diabase was 
intruded below a bed of pisolitic iron-ore. Hot water containing 
sulphuretted hydrogen given off from the intrusion, combined 
readily with the pisolites, which were in the form either of oxide 
or of silicate of iron, and formed pyrites. The graptolitic horizon 
at which the pisolitic ore occurs usually contains some pyrites, and 
this would be added to that derived from the above reaction. The 
pyrites was not formed by ordinary contact- -metamorphism ; because 
the intrusion is seen, at places where the pyrites is absent, to exert 
only a slight hardening effect on the shale. In North Wales 
pisolitic iron-ore is known to occur in several places at the horizon 
of Nemagraptus gracilis. Fyrom the mode of origin assigned above 
to the pyrites it follows that the mineral is of Bala age, since 1t was 
formed before the intrusion, itself of Bala age, had cooled. ‘The 
pisolitic 1ronstone must have been in existence in Bala times, and this 

supports the idea that the ironstone is a bedded contemporaneous 
deposit. 
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