

LOCATION MAP

DOCUMENT LIBRARY

Woods Hole Oceanographic Institution

December 1989
Final Report

Approved For Public Release; Distribution Unlimited

Prepared for US Army Engineer District, Los Angeles
Los Angeles, California 90053-2325
Port of Los Angeles
San Pedro, California 90733-0151
and
Port of Long Beach
Long Beach, California 90801-0570

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

8a. NAME OF FUNDING/SPONSORING ORGANIZATION (Continued).
USAED, Los Angeles;
Port of Los Angeles;
Port of Long Beach
8c. ADDRESS (Continued).
Los Angeles, CA 90053-2325;
San Pedro, CA 90733-0151;
Long Beach, CA 90801-1570
11. TITLE (Continued).

Los Angeles and Long Beach Harbors Model Enhancement Program; Tidal Circulation Prototype Data Collection Effort; Volume I: Main Text and Appendixes A Through C; Volume II: Appendixes D Through I; Volume III: Appendix J
16. SUPPLEMENTARY NOTATION (Continued).

A limited number of copies of Volumes II (Appendixes D through I) and III (Appendix J) were published under separate cover, Copies of Volume I (this report and Appendixes A through C) are available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

PREFACE

This report was prepared by the Coastal Engineering Research Center (CERC), US Army Engineer Waterways Experiment Station (WES), and is a product of the Los Angeles and Long Beach Harbors Model Enhancement (HME) Program. The HME Program has been conducted jointly by the Ports of Los Angeles and Long Beach (LA/LB); US Army Engineer District, Los Angeles (SPL); and WES. The purpose of the HME Program has been to provide state-of-the-art engineering tools to aid in port development. In response to the expansion of oceanborne world commerce, the LA/LB are conducting planning studies for harbor development in coordination with SPL. Ports are a natural resource, and enhanced port capacity is vital to the Nation's economic well-being. In a feasibility study being conducted by SPL, the LA/LB are proposing a welldefined and necessary expansion to accommodate predicted needs in the near future. The CE will be charged with responsibility for providing deeper channels and determining effects of this construction on the local environment.

This investigation involved collection of prototype tidal circulation data for use in the calibration and verification of a three-dimensional numerical circulation mode1. Data collection occurred between June and October 1987 by personnel of the Prototype Measurement and Analysis Branch (PMAB) and the Field Research Facility (FRF) Group, Engineering Development Division. Design and installation of the measurement system were under the supervision of Messrs. William Kucharski and William E. Grogg, Equipment Specialists, PMAB, with the assistance of the University of Southern California Marine Support Facility. The PMAB personnel involved in data collection were Messrs. Michael S. Dickey, Douglas C. Lee, Jeffery A. Sewe11, C. Ray Townsend, and Ralley Webb. The FRF personnel were Messrs. Kent K. Hathaway, Michael W. Leffler, and Brian Scarborough and Ms. Adele Militello. Data collection was performed under the supervision of Mr. David D. McGehee, PMAB. Data analysis was performed by Mr. James P. McKinney, PMAB, and Mr. McGehee. Technical supervision was provided by Mr. Gary L. Howell, PMAB, and technical assistance by Dr. S. Rao Vemulakonda, Coastal Processes Branch, Research Division, WES, and Mr. William C. Seabergh, Wave Processes Branch, Wave Dynamics Division, WES. Additional data were provided by the US Air Force Technical Applications Center and the Sea and Lake Levels Branch of the National Ocean Service. The

PMAB personnel were under the direction of Mr. Thomas W. Richardson, Chief, Engineering Development Division, and Mr. J. Michael Hemsley, Acting Chief, PMAB. This study was under the general supervision of Dr. James R. Houston, Chief, CERC, and Mr. Charles C. Calhoun, Jr., Assistant Chief, CERC.

During the course of the study, liaison was maintained between WES, SPL, and LA/LB. Mr. Dan Muslin, followed by Mr. Angel P. Fuertes, was SPL point of contact. Mr. John Warwar and Ms. Lillian Kawasaki, Port of Los Angeles, and Mr. Michael Burke, Mr. Rich Weeks, and Dr. Geraldine Knatz, Port of Long Beach, were LA/LB points of contact and provided invaluable assistance.

COL Larry B. Fulton, EN, was Commander and Director of WES during the publication of this report. Dr. Robert W. Whalin was Technical Director.

Page

PREFACE 1
CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT 4
PART I: BACKGROUND 5
PART II: DATA COLLECTION 7
Tidal Data 7
In Situ Currents 12
Current Profiles 16
Data Recovery 19
PART III: DATA ANALYSIS 22
Tidal Data 22
In Situ Current Data 26
Current Profile Data 27
PART IV: DISCUSSION 29
Tidal Data 29
Current Data 32
PART V: CONCLUSIONS 40
REFERENCES 41
PLATES 1-54
APPENDIX A: INSTRUMENT DESCRIPTIONS AND SPECIFICATIONS A1
APPENDIX B: CURRENT PROFILE DATA B1
APPENDIX C: DIFFERENTIAL LEVELING SURVEY DESCRIPTION AND LEVEL NOTES C1
APPENDIX $\mathrm{D} *: ~ T I D A L ~ E L E V A T I O N ~ T I M E ~ S E R I E S ~ P L O T S ~ D 1 ~$ D1
APPENDIX E: CURRENT VECTOR ROSE PLOTS E1
APPENDIX F: CURRENT VELOCITY TIME SERIES PLOTS F1
APPENDIX G: CURRENT DIRECTION TIME SERIES PLOTS G1
APPENDIX H: CURRENT VECTOR TIME SERIES PLOTS H1
APPENDIX I: RESIDUAL TIDAL ELEVATION TIME SERIES PLOTS I1
APPENDIX J: SURFACE WEATHER OBSERVATIONS J1

[^0]```
CONVERSION FACTORS, NON-SI TO SI (METRIC)
 UNITS OF MEASUREMENT
```

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

| Multiply |  | By |
| :--- | :--- | :--- |
| feet |  | 0.3048 |
| inches |  | 2.54 |
| knots (international) |  | 0.5144444 |
| pounds (mass) |  | 0.4535924 |
| pounds (force) per square <br> inch | 6.894757 |  |

$\qquad$
metres
centimetres
metres per second
kilograms
kilopascals

## PART I: BACKGROUND

1. The Ports of Los Angeles and Long Beach (LA/LB), California, are conducting planning studies for harbor development in coordination with the US Army Engineer District, Los Angeles. The US Army Corps of Engineers (CE) is charged with the responsibility for providing deeper navigation channels and determining the effects of harbor expansion on the environment. To upgrade the CE's capability to determine these effects based on state-of-the-art modeling technology, the US Army Engineer Waterways Experiment Station (WES) is executing the Los Angeles/Long Beach Harbors Model Enhancement Program.
2. This program is separated into two major studies. The first will address long-period wave energy in the harbors and its effect on moored vessels. The second will provide improved tidal circulation modeling with a more efficient numerical model system that will couple hydraulics and water quality variables (CE 1987). The prototype data for model calibration and verification have been collected by the Prototype Measurement and Analysis Branch of the Coastal Engineering Research Center (CERC), WES. This report describes the methodology and results of that data collection effort.
3. Los Angeles and Long Beach Harbors are adjacent ports situated behind a rubble-mound breakwater in San Pedro Bay, California (Figure 1). In the initial WES study of the harbors, a fixed-bed three-dimensional (3-D) physical model (McAnally 1975) and a depth-averaged-flow, two-dimensional numerical model (Raney 1976) were developed. Advancements in the state of the art of prototype measurement and hydraulic simulation provided the means to enhance the models. The upgraded numerical model of this program provides simulation of the time series of the resultant $3-D$ water currents and water surface elevations in the harbors given the physical boundaries and the water surface elevations in the open ocean outside the harbor breakwater.
4. Boundary conditions are established by obtaining the positions of the shoreline, including structures, and the bathymetry of the area modeled. Water surface elevations measured using tide gages placed outside the harbor provide the input forcing function that drives the system. Measurements of tidal elevation and water currents at selected positions inside the harbor are compared with predicted values to calibrate and verify the model.


Figure 1. Study site location map

## PART II: DATA COLLECTION

5. The general requirements and schedule for each task in the program were prescribed in the Management Plan for the Model Enhancement Program. Data collection was divided into three subtasks: tidal, in situ current, and current profile data. Data were collected for varying intervals between 10 June and 14 October 1987 (Tab1e 1). Measurement intervals for each subtask varied, but deployment times were nested to provide a period of simultaneous data from all three elements from 6 to 14 August 1987. Requirements for the final data sets and the instrumentation and techniques used to obtain them are discussed in this section.

## Tidal Data

## Requirements

6. The requirement of the tidal data subtask was to obtain time series of water surface elevations at two outside and two inside locations for a minimum of 90 days. Each data set was to be a continuous record of elevations relative to a Mean Lower Low Water (MLLW) datum at 6 -min intervals with an accuracy of at least 0.05 ft .*
7. Figure 2 shows the positions of the tidal measurement sites; geographic coordinates and depth of each measurement site are listed in Table 1. Method
8. For the offshore sites, potential cable runs of several miles made hard wiring of power and signal to shore uneconomical. Erecting structures in water depths of 60 to 100 ft would be very expensive, and proximity to the shipping lanes and the heavy traffic volume precluded platforms and buoys because of the risk of collision. The remaining option was bottom-mounted pressure transducers with self-contained power and data storage capability. This option allowed a wide latitude in positioning and reduced the risk of unintentional and deliberate interference. The same approach was used at sites in the harbor for consistency of deployment/recovery techniques and data format.

[^1]

TĞ 1

Figure 2. Tide gage deployment site map
9. The flexibility and relative security of this type of gaging are always offset by the potentially lower reliability of data recovery since gage nonperformance is only apparent after removal of the gage. To enhance reliability, redundant gages (TG5-TG8) were deployed for each of the four primary gages (TG1-TG4).

## Instruments

10. Details on all instruments, including manufacturer's specifications are found in Appendix $A$. The tide gage selected uses a vibrating quartz crystal pressure transducer whose output is proportional to absolute pressure. Oscillations of the crystal are counted over some selected sample interval, and this integrated pressure is averaged over that interval to filter wave frequency signals. The average pressure is recorded as a 16 -bit digital word on a magnetic tape along with a time word from a quartz clock. Shorter sample intervals retain more information but require more storage on the tape, shortening deployment time. To obtain the required 3 months of data on one
Table 1

Gage Deployment Locations and Schedule

| Site | Type | Position, deg |  | Depth, ft MLLW |  | $\begin{gathered} \text { Instal. } \\ \text { Date } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | N. Lat. | W. Long. | Site | Gage |  |
| TG1 | Tide | $33^{\circ} 41.80^{\prime}$ | $11815.25^{\prime}$ | 75 | 72 | $6 / 10 / 88$ |
| TG2 |  | $33^{\circ} 43.10^{\prime}$ | $11808.50^{\prime}$ | 57 | 54 | 6/10/88 |
| TG3 |  | $33^{\circ} 46.08^{\prime}$ | $11813.58^{\prime}$ | 28 | 25 | 6/10/88 |
| TG4 |  | $33^{\circ} 44.43^{\prime}$ | $11809.45^{\prime}$ | 37 | 34 | 6/10/88 |
| TG5 |  | * | * |  |  | 8/3/88 |
| TG6 |  | $33^{\circ} 41.70^{\prime}$ | $118.07 .00^{\prime}$ | 62 | 59 | 8/3/88 |
| TG7 |  | $33^{\circ} 44.50^{\prime}$ | 118.08.00' | 25 | 22 | 8/3/88 |
| TG8 |  | $33^{\circ} 44.80^{\prime}$ | $11816.43^{\prime}$ | 39 | 36 | 8/3/88 |
| LA1 | Wave | $33^{\circ} 42.56^{\prime}$ | $11816.51{ }^{\prime}$ | 24 | 18 | 7/15/87 |
| LA4 |  | $33^{\circ} 42.92^{\prime}$ | $11816.51^{\prime}$ | 56 | 33 | 7/15/87 |
| LA4 |  | $33^{\circ} 44.42^{\prime}$ | $11812.09^{\prime}$ | 43 | 30 | 7/15/87 |
| LA5 |  | $33^{\circ} 44.82^{\prime}$ | $11812.71^{\prime}$ | 20 | 18 | 7/15/87 |
| CM1S | Current | $33^{\circ} 46.13^{\prime}$ | $11814.00^{\prime}$ | 30 | 5 | 8/3/87 |
| CM1B |  |  |  |  | 24 | 8/3/87 |
| CM2S |  | $33^{\circ} 43.38^{\prime}$ | $11816.06^{\prime}$ | 35 | 10 | 8/3/87 |
| CM2M |  |  |  |  | 17 | 8/3/87 |
| CM2B |  |  |  |  | 29 | 8/3/87 |
| CM3S |  | $33^{\circ} 44.60^{\prime}$ | $11812.69^{\prime}$ | 60 | 7 | 8/4/87 |
| CM3M |  |  | . |  | 32 | 8/4/87 |
| CM3B |  |  |  |  | 54 | 8/4/87 |
| CM4S |  | $33^{\circ} 43.72^{\prime}$ | $11814.35^{\prime}$ | 30 | 8 | 8/4/87 |
| CM4B |  |  |  |  | 24 | 8/4/87 |
| CM5S |  | $33^{\circ} 42.58^{\prime}$ | $11815.36^{\prime}$ | 40 | 8 | 8/4/87 |
| CM5B |  |  |  |  | 32 | 8/4/87 |
| CM6S |  | $33^{\circ} 43.60^{\prime}$ | $11811.53^{\prime}$ | 65 | 10 | 8/4/87 |
| CM6B |  |  |  |  | 50 | 8/4/87 |
| CM7S |  | $33^{\circ} 43.83 \prime$ | $11808.60^{\prime}$ | 46 | 14 | 8/4/87 |
| CM7B |  |  |  |  | 40 | 8/4/87 |
| CM8M |  | $33^{\circ} 44.25$ | $11808.00^{\prime}$ | 30 | 15 | 8/4/87 |
| CM9M |  | $33^{\circ} 44.48$ | $11816.60^{\prime}$ | 30 | 15 | 8/3/87 |

deployment tape, an interval of 3.75 min (eight tide measurements/hour) was selected.

## Mounting

11. The instrument housing is a 6-in.-diam. by 30 -in.-1ong aluminum pressure case containing the transducer, electronics, data logger, and battery pack. The case was attached with stainless steel bolts to a vertical mount that was welded to a $600-1 \mathrm{~b}$ railroad wheel. Gages inside the harbor had a subsurface retrieval buoy attached to the mount and an acoustic beacon for relocation by divers. Because of the depth outside the harbor, a subsurface buoy was attached to the wheel with a length of retrieval line coiled in a canister. The canister, in turn, was attached to the wheel with a transponder/acoustic release. The release served the dual purposes of a beacon, for locating the instrument package, and as a means of releasing the buoy and recovery line at the end of the deployment. Figure 3 shows a typical assembly in the deployed configuration.

## Deployment/recovery

12. A temporary field office was leased on Terminal Island with adjacent dock space. This provided office and testing space, secure outdoor storage of heavy equipment and vessels, and a staging/loading area for operations.
13. All tide gages and in situ current meters were deployed from the University of Southern California research vessel "Sea Watch" through the cooperation of the USC Marine Science Laboratory on Terminal Island. An experienced crew, aided by the stern-mounted A-frame and ample work deck, installed the primary gages on 10 June and the backup gages on 3 August by lowering the mounts using the lift bail (Figure 4).
14. Positions were established with LORAN, radar bearings, and visual bearings to prominent targets on shore.
15. The planned recovery technique was to trigger the acoustic release, allowing the buoy to surface and enable retrieval from the surface without diver assistance. In the event of transponder failure, the gage positions could be relocated within $\sim 100 \mathrm{ft}$, at which point a sweep would be made from the surface by dragging a chain between two vessels. Divers would then recover the gage by descending the sweep chain.


Figure 4. Tide gage deployment procedure


Figure 3. Tide gage mounting assembly

## Additional tidal data

16. In addition to the eight tide gages specifically deployed for this study, data were available from a primary control tide station (33) located inside Los Angeles Harbor and from four pressure sensors located around the harbor perimeter (Figure 2). These four pressure sensors were installed by CERC to obtain long-term measurements of harbor surge events under a separate subtask of the Model Enhancement Program entitled Wave Data Acquisition. They were configured as low-frequency wave gages, but postprocessing of the time series also produces continuous tidal data.
17. These data were processed to provide additional boundary conditions for the model and for quality control checking of the primary tide data sets.

## In Situ Currents

## Requirements

18. The requirement for the in situ current subtask was a 30 -day record of the vertical velocity profile at eight locations covering the major tidal exchange openings inside the harbor and at the harbor-complex perimeter. The acceptable resolution for the vertical stratification of the flow field was three points, representing a near-surface, middepth, and near-bottom cell at each site. Desired accuracy in speed and direction was $\pm 0.1$ knot and 2 deg, respectively. Samples were needed on a similar frequency to the tidal data, that is, continuous time series at average intervals near 3 min .

Method
19. The vertical profiles were obtained by deploying up to three current meters on a string supported by a surface buoy on a taut mooring. To reduce the risk of ship collision, the gage sites were moved to the sides of major entrances and channels. A total of 19 gages were available for the project. A deployment scheme was selected which increased the total number of sites to nine by reducing the number of meters on a string to one or two at certain sites not expected to have strong vertical gradients, while one meter was kept as a spare. Figure 5 shows the location of each site.

## Instruments

20. The current meters were ducted-impeller type with an internal compass for direction (Figure 6 and Appendix A). Velocity is measured by counting impeller revolutions over the selected averaging interval, and an


Figure 5. Current meter deployment site map
instantaneous direction is taken at the end of that interval. Both values, along with temperature and conductivity, are recorded on a magnetic tape. The averaging interval selected was 2 min , allowing a total tape capacity of 34 days.
21. Prior to deployment, each meter was calibrated at the US Geological Survey (USGS) calibration facility at the Stennis Space Center, Mississippi, by tank tow at three known velocities through still water. The calibration coefficients for each impeller/bearing combination were used in postprocessing the data. Compasses were bench checked and accepted if within manufacturer's tolerances without individual corrections.
Mounting
22. Figure 6 illustrates a typical current meter string in place. A spherical 36 -in.-diam steel buoy was attached to a $900-1 \mathrm{~b}$ railroad wheel with a $1 / 4$-in.-diam mooring cable. A taut moor was maintained in spite of the tidal variation by including a length of 1 -in. -diam rubber cord below the buoy. The cable was attached at either end with 3/8-in. screw-pin shackles. Each buoy supported an 8 -ft mast with a radar reflector and amber marker light. For additional visibility, two or three "guardian" buoys of similar design


Figure 6. In situ current meter (inset) and typical current meter mooring string
(but without instruments) were placed around the instrumented buoy approximately 200 ft away.
23. To allow the meter to rotate around the mooring as current directions changed without fouling on the mooring, a split Teflon bearing sleeve was attached to the $1 / 4$-in. cable at the appropriate depth for each string. A hinged stainless steel clamp went around the bearing and locked with a captive hinge pin. The meter was attached to a ring on the clamp with a $3 / 8-\mathrm{in}$. screw-pin shackle, safety wired after closure. This arrangement permitted rotational freedom and a means for diver changeout of the gage during inspection without recovering the entire mount.

## Deployment/recovery

24. In addition to routine electronic predeployment testing, each gage was balanced for neutral buoyancy and horizontal trim. Adjustments for variations in gage construction, battery weight, and local water density were made by placing lead trim weights at the front and rear of the meter. This adjustment ensured that the meter aligned with the water flow, especially in the low-velocity conditions expected in the harbor.
25. Deployment was similar to the tide gage installation. All nine current meter strings were put in place on 3 and 4 August from the "Sea Watch." On 9 August, each meter was visually inspected by CERC divers to verify proper deployment and operation. Inspection included secure attachment and safety wiring of the shackles and sleeve/bearing assembly, neutral buoyancy and horizontal trim, no restrictions to either impeller or swivels, overall integrity of the mooring components, and functioning of the marker lights.
26. The first instrument casualty was discovered during the 9 August inspection. The buoy at current meter Site 8 (CM8) was not on station, but the meter was discovered shortly afterward washed up on the west jetty of Anaheim Bay Inlet. The wire cable (not, interestingly, the rubber cord) had parted near the lower end, most likely pulled by a vessel. The single meter was still attached, and though it was damaged, the data tape was recovered intact. The spare current meter was installed as CM8 on 15 August. The complete history of lost and damaged instruments is covered in the subsequent section headed "Data Recovery."

## Gurrent Profiles

## Requirements

27. Since the current data collected by the in situ meters were limited by the available number of meters and the vessel traffic, a current profiling subtask was designed to provide supplementary information. The purpose was to collect vertical current profiles at major entrances and interfaces and within the Cerritos Channel at hourly intervals over half-tidal cycles. The measurements were to be made concurrent with deployment of the in situ meters and tide gages.
28. Figure 5 shows the selected locations of the profile ranges and stations. A range is a transect across an entrance or interface between major sections of the harbor, such as Range 7, and a station is one of three to five locations, depending on width, along a range, for example Station 5D. Stations 9-12 were along the Cerritos Channel and had a single profile, each midway across the channel.
29. A vertical profile consisted of a measurement of current velocity and direction at three depths, near surface, middepth, and near bottom, at each station of a range at $1-\mathrm{hr}$ intervals for 13 continuous hours.
30. In addition to supplementing the other data, the profiles were expected to identify flow features not readily detectable from stationary meas urements. A large-scale gyre was observed under certain conditions in the physical and numerical models in the outer Los Angeles Harbor. Range 5 was selected to augment data from a separate Lagrangian current experiment designed to verify the existence of the gyre. It entailed continuous tracking of drogues, or floats, that followed the path of the water particles at various depths. The results of the Lagrangian current study will be presented in a separate report under the Model Enhancement Program.
31. Stations 9-12 were intended to detect the nodal point for flow convergence of water entering opposite ends of the Cerritos Channel, also as predicted in the model.

## Instruments

32. The current meter used for profiling was of the same manufacture and general design as the in situ meters, but was equipped with microprocessors to reduce the data internally into engineering units. The data could be stored onboard in RAM microchips or transmitted over a cable via standard RS

232 interface as an ASCII file. The internal memory was sufficient to hold a day's profiling record, but the latter mode was selected. By connecting the meter to a lap-top computer on the boat for the profiling experiment, the operator could verify operation and reasonableness of the data.
33. The backup gage for the profiling experiment was a second solid state meter, with cable and computer of the same design. Both profiling meters were calibrated prior to use at the USGS facility. Method
34. A profiling schedule that included a flow reversal as well as a peak flood and ebb in the measurement interval was developed for the period 6-14 August 1987 (Figure 7).
35. Ranges 7 and 8 were combined in one interval because of their proximity, as were Stations 9-12; otherwise, one range was measured per "day." Because of the progression of the tidal cycle relative to the diurnal, subsequent intervals progressed, taxing the endurance and sleep habits of the crew. Including preparations, crew changes, equipment maintenance, data reduction, and inevitable unexpected occurrences, each shift lasted 14 to 16 hr .
36. Measurements were taken from a $26-\mathrm{ft}$, outboard-powered workboat fitted with a LORAN and depth sounder. Because of the constant ship traffic, separate radar reflectors were installed on the mast to increase target

## CURRENT PROFILE RANGES



LEGEND

Figure 7. Current profiling schedule with predicted tides
strength for approaching vessels. Four people were aboard on each shift: a boat operator, a forward deck hand, a stern deck hand/meter handler, and a data recorder. Again because of the high traffic volume, safety dictated the need for at least two people (the operator and a deck hand) to have no other duties than the safe maneuvering of the boat, maintaining a lookout at all times, and being prepared to slip a mooring and be underway without hesita-tion--and without distraction by the profiling duties-if a ship approached too closely.
37. Every profile experiment started with the placement of temporary lighted mooring buoys at each station site. The buoys permitted each station to be rapidly and precisely recovered by the boat, which could use the buoy together with a bow anchor in a two-way mooring. This system was chosen to prevent the wind-induced "sailing" from side to side experienced by a boat moored only at the bow. Any boat motion would seriously affect the accuracy of the current data, particularly in the low-velocity regime of the harbor. Thus, a station was recovered by dropping the bow anchor upwind/current of the buoy and backing down until the stern deck hand could secure to the buoy.
38. At stations located in the center of a narrow shipping channel, even a temporary buoy would be an unacceptable hazard to traffic. In those cases, a stern clump anchor, lowered after the bow anchor had paid out sufficient scope, served the same purpose as the buoy.
39. Once the boat was secured on station, the meter was lowered to the bottom. The water depth was obtained from the meter's pressure transducer and compared with the graduated marks on the meter cable and to the boat's sounder to ensure accuracy. The meter was then raised to 90 percent of water column depth and allowed to stabilize, and the velocity and direction together with the time and depth of the reading were recorded from the surface display. After repeating the measurement at $50-$ and 10 -percent depths, the meter was pulled aboard and the anchor(s) retrieved. For a range with five stations, each profiled at hourly intervals, the allotted time for that procedure was 12 min . To avoid data gaps at shift changes, a separate shuttle boat was used to transport crews between the measuring boat and shore.

## Positioning

40. Positions were obtained for all measurement sites with LORAN, supplemented when possible by visual and radar bearings to identifiable shore features. The LORAN was calibrated for local variance by occupying known locations with the boat and recording both time differences (TD) in microseconds and the LORAN's automatic conversion to latitude and longitude. The offset from true position was entered into the microprocessor-controlled LORAN for automatic adjustment of calculated position. After this calibration, known positions were again occupied on each day of operation. Thus, a correction factor for each region of the harbor, valid for each day's atmospheric conditions, was obtained and allowed an improvement from LORAN's normal error of $\pm 300$ to $\pm 30 \mathrm{ft}$.

Tide gages
41. Of the eight tide gages deployed, seven were recovered. One of the redundant gages, number 5, had not been recovered at the time of this report's preparation; its acoustic transponder did not respond to surface interrogation, and a side-scan sonar search failed to show an identifiable target. Two other gages were located using side-scan and "sweeping" with a chain suspended between two vessels when acoustic releases failed to operate, but extensive diver searching verified that this gage was not in the immediate area. Since the subsurface float provides an easy target for both search methods, it seems likely that the gage and mount (or at least the buoy) were the victims of an encounter with a deep draft vessel. In that event, the gage may have been dragged off station, but could still be in the general harbor area. An expanded search of the harbor and surrounding offshore waters was conducted using the acoustic interrogator in subsequent months without success.
42. Tide Gage 2 (TG2) experienced a sudden electronic failure partway through its deployment. Data were recorded from installation on 10 June through 20 August. Tide Gage 4 (TG4) experienced a tape drive failure that made the entire data set unrecoverable. Tide Gage 8 (TG8) exhibited a drift in amplitude and phase because of electronic failure. Portions of the data set are recoverable, but can only be used for frequency analysis unless some arbitrary correction is made to the time axis. The remaining four gages had no failures, and their locations coincided with the requirements for two
outside and two inside gages operating during the period when the in situ meters and the profiling meters were operating.
43. Additional tidal records were made available by processing the pressure time series of four wave gages: LA1, LA4, LB4, and LB5. These four gages were serviced on 11 August 1987, resulting in two data sets over the period of interest. The first, designated by the suffix "A," extends from 15 July 1987 to 11 August at 0700 hr . The second, designated by the suffix "B," starts at 1800 hr , 11 August, and ends on 7 Sept 1987. Each data set had to be reduced and plotted separately, for example LB4A and LB4B, in the subsequent analysis.

## In situ current meters

44. Of the 18 in situ current meters deployed at 9 sites, 13 were recovered between 9 and 12 September (Table 1). Only 1 of the 5 meters not recovered (the single meter at CM Site 9) was attributable to catastrophic loss of the mooring. The buoy at this site, in the Cerritos Channel near a major container ship berth, was reported adrift the week before the planned recovery. A diver search at the site on 11 September failed to locate the submerged mount or meter. Because of the proximity of ship and tug traffic in the area, the buoy and mooring were likely pulled off station by a vessel.
45. The remaining unrecovered gages were the upper meter at CM Site 4, both meters at CM Site 5, and the single meter at CM Site 8. The buoys at these sites were intact and the moorings undamaged, but the meters were removed at the shackle connecting the meter to the swivel. Since the shackles and their safety wires had been individually inspected a week after deployment, the most likely conclusion is that the meters were stolen by persons using dive gear.
46. The buoy from CM Site 2 was located onboard a commercial derrick barge moored adjacent to the meter site. The elastic section of the mooring had parted when the contractor attempted to move the buoy to accommodate repair work on a nearby wharf. Divers were able to recover the three meters, which were still attached to the mooring cable, and the weight at the deployed location.
47. One week of data was recovered from the initial deployment at CM Site 8.

## Current profiles

48. Each range was profiled on the scheduled stage of tide to include a
peak flood or ebb and a tidal reversal. When a range contained only three stations, each station was profiled at approximately 1-hr intervals, as planned. The l-hr return interval proved less attainable when a range contained five stations, and return intervals varied from $1-1 / 2$ to 2 hr . Increased travel time between stations, increased anchoring time in deeper water, and occasional instrument malfunction contributed to the overall increase in return intervals. The complete data set is listed in Appendix B. Wind data
49. An anemometer deployed on the outer Los Angeles breakwater failed to record data during the measurement interval. Wind and pressure data were obtained from daily logs of hourly surface observations compiled by the National Weather Service (NWS) at Long Beach Airport and provided through the US Air Force Environmental Technical Applications Center, Asheville, NC. (Appendix J). Data were also obtained from an anemometer located on the Port Authority building in San Pedro and provided by the Port of Los Angeles. These data were digitized and used as input to the model.

## PART III: DATA ANALYSIS

## Tidal Data

50. Raw data from the recovered tide gages were processed using SEA11.FOR, a program which converts raw ASCII data into tide, time, and wave record files. The wave data records were not used in this study but were archived for future reference. The tide file at this stage is a time series of pressure values in pounds per square inch, absolute (PSIA). To convert raw tide pressure files into a time series of tidal elevation, several steps must be performed. Error checking of pressures and time values (editing) will be described, and the reduced data presented in time-series plots.

Conversion of time data
51. Time files of each data set are in decimal hours relative to the individual gage reset time. To be of use in a numerical model, all data sets must have a common time origin. The decimal hour equivalent of individual reset times relative to 1 January 1987 was added to each time word in respective time files. All data used in this study are in decimal hours relative to 1 January 1987.

## Conversion of PSIA data to depth data

52. Conversion of the raw pressure files to hydrostatic pressure requires the removal of the atmospheric pressure component. Rather than assuming atmospheric pressure to be constant during the sampling period, observed atmospheric pressure over the deployment interval was obtained from the NWS daily logs for Long Beach Airport. Pressure, in inches of mercury, was recorded on an hourly basis from 0500 to 2300. Pressure was considered constant over the hourly interval between observations, except for the 6-hr intervals when no hourly observations were made. During these periods, linearly interpolated pressures were assigned on an hourly basis. The conversion factor used to convert from inches of mercury to pounds per square inch was 0.489525 .
53. Each raw pressure word has a time word associated with it. Using these time words, hourly time intervals corresponding to the observed or linearly interpolated atmospheric pressures were located. Atmospheric pressure in pounds per square inch was removed from raw pressure words whose time words fell within the appropriate time intervals. The pressure data time
series is converted to a depth time series by using a conversion factor based on average temperature and salinity, since their variance over the study period did not warrant a time synchronized adjustment in density. The factor used in the conversion was $2.246 \mathrm{ft} / \mathrm{psi}$.

Datum assignment
54. The required datum for all tidal time series was MLLW. Since it was impractical to level each gage from shore using traditional surveying techniques, a simplifying assumption was made that the average free surface elevation over the deployment interval was constant throughout the harbor region. This is valid over a limited area with insignificant freshwater inflow and where no net transport can occur within the area over the time interval. Each tidal depth time series had the average depth of that time series subtracted, converting it to a time series relative to the average free surface at that site over the deployment interval.

$$
\begin{equation*}
D(t)=d(t)-\overline{d(t)} \tag{1}
\end{equation*}
$$

where $D(t)$ is the "de-meaned" time series and $d(t)$ is the measured-depth time series. Under the assumption above, $D(t)$ is referenced to the same datum for all gages. To convert the depth time series to a tidal time series, $T(t)$, relative to MLLW, a constant equal to the difference between the average free surface elevation over the measurement interval and MLLW, can be added to the depth time series.
55. Mean Sea Level (MSL) and MLLW are defined as the arithmetic mean elevation of the sea surface and of the lower low water heights, respectively, observed over a specific 19-year metonic cycle (Harris 1981). Means calculated over shorter intervals will vary and are calculated by the National Ocean Service (NOS) for monthly (m) and annual (a) departures from MLLW at each primary control tide station. Thus an average free surface elevation for the deployment interval is not necessarily MSL.
56. A primary tide station, 33, is located in Los Angeles Harbor (Figure 2). Its tidal record is referenced to MLLW datum. If the exact elevation of the free surface at any time and place relative to MLLW was of primary importance, then the average monthly departure, $m$, of Gage 33 would be the required constant. However, since the monthly average varies, its use as a constant would produce discontinuities in the records each month.

Discontinuities would interfere with spectral analysis of the signal and cause artificial oscillations in the numerical model.
57. To obtain a continuous time series, the values of $m$ were obtained from NOS* for June through September for tidal Station 33 and averaged (Table 2). The result, 3.09 ft , was added to each de-meaned depth series to produce the tidal time series relative to MLLW.

$$
\begin{equation*}
T(t)=D(t)+3.09 \tag{2}
\end{equation*}
$$

## Error checking

58. To validate the supposition of constant average sea level throughout the harbor, monthly means relative to MLLW were also calculated for each tide gage. Means, the average mean and the difference in means ( $\Delta$ ) between months, are listed in Table 2 for the NOS tidal Station 33 and the CERC tide gages. Direct comparison is valid only for those months when the gage was operational for nearly the entire month.
59. With the exception of TG2, which failed before recovery, the cumulative average water levels at each station are within 0.03 ft . The individual monthly averages show more variation, though the differences between months indicate that the same trends are occurring at each site.
60. To verify clock accuracy (nominally $\pm 1 \mathrm{ppm}$ ), deployment, recovery, and shutoff times, as recorded in the field, were checked against the indicated times of the data sets. Deployment and recovery are apparent from pressure records and shutoff time from the last time word in the series. Agreement within the $3.75-\mathrm{min}$ sampling interval was considered adequate verification. Verification was not possible when the gage was not operating at recovery, as for TG2.
61. Tidal accuracy is addressed in more detail under Part IV.

## Output

62. Two files from each data set were generated. The first, $T G * W$, was of the entire time series. The second file, TG×S, was of a "specified" time interval for which current meter data were available. The * symbol refers
[^2]Table 2
Monthly Mean Sea Surface Levels, Sea-Level Variations
and Differences ( $\triangle$ ), June-October 1987

| Month | TS-33 | $\Delta$ | TG-1 | $\Delta$ | TG-3 | $\triangle$ | TG-6 | $\triangle$ | TG-7 | $\triangle$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jun | 2.88 |  | 2.95 |  | 2.90 |  | -- |  | -- |  |
|  |  | 0.21 |  | 0.15 |  | 0.22 |  |  |  |  |
| Jul | 3.09 |  | 3.10 |  | 3.12 |  | -- |  | -- |  |
|  |  | 0.05 |  | 0.05 |  | 0.03 |  | 0.15 |  | 0.16 |
| Aug | 3.14 |  | 3.15 |  | 3.15 |  | 2.99 |  | 2.99 |  |
|  |  | 0.09 |  |  |  |  |  |  |  |  |
| Sep | 3.23 |  | -- |  | -- |  | 3.14 |  | 3.15 |  |
| Cum Avg | 3.09 |  | 3.07 |  | 3.06 |  | 3.07 |  | 3.07 |  |

Note: Elevations are in feet relative to MLLW.
to the number of the particular gage. Both of these file types had one tidal elevation word as well as the corresponding time word in each data record. The date-time interval of the "specified" files was from 4 August 1987 at approximately 0700 hr to 7 September 1987 at approximately 0000 hr . The fulllength data set intervals varied, depending on individual gage deployment and recovery times. Both were unformatted, sequential access files of record length 2. The first 56 records are character strings concatenated into seven 64-character information strings. A typical open statement for a tide elevation file is as follows:

OPEN(UNIT=1, FILE='TGIW. DAT', FORM='UNFORMATTED', STATS='OLD', RECORDLENGTH=2)
63. Plots of tidal elevation for the full data set, the "specified" data set, and a representative 2 -day interval ( 7 and 8 August) and a 4 -hr interval ( 0000 to $0400 \mathrm{hr}, 8$ August) are shown for tide Gages 1, 2, 3, 6, and 7 in Appendix $D$.
64. Similar analysis was carried out on the eight data sets from the wave gages. A "specified" data set was not plotted since the specified interval overlapped the two data sets. The whole time series, a 2 -day plot on 7 and 8 August for the "A" data sets, a 2 -day plot on 16 and 17 August for the " $B$ " data sets, and the same 4 -hr interval are also plotted in Appendix $D$.

## In Situ Current Data

65. Raw data in ASCII format are converted to separate velocity (feet per second), direction (degrees from magnetic north), temperature (degrees $C$ ), and conductivity files. Direction data words were converted to true north by adding the magnetic variation specific to the LA/LB area, - 13.55 decimal degrees.

## Clock correction

66. Unlike the tide gages, the current meters do not record sample times as a separate file. Each parameter is recorded at the selected interval of 2 min , and this rate is assumed to be constant throughout the entire deployment. The specified accuracy of the clock is 1.5 sec a day, or roughly two orders of magnitude less accurate than the tide gage clock. Since correlation of the tides and currents in time is one of the goals of the study, the current time series were checked as described in the following paragraph.
67. The reset, deployment, and shutoff times of the current meters were known. Therefore, an "expected" number of samples could be calculated. By counting the actual number of samples in a particular data set, a time correction factor for that data set could be accurately calculated, provided that the collecting current meter was still operating at the time of the shutoff. Time correction was deemed unnecessary if, when the tabular listing of each time series was examined, the "observed" deployment and recovery time coincided with the "recorded" deployment and recovery time. In most cases, these times agreed to within a few minutes. Inspection of discernible events such as a ship passage, or, as in the case of site CM3, the destruction of the mooring, provided further verification that the gages of each string were in phase with each other.
68. Of the 14 gages recovered, 12 have usable data sets over the required 30 -day interval, and $2, ~ C M 1 S$ and CM8M, have time series of shorter duration.

## Error checking

69. From previous studies and results of a reconnaissance profiling experiment performed prior to deployment, the expected current magnitudes were relatively low, on the order of 1 fps. To enhance the viewability of data during processing, a maximum of 2 fps was set for any data point. A solitary
occurrence of a value that differed from the previous value by more than 0.3 fps was attributed to an electronically induced spike and was edited to the average of the previous and succeeding values.

## Output

70. The output files, $C M * S, C M * M$, and $C M * B$ represent current meter station $*$ at surface, middepth, and bottom, respectively, where $*$ indicates the station number. They are unformatted, sequential access files of record length 5. Each record contains five data words: time, velocity, direction, temperature, and conductivity. The first 21 records are character strings that are to be concatenated into seven 60 -character information strings. A typical open statement for a current file is as follows:

OPEN(UNIT=1,FILE=CM1S. DAT', FORM=UNFORMATTED', STATUS $=$ ' OLD $^{\prime}$, RECORDLENGTH=5)
71. Various plots of the current velocity and direction time series were produced. Shaded rose plots of entire time series (Appendix E) show mean velocity and percent occurrence in each of 20 degree sectors. These plots are useful in displaying dominant directions and velocities associated with each site. Separate velocity and direction time series illustrate the trends of each data set and allow quick verification of data quality (Appendixes $F$ and G).

## Current Profile Data

72. The current profile data required no analysis since they were read directly in engineering units and entered as such into a file. Direction and velocity were subjectively averaged during observation of the analog output meters.
73. The entire profile data set is listed in tabular form in Appendix B. A sample plot of profile data from Range 5 is provided in Figure 8 as a vector time series for each depth. Figure 9 is a sample of direction and velocity time series of Station 5A for all three depths.


Figure 8. Current vector time series, Range 5. (A, B, C, D, and $\mathrm{E}=$ stations)


Figure 9. Current direction and velocity time series, Station 5A
74. Before examining results of the data collected, certain confidence checks were performed. A rigorous statistical analysis could be performed in subsequent reports, but direct observations of trends and selected samples will provide adequate evaluation of the measurements. General characteristics of the observed harbor circulation patterns will be discussed.

## Tidal Data

## Predicted tide

75. Perhaps the most basic concern is the overall shape of the tide curves over the deployment. Classic semidiurnal behavior is evident in the time series of TG1S (Figure 10). Another obvious test is to compare the measured tidal data with the predicted tide for the same period. Exact agreement is never obtained, but given the proximity of the tide station and by selecting periods with low atmospheric anomalies, a close agreement can be expected between observed and predicted tidal elevations.
76. Figure 11 shows the predicted tide for 7 and 8 August (average atmospheric pressure $=29.8$ in. Hg , average wind speed $<7.5 \mathrm{kt}$ ) (NOAA 1987) overlaid with measurements from TG1. A shift upward of the measured data, on the order of 0.3 ft , is evident, while the overall range of 8.3 ft is matched exactly. The average August departure from the annual sea level for NOS tide Station 33 between 1963 and 1981 is +0.20 ft . The remaining 0.1 ft of difference is due to some unknown combination of gage error and predicted tide error.

## Residuals

77. A better indication of the final accuracy is obtained by comparing two tide gages at the same location. A residual is calculated between any two gages by subtracting one time series from another and is a plot of the instantaneous hydraulic head existing between them. Since each data set was de-meaned independently, the departure from zero of the residual from two gages at the same location is an indication of the overall accuracy of the instruments. The best approximation to this condition occurs with Sites 1, 2, and 6, all located outside the harbor breakwater at approximately the same depth.


Figure 10. Tidal elevation time series, Gage TG1S


Figure 11. Predicted tide versus measured tide
7 and 8 August 1988
78. Residual time series plots comparing both tide and wave gages at various scales are contained in Appendix I. Residuals between selected pairs of tide gages over the specified interval are plotted in Plates 1-10. The mean of the residual is included, which would theoretically be equal to zero over a sufficiently long time interval if the assumptions made in selecting the datum are valid. As noted earlier, TG2 experienced a failure near 20 August, and redundant gages were deployed at a later date, so the intervals of simultaneous operation do not all coincide.
79. An obvious characteristic of residual TG1 - TG2 is that it is almost always positive, and the mean is in fact near +0.06 ft . To an optimist, this could be evidence of a continuous current from west to east along the outside of the breakwater, but the "current" is also evident in residual TG6 - TG2 at almost the same average head, this time flowing to the northwest, as well as in the remaining two residuals using TG2. Additionally, the trend is not verified in residual TG1 - TG6. Though its amplitudes appear reasonable, as indicated by the monthly mean elevations in Table 2, TG2 apparently suffered a timing error that placed it out of phase with the other gages-perhaps associated with its early failure--and should not be used for additional analysis.
80. Other residuals display diurnal and semimonthly harmonics indicative of tidal curents oscillaing on and off shore, but with low mean differences. The means of the residuals of over the entire deployment, which range from 0.0001 to 0.0038 ft , indicate an overall accuracy commensurate with the stated specifications of the sensor and well within the experimental requirements.

## Benchmark check

81. Unlike the primary and backup tide gages, the wave gages were installed nearshore on harbor structures and were accessible (via diving rodmen) to standard leveling. LB4 was surveyed on two occasions to a nearby benchmark (Hicks 1987). Details are contained in Appendix C. The average of the two surveys is 17.60 ft below MLLW.
82. Two data sets, A and B , cover the period of consideration. A simple average of their two mean water depths gives

$$
\begin{equation*}
\frac{-20.65+(-20.77)}{2}=-20.71 \tag{3}
\end{equation*}
$$

83. Adjusting to MLLW by the constant used in the previous analysis,
84. The difference of 0.02 ft is on the same order as the difference between NOS and CERC calculations of the datum, but considering the less than ideal surveying conditions, is not significant.

## Current Data

## Overview

85. Illustration of the velocity and direction time series of the entire data set in one plot provides an overview of the data quality and trends. Some spikes remain in the velocity after removal of the solitary spikes by the error checking, or editing, routine. Before arbitrarily eliminating values, each instance should be evaluated to discriminate between random signal errors and hydrodynamic phenomena. Several high velocities appear in the record at CM2S (Plate 11), but given the proximity of the gage to ship traffic, they could be attributed to wake-induced turbulence. Most, however, are the result of noisy signals, such as CM3B, , which had 103 spikes over 2.0 fps before editing, approximately half of which could be removed by editing. Considering that a whole data set contains about 30,000 points, this is not a significant number of points. Gage CM6S recorded spikes nearly 2 percent of the time, so additional filtering/editing will be required before it can be completely used.
86. Anomalies can also indicate physical events. At site 2, all three gages clearly show the occurrence of the buoy failure on 30 August (Plates 1116). Note the slow revolution of meter CM2S (Plate 12) over the next 2 -week interval while lying on the channel bottom, most likely tangled in its own mooring line.
87. Semimonthly spring tidal currents are quite evident in all of the plots and correspond well to the spring tides measured in the specified tide data plots. Daily floods and ebbs are visible as diurnal peaks in velocity and as reversals in direction.

## Statistics

88. The rose plots provide the most condensed display of the current data for statistical purposes. The average velocity in each sector is less than 0.5 fps , as expected. The site farthest away from boundaries, Site 4
(Plate 20), has a near circular distribution, though with some tendency towards the southwest. Those sites constrained in channels, such as Sites 1 , 2 , and 3 , show a strong alignment that corresponds to the channel orientation (Plates 17-19). Before the rose plots were calculated for Site 2, all three data sets were truncated on 30 August, prior to the loss of the buoy.
89. Other characteristics of the flow pattern in the Cerritos Channel are apparent from these plots. At Site 3, the surface current is strongly skewed southeast, parallel to the adjacent mole. The strong afternoon sea breezes typical during that time of year might be expected to drive surface water eastward, and the mole would deflect it in the direction observed. At the middepth, the flow along the mole is nearly exactly balanced, while a defintite net flow towards the channel is evident at Site 3B.
90. At Site 1 at the back of the channel, the net flow is reduced on the bottom, but the continuation of the net transport is still apparent. At the surface, the directions are very nearly balanced. At the opposite end of the channel--Site 2--the counterclockwise flow has left the bottom, but is even more evident at the middepth and surface. A resultant transport pattern that starts near the bottom on the eastern entrance and exits near the surface at the opposite end of the channel is revealed. However, the flux is obviously not constant at the three measurement sites, most likely because of crosschannel variations in the velocity. A counterclockwise flow would result from wind setup against the mole at the eastern entrance and set down at the western entrance. Structures effectively block the wind in the Cerritos Channel itself. Other effects of the predominant sea breeze (from the west) are discussed in the next section.
91. In addition, the two ends of the Cerritos Channel allow the flow to flood or ebb from both ends more or less simultaneously, requiring a node to exist at some point along the channel. This will also be addressed in more detail in the next section.
92. Because Sites 6 and 7 are exposed to the sea breeze and are in the proximity of the east-west aligned breakwater, a net easterly flow would be expected at the surface, if the wind is a factor. This net easterly flow occurs at Sites 6 S and 7 S (Plates 21 and 22). At Site 7 B , the tendency is just as strong westward, directly toward Site 6 and into the harbor. This tendency could represent a return flow necessary to balance an eastward flow on the surface, particularly since the only other entrances are the much smaller
channel passes in the breakwater. Even with only a week of data, Site 8 shows a trend to the northwest, perhaps because of sheltering and eddy effects from the nearby island (Plate 23).
93. The skewness observed in the rose plots are the result of statistical representation of cumulative events and do not imply a flow occurring at any one time. To see the instantaneous currents, time series representations are required, as shown in the next section.

Flow field details
94. To observe details of the harbor flow patterns and to illustrate the correlations between sites at simultaneous points in time, currents must be observed at a smaller scale. Two nested windows were selected for detailed observation: 7 and 8 August and 0000 to 0400 hr on 8 August. This coincided with the profiling of Range 5 and one of the Lagrangian, or drogue, tracking experiments. At these time scales, it is also convenient to combine the velocity and direction information into a single vector time series plot. Both types of plots were generated, and each has advantages (Appendixes $\mathrm{F}, \mathrm{G}$, and H).
95. To substantiate correlations between currents occurring simultaneously at separate locations, the current vectors should be examined to ensure that they are reasonable and actually in phase. Since the currents are primarily driven by the potential energy of the elevation difference existing at different places in the harbor at any instant, the residuals between selected tide gages should indicate expected current vectors.
96. When seen at this scale, the residuals display higher frequency oscillations as well as obvious diurnal harmonics. These could be due to random errors in the pressure sensor signal, phase shifts in the clocks of different instruments, and long-period ( 30 to 60 min ) wave energy in some undetermined combination. A filtering scheme could remove selected components, but care should be taken in assuming that the actual residuals correspond to a preconceived smooth curve or evidence of higher order oscillations could be obscured.
97. The tidal elevation differentials can be seen in residuals TG1 TG3 (Figure 12). Slopes approach $\sim 2 \times 10^{-5}$, and comparisons with the 2 -day tidal plot (Figure 11) illustrate that rising, or inflowing, tides coincide with positive residuals, falling tides with negative, and residuals near zero occur near high and low water.


Figure 12. Residual time series Tide Gages 1 to 3 and resultant current vectors, meter 2S, 7 and 8 August
98. Current meters at Site 2 would be heavily influenced by the residual TG1 - TG3. Figure 12 shows the correlation regarding the directions and timing of reversals for currents at site CM2S. At 1700 hr on 7 August, the residual abruptly switched from positive to negative; the current switched from inbound to outbound at the same hour and increased in magnitude to a maximum 8 hr later, when the residual reached its minimum of -0.4 ft .
99. Examination of the three vector plots at Site 2 plainly shows that more water flowed out of the channel here than flowed in, particularly at the surface and middepth (Plates 24-26). This verifies the trend illustrated statistically in the rose plot.
100. A similar look at residual TG6 - TG3 (Plate 27) shows even better agreement with the meter at site 3 for all depths (Plates 28-30). At 0000 hr on 8 August, all three meters had peaked in their outward flow and had begun reversing inward after the peak (negative) residual. Similar correlation was maintained over the 2-day interval, but not without some phase shifts vertically. The trend of meter CM3S toward the southeast and of meter $3 B$ to the
north, predicted in the rose plots, is verified.
101. Since these meters are not in the eastern side of Cerritos Channel but only near its entrance, the relative proportions cannot be assigned as either into or out of the channel. However, times of northwesterly flow likely correspond to periods of inflow into the eastern channel entrance, southeasterly to outward flow. These periods are roughly in phase with the western entrance periods. Thus the channel filled and drained from both entrances approximately in phase, requiring the existence of a node somewhere at the back of Cerritos Channel. Examination of the currents at site CM1 should indicate the location of the node.
102. If the nodal point occurs westward of Site CM1, floods will result in westerly or counterclockwise flow, ebbs in easterly; if eastward of Site CM1, the reverse. Plates 31 and 32, 2-day vector time series of surface and bottom currents, respectively, do not present such a simple pattern. On the morning of the 7 th, the flood produced a southwesterly flow on the surface, but during the strongest ebb on either side of midnight, the current reversed several times. The subsequent flood produced much lower velocities in a variety of directions. Bottom currents are also capable of flowing in either direction during a flood or ebb.
103. Current profile Stations P9 through P12 were selected with the intent of locating the nodal point. If it were stationary, flows would converge at stations on either side of it during flood and diverge during ebb. Figure 13 is a simplified reduction of the profile data at the top, middepth, and bottom, respectively, wherein a vector represents the amplitude of the flow along the channel axis in either the clockwise (right) or counterclockwise (left) direction, or perpendicular to the channel axis (up or down).
104. Inspection reveals that the flow in the Cerritos Channel cannot be described as simply converging and diverging to a single, stationary nodal point. Not only does the node migrate along the channel, converging flows do not always produce a node at the same location as diverging flows. Both types are evident at the middepth at near 2000 hr on 8 August. Also, there is considerable vertical stratification of the flow and the nodal points. Modes of oscillation perpendicular to the channel axis become apparent as the longitudinal flow approaches zero. These and other higher frequency modes of oscillation are poorly defined at the sampling rate of one measurement every 20 to 30 min used in the current profiles. Examination of the in situ meter's time


Figure 13. Simplified current vectors in Cerritos Channel series at an expanded scale better illustrates the complexity of the flow in the channel.
105. A time series of the residuals at a 4 -hr scale reveals higher frequency oscillations occurring between gage stations. Both TG1 - TG3 (Plate 33) and TG6 - TG3 (Plate 34) show an ascending series of roughly hourly pulses moving from negative (outward flow) to near zero. The curves are similar but not identical. It is the differences between the signals of these two gages, in fact, which illustrate the different hydraulic heads at each end of the Cerritos Channel. (A more direct measurement of the head difference
between the two ends of the channel is seen in Plate 51, described below.)
106. The same hourly pulsing is visible in the currents at CM2S, CM2M, and CM2B (Plates 35-40), and each pulse corresponds in phase, direction, and amplitude with the forcing residual, TG1 - TG3. The meters at Site CM3 are not strictly within the confines of the eastern entrance to Cerritos Channel and are influenced by flow in the harbor. As a result, phase dependence at the higher frequencies to residual TG6 - TG3 is less obvious, though the trend over the interval and the time of current reversal are well correlated (Plates 41-46).
107. Examination of currents at Site CM1 clearly illustrates the "sloshing" occurring near the back of the channel. While the flow is ebbing at both ends of the channel, both surface and bottom currents are reversing at approximately $25-m i n$ cycles (Plates 47-50). The migrating node evident in Figure 13 may be associated with these reversals if its excursions extend as far eastward as CM1.
108. Wave Gages LA4 and LB4 are located near the entrances to the channel, and, although not ideally sited, are good indicators of the hydraulic potential differences of the ends. Plate 51 is the residual between LA4 and LB4. Each $25-$ min pulse in the currents is associated with a peak in the residual. A phase lag, likely due to wind effects and multiple reflections in the numerous smaller basins, is evident.
109. In the outer harbor, the predominant westerly sea breeze has a more noticeable effect on surface currents. Plates 52 and 53 demonstrate the reason for the easterly skewness of the rose plots at Sites CM6S and CM7S. Rising tides cause weak, short-lived westerly flows or stronger flows to the north or even south, perpendicular to the nearby breakwater. Additional analysis may reveal whether this represents flow through the breakwater itself or vortices caused by currents transiting the nearby openings. Falling tides are characterized by strong easterly currents predominantly aligned with the breakwater.
110. Current profile data in Appendix B verify the strong easterly flow across the entire eastern entrance (Range P3) during ebb. Profiles across the two western entrances at Ranges P1 and P2 are flood dominated, rarely turning directly south (seaward) even during peak ebb. Thus the typical tidal cycle during the study can be characterized by flow through the western openings and to some extent through the breakwater during flood. During ebb, the harbor
drains primarily through the large eastern opening.
111. This pattern can be explained by examination of the daily wind pattern. The normal cycle during the study was an increasing breeze in the morning clocking from north to east, with a rapid switch to westward around midday (the sea breeze) and decreasing velocity after sunset (see Plate 54). These westerlies bracket the time from Higher Low to Higher High Water (Figure 11). The wind shear would influence, and perhaps dominate, this relatively weak flood stage--at least at the surface. With this initial set, the strong evening ebb from Higher High to Lower Low Water would tend to exit the harbor eastward, even though the winds are lower. A previous current measurement study conducted by NOAA in the summer shows similar trends (Smith 1989). This flow pattern may not be observed at other times without this relative phase relationship between the wind and tide. However, in a physical model study conducted by WES in the early 1970's that did not include wind effects, the net easterly flow was evident during spring tide conditions, but not at neap (McAnally 1975).
112. Another feature predicted by the physical model was a gyre in the Los Angeles Harbor. Figure 8 provides some evidence of a counterclockwise pattern occurring at the surface between 1800 and 2100 hr in the vicinity of Station B, but the predominant pattern is the easterly flow in the outer harbor associated with ebb conditions. Winds during this interval were generally blowing to the NNE between 5 and 10 knots, decreasing during the night. The flow is less organized and weaker at middepth and bottom, though reversals are evident in the water column. Low-velocity data from a profiling meter are inherently less reliable than an in situ meter because of the subjective averaging by the operator over a shorter interval. There is some evidence that rotational flow is occurring for short intervals, but not as a single, welldefined gyre extending through the water column. Many more data points would be required to characterize the flow pattern in the outer harbor more completely.
113. A synoptic data collection effort at LA/LB Harbors was completed that provides adequate data to calibrate and verify a 3-D numerical model of tidal circulation. Three months of tidal data, three months of wind data, one month of current data, and half-tidal cycle current profiles were obtained throughout the harbor. Project requirements and schedules as directed in the Management Plan were fully met.
114. Conclusions resulting from the study are:
a. Use of a common mean water surface as a datum for synoptic tidal measurements over limited space and duration provided reasonable results and is a cost-effective alternative to independent leveling of offshore gages.
b. Tidal circulation in LA/LB Harbors during the collection period was characterized by low velocities (rarely exceeding $0.5 \mathrm{ft} / \mathrm{sec}$ ) and small-scale spatial and temporal variations, including frequent flow reversals in a vertical profile. Oscillations in the current were evident at periods as short as 30 min resulting from resonance of energy at frequencies not normally associated with tidal constituents reflecting from harbor boundaries.
c. Flow in the Cerritos Channel was basically divergent/ convergent from the two openings, but sufficient amplitude and phase differences existed to result in a net circulation counterclockwise. A migrating node existed at the back of the channel.
d. In the outer harbor, locations near the breakwater experienced significant net transport because of unequal ebb and flood currents. The harbor tends to fill from the west during flood and drain to the east during ebb. This may be a seasonal phenomenon related to the relative phase between the tides and the daily sea breeze.

## REFERENCES

Harris, D. L. 1981. "Tides and Tidal Datum in the United States," Special Report No. 7, Coastal Engineering Research Center, Fort Belvoir, VA.
$\qquad$ . 1989. "Tides and Tidal Datum in the United States," Supplement to Special Report No. 7, Coastal Engineering Research Center, Fort Belvoir, VA.

Hicks, Steacy D., Morris, Phillip C., Lippincott, Harry A., and O'Hargen, Michael C. 1987. "User's Guide for the Installation of Beach Marks and Leveling Requirements for Water Leveling Stations," Department of Commerce, National Oceanic Atmospheric Administration, National Ocean Service, Rockville, MD.

McAnally, William H., Jr. 1975. "Los Angeles and Long Beach Harbor Model Study; Report 5, Tidal Verification and Base Circulation Test," Technical Report H-75-4, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

National Oceanic and Atmospheric Administration. 1986. "Tide Tables 1987," US Department of Commerce, National Ocean Service, Rockville, MD.

Raney, Donald C. 1976 (Sep). "Numerical Analyses of Tidal Circulation for Long Beach Harbor; Report 1, Existing Conditions and Alternate Plans for Pier J Completion and Tanker Terminal Study," Miscellaneous Paper H-76-4, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Smith, Ernest R. 1989. "Los Angeles and Long Beach Harbors Model Enhancement Program; Current, Tide, and Wind Data Summary for 1983," Miscellaneous Paper CERC-89-4, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

US Army Engineer Waterways Experiment Station. 1987. "Management Plan--Los Angeles and Long Beach Harbors Model Enhancement Program," Internal Working Document, Vicksburg, MS.


PLATE


PLATE 2
－Lヨ NI ヨコNヨロヨココIa


PLATE 4



PLATE 6
LA/LB HARBOR STUDY
RESIDUAL: LA4A - LB4A

LA／LB HARBOR STUDY
RESIDUAL：LA4A－LB5A


1』 NI ヨONヨタヨココIロ
LA/LB HARBOR STUDY
RESIDUAL: LA4B - LB4B


PLATE 9


PLATE 10



PLATE 12



PLATE 14



PLATE 16
CURRENT VECTOR ROSE

PLATE 17A

PLATE 17B


CURRENT VECTOR ROSE


PLATE 18C
CURRENT VECTOR ROSE
VECTOR 8 IN DIRECTION OF TRAVEL
CURRENT VECTOR ROSE

[^3]

PLATE I9C


PLATE 20
CURRENT VECTOR ROSE
VECTOR8 IN DIRECTION OF TRAVEL
$\boldsymbol{\theta}$

PLATE 21A
CURRENT VECTOR ROSE


PLATE 22A
CURRENT VECTOR ROSE

PLATE 23
CURRENT VELOCITY AND DIRECTION
2



LA/LB TIDAL CIRCULATION STUDY
CM2S: 7-8 AUG 1987
10 MINUTE AVERAGE
$\infty$
VECTOR POINTS IN DIRECTION OF TRAVEL

CURRENT VELOCITY AND DIRECTION



vector points in direction of travel


PLATE 27
current velocity and direction

7 （1） 9

[^4]7ヨィV4L 10 NOILכヨyIO NI SiNIOd yOLכヨ＾
CURRENT VELOCITY AND DIRECTION


LA/LB TIDAL CIRCULATION STUDY CM3B: 7-8 AUG 1987

10 MINUTE AVERAGE VECTORS


8
VECTOR POINTS IN DIRECTION OF TRAVEL

CURRENT VELOCITY AND DIRECTION
 LA／LB TIDAL CIRCULATION STUDY
10 MINUTE AVERAGE VECTORS
7ヨAvyl fo NOILכヨyIC NI SLNIOd yOLDヨ＾
LA/LB TIDAL CIRCULATION STUDY
RESIDUAL: TG1S - TG3S

B AUGUST 1987

PLATE 33
LA/LB TIDAL CIRCULATION STUDY
RESIDUAL: TG6S - TG3S



PLATE 35

LA/LB TIDAL CIRCULATION STUDY
CM2M: 8 AUG 1987
8 AUG 1987

SLONY NI スLIOO7ヨ^



PLATE 39

8 AUG 1887
Sヨヨyฺヨa NI NOllכヨyld
LA／LB TIDAL CIRCULATION STUDY
CM3S： 8 AUG 1987

8 AUG 1987
SLONX NI 久1IつO7ヨ＾
LA/LB TIDAL CIRCULATION STUDY
CM3S: 8 AUG 1987

LA／LB TIDAL CIRCULATION STUDY CM3M： 8 AUG 1987 1.00

$0.50-$
0
0
0
0
LA/LB TIDAL CIRCULATION STUDY
CM3M: 8 AUG 1987

8 AUG 1987


PLATE 45

8 AUG 1987
Sヨヨยตヨa NI NOILכヨધIG


PLATE 47



PLATE 49
LA/LB TIDAL CIRCULATION STUDY
CM1B: 8 AUG 1987

8 AUG 1987
LA/LB HARBOR STUDY
RESIDUAL: LA4A - LB4A

MEAN $=0.01627$

-1』 NI 30Nヨugasia
CURRENT VELOCITY AND DIRECTION

$\begin{array}{rrr}7 & 8 & 9\end{array}$
AILB TIDAL CIRCULATION STUDY
10 MINUTE AVERAGE VECTORS
VECTOR POINTS IN DIRECTION OF TRAVEL




PLATE 54B

APPENDIX A: INSTRUMENT DESCRIPTIONS AND SPECIFICATIONS
This appendix provides brief descriptions and detailed specifications of the instruments used during this experiment.

1. Three types of instrumentation were used: during the tidal data, in situ current velocity, and current velocity profile phases of the experiment. This appendix provides a brief description of the instruments, followed by detailed specifications provided by the manufacturer.
2. Tidal data were collected using Sea Data, Inc., Model 635-11 Wave and Tide Recorders. The 635-11 is a self-contained digital-recording instrument, capable of accurately measuring and recording water pressure. Accuracy of the instrument is attained by use of the Paroscientific, Inc., quartz crystal oscillating pressure transducer, which exhibits a 0.005 -percent maximum worst-case hysteresis error, over a full range pressure excursion. The instrument electronics employs all C-MOS circuitry to minimize power drain. An ultra-accurate quartz clock allows precise measurement of the sensor's frequency. Data are recorded on a highly precise digital tape recorder, which writes on four tracks at an 800 bits-per-inch density, allowing 15-megabit data capacity on a 450 -min cassette tape.
3. The Datasonics, Inc., "AQUARANGE: Acoustic Command System is a multipurpose ranging, position, and relocation system. Applications of the system include long baseline acoustic navigation, ranging and subsea instrumentation. It may be deployed as a recoverable position marker or data telemetry transponder or as a pop-up buoy marker. Operating in the $30-\mathrm{kHz}$ band, a selection of 5 reply frequencies and 27 unique command codes may be set by internal switches. Transmit, receive, and release functions are powered by separate batteries to reduce the possibility of a total system failure and assure recovery. Power is applied to the transponding release, upon either fresh or saltwater immersion, by external electrodes. The transponder housing pressure rated to a depth of $1,000 \mathrm{~m}$, and the release mechanixm has a load capability of $2,000 \mathrm{lb}$.
4. In situ current velocity data were collected using an ENDECO, Inc., Type 174 Digital Recording Tethered Current Meter. The 174 is an axial flow, ducted impeller current meter, which is self-contained and records sampled data on a $1 / 4$-in. magnetic tape. The instrument samples and records current velocity and direction, as well as water temperature and conductivity, at preselected intervals. It is normally deployed attached to a vertically buoyed 3/16- to $1 / 4$-in. stainless steel wire rope, held taut by a subsurface buoy. The instrument is attached to the wire rope by a braided line terminated by a unique clampling device, known as a "Cook Cable Clamp

Assembly." The tether assembly allows the instrument to freely rotate around the mooring, with changes in current direction.
5. Current velocity profile data were collected using an ENDECO, Inc., Type 174 Solid State Memory (SSM) Tethered Current Meter. The 174SSM is similar in design to the 174 , but incorporates a solid state data logger for instrument and data storage. It may be used as a self-contained current meter or as a profiling current meter, with real-time data telemetered via a 3conductor cable to a surface-operated terminal. The cable assembly is sleeved with a Dacron rope braid, enabling it to be used as a suspension tether as well as a signal cable. Sampling parameters may be set by an external terminal, or the instrument may be initialized by simply applying power, using default settings.

Sea Data, Inc. Mdl. 635-11 Wave and Tide Recorder
Pressure Sensor: Paroscientific, Inc., "Digi-Quartz"

|  | $\frac{\text { feet }}{}$ | $\frac{\text { meters }}{58}$ |
| :--- | :---: | :---: |
| Standard Ranges: | 190 | 50 |
| Maximum Depth: | 235 | 0.0035 |
| Resolution - Waves: | 0.0040 | 0.12 cm |
| Tides: |  |  |
| Accuracy |  | 0.03 |
| (more than 80 ft ) | 0.05 |  |
| (less than 80 ft) | $0.004 \mathrm{ft} /{ }^{\circ} \mathrm{C}$ (max) |  |

Frequency Response: DC to 1.0 Hz (Nyquist limit for $0.5-\mathrm{sec}$ sampling)

Stability:
vs time: 0.0002 percent $F S /$ month at (almost constant)
ocean depths
vs temp:
zero 0.0007 percent $\mathrm{FS} /{ }^{\circ} \mathrm{C}$ span 0.005 percent $\mathrm{FS} /{ }^{\circ} \mathrm{C}$ (at $2 / 3 \mathrm{FS}, 0.004$
percent $/{ }^{\circ} \mathrm{C}$ )

Timebase:
Stability:
4. 194304 MHz special quartz crystal
$0.1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, $1 \mathrm{ppm} /$ year; unmeasurable ( 0.001 percent) pressure data error at ocean depths

Physical Specifications:

Size:
Case: $\quad 7$-in. diam. by 24 in. long
Mounts: two $0.5-i n$. bolt holes on 13-in. centers, 1.0-in. clearance

Weight: 41 lb in aix, with battery; 12.51 b in water
Pressure Case:
Material: 6061-T6 aluminum
Hardware: 316 stainless and Delrin insulators
Finish: Hard-coat anodize with electrostatic epoxy overcoat
Depth: $\quad 1,100-m$ operating depth

[^5]ENDECO, Inc., Type 110/923 Remote Reading and Recording Current Meter
Current Speed Sensor: Ducted impeller and reed switch
Range: $\quad 0$ to 5 knots ( 0 to $257 \mathrm{~cm} / \mathrm{sec}$ )
Accuracy: $\pm 3$ percent of full scale
Threshold: $\quad>0.05$ knot ( $2.57 \mathrm{~cm} / \mathrm{sec}$ )
Current Direction Sensor: Magnetic compass with potentiometer
Range: $\quad 0$ to $360^{\circ}$ ( 0 to $357^{\circ}$ electrical)
Accuracy: $\pm 3$ percent of full scale
Threshold: $\quad 0.05 \mathrm{knot}(2.57 \mathrm{~cm} / \mathrm{sec})$
Depth Sensor: Pressure-operated potentiometer
Range: $\quad 0$ to 30 m ( 0 to 100 ft )
Accuracy: $\pm 2$ percent of full scale
Overpressure:
Sensor Isolation:
$1.5 \times$ full scale
Oil-filled isolator with neoprene diaphragm for corrosion protection of sensor

Physical Size:
Weight:
18 kg ( 40 lb ) in air
Weight in sea water: Approximately neutrally buoyant
Dimensions:

$$
76.2 \mathrm{~cm} \text { long by } 40.6 \mathrm{~cm} \text { diam }
$$

( 30 in 16 in.)

ENDECO, Inc., Type 174 Digital Recording Tethered Current Meter
Current Velocity:
Sensor Type: Ducted impeller
Sensitivity:
Speed Range:
$58.0 \mathrm{rpm} \mathrm{knot}(51.4 \mathrm{~cm} / \mathrm{sec}$ )
Dependent on sampling interval (user selectable-
$2,3,4,5,6,10 \mathrm{~min}$ ) ; 0 to $221.2 \mathrm{~cm} / \mathrm{sec}$ ( 0 to 4.3 knots) at standard 2 -min interval

Impeller Threshold:
Resolution:
Speed Accuracy:
$<2.57 \mathrm{~cm} / \mathrm{sec}$ ( 0.05 knot)
0.4 percent of speed range
$\pm 3.0$ percent of full scale
Current Direction:
Magnetic Direction:
0 to $360^{\circ}$
Resolution:
Accuracy:
$1.4^{\circ}$
$\pm 7.2^{\circ}$ above $2.57 \mathrm{~cm} / \mathrm{sec}(0.05 \mathrm{knot})$ when referenced to computer calibration

Phsical Size:

Weight:
Buoyancy:
Dimensions:
Shipping Weight:

14 kg (31 lb) in air
Approximately neutral; adjustable for salt, fresh, or polluted water
85.1 cm ( 33.5 in. ) long by 40.6 cm (16 in.) diam 25.7 kg ( 57 lb )

ENDECO, In., Type 174 (S.S.M.) Solid State Memory Tethered Current Meter Current Velocity:

Sensor Type:
Sensitivity:
Speed Range:

Impeller:
Accuracy:

Resolution:

## Current Direction:

Sensor Type:
Magnetic Direction:
Gimballed Range:
Accuracy:
Resolution:
Internal Heading Correction:

Vector Averaging:

Pressure Sensor:

```
Sensor Type: Potentiometric transducer
Range:
Accuracy:
Resolution:
Optional Resolution:
Potentiometric transducer
0 to 152 m (500 ft)
\(\pm 1\) percent
0.39 percent
Up to 12 bits binary (0.02 percent)
```

Ducted impeller
$111.9 \mathrm{rpm} / \mathrm{m} / \mathrm{sec}(57.58 \mathrm{rmp} / \mathrm{knot})$
0 to $2.57 \mathrm{~m} / \mathrm{sec}$ ( 0 to 5 knots), programmable to 10 knots
Threshold $1.54 \mathrm{~cm} / \mathrm{sec}$ ( 0.03 knots)
1.6 percent of full scale (99-percent confidence limit)
0.1 percent of speed range

Gimballed, two-axis, flux gate compass
0 to $360^{\circ}$
$\pm 30^{\circ}$ (two axis)
$\pm 5.0^{\circ}$ above speed threshold
$1.4^{\circ}$

32 point EPROM stored correction curve

Fixed displacement, sine/cosine summation

Physical Size:

Weight:
Buoyancy:
Dimensions:

Shipping Weight:

14 kg ( 31 lb ) in air
Neutrally buoyant, adjustable for fluid medium
88.9 cm ( $35.0 \mathrm{in)}$.long by 40.6 cm (16 in.)
in diameter
25.7 kg (57 1b)

Range Interrogate:

Frequency:
Reply Frequencies:
Pulse Length:
Turn Around Time:
Stability:
Inhibit Time:
Source Level:
Operating Life:

26 kHz
Internally selectable; 28, 29, 30,31 , or 32 kHz 5 msec
20 msec
$\pm 0.1 \mathrm{msec}$
0.8 sec
+188 db ref. $1 \mu \mathrm{~Pa}$ @ 1 m
12 months, 50,000 replies

```
APPENDIX B: CURRENT PROFILE DATA
This appendix contains locations of current profile stations and a tabular listing of the profile data. Station locations are suffixed with \(T\), \(M\), and \(B\), which stand for top, middepth, and bottom respectively. When velocities were too low to allow direct readout in knots, a velocity was calculated using a formula relating the velocity to the number of pulses (P) or revolutions of the impeller, observed in a 30-sec interval.
```

.
N. LAT
$33^{\circ} 42.55^{\prime}$
$33^{\circ} 42.6^{\prime}$
$33^{\circ} 42.65^{\prime}$
$33^{\circ} 43.4^{\prime}$
$33^{\circ} 43.4^{\prime}$
$33^{\circ} 43.4^{\prime}$

$33^{\circ} 43.3$
$33^{\circ} 43.35$
$33^{\circ} 44.34$
$33^{\circ} 44.14$
$33^{\circ} 43.76$
$33^{\circ} 43.47$
$33^{\circ} 43.25$
$33^{\circ} 44.08$
$33^{\circ} 43.90$
$33^{\circ} 43.73$
$33^{\circ} 43.61$
$33^{\circ} 43.48$
$\begin{array}{ll}33^{\circ} & 44.7 \\ 33^{\circ} & 44.7 \\ 33^{\circ} & 44.75\end{array}$
$33^{\circ} 45.56$
$33^{\circ} 45.58$
$33^{\circ} 45.60$
$33^{\circ} 43.90^{\prime}$
$33^{\circ} 44.97^{\prime}$
$33^{\circ} 45.47^{\prime}$
$33^{\circ} 45.88$

$$
\begin{array}{ll}
118^{\circ} & 15.05 \\
118^{\circ} & 14.8 \\
118^{\circ} & 14.7
\end{array}
$$

$118^{\circ} 11.1$
$118^{\circ} 11.0^{\prime}$
$118^{\circ} 10.9^{\prime}$
$118^{\circ} 07.4^{\prime}$
$118^{\circ} 07.6^{\prime}$
$118^{\circ} 07.8^{\prime}$
$118^{\circ} 07.9^{\prime}$
$118^{\circ} 08.1^{\prime}$
$118^{\circ} 16.2$
$118^{\circ} 16.1$
$118^{\circ} 16.0$
$118^{\circ} 13.75$
$118^{\circ} 13.64$
$118^{\circ} 13.48$
$118^{\circ} 13.37$
$118^{\circ} 13.26$
$118^{\circ} 11.11$
$118^{\circ} 10.99$
$118^{\circ} 10.89$
$118^{\circ} 10.84$
$118^{\circ} \quad 10.80$
$118^{\circ} 13.0$
$118^{\circ} 13.05$
$118^{\circ} 13.1$
$118^{\circ} 13.10$
$118^{\circ} 13.08$
$118^{\circ} 13.05$
P10
Pll
P12
P13
$118^{\circ} 16.37^{\prime}$
$118^{\circ} 16.23^{\prime}$
$118^{\circ} 15.62^{\prime}$
$118^{\circ} 14.65$

TEAM METER TIME STATION DEPTH DIRECTION VELOCITY PULSES VELOCITY $\mathrm{S} / \mathrm{N}$ (PDT) (FEET) (MAGNETIC) (KNOTS) (p) (KNOTS)


| FRF | 0273 | 0330 | 3C-T | 03 | 295 |  | 07 | 0.07 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FRF | 0273 | 0340 | 3D-B | 30 | 020 |  | 15 | 0.14 |
| FRF | 0273 | 0343 | 3D-M | 18 | 085 |  | 19 | 0.18 |
| FRF | 0273 | 0346 | 3D-T | 03 | 120 |  | 18 | 0.17 |
| FRF | 0273 | 0358 | 3E-B | 37 | 340 |  | 17 | 0.16 |
| FRF | 0273 | 0404 | 3E-M | 21 | 000 |  | 26 | 0.24 |
| FRF | 0273 | 0408 | 3E-T | 03 | 100 |  | 11 | 0.10 |
| FRF | 0273 | 0426 | 3A-T | 03 | 180 |  | 12 | 0.11 |
| FRF | 0273 | 0438 | 3B-B | 11 | 235 |  | 22 | 0.21 |
| FRF | 0273 | 0441 | 3B-M | 08 | 330 |  | 07 | 0.07 |
| FRF | 0273 | 0444 | 3B-T | 03 | 020 |  | 06 | 0.06 |
| FRF | 0273 | 0454 | 3C-B | 26 | 345 |  | 19 | 0.18 |
| FRF | 0273 | 0456 | 3C-M | 15 | 320 |  | 08 | 0.08 |
| FRF | 0273 | 0459 | 3C-T | 03 | 285 |  | 16 | 0.15 |
| FRF | 0273 | 0509 | 3D-B | 32 | 330 | 0.40 |  |  |
| FRF | 0273 | 0514 | 3D-M | 18 | 330 |  | 32 | 0.30 |
| FRF | 0273 | 0516 | 3D-T | 03 | 265 |  | 25 | 0.23 |
| FRF | 0273 | 0526 | 3E-B | 38 | 350 | 0.60 |  |  |
| FRF | 0273 | 0529 | $3 \mathrm{E}-\mathrm{M}$ | 22 | 340 | 0.50 |  |  |
| FRF | 0273 | 0531 | 3E-T | 03 | 250 | 0.35 |  |  |

RANGE 6 08/07/87-08/08/87 GYRE

| PMAB | 0030 | 1530 | $6 A-B$ | 42 | 104 | 0.12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PMAB | 0030 | 1535 | $6 A-M$ | 24 | 191 | 0.07 |
| PMAB | 0030 | 1543 | $6 A-T$ | 05 | 253 | 0.17 |
| PMAB | 0030 | 1555 | $6 B-B$ | 34 | 224 | 0.09 |
| PMAB | 0030 | 1559 | $6 B-M$ | 19 | 257 | 0.08 |
| PMAB | 0030 | 1602 | $6 B-T$ | 05 | 131 | 0.16 |
| PMAB | 0030 | 1830 | $6 C-B$ | 65 | 219 | 0.00 |
| PMAB | 0030 | 1832 | $6 C-M$ | 35 | 248 | 0.15 |
| PMAB | 0030 | 1835 | $6 C-T$ | 05 | 083 | 0.25 |
| PMAB | 0030 | 1858 | $6 D-B$ | 60 | 215 | 0.10 |
| PMAB | 0030 | 1901 | $6 D-M$ | 34 | 281 | 0.04 |
| PMAB | 0030 | 1903 | $6 D-T$ | 08 | 094 | 0.23 |
| PMAB | 0030 | 1920 | $6 E-B$ | 45 | 236 | 0.17 |
| PMAB | 0030 | 1923 | $6 E-M$ | 23 | 090 | 0.06 |
| PMAB | 0030 | 1925 | $6 E-T$ | 04 | 058 | 0.26 |
| PMAB | 0030 | 1938 | $6 A-B$ | 46 | 214 | 0.08 |
| PMAB | 0030 | 1942 | $6 A-M$ | 25 | 218 | 0.10 |
| PMAB | 0030 | 1945 | $6 A-T$ | 06 | 205 | 0.13 |
| PMAB | 0030 | 1952 | $6 B-B$ | 36 | 298 | 0.00 |
| PMAB | 0030 | 1953 | $6 B-M$ | 19 | 281 | 0.17 |
| PMAB | 0030 | 1955 | $6 B-T$ | 06 | 160 | 0.13 |
| PMAB | 0030 | 2010 | $6 C-B$ | 67 | 260 | 0.01 |
| PMAB | 0030 | 2014 | $6 C-M$ | 35 | 260 | 0.12 |
| PMAB | 0030 | 2015 | $6 C-T$ | 06 | 101 | 0.24 |
| PMAB | 0030 | 2025 | $6 D-B$ | 61 | 181 | 0.10 |
| PMAB | 0030 | 2026 | $6 D-M$ | 32 | 219 | 0.10 |
| PMAB | 0030 | 2028 | $6 D-T$ | 06 | 186 | 0.05 |
| PMAB | 0030 | 2037 | $6 E-B$ | 44 | 222 | 0.01 |
| PMAB | 0030 | 2045 | $6 E-M$ | 23 | 107 | 0.13 |
| PMAB | 0030 | 2046 | $6 E-T$ | 06 | 042 | 0.19 |
| PMAB | 0030 | 2100 | $6 A-B$ | 45 | 211 | 0.06 |
| PMAB | 0030 | 2105 | $6 A-M$ | 25 | 263 | 0.14 |
| PMAB | 0030 | 2108 | $6 A-T$ | 05 | 226 | 0.12 |
| PMAB | 0030 | 2120 | $6 B-B$ | 35 | 291 | 0.03 |
| PMAB | 0030 | 2122 | $6 B-M$ | 20 | 284 | 0.08 |
| PMAB | 0030 | 2125 | $6 B-T$ | 08 | 232 | 0.06 |
| PMAB | 0030 | 2150 | $6 C-B$ | 65 | 294 | 0.03 |
| PMAB | 0030 | 2153 | $6 C-M$ | 35 | 239 | 0.19 |
| PMAB | 0030 | 2155 | $6 C-T$ | 05 | 108 | 0.24 |
| PMAB | 0030 | 2214 | $6 D-B$ | 59 | 132 | 0.04 |
| PMAB | 0030 | 2218 | $6 D-M$ | 30 | 018 | 0.17 |
|  |  |  |  |  |  |  |


| PMAB | 0030 | 2219 | 6D-T | 05 | 121 | 0.13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PMAB | 0030 | 2235 | 6E-B | 46 | 253 | 0.08 |
| PMAB | 0030 | 2237 | 6E-M | 27 | 025 | 0.17 |
| PMAB | 0030 | 2240 | 6E-T | 05 | 060 | 0.21 |
| FRF | 0030 | 2340 | 6A-B | 42 | 262 | 0.00 |
| FRF | 0030 | 2345 | 6A-M | 24 | 350 | 0.00 |
| FRF | 0030 | 2352 | 6A-T | 05 | 210 | 0.00 |
| FRF | 0030 | 0016 | 6B-B | 36 | 030 | 0.01 |
| FRF | 0030 | 0019 | 6B-M | 19 | 190 | 0.00 |
| FRF | 0030 | 0023 | 6B-T | 05 | 218 | 0.05 |
| FRF | 0030 | 0032 | 6C-B | 66 | 024 | 0.04 |
| FRF | 0030 | 0036 | 6C-M | 33 | 190 | 0.14 |
| FRF | 0030 | 0041 | 6C-T | 05 | 130 | 0.13 |
| FRF | 0030 | 0055 | 6D-B | 61 | 120 | 0.00 |
| FRF | 0030 | 0059 | 6D-M | 33 | 203 | 0.08 |
| FRF | 0030 | 0101 | 6D-T | 05 | 075 | 0.07 |
| FRF | 0030 | 0113 | $6 \mathrm{E}-\mathrm{B}$ | 44 | 045 | 0.01 |
| FRF | 0030 | 0117 | 6E-M | 22 | 075 | 0.05 |
| FRF | 0030 | 0120 | 6E-T | 05 | 031 | 0.12 |
| FRF | 0030 | 0140 | 6A-B | 42 | 068 | 0.08 |
| FRF | 0030 | 0143 | 6A-M | 22 | 039 | 0.11 |
| FRF | 0030 | 0145 | 6A-T | 05 | 045 | 0.10 |
| FRF | 0030 | 0155 | 6B-B | 39 | 007 | 0.00 |
| FRF | 0030 | 0200 | 6B-M | 20 | 038 | 0.03 |
| FRF | 0030 | 0203 | 6B-T | 05 | 049 | 0.01 |
| FRF | 0030 | 0215 | 6C-B | 63 | 159 | 0.01 |
| FRF | 0030 | 0220 | 6C-M | 34 | 205 | 0.04 |
| FRF | 0030 | 0222 | 6C-T | 05 | 013 | 0.13 |
| FRF | 0030 | 0234 | 6D-B | 58 | 108 | 0.00 |
| FRF | 0030 | 0237 | 6D-M | 30 | 211 | 0.06 |
| FRF | 0030 | 0241 | 6D-T | 05 | 055 | 0.14 |
| FRF | 0030 | 0259 | $6 \mathrm{E}-\mathrm{B}$ | 42 | 006 | 0.06 |
| FRF | 0030 | 0304 | 6E-B | 21 | 104 | 0.05 |
| FRF | 0030 | 0306 | 6E-T | 05 | 040 | 0.07 |
| FRF | 0030 | 0326 | $6 A-B$ | 43 | 356 | 0.01 |
| FRF | 0030 | 0330 | 6A-M | 21 | 100 | 0.04 |
| FRF | 0030 | 0333 | 6A-T | 05 | 039 | 0.01 |
| FRF | 0030 | 0344 | 6B-B | 33 | 230 | 0.00 |
| FRF | 0030 | 0348 | 6B-M | 17 | 090 | 0.03 |
| FRF | 0030 | 0351 | 6B-T | 05 | 025 | 0.01 |
| FRF | 0030 | 0404 | 6C-B | 63 | 220 | 0.03 |
| FRF | 0030 | 0406 | 6C-M | 33 | 267 | 0.00 |
| FRF | 0030 | 0410 | 6C-T | 05 | 055 | 0.15 |
| FRF | 0030 | 0421 | 6D-B | 58 | 108 | 0.00 |
| FRF | 0030 | 0424 | 6D-M | 30 | 208 | 0.07 |
| FRF | 0030 | 0429 | 6D-T | 05 | 016 | 0.12 |
| FRF | 0030 | 0440 | 6E-B | 42 | 077 | 0.08 |
| FRF | 0030 | 0443 | 6E-M | 22 | 230 | 0.02 |
| FRF | 0030 | 0448 | 6E-T | 05 | 123 | 0.03 |
| FRF | 0030 | 0508 | 6A-B | 43 | 115 | 0.00 |
| FRF | 0030 | 0511 | 6A-M | 22 | 059 | 0.06 |
| FRF | 0030 | 0513 | 6A-T | 05 | 225 | 0.04 |
| FRF | 0030 | 0522 | 6B-B | 34 | 320 | 0.04 |
| FRF | 0030 | 0524 | 6B-M | 18 | 120 | 0.01 |
| FRF | 0030 | 0528 | 6B-T | 05 | 331 | 0.05 |
| FRF | 0030 | 0540 | 6C-B | 64 | 070 | 0.02 |
| FRF | 0030 | 0542 | 6C-M | 32 | 262 | 0.05 |
| FRF | 0030 | 0545 | 6C-T | 05 | 035 | 0.06 |
| FRF | 0030 | 0555 | 6D-B | 59 | 315 | 0.00 |
| FRF | 0030 | 0559 | 6D-M | 30 | 210 | 0.06 |
| FRF | 0030 | 0601 | 6D-T | 05 | 330 | 0.06 |
| FRF | 0030 | 0612 | $6 \mathrm{E}-\mathrm{B}$ | 44 | 075 | 0.01 |
| FRF | 0030 | 0614 | 6E-M | 22 | 223 | 0.03 |
| FRF | 0030 | 0617 | 6E-T | 05 | 228 | 0.03 |

RANGE 10-13 08/08/87-08/09/87 CERRITOS CHANNEL

| PMAB | 0030 | 1648 | $12-B$ | 44 | 114 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PMAB | 0030 | 1654 | 12-M | 26 | 001 | 0.10 |
| PMAB | 0030 | 1658 | 12-T | 05 | 121 | 0.12 |
| PMAB | 0030 | 1726 | 13-B | 45 | 108 | 0.04 |
| PMAB | 0030 | 1733 | 13-M | 28 | 243 | 0.19 |
| PMAB | 0030 | 1741 | 13-T | 09 | 252 | 0.33 |
| PMAB | 0030 | 1757 | 12-B | 47 | 250 | 0.05 |
| PMAB | 0030 | 1759 | 12-M | 29 | 056 | 0.14 |
| PMAB | 0030 | 1806 | 12-T | 09 | 073 | 0.19 |
| PMAB | 0030 | 1823 | 11-B | 45 | 357 | 0.14 |
| PMAB | 0030 | 1828 | 11-M | 31 | 356 | 0.13 |
| PMAB | 0030 | 1830 | 11-T | 05 | 325 | 0.05 |
| PMAB | 0030 | 1902 | 10-B | 44 | 346 | 0.18 |
| PMAB | 0030 | 1904 | 10-M | 26 | 224 | 0.15 |
| PMAB | 0030 | 1910 | 10-T | 07 | 318 | 0.04 |
| PMAB | 0030 | 1949 | 12-B | 45 | 217 | 0.15 |
| PMAB | 0030 | 1951 | 12-M | 26 | 090 | 0.00 |
| PMAB | 0030 | 1953 | 12-T | 07 | 230 | 0.05 |
| PMAB | 0030 | 2018 | 13-B | 45 | 212 | 0.18 |
| PMAB | 0030 | 2019 | 13-M | 23 | 262 | 0.25 |
| PMAB | 0030 | 2021 | 13-T | 06 | 236 | 0.20 |
| PMAB | 0030 | 2036 | 12-B | 45 | 230 | 0.15 |
| PMAB | 0030 | 2039 | 12-M | 25 |  | 0.00 |
| PMAB | 0030 | 2043 | 12-T | 08 | 220 | 0.05 |
| PMAB | 0030 | 2148 | 11-B | 50 | 018 | 0.18 |
| PMAB | 0030 | 2149 | 11-M | 27 | 051 | 0.21 |
| PMAB | 0030 | 2150 | 11-T | 05 | 120 | 0.10 |
| PMAB | 0030 | 2210 | 10-B | 46 | 138 | 0.23 |
| PMAB | 0030 | 2212 | 10-M | 24 | 132 | 0.31 |
| PMAB | 0030 | 2214 | 10-T | 03 | 129 | 0.31 |
| PMAB | 0030 | 2232 | 11-B | 49 | 156 | 0.05 |
| PMAB | 0030 | 2234 | 11-M | 26 | 163 | 0.10 |
| PMAB | 0030 | 2236 | 11-T | 05 | 316 | 0.13 |
| PMAB | 0030 | 2305 | 12-B | 45 | 225 | 0.10 |
| PMAB | 0030 | 2306 | 12-M | 26 | 200 | 0.10 |
| PMAB | 0030 | 2308 | 12-T | 06 | 190 | 0.10 |
| FRF | 0030 | 2359 | 10-B | 48 | 006 | 0.07 |
| FRF | 0030 | 0002 | 10-M | 24 | 141 | 0.15 |
| FRF | 0030 | 0004 | 10-T | 05 | 128 | 0.36 |
| FRF | 0030 | 0039 | 11-B | 45 | 190 | 0.15 |
| FRF | 0030 | 0042 | 11-M | 17 | 191 | 0.15 |
| FRF | 0030 | 0044 | 11-T | 05 | 186 | 0.05 |
| FRF | 0030 | 0059 | 12-B | 35 | 170 | 0.10 |
| FRF | 0030 | 0101 | 12-M | 19 | 225 | 0.21 |
| FRF | 0030 | 0102 | 12-T | 05 | 176 | 0.15 |
| FRF | 0030 | 0118 | 13-B | 38 | 076 | 0.05 |
| FRF | 0030 | 0120 | 13-M | 18 | 170 | 0.00 |
| FRF | 0030 | 0124 | 13-T | 05 | 038 | 0.18 |
| FRF | 0030 | 0209 | 10-B | 35 | 141 | 0.15 |
| FRF | 0030 | 0211 | 10-M | 21 | 128 | 0.31 |
| FRF | 0030 | 0213 | 10-T | 05 | 145 | 0.36 |
| FRF | 0030 | 0234 | 11-B | 46 | 350 | 0.00 |
| FRF | 0030 | 0237 | 11-M | 19 | 174 | 0.10 |
| FRF | 0030 | 0238 | 11-T | 05 | 158 | 0.12 |
| FRF | 0030 | 0251 | 12-B | 40 | 143 | 0.00 |
| FRF | 0030 | 0255 | 12-M | 19 | 166 | 0.04 |
| FRF | 0030 | 0259 | 12-T | 05 | 180 | 0.05 |
| FRF | 0030 | 0316 | 13-B | 35 | 255 | 0.05 |
| FRF | 0030 | 0322 | 13-M | 17 | 050 | 0.00 |
| FRF | 0030 | 0326 | 13-T | 05 | 200 | 0.10 |
| FRF | 0030 | 0407 | 10-B | 35 | 063 | 0.07 |
| FRF | 0030 | 0409 | 10-M | 18 | 224 | 0.15 |


| FRF | 0030 | 0416 | $10-T$ | 05 | 050 | 0.05 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FRF | 0030 | 0440 | $11-B$ | 36 | 285 | 0.05 |
| FRF | 0030 | 0456 | $12-B$ | 35 | 323 | 0.10 |
| FRF | 0030 | 0459 | $12-M$ | 18 | 010 | 0.00 |
| FRF | 0030 | 0501 | $12-T$ | 05 | 205 | 0.15 |
| FRF | 0030 | 0516 | $13-B$ | 36 | 229 | 0.20 |
| FRF | 0030 | 0518 | $13-M$ | 18 | 235 | 0.15 |
| FRF | 0030 | 0519 | $13-T$ | 05 | 230 | 0.15 |

RANGE 8-9 08/09/87-08/10/87 ENTRANCE TO NAVY BASIN

| FRF | 0030 | 2349 | 8A-B | 35 | 110 | 0.23 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FRF | 0030 | 2351 | 8A-M | 17 | 100 | 0.22 |
| FRF | 0030 | 2353 | 8A-T | 04 | 085 | 0.20 |
| FRF | 0030 | 0014 | 8B-B | 61 | 136 | 0.30 |
| FRF | 0030 | 0017 | 8B-M | 32 | 112 | 0.27 |
| FRF | 0030 | 0019 | 8B-T | 05 | 097 | 0.21 |
| FRF | 0030 | 0031 | 8C-B | 41 | 163 | 0.36 |
| FRF | 0030 | 0033 | 8C-M | 22 | 159 | 0.41 |
| FRF | 0030 | 0034 | 8C-T | 04 | 163 | 0.42 |
| FRF | 0030 | 0051 | 9A-B | 52 | 154 | 0.21 |
| FRF | 0030 | 0053 | 9A-M | 24 | 140 | 0.31 |
| FRF | 0030 | 0055 | 9A-T | 03 | 163 | 0.28 |
| FRF | 0030 | 0106 | $9 \mathrm{~B}-\mathrm{B}$ | 57 | 190 | 0.15 |
| FRF | 0030 | 0107 | $9 \mathrm{~B}-\mathrm{M}$ | 36 | 145 | 0.26 |
| FRF | 0030 | 0109 | $9 \mathrm{~B}-\mathrm{T}$ | 03 | 140 | 0.31 |
| FRF | 0030 | 0116 | 9C-B | 45 | 260 | 0.05 |
| FRF | 0030 | 0120 | 9C-M | 24 | 330 | 0.02 |
| FRF | 0030 | 0122 | $9 \mathrm{C}-\mathrm{T}$ | 05 | 105 | 0.25 |
| FRF | 0030 | 0137 | 8A-B | 53 | 127 | 0.48 |
| FRF | 0030 | 0139 | 8A-M | 25 | 113 | 0.46 |
| FRF | 0030 | 0140 | 8A-T | 03 | 113 | 0.46 |
| FRF | 0030 | 0153 | $8 \mathrm{~B}-\mathrm{B}$ | 56 | 138 | 0.41 |
| FRF | 0030 | 0156 | 8B-M | 31 | 111 | 0.42 |
| FRF | 0030 | 0157 | 8B-T | 07 | 138 | 0.36 |
| FRF | 0030 | 0223 | 8C-B | 33 | 191 | 0.11 |
| FRF | 0030 | 0225 | 8C-M | 16 | 173 | 0.31 |
| FRF | 0030 | 0227 | 8C-T | 04 | 174 | 0.32 |
| FRF | 0030 | 0241 | 9A-B | 42 | 144 | 0.17 |
| FRF | 0030 | 0245 | 9A-M | 21 | 159 | 0.40 |
| FRF | 0030 | 0247 | 9A-T | 07 | 136 | 0.48 |
| FRF | 0030 | 0256 | $9 \mathrm{~B}-\mathrm{B}$ | 55 | 230 | 0.21 |
| FRF | 0030 | 0259 | 9B-M | 24 | 135 | 0.25 |
| FRF | 0030 | 0301 | 9B-T | 05 | 179 | 0.10 |
| FRF | 0030 | 0308 | $9 \mathrm{C}-\mathrm{B}$ | 53 | 285 | 0.17 |
| FRF | 0030 | 0310 | $9 \mathrm{C}-\mathrm{M}$ | 30 | 300 | 0.05 |
| FRF | 0030 | 0313 | 9C-T | 07 | 089 | 0.05 |
| FRF | 0030 | 0329 | 8A-B | 39 | 111 | 0.24 |
| FRF | 0030 | 0331 | 8A-M | 22 | 127 | 0.36 |
| FRF | 0030 | 0332 | 8A-T | 06 | 103 | 0.20 |
| FRF | 0030 | 0349 | 8B-B | 55 | 124 | 0.03 |
| FRF | 0030 | 0351 | 8B-M | 29 | 120 | 0.23 |
| FRF | 0030 | 0354 | 8B-T | 06 | 084 | 0.21 |
| FRF | 0030 | 0402 | 8C-B | 24 | 312 | 0.10 |
| FRF | 0030 | 0403 | 8C-M | 13 | 029 | 0.10 |
| FRF | 0030 | 0405 | 8C-T | 07 | 041 | 0.07 |
| FRF | 0030 | 0421 | 9A-B | 47 | 117 | 0.18 |
| FRF | 0030 | 0423 | 9A-M | 28 | 152 | 0.21 |
| FRF | 0030 | 0426 | 9A-T | 07 |  | 0.00 |
| FRF | 0030 | 0433 | 9B-B | 52 | 154 | 0.14 |
| FRF | 0030 | 0436 | 9B-M | 32 | 160 | 0.10 |
| FRF | 0030 | 0438 | 9B-T | 06 | 116 | 0.15 |
| FRF | 0030 | 0446 | 9C-B | 55 | 235 | 0.02 |
| FRF | 0030 | 0501 | 9C-M | 27 | 285 | 0.25 |


|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FRF | 0030 | 0503 | $9 \mathrm{C}-\mathrm{T}$ | 07 | 180 | 0.05 |
| FRF | 0030 | 0533 | $8 A-B$ | 38 | 307 | 0.10 |
| FRF | 0030 | 0535 | $8 A-M$ | 24 | 255 | 0.20 |
| FRF | 0030 | 0537 | $8 A-T$ | 06 | 330 | 0.07 |
| FRF | 0030 | 0547 | $8 B-B$ | 57 | 318 | 0.10 |
| FRF | 0030 | 0553 | $8 B-M$ | 31 | 305 | 0.25 |
| FRF | 0030 | 0555 | $8 B-T$ | 08 | 186 | 0.10 |
| FRF | 0030 | 0711 | $8 C-B$ | 25 | 340 | 0.05 |
| FRF | 0030 | 0713 | $8 C-M$ | 12 | 140 | 0.09 |
| FRF | 0030 | 0717 | $8 \mathrm{C}-\mathrm{T}$ | 07 | 160 | 0.17 |
| FRF | 0030 | 0733 | $9 A-B$ | 48 | 265 | 0.17 |
| FRF | 0030 | 0734 | $9 A-M$ | 22 | 315 | 0.12 |
| FRF | 0030 | 0737 | $9 A-T$ | 03 | 335 | 0.24 |
| FRF | 0030 | 0747 | $9 B-B$ | 54 | 320 | 0.23 |
| FRF | 0030 | 0749 | $9 B-M$ | 26 | 305 | 0.13 |
| FRF | 0030 | 0751 | $9 B-T$ | 06 | 330 | 0.19 |
| FRF | 0030 | 0758 | $9 \mathrm{C}-B$ | 53 | 315 | 0.13 |
| FRF | 0030 | 0759 | $9 \mathrm{C}-\mathrm{M}$ | 26 | 340 | 0.08 |
| FRF | 0030 | 0801 | $9 C-T$ | 02 | 350 | 0.13 |
| FRF | 0015 | 0822 | $8 A-B$ | 41 | 150 | 0.20 |
| FRF | 0015 | 0825 | $8 A-M$ | 20 | 135 | 0.23 |
| FRF | 0015 | 0826 | $8 A-T$ | 06 | 105 | 0.33 |
| PMAB | 0030 | 0954 | $8 B-B$ | 59 | 132 | 0.10 |
| PMAB | 0030 | 1002 | $8 B-M$ | 34 | 283 | 0.05 |
| PMAB | 0030 | 1004 | $8 B-T$ | 05 | 011 | 0.25 |
| PMAB | 0031 | 1016 | $8 C-B$ | 61 | 068 | 0.10 |
| PMAB | 0031 | 1018 | $8 \mathrm{C}-M$ | 33 | 249 | 0.05 |
| PMAB | 0031 | 1020 | $8 C-T$ | 05 | 308 | 0.15 |
| PMAB | 0031 | 1036 | $9 A-B$ | 34 | 006 | 0.30 |
| PMAB | 0031 | 1039 | $9 A-M$ | 17 | 037 | 0.20 |
| PMAB | 0031 | 1041 | $9 A-T$ | 05 | 293 | 0.21 |
| PMAB | 0031 | 1049 | $9 B-B$ | 53 | 187 | 0.05 |
| PMAB | 0031 | 1051 | $9 B-M$ | 28 | 250 | 0.10 |
| PMAB | 0031 | 1053 | $9 B-T$ | 06 | 118 | 0.05 |
| PMAB | 0031 | 1058 | $9 C-B$ | 52 | 180 | 0.05 |
| PMAB | 0031 | 1101 | $9 C-M$ | 28 | 160 | 0.10 |
| PMAB | 0031 | 1103 | $9 C-T$ | 05 | 162 | 0.10 |
| PMAB | 0031 | 1120 | $8 A-B$ | 58 | 312 | 0.15 |
| FMAB | 0031 | 1121 | $8 A-M$ | 34 | 330 | 0.00 |
| PMAB | 0031 | 1123 | $8 A-T$ | 07 | 136 | 0.21 |
| PMAB | 0031 | 1125 | $8 B-B$ | 58 | 300 | 0.36 |
| PMAB | 0031 | 1127 | $8 B-M$ | 31 | 294 | 0.15 |
| PMAB | 0031 | 1141 | $8 B-T$ | 06 | 105 | 0.18 |
| PMAB | 0031 | 1150 | $8 C-B$ | 58 | 173 | 0.15 |
| PMAB | 0031 | 1152 | $8 C-M$ | 30 | 166 | 0.28 |
| PMAB | 0031 | 1155 | $8 C-T$ | 04 | 153 | 0.25 |
|  |  |  |  |  |  |  |

RANGE 4 08/ll/87 LA ENTRANCE TO CERRITOS CHANNEL

| PMAB | 0031 |
| :--- | :--- |
| PMAB | 0031 |
| FMAB | 0031 |
| PMAB | 0031 |


| 0031 | $4 A-B$ |
| :--- | :--- |
| 0033 | $4 A-M$ |
| 0036 | $4 A-T$ |
| 0043 | $4 B-B$ |
| 0047 | $4 B-M$ |
| 0049 | $4 B-T$ |
| 0103 | $4 C-B$ |
| 0106 | $4 C-M$ |
| 0108 | $4 C-T$ |
| 0116 | $4 A-B$ |
| 0119 | $4 A-M$ |
| 0121 | $4 A-T$ |
| 0130 | $4 B-B$ |
| 0131 | $4 B-M$ |
| 0133 | $4 B-T$ |


| 210 | 0.18 |
| :--- | :--- |
| 118 | 0.10 |
| 146 | 0.51 |
| 142 | 0.05 |
| 149 | 0.21 |
| 150 | 0.46 |
| 135 | 0.07 |
| 142 | 0.36 |
| 143 | 0.49 |
| 145 | 0.10 |
| 148 | 0.41 |
| 150 | 0.57 |
| 342 | 0.02 |
| 153 | 0.15 |
| 145 | 0.52 |


| PMAB | 0031 | 0140 | 4C-B | 40 | 307 | 0.10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PMAB | 0031 | 0142 | 4C-M | 22 | 146 | 0.30 |
| PMAB | 0031 | 0143 | 4C-T | 05 | 146 | 0.57 |
| PMAB | 0031 | 0151 | $4 \mathrm{~A}-\mathrm{B}$ | 42 | 121 | 0.05 |
| PMAB | 0031 | 0153 | 4A-M | 24 | 145 | 0.31 |
| PMAB | 0031 | 0155 | 4A-T | 05 | 149 | 0.52 |
| PMAB | 0031 | 0200 | 4B-B | 42 | 143 | 0.10 |
| PMAB | 0031 | 0214 | 4B-M | 23 | 135 | 0.25 |
| PMAB | 0031 | 0215 | 4B-T | 06 | 148 | 0.67 |
| PMAB | 0031 | 0220 | 4C-B | 40 | 148 | 0.10 |
| PMAB | 0031 | 0222 | 4C-M | 25 | 146 | 0.31 |
| PMAB | 0031 | 0224 | 4C-T | 05 | 146 | 0.72 |
| PMAB | 0031 | 0228 | 4A-B | 42 | 176 | 0.05 |
| PMAB | 0031 | 0233 | 4A-M | 24 | 148 | 0.41 |
| PMAB | 0031 | 0235 | 4A-T | 05 | 148 | 0.52 |
| PMAB | 0031 | 0244 | $4 \mathrm{~B}-\mathrm{B}$ | 40 | 070 | 0.05 |
| PMAB | 0031 | 0245 | 4B-M | 25 | 122 | 0.26 |
| PMAB | 0031 | 0248 | 4B-T | 05 | 152 | 0.44 |
| PMAB | 0031 | 0256 | 4C-B | 40 | 318 | 0.10 |
| PMAB | 0031 | 0259 | 4C-M | 26 | 167 | 0.04 |
| PMAB | 0031 | 0300 | 4C-T | 06 | 150 | 0.41 |
| PMAB | 0031 | 0307 | 4A-B | 41 | 238 | 0.18 |
| PMAB | 0031 | 0309 | 4A-M | 25 | 145 | 0.25 |
| PMAB | 0031 | 0311 | 4A-T | 05 | 134 | 0.36 |
| PMAB | 0031 | 0318 | 4B-B | 41 | 120 | 0.05 |
| PMAB | 0031 | 0320 | 4B-M | 25 | 142 | 0.25 |
| PMAB | 0031 | 0321 | 4B-T | 05 | 148 | 0.57 |
| PMAB | 0031 | 0328 | 4C-B | 39 | 028 | 0.05 |
| PMAB | 0031 | 0330 | 4C-M | 25 | 143 | 0.21 |
| PMAB | 0031 | 0333 | 4C-T | 05 | 143 | 0.42 |
| PMAB | 0031 | 0345 | $4 \mathrm{~A}-\mathrm{B}$ | 40 | 097 | 0.05 |
| PMAB | 0031 | 0347 | 4A-M | 21 | 149 | 0.36 |
| PMAB | 0031 | 0349 | 4A-T | 05 | 156 | 0.51 |
| PMAB | 0031 | 0359 | 4B-B | 40 | 296 | 0.05 |
| PMAB | 0031 | 0401 | 4B-M | 23 | 149 | 0.10 |
| PMAB | 0031 | 0402 | 4B-T | 04 | 149 | 0.36 |
| PMAB | 0031 | 0413 | 4C-B | 38 | 295 | 0.05 |
| PMAB | 0031 | 0416 | 4C-M | 22 | 153 | 0.25 |
| PMAB | 0031 | 0417 | 4C-T | 05 | 146 | 0.41 |
| PMAB | 0015 | 0742 | $4 \mathrm{~A}-\mathrm{B}$ | 35 |  | 0.15 |
| PMAB | 0015 | 0744 | 4A-M | 18 |  | 0.06 |
| PMAB | 0015 | 0746 | 4A-T | 05 |  | 0.30 |
| PMAB | 0015 | 0754 | $4 \mathrm{~B}-\mathrm{B}$ | 43 | 310 | 0.39 |
| PMAB | 0015 | 0757 | 4B-M | 25 | 310 | 0.30 |
| PMAB | 0015 | 0759 | 4B-T | 09 | 335 | 0.13 |
| PMAB | 0015 | 0809 | 4C-B | 25 | 340 | 0.33 |
| PMAB | 0015 | 0811 | 4C-M | 15 | 120 | 0.10 |
| PMAB | 0015 | 0814 | 4C-T | 05 | 140 | 0.18 |
| PMAB | 0015 | 0823 | $4 \mathrm{~A}-\mathrm{B}$ | 40 | 215 | 0.15 |
| PMAB | 0015 | 0825 | 4A-M | 20 | 275 | 0.08 |
| PMAB | 0015 | 0827 | 4A-T | 09 | 175 | 0.06 |
| PMAB | 0015 | 0834 | 4B-B | 35 | 310 | 0.04 |
| PMAB | 0015 | 0835 | 4B-M | 15 | 345 | 0.01 |
| PMAB | 0015 | 0836 | 4B-T | 05 | 350 | 0.02 |
| PMAB | 0015 | 0844 | 4C-B | 40 | 320 | 0.27 |
| PMAB | 0015 | 0845 | 4C-M | 20 | 130 | 0.05 |
| PMAB | 0015 | 0847 | 4C-T | 09 | 150 | 0.07 |
| PMAB | 0015 | 0910 | $4 \mathrm{~A}-\mathrm{B}$ | 41 | 325 | 0.25 |
| PMAB | 0015 | 0912 | 4A-M | 20 | 330 | 0.26 |
| PMAB | 0015 | 0913 | 4A-T | 05 | 340 | 0.23 |
| PMAB | 0015 | 0923 | 4B-B | 45 | 350 | 0.12 |
| PMAB | 0015 | 0925 | 4B-M | 23 | 350 | 0.08 |
| PMAB | 0015 | 0927 | 4B-T | 09 | 260 | 0.10 |
| PMAB | 0015 | 0934 | 4C-B | 29 | 315 | 0.25 |
| PMAB | 0015 | 0936 | 4C-M | 24 | 230 | 0.10 |


|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PMAB | 0015 | 0938 | $4 C-T$ | 05 | 125 | 0.10 |
| PMAB | 0015 | 0947 | $4 A-B$ | 42 | 300 | 0.33 |
| PMAB | 0015 | 0949 | $4 A-M$ | 21 | 340 | 0.30 |
| PMAB | 0015 | 0953 | $4 A-T$ | 09 | 340 | 0.30 |
| PMAB | 0015 | 1003 | $4 B-B$ | 45 | 325 | 0.15 |
| PMAB | 0015 | 1005 | $4 B-M$ | 20 | 315 | 0.10 |
| PMAB | 0015 | 1008 | $4 B-T$ | 05 | 300 | 0.05 |
| PMAB | 0015 | 1020 | $4 \mathrm{C}-\mathrm{B}$ | 37 | 290 | 0.02 |
| PMAB | 0015 | 1022 | $4 \mathrm{C}-\mathrm{M}$ | 18 | 135 | 0.19 |
| PMAB | 0015 | 1023 | $4 \mathrm{C}-\mathrm{T}$ | 09 | 145 | 0.31 |
| PMAB | 0015 | 1031 | $4 \mathrm{~A}-\mathrm{B}$ | 41 | 355 | 0.20 |
| PMAB | 0015 | 1035 | $4 A-M$ | 20 | 275 | 0.23 |
| PMAB | 0015 | 1036 | $4 A-T$ | 06 | 005 | 0.10 |
| PMAB | 0015 | 1045 | $4 \mathrm{~B}-\mathrm{B}$ | 45 | 310 | 0.27 |
| PMAB | 0015 | 1046 | $4 B-M$ | 22 | 320 | 0.29 |
| PMAB | 0015 | 1048 | $4 \mathrm{~B}-\mathrm{T}$ | 09 | 300 | 0.10 |
| PMAB | 0015 | 1055 | $4 \mathrm{C}-\mathrm{B}$ | 31 | 305 | 0.04 |
| PMAB | 0015 | 1057 | $4 \mathrm{C}-\mathrm{M}$ | 15 | 130 | 0.25 |
| PMAB | 0015 | 1058 | $4 \mathrm{C}-\mathrm{T}$ | 05 | 145 | 0.23 |

RANGE 1 08/12/87 ANGELS GATE

| PMAB | 0015 | 0842 | $1 \mathrm{~A}-\mathrm{B}$ | 44 | 280 | 0.38 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PMAB | 0015 | 0845 | 1A-M | 24 | 315 | 0.33 |
| PMAB | 0015 | 0848 | 1A-T | 04 | 080 | 0.40 |
| PMAB | 0015 | 0856 | 1B-B | 46 | 300 | 0.60 |
| PMAB | 0015 | 0857 | 1B-M | 27 | 315 | 0.45 |
| PMAB | 0015 | 0902 | 1B-T | 04 | 295 | 0.05 |
| PMAB | 0015 | 0913 | 1C-B | 45 | 265 | 0.60 |
| PMAB | 0015 | 0914 | 1C-M | 25 | 255 | 0.45 |
| PMAB | 0015 | 0916 | 1C-T | 04 | 215 | 0.40 |
| PMAB | 0015 | 0945 | $1 \mathrm{~A}-\mathrm{B}$ | 51 | 320 | 0.16 |
| PMAB | 0015 | 0948 | 1A-M | 28 | 285 | 0.39 |
| PMAB | 0015 | 0952 | $1 \mathrm{~A}-\mathrm{T}$ | 04 | 285 | 0.10 |
| PMAB | 0015 | 1000 | 1B-B | 50 | 320 | 0.28 |
| PMAB | 0015 | 1004 | 1B-M | 27 | 280 | 0.44 |
| PMAB | 0015 | 1006 | 1B-T | 05 | 270 | 0.44 |
| PMAB | 0015 | 1013 | 1C-B | 53 | 210 | 0.44 |
| PMAB | 0015 | 1016 | $1 \mathrm{C}-\mathrm{M}$ | 29 | 210 | 0.44 |
| PMAB | 0015 | 1019 | 1C-T | 06 | 200 | 0.42 |
| PMAB | 0015 | 1114 | $1 \mathrm{~A}-\mathrm{B}$ | 52 | 205 | 0.30 |
| PMAB | 0015 | 1120 | $1 \mathrm{~A}-\mathrm{M}$ | 27 | 190 | 0.32 |
| PMAB | 0015 | 1124 | 1A-T | 05 | 070 | 0.40 |
| PMAB | 0015 | 1137 | $1 B-B$ | 54 | 225 | 0.35 |
| PMAB | 0015 | 1142 | 1B-M | 28 | 185 | 0.32 |
| PMAB | 0015 | 1145 | $1 \mathrm{~B}-\mathrm{T}$ | 05 | 180 | 0.45 |
| PMAB | 0015 | 1149 | 1C-B | 53 | 225 | 0.40 |
| PMAB | 0015 | 1150 | $1 \mathrm{C}-\mathrm{M}$ | 27 | 210 | 0.40 |
| PMAB | 0015 | 1153 | 1C-T | 06 | 150 | 0.40 |
| PMAB | 0015 | 1200 | $1 \mathrm{~A}-\mathrm{B}$ | 50 | 170 | 0.30 |
| PMAB | 0015 | 1202 | 1A-M | 28 | 215 | 0.35 |
| PMAB | 0015 | 1204 | $1 \mathrm{~A}-\mathrm{T}$ | 06 | 090 | 0.30 |
| PMAB | 0015 | 1212 | 1B-B | 50 | 245 | 0.35 |
| PMAB | 0015 | 1215 | 1B-M | 27 | 220 | 0.40 |
| PMAB | 0015 | 1216 | $1 \mathrm{~B}-\mathrm{T}$ | 05 | 090 | 0.25 |
| PMAB | 0015 | 1225 | $1 \mathrm{C}-\mathrm{B}$ | 52 | 225 | 0.60 |
| PMAB | 0015 | 1227 | 1C-M | 29 | 215 | 0.55 |
| PMAB | 0015 | 1230 | 1C-T | 06 | 165 | 0.55 |
| PMAB | 0015 | 1238 | $1 \mathrm{~A}-\mathrm{B}$ | 53 | 135 | 0.40 |
| PMAB | 0015 | 1239 | 1A-M | 30 | 180 | 0.35 |
| PMAB | 0015 | 1241 | 1A-T | 06 | 055 | 0.70 |
| PMAB | 0015 | 1250 | 1B-B | 50 | 185 | 0.25 |
| PMAB | 0015 | 1253 | 1B-M | 28 | 170 | 0.25 |
| PMAB | 0015 | 1256 | 1B-T | 06 | 080 | 0.35 |


| PMAB | 0015 | 1336 | $1 \mathrm{C}-\mathrm{B}$ | 52 | 205 | 0.35 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PMAB | 0015 | 1339 | $1 \mathrm{C}-\mathrm{M}$ | 28 | 180 | 0.40 |
| PMAB | 0015 | 1341 | $1 \mathrm{C-T}$ | 06 | 085 | 0.45 |
| FRF | 0015 | 1518 | $1 A-B$ | 49 | 250 | 0.10 |
| FRF | 0015 | 1520 | $1 A-M$ | 22 | 350 | 0.35 |
| FRF | 0015 | 1521 | $1 A-T$ | 05 | 060 | 0.35 |
| FRF | 0015 | 1536 | $1 B-B$ | 46 | 225 | 1.00 |
| FRF | 0015 | 1539 | $1 B-M$ | 24 | 275 | 0.65 |
| FRF | 0015 | 1540 | $1 B-T$ | 03 | 260 | 0.80 |
| FRF | 0015 | 1509 | $1 A-B$ | 50 | 265 | 0.13 |
| FRF | 0015 | 1511 | $1 A-M$ | 24 | 010 | 0.38 |
| FRF | 0015 | 1513 | $1 A-T$ | 05 | 015 | 0.30 |
| FRF | 0015 | 1622 | $1 B-B$ | 46 | 225 | 0.47 |
| FRF | 0015 | 1623 | $1 B-M$ | 22 | 010 | 0.47 |
| FRF | 0015 | 1624 | $1 B-T$ | 05 | 020 | 0.45 |
| FRF | 0015 | 1638 | $1 C-B$ | 39 | 020 | 0.25 |
| FRF | 0015 | 1640 | $1 \mathrm{C}-M$ | 18 | 010 | 0.47 |
| FRF | 0015 | 1642 | $1 C-T$ | 06 | 015 | 0.47 |
| FRF | 0015 | 1653 | $1 A-B$ | 46 | 335 | 0.42 |
| FRF | 0015 | 1655 | $1 A-M$ | 24 | 020 | 0.18 |
| FRF | 0015 | 1656 | $1 A-T$ | 03 | 100 | 0.38 |
| FRF | 0015 | 1749 | $1 B-B$ | 46 | 005 | 0.48 |
| FRF | 0015 | 1751 | $1 B-M$ | 22 | 020 | 0.60 |
| FRF | 0015 | 1753 | $1 B-T$ | 05 | 025 | 0.45 |
| FRF | 0015 | 1821 | $1 C-B$ | 39 | 340 | 0.90 |
| FRF | 0015 | 1823 | $1 \mathrm{C}-M$ | 21 | 015 | 1.00 |
| FRF | 0015 | 1825 | $1 C-T$ | 03 | 025 | 1.00 |
| FRF | 0015 | 1834 | $1 A-B$ | 49 | 005 | 0.45 |
| FRF | 0015 | 1836 | $1 A-M$ | 22 | 350 | 0.48 |
| FRF | 0015 | 1838 | $1 A-T$ | 05 | 235 | 0.60 |
| FRF | 0015 | 1846 | $1 B-B$ | 49 | 325 | 0.70 |
| FRF | 0015 | 1847 | $1 B-M$ | 23 | 015 | 0.80 |
| FRF | 0015 | 1849 | $1 B-T$ | 06 | 030 | 0.80 |
| FRF | 0015 | 1858 | $1 C-B$ | 49 | 315 | 0.90 |
| FRF | 0015 | 1900 | $1 C-M$ | 23 | 345 | 0.90 |
| FRF | 0015 | 1902 | $1 C-T$ | 06 | 020 | 1.00 |

RANGE 2 08/13/87 QUEENS GATE

|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PMAB | 0015 | 0821 | $2 A-B$ | 56 | 330 | 0.35 |
| PMAB | 0015 | 0823 | $2 A-M$ | 30 | 105 | 0.30 |
| PMAB | 0015 | 0830 | $2 A-T$ | 05 | 085 | 0.35 |
| PMAB | 0015 | 0850 | $2 B-B$ | 54 | 345 | 0.50 |
| PMAB | 0015 | 0852 | $2 B-M$ | 30 | 010 | 0.50 |
| PMAB | 0015 | 0854 | $2 B-T$ | 05 | 320 | 0.51 |
| PMAB | 0015 | 0904 | $2 C-B$ | 54 | 235 | 0.20 |
| PMAB | 0015 | 0912 | $2 C-M$ | 30 | 240 | 0.25 |
| PMAB | 0015 | 0915 | $2 C-T$ | 05 | 255 | 0.34 |
| PMAB | 0015 | 0926 | $2 A-B$ | 56 | 340 | 0.52 |
| PMAB | 0015 | 0930 | $2 A-M$ | 30 | 005 | 0.50 |
| PMAB | 0015 | 0932 | $2 A-T$ | 05 | 085 | 0.40 |
| PMAB | 0015 | 0957 | $2 B-B$ | 58 | 330 | 0.45 |
| PMAB | 0015 | 0959 | $2 B-M$ | 30 | 345 | 0.50 |
| PMAB | 0015 | 1000 | $2 B-T$ | 05 | 000 | 1.00 |
| PMAB | 0015 | 1010 | $2 C-B$ | 55 | 335 | 0.50 |
| PMAB | 0015 | 1012 | $2 C-M$ | 30 | 320 | 0.35 |
| PMAB | 0015 | 1014 | $2 C-T$ | 05 | 045 | 0.40 |
| PMAB | 0015 | 1021 | $2 A-B$ | 57 | 320 | 0.60 |
| PMAB | 0015 | 1023 | $2 A-M$ | 30 | 290 | 0.60 |
| PMAB | 0015 | 1025 | $2 A-T$ | 05 | 295 | 0.60 |
| PMAB | 0015 | 1037 | $2 B-B$ | 56 | 345 | 0.50 |
| PMAB | 0015 | 1038 | $2 B-M$ | 30 | 330 | 0.60 |
| PMAB | 0015 | 1040 | $2 B-T$ | 05 | 310 | 0.60 |
| PMAB | 0015 | 1055 | $2 C-B$ | 55 | 345 | 0.40 |


| PMAB | 0015 | 1057 | 2C-M | 30 | 275 | 0.35 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PMAB | 0015 | 1100 | 2C-T | 05 | 295 | 0.20 |  |  |
| PMAB | 0015 | 1107 | 2A-B | 59 | 315 | 0.60 |  |  |
| PMAB | 0015 | 1109 | 2A-M | 30 | 305 | 0.40 |  |  |
| PMAB | 0015 | 1111 | 2A-T | 05 | 310 | 0.45 |  |  |
| PMAB | 0015 | 1118 | 2B-B | 54 | 325 | 0.60 |  |  |
| PMAB | 0015 | 1120 | 2B-M | 30 | 315 | 0.50 |  |  |
| PMAB | 0015 | 1122 | 2B-T | 05 | 320 | 0.40 |  |  |
| PMAB | 0015 | 1133 | 2C-B | 56 | 300 |  | 21 | 0.20 |
| PMAB | 0015 | 1135 | 2C-M | 30 | 270 | 0.40 |  |  |
| PMAB | 0015 | 1138 | 2C-T | 05 | 255 | 0.25 |  |  |
| PMAB | 0015 | 1146 | 2A-B | 59 | 310 | 0.50 |  |  |
| PMAB | 0015 | 1148 | 2A-M | 30 | 315 | 0.45 |  |  |
| PMAB | 0015 | 1150 | 2A-T | 05 | 345 | 0.30 |  |  |
| PMAB | 0015 | 1202 | $2 \mathrm{~B}-\mathrm{B}$ | 54 | 005 | 0.50 |  |  |
| PMAB | 0015 | 1205 | 2B-M | 30 | 290 | 0.60 |  |  |
| PMAB | 0015 | 1207 | 2B-T | 05 | 315 | 0.50 |  |  |
| PMAB | 0015 | 1215 | 2C-B | 55 | 020 |  | 21 | 0.20 |
| PMAB | 0015 | 1217 | 2C-M | 30 | 240 |  | 25 | 0.23 |
| PMAB | 0015 | 1220 | 2C-T | 05 | 225 | 0.30 |  |  |
| PMAB | 0015 | 1228 | 2A-B | 66 | 300 | 0.35 |  |  |
| PMAB | 0015 | 1230 | 2A-M | 30 | 300 | 0.35 |  |  |
| PMAB | 0015 | 1232 | 2A-T | 05 | 335 | 0.20 |  |  |
| PMAB | 0015 | 1237 | 2B-B | 55 | 330 | 0.40 |  |  |
| PMAB | 0015 | 1240 | 2B-M | 30 | 260 | 0.35 |  |  |
| PMAB | 0015 | 1242 | 2B-T | 05 | 290 | 0.30 |  |  |
| PMAB | 0015 | 1250 | 2C-B | 57 | 140 |  | 13 | 0.12 |
| PMAB | 0015 | 1252 | 2C-M | 30 | 210 | 0.30 |  |  |
| PMAB | 0015 | 1254 | 2C-T | 05 |  | 0.25 |  |  |
| FRF | 0015 | 1404 | 2C-B | 54 | 220 | 0.35 |  |  |
| FRF | 0015 | 1406 | 2C-M | 26 | 175 | 0.25 |  |  |
| FRF | 0015 | 1408 | 2C-T | 06 | 140 | 0.42 |  |  |
| FRF | 0015 | 1448 | 2A-B | 57 | 170 | 0.20 |  |  |
| FRF | 0015 | 1450 | 2A-M | 27 | 105 | 0.40 |  |  |
| FRF | 0015 | 1452 | 2A-T | 03 | 095 | 0.44 |  |  |
| FRF | 0015 | 1502 | 2B-B | 53 | 185 | 0.38 |  |  |
| FRF | 0015 | 1504 | 2B-M | 27 | 145 | 0.37 |  |  |
| FRF | 0015 | 1505 | 2B-T | 07 | 115 | 0.70 |  |  |
| FRF | 0015 | 1618 | $2 \mathrm{~A}-\mathrm{B}$ | 56 | 125 | 0.42 |  |  |
| FRF | 0015 | 1620 | 2A-M | 28 | 110 | 0.33 |  |  |
| FRF | 0015 | 1622 | 2A-T | 06 | 100 | 0.44 |  |  |
| FRF | 0015 | 1634 | 2B-B | 53 | 155 | 0.30 |  |  |
| FRF | 0015 | 1635 | 2B-M | 24 | 140 | 0.42 |  |  |
| FRF | 0015 | 1637 | 2B-T | 06 | 105 | 0.70 |  |  |
| FRF | 0015 | 1649 | 2C-B | 54 | 240 | 0.34 |  |  |
| FRF | 0015 | 1651 | 2C-M | 26 | 200 | 0.35 |  |  |
| FRF | 0015 | 1654 | 2C-T | 06 | 120 | 0.43 |  |  |
| FRF | 0015 | 1703 | $2 \mathrm{~A}-\mathrm{B}$ | 58 | 075 | 0.25 |  |  |
| FRF | 0015 | 1706 | 2A-M | 30 | 095 | 0.36 |  |  |
| FRF | 0015 | 1710 | $2 \mathrm{~A}-\mathrm{T}$ | 06 | 080 | 0.25 |  |  |
| FRF | 0015 | 1718 | $2 B-B$ | 53 | 105 | 0.20 |  |  |
| FRF | 0015 | 1720 | 2B-M | 26 | 105 | 0.27 |  |  |
| FRF | 0015 | 1722 | 2B-T | 05 | 090 | 0.43 |  |  |
| FRF | 0015 | 1735 | 2C-B | 52 | 090 | 0.20 |  |  |
| FRF | 0015 | 1738 | 2C-M | 25 | 070 | 0.18 |  |  |
| FRF | 0015 | 1740 | 2C-T | 05 | 080 | 0.39 |  |  |
| FRF | 0015 | 1749 | 2A-B | 58 | 135 | 0.25 |  |  |
| FRF | 0015 | 1751 | 2A-M | 28 | 120 | 0.38 |  |  |
| FRF | 0015 | 1753 | 2A-T | 06 | 095 | 0.44 |  |  |
| FRF | 0015 | 1801 | 2B-B | 52 | 110 | 0.32 |  |  |
| FRF | 0015 | 1803 | 2B-M | 26 | 100 | 0.25 |  |  |
| FRF | 0015 | 1805 | 2B-T | 06 | 080 | 0.43 |  |  |
| FRF | 0015 | 1815 | $2 \mathrm{C}-\mathrm{B}$ | 52 | 065 | 0.15 |  |  |
| FRF | 0015 | 1817 | 2C-M | 24 | 080 | 0.20 |  |  |
| FRF | 0015 | 1820 | 2C-T | 06 | 060 | 0.44 |  |  |

RANGE 7 O8/14/87 NAVY MOLE TO ANGELS GATE

| PMAB | 0015 | 0837 | 7A-B | 38 | 225 |  | 08 | 0.08 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PMAB | 0015 | 0841 | 7A-M | 18 | 070 |  | 08 | 0.08 |
| PMAB | 0015 | 0845 | 7A-T | 05 | 355 |  | 12 | 0.11 |
| PMAB | 0015 | 0856 | $7 \mathrm{~B}-\mathrm{B}$ | 42 | 310 |  | 14 | 0.13 |
| PMAB | 0015 | 0859 | 7B-M | 25 | 340 |  | 25 | 0.23 |
| PMAB | 0015 | 0901 | 7B-T | 05 | 015 |  | 15 | 0.14 |
| PMAB | 0015 | 0914 | $7 \mathrm{C}-\mathrm{B}$ | 46 | 355 |  | 25 | 0.23 |
| PMAB | 0015 | 0916 | $7 \mathrm{C}-\mathrm{M}$ | 26 | 035 |  | 26 | 0.24 |
| PMAB | 0015 | 0919 | 7C-T | 05 | 030 |  | 16 | 0.15 |
| PMAB | 0015 | 0930 | 7D-B | 48 | 020 | 0.40 |  |  |
| PMAB | 0015 | 0932 | 7D-M | 28 | 035 | 0.35 |  |  |
| PMAB | 0015 | 0934 | 7D-T | 05 | 045 |  | 16 | 0.15 |
| PMAB | 0015 | 0955 | $7 \mathrm{E}-\mathrm{B}$ | 49 | 330 |  | 21 | 0.20 |
| PMAB | 0015 | 0957 | 7E-M | 28 | 010 | 0.55 |  |  |
| PMAB | 0015 | 1000 | 7E-T | 05 | 075 | 0.40 |  |  |
| PMAB | 0015 | 1016 | 7A-B | 40 | 220 |  | 17 | 0.16 |
| PMAB | 0015 | 1019 | 7A-M | 23 | 255 |  | 21 | 0.20 |
| PMAB | 0015 | 1021 | 7A-T | 05 | 350 |  | 08 | 0.08 |
| PMAB | 0015 | 1033 | $7 \mathrm{~B}-\mathrm{B}$ | 43 | 345 |  | 23 | 0.22 |
| PMAB | 0015 | 1036 | $7 \mathrm{~B}-\mathrm{M}$ | 25 | 265 |  | 21 | 0.20 |
| PMAB | 0015 | 1038 | 7B-T | 05 | 105 |  | 16 | 0.15 |
| PMAB | 0015 | 1049 | 7C-B | 47 | 315 | 0.30 |  |  |
| PMAB | 0015 | 1051 | 7C-M | 24 | 325 | 0.35 |  |  |
| PMAB | 0015 | 1054 | 7C-T | 05 | 070 |  | 13 | 0.12 |
| PMAB | 0015 | 1106 | 7D-B | 48 | 310 |  | 16 | 0.15 |
| PMAB | 0015 | 1108 | 7D-M | 27 | 355 | 0.50 |  |  |
| PMAB | 0015 | 1112 | 7D-T | 05 | 030 |  | 16 | 0.15 |
| PMAB | 0015 | 1123 | $7 \mathrm{E}-\mathrm{B}$ | 50 | 315 | 0.35 |  |  |
| PMAB | 0015 | 1125 | $7 \mathrm{E}-\mathrm{M}$ | 28 | 005 | 0.55 |  |  |
| PMAB | 0015 | 1127 | 7E-T | 05 | 015 | 0.60 |  |  |
| PMAB | 0015 | 1147 | $7 \mathrm{~A}-\mathrm{B}$ | 41 | 260 |  | 13 | 0.12 |
| PMAB | 0015 | 1149 | 7A-M | 24 | 220 |  | 25 | 0.23 |
| PMAB | 0015 | 1151 | 7A-T | 05 | 175 | 0.40 |  |  |
| PMAB | 0015 | 1201 | 7B-B | 43 | 250 |  | 16 | 0.15 |
| PMAB | 0015 | 1203 | 7B-M | 24 | 320 |  | 28 | 0.26 |
| PMAB | 0015 | 1206 | 7B-T | 05 | 170 |  | 27 | 0.25 |
| PMAB | 0015 | 1215 | $7 \mathrm{C}-\mathrm{B}$ | 48 | 240 |  | 11 | 0.10 |
| PMAB | 0015 | 1217 | $7 \mathrm{C}-\mathrm{M}$ | 28 | 345 | 0.50 |  |  |
| PMAB | 0015 | 1219 | 7C-T | 05 | 220 |  | 13 | 0.12 |
| PMAB | 0015 | 1229 | 7D-B | 49 | 250 |  | 17 | 0.16 |
| PMAB | 0015 | 1231 | 7D-M | 27 | 350 | 0.50 |  |  |
| PMAB | 0015 | 1234 | 7D-T | 05 | 055 |  | 29 | 0.27 |
| PMAB | 0015 | 1242 | $7 \mathrm{E}-\mathrm{B}$ | 51 | 320 | 0.35 |  |  |
| PMAB | 0015 | 1244 | 7E-M | 30 | 355 | 0.35 |  |  |
| PMAB | 0015 | 1245 | 7E-T | 05 | 020 | 0.30 |  |  |
| PMAB | 0015 | 1433 | 7A-B | 40 | 340 | 0.10 |  |  |
| PMAB | 0015 | 1435 | 7A-M | 19 | 270 | 0.17 |  |  |
| PMAB | 0015 | 1438 | 7A-T | 06 | 070 | 0.16 |  |  |
| PMAB | 0015 | 1451 | 7B-B | 44 | 290 | 0.15 |  |  |
| PMAB | 0015 | 1453 | $7 \mathrm{~B}-\mathrm{M}$ | 22 | 050 | 0.18 |  |  |
| PMAB | 0015 | 1456 | 7B-T | 06 | 140 | 0.17 |  |  |
| PMAB | 0015 | 1509 | 7C-B | 47 | 210 | 0.25 |  |  |
| PMAB | 0015 | 1512 | 7C-M | 23 | 025 | 0.20 |  |  |
| PMAB | 0015 | 1514 | $7 \mathrm{C}-\mathrm{T}$ | 06 | 080 | 0.22 |  |  |
| PMAB | 0015 | 1524 | 7D-B | 49 | 195 | 0.07 |  |  |
| PMAB | 0015 | 1526 | 7D-M | 24 | 320 | 0.20 |  |  |
| PMAB | 0015 | 1528 | $7 \mathrm{D}-\mathrm{T}$ | 07 | 090 | 0.34 |  |  |
| PMAB | 0015 | 1536 | 7E-B | 50 | 040 | 0.20 |  |  |
| PMAB | 0015 | 1539 | $7 \mathrm{E}-\mathrm{M}$ | 24 | 035 | 0.09 |  |  |
| PMAB | 0015 | 1541 | $7 \mathrm{E}-\mathrm{T}$ | 06 | 085 | 0.44 |  |  |
| FRF | 0015 | 1556 | $7 \mathrm{~A}-\mathrm{B}$ | 40 | 290 | 0.09 |  |  |


| FRF | 0015 | 1559 | 7A-M | 18 | 075 | 0.15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FRF | 0015 | 1601 | 7A-T | 07 | 090 | 0.30 |
| FRF | 0015 | 1614 | 7B-B | 43 | 250 | 0.12 |
| FRF | 0015 | 1616 | 7B-M | 21 | 115 | 0.12 |
| FRF | 0015 | 1618 | 7B-T | 06 | 095 | 0.29 |
| FRF | 0015 | 1629 | 7C-B | 46 | 285 | 0.08 |
| FRF | 0015 | 1631 | $7 \mathrm{C}-\mathrm{M}$ | 22 | 075 | 0.28 |
| FRF | 0015 | 1634 | 76-T | 06 | 080 | 0.23 |
| FRF | 0015 | 1643 | 7D-B | 47 | 240 | 0.15 |
| FRF | 0015 | 1646 | 7D-M | 23 | 080 | 0.17 |
| FRF | 0015 | 1648 | 7D-T | 06 | 105 | 0.32 |
| FRF | 0015 | 1700 | $7 \mathrm{E}-\mathrm{B}$ | 50 | 190 | 0.20 |
| FRF | 0015 | 1702 | 7E-M | 23 | 080 | 0.16 |
| FRF | 0015 | 1704 | 7E-T | 06 | 105 | 0.35 |
| FRF | 0015 | 1721 | 7A-B | 37 | 020 | 0.21 |
| FRF | 0015 | 1724 | 7A-M | 17 | 300 | 0.14 |
| FRF | 0015 | 1726 | 7A-T | 05 | 070 | 0.25 |
| FRF | 0015 | 1738 | $7 B-B$ | 42 | 245 | 0.08 |
| FRF | 0015 | 1741 | $7 \mathrm{~B}-\mathrm{M}$ | 19 | 015 | 0.10 |
| FRF | 0015 | 1744 | 7B-T | 07 | 060 | 0.22 |
| FRF | 0015 | 1755 | 7C-B | 45 | 235 | 0.04 |
| FRF | 0015 | 1758 | $7 \mathrm{C}-\mathrm{M}$ | 21 | 090 | 0.23 |
| FRF | 0015 | 1800 | 7C-T | 06 | 075 | 0.40 |
| FRF | 0015 | 1813 | 7D-B | 46 | 040 | 0.04 |
| FRF | 0015 | 1815 | 7D-M | 23 | 075 | 0.30 |
| FRF | 0015 | 1817 | 7D-T | 06 | 090 | 0.38 |
| FRF | 0015 | 1827 | $7 \mathrm{E}-\mathrm{B}$ | 48 | 360 | 0.18 |
| FRF | 0015 | 1830 | 7E-M | 24 | 035 | 0.20 |
| FRF | 0015 | 1832 | 7E-T | 06 | 090 | 0.37 |
| FRF | 0015 | 1843 | 7A-B | 36 | 040 | 0.13 |
| FRF | 0015 | 1845 | 7A-M | 17 | 025 | 0.09 |
| FRF | 0015 | 1847 | 7A-T | 06 | 070 | 0.17 |
| FRF | 0015 | 1856 | 7B-B | 40 | 290 | 0.12 |
| FRF | 0015 | 1858 | 7B-M | 20 | 065 | 0.23 |
| FRF | 0015 | 1900 | 7B-T | 05 | 065 | 0.25 |
| FRF | 0015 | 1909 | $7 \mathrm{C}-\mathrm{B}$ | 43 | 265 | 0.08 |
| FRF | 0015 | 1911 | $7 \mathrm{C}-\mathrm{M}$ | 21 | 080 | 0.20 |
| FRF | 0015 | 1913 | 7C-T | 06 | 095 | 0.30 |
| FRF | 0015 | 1921 | 7D-B | 45 | 025 | 0.21 |
| FRF | 0015 | 1924 | 7D-M | 26 | 075 | 0.17 |
| FRF | 0015 | 1925 | 7D-T | 06 | 075 | 0.23 |
| FRF | 0015 | 1934 | $7 \mathrm{E}-\mathrm{B}$ | 48 | 045 | 0.14 |
| FRF | 0015 | 1937 | $7 \mathrm{E}-\mathrm{M}$ | 23 | 090 | 0.17 |
| FRF | 0015 | 1939 | 7E-T | 06 | 090 | 0.29 |

APPENDIX C: DIFFERENTIAL LEVELING SURVEY DESCRIPTION AND LEVEL NOTES
This appendix provides a description of the method used to obtain elevations, referenced to Mean Lower Low Water (MLLW), and the level notes recorded during the surveys.

SUBJECT: 15 October 1987 Survey at LA/LB Stations LA-3 and LB-4

1. As a follow-up to and confirmation of survey work performed, during April in Los Angeles and Long Beach Harbors, additional measurements were made at Stations LA-3 and LB-4. These measurements were made in three stages. The first two were made with diver assistance, measuring from the top edge of the upper pile bracket, down to the harbor bottom and Paros sensor pressure housing diaphragm. The third measurement was made from the top edge of the upper pile bracket, up to a point on the pier. which had been leveled-in previously. Survey bench marks used at LA-3 and LB-4, respectively, were NOAA/NOS bench mark "TIDAL 8" at elevation +13.90' MLLW and Port of Long Beach Civil Engineering Division bench mark "1935" at elevation +15.98' MLLW.
2. Using the above mentioned bench marks as backsights, elevations to the control points were measured of $13.28^{\prime}$ and $15.92^{\prime}$ MLLW, for Stations LA-3 and LB-4, respectively. The total distance measured from the control point to the Paros sensor housing diaphragm at LA-3 was 30.70' and at LB-4 was 34.15'. Subtracting these distances from the pier elevations, yields a sensor elevation of $-17.42^{\prime}$ MLLW at LA-3 and -18.23' MLLW at LB-4. By comparison, sensor elevations obtained in April at Stations LA-3 and LB-4 were $-17.50^{\prime}$ and $-18.03^{\prime}$ MLLW. The differing elevations from one survey to the next, are due to the inaccuracies of the taped measurements.
3. As was stated above, the taped measurements were made to the paros sensor pressure housing diaphragm. This is the point of the oil/water interface, between the diaphragm and the surrounding water. The point on the quartz crystal pressure transducer, at which the input force is sensed, is 0.53 above the diaphragm. Hence if the sensor elevations at each station from both surveys are averaged and then reduced by the transducer offset, the resulting true elevation at station LA-3 is $-16.93^{\prime} \mathrm{MLLW}$ and at Station LB-4 is $-17.60^{\prime}$ MLLW.

Michael D. Dickey
Civil Engineering Technician
Prototype Measurement © Analysis Branch

Los Angeles/Long Beach Differential Leveling Survey
Bench Mark Designations and Elevations:
NOAA/NOS "TIDAL 8" @ Elevation + 13.90' MLLW
POLB Bollard 1935 @ Elevation + 15.98' MLLW
April 87 Survey: Survey Date 12 April 1987

| STA | BS+ | HI | FS- | ELEV. | $\begin{aligned} & \text { TAPED } \\ & \text { DISTANCE } \end{aligned}$ | $\begin{aligned} & \text { SENSOR } \\ & \text { ELEVATION } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bollard 1935 | 5.65' | 21.63' |  | $15.98{ }^{\prime}$ |  |  |
| LB-4 |  |  | $5.71{ }^{\prime}$ | 15.92' | $33.95{ }^{\prime}$ | - $18.03{ }^{\prime}$ |
| TIDAL 8 | $5.98{ }^{\prime}$ | $19.88^{\prime}$ |  | 13.90' |  |  |
| LA-3 |  |  | $6.60{ }^{\prime}$ | 13.28 ${ }^{\prime}$ | $30.78{ }^{\prime}$ | - 17.50' |
| October 87 Survey: Survey Date 15 October 1987 |  |  |  |  |  |  |
| STA | BS+ | HI | FS- | ELEV. | $\begin{aligned} & \text { TAPED } \\ & \text { DISTANCE } \end{aligned}$ | SENSOR ELEVATION |
| Bollard 1935 | $5.72{ }^{\prime}$ | $21.70{ }^{\prime}$ |  | $15.98{ }^{\prime}$ |  |  |
| LB-4 |  |  | $5.78{ }^{\prime}$ | 15.92' | 34.15 ${ }^{\prime}$ | - $18.23{ }^{\prime}$ |
| TIDAL 8 | $5.15{ }^{\prime}$ | 19.05 ${ }^{\prime}$ |  | 13.90' |  |  |
| LA -3 |  |  | $5.77{ }^{\prime}$ | 13.28 ${ }^{\prime}$ | $30.70^{\prime}$ | - 17.42' |

.


[^0]:    * A limited number of copies of Appendixes D-I (Volume II) and Appendix J (Volume III) were published under separate cover. Copies are available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

[^1]:    * A table of factors for converting non-SI units of measurement to SI units is presented on page 4.

[^2]:    * Personal Communication, Wolfgang Scherer, February 1988, US Department of Commerce, National Oceanic and Atmospheric Administration (NOAA), NOS, Sea and Lake Levels Branch.

[^3]:    la/LB tidal circulation study CM3M: AUG - SEP 1987

    MEAN CURRENT VECTORS
    $\omega$

    VEGTORS IN DIRECTION OF TRAVEL

[^4]:    LA／LB TIDAL CIRCULATION STUDY
    10 MINUTE AVERAGE VECTORS

[^5]:    * psia = pounds per square inch, absolute.

