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PREFACE.

READERS of the Life of Sir William Rowan Hamilton will

recollect that he undertook the publication of a book on

quaternions to serve as an introduction to his great volume
of Lectures. This Manual of Quaternions was intended to

occupy about 400 pages, but while the printing slowly pro-

gressed it grew to such a size that it came to be regarded

by its author as a " book of reference
"

rather than as a

text-book, and the title was accordingly changed to The

Elements of Quaternions. By a curious series of events

one of Hamilton's successors at the Observatory of Trinity

College has felt himself obliged to endeavour to carry out to

the best of his ability Hamilton's original intention. And on

the centenary of Hamilton's birth a Manual of Quaternions is

offered to the mathematical world.

Last year I was called upon by the Board of Trinity College
to assist in the examination for Fellowship. I had long ago

recognized that another work on quaternions was required,

and this want was forcibly brought home to me by my new
duties. A mathematician, whose time is limited, is frightened
at the magnitude of Hamilton's bulky tomes, although a closer

acquaintance with the Elements would reveal the admirable

lucidity and the logical completeness of that wonderful book,

and although the Lectures have a charm all their own. The

student wants to attain, by the shortest and simplest route, to

a working knowledge of the calculus ;
he cannot be expected

to undertake the study of quaternions in the hope of being
rewarded by the beauty of the ideas and by the elegance of

the analysis. And for his sake, though with reluctance I

must confess, I have abandoned Hamilton's /methods of

establishing the laws of quaternions.
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By a brilliant flash of genius Hamilton extended to vectors

Euclid's conception of ratio, A quaternion is the mutual

relation of two directed magnitudes with respect to quantity

and direction as
*

a i^atio is the mutual relation of two

undirected magnitudes with respect to quantity. From this

enlarged view of a ratio, the calculus of quaternions is deve-

loped in the Elements. But the way is long and winding,

and after much labour, I found I could not greatly shorten it or

make it much less indirect. I therefore adopted another plan.

The two cardinal functions of two vectors are Sa/3 and

Va/3. These functions may be defined by the statements

that -Saj8 is the product of the length of one vector into the

projection of the other upon it, and that Va/3 is the vector

which is perpendicular to a and to /3,
and which contains

as many units of length as there are units of area in the

parallelogram determined by a and {3.
Both these functions

enjoy some of the properties of an algebraic product. They
are distributive with respect to each of the vectors.

The product of the vector a into /3 may be defined to be

the sum of these functions,

a/3
= Sa/3+ Va/3.

This is a quaternion the sum of a scalar and a vector. A
product of a pair of vectors is distributive but not commuta-

tive. It is now necessary to define the product of a quaternion

{q) into a vector (y), and we say that it is the sum of the

product of the scalar (Sq) into y and the product of the

vector (Vq) into y, or that

From these principles it follows almost immediately that quater-

nion multiplication is associative as jwgll__as distributive.

Division is seen to be deducible from multiplication, and

on p. 12 we arrive at the important result that every function

of quaternions formed by ordinary algebraic processes is a

quaternion, scalars and vectors being considered to be special

cases.

What we may call the grammar of the subject may be said

to terminate on p. 20, the laws of combination of quaternions

having been established, the five special symbols S, V, K, T and U
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having been defined and their chief properties explained, various

constructions for products and quotients having been made, and
the non-commutative property of multiplication having been

illustrated by conical rotations and otherwise.

In the succeeding chapters, I have not scrupled to introduce,

either in the articles in small type or in the worked examples
in small type, illustrations of the applications of quaternions
to subjects that can hardly be supposed to be familiar to the

beginner in mathematics. It is suggested in the table of con-

tents that these more difficult portions should be omitted by
a beginner at first reading. The book is, however, primarily
intended for those who commence the study of quaternions
with a fair knowledge of other branches of mathematics; in

other words, it is written for the majority of those at present

likely to read quaternions because, as yet, the subject is not

generally taught in elementary classes. On the other hand,
I have abstained from printing examples of an artificial nature,

and I have avoided unnecessary difficulties.

Although this book may be regarded as introductory to the

works of Hamilton, it may also to some extent be considered

as supplementing them. Many of the results contained in it

have appeared only in the publications of learned societies,

and many others are believed to be novel. It is possible,

therefore, that this volume may be found to have some points

of interest for the advanced student of quaternions. He will

find, for example, that quaternions lend themselves to the

treatment of projective geometry quite as readily as to investi-

gations in mathematical physics and in metrical geometry.

By means of a somewhat elaborate table of contents, modelled

on those prefixed by Hamilton to his Lectures and Elements,

and by the aid of a full index and numerous cross references,

I trust that the contents of this book will be found to be fairly

accessible to the casual reader as well as to the systematic

student. It must be remembered, however, that the objects of

a work of this nature are to introduce a subject of the highest

educational value, and to develop a powerful and comprehen-

sive calculus. Such ends can be attained only by illustration

and by suggestion, and it is not easy to tabulate methods of

investigation.
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It would be impossible to overestimate what I owe to

Hamilton's Lectures on Quaternions (Dublin, 1853) and to

Ms Elements of Quaternions (London, 3866, 2nd edition, in

two volumes, with notes and appendices by C. J. Joly, London,

1899, 1901). The admirable Elementary Treatise on Qua-

ternions (3rd edition, Cambridge, 1890), by the late Professor

P. G. Tait who has done so much for quaternions by his-

classical applications of Hamilton's operator V has also been

very useful. Other writers to whom I am indebted are referred

to in the text* I am glad to have this opportunity of offering

my thanks to my respected friend, Benjamin Williamson^

Esq., F.B.S., Senior Fellow of Trinity College, Dublin, for his-

great kindness in assisting me with a considerable portion of

the proofs. I am also indebted to him for the uninterrupted

encouragement he has given me, alike privately and in his.

official capacity as a member of the governing body of Trinity

College, in my attempts to render Hamilton's work more

widely known.

CHARLES JASPEB JOLY,

THE OBSERVATORY,

DTJNSINK, Co. DUBLIN, 1st Jan., 1905.

*The Bibliography by Dr# Macfarlane, published by the International Association

for the promotion of the Study of Quaternions and Allied Systems of Mathematics-

(Dublin, 1904), renders unnecessary any detailed list of works on quaternions.



CONTENTS.

CHAPTER I.

THE ADDITION AND SUBTRACTION OF VECTORS.

RT. PAGK

1. Definition of a vector. ........ 1

2. Sum of two vectors. Commutative property. - I

3. Addition of vectors is associative and commutative. - 2

4. Null sums of vectors.--------- 2

5. Use of the sign .---- ..... 2

6. Multiplication of vectors by scalar coefficients. - 3

7. Unit of length. Tensor and versor of a vector, - 4

a=Ta.Utf.

8. Resolution of a vector along three given vectors. - 4

CHAPTER II.

MULTIPLICATION AND DIVISION OF VECTORS
AND QUATERNIONS.

9. Definition of the scalar function Sa/2 of two vectors. - 6

The doubly distributive property,

10. Definition of Va/3. The doubly distributive property, 7

11. The product of two vectors defined to be - - - * 8

a/2=Saj8+Va/3........ . .......... . ........(B)

The doubly distributive property,

The relations, a4-/3ct=2Sa& a/3-/3a=2Va/



x CONTENTS.

ART. PAOB

12. A quaternion Is defined to be the sum of a scalar and a vector,
- 9

and is expressed as a product of a pair of vectors,

J= aj8.

Addition of quaternions.

13. The product of a quaternion and a vector is defined to be dis- 9

tributive with respect to the scalar and vector of the

quaternion, or

and products of vectors are shown to be distributive and to

be interpretable by formula (B).

14. Laws of three mutually rectanglar unit vectors, z, /, ,
deduced 10

from formula (B). Multiplication of I, j, He is associative.

Hamilton's formula,'

p^^p^ift^ -I .........................(A)

15. Multiplication of quaternions is associative. - - - - 11

16. Division reduced to multiplication. Reciprocal of a vector,
- 11

1

Q-i^-iy-ifi-iari if Q

Every function of quaternions is a quaternion.

17. The conjugate, tensor, versor, angle, plane and axis of a qua- 12

ternion*

Example giving functions for the quadrinomial form,

18. A quaternion expressed as a quotient of vectors,
- - - 13

OB

The ratio of two vectors, Hamilton's extension of Euclid's con-
*

ception.

19. A quaternion as an operator. Effect of a vector, of a versor. - 14

20. Construction for the product of two quaternions.
- - * 14

"The relation



CONTENTS. xi

ART. PAGE

21. Spherical representation of multiplication. Vector-arcs. - - 16

Commutative quaternions are coplanar. Square of right versor

is negative unity. Conical rotation,

22. The laws of combination of the five symbols, ,

- - - 19

S, V, K, T and U.

Remarks on notation. Biquaternions.

Examples to Chap. II. - - - - - - - - 21

CHAPTER III.

FORMULAE AND INTERPRETATIONS DEPENDING ON
PRODUCTS OF VECTORS.

23. Vector as directed area. Moment of force. 23

24. Volume of parallelepiped= Sajgy.
------ 23

25. The formula, ....... 24

26. Resolution of a vector along three lines, ..... 24

aS/2yp+ /3Syap -f ySa/3p,

27. Resolution of a vector along and perpendicular to a given vector, 25

p=A . A- J

p=

28. T(/3-a)*

Fundamental formulae of a plane triangle.

Examples to Chap. III. ........ 26

CHAPTER IV.
*

APPLICATIONS TO PLANE AND SPHERICAL TRIGONOMETRY.*
* <*

29. Goplanar versors. De Moivre's theorem, ..... 27

U^= cosA + 1 sin A = i*.

Quaternion as a power of a vector <?=.*.

Roots of a quaternion. Exponential, power and logarithm of a

quaternion.

*The beginner may pass at once to Chapter V.



xii CONTENTS.

AKT. PAQK

30. Spherical trigonometry. The fundamental trigonometrical rela- 29

tions for a spherical triangle deduced from the identity

. , o-a y

31. The quaternion j3a~*y and its interpretation. The area of a 31

spherical triangle is twice the angle of the quaternion

Examples to Chapter IV., - 33

CHAPTER V.

GEOMETRY OF THE STKAIGHT LINE AND PLANE.*

32. Relations between a straight line and a plane. The method of 35

equations :

S(p y)a=0 for a plane, V(/>- )/?=() for a line.

The method of indeterminates :

yo=y4-ar for a plane, p= B+/3t for a line,

r being an arbitrary vector subject to an implied condition

and t being an arbitrary scalar.

33. The line through two points and a plane through two points.
- 37

34. The plane through three points. Plane satisfying given con- 38

ditions.

35. Intersections of planes and conditions of intersection. 39

36. A pair of lines. Shortest vector perpendicular. Points of 39

closest approach.

Examples, complex, congruency, ruled surface.

37. Anharmonics. 41

38. Symmetrical relations for a tetrahedron. ----- 42

39. Relations connecting five vectors. 43

40. Hamilton's anharmonic coordinates. 43

Examples to Chapter V. ..45
*The last three Articles may be omitted at first reading.



CONTENTS. xiii

CHAPTEE VI.

THE SPHERE.*
ART. PAGE

41. Equation of a sphere, intercepts on a line, tangent cone, poles 49

and polars.

42. Two spheres, radical plane, angle of intersection. ... 50

4&. Three spheres, radical axis. Four spheres, radical centre. - - 51

44. Inversion. ~_--52
45. Examples relating to a tetrahedron and a sphere. 53

46. Product of vector sides of inscribed polygon. 55

47. Inscription of polygons, 56

Examples to Chapter VI. 58

CHAPTER VII.

DIFFERENTIATION, t

48. Differentiation of a vector which involves a single variable 62

parameter. OP =/

represents a curve. The derived vector

is a tangential vector. The differential is

dp=p%.dt=<t>'(t).dt.

49. The equation.
.......... 64

op=p=<(, u)

represents a surface. Tangential vector, normal vector,

tangent plane, equation of normal.

.50. The equation p=<j> (t, u, v) and its interpretation.
... 65

51. Differential of a function of a quaternion,
..... 66

d. *W-lim *M?+) -W.9)
}=/(*<?)n oo ^ ^ ^ *

Distribution property of the function/.

452. Differential of a function of several quaternions.
... 67

* Arts. 44-47 may be omitted at first reading.

t Articles 58-61 and possibly Arts. 55-56 may be omitted at first reading.



xiv CONTENTS.

ART. PAGE

53. Differentials of Bq, Tg, Kq, Tq, LT#. ..... 68

54. Differential of a scalar function P of a vector p,
- - - - 69

dP=-Si'dp, d'P= -
Svd'p, d"P=-Si'd"p,

where dp, dp, and d"p are three non-coplanar differentials of

p. Introduction of Hamilton's operator V,

Yd'pd> . dP+ Yd"pdp . d'P+Ydpdp . d"P -
v_

Sdpd'pd"p
"~ V/ -

55. The result of operating by V on a quaternion function of p is - 70

V . Fp= Jim - / dvFp,

where dv is an outwardly directed element of vector area of

any small closed surface surrounding the extremity of p and
where v is the volume included by the surface.

Illustrations from fluid motion. Equation of continuity.

56. For any small closed circuit at right angles to an arbitrary 72

vector UV
-,

). Fp=liw -

where A is the area enclosed by the circuit and dp a directed

element of length of the circuit.

Condition for perfect differential,

VV<r=Oif

57. Analytical expressions for V
;
one being ..... 74

~ .3 .3
7
3 ^ .^" 1

"-7 + re p=

The operator V may be treated as a symbolic vector ;

V.q=zVSq+ SVg +WVq, q , V=VS# 4- SVq -

both when q is the operand and when it is a constant

quaternion.

58. Given p=F(q\ to find dq in terms of dp. Particular cases 77

solved, the general theory being explained in Art. 150.

Differential of nih root of quaternion.

59. Successive differentiation and development. Taylor's theorem 78
for quaternions,

f(q +p)=fq+ 1
dfq+-L d*fq+ etc., where d^ =p.

X JL . Zi



CONTENTS. xv

AKT' PAGE

60. Successive differentiations corresponding to different differentials 7&

dq, d'#, etc., of q.

61. Stationary value of a scalar function of
/>

with or without 80

equations of condition.

Examples to Chapter VTL ........ 82.

CHAPTER VIII.

LINEAR AND VECTOR FUNCTIONS.

62. Symbolic definition of linear vector function, 88

where a and (3 are arbitrary vectors,

Trinomial form for the function and its conjugate <

<f>p
= A'SAp+ /t'SjLtp+ v'Svpi ftp

63. Considered geometrically the equation ..... 90

<r=<p
establishes a linear transformation from vectors p to vectors

or, equal vectors becoming equal vectors.

64. To pass from vectors <r to vectors p there is the inverse trans- 90

formation p^^cr or mp=^cr,

where the scalar m and the linear vector function ^ depend

only on direct operations of <'.

65. Cases of exception. The auxiliary function x? and the in- 91

variants mr

and m",

= S^'ajSy+ Sa<'j3y+Sa^'y,
m'Safty=

The symbolic relations

66. The symbolic cubic --
^>
3-mr/

<

and the latent (scalar) cubic
- wi= 0.

The axes yl5 ya and y3 of
<^>
and the latent roots ^19 ^2 and ^3.

if p= 1
-

Axes of a function and those of its conjugate determine sup-

plemental triangles on a unit sphere.

Special cases, indeterminate and coincident axes.



xvi CONTENTS,

ABT.

67, The self-conjugate part
< and the spin-vector ,

-

The axes of a self-conjugate function <!> are mutually rectangular

and the latent roots are real.

68. The relations .......... 97

^p=^p ~
V<i>ep

-
eSep,

69. Geometrical interpretation of the vanishing of invariants. - 98

70. The square root of a linear vector function, .... 99

71. Miscellaneous theorems relating to linear functions. - - - 100

The canonical reduction of a pair of functions.

Examples to Chapter VIII. ....... 102

CHAPTEB IX.

QUADEIC SURFACES.

72. Equation of the general central quadrie,
----- 106

73. Lengths of radii. Asymptotic cone. Tangent cone. Normals. 107

74. Pole of plana Reciprocal of quadric.
- - - - 109

75. Principal axes of section. ........ 110

76. Conjugate radii........... 112

77. Cyclic planes. Hamilton's cyclic form, - - - ,- 113

78. Tangent right cylinders. Hamilton's focal form,
- - - 115

79. Generators of a quadric,
- - - - - - - 116

p= 'Y
--

. cr^a -hya.

SO. Non-eentral quadrics.
......... 117

j61. Quadric cones. Sphero-conics* Hamilton's proofs of the 118

associative principle.

$2. Confocal quadrics,
......... 121

<83.. Tangent eones to confocals.



CONTENTS. xvii

AET- P4GE

84. The elliptic equation of confocals ...... 124

Examples on surface of centres, umbilical generators, etc,

Examples to Chapter IX.

CHAPTER X.

GEOMETRY OP CURVES AND SURFACES.

(i) Metrical Properties of Curves.

85. The method of emanants. The vector of rotation (t) of the 131

emanant (rf) at a point (p) of a curve,

~ V

The vector curvature of a curve,

dUdp=Y dg
p

dp
~~

dpTdp"
The vector torsion,

duvdpd'p ^ud ay
UYdpd2

pTdp
" U apC5

VdpdV
The vector twist of a curve,

0)= vector curvature+ vector torsion.

86. The unit vectors, a tangent, (3 principal normal^ y binormal, 134

-1^0,7= vector curvature; = a,a= vector torsion;a *'
7

^= cx
1
a -I- <?!y

= vector twist,

where suffixes denote differentiation with respect to the arc.

Expansion of vector to point of curve in terms of arc.

87. The developables connected with a curve. General expressions 135

for their planes, lines and cuspidal edges.

(ii) Ruled Surfaces.

88. Ruled surface regarded as generated by a moving emanant line. 137

The rate of translation of the emanent is pi, where p is the

pitch or parameter of distribution,

Yector equation of line of striction,



xviii CONTENTS.

ART. PAGE

89. Normal and tangent plane for ruled surface. The involution for 139

perpendicular tangent planes,

>
2
, (UQc-f-UQc'=0).

(iii) Curvature of Surfaces.

90. Curvature of projection of curve. Vector curvature of curve 141

traced on surface resolved into component curvatures in and

at right angles to tangent plane ;

dUdp^ Sdi'dp 1
g rdUdp

dp
~~

dpvTdp v dp
= curvature of normal section 4-geodesic curvature.

91. Surface represented by /(p)= ccws., ...... 142

dfpnSvdp, dv=<dp,

<f>
=

<f>
if n is constant. In general Sve=0, where e is spin-

vector of <.

92. Equation for principal curvatures, ...... 142

Tangents to lines of curvature,

Curvature of normal section through dp,

C
1
cos2 1+ <72 sin

2
1 if Udp=^ cos I+T2 sin L

Surfaces generated by normals.

93. Second method for curvature. Measure of curvature,
- - 144

ia-
Vdpd'p

*

Gauss's theorem of the linear element.

94. Kinematical method. Moving system of tangents and normal. 145

Examples on geodesies, etc.

(iv) Families of Curves and Surfaces.

95. Family of curves, ......... 148

p=rj(f, a, 6, c,...)

Curves touching given surface or intersecting given curve.

96. Differential equation of surfaces met in n consecutive points by 148

curves of the family.

97. Equation of family of surfaces, ....... 149

/(p; a, b, c,...)=0.

Genesis of partial differential equations.

98. Analogue of Charpit's equations........ 151



CONTENTS. xix

CHAPTER XL

STATICS.
ART. PAOB

99. The vectors a being drawn to points of application of tlie forces /?, 1 56

?=/z resultant moment at o, 2/3= A= resultant force ;

=

p is pitch of resultant wrench, oT the vector perpendicular on

central axis, y the vector to Hamilton's centre^ ^a/3 is total

quaternion moment.

100. Reduction of system of forces to two forces. - - - 158

101. Astatics. The linear function ....... 159

For astatic equilibrium

=(), A=0.

Arrangements of central axes relative to the forces and relative

to the system of points of application.

102. Composition of wrenches. Equation of three-system, of screws. 163

The cylindroid. Resolution of wrench into components on

six given screws.

103. Example on equilibrium of heavy chain] lying on a surface 166

and acted on by any forces.

CHAPTER XII.

FINITE DISPLACEMENTS.

104. Rotation followed by displacement.
- 168

Composition of successive displacements. Small displacements.

Screw of the displacement.

105. Twist-velocity of body. Instantaneous screw. The general 169

equation of relative velocity. Fixed and moving axes.

Acceleration.

106 Rotation depending on two parameters.
- - - - - 173

107. Examples on the applications of the relation. - - - - 173



xx CONTENTS.

CHAPTER XIII-

STRAIN.
ART. PAGE

108. Homogeneous strain. Vectors p changed to o~, where - - I
1

?
1

?

or=<p, m>0.
Strain ellipsoid T<-V=r.

109. Shear, dilatation, rotation. Reduction of general strain to - 178

110. Lines altered in given ratio are parallel to edges of the cone,
- 179

Condition that inclination of lines should remain unchanged.
Effect of superposed rotation on axes of <.

111. Displacement along and at right angles to p ,

- - - - 180

Elongation quadric.

112. Non-homogeneous strain,
- - - - - - - -181

or B(p)y
do-= <dp, <<x= SccV . o-, <f>'a VScuj.

Condition for pure strain,

Wcr=0, cr=VP.

113. Case of small strains, 182

CHAPTER XIV.

DYNAMICS OF A PARTICLE.

1 14. Equation of motion, 184

Rate of change of moment of momentum round fixed point or

moving point. Energy equation.

115. Fixed centres attracting according to law of distance. - - 185

Solution of equation of damped vibrations

and of the more general equation

116. Central forces,
.......... 186

P= "V>=0, Vpp=/3.
Law of nature. Circular hodograph. Examples on moving

orbits, etc.

117. Constrained motion.--...-... 189

118. Brachistochrone. ....... - -192



CONTENTS.

CHAPTER XV.

DYNAMICS.
ART, PAGE

119. For any number of particles, the reactions cancel in the equations 194

where M is total mass, />
vector to centre of mass,' moment

of momentum at origin, resultant force, 77 resultant moment
at origin. Energy equation.

120. Moment of momentum with respect to moving point and with 195

respect to centre of mass.

121. Case of rigid body. Equations of motion, - - - - 196

J//>
=

, (f)<J) + Vo)<^>&>
=

7].

Energy equation.

122. Instantaneous twist-velocity produced by impulsive wrench 200

acting on free body. Energy equation.

123. Case of constrained body. Reciprocal screws. Evoked and 204

reduced wrenches.

CHAPTER XVI.

THE OPERATOR V.

(i) The Associated Linear Functions.

124. The invariants and auxiliary functions for - - - 211

<a=-SaV.(r, <'a= -VSacr,

in which cr is a vector function of p.

When cr denotes the velocity of the extremity of
/>,

the rates

of change of a line-element (dp), a surface-element (dv) and

a volume-element d# are

Dt . dp <dp, D . dv= x'dv, Dt . dv=m'dv.

The quaternion invariant

m"-~2e=~Vcr;

m"= SVcr= divergence, 2e=Wcr == curl.

The auxiliary function ^
^y= -

JVW'So-cr'y, ^'7= -iSyVV
7

. Vcr<r';

and the invariants



xxii CONTENTS.

(ii) Integration Theorems.
ART. PAGE

125. The transformations ....... -215

. V). q.

Cases (A) of discontinuity ; (B) when q is multiple-valued ; (c)

when q becomes infinite ; (D) of multiply-connected region.

(iii) Inverse Operations.

126. Interpretations for the functions ...... 218

p= TJ-iq and r V~*q where Vp= q and W=gJ

deduced from the identity

Vp'.dv' v r di/.ff'

7rT(p'-p)
V
j47rT(p'--p)*

(iv) Spherical Harmonics.

127. Expansion in terms of spherical harmonics. - 222

The fundamental theorems.

(v) Various expressions for V.

128. Expressions for V and V2 in terms of arbitrary differentials of p. 225

Case in which p is given as a function of three parameters.

Examples on systems of equipotential surfaces, etc.

(vi) Kinematics of a deformable system.

129. Eate of change of quantity q associated with point moving 228

with velocity o~,

.q.

The relations

m"q) . dv, Dt(Sttdv)= Sgdy, DeSGTdp = SgTdp,

where ^=&-VVVcrCT-o-SVr, g=T-VScrt7
The voluminal, areal and linear equations of continuity

Euler's and Lagrange's methods.

130. Flow of a vector T along a curve, and rate of change of flow,
- 231

Circulation of the vector for a closed curve,

0=- /"sTdp=~ JSwdv; DtO= - fsgdp= -
J Swdv, a>=



CONTENTS.

ART.

Flux of a vector CT through a surface

G=~

131. Expression for vector uT in the form 233

tJ=VP-fV>?4-V/? where V2^=U.

Irrotational distribution if
?;
=

; no divergence if P=0.
Transformation relating to vortex motion.

132. Transformations effected by means of the invariant property 235

ofV..

JTZ.dv
= I/>SVCT . di) - fpSdruj = |J/jVVCT

. dz? - i / pVdi/CT,

and other analogous relations.

(vii) Equations of motion of a defor/nable system.

133. Equations of motion for Euler's method, ..... 236

and for Lagrange's method. Equations of continuity.

134. Determination of stress function <l> for viscous fluid and for 238

isotropic solid.

135. Eate of change of kinetic energy.
...... 239

136. Dissipation function for viscous fluid. ..... 240

Example on motion of solid in liquid.

137. General case of elastic solid. Equation of motion, - - - 242

Quaternion statement of Hooke's law,

<a=e(a,V, 0)
= 0(a, 0, V).

Energy function. Elastic constants.

138. Equation of vibrations of elastic solid,
..... 247

C0=e(v, v, 0).

Equation for plane wave moving with wave-velocity v,

*-e
(? 5- 4

Three plane polarized waves propagated in direction Uv with

vibrations parallel to axes of function 9(Ui>, IJv, a). Wave-

velocity surface. Internal conical refraction. Wave-surface

as envelope of

^=1 or

Bay-velocity p, cp
= -6

(lJ<9,
U0, 1).



xiv CONTENTS.

ART. PAGE

53. Differentials of S#, V#, Kq, Tq, UY/.
..... 68

54. Differential of a scalar function P of a vector p,
- - - - 69

d/>=-Si'dp, d'P-Svd>, d"P=-Si'd"p,

where dp, d'p, and d"p are three non-coplanar differentials of

p. Introduction of Hamilton's operator V,

. dP+ Vd"pdp . d7J+ Vdpd'p . d'7^

55. The result of operating by V on a quaternion function of p is - 70

where dv is an outwardly directed element of vector area of

any small closed surface surrounding the extremity of p and

where T is the volume included by the surface.

Illustrations from "fluid motion. Equation of continuity.

56. For any small closed circuit at right angles to an arbitrary

vector Uv,

where ;l is the area enclosed by the circuit and dp a directed

element of length of the circuit.

Condition for perfect differential,

57, Analytical expressions for V
;
one being

*\ o\ o*

V^:

3J^*B>/
+/(

"5?
where P* ?>+^

The operator V may be treated as a symbolic vector
;

both when
t/

ts the operand and when it is a constant

quaternion.

58. (liven jp^^C^)? to find d<y in terms of
djp.

Particular cases 77

solved, the general theory being explained in Art 150.

Differential of wth root of quaternion.

59, Successive differentiation and development. Taylor's theorem 78

for quaternions,

f(q+p) **fq+
J
djfy 4-

jig
&2
fy+ etc., where <lq ;>.



CONTENTS. xv

ART - PAGE!

60. Successive differentiations corresponding to different differentials 79'

dq, A'q, etc., of q.

61. Stationary value of a scalar function of p with or without 80

equations of condition.

Examples to Chapter VIT. ........ 82,

CHAPTER VIII.

LINEAR AND VECTOR FUNCTIONS.

62. Symbolic definition of linear vector function, 88

where a and /3 are arbitrary vectors,

Trinomial form for the function and its conjugate </>',

<f>p
= A'SA-p+ //Sp,p -f i/Si/p, <//p

= ASA'p+ j&S//p+ vS v'p.

63. Considered geometrically the equation ----- 90

<r=<p
establishes a linear transformation from vectors p to vectors

o-, equal vectors becoming equal vectors.

64. To pass from vectors o- to vectors p there is the inverse trans- 90

formation
p= <~io- or wip= ^rcr,

where the scalar m and the linear vector function ^ depend

only on direct operations of fi.

65. Cases of exception, The auxiliary function X) and the in- 91

variants w' and m",

The symbolic relations

M^=^, m

6, The symbolic cubic ......... 93.

^s
._ ^^2 ^.

and the latent (scalar) cubic

^V - i= 0.

The axes yl5 yj and ya
of

</^
and the latent roots ^ 1? t̂ 2 and t</3

.

(^ -^p
W>

-
^i) (*

~
^2)P

(^-/
if p

Axea of a function and those of its conjugate determine sup-

plemental triangles on a unit sphere.

Special cases, indeterminate and coincident axes.



xvi CONTENTS.

ART.

67. The self-conjugate part & and the spin-vector ,
- - - - 96

The axes of a self-conjugate function* are mutually rectangular

and the latent roots are real.

68. The relations

69. Geometrical interpretation of the vanishing of invariants. - 98

70. The square root of a linear vector function. 99

71. Miscellaneous theorems relating to linear functions. - - - 100

The canonical reduction of a pair of functions.

Examples to Chapter VIII. ....... 102

CHAPTER IX.

QUADRIC SURFACES.

72. Equation of the general central quadrie,
..... 106

73. Lengths of radii. Asymptotic cone. Tangent cone. Normals. 107

74. Pole of plane*. Reciprocal of quadric.
..... 109

75. Principal axes of section. ........ 110

'76. Conjugate radii........... 11^

77. Cyclic planes. Hamilton's cyclic form,
- - - .- -113

78. Tangent right cylinders. Hamilton's focal form, - - - 115

* -1.

79, Generators of a quadric,
..... - - - 110

p <Y
- - * or^a -hya.

$0. Non-central quadries.
......... 11*7

J81. Quadric cones. Sphero-conies, Hamilton's proofs of the 118

associative principle,

*8& Confocal quadrics,
...... - - - 121

Tangent ^eones to confocals. ...... -123



CONTENTS.

PAGE

84. The elliptic equation of confocals ...... 124

p=s/{(<+#)(<+y)(<+2)K where e2= 0, Se</>e=0, Se<-= - 1.

Examples on surface of centres, umbilical generators, etc.

Examples to Chapter IX. - ....... ] 26

CHAPTER X.

GEOMETRY OF CURVES AND SURFACES.

(i) Metrical Properties of Curves.

85. The method of emanants. The vector of rotation (<) of the 131

emanant (rf) at a point (p) of a curve,

7/Tdp"

The vector curvature of a curve,

dUdp=v d2
p

dp dpTdp*
The vector torsion^

dUVdpdy __ TT
.. q da

p
UVdpd2

pTdp
"" p

Vdpd2
p"

The vector twist of a curve,

d)=:'vector curvaticre -+ vector torsion.

86. The unit vectors, a tangent, /3 principal normal, y binormal, 134

^l
=zey=: vector curvature; l=a1

oc= vector torsion;a l/
y

~5 =^a+ c
ty SB vector twist,

where suffixes denote differentiation with respect to the arc.

Expansion of vector to point of curve in terms of arc.

87. The developables connected with a curve. General expressions 135

for their planes, lines and cuspidal edges.

(ii) Ruled Surfaces.

88. Ruled surface regarded as generated by a moving enianant line. 137"

The rate of translation of the emanent is pi,, whex*e p is the

pitch or parameter of distribution,

"Trr
dU?;

Vector equation of line of striction,



xviii CONTENTS.

ART. PAUE

69. Normal and tangent plane for ruled surface. The involution for 139

perpendicular tangent planes,

QC . QO'= +jp
2
, (Ucjc + UQC'= 0).

(iii) Curvature of Surfaces.

'90. Curvature of projection of curve. Vector curvature of curve 141

traced on surface resolved into component curvatures in and

at right angles to tangent plane ;

p^ Sdi/dp 1
s i-dUdp

dp
~~

dpvTdp v dp
= curvature of normal section+geodesic curvature.

$1. Surface represented by /(p)==cows., ...... 142

d/p=wSvdp, di/=</>dp,

<f> cf)
if n is constant. In general Si/e=0, where e is spin-

vector of
<f>.

92. Equation for principal curvatures, ...... 142

Tangents to lines of curvature,

TI II (<#>o- ^Tv)-^, r2 1| (<j>

Curvature of normal section through dp,

6'=<71 cos
2
^-l-(72sin

2 ^ if Udp=
Surfaces generated by normals.

93. Second method for curvature. Measure of curvature, - - 144

Gauss's theorem of the linear element.

04. Banematical method. Moving system of tangentn and normal. 145

Examples on geodesies, etc.

(iv) Families of Curves and Surfaces.

95. Family of curves, ........ -148
p=7? (tf; a, b, <?,...)-

Curves touching given surface or intersecting given curve.

$6, Differential equation of surfaces met in n consecutive points by 148

curves of the family,

$7. Equation of family of surfaces,
- - - - - 149

/(/>; a, 6, c,...)0.

Genesis of partial differential equations.

$8. Analogue of Charpit's equations........ 151



CONTENTS. xix

CHAPTER XL

STATICS.
ART PAGE

99. The vectors a being drawn to points of application of the forces /3, 1 56

2Va/3 =/x= resultant moment at o, 2/3 =A= resultant force
;

p is pitch of resultant wrench, 7 the vector perpendicular on

central axis, y the vector to Hamilton's centre, 2<x/3 is total

quaternion moment.

100. Reduction of system of forces to two forces. - - - 158

101. Astatics. The linear function ....... 159

For astatic equilibrium

<=0, A=0.

Arrangements of central axes relative to the forces and relative

to the system of points of application.

102. Composition of wrenches. Equation of three-system of screws. 163

The cylindroid. Resolution of wrench into components on

six given screws.

103. Example on equilibrium of heavy chain] lying on a surface 166

and acted on by any forces.

CHAPTER XII.

FINITE DISPLACEMENTS.

104. Rotation followed by displacement 168

Composition of successive displacements. Small displacements.

Screw of the displacement.

105. .Twist-velocity of body. Instantaneous screw. The general 169

equation of relative velocity. Fixed and moving axes.

Acceleration.

106 Rotation depending on two parameters. 173

107. Examples on the applications of the relation. - - - - 173



xx CONTENTS.

CHAPTER XIIL

STRAIN".
ART. PAGE

108. Homogeneous strain. Vectors p changed to cr, where - - 177

cr=<p, m>0.
Strain ellipsoid T<j>~

lcr=r.

109. Shear, dilatation, rotation. Reduction of general strain to - 178

110. Lines altered in given ratio are parallel to edges of the cone,
- 179

T<Up= const.

Condition that inclination of lines should remain unchanged.

Effect of superposed rotation on axes of
</>.

111. Displacement along and at right angles to p ,
- - - - 180

Elongation quadric.

112. Non-homogeneous strain,
- -181

crass 0(p), do'ss^dp, <$>a= SaV. <r, fia VSacr.

Condition for pure strain,

Wcr= 0, <r= VP.

113. Case of small strains, 182

CHAPTER XIV.

DYNAMICS OF A PARTICLE.

114. Equation of motion,
- 184

Rate of change of moment of momentum round fixed point or

moving point. Energy equation.

115. Fixed centres attracting according to law of distance. - - 185

Solution of equation of damped vibrations

and of the more general equation

p+^ + ^p-Q.
116. Central forces, .......... 186

Law of nature. Circular hodograph. Examples on moving
orbits, etc.

117. Constrained motion. - - - - - - - - -189
118. Braclmtoehrono. ......... 192



CONTENTS. xxi

CHAPTER XY.

DYNAMICS.
ART. PAGE

119. For any number of particles, the reactions cancel in the equations 194

,, A d

where M is total mass, p vector to centre of mass," moment
of momentum at origin, resultant force, 77

resultant moment
at origin. Energy equation.

120. Moment of momentum with respect to moving point and with 195

respect to centre of mass.

121. Case of rigid body. Equations of motion,
- - - 196

M'p %, <(b-j- Vox^u^?}.

Energy equation.

122. Instantaneous twist-velocity produced by impulsive wrench 200

acting on free body. Energy equation.

123. Case of constrained body. Reciprocal screws. Evoked and 204

reduced wrenches.

CHAPTER XYI.

THE OPERATOR V.

(i) The Associated Linear Functions.

124. The invariants and auxiliary functions for - 211

^><x
= SaV . <r, <'<x= VSao",

in which o- is a vector function of p.

When o- denotes the velocity of the extremity of p, the rates

of change of a line-element (dp), a surface-element (dv) and

a volume-element dv are

Be . dp= $dp, D . di/= x'^j D. dv

The quaternion invariant

m"-2:=-V<r;

m,"= SVcr= divergence, 2e=Wcr= curl.

The auxiliary function ^,

T/ry
= -^VVV'Scrcr'y , ^y= -

^SyVV . Vcnr' ;

and the invariants

m' -
2c/)

= -
i^VVV'Vcnr', m= JSVWScroV.



xxii CONTENTS.

(ii) Integration Theorems.
ART, PAGE

125. The transformations ........ 215

Cases (A) of discontinuity ; (B) when q is multiple-valued ; (c)

when q becomes infinite
; (D) of multiply-connected region.

(iii) Inverse Operations,

126. Interpretations for the functions ...... 218

p=Vl

q and r=V~2
g where Vp= # and VV= #,

deduced from the identity

fV*iM _
/*
w^tiL + |V .

1
di/ -

J 47rT(p'
-
p) J 47rT(p'

-
p)
+

J
V *

47rT(p'
-

p)
' av

(iv) Spherical Harmonics.

127. Expansion in terms of spherical harmonics. - 222

The fundamental theorems.

(v) Various expressions for V.

128. Expressions for V and V2 in terms of arbitrary differentials of p. 225

Case in which p is given as a function of three parameters.

Examples on systems of equipotential surfaces, etc.

(vi) Kinematics of a deformable system.

129. Bate of change of quantity q associated with point moving 228

with velocity <r,

Dtq
=

q
~ ScrV .

q.

The relations

m"q) . d

where g = tir -VVVo-CT - c

The volumixml, aroal ami linear equations of continuity

(D<+0O00, ffl-0, g=0.
Baler's and Lagrange'a methods.

130. ^ow of a vector TJT along a curvo, and rate of change of flow,
- SJ31

Circulation of the vector for a closed curve,

-
/"s^dv, <o=



CONTENTS. xxiii

ART. PAGE
Flux of a vector 57 through a surface

131. Expression for vector ST in the form ..... 233

where

Irrotational distribution if ?;=0 ;
no divergence if PQ,

Transformation relating to vortex motion.

132. Transformations effected by means of the invariant property 235

ofV.

/ trr . dz;= / />SVGj . dv ~ /pSdi/CT
= / pVVCT . cto - 1 / pVdi/ST,

and other analogous relations.

(vii) Equations of motion of a deformable system.

133. Equations of motion for Euler's method, ..... 236

and for Lagrange's method. Equations of continuity.

134. Determination of stress function & for viscous fluid and for 238

isotropic solid.

135. Bate of change of kinetic energy.
...... 239

136. Dissipation function for viscous fluid. ..... 240

Example on motion of solid in liquid.

137. General case of elastic solid. Equation of motion, 242

Quaternion statement of Hooke's law,

*a=9(a, V, 6>)=0(a, 0, V).

Energy function. Elastic constants.

138. Equation of vibrations of elastic solid,
..... 247

c6>=0(V, V, 0).

Equation for plane wave moving with wave-velocity %

C0e(-, ~ e\\V V J

Three plane polarized waves propagated in direction Ui> with

vibrations parallel to axes of function 9(U~*>, Ui>, a). Wave-

velocity surface. Internal conical refraction. Wave-surface

as envelope of

S=l or 8/40+ 1=0.

Bay-velocity p, cp= -0f U0, U0,
-J.



xxiv CONTENTS.

(viii) Electromagnetic Theory.
ART. PAGE

139. The circuital laws, ......... 249

where
?;

is magnetic and e electric force ; y electric and y,

magnetic current, and ^ velocity of light. Differential

equations of field,

VV?;
= i(S + i + flu), We= - \$ -h t,

*

where 8 is electric displacement, ft magnetic induction ;
i

electric, ^.magnetic, conduction current; e density of elec-

trification carried with velocity v and e
/ density of magneti-

fication carried with velocity i>,.

Meaning of e and
17 ;

e and rjt are total forces ; e* and
)?$

are

impressed forces
;
and

Conduction current equations

t <l> ( -f <c),
t
;

Displacement and induction equations,

140. Activity of impressed electric and magnetic forces. Evoked 251

mechanical force and stress on element of medium,

Joulian waste of energy due to resistance

^-S^-^-S^/A-
Stored energy, electric ( W) and magnetic

W= -"P^S, W
t
= -

Radiation of energy. The Poynting vector

Determination of evoked mechanical force () and of stress

function <lv Across an arbitrary vector-area /A, the stress is

141. Explicit e<j[uation for c when there is no convection current and 255

when circuit is at rest. Propagation of disturbance in di-

electric and in conductox*. Case of no applied forces. Normal

solutions.

142. Propagation of light in crystalline medium on Clerk Maxwell's 256

hypothesis. The equations

where v is wave-velocity. The implied relations

817/3.



CONTENTS. xxv

PAGE

The ray-velocity (p) and the five vectors 8, /3, T, and
77

are

connected by the relations

-1
u

Determination of the vectors when one is given. Pair of plane

polarized waves with given direction of wave- or of ray-

velocity. Relations connecting the vectors depending on the

two waves. Construction for the vectors by means of two

quadric surfaces.

Conical refraction. Wave- and ray-velocity surfaces.

CHAPTER XVII.

PROJECTIVE GEOMETRY.

143. A quaternion (q) represents a point (Q) loaded with a weight Sq ; 263

The sum of weighted points is their centre of mass loaded with

the sum of their weights.

144. The combinatorial functions 264

(a, 5)
= b$a - ceSb ; [a, b]

=V . VaVb ;

[a, 6, <l
=

(a, 6, )-[&, o]Sa-[o, a]S5 -[a, b]Bc ; (a, b, C)
= S[a, b, o] ;

(a, Z>, c, d)?=Sa[b, c, d}.

Symbol of plane [a, 6, c] ; principle of reciprocity.

145. The equations
- 266

[<7, a, b] and (, a, &, c)
=

represent the line a6 and the plane abc.

The plane S<^=0 and its reciprocal with respect to the unit

sphere S.#
2= 0.

Formulae of reciprocation,

([a&e]; [abd])
= [ab](abcd); [[abc]-, [abd]]= -(ab)(abcd).

146. The relations connecting five points, 268

a(bcde)+ b (cdea)+ c(deab) H- d(eabc) + e (abed)
=

;

e (abed) ==
[bed] Sae [acd] Sbe+ [abd] See [abc] Bde.

147. Combinatorial functions. Construction and development of 270

these functions.



xxvi CONTENTS.

ART, PAGE

148. The general linear transformation in space,
- - - 272

P=f2-
Determination of transformation converting five given points

into five others.

149. When /transforms points, f~ l transforms planes.
- 273

150. Inversion of a linear function. The auxiliary functions, 273

F, <7, II
;
the invariants w, %', ", n"

f

*

151. The united points, lines and planes.
...... 274

152. The self-conjugate and the non-conjugate parts of a function, - 275

./=K/+A /=*(/-/)
The equations of the general quadric and of the general linear

complex are respectively

The equations of the polar plane of a and of the plane contain-

ing the lines of the complex through I) are respectively

and the equations of the reciprocals of the quadric and of

the complex are

Nature of united points of/,.

Common self-conjugate tetrahedron of two quadrics

is determined by united points of fi"
lfr

Examples on generalized confocals, etc.

153. Square root of linear quaternion function. - 282

.Reduction of function to form

/=/./ where /.=(//)*, //,'=!.

Further reduction of /,

/,=//, whore /,,
a
=1, /,=>( )r-.

Transformatioim converting ono quadrie into another, etc.

Curve of intersection of two quaclrias.

Examples on lines traced on surfaces, etc.

154. Invariants of linear transformations and of quadric surfaces. - 288

165. Numerical characteristics of curves represented by - - - 290

[jPijPaPj* and by

number of points represented by

(Pift8)0 and by (((pi

whore p )t
is homogeneous and of order mn in q.



CONTENTS. xxvii

ART PAKE

156. The general surface. The relations of reciprocity,
- 293

Conjugate tangents, asymptotic lines, generalized curvature.

157. Poles and polars. Operator D analogous to V. Avon-hold's 296

notation.

Examples on Jacobians
;

surface through points on given
surface where tangent touches in four consecutive points,

Examples to Chapter XVII. ------- 300

CHAPTER XVIII.

HYPERSPACE.

158. Extension of formulae to any number of variables. - 303

Definition of product of two vectors in ^-space ;

where V2a/3 is vector-area of parallelogram, and V a/5 is Sa/3.

Multiplication in general defined to be associative and dis-

tributive. Product of m vectors,

a-iota . . . am= (VTO +Vm_2 -1- etc.) otta2 . . . am.

Expansion of Vpcuoa ... am .

159. Sum of area vectors not generally an area vector but the 306

analogue of an angular velocity. Rotation in ?i-space.

160. Symbols of points and flats in hyperspace. Formulae for 308

project!ve geometry.

INDEX, ........... 310





CHAPTER I.

THE ADDITION AND SUBTRACTION OF VECTORS.*

ART. 1. A right line, AB, considered as having not only
length but also direction, is said to be a vector. The direction
of the vector AB is that of the point B as viewed from A, and
the vector BA is the opposite of AB, being equal to it in length
but having the opposite direction. All equal right lines AB,
A'B', etc., which have the same direction are equal vectors,f

ART. 2. The sum obtained by adding the vector BC to AB is

denoted by BC+ AB, and is defined to be the vector AC, Thus

symbolically (fig. 1),

A "3 A B
FIG. 1. FIG. 2.

Completing the parallelogram, ABCD, the definition of addition

gives likewise the equation (fig. 2)

DC+AD=AC
or AB+BC= AC,

because the vectors DC and AD are respectively equal to AB and
BC. Thus the sum of two vectors is independent of the order

,
* Following the example of Hamilton in his Lectures on Quaternions and in his

Elements of Quaternions^ the table of contents of this volume is amplified into an

analysis or commentary to which it may be useful occasionally to refer.

t It seems to be an unnecessary complication to print a bar (AB) over the letters

which represent a vector AB. Hamilton sometimes uses the notation AB to re-

present the length of the vector AB.

J.Q, A
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in which they are added, or the addition of two vectors_is_a

ART. 3. The sum obtained by adding any vector CD -f- to the

sum of AB and EC (fig. 3), is the sum of CD and AC, or the
vector AD. But AD is likewise the sum of AB and BD, that is,

the sum of AB and the sum of BC and CD. And by completing

FIG. 3,

the parallelogram of which BD is a diagonal and BC and CD are

sides, it appears that AD is also the sum of BC and the sum of

AB and CD. In other words, the same vector is obtained by
adding any one of the three vectors, AB, BC and CD, to the sum
of the other two. This vector sum AD is consequently inde-

pendent of the order in which the component vectors are taken
and of the mode in which they are grouped.
The same process applies in general, and

^

vectors is an <^ciait?6j22^
a_H^ vectoring
sums in any way ;

and it is commutative because the order in

which the vectors are taken is immaterial.

ABT. 4. Any number of vectors being arranged as the succes-

sive sides AB, BC, etc., of a polygon, their sum is the vector AD
drawn from the initial point of the first to the terminal point of

the last. If the polygon happens to be closed, the sum is a
vector of zero length, or simply zero. Thus, in particular,

AB+BA= 0,

AET. 5. It is natural, in accordance with the equations just
given, to introduce the sign , and to write

BA=~AB,
* In certain systems of vector analysis, the word vector is used in a different

sense, and a vector cannot be determined without reference to its position. The
commntatiye law then ceases to be obeyed. An example of non-commutative
addition will be found in Art. 21, p. 16.

f In every case, unless the contrary is expressed or implied, the vectors with
which we deal are not necessarily parallel to a plane.
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or to agree that the sign prefixed to a vector shall convert it

into its opposite (Art. 1). Hence the subtraction of one vector
from another may be regarded as equivalent to the addition of

the opposite of the first vector to the second. Subtraction of

vectors is thus included in addition.

As we can now interpret AB, it is convenient to use a single

symbol to denote a vector. We shall follow Hamilton's admir-
able notation, and shall employ the small letters of the Greek

alphabet to represent vectors, using, as a general rule, the earlier

letters a, /3, y, etc., for given or constant vectors, and p or <r for

variable vectors.

ART. 6. The sum of two equal vectors is a vector of the same
direction and of twice the length. It is natural to write, as in

algebra,&
etc.,

and generally, at least when n is an integer,

if the vectors /3 and a have the same direction while the length
of /3 is n times that of a. This result may be extended to the

case in which vi is fractional or incommensurable by a process
identical with similar extensions in elementary algebra. The
last article affords the interpretation to be adopted when n is

negative; and when n is complex (n'+ \/~^In") 9
the difficulties

of interpretation are of the same nature as in ordinary algebra,
and need not be discussed here.

Further, it is natural to say that the coefficient n results from
the division of the vector /3 by the parallel vector a, and we
shall therefore write

n= ~, or n= ft~-a> or 7i= /3:a,

as a consequence of /3
= na. Also, conversely, whenever the

quotient of two vectors is an algebraic quantity or a scalar*

we infer that the vectors are parallel, and that they have the

same or opposite directions according as that scalar is positive or

negative.

Again, if n is an integer and if a and /3 are any two vectors,

the laws of addition give

and by a process of induction this relation may be extended to

* The word *

scalar/ synonymous with, algebraic quantity, was employed by
Hamilton because sach a quantity may be conceived to be constructed by "com-

parison of positions upon one common scale (or axis)." Elements, Art. 17.
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the case in which-n is fractional or incommensurable. More

generally, if x, y and z are any scalars,

z(xa+ y/5)
= zxa+ zy/3,

so that the multiplication of vectors by scalars is a distributive

operation.

AET. 7. In the calculus of quaternions a unit of length is

selected to which the lengths of all vectors are referred The
tensor of a vector a is the number of units contained in its

length, and is denoted by the symbol Ta. Thus the tensor is a

positive or
"
signless

"
number, at least when the vector is real,*

and in particular, Ta = T( a).

In general, if n is a real scalar,

Tna= nTa if 7i>0; Tna=-nTa if <n<0.

Hamilton also uses the notation Ua to denote a vector of unit

length having the same direction as
,
and he calls Ua the versor

of the vector a. Since the direction of a is opposite to that of a,

Ua=-TJ(-a),
.and, more generally,

x=Ua if 7i>0; Ufta=-Ua if

Also, by Art. 6, a= Ta . Ua,

or a vector is the product of its tensor and its versor.

FIG. 4.

AKT. 8. An arbitrary vector OD (or S) may be resolved in one

way into a sum of vectors parallel to three given and non-

coplanar vectors OA, OB and 00 (or a, /3 and y).

* For imaginary vectors see Art. 22, p. 20.
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Through D draw three planes parallel to the planes BOC, COA
and AOB, meeting the lines OA, OB and OC in the points A', B', cf.
Then it is evident from the figure that

OD = OA'-fOB'+OC'; or OB = ^OA-f 2/OB+ ^OC;
or 3 xa+y/3+ zy,

if the scalars x, y and z are the quotients of parallel vectors,

x^OAf-.OA, 2/
= OB':OB, = 00': OC;

and it is further evident that this construction is unique.
It may happen that some or all of these three scalars are

negative, or some may be zero, but these cases can present no
difficulty.

r

" Ex. 1. Find the vector oc to a point which divides AB in a given ratio.

[~Here ^= ^^^=/^=ll^ or Jfa+ >P~]L m I l+m l+m m } ?
l+m "J

* Ex. 2. If weights I, m and n are placed at A, B and c, find their
centre of mass.

[The extremity of the vector (la.+ m/3+ny) :(l+m+n), supposed to be
coinitial with a, (3 and 7.]

Ex. 3. Prove that the mean centre of a tetrahedron is (a) the intersection
of bisectors of opposite edges ; (6) the intersection of lines joining the
vertices to the mean points of the opposite faces. Show that the former
lines bisect one another, and that the latter quadrisect one another.

* Ex. 4. Prove that the vectors a /3 y when drawn through a common
point terminate at the vertices of a parallelepiped.

Ex. 5. Discuss the arrangement of the extremities of the sixteen coinitial
vectors a J3 y 8. Consider the points with reference to the extremities
of a, etc., and with reference to one of the points, the extremity of
a -h /3+ y 4- 8 for example.

Ex. 6. Prove that four arbitrary vectors are connected by a linear

Ex. 7. If three vectors are linearly connected, or if

they are coplanar.

Ex. 8. If aoA+6oB+coc==0, a+&+tf=Q, the points A, B, c are collinear.

Ex. 9. If aoA-H&OB+coc-f <OD=O, +& + c+d=0, the points A, , c,
are coplanar.



CHAPTER II

MULTIPLICATION AND DIVISION OF VECTOES AND
OF QUATERNIONS.

ART. 9. The product of the length of one vector (a) into the

length of the projection of another (/3) upon it is denoted by the

expression

and this function Sa/3 of two vectors is called the scalar of a/3.

By similar triangles it follows that (fig. 5)

Sa/3
=

S/3a,

FIG. 5. FIG. 6.

and because the sum of the projections of any number of vectors

on any line is the projection of their sum, it appears that (fig. 6)

and therefore the function is a doubly distributive function, or

If the vectors a and y are at right angles,

An equation such as Sa/3= SycS

implies that the projection of a on /3 multiplied by the length of

/3 is equal to the projection of y on S into the length of S.
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ART. 10. A unit of length having been assumed, let a vector

^at right angles to two given vectors a and
^8

so that^^
rotation round this vector Erom a to ft is positive,* and let the

length of this vector be numerically equal to the area of the

parallelogram determined by a and /3. This vector is denoted

by the symbol Va/3,

and is called the vector of aft.
If the vectors are taken in the reverse order, V/3a has the

same length as Va/3, but the direction is opposite, the rotation

being now reversed, so that

If an equation such as

FIG. 7.

exists, the vectors a, ft, y and S must all be parallel to the same

plane ;
the areas of the parallelograms determined by a and ft

and by y and must be equal, and the sense of rotation from
a to ft must be the same as that from y to S (fig. 7).

Like Sa/3, the function Va/3 is a doubly distributive function.

If ft' is the component of the vector ft at right angles to a it is

obvious that yaQ _ vaj8',

FIG. a

and the tensor of Va/3 is equal to the product of the tensors of a

and of ft (fig. S).

* The convention respecting rotation which is here adopted is the opposite of

that employed by Hamilton. The axis of a rotation is taken to be in the direction

of the advance of a right-handed screw turning in a fixed nut, and this system is

now known as the right-handed system of rotation (Clerk Maxwell, Electricity and

Magnetism, Art. 23). On the other hand Hamilton calls his system right-handed,
bilt he takes as the axis the direction from blade to handle of a turn screw when

screwing a right-handed screw into a nut (Lectures, Art. 68, Elements, note to

Art, 295), and accordingly some little care is necessary in comparing Hamilton's

demonstrations with those of the present volume, Tait uses the modern right-
handed system in his quaternion writings,
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If
ft' and y' are the components of ft and y at right angles to

a, and in the plane of the paper while a is drawn upwards at

right angles to the plane (fig. 9), the vectors Va/3' and Vay' will

lie in the plane of the paper, at right angles respectively to ft'

and y . But TVa/3' : T/3'
= TVay : Ty = Ta, and consequently the

triangles OB'C' and OB
/
C

/
are directly similar. Hence OC, is at

right angles to 00' and TOG, : TOC'= Ta. Consequently

OC,= Va(/3'+ y)= OB7+ B/}= Va/3
x+Vay .

In this relation we may replace /3' and y' by ft
and y, so that

Va(/3+ y) = Va^+ Vay; V(/3+y)a==

a, /?, and y being three arbitrary vectors.

We have now

for any number of vectors, since in particular for four vectors,

V^ajfjS^
If Vaj8.=0 without having either a or /3 zoro, the vector q

must be parallel to /?, for tlie area of the paraHelograu) deter-

ininecTBy a and ^5 must vanish.

ART. 11. The product of the vector a into ft is defined by the

equation, + ........................... (B)

and because it is the sum of two doubly distributive parts, it m
likewise doubly distributive, or

The product fta is not generally equal to a/3. In fact

/3a==Sa/3~-Ya/3 because Sa/3= $/3a, Va/3= -V0a,
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Thus multiplication of vectors is npt_commutative. We speak
of a/3 as the product of J3 by a, or the product^oFcTmto /3.

Adding and subtracting the expressions for the two products
a/3 and /8a, we find

, Va/3= J(
-

/3a).

ART. 12. The sum of a scalar and a vector is called a quater-
nion because it involves four independent numbers, such as the

scalar and the three coefficients of the vector when resolved

along three given directions (Art. 8).

Thus the product of a pair of vectors is a quaternion, and

conversely, every quaternion may be expressed as a product of a

pair of vectors. If q is a quaternion, if Sq is its scalar part and

Vg its vector part, so that

if a and /3' are two vectors at right angles to one another and to

~Vq, so that Va/S^Vg; and if /3-~/3' is the vector parallel to a,

for which Sa(3 /3

/

)
= S, then we have

Yg = Va/3 because Va(/3-/3
/

) = ; Sg= Sa/3 because

and therefore q = a/3,

or the quaternion has been reduced to the product of a pair of

vectors.

Scalars and vectors may be regarded as simply degraded cases

of quaternions.
The sum of any number of quaternions we define to be the

sum of their scalar parts plus the sum of their vector parts.
Addition of scalars is associative and commutative, and likewise

addition of vectors (Art. SJ, It follows that addition 'of

quaternions is associative and commutative.

x ART. 13. We next define the product of a quaternion and a

vector to be distributive with respect to the scalar and the vector

of the quaternion. Thus

= Sg . y-f Vg. y.

The products yVq and Vg . y fall under formula (B), and we
define that multiplication of a scalar and a vector is commutative,
so that ySq= Sq . y.

Thus we can interpret expressions such as a . /3y or a/3 . y (the

product of a into the product /3y and the product of the pro-
duct a/3 into y), and we see that they are distributive with

respect to the three vectors, so that

. y.
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We shall now prove that the products are associative, so that

we may omit the points, and to this end we shall consider the

laws of combination of three mutually rectangular unit-vectors,
~

ART. 14. Let any three mutually rectangular unit-vectors,

i, j and k, be drawn so that rotation round i from j to k is

positive.

According to the usual convention, if i and j are in the plane of

the paper, k will be directed vertically upwards, and it is seen at

Fro. 10.

once that rotation round j from k to i, and also round k from i

to j is positive (Fig. 10).

We have then, because the vectors are mutually perpendicular
and of unit length,

Sjk=Ski=Sij=0; Si2= S/= S/o2= -1
;

..........(Art 9)

VjA= i, V/a==?, V#=fc; Vfy'= -i, Vik= - Vji= -fc; (Art. 10)

and by formula (B) it follows at once that

i*=j* = Jft= l
? jk i= kj, ki=j= ik, ij

= k=z ji. ..*(c)

Let us now, as in the last article, form the ternary products of

these vectors. We have by the relations just given

the points being omitted as they are seen to be unnecessary.

Similarly, for every ternary product of i, j and k, the points may
be shown to be unnecessary.

For quaternary products, let *, AC, X, JUL
each denote some one of

the three symbols 'i, j, k, then

I . K\fJL
= I . AC X/X

= IK . \]Ui
= IK . X .

JJi
= i/cX .

JU,
=

i/cX/X,

because, for example, i . K . Xju is a ternary product, as X/x must be

i? ,/>
& or 1. In this way all products of the symbols

i, j, k are seen to be associative.
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It may be a useful exercise to show that the associative law
enables us to deduce all the relations (c) from Hamilton's funda-
mental formula (A), -2 -9 72 "7 1 , ^\

tf^f^tf^zifo^^l ......................... (
A)

For example, i .
i/jk
= i gives jk= i. -

Ex. 1. Prove that

Ex. 2. If the symbols i, j, k obey the laws,*

i
2=j 2=k2=+l; jk=i, ki=j, ij=k; kj=-i, ik=-j, ji=-k,

prove that their multiplication is dissociative.

[i*.j
= +j but i.ij = i.k=~j.]

ART. 15. We can now show that multiplication of vectors is

asgodativg. Let any three vectors, a7^"^3~^7 be expressecTlrr

terms^oFlT), k, so that

a=xi+ yj+ zk, /3
= x'i+ y'j+ z'k, y= x"i+ y"j+ z

ff

k.

By Art. 13,

a . /3y
= 222a;i . y'jsfk

= *2EZxy'sfi . jk= ISEay'sfijk,

a/3 . y= 2S2 xiy'j . sfk= ISSxy^sfij . k= 2S2a>^
7

i;fc,

so that a . /3y
=

a/3 . y= a/3y,

and similarly for all products of higher orders.

Hence S^jgHcatiOTLof^j^ for a qua-
ternion mjy^jj^

It now appears (compare Art. 13) that the product of any
number of

.........

vectors taken
.......
igL_agg__gjven__^

quatermonT"""

AKT. 16. The division of vectors may be reduced to multi-

plication. By formula (B) the square of a vector is

;
sothat a ' =lj

and thus it appears that a : (Ta)
2
is the reciprocal of the vector

a, say a" 1 or -. The vector a" 1 is opposite to a in direction,

* Mr. Oliver Heaviside bases his vectorial Algebra on these laws. Prof. Knott

(Jtecent Innovations in Vector Theory, Proc. R.S.E., 1892-3) draws attention to

papers written by the Rev. M. O'Brien in the years 1846-52, in which the square
of a'Vector is taken to be positive.
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and its tensor is the reciprocal of that of a. We can therefore

interpret products such as

3cT l and

and the first of these we shall call the quotient of /3 by g ?
and

denote it by o*
or /3:a.

of their

or i

Q= a

we have QQ'=1

in virtue of the associative law. Similarly, the reciprocal of a

product of quaternions is the product of the quaternions tagen
_oMerT Hence every quotient of vectors or oF
_

quaternions is a quaternion; and more generally every com-
bination of quaternions by the processes of addition, subtraction*

multiplication and division is a quaternion.

Ex. 1. Prove that

S^=-T^ ifS^
Ex. 2. Distinguish between the expressions

a w ya

[These may be written Sy-^cr
1 and 8/3a^y-

1
.

Ex. 3. Prove that

ay a ya
'

j^ct

. 17. Th^^^^iMSlLJ^^^

If then q= a(3, we have Kq = /3a (Art. 11), and

qKq= a/3{3a
= a2

/3
2= Kqq = Ta8^ (Art. 16).

The products of the tensors of the vectors into which a quaternion
is resolvable is therefore independent of any particular selection

of the vectors since Sq and Vq are independent of any particulai*

pair of vectors
;
and the square of this product is

if we call this constant product of tensors, the tensor (T<y) of

the quaternion.
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Again,

and Uq =UaU/3 is called the versor of the quaternion. If T Lq
is the angle between the vectors a and 13, which is less than two
right angles and measured from a to

/3, we see by the definitions
of Sq and Vq that (Arts. 9 and 10)

Sq= Tq cos L q, TVq= Tg sin L q.

The angle Lq is called the angle of the quaternion, and is

independent of any particular set of vectors a, /3.A plane at right angles to Vq is called the plane of the

quaternion and UVg is called the axis.

Ex. 1. Prove that K =w ix jy Jcz,

(^+ M?+jy+ fef) :

where q

Ex. 2. Write down the analogous functions of K# in terms of
47, #,

and 'Zi?.

Ex. 3. Prove that a^ft^K . /3a~
l

.

Ex. 4. What is the nature of # if q='Kq ? If ^== ~K^ ?

ABT, 18. We can always reduce a quaternion to a quotient of
vectors (Arts. 12, 16), and write

ft OB TOB UOB

the line^BA' being drawn perpendicular to OA.

Thus the
- shape '

Vof the triangle AOB is constant for a given
quaternion. From this point of view, a quaternion is called by
Hamilton a ratio of vectors, as it depends on their relative

magnitudes and on their relative directions,
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It is not difficult to show that the conjugate (see Fig. 12)

OB' . OB

for

The triangle AOB' is inversely similar* to AOB.

FIG. 12.

AET. 19. Conversely, if the product qa is a vector /3, it is

evident that a and j3 are both at right angles to Vg. And if a
is any vector at right angles to Vj, qa is a vector making a

constant angle (t~q) with a, and having its length Tq times that

of a. In other words, regarding the quaternion as an operator,
it turns vectors in its plane through a given angle, and alters

their lengths in a given ratio. In particular we may regard a
vector as turning vectors at right angles to it through a right

angle, and altering their lengths proportionately to its own.
The versor Ug turns vectors in its plane through the angle L q

but leaves their lengths unaltered. The tensor Tq alters the

lengths of all vectors in a given ratio. The total effect produced
by q on a vector in its plane may be considered to be effected in

two stages or at once as indicated by the relation

AET. 20. The results of articles 18, 15 and 16 afford an ex-

tremely elegant construction for the product of two quaternions
q and r. Take any vector OB along the line of intersection of

the planes of the two quaternions. Make the triangle BOC in

* Hamilton uses the phrases direct similitude and invert mmiltude in the sense
that two directly similar figures in a plane appear to have the same shape ; while
of two inversely similar figures one has the same shape as the reflection of the
other in a mirror.;
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the plane of 7- similar to the triangle determined by r (Art. 18) ;

make AOB in the plane of q similar to the triangle of q ; then,,

by the associative principle (Fig. 13)

OA\ OB OA

o
FIG. 13. FIG, 14.

If the triangles BOA" and C'OB are respectively coplanar with
and similar to AOB and BOC, the second product is (Fig. 14)

OA' OB>

Ex. 1. Prove that -

[Take c, on oc and A, on OA so that C,OB and BOA, are inversely similar to

BOO and AOB, and the triangle A/DC, is inversely similar to COA. Art. 18.]

Ex. 2. The product of the conjugates of any number of quaternions is

the conjugate of their product in reverse order.

[By Ex. 1, K(p. qr)=K(qr) . Kp9 etc.]

Ex. 3. Show that

Ex, 4. If

show that

Pn=1 jPljPa ~'Pn- LpJtipn- l . . - jp.

ct are n vectors, and if Ha= c^on , . . a,t, ITa= anan i .

Ex. 5. Prove that

'

Ex. 6. Prove that =2S . 2S .

Ex. 7. Prove that the tensor of a product of any number of quaternions.
is independent of their order.
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* Ex, 8. Prove that the versor of a product of any number of quaternions
is the product of the versors taken in the same order.

Ex. 9. Show that three quaternions cannot in general be reduced
simultaneously to the forms

8 7 Pp=- ?=Z ,-X.

Ex. 10. Prove that the scalar of a product of any number of quaternions
is unchanged when the quaternions are cyclically transposed.

Ex. 11. Prove that the tensor of the vector part of a product of

quaternions remains unchanged for cyclical transposition.

Ex. 12. Prove the identity

(ww
f

scat yy' zz'^f+ (wsc
f+ w'x +yz' y'zf

+ (wy
f+ w'y+ zx

f

tf

[See Ex. 1 of this series and Ex. 1, Art. 17. This identity is of historical

interest as regards the discovery of quaternions. See Graves's Life of Sir

William Rowan Hamilton, vol. ii., p. 437.]

ART. 21. The multiplication of versors, to which the multipli-
cation of quaternions may be reduced by separating the tensors,

admits of a simple spherical representation.

FIG. 15.

A versor is represented by a directed great circle arc belonging
to a definite great circle (the plane of the versor) and having a

definite length (the angle of the versor). From the figure

15)

TT OG OC OB

OA' OA' OB

The spherical triangles ABC and A'BC1
'

arc inversely equal.
The construction recalls the construction for the sum of vectors,

it is allowable to write
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This addition of vector-arcs is not commutative, for CfA.' is not

generally equal to AC equality of these vector-arcs requiring
equality of length, similarity of direction and coplanarity.

Twojl^^ ......__

A'C' should belong to the
same great circle. If OB is not coplanar with this circle, B must
be its pole. In this case the angles of the versors are right, and

16.

the versors are unit vectors. But a glance at the figure shows
that the versor products have oppositely directed angles, and the

products are therefore unequal (compare figs. 15 and 16).
For coplanar versors, the arc AB = CD in

fig. 17, and

OC OB OC OJD OB OC
dI-QZ

'

OA=OB =00
'

Oi

O A

FIG. 17.

"That the square of a right versor is equal to negative unity is

well illustrated by fig. 18, for which

OB\ 2

= OA/ OB^OA/^
!/ ~~OB

"

OA"~OA
""

Che vector OB being perpendicular to A'A.

J.Q. B

-1,
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Replacing Urq m fig. 15 by Up, we have the new figure (fig.

19), since vr= \Jpq~
1 and tfqr~Uqpq~

l
. The point Q is the

pole of the versor TJ# or the extremity of the vector

FIG. 19.

The arcs AC and A'D are equal, and equally inclined to the

great circle ABA' since the angles of the triangles ABC and A'BC'

are equal. Thus AC may be changed into A'D by a rotation

round Q through the angle AQA'?
double the angle of the quater-

nion q. The vector TJVjp to the pole of the arc AC is transformed

into UVgpg''
1
by the same rotation. Now Vqpq~~

l
~q- Vp. q~

l

because V(q.&p.q-
l
) Q, S(#. Yp.y-

1
) 0, and accordingly a

conical rotation round the axis of a a^
v Ex, 1. If OP is the vector from a fixed point to a point in a rigid boiiy,

rotation of the body round an axis OQ=Y# through an angle %Lq carries.

the point p to p', where op'= ^ . OP . q"
1
.

* Ex. 2. The displacement produced by the rotation is

pp'=^.OP. q~
l -OP.

* Ex. 3. A translation of
^
the body carries a point from i to i", where

pp"= is the same for all points of the body.

Ex. 4. If the body is first rotated, as in Example 1, and then translated

the displacement of P is

while if it is first translated and then rotated, the displacement is

% Ex. 5. If the body is first rotated about one axis o<i and then about

another OR, Op'= rq . oi> . gr-
l r-i= rq . OP . (?v/)

-1
.

Ex. 6. If the first rotation is now reversed, the position of the point i>'

is p", where we" **$-* rq .'bp . q^r-t $.

Ex. 7. A body receives rotations about two intersecting axes. Prove

that the order in which these rotations are effected is of importance.

[The displacements of a point are

qr . OP . r"4q"
1 - OP and rq , OP . q"

1 r l -
OP,

and these are generally different unless qr**rq9
but then the quaternions are

coplanar and the rotations take place about one and the same axis.]
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Ex. 8. Find the reflection of a body in a plane mirror.

[The point o being on the mirror, which is perpendicular to A, the vector

A, . OP . A"" 1 is the result of rotating OP through two right angles round the

normal. Eeversing the direction of this vector, the vector to the image of

the point P is OP'= A . OP . Ar 1

.]

Ex. 9. Successive reflection in two mirrors is equivalent to a rotation

round the line of intersection of the mirrors through double the angle

between the mirrors.

[Here -//,(- A. OP. \~l
){j,~

l= + /*A.op. A"1

/*-
1
. Also /./O.

=
0,

where is the angle between the mirrors, and 2i.juA
=

2#.]

Ex. 10. Given three lines intersecting in a point, it is required to draw

three planes, each through one of the lines, so that the lines of intersection

in one plane may be equally inclined to the contained line.

When is the problem indeterminate ?

[Let a, /?, y be the vectors of the given lines. The sought lines of inter-

section are V/3ay, Vy/3a, Vay/J, Compare Art. 31, p. 31.]

ART. 22. The laws of combination of the five symbols

S, V, K, T and U

may be summarized in the symbolical multiplication table :

S V K T U

S
V
K
T
U

S S T SU
y -Y o VU

S -V 1 T KU
S TV T T
UV UK U

to be read from the left. For example, the tensor of the vector

of a quaternion is TVg; the scalar of the vector is^O;
the

tensor of the scalar is Sq according as Sq is positive or

negative. A positive scalar may be regarded as the quotient of

two vectors having the same direction; for a negative scalar

the directions are opposite. Hence we may write US# = 1

according as Sq is positive or negative. The versor of a zero

quaternion must be regarded as arbitrary, unless we know a

law according to which the quaternion diminished indefinitely.

TUg= l =UTg for all quaternions. The versor of the conjugate

and the conjugate of the versor o a quaternion are easily seen

to be equal to one another and to the reciprocal of the versor.

U arje_Mtjdistr&^^
change~oFsTgn, it is

"

,

combination arising from further repetition of the

symbols is TVU# (
= sin L q).

It is necessary to make some convention concerning the notation

to be employed when we wish to denote for example the square

of the scalar of a quaternion q or the scalar of the square of the



20 MULTIPLICATION OF QUATERNIONS. [CHAP. u.

quaternion. There can be no mistake if we employ brackets and
write (Sq)

2 for the square of the scalar and S(#
2
) for the scalar

of the square, and whenever there is the least fear of confusion

brackets should be used. One of the great advantages of

quaternions is the extreme brevity of the notation. Another
and still greater advantage is its great explicitness, and this

should never be sacrificed for the sake of a few brackets.

Hamilton writes S . q
2 for the scalar of the square and Sq

2 for

the square of the scalar whenever there is no fear of confusion,

and he uses the notation V. q
2 and Vg

2 in a similar sense and in

conformity with the established notation d . x2 and d&2 for the

differential of x2 and for the square of the differential of x.

Some eminent authorities, Tait for instance, in conformity with

the notation cos2 x = (cos x)
2

,
write S2

q instead of Sq
2
, though in

strictness this would mean S . Sq (
= Sq). But considering the

enormous care Hamilton took with his notation we prefer to

abide by his convention. No confusion can arise with respect
to T.q

2 or Tq
2 or (Tg)

2
,
for the tensor of the square is the

square of the tensor, and similarly U.#
2= Ug2= (Ug)

2 and

JL.q
2

(K.q)
2
=z'Kq

2
. The expression Sp .q means the product of

Sp into g, and it is well when possible to write this in the

equivalent form qSp, while S .pq is the scalar of the product pq,
but if the expressions are at all complicated, it is safer to write

(8p)q and S(M ).

An imaginary quaternion

C _
where p and q are real quaternions and where V - 1 is the imaginary symbol
of algebra regarded as a scalar commutative with all quaternions, is called a

biquaternion by Hamilton. Similarly he calls imaginary vectors (a +\/ 1 . ft)
bivectors and imaginary scalars, biscalars. No ambiguity attaches to

- SC^SpW^S?, or to V=V^W^TV,
and the only ambiguity in TQ is one of sign, and this Hamilton removes as

follows. He writes

where sc and y are real scalars and where # is positive, and in order to
determine % and y he employs the relation (Art. 17)

(T$)
2=QKQ

~
or

observing that q'Kp'K.pKq, so that the imaginary part of (T(ff may be
written

or ^~I
Equating reals and imaginaries we find, from

^-/=Tp2-T#2 and xy^B.
that the real positive value of x is
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It may happen that T(Q$) is -TT$' instead of +T$T$' where Q and
'

are biquaternions. Ir> other particulars ambiguity does not arise.
The tensor of a biquaternion may vanish, and in this case we have an

equation such as

W=o,
where Q'=KQ without having either Q or Q

f

zero. The conditions are

T^2=T^2 and S.^K^O,
and when these are satisfied, the biquaternion Q is called by Hamilton a
nullifies A few examples will be found in Chap. IV.; and the Lectures
on Quaternions (Arts. 669-675), from which this account of biquaternions has
been taken, may be consulted with advantage.*

Ex. 1. Prove that combinations of the symbols prefixed to q lead to one
or other of the following :

Sy, Yy, Ky, % U? ; TV?, SUy, VU<?, TVU?, (Vq)-\ UVg.
Ex. 2. Express these functions in terms of x, y. z. w. i, j and L (See

Ex. 1, Art. 17, p. 13.)

' * J V

Ex. 3. Express these functions in terms of the tensor, axis and angle of
the quaternion.

* Ex. 4. Show that the vectors ~UVpq and UV . UpU^ are identical.

* Ex. 5. If a, /3 and y are vectors, prove that V is a redundant symbol in
S . aV . fty.

' Ex. 6. Find the difference of the expressions S . pqr and S .pV . qr.
'

Ex. 7. If TJVp =VU>, prove that Sp= 0.

% Ex. 8. What inference can be drawn from the equation V<y=VUo- 1 and
what from Vq=U^ ?

Ex. 9. Prove that

T(y+/3)>(Ty~T/?) unless Uy= -U/3,
and find the relation in the exceptional case.

* Ex. 10. Show that

T#+Tp>T(g+^) unless q^x
Ex. 11. Show that

unless <=

EXAMPLES TO CHAPTER II.

/ Ex. 1. Prove that V(a-/3)(a+/2)=2Va/3 and assign the geometrical
interpretation.

- Ex. 2. Show similarly that S(a-/?)(a+/3)=a
2
--/3

2 and interpret.

* Ex. 3. Under what conditions is (a H-^)(a ~/3) equal to a2 -
/3

2
?

* Clifford uses the word bi'quateririon in another sense, and Prof. A. M'Aulay
has rechristened Clifford's biquaternions, and has written a large book entitled
"Ocbonions: a Development of Clifford's Biquaternions." (Cambridge, 1898.)
It does not seem to be unreasonable to retain Hamilton's convenient word for the

purpose for which it was coined.
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Ex. 4, Establish the identity connecting three quaternions,

p*+q*+r*=pqr+qrp+ rpqt where

* Ex, 5. If the relation

]8 a

connects two vectors a and /3, prove that a/r^or
1

/^
1 and show that the

vectors are parallel.

*

Ex. 6. Beduce any two quaternions p and q to quotients of vectors

"dhaving a common denominator, or in other words, find three vectors a,

and y, so that

= -, <7=-L^ a' * a

* Ex. 7. Prove that the relations

iQ-fy /? 7 8 y
P+2=~~-> p-q~tL^> where

^>=^, #=A

are consistent with the definition that the sum of quaternions is the sum of

their scalar parts plus the sum of their vector parts,

1

Ex, 8. For any two quaternions
"

q(q~~
l r-l

)=s(rq)r~
l

; ^q(qr)^
l
r=(r-

l
q-

l

)~
l

.

Ex, 9. The sign V is superfluous in S . aV/3y. Is it superfluous in

Ex. 10. The second vector a may be omitted from Va(a4-/3). May it

he omitted in Vcr^cc-f/?) or in Vafc+jS)"
1

?

Ex. 11. Contrast, where necessary, the four expressions,

a/3

Ex. 12. The laws of refraction of light from a medium of index into

one of index n' are comprised in the relation

where v, a and a' are unit vectors along the normal, the incident and the
refracted ray, respectively.

() Prom this relation,

Ex. 13. It is required to find a quaternion <y
and vectors a, /? and y, HO

that if a, b and c are three given quaternions,

<^= u, fo7
=

j8, cc/
=

y.

(a) Show that
<* a 6 fi c y
,-=/),

- as t. - ss .1
;

6 j8 y a a

.and explain how a, /? and y can be found from these relatioiiB
;
the tennor

of one vector (a) being assumed, (Robert Bussell.)



CHAPTER III.

FORMULAE AND INTERPRETATIONS DEPENDING ON
PRODUCTS OP VECTORS.

ART. 23. It is often useful to consider a vector as representing
a directed area. Assuming any two vectors a, /3, so that "Va/3

may equal a given vector y, we may regard y as representing the

directed area of the parallelogram determined by a and /? there

being as many iinits of area in the parallelogram as there are

units of length in y. The shape of the area represented by a
vector is arbitrary as well as its position ;

its magnitude and

aspect are determinate. For there is obviously no reason why
this representation should be confined to the areas of parallelo-

grams.

Ex. A force is represented in magnitude and line of action by the line AB.

The moment of the force at the point o is represented by
V . OA . AB.

ART. 24. The scalar of the product of three vectors is the

volume of the parallelepiped having conterminous edges equal to

the vectors.

The transformation

S . a/3y=S . a(Vj8y+ S
j8y) = S . aV/3y

shows that this scalar is equal to the scalar of the binary product
of a into V/3y that is, it is the negative product of the projection
of a on the normal UV/3y to one face into the area of that face.

If rotation round a from ft towards y is positive, the volume is

Sa/3y ?
for the angle between a and I7V/3y is then acute, and

SaTJV/3y is negative.

Ex. 1. If Sa/?y=Q the vectors are coplanar, and conversely.

Ex. 2. Prove that interchange of any two vectors changes the sign of_
Ex. 3. Prove that

= Saa'a" if
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s Ex. 4. Prove the identity,

Ex. 5. Prove that SAB . AC . AD is six times the volume of the tetra-
hedron ABCD.

ART. 25. The formula

!-1 V^}/^^ .................... (i.)

is very important owing to its frequent occurrence. Since the
vector on the left is perpendicular to V/3y it must be coplanar
with /3 and y that is, it must be of the form x/3+yy where x
and y are scalars. But the vector is also perpendicular to a.

Therefore Sa(^+3/y)=0 J
so that the ratio of x to y is

determined; and the vector must be parallel to

w(/3Scty-ySa/3).
It remains to determine w to satisfy

V . aV/3y= ^(/3Say ~ySa/3).

Multiply by ya and take the scalar part of the product, and we
have

S . yaV . aV/?y= wSya^Say= Sya(aV/3y- SaV/3y)- -SyaSa/3y ,

so that w = 1.

The proof here given is merely illustrative of a general method.
Hamilton's proof is as follows. Since

2V. aV/?y= aVy-V/3y . a= a(/3y~S/3y)~(/3y-~S/3y)a

on adding the pair of cancelling terms /3ay /3ay> we have

Adding aS/3y to each side of the formula, we find the relation

V^^^c^y^/gSyq+^ggg, ................. (II.)

which is occasionally useful.

'Ex.1. Prove that
H

V . Va/3VyS= aS/3y8
-
/3SayS

=
SSa/fy

-
ySa/38,

1 Ex. 2, Prove that S Va/JVy8= SaSS/3y
-
SayS/38.

[This is S . aY/3Yy&]

Ex. 3. Find the direction of the common edge of the planes parallel to
a and /3 and to y and S.

[The normals to the planes are parallel to Va/3 and Vy6\]
' Ex. 4. Prove that S. Vj8yVyaVa/?= -(SajSy)*.

ART. 26. The formula

pgotffy= qS/3yp+ ffSyctp+ ySa^p ...............(t)
is of great importance, as it enables us to resolve a vector along
three vectors a, /3 and y which are not all in the same plane, ft
is virtually proved in Ex. 1 of the last article.

(
A v t ^

; "
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Otherwise assume, as we may, provided Sa/3y is not zero,

and operate by S/3y (that is, multiply by /3y and take the scalar

of the product). This gives S/3y/>=$Sa/3y.
Another valuable formula is

pSafiy^VpySap+ V-yaSpp+ 'VapSyp, ............ (ll.)

which enables us to resolve a vector p into components at right

angles to the planes of a/3, /3y, and of ya. Assuming

p= xV/3y+yVya+zVafi

and operating by Sa, S/3 and Sy, the unknowns x, y and z are

found.

Ex. 1. Prove that aS/3yp + /2Sya/> + ySa/3p=0 if Sa/3y=0.

[Here aa+b/3+ cy
=

0, where a, b, c are scalars. Operate by Va, V/3
and Vy in turn, and we find V/3y : a Vya : b= Va/5 : c.]

Ex. 2. In the same case, V/3ySap+VyaS/3p+Va/3Syp==0.
- Ex. 3. Eliminate p between the equations

Ex. 4. Eliminate the scalars # and y from the relation

a^ 4- /5^7 -fyy 4- S= 0.

ART. 27. To resolve a vector along and perpendicular to a

given vector, observe that

pr=\.X-
1

p = \S\- l
p+ XV\' l

p................... (I.)

In case the essentials of a problem turn on two vectors a and

/3, put A= Va/3, and the transformation

p = Va/3S(Va^)-
1
/a+ S/3(Vaj8)-V-/3Sa(Va/3)~

1
p ....(n.)

will often be found useful. (Compare Art. 25.)

An expression of an analogous type is

Spa/3- aS/3p+ /3Sgp~~

AET. 28. The squared tensor of /3 a is

T^-a^T/SHSSa/S+ Ta2
................... (l.)

for (/3-a)
2=

/3
2-a

Hence for a plane triangle

The identities Va/3= Va(/3-a)

lead to the remaining fundamental formulae of a plane triangle,
^ sin A sinB sinC
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1

Ex. 1. If T(p-a)= T(p-ha), prove that Sap= 0.

Ex. 2. The equations

P=K-; S-^= 0; T(cx4"p)= T<W+p); Tp=Ta
a p p + a

are consequences one of another.

EXAMPLES TO CHAPTER III.

* Ex. 1. If V.#a=0, where q is a real quaternion and a a real vector,
show that

82=0, Vqlla.

Ex. 2. The relation V .0a=V .a'q implies a2 -a'2
,
and S.(a-

where $q does not vanish. It may be written in the form

11 Ex. 3. Provided Sq is not zero, the relations a! qaq~
l and V . qa=V . o!q

are equivalent.

Ex. 4. If o!= qaq^
1
^
the quaternion q is expressible in the form

where x and y are arbitrary scalars.

Ex. 5. The same (quaternion may also be written

provided a single relation connects ?, v and u\ Find it.

Ex. 6. If <f!=qaq~
l and ft

f

=q/3q~
l

<,

show that to a scalar ftictor

Verify that this agrees with the expression given in the last example.

Ex. 7. If three vectors a', /3', y' are derived by a conical rotation from
three others, a, ft and y, prove that it is possible to determine scalars #,

y and
<?,

so that

Ex. 8. If a, /J and y are any three vectors, and if q is any quaternion,
we shall have

S . qag-
l
{3y+S . q/S

Ex. 9, If three vectors satisfy the relation

they are mutually at right angles. If they satisfy

they are coplanar.

Ex. 10. Given that Va^y8=0, prove that the four vectors are coplanar,
and show that the condition is equivalent to

uS-ul
P 7

Interpret this result.

Ex. 11. In any product of coplanar vectors c^o^a* , . . a^, it is allowable
to transpose among themselves in any way the vectors with even suffixes
and also to transpose the vectors with odd suffixes among themselves.



CHAPTEE IV.

APPLICATIONS TO PLANE AND SPHEEICAL TRIGONOMETRY.

Coplanar Versors.

ART. 29. In dealing with rotations in a plane, let i be a unit-

vector perpendicular to the plane, and let angles be measured in

the sense of positive rotation round /. If

U#= cosA+t sin A, .......................... (i.)

the versor TJq has its angle equal to A, provided A is less than
two right angles, and generally whatever magnitude the angle A
may have, Lq= A.+ m7r where m is an integer. Hamilton calls

A the amplitude of the versor Ug, the new name being intro-

duced to avoid any confusion as to what is meant by the angle
of a versor. (Compare Art. 17, p. 13.)

It follows fr'om the laws of multiplication of quaternions

(Art. 21, p. 17) that

if Ug==cosA+isinA, Ur==cosB+isinB,J
........... ^ ^

provided A and B are less than two right angles, and this result

evidently remains true when A and B are any angles whatever.

But in full, since f= 1,

Ug . Ur= (cosA+ 1 sin A)(cos B +i sin B) "1, .

= cos A cos B sin A sin B+ 1 (sin A cos B+ cosAsin B),j^

and therefore on comparison with (ll.), since U(qr)= TJq . Ur, we
obtain the formulae for the expansion of cos(A+B) and of

sin(A+B) on equating separately the scalar and the vector parts.

The angle of (Uq)
n

is n times that of Ug, provided n is an

integer and nLq^ir] and generally when n is an integer, the

amplitude of (^Jq)
n

is n times that of U#. If the amplitude of

Ur is one mth that of Ug, and if the two versors are coplanar, Ur
is one of the mth roots of TJq ;

or we may write

(IV.)
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- n
More generally the amplitude of (Uq)

m
is that of Uq, and in

a similar manner we can interpret the expression (Ug)*, where x

is any scalar, as a versor coplanar with Ug, and having its ampli-
tude x times that of U#. If A is the amplitude of U#, we may
write

for the amplitude of U^ is times a right angle, and the ampli-
7T

tude of i is a right angle ; and still more generally, any quaternion

may be expressed as a power of a vector,

=a*, where a =UVg.Tg5Z
,

t= ..............(VI.)
7T

Concerning the ^th roots of a quaternion q which are coplanar with it, it

must suffice to remark that these are 1$ in number, being the solutions of

the equations,

.w l.?i 2.M 3-44, ,

'
-* y + etc '

* a
>

1 - 2 *...*
}. (VIL)

?i , 7i . n I . n 2

I
--

j

-

if qa+ ib and V^==^+% since

so that in addition to the n real quaternion roots whose amplitudes are

...
n " n n n n

there are n(n- 1) imaginary quaternion roots corresponding to the imaginary
solutions of the equations (VIL),

The exponential e^ where q is a quaternion, is defined by the formula,

..........................(ix.)

and because quaternion multiplication is not commutative,

*.<-?.* not^
unless q happens to be coplanar with p. In general, however, because

V^, g and Kg are commutative in order of multiplication,

and also by the definition of e it follows that

and thus T^=e^, U^= v
=cosTV^+ UV^sinTV^, .................(XL)

substitution in (ix.) and separation of the scalar and vector parts affording by
the known formulae for the expansion of a sine or cosine tlxe second expres-
sion for Uetf.
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If we write <?=lg<?'5 where q'
= eV= elos<

i', ........................(xn.)
we have by (XL), Slogg'^logiy, V log ^'= log U#' ;

and generally ifp and q are any two quaternions, we may define

^ = <*
10
^, .....................................(xm.)

but as we shall not require much, or indeed any, acquaintance with the
logarithm or exponential of a quaternion in the sequel, we refer to Hamilton's
Elements of Quaternions for further details.

Ex. 1. Prove that a+/W^T is a square root of zero, where Ta=T/5
Sa/3=0.

P '

[See Art. 67, Ex. 1.]

Ex. 2. Show that a product pq may be zero without having > or q equal
zero.

[If pq is a scalar, q must be proportional to Kp. The squared tensor of

V - Tp2+ p is zero. (Art. 22, p. 21 .)]

Ex. 3. Show that a quaternion q satisfies an equation of the form
q* +2xg+yQ when # and y are certain scalars.

Spherical Trigonometry.

AET. 30. If a, ft and y are three coinitial and unit vectors

determining a spherical triangle ABC, the whole doctrine of
the spherical triangle is contained in the relation

/-

c

B VA X B

FIG. 20.

The vectors

terminate at the vertices of the polar triangle, rotation round
these points from A to B, from B to C and from C to A toeing

positive; and in terms of these vectors the equation may be
written in the forms,

- =K; (cos c+ y sin c) (cos 6 +/3' sin 6)= cos a-a7

sin a. (n.)

Observing that rotation round OA from Cx

to B' is negative,
the versor

yf =
COS(TT

-BV)- a sin(7r
-

B'C')
= cos A- a sin A,
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and thus on expansion of (n.), we have

cos c cos b+y sin c cos 64- /3' sin b cos c+ sin b sin c cos A

a sin A sin b sin c= cos a a sin a................(in.)

The scalar part of this equation gives the fundamental relation

cos a= cos b cos c+ sin b sine cos A; ...............(iv.)

while the vector part is

a sin A sin b sin c = </ sin a+ /3'
sin ?> cos c+ y' sin c cos b. . . .(v.)

Operating by Sa on this vector,

sin A sin 6 sin c= sin aSaUV/3y = Sa/3y ,

80 that ! = ? L = _ . .
. ............. (vi.)sma sint> sine sm & sin b sin c

Now (compare Art. 17 and Art. 25),

=
(Sa/3y )

2-
(Va/3y)

2-
(Sa/3y)'

2-
(aS/3y ~Sya+ ySa/3)

2

=
(Sa/3y)

2 -(a
2
S/3y

2 + /3
2
Sya

2 +y2
Sa/3

2
-2S/3ySyaSa/3),

and accordingly, in terms of the sides of the triangle,

Sa/3y= + (1
- cos%- cos26 - cos%+ 2 cos a cos b COB c)*, . . . (vn. )

and thus the remaining fundamental relations are established.

2x
2_n

2r

Ex.l, Prove that a*/3
v
y

v = -1,

rotation round a from to y being supposed positive.

[For the supplemental triangle ^V ^=1, V^y"
4

"*, etc. (compare

Art. 29 (v.)).]

Ex. 2. Deduce the relations

COS C + COS A COM B= COS C rtitt A Bin B,

y sin c= a sin A cos B + /3 sin B cos A -t- Va/3 sin A sin .

Ex. 3. If P is any point on the surface of the sphere and Q the foot of

the perpendicular let fall from this point on the side AB, prove that

cos PC sin c cos PA sin A cos B + cos PB sin B coa A 4- sin PQ sin c sin A sin B,

Ex. 4, Taking P at the centre of the circumscribing small circle, prove

2 cot E sin
|-
2= sin A sin B sin c,

where E is the radius of the small circle and where E is the spherical excess.

Ex. 5, Show how to represent versors and their products by veraor

angles analogous to the versor arcs of Art. 21, p. 16.

!(*-r) ^ "

'-

[By Ex. 1, y* =*av /3
v

,
so that if the versor a* is represented by a

directed angle A at the extremity of the vector a, and if (3* m similarly
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represented by a directed angle B at the extremity of /} ; the product is.

represented by the directed external angle TT - c at the extremity of y.

FIG. 21

To construct the product of two versors p and q on this plan, let A be the

extremity of UVp, and B of UVg. Draw the great circle AB, and the great
circles AC and BC making the angles Lp and L q with AB, and intersecting in

the point c, round which rotation from A to B is positive. Then pq is

represented by the external angle at c. To construct the product qp9
a

point c, must be similarly found below AB, so that rotation round it from
B to A is positive. The method may be extended to spherical polygons

(Elements of Quaternions, Art. 313).

AET. 31. In his fifth and sixth lectures and in Art. 297 of the

Elements of Quaternions, Hamilton has developed at consider-

able length a curious and interesting theory connected with the

"fourth proportional" jS/x/V/ to three given vectors and with

the area of a spherical triangle ABO, whose sides are bisected in

A,, B, and C
7 by the extremities of these vectors.

The vectors a, /3, and y terminating at the vertices of ABC, and

P

FtG. 22.

A,, ByJ C, being the middle points of the sides of the triangle, we

have the relations,

, y=
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and from these relations or directly, we find

y= a
//3tt/

~ 1
, a = jS/y^8/

" 1
J /3

= y/ay/

~ 1
.

Hence a=Aa/y/ayr
1

/'"

1A" ls!S Aa/"
1
y/y/"

1
/A" ls=s

J

if "}

is the " fourth proportional
"
to /3/5 a, and y/5

so that the conical

rotation produced by p( )p~
l leaves the vector a unchanged, and

therefore + a is the axis of the quaternion p.

Again we have

so that the conical rotation in question produces the same effect

on the vector yt
as the conical rotation round P the pole of the

great circle A,B, through twice the angle of {3/a/

~ l
. And because

the point C, can be converted into the extremity of py,p~
l
by a

rotation round P or round A, this extremity must be the reflection

of C, with respect to the great circle PA. Thus the angle of the

quaternion p is C
X
AL if + a is its axis, while it is C,AP if a is

its axis, and we proceed to show that the former alternative

is true.

The point P being the pole of A^, the angles L and M are

right. Taking ON" perpendicular to A
/
B

/
it follows that the

triangle N"CB, is equal to LAB, and that NCA
/
is equal to MBA

/?

for NOB
/
has the side B,C, the angle CB,N and the right angle

CNB
/ equal respectively to the side AB

y ,
the angle AB,L and the

right angle ALB, of the triangle ALB,. Hence AL is equal to BM,
both being equal to ON; the triangle APB is isosceles, its equal
sides being complements of AL or BM; and the equal external

angles C
X
AL or C^BM of this triangle are equal to |(A+-B+ C),

C,AL + C;BM being A+ B + B
/
AL + A

/
BM= A + B + B

/
CN + A/

CN.

Moreover, if we join PC^ the angle PC
X
A will be right, C

x being
the middle of the base of the isosceles triangle APB; and the

angle cyPA will be equal to L/3,a,"
l

t
for it is J/-BPA or JML or

A^, since by the equality of the small triangles MAx
=A

y
N and

NB^B/i. Hence by the construction of Ex. 5, Art. 30, the angle
O

X
PA represents /S.a/

1 and AC
X
P represents y/5

so that C
7
AL repre-

sents p or /3/a/

~ 1

y/,
and therefore

a.............. (IV.)

Again we have this remarkable transformation by (i.),
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so that for the new quaternion,

u, .............. (VII.)

i 2 is the spherical excess of the triangle ABC, because

EXAMPLES TO CHAPTER IV.

Ex. 1. If a is a unit vector at right angles to /39
show that

a = 0a-,
where u is a scalar.

Ex. 2. If a, /3 and y are unit vectors, mutually at right angles,

Ex. 3. Given two sets a, /3, y and a', /2', y
f

of mutually rectangular unit
vectors in the same order of rotation, so that a'=+/3'y' if a+/3y> show
that we may connect the two sets by the series of relations

(1) yj
=

y, a
1
= acos^r+ /JsinT/r, fa= - a sin ^r+ ft cos -^ ;

(2) /J2
=

/31, y2
= y 1 cos0-t-a1

sin 0, a2
= -y^m fl+c^cos ;

(3) y'=y2,
a'= a

2 cos<-fj82 sm<, /3'
= -

04 sin < + /3^ cos <
;

and draw a figure to exhibit the Eulerian angles \p-, 6 and
<f>.

Ex. 4. The conical rotation q( )q
-1 which converts the first set of vectors

of the last example into the second is determined by the versor

+ a sin
-^ ^ sin i (<j^>

-
"^)+ /5 sin I ^ cos

(see Tait's Quaternions, Art. 373); while other expressions for the same
versor are

Ex. 5. Given in order n coinitial vectors a
1?

a2 ,
. . . an,

it is required to

draw n planes, each through one of the vectors, so that the lines of intersec-

tion of each plane with the two adjacent may be equally inclined to the

contained vector. Prove that the vector along the intersection of the planes

through a
x
and aw is parallel to

^

i. $

(?.

Ex. 6. Show that

a U(/3+y)

U(y+ a)* U(a+)

y+ a a+
where a, ^8 and y are any three unit vectors.

J.Q. C
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Ex. 7. If a, /?, y and 8 are the vectors from the centre to four points
A, B, c and D on a sphere of unit radius, show that

ZA 22? "20 W
a w

^Q'
r

y
7r a 7r

=l,

when the quadrilateral is uncrossed, and when rotation round an internal

point from A to B to c to D is positive.

(a) Hence

(cos A+ a sin A) (cos B+ /3 sin B)
=

(cos D S sin D) (cos c y sin c).

(6) Also

cos A cos B sin A sin B cos AB= cos D cos c - sin D sin c cos CD ;

and if P is any fifth point on the sphere from which perpendiculars PQ and
PR are let fall on the arcs AB and CD,

sin A cos B cos AP+ cos A sin B cos BP -f sin A sin B sin AB sin PQ

4- sin c cos D cos CP 4- cos c cos D cos DP 4- sin c sin D sin CD sin PR= 0-

(c) Examine the cases in which P is taken to be the pole of a side or of a

diagonal, or the point of intersection of AB and CD. (See Elements of
Quaternions, Art. 313.)

Ex. 8. If a'=UVy, /3'
=UVya, y'

=UVa& where Ta= T/2=Ty= l,

and Sa/?y <0, prove that a= UV/jy, 0-UVyV and y-UVa'/?'.

(a) If A, B and c are the supplements of the angles between the pairs of

vectors /?', y' ; y
r

,
of

;
and a', /2', deduce the relation

2,4 2J3 20

a" ft" y^-l.
(&) Show that this equation may be transformed into

eAa . e p . eCy= -1.

(c) Examine whether it may be further simplified to

^a4-j3+CV=:-l,

and carefully state your reasou. (Bishop Law's Premium, 1898.)



CHAPTER V.

GEOMETRY OF THE STRAIGHT LINE AND PLANE.

ART. 32. The vector p = OP being drawn from a fixed origin
and being regarded as variable, the equations

Spa= 0, and Vp/3-0, ........................ (l.)

represent respectively the plane through the origin perpendicular
to a and the line through the origin parallel to /3.

If y= OC, <S=OD, the equations of a plane through C and a
line through D are respectively

-y)a = 0, and V(P -S)/3= ................(IL)

These may be replaced by

p= y+crr, and p= S+/3t, ................... (ill.)

where T is an arbitrary vector subject to the single implied
condition Sar= 0, and where t is an arbitrary scalar.

The point E in which the line intersects the plane is the

extremity of the vector,

The first of these expressions has been found by substituting

S+/3t for p in the first equation (II.) of the plane. The second

has been found by replacing p by y+ar in the first equation of

the line. Another expression for the vector to the same point
of intersection is

,

)c _
iSa/3

From (iv.) we have the intercept DE= e <5 on the line, and
the interval CE= e y in the plane between the fixed points
and the point of intersection.
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If we make in (rv.), /3
= a, we find the foot of the perpendicular

from the point D on the plane to be at the extremity of the vector

OM =
/
a = ^~a- 1

S(5~y)a or ^ = y+ a- 1
V(y-(5)a 3 ...(VI.)

since the line being now parallel to a is perpendicular to the

plane.
The vector perpendicular from the point D on the plane is

DM= /x-(5= ~a- 1

S((S-y)a = aScr 1DC
?
..........(VII.)

and it will be noticed that we may directly obtain the vectors

DM and CM by resolving the vector DC along and perpendicularly
the vector a. (Art. 27. )

If in (iv.) we replace a by /3, we find the foot of the perpen-
dicular from the point C on the line to be the extremity of

the vector

08 = v= S-0- l

S(8~y)p or i/
= y+ j8-

1

V(y-5) j
8, (VIII.)

because now the plane is perpendicular to the line. The vector

perpendicular is

CN=
j
8- 1

V(y-<5)^ = /S-
1
V/3cD.................(ix.)

In general the normal to the plane (ll.) makes with the line an

angle determined by

cos = or sm =
,
or

a a

&nd if we are required to draw a plane through the point C

making a given angle with the line, we have

U/3= cos 6Ua+ sin 6Ura
;
while Ua = cos 0U/3+ sin 0Ur/3, . . . (XL)

if the line is to be drawn inclined at a given angle to the plane.
In these equations the vector T is arbitrary, subject to the implied
conditions, which are Sra = and Sr/3= respectively.

Ex. 1. Two objects, B and c, are observed from the origin of the vector a
to be in the directions TJ/3 and U-y, and from, the extremity of a to be in the
directions U/3

r and Uy ; prove that the vector BC is

and point out the conditions implied in this expression.

[For the point B we have ^U/3=a+//TJ/3', and therefore

Ex. 2. Four points A, B, c, r> are viewed from a fifth point p. Prove that

they appear to form a parallelogram ABCD if

a rectangle if UFA+ UPC=UPB+ UPD ;

and a square if in addition SUPA . PB=SUPB . PC,
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[The first condition requires the diagonals AC and BD to appear to bisect
one another. The second requires that they should also appear to be equal,
and the third imposes the additional condition that adjacent sides should

appear to be equal.]

Ex. 3. Find the equation of the locus of a point equidistant (1) from two
fixed points, (2) from two fixed planes.

Ex. 4. The extremity of the vector p is projected from the extremity of
the vector a into a point on the plane SAp 4-1 = 0. Prove that this point
lies at the extremity of the vector

SA(a-p)"
*

ART. 33. The equation of a plane through the points C, C', and
of a line through D, D', are respectively,

S0>-y)(y'-y)a= and V (p
-

<$)(<$'
-

<$)
=

;
........(I.)

or S(py+yy
/+ y

/

p)a = and V(pS+SS'+S'p)^Q: ...... (n.)

P = +<" and p =-; ................... (m.)

the plane being determined by the condition that the vectors OP
and CC' shall be coplanar with some fixed vector a, and the line

requiring that DP shall be parallel to BD'.

The various expressions given in the last article may be modi-

fied to suit the present case by replacing a and j3 by V(y' y)a
and <5' S respectively.
The plane through CO' parallel to the line DD' is

S(/>~y)(y'~y)(c$'-<5)
= 0, ....................(iv.)

because the normal to the plane must be perpendicular to the

line, so that SV(y'-y)a .(<5'-<J)
= 0, or

^

a = aKy'-y)+ #(<$'-<$),

where x and y are certain scalars which disappear on substituting
in (I.).

If a plane can be drawn through CC' perpendicular to DD', the

equation VyXy'-y)a .(' --<$)== 0, requiring S(y
/

-y)(5
/

-o)= 0,

must be satisfied.

We may, without loss of generality, take a to be perpendicular
to CO', and as it easily appears that the plane for which in addi-

tion Sa(<5' <5)
= is most inclined to the given line, we can verify

that the minimum value of

where the vector a is regarded as variable, and that the plane

SVGo-y)(y'-y)V(y'-y)05'-<S)= .............(vi.)

is most inclined to the given line.



38 THE STRAIGHT LINE AND PLANE. [CHAP. v.

ART, 34. The equation of a plane through three given points,

for the condition that PA, PB and PC should be coplanar reduces

to*this expression; and in this equation V(j8y+ ya-f-a/3) repre-
sents double the vector area of the face ABC,while Sa/3y is the

volume of the parallelepiped having three conterminous sides,

OA, OB, OC (Art. 24). The equation may be taken as asserting

that if through the boundary of a vector area determined ^by

V(/3y+ ya+ a/3) we draw vectors equal and parallel to OP (P being

any point in the plane), the volume of the solid thus constructed

is equal to that of the parallelepiped (Art. 23).

Writing for brevity, the equation of a plane in the form

the vectors

M = ^-X^(SX^-1) = \- 1VX<5+X- 1
,
and DM^X^-X^SXcS (in.)

are respectively the vector to the foot of the perpendicular from

a point D on the plane, and the vector-perpendicular from the

same point.
To find a plane equally inclined to three given lines OA, OB and

OC, we have

cos 9 . TX = - SxUa = - SXU/3 = - SXUy,

so that (Art. 26)

UX . sec0. SUa/3y= -V(U0y+Uya+ Ua|8),

sec 0= -TV(U/3y+Uya4-Ua/3)(SUa /Sy)-
1

,

and the equation of the plane is

) const,

or

A plane equally inclined to the faces of the pyramid OABO is

represented by

Sp(aTV/3y+ |QTVya+ yTVa)= wnvt.
;

a plane cutting off equal areas on its faces is

S/)(UV/3y+UVya+UVa/3)
= conri.,

while the equations of the planes cutting off* equal intercepts
from the edges and from the normals to the faces have been

already found,

Ex. 1. Find a plane equally inclined to the bisectors of the angles of the

faces of the pyramid OABC.
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Ex. 2. The planes through an edge and through the bisector of the angle
of the opposite face intersect in a line.

Ex. 3. Find the equation of the plane bisecting the angle between a pair
of faces.

Ex. 4. Find the equation of a plane through an edge and normal to the

opposite face, and prove that three such planes intersect in a line.

ART. 35. The line of intersection of the planes

>
= 1 is

V\V
and that of the planes

_M-H= s pXM = M or p= ~r- *

Three planes SXp = Z, S^p m, Svp= n intersect in the point

pSX/xj/=V(^i/+??ij/X+^X/x); ..................(n.)

and the condition that the planes should intersect in a line is

V(ljmv+mv\+ riXiui)
= Q, .............. . ......(in.)

if I, m and n are not all zero. If they are all zero, the condition

is S\/mv=Q............................... (iv.)

Four planes intersect in a point if the condition

S(ljmvT3 mXi^+7iX/t5T pX/xv)
= ................(v.)

is satisfied, the equation of the fourth plane being Sp&=p.
The conditions of intersection (m.) and (v.) may "be replaced

by the pairs of simultaneous equations

and x\+y/u,+zv+wrz= Q, xl+ym+zn+wp~Q .......(vn.)

respectively, the compatibility of the equations (vi.) or (VIL)

being equivalent to (in.) or (v.).

ART. 36. Given a pair of lines

V(p-~y)u= 0, or p= y+ta] and V(p-yX=0, or p = y+t'a, (i.)

the vector from a point P on the first to a point P' on the second is

pp'^y'-y-hfa'-tfa.........................(n.)

If it is possible to select the scalars t and if so that this vector

may vanish, the lines intersect and the condition of their inter-

section is

S.PP'Va'a^O, or S(y-y)aa= 0, .............(m.)

P and P' being arbitrary points on the lines,
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Resolving the vector PP' into two components, parallel and

perpendicular to the vector Va'a, which is at right angles to the
(directions of the two lines,

and substituting from (n.) on the right,

Thus the line joining the arbitrary points has a fixed com-

ponent perpendicular to the directions of the two lines, and

suitably selecting the scalars t and t
r

in (iv.) we see that

are respectively, the vector-perpendicular to the two lines, or the

vector shortest distance from the first line to the second, and
the vectors from the origin to the feet of this shortest vector the

points P and P '.

Ex. 1. Yerify that P p
'= or '- OPO in equation (v.).

Ex. 2. Draw a line through a point (E) to intersect two given linen.

V(p-y)a=0, V(p yV^O.
[The line is parallel to V. V(e-y)aV(~--y')a'. See (in.).]

Ex. 3. The locus of a line which intersects three given lines is repre-
sented by

(a) Eeduce this equation to the form XY^ZW, where JIT, I", Z aud W
are planes,

Ex.4. Writing
"

"VpiPa* Tss P:i-pi

prove that cr and T are merely multiplied by a scalar, if for
/> t

and pa are
substituted the vectors to any two points on the line of their extremities,

(a) Conversely, given any two vectors, o- and r, satisfying the relation

rr=0, show how they determine a line parallel to r.

(6) In this notation any two lines may be denoted by the symbols (0-, T)
and (<r'? r'). Prove that the lines intersect if

(c) Any scalar relation homogeneous in the pair of vectors o- and
imposes a single condition on av line.
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(d) If the planes 8X^+ 1=0, SA2p+l=0 contain the extremities of the
vectors pj and p.2,

show that

where w is some scalar.

(e) Hence any relation homogeneous in the pair of vectors o- and r when
equated to zero may be expressed in the forms

/(a-, r)=0, /(V/o^, ps-pO-O, /(A>-A1?
-VA^-O.

(/) According as the equation /(<r5 r)=0
is equivalent to one, two or three scalar equations, it represents a complex,
a congruence or a regulus of right lines, and the constituents of the vectors

o- and T, when resolved along three mutually rectangular directions, are

Pllicker's coordinates of a line. (See Salmon, Geomehy of Three Dimensions^

Chap, xiii., Section n.)

(g) The lines of a complex /(cr, T) =0 (/ being now a scalar function), which

pass through a point, the extremity of the fixed vector px, generate a cone

and the lines which lie in a fixed plane, SXjp + 1 =0, envelope the cone whose
vertex is the origin and which is the reciprocal of the cone

ART. 37. The vector to any point on the line joining two

given points A and B is

t being a variable scalar. If P
l
and P

2
are any two points on

the line, their vector distance is

and the anharmonic ratio of any fo\u' eollinear points is

/P P P P )-^*jJA_ (kz*iKkii) , in >(Pi234) ~p2ps .p4pr(s-*2)(^-u
............( }

In particular

More generally, the anharmonic ratio of any four points

Q1? Q2 , Q3 and Q4 eollinear with any two points P
x

, P^, of the range,,

is
'

1S

The two ranges (i.) and (v.) are homographic.

Ex. 1. If the range APBP' is harmonic, prove that

112 1,1 2
.j
--.==

,
or --h~r

-=- - .

AP AP AB p a p-a p-a
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Ex. 2. Any two homographic ranges situated on a common line,

may be simultaneously reduced to the forms,

+$77 ,

Ex. 3. Show that the vectors and 77 satisfy the equation,

ad(a - ) (8
-

)
-

bc(/3
-

c) (y
-

c) 0.

ART. 38. In many problems relating to a tetrahedron, it is convenient to

have the equations expressed in a symmetrical manner, and some of the

following relations will be found occasionally useful.

If the vectors X, ^ v and 7 are the vector areas of the faces of a tetra-

hedron ABCD we may write

oa), }
(

ya). /

.............

These vectors are independent of the origin, and their sum is zero, or

.................................(n.)

Again, if I, m, n, p are the sextupled volumes of the pyramids subtended

at the origin by the four faces,

Z=S/3y8, w-Say8, rt= !3a/% ?=*-Sa/3y; ............(in.)

and their sum is the sextupled volume of the tetrahedron, or

and is independent of the origin. Also,

2a=a+wi/3+ fty+/><$==0..............................(v.)

Changing the origin to the extremity of the vector <o, and putting

a'ssa-O), etc., the volumes subtended by the faces at the new origin are

I'^Bpy'V^P -
<o)(y

-
w)(S

-
w), etc.,

or Z'= ~SooA, m'= ?^-Sw/x, ?4
/

?i-Swv, ^/=/>-S(oCT.......... (vi.)

But still (by v.),

SJ'ci'= ^(I- ScuX) (a
-

(o)
= ^^a 4- o>2/J - SaSco A, + ficoiDX,

and this reduces by former results to the new relation,

tt2J+2atfft>X0, .................................(vn.)

which holds for all vectors to. Operating on this by Sco', we may write the

result in the form, S(i)(to^+^XStt<o')0; and, because o> is arbitrary, the

part within brackets must vanish. But a/ is also arbitrary, and accordingly,
for all vectors w, we have

().................................(vin.)

Again, it is easy to see that

2ttXaX+ /3/A+yv + to -3y-^Xa ; ...................(ix.)

and, for verification, it is sufficient to take the terras in a/3y, which are

aV/3y
- Vay +yVa/3= - %.

The sum SaX is independent of the origin.
On the whole, we have
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It is sometimes convenient to employ the vector perpendiculars from the
vertices on the opposite faces instead, of the vector areas. If a

y, /3,, y, and <$,

are these vectors, it is easily seen that

y=a,A=/2//A==y /
i/ ==6"

;S7, ..............................(XL)

because, in fact, the equation of the face BCD may be written

SpA=Z, or S(/> u)A=y, or S(p a)a/

~ 1= l.

Thus (x.) gives

Sl=0, 2Z=*?; 2fa=0; -a>v=S-So>tt-2aS^ ; -3=S-2-a....(xu.)
a,

'

a, a, a, a,
v 7

Ex. 1. Prove that the vector sides of the teti^ahedron are given in terms
of the vector areas of the faces by the relations

and show how to connect the rule of signs with that for the expansion of
a determinant of the fourth order.

Ex. 2. Show that

Ex. 3. Given the magnitudes of the areas of the faces of a tetrahedron,
show that the directions of the normals UA, U/*, and Uv to three of the
faces must satisfy the relation

ART. 39. Any five vectors are connected by relations of the form

aa+ b/3+ cy + d8+ee= Q, where a+ 6+c+d+e= 0; ............ (i.)

and if the vectors are drawn from a common origin o, and terminate at the

five points A, B, c, D, E,

a : b : o : d : e (BCDE) : (ACDE) : (ABDE) : (ABCE) : (ABCD), ......... (11.)

where (ABCD) is the volume of the tetrahedron determined by the four points

A, B, c, D.

To prove this, remark that if

the ratios of the four scalars a, 6, c and d have the values defined by equation

(IL). (Compare Art. 24, Ex. 5.) The fifth scalar e is r (a+6+c4- d).

It should be noticed that the five scalars are absolutely independent of

the origin of vectors.

Ex. Any five quaternions are connected by a relation of the form

xp+yq + zr+ ws+vt=Q
where #, ty, 2, w and v are scalars.

f ART. 40. Hamilton has elaborated a remarkable system of coordinates

which he terms " Anharmonic Coordinates," the nature of which we proceed
to explain.

In accordance with the last Article we may write any vector OP in terms

of the vectors to four points A, B, c, D in the form

OP= ~--
xa,+yb +zc+ wd
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where
, J, c and d are arbitrarily assumed constants and where x, y, z and

w are the anharmonic coordinates in question.
The point u at the extremity of the vector

(n.)

is called the unit point, its anharmonic coordinates being equal to unity.
The point p

y ,
whose coordinates are #-Kr', y-My',*-Ms', w + tw', is collinear

with the points p and P', for

(IJI)

And, in particular, the planes GDP and GDU cut the edge AB in the points
determined by

OP12r-i,,
= ;

,
ULt-i =1-

xa+yb
for P

12,
P and P34 are collinear, and also u12 ,

u and u34 ,
where

34
~~

zc +wd ' 3i
~~

c+ d
*

Denoting by (CD . APBU) the anharmonic ratio of the pencil of planes

through the edge CD and the points A, P, B and u, we have

(CD . APBD)= (AP12BU12)
= -

; (v.)

and similarly, (AC . BPDU) = - :

,
etc.

The ratios consequently of pairs of the coordinates, ,?', ?/, g, w of a point i>

are expressible as anharmonic ratios ; and the coordinates are unchanged by

any linear transformation, it being understood that the unit point undergoes
the same transformation as the vertices of the tetrahedron.

To suit special circumstances, the unit point may be specially selected.

It may, for example, be taken at the mean point of the tetrahedron, and

Ex. 1. The vector p of any point p of space may, in indefinitely many
ways, be expressed under the form

__
~"~

'
~~

#a+yb H- zc+wd+ ve

where

[In terms of the four vectors a, ft, y, 8, the anharmonic coordinates of

the point are x 1\ y v, z v and w 1\ See also Art. 39.]

Ex. 2. The equation of a plane in anharmonic coordinates being
Lv+my+ ns+pw~ 0,

prove that the- ratios of the coordinates of the plane ^, wi, n y $> are expressible
as anharmonic ratios.

The line AB cuts the plane in the point OLia
~-

; .-, and the anhar-
/JM "~i

aw> **~ Ov

monicratio (ATJ 1 jBL12)=-j. I

Ex. 3. Find the condition that the planes ?, m, n, p and /", in', n', p
should be parallel.

[The plane at infinity is
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EXAMPLES TO CHAPTER V.

Ex. 1. The equation of the plane through the origin perpendicular to the
vector a may be written in any one of the seven forms,

T(p-a) ; Spa=0.

Ex. 2. The equation
T(/0 -a)= T(p-/?)

represents the plane bisecting at right angles the line AB.

Ex. 3. The equations

represent respectively the half-line through the origin, having the direction
of the vector a, the half-line having the direction of -

a, and the whole line

parallel to a.

Ex. 4. The equations

represent the two sheets of the cone of revolution, with o for vertex, OA for

axis, and passing through the point B (Elements, Art. 196 (4)).

Ex.5. The equation ^p^^/3
a a

represents the right circular cylinder, of which OA is the axis and B a point.

Ex. 6. If A, B, c and D are the vertices of a regular tetrahedron having its

centre at the origin,

TAB=2V|ToA.

Ex. 7. Find the area of a face of the regular tetrahedron and the volume
in terms of the vector from the centre to a vertex.

Ex. 8. The six vectors a, /3, 7 terminate at the vertices of a

regular octahedron. Find the conditions the vectors must satisfy, and deter-

mine the volume, area of face, length, of side.

Ex. 9. If A, B, c, B are any four points in a plane, the vectors a, ft, y, 8,

drawn from an arbitrary origin to terminate at these points, are connected

by a relation of the form,

aa+bft+cy +dS=Q9
where

, , m , ,

(a) The vector rt^y

terminates at the point of intersection of AB and CD.

(b) If A' and B' are points similarly constructed on the remaining sides BC

and CA of the triangle ABC,

CB' __ G
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(c) Hence deduce the equation of six segments,

AC/ BA/ OB^,
(?I

*

A'C
"

B'A
~"

(d) The right line B'C' meets BC in the point A", where

b c b c

(e) Hence A' and A" are harmonic conjugates to B and c.

(/) The equation of the six segments made by the transversal C'B'A" is

AC' CB' BA"_
C'B B'A A"C~~

(g) The points A", B'', c" are collinear, and the vectors a", /3" and y" are

connected by a relation,

laf
f

+m/3"+ny", where l +m+ n = Q.

(h) The line AD meets B'C" in the point A"', where

, ,
aa-d&

OA = <X ~--- - =
a a

(i) The points B'", c'", A" lie on the polar line of the point A with respect
to the triangle BCD.

Ex. 10. Let ABCD be any tetrahedron, and E any arbitrary point, the

vectors from an arbitrary origin to the five points A, B, c, D, E are con-

nected by the relation,

(a) The line AE meets the opposite face in A', where

, ,

OA =<X

(b) The line A'B' intersects the line AB in the point,

aa-bfi
a b

(G) The six points formed in this way form a complete quadrilateral.

(d) The vector to any point in the plane of this quadrilateral is of the

form, ^x(^^ffi^Ll^.+ z
(
aa

L~~ d8)+w (<*a+^LC7^+ <*)
p__

'jtfjtl^fy +l^
(e) The line AE meets this plane in the point A,, where

4aa -f ee
OA,=S -;

--
4a 4- e

Ex. 11. The tetrahedra wliOnse vertices are at the extremities of the,

vectors a, /?, y, 8 and aa, 6^8, cy, d respectively are in perspective.

(a) Corresponding edges intersect in points at the extremities of vectors

of the type, oa(l - ft)j^j

(b) The six points thus determined form a complete quadrilateral

(c) Prove that the equation of the plane of perspective may be written in

the form, s al)(G
_ d)Spa(3+2 (1

-
a)

the determinant law of signs being <?beyed.
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Ex. 12. Determine a parallelepiped, having its vertices on the four lines-

joining the origin to the points A, B, c and D, and having its centre at the

origin.

W If
or= "

a parallelepiped having its centre at p and its vertices on the lines PA, PB, pcr

PD, has its vertices at the extremities of the vectors,

p\ py(/3-p), pz(y-p
(6) If a pair of edges are at right angles, the condition may be written in

either of the forms,
Sjg,y=Sa^ or ^+yt=afi+s>t

where, for brevity, a'=#(a-p), etc.

(c) The locus of a point P satisfying this condition is a quartic surface.

(d) If two pairs of edges are at right angles, the conditions may be
written as

a.'
z= ff* -/2=S'2

(e) If the parallepiped is rectangular, the conditions are

a'2=/3'2= r'2=S'
2

.

(/) The point, or points, satisfying these conditions are also given by

and it may be shown that this is the condition that

T(a-/>)T(jS-p)T(y-p)T(8-p)
should be a minimum.

(g) Another form of this condition is

= SU.(p-a)(p-/3)(p-y).

Ex. 13. Find the vector to a point p at which the faces of a tetrahedron

subtend volumes whose ratios are given.

Ex. 14. Find a vector equation for determining a point p at which the-

faces of a tetrahedron subtend solid angles whose sines are in a given ratio.

Ex. 15. What is the condition in terms of the lengths of the sides of a
tetrahedron that two opposite edges should be at right angles to one another?

(a) If two pairs of opposite edges are at right angles, the third pair is also

at right angles.

Ex. 16. The vectors a, ft and y are coinitial. It is required to draw

through the extremity of a a plane which shall cut the vectors in points-

forming a triangle of given species. Show that the problem may be reduced

to finding scalars y and z, so that

- a)=nT(a -y/J),

where
,
m and n are given scalars

;
and eliminate either y or

,
so as to^

obtain an equation in the uneliminated scalar.

Ex. 17. If the perpendiculars from the vertices of the tetrahedron ABCD>

intersect, and if the origin is at the points of intersection, show that

Sa/3= Say= Sa8= S/3y
= S/33=Sy8.
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Ex. 18. Given three points A, B, c, show that the three equations

SG>-a)G8-y)0, S0>-0)(y-a)=0, S(p-y)(a-)-0
represent a line which is the locus of the fourth vertex D of a tetrahedron

ABCD enjoying the property that perpendiculars from the vertices on the

opposite faces concur.

(a) Show that the point in which the line meets the plane of the triangle
ABC is the extremity of the vector,

and express this vector in the form,

"~

JC+1/+ B

(b) Show that the line may "be represented by

__Vy (t
-
S/3y) + Vya(*

- Sya_

Ex. 19. When the vector to a point P in the plane of ABC is expressed in

x+y+z
show that the ratios of x, i/9

and 2 are the ratios of the triangles PBC, PCA, PAB.

(a) Hence, if upper and lower signs correspond,

a,TOS--y)/3T(Y-tt)vT(a-jS)
P~

T(j8-y)T(r -a)T(a-j8)
are the vectors to the centres of the inscribed and escribed circles of the

triangle.

(b) Deduce the corresponding theorem for a tetrahedron, and find the

vectors to the centres of the inscribed and escribed spheres.

Ex. 20. Selecting any point u in the plane of three given points A, B, c,

so that

where a, 6, c are constant scalars ; the vector to any variable point in the

plane may be represented by

r, y and z being the anharmonic coordinates of the point P.

(a) If &*+y2+z
2

%yz 2z# %xy= 0, the locus of P is a conic touching the
sides of the triangle ABC in points which connect through u to the opposite
vertices.

(b) If yz+zx+ 07^=0, the locus of P is a conic circumscribing ABC, and the

tangents at the vertices intersect the opposite sides in points on the polar of

XT with respect to the triangle ABC, or with respect to either conic.

(c) The two conies have double contact, the polar of u being the chord of

contact, and the anharmonic coordinates of the points of contact being
1, CD,

o)
2 and 1, o>

2
,

(o where o> is an algebraic imaginary cube root of unity.

(d) Given three scalars, &, v and w, discuss the arrangement of the six

points whose anharmonic coordinates are equal to these scalars taken in

different orders. Show that the six points lie on a conic. Examine the
three cases in which permutation of the scalars determines less than six

points.



CHAPTER YL

THE SPHERE.

AKT. 41. The equation

TEP= T( y
o- e)

= a> or
/>

2-
2S/>e+ e

2+ a2= ......
.-...(i.)

inquires the variable point P to remain at a constant distance a
from a fixed point E, and consequently represents a sphere of

radius a and of centre E.

The right line p = /3+ ta meets the sphere in the points deter-

mined by the values of t which satisfy

T08-e+ te)= a, or T( ]8-e)
2 -a2

~2^S(/3-e)a+^Ta2= 0; (n.)

and the product of the intercepts between the point B and the

sphere is independent of a, being

^2Ta
2= T(/3~e)

2~a2
, ........................ (ill.)

while the sum of the intercepts is

e)Ua, ..................... (IV.)

if
x
and

2 are the roots of the quadratic (IL).

The square of the chord cut off by the sphere is

= 4a2
-4TV(/3-6)Ua

2
,
................ (v.)

remembering that (SXM)
2

+T(Vy)
2==Txy (Art. 17), and accord-

ingly the line meets the sphere in real points, only if

TV(/3~e)Fa<a, ......................... (vi.)

that is, if the perpendicular from the point E on the line is less

or equal to the radius of the sphere. For contact,

and

represents the tangent cone from the point B, BP being a tangent
line. Since TVXyic<TXT^, the cone is real only when T(/3 e)S:a.
The locus of the centres of the chords is derived from (iv.) by

putting ^(tI+ t
2)a= p /3,

and is given by

J.Q.



50 THE SPHEEE. [CHAP. vi.

which, represents a sphere on BE as diameter. For it expresses
that the projection of BE on BP is equal to BP

}
so that the angle

BPE is right.

Taking the harmonic mean of the vector intercepts to be p /3,

we have by (m.) and (iv.),

-
5

ancl

is the locus of its extremity the polar plane of the point B.

AKT. 42. Any two spheres,

p*-2Sap + l=Q, P
2
-2S/3p-hm=:0, ............... (i.)

intersect in the plane,

Z-m: ........................ (II.)

and if P is any point on the second sphere and P' any point in

this radical plane, the power of the first point P with respect to

the first sphere is (Art. 41 (in.)),

or twice the projection of PP' on the line of centres into the

distance between the centres.

The spheres .cut at an angle determined by

since if a and b are their radii, a2
-hZ?

2 2a&cos $ = T(a /3)"
2
.

For further investigation, the origin should be taken at the

intersection of the line of centres with the radical plane.
A variable sphere cuts two given spheres at constant angles,

prove that it cuts an infinite number of spheres at constant

a.ngles. Let the sphere (L), determined by /3 and m, be the variable

sphere, and let it cut the spheres (a, Z) and (a, I') at the angles
and 0'. Assume that it cuts the sphere (</, I") at the angle Q".

Then the third of the equations,

= 2a& cos
; J'+m- 2Sa' = 2a'6 cos 6'

;

= Za"b cos <9",

analogous to (iv.), must be equivalent to a linear combination of

the other two. Multiply by scalars, cc, y and #; add and

separately equate to zero the coefficients of the variables, m, /3

and b, and

xa cos + yaf cos 6'+ xa" cos 6"= 0.
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The first, second and third show that the sought sphere
(a", I") must be coaxial with the given spheres, and we have, in

fact, on elimination of x, y and z,

a"cos 0"(Z- Z')+ a cos 6(V- 1")+ a'cos &(l"
-

Z)
= 0.

Substituting for a" its value, ^/(Tc*"
2+ z")> ^he equation

cos

becomes a quadratic, which gives two values of I" for each value
of cos &'. One sphere only is cut at right angles because the
condition becomes linear in Z".

Ex. Reduce the equations of a pair of spheres to the form,

p
2
-2^Sap+ =0; p

2
-2vSap+ Z=0, where Ta-1.

(a) Prove that all spheres of the family obtained by giving various
values to w in

p2
_ 2^Sap+ 1=

intersect in a common circle.

(b) Examine the condition for the reality of the circle, and show that
whether real or imaginary, it lies in a real plane.

(<?) If the circle is imaginary, there are two real point spheres of the

family. Find them.

(d) The spheres of the doubly infinite family

formed by giving all possible values to the vector /3, cut the spheres of the

family (a) at right angles.

AET. 43. Given any three spheres,

p
2
^2Sap+ ?= 0, />

2
-2S/3p+m= 0, /

o
2

the radical planes of each pair intersect in the line,

^; ...............(a.)

or P= (ZV^y+ mVya+7iVaj8)(Sftj8y)-
l+ *V()8y+ ya+a)8).(nL)

If the origin is taken on this line, Z=m=r&
;
and if it is taken

where the line intersects the plane of centres ABC, the equations
of the spheres may be reduced to the type,

the vector v being fixed, but K being susceptible of various values.

The spheres of this family (iv.) of given radius (a) have their

centres on a fixed circle,

It is easy to verify that the radical axes of every ^three
out of

four given spheres intersect in a point. This point is the radical
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centre of the four spheres, and is situated at the extremity of the

vector
'

the fourth sphere being p
2

2Sc?p+p = 0.

It may be verified that if in this equation p and 8 are rendered

arbitrarily variable, we fall back on the radical axis of three spheres. If,

in addition, y and n are arbitrary, the same equation represents the radical

plane of two. For example, we may put 8=^a+y/3+^y, where #, y and z

are arbitrary.

Ex. 1. Find the locus of the centre of a sphere cutting three spheres
orthogonally.

[Let 8 and p determine the sphere whose centre is sought, and let the
three spheres "belong to the family (iv.). The condition +>-2SSK=0
must be satisfied by three values of the vector K. Hence p -Z, 8

|| v, and
the locus is the radical axis.]

Ex, 2. Find a sphere cutting four spheres orthogonally.

Ex. 3. If four spheres are mutually orthogonal, their centres determine
a tetrahedron self-conjugate to a sphere.

[Let the spheres be referred to their radical centre. The conditions are

=Sa/3 Say= Sa8=S/3y==S/3S==SyS, and the centres are conjugate in pairs
to the sphere p

2
=.]

The Method of Inversion.

ABT. 44. We have seen that

represents a vector having its tensor reciprocal and its direction

opposite to the tensor and the direction of the vector p (Art. 16).
Hence more generally if

y)-^ -fia. OP" 1
,
............ (I.)

P and P7

are inverse points with respect to the sphere, centre
and radius R, for

The inverse of the sphere T(p a) = a is

The symbol T prefixed to the scalar on the right is intended to
show that it is to be taken positively. Thus, to invert the given
sphere into a sphere of radius b, we have

=
T(a~y)

2-a2
according as T(~ or
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or according as the centre of inversion lies outside or inside the

given sphere.
The inverse of.a plane is a sphere through the centre of inver-

sion, and the inverse of a line is a circle. Thus
m / c>2 \

y--= a + tfr or V(-^-+ a-y)/3= 0, .........(IV.)p-y ^ v-y J

represents a circle through the point C the inverse of the line

Ex. 1. If any two vectors OA, OB have OA', OB' for their reciprocals,
then the right line A'B' is parallel to the tangent OD at the origin o, to the
circle OAB

; and the two triangles, OAB, OB'A7

,
are inversely similar.

(Elements of Quaternions, Art. 259.)

Ex. 2. Invert the sphere, centre A and radius a, into the sphere centre
B and radius ~b.

r-rr (a-y)R2 aR2
,

[Here /5=y+?r7
-%-v rfv

-
v>
-,= 6,L i~ r

T(a yY~" a T(a y)
2 a2 '

and from these

There are two real positions for the centre, but there may be only one

positive value of / 2
.]

Ex. 3. Invert a system of coaxial spheres into concentric spheres.

[A system of coaxial spheres p*-%wSap+ l=Q inverts into a system of

spheres having their centres on the line locus,

pP 7
y3

If this is independent of w
9

it is easy to see that y
2

=0, y||a, or

y= a v 1. _ _
The centre of the inverted spheres is a*/-l =F Ja/2

2 :\f~L

Ex.4 Prove that xa ^ zy-
--{-

i .
-f-
-_

_q o p~o y o
P ~~

x
4. y JL

z-_
_j_
_

__j
--_

a-o p-o y-S
represents a sphere through the four points A, B, c and D.

[Invert with respect to the point D.]

ART. 45. The following examples relating to a sphere and a tetrahedron

are easily solved by the formulae x. or xn. of Art. 38, or by the method of

Art. 39.

Ex. 1. Determine the sphere through A, B, c and D.

[The vector K to the centre is K= -J-v-
12Xa2= -JSA,/-

1^ and the

squared radius is ^2= -^E^-iy-^^Xa2
)
2
^]

Ex. 2. Given four spheres having their centres at A, B, c and D, and
their radii equal to a, 6, <?, d, find their radical centre.

[If o) is the vector to the radical centre, and if A=(co-a)
2+a2

,
we have
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Ex. 3. Describe a sphere to cut four spheres orthogonally.

Ex. 4. Describe a sphere to cut four given spheres at given angles.

[Here there are four equations of the form (*:-a)
2+a2 -2a#cos ^4-^2= 0.

Multiplying by the scalars I and the vectors X. and forming the sums, the

equations,

are obtained. Substitution for K in the first gives a quadratic in R. For

the origin at the radical centre, the equations are,

Ex. 5. To invert four spheres into four others of given radii.

[If a', &', c', d' are the radii which the inverted spheres are required to

have, and if the vector t terminates at the centre of inversion,

*
2 - 2Sta 4- a2+ a8 ~&= 0. (Ex. 2 of last Article.)

a

Taking the origin at the radical centre,

a

These lead to a quadratic in R2 for each set of signs.]

Ex. 6. Find the equation of a sphere touching the four faces of a

tetrahedron.

Ex. 7. Find the condition that five points A, B, c, D, E should lie on a

sphere.

[In the notation of Art. 39, p. 43, this is aa2+ &/3
2
H-cy

2+^2+ ee2=0, or

OA2
(BCDE)

- OB2(ACDE)+ OC2(ABDE)
- OD2

(ABCE)+ OE2
(ABCD)= 0.]

Ex. 8. If five spheres are orthogonal to a sphere, prove that

PA (BODE)
- PB (ACDE)+ PO (ABDE)

- PD (ABCE)+ PE (ABCD)= 0,

where A, B, c, D, E are centres of the spheres and where PA,
PB,

PO,
PD,

and PK
are the powers of any point with respect to the five spheres.

Ex, 9. If five spheres cut a sixth at the angles $, 0', etc., prove that the

radius (R) of the sixth is given by the relation

2pA (BODE)= 2/iSc& cos ^(BCDE),

PA being defined as in the last Example, and a, Z>, c, d, e being the radii of

the five spheres.

Ex. 10. Find the equation of a sphere in anharmonic coordinates.

[Compare Art. 40, p. 43. The imaginary cone standing on the circle at

infinity is

T/>
2
=0, or fi

and a sphere is & + 2o#2fo?= 0.]

Ex. 11. Prove that the equation of the sphere circumscribing the
tetrahedron ABCD is in anharmonic coordinates,
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ART. 46. The product of the successive vector sides of a poly-
gon of odd order inscribed in a sphere is a tangential vector at

the initial point of the polygon ; and if the number of sides is

even, the product is a quaternion whose vector part is parallel to

the vector radius to the initial point.
The centre of the sphere being O, and A19

A
2 being successive

vertices, the isosceles triangle A2Aa
O is inversely similar to

A
1
A

2O, and therefore (Art. 18, p. 14),

,
or OA2

=~A
1
A

2
.OA

3
,A A

~~
A A

~
A A

* 2 '
V/A2 ^1-^2 w^l '

A A
"

-CX-i-CV^ -Tl.f).ri.j ,TXg.Cy.- JTi.'i -TX^

Thus, if OA
1 ^a 1J

OA
2
=a

2 , etc., A
1
A

2
= y1 ,

A
2
A

3
=

y.2 , etc.,

a2
= - VidiVi '\ 03

=- y2 272
" l = + y^y^-i/i

"
^2

"
*> etc -

5

and generally, the polygon being closed so that an+l= a1}

For an odd number of sides,

#<*!+<*!#
=

(), or c^Sg+80^2= 0, orSg= 0, Vgax ; ...(11.)

and for an even number,

qa^ 0^ = 0, orV. aiV^= 0, or Vj ||
ax

.......... (ill.)

In the first case (-n odd), the product is a vector, and is perpen-
dicular to av or parallel to a tangent at Ar In the second case

(n even), the product is a quaternion having its vector part

parallel to ar
In connection with this article and its examples, Art. 296 of

the Elements of Quaternions should be consulted.

Ex. 1. The equation of the sphere through four given points A, B, c, D

may be written in the form

Ex. 2. The normal at the point p on this sphere is parallel to

and the vector S7 being variable,

S(cr-p)0>-a)(a-/8)G8-r)(y-/>)=0
is the equation of the tangent plane at p.

Ex. 3. The equation of the circle ABC is

and the tangent to the circle at the point p is

[The vector part of a product of an even number of coplanar vectors is

perpendicular to their plane, being a product of half the number of coplanar

quaternions. Therefore when the points are coplanar the expression for the

normal vector in Ex. 2 must vanish, as this vector cannot be perpendicular
to the plane. The equation is also susceptible of geometrical interpretation.]
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Ex. 4. The product of four successive vector sides of a quadrilateral
inscribed to a circle is a positive or negative scalar according as the quadri-
lateral is crossed or uncrossed.

["Use the relation II. = U
,
which asserts that the angles ABC, ADC

L BC DC
are equal or supplementary.]

Ex. 5. The " anharmonic function of four points in space
"
being defined

by the equation
, , AB CD
(ABCD) * ,v ' BC DA

examine the nature of this quaternion when the four points are concyclic.

Ex. 6. Prove that the anharmonic functions of any four points in space

satisfy the relations

(ABCD)+ (ACBD)= 1, (ABCD) . (ADCB)= 1
;

and that (ABCD)=K -7-7,
C B

where B', c' and D' are the inverse points of B, c and D with respect to the

point A.

[Note that a-1 -
/3~

l= a'1
. (0

-
a) /J-

1

.]

Ex. 7. If (OABC)=-I, prove that oB~1

=-|(oA-
1+ oc- 1

).

Ex. 8. Inscribe a polygon to a sphere, given the directions of the sides

of the polygon.
[Here U^ is given, q denoting the quaternion in the text

;
and (n.) and

(in.) show that the vector to the first corner is J_ VU^, or else
|| VU#.]

Ex. 9. For the gauche quadrilateral OABC, which may always be con-

ceived to be inscribed in a determined sphere, we may say that the angle
of the quaternion product, L (OA . AB . BC . co), is equal to the angle of the

lunule, bounded by the two arcs of small circles OAB, OCB
;
with the same

construction for the angle of the anharmonic'Z-(oABc), or Z_(OA : AB. BC : co).

(Moments, Art. 296 (15).)

Ex. 10. Let ABCD be any four points in a plane or in space, connected by
four circles, each passing through three of the points ; then, not only is the

angle at A, between the arcs ABC, ADC, equal to the angle at c, between CDA
and CBA, but also it is equal to the angle at B, between the two other arcs

BCD and BAD, and to the angle at D, between the arcs DAB, DCB. (Elements,
Art. 296 (18).)

Ex. 11. The vector part of the product of four successive sides of a

gauche quadrilateral inscribed in a sphere is equal to the diameter drawn
to the initial point of the polygon, multiplied by the sextuple volume of the

pyramid, which its four points determine. (Elements, Art. 296 (43).)

ART. 47. To inscribe a polygon in a spliere so that its sides

may pass through given points.
Let the unit of length be selected equal to the radius of the

sphere. Let the centre be taken as origin, and let p } pv p2 ,
. . .

pn( = p) be the vectors to the' vertices, while /3V /32 ,
... /3n are the
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vectors to the fixed points. The rectangle under the segments of
the chords through px

is

0-&)0>i- &)=!+&*; .................... (i.)

so that ^=-1^=-^ a Pl^, 9i
= 1..........(II.)

Again,

p =-^=<->2

?i:S if ft=
p2 Pl p,2 q2p

and it is easy to see that, in general,

pm-qmp

Finally, p= (-)^ if ^=
/3? ^^^ gn= g............. (v;>

Two cases now arise according as n is odd or even. In the
first place, if n is odd, remembering that p

2= 1,

or, separating the scalar and the vector parts,

Spp+8q-Q and SPq-Sp = Q................ (vi.)

Introducing the imaginary of algebra, these may be combined
into the single relation,

S(PW^)(gW~Ip)= ..................(VIL)

The equations (vi.) give a line locus for p which intersects the

sphere in two points real or imaginary which satisfy the

conditions.

In the second place, if n is even,

pp-pp = pqp+ q= p(qp-pq); or V .

Adding to each side x=^Spp f we have

ypVq+Vp P
"
lx= "~ XP 5

an(i tin gives SVpVq =

on operating by SVg. Hence,

as we see by adding SpVq to each side. Thus,

and

as appears on taking the tensor, remembering that Tyo
2= l. This

quadratic in a?
2 has one negative root. The other root is positive,

and there are thus two real values for x, and two real points

satisfying the conditions.
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We have now to determine p and q. Multiply pm in equation

(iv.) by V 1 and add it to qm) and

This gives at once, on referring to (il.),

l J'"*
V

and the real and imaginary parts ofjthis product are q and p.

A quaternion of the form q+ */~-l . p is called by Hamilton a

bi-quaternion. (Compare Art. 22, p, 20.)

Ex. Show that in the notation of this article

[Multiply q+*J~^lp into Kq+\f-lKp and separate the real and the

imaginary parts.]

EXAMPLES TO CHAPTER VI.

Ex. 1. The sphere which has its centre at the origin, and has the vector

OA, or a, with a length Ta=a, for one of its radii, may be represented by
any one of the following equations :

p a p+ a p-fa p + a

T(p~ca)=T(6'p-~a),

which are transformations one of the other, and each of which exhibits some

geometrical property of the surface.

Ex. 2. The circle which has its centre at the origin, which lies in the

plane Sap=0, and which has Ta for its radius, is represented by the equation

(ey i.

Ex. 3. If t is a variable parameter, in absolute magnitude not greater
than unity, the equations

represent a system of circles which genei'ate a sphere.

Ex. 4. The equation of the sphere through the four points o. A, B, c may
be written in the forms

S (oA . AB . BC . CP . PO) = ;

SG8-*
- cr1

)^"-
1 - cr^p-

1 - a-1

)
- 0.

Ex. 5. If we project the variable point i? of a sphere into points A\ B\ CJ
N

on the three given chords OA, OB, oc by three planes through that point p

parallel to the planes BOO, COA, AOB, we shall have the equation
OP2 A . OAN + OB . OB

N + 00 . OC
V
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Ex. 6. The expression*

p= rfc?Jg-*Js-* or p^frfl*"*,
in which r is a given scalar, i, j, Jc mutually rectangular unit vectors, while
s and t are parameters, represents a sphere concentric with the origin.

The expression may also be put under the form

and it may be expanded as follows :

p= r{ (i cos tir+j sin far) sin STT 4- Jc cos STT
}.

(a) Show how to establish the first form of the expression by the

properties of conical rotations.

Ex. 7. Show that the equation

in which w is a real scalar capable of receiving any value consistent with the

reality of the vector p, represents the portion of the plane S(p~a)/3=0
included within the sphere T(p-a)=T/3.

Ex.8. Theequationt T(w+p)= l,

in which p is a real variable vector and w a real variable scalar, represents
the region enclosed by the sphere Tp = 1.

Ex. 9. A sphere passes through the intersection of the planes
Sju,p=0, Svp= 0, which cut off caps the sum of whose areas is equal to 2?ra2

.

Show that the locus of the centre is represented by

3Tp2+Tp . S(UA+ life+ Uv)p= a\

Ex. 10. The centre of a sphere of constant radius a describes a circle of

radius b concentric with the origin and in the plane Sap=0, Ta=l. The

equation of the surface generated may be written

or 25TVap= (Tp
2+V - a2

) ;

or 462
(Sap)

2 4&2Tp2 -
(Tp

2+ 62- a2
)
2

;

or 4a2Tp2 - 4Z>
3
(Sap)

2
(Tp

2 - 62+ a2
)
2

;

or su /)~a(q*-&)ir 6

*p + a(a
2 ~52

)*
a

9

or p= bU . a~1Var + allr (r a variable vector).

(a) Taking /3 and y, two auxiliary unit-vectors perpendicular to one
another and to a, show that

a2Tp2_
&2(Sap)2=as

(Syp)
2
-t- Sp(a/J+ aN/P^^)Sp(aj8 - a N/62^2

),

and prove that each of the planes

Sp(a/3a\/6
2~^a2)=0

touches the surface in two points and cuts it in a pair of circles.

* Examples 1-6 are taken from Hamilton's Elements of Quaternions.

fThis and the last example are to be found in Hamilton's Lectures on

Art. 679.
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Ex, 11. If p and q are variable quaternions, while a and /5 are given
vectors, show that

op=p=pap~
2+ qfiq~

l

represents the shell included between the spheres

l>=T(Ta-T/3).

(a) If y is a third given vector, and if a and b are given scalars, the

point P terminates on the circle of intersection of the spheres

when the quaternions p and q are connected by the relation

apap-
1
-f bqftq'

1=
7.

(6) When the relation

Vy(apap~
l+ bq/3q~

l
)=0

connects p and ^, the locus of P is the surface

(c) If the condition

is satisfied, the point P must render the expression

4(Sf>y)
2
{ abTp*+ (a-b) (aTa

2-
&T/3

2
) }

+ (a
-

&)
2
Ty

2
(Tp

4+Ta4+ T/5
4 - 2Ta2

/3
2 -

2T/5
2
/)
2- 2T/o

2a2
),

less than zero.

Ex. 12. The bars AB, BC and CD are connected by universal joints at

B and c, and also to two fixed points A and D. If P is a point fixed in BC,

and if we write

where u is a given scalar, and also

where a, j8, y, B are given vectors and p, q and r variable quaternions,

prove that

-

being a scalar, and hence show that the inequality

determines the region within which the point p must lie.

(a) If the bar BC remains parallel to the fixed vector ft, the locus of p is

the intersection of the spheres

(P-upy=a\ o>'-'/3)
2
=y.

(6) In this case the locus of the bar BC is the cylinder

(c) When the quadrilateral ABCD is coplanar and when the motion is

confined to the plane ABCD, find equations of the form
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for the path of any point of a plane lamina attached to BC, i being a constant
unit-vector perpendicular to the plane ABCD, and f(x, y) being a scalar

function of x and y.

Ex. 13. Solve the equation

p a p /3 p~y p 8~

(a) If p
f

, of, ft' and y
f

are the vectors from the point D, the extremity of

the vector 8, to the inverses of the extremities of
/>, a, /3 and y with respect

to D,

Hence deduce the relations

p' a' p' y' y' o! \y' a'J

(b) Solve similarly the quaternion equation

q a qb qc qd
by assuming

(Robert Russell.)



CHAPTER VII.

DIFFEBENTIATTON.

ART. 48. The equation

-..(I.)

in which a variable vector p is given as a function of a variable

scalar t
9 represents a curve in space, it being possible in general

to pass from one point P to another point P' on the locus, only in

one definite way namely, through the series of points deter-

mined by the variation of the parameter from t to t'.

The chord PP' of the curve is

and for the sake of argument we shall suppose that the para-
meter t represents the time, so that P is the position of a moving
point at the time t, and P' its position at the time t

f

.

Q/

P <,'--
-

FIG. 23.

Writing j#,.r =, (n,)

it is apparent that had the point passed from P to P'
?
In the time
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t' t, not along tlie curve arid with varying velocity, but along
the chord and with uniform velocity, and that had it continued
to move uniformly along the production of the chord, it would
have reached the point Q' in unit time. In a similar manner the

point Q" would have been reached in unit time had the point
moved uniformly along the chord PP" in the time in which it had
described the curve and had its motion been continued along the

chord without alteration. In the limit PQ represents rigorously
the velocity at the point P, in magnitude and direction, for Q is

the position the point would have reached in unit time had it

left the curve at the point P, preserving unchanged the velocity
it actually possessed at that point. The equations

.(IV.)

are equivalent modes of expressing the limit to which we
advance ; the third being perhaps in closest agreement with the

illustration. It is usual to write

(v.)

as an abbreviation for the limit.

The vector <f>'(t) is the derivative, the derived or the differential

coefficient of the vector function <p(t) of the scalar t, and the

differential of <f>(f) corresponding to any scalar differential

dt of t is

(vi.)

This is a vector tangential to the curve and of length propor-
tional to the differential dt which may be large or small.

If t is the arc of the curve, the vector <[>'(E) is of unit length,
for in this case we may consider t to represent the time for unit

and uniform velocity along the curve.

If 0'(tf)
= 0, the extremity of the vector OP= 0(tf) Is a cusp or

stationery point.

8 Ex. 1. The curve p= a cos t+ /? sin t

represents an ellipse of which a and j3 are conjugate radii.

[The vector /o

/

=-^= -<xsin-H/?costf=acos f~-m-h/?sin (?+*)
is the

radius conjugate to p.]

'

Ex. 2. The parallelogram determined by conjugate radii of an ellipse Is

constant in area.
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Ex. 3. How is the point at the extremity of the vector

related to the points t and 2' on the ellipse ?

Ex. 4. The curve p=at2
+2ftt+y is the trajectory of a point moving

with uniform acceleration.

Ex. 5. What is the curve

Investigate its properties.

Ex. 6. A helix is represented by

/o
= a cos t+fi sin t +yt,

the vectors a, ft and y being mutually rectangular, and the tensors of

ot, and ft being equal. Determine all particulars.

Ex. 7. A conic is represented by the equation

Its centre is at the extremity of the vector

__ ac 2/56+ yaK "
2(atf-6

2
)

*

[The curve meets an arbitrary plane in two points. Find the pole of a

chord, and in particular of the chord at infinity.]

Ex. 8. The equation VpaYftp
=
(Va/3)

2

represents a plane curve a hyperbola of which a and ft are the asymptotes*

Ex. 9. "Write the equation of the conic of Ex. 7 in a vector form

independent of the parameter.

ART. 49. A vector function of two parameters, t and u,

/>
= <K^), ................................. (I-)

represents a surface. It may be regarded as generated by the

family of curves u = constant, t variable
;

or by the family
t const

In strict analogy with Art. 48, (VI.) we have

dyo
= d0( ; u)= lim mn\

<f>(t-\ d, u+ ~-du) <f>(t, u)\\
m=oo, -n-=:oo L \ 771 n /

\ frr \

f, (Li.)

where d and du are any scalars. It is evident that this expres-
sion is linear with respect to d and du, so that we may write

u.........(in.)
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The derived vectors
<j>'(t, w) and

<f>,(t, u) are tangential respec-

tively to the curves u= const. and t = const, at the point t, u ;
and

more generally the vector ^'dt+fadu is tangential to the

surface.

The equation of the tangent plane to the surface is

S(/>-0)0'&= or S(p-0>= 0, if H|V0V,> .......(iv.)

and the vector v is normal to the surface. The equation of the

normal is

,
= 0, or Ar(p-0V= 0, or p= <p+xv......(v.)

Ex. 1. If <(*) is a function of a single parameter, the equation

represents a developable surface.

[This surface is generated by the tangent lines to the curve p<j>(t).

The normal vector is V(<'+^<")- <' or v<"<'j and is independent of w.-

The tangent plane is S(/)-4-^)V^'/:=
>
or S (p -<)<'<"=0, and as this

is independent of u, it touches the surface all along the generator determined

by t. Conceive the tangent plane to roll over the surface and the successive

generators become attached to it, the surface will be unfolded or developed

in the moving plane.]

Ex. 2* The equation
p

in which a is a constant vector, represents a cylinder standing on the curve

p=<(#) and having its generators parallel to a. The equation

represents a cone standing on the same curve and having its vertex at the

extremity of cu

Ex. 3. Find the locus of a line joining corresponding points on two

homographically divided lines AB and CD.

homographically divided lines. This is a hyperboloid of one sheet]

Ex. 1 Show that the variable line determines homographic divisions on

the lines AC and BD.

Ex. 5. Find the scalar equation of the locus of Example 3, and show

that it may be reduced to the form

where X, Yy
Z and W are planes.

Ex. 6. Find the locus of a, line similarly dividing two given lines AB

and CD.

ART. 50. The equation

p=0(, w, v), ............................. (I-)

in which t, u and v are variable parameters, may at pleasure be

J.Q. E
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regarded as determining (i.) a singly infinite family of surfaces,

for example, the surfaces found by assigning various but constant

values to v, (n.) a doubly infinite family of curves, for example,
t variable, u and v constant ; (in.) any point in space, for we can
in general find one or more sets of values of t, u, v corresponding
to an arbitrary vector p. The scalars t, u, v are curvilinear

coordinates of the extremity of the vector p.

Differential of a quaternion function.

ART. 51. The differential of a quaternion function of a

quaternion is defined by the equation

............(l.)

or d.F(q)= lim l{F(q+hdq)-Fq}=f(dq),
h=Q it-

Si definition in complete agreement with the results of Art. 48.

The function /(dg) is a linear and distributive function of
the differential dq, while it also in general involves the quaternion
q in its constitution. To prove this proposition, observe that if

r and s are any two quaternions,

or simply f(r+s)=f(r)+f(s).........................(n.)

As a corollary, /(#?')
= aj/(r ) .............................. (HI.)

if x is any scalar.

As an example,

~$~ I

^ J

and thus -

*

d. g
2
==g dq+dq . q. ...................... (iv.>
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There is a notable difference between the differential of a
function of a single scalar and a function of a quaternion, which
is clearly illustrated by this example. In general, from a differ-

ential of a function of a single scalar d . F(x), we can form a

differential coefficient
p-^,

which is absolutely independent of

dx. Thus, "g^"=^ but -^L=:q+ dq .q.dq~
l

is not indepen-

dent of dq. And this, which is a consequence of the non-
commutative law of multiplication, is really quite in keeping
with the ordinary theory, for if F(x, y) is a function of two
independent scalars x and y, we cannot form a complete

T^JJ
1

T^J?
differential coefficient from d. F(xy) = dx+dy, where dx

<ox oy
and dy are arbitrary, though we can of course form the partial

r) T? ^1?
differential coefficients -^- and =. We must remember that a

ox ^y
quaternion is a function of four numbers, and that a differential

dg is susceptible of a quadruply infinite system of values.

As a second example,

d . g-
x= q~

l
. dg. q~

l
, .....................(v.)

for d. "" 1= lim n dq) q~
7& /

/ 1 N" 1

= lim ( q+ -dq) .dq.q-\
?t= oo ^ IL /

Ex. 1. Prove that

[Note that these symbols are distributive, or that

Ex. 2. If v is a vector function of a variable vector p, and ifdv=<j>dp
show that <d/> is a linear and distributive vector function of (dx^ so that for

any pair of vectors < (a + /3)
=

<$>(a)+ <j^> (ft).

[This is a particular case of (n.). Fuller details will be found in the

following chapter.]

ART. 512. The differential of a function F(q, r, s, ...) of any
number of quaternions is the sum of the differentials with

respect to each separately, or

d . F(q, r, s, ...)
=

d, . F(q, r, s, ...)+dr . F(q, r, s, ...)+ etc., ...(i.)
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where dg . F(q, r, s> ...) denotes the differential of the function on
the supposition that g alone is variable. We may write

dq, r+~dr, 8+ ^d8 9
.

t' *v *v

and this, by the process of the last article, leads at once to (i.).

Thus,

d . gr=dg . r+ q . dr,

d.gg-
1= = dg.g-

1+ g
f

. d. q-\ d . q~~
l ~

g"
1

. dg . q~
l

.

Generally in any product of variable quaternions, the rule is to

j^
Ex. 1. Differentiate raqbqc, where q is variable.

Ex. 2. Differentiate (gr)
2 and q

2r2
,
where q and r are both variable.

ART. 53. The differentials of the functions Sq, Vq, Kg, Uq,

Tg, UVg, etc., of a quaternion are naturally of importance. We
have already stated that

dSg == Sdg,L ^^dg J_dKg= Kdq, ............... (i.)

and these results are immediate consequences of the distributive

character of the symbols, S> V, K.

Since (Art. 17, p. 12)

Tg
2= qKq, we have 2Tg . dTq= dq.Kq+ q. Kdq == 2SdqKq

(compare Ex. 6, Art. 20
7 p. 15), and since Kg= Tg(Ug')-

1
, the

differential of Tq is

Further, since

g= Tg.Ug, and dg=

we have on division by g,

amd therefore by (il), -==-=sV,-2

In particular for vectors, .
, ,

dT/>
2 = ~d. p

2=

and dp= T/o . dUp+ Up . dTp, and therefore,
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The relations S = 0, 8=0 ..................... (vi.)
\Jq Up

are worthy of notice.

*

Ex. 1. Kesolve dp into components along and perpendicular to p.
2u

' Ex. 2.' If p=ra v & where Ta=T/3=l, Sa/5=0, and where the scalars
r and u alone vary, show that

.~r dp , * dp dr
V-l-ad^{* S- = .

p p r

(a) Prove generally that TV . dpp-
1 is the differential of the angle swept

out by the varying vector op=p

Ex. 3. If p and p' are inverse points, the origin being the centre of

inversion, and if dp and d'p are any two differentials of p, and dp' and d'p'
the corresponding differentials of p', prove that

dp' . dp
- -

r>~'- .........

' r\

dy p
d'p-'

3'

and interpret the meaning of this relation.

Ex. 4. Compare an element of vector area with the corresponding
1

element into which it is changed by inversion.

[The elements are Vdpd> and R*Tp-* . p^Vdpd'p . p.]

Ex. 5. Prove that
*

(a) dUV#=V

* Ex. 6. The vector a being constant, prove that

d . qaq'
1=2V . Vd^-1

. qaq~
l= Zq(V . V<

* Ex. 7. Prove that

where a is a constant vector and x a variable scalar ; and that

a

where x is constant and a variable.

ART. 54. If P is any scalar function of a variable vector p,

a differential of P is connected with the corresponding differential

of p by a relation of the form

dP= -Si/dp, .................... . .........(i.)

the vector v being a function of p but independent of dp.
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The rate of variation of P along any direction a (Ta = 1), may
be written in the form

daP= -Sva, (n.)

it being understood that the suffix a attached to d signifies that

the corresponding differential of p is

dp = a (ni.)

This rate of variation as expressed by (il.) is the projection of

the vector v along the vector a, and consequently the rate of

variation of P is maximum along the vector i/, being then equal
to TV, while it is zero along any direction normal to v.

Having given the variations of P along three non-coplanar
directions, or what is equivalent, having given the differentials

dP, d'P and d"P of P corresponding to three non-coplanar
differentials dp, d'/> and d"p of p, we can determine the vector v.

We have in fact

and by the fundamental formula of Art. 26, p. 24, we find

Vd>d"p .dP+Vd>lp . d
xP+ Vdpd'p . d'T _,<j .

v~"~
Sdpd'pd"p ,

( }

Thus it appears that the vector v is derived from P by means
of the differentiating operator

T7 Vd'pd"p . d+Vd"pdp . d'+Vdpd'p. d" ,, .

V==
Sdpd^pdV

' (VLJ

in which dp, d'p and d/r

p are any three non-coplanar differentials

of p, and in which d> d' and d" are the corresponding symbols of

differentiation.

- Ex 1. Prove that

VTVap=+UVap.a,
, VT(p - a)-

1^ - U(p - a) . T(p - a)-
2
.

[These follow from the relation dP= -

Ex. 2. Show that

1

SyVS^VSaV . Tp-
1= - 3 . 5SapS^3pSyp . Tp~

7-
32S^8ySap . Tp"

5
.

ART. 55. The form of the expression found in the last article

for VP suggests a new view of the subject which is applicable
in the general case when P is a vector or even a quaternion
function of p.- Suppose a parallelepiped constructed having its

edges equal to any three vectors dp, d'p and d"p, and having its
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centre at the extremity of p. If we suppose the vectors arranged
in positive order of rotation (compare Art. 24), Vd'pd"p is the

outwardly directed vector area of the face having its centre at

the extremity of p+ |dp ; and Vd'pd"p is likewise the outwardly
directed area of the face, centre p - Jdp. Also Sdpd'pd"p is

the volume of the parallelepiped.
Let F(p) be any function of p, scalar, vector or quaternion,

then the sum of the products 01 the outwardly directed vector
faces into the value of F(p) at their middle points is

Vd'pd"p. .F(p + Jdp) + Vd"pd/>- ^(p+|d +Vdpd'p.J^p-f Jd
-
Vd'pd"p. F(P

-
|dp)

-
Vd"pdp..F(p

-
Jd'p)

-
Vdpd'p .F(p-ld, (i.)

and the quotient of this sum by the volume of the parallelepiped is
'

...... \J.A. I
x

Each edge being diminished in the ratio -
,
the quotient becomes

...... "* ';

So that when n increases without limit, or when the parallele-

piped whose edges are -dp. -
d'p>

- d"p decreases without limit,rr & n ^ n r n r

the limiting value of the quotient (ill.) is (compare Art. 51 (l.))

hm ~. ,, ,

bdpdpdp
. dFp=

Thus V . J^(p) is the limit of the ratio which the sum of the

products of the outwardly directed faces of a parallelepiped into

the mean values of F(p) over the faces bears to the volume of

the
parallelepiped.

And the vectors dp, d'p, d"p being arbitrary,
the result is independent of the shape of the parallelepiped.
Take the ease in which .F(p) is a vector function (or) of p, and

onsider separately the scalar and the vector parts of V . <r. The
scalar part is the limit of the ratio which the sum of the scalar

products of (T into the outwardly directed elements of the sur-

face or which the sum of the inwardly directed normal com-

ponents of <r into the corresponding area* or which the surface

* Remember that Sct/3 is minus the length of one
^vector

into the projection of

the other upon it.
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integral of the inward normal component o <r bears to the

volume. Thus if <r represents the flux of a fluid, SVcr is the rate

per unit volume at which the amount of the fluid is increasing

at the point in unit time. In other words SVcr is the
^

rate
^

of

increase of the density at the point. If <r is the velocity of a

fluid and c the density, c<r is the flux, or the mass of the fluid

that crosses unit area normal to a- in unit time, and SV . (c<r) is

3c
the rate of increase of density at the point, or ~. Thus

~

For an incompressible fluid, c is constant and SVcr is zero.

In like manner, V . Vcr is the limit of the ratio borne to the

volume by the integral over the surface of the vector product
Y.Uy.cr.d-A, where Uv is the outwardly directed unit vector

along the normal and dA the scalar element of area, or where
~UvdA is the outwardly directed vector element of area.

Since it has appeared that these results are independent of

the shape of the parallelepiped, it follows that they are true for

any closed surface formed of a single sheet, and we have

(vi.)

where dv is an outwardly directed element of vector area of the

surface, and where v is the volume, the limit being arrived at

when the surface becomes indefinitely small.

AET. 56. Towards further elucidation of the operator V, con-

sider the analogous integral taken round the vector sides of a

parallelogram, having its centre at the extremity of the vector p.

Circuiting in the positive direction and forming the product of
the vector sides into the corresponding values of F(p) at their

middle points, the sum is

Collecting terms and dividing by the area of the parallelogram,,
the result is __
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Now let the parallelogram be indefinitely diminished by replacing*

dp and d'p by -
dp and -

d'p, and we have in the limit,n

,,

rrVdpd'p

TVdpd'p
.........................

But this is equal to

{
V . VdpdXVd'pd'p . d . + VcTpdp . d' . + Ydpd'p . d" . )}Fp

-Sdpd'pdyiVdpd'p

because V(Vdpd'p. Vd'pd"p) = d'pSdpd'pd^p, etc., so that the

integral is

. ...............

if TJi/^UVdpd'p is the normal to the area about which the

direction of circuiting is positive.
As in the last article, we have for any plane closed curve'

without loops,

(m.)

dp being now a vector element of arc of the curve and 4 being-
its scalar area.

In particular for a vector function (<r) of p, we have separately

er, Km

It is obvious on using the expanded form of V that we may
write

(v.)

or that we may in this relation at least treat V as a vector in

combination with other vectors, it being understood that V
operates on or but not on UV.

This result leads us back to an interpretation of Wo-
analogous to the interpretation of VP in Art. 54. We have

SUi/Wcr=lim&^,- ......................(vi.)

or the limit of the ratio which the integrated component of or

along the arc of a, plane curve ( jSdpo-) bears to the area of that

curve, is equal to the component ( SUVVVo-) of the vector W<r



74 DIFFERENTIATION. [CHAP. vn.

.along the positive normal to the plane. This is a maximum and

equal to TWcr when the plane is at right angles to UVV<r ; it

vanishes when the plane is parallel to that direction.

I Sd/><r is the differential of P (some scalar function of /o),
the

integral JSdpcr depends merely on the limits between which the

integral is taken (leaving aside cases in which singularities

occur), and is in fact P(p^) P(p^) if the integration extends

from pi to p.2. For any small closed circuit therefore the integral

vanishes, the initial and final points of the path of integration

being coincident, and therefore

YV<r=0, if S<rdp= dP. ;...:!.'.....: ......(VIL)

Conversely, if VV<r=0, we must have S<rdp the differential of

a scalar P
;

for in this case the integral round any small

closed circuit vanishes, or what is equivalent, the integral from

Pi t P-2
ig e(lual and opposite to the integral back by another

path from p2
to p1?

or again, the integral from pl
to

/o2
is indepen-

dent of the path. These results will be extended to the general
case of curves which are not small. At present we remark that

VVVP= 0, or VV2P= 0, or V2P = scalar, ......(vin.)

if P is a scalar function of
/o,

is involved in equation (VIL).

ART. 57. It is useful to express the operator V in various

forms. If, for example, as in Art. 50, we suppose the vector p
to be expressed in terms of three pai^ameters u 9

v and w, and if

we write

7\ "f^ "^

dp =^.du= />1du, d>=^d^=p2d^ d/

>=^dw= / )8dw, (i.)

the symbols of differentiation d, d' and d" refer respectively to

u, v and w
9
so that symbolically

d=^-.du, d'^.dv, d"= 5^-.dw.............(IL)Bu dv dw ^ J

On this understanding, equation (vi.), Art. 54, becomes

If the parameters are so selected that the derived vectors

pl9 p2 and />3
are always mutually perpendicular, the symbols V

and S in (in.) become superfluous, and the expression for V
reduces to the simple form,

*- , <3 n 3 , 3 / \V= -A--A--A -i
................. (iv.)
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If the vector p is expressed in terms of the Cartesian
coordinates x, y and z

9
so that p= ix+jy+kz, we have

Pi i P^jy />3
=

This last form may be regarded as the canonical form of the

operator. We have, for example, when q is the operand,

and we shall write

so that in combination with its operand V acts as a vector in

combination with a quaternion.

Again if a is a constant quaternion, we have symbolically, an

operand being understood,

oy

and in combination with a quaternion, not the operand, V still

plays the r61e of a vector.

In combination with itself

and generally in all combinations V may be treated as a symbolic
vector. Of course some little care is necessary when V is ex-

pressed in the general form, but it is precisely of the same kind

as the care required to distinguish between

.+to and *
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* Ex. 1. Show that if #= W+iX+jY+kZ,

_rr

% Ex. 2. Verify that

V. Vcr=V2
.cr=~(o-24-o-T>+-%3)o-5

where <r=il.

Ex. 3. Prove thatjfy^^
V2

.T(p~A)-
1 =0 if p is not equal"toTT

^

V2
log TYAp= ; V2

fTp= -/

f^ .

[For example,

Ex. 4. Prove that V/W . p= - 2X ; VWXV . 7J= - AV2P+VSXV . P.

i Ex. 5. Show that

(aV+ Va) 5f
= 2SaV . 0, (aV - Va) q= 3VaV . q.

[Here (aV+ Va) . g- -2 ^pd>+Wpd>.a d _&g&L. dg.lL v y *
Sdpdpd p

2
Sdpdpd p J

* Ex. 6. If P and Q are scalar functions of p, show that

4 Ex. 7. If jp and q are quaternion functions of p, show that

where the suffix is intended to denote that the affected symbols are not to
be operated on by V.

Ex. 8. Interpret the expressions

wv . PQ', swv . war,
where the accents indicate that a marked symbol is to be operated on by the-

correspondingly marked V.

[If P and Q are scalars, the first expression is V(VP)(VQ), or

This last expression is also true when P and Q are quaternions.]

Ex. 9. Find an expanded form for V2
. PQ.

Ex. 10. Find the expression for V in terms of the usual r, B and <

coordinates. [Use the relation (iv.).]

Ex 11. Show that q . V= - K. VK</ where V operates on q in situ.

[It is sometimes convenient to place the operator to the right of the;

operand.]

Ex. 12. If fn(p) is any homogeneous function of p of the order n which
vanishes under the operation of V2

, the function Tp"
Sw~1

./w (p) will vanish
under the same operator.
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[Expressing that V2
(Tp

m
.fn)

=
Q, we may write this relation in the form

(V+ V')
2
-(Tp'

m
. /w)=o, provided we remove the accents after the operation.

This expands into V'2Tp
/m

./ + 2SV'T
/)^V./n+Tp

/m
. V2/n=0, and observing

that 8pV.fn=nfn because / is homogeneous in
/>,

we easily find the

equation reduces to m(2^-[-l+m)
= 0. This result is of importance in the

theory of spherical harmonics.]

ART. 58. Given a quaternion function p= F(q) of another

quaternion q, we have seen how to express dp in terms of dq
(Art. 51). It is a more difficult problem to express dq in terms
of dp, and we postpone the general method of solution for the

present.* However, there are a few cases in which the problem
can be solved directly, such as to find the differential of the

square root of a quaternion.

Here P~<1^ or p^q,*-. ........................ (i.)

so that pdp+ dp .p dq..........................(n.)

Multiply this by Kp and into p, and two relations equivalent
to (II.) are obtained,

Kp .p . dp+ Ky> ,dp.p
= Kp .dq', j> . dp .p +dp .p*=zdq . p. (in.)

Adding, we have

because

or 4 . dp.pSp=*Kp . dq+dq .

because Tp
2
=(Sp)

2
-(Vj})*, p

2 =

and- hence d ==
.

.....
.

................

As another example, under which this might have been in-

cluded, to find the differential of the nih root of a quaternion

(n being an integer), we have

-p qn, <lpn
, dq=zdp.p

n - 1

+p.dp.p
n - z

+...+p
n ~ 1

.dp. (v.)

4

Multiply dq into p and subtract the product pdq, and

dq.p-pdq=dp.qqdp, or V. VdgVp=V. VdjpVg, (vi.)

Thus, with an indetermined scalar x,

,
or d=

Turning to (v.), we have on substitution from (VII.),

. Vdp .p
n ~ l+ .

1

), ...(vm.)

* See Art. 150, p. 273.
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because q and p are commutative in order of multiplication,
and because ap = Kp . a, or a(Sp+ Vp) = (Sp Vp)a if SaVp = 0,

the vector V . VdgVp . (Vg)'
1
being perpendicular to Vp. Again,

since p and Kp are commutative in multiplication, and the

expression (vin.) reduces further to

........ (ix.)

Thus we have by (vn.) and (ix.) on elimination of x

pVq\ dq.p* '
~

Vq V nqVp nq

and the sought differential dp is expressed in terms of p, q and dq.

ART. 59. Writing the first differential offq in the form

to indicate that it is a function of q and of dq, linear in the latter, the

second differential may be expressed hy

(ii.)

where/2 (<?, dq) is homogeneous and quadratic in
dgr.

A similar process holds in general, and in particular if dq is constant, sa

that d2
#=0, d3

#=0, etc., we have

dm . fq=d.fm-i(q, dq)=fmt(qy dq) (in.)

Suppose that f(q) and its successive differentials up to the mth are finite

for finite differentials of q, and consider the function

^(*)=/(tf+^)-/()-f -/ifejP)- f^-2 ^> P)'--~j^ZT/'-
1fe^)' (IV-)

in which co is a scalar and q and p are two quaternions. Differentiating
with respect to w, and leaving p and q constant, we find by the general
relation (in.),

Putting ^=0 in (iv.) and (v.), we see that F(x) and its successive
deriveds up to the order m- 1 vanish when #=0, and consequently
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where rm is some quaternion function of x, q and
/>, and where by (v.)

By taking ,1; small enough it is consequently possible to render rm
infinitely small in comparison withfm (q,p), or

lim ?fv^ v==0.................................(vm.>
x=Q Tfm(q, p)

v r

Replacing xp by p in (iv.), what we have proved is that

/fe+p)-/(?)+Y/i(fr*H^
where -/*m is a function of q and jp, which becomes evanescent in comparison.
with fm(q> p) for sufficiently small tensors of p. This theorem is what
Hamilton calls

"
Taylor's Series adapted to quaternions."

In certain cases, for a large value of m, the term

becomes negligible, and we may write the expansion in the usual symbolic
form, i i

f(q+p)=e*f(q)=f(q)+ -.f1 (q,p)+^f>2(q,p)+etc.; dq=p, .........(x.)

or more explicitly for a vector variable,

(XL)

ART 60. Instead of differentiating a second time with the same char-

acteristic d, let the differential of

be taken for a new characteristic, d' corresponding to the differentials d'q
and d'd# of q and d#. The result may be written

where in full, 1 /

............(IL),

Reversing the order of differentiation,

aa'./feH/ifo dd'^)+/;fe d^, d'?)......................(m.)

We shall now prove the relation

where r and 5 are any two quaternions replacing dq and dfq in the functions-

which occur in (i.) and (in.). "We have by (n.),

and from symmetry this is equal to/2 (^, s, r).
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More generally, if by successive differentiation of a function f(q), a function
fn (q, r

l9
r.2,

... rn) is constructed, the order in which the q^t,aternions r
13
r2 ,

...rn
are grouped among themselves is immaterial.

In virtue of (iv.), it appears that

d'd./(?)-dd' ./(<?)=/;(?, d'dg-dd'?); ..................... (v.)

and in general this difference vanishes if, and only if,

Ex. 1. If Q is a scalar function of p, and if d=Svdp, dv=<dp, show
that the function

<j>
is self-conjugate, or that Sa</3=S/:?<a, where a and ft

are any two vectors.

. [This is a particular ease of (iv.). Compare Art. 51, Ex. 2, and Art. 62.]

Ex. 2. If vx
and i/2 are any two vector functions of the vector p ; if

dv
1
=

<^1 (dp) and dv2 =<j5>2 (<i/>)j and if V operates on all functions of p on its

right, show that

. Sv2V .
- Sv2V . Si/jV . = S

(</>!
vs
-

<f>2vj)V .
;

or in other words prove that the two operators produce the same effect on

any function of p.

Ex. 3, If
JP, q and r are any three quantities or operators, not necessarily

commutative in order of operation or multiplication, show that

where [p, q]^pq - qp, [ [p, q], r]
=

[p, q~\r- r[p, q].

Ex. 4. If p and q are any two quantities or operators, show that

^jpea^jp+a+^+j-fe-g+ etc., where jpn-L^w-i, ?];

and hence prove the equation connecting operators,

where
v^

and v2 are any given functions of p, where v% is a determinate
function' of p and where V operates only on functions on its right,

'ART. 61. To find a stationary value of the scalar function

/(/>), whenever a stationary value exists, we equate to zero the
first differential

d/o>)=Svd/, .............................. (i.)

of f(p) for all differentials dp. This requires the vector v to be

zero, for otherwise Si/dp cannot be zero for every differential dp,
and the stationary values are obtained by substituting in /(/>)
the vectors p which satisfy the equation

v= ..................................(II.)

If the stationary value is subject to the condition

3 ..............................(in.)

where </(p) is a given scalar function of p, the differential dp
is no longer arbitrary, and the conditions are

0, ..............(iv.)
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where X is a new vector function of p defined by the nature of
the function g(p). Considered geometrically the condition (in.)

requires the vector p to terminate on a certain surface and con-
strains the differential dp to be tangential to the surface as

expressed by SXdp = 0. The function /(p) has a stationary value
if d/(p) vanishes for every differential dp at right angles to X.

In other words we must have v parallel to X, or

j,+#X= 0, or Vj/X= 0, ......................(v.)

where a? is a scalar multiplier. The solutions of (in.) and (v.)
afford vectors p which render /(/>) stationary in value.

Again if there are two equations of condition,

#(p)= 0, &(p)= 0, .................. . .....(vi.)

the differential of dp consistent with these conditions must satisfy

0, ............(vn.)

so that dp || VX/x, and if in addition /(p) is stationary in value so

that d/(p)= 0, or Sydp = 0, we must have v coplanar with X
and /x, or

i/-faX-f2/,u= 0, or Si/X^c
=

0, ................(vni.)

where x and y are two scalar multipliers. Here the three

vanishing scalar functions of p, <?(p)
= 0, A(p)= and Sj/X/x= 0,

serve to determine a certain number of vectors p as vectors to

the points of intersection of three known surfaces, and substitu-

tion of any one of these vectors in /(p) will give a stationary
value.

For the solution of the equations, no general rule can be laid

down. Sometimes, indeed most frequently, it is more convenient
to deal with the equations (v.) and (vnr.) involving x and y
rather than with the results of elimination of these scalars.

To examine the nature of the stationary values of /(p), it is

necessary to proceed to second differentials. For example when
there are two equations of condition, we have in addition to (vn.)

(compare Art. 51, Ex. 2, Art. 60, Ex. 1),

dV(p)= SXd2p+Sdp^dp= 0, d%(p)= SMd2p+Sdp^//dp= 0, (ix.)

where
<j>/

and
<f>,,

are two linear vector functions determined by
the functions g(p) and A(p), and we must consider the sign of

when appropriate values of p and dp are substituted therein.

By adding the equations (ix.) multiplied by x and y to this we
have by (vm.)

d2
/(p)= Sclp(^+^/ +2/^//)dp, where dp [] VX/*, .......(XL)

J.Q. F
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the sealars x and y being given by (VIIL) in terms of v, A and p.

by means of the relations V/xi^= iVXpc, Vj/X= 2/VAju, in which
we suppose the appropriate value of p to be substituted. For the

negative sign, f(p) is a maximum, while it is a minimum if the

sign is positive.
Tn like manner, when there is only one equation of condition,

we find

d2
f(p)=zSdp(<j>+x<f>)dp, where SXdp = 0, y+ aX = 0, (xn.)

and if d2
/(yo) is positive for every dp perpendicular to X the

function f(p) is a minimum: if d2

/(yo) changes sign for some
vectors dp perpendicular to X, the function is merely stationary ;

if d*f(p) is constantly negative for the differentials dp, the

function is a maximum.

Ex. 1. Find the stationary values of Tp, subject to the condition,

(p-a)
2 -ha2=a

;

[Here dTp= ~SUpdp=0, where dp satisfies S(p-a)dp=0, so that

Up ||p -a, or p||a, or p=xa say, and the condition gives

(#~l)
2a2+a2

=0, or ^liaTcc-1
,

so that p a alia.]

Ex. 2. Find the stationary values of Tp when (p a)
2+ 2

=0, S/5p= 0.

EXAMPLES TO CHAPTER VII.

Ex. 1. If op=p=a* /8, Ta=l, Sa/J=0, the loctis of the point P will be
the circumference of a circle, with o for centre, and OB (=/3) for radius, and
in a plane perpendicular to OA (

=
a).

Ex.2. If OP=p=V.a^, y= oc= Va/3, Ta= l, the locus of p is an

ellipse, with its centre at o, and with OB and oc for its major and minor
semiaxes.

Ex. 3. If under the same conditions as in Ex. 2,

OB'j8'=:a-
1
Vaj8J

OP*= />'== or
1
Vap,

the locus of P' is a circle with OB' and oc for two rectangular radii. The
equation of the circle may be written

p'=a
e

/3'.

Ex. 4. If OP=p= a*/3, Sa/3= 0, the locus of p is a logarithmic spiral with
o for its pole.

Ex. 5. If op=p=V . a*/?, the locus of p is an elliptic logarithmic spiral
a plane curve which may be projected into an ordinary logarithmic spiral.

Ex. 6. The equation

p= cfa+ a' with Sa/3=0, Ta=l,

represents a helix, while the locus of the perpendiculars to the axis of the
helix which intersect the curve is represented by

p
where u is a variable scalar.*

* These Examples are taken fr;om the Elements of Quaternions, Art. 314.
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Ex. 7. If we project the ellipse

p= a cos x -j- ft sin x

on a plane at right angles to the vector A, the vectors a and ft will project
into the principal semiaxes of the projection provided

(a) They will project into equi-conjugate radii if

TYAa=TYA/5.

(b) If SaTJA=

- 2

the ellipse will project into a circle one of four, of which two are imaginary.

(o) The squared radii of the circles of projection are

the upper sign corresponding to the real circles.

Ex. 8. A circle of radius n~l
Tft rolls on a circle of radius T/3 and

centre o, and carries with it a point p at a distance tT/3 from its centre.

The locus of the point P is represented by

, Ta=l, Sa/3=0.

(a) Prove that dp= Jrr(l +ri)a(p
-
ctfydt,

and assign the geometrical interpretation.

(b) If the variable scalar t represents the time, the equation of the hodo-

graph
* is

and show that this curve may be generated by a point carried by one circle

rolling on another.

(c) Show that the condition for a cusp on the path of the point p is

lnla1

*,

and discuss fully the nature of this equation.

(d) Prove that the vector of acceleration of the point p for uniform
motion of the circle is

and determine the condition that the acceleration may momentarily vanish.

(e) The condition for an inflexion is found by expressing that Udp is

stationary or that Vd/>d
2
/>=0, and it may be reduced to

(/) Show that the inflexions lie on the circle

T = /(

Ex. -9. Under the same conditions, what curve, or rather what system of

curves for various values of the scalar I is represented by p

* The hodograph of an orbit is the locus of the extremity of a vector drawn
from a fixed point to represent the velocity of the moving body.
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Ex. 10. (a) If OQ=<() and OQ'=T/r(^) are the equations of any two
curves the relation

Td. <(*)=T
is equivalent to a differential equation connecting the parameters so that

corresponding values of the parameters in an integral determine equal arcs
measured from fixed points on the curves.

(6) If the condition (a) is satisfied, the quaternion

is a versor which renders the tangent to the second curve at u parallel to

the tangent to the first curve at the corresponding point t.

(c) When the curves lie in a common plane, the condition (a) being still

satisfied, the equation

is"the locus of the pole of the second curve when it rolls along the first so

that points answering to corresponding values of the parameters t and u
remain in contact.

(<#) The vector tangential to the roulette at the point p is

and this vector is at right angles to p-~<f>(t) because the quaternion of (5) is

a versor.

(e) The equation of the normal at the point P is therefore

Ex. 11. The earth and a planet being assumed to describe circular orbits

round the sun, show that the apparent path of the planet is represented by

where c is the radius of the orbit of the planet and b that of the orbit of
the earth, where P and E are the periodic times of the planet and the earth,
where y and (3 are unit vectors normal to the planes of the orbits and where
a is a unit vector directed towards a node.

(a) Show that the equation

determines the values of t corresponding to the "stationary points" at
which the motion changes from direct to retrograde or vice versa.

Ex. 12. Show that the equation

p=KVa?
t+uat

/3 where Ta=l, Sa/3=

represents a eylindroid referred to its centre, and deduce the scalar equation

j8
2Vap2

Sap= 2AS/3pSa/3p.

" Ex. 13. Describe the loci represented by the following equations :

(i) p=aSAUr;
(ii) p=

(iii) p=
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where a, /5, 7, A, p and v are given constant vectors, and when the auxiliary
variable vector r is perfectly arbitrary.

(a) What modifications must be made in your interpretations when r
remains constantly inclined to given direction ?

Ex. 14. (a) If Spdp=0, show that Tp is constant.

(6) If Vpdp= 0, it follows that Up has a fixed direction.

(c) If Spdpd
2
p=0, show that UVpdp has a fixed direction and the vectors

p are parallel to a fixed plane.

Ex- 15. Show that

(Elements of Quaternions, Art. 343 (9).)

Ex. 16. Prove the relations

and find the development to the third order when T/3 is small in comparison
with Ta,

Ex. 17. Supposing the earth to describe a circular orbit round the

sun, show that the parallactic ellipse of a fixed star is represented by

Sy^-V.y^acr-i.Ua-

where or and y
xa are the heliocentric vectors to the star and to the earth

respectively.

(a) Show also that

UVcry.Tao-
1 and U . crVcry . TaSyo-

1

are the principal vector radii of the parallactic ellipse.

Ex. 18. If v is the (scalar) velocity of light and p the velocity of the

earth in its orbit, the aberration of a star is represented by

TJ(vUcr+p)--Uo-.

(a) The earth's orbit being supposed circular, the aberrational ellipse is

given by +W . U<r

where % is the scalar velocity of the earth.

Ex. 19. Assuming the effect of refraction to be K times the tangent of

the zenith distance, show that a star in the direction of the unit vector <r

appears to be in the direction of the vector

where Jc is the unit vector directed to the zenith.

Ex 20. If P is a point in a body attached at B and c by universal joints
to two bars BA and CD having fixed universal joints at A and D, show that

the motion of the point P is subject to the conditions implied in the

equations
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where a, y}
and 77 are fixed vectors and where p, q and r are variable

quaternions ; prove that the envelope of the point may be determined by
identifying the equations

and show that these conditions require the five points ABPCD to be eoplanar.

Ex. 21. If Scrdp becomes the differential of a scalar function of p when

multiplied by a suitable factor, show that ScrVo-=0.

Ex. 22, If dv is the directed element of a surface at the extremity of

the vector p, the element of solid angle it subtends at the origin is

SdvV.iyrV

Ex. 23* Show that

Ex. 24. The differential of a function of the vectors p and <r, or being a

function of p, may be written in the form *

d . P- - Sdp(Vp
-

Vp'So-'Vcr) . P

where Vp and V<r operate respectively on p and on cr as explicitly involved
in P, and where vp

'

operates on p as involved in
G-', the accents being

removed after the performance of the indicated operations.

(a) If P is a scalar function of p and <r
?
and if <r is a function of p which

renders P constant,

(b) If the same function <r renders constant another scalar function Q of

p and cr, the relation

(P,Q)=S.VV<rPV<rQVV(r where (P, QJ-
must be satisfied. And if cr can be derived from a scalar function of p by
the operation of V3

we must have

(P,Q)=0.

(c) If Xj, ^5 A,2 and /x2 are any vector functions of p and cr, the operator

reduces to the form

(d) If Pv denotes the operator S(VpPVo V<rPVp), we have

PVQ=~QVP=:(P,Q),

where P and Q are scalar functions ; and if E is any third scalar function,
the expression

PvQv.R-<WEVK=Pv(Q, E)+QV(K, P)=(P, (Q, E))+(Q, (R, P))

does not involve the second deriveds of B.

() Hence (P, (Q, K))+(Q, (B, P))+(B, (P, QeO ;

and the operator (P, Q)v= PvQv -

* Compare Jacobi's method of solution of partial differential equations and
Lie's work on Pfaff's Equation.
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Ex. 25. Bright curves are seen on a surface owing to light reflected by
scratches on the surface from a source at A to an eye at B. If the scratches

are represented by putting u= const, in the equation of the surface

p= <(, u\ show that the equation of the curves may be found by combining
the equation of the surface with the result of expressing that

is a minimum with respect to t.

(a) If the equation of the surface isfp0 and if Fp~u is the equation of

a family of surfaces through the scratches, the bright curves are given by

(&) The bright lines due to the grooves made in turning a surface of

revolution (Tp=/Sp) lie on the surface

and meridian grooves on the same surface give rise to bright curves on the

surface
-

a) + U(p - )} =0.

Ex. 26. The differential of T(p a) corresponding to a given differential

of p ceases to be determinate when p comes to coincidence with a unless we
know a law according to which p tends to coincide with a.



CHAPTER VIII.

LINEAR AND VECTOR FUNCTIONS.

ABT. 62. A vector function of a vector, distributive with

respect to that vector, is called a linear vector function.
Thus if

0(a+/3)= 0a+ 0/3, S0a = 0, S0 = 0, ............. (l.)

for all vectors a and /3, the function <p
is linear and vector. As

a corollary to the equations of definition

0(#?a)= &0a ............................. (n.)

if x is any scalar.

Given the vectors

a'= <f>a, /3'=^8, y'
= 0y, ....................(m.)

the results of operating by <f>
on any three given and non-

coplanar vectors, the function
<j>

is determinate
;
for by (l.)

l

since pS/3y= 2aS/3yp for any arbitrary vector p.

With a new signification of the vectors, a, /3', y', a, /3, y, any
linear function may be reduced to the trinomial form,

<j>p
= a Sap+ /3'S/3p+ y'Syp, .................... (V.)

in which either set of vectors a, ft', y or a, /3, y may be

arbitrarily assumed. For if we resolve
<j>p along three fixed

vectors a, /3', y', the coefficients in the resolution must be scalar

and distributive functions of p ;
that is, they must be of the form

Sap, S/3/o, Syp. If, on the other hand, we assume a, ft and y, the

set </, /3' and y' follow, being 0V/3y : Sa/3y, etc.

Thus in any case, the general linear function is seen to involve

nine constants, the nine constituents of three vectors a, /3 and y,
or a, ft' and y'.

For arbitrary vectors, a and /3,Jf_

, ..... '. ..................... (VI.)
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the function <' is said to be the conjugate of the function
<f>.

The conjugate for the trinomial form (v.) is

(VII.)

* Ex. L Given

show that

' Ex. 2. Show that Va/>/3 is a linear vector function of
/>,

and find its.

conjugate.

Ex. 3. Is alp a linear vector function of p ?

ART. 63. From a geometrical point of view the equation

o-= 0/>, ................................. (I-)

in which ^ is a given linear and vector function, and in which
the vector p is arbitrary, establishes a linear transformation from
vectors p to vectors cr.

Equal vectors are converted by <j>
into equal vectors

; right
lines transform into right lines, and planes into planes, as

expressed by the relations

if = a

if p= a+ tft+uy ...(ll.)

consequences of the formula of definition (Art. 62 (i.)).

The plane whose equation is

S(p-a)/3y= Q becomes S(<r-^a)000y= 0; ......(m.)

and the vector area

Va/3 transforms into V0a$/3; ............... (iv.)

while the volume

Safiy becomes S<f>a<p/3<j>y
.................... (V.)

"
Ex. 1. Verify ihat ,

where a, /?, y and a', /3', y' are any two sets of non-coplanar vectors.

Ex. 2. Prove that

[Take a' along the edge of the planes of a/3 and of yS, and reduce Ya/?
and YyS to Va'/? and Va'y', etc.]

1 Ex. 3. Prove that V<a</3 is a linear vector function of

[This is practically included in the last example. Yerify by the trinomial

form.]
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ART. 64. There is an inverse transformation which converts

vectors cr into vectors p, so that

^ = 0-1^ if cr=
<5fr/>;

.........................00
and we propose to investigate this transformation.

Writing 0p =: cr = VA,u 3
.............. * .............(n.)

the conditions of perpendicularity of the vectors cr, X and cr, JUL give

SX0/>
= 0, S^/o = 0, or Sp<t>'\

= 0, S/>0V= ......(m.)

"by the property of the conjugate function (Art. 62 (vi.)).

Thus the vectors <'X and $V are a^ right angles to p, and con-

sequently
or m =

^ being an auxiliary linear and vector function defined by the

equation

in which a and /3 are any arbitrary vectors. (See the last

Article and its Examples)
To determine the value of the scalar m operate on (iv.) by

S0'y, where v is an arbitrary vector, and we have

because Sp<f>'v
= Si/0p= Sv<r=

Operating likewise on (iv.) by <f>}
we have

m(pp=z<p\[s(r or mar=

and replacing cr by <p we also find

so that we may write symbolically

m = 9^= i/r0, ......................(vu.)

with the interpretation that the effect of operating first by \js

and then by $ on any vector, or first by <p
and then by -^ is to

multiply that vector by the scalar m. This relation shows that
m is an invariant, or absolutely independent of any particular
set of vectors X, p,

v in (vi.), for by (v.) \fs is independent of the
vectors X and

/j.
in (ivO- (See also Ex. 1, Art. 63.)

Thus wherever m is not zero, we can always pass from vectors

<r to vectors p by the relation

mp = \jscr,
............................(VIII.)

m being calculated by (vi.) and ^ by (v.); and it will be
observed that in the calculation of this scalar and this auxiliary
function, we only require the direct operation of the function $
on vectors.
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* Ex. 1. Show that the function \[r transforms vector areas into. vector
areas when vectors are transformed by the function <'.

Ex. 2. Show that volumes are altered in the ratiom : 1 in transformation

"by the function <'.

* Ex. 3. Show that T// is the conjugate of

[Expand SVySV<^a^, and prove that it is equal to

Ex. 4. Show that volumes are altered in the ratio mil by the trans-

formation produced by .

S<'a^?= S .

Ex. 5. Follow in detail the geometrical meaning of the transformation

employed in deducing
mp "^cr from a = <p.

[See Art. 63 (iv.) and Art. 150.]

ABT. 65. The transformation in the last article fails in one
case if m is zero. In that case the vectors o* are all coplanar,
the volume of any parallelepiped formed by them being zero

(Ex. 4, Art. 64); and because in general mp = \fsa*
if or= <pp, in

this particular case, the function
\[s destroys every vector in the

plane.
To cover this case, consider the general transformation for an

.arbitrary function
</>,

<r=(<p+ c)p = <f>cp and mcp=^c<r, ................(l.)

where c is a scalar and where mc and ^c bear the same relation

to <p+c that m and ^ bear to
<j>.

It appears at once by (v.) and

<vi.), Art. 64, that

...................... (II.)

so that if we write

mc=m+m'c+m"cz+c3
, ^=i/r+cx+c

2
, ..........(in.)

we shall have

(iv.)

Now for any arbitrary value of the scalar c, the scalar mc is an

invariant, and therefore, separately, the coefficients in its expan-
sion 77i, m' and m" are invariants, or are independent of X? ju.

and i/.

By (i.) we have identically for all scalars c,

mc=0c-^c
=V^ ...................... .....(v.)
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or m+m'c+m"c*+(?=z(<t>+c)(\fs+cx+c
2
)

and therefore equating the coefficients of c on each side

it being understood that these equations denote that equal results

are obtained by operating with right or left hand numbers on an

arbitrary vector.

One of the transformations most frequently required in

quaternions is to invert a function
<j>+ c

}
or to replace an

equation <r= (0+ c)p by mcp = -^cr ;
and in general the process,

due to Hamilton, as given in the text is the shortest and most
certain. We first calculate V(<'+c)X(<^'-|-)//. an(i express it in

terms of VX/x. Then we either calculate mc from (n.), or it is

sometimes better to calculate it directly from (v.), namely from

In particular

mp = ^o-, m'p^-^p+xcr, m/

'/>
=

x/ + <r if <r= <p; ...(vn.)

and thus the general solution of o"=<pp is m'/o
=

x<r+'*/r/o if w, is

zero with the implied condition
-\/ro-

= 0; while if m=m/= 0, the

general solution is m//

p= o-+xp with the implied conditions

^<r= 0, -^p+ x^ O- In the first case (m= 0, m'=!=0) ?
the vector

p may be considered arbitrary in -^sp there is in fact nothing to

determine it. But as
\fs destroys every vector in the plane of the

vectors <r, it is really only the component of the vector normal to

that plane that is of any account in \fsp.
In the second case

(m = m'= 0), similar remarks apply; the vector p is arbitrary on
the right subject to the condition T/rp+x^^O- The function \}s

may vanish identically, and this case we shall consider in Art. 66,

% Ex. 1. Determine the functions m, ^r and X f r the function ^>p

Op=SVaS/3Vp ; \P=SYaVa'p ; mp= <jtyp=SSa^ySy
f

/3'of . p.]

Ex. 2. Find the auxiliary functions for <p
[Find <^>c and ^c for

Ex. 3. Solve the equations o-=VaVjSp and cr=Vap by the general
method, and directly.

Ex. 4. Express T/V and Xc' in terms of ^ and Xc-

Ex. 5. Construct a linear vector function which renders four given
vectors parallel to four others.

[The data are <a
|| a', </2 1| /J', <j>y || y, <^S || 6', and the function is

^=c.(^
where -c IB arbitrary.]
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'
Ex. 6. Prove that

a/?.

[See equation (vi.). These relations are often useful.]

Ex. 1. Prove that

Ex. 8. Prove that the equation

p=(< + *)-io, or

a being a fixed vector and a variable scalar, represents a twisted cubic.

[Show that it cuts an arbitrary plane in three points.]

Art. 66. From the equations of the last article connecting
<>, and we deduce

'/ 2
~-0

3
: ...(L)

and we have the corresponding equations for the conjugate (j> y

x
'=m"_

$' ; T//
= m'- m"0'+ 0'

2
: =m-m^'+m">/2- /s

. (n.)

These may be proved by reflecting that

Sa< 2
/3
=

S</>'a<f>/3
=

S/30'
2
a, etc.

;

so that for example

and from the third and fourth of these we have (m"(f>')a=x
because /3 is perfectly arbitrary.

Let
<?1? #2 and g3 be "the roots of the scalar cubic,

so that m=flr1gr2^3?
m/

=#^3 +gr3#1+#1#2, m"=gi+gt+g# ...(iv.)

This scalar cubic is called the latent cubic of the function, and
its roots are the latent roots of the function

cf>.

We may now write the symbolic cubic (I.) satisfied by the

function
<j>

in the form

and the same symbolic cubic is satisfied by <f>'.
Hence

Sto'-^a.fo-ftX^-fc^S^
whatever vectors a and /3 may be ; or in other words the vector

(<t>g^)a is perpendicular to the vector (^g^X^"-"^)/^ Tlie

vectors a and /3 being both arbitrary, it follows that one $r other

of the vectors (figja or (0 9*)(<}>9^fi must be parallel to a

fixed direction.

But (0
7

g^a is not generally parallel to a fixed direction

when the vector a is arbitrary, for if it were we should have
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where a and /3 are quite arbitrary ;
or symbolically,

utilizing (i.) and (iv.), and replacing m"gl
and fmf

by their values, #2 -f <73
and g^g3. In this case, which is quite

special, the symbolic cubic of the function degrades into a quad-
ratic (VII.).

We conclude therefore that the product of a pair of factors of

(v.) operating on an arbitrary vector reduces it to a fixed direction,

and
4 writing

7i ; 0-0s0-0i 7s 5

(0-&)(0--&)/>llys ..................... (vm->

the directions of the vectors yp y2 , ys are fixed and are called the

axes of the function
<j>.

We have by (v.),

071= #1X1' 072= 027* <73= #373; ............. (I*-)

and these vectors are generally distinct if the latent roots

9v 9& 9s are unequal, and they are also generally non-coplanar.

Resolving then any vector p along yv y2 and y3
we have

Thus (<j>9i)p is coplanar with the pair of axes y2
and ys ,

and
if yx

'

is the axis of the conjugate .function corresponding to the

root <71?
it follows from the equation

Sp(^- 5r

1)y1

/= = Sy1

/

(0- ?1) /5
................ (XI.)

that the vector y/ is perpendicular to the plane of
(<j> g^)p, and

in particular to the vectors y2
and ys

. If vectors are drawn from
the centre of a sphere along the axes of a function and of its

conjugate, the two spherical triangles the two sets of axes deter-

mine are supplemental
Conceive the function

<f>
to undergo continuous variation so

that two latent roots, g% and gs, approach coincidence. The

corresponding axes approach and ultimately coincide, but their

plane is still determinate being perpendicular to y/. Similarly
all three axes may coincide in a line perpendicular to that in

which the three axes of the conjugate simultaneously coincide.
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We shall give an illustration of a function having three equal
roots. Let

<j&a
=

/37 0/3
=

y, 0y= 0, then 2
/3
=

0, <
3a = and

generally <j>

z
p = 0, but

<f>

2
p and

<j>p
are not zero. The function is

<pp
=

(/3S/3yyo+ ySya/o) : Sa/3y ,
and 2

p = yS/3yp : Sa/3y= \f,p.

A totally different class of functions is characterized by the

equivalent conditions that the axes are indeterminate or that the
function satisfies a symbolic quadratic and not a cubic (compare
(vn.)). If y2

and yg are two different axes corresponding to the
same root c/2 ,

the function
<f> g2 destroys every vector in the plane

of y2
and ys>

and the function is of the form

and (^

The latent cubic has two roots equal to g2 and the third equal
to gv

Finally a third class may be noticed that for which three

non-coplanar axes answer to the same root but a function of

this kind is simply a scalar constant.

In general the latent roots may all be real, or two may be

imaginary. Corresponding to imaginary roots g^=g+ \J'""!#'
and #3

=
<7 */ 1 #', the axes must be of the form y2

=y+x/ly
and y3

= y- */"-1 y'. For (0
-g: ) [(0

-
g2)+ (<p

-
gB)] is real and

must produce a real vector from a real vector ; but

is imaginary and produces an imaginary vector from a real

vector.

Ex. 1. Every function coaxial with a given function
eft

is of the form

[If A
1?
A2 and A

3 are assumed to be the three roots of the function the

only disposable constants we find on operating by x^+yx+z on yl5 y2 and

y3 ,
three equations which determine #, y and z^\

Ex. 2. Coaxial linear functions are commutative in order of operation^
and conversely functions that are commutative are coaxial.

[The first part is easily proved on expressing an arbitrary vector in terms
of the axes. The second part is established by operating on the axes. Of
course one function may have indeterminate axes. If so, two axes of the
other must lie in their plane.]

Ex. 3. Find the latent and symbolic cubics for ty and X-

Ex. 4. The equation

represents the three planes through pairs of axes of
<j>.
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Ex. 5. In general, if (<
2+# . <+y)p=0,

-where x and y are scalars, and /> any given vector, either p must be an axis,
and the corresponding root must satisfy the quadratic

or else p must be coplanar with a pair of axes, and the corresponding roots

must both satisfy the quadratic.

Ex. 6. Deduce the symbolic cubic from the result of replacing A, ft and
v by <j6/o,

<
2
p and <j>*p

in the relation

ART. 67. Combining a function and its conjugate by way of

addition and subtraction we obtain two more functions,

To justify the form attributed to the second function, observe

that -o ...........................(n.)

whatever vector p may be.

The function 4 is said to be self-conjugate. The conjugate of

Vep is Ve/>, and the vector e has been called the spin-vector

of 0.
The axes of a self-conjugate function are mutually rect-

angular. The function being its own conjugate, each axis must
be perpendicular to the other two. The axes of a real self-

conjugate function must be real. If two are imaginary they
must be of the form y+V ly' and y *J ly' by the last

article, and the condition of perpendicularity requires

which cannot be, as y
2 and y'*

2 are both negative. Hence follows

the important proposition that the latent roots of a real self-

conjugate function are real.

If two roots of a real self-conjugate function are equal, it

must have indeterminate axes. For if a single axis corresponds
to the double root, it must be perpendicular to itself, and there-

fore imaginary.
Referred to the axes a self-conjugate function is of the form

0/>= -g&&ip--9d&3pgj<$kp> ................(m.)

and the only special case is when two of the roots become equal.
An arbitrary self-conjugate function involves only six con-

stants ;
the three roots and three numbers to fix the directions of

the axes.

Ex. 1. The axes of V~e/> are and c'iN/^Te", where e, e' and e" are

mutually rectangular, and where T'=T".

[Note that (e'+J lt'')
2

. The imaginary axes are the vectors to the
circular points in the plane Sp=0. See Art. 84, Ex. 8, p. 126.]
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Ex. 2. Find the self-conjugate part of the function

<p= a'Sa/D+ ft'Sftp +y'Syp,
and also its spin-vector.

Ex 3. If a self-conjugate function transforms a given vector a into a

given vector a', it transforms any other vector /3(
= OB) into a vector,

jQ'(
=

OB') terminating on a fixed plane.

[Here Sa/3'=Saf/3, and a, a' and (3 are given.]

Ex. 4. Given that a self-conjugate function renders a parallel to a' and

fi parallel to
/3',

it renders y parallel to a fixed plane.

[The conditions of self-conjugation require S/3y'Sya'Sa/3'=Sy/3'Say'S/3a'.]

Ex. 5. The axes of a function are mutually rectangular. It is self-

conjugate.

Ex. 6. Two axes of a function are at right angles. The spin-vector lies

in their plane.

[Syl72=03 Sy 1^y2=0= Sy2^
/

ri
= Sr2(^-2)7l , etc.]

Ex. 7. Prove that the quaternions

02= (A. .

~

are invariants.

[Verify that q1
=m"+ 2, q2 m'- 2<e.]

Ex. 8. If the vectors a, /? and y are mutually perpendicular,

Ycr^a + V/5-
1
^/?+Yy-^y= 0,

when
<^>

is self-conjugate.

Ex. 9. The planes containing a pair of axes of a function and the

corresponding pair of axes of its conjugate intersect in the vector (<$>$),
where e is the spin-vector and g is a latent root.

Ex. 10. The vector to the common orthocentre of the spherical triangles
determined by the axes of a function and its conjugate is

Ex. 11. The spin-vectors of coaxial functions lie in a fixed plane.

Ex. 12. In terms of the roots and axes

ART. 68. It happens not unfrequently to be necessary to

discriminate between the parts of ^, ^, and of the invariants

which arise from the self-conjugate part of ^ and those which

depend on e. We have

-V . VeA . $M -

the terms eSA^ytt+eS^A cancelling.
J.Q. G
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This easily reduces to

(l.)

Thus the spin-vector of ^ is $e or
</>e.

Operating by <j>
or $+ Ve we have

mp =Mp+ Ye^p-$V<ep- VeV$ep <3?eSep,

and if we notice that $V$e/> = Ve^/a (Ex. 7, Art. 65), this reduces

without trouble to

m= jJf Se$e or M=m+S<pe ................. (11.)

where M is an invariant of <1>. Changing <j>
into

<j>+ c, and
therefore m into m+m'c+m"cz+ cP, <& into <&+ c and M into

jJf+jM'c+-M''c
2+cs

,
we see by (n.) that

m'= Jf-6* or Jf=m'+62 and that Jlf"=m"......(m)

ART. 69. We shall give a few examples of the geometrical

meaning of the invariants of a linear vector function. (Art. 65

(IV.).)

(1) The invariant m" vanishes if the function <j> transforms a

pyramid into another having its edges on the corresponding
faces of the old* If the vectors a, ft, y are along the edges of a

pyramid, and if <pa is coplanar with /3 and y, <p(3 with y and a,

and 0y with a and /3, it is obvious that m" vanishes. Con-

versely if m" vanishes we can determine an infinite number of

Eyramids
which transform into others having their edges on the

a/ces of the originals. For assuming arbitrarily a and /3, the

equations S<a/3y= 3 Sa0#y0, .......................(L)

determine the direction of y ;
and the condition m"= requires

(2) The invariant m' vanishes if $ transforms a pyramid
into another having its faces through the edges of the old. The

proof and the converse are the same as that just given.

(3) The sum of the projections of vectors transformed from
mutually rectangular unit vectors on the corresponding unit
vectors is constant :

if U/3Uy= Ua. ...(II.)

(4) The sum of the squares of vectors transformed from mutu-

ally rectangular unit vectors is constant :

m^(^)=--2(0Ua)2==~2SUa0>Ua if TT/3Uy =Ua ...(ill.)

where m"
(<{><}>)

is the first invariant of the self-conjugate function

* In other words If
<f>

transforms three planes into planes intersecting in pairs
on the original planes.
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(5) The siim of the squares of the projections, on any fixed line,

of vectors transformed from mutually rectangular unit vectors

is constant. If X is the vector on which the others are projected

2(SA<^Ua)
2= 2(SUa^X)2=T^X2.......... , ..... (IT.)

(6) The sum of the squares of the projections on a plane is

constant.

Similar remarks apply to vector areas V0Ua0U/3, etc.

Ex. 1. If the sum of the square roots of the latent roots of $ is zero,

it is possible to find an infinite number of pyramids (OABC) which convert

into others (OA'B'C'), so that intermediate pyramids (OA^C,) can be drawn

having their three edges in the faces of the first, while their faces contain

the edges of the second.

[Here S<a/?y= 0, S<(3ya=0, S<^a/3
=

0, and S<^/?y=0, etc.

See the next Article and the Appendix to new edition of Elements of

Quaternions, vol. ii., note v.)

ART. 70. The square root of a linear vector function may be defined as

a linear vector function, which, operating twice in succession on any vector,

produces the same effect as the given function. Writing then <r for the

square root of the function <, we have, if yx , y2 and ys are the axes of

q^, and if A
1?
A2 and hz are its roots,

**ri=*i?i> (**)Vi=Vri=*yi> ........................to

and consequently the axes of <r are also axes of < (see Ex. 2, Art. 66), and

the squares of the latent roots of ^ are the roots of
<f>.

In general, then, a

function has eight square roots answering to the double signs attributable to

#A 9<^i ff^- -^ ĉ oes not fo^ w conversely, that the axes of
<f>

are axes of <-.

As an example, let
<j>

have equal roots, and let it have indeterminate axes,

so that (<-^i)(#yi+Ty2)
= where x and y are arbitrary, ^i=^2 being ^the

repeated root. A square root of the function may have three distinct

roots +#A -#A 9$*~ II1 tilis case tkere is an infinite number of square

roots, because we may select any vector wyi+yy?, to be an axis of <f

corresponding to +g$, and any other vector x'yl+/y2 may be selected as the

axis corresponding to -g$. For real square roots, the three roots g^ g%

and g must of course be positive.
The following resolution of a linear function < and

its^ conjugate jis

sometimes useful for example, in the theory of strain. It is due to Tait,

to whom is also due the conception of the square root of a linear vector

function. .

Let i j Jc be the mutually rectangular axes of the self-conjugate function

<jxf>',
and let a\ l\ c* be its roots. .Reducing to the trinomial form

(Art - 62),
<f>p
=aiWp+ fyWP+ <MWp> ............................(n->

where i\ f, ~k' are to be determined, we have ^*=~ai
/

, <#?=--&/ and

^=-^'. These give <<'t= ~a%^^v2 -a5y.S^y-ac^.SW, but i is by

hypothesis an axis of <<', so that <f><l>'ia*i. Consequently we must have

$% _i
? Sz,y=S^'=0, and in fact ',/, Td form a mutually ^rectangular

unit

system of vectors. Thus in particular <pi'=ai, and <j><pi
f

a(l>i=+aH
f

,

and thus it follows that i\ / and % are the axes of the new self-conjugate

function <'<, and that a2
,
62

,
c2 are also its roots.
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Let q be a conical rotation which renders* *', /, k' parallel to z, j, k. We
have by (n.),

and therefore by the definition of a square root,

<f>p=(<f><J>')%.q-ipq and <'p= #.

and from these we also deduce

In like manner we may prove that

and thus we can reduce the effect of a function < to a rotation preceded or

followed by the operation of a self-conjugate function.

ART. 71. "We add one or two miscellaneous propositions respecting two

or more functions.

The functions <<, and <j>$ formed by taking the products of two functions

have the same symbolic cubic. For

if

and thus the functions have the same roots and the axes (y) of <,< are

deducible from those of <<, by operating with
<pr

In particular (jf)/"

1^, has the same symbolic cubic as <, and thus any

peculiarity in the nature of one function occurs also in that of the other.

Any two functions may be reduced simultaneously and generally in one

way to the forms

p.........(n.)

Assuming the possibility of the reduction, it appears that

(^V//,!/
= a<Vju,v= <mSA/xv, etc.,

and thus the vectors VA/x, etc., are the axes of the function <~1
<

/
and a, ?;,

c

are its roots. If both functions are self-conjugate, we must have

-
b c oa a-b '

and therefore for self-conjugate functions

</>p=ASAp+fcS/<c/)-f vBvp 9 ^p=aXS\p+ bfjLBfj.p+cvBvp, .........(in.)

and further it is evident that

SV/^VvA^O, SV/^v^VvA=0, etc.

It is sometimes necessary to invert the function < + < and the auxiliary
1/r

of this function is defined by

^Va/3=V(#+*>^ ......(iv.)

where ^Vo/J^V^'a^+Y^/a^'jS............................(v.)
The invariant mt is

(vi.)

* We must have i'j
fk

r
^= -I=ijk, but this can always be secured by attributing

proper signs to a, 5, c. If i'j'tt were + 1, we should not be able to rotate the
vectors into ijkt

for gig"
1

. qjq~
l

qkq~
l
=^q . ijk . q~

1= 1.
'
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where m and m, are the third invariants of < and <
y
and where I and I, are

the two new invariants

ZSay= 2S<a<ft3<ky, Zaj3y=2S<a<k#<ky................(vil.)

Ex. 1. The locus of axes of the functions <-f- t$t
where t is a scalar

parameter is the cubic cone

[If p is an axis <p-K<,p=#p. The surface represents a cone, as it is inde-

pendent of T/>.]

Ex. 2. The axes of functions of the family < + <, form co-residual triads
on the cubic cone.

[The quadric cone SAp<p=0 in which \ is arbitrary cuts the cubic in the
three axes of $ and again in three lines in which it cuts SXp<p,p=Q, as we see

by substituting <p=.27p-f-yA, in the equation of the cubic. The remaining
intersection of the quadric cones is p ||

1. The cone SXp(<-K< y)p= passes
through the axes of < + t<f>,

and through the three lines above mentioned, so

that these three lines are the residuals of every triad of axes (Salmon's Higher
Plane Curves, Art. 154). For other properties see Quaternion Invariants of
Linear Vector Functions, Proc. E.I.A., 1896.]

Ex. 3. Prove that the invariants I and l
t
are merely multiplied by a

scalar when
</>
and <, are replaced by ^^g and <f>i<f>^

[The scalar is the product of the third invariants of <
x
and

<f>2 . This very
general invariantal property leads to many theorems. See Phil. Trans.,
vol. 201, Part VIIL, sections iii. and x.]

Ex. 4. Prove that the function ^VajS^Y^'-^
co-variant with

<}E>
and

<f>r

[Making the substitution of the last example, ^>
/~1 becomes ^~l

^>'~
l^~l-

and the function <3> changes into m
l

~1
m%~

1
<]>l<f><l>%.']

Ex. 5. If <r|| Y^p^p show that p|| V^'er^'cr ;

and more generally if cr is connected with p by the chain of relations

Pi II Y^i/Xfoft p2 H Y^pi^pj, ... CT
|| Y^jp^HL&n/*,.-.!,

prove that an analogous chain of relations connects p with cr.

[The second part of this example is relafed to the theory of the

Cremona transformations connecting vectors p and cr, the direction of a

vector (p) being connected by a one-to-one relation with that of a vector (cr).]

Ex. 6. If 4>(p, t) is a linear and vector function of p and also a function

of the scalar t, the equation

represents a cone whose order is the number of values of t which satisfy

X being any constant vector.

Ex. 7. The equation

represents a surface which meets an arbitrary right line Y(p~/3)y= in as

many points as there are values of t which satisfy
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EXAMPLES TO CHAPTER VIII.

Ex. 1. Find the auxiliary functions x and ^r and the invariants of the

function

<p=2mVaVpa.

Ex. 2. Invert the function <j>p+VaVpa where < is a given function and

where a is a given vector.

Ex. 3. If $>< a^YcwjSp show that the conjugate function is

and prove that the spin-vector is - JVor^'a.

(a) Show that the auxiliary ^ function of < a+c is expressible in either

of the forms ^aSflrl p+ c (Xp - V^'a
or

and show that the third invariant of the same function is

(5) Prove that the axes of < a are determined by substituting a root of

the equation cSaty+c^+ c2) a=0 in (^-fc)"
1 ^

Ex. 4. If <,/>
=

</>-haS/fy>, show that ^p=^p+V/3<'Vap and that

Ex. 5. Show that the -^ function and the third invariant of <p - V/3Vap
may be reduced to the forms

and m>

Ex. 6. If <c=<-f >
^c

-j
show that

Ex. 7. Prove that

V. cVap. /5-x/V - Vap. /5-V . Vap. ^.
(a) Show that the conjugate of this linear function of p is V . <

;

V/3p . a,

and prove that the spin-vector is ^4>'"Va/3~aS/3 where e is the spin -vector

of <.

(&) Show that the auxiliary -^ function is aS/SpSa^/?.

(e) If V.<#>Vap./?=a", show that p^^-^XSa^/J)- 1 where a? is an

arbitrary scalar. Deduce this result by the aid of the implied relations

Sapper=0, S/?cr
= 0.

Ex. 8. Prove that

where a, /J and y are arbitrary vectors.

(a) Show that
V .

(6) Express these quatei-nions in terms of the scalar invariants and the

spin-vectors.
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Ex. 9. Three lines are defined by the pairs of vectors (cra, r^ (o-2,
r.2),

(<rs,
r3) as in Art. 36, Ex. 4, show that any line which is met by all the

transversals of the given lines may be represented by

o-= <j)T where ST<T= 0,

the linear function
<f> being defined by the equations

o-j
=

<TJ, o-2
= <r2,

o-3
= <rs.

(a) The transversals of the same set of lines may be represented by

cr'=-<V where Sr'<Y=0
3

the function
<f>' being the conjugate of <.

(&) Writing

and expressing that the function <( ) V/>( ) has a zero root, the locus of

the lines is found to be

where m is the third invariant of the function < and where e is its spin-
vector.

(c) The same equation is satisfied by the transversals.

Jd)
Show that four given lines have in general two common transversals ;

that these are determined by
o-'= <V where Sr' (o-4 <r

4)
=

0, Sr <V= 0,

the fourth line being defined by (o-4 ,
r4).

Ex. 10. Given any four pairs of vectors, (/3, an), where % = 1, 2, 3 or 4,

show how to find a linear vector function
<j>
and a vector y so that

<

Ex. 11. Given any six triads of vectors (yw, /?, art) where w= l, 2, ... 6 ;

determine two linear functions ^ and
<f>2 so that

Ex.12. Verify by assuming p=^a+.2//3, SAa=0, SA^=0, that the

solutions of the equations SAp= 0, Sp^>p = may be written in the form

where a is any vector perpendicular to A.

Ex. 13. Given two tetrahedra A'B'C/D' and ABCD, find a point u and a

function < so that

EA'=<#>.EA, EB'=<.EB, EC'=<.EC, ED'=<^.ED.

(a) Show that corresponding faces of the tetrahedron determine with the

point E tetrahedra having a common ratio of volumes.

(b) If the lines joining corresponding vertices are generators of the same

system of a hyperboloid, it is possible to find four scalars I, m> n, p so that

IVaa'+mV/3f?+ riV'yy'+p8$= 0.
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(c) These scalars are independent of the origin, and if the origin is taken
at the point E, we shall have

la+ m/3+ny+pS= 0, laf 4-mff 4- ny' 4-p&=

for an arbitrary pair of tetrahedra, while if the lines joining the vertices are

generators of the same system of a hyperboloid, we shall have in addition

ZVaa'+mVjS/y+nVyy+pV88'= 0.

Ex. 14. Identify the expressions

where if is a scalar variable, and show how to express the function
c/>,

and
the vectors A. and

//,
in terms of the vectors a, p, y and 8, and the scalars

a, b
t
c and d.

Ex. 15. Of what nature are the curve loci

and =

Ex. 16. Gauss has described, in an unpublished MS. of the year 1819, an

operator which alters the size of any figure in a given ratio, and which turns
the figure through a given angle round a given line through the origin.
He proves that an operator of this kind depends on four numbers, that

successive operators compound into a single operator of the same kind, and
that the order of the operations is not commutative.

(a) Show that Gauss's operator may be expressed in quaternions by
cq( )g~

l
)
c being a given scalar, and q a given quaternion.

(6) Hence prove his theorems.

(c) Compare and contrast the lack of commutation in the order of these

operators, or in the order of "the operators 2 and cos. in the simple inequality

cos 2,# 2J 2 cos -r,

with the lack of commutation in the multiplication of quaternions.

(d) Prove that the sum of two Gaussian operators is an operator of a
distinct kind.

(e) Prove that a sum of at least three Gaussian operators is required to

adequately express a linear vector function. (Bishop Law's Premium, 1899.)

Ex. 17. Unit vectors a, /3 and y are directed respectively from the centre
of a regular solid to the middle point of a face (or to a vertex) ;

to the middle

point of an edge of the face (or of an edge through the vertex) ;
and to a

vertex on that edge (or to the middle point of a face containing the edge),

prove that * *

y =
/3<x,

where ^=3 for the tetrahedron, n = 4> for the cube and octahedron, and n=%
for the dodecahedron and ikosahedron.

(a) Hence show that all rotations which leave unchanged the region
occupied by the solid may be represented by powers and products of linear

vector functions A, K and t which obey the laws *

Xw=l, K3
=l, i

2=
l, A= t/c, (71=3, 4 or 5).

*See Hamilton on the Icosian Calculus, Phil. Mag., Dec. 1856; Proc. R.I. A.,
Vol. VI. , pp. 415, 416. See also Burnside's Theory of Groups, Arts. 200, et seq.
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Ex. 18. A real linear function which is a symbolical wth root of unity, or
which satisfies the equation

<=!
is of the form

<f>p
. Sa/3y

=
(a

cos~ - sin
J S/Jy/>

4- (a sin + /5 cos
"* *

j Syap 4- ySa/?p,

where a, /5 and y are arbitrary real vectors.

Ex. 19. The result of eliminating the vector GJ between the equations

may, when
<^>

is self-conjugate, be expressed in the form

SatyaSpcfrp
- mSap

2= 0.

(a) In the same case,

&<j>paV . Va<fip
=

'Va<f>'Va<j>p
= pScf^a "^aSap.

(6) And moreover *

x= Spc^pSVaX^YctjLt+ SAf/xSap
2 - Sa^SXpSap - Sa

* These examples are quaternion equivalents of the transformations in Arts.

383, 385 and 390 of Salmon's Higher Plane Curves.



CHAPTER IX.

QUADRIC SURFACES.

ART. 72. If f(p, p) is a homogeneous, rational and integral
scalar function of the second order in a variable vector p, so that

/(a+ t/3, a+*)=/(a, a)+t(f(a, ffi+ftf, a))+W, 0), ...(I.)

where a and /3 are arbitrary vectors, the equation

f(p, p)
= const............................ (II.)

represents a surface of the second order, referred to its centre as

origin. For by (i.) we find a quadratic in t which determines

two points in which an arbitrary line p = a+t{3 cuts the surface;

and on putting a = 0, the roots of the quadratic are equal and

opposite, showing that every chord through the origin is bisected

at that point.
The coefficient of t in (i.) is linear and homogeneous both in a

and in /?, and as it involves these vectors symmetrically we may
write

/(a, )+/(& a)= 2Satf>/3
=

2S/3c/>a ...............(m.)

where is a self-conjugate linear vector function. Thus the

equation of the central quadric is expressible in the form

f(p, p)
=

Sp<f>p=z const......................... (iv.)

Without loss of generality we may suppose the constant incor-

porated in
<pj

and we take as the equation

Sp0p=-l, ..............................(v.)

in which, as we have said, <p
is self-conjugate. Of course, and

without gain of generality, we may suppose <f>
not to be self-

conjugate in (v.), for the spin-vector automatically disappears
from an equation of this form (Art. 67) ;

but this is very likely
to lead to mistakes in further developments, and it adds needless

complexity.
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ART. 73. Equation (v.) of the last article gives

=--l or -SU^Up = 2
=i ......... (i.)

if T is the length of the central radius parallel to Up.
For a closed quadric, an ellipsoid or sphere, r2 is always

positive, as every line through the centre meets the closed

surface in real points. For a hyperboloid, the radius becomes
infinite for an edge of the cone

SUp<5&Up= or Sp0p= 0, .................... (II.)

the asymptotic cone of the surface. The sign of the expression
r~ 2 or SUp^Up changes on passing through a zero value, and
the expression remains with changed sign until it passes again
through a zero value. So on one side of the cone Sp<f>p

= 0, fines

meet the hyperboloid in real points, and on the other side the

points are imaginary and the corresponding vectors are of the

form p= /v/-~l/o
/

, (Up= Up', Tp= >\/ ITp'), where p' is a real

vector.

The vectors p terminate on the quadric

Sp<f>p= +1 ............................. (m.)

the conjugate of the quadric Sp$p = 1.

For the sake of brevity we shall write generally r2 for the

square of the length of the radius whether that square be

positive or negative, the interpretation in the latter case being
that just given.
An arbitrary right line p= a-\-t-j3 cuts the quadric Sp<pp= 1

in the points determined by the roots t of the quadratic

Sa<j>a+ZtSa<f>j3+ t*S/3<p/3=-l .................. (IV.)

For a real and positive root, the point is in the direction +II/3
from the extremity of a, and for a negative root it is in the

direction U/3. For equal roots, the line touches the surface;
and for imaginary it cuts it in imaginary points.
The locus of the middle points of chords parallel to /3 is the

diametral plane
0, ............................... (y.)

for if a is the vector to any point in this plane, the roots of (iv.)

are equal and opposite. If the diametral plane of /3 contains the

vector a, that of a contains /3 in virtue of the self-conjugate

property of
<f>}

for then

Sa0/3= S/30a= ........................... (VI.)

The equation has equal roots if

0, ............... (VII.)
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and regarding ft as variable, this is the equation of the tangent
cone from the extremity of the vector a referred to that

extremity as origin, for it is- independent of T/3. Replacing

]3 by p a, the equation of the same cone referred to the centre

as origin easily reduces to

0] .........(vm.)

and the form of the equation shows that the cone touches the

quadric along its intersection with the plane

S/>0a= -1 .............................. (IX.)

the polar plane of the extremity of a.

If the vector a terminates on the surface, the equation of the

cone becomes the square of the equation of a plane the tangent
plane at the extremity of a,

S/>0a= -1, Safia= -1 ....................... (X.)

Allowing on the other hand a to vary arbitrarily in the quad-
ratic equation, and putting for greater clearness a= p'

= p t/3,

the vector p' being drawn from the extremity of the vector tft

while p is drawn from the centre, we see that

S/0P
'= - 1 - 2

S/30/3 if Sp'fP= ..............(XL)

These two equations jointly represent the section of the quadric

by the plane Spfp^tSfop, ...........................(xn.)

and the centre of the section is the origin of vectors p', or the

extremity of the vector t{$. Hence the locus of centres of

sections by planes parallel to (v.) is the line through the centre

parallel to 8, as indeed might have been proved directly from (v.).

The section (xi.) is similar to the parallel central section of the

quadric, for if r' is the radius of the section parallel to p and r

that of the quadric,

.....(XIII.)

if V is the radius of the quadric parallel to
/3.

The equation of the normal to the quadric at the extremity of

the vector a is

p = a+ x<pa, or V(/o a)0a= 0; ............ (XIV.)

and the normals which pass through a given point /3 are six in

number and are determined by the equation

/3
=

p+x<j>p, or V(/3-/>)0p = 0, and Sp0p= -1. ...(xv.)

To solve these equations we have

p= (l+X(j>)-
1

/3, where S/30(l+^)-
2
/3= -1, .....(xvi.)

because Sp(f>p= 1, and on inversion we find 5 a sextic equation
n x,
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Ex. 1. Prove that the rectangle under the intercepts from the extremity
of a on the line p= a-H/3 is

where a' and b' are the central radii parallel to a and [3.

Ex. 2. The ratio of the rectangles under the intercepts of lines drawn
from a fixed point is independent of the position of the point, and is equal to

the ratio of the squares of parallel central radii.

Ex. 3. Chords drawn through a point are divided harmonically by the

quadric and the polar plane of the point.
O j. f

[Put
-= _l-f

_|
where ^ and U are the roots of the quadratic (iv.).]

Ex. 4. Find the central vector perpendicular on the tangent plane at

any point, and obtain the locus of the feet of central perpendiculars, or the
central pedal surface.

^ -1.]

Ex. 5. Prove that the central pedal surface is the inverse of the reciprocal

quadric.

Ex. 6. Prove that the ratio of the perpendiculars from a point A and
from the centre on the polar plane of B is equal to the ratio of the perpen-
diculars from B, and from the centre on the polar plane of A.

Ex. 1. Find the locus of the poles of tangent planes to the surface
= 1 with respect to the surface Sp< 2p= 1.

Ex. 8. Find the pedal surface for an arbitrary point.

Ex. 9- The feet of the normals which pass through a given point are the
intersections of a twisted cubic with the quadric.

[Compare (xv.) and Art. 65, Ex. 8, p. 93.]

Ex. 10. The normals through a given point lie on a quadric cone

S(p-/3)</3<p=0, and the feet of the normals lie on the cone S/3p<p=0.
(a) Both these cones have edges parallel to the three axes.

Ex. 11. Find the condition of the intersection of normals at two points
a and ft.

Ex. 12. Find the equation of the polar plane of a to the quadric
=

I? <i</>2 being the product of two linear functions.

[Note that
<j>2f<t>i *s the conjugate of ^i^z-l

Ex. 13. Prove that the polar line of p a+ t/3 with respect to the

quadric Sp(pp 1 is

ART. 74, The central plane 8\p= is the diametral plane of

chords parallel to
<p~~

l
\, as appears on comparison with (v.) of the

last article. The locus of the centres of sections by planes

parallel to SA/>= is the right line

X= ............................... (i.)
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The vector to the pole of the plane (Art 73 (ix.))

S\/>=-l is
<f>~

l\: ........................ (ii.)

and the plane touches the quadric if (Art. 73 (x.))

SX^-ix^-i, .. ........................(in.)

and as X varies this is the tangential equation of the quadric.
But SXp= 1 is the polar plane of the extremity of X with

respect to the unit sphere, Tp = l or /r= 1, and the equation

(ill.) may therefore be regarded as that of the reciprocal of the

quadric with respect to the unit sphere.
The vector to the centre of the section by SX/o

= 1 is by (i.)

(iv
x

l }

the tensor being determined so that this vector may terminate in

the plane SX/o= 1 ; and on comparison with (xin.) of the last

article, the ratio of the radii is given by

,

^ ''

Ex. 1. By direct comparison of SAp~hl=0 with (xii.) of the last article,

find the vector (iv.) of the present.

Ex. 2. Find the reciprocal of the surface with respect to an arbitrary

sphere.

Ex. 3. Find the lines in which the plane SAp=0 cuts the cone Sp<p=0 ;

and show that they are parallel to

where a is an arbitrary vector in the plane.

[Assume the lines to be a+ta' where Vaa'= A and actually solve for t on

substitution in the equation of the cone.]

Ex. 4. Prove that the tangent of the angle between the lines in which
the plane SAp=0 cuts the cone Sp<p=0 is

.

SAxA

[If a+ ^a'and a+*2a' are the lines, calculate a2
-|-(zf1 -i-?;2)Saa

/+y2a
/2 and

'

Ex. 5. Show that the lines in which the plane SAp=0 cuts the cone

are parallel to the vectors

AET. 75. The vector radii a and /3 of the quadric are con-

jugate if Sa0 j

8= J ................................ (I.)

that is if one lies in the diametral plane of the other (Art. 73

(vi.)) ;
and it follows geometrically, or directly from the equations

of the tangent planes

1> 8/30/3= 1, .....(n.)
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at the extremities of these vectors, that each vector is parallel to
the tangent plane corresponding to the other.

If the vectors are perpendicular as well as conjugate, they are
the principal axes of the section bv their plane, and the condi-
tions are = Sa/3 = ......................... (ill.)

From these we see that

flllVa^a, allV/30/3; ...................... (IV.)

so that if one vector is given, the other is determinate
;
or given

that a line is to be the principal axis of a section, the other prin-

cipal axis is determined by (iv.), and the normal to the section is

parallel to

Ya/3 ii aNa<pa \\ (pa . a*
2

aSa<f>a \\ <aTa2 a...........(V.)

Thus to determine the principal axes in a central plane SXp= 0,

we have

0aTa
2
-a||X or a|| (<Ta

2 - l)-^; ............. (VI.)

and because SXa = 0, we have if Ta2= r2
,

SX(^>r
2
-l)-

1X = or r4SX^X-r2SXxX+ X2= 0, ....(vn.)

using the formula of inversion (Art. 65). Thus a quadratic in r2

is obtained and substitution of its roots in (^r
2

1)~
1X gives the

directions of the vectors required.
The principal axes of a surface are normal to the tangent

planes at their extremities, so that

'Yp<f>p
= Q ............................(vm.)

for a principal axis. These are the axes y1? y2 , yg of the

function
<p.

Ex. 1. Find the maximum and minimum radii in a central section.

[Here SAp=0, Sp<p= 1, Tp=max., and on differentiation, SAdp=0,
S<pdp=0, Spdp= 0, so that the three vectors A, <p and p are coplanar, or

(<j>+x)p=y\. Operating by Sp, we fall back on (vi.).

Ex. 2. Find the maximum and minimum radii of the quadric, and show
that their directions are the solutions of

Ex. 3. The sections by planes perpendicular to X are rectangular
hyperbolas if

Ex. 4. The equations (iv.) fail in one case.

[Where the vector a is a principal axis of the surface.]

Ex. 5- In general, the three radii are coplanar which are axes of sections

having any three mutually rectangular radii as the remaining axes.

[Because <f>
is self-conjugate, Va~1^a+ Y/3~

1
<j&/3+Yy~

1<y=0 if a, ft and j
are mutually perpendicular (Art. 67, Ex. 8, p. 97).]
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Ex. 6. The sum of the squares of the reciprocals of three mutually
rectangular radii is constant.

Ex. 7. Interpret geometrically the equation

which asserts that the plane SXp= cuts the quadrie in a section having a

principal axis equal to r.

[This expresses that the plane touches a certain cone.]

Ex. 8. Central planes cut a quadrie in sections of given area A . Prove
that their envelope is the cone

Ex. 9. The axes of the section by the plane SAp4-l=0 are the roots of

the quadratic
/ m+

bA G>--
t>L^ vV HS

Ex. 10. The area of the section made by the plane SAp+ l=0 is

, TA(m-fSA^A)
A, =: 7r-

ART. 76. From any pair of conjugate radii a and /3 we can
derive a third radius conjugate to both so that

S/30y= Sy^a= Sa</3 = ...................... (I.)

We may in fact regard the two conditions in y as equations of

planes, and

yllV^jSllV^a/Sll^Va^.................. (ll.;

With proper tensor the radius y is

In terms .of the three mutually conjugate radii, the equation
of the quadrie is

(IV.)

as appears on substituting p=2aS/3y/> :Sa/3y in Sjo<^o= 1 and

attending to the conditions.

Writing (compare Art. 70)

it appears by (l.) that the vectors a, /3' and y' are mutually
perpendicular, and because a, /3 and y terminate upon the

surface Sp<f>p= 1, it further appears that of, $ and y are

unit vectors. The theorems of Art. 69 therefore apply, the

vectors a, j3 and y being the results of operating by a linear
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function (<j>~^)
on three mutually rectangular unit vectors.

Thus the sum of the squares of three mutually conjugate radii

is constant, etc.

Ex. 1. The radii a, /?, y being mutually conjugate, prove that

and that

~

Ex. 2. The locus of the extremity of the diagonal of a parallelepiped
having three mutually conj ugate radii as conterminous sides is

Ex. 3. The locus of the mean point of a triangle formed by the
extremities of mutually conjugate radii is

Ex. 4. The locus of a point from which it is possible to draw three

tangents parallel to mutually conjugate radii is

Ex. 5. In the last example show that a point on the locus is

p=;j|(*++r);
and that the points of contact are the extremities of

ART. 77. To find the cyclic planes of a quadric we have to

throw its equation into the form

--l ............. . ....... (i.)

or to determine g, \ and ^ so that for all vectors p,

<f>pz=gp+ \S]mp+ lu,S\p......................... (II.)

It follows that <p g must reduce every vector to a fixed plane,
that of X and ^a. The scalar g must therefore be one of the

latent roots of 0, say gg%> and in terms of the axes,

Sp(<P~gz)p= -(^-^(Sip)
2-^8 -flr2)(S^)*= 2SXPSM/, (ni.)

because <j>p
= i

Thus

J.Q.



114 QUADBIG SURFACES. [CHAP. ix.

where t is arbitrary. The transformation is real only if

The cyclic planes SXjo
=

; 8^/0 = cut the surface in circles of

radius g^, and these circles are real only if ,g2>0.
The planes SAp+ Z = 0, S//p+m = cut the surface in circles

lying on the sphere

or

In nearly every problem relating to quadrics some valuable
information will be gained by throwing the equation into the

cyclic former into the focal form of the next article. This
transformation is not generally of any great difficulty.

Ex. 1. Reduce a quadric to the form

[This gives _
Dr. Salmon's focal property. The locus of the extremity of

the vector a is a hyperbola the focal hyperbola, and this depends on
equation (iv.).]

Ex. 2. Prove that the roots for Hamilton's cyclic form are

g,

Ex. 3. Any two circular sections of opposite systems lie on the same
sphere.

Ex. 4. If a quadric is a surface of revolution,

for all vectors p.

[The self-conjugate function < has two equal roots (c) and (Art. 66 (xti.),

p. 95)

is identically zero for all vectors a and ft, or ^p-
Ex. 5. If for all vectors p

Spxp^P=0, or Sp<p<
2p=0y or

the quadric is of revolution.

Ex, 6. From a fixed point A, on the surface of a given sphere, draw any
chord ADJ let D' be the second point of intersection of the same spheric
surface with the secant BD drawn from a fixed external point B

; and take
a radius vector AE, equal in length to the line BD', and in direction either
coincident with, or opposite to, the chord AD : the locus of the point E
will be an ellipsoid, with A for its centre, and with B for a point of its
surface.

[Elements of Quaternions, Art. 217 (6). See also Lectures, Art. 465. If c

is the centre of the sphere, the isosceles triangle ACD gives =K
, or

CD= - Air1
. CA . AD= - AE"1

. CA . AE, and therefore

DB= CB+AIT1
. CA . AE= I+p~

l
Kp
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if CB= t, AE= p, CA= K. By the property of the sphere D'B . DB= CB2~CA2
/c
2- 1

2
,

and by the construction Tp=TD
/

B=T(62 ~ /c
2
)

. TDB~\ or T(pi + /cp)=T(i
2 - K2

).

Squaring both sides, we have Tp2
T(6

2+*2
)+ 2SptKKp=T(t2 -K2

)
2
,
which

reduces immediately to Hamilton's cyclic form.]

Ex. 7. Conceive two equal spheres to slide within two cylinders of

revolution, whose axes intersect each other, in such a manner that the right
line joining the centres of the spheres shall be parallel to a fixed right line ;

then the locus of the varying circle in which the two spheres intersect each
other will be an ellipsoid, inscribed at once in both the cylinders.

[Hamilton, Lectures, Art. 496. Taking the spheres to be T(p-Za)= &,

T(p tfi) 6, where a, /3 and b are given and where t is a variable scalar,
we find on elimination of

,

ART. 78. To find the right circular tangent cylinders of a

quadric, observe that if the vertex of the tangent cone (Art 73

(viii.)) passes off to infinity, the equation of the tangent cylinder

parallel to a is

2= ................... (I.)

A right circular cylinder parallel to a and of radius TcT 1 is

represented by
l, or (Yap)

2+l = 0, ..................(n.)

and identifying this with (i.) we have to satisfy

s^=%^+ <v^2

for all vectors p, or what is equivalent we must identify

*'=*a^-*v*<>
This is identical for p = a ;

and for p = (pa we have

, /-rr\_ --
. a..................(v.)

Here then is a linear relation connecting the vectors <jfa, <t>a

and a, and it follows (Art. 66) that a must be coplanar with a

pair of axes, i and k suppose, and that (say)

This gives on comparison with (v.)

Sa<pa=-g3gl9 Sa0
2a= (^3+^1+ a2

)Sa0a, Sa? = 0, ...(VI.)

putting p =j in the identity (iv.), we find

a =-ft...... ........................ (VIL>

The identity is now satisfied for three non-coplanar vectors,
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j, a and
<j>a and therefore for all vectors; and if Uj8 = U0a, the

equation of the quadric is by (IIL) reduced to

Sp<pp
= b(SpU$)*+a(VpUa}^~l, . ...........(vm.)

where a =g^ 9 b^g^-g^g^,
which is Hamilton's focal form, if we remark that by (vi.)
and (vu.)

If a ix+kz we have by (vi.) and (vn.)

and

ART. 79, To find the generators of a quadric, we express
that when we substitute p-\-ta in its equation, the equation is

satisfied for all values of t. Thus

O, Sa<s&a
= ................(L)

From the second and third of these

Vap~x<f>a, or p=*xa~
l
<f>a+ ya> ................ (ll.)

and substituting for p in the equation of the quadric,

or simply a*
2m= 1. Thus the equation of the generator is

T 7 .

it being implied by the form of this equation that Sa" 1
^a = 0.

Generators of one system correspond to the sign +, and those
of the other system to the sign .

Ex. 1. Prove that generators of opposite systems intersect.

Ex. 2. Find the locus of the feet of central perpendiculars on the
generators.

[From the equation /> <y Icr^a we find a
|| Vp</>p, and substitution

in Sa<a=0 gives a quartic cone which intersects the quadric along the

locus.]

Ex. 3. Prove that the locus of intersections of generators whicht cut at

right angles is the intersection of a sphere with the quadric.

[Note_that a central plane parallel to a tangent plane cuts the asymptotic
cone in lines parallel to the generators.]
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Ex. 4. The locus of intersections of generators which cut at a given
angle is

[See Ex. 4, Art. 74.]

ART. 80. When the equation of a quadric is given in the form

Sp^p~2Sep+ i= 0, .......................... (I.)

in order to find its centre, or centres, we may replace the

equation by

S(p-a>)0(p-w)+ 2S(p-co)(^w-) + Sco^ft)--2Sea)+ i==0
5 ...(II.)

and if co terminates at a centre the part linear in p o vanishes,
and co is a solution of the equation

<j>0)
= ................................. (ill.)

Operating by \fs we have

mco= ^e? ...............................(iv.)

and the vector to the centre is finite and determinate if m is not
zero. If m is zero and \fse not zero, the centre is at infinity in

the direction of
i/re,

and the surface is a paraboloid. If
\fse is

zero, m must also vanish, and the solution is (Art. 65)

m'w = xe+ ^o>, i/re
= 0, .......................(v.)

and the surface has a line locus of centres and is a cylinder,

^oo being parallel to the axis of
cf> corresponding to its zero root,

and the length of
-\/ra> being indeterminate. If m' vanishes,

the function \fs vanishes identically since
<j>

is self-conjugate

(Art. 67), and in fact is of the form aiSip. If xe ig n t

zero, the line of centres is at infinity since (v.) can only
be satisfied for infinite values of co. If however x ==

>
^e

solution is m//

co= e+x^ X^
=

> ....................... (VL)

and the surface is a pair of parallel planes. More simply when

^0= aiSico= e and ^ ~ ^e ~t~ fl^Sie= 0,

equation (in.) becomes aSico = Sie.

In the case of the paraboloid, equation (v.) without the

condition ^e= 0, or

m'ft>=xe+u^ ^ (I ^ 0&=0 ...............(VTL)

is the equation of the axis, remembering that
-v/ro> ||

k= uk where
u is an indeterminate scalar. We have in fact on operating

by <p, m'(<eo e)= ^e, and the term linear in p oo is propor-
tional to S&(p co).

In like manner it may be shown that (vi.)

without the condition xe== ^ represents the axial plane of a

parabolic cylinder.
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ART. 81. We propose in this article to give a short account
of the cone of the second degree and of sphero-conics. (See
Elements of Quaternions, Art. 196.)
The equations ft4

Sap+i=o, s-i=o .................... ...(i.)
P

represent respectively a plane and a sphere which passes

through the origin of vectors. Combining these equations so as

to eliminate Tp, the equation

=0, or SapS/3p+ p
2 = 0, or S/3pS + l = 0, ...(II.)

represents the cone whose vertex is the origin and which passes

through the circle of intersection of the plane and sphere.
The third form of the equation shows that the cone passes

through a second circle, the circle common to the plane and

sphere n*
8/3,0+ 1 = 0, S--l = 0, .....................(m.)

and thus exhibits the theorem of Apollonius that an oblique
cone having a circular base has a second series of circular

sections.

The second form of the equation shows that the product of

the cosines of the angles between an edge of the cone and the

cyclic normals (Ua and U/3) is constant, for this is

Sp^Ta-
1
^-

1
;

.................. (iv.)

or what is equivalent, if the cone is cut by a sphere concentric

with the vertex, the product of the sines of the arcual perpen-
diculars let fall from any point of the sphero-conic of intersection

on the two cyclic arcs (the great circles in the planes Sap = 0,

S/3p= 0) is constant.

If Up and Up' are the vectors to any two points P and P' on
the sphero-conic, and if the great circle PP' cuts the cyclic arcs

in Q and Q
7

,
it follows from the second of equations (n.) that

U(TJpSaU/o' Up'SaU/o) is the vector to one of the points (Q)
and that U(UpSaUp Up'SaUp') is the vector to the second

point (Q'), Q being in the cyclic plane Sap = and Q' in S/3p
= 0.

Hence, from the form of the expressions for the vectors to these

points, we learn that the arc PQ is equal to the arc P'Q'.

If P' and P" are two fixed points on the sphero-conic, and if P
is a variable point likewise on the conic

;
if the arcs PP' and PP"

cut one cyclic arc (Sap= 0) in Q' and Q", the length of the arc

Q'Q" is constant. This follows most easily by producing the

radii of the points P, P' and P" to meet the plane Sap+ l =
of equation (i.) in the points P ,

P '

and P ". It is evident that OQ'
and OQ" are respectively parallel to P P '

and P P ", and more-
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over the angle P 'P P "
is constant since it is the angle subtended

at a point on the circumference of a circle by two fixed points
likewise on the circumference.

Given the cyclic arcs of a sphero-conic and a point on the

conic, the conic is determined by elimination of t from the

equations

the vector y terminating at the given point, and for convenience
the radius of the containing sphere being taken equal to unity.
The three propositions just proved are used by Hamilton to

establish the associative principle of multiplication of quaternions.
In the figure the great circles GLIM, CHBG, I)AEG are the traces

of the planes of three versors

OL = OH _OC
"OG ?

r
~~oc 5

S
~OE'

M !

Constructing the product rs= OH : OE, the point H is deter-

mined and the sphero-conic HKBF is drawn through the point H
having GLIM and DAEC for cyclic planes. Producing the arcs

OH and EH, the points B3 G, F and I are constructed. The point
L is joined to B and LB is produced to K and A. The arc FK
is drawn and produced to M and D. It follows then that the

arcs GL and IM are equal and also the arcs CE and AD, and
moreover FM=DK and AK =BL by the properties of the sphero-
conic.

We have therefore

_ 25~ 21-2^ 21-2^25: -21:: 2^
? ' n9~ ? *OE~^*OF~~ 01 *OF~OF"~OD""OA'OD

_OK _OL _OL OG _
-~OA-'

S
~~OB'

S
~OG'OB-

S~ 9r ' S"

By proving the properties of the sphero-conic without employ-

ing the associative principle, this principle is established since

we can show that for any three quaternions q.rs=qr.s.

In addition to the properties just proved for the sphero-conic, it is easy
to see that great circle arcs which intersect at a point on the curve include

supplemental arcs (such as CA and GL, Fig. 25) between the points in which
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they cut the cyclic arcs. Reciprocating these properties, the cyclic arcs

hecome the foci E and F (Fig. 26) of the reciprocal sphero-conic, and if the

two foci and one tangent arc AB are given, the conic can be constructed. If

from any point on the sphere, two tangent arcs are drawn to the curve and

also two focal arcs to the foci, then one focal arc makes with one tangent

the same angle as the other focal arc makes with the other tangent. ^

More-

over opposite arcs of a spherical quadrilateral, ABCD, circumscribing the

conic subtend supplemental angles at the foci.

FIG. 26t

From these properties Hamilton deduces the associative principle. The

versors a and r are represented by the directed angles BAE and EBA, and their

product qr is (Art. 30, Ex. 5, p. 30) represented by the external angle at E

or by the equal angle CED. A third versor $ is represented by DCE, and the

external angle of the triangle DEC represents the product qr.s (namely,

qr into s). Making FOB and CBF respectively equal to the angles of s and

of r, the point P is found ; and when the sphero-conic having E and F for

foci and AB for tangent is constructed, it follows that BC and CD are also

tangents on account of the equality of the angles marked r and of the angles

marked s. Again, because CED was constructed equal to the supplement of

ABB, the arc DA will be a tangent to the curve, and FAD will be equal to the

angle of #, and DFA will be supplementary to CFB. Hence FAD and DFA

represent respectively q and rs, and the external angle of the triangle ADF

represents the product q . rs. But the angle between DA and DF is equal to

the angle between DC and DF, and therefore q.rs^qr.s.

To find the locus of a point on the surface of a unit sphere,

the sum of whose areual distances from two fixed points, E and

F, is constant, we have in the first place for the cosine of the

sum of the arcs,

SU.epSTJ??p-TVU.6/
oTVU.>7p= cosa; (v.)

or on rationalization, we find the locus to be a sphero-conic,

(STJ . e/))
2+(SU .

>7yo)
2- 2 cos a SU . epSUrjp

= sin2a
; (vi.)

since (SU.e/o)
2
+(TVU.ep)

2 = l. (Compare Elements of Qua-

ternions, Art. 360.)
This may also be written in the form

, (vn.)
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so that the sine of the arc between a point and a focus is propor-
tional to the sine of the perpendicular on a directrix arc.

Many interesting examples and illustrations will be found in

the Elements, Book II., Chap. III., Sections 1 and 2, and in

Art. 306, and also in the sixth of the Lectures on Quaternions.

Ex. 1. Through three given points on the surface of a sphere, it is

required to draw a sphero-conic so that a given great circle shall be one of

its cyclic arcs.

1 y a , y2 and 73 are the vectors to the three given points, it is necessary
nd p so that S/3pSap+p~=Q may be satisfied on replacing p by yly y2

and y3>
a being a given vector. The vector /3 is given by

Ex. 2. Find the relations between the cyclic normals of a cone and its

focal lines.

[Identifying (vi.) with the second form of (n.), the required relations are

easily obtained.]

Ex. 3. Prove that

S .Y . Va/3V6W . V/3yVcpV . VySVpa=

represents the cone which has five edges parallel to five given vectors,

a, ft, y, 8, e, and show that the form of the equation furnishes a proof
of Pascal's property of the hexagon inscribed to a conic. (Lectures on

Quaternions, Art. 442.)

CONFOCAL QUADEICS.

AET. 82. Quadrics of the family

Sp(<p+x)p= -I, ........................... (I.)

in which x is a variable parameter, are called concyclic, as they
have common planes of circular section (Art. 77).

The reciprocal system of quadrics

Sp(<f>+x)~
lp=-l ........................ (II.)

is called a confocal system.
Because we may write (il.) in the form

Sp(^+&x+^
2
)p= -(m+m'aj+mV+a?), .........(in.)

it appears that three quadrics (n.) pass through an arbitrary

point; and reciprocally, three quadrics (i.) touch an arbitrary

plane. Also one quadric (l.) passes through an arbitrary point,
and one quadric (IL) touches an arbitrary plane.

Confocal quadrics cut at right angles. Let a?, y and z be the

parameters of the three quadrics which pass through an arbitrary

point (a). Then
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for all functions <+, (<f>+^)"
1

etc., have the same axes, and
are therefore commutative (Art. 66, Ex. 2, p. 95). Thus at any
point of the intersection of the quadrics x and y,

which expresses that the normals (Art. 73, p. 108)
and (<j>+yY

l
p &re at right angles

Ex. 1. Beduce So . _1 V-T - P to a sum of the formH

[We may employ tlie method of partial fractions, and treat
<j>

as a scalar.

it being commutative with scalars and with < -I- ,r, etc.]

Ex. 2. If
&*, y and s are the parameters of the confocals through the

extremity of the vector p, the expressions

are respectively equal to

LT(<jE>+y)-V, zero, and
?/ $7 Z 30

Ex. 3. Prove that

are the principal axes of the central section of the quadric a? made by the

plane parallel to the tangent plane at p.

Ex. 4. Find the centres of curvature at a point on the quadric #, and
prove that they are the poles of the tangent plane to x with respect to the
confocals y and z.

[If j is the vector to a centre of curvature, two consecutive normals
intersect at its extremity, or y=p j

rt((t>+ x)~
1
p is stationary when p and t

vary. Therefore

~p^= J
or

or

Operate with B(<f>+ x)~
l
pt

and S/)(<+.r)-
1(<+#+)- 1

p= 0, and on

comparison with (iv.) the roots of this quadratic in t are seen to be y x and
2-x, Therefore y (< +#)(<+ tf)""^ )/

=(<+ 2) (<jE>+#)~"
1
p are the vectors to

the two centres. Observe that dp is also tangential to the quadric z.

Compare Art. 87, Ex. 1, p. 136, for the method employed.]

Ex. 5. If #, y and z are the parameters of the three confocals through
the extremity of the vector p, prove that

Ex. 6. Prove that the plane SXp+ l=0 touches a confocal at the

extremity of the vector

and show that the locus of points of contact for a system of parallel planes
is a rectangular hyperbola.
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Ex. 7. Prove that the locus of points of contact of planes through a line

is a twisted cubic.

[Put for A in the last example (\-\-tfjf)(l+t)"
1 and verify that an

arbitrary plane meets the curve in three points.]

Ex. 8. The locus of the poles of a plane with respect to a system of

confocals is a right line.

Ex. 9. The locus of the poles of planes through a given line is a hyper-
bolic paraboloid.

[p
=

(< + )(A. -H/AXl-M)-
1 is the locus of a line dividing two given lines

similarly.]

Ex.10. The plane S/>A$A =

is the locus of poles of planes perpendicular to A.

ART. 83. In many investigations relating to the confocals through a

given point, the extremity of the vector a, it is convenient to employ the
vectors

-ia, .................. (I.)

which when originating at the centre terminate at the reciprocals of the
three tangent planes. These vectors are of course normal to the three
confocals. We have then

S//-a
= Si>a= - 1

; ........(n.)

and because these equations give

it follows that

Sftj/=S I/A= SAfc=0...............................(in.)

or confocals cut at right angles.
We also have from the same equations

A= //,-h (y-3s)(<j>+^)~V> etc., .........................(iv.)

so that ju
2+ (/ -*)$//,(< + z)~

l

fi,=Q, (y-tf)Si/(< + ^)-
1
//,=j

or (^-y)-
1=SU^+ ^)-

1U/x=+>SL
T
A(^+ ?/)"

1UA
5 etc.,

Sjic(<-{-a?)~
1

'=0, etc.................................. (v.)

*^nc^ fr
e axes f the section of the quadric x parallel to the tangent plane

are *lxy . Uju, *lx z . TJV ; and those of the section of the quadric y

parallel to its tangent plane are \ly. x . UA, \!y -z . Uv.

Introducing a new self-conjugate function 6 defined by the equation

Qp= <f>p+ a$ap, .................................... (vi.)

we may replace equations (n.) by

so that A, p and v are the axes and #, y and z the roots of this function.

If Swp= 1 is the equation of any plane through the point a, and if CT

is the pole of the plane with respect to any confocal u,

o>, or 5T-a=(0+tt)o>, ....................(vin.)

because -a=+aSao>. If the plane touches the quadric u, the pole lies in

the plane, and the vector C7-a (joining two points in the plane) is normal
to co. Thus in order to determine the point of contact of the plane
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Sco/o
= - 1 and the parameter of the touched quadric, it is only necessary

to operate on <y by the function d and to resolve $co along and at right
angles to co ; for

- Sar1 #w. (ix.)

The vector 57 being still supposed to terminate in the plane, the vector
ST <X(=T) is tangential to the surface u and perpendicular to w. Hence as

T varies subject to the condition SSTu) = Sao) = -1, we find by (vm.) that

S(W-a)(a+w)~
1(^a) =^ r ST( (9+^-^= ..............(x.)

is the equation of the tangent cone from a to the confocal
,
referred in the

first case to the centre of the quadrics and in the second to the extremity
of a. The form of the equations shows that the tangent cones drawn from
a point are confocal. They intersect in pairs along any line through the

point, for (x.) may be replaced by
(xi.)

and may be regarded as a quadratic determining the quadrics touched by a

given line (Ur== const.); and they intersect at right angles by the general

property of confocals.
We can thus determine the two quadrics touched by an arbitrary line.

Ex. 1. Prove that

Ex. 2. A right line defined by the vectors o- and r of Art. 36, Ex. 4,

touches the confocals whose parameters are the roots of the equation,

Ex. 3. The lines through a given point touching confocals with a given
sum of parameters, generate the reciprocal of the tangent cone to a fixed

confocal.

[The cone of the lines is Sr(^-m
// -a2 - y)r=0, if v is the sum of the

parameters.]

Ex. 4. If v and v are the vectors to the reciprocals of the tangent planes
of the confocals u and u' at the points A and B, and if r is the vector AB,

Sr(v+ i/)== (^'-w) 8^'-

[Here T=
(<j>+ u

1

) v-(<f>+ w) v. This is Gilbert's theorem.]

Ex. 5. If the points A and B are both points of contact of the line with
the quadrics,

ART. 84. There is a third general method which is often useful for

dealing with the properties of confocals. Writing the equations of the three

confocals through a point in the forms

T(+*)*p=l, T($+y)*p-l, T(^+)ip=l, ................ (i.)

we are led to assume

as an expression for the vector to the point of intersection. The square roots

^)^, etc., are commutative, and, accordingly, on substitution in

we find -l = Se(^+;?/)(^+ 2)
=S^2 + (?y+ 2)S<5[)+?/2

2
............. (ill.)
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oeals

(IV.)

or what is equivalent, if

2=
0, S X6 = 0, Sefe=~l; ........................... (v.)

that is, if c is the vector to a point of intersection of three known surfaces,
one of which is of course imaginary. Therefore (n.) coupled with the con-
ditions (rv.) or (v.) js the vector to a point of intersection of the three
confoeals ; and allowing any two of the parameters, y and *, in (n.) to vary,
the^

vector equation represents the surface x
; if only one parameter (#)

varies, the equation represents the curve of intersection of the confoeals
$ and z.

Again, we may differentiate p, regarded as a function of ^ y and s, as

given by equation (n.) just as if < were a scalar, and we have

dj?

and the method easily lends itself to the treatment of lines traced on a
quadric surface. ^

Ex. 1. Prove that the vectors (<j>+x)~
l
p, (<^+3/)-

1
/>, (4>+z)-

1

p are mutually
rectangular, and that the squares of their tensors are

m(x)
'

m(y)
'

"

m(z)
'

where m(x)m+m'x+mV+x?, and where x, y and z are the parameters of
the confoeals through the extremity of p.

[Using (n.), we have Sp(^+y)-
1

(^+ 2)-
1

p= Se(<5&-f^)=0. Also

This is reduced by replacing y by ar-fy-ar, etc., to Sc^-Kt?)-^ multiplied
by a factor. On inversion of (^H-^)"-

1 the rest follows.]

Ex. 2. Find Tp
2 in terms of xy y and z.

Ex. 3. Express the vector e in terms of the roots and axes of
</>.

Ex. 4. Prove that

Ex. 5. Prove that p^($+u)($+xy<t>+y)<j>+z$. is the equation of
a tangent to the curve of intersection of the quadrics y and z

;
u being alone

variable.

[Use (vi.).]

Ex. 6. Prove that p=(<j>+^y~^(<f>-^-^(<f>+2)^ is the equation of the
surface of centres of the quadric x the locus of the principal centres of
curvature when y and z vary. (See Art. 82, Ex. 4.)

Ex. 7. Find the lengths of the principal radii of curvature in terms of

#, y and z.

Ex. 8. The imaginary right line, t variable,

p= (< + )(< + ,)Je

is an umbilical generator of the quadric x.
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[It is evidently a generator of the quadric, and parallel to a line to a

circular point at infinity for T(^+T)^ = O. That is, it is one of the eight
generators through the four points in which the imaginary circle at infinity
cuts the quadric. But the tangent plane at an umbilic cuts the surface in a

point circle or a pair of these imaginary generators. See Art. 67, Ex. 1, p. 96.]

Ex. 9. Find the locus of a point through which two of the three inter-

secting confocals coincide. Show that it is a developable surface generated
by the tangent lines to the curve

/>
=

(< + #)*.

[This is the locus of the umbilical generators of the system, or the circum-

scribing developable.]

Ex. 10. The focal conies are double curves on this developable.

[Put t equal g^ </% or ~g% in the equation of Ex. 8, and we get a plane
curve in one of the principal planes. For t -gl

we have

Sp(^- 4r1)-V=S(^- flr,)(*+*)- -1, Stp-0.

The conic is double on the developable because a double sign is lost owing
to the destruction of the component of the vector normal to the plane.]

Ex. 11. If a is a constant vector, and ^, y variable scalars, the equation

represents a quadric surface, <f> being a self-conjugate function.

[Assume the equation of the quadric to be Sp(a</>
2
-ffr< + c)pH-l = 0, and

determine the constants a, b and c.]

Ex. 12. Prove that the imaginary vector c of equation (iv.) satisfies the

relation V- 1 .
=

EXAMPLES TO CHAPTEE IX.

Ex. 1. Three right lines through a common point are mutually at right
angles. If the first and second move in the planes SA,p=0 and Sju,p

=
respectively, the third describes the cone

SVApV/zp=0.
Ex. 2. The cone

Sap S/3p Syp
~~

contains the six unit vectors z, j, k and a, /?, y, the vectors of each set being
mutually perpendicular.

Ex. 3. If the cone Sp<p= has three mutually rectangular edges, the
condition m"=0 must be satisfied

;
if it touches three mutually rectangular

planes, m'=0.

Ex. 4, The four cones of revolution which touch the planes

SAp=0, S^p= 0, Syp=

are represented by T . Yp^VpS V/^vTX(SA/xv)-
1= 1

;

and the cones of revolution through the three lines

VAp=0, Vjutp=0, Vi/p=0
are represented by T. p~

l

&p2 Y/xvTA(SA.juv)-
1= l.
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Ex. 5. Three points fixed on a line move in given planes. Find the
locus of a fourth point fixed on the line, and show that it is represented by
an equation of the form

T(aY/wSAp+ &Yi/ASfip+cYA/*S vp)= l.

Ex. 6. Interpret the equation

as determining the locus of a point moving in accordance with a certain law
in relation to a given line and a given plane,

Ex. 7. The polar planes of points situated on certain fixed lines cut a,

quadric in circles.

Ex. 8. Find the locus of the centre of a sphere which rolls along two

straight wires.

Ex. 9. Determine the locus of the vertex of a right cone standing on a

given ellipse of which a and ft are the principal vector radii.

Ex. 10. A plane cuts a constant volume from a pyramid having its

vertex at the centre of a quadric. Find the locus of the pole of the plane
with respect to the quadric.

Ex. 11. Find a tangent plane to a quadric which along with three

"mutually conjugate planes passing through the centre forms a tetrahedron
of minimum volume.

Ex. 12. Find the locus of the point of intersection of three mutually
perpendicular planes each of which touches one of three given confocal

quadrics.

Ex. 13. Find the locus of the foot of the central perpendicular on a

plane through the extremities of three mutually conjugate radii of a quadric,

Ex. 14. Find the locus of intersection of tangent planes at the ex-

tremities of three mutually conjugate radii of a quadric.

Ex* 15. Find the locus of a point whence three mutually perpendicular

tangent lines can be drawn to a quadric.

Ex. 16. Find the locus of a point whence three tangent lines can b&
drawn to a quadric so as to "be parallel to three mutually conjugate radii.

Ex. 17. Show that the equation

Sp<p p*

determines the directions of the radii of the quadric Sp<p+ 1 = which are

most or least inclined to the corresponding normals. Solve this equation.

Ex. 18. Through the extremity of the vector a mutually perpendicular
lines are drawn to cut a quadric. Prove that

where ^ and x^ are the intercepts on one of the lines.

Ex. 19. From a point on the quadric Sp<f>p+1 = 0, the extremity of

the vector a, mutually rectangular lines are drawn to terminate on the

surface. The plane through their extremities passes through the extremity
of the vector

a m
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Ex. 20. Find the volume of the frustum of the cone whose vertex is at

the centre of the quadric Sp</>+ l=0 and whose base is the intersection of

the quadric with the plane SA/o+ l = 0.

Ex. 21. If TJVg is a fixed vector y, eliminate the scalar t and the

variable part of q from the relation

p= q(

and discuss the locus represented by

Ex. 22. The vectors a, ft and y being unit and mutually rectangular,

show that the condition that

should be a maximum or minimum is

where <f>
is an arbitrary vector function, and prove that this is equivalent to

(a) Hence derive a theorem concerning the conjugate radii of an ellipsoid.

Ex. 23. Through a variable point Q on a fixed line V(/>
-
/?)ce=0, a

jplane
is drawn perpendicular to a fixed line (y). Find the locus of points p in the

variable plane for which Top= eTpQ where e is a given scalar.

Ex 24. Show Uhat the section of the cone Sp<p=0 by the plane

SAp+l=*0 is equal to the section of the quadric Sp^pSA^A + l^O by the

plane SAp=0.

Ex 25 Find the equation of the surface which is generated by trans-

versals of the lines V(/>-/3)a=0, V(/o-V=0 and of the ellipse

p
-.
y _j_ y cos t -f y" sin t.

Ex. 26. The envelope of the planes of intersection of the sphere

SSA/r^l with a variable sphere passing through the origin and having

its centre on the quadric Sp</>+! =0 is the cone

Ex. 27. From the extremity of the vector 8 which terminates on the

quadric S/xp+ l=0, a right line is drawn to intersect the vector radius a,

one of three mutually conjugate radii a, /3, y, and to be parallel to the plane

containing the other two. It meets the ellipsoid again at the extremity of

the vector - 8 - SaSS^a ;
and the plane SA/o+ 1 *=0 which passes through the

three points thus determined by the three radii is given by

Ex. 28. Show that

is the locus of the centres of sections of the quadric S/><p+l=0 made by

planes through the intersection of the planes SAp+l=0, SA/

/)+l=0; and

discuss the nature of the curve.
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Ex. 29. Show that the surface represented by the equation

may be generated by the intersection of two perpendicular planes each of
which contains a fixed line.

Ex. 30. Prove that the foci of central sections of the quadric Sp<p+ 1 =0
generate the surface

P* (Vp^p)
2

. , Qp ~ u*

Ex. 31. The envelope of a sphere which passes through the centre of a

quadric and which cuts it in a pair of circles is a quartic surface touching
the quadric along a sphero-conic.

Ex. 32. Quadrics similar to Sp#p+ l = are described on a system of

parallel chords of Sp<p-j-l = as diameters. Prove that the envelope of
these quadrics is also a quadric, and find its equation.

Ex. 33. Prove that ^ 9 v 2m' _

Zpn
2-

SaZpn H-- =

where pn is the vector to the foot of a normal from the extremity of the
vector a to the surface Sp^>/o+ 1 = and where m' and m are the second and
third invariants of the function

<$>.

Ex. 34. If a right line cuts a quadric at the angles and &, show that

sin 6_ sin &
~~P f

where p and p' are the central perpendiculars on the tangent planes at the

points of intersection.

Ex. 35. If n is the length of the chord which is normal to a quadric at

the extremity of p,
2
=m"jp (m

r

mTp2
) .JD

S
.

Ex. 36. Pairs of mutually rectangular tangent planes are drawn through
the extremity of the vector a to the quadric surface Sp<p+l=0; prove
that the locus of their intersection is

e
.

-1^=(a-p)2sJ^ <fr
i

.~,
Yap

^
Yap

v r/ Yap
^

Yap
and show that this equation may be reduced to

Ex. 37. The sum of the products of the perpendiculars from the two
extremities of three mutually conjugate diameters on any tangent plane to

a quadric is twice the square of the central perpendicular on the tangent
plane.

Ex. 38. In terms of the vectors r=p2 p1? cr^Vp^^ show that the

equation

represents the chords of the quadric Sp^>p-f 1=0 which enjoy the property
that the normals at their extremities intersect.

Ex. 39. The locus of the centres of chords at whose extremities the

normals intersect and which are parallel to a fixed direction r is the right
line g

/0<?
f

)Ti==0j

J.Q. I
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Ex. 40. Prove that the squared radii of the circular sections of the

quadric #p
2
+2SA/>S/ty>+ l=0 which pass through the extremity of the

vector a are

where #, g' and g" are the latent roots of the linear function determining the

quadric. Interpret these results.

Ex. 41. Determine the spheres cut in diametral planes by a quadric.

Ex. 42. If planes through an edge (/>)
of the cone S/></>=0 and through

the vectors a and j8 respectively meet the cone again in edges coplanar with
the vector y, show that

and reduce this by the aid of the equation of the cone to

?= 0.

Ex 43. Using the notation of Art. 38, p. 42, show that if a translation

represented by the vector w will carry the tetrahedron ABCD so that it

becomes inscribed to the quadric Sp<p+l = 0, we shall have

Ex. 44. It is required to place a pair of tetrahedra ABCD and AVcV so

that their vertices may be corresponding points on a pair of confocal

quadrics. (Bobert Russell.)

(a) A quaternion statement of this problem is to determine a self-

conjugate function
<i>,

a scalar u, a quaternion q and a pair of vectors K and
K so that the conditions

3>~^(p
-

K)
=

(<i>+ u)~
*
(qp'q~

l -Kr

)~a unit vector

may be satisfied when
/>
and

/>'
terminate at corresponding vertices of the

tetrahedra in their initial positions.

(b) If < is the linear vector function defined by the relations

we find that tt*- 1^^-!, and q( )q~
l

(c) Also in the notation of Art. 38, K and u are given by

Ex. 45. A plane mirror (normal v) is moved so as to reflect the light
from a star in a fixed direction (8). Show that if y is the unit vector
towards the celestial pole, cr the unit vector towards the star at the time

J=0, the vector v must describe the cone represented by
_2t 2*

T/IKy *cry*+8) or v2Sy((r+8)=2Si/ySi/S.

(a) Show that the vector

y
*
Ay"

1

. y ,

*
cry

71
"

. y ""Ay^

is independent of t provided the vector A satisfied a certain condition of

perpendicularity, and interpret.



CHAPTER X.

GEOMETRY OF CURYES AND SURFACES.

(i) Metrical Properties of Curves.

ART 85. Supposing that from each point of a curve a vector

*; is drawn, variable with the position of the point, let us
consider the rate of rotation requisite to produce the change of
direction of the vectors q as we pass along the curve. In the

figure P and P' are any two points on the curve, and the vector
PH= U?7 is a unit vector along the emanant vector y drawn
from P, while PTS'^TL/' is a unit vector along the emanant r/

drawn from P'. The vector PH" is drawn equal to P'H'.

Ui,
H

FIG. 27.

In the limit the quaternion

TV-IT*? HH"
.(I.)

is a vector perpendicular to rj and to r\ so that rotation round
it from 17 to *?'

is positive, the angle of the quaternion (the
exterior angle at H) being ultimately equal to a right angle.
The tensor of this vector is ultimately equal to the ratio of the

circular measure of the angle HPH" (the angle between y and yf)

to the arc of the curve, and thus the vector represents in

magnitude and direction the rate of rotation in question. In
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terms of the differential of U*7 and the corresponding differential

o p( = OP), the vector of rotation is

(
.

l ;

the second form of the expression for the vector being deduced
from (iv.), Art. 53, p. 68, and the third form resulting from the

consideration that

If, in particular, we replace the vector rj by dp, a vector

tangential to the curve, we have for the vector of rotation of

the tangent, or the vector curvature at P,

(m)

for in accordance with the foregoing this vector represents in

magnitude and direction the rate of bending of the curve at the

point P, the bending taking place in the plane through P at right

angles to this vector.*

In the case of a plane curve this vector curvature is always
parallel to a fixed direction that of the perpendicular to the

plane, but in the general case the direction of the vector is

continually changing. The plane through P to which it is

perpendicular, or the plane of the bending at P, is the osculating

plane of the curve at P.

To investigate the rate of rotation of the osculating plane as

we pass along the curve, or, what is equivalent, the rate of

rotation of the normal UVd/od
2
/)

to that plane (compare the
third form of (in.)), we have by (11.),

duvd^dy _^ Ydpdy i _ra q dy (^\
ir^pyT^

since dVdpd
2
p = Vd/od

3
/>.

This is the vector torsion of the curve
at P. It gives in magnitude and direction the rate of rotation

of the osculating plane, and we see (what is geometrically
obvious) that the osculating 'plane rotates about the tangent
line (Udp).

* The phrases vector curvature and vector torsion correspond to Hamilton's vector

of curvature and vector of second curvature. We shall see what advantage results
from considering an angular velocity to be a vector on the plan of this article,
and the present case is quite analogous. It is easier in Quaternions to represent
the primary characteristics of a curve, the curvature and the torsion, by vectors
than to represent the somewhat artificial and indirect conception of an osculating
circle or radius of torsion. The theory of emanant lines has been worked out by
Hamilton (Elements of Quaternions, Art. 396).
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The vector curvature and the vector torsion may be com-

pounded into a single rate of rotation

which may perhaps be called the vector twist of the curve. This
rotation produces the same effect on the tangent line and on the

osculating plane as the vector curvature and the vector torsion

respectively, for the former vector is at right angles to the

osculating plane and the latter is parallel to the tangent line,
and we do not here consider the rotation of the osculating plane
in its plane or the rotation of the tangent line round itself.

If the equation of the curve is given in the form considered in
Art. 48, that is if p is given as a function of a parameter t, the

expression (v.) may be written in the form

......................(VL)

where p, p" and p'" are the successive deriveds of p with respect
to the parameter.

If the arc of the curve is taken as the independent variable,
and if plt p2 , /o3, etc., denote the successive deriveds of p with

respect to the arc, the relations (compare Art. 48, p. 63)

TPl -l, 8/0^= 0, 8/^+^ = 0, etc, ..........(VIL)

found by equating to zero the successive deriveds of T/>x>
serve

to simplify the various formulae. Thus (v.) becomes

(VIII.)

Ex. 1. Show how to connect the deriveds of p taken with respect to t

and with respect to s.

>/=
Pig^j p'^Pz^faj +Pid$>

etc
-J

Ex. 2. Show that the tangent line and the osculating plane of any curve

may be written respectively in the forms,

x and y being variable scalars.

Ex. 3. The tangent line and osculating plane of the twisted cubic

r

may be expressed by

respectively, a being a constant vector and < a given linear vector function.

Ex. 4. Calculate the vector o> for the helix

tt=a(i cos t+j sin t)+ Jcbt^

i
y j and Tc being mutually rectangular unit vectors.
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' Ex. 5. Find the centre of the osculating circle of a curve.

[The vector to the centre from the point on the curve has the same

direction as V////T//-*
3

. Up', and its tensor is the reciprocal of that of this

vector.]

ABT. 86. The important relations (n.) and (iv.) of the last

article enable us to reduce every affection of the curve to a

function of the unit vectors

a= Ud/>, y =UVd/>dV /8
= UVdpda

pUd/>, .......... (i.)

of the scalars

and of the deriveds of these scalars with respect to the arc.

We notice first that a, and y form a mutually rectangular

unit system so that a/3=y, /3y
= a, ya = /3-

The scalars <% and

C-L
are the ordinary scalar torsion and curvature respectively,

and -partly for the sake of symmetry we regard them as the

deriveds -^, -^ of two angles a and c. The angle a is the total
ds as

angle through which the osculating plane has turned about the

tangent line in passing from some initial point P on the curve

to the point P. In like manner c is the total or integrated angle

through which the tangent line has turned in the osculating

plane from P to P. The vector a is along the tangent, ft along
the principal normal and y along the binomial to the curve.

Denoting still deriveds with respect to the arc 8 by suffixes,

the fundamental formulae, (ii.) and (iv.) of the last article, give
in accordance with (i.) and (n.) of the present, the simple relations

or a^^/3, ft^a^-c^, y1
=-a

1a, ..............(IV.)

or simply ^1
=

Yco?7, ................................ (v.)

if tj stands for a, ft or y.
The formulae in a and y are translations of the formulae of

the last article. The formula in /3 is derived from these by aid

of the relation ft
= ya.

To express the successive deriveds, with respect to the arc, of

the vector to any point on the curve in terms of a, ft, y and of the

scalars %> c
x and the deriveds a

2 ,
c
2 , etc., of these scalars, we have

- ac
2)^- /
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and in general we shall find the nili derived to be of the form

pn= aAn+ /3Bn+yCn> .....................(VII.)

where An, Bn and Gn are certain sealars (not the nth
deriveds of

scalars A, B, (7, however). We may remark that the deriveds
of highest order of ^ and a

x occur in pn in the term /3^+ya,^^
as we see from (YL).

Thus, as we have asserted, every affection of the curve may be
expressed in terms of a, ft, y of a

a
and c

l5
and of the deriveds of

these scalars. (See Appendix. Elements, Vol. ii.)

ART. 87. The developables connected with the curve may all
be investigated in one common way.
The vector n and the scalar e being in some way variable with

a point on a curve, a plane of any developable connected with
the curve is expressible by an equation of the form

-& being the variable vector to a point in the plane, and p being
the vector to the point P on the curve to which the plane corre-

sponds. The equation of a successive plane is of the form

S(W-/)),;-6+ d8.^(S(tSr- /)^-tf)= 0, ............(II.)

e, r\
and p being regarded as functions of the arc s, but or being

independent of s. Thus two successive planes intersect in the
line of intersection of the first plane and of the plane determined
by equating to zero its derived with respect to s. The inter-
section of the plane (i.) and its consecutive is accordingly the
line common to (i.) and to the plane

.......................(in.)

i/!
and e

l being the first deriveds of
r\
and e.

This line of the developable is also given by the vector

equation (Art. 35 (i.), p. 39),

where t is a variable parameter,
In the same way, equating to zero the second derived of (i.)

with respect to s,

c
1+ a, ................. (v.)

and combining this with (in.) and (i.), we have the point of
intersection of three successive planes of the developable,

[

2 1l .
1 2

* ^ "'
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This point is on the cuspidal edge of the developable, and it

corresponds to the point P on the curve. More generally if in

(vi.) we allow the arc to vary, we have the equation of the

cuspidal edge of the developable,
In particular, the polar developable corresponds to jj

= a }
e = Q

;

while
9j /39

6= gives the rectifying developable; and 77
= 7,

= is the tangent line developable. It is shorter in many cases

to treat the developables ab initio rather than to substitute in

the general formulae (iv.) and (vi.).

Ex. 1. The vectors from a point on the curve to the centres of the

osculating circle and sphere are respectively

. and +
*

1.
cx GJ 'da

<?],

[These expressions follow from consideration of the polar developable.

Or the first is geometrically obvious, and it is also evident that the centre

of spherical curvature lies on the polar line, ST=p+ ^4-^y,
which is by

geometry the locus of points equidistant from three consecutive points on

the curve. To determine x we may express that 37 is the vector to a point

which is momentarily stationary as we pass along the curve. Thus

*/K+ -r, and therefore ,= .

We must remember that x is not here a function of s. 8a? is some small

scalar. See the next example.]

Ex. 2. For a spherical curve

[In this case we can determine x so that the vector in the last example
terminates at a fixed point in the centre of the sphere containing the curve,

and now &e : ds is the derived of x with respect to s, so that

-^
<?!

ds ds dA%dA<v
The method here employed is often useful. The condition may also be

found by expressing that the vector to the centre of spherical curvature

terminates at a fixed point. The condition is momentarily true (not an

identity) if five consecutive points lie on a sphere.]

Ex. 3. Prove that the rectifying line is V(zar-/>)ft>=0, and that the

cuspidal edge of the rectifying developable is t3=p-~ :

^(jr)'

[The rectifying plane S(T-p)/?=0 through the tangent line and at right

angles to the osculating plane, generates this developable.]

Ex. 4. The curve is a geodesic on the rectifying developable.

[Prove that the angles of the quaternions

(CD+ dco) : a and (w+ dco) : (a+ da)

are equal to the second order of small quantities, and hence show that

when the developable is flattened out the curve becomes a right line, so

that it is a line of shortest distance (or a geodesic) on the developable.]
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Ex. 5. If the ratio of curvature (scalar) to torsion is constant, the curve
is a geodesic on a cylinder.

[If Too. cos ,7=^, T<o sin 5"= <?
1?

the angle H is here constant, and
equations (m.)> Art. 86, gived(acos ff+y sin 5") =0, or on integration 17(0=^
a constant vector. The rectifying developable is therefore a cylinder.]

Ex. 6. Show how to determine the curves for which the ratio of
curvature to torsion is constant.

[By the last example we have a
x
= ya sin 3 . Ta>=V&a . Tea. If dt=To) . ds,

we have, on changing the variable from s to t, a'= Va, and on

differentiating,
a"

or

The integral of this equation is a cos j27=Aeos+//,sin, and as we
must have S^a=-cos.r and Ta=l, it appears that A and

//,
must be

perpendicular to one another and to , and that their tensors must be equal
to sin H. Thus

a= k cosH+ sin H(i cos t+j sin t\

and on integrating again

GJ=
J
ads=pQ+ks cos jT-f sin H .

J (i cos t+j sin t) ds,

where p is a vector constant of integration.]

Ex. 7. Find the conditions that the unit vectors (a, ft, y) of one curve

may remain constantly inclined to those (a', /?', y') at corresponding points
of another.

[We must have G>ds=a/ds', or ada+ ydca'da'+ y'dc'. Hence either

f || JB or else da : dc= Sy/3' : Sa/3'
'= const. In the second case both curves

are geodesies on cylinders. In the first, if of makes the angle u with a,

y' makes the same angle with y (the four vectors being coplanar), and
ff=u + H'. In other words,

da= cos u . da' - sin u . dc', dc == sin u . da' 4- cos u . dc'.]

Ex. 8. Find the unit vectors for the locus of centres of spherical
curvature, and show that they remain constantly inclined to those of the

given curve.

Ex. 9. The vectors p and
/>'

are drawn from a centre of reciprocation to

a point on a curve and to the corresponding point on the cuspidal edge of

the developable into which the curve reciprocates, prove that

where K is the radius of reciprocation and where y and y' are unit vectors

normal to the osculating planes at p and p'.

(a) Compare the curvatures and torsions of the two curves.

Ex. 10. Compare the unit vectors for a curve and its inverse.

(ii) Ruled Surfaces.

ART. 88. Having showed in the last article how to determine
the surfaces generated by planes connected with the curve, we
shall now consider the surfaces generated by the emanant line

(compare Art. 85, p 131)

V(W-/>)9= ..............................(I.)
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Reverting to p. 40, Art. 36 (v.), the shortest vector QQ' from
the line to any other line V(J //)?/

= is

QQ\=V^s=, and QQ^p+^S^^
7- .........(n.)

Putting In these p'
= p+ dp, jj'=xq+dyj and proceeding to the

limit having divided Q'Q by T(p' p), we find

QQ' ,Udp Udp dlL? Q UdpTLy=S" =I^
by Art. 85 (n.); and neglecting a vanishing term in the

expression for OQ,

OQ=P+,S^
=
,-U,S^= /,-U,S^; ...... (iv.)

the various transformations being easy consequences of the

formula just cited, and p being a scalar defined by

Udp_ dp^ -
dU,;

.................. '

The vector pi represents the rate of translation of the emanant
line as it passes through successive positions, this vector being
the ratio of the shortest distance between consecutive positions
to the arc ds of the curve. In other words, the emanant may
be supposed to pass from one position to a consecutive in virtue

of a rotation tds about the shortest distance QQ
7

coupled with a
translation Q$= p L ds along that shortest distance. Or again-

p is the ratio of the shortest distance to the angle between the
consecutive lines. The quantity p is usually called the para-
meter of distribution of the ruled surface, though the theory of

screws would offer the more suggestive term pitch, because the

transference of the generator from one position to the consecutive
is in the language of the theory of screws effected by a twist
about the screw coaxial with the shortest distance and of pitch p.
The point Q, the extremity of the vector (iv.), is the point of

closest approach of successive generators; and as s varies Q
describes the line of striction of the ruled surface. For a

developable, this coincides with the cuspidal edge, and p
vanishes.

Ex. 1. Prove that the line of striction and the parameter of distribution
of the surface generated by the principal normals of a curve are

Ex. 2. The tangent to the line of striction of this surface is parallel to
* "

coc^ , Q df q ^

VT?+
^V^7T^?/'

and the shortest distance between consecutive generators is parallel to CD.



AET. 89.] PITCH. LINE OF STRICTION. 139

Ex. 3. If
??
= acosZ-f /2sincosm-i-ysin Ismm,

prove that the condition that the emanant line
rj

should generate a

developable is

sin I. d(a+m)- cos I sin mdc= or sin=Q.

[By (v.) if jo=0, Scu?d?7=0.]

Ex. 4. Prove that no line except a in the plane of a and /3 can generate
a developable ; that the only developables generated by lines in the plane of

a and y are the tangent-line and the rectifying developables ; and that any
line whatever in the plane of ft and y is capable of generating a developable.

[For the plane of a and /33
l~0 or m=0, and m is impossible if a

varies. For the plane of a and y, =0 or m = ^. If m~^ we find ??
= U<o22

since sin I . da= cos l.dc. If = -, we have a series of developables2

or=p-hZ(/3cos(a-a ) -y sin(a -a )) ;

and their cuspidal edges are

^=P+7~c
i

being an arbitrary constant.]

Ex. 5. Prove that the curves

i i

are the evolutes of the curve ftp, and that they lie in the polar developable.

Ex. 6. If the emanant is perpendicular to the tangent, prove that

_
Q~ p+

where
?y
=

/3 cosm+ y sin m.

AET. 89. The normal to the ruled surface

&= p+ Uij ................................ (I.)

at any point tar is parallel to

j;= V^(d/)+ wdi;), ............... . .........(II.)

this vector being perpendicular to every tangential vector

dT= d/>-f K-djy+ J/du........................ (ill.)

The tangent plane is

S(v-p)Vy(aP +udv) = Q, ............... ...(iv.)

and as it generally involves u, it varies from point to point along
the generator. Moreover, since it involves u linearly, the an-

harmonic of four tangent planes is equal to the anharmonic of

the four corresponding normal vectors (IL), or of the four cor-

responding points of contact (i.), (Art. 37, p. 41).

Expressing that the tangent planes at two points u and u' on
the same generator are perpendicular, we have a relation

= 0, or
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which determines an involution between the corresponding points
i& and it'. This may be thrown into the form

because (SXM
- 1

)
2 -T(Xy

a- 3

)
2 =

-^(VXM-
1
)
2

. Comparing with

equation (iv.) of the last article, it appears that the point Q, in

which the generator meets the line of striction is the centre of

the involution, and that the foci are imaginary. If C and C'

are the two points u and u'
}
it is not difficult to see that this

equation (vi.) is equivalent to

QC.QC'=+p
2

,
...........................(VIL)

QG and QC' being vectors, and because their product is positive,

they must be oppositely directed. That the quantity on the

right in (vi.) reduces to Trj-*p* follows most easily by taking
the arc as the independent variable, and then

by (v.) of the last article.

Ex. 1. If the tangent planes of a ruled surface touch the surface all

along the generators, the surface must be a developable or a cylinder.

[The direction of the normal must be independent of it,. This requires

,
that is, dU77= 0, or else dp||77, or the line is a tangent to the curve

Ex. 2. If for any point p=0 the tangent plane touches all along the

generator.

[A generator of this kind is said to be tonal. A ruled surface has in

general a definite number of torsal generators.]

Ex. 3. The point Q being on the line of striction, prove that the tangent
of the angle between the tangent planes at Q and at any point c on the

same generator is

TCQ
tan A= -.

P

Ex. 4. Prove that the vector velocities of the points c and c' are at right
angles, and compare their magnitudes.

[The vector velocity of c is i(QC+jo). See Art. 88.]

Ex. 5. Prove that the vector to a point on the line of striction of the

quadric S/></>+l = 0, and the corresponding parameter of distribution are

respectively

where Sr]<fyr)
= 0.

[See Art. 88. To reduce we may take 17 to be a unit vector so that

8777?' =0, S^T;=O as well as 877^77
=

0.]
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(iii) Curvature of Surfaces,

ART. 90. Projecting a curve on any plane, normal to the fixed
vector k, the curvature of the projection is (Art. 85 (IIL), p. 132)

/c- ]

dTJd

or the curvature of the projection is the projection of the cur-
vature into the cube of the cosecant of the angle between the

tangent to the curve and the normal to the plane of projection.
If the plane of projection is parallel to the tangent, the pro-

jection of the curvature is the curvature of the projection.
Resolving the vector curvature -of a curve traced on a surface

into its components perpendicular to and along the normal *,
we have

dUdp dUdp . dUdp , NC-y IVy ^+y-lgy-^i ...............
XX

0-p dp dp
x '

and since Svd/>
= 0, 4he first component is, by what we have just

proved, the curvature of the projection of the curve on 'the
normal plane (_L^dp) to the surface through the tangent line, and
the second is the curvature of the projection on the tangent plane.
Remembering that Svd/>

= 0, and that its derived is also zero,
or Si/d2

/>= Sdi/dp, the first component admits of the trans-
formations

_ =
dp.v.Tdp dp.v.Tdp

^ J

The last of these shows that the component is the same for all
curves traced on the surface, provided they have a common
tangent line dp, dv being a linear function of dp ; and thus in

particular it is the curvature of the normal section of the surface

through dp. This is Meusnier's theorem the magnitude of the
curvature of the normal section is that of the oblique section
into the cosine of the angle between their planes.
The second component is, as we have already shown, the cur-

vature of the projection of the curve on the tangent plane, or it

is the rate of bending of the curve round the normal (or in the

tangent plane). It vanishes for a geodesic the straightest curve
on the surface between a pair of points for such a curve can
have no component of bending in the tangent plane; and it is

called the geodesic curvature of the curve. The differential

equation of a geodesic is therefore

= 0, or
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The normals to the surface along the curve trace out a ruled

surface, and by Art. 88 the equation of the line of striction and

the value of 'the parameter of distribution are

The tangent planes along the curve generate a developable.

This and its cuspidal edge are respectively represented by
,

N
^ '

ART. 91. If fp is any scalar function of p, and if we write

d/p =nS i/d/), dz/= <f>dp,
..................... (i.)

the function <f>
is self-conjugate when n> is independent of p or

when it is a function* of fp.

Let dp and dfp be any two independent differentials of p so that

d
/
dp = dd> ) d'd/p=dd'/p...................... (n.)

We find on expansion by (I.) if dn= So-dp,

d'd/p nS<f>d'pdp+ nSvd'dp+ Srd'pSvdp,

dd'fp
= nS<pdpd'P+ nSvdd'p+ SordpSvd'p ;

and by (n.) these expressions give

Sdp(n<f>d'p+ i/Scrd'p)
=

Sd'p(n<i>dp+ j/So-dp)..........(in.)

The function ^r+i/S<jsr is therefore self-conjugate ;
and if n

is constant so that <r is zero, or if it is a function of fp so that

a- 1| v, the function <p
is self-conjugate likewise. We also observe

that if e is the spin-vector of
<f> 9

2%e+Yj/<r= and Si/e= ................... (IV.)

This scalar condition is in fact the condition that Si/dp
=

should lead to an integral fp = const.

If the equation of a surface is given in the form //>
= const,

the differential vanishes if dp is any tangential vector at the

extremity of the vector p, and the vector v is parallel to the

normal.

AKT. 92. In applying the results of the last article to the

study of surfaces, we shall leave Tz/ arbitrary, and shall write

^^^Ve. The spin-vector e disappears automatically from

Sdpdi/
= Sdp0dp = Sdp0 d/>, whatever vector dp may be, and it

also disappears from Yi/di/= Yv(0 -f-Ve)dp, because in this case

Si/dp
= and also Sj/e= by (iv.) of the last article, so that

Yj/Vedp
= 0. Thus we have

. (l.)

* This is included in a more general theorem (Art. 60, p. 80),
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Writing G for the magnitude* of the curvature of the normal
section parallel to dp,

-_,
and it follows at once by Art. 73, p. 107, that G is the inverse
square of the radius of the conic

0, .....................(m.)
which is parallel to dp. It is also evident from (i.) that Vj/di/ is

parallel to the radius of this conic conjugate to dp.
Remembering that the function

<j>l
is independent of dp, al-

though it involves p in its constitution, we may for any point on
the surface regard <j>Q as constant, and we may apply the formulae
of Art, 75 to calculate the directions of the principal axes of the
conic (in.). The inverse squares of the principal radii of the
conic are the principal curvatures (C^ and (7

2) of the surface, and
are the roots of the quadratic

or

and unit vectors (ra
and r2) along the principal axes are deter-

mined by

(v.)

The three vectors TI} T2 and Ui/ form a mutually rectangular
unit vector system, and we suppose the directions chosen so that

= "OV.

riting also

(vi.)

the expression for the curvature (n.) of the normal section
reduces to

in2 ; (VIL)

by (i.) we also have

and the vector OQ to the point of closest approach of consecutive
normals along dp and the scalar p (Art. 90, (v.)), assume the
forms

OQ U @i GO
2
l+@2si'n

2
l _(#!-- Cg) sin cos Z

'CV2cos2 +CV2sin2 '
""

G^oaH+G^siifi ^ "'

* It is not hard to see by considering the sense of rotation that if we supposeG to be positive for a surface like an ellipsoid, the sign selected in (n.) requires v
to be drawn on thgp convex side. Of course there is no ambiguity about the
vector curvature.
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The quadric
C7-

/o)
=

J
...............(X.)

in which GT is variable and p constant, has complete contact of

the second order with the surface. We have in fact at the point
T3= p y

= Scte0 dcr+Sz/d2
c7, where dtrr and d2

sr are differentials

of 7 as terminating on the quadric, and this is also true for

differentials of the vector to a point terminating on the surface.

The equation of the quadric may also be written in the form

S(^- P+<p^)4>Q(^-p+ <i> -^)=Sp<p^
l
V} .........(XL)

and it is not difficult to prove that the principal curvatures are

the parameters of the confocal quadrics

Sfr-p+ fa-ty.fa-i-C^Tv-i)-^
which pass through the extremity of p. The subject will be

resumed in Art. 156, p. 295.

ART. 93. The equation of the normal to a surface at the

point p being
&=pxv, .................... . .......... (i.)

to find the condition that two successive normals should intersect,

we express that the extremity of w is momentarily stationary
^nd we have

dor= =dpxdv~ vdx= dpx<pdp vd&, . . .........(n.)

where dx is some small scalar if dp is small (see Art. 87, Ex. 1).

The condition of intersection is therefore

Sdpj/dj/=0, .................. . ......... (ill.)

and this is the differential equation of the lines of curvature.

Moreover we have from (n.)

dplKl-o^)-
1
!/,

where Sj^l-oj^-^O, ......... (iv.)

because Si/dp
= 0, and from these equations we can find the

directions of the lines of curvature and the principal curvatures

G
l
=x1

" ITv~ l
, (72

= cc2

" 1
Tj/~

1 if &! and x% are the roots of the

quadratic.
More directly, we have for the vectors to the centres of

curvature,

cr^p-C^Ui/, tf^p-C^TJv, ...............(v.)

and if d
ap and d

2p are tangential to these lines,

<V= <V 1
<*iU>', d

2/0
= (72

- 1d2U,; ...............(vi.)

and the measure of curvature, or the product of the principal

curvatures, is
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if dp and d'p are arbitrary tangential vectors, as we may prove
"by supposing p and U*/ expressed in terms of two parameters.The interpretation of this remarkable expression is that the
small area determined on a unit sphere by lines drawn through
its centre parallel to the normals round any small contour on
the surface, bears to the area of the small contour a ratio equal
to the product of the principal curvatures.

If we suppose the vector to a point on the surface to be a
function of two parameters t and u, and if we use upper accents
to denote differentiation with respect to t and lower accents for
differentiation with respect to u, we have

and Tdp
2 = edt*+ 2fdtdu

i e=-p'*, /Sp'p,, g=- P
*
................(vm.)

Writing also v= Vp'p/? equation (n.) becomes

p'dt+pjUu x(vdt+v,dul

) vdx= Q
i
.............(ix.)

and according as we eliminate x and dx or dt, du and dx we find
the differential equation of the lines of curvature

d&Sp'v'v
- dtduS (p'v,+p/) v+du2SP/v,v

= 0, ..........(x.)

or the equation of the principal curvatures (0x~ lTv' 1
)

C2

T/+aTvS(pV/+vp,)v-Si/V= ..............(XL)
It

^is not difficult to see that we obtain for the measure of
curvature the expressions

and that in terms of the deriveds of e, f and g,

J/
2 ==y2_^. ...........................(XIII.)

and hence it follows that the measure of curvature is an explicit
function of the quantities e, f and g and of their deriveds, so
that the measure of curvature depends only on the expression
(vm.) of the square of a linear element. If then the surface

undergoes any transformation in which the lengths of linear
elements remain unchanged, the measure of curvature preserves
a constant value.

ART. 94. The following kinematical method is often useful in investi-

gating the geometry of a surface. Suppose the vector p to a point on the
surface to be given in terms of two parameters, u and v, and let a unit
vector a be drawn at the extremity of the vector p tangent to the curve

J.Q. K
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u variable
,*
let y be the unit vector along the normal at the same point and

let /3=ya be at right angles to botha tangential vector. These three

variable vectors may be supposed connected with three fixed unit vectors

z, j, k by the relations

y ; ......................... (l.)

so that the conical rotation represented by q would bring the vectors i, /, k
into parallelism with a, /?, y.

These relations being supposed to hold for all

points on the surface, it follows that q must be a function of u and v. It

will be proved in Art, 106, p. 173, that if is any vector function of u arid v,

its differential is expressible in the form,

. .....................(n.)

where* Mu+^dv^ZVdqq-1 and d(g)= adx+ftdy+ ydz if =

while of course d involves differentials of a, ft and y.
We shall write in terms of a, /3, y,

a/=aa'+/3&'+yc', co
/
= aa

/+ /3&/ 4-y<?,,
...................(in.)

so that equation (v.), Art. 106, is equivalent to

3&' 'da. , , , . 35' 36, , , 3c' 3c, ,,-- --- - = -

these being the results of equating coefficients of a, /?, y in the equation
cited :

It will be sufficient for us to confine our attention to the case in which

the curves u and v cut at right angles, so that ft is tangent to v variable,

since a is tangent to u variable. There is, however, no difficulty in taking
the general case. We have then for the orthogonal curves,

and Td/^J-W+^W, .................(v.)

so that Adu and Bdv are elements of the arcs of these curves. The vector p
being a function of u and i?,

we obtain additional relations connecting the

six scalars a7

, &', c', a,, 6
y,

c
y, by expressing that

^^(Aa.)=j-(B/3)3^3^ 3zr '
ou^-

^

Now, attending to (n.), we have for example, by (in.)>

da=V(to'du+u,dv)a=:(ftc
f

-yb')du+(/3c,-yb,)dv, ...........(vn.)

and the differentials of ft and y are obtained by cyclically transposing

a, j8, y, a', b
f

, c', a,, 6
y,

cr Hence (vi.) at once leads to the three relations

~~+c'=0, !?-^=0, Ab,+a'=Q ................(vm.)

obtained by equating the coefficients in'' -
ac').

These three relations coupled with (iv.) give all that is necessary for the

Investigation.

*Note that Vdqq~l
is not a perfect differential.
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To ascertain the meaning of the scalars, observe that the vector curvatures
of the curve u variable and v variable are (Art. 86, p. 134)

_
'du' Aa~ A '

3y*^8" B
so that by what we have shown A~lb

f

is the curvature of the normal section

through u variable and A~ l
c' is the geodesic curvature of the same curve.

For any curve traced on the surface, if

~Udp= U(aAdu+ fiBdv)= acosl+ /3sii*.l, coslds= Adu, sinlds=Bdv, (x.)

the vector curvature is

d.Udp fdl c'

-
6, cos

which follows easily on substituting for du and dv in

d . Udp= (/3cos I- a sin QdZ+(/3(cUw+c/k)-y(&'dw+M^)) cos ^

+ (y (a'dw+ afiv) a(c'du -f c,dv) )
sin Z.

Thus the geodesic curvature depends simply on c', c
y,
and the rate of

variation of the angle I which the curve makes with u variable. The normal
curvature depends on the four quantities a', a

ft b', &,. The relation (xi.)
includes everything relating to the second differentials of the curve, and if

we write for the curve a^Udp, y=U . dUdp.dp"
1
, y'a'

=
/3', we may, for

brevity, replace (xi.) by the relation

y=y cosm+ ya'sinm, ..............................(xn.)

and we may determine the torsion and everything depending on third

differentials by differentiating once more.

Ex. 1. Determine the equations of the lines of curvature, and prove
Gauss's theorem that the measure of curvature depends on differentials of

the line element.

[If O
f and C, are the principal curvatures, p (7

/"1

y and p C~l
j are the

vectors to the centres of curvature, and expressing that these are stationary
for the moment, we have

and according as we eliminate the ratio du : dv or we have the equation of

the lines of curvature, and the equation of the curvatures,

By (iv.) and (vnr.) we see that the product of the curvatures is a function

of -dL, B and their differential coefficients.]

Ex. 2. Prove that when the curves u and v are lines of curvature,

and show that
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Ex. 3. If the curves u are geodesies, prove that we may take A = 1, and
that in this case

,
I &B 3Z .

7
1 35

(I'C-z^ <7= ~-+ Sin 6^ -^-,' B ou2 us B on

where G is the geodesic curvature of any curve, and I the angle it makes
with the curve u variable.

[Here c'(\ so that A is independent of v, and by a change of the

variable u we may put A = 1.]

Ex. 4. Prove that the total curvature of any portion of the surface is

where d$ is an element of the surface ; and where I is the angle the bounding
curve makes with the curve u variable, (J is the geodesic curvature of the

bounding curve and ds an element of its length.

(a) Examine the case in which the bounding curve is composed of

geodesies.

(iv) Families of Curves and Surfaces.

ART. 95. If p = i(t
> a>h, c, ...), ........................ (i.)

where y is a given function of a variable parameter t and of

certain scalar constants a, 6, c, etc., the equation represents a

family of curves, any particular member of the family being
determined by assigning fixed values to the constants a, 6, c, etc.

If there are n constants, the family is said to be 'n-way, or to be

of the %th order.

The curves of the family which touch a given surface or inter-

sect a given curve compose a family of order n 1.

If the given curve is p = >;1(i1), the condition of intersection

q(t; a, 6, c, ...)
=

>hOi) .......................(II.)

is equivalent to three scalar equations, so that on elimination of

t and ^ from these, we are left with a scalar equation in the

constants a, 6, c, etc., and thus one of the constants may be

expressed in terms of the remaining n 1.

If the given surface is f(p) = 0, the conditions for contact are

(m.)

and on elimination of t, a relation connecting the constants is

obtained, so that a family of order n 1 touches the given
surface.

ART. 96. Expressing that an unknown surface /(p)= meets
a curve of the family at the extremity of the vector p in n
consecutive points we have

p= YI, Si/q
= 0, Svrj"+ Sr]'<f)rf

= 0,

r,'r,')
= 0, etc., ........(l.)
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where the functions
<f>, 2 , etc., are defined by the relations

dv= <d/>, d2
i/=^d

2
p+ ^>(d/) J dp), etc.............. (n.)

The first of the equations (i.) is equivalent to three scalar

equations, so that the system of equations is equivalent to 71+ 2

scalar equations. We can from these eliminate t and the n
constants a, 6, c, etc., and the eliminant is a function of p, i/, <f>,

<j>2, etc., and is equivalent to the differential equation of surfaces

met in n consecutive points by curves of the family.
In particular, the equation is equivalent to the differential

equation of surfaces generated by curves of the family.

Ex. 1. Find the differential equation of surfaces generated by parallel
lines.

[Here p= K+ ta, S^a= 0, and the equation required is Sva = 0, a being
a fixed vector and K being arbitrary.]

Ex. 2. Find the differential equation of cones having a common vertex.

[In this case p= a-f^3
Swc = 0, so that S^(p-a)= 0.]

Ex. 3. Prove that SYai/^>Vav=0 Is the differential equation of surfaces

generated by lines perpendicular to the fixed vector a.

Ex. 4. The differential equation of surfaces generated by lines which
meet the fixed line V(p-j8)a=0 is SVvY(p-/3)a. <. VvV(p-/3)a= 0.

[If P= K + tfA. is a generating line, S(K-$)aX==0, SvA=0, S1<A=0.]

Ex. 5. Find the differential equation of ruled surfaces.

[We have Si'A=0, SA<A=0, SA.</>2(AA) 0, and the equation is obtained

by solving for A (Art. 74, Ex. 3) from the first and second and substituting
in the third.]

Ex. 6. Find the differential equation of surfaces generated by similar'

and similarly situated curves.

[Here a generating curve is p= K + aa(t) where K and a are constants to

be eliminated and where a(t) is a given function of t]

Ex. 7. The differential equation of surfaces generated by equal and

similarly situated ellipses is

a and ft being a pair of conjugate radii.

ART. 97. As in the last article, being given the scalar equation,
of a family of surfaces involving n constants,

f(P l a, 6, c,.. .)
= 0,..........................(L)

we can determine the differential equation of a surface which at

each point is touched by some member of the family in as many
consecutive points as serve to eliminate the constants.

If only one constant is involved, only one surface is touched

at each point by a member of the family, and that is the envelope
obtained as the locus of intersection of consecutive members by
eliminating the constant a between

)-0 and 3&-Q.
....

...............(n.)
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If two constants are involved, the conditions for contact with

some unknown surface at the point p are

"=**< /(/>; a>&) = 0, ......................(in.)

where v is the normal to the unknown surface and z/ the normal

to the surface of the family. The first equation, on elimination

of the unknown scalar x, is equivalent to two scalar equations,

and between these and the second we can eliminate a and b, and

we obtain the differential equation of the touched surface as a

function of p and v, homogeneous in v.

When the family contains three parameters, we express that

the surfaces touch at two consecutive points, and we have

j/=ccj/ , <f>dp
=

x<pQdp+ dx.
1/0
= 0, /(/>; a, 6, c)

= 0, Si/dp
= 0. (iv.)

We can eliminate dp and replace the equations by

* =0i/ , Si/(0-0 )-
]
i/= 0, /(p; a,M)= 0; ......... (v.)

and these equations are equivalent to five scalar equations from

which to eliminate x, a, b and c,

Observe that we find two directions dp for contact according
as we substitute one or other of the values of x given by the

scalar equation (v.) in the second equation (iv.)

It is not hard to see that each additional condition of successive

contact affords one additional scalar equation in x and the

constants. In fact if we attend merely to the new unknowns
dwp and dmx introduced in dm-\<pdp aj0 d/>+doJi/ )==0 and

dw~ 1

Si/dp
= 0, we see that they occur in the forms

d^p+ (0
-

x<f> )

-\ . dx+ etc. = 0, Si/d^p+ etc. = ;

and when we eliminate the vector dwp, the scalar dmx disappears
also by (v.). The preceding vector condition

)
=

serves to eliminate dm ~ l

x, and so on.

The conditions of contact at n~ I successive points serve to

eliminate the n constants, and the result is the differential

equation of surfaces touched at each point by some one member
of the family in n~\ successive points. In particular, the

equation is the differential equation of envelopes of the family
obtained by replacing the n constants by arbitrary functions of

a single constant.

When the family of surfaces is given in terms of two para-
meters t and u,

p==2r](tf
u . ^ bj ^ _ )?

........................(VL)

we have v^xVvffi,, dv=<j>(*i'dt+rj/du)=xdVri'ri,+Vri'q/dx,....(vii.)

and on direct elimination of d, du and dx,
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The next differentiation introduces d?t, d2w and d2
x, and these

being eliminated by an equation analogous to (vin.) we use (vn.)
to get rid of dt, du and doc.

Ex. 1. Prove that for the envelopes of a family of spheres,

where K is the vector to the centre of a sphere and R the corresponding
radius.

Ex. 2. The differential equation of envelopes of spheres of constant
radius whose centres lie on a curve on the surface //>=0 isf(p~Uv!t)=0.

Ex. 3. The differential equation of the envelopes of spheres having their

centres on the ellipse p= a cos t 4- /3 sin t is

Ex. 4. Find the differential equation of developable surfaces.

Ex. 5. Show how to find the differential equation of the envelopes of a
surface carried parallel to itself.

[Take p=S+7/(Z, u).]

Ex. 6. Find the envelopes of a rptated surface.

[Take p=q.y(t, u).q-^]

ART. 98. A differential equation of the first order presents
itself in the form = 0, ............................... (i.)

homogeneous in j/. For any variation of p and v subject to this

condition,
d.F(p,v)= Srdp+ Sv.dv=Q, ....... . ...........(n.)

where T and
//,

are determinate functions of p and v. If the

equation has a solution, there must be some scalar function of

/>>sothat d.fp^nSvdp, ..................... ......(in.)

and for any arbitrary differentials of p, if dn= &crdp,

d'd/p= nSdfvdp+ nSvd'dp+ So-d'pSvdp

= ddy/>
= nSdvd'p+ nSvdd'p+ ScrdpSvd'p,

so that (compare Art. 91)

0; .........(iv.)

and this general relation must include (n.) as a particular case.

Hence for some differential d'/> satisfying Sj/d'/o
= 0, we must

'p, xp=-nA'p, ..... . ...........(v.)

and from this we have the equivalent of Charpit's equations

.........................(VL)
JUL
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EXAMPLES TO CHAPTER X.

Ex. 1. Determine the equations of the osculating circle and osculating
helix of a curve in terms of the vectors a, /5, y and the scalars <% and <?

L

corresponding to the point of contact, and find the deviation of the curve
from the circle or helix.

Ex. 2. Show that the vector to a point on an ellipsoid may be expressed
in the form

p= acos^+Tsin% where Tr = 6, SAr=0, TA= 1,

the vectors A and a being constant but r being variable.

(a) A tangential vector is

dp= ( a sin u+ r cos u) dn+ AT sin udt,

and the equation of the tangent plane is

Svp
~ 62SAa where v=VAr (a sin u r cos u).

Ex. 3. The differential equation of a geodesic on the quadric Sp<f>p+ l =
is S<pdpd

2
p= 0.

(a) This equation, which expresses that <pp, dp and d?p are linearly
connected, may by the aid of the differentials of the equation of the quadric
be replaced by

and operating by S<dp an integrable relation,

~~
'

dp
a

is found which affords the integral

(6) The geometrical interpretation is that PD is constant along the

geodesic, where P is the central perpendicular on the tangent plane and
where J) is the diameter of the quadric parallel to the tangent to the

geodesic. (Compare Ex. 14, p. 287.)

Ex. 4.* A unicursal curve of order n is represented by an equation
of the form / \* ^^n

^(00,01,
a

a -..an]fe 1) .

(oo, %, ajj^ajfo l)
n '

and in general this equation may be transformed into

and the curve may be described as the locus of the mean centre of corre-

sponding points on n homographically divided lines.

(a) The equation of the asymptotic tangent parallel to /^ is

Ex. 5. Find expressions for the curvature and torsion of a line of
curvature on a quadric in terms of the elliptic coordinates of Art. 84.

Ex. 6, The vectors p~Q(t) to points on a curve are transformed by the

operation of a linear vector function
<f>. Compare the curvature and torsion

at corresponding points.

*8ee Proc. R.LA., 3rd Series, Vol. iv., 1897*
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Ex. 7. (a) If a, /?, )>
and 5 are vectors from a common origin to four

points A, B, c and D, it is always possible to determine four scalars
, 5, c

and d, so that aa 4- &/? -f-cj+ dft= 0.

(6) If the sum of these scalars is zero, the four points lie in a plane.

(c) It is also possible to determine a second set of scalars so that

a'cr1 + b'jB~
l+ cy-

1 + d'~1= 0.

(d) If the sum of this new set vanishes, the points lie on a sphere passing
through the origin.

(e) The equation of this sphere may be written in the form

Sp-
1

(/?- ly-i+ y-
1^ + or1

ft"
1
)
=Scr^y1

-

(f) If it is possible to determine a third set of scalars so that

a"cfi 4- 6"j8*+ c"y
*+ cTS*= 0,

the four vectors are edges of the right circular cone

SUp(U . /3y4-U . ya+U . aj8)=SU . ajSy.

(g) If the additional condition is imposed that the sum of the scalars of

this third set vanishes, the four points lie on a surface whose equation may
be written

A. being a constant vector.

(h) Discuss briefly the nature of this surface. (Bishop Law's Premium.)

Ex. 8. The differential equation of surfaces generated by lines of the

complex (Art. 36, Ex. 4, p. 40)

/(cr, r)=0

may be found by eliminating <r and r between this equation and

(a) For the linear complex S(acr-f /3T)
=

0, the equation is

S. Vv(Yap+^)^Yv(Yap+ /3)
= 0.

(6) Lines common to the two linear complexes

S(ao-+/3r)=0, S(y<74-8r)=:0,

generate the surfaces whose differential equation is

(c) Find the differential equation of surfaces generated by lines of the

congruency
/(o-)T)

=
0, S(acr-f/?T)=0.

Ex. 9. If the vector ft is a given function of a variable unit vector a,

the equation V(p
-

ft) a=

represents a congruency of right lines.

(a) If d/3=<j!>da determine the meaning of the several terms in the equation*

Pada.

(6) A line of the congruency is intersected by consecutive lines at two

focal points p=/3+#a where x is a root of the quadratic
-1 a= 0, or

being the spin-vector of
<f>
and < being the self-conjugate part.
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(c) The points of closest approach of consecutive rays to the ray p=/3-Km
lie between the extreme points determined by the condition that SUda^Uda
may be a maximum, and the corresponding values of x are the roots of the

quadratic

^a^O, or

(d) The vectors of shortest distance at the extreme points between the

ray a and its consecutives are mutually perpendicular ;
and if these shortest

vectors are parallel to the unit vectors a and a,, the extreme points are
determined by a/=Sa/K and ^Sctya'*

(e) If the vectors a, a' and a, are in positive order of rotation so that
a/a/= a> Sa'< a/

= - Sa/a'= - Sect ;

and if the shortest vector at the point corresponding to x makes the angle u
with a' so that Uada^a'cos w+ay

sin u,

the scalars x and P are connected with x' and x
t by the relations,

x= of cos2w -f#,sin
2
&, P=Sa+ (x, #')sin % cos w.

Ex. 10. A circle may be represented by means of a pair of vectors (*, A)
since its equations may be thrown into the form

and an equation such as /(AC, A)=0,
where / is a general function, may be regarded as representing a family of
circles.

(a) In like manner an equation such as

/(a, j8, y)=0 where Sa/3=0

represents a family of conies, y being the vector to the centre of one of the
conies and a and ft being its principal vector radii. (Compare Ex. 1 1

, p. 103.)

Ex. 11. The general surface generated by a variable circle (K, X) may be
represented by

p=K+ X.r where SXr-O, Tr=l,
the vectors K and X being functions of a single parameter and the auxiliary
vector r being arbitrary so far as the conditions allow.

(a) If P is a scalar analogous to the parameter of distribution of a ruled

surface, ^T rdA-d/cp =dK-f-d.Ar. Hence dr= -5
-r~ 3

and because Sdr=0, SrdT=0, we find

P= S(d-K -TciA)A_ S(dA+^rd/c) A
Srd* SrdA

(6) These expressions for P lead to four values of the vector r which
determine points at which neighbouring elements of successive circles

approach most closely or are most widely separated.

(0) If successive circles intersect in one point

T(VdAASdAA+Vd*ASd/cA)=T. ASAdAd/c

and the vector to the point of intersection is

YdAASdAA 4-Yd/cASd/cA
p K+

SAdAd/c
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(d) If successive circles intersect in two points, the vector just found
becomes indeterminate, and

and when this condition is satisfied, the surface may be generated bj the
motion of the sphere,

(e) In the general case, the equation of a normal to the surface is

V . (p
- K - AT)Vr(d/c 4-VdA . r)= ;

and when this is expanded we obtain two scalar equations which combined
with the equations of condition enable us to eliminate T, so that we find the

equation of the surface generated by the normals along the circle (K, A) to be

S(p-/c)dK-SAdAS(pdA-/cdA-d/vA)UY(p~/c)A=0.
This surface is of the fourth order, and normals at the extremities of

diameters of the circle intersect in a nodal conic.



CHAPTER XL

STATICS.

AKT. 99. If a is the vector to the point of application of a

force which is represented in magnitude and direction by the

vector
/3,

the moment of the force with respect to the origin is

Vct/3 the vector area of the parallelogram determined by a
and /3; and the moment about the extremity of the vector y is

V(a y)/3. The force may be replaced by an equal force /3 at

the origin, and a couple Va/3; or by an equal force /3 at the

extremity of the vector y and a couple V(a y)/3.
For any number of forces, the quaternion quotient of the

resultant vector moment at the origin by the resultant force is

(Elements, Art. 416 (11))

= - =+t;T where =
(I.)

and because SVa^=^E/3+^2/3=pS/3+VP2/3 3
.............. (n.)

if p is the vector to any point on the line represented by

3 3
..............(IIL)

we may replace the system of forces by a force S/3 acting along
the line (in.) and by a couple pZ/3 having its axis parallel to

that line. This is the reduction to Poinsot's central axis.

The system of forces constitute a wrench upon a screw ;* the
scalar p, which is independent of the origin, is the pitch of the

screw, and the vector 57 is the perpendicular from the origin on
the axis of the screw Poinsot's central axis.

If the resultant reduces to a single force, p is zero or

SEVa/3(E/3)"
1= 0; and if they reduce to a couple S/3= and p

is infinite. If the forces equilibrate

2/3=0, SVa/3=0..........................(iv.)

*Sir Robert S. Ball, Treatise on the Theory of Screws, Cambridge, 1900.
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Hamilton uses a second quaternion

, v

(v.)

and the scalar of this quaternion is the pitch while the vector
terminates at a point which is independent of the origin the
Hamiltonian centre of the system of forces. This point Is

evidently situated on the central axis (ill.).
The quaternion a/3 is called by Hamilton the quaternion

moment of the force /3 with respect to the origin. Its vector
part is the moment of the force and its scalar part is minus the
viriaL We shall write for any number of forces

2j8 = X, ..................... (vi.)
so that we have

- 1
, ... ......... (vil.)

where ^ is the resultant vector moment at the origin and where
m" is minus the resultant virial at the same point. The plane
of no virial is represented by

S2(a-p)j8= or SPX = m"; ...............(vm.)

and Hamilton's centre is obviously the intersection of this plane
and the central axis.

Ex. 1. Vectors (a) are drawn from a variable origin to the points of

application of forces (ft). The equation

implies equilibrium.

[If the vectors a are drawn from a fixed origin to the points of appli-
cation, we must have separately 2/?=0, SVoo/^O (Memento, Art. 416).]

Ex. 2. Forces act at the vertices of a triangle, in its plane and pro-
portional and perpendicular to the opposite sides. Prove that they are in

equilibrium.

[If a, ft and y are the vectors from a variable origin, the forces are

v(p-y\ v (y-tt) v(a-j8) where v is a vector perpendicular to the plane of
the triangle. The moment formed as in the last example vanishes identically
because Vai//3~V/3vo, eta]

Ex. 3. The conditions of equilibrium of a rigid body may be expressed
by the equation 2Sda=0,
which contains the principle of virtual velocities (Elements, Art. 416 (17)).

[For any possible small displacement; of the body da=S-f Vcaa where 8
and <* are arbitrary. Hence 2/J=0, SVa/2=0.]

Ex. 4. The moment of the force AB about the line CD is six times the
volume of the tetrahedron ABCD divided by the number of units of length
in CD.

[The vector moment at the point c is V . CA . AB and the component along
CD is -S(UCD.V.CA.AB)=-S,CD.CA.

-
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Ex. 5. A force of unit intensity acts along the line V(yo~a)/3= 0. Its

moment about the line V(/>
-
a')/2'=0 is - S(a - a')

Ex, 6. If three forces are in equilibrium, they must be in the same

plane.

[Operate on the condition V(p~a)/3+V(p-a
/

)/5'4-V(p-a'
/

)/5'
/=0 by

S(/>-a) and put p=af where we find S(a'-a)(a'- a")/3"=(X

Ex. 7. If four forces are in equilibrium, their lines of action are

generators of a hyperboloid.

[One method of proof (Chap. VIIL, Ex. 10, p. 103) is to express the four

vector moments Van/3w etc., in terms of the four forces by means of a linear

vector function, so that Van^n =<^/5ri+ o). The vector a> is zero because

2Van/3=0, 2/3n=0, and therefore the equation of a line of action is

1+#&. (See Art. 79, p. 116.)]

Ex. 8. Kesolve a wrench into forces along the edges of a tetrahedron

ABCD,

[If ju,
is the moment and A. the force of the given wrench at the fixed

origin of vectors o, the moment at the point p is

//,
-V . OP . A,= 2tfABV . PA . AB

where AB? etc., are scalars proportional to the forces along the edges. Take
the point P at D, and

ft-V . OD . A= AB . Y . DA . AB-KBcV . DB . BC+ tcj^ - DC . CA

serves to determine three of the unknown scalars. Operate by S . DC and

ZAB.S.DA.DB. DC=S(JU,- V.OD. A) DC, or tAB . (ABCD)= S .CD . ft+S.oc.OD.A..]

ART. 100. To reduce a system of forces to two forces, let

JUL
and X be the resultant couple at the origin and the resultant

force of the system, and assume

p^Vap+ Va'P, X= /3+/3', .................... (I.)

where /3 and /3' are the two forces and a and a the vectors to

their points of application. Hence

/3'
= X-/3, M= V(a~a')/3+Va'X; ............... (II.)

and from the form of the second equation, it is obvious that if

two of the unknown vectors a, a, /3 are suitably assumed, the
third may be regarded as the vector to a point on a determinate
line. But a condition must be satisfied, for on operating in turn

by S(X /3) and S(a a') we have

S(A-/3)yu= SXa/3 and S(a-a
/

)M= Saa
/

X, ........ (ill.)

so that if any one of the three unknown vectors is assumed

(say a) the other two may be regarded as terminating on
definite planes. Suitably selecting either /3 or a in accordance
with (in.) (which is a consequence of (n.)), the remaining vector
is constrained by (n.) to terminate on a line.

Ex. 1. A rigid body is acted on by any number of forces. It is required
to equilibrate the body by two forces whose points of application are
situated on given lines.
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[If and I' are the required forces and V(p-a)/J 0, V(p-a')/2'=0 the

equations of the given lines, we have

A+ +f= 0, Ai+

where ^ and x' are scalars. Hence

and this equation of condition establishes a homography connecting the-

points of application*]

Ex. 2. A framework is composed of rods jointed by smooth hinges.

Three of the rods, A4A15
A4A2 and A4A3 terminate at a point A4 and are acted

on by given wrenches. Determine the reactions at the joints ; it being

supposed that the three rods are not coplanar.

[Let (/,, Amn) represent the wrench applied to the rod A^A*, the origin

of vectors being taken as base-point, and let /3mn be the reaction of the joinfc

on the rod at the point ATO. For equilibrium of the rod A4A1?

and putting p= a
l5

this gives

/%

or, for some scalar .%,

&i
For equilibrium of the joint A4,

we have /341+ /342 -f /343= >
or

S^Gv -VoAnX^ -
On)~

l = - 2
1
%4w(a4

-
c^)'

1

and from this vector equation the three scalars x^ can be found.]

Ex. 3. A rigid body is in equilibrium under the action of an impressed

system of forces (/*, A) and the tensions of two strings A'A and B'B attached to

points A' and B' in the body and to fixed points A and B. Show that the

forces exerted by the strings on the body are represented by

where x, y and t are scalars which may be determined by expressing ^that
the lengths of the lines A'A, B'B, A'B' and AB are given, and where a, /3, a' and

ft are the vectors from the base-points to the points A, B, A' and B'.

(a) What condition is implied in these equations ?

(6) If a, 5, c and d are the tensors of the vectors A'A, B'B, A'B' and AB,,

respectively, show that the scalar t satisfies the equation

AET. 101. The resultant quaternion moment (Art. 99 (vi.)>

for an arbitrary base-point (the origin of the vectors a) of a

system of forces (/3) acting at points fixed in a rigid body is the

first quaternion invariant of the linear vector function

the first scalar invariant of this function being minus the

resultant virial (m"= 2Sa/3), and double the spin-vector being

the resultant vector moment (/*

* That is the invariant - $i . i - <tf . / - $k * & Compare Art. 67, Ex. 7, p- 97.
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If the forces receive a common conical rotation round their

points of application so that each vector /3 is replaced by qBq"
1
,

the function <pp changes into <f>(q~
l
pq)l and if the body is

rotated so that a becomes qaq~
l

,
the function becomes q(<f>p)q~

l
.

The results of Art. 70 show that there are four rotations

applicable either to the body or to the forces which render the

function self-conjugate ;* and in this case the resultant is a

single force passing through the origin. These four positions
of the body relative to the forces are called the initial positions.

If A( = 2/3)
= 0, the resultant is a couple for all relative

positions. If the forces are in astatic equilibrium, the couple

{as well as the resultant force) must vanish for all rotations
;
but

this can only happen when the function
<f>

vanishes identically
because a function such as q(<l>p)q~

l cannot be self-conjugate for

all quaternions q. Thus the necessary and sufficient conditions

for astatic equilibrium are

= 0, A = 0; (II.)

,and these are equivalent to twelve scalar relations connecting
the forces and the points of application.

In general reduction of the function
<f>

to a trinomial form

0p= y1
SX1/}+ y2SA2p+ y3SA3p } A

1+ A2+A3
= A, (in.)

in which Ax
and A2

are arbitrarily assumed, corresponds to the
reduction of the system of forces to three forces A

I} A2 and A3

(^statically equivalent to the given system; and it is easy to

.see that the points of application of these forces, the extremities
of the vectors yi

= 0VA2AS
: SXjXgXg, etc., are fixed relatively to

the body and lie in the central plane
SPV/X=m or Sp<f>'-i\

= l (iv.)

Reduction of the function to the standard form of Art. *70 gives
.a particularly simple set of equivalent forces or couples.

The vector 0A is obviously fixed in the body, and when the

origin is transferred to the extremity of the vector ^.A"
1 the

linear function (which we continue to denote by $) corresponding
to this special origin the astatic centre satisfies the condition

0A = (v.)

As one root of
<f>

is now zero, the function is reducible to the
binomial form, and the auxiliary -^ function is of the type

-i/rp
=

AS/c/o (vi.)

where K is a vector fixed in the body. The equation of the
central plane is now S/r/o 0.

* These are the rotations which convert i', f, k
r
of the article cited into

+* +.7, +&; +*> -j, ~&; -*, +j, ~&; or -i, -j, + &. Compare the foot-
note to the article cited.
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In addition to the equations (v.) and (vi.) we have

<'A=YA/x and </z =<'/*=YKA ; .....................(vn.)

the first is obvious because a is double the spin-vector and the second follows
from Art. 68 because -

<$>p is double the spin-vector of i/r. These relations

coupled with the expression

M=M-i-"V??^ ...................................(vni.)

for the moment in terms of the pitch p and the vector ?; from the astatic

centre to a point on the central axis of the forces in any position enable us
to deduce all the theorems of astatics. We first remark that the function tfxfi

is fixed relatively to the body (or to the vectors a) and that the function <'< is

fixed relatively to the vectors /3 (or to the directions of the forces).
In order to determine the arrangement of the central axes relatively to

the forces, operate on (vin.) by the function <, and by (vn.) we find

^YTyA^Y/cA, ........ . ...........................(ix.)

so that T<Y7
?
A=TY;cA or SY7?A<'<Y7?A=(Y/cA)

2
; ...............(x.)

and therefore 'relatively to the forces the central axes compose a, coaxalfamily
of similar elliptic cylinders whose linear dimensions are proportional to the
cosine of the inclination (TYU/cA) of the central plane to the axes whose
direction (UA) is of course fixed relatively to the forces.

The arrangement of the central axes in the body is determined by the

equation
<'A=YAY7

?
A ............................... .....(XL)

obtained by operating on (vin.) by YA and attending to (vn.). Taking the
tensor

(xii.)

and the locus of central axes having a given direction UA relatively to the body
is a right circular cylinder whose radius is the reciprocal of the parallel
radius of the elliptic cylinder

T<>=TA or S/><<>=A
3
. . .........................(xm.)

To each generator of a cylinder (x.) corresponds one of the cylinders (xn.)
which is traced out by that generator when the forces are rotated round the

vector A. In terms of the vectors o- and r of Art. 36, Ex. 4 (r|| A), we may
replace (xn.) by

TATo-=T<'r, ...................................(xiv.)

and this equation represents a complex of the second order the assemblage

of lines in the body which become central axes by suitable rotation of the forces.
"We shall now determine the pitch corresponding to each central axis.

Operating by <' on (vin.) we have by (vn.)

Y/cA, ...... ........................(xv.)

and operating on this by S<'A or SYAju, or SYAY^A we deduce

^T^
/A2-SA^r

v"7
?
A=TA2

S/c7?A. ......................(xvi.)

This equation gives p in terms of the vectors determining the central

axes. Again we obtain an equivalent expression by taking the tensor of

(xv.), and on replacing A by r and Y??A by cr the result is

p^T<jf)V
2-2pSr^V-hT^V2==TY/cT2

. ................. :(xvn.)

This represents a complex of the second order and the lines common to

the complex (xiv.) compose a congruency of the fourth order and the fourth

J.Q. L
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class the assemblage of lines in the bod?/ which become axes of screws of given

pitch for suitable rotation of the forces*
Since (xvi.) is linear in

77,
it represents a plane when the direction of A

is given which cuts the cylinder (xu.) in two axes corresponding to the

given pitch. The plane touches the cylinder if

^T^'ATA
2=TVA(^A+KTA2

), .....................(xvin.)

and this relation determines the limiting values of the pitch for a given
direction UA.

The function
<fap corresponding to an arbitrary base-point the extremity

of the vector 7 is = -
(xix.)

because
cj>p

is of the form 2aS/3p. The function <^<vj' for this base-point is

fafa'p^Wp-Ttf.riBrjp; ...........................(xx.)

and supposing u2 to be a latent root and a to be a unit vector along the

corresponding axis, it appears on inversion of the function <<' ul that the
latent roots (u

2
,
u'2

,
u"2

) of fafa' are parameters of the quadrics of the con-

foeal system (fixed in the body)

Sp (<<'
- 2

)-yrA
2=1 ............................(xxi.)

which pass through the extremity of
?;,

and that the axes (a, a', a") of the

function are the normals to these confocals. Reduction of ^ to the
standard form of Art. 70 gives

(xxn.)

where the unit vectors ft are likewise mutually perpendicular so that the

system of forces may be replaced by A acting at the extremity of ?; and by
three couples (such as that due to the unit force + ft acting at the extremity
of

rj + ^ua and ft acting at the extremity of
77 ^ua) whose arms (^a, wV,

u'
f

a") are mutually perpendicular as well as the forces (ft, ft
f

, ft").

The parameters of the confocals (xxi.) touched by an arbitrary line (cr, T)
are the roots of the quadratic equation (Art. 83, Ex. 2, p. 124).

}r 4- So-(<<'
- OCT . TA2=

where M" is the first invariant of <<', observing that in general the

i/r
function of <<' is \//T/

r
;
or of the equation

^Tr2 -^(JrTT2~T^V2+T(T2TA2)+T^T2+T^V2TyX2=0
;

.....(xxm.)

and when the line belongs to the complex of central axes (xiv.) the equation
reduces by (xvn.) without much trouble to

(xxiv.)

where JT(=T/c
2TA2

) is the second invariant of <<' or the first of ^ty. This
shows that the central axes touch confocals having the sum of their parameters
constant and equal to M"' ; and in particular we have Minding's theorem for

p=0 that the lines of action of single force resultants intersect the focal conies

of the system (xxi.) since the parameters of the touched confocals are in this

case the finite latent roots of
<j><j>

f and the focal conies obviously correspond
to these parameters. The theorem respecting the constant sum of para-

* The former equation (xvi. )
in terms of r and <r is

>T0V
2 - Sr0#V= TXTrS/co- ;

and on rationalization this is seen to represent a complex of the fourth order, and
it may be shown that coupled with (xiv.) it reduces to (xvn.) affected by the factor
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meters is otherwise deducible from Art. 83, Ex. 3, for the cone of lines of
the complex (xiv.) through the extremity of the vector

77
is expressible in

the form Sr(^'~T^TA2 -^TA2
.Sr;)r=0...................(xxv.)

Moreover (Art. 83 (x.)) this is the reciprocal of the tangent cone to the
confocal (xxi.) whose parameter is u2=

Tij
2TXr. According as the tangent

cone becomes more and more obtuse by variation of the vector
77
and finally

becomes a tangent plane, the reciprocal cone becomes more and more acute
and finally coincides with the normal to the quadric, and the locus of such

points is the surface

l ......................(xxvi.)

This surface is a quartic analogous to Fresnel's wave-surface, and its

equation may be reduced to the form

T _TY/c?;_ TY/o; _ T/c~ ~ -~

remembering that <'/<:= 0. In this form it is apparent that the surface
consists of a system of circles concentric with the astatic centre, coplanar
with the vector K and of radius proportional to that of the elliptic cylinder
(xiu.) which is parallel to the radius in the central plane. For points inside
this surface the cones of axes are imaginary.

The boundary of the region containing the feet of central perpendiculars
on the axes has been investigated by Tait (Quaternions, Art. 403).

Expressing that TT; is a maximum when U?? is given and when r is

subject to the conditions (xxv.)

Sr/T=0, Sr(<<' - T772TA2
)r=0,

the equation of the boundary is found to be

7
?
=0

; ...........................(xxvm.)

and this represents a surface of the sixth order analogous to the inverse
of a Fresnel's wave-surface, and on expansion it affords a quadratic in T^
corresponding to any given value of UT? whose roots are the limiting values
of the squares of the perpendiculars.

Ex. If vectors are drawn in the body from an arbitrary base-point to

represent the resultant moment, the locus of their extremities is an ellipse
when the forces receive all possible rotations about a given axis.*

[Here /A=Y2a^-1 =V2a(l + ^)^(l + ^)~
1 where t is the tangent of

half the angle of rotation and where t is a unit vector along the axis of

rotation, and the form of this equation establishes the theorem.]

AKT. 102. The resultant of any system of forces has been
reduced in Art. 99 to a wrench which may be denoted by the

symbol (p., X) where

M =-pX+Y^X ............................... (I.)

is the resultant moment with respect to the origin, where p is

the pitch, where ^ is the vector to any point on the axis and
where X is the resultant force. The wrench *(V> ^)> where t is

any scalar, has by (i.) the same pitch and the same axis as (/*, X).

It is therefore said to be a wrench on the same screw as (/*, X)
and it may be denoted by t(/x, X). The intensity of a wrench is

*See Joly, Trans. R.I.A., Vol. xxxii, pp. 218 et seq.
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the magnitude of a resultant force (TX), and the wrench (fyt, t\)
has -fold the intensity of (&, X).

It is often necessary to compound wrenches situated upon
different screws, and we shall investigate the simplest expression
for the wrench

X8) ............ (II.)

which is the resultant of three wrenches of arbitrary intensity
situated upon three given screws.* Introducing a linear vector
function

<j>
determined by the three conditions (Ex. 9, p. 103)

we have jm
=

<j>\
if ^ =2^! and X= 2

1
X1 ; (iv.)

and thus (^X, X), in which X is arbitrary, is the general expression
for a wrench that can be compounded from wrenches on three

given screws, or conversely, that can be resolved into wrenches
on the given screws.

To reduce the problem to its simplest form, let e be the spin-
vector of

<p and let
<pQ be the self-conjugate part; then

where a/, b and c are the roots of $ and where i, j and k
are the corresponding axes. Thus the wrench (^ X) may be
compounded from the wrenches (Vei+ai, i), (Vej-i-bj, j),
(Vek+ck, k), situated on screws whose axes i, j and k are

mutually rectangular and which intersect at the extremity of
the vector e. The corresponding pitches are of course a

}
b and c

;

the latent roots of the self-conjugate part of the function 0.
The pitch of the wrench (0X, X) and the vector perpendicular

on its axis are respectively (Art. 99)

thus p is the reciprocal of the square of the radius of a quadric
and the vector sr terminates on the surface represented by

s^^+1 =' (vi1-)

because Vsr0'tj[|X and therefore cr^V^Var^'c^V^'Gi)-
1

; and
this surface is a quartic with three intersecting double lines
the axes of 0'. (Steiner s quartic surface.)
When the origin is taken at the extremity of the vector e, the

function
<p is self-conjugate. This point is the centre of the

three-system of screws. In terms of the pitch p and the vector t,
from the centre to any point on the axis of a screw of the

0X= ^/X, (vm.)

See Joly, Trans. A.I.A., Vol. xxx., Part xvl, and Vol. xxxii., Part
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so that X is an axis and p the corresponding root of the function

<f>p V?^. The latent cubic of this function is (Art. 68, p. 98)

&>?j((f>p)r}
=m pm'+pPm" p

3
;

................(ix.)

and as q varies, this represents a quadric surface one set of

generators consisting of the axes of screws of given pitch which

belong to the three-system. Three axes pass through an

arbitrary point, and the sum of the corresponding pitches is

constant and equal to the first invariant of
<f>.

Two axes lie in

an arbitrary plane Sa^+ l = 0; their directions (compare (vi.))
are determined by

SaX= 0, Sa^XX-i+ l^O, .....................(x.)

and the corresponding pitches are the roots of

Sa(^-px+^2
)a=l ............... . .......(XI,)

which is the condition that the plane should touch a quadric (ix.).

In order to reduce to a canonical form the two-system of

wrenches compounded from two given wrenches (jm^ \) and

(^2, X2),
we assume in conformity with the foregoing a function

(j>
which satisfies the relations

0\!= /x1? ^>X2
=

/*2, ^VXjXg= VeVX^g ............(xn.)

where e is the spin-vector of
<f>.

The function
(<j> Ve)/> will then

be self-conjugate and will have a zero root, VX^ being the

corresponding axis, and it will be expressible in the form
We have (Art. 27, p. 25)

+VeVX1
X2S(VX1X2)~

1
/>>

and the spin-vector is deducible from the relation

Operating by SVX1
X2

we find

2SeVX1
X

2
=

which gives

Taking the origin at the extremity of the vector e, a wrench

of unit intensity compounded from the two wrenches is deter-

mined by

^= <j>\=ai cos u+bj sin u=p(i cos u+j sin u)+ ^^(i cosu+j? sinu),

X= /icosi6+ysinu; .................... . .............................. (xiv,)

whence the vector equation of the cylindroid the locus o the

central axes, and the equation for the pitch are

n= (b a)k sin u cos u+t(i cos u+j sin u), p = a cos2u+ b sin2u
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where u is the angle the axis makes with the vector i. The
scalar equation of the cylindroid is found on elimination of u
tobe TVVS/^= (a-6)S^S^................... (xv.)

To show that in general a ivrench may be resolved in one and
only one way into components on six given scre^vs, or to reduce

any pair of vectors /m and X to the forms

where the vectors ^ . . .
/u,6

and Xj . . . X6
are given, we assume in

the first place

Mn=&An, (n = l, 2, 3); /^=02XW, (n = 4, 5, 6); ...(xvn.)

and writing t^+ fc,A2+ 3X3
= rp t4\4+ t

5\5+ 16\ = r2
. . .(xvni.)

we have /x
=

<pi^+ <^2T2> X == TX 4- r2 ]

or r^C^-^-^/x-^X), Ta^j-fc)-
1^-^)....... (XIX.)

Thus the vectors n and r2 are generally determinate and the

scalars t follow from (xvin).

Ex. 1. The locus of feet of perpendiculars from any point on the

generators of a cylindroid is an ellipse.

[This is evident from the form of the equation (see Ex. 7, p. 64)

Ex. 2. Find the locus of intersection of screws of the three-system
ju,=<A whose axes are coplanar with the origin.

[If /x=^>A=jpA.H-V^A, fjf <f>X.'=p'X.+'V'YjXf the axes intersect in
?;.

Hence
(<f> V'r)p)(cf)-~"Vr)p') destroys every vector coplanar with A and

A' and in particular it destroys r)
if S^AA'^0. Eliminating p and p' from

~Vr}p)(<l>~ VTJ p')77=0 we have the equation of the locus which may
written in the form

which should be compared with (vn.).]

ART. 103. To give an example of applying quaternions to a

problem in statics, consider the case of a chain lying on a smooth
surface and acted on by any force. Let be the force per unit

mass, v the normal reaction per unit length, w the mass of the
chain per unit length, and P the tension of the chain.

For equilibrium of an infinitesimal element at the extremity
of A

.

the pull back at p being PUdp and the pull forward at

being +PUdp+d(PUdyo). When the length of the chain is
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taken as the independent variable (Art. 85, p. 133), this may be
written

P.p"JrP'p'+wg+v= Q
J Sp P

"= Q, Svp'^0; (n.)

and in virtue of the conditions it separates into

P./'+^p'^Vp'^-f^O, P'-So'= 0, (in.)

remembering that Tp'= I so that Sp'~
1 = Sp'.

In certain cases the second of these equations can be integrated,
and as it may be written

dP- tvSgdp = ;
P- j^vSgdp = const =P (iv.)

is the integral in question, P being a constant.

The first equation gives the reaction

T^=P2TP
//2

-2Pt(;Sfp'
/+^2T(V^

/

)
2

; (v.)

and shows that Pp'+ wp'-^Vp'g is normal to the surface, or that

Pp'p"+wVp' is tangential. On elimination of the reaction (TV),

PVplJv+wp'Sp'-igUv^O; (VL)

and the tension into the curvature into the cosine of the angle
between the osculating and tangent planes is equal to the

tangential component of the applied force per unit length which
is at right angles to the tangent to the chain.



CHAPTER XII.

FINITE DISPLACEMENTS.

ART. 104. To transfer a body from one position to another

we may commence by rotating it until lines drawn in it receive

their final directions. A translation without rotation which

brings any point into its final position will complete the trans-

ference. In quaternions* if sr is the vector from a fixed point
to any point in the body, the rotation changes the vectors to

points in the body into q&q~
l

,
and a translation T added to this

gives p=T+qvq- 1
.............................. (I.)

for the relation between vectors cr drawn to points in the initial

position of the body, and vectors p drawn from the same origin
to the same points in their final position.

This relation may be thrown into many various forms; for

example p = T'+q(v-e)q-\ T^r+qeq^ ............... (ll.)

shows that if the rotation were made about the extremity of the

vector e, the successive translation must be T ; or we may first

suppose a translation ( e) effected, then the rotation about the

origin and then the translation T.
Successive displacements are compounded according to the

relations, p==r
>

+q
'

rq
'-i+ q

'

qvq ~i
q
'-i .................. (IIL)

if p=T+qrzq~
l
, p = T

/

+9
/

/o

/

g
/ ' 1

;

and the order is all important for

l
q-

1
.................. (IV.)

and this vector
y
o
/

is not equal to p. Even the rotations are

different unless qq'
=

q'q, that is unless q and q' are coplanar;
and the conditions that the order shoxild be immaterial are

-i; qq'
=

q'q.............(v.)

* The remarks in Art. 21 should be compared with this.
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Small displacements are commutative in order of application.
This is merely a particular case of a general theorem. Let any
quantity a be changed by one operation into u^f^a) where

fi(d) is small, and into +/2() by another operation, /2(a) being
also small. Then to the second order of small quantities,

= a+/2(a)+Ma+/2(a)).......(vi.)

The simplest view of a displacement is as a twist about a

screiu, that is a rotation about a line coupled with a proportionate
translation along the line. If

>; is the vector to any point on the

line, and PUVg the translation along the line, we have to

identify
T+ g&q-

l = q+PUVq+ q(&-*j)q-'
L

,
............. (VII.)

so that

and as it immediately appears that the first vector on the right
is at right angles to Vg, we find on resolving T along and

perpendicular to Vg,

..........(vm.)

and of these the first is the equation of the locus of the extremity
of the vector 77, or of the axis of the screw. The ratio of P to

the angle of the rotation, or P : 2Lq, is the ratio of the pitch (p)
to a whole revolution

;
and the pitch is therefore

.~r ........... - ............... -^
L.q \JVq

'

ART. 105. Continuing to employ the same notation as in the

last article, let us suppose that q and T are functions of a variable

parameter, the time t for example, and we shall have

d
/
o = dr+Vft)( /

o r)dt where a>dt= Z'Vdqq~'
1

,

dp = dT+q(Vi&)q~
ldt where Ldt= 2Vq-

1

dq..........(I.)

To prove these relations observe that

............. (II.)

remembering the expression for the differential of the reciprocal
of a quaternion. This leads at once to the first relation since

?X
Xp= 2V.VpX if p is any quaternion and X any vector.

he second relation is proved in quite an analogous manner.
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The vector T is the vector from the fixed origin of vectors p to

the variable origin of vectors sr, and its derived with respect to

the time is the velocity of that origin. The velocity of the

extremity of the vector p is compounded of this velocity together
with the velocity Vfc>(/) r) which is at right angles to to and to

p T and equal to the tensor of <o into the perpendicular from
the extremity of p r on o) (the two vectors co and p T being

supposed to have a common origin). In fact the vector to

represents in magnitude and direction the angular velocity of

the body.

Using fluxional notation for the velocities, we may write

1
f--^Co) 5 ...(ill.)

thus analysing the instantaneous motion of the body into a

rotation round a line coupled with a proportionate velocity of

translation along the line
; or, in Sir Robert Ball's phraseology,

we have determined the instantaneous twist-velocity about the

instantaneous screw
;
the expressions

^ = T Vto"~
lT+xto, _p

= Sa>~ 1T ................ (IV.)

being the equation of the line or axis of instantaneous motion
and the pitch of the instantaneous screw. (Compare Art. 99.)

When the equation of this axis is referred to the moving
origin we may write it in the form

q~
l
(vj T)q=ii Vr l

q~'
1
Tq+xi=srj' because to= qt.q~

l
, ...(v.)

for
to^2yqq-

l
^ZVq(q-

l
q)q-

l = 2q(~Vq-
l

q)q-
l
~qiq--

1
by (l.).

The lineY= 'Vi~ 1

q~
1

Tq+^i being supposed drawn in the body,
the motion of the body brings it into coincidence at the proper
instant with the instantaneous axis at the time t. Also the
rotation converts L into the angular velocity vector to at the
time t. Thus in dealing with the body itself it is convenient to

use the vectors t and tj, and in considering the motion of the

body with regard to external objects, the vectors to and p are

preferably employed.
Let us no longer suppose the vector sr to be constant as in (IL).

Then if the vectors p and or are still connected by the first

equation of the last article, we shall have instead of the first

equation of the present article

/3
= T+Vtt(p-~<r)+#%

<~ 1
, p^-r+qCVitt+tyq-

1
:, ...(vi.)

and more particularly when the vector T is constantly zero,

p Vwp+ q&q-
1

, p= q(TZ+"Vc)q~
l
) if p= gcrg-

1
; ...(vil.)

and still more particularly

<*>~qiq~
l because w qiq"

1
, Vaxo= 0, Vu= 0. ...(vm.)
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What wre really do here is to compare the velocities of a point

moving arbitrarily with respect to fixed objects and with respect
to the moving body. The vector & represents the velocity of the

point relatively to the body, while p is its velocity relatively to

fixed objects. Sometimes a notation such as

where p^q^q^ .....(ix.)

may be employed but it is not very explicit to denote the

variation of p arising from causes independent of the rotation
;

and in this notation we may replace (vm.) by

which expresses that the rate of change of the angular velocity
is independent of the rotation. We may for example suppose
i, j and k to be fixed relatively to the vectors or, and a= qiq~

1
,

/3
= qjq~

l
, y qkq-

1 to be unit vectors derived from these by the

rotation. In this case if p=ax+ /3y+ yz, the derived p takes

account of the variations of a, ft and y as well as of x, y and 0,

while -~~
only refers to the variations of x, y and % and not at

Ob

all to those of a, /3 and y.
These results include the whole theory of fixed and moving

axes, there being now no difficulty in writing down deriveds of

any order. For example, on differentiating (vi.) again, we have

and on substituting for p, the general formula of acceleration is

pzzrr+VcbC/o-^+VwVw^-^+ gwg'^SVco^"" 1
, ...(xi.)

which may of course be expressed in terms of *.

In the case of a rigid body it is frequently convenient to

replace (in.) by the relation

/3
= <r+ Vo>p...... ......................(XII.)

where cr is the velocity of the point of the body which in-

stantaneously coincides with the fixed origin of vectors
yo.

The
acceleration of the point at the extremity of the vector p is

p=a-+~Vo)a-+Vobp+'Vo)Va)p, .......... .....(xin.)

which follows on substitution for p in the result of differentiating

(XIL).
As in Art. 102, we represent the twist-velocity of the body by

the symbol (cr, <o), the fixed origin being taken as base-point, and
we may replace (rv.) of the present article by

(XIV.)
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Ex. 1. The instantaneous twist-velocity of a body may be reduced to a

pair of simultaneous angular velocities, /3 and /?', round two lines, by means
of the relations

where a and a! are vectors to points on the lines. [Compare Art. 102.]

Ex. 2. Ifp is the pitch of the instantaneous screw and if co is the angular
velocity of a rigid body, the velocity of any point in the body satisfies the
relation

a/dor
1

=jp;

and vectors drawn from a common origin to represent the simultaneous
velocities of the points of the body terminate on a common plane.

Ex. 3. The locus of points having a velocity of given magnitude is a right
circular cylinder

Tp=T(cr+Vcrp) or TV<J>(p-~71)
= (Tp

2 -p2To>2
)\

coaxial with the instantaneous axis.

Ex. 4. Determine the acceleration centre of a body moving arbitrarily.

[In terms of cr and o>, if the acceleration of the point at the extremity of

the vector a is instantaneously zero,

or <r+ ft

where <p=VcI>p+ a>Vtop. Hence typ u>Scop V . coVaxo. p+ a>
3
Sa>p and

the third invariant is m=Vww2
,
so that

aVwco2= (wSuj 4-V . coVctxo oo
3
Sa>) . (cr-fVaxr).]

Ex. 5. The instantaneous acceleration of a point of a rigid body moving
in any manner is a linear function of the vector to the point from the
acceleration centre, or

p= <(p~a) where <jkp=V(I>p-l-V<i>V(op and u= 0.

(a) The locus of points having instantaneous accelerations of given magni-
tude is one of a system, of similar and coaxial ellipsoids

concentric with the acceleration centre, whose linear dimensions are propor-
tional to the acceleration.

(b) The function < is independent of the velocity of translation, and a

change in that velocity merely alters the position of the acceleration centre
and of the associated ellipsoids.

Ex. 6. The locus of points for which the magnitude of the velocity is

momentarily constant is the quadric surface

and the locus of points for which the direction of the velocity is momentarily
constant is the twisted cubic

or

(a) The equation of the twisted cubic may also be written in the form

pVcoo^
_
{(&

_
fa) S (u>

-
to)+V . coVco d> - &>

3
S(o} . (a-

- tcr+Vcocr)

or (p
~-

a) "Vow
2= t^ra+ j?

2
(<oSa>a+ coSaxx)

3
a>Scoa,

where t is a variable scalar.

[For the twisted cubic we have
<j>p+ <r+ Voxr= t (cr+ Vcop). Compare Ex. 4.]
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ART. 106. If the quaternion on which the rotation depends is a function
of two variable parameters, u and v, we shall write

2V<%-*= &/d+a>/to, d2==l|dtt+gdw, ..................(i.)

and it must be observed that u'du + ufiv is not a perfect differential To
determine the relation connecting <o' and w

/5 suppose & to be a constant
vector and p=q^q~\ Then p is a function of u and v, and

Calculating the second differentials,

or, rearranging and observing that Vw^o>,A. Vw/VVA.==V . VCD'CO,- A, we
have, because > is an arbitrary vector,

.................................(n,)

But again, by the last article and in the notation there explained,

3<o' ,
r , c3(co') "dco, T7 , B(u>.)^=

ya)/a> +__/, ^=
vo>a>,+^,

and accordingly we may replace (in.) by this new expression

.

O............................... (v.)

^

The results of this article have been employed in Art. 94 in connection
with the theory of surfaces,

AKT. 107. In many investigations relating to rotations for-
mulae of the type

*

p = y*ffroF&a'-*fS-Vy-
z

........................ (l.)

present themselves, and it may not be superfluous to make a few
remarks about their reduction. It frequently happens that
a, /3 and y form a mutually rectangular unit system, and in this
case if c?= aa+6/3+cy we have

p = yj&vy* . aa+ y*pfcP"p-Vy* . l^+yz^a^^y z
. cy, ...(II.)

when we apply the general relation

a*/3
= pa-* if Sa/3= ; Ta= l....... .........(m.)

In order to reduce the coefficient of b/3 for instance, it is

generally best to start from the central term, a2* in this case,
and to replace it by cos 71-0?+ a sin TTCC, and similarly for successive
reductions. Thus we avoid introducing the sines and cosines of
the halves of the angles of rotation.

It is worth while noticing that

1~ 2a;+a- 1
) . ...........(iv.)

*It may be advisable to refer again to Chap. IV. and its examples.
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is expressible in terms of the whole angle using the relation

The general relation connecting two quaternions p and q and
two scalars x and y,

(l)
x
qp-*}y=z>p*<!p-

x
,

......................... (v.)

will often be found useful.

Ex. 1. A planet rotates about its axis y in the period %m~ l and a

satellite describes a circular orbit round the planet in the period %n~ l

;
show

that the motion relative to the planet is represented by

the vectors in this expression being all fixed relatively to the planet ; and
reduce the equation to

(a) By taking the epoch when the satellite is in the plane -of the equator,
the equation may be simplified to

p= ry-
n
*/3

l

Y*/3.y-
t

p-
aytt

*, S/3y=0

where r is the radius of the orbit and where ?ra is the angle between the

plane of the orbit and the equator.

(5) The equation may also be written

p= ra(cos irnt sin irmt cos TTO, sin trnt cos irmt)

+r/3(cos Tent cos irmt -f cos TTCL sin irnt sin -rrmt)

+ry sin Tra sin Trnt

where a=
/3y.

(c) The condition for a stationary point may be written in the form

or na+mVy
~nt

/3~
a
y/3

a
y**P= 0,

and this is equivalent to

n=m cos ira, cos irnt= 0.

Ex. 2. Unit vectors a, ft and y are directed respectively to the point of

upper culmination on the celestial equator, to the east point and to the
north celestial pole, while i, j and k are directed to the south point, the east

point and the zenith. Show that the vector directed to a star may be

expressed in the forms
o-= y -zff-

*
a.p*iy*

= k-Kj

where irz is the hour-angle west, ?ry the declination, TTW the azimuth west>
and ?ry the altitude.

(a) If Trb is the latitude of the place of observation, show that

=/3-*a/3
6

;

and obtain the quaternion equation

and hence deduce the formulae of transformation from one set of coordinates
to the other.
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Ex. 3. Assuming the eiFect of refraction to be K times the tangent of
the zenith distance, prove that the vector to the apparent place of a star is

where

S&r

(a) Substituting for / in terms of a and j8 (Ex. 2 (a)), verify the successive

steps of the transformation

sn Tr

= sin -irb sin Try
- cos TT& cos ?ry cos -h /3(sin TT& cos Try cos TT& sin Try cos xs)

y cos TT& sin ?r2.

(6) Show that the expression for 7 reduces to the form

_ $' cos^ s^n 7r2f+ 7' (sin^ cos^ ~ cos Kb sin ?ry cos 77.2)

sin Ti-6 sin ?ry -f cos TT& cos xy cos TTZ
*

where /5' and y' are unit vectors tangential respectively to the parallel of
declination and to the circle of declination.

(c) If q is the parallactic angle and the zenith distance, show that

Ex. 4. An equatorial telescope in imperfect adjustment is directed to a

star, and the circle readings are observed to be (y-i-/)7r and (Z+Z')TT where

y' and / are small
;

if for zero circle readings the direction of the telescope
is a 4- a', that of the declination axis fi + ff and that of the polar axis y-hy'
where a', /3'

and y' are small vectors perpendicular respectively to a, ft

and y, show that

and neglecting small terms of the second order obtain the relation

From this and two similar equations corresponding to the results of

setting the telescope on two other known stars, deduce the errors in the

adjustment which are represented by the small vectors of, /3
f

and y'.

Ex. 5. The unit of length is taken equal to the focal length of a photo-

graphic telescope in perfect adjustment so that were it not for refraction

the image of a star would remain fixed on the photographic plate. Assuming
the effect of refraction to be K times the tangent of the zenith distance^
show that the image describes on the plate a curve represented by

where ZTT is the hour angle reckoned towards the west, and where cr, y and K

are three (coplanar) unit vectors fixed relatively to the plate and directed

respectively to the star, to the north celestial pole and, when the telescope
is on the star in the meridian, to the zenith.

(a) Prove that this curve represents a conic, or a portion of a conic, and
that it is the intersection of the plane and cone

and consider th.6 arrangement of the curves for various values of K and for

stars of different declinations.
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Ex. 6. The positions of stars are determined by taking transits with a

telescope movable about a fixed axis. Show that the hour-angle TTZ at the
time of transit and the decimation Try are connected with the reading TTU of

a circle fixed to the telescope at right angles to the fixed axis by the

quaternion equation

?
j6y73-v/

where &, &', c and c' are constants of the instrument, a, f3 and y having the
same signification as in Ex. 2.

(a) If 8 is a unit vector along the axis round which the telescope turns
the equation may be written in the form

and for an ahnucantar whose line of collimation makes a constant angle (TTO)

with the vertical and is in the meridian when w=0, the equation is

YfP*y*
=

/3
2b cos <rra+ b-la~

u
/3

b sin ira

where TT& is the latitude of the place.

Ex. 7. If Ucr is the unit vector towards the centre of a planet ; UCT-J-T

the vector towards a marking on the planet in latitude I
; y the unit vector

along the planet's axis of rotation ;
a the unit vector from the planet's

centre towards the point on its equator on the meridian through the

marking ; if P is the time of rotation of the planet on its axis and s the

angular semi-diameter at the time of observation, show that

where t is the time of observation measured from some selected epoch.

(a) Denoting the vector on the right by ?;,
show that

97
terminates on a

fixed circle and verify that

y cosec I= -V(T^+1^ 4-^a) (S>hWs)"1

where
77^ 7?2

and
r)3 are the values of the vector

77
at three times of

observation.

(c) Show how to deduce the time of rotation.

Ex. 8. A polar axis having a fixed direction y carries a declination axis

initially parallel to /3 on which is mounted a telescope initially parallel to a.

The vectors being all of unit length and the instrument being completely
out of adjustment so that no conditions of rectangularity are even approxi-
mately satisfied, show that when the direction of the telescope is changed
to of by a rotation round the declination axis followed by a rotation round
the polar axis, a/

while if the rotation is first made round the polar axis and then round the
declination axis, a/

and prove the equivalence of these two expressions.

(a) If u and <v are the tangents of half the angles of rotation round the

polar axis and the declination axis respectively, show that the vector

equation

.serves to determine both u and v.

(b) Deduce from this the scalar quadratic equation in u :

S(a - a')
-
2uSy/3a

f - %2
Sy (a

-
a')Sy/3

- ^2
SyVy(a+ a') =0.



CHAPTER XIII.

STRAIN.

ART. 108. Homogeneous strain converts vectors (yo)
in an

unstrained body into vectors (<r
=

<f>p) in the manner described in

the chapter on the linear vector function (Arts. 63, 64), but the
transformation is of less generality. The order of rotation from

<j>a
to

<f>/3
to <j>y must agree with that from a to /3 to y in the

case of a physical strain, for otherwise a positive volume would
be converted into a negative volume (Art. 24). In other words
the third invariant of the function <p must be positive, or the
condition m>0 ................................. (i.)

must be satisfied. This requires one latent root of <p to be real

and positive, and when the roots are all real this is obviously the

case. When two of the roots are imaginary, g'+*J - lg" and

g'
_ ^f_ ig" y

the third invariant is (g'*+g
f'2
)g where g is the

remaining latent root ;
so that here again one root is positive.

It follows from this that in every homogeneous strain one
direction at least remains unchanged, for we have

U0a=Ua if <f>a=ga, #>0................... (II.)

If the three latent roots are positive, three lines remain
unrotated. In the case of a pure strain three mutually
rectangular directions remain unchanged, and the function

<j>
is

self-conjugate with positive latent roots. The decomposition of

a linear function into a self-conjugate function preceded or

followed by a rotation has been considered in Art. *70
;
and by

selecting the square root
(<f><j>')

f "the function
<p<j>

which has all

its latent roots positive we decompose, without ambiguity, an

arbitrary strain into a rotation followed by a pure strain.

A sphere T/>
= r is converted into an ellipsoid the strain

ellipsoid*

T0-V= r or So-0
/ - 1

0-
1
o-4-r

2= 0; ............ (IIL)

* The results of Art. 70 show that the surface is ellipsoidal.

J.Q. M
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and the axes of this surface are parallel to the axes of <

/ "" 1<~ 1 or

of its inverse
<j><f> (not 0'0). And the ellipsoid

T0p = r or Sp^>>p+r
2 = .................. (iv.)

is converted into the sphere To-= r. The role of the functions

<jxj>
and

<p

f

<f>
is quite analogous to that of the functions of

Art. 101, p. 161, denoted by the same symbols.

ART. 109. A shear is represented by the function

Qp^fr-flSap where Sa/3 = 0, .................. (i.)

for a point in the body is displaced parallel to a fixed direction

(U/3) through a distance proportional to its distance from a plane

(Sa/>
= 0) parallel to the fixed direction (U/3). In all cases the

displacement of a point the extremity of the vector p is <pp p.

A shear accompanied by a uniform dilatation is represented by

(f>p
= gp --/8Sap, Sa/3= 0, .................... (II.)

the ratio of the changed volume to the original being that of g*

to unity.
The function <j>p=gqpq-

l
-q/3q-

l

Sap, Sa/3= 0, ............. (ill.)

represents a dilatation and a shear followed by a rotation, and
this function involves eight constants three in U#, one in g,

three in aT/S and one in U/3 (because Sa/3= 0) just one less

than in the general function.

Omitting the condition Sa/3 = in (in.), the function involves

nine constants, and the function

<f>p=gqpq-
l
-qpq-

l
Sap .....................(IV.)

is capable of representing the most general strain ^vhich may be

produced by shifting in a fixed direction (U/3) planes parallel to

a fixed plane (Sap= Q) by an amount ( g~"
l

/3Sap) proportional
to the perpendicular distance from the fixed plane ; by altering
all lines in the ratio g to unity, and by superposing a rotation.

To prove this we identify

(V.)

with Hamilton's cyclic form (Art. 77) for the general self-

conjugate ellipsoidal function so that the third invariant of (p may
be positive or that

p
8
(jr-Saj8)>0; ......................... (vi.)

in other words we suppose <f>
to be a given function, and it is

required to determine a, /3, g and q. If a2
,
62

,
c2 are the latent

roots of the general self-conjugate function
/

0p = 62
p+XS/A/>+/AS\p, .................. (vn.)

= a2+ c
2- 262

,
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(compare Art. 77 (n.) and Ex. 2), we have on comparison with (v.)

ff
=

b, a=-X, 6/3^+ AXT/3
2

, ...............(VIIL)

whence substituting from (vn.) in 6T/3= T(^+ JXT/3
2
), we find

the quadratic in T/3
2

,

--c2)
2=0 ? .........(ix.)

whose roots are TX2!^= (a c)
2

. These give

and it follows from (vi.) that we must select the negative sign.
Thus we have definitely by (VIIL)

and the rotation may be determined as in Art. 70. A second
solution is obtained by interchanging X and /*,

Ex. 1. Prove that the necessary and sufficient conditions that the
function < should represent a uniform dilatation and a dilatation accompany-
ing a shear, are respectively

c-<7= 0, (<-0)
2= 0.

[These are excellent examples of the degradation of the symbolic cubic.

Art. 66, p. 95.]

Ex. 2. If the function
<$> represents a uniform dilatation and two super-

posed shears,
"

[Assuming <j>p=g(l- fi'Sa')(l -/3Sa)/p, Sa/5
= Sa^'=0, it is necessary to

prove that g is a root of <, and that it is equal to the cube root of m. It

may be shown that the converse is also true.]

Ex. 3. The strain produced by two successive pure strains is generally

impure.

[Two functions are commutative in order of operation only if they are

coaxial (Art. 66, Ex. 2, p. 95).]

ART. 110. Lines in the unstrained body whose lengths are

altered in a given ratio g are parallel to edges of the quadric cone

Wp^fc or S'Uf>(<p'<j>-g*)'Up~0 ...............(L)

one of a concyclic system ; and by (vn.) this equation may be

replaced by

2SXUpS/*Up= &2-#2
,
or smusin'y= (6

2-^2
)(a

2-c2
)-

1
, ...(ii.)

where u and v are the angles a line makes with the cyclic planes
of the function

<j)'<j>.
The ratio g for any direction is the

reciprocal of the parallel radius of the quadric (compare Art.

108 (iv.)), T^p = l ...............................(m.)
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If the inclination of the vector /3 to a remains unchanged, the

condition

SU . a/3
= SU . <pa<}>fr or Sa/3 . T0a0/3 = Sa0>/3 . Ta/3 . . .(IV.)

is satisfied, and the locus of the vectors /3 is the quartic cone

SapSa<M>aS/3<f>'<f>P= Sa0>/3
2

. a2
/3

2
3 ............ (V.)

which has a and Va$'0a for double edges. Substituting a+ foX

for /3 in this equation, we get for the edges in the plane SX/o = 0,

which passes through a,

/3
=VX(0>aa(SX-HH/^)> ..................(vi.)

after discarding the factor t
2

. These edges are real for all

directions of the vector X, and it easily appears that the upper
sign corresponds to SU . a/3= +8U . <a0/3, while the lower sign

corresponds to SU. a/3
= SU .

cj>a<f>/3
on comparing the signs

of Sa/3 and S/3^>'<a. The lower sign corresponds to the case in

which the angle between <pa and 0/3 is the supplement of that

between a and /3. The vector Na<t><j>a alone remains at right

angles to a, and (Art. 75 (iv.)) this vector is parallel to the

second principal axis of the section of (in.) of which a is a

principal axis.

If an arbitrary rotation is superposed on the strain, the cone (iv.) is the

locus of lines which together with a can be unrotated lines or axes of

q(<pp)q~~
1
' The latent root corresponding to any edge (/?) is (compare (i.))

T(jiU/3.
To determine the rotation which must be superposed on the

strain so as to leave unrotated two vectors a and 8 satisfying the condition

(iv.) we may utilize Ex. 6, Chapter III., p. 26, and find the rotation which
converts U^>a and U<^8 into Ua and U/3, having as in (vi.) due regard
to the indeterminate sign. It is possible to superpose a rotation on a strain

so that all the lines in a plane may be unrotated. It is only necessary to

reduce the function
<f>

to the form given in Art. 109 (iv.), and we have

gri.fo.g^gp-ftSap, ........... . ..................(vn.)

and the lines in the plane Sap= (or SX.p 0, compare Art. 109 (x.)) a

cyclic plane of
<j>'<J>

are unrotated.

AET. 111. The displacement at the extremity of the vector p
produced by the strain is

which we have resolved along and at right angles to the vector p.
When unity is a latent root of the function

<p,
the displacement

is parallel to a fixed plane that of the axes of
cf> complementary

to the unstrained and unrotated axis corresponding to the root

unity. (See Art. 66 (x.), p. 94.)
In general, provided the greatest and least roots of

<p'cj)
are

greater and less than unity, it is possible by the last article

to superpose a rotation on the strain so that the resulting dis-

placement may be everywhere parallel to a fixed plane.
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The quantity e= S/>-
1

(^~-l)p ........................... (n.)

Is called the elongation, and it is numerically equal to the
reciprocal of the square of the radius of the elongation quadrie

SP(0 -1)P=-1> (0o
= J(^+f)), ............ (in.)

which
^

is parallel to the vector p. This quadrie may be an
ellipsoid or a hyperboloid according to the relative magnitudes of
the roots of

<f>
and unity.

The component of the displacement perpendicular to p may be
written in the form

V^ = V^pp-
1
.p= Vep+ V^(>/)p-

1
.p ............(IV.)

where e is the spin-vector of 0, and (Art. 75 (iv.)) the vector

V^o/)^-
1

is parallel to the second principal axis of the section of

(in.) of which p is a principal axis. The magnitude of this
vector (TV/r

1^ l)p) is numerically equal to the area of the

triangle formed by lines drawn along Up and along the central

perpendicular on the corresponding tangent plane of the elonga-
tion quadrie the lengths of these lines being the reciprocals of
those of the central radius and the central perpendicular.

AET. 112. When the strain is not homogeneous, if the point P
is strained to Q, the relation between the vectors p( = OP) and
o-(
= OQ) ceases to be linear, but we always have the correspond-

ing differentials linearly related, or

.....................
(I.)

being any function of p, and 0dp being a linear function of dp
involving the vector p in its constitution. So long then as we
confine our attention to the limits of vanishing and corresponding
regions at Q and P, so that the vector p does not vary, the
treatment of this general case is precisely the same as in the
case of homogeneous strain.

In terms of the operator V,

dcr= SdpV-o-, ...................... .....(n.)

so that if a is any vector which is not subject to the operation of V,

0a= SaV.o-, and $'a= VSacr, ..... . ...... (ill.)

as we may verify in many ways* by the results of Arts. 56
and 57; and in the same way it is not hard to see that we
may write

2e, ............... (iv.)

example 0a= +SSaV/x*< .
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where e is the spin-vector of a. Thus for a pure strain at all

points, we must have

Wo-= 0, or <r=VP ........................ (v.)

(Art. 56) where P is a scalar function of p. (See p. 74.)

'ART. 113. For small strains it is convenient to change the

notation and to consider the displacement of a point produced
by the strain rather than the relation between the vectors to the

strained and unstrained positions of the point. We write there-

fore for a homogeneous small strain

cr=zp+ <j)p,
.............................. (I.)

replacing the function < of earlier articles by 1 + 0, the

function
<f> being now small, or T<pp being small in comparison

with Tyo. Apart from its smallness, however, the new function

is of a more general character than the old. We may for

example have the order of rotation from <f>a
to

<f>/3
to <y different

from that from a to fi to y without violating the physical reality
of the strain. In fact the ratio of volumes is now

^l
I m", ...(n.)

Sa/3y Sa/3y

and m" is small in comparison with unity.
Small strains are superposable (cf. Art. 104 (vi.), p. 169), or

because we agree to neglect the terms of the second order

and 02<^iP'
A small strain is resolvable into a pure strain and a small

rotation by the relation

where is the self-conjugate part of $ and where e is its spin-
vector.

We may write

The strain quadric now becomes

if p
2+r2= 0; for p= (l 0)cr if a-= (l + <j6)p, since approximately

For non-homogeneous small strains, suppose d(p) to be the

displacement of the extremity of the vector p. Equation (i.) then
becomes <r= p+ e(p), (vii.)

and for a neighbouring point

9p (vm.)
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Confining the attention to points in the neighbourhood of the

extremity of p, equation (viu.) is of the same form as (I.), and
the results of the present article apply if we regard the function

<f> already employed as having the meaning assigned to the same
symbol in (viu.), and if we suppose that the vectors p throughout
the article are small and equivalent to the vectors dp of (vm.).
(See Art. 124, p. 211.)

Ex. 1. Interpret Hamilton's focal and cyclic transformations of a self-

conjugate function,

where
(f>p represents the displacement due to a small pure strain.

[The terms may betaken separately. aaVap represents a shrinkage or an

expansion to or from one line (a) ; b'/3S/3p represents an elongation parallel
to another. See IMinchin, Treatise oil Statics, Art. 379.]



CHAPTER XIV.

DYNAMICS OF A PARTICLE.

ART. 114, The rate of change of the momentum of a particle
is equal to the applied force, or

-
.

where m is the mass
; p the velocity, m/> the momentum and

the applied force.

The moment of momentum of the particle about any point A is

a)mp =mV(p a)p ;
.................. (li.)

and if A is a fixed point the rate of change of moment of

momentum is equal to the moment of the applied force, for

a)/i
= V(p-a)f, .........(m.)

since Y/>/5
= 0. If the point A is in motion with velocity a, the

rate of change of moment of momentum is

m~V(p-a)p mVap= V(f> a) mVd/5, ......... (iv.)

and in this case it depends on the velocity of the point A and on
that of the particle P, unless indeed the motion of A is constantly

parallel to that of P.

Since . JmV= -
$PP = -S#= - S&P ,

.........(v.)

the energy equation is

|mT/j
2+ [sgdp = const. =E, .................. (vi.)

and for a conservative system of forces (Art. 56 (vn.), p. 74),

(vn.)
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Ex. 1. If the applied force is parallel to a fixed plane SAp=0, deduce
the integral $\p=at+b ; and if it is parallel to a fixed line (/A), show that

where a, b, a and /? are constants of integration.

Ex. 2. If the force is directed to a fixed centre the origin of vectors p
show that

mVpp= /?
= a constant vector.

Ex. 3. If T is the tangential and N the normal component of the force
and v the velocity in any orbit, prove that if is the curvature of the orbit,

v*C=i\
r
y v=T.

[Letting accents denote deriveds of p with respect to the arc, we have

p=p'y, p=p'V-fp'i? since v=L Also Tp''=(7 and f=p'^M-Up"J\
r
. See

Art. 117.]

Art. 115. The equation of motion of a particle of unit mass
attracted to any number of fixed centres with forces varying as

the distance is

/)
= 2a

1 (a1 p) = 2a1a1 p2a1 ,
..................(i.)

the attraction to any centre being proportional to the distance

T(a1 p) and acting along TJ(a1 />)
towards the centre. The

scalars av a9 , etc., define the ratio of the magnitude of the

attraction of the centres to the distance, and they are positive
for attractive and negative for repulsive forces.

If a is the vector to the mean centre of the centres for the

multiples ap a
2,

. . . an , and if a is the sum of the multiples, the

equation takes the form

yb*
= a(a p), (a = 2a

lf
aa 'a

la1)i ............... (ll.)

and the particle moves as if attracted to the mean centre.

The more general equation

p + 9&p+cp= 0, ..........................(in.)

where b and c are scalar constants, is that of the motion of a

particle acted on by a force ( cp) due to a centre at the origin

attracting or repelling (c>0 or <0) proportionally to the

distance, and also acted on by a force ( 26/5) proportional to the

velocity and accelerating or retarding according as &<0 or >0.
To integrate this equation, we assume

. ...... (iv.)

where yl3 y9 , etc., are constant vectors and nv 7i2 , etc., constant

scalars, and 'we express that the result of substituting for p in

(in.) is identically satisfied for all values of t. Equating to zero

the coefficients of enit
, etc., after substitution, we find

........................ (v.)

where y and n stand for any one of the vectors y1
and the

corresponding scalar nr These conditions require all but two
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of the vectors to vanish. The remaining two yl
and y2

are

indeterminate, and the corresponding values of n are the roots of

the coefficient of y in (v.) and are

ni~~~"b+p, 72
2
= & p, if p

2=&2 a
nl= ~6+vrri^ w 2=-6-^/^lg, if ?

2= c-62
; ...(vi.)

and the corresponding solution of the equation is

t

) or p = e'
6t

(Si oosqt+ S^smqt) 9 ...(vn.)

the vectors yx
and y2 (or Sl

and <5
2) being arbitrary constants of

integration.

In the more general case, to solve the equation

0, .................................(vm.)

where ^ and <
2 are two constant linear vector functions, and which

represents a damped motion of a particle such as might be supposed to take

place in a crystalline medium, an assumption of the form (iv.) gives

so that the function <
2 -f y^-fw"

2 has a zero root and y is the corresponding
axis. The third invariant of the function must vanish if it has a zero root,
and the appropriate values of the scalars n are the roots of the equation

0, ............ (x.)

where A., /JL
and v are any vectors. Solving this equation we determine six

linear functions with zero latent roots, and the corresponding axes (y17 y2, etc.),

being determined, the solution is

the arbitrary constants being the tensors of the vectors y.

Ex. 1. Show how to determine the constants of integration.

[We may have given the initial position -and the initial velocity six

constants. For example the solution of (11.) is p a+ yl
cos VaZ+ y2 sin \/at

9

and if p=/3 and />=y when =0, we have yi=/3-a, y^v^^y-]

ART. 116. For a force directed to a fixed centre, the origin of

vectors p , ^ Uf=Uyo, ........................ (I.)

and (Art. 114 (ill.)) we deduce at once the integral of moment
of momentum

/3, .......................... ....(n.)

where the constant /3 is double the vector area swept out by the

radius vector in unit time. Conversely if the vector moment of

momentum with respect to any fixed point is constant, that point
is a ^centre to which the force acting on the particle is directed,
for /3

= = Vpp or
/>* || f || p. The orbit of the particle lies in the

8/00= ...............................(m.)
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In general the vector /3 admits of transformations such as the

following (compare Art. 85 (n.), p. 132) :

...(IV.)

where w is the angular velocity of the radius vector, and where w
(for a plane orbit) is the angle the radius vector makes with some

prime vector or more generally where w is the scalar angular
velocity. We may also write

so that for a central force

^ _
TO/g-i^ if ^-mUpTp-*. ............... (vi.)

In particular when the law of force is that of the inverse

square, the scalar m is constant, and (vi.) integrates at once
and gives

p= WjS^Up+y where S/3y= by (n.), .......OIL)

y being a vector constant of integration. This shows that the

hodograph of the motion is a circle whose centre is the extremity
of the vector y and whose radius is mT/3"

1
.

Moreover, substituting for p in (II.), we find the equation of

...................(vm.)

which is equivalent to the two equations

mTp= T/3
2
-S/3yp, S/3p

= 0; ................. (ix.)

and which represents a conic referred to a focus as origin. If w
is the angle the radius makes with the vector y/3 we may
replace (ix.) by

Tp(l+ ecosw)=p where e^m^Tyf}, p = m- 1T

F{P, ...(x.)

and e is the excentricity and p the ser&i-latws-rect'u/ni.

Taking the tensor of (vn.), utilizing (ix.) and observing that

by (x.) Ty^rae
2
/)"

1
,
we obtain the energy equation

.2
>= ""-

where a=p(l e*)~
l
is the mean distance.

Now when we resolve the velocity along and perpendicular
to p, '

l3 if r= Tp; (xn.)
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whence on substitution in (xi.) we find

P IN
-),aj

which gives on integration the radius vector in terms of the
time.

Ex. 1. Deduce the usual u and equations for a central orbit by

expressing p in the form rJr*i.

[Here p=(f+rOk)&i, /3=r
20=M, = Aw2

,
f=r'$=-/m' where accents

denote differentiation with respect to and where ii^r"1
. Thus

Ex. 2. If a, ft and y are three unit vectors, a along the radius vector,
y perpendicular to the plane of the instantaneous orbit and /3=ya; if c is
the rate of description of angles by the radius vector in the orbit and if a
is the rate at which the plane of the orbit turns round the radius vector,
prove that the equation of motion is

a (r
- re2

) -f- /3(2rc+ re) -f- yra'c g.

[Here ~=V yc,
=v-=<^, so that a= /3c, y=-(3a and

/J
==ya - oc. Compare Art. 86. By the instantaneous orbit is meant the orbit

which a planet would describe round the sun if the disturbing forces were
suddenly removed. The equation exhibits the effect of the components of
the force along and perpendicular to the radius vector and perpendicular to
the plane of the orbit.]

Ex. 3. Express the equation of motion in a perturbed orbit in terms of
the reciprocal of the radius vector (u), the rate of description of areas (h)and the rate (a

f

) at which the orbit turns round the radius vector per unit
description of angle in the orbit ; and show that it is

/ . N ,

h'u' hfu
(u

[We have to express everything in terms of A==TV/)y6=r
2
c, of u and of a

nd their differentials with respect to the angle c. Writing thus

p^&u-1 we have p==Att
s
.5-(aM- 1

)==/iM
a
(j8M-i-. aM

/w-8
), etc.]

Ex. 4. Express the equation of motion of a particle in the form

Hr Hf

H'f " f'

where u is the reciprocal of the projection of the radius vector on a fixed
plane, a is a unit vector along this projection, y is the unit normal to the
plane, /3=ya, J^is the rate of description of the projection of areas, s is the
tangent of the angle between the radius vector and the projection, and
the independent variable is the angle in the fixed plane.

[Here p=*(a+sy)u-\ a'cr^y, /=0, p= -a, ffu*= c if c is the angle in
the plane. The scalar equations to which the above is equivalent have been
much used in the lunar theory.]
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Ex. 5. Prove that the vector curvatures of an orbit and its hodograph
are

and that for a central orbit they reduce to

dUdp= ffTg dUdp= ft

dp TpTp
3>

dp TT/>
2

where =

(a) Hence the law of nature is the only law for which the hodograph is a
circle for all initial conditions.

ART. 117. The equation of motion of a particle constrained
to move along a curve or on a surface is

where v is the reaction arising from the constraint. If there is no
friction, the reaction is at right angles to the direction of motion
or the vector v lies in the normal plane of the constraining curve
or is the normal to the constraining surface. The condition

S*/j
= 0, ................................ (ii.)

which is then satisfied, allows us to retain the equations (V.)
and (vi.) of Art. 114.

In terms of the deriveds with respect to the arc s of the orbit

which we now denote by p', p", etc., we have (compare Art. 85,

Ex. 1, p. 133),

p= p'v, p p"v*+ p'v, v= s, i)= v'v, ............ (ill.)

or in the notation of Art. 86, p. 134,

p= av, p= /3cliP+ av .................... (IV.)

where v is the velocity ;
and the equation of motion is

p"iP+p'v= g+v. ....... .................... (v.)

In the case of a constraining curve, the motion must be deter-

mined from the energy equation which is alone available for

this purpose. For a surface we have, on elimination of the

unknown tensor of i/,

and in this equation v is proportional to a known function of p
the result of operating by V on the scalar equation of the

constraining surface. (Art. 54, p. 69.)

If on the other hand we seek the reaction arising from the

curve or surface, we have by (ii.)

the energy equation being employed in the last transformation,
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Fo
form

. . .

For a rough constraint, the equation of motion may be written in the
rm

(vin.)

where n is the coefficient of friction.

Resolving along and at right angles to p' this equation gives

w'+Sp'= -nTv, vsspV-p'-nTp'^; ...................(ix.)

whence on elimination of TV,

pV-p'-LVp'^ -Uv.w-^'-hSp'g) ;
..................(x.)

or again in terms of the vectors p and
p*,
we have

^Yp(p-^)=U(pj/).Sp(/>~^), .........................(XL)

because Sp(p-|)= wT(pv) and UVp(p-)= lJ(pi/). Equation (x.) or (xi.)

may be employed for a constraining surface. In the case of a" curve we
must take the tensor of each side to eliminate the unknown Uv. We may
remark that it follows from (ix.) that if the curve is a geodesic on the

constraining surface V. vp'~
1

'Vp
f =Q or

Svp'f=0, .......................................(xii.)

because (Ait. 90) for a geodesic p" \\v. In other words, when the direction

of the applied force is coplanar with the normal to the surface and the

tangent to the orbit, the curve is a geodesic on the surface, and in particular
this is the case when there is no applied force.

If the constraining curve or surface is in motion so that, Art. 104,

p. 168, the vector p to the particle from a fixed point
is connected with

the vector ST to the particle from a point moving with the constraint by the

equation
p=T+ q&q~ l

, ..................................(xni.)

in which r and q are supposed to be given functions of t, the equation of

motion takes the form (compare Art. 105, p. 171)

r+g(f3+2Vi&+ Vitt+~Vt,'Vitt)q-
l ^g+v, ...............(xiv.)

and for a smooth constraint,

(xv.)

g^q~~
l

being the velocity with which the particle moves along the curve or

surface of the constraint.

Ex. 1. A particle moves under gravity on a surface of revolution having
its axis vertical.

[If k is the unit vector directed vertically downwards, the equation of

motion is V(p gJc)vQ. Since the surface is of revolution, the vectors v,

k and p are coplanar, or Sp&v=0, so that Vp ||
~Vkv

\\ Vvp. Operating on
the equation of motion by S& or Sp we find the integrable relation S&pp=0,
so that Spp= h where h is the constant rate 6f description of area by
the projection of p on the horizontal plane. We have also Svp=0 and

$kp=~-z if we write Sp= z. From these three equations pS~Vkp"Vkv
== KVJcv zVv~Vkp ;

and if the equation of the surface is given in the form

Tp=/(z)=/(-S&p) we may put v=Up -/() and NJcp^^Jcvf(z). Hence

p
2Vp2=A^-;sV2

Tp
2

;
and by A.rt. 114 (vi.) on expressing everything in

terms of z we obtain the equation

If the surface is spherical f(z) is constant and equal to the radius of the

sphere, so that /' is zero.
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Again if w is the angle the plane of p and k makes with some initial plane,

from which w can be found in terms of z by the previous equation.
If, on the other hand, the equation of the surface is given in the form

Sjo=/(T/>), it may be more convenient to obtain an equation in r(= T/>)
and r by using Spp+rr=0 instead of Skp+z Q ; and if the equation is of

the form SkpJ(TVkp)=f(p) we may use

Ex. 2. A particle slides under gravity within a fine smooth tube which
revolves round a vertical axis.

[The origin being taken on the axis, the vector to the particle is p?=qWq~
l

(compare p. 168), and if ?? is the angle through which the tube has been
rotated from some initial position,

p= q (tar 4 itVto) q~\ p= q(ts+ 2hVk&4 w2/Vto 4 nVto) q~
l

;

while the equation of motion is p=gk+v where SvqGjq~
l= Q. Because the

axis of q is parallel to k, we find on elimination of the reaction v
y

and in this equation n and ?i are given functions of t when the law of rotation

is known, and T is a known function of a parameter variable with the time
when the form of the tube is known. If the velocity of rotation is uniform,
the equation integrates and

If for example the curve is a helix with its axis vertical so that

GJ= a (i cos u +j sin if) 4- bku we have &2= (a
2+ 6'

2
) w

3
,
and Vfe-= a2

,
and

the equation is U2
(a

2 + b2)+n2a2=
%(/bu-- C: and if the curve is a vertical

circle, Toa(i cos u+ k sin u) we have

u~a?+n2a* cos2 ^ = 2ga sin M C."]

Ex. 3. A particle under gravity traverses with uniform velocity a

smooth curve which rotates uniformly round a vertical axis. Prove that

the curve lies on a paraboloid of revolution.

[The equation of the surface on which the curve must lie is

Ex. 4. Two particles of masses m and m', connected by an inextensible

string which remains stretched throughout the motion, are projected from
the extremities of the vectors a and a! with the velocities /3 and fi' ; prove
that the vector to the particle m during the motion is p where

+m' T(a - of) . (TJ(a
-

a') cos nt+U(/3 ~ f3') sin nt),

the scalar n being defined by

T(a-aO-T(j8-j8').

Ex. 5. If a particle can be made by suitable initial conditions to describe

a given curve under the action of a force
,
show that

p' and p'
r

being the first and second deriveds with respect to the arc and a
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suitable constant being included in the integral which is taken along the

curve.

(a) Hence deduce M. Bonnet's theorem.

[We have m(/>V+pW)= which gives mvv'= -S/>' and mv2

-2jsdp,
etc. Conversely if the condition is satisfied it follows that a particle will for

suitable initial conditions describe the curve. If
1} 2>

etc., are forces under

which, acting separately, a particle can describe the curve, and if for greater

clearness we replace Js ndp by tfn+Js nd/) (the new integral being taken

from any selected point on the curve), we have

S{2/>
ff

(<?n+ Js,d/>)
-
Sp'Vp'f4 = 2p"(2^+ JS

. 2 n . dp
- pTp'S^) ;

or a particle will describe the curve freely under the action of the
^

resultant

of the forces provided its mass w and the velocity v satisfy ww;2 =S?tt ni;w
2

initially.]

Ex. 6. Show that the condition of the last example is equivalent to the

conditions fi

which assert that the force must be in the osculating plane of the curve, and
that the rate of change (as we pass along the curve) of the product of the

radius of curvature into the normal component of the force is equal to double
the tangential component.

AKT. 118. Tait has applied the calculus of variations in the

following manner in the determination of the curves of quickest
descent, or the braehistochrones, for a conservative system of

forces. (Quaternions, Arts. 518 and 523.)

If the integral A = Q.Tdp=Q.&8 ........................ (i.)

is taken along a curve, Q being a given scalar function of p, the
variation of the integral corresponding to a variation of the
curve is

8A =
JcSQ

. Td,o+
J()

. <5Tdp= -Js6>V
. Q . Tdp- jQSTJdp

. Sdp.

The symbols d and S are commutative in order of operation,
so that on integrating by parts

=
J<2SUd/>

. d6> = [QSUdp . 6>]
-
Js<$pd(<2Udp)

where the term in square brackets corresponds to the variation
of the limits of the integral. Thus

. SP]+ s<Jp{d(QUdP)-VQ. Td/>} ......(n.)

If the integral is stationary, the variation vanishes and the
term under the sign of integration in (n.) must be zero for all

vectors 8p. And since Sp may have any direction when the
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curve is not restricted in any manner except at the limits, we
must have

d(QUdp)-VQ.Td/> = 0, or
|-(Qp')-VQ

= .......(HI.)

If on the other hand the curve is constrained to He on a
surface so that Svop= where v is normal to the surface, the
condition is / a \

...................... (iv.)

For the brachistochrone the integral A is the time of descrip-
tion of the curve or

...........(v.)

by Art. 114 (VL), so that VQ= VP. Q*=VP.Tp- 3
. The first

equation (in.) now becomes

/
5-.<0 or .p

or finally p+p~ l
- VP.p= ........................ (vi.)

Tait remarks "It is very instructive to compare this equation
with that of the free path (/>+VP= 0); noting how the force

VP is, as it were, reflected on the tangent of the path."

Ex. Determine the brachistochrone when gravity is the only force.

[Here VP= -
/c,

a constant vector, and the equation dp~
l -

KTp~~
2dt~Q

shows that p~
l= a+ Kf(t) where a is a constant vector which may without

loss of generality be supposed to be perpendicular to K. Substitution gives

d/-(Ta?+TiCy2
)di

=
0, and the solution of this is

f-T . /c^a tan TaK(t- tQ)=T . je~ia tan n(t-t^

where n T . a/c. Thus

and p=Ta-1
. cos?n(t

- 1 )(Ua+UK tan n(t- 1 ) ),

and on integration

which represents a cycloid. (Tait's Quaternions, Art. 524.)]

J.Q. N



CHAPTER XV.

DYNAMICS.

ART. 119. Let m
l5
m

2 , etc., be the masses of particles of any
dynamical system which are situated at the extremities of the

vectors pv p2 , etc., drawn from a fixed origin. By Newton's
second law the equation of motion of the particle ml

is

^lPl= fl+fl2+ ^13+ etC., ...................... (I.)

where is the force external to the system which acts on 7)^
and where

12
is the force due to the interaction of m

2
on mv etc,

By Newton's third law action and reaction, are equal and

opposite, or

&2+&i = <>, Vp^+Vp^O, ................ (ii.)

these being the conditions that 1̂2
and

2̂1
should equilibrate.

Hence by adding equations such as (i.) for all the particles, and

by adding the results of operating on these equations by Vyo1?

Vp2 , etc., we obtain the equations

Imfa=Z& SmjVpiA= 2VPl ,
............... (in. )

which are independent of the interactions of the particles.

Attending to (ir.) the rate of change of kinetic energy of the

system of particles is evidently

.
, -(iv.)

and because (11.) implies f12 || p1 p% we see that this is inde-

pendent of the interactions provided the relative velocity of

every pair of particles is at right angles to the line joining
them or in other words, provided the distance between every
pair of particles remains unchanged.

Writing

so that M is the total mass of the system, p the vector to the
centre of mass, the resultant external force, y\

the resultant
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moment of the external forces with, respect to the origin as base

point and 6 the resultant moment of momentum with respect to
the origin, the equations (in.) become

!//>
= Q=-n............................(vi.)

When the external forces are zero, and
r\

vanish and the

integrals of (vi.) are

Mp= ut+/3, =
y, ......................(VIL)

where a, (3 and y are constant vectors
;
and when the internal

forces are given functions of the distances between the particles,
we have also in this case the integral of energy

*= 2/. T(Pl
-

P2) where& = U (Pl
- p2)/ . T(ft - Pa). (vin.)

ART. 120. With reference to a point moving in any arbitrary
manner, the extremity of the vector e, the moment of momentum is

5~e6); ....... (l.)

and (vi.), Art. 119, may be replaced by

Mp=& = *--JfV(p-e)e, .................. (II.)

where ^= 77 Ve is the resultant moment of the forces about the

extremity of e. In particular when e terminates at the centre of

mass, the equations are

MP= & QO
= ^> ......................... (in.)

where 6 and q refer to the centre of mass. These equations are

of the same form as those of the last article. We may note that

in general

where p = p e.

Ex. 1. Find the locus of points fixed in space about which at any instant

the moment of momentum is a minimum.

[If the extremity of e terminates at a fixed point &= #- J/Ycp, and the

locus of points for which T$e has a given value is the right circular cylinder

1(0 - J/Yep)=T<9e. Writing 0=*M(pp+Ye p) we have

The locus is the line J/Yep=Y0p . p"
1
. Compare Art. 99, p. 156.]

Ex. 2. A point moves in such a manner that the moment of momentum
with respect to it is constant. Determine the particulars of the motion.

[If is constant, the relation (iv.) JtfVptpe=-8+ 0*+MVpp gives, on

differentiating twice and utilizing the equations of motion (Art. 119 (vi.)),

pe= -77+Ypf,

because $e is constant. Forming the vectors of the products of right and of

left hand members of the first and second of these three relations, and
also forming the scalar of the product of corresponding members of the

three relations, we obtain the equation
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so that e is expressed in terras of quantities which are known when the

motion of the system is given. There are thus two paths corresponding to

the double sign symmetrically placed with respect to the path of the centre

of mass.]

Ex. 3. Befer the equations of motion to variable axes.

[See Art. 105 and the formulae of differentiation (vi.) and (XL), p. 170.]

ART. 121. In the case of a rigid body, let e be the vector to

any point fixed in it and let to be the angular velocity. Then by
Art. 105, p. 170, . f

pI -=Vo)(pl ) }
.........................(I.)

because the velocity of the point in the body at the extremity of

p1 relatively to that at the extremity of e is due to the angular

velocity co. Equation (i.) of the last article may now be replaced

so that 6s is a linear function of co. The linear function e is

fixed relatively to the body because the vectors pl e, etc., are

fixed in the body, but in considering the rate of change of
<peu>

we must take account of the change of orientation of the body as

well as of the change of o>. We have (Art. 105 (ix.)),

-T7 0<<e*>
= ^ h Ve00e<o

=
<p ea)+ \T

co<pe(jo ;
............ (in.)

and equations (n.) of the last article become

jJf/>
=

ecb+ Vft)0ew= ^e-^V(p-e)e; ......... (IV.)

and when e terminates at the centre of mass (Art. 120 (ni.)),

Mp=& + Va>0a>
=

i7 ,
..................... (V.)

if (Art. 120 (IV.)) ^a)
= ^eco-JfV(/o~e)Ycti( /o-e) refers to the

centre of mass.

If the body has a fixed point, the extremity of e, (iv.) reduces to

^ w+ Vft)0 w= j7e
......................... (VI.)

In general the vector
^>6co

is the moment of momentum of the

body with reference to the fixed point which instantaneously
coincides with the extremity of the vector e, and the moment of

inertia round any line (Uco) through that point is

Sft)-
1^=2m1TV.Uco.(/)1 -e)

2
?
...............(vil.)

and this is numerically equal to the reciprocal of the square of

the parallel radius of the quadric

Ss70e
r= 1 .........................(vm.)

The function
(pe may be called the inertia function corre-

sponding to the extremity of e.
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The principal axes of the body through the point are the axes
of the self-conjugate function

<pe ,
and the moment of inertia

round a principal axis is maximum, or minimum, or at least

stationary in value. If the extremity of e is fixed in space as

well as in the body, so that the body moves about a fixed point,
it appears from (vi.) that when the body is set rotating under
no forces about one of these principal axes, it will rotate

permanently round it. For we have Vo^eo = if o> is along a

principal axis, and e^= by(vi.); hence o> = since the function
has not in general a zero root.

The energy equation (Art. 119 (iv.)) easily reduces in terms
of e and o) to

V2 - MSeVo^p - e)
- JSo>^ J

= -Se- Swj;., . . .(IX.)

where
rje
= 2>V(p1 )gl i

and when e terminates at the centre of

mass j

~(^MTp!- iSco^>a>)
= - Stf-S^ ................(x.)

Ex. 1. Prove the relation (in.) by direct differentiation of the explicit
form

[We have . V. (Pl
-

)Y<o(Pl -)

=V . Vo)(Pl
-

) Vco(Pl
-

)+V .
(Pl

-
c)V<o(ft

-
)+Y . (ft

-
)Yo>Va>(ft

-
)

by (i.). The first terra on the right vanishes. The third is

Vo>(ft-)Sa>(ft- ) or V . o>V(ft -)Vo>(ft- ).]

Ex. 2. If / is a principal moment of inertia at the extremity of the
vector e, or in other words a latent root of <

e,
show that

P - Zn"I2+ (n"
2+O/- (n-V - n)= 0,

where %", ^' and w are three positive scalars, namely,
-

e) ( 2
-

e)
2

;

[See Elements, Art. 417, and observe that ^> eco=w
//

w4-2m1(/)1 ~)Sa)(ft-).
Compare Art. 65, Ex. 1, p. 92.]

Ex. 3. The function <<o corresponding to the extremity of the vector 57

drawn from the centre of mass is

where
<j> corresponds to the centre of mass

;
the principal axes at the

extremity of 73 are the normals to the three confocals.

,

which pass through that point ; and the locus of points at which one of the

moments of inertia is equal to / is the quartic surface

i/-1/~1to= - 1.

[If ^<aa=/a= <5f)a+JfV^Va^, we have

etc., and u=M~ lI- Tor 2
. Compare Art. 101 (xx.) and (XXL), p. 162.]
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Ex. 4. A body under no applied forces moves about a fixed point.
The equation of motion <<o-f Vo><to= 0, furnishes the integrals

where and k are constants of integration. Interpret this result.

(a) The equation So></>a>= -A2 may be regarded as representing an ellipsoid
fixed in the body which rolls upon a plane fixed in space, and represented by
the equation So)$= A2

,
the point of contact being the extremity of the

vector (0.

(6) The equation #2Seo<co-A2
<jW

2 ==0 represents a cone fixed in the body
which is the body locus of the instantaneous axis of rotation

;
and because

the rate of change of CD is the same with respect to the body as with respect
to lines of reference fixed in space (Art. 105 (x.)) it follows that this cone
rolls on the space locus of the instantaneous axis.

(c) The extremity of the vector o> describes in the body part of the curve
of intersection of two quadrics fixed in the body (the polhode) Sco<o> = k2

and S(o< 2w= $2,
and the locus of the same point in space is a plane curve

(the herpolhode).

(d) The vector $, though fixed in space, describes in the body the cone

g*&6$~
lQ A2$2= where #=T$ is the constant tensor of #, and the extremity

"of 6 traces out part of the sphero-conic in which this cone cuts the reciprocal

(e) The reciprocal quadric, fixed in the body, passes through a fixed point
in space, and the central perpendicular on the tangent plane at this point
varies inversely as the angular velocity.

(/) The relations

Scco (w+ Voco) = 0, S<(u (ui
-Vww)= 0,

in which w is the rate of change of cu with respect to the body, may be
obtained by differentiating the equation of motion. Hence

<o) . (Seowto+ Vcoci)2)

and <^cb(Sa)a>6J+ Vcua)2)

and the vectors cu, w and w satisfy a condition

SVo) (ft
- Vcow)Vu> (w + YOKU)= 0,

which is independent of the constants of the body. The corresponding
relation gVo)(D^ _ gV<UD,CO)V^COD^CO=

connects co and its first and second deriveds DCU and D^CO with respect to

fixed axes.

(g) Knowing cu at any instant and its first and second deriveds with
reference either to axes fixed in the body or in space, the function < is

determinate to a factor.

Ex. 5. The angular velocity of a body moving under no forces about a
fixed point is expressible in terms of elliptic functions by the relation

where =^(4^ 1^ and

<x being a constant imaginary vector, ^ being a linear function coaxial with
<j>

and having for its latent cubic 4g
3
-~Ig-J~Q.

[Compare Art. 84, p. 124. Here the assumed expression for to gives

or J# (<jkj 4-^)~a -f (<i 4-^)~Va<aV^i(^')= 0,
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where mfa) is the third invariant of <^ +#. We may obviously take the
first invariant of ^ to "be zero without loss of generality, so that the latent
cubic of the specified type, and the differential equation for x is reduced to
Weierstrass's standard form.

The function <^ is of the form <
1
= + 6x+ c^ where x and -^ are the

auxiliary functions for <, and when the first invariant is taken to be zero,
3-f-2&97i"+cw

/

=0. The scalars b and c are arbitrary constants of integra-
tion. Assuming a^ui+yj+ ick where 1 j, k are the axes of <, we see that
Au*=(B-C)vw, Bv = (C-A)iou, Cw= (A-JB)uv, A, ^ and being the latent
roots of < the principal moments of inertia. Thus

^

and the latent roots of 0, are }b( + C- 2J)- lc(CA+AB~ 25(7), eta
Moreover since by definition of a, we have'

J

Scua= 0, Sa<'2a= and also
a2 =4-1 as may be easily shown, we find ^w^^^a<f>(^1 +jc)a=cABO and

)a= -bABC, or in the notation of the last example* '

Ex. 6. -Resolve the vector of angular momentum <to, along and at right
angles to w, and investigate the relation of the components to the auadric

[Com pare Art. Ill, p. 181.]

Ex. 7. The motion of a freely moving body is known, and it is required
to determine as far as possible its dynamical constants.

[The mass cannot be determined, but if we know the particulars of the
motion of three points, the extremities of e

l5
e2 and e3,

we can find co from the
two equations ^ - e

2
= Voj(e1

- e
2), ex

- e3
= V<o(e1

- e3).
In the next place, to find

/>,
the vector to the centre of mass, we have

!=/> + Vo> (e^p), and t
<

1
= /5+Vo,(e1 -p)H-VtoVw( 1 ~/o),

and because />=0 the second of these relations gives p on solution of a linear

equation.- To find the function < corresponding to the centre of mass we
differentiate co twice and use the results of Ex. 4, (/) an

'

Ex._ 8. Given four particles whose united mass is that of a given rigid
body, it is required to connect the particles by a light frame-work, so that
the dynamical constants of the system may be identical with those of the
body.

[If <A.= -2m
1p1Sp1

A, where A is an arbitrary vector, and where the
vectors p19 etc., are drawn from the centre of mass of the body to terminate
at the particles of mass mD etc., the problem is solved when we reduce the
function < to the form

<A= -cj&aSaA-5j8Sj8X-cySyA.-^5SSA where aa+&/?+ey+ <$>=(),

, &, o and d being the masses of the four particles and a, ft, y and S being
their vectors of position. Now for some scalar #, we have

ow =8^878, .*?&==- SayS, #c=Saj8
and we also have (Art. 65, Ex. 1, p. 92)

^A= -
2a&Ya/3S<x/5A, m=

The second of these serves to determine #, for it reduces tom~.
Substituting a, for A in the first, we find ^<x=^c^V(^-S)(y-5) ; and when
we operate with Sec, Sft and Sy on this and similar expressions we have
&a^a=~x2bcd(b+ c+A etc., &a*lrfi

= etc.=x*abcd. It easily appears that
the six relations in a, $ and y imply the remaining six involving $ when
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Assuming first any vector a which satisfies the condition

that is any vector which terminates on a certain quadric we have next the

two relations Sa^ft=Abcd, Sfty]fj3=
-x2acd(a+c+ d) which^ require the

vector /3 to terminate on a conic. Selecting /3 there remain the three

equations Sa^y= B^y=j^abcd^ Syi^y= -x?abd(a + b+ d) which determine

y as the vector to a point of intersection of a line and a quadric. Finally,
we have 8= d~\aa+b/3+cy).]

ART. 122. When an impulse acts on a system of particles, the

velocity of the particle mx
is changed from

yoLO to
/5X

where

where Xx
is the external impulse acting on m

x
and where A12 ,

X13 ,

etc., are the impulsive actions of the particles m2 ,
ms, etc., on m1

.

These impulsive interactions satisfy conditions analogous to (n.)
of Art. 119, and we obtain the equations

2m
1 (p1-pli0)

= 2X1 , 2m
1Vp1(p1 -/5li0)==:2V/>1X1 ,

......(n.)

which are independent of the interactions. The work done on
the particle

/m
l by the impulse is (Thomson and Tait, Art. 308)

-JS( /j1 +/5ll0)(X1+X12+X18 +etc.), ............... (in.)

and the total work done on the whole system is

For a rigid body it is frequently convenient to define the motion

by the velocity (cr) of the point of the body coinciding with
the origin and the angular velocity (o>). Thus

/
61
= o- V/51co,

and if X= 2X19 M= 2V/>1
X1, <j><

= 2V^V^, ............ (v.)

so that X is the resultant force and
/x,

the resultant moment of

the impulse with respect to the origin while
<j>

is the inertia

function corresponding to the origin, the equations (li.) become

M(ar- cr -V
/o((-( ))

= X, JfVp(o o- )+ 0(a)-a> )
=

/x ; (VI.)

and because X12 is parallel to the line joining two particles and
therefore perpendicular to fa fa a^d to

/51>0 /62f0 ,
the expression

for the work done is independent of X12 , etc., and reduces to

W= ~iS((r+cro)X-iS(a>+ o) )M , ............... (vil.)

because we have

When the origin is taken at the centre of mass, (vi.) becomes

-MXo cr )
= X, ^ (co~co )

=
/x, ...............(vui.

where < refers to the centre of mass, and thus we have at once
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or, in the language of the theory of screws, when a free body
having an instantaneous twist velocity (<r , co ) is acted on by
an impulsive wrench (/*, X), the instantaneous twist velocity

immediately after the impulse is (o^-flf^X, o? + ~V)> the
centre of mass being the base-point. (See p. 171.)
When the origin is taken at an arbitrary point, we may replace

(vi.) by
, ...... (x.)

where
(<r, ), (<r , oo ) and (/*, X) are referred to the origin as

base-point and where <

corresponds to the centre of mass. This
is easily shown in various ways.
The form of the expression (vn.) is independent of the choice

of base-point. In particular when the base-point is at the centre

of mass, we find from (vn.), (VIIL) and (ix.),

W= - $(Mo*+ Sft>0 )+ JC^o2+ So> 0oo)

)..........(XL)

Ex. 1. Prove that the solution of (vi.) is

(co
- o

where m is the third invariant of
<$>

and where
x.
and i/r are the auxiliary

functions.

[Compare Ex. 5, Chap. VIIL, p. 102.]

Ex. 2. A rigid body is moving in any manner and an impulsive force is

applied to a given point of the body so as to cause that point to move

instantaneously with a given velocity. Determine all particulars.

[The centre of mass being taken as base-point, and a being the vector to

the point in question and d being the velocity of the point, the equations

M(o- <r )
= A, <(co a> )=VaA, <r Va<o= a

serve to determine the unknowns cr, w and A. We have on elimination of

<r and A, <o> J/aVaw= <w +J/Va(a tr ) ; and by Ex. 5, Chap. VIIL, the

solution may be written

(co
- o> )(m

- MSa^x*+3/2a2Sa<a) =MtyVa (a
- a

)
-M2V<aVaVa(a

- d
),

where d = cr Vaa> is the initial velocity of the point. Hence in terms of

a) - o) as given by this equation

cr-<T = d d + Va((t> w ) and A=J/~1
(cr CTO).]

Ex. 3. A rigid body is moving in any manner. Suddenly a line in the

body is constrained to move in a definite manner.

[If a and /3 are the vectors from the centre of mass to two points on the

line, we may suppose the impulsive wrench to consist of forces A and A'

applied at the extremities of a and /3. Hence

where a and ft are the velocities of the extremities of a and
/3. From the

first and second equation we deduce S(/3 a)<(o> co )+ J/Sa/3(cr cr )
=

0,

which asserts that the moment of momentum about the line is unchanged.
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We also have o>=(a~/?+^)(a ft)"
1
,
where x is a scalar to be determined

by substituting for co and cr in the equation just found. Solving the linear

equation for x we find to, and hence cr and A and A'.]

Ex. 4. A rigid body is moving in any manner. It is required with the
least possible expenditure of energy to cause a given point to move in a

given manner.

[Writing equation (xi.) in the form

TF= - 4(M(a+ Vaw)2+ Scoc^to)+ (J/(a +Vauoy+ Scou<to ),

we express that this function of to is a minimum. We find

<o> MaVafj)= J/Vad,
and as in Ex. 2, this gives

co (m - MSa<t>x<i+M 2a2Sa<a)=J/^Vaa - >/*Vr/>aVaVaa,
and substituting in <r= a-fVato, in <(co (%)=//. and in J/"(cr CTO)

= X, we
determine the impulsive wrench and the instantaneous twist velocity.]

Ex. 5. If JP and p' are the pitches of the screws of an impulsive wrench
and of the instantaneous twist velocity produced by the wrench on a free

quiescent rigid body ; if also sr and S7' are the vector perpendiculars from
the centres of mass on the axes of these screws, JJ/cr M(p

f+ tU
1

') to= A,

(a) Hence in terms of A and to,

rV

)
= TA,

(b) The shortest vector from the axis of the impulsive screw to that of

the instantaneous screw is

(r) Show that

^w.co-
1

and express the moment of inertia about the line through the centre of mass

parallel to the instantaneous axis in terms of p, p
f

,
tZT and Gj'.

(d) The cosine of the angle between the axes of the two screws is

p
r

(p'
2+Tl3"2y* ; and if the axes are parallel, that of the instantaneous screw

passes through the centre of mass or else the instantaneous motion is a
translation. In the former case the pitch and vector perpendicular on the
axis of the impulsive screw satisfy the condition

Ex. 6. Determine the dynamical constants of a free body by observing
the effects produced by impulsive wrenches in starting the body from a

given position.

[If p is the vector from a fixed origin to the unknown centre of mass,
if an impulsive wrench is

(//,, A) and the corresponding twist velocity is (a-, co)

for the fixed origin as base-point, the equations are (compare (x.))

together with others with accented letters o-', o/, //,', A', cr", o>", ft", A" for

other impulsive wrenches and the corresponding twist velocities. JFrorn

these equations J/, p and < (corresponding to the centre of mass) are to be
determined. The mass follows at once from the first equation, and we have

J/= SAcu (Sera;)-
1 = SAV (ScrV)-

1= SAV
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ie vector p is given by
V (cr

-M~l
A) (<r'

- M~l
X')
-Wpo>V/aco'

= -
/>S (cr

- 3/- 1
A) <o'.

the function < can be found from three couple equations. Some rather
i,nt identities connecting the wrenches aod the twist velocities may be
ced from this beautiful problem of Sir Robert Ball's.]

L 7. An impulsive wrench of given pitch and intensity is applied to

je quiescent rigid body. The axis of the screw of the wrench passes
ugh a fixed point ; find the direction of the axis so that (a) the kinetic

y, or (b) the angular velocity, generated by the impulse may be as

b as possible.
lie base-point being: taken at the centre of mass, we have M.crX.,
(p+ ~Vy)\ where TA, p and y are given. The kinetic energy is

>(jt?-hVy)A<~
l

(2?4-Vy)A ^J/^A2
,
and if this is a maximum subject to

condition that TA is given, we have (p ~Vy)<f>~
l

(p~\-~V*y)\gX where
a scalar a latent root of the self-conjugate function on the left, and for

ximum g is the greatest latent root. The kinetic energy is

least latent root answers to minimum kinetic energy. For a maximum
minium angular velocity deal similarly with the equation

X. 8. An impulsive wrench (/x, A) is applied to a free rigid body
ng with the instantaneous twist-velocity (cr, o>). The change in the
tic energy is !T- 8(0^+ 0-A.),

e T is the kinetic energy that would have been generated were the
at rest.

.)
With the same meaning for T, show that the wrench

jhe arbitrary screw
(/ot, A) leaves the kinetic energy of the body

anged.

) The centre of mass being base-point, any wrench 011 the screw

J/cr), acting on the body when moving with the twist-velocity (cr, o>),

is the screiv of the instantaneous twist-velocity unchanged.

x. 9. Two bodies collide. Assuming that the impulsive interaction up
certain stage of the impact is equivalent to a single force (A) at the

b of contact, the equations of motion are

'-cra)
= -A, ^(a)/- <o2)=

^e (o-l5 Wj) and (cr/, CD/) are the twist-velocities of the body Ml just
re the commencement of the impact and at the particular stage of

impact under consideration, the centre of mass of M
l being base-

b
; where

<f>
is the inertia-function of M-^ corresponding to its centre of

i,
and where 04 is the vector from the same origin to the point of

ict
; 0*2, o>2 , cr,/, co2',

< 2 and a.2 being in like manner related to the body
nd to its centre of mass.

r

) The relative velocity of the points of the bodies in contact is

Voo/o,! cr.
2

'

Va>2'a2
= <rl+ Vco

1
a

1
a-2 Va>2a2+ (J/j"

1
-f M^~l

) A

defly, it is r'
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where ^> is a certain self-conjugate function determined by the circumstances
of the impact and where r is the initial relative velocity of the points in

contact.

(b) For perfectly smooth bodies, VA,v= 0, where v is the normal to the
bodies at the point of contact, and the value of A corresponding to the end
of the "

first period
"
of impact is

and the twist-velocity of the body Ml immediately after the impact is

fa - (1 + e)J l

-l
v8vr(Sv$i>)-

1
, ^ -

(14- e) <f>1

~l'Va
1vSvT(Sv3>v)-

1

\

where e is the coefficient of restitution.

(c) The total loss of kinetic energy is

-(l-e^STvMSHh/)-1
.

(d) For perfectly rough bodies, Wv= 0. The value of A, corresponding
to the end of the first period of impact is A= -&~lT

y
and the twist-velocity

immediately after the impact is

fa -
(l + e)Jfr

1*' 1^ o>i

(e) For perfectly rough bodies, the loss of kinetic energy is

ART. 123. When a rigid body is not perfectly free but

constrained in any manner an impulsive wrench will in general
be partially neutralized by the reaction of the constraints.

Referred to the centre of mass as base-point, we have for a

quiescent body,
Jfo- = X X,, </>(jO

=
ju. [jL/)

..................... (l.)

where
(JUL, X) is the impulsive wrench and (/*,, X,) the wrench on

the constraints, or where ( //-,, X,) is the reaction of the

constraints. In order to determine the instantaneous motion

produced by the impulsive wrench
(//,, X), it is necessary to know

the evoked wrench (^^ \). We consider the case in which the

constraints are smooth, or so that no evoked wrench can generate
any motion In this case the work done by the wrench

(//, X,)
must be zero, or we must have (Art. 122 (VIL))

S(A*/ + X
/<r)
= 0, ........................... (II.)

where (/x,, \) is any wrench arising from the constraints and
where (V, co) is any possible twist velocity of the body. The
screws of (p,, X,) and of (a-, ) are said to be reciprocal when
this condition is satisfied

;
and for smooth constraints, every

possible twist velocity is reciprocal to every possible wrench

arising from the constraints.

A body with one degree of freedom can move only one way
from a given position, by a twist about some definite screw

fa, co
x ).

A body with two degrees of freedom can move in a

singly infinite variety of ways from a given position ;
if

(<r^ o^)
and (<r2 , co2)

are two screws about which the body can begin to
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twist, it can begin to twist about every screw of the two- system,
(JOl(Tl+x ar^ #!! +#2%)* w^ere x

l
and x.2 are scalars, as easily

appears from the composition of small displacements (o^dtfp fc^d^)
and (cr2d 2 , o>2d 2). Similarly a body with in degrees of freedom
can begin to twist about any screw of the ^-system (So^o-p 2a?

1
a)1),

where (<715 a^) . . . (orw , (*>n) are n independent screws about which
the body can begin to twist; and being given n independent
screws about which the body can begin to twist, all possible
initial motions belong to a given system of twists. Every
wrench reciprocal to n independent screws of the freedom is a
wrench arising from the constraints, for every such wrench is

reciprocal to every possible twist on account of the linear

character of the condition of reciprocity (n.), and no such
wrench can generate any motion in the body. By expressing
that a wrench

(//,,, \) is reciprocal to n screws of the freedom,
the number of its arbitrary constants is reduced from 6 to 6 n
since n conditions (n.) must be satisfied ; and thus the screws of

the constraint compose a system of order (6 n). This system
can be determined when the system of the freedom is known,
and conversely.

Again knowing the system of screws of the freedom we can
determine what Sir Robert Ball calls the screws of the reduced
ivrenches. A reduced wrench causes no reaction on the con-

straints
;

it produces the same initial motion as if the body were

perfectly free. In equations (i.) the wrench
(/M. jut,,,

A A
y) is a

reduced wrench, or
(<^<w, Mar) is the reduced wrench corresponding

to the twist velocity (<r, <w). The system of screws of the reduced
wrenches is tiZx M^xr- when that of the freedom is

Suppose now that we select n independent screws of the

-n-system of the reduced wrenches and 6 n screws of the

(6 -n-)-system of the constraints, and that (Art. 102) we resolve

an impulsive wrench (^ A) into its components on these six

screws, we shall have (compare (XVL), p. 166),

fjL^fi+fjL, A= A
/+A/ , ..................... (in.)

where (//, A') is the component of (p, A) belonging to the system
of the reduced wrenches and where (pc/? \) is the component
belonging to the system of the wrenches of the constraint.

The instantaneous twist velocity is then given by the relations

Ex. 1. Prove that

ft
= < A, fjf

=
<f>'

A/

represent respectively a three-system of screws (/x, X) and the reciprocal

three-system (//, A/), < being a given linear vector function and A, and A,'

being arbitrary vectors.
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[Compare Art. 102 (iv.), and observe that if (//, A') is reciprocal to every
screw of the system (^ A), we must have SGuA'-j-//A)=0 or SA(<'A'-h//) =
for all vectors A.]

Ex. 2. Determine triads of co-reciprocal screws of a three-system.

[If the screws
(ju,15 A.J.), (/u2 ,

A
2) and (/z3,

A3) of the system ^= <^>X are

mutually reciprocal, SA
1(^>+?>

/

)^2
=^ SA2(^-hc^')^3 ==C)

5
SA3(^4-^>

/

}A 1
=0

;

or A
l5

A2 and A3 are parallel to mutually conjugate radii of the quadric
= const. Thus

where j,j and Jc are three mutually perpendicular unit vectors.]

Ex. 3. Determine sextets of co-reciprocal screws.

[Take any triad of co-reciprocal screws of a three-system /x=<j6A, and any
triad of co-reciprocal screws of the reciprocal system //,= $'A.]

Ex. 4, Resolve a wrench (or twist) into its components on six co-

reciprocal screws.

[If (/AJ, Ax) . . .
(ju-e,

A6)
are the six co-reciprocals, we can find a linear

function < so that (j^, AJ, (ju,2 ,
A2 ) and (/*3 ,

A3) belong to the system ju,'
= <A';

and then (/i4 ,
A4), (/o,5 ,

A
5 )

and (jufl>
AG) will belong to the system /*"= <'A".

We assume for the given wrench (/x, A) that ju,=^>A' <'A" and A=A/+ A//

;

whence we have generally A'= (< -I- (J)')~
I

({JL+ <'A) and A"= -
(^ 4- <J>')~

I

([JL
-

<$>A),
and it only remains to resolve A' along A1?

A2 and A3,
and A" along A4,

A
r>
and

A6 in order to obtain the required relations ^=2^^, A= 2^
1
A

1 .]

Ex. 5. Find the (n
-
6)-system reciprocal to a given ^-system.

[This has heen effected in Ex. 1 for n=3. Let n=4, and for any three

screws of the system construct the function <. Besolve any fourth screw

(/, Aw) as in the last example, so that /x^=<^A
/

<f>'X? and An=A'+A
//

5
and

take two vectors \5 and A
6 which with A" compose a mutually conjugate

triad with respect to Sp(< + <j>')p
= const. Then

(
- #6<'A3

- ^6<//AG,
a:

6
A3 -h a? A6)

is the two-system reciprocal to the four-system. To determine the four-

system reciprocal to a given two-system, take any function < satisfying

/^
=

<j>
A

1? ja2 ==</)A2 ,
where (fcl5 Ax) and (/%> A2) are two screws of the two-system,

and determine the vector A3 conjugate to X
l and A3 with respect to the

quadrie S/> (</>+ <')/>= const. The required four-system is

where A; and XB are arbitrary. Similarly we may proceed in other cases.]

Ex. 6, Show that

where p and p' are the pitches of the screws
(/x. A) and (//, A'), and where

y and 7' are the vectors to points on their axes. Interpret this result,
and show that

- S (jwA' -f //A)= (p +p') cosu+d sin u,

where u is the angle and where d is the shortest distance between the axes.

Ex. 7. A body twisting along the screw (o^, o^) is suddenly constrained
to twist along another screw (<r2,

<i>3). Determine the motion.

[If (#0"!, ^coj) is the twist velocity just before the change and
(2/0-3,

that just after, we have

M(y (o-2
- Vpw2)

-
tffo - "VpcDj))

= A,
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where
(//,, A) is the wrench arising from the constraint which produces the

change of motion. This wrench is reciprocal to (cr2,
o>2), so that

Substituting we easily find y to be given in terms of .? by the relation

>2)
= .r

( J/S (o^ Vpwj) (cr*

Ex. 8. A body oscillates under the action of a conservative system of

forces, and at a certain part of its swing the motion is suddenly changed from
a twist about one given screw (o-j, o^) to a twist about another (o-2,

w2 )-

Show that the twist velocities just before the sudden changes of motion at

the beginning and end of a complete oscillation are in the ratio

4- Sw^Wj)-,

the base-point being coincident with the position of the centre of mass at

the instant of the change of motion.

[This is the general case of a self-closing gate. By the last example

and ^/(l/Scrjcra 4- Sa^coj) =./ (J/cr^

where .r : y is the ratio of the twist velocities just before the change from
the screw (o-ls c^) to the screw (cr2 , co>) and just after the change from (o-2 , (o,>)

back to (crl3 Wj). The system of forces being conservative, the magnitude of

the twist velocity throughout the partial oscillation during the continuous

part of the swing depends solely on the position of the body, and is the same

just after the sudden change from (<r.2 ,
o>2) to (<rl5 o^) as just before the next

sudden change from (o-j, c^) to (o-2,
w2). To show that x is greater than </ or

that (J/crj
2

-f- Soj^toi ) (Mvf + Sto2<o)2) (J/Scr-jcrg+ Swj^co2)
2 is positive, turns

on the fact that a2p2
4-y

2 2
2Sa/3Sy8 is positive when a, j8, y and 8 are real

vectors. The value of this expression lies between the limits (Ta/3 Ty8)
2
.]

Ex. 9. An impulsive wrench reciprocal to the instantaneous twist

velocity of a free body at the moment of its application increases the kinetic

energy.

[The change of kinetic energy (Art. 122 (xi.) is -iS/^"
1/^-^"1^2

,
and

this is equal to the kinetic energy which the wrench would generate were
the body at rest.]

Ex. 10. Determine the dynamical constants and the constraints of a

rigid body by observing the effects of impulsive wrenches applied to the

body when placed in a given position.

[Let (/xl? A^), (ft/1? A4) and (crl7 coj represent an impulsive wrench, the

corresponding opposing wrench arising from the constraints and the twist

velocity produced. "We know (cr^ o^) by observation^ that is, a screw of the

freedom. A second impulsive wrench (ft25 A,2) being applied, we find a

second screw of the freedom (<r2, o>2), provided we have not <r2
= &r

l7 <t>2
=

Zo^. In
this second case, however, we have a screw of the constraint, for the impulsive
wrench (ffy tfa, ^2~~^i) generates no motion. Administering a third

wrench we "obtain similarly either a new screw of the freedom or a new screw
of the constraint ;

and from the results of applying six independent wrenches,
the screw systems of the freedom and of the constraint become completely
known. These systems being known, we can by (in.) resolve an impulsive
wrench (p^ Aj) into the reduced wrench (//,/, A/) and the evoked wrench

(ju,/15
Xa) ; and we have as many sets of equations M(^ Ypco1)==A1

/

,

<<o
1 =ju1'-"VpX1

'

as degrees of freedom. For one degree of freedom, the

first equation gives the mass Jl/ So^A/ : Sco^; and a line locus

Vc^ (pSw!V ~
Vo-iV)=
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for the centre of mass. Eliminating p between this and the second equation,
the result is

V . Ye*!VOV - MJS^Ax'=A/SV^A/VoiV ;

or separately,

SVM^SAjX and Sco^co^SK/V-f <r
1
A

1')- A1

' a Scr
1
<o

1 (Sw 1
A

1

/

)-
1

.

The body has therefore a given moment of inertia (So^"^^) round
<o^,

and

a given product of inertia (
- SUco^TJA/) with respect to U^ and UA/ ; but

it is otherwise indeterminate.

For two degrees of freedom, the two force equations completely determine

p, and the couple equations give completely ^wt
and <co2. There remains

only one unknown constant, the moment of inertia (SVco-^-^Vc^cos) with

respect to the line perpendicular to coj and o>2 .

The dynamical constants are completely determinate in the case of three

degrees of freedom. Compare generally Art. 122, Ex. 6.]

Ex. 11. Two three-systems of screws can be in one way correlated, so

that each screw of one system, regarded as an impulsive screw, corresponds

to a screw of the other system regarded as an instantaneous screw. (Ball,

Treatise, Art. 318.)

[This has been virtually proved in the last example. We have to show

that if o- =</>!(!>
and //.=< 9A are two three-systems of screws, it is possible to

design and place a rigid body so that M(cr
-
Vpco)

= A and cw=^~V/>A
become identities when cr and p, are replaced in terms of A and co and when

a one-to-one relation is established between A and o>. Substituting for p
and a, we have Jf(fa

- Vp) w= A and <o>= (< 2
-

V/o) A, so that

remembering that < is self-conjugate, and this holds for all vectors A. Hence

= 0,

where Xi and X% are Hamilton's auxiliary functions for fa and <

2
- And

"i

because A is perfectly arbitrary, we have (xi+ X2V=262i
if % is

,"^
ie sPm:

vector of fafa. Thus the vector to the centre of mass is 2(xi + Xs') 2i>
and

hence M~14 is expressed in terms of fa and of <
2 . The two three-systems

are connected by the relation M(fa-2V(xl+ X2
/

)~
:i

2i)w=^ so tnat to eacil

screw of one system corresponds a definite screw of the other.]

Ex. 12. Screws (/*, A) and (cr, u!) are connected by the relations

A= facr+ <^2co, p= <j63w 4- <^>4o-,

where <
1? ^ <^3 and c^4 are four given linear vector functions. Find the

conditions that (//, A;

) should be reciprocal to (cr, <o) whenever (/*, A) is

reciprocal to (o-', a/).

[The general relations of this example establish a homography between

screws (/x, A) and (cr, cu) ; and when the conditions of mutual reciprocity are

satisfied, the homography is said to be Mastic (Ball).

The conditions are simply

S (Ac/+ /*/)
=* S (AV -f //co)

or Scr'^jo-+ ^>2o)) 4- Sco'Cis + SM")= So"(M'+ ^2W/) + Sw (^3W/+ 4>X>>

whei^e o>, co', <r and cr' are arbitrary vectors. Putting co and to' both zero, it

appears that fa must be self-conjugate. In like manner fa is self-conjugate,

and the condition reduces to So^- <fo')w^So^- ^O*/* which requires < 4and the condition reduces to o-<w^o- ** wc requres < 4

to be the conjugate of fa. Thus the general chiastic homography is denned

by relations of the form

A= <io- 4- cj62co, //,

where fa and <
3 are self-conjugate.]
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Ex. 13. The screws of impulsive wrenches applied to a free rigid body
at rest in a given position (or the screws of the reduced wrenches applied to
a constrained body) are in chiastic homography with the screws of the

corresponding instantaneous twist velocities.

[Here X,= M(cr Tpw), /jt,=<(u-f JfV/>(cr Vpo>) and the conditions are
satisfied. This may be seen still more simply by taking the base-point at the
centre of mass.]

Ex. 14. The united screws of a chiastic homography are co-reciprocal.

[For a united screw fj,x<r, A=#(o, and for a second united screw ///=,rV,
A'=d

ct>', and hence #S(W -f <r'<t>)
= S (/JLO/ 4- cr'A.)

= S (ju'<o+ <rX') #'S (cr'co -j- oV),
so that the screws are reciprocal or else tf=%'. In the latter case every screw
of the system (cr+tcr', <i> + zfa>')

is easily seen to be a united screw of the

homography. The theory is quite analogous to that of the axes of a self-

conjugate function. The united screws in the general homography are to be
determined by solution of the equations #o>= ^cr+ <

2w, #cr=
<f>3

<i> + < 4cr. On
elimination of cr, we have

&w=(&~ *) <l>r
l
(<t>2

~
x) *>

Compare Art. 115 (x.), p. 186.]

Ex. 15. There are n real principal screws for every position of a rigid
body having freedom of the nth order, so that the body will begin to move
from rest along one of these screws when a wrench is administered on that
screw.

[For the centre of mass as base-point, if
(//,, X) is on a principal screw, we

have /A=#CT, A=#o> and also /* /A,=<<I> and X~\
f
~Mcr. Now if (crl5 Wj),

(cr2,
o)2), etc., are screws of the freedom we deduce from these expressions the

n conditions
578 (o-jO)+ cra>i)

=
SoxjExo^ -f J/Scro*!, etc. ;

because the evoked wrench is reciprocal to every screw of the freedom.
Also oo=Sj?no>n and cr=2tfncrn, and on substitution for <o and <r and on elimi-

nation of the scalars t
y
a determinant of the nth order in x is obtained.

Putting x equal to one of the roots of this equation, the scalars t can be
found from n 1 of the conditions.

Just as in the case of self conjugate functions, if a root x is imaginary

(#'+\/ l^")? tke corresponding principal screw is imaginary

(<r'+N/^Icr', A'W'^lA");
and there is a conjugate principal screw (o-'-\/-lor", A/~\/ -\X"). By the

last example these screws are reciprocal, and we find that

must vanish. This cannot be because the energy of a body moving with a

real twist-velocity (cr', <o
/

) or (cr", co") is essentially positive.]

Ex. 16. A body which is imperfectly free moves under no applied forces.

Find the conditions that the instantaneous screw should be perman&vt.
[When the instantaneous screw is momentarily stationary it is said to be

permanent (Sir Eobert Ball). For the centre of mass as base-point, the

equations of motion are

,)
is the evoked wrench. The condition of reciprocity gives

o*<r=0 ; and for a permanent screw <b=#co, 6-=#o-, and we must
have 3?=0 because Sox^co+ifcr

3 is essentially negative. By means of the

equations of constraint we can eliminate . and 77,
from the conditions

J.Q,
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Ex. 17. To find the principal and the permanent screws for freedom of

the third order.

[Here o-=fa co where fa is a given linear function, and the screws of the
constraint belong to the reciprocal three-system /*,

= -
fa' X,. For a principal

screw

<j>(j)
=s sea- /^

=xfaw+ fa'hfi Mfato #co A,, ;

and on elimination of A
;,
we see that

so that co is an axis and x a root of a determinate linear vector function.

For a permanent screw,

and on elimination of ^ we find

and o> is now an axis of the new linear function <

In the special case of rotation about a fixed point the principal screws

coincide with the permanent screws.]



CHAPTER XVL

THE OPERATOR V.

(i) The Associated Linear Functions.

ART. 124. In Articles 54-57 we investigated some funda-
mental properties of the operator V, and we propose in the

present chapter to supplement and develop the results already
obtained and to illustrate the application of the operator to

physical investigations.* Compare pp. 69-77.

In the first place we shall consider the invariants and the

auxiliary functions for the linear function

<pa= -SaV. <r, 0'a= - VSaer, (l.)

# Hamilton's writings on the operator V consist, so far as I am aware, and I
have searched through his manuscripts in the library of Trinity College, of a
communication to the Royal Irish Academy (July 20, 1846) which is published
in the Proceedings, Vol. iii., p. 291, and practically reprinted in the Phil. Mag.
of the following year, and of Art. 620 of the Lectures on Quaternions. In the
Lectures he writes :

" The bare inspection of these forms may suffice to convince

any person who is acquainted, even slightly (and I do not pretend to be well

acquainted), with the modern researches in analytical physics, respecting
attraction, heat, electricity, magnetism, etc,, that the equations of the present
article must yet become (as above hinted) extensively useful in the mathematical

study of nature, when the calculus of quaternions shall come to attract a more
general attention than that which it has hitherto received, and shall be wielded,
as an instrument of research by abler hands than mine." He denoted the

operator by the symbol < . In the Elements the operator occurs in a disguised
form in Art. 418 (v.), V being replaced by Da where a is the vector operand.
In the first note to Art. 422 of the same volume and in a letter to Dr. Salmon
(Graves's Life, Vol. iii., p. 194), he announces his intention of concluding the
work with a brief account of a **

quaternion transformation of a celebrated equation
in partial differential coefficients, of the first order and second degree, which
occurs in the theory of heat, and in that of the attraction of spheroids." Un-
fortunately the volume was left unfinished at his death.

The applications, predicted by Hamilton, have been made by the able hands
of Tait, as will be seen on reference to the volumes of his collected Scientific

Papers (Cambridge, 1900), and to the last edition of his Treatise on Quaternions
(Cambridge, 1890). M'Aulay has also made valuable additions to the subject in

his Utility of Quaternions in Phyxics (Macmillan, 1893), and the note in the

Appendix to the new edition of Hamilton's Elements (Vol. ii, pp. 432-475) may
perhaps be consulted with advantage.

No satisfactory name has been proposed for the operator. The author prefers
to call it Hamilton's delta, or more generally delta.
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which we noticed in Arts. 112 and 113 in connection with the

theory of heterogeneous strain. See p. 181.

When the points of a field receive a small continuous dis-

placement so that the vector to a point changes from p to p+ crdt

where dt is some small scalar and where or is a continuous
function of p }

the vector p+ a to a neighbouring point changes
into p+ a+(<r+^a)dt. The vector line-element a at the ex-

tremity of p accordingly changes into a+<f>a.dt. The vector

area-element Va/3 becomes V (a+ <pa . dtf)(/3+ 0/3 . dt), or, neglecting
the square of dt, this is (Art. 65 (iv.), p. 91)

Va/3+V(a0+0a/3),dtf or Va/3+ X
'

Va/3. d.

The volume-element Sa/3y changes into

-
Sa/3y

- 2S0a/3y . d*= - Sa/3y (1 +m"d)
when we neglect the square of dt. If cr denotes the velocity of

the points in the field, varying from point to point, and if dt is

the element of time
;

if dp, dy and dv are respectively a vector

line-element, a vector area-element and a volume-element, at the

extremity of the vector
/>,

the rates at which these elements

change are

Dt .dp~(j>dp, Dt .dj/=x
/

dv3 Dt . dv= m"dv
; .........(n.)

and these relations clearly indicate the meanings to be attached
in this case to

<f>> x an<^ m"- ^^e scalar m" is called the

divergence and S v<r is the convergence.

Again the small strain at the extremity of p due to the dis-

placement a-dt may be resolved into a pure strain, which converts

a into a+$(<p+ <t>')a.dt, and a rotation represented in magnitude
and direction by edt where e is the spin-vector of <p ;

for we have,
if

when we neglect d 2
. Hence the spin-vector e represents in

magnitude and direction the angular velocity of the element at

p when cr denotes the velocity of its points in the field.

It remains to exhibit e, m" and ^ in terms of cr. We have for

any three vectors

V/3y . $a+Vya . 0|8+Va/3 . 0y

= (m"- 2e)Sa/3y ;

and the first quaternion invariant (Art. 67, Ex. 7, p. 97) is

w/

'-2e=~Vo-, and m"=-SV<r, e= JVVcr....... (ill.)

Further, X =VVV ^ X^^ ~V.VaV.cr, ...............(iv.)
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because, for example, x<*
= (m" <p)a= SV<r . a+SaV . cr. It is

evident that % and
<p

have the same spin-vector. The vector

2e or Wo- has been called by Clerk Maxwell the curl of the
vector <r.

The function \j/ and the invariants m' and m are related to

the transformation which converts vectors p into vectors <r where
o- is a given but arbitrary function of p. As in Art. 63, if dcr,

div(= Vd0-dV)y and dv^(= Sdo-dVd'V), are the elements into

which the elements dp, dj/ and dv at the extremity of p trans-

form, we have dcr=0dp, dj/a =i/r'di/, dv<r =mdt;. To calculate ^
in terms of <r it is necessary to use temporary marks to associate

the corresponding operator and operand, and we find (p. 90)

^Va/3= V0'a0' = VVSacr . V'S/3<r'
=

VVV'SacrS/3<r'.

Now we may also put

so "that on addition,

^Vaj8= iWV^SoerS^'- Soo-'S^r)= -

or for an arbitrary vector y,

and in these expressions the accents are to be removed after the

performance of the indicated operations.*
Just as in (ill.) we find the quaternion invariant of i//,

m/

-2^>e= - JVVWo-t/, ....................(VI.)

remembering that <j6e is the spin-vector of \{/ (Art. 68, p. 98).

Thus m'^-iSWVTcrtr, 0e=iV.WVTcn/, ........(VIL)

and this expression for
<f>e

should be verified by operating with

^ on the value already obtained for .

It is also a useful exercise to verify that the third invariant is

m=iSVW/

S<r(rV, .. ..... . .............(vm.)

but a more familiar form of this invariant is

Bi> *dv

*dw c)w

'dx 'dy

.(rx.)

*The device employed here is quite analogous to a transformation in Aron-
hold's symbolic notation.
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which is obtained by putting p=zix+jy+kz, cr^i
and c*_ c*_. ^_.

(x)

Ex. 1. Show that in terms of i, j and
,

, ^dcra . . ^. 3o-3o- ^,3^ , ^f'dv'dw 'dv'dw\
<pa= -&0 Sea, y-a== 2/&S~~ -75~a : m =2,~~, wi=2/\^r-^ 5- o )*^ 3# ' r

3y 3z ' 3# \dy oz oz oy J

Ex. 2. In terms of three arbitrary differentials of p and of the corre-

sponding differentials of cr,

_SdpSdVdVa _ Sdcrd'o-d"cr~ ~

}
and find

Sdpd'pd"p
'

2do-.Vd'pd>_m"+2e

(a) If dp=<,do-, write down the corresponding functions for <

the relations between them and those for d>.

Ex. 3. Prove that

'du "du

'dec "dy

*dv "dv

3# 3y
'dw "dw

3# 3y

*d% 3^7 'ox

*by 3y 'dyo^o^^-ou ov ow

'du *dv 'dw

Ex. 4. If cr, a vector function of
/>,

satisfies a scalar equation /(cr)=0 for

all values of
/o,

the third invariant m of the function
<j>

vanishes
;
and con-

versely if m vanishes cr satisfies an identical relation.

[If do* is the differential of o- corresponding to an arbitrary differential

of p, we have d/(<r)=0 or (say) S/xdcr=0. Hence the three differentials

of o- corresponding to three arbitrary differentials of p are coplanar and
Sdo-dVdV=0. Conversely, if m is identically zero, three differentials of <r

corresponding to three arbitrary differentials of p are linearly connected, or
?d<T + *d

/o-+rdV=0J suppose. Hence cr can receive only two independent
variations, or a relation of the form/(o-)=0 must be satisfied by cr.]

Ex. 5. If cr satisfies two scalar relations /1(cr)=0 and /2(cr)
= 0, the

function ^ must vanish, and conversely.

Ex. 6: Iff(cr)Q3
and if we write d^r=S/udcr, we shall have <'/z=0.

Ex. 7. If cr is a function of p and if d<r=</>dp, prove by comparing the

operators d=-Sd/>V= -
SdcrVo-, that

where V<r operates on a function of cr in the same manner as V operates on
a function of p. (Tait's Quaternions, Art. 480.)

Ex. 8. If <dp is the differential of a vector function of p,

where a is an arbitrary constant vector
; and if it is possible to find a scalar

multiplier to render </>dp the differential of a vector function,

[Note that <'a=~VSacr if <dp=dcr.]
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Ex. 9. If Cl
and <72 are the principal curvatures of a surface u const.,

show that ^+ tf2
= _ SVUVw, C& == - JSWWUVVV.

[See my note, Elements, Vol. ii., p. 251. If TX and r2 are tangents to the
two lines of curvature,

CiTj+S^V.UVw^O, <72T2+ST2V.UV^==0;
and (Ex. 4), since TUVw=l, the third invariant of the function - SdpV . ~UVu
is zero, and <7j, C2 and zero are therefore its latent roots.]

(ii) Integration Theorems.

ART. 125. It has been shown in Arts. 55 and 56 that the

form in which the operator V naturally presents itself leads to

the two results (pp. 72 and 73).
"

/ . V). g; .............(l.)

the first integral being taken over a small closed surface of

which dv is an element of outwardly directed area while dv is

the included volume
;
and the second integral being taken along

a small plane closed curve of directed area di/, where rotation

round dv in the direction of the circuiting is positive. In both
relations q is a quaternion function of the variable vector p.

In order to extend these results to integration over finite

regions, we shall first suppose that the quaternion q satisfies

certain conditions: (A) that it is free from discontinuity, (B)
that it is single-valued, (c) that it does not become infinite at

any point of the region. Further we suppose (D) that the region
included in the surface over which we propose to integrate is

simply connected, so that any closed circuit drawn in that region
can be made evanescent by continuous variation without cutting

through the surface.

On these suppositions, we divide the region within a closed

surface into infinitesimal parallelepipeds, and we apply the

theorem of Art, 55 to each. Adding together the integrals

Idi; . q over the faces of these parallelepipeds, the sum obtained is

equal to the sum of the corresponding elements Vg . dv
;
but over

an interface corresponding to two parallelepipeds the directed

elements are opposite, so that if one parallelepiped contributes

an element dv . q, the other contributes an equal and opposite

element dv . q ; consequently the sum of the integrals 1 dv . q is

the integral over the bounding surface. Moreover the sum of

the elements Vg . dt; is the integral I Vg . d^ throughout the

volume, and we have Idi/. g= IVg . dv, ............................(n.)
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where the first integral is taken over the surface and the second

throughout the volume.
Under the same conditions we can fill up any continuous

closed curve by a net-work of parallelograms described on any
surface terminated by the curve, and if these are all circuited in

the same direction the elements contributed by the common sides

cancel, and
v . V). S, .....................(in.)

where dp is a directed element of the curve and dv a directed

element of the surface. Hence it follows because (in.) has a

value independent of any particular surface through the curve

that over any closed surface

(A) Suppose a surface to exist over which q is discontinuous, and imagine
the region of the volume integral to be divided into two regions by the

surface of discontinuity. Applying (IT.) to each of these regions and adding,
we find

an element of the surface of discontinuity furnishing the parts

dv 2 . and di/., o

(B) If q is not single-valued, it is not hard to see when infinite values of

Vq are excluded from the region that, assuming any one of its values for q
at any point of the region, the value of q at every other point of the region
is determinate. In fact starting from a point p with a given value of q we
can return to p with a different value only if we thread some circuit along
which q is indeterminate

;
and if q is indeterminate anywhere within the

region, its corresponding deriveds must be infinite, which is contrary to

supposition.
When a curve locus of indeterminate values of q exists In the

region, we may enclose it in a tube and so isolate it from the region. The
region thus becomes multiply-cpnnected (D).

s (c) If q becomes infinite at any point, we exclude that point by a small

sphere concentric with it and we take account of the surface integral over
the sphere, the vectors representing the elements of directed area being
drawn outwards from the region, that is, towards the centre of the sphere,
and the radius of the sphere being ultimately reduced to zero.

Taking the origin at the point, the element of directed area over the
surface of the sphere is dv= Up .r2

. d& if r is the radius and d!2 an element
of solid angle. Then for the sphere

/>.r
2

. ............................. (vi.)

If over the surface of the sphere

0=00+^2!+^ 22+r^.grs +etc., ...................(vil.)

the surface integral vanishes unless <72 exists, and it generally becomes infinite

or indeterminate if q3 , etc., exist. Of paramount importance is the case in
Which q contains the term VT/a"

1
. e= Up . Tp~

2
. e. In this case if no higher

negative power of r occurs, the integral becomes

=-47r, ...........................(vm.)
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and we must replace (n.) by

. ...........(oc)

the origin being excluded from the volume integral.
In general when #3, etc., are zero, by a well-known theorem in spherical

harmonics (Art. 127) we need only consider the terms in #2 which are linear

in Up and which we may take to be SaUp+ <Up. Writing Up^li+mj+nk
where

I,
m and n are the direction cosines of Up, and remembering that

JdO J
2=

ITT, JdO . Im= 0, etc.,

we have

2), .......(x.)

where m" is the first invariant and where e is the spin vector of <. Accordingly
we must in this case replace (n.) by

(XL)

where the integral on the right is taken over the boundary and where the

remaining terms are contributed by the surface of the evanescent sphere.

(D) If the region is multiply-connected we render it simply connected by
drawing diaphragms* when we fall back on case (A) if q happens to be

many-valued. A diaphragm corresponds to a surface of discontinuity, and

ql
-

2 in (v.) becomes np where p is the cyclic increment of q and where n is

an
integer.
Considering now the similar cases of exception for the circuit integral, we

shall suppose
(A') that a surface of discontinuity cuts the given circuit in two points

A and B. Let the surface containing the mesh-work be drawn through an

arbitrary curve ACB on the surface of discontinuity. On adding the results

of integration for the two circuits consisting of the part on one side of the

surface of discontinuity and the curve ACB, and of the part on the other side

of the surface and the curve BCA, we have exactly as in (v.)

Jdp.^+Jdp^.fe-^-JVdvV.?......................(xii.)

It follows from (TV.) that we get exactly the same result had any other

curve ADB been taken on the surface of discontinuity.

(B') If q is not single-valued over the continuous net, its value is definite

if a definite value is chosen at some one point of the net, or else q is inde-

terminate at some point of the net. Such a point may be surrounded by a

small closed curve joined by a barrier to the circuit. The barrier must be
treated as a line of discontinuity and the value of the integral round the

closed curve must be taken account of.

(c') When q becomes infinite at a point on the surface of the mesh-work,
let the point be surrounded by a small circle of radius r. Then the relation

becomes, when we exclude the point from the surface integral,

e.), .........(xin.)

the second line integral being taken round the circle,t This integral
vanishes unless there are negative powers of r. The part depending on <fo is

JdUp . q1
=
JdUp . (SaUp+ ^>Up)

*The interior of a hollow curtain ring becomes simply connected when a

diaphragm is drawn across one normal section.

t The two line integrals are taken in the same sense of rotation round the axis

of the small circle. If we choose the minus sign may be placed on the right of

the sign of integration, and then we shall have the surface integral equal to the

sum of two line integrals taken in opposite directions.
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suppose where
<j>

is a linear vector function, the terms not linear in U/>

leading^
to a vanishing integral round the circle. Putting U/>= i cos w+j sinw

where i and j are in the plane of the small circle, the integral easily reduces
to K(j$aiiSaj+jcf)i--i<t>j\ and to 7r(Ya& x'^~i~2S&) where Y/ and have
the same signification as in the chapter on linear vector functions.

Ex. 1. If /(V) is any linear function of the operator V with constant

coefficients,

J/(dv)
. =

J/(V) .q.to, ^(dp) . =
J/(YdvV) . q,

and
J?./(dv)

= j./(V).dV , J?./(dp)
=
J^./(Vdi/V).

[No step in the proof of the simpler case need be modified. In the
second set of relations the operator is placed in front of the operand. See
Art. 57, Ex. 1 1, and M c

Aulay
3

s Utility of Quaternions in Physics.]

Ex. 2. In general if /(a) is a linear function of an arbitrary vector a
while the variable vector p is involved in the constitution of the function,
show that

where/(V) means that V operates in situ on the variable vector p as involved
in the structure of the function.

Ex. 3. Prove that
Zfij|?

= _
JsdvV . VT/r1

,

where no infinites occur.

[See Tait's Quaternions, Art. 504. Here the line integral is JVdpVTp"
1
,

which transforms into

jY.YdvV.VTp~
1 or

J
dvV2

Tp~^J SdvV . VT/o
1
.]

Ex. 4. Prove that

[This is an example of an extensive class of transformations depending on
the invariantal properties of V. Transforming the surface integral, we
have

J pdi/=J p(V)qdv, where V operates both on p and on q. But

pV=Vp= - 3. See Art. 132, p 235.]

(iii) Inverse Operations.

ART. 126. We shall now establish general solutions for the

equations

Vp = q, and W='j, (i.)

where q is a given quaternion function of p ;
or we shall assign

definite interpretations to the functions

p=*V~
l

q and r= V" 2

g (n.)

for all points of an arbitrarily selected region within which
infinities do not occur.
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We shall first prove the transformation*

IVu . Vp . dv = \dv . u . Vp I Vu Vp . dv

.dv.p- (V^-Tp-^V . 2? dv 47iy (m.)

in the case in which p does not become infinite within the region,
while u tends to the value Tp""

1 at the origin which we suppose
to be taken within the field of integration, and where 4xp in the
third member is 4?r times the value of p at the origin. The
suffixes are intended to indicate that the affected symbols are

free from the operation of V.

Surrounding the origin by a small sphere and supposing (V)
to operate in situ on u and on p we have

IVu. Vp . d^= l(V)i6. Vp .dv ]Vu Vp.d'y

= idv . u . Vp IVu Vp . dv

for the region between the small sphere and the boundary, the

surface integral over the sphere vanishing by the last Article

(compare (vn.)). But these integrals may be .extended through-
out the entire region, for we shall show that the integrals taken

through the volume of the small sphere tend to zero when the

radius is indefinitely diminished. Within the sphere we may
ta^-e

i6=Tp~
x and di?= Tp2

. d2 . dTp,

so that \Vu , Vp . dv= lUp . Vp . d) . dTp

which vanishes in the limit. A fortiori the integral
r r

1 Vt& Vp . dv= ITp"
1

. V2
p . dv

J
.

J

for the small sphere vanishes. Thus the first part of (m.) is

proved.

Again for the field exclusive of the sphere

IVu . Vp . dv= IVu . (V)p . dv I Vt&V .pQdv

f t*-r *-,= lVu. dj/ . j> 4?rp |VuV.p dv

by (VIIL) of the last Article because for the surface of the sphere

(Vu . dv .p= + JTp-
2

. Up . Up . Tp
2

. dQ . p= - jdQp.

*It is manifest from the proof of these relations that they are valid when,

neither p nor u become infinite in the field of integration provided we omit the

term in T/r
1 and the term 4irp.
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Also it is easy to see that VTp""
1V =V2

Tp~
1
(or more generally

that V . Sq . V =V2
Sg), and this vanishes for all points of the

region outside the small sphere. And because u~ Tp~
l does not

become infinite at the centre of the sphere, we have

fvu . Vp . dv= (Vu . dv . p -47rjp
-

J
V(u-Tp" 1

)V . p . dv,

where the volume integrations are extended throughout the

whole of the original region. Thus (in.) is completely established.

In particular when u is a scalar we may replace (in.) by

VuVp . d^= dj/ . u . Vp \uV*2p . dv

= [Vu . dv .p- jV^u-Tp-
1
) .pdv-4>7rp. ...(in.)'

Changing the origin or replacing p by p' p in (ill.)', and

supposing p to be the current vector in the integrations, we
obtain for the particular case in which u= T(p p')"

1 the

important identities,

47rT(p'-p)

the second being deduced from (m.)' by replacing Vu by
V'.^p'-p)-

1 or by its equal -VT(p
/

-p)~
1 and taking V out-

side the sign of integration.
If then Vp= g, we have

/'.g' , f^,^ -

d/./ ,

and in this relation p' is any function which over the boundary
satisfies Vp = q.

In like manner

where r is any function which over the boundary satisfies

V2
r=g. It may be observed that in these results there is a

certain analogy to the solutions of the linear function equations
of Art. 65, p. 92.
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If we operate on (vi.) by V and put p=Vr we find on com-

parison with the second form of (v.) that

V.V-^V- 1
^ ........................(vii.)

because the last integral of (vi.) vanishes under the operation
of V (or of V under the sign of integration operating on
V/

T(p
/

p)"
1
) provided p does not terminate on the boundary.

Ex. 1. Find the potential -which produces a given distribution of force

in a given field.

If is the force and P the potential, we have to determine a scalar

function P from the equation f= VP. By (v.) this function is

P_ -*_ f SV'g'.cb' f Sdr'g r^-V f- -
J i^T(^y)

+
J 4n-TO>-p')

+
J

Ex. 2. A quaternion p which satisfies the equation V2p=0 throughout a

given region is expressible as a surface integral over the boundary ; and a

quaternion JP which satisfies Vjp=0 throughout the region is of the form

Ex. 3. A scalar satisfying the equation VP=0 is constant, A vector

satisfying Vo-=0 is expressible in the form o-=VP where P is a scalar

function satisfying V2P=0.

Ex. 4. Construct quaternion functions of p, homogeneous and of the

first and second orders, which shall vanish under the operation of V.

[For the quadratic function assume jo
= Sp< />+2awSp$n/> where n\,

2 or 3. We have Vp= 2< p 22< npaw ,
and if SVp is identically zero the

condition 2<^>an=0 must be satisfied. In order that VVp may vanish, we
must have < p= ~2)V^>np^= -fD^Ypctn since < is self-conjugate. Again,
because V2

jp=0, the first invariants of the functions
c/>
must vanish. But in

general m'/

Vpa=Vp<a+V<pa+ ^>Vpa, and in the present case

Hence by the former condition SV^/xxn is a self-conjugate function

provided only that 2^>n<xrt==0, and that the first invariants are zero. Thus

where mj=09 2^0^=0, vanishes under the operation of V.]

Ex. 5. Determine the extent of the arbitrariness in the dissection of a
uaternion -into the parts V~1SV^ and V~1Wgf on the supposition that

a vector.

[The most general expressions for the parts are V^SV^+o* .and
- _^ where or is a vector satisfying Vcr=0. See Ex. 2.]

Ex. 6. Divide a vector cr into two parts crx and cr2 so that SVo-1=03

Wcr2=0.

[Here cr2=V~1SVo- and cr
1
=V~1YVcr. We may calculate one of these,

say o-2 by the general formula, and,the other is a: a-2.]
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Ex. 7. The general solution of the equation

may be written in the form
7-ivvA

n J

[The equation may be transformed into (m+72-)VSVcr+72,WVcr=^, and

by the last example, VSVo-=(m+^)-1V-1
SVf, VVVo-=^-1V"-1VV^. The

solution given above of the equation of equilibrium of an elastic solid may
be expressed more simply in the form <r=

Ex. 8. If V2
j0=0 at all points within a closed surface, and if V2p,0 at

all external points ;
if p,=p over the surface and if p, tends to zero at infinity,

[Integrating throughout external space we find if V2
p,=Q, see note p. 219,

when p terminates at an internal point so that T(/>' p)~
l does not become

infinite. The surface integrals are to be taken over the closed surface and
over an indefinitely large surface, but it easily appears that the latter part
of the integer vanishes since p, vanishes at infinity. Putting V2

jp=0 in (iv.),

remembering that p,p over the closed surface, and subtracting, we have
the required result.]

Ex. 9. If fnp is a homogeneous function of p of order n satisfying
V2
/p=0, show that

when Tp<a, the integration being extended over the sphere whose centre is

the origin and whose radius is a.

[The function corresponding to the p, of the last example is

(See Art. 57, Ex. 12.) Here V(p'-pt

/

)
= (2n+l)ar

i
'Up' .//>' over the

sphere and di/=U>'Tdi/.]

(iv) Spherical Harmonics.

ART. 127. If /(V) is any rational and integral function of V,

homogeneous and of order n, the function /^V.Tp"
1

is a solid

harmonic of order (n+1), for it is a homogeneous function of p
which vanishes under the operation of V2

,
the scalar operator V2

being commutative in order of operation with /nV. Further

T/^+^/nV.T/r
1 is a solid harmonic of order n. (Art. 57,

Ex. 12, p. 76.)

Because we may suppose /nV to be expanded in the form

/nV= 2aSa1VSa2V...SanV, ..................... (l.)

it follows from Art. 54, Ex. 2, p. 70, that

-TPV-*), (n.)



ART. 12?.] SPHEKICAL HARMONICS. 223.

where /_ 2p is a determinate function of p, homogeneous and of
order T& 2. Hence we may expand any homogeneous function
of p of positive order n in a series of solid harmonics, of orders %
n 2, n 4, etc.,

(2n-l)

where fn^p, /- 4p, etc., are functions defined by equations such
as

(ii.).

Any integral of the form P= l^dt?.T(p ft))"
1 in which w is

the current vector and in which p is independent of p may be

expressed in the form

P^/V.Tp- 1
, ...........................(iv.)

provided Tp is not less than the greatest of the tensors Tco.

For (Art. 59 (XL), p. 79),

and we may speak of P as the potential at p due to a distribution

of density p although it is not necessary to suppose that p is a

scalar.

If Q= Igdi/. T(ft/~ p)"
1 is the potential of a second distribution

of density g, the mutual potential is

^=r^w r = f
...................

J {dO 0) ) J J

If the second distribution lies outside a sphere of radius a

having its centre at the origin and including the first distribution,

we have by (v.),

provided we reduce the temporary vector p to zero after the

performance of the operations indicated, and the suffix serves

to remind us of this reduction.

If Q= gn(p) is a solid harmonic of positive order n, and if we

suppose the corresponding distribution to be a surface distribu-

tion on the sphere, we may replace
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or by Or)"
1

- (2^+1). a**1
. n(U) . dO,

utilizing Ex. 9, Art. 126, and dropping the accents as being no

longer necessary. In this case (vn.) becomes

a)).dQ.......(VIII.)

In this expression it is only necessary to take account of terms

of order TI in /( V), for gn(p) vanishes under the operation of

terms of higher order, and the results of operation of terms of

lower order vanish when p is reduced to zero.

If P is a solid harmonic of order ?i 1, the form of the

function /V is given by (ill.), and

n '
/*_

and accordingly (vni.) becomes

while if the order of the harmonic P is (m+1) where m is not

-equal to TI
?
we have

; ...(x.)

not

(XI.)

Again if

P^T(p~a)- 1= e^
v
.Tp-*= I,TanTp~

n ~ lAn(Up), ......(xn.)

we find on substitution in (vm.),

nCUa) = (2n+ 1) f
An(V<*>)gn(Uu) . dQ,

J

because /(
- V) . ^(p) = e

" SaV
. gn(p)= gn(p+ a).

Hence we can expand any function #(TJ/o) in a series of

spherical harmonics, the harmonic of order n being

.dS}............(XIV.)

Ex. 1. A scalar solid harmonic of order - (?t+ 1) may be expressed in the

form SajV . Sa2V ..... SanV . Tp-
1
,

where ax ,
a2,

. . . a are real vectors.

[Consider the edges common to the cones jPnp=0, />

2=0. These group into

conjugate pairs /3+V-1/3' and jS-s/-!^', and each conjugate pair lies in

a real plane Sa/o=0 where a'V/3/3
r

. Having determined the vectorsa/= a.
,
a2,

... aM we have a relation of the form

Fnp= p*Fn-zp+ zf . Saj/oSa^ . . . San/3,
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where t is a scalar and where Fn-%p is a homogeneous function of p of order
n - 2. If FnV is the generating operator (see (ix.)) of the harmonic we have,
on putting V for p in the above relation,

FnV . Tp-
l=t. SaiVSc^V ... Sa^V . Tp~

l because V^/r^O,
and the scalar t can be found by comparing a coefficient.]

Ex. 2. If q is a quaternion associated with each element of mass of
a body,

where r is the vector from a point in the body to the element dm, where q
is the value of q at the origin of vectors r, and where Vv operates on/(V) as
if it were a function of a vector V.

(a) The first terms of the function /(V) are

where M is the mass of the body, TO the vector to the centre of the mass, <1>

the inertia function for the origin of vectors r and A, B, C the principal
moments of inertia for the same point.

[We have

\qdrn
=

Je

~ SrVdw . =
j(l

- 8<rV+^SrV2 -
etc.)dm . qQ ;

and because SrV2=T2V2+YrV2
, |yrYVrdm=<l>V

and

the expansion is justified. Again the differential offa corresponding to da is

d/a= - SdaVa ./a= - Sd(mr

Ex. 3. A heavy body is placed in a field in which the gravitational

potential is P. The potential energy of the body (M
7
), the resultant force

and the resultant couple (X and p) acting on the body and referred to its

centre of mass, are

. P, A=-VP+iSV#V . VP, /*=V$VV . P.

(v) Various expressions for V.

ART. 128. We shall now examine in greater detail than in

Art. 57 the various analytical expressions for the operator V
and for V2

.

In terms of three arbitrary differentials we may write

V=Ad+A/
d

/

+A'
/

d", ....................... ....(i.)

where (Art. 54 (VL), p. 70)

The operator V2
is now

V2=2X2d2+2(X
/

X
//d

/d//+X//

X
/

d'
/

d')+2VX . d, .........(m.)

and in the third sum V operates on the vectors X alone and not

on the operand of V2
.

J.Q. P
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Remembering that V2
is a scalar operator, this breaks up into

the two parts

. d; ......... (iv.)

(v.)

It is only when the differentials are independent that the

order in which the differentiations are performed is indifferent.

and it is only in this case that we can generally suppress the

terms involving d'd" d"d' and similar expressions in (v.).

When independent differentials are employed, we use the

expression (Art. 57. (in.), p. 74),

or as it may be briefly written

where the vectors yl3 j/2 and VB satisfy the relations

SvlPl+ 1 = 0, etc., Si/2p3
= 0, Si/

3/
o2
= 0, etc.; ......(vm.)

or again we may put

JL, ................(ix.)

as we see by comparing the results of operation of the forms

(VIL) and (ix.) on i&, v and ^v. Thus

j/^Vu, v2
= Vv, i/3

=Vw .....................(x.)

and VVi/^0, VVj/a= 0, VV,/3 =:0...................(xi.)

The vectors vv i/2
and j/3 are the normals at the extremity of p

to the three surfaces u~ const, v const, and w= const which

pass through that point.
The appropriate expressions for V2 are now

.; ...........(xn.)

Again introducing the operand q for the sake of greater
clearness, we may write

, (XIV.)

because the terms which involve the second deriveds of p, such as
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^PnPs - ?+ VpsPia . q y cancel in pairs. Operating with this form
of v on VL we "have

c

where the second sum contains six terms, and to this the sign
S may be prefixed. Or in terms of the vectors v it easily appears
that this reduces to

Whenever the surfaces, u = const., v= const, and w~ const, are

equipotential surfaces with the corresponding potentials, w, v
and w, the operator V2 is a homogeneous quadratic in the

o\ o o

differentiating symbols , , . This property follows

directly from (xin.). The converse is also true.

When the surfaces are mutually rectangular, the operator V2

is independent of the products of differentiating symbols. In

this case we find from (xv.) the most convenient expression for

V2tobe
.2* (T.' *~J

'du\
'

Ex. 1. Determine expressions for V2 where

(1) p=u{(icQSw+jsmw)sm'v+kcQsv} ;

(2) p=u (i cos v -\-j sin v) 4- kw ;

(3) p=z^f{(<t>+ u)(<}>+v)(<j>+w)}. ,
as in Art. 84.

Ex. 2. If a scalar function P of a scalar function u of p can "be found to

satisfy V
JP-0

5
show that

(Vw)
2 .^+V%.~=0 and VV^V.=0.v '- Ou2 ou (yuf

[See (xnr) for the first condition. The second expresses that V2u . (V%)~
2

is a function of u.]

Ex. 3. Given that a family of surfaces u const, is an equipotential

system, show that the potential corresponding to u is

[See the last example.]

Ex, 4. A family of concentric, similar and coaxial quadrics compose an

equipotential system. Show that the sum of the reciprocals of the squares
of their principal axes is zero, or else the quadrics are spheres. Determine
also the corresponding potentials.

[Here ^=-|Sp<^/o3 Vu^ V2u=mfr

. The condition of Ex. 2 becomes
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Ex. 5. Find the condition that the family of surfaces /(/o, %)=0 should
form an equipotential system, and determine the potential when the
condition is satisfied.

[Imagine u to be expressed as a function of p by solution of the equation
/(/?, <w)=0. On this understanding we may treat /Yp, u)=Q as an identity
and equate to zero the results of operating on it by V and V2

. We find

where V operates on / as if f were a function of p alone, and where

consequently V and ^ are commutative in order of operation on /;Ou

Utilizing the results of Ex. 2 to eliminate V*u and eliminating Vu we find

The condition to be satisfied is that the right-hand member a function of

p and w should reduce to a function of u alone by aid of the equation
/(/>, ^)=0. If jP(/>, w) reduces to a function of u alone by aid of the equation

/(/>, w)=0, we must have VjP+V^ . ^- ||
Vw

|| V/ or simply VV/V/
T

=0.

Thus the condition required is

Ex. 6. Show that the family of confocals Sp(^>4-w)~
1

/3-M=0 is an
equipotential system, and determine the potential.

[
Here we have V/= -2(<+ %)-> and ~= -~

also

These give

and p= PQ
J TI^HO^^

Ex. 7. The condition that the family of surfaces /(/a, w)= should

compose a system of characteristic surfaces an an optical medium of constant

density is c /'A/\~2 ^

W/V{(V/)*(|) }=0.

[Hamilton's characteristic functions satisfy the relation TVQ=n, where n
is the index of refraction of the medium. If the family of surfaces satisfies

the condition we must have Q a function of w, so that V='V^= -Q'f
f~~l

Vf,
where the accents denote differentiation with respect to u. Hence when n
is constant, TV/./-

1 must reduce to a function of u> or "VV/V(TV/./-
1
)=0,]

(vi) Kinematics of a deformable system.

iifferer

.(i.)

AKT. 129. If q is any function of p and t, its total differential

may be written in the form
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and in particular when we replace dp by crdt we shall write

Dq^qdt-SrV .q.dt and Dq^q-Sa-V .q..........(u.)

When or denotes a velocity, D tq is the rate of change of the

quantity q regarded as associated with the moving point. On
the other hand q is the rate in change of g at a fixed point, and

SdpV . q is the change in the value q from the extremity of p
to that of p+ dp at a given instant.

If dp, dp and dv are elements of directed line, directed area
and volume respectively, at the extremity of p in a medium
moving with the velocity cr, we have by Art. 124 (IL), p. 212,

Dt(qdv)= (D tq+ m"q) . dv,

. dv = S^di/, ......... (in.)

where* (Art. 124 (i.) and (in.))

because for example we have SsrD^di/= S^'dj/=
In terms of the spin-vector e = |Wo", the divergence

m"= SVo- and the self-conjugate part of
<p
we may also

write

or explicitly in terms of <r we have

6;=scr VVVcrcr <rSVtar, g=ir VS(rcr- Vo-VVcr.....(vi.)

To prove these results observe that

ST= GT S(T V . tTT CT

and that

g= CT So- V. tar

where (V) operates i?i sii6 both on cr and sr and where <TO and &r

are free from the operation of V.

In addition we may write

(D+mO?= 3-So-(V).g ...................(vn.)

because this expression is
<? So* V . g SVo- . q .

We may connect this with previous results by observing that

(Di4-m
//

)ScTft)
=

S(^ft)+tD'g)
=

S(gft)+^ft>) .......(vin.)

is a consequence of (iv.) where co is any vector function of p and
Also = r ;...(ix.)

See H. A. Lorentz, EncyTdopadie der math. Wiss. , V2, p. 75.
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We may also observe that if co= WST, we have by (vi.)

since t and p are independent, so that the order of operation by
V and of partial differentiation with respect to t is indifferent.

Hence VVg^w, if co^VVor....................... (x.)

From these relations we derive various forms for equations of

continuity ;
and the voluminal, the areal and the linear equations

of continuity are respectively

? = 0, s7= 0, t=0..................(XL)

The first asserts that qdv does not change for the element of

volume ;
the second requires Scrdy to remain constant for all

vector areas di/, and Sord/> remains unchanged if g= 0.

Instead of supposing the quantities q, or and cr to be functions

of p and t, we may take them to be functions of t, u, v and w
where u, v and w are three parameters which individualize the

moving point.
This is Lagrange's method, and Euler's method is that in

which everything is expressed in terms of p and t. The total

differential of q we shall now write in the form,

and following the moving point we have

D*-l
since u, v and w remain unchanged. In particular

The vectors ra and g now become

3ft7 TTY-TTT 3p ^^ r-rrx ^P / \5=___VVV^ CrOJ ^^--VS^^ ......(xrv.)

as appears on reference to (iv.). The appropriate form for V in

these relations is that given in Art. 128 (vi.) or (xiv.). The
element of volume is now Sp^^dudvdw, and the voluminal

equation of continuity is simply (compare (ni.))

s const........................(xv.)

Ex. 1. If c is the density of a continuous distribution of matter moving
with the velocity cr, Euler's equation of continuity is

c=SV(ccr) or B
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and Lagrange's equation is

cS/>1p2p3= co list.

(a) Hence D, log c= -^ log Sp^g= SV
|?
= SVcr.

Ex. 2. Show that

<r=o <rSV<r, a=d--V(T2

Ex.3. Show that
|Z. p==

Ex. 4. In general

VgtZ'+Vcrg^g'', Vgcy'-hVtZT^'^m'W+g" where 5T"=

[These relations follow most easily from (iv.).]

ABT. 130. The integral

F= -
fScrdp ...........................(i.)

taken from one point to another along a curve depends generally
on the nature of the curve; but if VVw= 0, so that sr= VP, the
value of the integral is simply the difference of the values of P
at the extremities of the curve. This integral may be called the

flow of the vector sr along the curve.

The time rate of change of F as the curve moves with the
medium with velocity <r is

(n.)

and if this integral is independent of the nature of the curve,

t= VQ, -V(rVVdV(S<rGr+Q), DtGT=V(S<rST +Q) (in,)

are different forms of the condition to be satisfied, Q being a
scalar function of p and t. Other forms of the condition are

VVg= 0, VVtzr-WVo-Wcy^O, VVD#r= VV'VSoV; (iv.)

or again (Art. 129 (x.))

a>= 0, where w= VVtrr......................(v.)

As regards the third of (rv.), note that VV2
Scrsr =0.

In general we have (Art. 129 (vi.))

DtF^-jSCGr-VcrW^dp-CScrtiT],
............ (vi.)

and

DF= - fs^dpdtf- fsVVcrdy-[S<rsT]d<, where di/= V<rd/>di (vn.)

and where [S<rz?] denotes the difference of the values of Scrtrr at

the extremities of the curve. The expression for DF shows the

meaning of the various terms, dy being an element of the area

swept out by an element of the curve in the time dfc
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In the case of a closed curve, the circulation of the vector or

in the curve and its rate of change are expressed by

(vin.)

or when rs does not become infinite at any point of a surface

drawn over the circuit, we may transform the circulation into a

surface integral so that

(ix.)

The circulation is therefore the flux of the vector a>(=yVtzr)
through the circuit, and the rate of change of the circulation is

the flux of the derived vector <w (
=Wg) or the circulation of g.

For any small plane circuit, the circulation SVVsrdy is the

projection of WET on the normal to the circuit into the area of

the circuit. Thus VVcr determines the aspect of the unit circuit

in which the circulation is a maximum, and it likewise gives the

magnitude of the circulation TWtsr in that principal circuit

In like manner & determines the aspect of the circuit in which
the rate of change of circulation is a maximum as well as the

value of that maximum.
The vector D*VVs7 determines the rate of change of the

circulation from one principal circuit to another following the

motion of the medium. A principal circuit does not generally
remain a principal circuit. We note that by (iv.) and by
Art. 129 (iv.)

......(x.)

and in general we have

(D,V~VDO.? = V
/

S<r
/

V.g, .................(XL)

because DtV . g= Vg-So"V . Vg, VD#^V#~(V)ScrV . q.

If a tubular surface, drawn through any circuit, is composed
of curves satisfying the differential equation

VV^dp-0: ...........................(xn.)

or, what is equivalent, if

SVadi/=0 ..........................(xm.)

over the tubular surface, the circulation in any evanescible*

circuit traced on this surface is zero. In particular if ABC
and A'B'C' are two circuits embracing the tube, the circuit

ABCAA'B'C'A'A is evanescible and also the circuit AA'A. From
this it follows that the circulation in ABCA is equal to that in

A'B'C'A', being opposite to that in A'C'B'A'. Hence the circulation

* An evanescible circuit may be reduced to zero by continuous variation.
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is the same in all circuits drawn on the tube so as to embrace it

once.

The flux of the vector &r through a given surface bounded by
a riven curve is f ,

G=~\Svdv, ........................(xiv.)

and the condition that this should depend only on the bounding
curve is that the divergence of sr should vanish, or

SVsr= 0, ............ . .............. (xv.)

as we see by transforming the integral over a closed surface into

a volume integral.
The rate of change of the flux is

(xvi.)

and the condition that this rate of change should depend only on
the bounding curve is

SVor = or SWr-S(V)<r. SVc7 = 0, or (D t+m")SVcr = 0. (XVIL)

In any case in which SVtrr= 0, if a tube is constructed of the
lines Vdpsr= through a circuit, the fluxes across all sections of

the tube are the same, and the value of the flux is the strength
of the tube. For a small tube we have, if Tdv is the area of a
cross section and if dn is the strength,

where SVsr= .............(xvm.)

Ex. 1. If VVDecr 0, the circulation of the vectors cr in any circuit

moving with the medium remains unchanged.
[See (in.) and (iv.). We have D,<r= V(|<r

2
-f- Q).]

Ex. 2. Show that in Lagrange's method

ART. 131. In Art. 126 we showed that any vector to can be

expressed in the form (see (iv.), p. 220)

ar=Vp, (SVp= 0), ........................... (I.)

where p is a certain quaternion. We shall examine how this

quaternion is related to the flow and the flux of the vector or.

In terms of p,

(n.)

because S. VSp.dp= dSp. Hence for a closed circuit, the

circulation depends merely on Vp. If the circulation" in every
circuit vanishes, the quaternion p reduces to a scalar, as we have

already observed. The circulation in general is expressible as

i/............ (in.)
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We have also

DJ^= - fs.(VVjp- VS<rVVp-<rV
2
Vp)d/>+[D tSp]; .....(iv.)

and |g and & are

&Vp-VS<rVj5~VcrV2
V#, = Vp-VVVo-Vp-(rV2

S^. (v.)

The flux is

(?=-[sCTdv=-fsdi/V.Slp-[sVpdp,
............ (vi.)

since fSdvWp= f

The flux through any closed surface depends merely on Sp.

Comparing (n.) and (vi.) we see that Vp and Sp play a comple-

mentary role in these two relations. Various forms may be

found for T> tG on which we cannot delay.

Replacing p by tar in the second form of the identity

{Art. 126 (iv.)), we obtain the expression

'tsW ,-f di/V , .-^ ............... <V1L >

applicable throughout a given region, and this exhibits the nature

of the quaternion p of the present article. If there is no
circulation at the boundary, so that we may put my = VQ (where
Q is a scalar function) in the surface integral, we have on

replacing p by VQ in the identity already referred to

also putting p~Q in the first form of the same identity and

introducing a new scalar function R,

f= -

Substituting for the surface integral from (vm.) in (vn.) and

attending to the definition of R in (ix.), we find

D
jf P-

Moreover JB is given by (ix.) as a scalar surface integral depend-
ing on the values of Sdi/cr and of Q over the boundary, and
V2jR= throughout the region. In this notation (n.) and (vi,)

become

JF=-fsV^p+ [P+E], e=-fsdi/V(P+B)-fSi^lp. (XL)

If q= 0, the distribution of the vectors & is irrotational
;
if P

is zero there is no divergence and the distribution is solenoidal
;



ART. 132.] IRROTATIONAL AND SOLENOIDAL VECTORS. 235

if P and r\ both vanish, the distribution is irrotational and
solenoidal.

If, as in Art. 130 (XVIIL), dn is the strength of a tube o vectors

j of cross-section Td^o, and if dp is along the tube, we have

WET . dv= VVsr . Tdo>Tdp = dpdu because dp \\
d&> || War.

If the tubes form closed rings and if di/ is the directed element of

a surface bounded by a ring, we find (compare (x.))

7/ 1 TTx-rf dndv

or again

^f dttdi/' fOd^
f

,

........(XIL)

where Q, is the solid angle subtended at the extremity of p by
the closed ring of strength dn,

because Sdv
/VT /-i- 1= Sdv'U

/-.T--^ -dQ.

(See Chap. VII, Ex. 22, p. 86.)
Hence at any point outside the vortex rings, i.e. at a point at

which p' does not equal p, we have

+
~j :jQdw+

J

K)
.......(XIIL)

This well-known transformation is due to the fact that under
the supposed conditions a certain quaternion is reduced to zero

by the operation of V.

ART. 132. By means of the transformations

zy, ...(i.)

which may be verified without diflBculty, we obtain the trans-

formations,

. dv= IpSV^T . dv~ \p

I Vpcr . dv= Ip

=
^JpVpVVzzT

- i
jp

VpVd,s7............(n.)

Another transformation, likewise depending on the invariantal

properties of V, is

f Swor . dv= f Spcodi/cj- f(Spfi>W+Spft)
/V/

tar)dv ; ...(m)
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and by introducing p and V into any relation it is generally
possible to find a transformation analogous to these.

Ex. 1. The momentum and the moment of momentum with respect to

the origin of vectors p of a portion of a continuous medium of density c,

may be thrown into the forms

A=
jcordi;= jpSV(ccr)di?

-
JcpSdvcr=4 JpW(ca-) . dv ~ | JcpYdvcr,

ju,
=
JcYpo-dv

= -
JpSpV (cor)dy+ JcpSpdvcr

= JJpYpYV (ccr)dv
-
JJcpYpYdv<r ;

and the kinetic energy of the portion may be represented by

T^
\\cTcrMv

= -
\ JcSpcrdvo-+ Jc(Spo-S

Vo-+ Spo-YVo-)dv+ % jSpo-Vco-dv.

(a) For an incompressible substance of uniform density, if 2e=YW,
X ==

cjcrdv
= cJpSdvcr

= cJpedy ^ c
JpYdvcr,

ju,
= c

JYpo-dv
= - 2cJpSpedv+ c

JpSpdvcr
=

|- cjpYpedi?
-
J cJpYpYdi/cr,

T= | cjTo-Mv
= -

J c
JSpcrdvo- 4- 2cJSpcredv.

Ex. 2. In the notation of Art. 131, the kinetic energy may be expressed

and for an incompressible substance of uniform density,

T^ ~-$cl(Sr)<Tdv+RS

and the volume integral is

(vii) Equations of motion of a deformable system.

ART. 133. For any system of particles the equations (compare
Arts. 119 and 120, p. 194)

r.dm^^ .................. (i.)

are independent of the mutual reactions of the particles com-

posing the system, M being the total mass, o- the velocity of the
centre of the mass, r the vector from the centre of mass to the

particle dm, X the resultant force and
jut,

the resultant couple
referred to the centre of mass.

Suppose the system of particles to compose a definite portion
of a distribution of matter, and let each particle dm be acted
on by a force dm and a couple *?dm due to external causes.

In addition the portion of matter is subject to the interaction

between it and the rest of the matter. The forces of the
interaction on the portion may be supposed to be the resultant

of a number of forces $dv acting at each point of the boundary
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of the portion, and $dv is a linear function of the tensor of dv

the vector element of the surface. Moreover if c is the density,
we have dm= cdi?, where dv is an element of the volume. The

equation (i.) therefore may be replaced by

(u.)

and D* . (VTf. cdv^= j^+ Vr)d^+ (VT$di/; .........(in.)

and the volume integrals are taken throughout the selected

portion while the surface integrals are taken over its boundary.
When we take the portion of matter to be small, the volume

integrals in (n.) are ultimately of the third order of small

quantities and the surface integral is of the second order.

Provided therefore D^cr is not excessively large for very small

portions and provided $di/ is a continuous function of the
vector- element of surface dv, the surface integral must vanish

independently of the volume integrals when the dimensions of

the portion are greatly reduced
;
and if the portion is taken to be

a tetrahedron whose vector faces are proportional to a, ft, y and
<S, we see that the function $di/ at any point must satisfy the

condition

(IV.)

for all vectors a, /3 and y, because we have for the evanescent

tetrahedron $a+ $/3+$y+ &S= 0, where a+/3+ y+<5= 0. Thus
$ is a linear and vector function. We may therefore apply the

integration theorem of Art. 125, Ex. 2, and replace $dy in (11.)

by the volume integral I$V . dv, in which V operates on $

in situ. Thus we have

Dt(T . (c&v=((cj+$V).dv; ..................(v.)

and when we reduce the portion, we find in the limit

D,o-=^+c- 1 .$V, .....................(VI.)

where D*cr is the acceleration of the centre of mass of a small

portion of the matter.

Applying the same principles of continuity and of dimensions

to (ill.), and taking the portion o matter to be a small parallele-

piped whose edges are parallel to a, /3 and y, we find

or simply (Art. 67, Ex. 7, p. 97)

0, ........................... (VII.)
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where e is the spin-vector of $, as we see more easily by putting
i, j and k for a, /3 and y. Provided there is no voluminal
distribution of couple, the function 4? is self-conjugate.
The equation of continuity is

c= SV(c<r) or -cSfrpzp^C, ........ ; ......(vm.)

according as we use Euler's or Lagrange's method (Art. 129), and'

by Art. 128 (vi.) or (xiv.) we may replace (vi.) by

4 - *VplP2
).

...(IX.)

Ex. 1. Find the equation of motion for a perfect fluid.

[The force <l>di/ on the boundary of a portion of the fluid is ~-pdv, where p
is the pressure, remembering that dv is outwardly directed. Hence the

equation is Dtcr^ c

Ex. 2. Integrating along a stream line, show that

is constant for an element of the matter, and find the integral in the case of

a fluid acted on by conservative forces.

Ex. 3. When the forces acting on a perfect fluid are conservative, the

circulation in any circuit moving with the fluid remains unchanged provided
the density is a function of the pressure.

[We have D*cr= ~V(P-hJ<?~"
1

dp). See Art 130, Ex. 1. An independent

proof is easily obtained by Lagrange's method, which gives

and if this vanishes for all closed circuits WDr=0.]

Ex. 4. If F** -
jScrd/),

show that

ABT. 134. To determine the nature of the stress-function $
for a viscous fluid, we assume as usual that the stress consists of

a hydrostatic pressure and of a part linear in the rate of dis-

tortion of the fluid, and that the stress-function is coaxial with
the strain-function. In the notation of Art. 124, the strain-

function is %(</>+ <p

f

),
and the general linear function coaxial

with this function and linear in its coefficients is of the form

n^+ ^+n'm", where n and n'* are constants and where

7tt/'(=
.

SVcr) is the first invariant of
<j>

or
<j>

or H$+ </0*

Consequently the stress-function is of the form

$a= -pa+n^+^a+n'm''^ .................. (i.)

a being an arbitrary vector and p being a hydrostatic pressure.

The hydrostatic pressure is defined more particularly (with

changed sign) to be the mean of the principal stresses, or

- 3 =M"= -
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Hence the coefficients n and n' are connected by the relation

2?&+ 3'H
/= 0: ........................... (II.)

and finally in terms of V (Art. 124, p. 211),

(ill.)

If n does not vary from point to point of the fluid, the equation
of motion becomes

;
.........(iv.)

otherwise if n varies, it must undergo operation by the V which

replaces a.

In like manner for an isotropic elastic solid, if 6 is the

displacement,

(V.)

assuming that the stress function is coaxial with the strain-

function and linear in its constituents. The equation of motion

becomes

(vi.)

ART. 135. The rate of change of kinetic energy of any finite

portion of the matter is

D, f^cTcr
2

. dv= D, fPo-
2

. dm

. dm= - s<r (c+*V)dv, .....(I.)

and in the last integral V operates on $ but not on <r as indicated

by the suffix. Because So-$V= So- $V+ Scr<3? V, where V operates
on the unsuffixed symbols, we may integrate by parts, and we find

i/, ...(n.)

where dy is an outwardly directed element of the boundary of

the portion of matter.

For comparison we give the expression for the rate of change
of kinetic energy in any region fixed in space. It is

cScnr . dvA hcTo* . dv=
f
^cT^dv - f

= f JT

on making substitutions from the equations of continuity and of

motion.
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Now Sar VS<r a-= +Scr V . JT<r
2 and the first integral changes

at once into a surface integral so that

,dvfCC f

JcTo-
2

. So-dj/- cScr. dv+ So-$ V. dv Scr^di/, . . .(m.)

transformation of the second part of the integral being as before.

The difference between (li.) and (in.) is due to the influx of

matter through the boundary.
The first integral in (n.) is due to the activity of the applied

forces
;
the third is due to that of the surface stresses ;

the second,
with sign changed, gives the rate at which energy is stored in

the medium or dissipated.

ABT, 136. In the case of a viscous fluid, the rate of storage
and waste of energy per unit volume is (Art. 134 (in.))

- S<r$ V=pSV^+ n(SVV'S<r(r'+ SV</SVV)-MSV<r)2
. . . .(l.)

By the aid of the equation of continuity (Art. 133 (vin.)) the

term in p may be replaced by

pD tlogc=*T> t (pc-
ldc= -Dtfpft-Mfc, ...............(IL)

where b is the bulkiness, the reciprocal of the density ;
and for a

given mass the rate of change of the intrinsic energy is

|
pSV<r . dv= fpDi&dm = D* [dm \pdb

.......... (in.)

The part quadratic in a* is called by Lord Rayleigh the

dissipation function, and it measures the rate at which energy
per unit volume is wasted by the viscosity. This depends on the

distortion, and it is expressible in terms of the elongations
ev e<> and e& the latent roots of the function

<j5

= J(0+ </>')
of

Art."124
The invariant <mf of is (Art. 124 (vii.), p. 213)

m'= - SVW 7

V0-0-
7= JSVo-SVV- JSVcr'SVV ;

also we have

4*2 = Wo-2= SVVo-VVV = SVo-'SVV-

.and from these two expressions we get

SVV'SoV+ SVc/SVV= - 4e2- 4m' -f2m//2

since m"= - SV<r= - SVV7

, Thus

2J?= n(SVV'Scro-'+ SVo-'SVV- |SV<r
2
)
= fn(m'

f*- 3m'- 3e2
). (IV.)
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But (Art. 68, p. 98) the invariants of
<f>

are

7n!
/= e

l+e2+eB
and m"+ e

2=

and therefore

Hence it follows that if the dissipation function vanishes the

distortion of any element must be a uniform dilatation or con-

traction, for the conditions are

Ex. For a dynamical system consisting of a solid and a fluid, the

momentum and the moment of momentum of the system referred to the

.centre of mass of the solid are given by

A=Mv+ Jcrdm, /x
= <co + JVpo-dm,

& being the angular velocity of the solid, v the velocity of its centre of mass,

^>w the moment of momentum of the solid, p a vector from the centre of

mass of the solid to an element dm of the fluid which is moving with

velocity <r.

(a) In general (//,, A) is the resultant wrench of the system of impulses
which would generate the motion, and if the motion of the fluid is due to

jbhat of the solid, A and ft are functions of v and co
;
but if the motion can be

generated by applying the wrench to the solid, it follows from Newton's law

of the composition of velocities that X and p, are linear functions of v and to,

or that (p. 208, Ex. 12)

where </>15
<

2,
<

2
' and < 3 are four linear vector functions.

(6) The work done in altering v and <u to v+ dv and CD+ do> is

if the dynamical system is conservative, so that d W is the differential of

<a function W of v and o>, the functions <
x
and <

3 must be self-conjugate and

^2
' must be the conjugate of c

2.

(c) In the case of a perfect fluid, the velocity generated in this way must

foe irrotational, and assuming that a-, as well as A and ja, is a linear function

of v and W, we must have

where and are vector functions of the vector p.

(d) In the case of a solid moving in an infinite liquid of uniform density,

or of a solid containing a cavity filled with liquid, the functions and

t&ust satisfy

ya^o, V2
f=0

{throughout tjfcie liquid. And at the surface of the solid in contact with

tlbhe liquid

so that 6 and rws satisfy the surface conditions

4v

J.Q,
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() In this case we may replace the expressions for A, and p, by

and by the aid of the conditions which and f satisfy, it may be shown that

jdvSa0= JgW . 0Sai9' . cto, |VpdvSa^-JSW . Saf . dv,

JYpdvSatf= |SW .

fSafl'
. dv, JdvSaf

=
JsW' . 0S< . dv,

so that the conditions (6) are satisfied. Also the functions fa, <f>2 and fa
depend on the nature of the solid and on the density of the liquid, and they
are invariably related to the solid.

(/) If the solid is acted on by an applied wrench
(77, ) referred to its

centre of mass, the equations of motion, analogous to Euler's equation for a

rigid body, are

<j>2
'v -h

<jf>3u> +Vo> ( <j>2

fv+ <jS3o)) 4- "V\>(^D 4-
<jf>2o))

=
77,

the second equation being obtained by expressing that the rate of change of
the moment of momentum (/zH-VyX) with respect to a fixed point is equal
to the moment of the applied forces (^4-Vy^) with respect to that point.

(0r) When there are no applied forces obtain and interpret the integrals

)
= const., S (fav 4-

</>.2co)(^2^ -f <
3w)

=
const.,

3ft)
= const,

) "When the linear momentum is constantly zero,

and the angular velocity is that of a certain solid moving round a fixed point
under the action of the couple 17.

(i) For a steady motion of translation under no forces Vix^i^O ; and in

general for steady motion when co does not vanish

where a?
is^a

scalar. From this it follows that the axis of the screws of
steady motion are parallel to edges of a sextic cone, and in general to each
edge of the cone corresponds a single screw.

ART. 137. In terms of the displacement 0, the equation for
an elastic solid is (compare Art. 134 (vi.))

(i.)

the velocity a- being Q and $ being a self-conjugate function
because there is no voluminal distribution of couple. The
displacement 9 is a function of the time and the position vector,
and when the strain is small we may neglect the term SOV.
in D 2

0. We replace, in fact, D 2# by the second derived of* d

regarded as a function of t alone, that is by 0. Observe that

now^
V is commutative in order of operation with the result

of differentiating with respect to the time,
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^ By Art. 135, the rate at which the forces work in storing and

dissipating energy is the integral

.dv ........................ (ii.)

taken throughout the body. By Hooke's law, stress is a linear

function of strain. If the strain is multiplied by n, the function
$ is likewise multiplied by n. Suppose the strain to be

gradually increased from zero so that at any stage the strain is

n times the final amount where n is positive and less than unity.

In this case (n.) becomes TF= wi|S0$ V.di;; and integrating

between the limits and 1, the total work done in producing
the strain in this particular way is seen to be

W= J|S0$ V.dv (m.)

If the work done is a function of the strain and not of the

manner in which it has been produced, the function W is the

energyfunction a quadratic function of the strain, and the work
done in altering the strain in any arbitrary manner is the

difference of the values of the energy function corresponding to

the final and the initial state.

When the energy function exists we see on comparison of (n.)
and (ill.) that in general for any two sets of strain answering to

the displacements 6l and 92 ,
we have

(iv.)

In fact the theory is quite analogous to that of the linear function

in the quadratic expression Sp<pp. If dSp<pp = 2Sdp<f>p the

function
<f>

must be self-conjugate, and Spi^pz^^Pz^Pi ^or a^
vectors. Conversely, if (iv.) holds good for all pairs of strains,

the energy function exists.

The quaternion statement of Hooke's law is the function <3? is

linear in the constituents of the self-conjugate function

In other words, $ is a linear function of V and of 9, which is

unchanged when 6 and V are interchanged, V operating in situ

on 6. Thus if a is an arbitrary vector free from the operation
of V, Hooke's law is contained in the equation

$a= 0(a, V, 0)
= e(a, 6, V), ...................(V.)

where is a linear function of a, of V and of $.
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In case the energy function exists

But we have already shown that <3> is self-conjugate, so we may
equate the expressions (vi.) to the new expressions

2?
V

2)

We may sum up the whole matter in the following statement :

writing for four arbitrary vectors

(a, & y, <5H~Sa8G8, y, (5),
................ (VIII.)

the fact that $ is self-conjugate allows us to interchange the

positions of a and /3 ;
Hooke's law permits the interchange of y

and <S; the existence of the energy equation renders the pair
a, /3 interchangeable with the pair y, <S.

For any system of mutually rectangular unit vectors, i, j, k,

we obtain from (v.) six self-conjugate vector functions (of a),

0(a, i, i), Q(aJ,j), 6(a, k *), 6(a, J, k), 6(a, *, i), 6(a, i,j\ (IX.)

with permission to interchange the positions of the second and
third vectors. The thirty-six constituents of these functions are

the thirty-six elastic constants in case the energy function does

not exist. When the energy function does exist, the number of

constants is at once reduced to twenty-one ;
three of the type

(i, i, i, i); six (i i, i, j); three (i,ij,j); three (ij, i,j); three

(j, k, i, i) and three (j, i, k, i\ using the notation indicated in

(VIIL).
To exhibit clearly the meaning of these constants we shall

employ a special notation for the strains. Let Q = i

and p ix+jy+ kz', let

Then the stress across a directed area a arising from the strain s*i

is 0(a, i, i)%, and that arising from the strain % is 9(a, ij)8&
The symbol (ijki) represents the component of the stress across

unit area j parallel to i due to unit strain of the type s^ ;
and

when the energy function exists this is equal to the component
parallel to k of the stress across unit area i due to unit strain of

the type %
Ex. 1. Show that the energy function is of the form

)8i?+^(iw}su*j>+^(y&

4-2 (wij)%% 4-2 (iijk) #.
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Ex. 2. Determine the reduction in the number of the elastic constants
when the substance posseses a plane of symmetry.

(a) If the substance has two mutually rectangular planes of symmetry,
the plane at right angles to both is a plane of symmetry.

[Reflection with respect to a plane of symmetry leaves the elastic

properties unchanged. If k is normal to the plane, the constants whose

symbols involve k an odd number of times must vanish. Thirteen of the

twenty-one constants remain. When the substance has two planes of

symmetry, at right angles toj and to
, only symbols of the types (iiii\ (iijj)

and (ijij) remain, and hence the plane normal to i is also a plane of

symmetry.]

Ex. 3. If the elastic constants referred to 2, j, k remain unchanged when
the axes of reference, i and /, are turned through two right angles round

,

the plane perpendicular to k is a plane of symmetry.

[In this case change of i and j into - i and j must leave the symbols
unchanged.]

Ex. 4. Determine the conditions that the elastic constants may remain,

unchanged when i and^' are rotated through a finite angle v round k.

[If a and ft are the vectors obtained by turning i and j through an

arbitrary angle u round k, the functions of
?/., (kkka\ (kakfi), etc., must be

periodic functions of u for the period v or else reduce to constants. These
functions can be expressed as sums of sines and cosines of u, 2u, 3u and 4u

together with constant terms. Hence the only admissible values of v are

TT, |TT or \tr. In every case the symbols involving k three times must
vanish. We have already considered rotation through two right angles. For
rotation through ^TT, the symbols linear in k must also vanish, and changing
i and^' into +j and i respectively must leave all symbols unaltered. Thus

(kkii)^(kkjj\ (M$)= 0, etc., and (w#+ (jij#)=0, (iui)
=

(jjjj). For rotation,

through |TT the functions of u independent of k or involving k twice must
reduce to constants. We find in addition to the conditions satisfied for

rotation through one right angle that (nif)=(jjyi)=Q, (^Y)==(wjj/)-f2(i)'i;).

Expressing that (aaa), (kaaft) are functions of cos3w and sin3w, we get

~~(iciii)
=

(kjij)=-(kijj)i (kjjj)
=

(kiji)
=

(kjii). For rotation through an

arbitrary angle the symbols linear in k must vanish and the conditions for

v= |TT must hold.]

Ex. 5. When the energy function exists prove the existence of a

self-conjugate function
<f>

for which the relation

6(0, ft y)-9(A a, y)=V. fVa/3. y
is identically true.

(a) The axes of <, when determinate, form a natural system of lines of

reference, and where a plane of symmetry exists, it is normal to an axis.

[The function on the left is obviously a linear function of Ycc/3. Operating
by SS we have

(Bapy)
-
(Bpay)

=
(/3ySa)

- (8ya)= - SVyfyVa/3= - SVa/3< VyS,

an^ as this is a symmetrical function of Va/3 and of VyS the self-conjugate
character of

<f>
is established.

For an arbitrary set of mutually rectangular axes, we have

6(
v

,/, #)-6(/, *", #)-V^F . k', etc.,

whence it follows that if z, j and k are the axes of
<f>9

the vectors are

completely permutable in 6fo,/, k\ so that (iijk)~(ijik\ etc.

We easily find -^j'^k' ^(i'i'j
f

k')-(i!j'i
r

k\ -Si>
v

that if Id is normal to a plane of symmetry it is an axis of
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If e
1?

e
2,

es are the latent roots of
</>
we have in terms of the axes

e
l (jkjk)

-
(jjkk\ e2 (KK) - (Hi), e3= (*')

- (#)
G-iven the constants referred to axes i'

9 /, &' we can on transformation to the

axes of < determine whether there are planes of symmetry or not.

In general putting pzfc+ra., where a= zcos /^-h
t/sinw, we have the

expansion

and when
, ^ and are axes of < we have also

(kaaa)= (HiV) cos%+ 3 (Hi)') cosV sin u 4- 3 (B))') cos w sin2w+ (?') sin3 u

because the letters in a symbol involving i, j and k are completely permutable
for this special set of axes. Hence it follows that a plane 2= which is a

plane of symmetry of the quartic (pppp) and of the quadric Sp<p is a plane
of elastic symmetry. The coefficients of the powers of cos u and sin-M in

(kkko) and in (Jcaaa) must then vanish, and by the special laws of interchange

every coefficient of odd order in k vanishes.

Suppose now that the plane S/p=0 or u = is a plane of symmetry. The
coefficients of the powers of z must be functions of cos u alone. Thus

(pppp) =3% 4- ^rb cos u+ 6z2r'2 (c cos 2w+ c') 4- Azr3 (d cos 3w+ <tf'cos u)

+ r*(e cos 4u+ e' cos 2w 4- e")

suppose. If the plane u=v is also a plane of symmetry, this function must
be independent of the sign when we put u=vw, where w is arbitrary.

Hence b sin v c sin 2 v=d sin 3v d'sinv e sin 4v= e' sin 22?= 0,

and unless the quartic is a surface of revolution, the only admissible values

of v are |TT, JTT and JTT. Hence planes of elastic symmetry must intersect at

angles of 90, 60 or 45 if every plane through their intersection is not a

plane of symmetry. Of course in the second and third cases, the quadric

Sp<p is of revolution. There is no difficulty in writing down the elastic

constants for each case.

Suppose two roots of < to be equal so that there are indeterminate

axes in the plane of i and/, and that it is required to find a natural system
of lines of reference. We may equate to zero the derived with respect
to u of the first of the coefficients (M&a), (&&aa)+ 2 (tofca), (&aaa), (aaaa)
which does not vanish. Determining u from such an equation we take

icosu+jsinu arid j cos u i sin u along with Jc as the natural axes of refer-

ence. The case in which
<j>

reduces to a constant will be considered in the

next example.]

Ex. 6. When the energy function exists,

JV
2

. 0(p, p, p)=29(p5 i> t)+ 22e(t, , p)=< 2p>

is a self-conjugate vector function invariantally related to the elastic

structure.

[The function is invariantal because V3 is an invariant operator inde-

pendent of any particular choice of i, j and L If a plane of symmetry exists,

it is a principal plane of this function, because if k is normal to a plane of

symmetry, S^2^ and S/</>2^ both vanish, being of odd order in k. Therefore

k is an axis of 93, and $3 and
<j>

ofjthe last example have a common axis. *

In terms of the axes ?, / and k of the last example, it is easy to see that

- Si^i= 32 (uaa)+ 2 (e2+ e3),
-S%= 32 (#oa),

where a stands for *, j and k in the summation.
The axes of this function may be used as natural axes of reference when

the function < of the last example reduces to a constant e. In this case for

arbitrary axes, i, j and k are completely permutable in any symbol in which

they all occur, and (jkjk)e+ (jjkk\ etc.]
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^

AKT. 138.
^

In the notation of the last Article, the equation of
vibrations of an elastic solid, not acted on by voluminal forces, is

,0), ........................... (I.)

where, as we have said, is the second partial derived, with
respect to the time, of 0, which is a function of t and p.

Consider
^the propagation of a plane wave. If the vector v

represents in magnitude and direction the wave-velocity, the
equation of a wave-front is

u=*-S, ................................. (II.)

for this represents a plane moving at right angles to itself with
velocity v. Over a wave-front, the displacement from the mean
position is, by definition, the same at every point at any given
time. In other words 9 is a function of u and of t Hence

-.,
V OUU V OW

and generally if/V is a homogeneous function of V of order n,

<<<>

In particular (i.) becomes for plane wave motion

(rv.)^ J

If the wave is of permanent type, 9 involves t only as involved
in u, and if in addition the vibration is harmonic and of

frequency p, &e

In this case (iv.) becomes

6(Uu, TJi/, 0)= c0Tu*...................... (vi.)
This shows that for a plane wave propagated in the direction

Uu 3 the vibration 6 is parallel to an axis of the linear vector
function* 0(Ui/, ITu, a), and that the velocity is the square root
of the quotient of the corresponding latent root by the density.
The solid admits of three plane-polarised waves propagated in
the same direction with different velocities. The wave-velocity
surface is determined by the equation

(m)
which is equivalent to the latent cubic of the function_ 6(Uu, Ui/, a).

*The function 6(Uu, Uv, a) is not one of the functions 6 (a, i, i) of the last
Article. The second and third vectors may he interchanged in these expressions,
not the first and second.
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When the energy function exists, the linear function

6(Ui/, Uu, a)

is self-conjugate because we have by the law of interchanges

(Art. 137 (viii.)), 8)80 (Uu, TJu, a)= Sa0(Uv, IIv, /3).
In this case

the vibrations 9V 2 , ^3 ^or any direction of wave propagation
are mutually rectangular. Moreover, since the function W is

essentially positive, the latent roots of the function are positive
as well as real, and there are therefore three real wave-velocities

TJVTvp Til/Tug and Ui/Ti;s in any direction.

When a linear function has indeterminate axes, the
-v/r

function

of < g vanishes where g is the repeated root (Art. 66). The
condition for indeterminate directions of vibration is therefore

where a and /3 arbitrary vectors.

This equation admits of a finite number of solutions (y), which

correspond to Hamilton's internal conical refraction. These
vectors terminate at double points on the wave-velocity surface.

The index-surface (MacCullagh) or the surface of wave-
sloioness (Hamilton) is the inverse

of the wave-velocity surface (vil.), the vector p, being equal
to -v- 1

.

The wave-surface, or the surface of ray-velocity, is the envelope
of the plane nr

-l, ...................... (x.)

subject to the condition (vn.) or (ix.). That is, the wave-surface
is the reciprocal of the index surface with respect to the unit

sphere />

2+ 1 =
;
or it is the envelope of plane wave-fronts in

unit time after passing through the origin ;
or it is the wave of

the vibration propagated from the origin in unit time; or the
vectors p which satisfy its equation represent in magnitude and
direction the ray-velocities.

When the energy function exists a simple and remarkable

expression may be found for the ray-velocity p in terms of ^
and 6. The wave-surface may be expressed by elimination
between

= 0. ...(XL)

The second equation is in full
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and operating on this by S9 and attending to the law of inter-

changes (Art. 137 (vni.)),

2Sd
/u0(0, 9, AO+ Sd0eGi, [*, 0)

= cS0d0;

and by (XL) this reduces to

SdM0(<9, 0,^0 = 0.

Thus every d/x is perpendicular to 0(0, 0, /*) and also to
/o,

so

that 6(0, 0, im)
= xp where x is a scalar. Operating by S//t we

find -^ = 8^0(0, 0, M)
= S00(/x, M, 0)

= c02
,
and therefore

0(U0,U0, M)
= cp......................... (xii.)

Further, if we operate on this by S/x and on the first of (XL)

by S0 we recover the relation Sp/x+ l=0; so that all the

relations connecting U0, /x and p are comprised in the two
relations

0Gcx, /x, 6) = c6, 0(U0, U0, M)
=

cp.............(xm.)

(viii) Electro-magnetic Theory.

ART. 139. The fundamental circuital laws of the electro-

magnetic field are*

(I.) the circulation ( S^dp) of the magnetic force (77) in any
^ / 1 f \

closed circuit is equal to the flux (
--

iSydi/J
of the electric

current (y) through the circuit divided by the velocity of light

(i&) in free space ;

(II.) the circulation, with changed sign, (+ Sedp) of the

electric force (e) in any closed circuit is equal to the flux

/If \
( -- ISy/li/) of the magnetic current (yx ) through the circuit
\ 'W/J /

divided by u.

These laws are symbolized by the relations

y>; ............. (l.)

and because it is implied that the fluxes of the vectors y and y,

through the circuit are independent of any particular surface

bounded by the circuit (Art. 130 (xv.)),

SVy=0, SVyy
= ......................... (II.)

*We cannot delay to explain the units employed in this article. Full explana-
tion will be found in the article by H. A. Lorentz on Maxwell's Mectromagnetische,
Theorie in Bd. V2, pp. 63-144, of the Encyklopadie der mcbthematischen Wissen-

schaften. These units are but slightly modified from Hea^'iside's rational units.

Much use has been made of Lorentz's article and of Heaviside's work in the

preparation of the account of the theory given in the text.
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We proceed to define more particularly what is meant by the
electric and magnetic current fluxes and by the electric and
magnetic forces in these laws. The electric current flux through

the circuit consists in general of three parts, the flux ( S*dj/)

due to the conduction current (t), the rate of change ( DaScSdj/)

of the electric displacement (8) through the circuit, and the flux

(
JeSixlv)

due to the convection current (ev) where e is the

density of electrification* carried through the circuit with

velocity v. In like manner the magnetic current is due to the

rate of change (-D t I S/3di/) of the magnetic induction (/3) through

the circuit, to a conduction current ( 4/) postulated by Heaviside,
but probably non-existent, and to a convection current (e^J)
where e

t
is the density of magnetification carried through the

circuit with velocity v,. On the whole the integral fluxes are

= -D (

|sdi/-
fSidj/-

feSixii/,

..........(in.)

In the rate of change of the displacement through the circuit we
must take account of the motion of the circuit which we suppose
to move with the velocity <r, varying from point to point. We
have therefore by Art. 129 (in.), p. 229.

= s Q3+ 1,+ 6
/!;/)dj/, ...(IV.)

where S= S-VVV<r<$- <rSV<$, ft
=

ft
- VVV0-/3

- o-SV/3......(v,)

Converting the line integrals in (i.) into surface integrals and
expressing that the relations hold for every possible small circuit

dy, we arrive at the differential equations of circuitation

We have not yet explained the meaning of the vectors e and y.
The total electric and magnetic forces at a point consist of

impressed forces (e* and ^) together with e and ^ Thus if e* and
vjt are the total forces,

.....................(VII.)

* This is not electrification of the medium. It is due to charges of electricity
carried by moving particles, for example.
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and Xorentz
'

further divides the impressed electric force into a

part etc co-operative with e in producing the conduction current
and a part ad co-operative with e in producing the displacement.
We shall write

t
= + etc+ ezd, W = *l+ r\ic+ mi, ...............(VIII.)

where the suffix i calls to mind that the force is impressed,
c that it relates to conduction current, d to displacement and
b to magnetic induction (/3).

Expressing that the conduction currents are produced by the

forces enumerated, we have

L=: <i>(e+ eic*) } !,
= $,(*+ *:); ................... (IX.)

and by Ohm's law in the case of isotropic media $ is a scalar

the conductivity and for anisotropic media $ is a linear vector

function. Similarly we suppose the postulated function <&,

corresponding to the postulated magnetic conduction current y,
to be a linear vector function.

In like manner, expressing that the displacement (<?) and the

induction (/3) are due to the forces mentioned,

S=
<i>( +eid\ /3

= 0/>7+^)......... ..... ..... (x.)

The phenomena of hysteresis shows that and
<p/

are not

always linear functions of the forces, but we shall only consider

the important case in which they are linear functions. For

isotropic media, <p is "khe (scalar) dielectric constant and
<f>f

is the

magnetic permeability.
Some little care is necessary in differentiating these expres-

sions when the medium is in motion. Owing to the motion
<p

may change its value at a point fixed in space.

ART. 140. The activity of the impressed electric and magnetic
forces with reference to a small element of the medium of volume
dv is

)av, ........................... (i.)

transformation being made by (IX.) and (x.) of the last article.

Transforming again by (vi.) we find

v9 ........(II.)

because we have -

The electric and magnetic forces evoke mechanical forces, g
per unit volume, and the stress 3>sdy across the directed element
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dv* If the element moves with velocity <r the activity of these

forces on the element is

..................(in.)

the last term, in which (V) operates on $s and on cr in situ,

being equal to the surface integral So-$adi/ over the element.

The total activity Adv= (A 1+ A^)dv ........................(iv.)

is equal to the rate of transfer of energy to the element.

The term /= -SiS-^-S*,*,-
1
^ .......................(v.)

is by Joule's law the rate of waste of energy per unit volume

owing to the conversion of energy into heat by the resistance.

The terms in this expression for the Joulian waste are analogous
to the dissipation function of a viscous fluid. The term

eSev+efiyv, relates to the convection currents.

The work done in increasing the electric displacement by the
amount dS is

-Sw<W= -S(e+eld )d<$
=

-S<j>-
I
8d8, ............(vi.)

where etd is the total electric force operative in producing the

displacement. (Compare (vm.) and (x.) of the last article.)

Experiments on dielectrics show that an energy function exists,
or in other words the work done is the differential of the function

W= -JSfy-
1^ - JSe*($= - JSe^ew, ..........(VII.)

which represents the energy stored in unit volume of the medium
and due to the electric force. From the existence of this energy
function we infer that

cf>
is self-conjugate. A similar result

holds good for the magnetic induction, and the energy due to
this cause is

F> -iSjfy,-
1^ - J8WJ8 -48170^.......(VIIL)

The energy stored in unit of volume due to electric and mag-
netic forces is the sum of W and Wr
When the medium is at rest the total activity is (n.)

, Adv=(J+W+W'^eSv-,Sriv/
-uSVy ^dv J

......(ix.)

because in this case <S and /3 must be replaced by <S and /3. We
have accounted for every term except the last. This by a pro-
cess of exclusion represents the rate of radiation of energy from
the small volume. It may be expressed as a surface integral,

(x.)

and this is the total outward flux of the vector uVeiy, the vector
area dv being outwardly directed as usual. This vector is the
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Poynting vector discovered independently by Professor Poynting
and Mr. Oliver Heaviside. It represents in magnitude and
direction the flux of radiated energy.

Granting that the same vector represents the energy flux

when the medium is in motion, and there seems to be no adequate
reason for doubt, the total activity is

Adv = (J-eSv-e,Sw,-u$VVev)av+T>t(Wdv+ W,dv), ...(XL)

the last term being the rate of change of the energy stored in

the element dv and due to electric and magnetic causes.

Equating this to the sum (A l+A 2)dv already obtained, we have

T> t(Wdv+W,av)
= -(S50-M+S^0/

- 1

j8).dt;-(

By Art. 129 (in.), p. 229, we find

where D^* 1
is the result of operating by D* on the function <j>~\

Further, by (iv.) of the same article,

<$= D ts-VV'Vc/cJ=D tS- <5SVo-+ SSV. </,

and therefore

_
SS<j>-

lS= - SD,<J . $
- 13- 2 WSVo--

Hence equation (xn.) becomes

The first term on the right may be written

JSi.d^^.i-JScrVS^-Mo,
where V operates on ^>~

1 alone since we have generally

where dt refers to the rate of change at a point fixed in space.

Consider now the term jScJ.d^"
1
.^ where d t<p~

l
is the time

rate of change of
<p~~

l at the extremity of the vector p

This change depends on the rate of distortion and on the angular

velocity of the anisotropic medium. In other words, it is a

function of the operation of V on cr. Let 6= iu+jv+kw be the

displacement at the point so that <r=*iu+ji)+ kw, and let u^, etc.,
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denote the deriveds of u and w with respect to
cc, y and z. We

have

=So-ev

suppose, where V operates on a- alone, and where

.3F ,-dW
7
*dW ,

0^= -^ ---
j
--- A- etc^

Introducing this function and an analogous function for the

corresponding magnetic term, and accenting vectors <r operated
on by V, we replace (xm.) by

-i/

Now this relation, or identity, is formally true for all velo-

cities cr, and for all distortions and angular velocities (JVVo-);
and by the principle of virtual velocities we equate corresponding
terms of the relation. The symbolical statement of this principle
is that the identity (xv.) remains true when we substitute for

a-, V
7 and cr' any three arbitrary vectors X, p and v. Hence

because
/o1
= p2

if SXp1
=

SXyo2 for all vectors X
;
and again

A
9 ...(xvn.)

since ^= ^2 if 81/0^= 3^2^ for all vectors
JUL
and v.

Replace p. in this expression by V operating in situ on the

various vectors, and we find

because
+V ' VV^"^ P-*r lp8V0-lBrf-y (xvm.)

|

and
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Thus we find for the mechanical force

.......(xix.)

The stress across any small area is determined by (XVIL).
In general the terms in and 0, are small, and we shall

neglect them.
The stress across any small area due to the electric displace-

ment is when we neglect 0,

and if
jj.

is parallel to <p~
l
S, we have

$eU0-M=-iU0- 1

(S.S(5^-
1

(5=+U^-M. W,

while if
JUL

is perpendicular to <j>~
1

,

Thus the stress consists of a tension along the lines

and an equal pressure at right angles to these lines, numerically
equal to the electric energy per unit volume. Similar results

hold for the magnetic stress.

ART. 141. When the circuit is at rest, and when there is no
convection current the equations of circuitation become

S+ t^uVVfj, /3= -fcVVe, ..................... (i.)

when we put i,
0. When moreover the medium is at rest we

have (Art. 139 (x.) and (ix.))

S= <p(e+ id), /3
=^+ ^&) 3

= *(e+ e,e); ............ (II.)

and from these we obtain the equation

0(e+e,d)+*(e+ eto)+tt
2^

which is explicit in the vector e. Having determined e from
this equation, the impressed forces being known, we obtain <S, i

and /3 by direct operations on e. The vectors ^ and VV?? are also

expressible by direct operations in terms of e.

There are two principal types of this equation. For a
dielectric non-conductor <i is zero, and the propagation of the

disturbance is by waves. For a conductor incapable of storing
electric energy, <j>

is zero and the propagation is by diffusion,

When there are no applied forces the equations (i.) and (n.)

may be replaced by

0e+*e=uVV>7, ^+$^=~uVVe; ............(IV.)

and assuming e= 5xznene
iH y = Ean>7ne

6 *

, .....................(v.)
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"where the a and the b are constant scalars, the equations are

identically satisfied provided en and
rjn satisfy the equations

bn<p n+$n= uVVynt bn<p^n+ $/jn= - UWen ....... (VI.)

and the boundary conditions. The scalars 6 must in general be
determined by an equation arising from the boundary conditions.

The scalars a depend on the initial state of the disturbance.

The particular solutions we**, r)ne*
nt

,
are the normal solutions, and for

any two normal solutions we have

uSVVctfg+ &
2Sei< 2+ 618772^ +Se^+ S^*,^ = 0, .........(vn.)

because SWe^=
S?72We/ -

Se^V'?//. Integrating throughout the medium
and converting a volume integral into a surface integral we find,

uJSVe-^dv+ 62faifa^dv4 b^Sy^fadv -f JSe1
4> 2d'y 4- JS^^^d^= ;

uJS VegTjjdv+ b
l^S 2 (f> l

dv + 6
2JS^/^dv+ JSeg^dv 4-JS^^dv= 0, (VIIL)

the second equation following by interchange of suffixes from the first.

If in either of these equations we replace ^ and b2 by conjugate complex

expressions b'*J Ib", and at the same time replace i
and 2 by e'dbV le"

and
??!

and ^2 by f\ \1 I??", the real part of the equations is

^JS (V y+V^") dv 4- 6'
J(S

'<e'+ Se^e"+ 877'^'+ Sry'W) d^

4- J(S '<I>'+ Se^e" 4- 8^17'+ ST/'^T?") dw= 0, . . . (ix.)

remembering in the reduction of this expression that
<f>

and <, are self-

conjugate (Art. 140 (vn.)). The surface integral is the total inward flux of

energy across the boundary due to the disturbances e', r\
and e", ??".

If no

energy is communicated from outside the boundary, this is zero or negative
zero if no energy from inside escapes, and otherwise negative. The

xemaining integrals are all negative, the coefficient of b
f

being minus double
the energy stored by the two distributions separately and the remaining
integral being minus the energy wasted by conductive friction. Hence in

any case b' cannot be positive. Jf there is no energy radiated and none

.dissipated, b
f must be zero or else c', c", rf and rj' must vanish so that there is

no disturbance. On the whole then, the real parts of the scalars b are zero or

negative when the medium receives no external energy ;
when in addition

there is no dissipation and no radiation of energy across the boundary the
real parts are zero, and in this case there are permanent oscillations within
the medium, the scalars a being determined once for all by the initial

conditions.

ART. 142. We shall now give a sketch of the theory of the

propagation of light in a crystalline medium adopting Clerk
Maxwell's hypothesis. The medium being supposed non-con-

ducting the functions $ and $
y disappear, and the equations of

a free vibration become

,
............ (I.)

when $ and 0, are two self-conjugate functions which are

-constant if the properties of the medium are the same for the
same directions at all points.*

*The suffixes are employed in these equations as we shall have more to deal

the vectors e and 77 defined in (II. ).
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Assuming for a plane wave (Art. 138, p. 24*7) that

where v is the wave-velocity, we find on substitution in (i.)

5=0e= uVi;- 1
j
7 , /3

= ^=-^Vi/-"
1
e.............(HI.)

From these we obtain among other relations

-W^SeS^Sefc^vSev-^Srt^&ift', .........(IV.)

which show that the magnetic energy per unit volume is equal

to the electric energy, for we have

(V.)

The total energy is wsb&nft S-\ and the mean energy is

consequently ^w.

Again if p represents the ray-velodty we have

s=i, Spdu-^o ........................(vi.)
V

for all differentials du. Differentiating (in.)

de); .........(VIL)

operating by Se on the first, or by Srj on the second, and

attending to (ill.), we find

Sdi/^Vctf-O, ...................... .....(vm.)

because by (iv.) Sed<5 and S/S&j are each equal to - Jdm
As this holds for all values of dv we must have p parallel to

>7,
and by (iv.) we find for the ray-velocity

and this, it should be noticed, is parallel to the Poynting Flux

(Art. 140). Again it is easy to deduce from (in.) and (iv.) the

expression for the wave-velocity (u)

, V/:

We have now enumerated six vectors depending on the

propagation of the wave which are connected by the relations,

(XI)

J.Q.
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and these vectors when drawn from a common origin pierce a

concentric sphere in a pair of supplemental triangles.
When some one of the four vectors /3, 8, and

rj is given, all

the vectors can in general be determined subject to a choice of

sign. If e is given, we have <S= e ,
w = -- SeS and

V
for the equations give S^5=05 S/3e=0, or

and the suitable tensor is found by substituting q~xV<j)e<j>, in

w=
Srj<j>tf. Hence /3, p and ir 1 can be found without ambiguity

when the sign is selected. The case of exception is when e (or rf)

is a solution of the equation

V^a^a^O, ..... . .....................(XIIL)

or, in other words, an axis of the (generally non-conjugate)
function

<f>~

l
<p,

or <
/

~ 1<.

When Uv or Up is given, two independent values of the

vectors can in general be found, and the solution corresponds to

the splitting up of a wave or ray into two plane polarised waves

travelling with a given direction for the wave- or the ray-velocity.
Let us seek to determine S and /3 from the second and third of

(xi.) when Uv is given. We have

and from these, when we eliminate j3 and S in turn, and introduce
new linear functions

<f>v
and

<f>^ }
we find

Thus (5 is an axis of the linear vector function denoted by <pv

and Tu2 is the corresponding root, and because
<j>v

has one zero

root (corresponding to the axis <f>Uv) there are only two finite

latent roots or two values of the wave-velocity along the

direction Uv. That the functions <f>v and <f>/v
have the same

latent roots appears from the fact that their latent cubics are

equivalent to the equation in Ty2 obtained by eliminating ft and
S from (xiv.). If Ti/

2
is the second root of

</>v and if 8' is the

corresponding axis, we have

and therefore (by (xiv.)) ?
since Ti>

2
is not generally equal to Ti/2 ,

Sfy-M^O, SjS^-^^O................... (xyi-)

But these conditions may be written in the form

0, ............... (xvn.)
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where e', ft ?/, etc., correspond to <?'. Thus <?' is perpendicular to

e and v, and therefore parallel to /3 by (XL), and { is parallel to

S. In fact we have

(xviii.)

because Uu= UV<S =
UVcJ'/S'.

Since <J and <5' satisfy the relations (compare (xvi.))

S<$0-i<r=o, 8^-^= 0, SaUi/=0, S<rUi,=0, ...(xix.)

we easily find on putting Uu=UV^= V<$<$' :TV<$(T in (xv.) that

u2
S(SVr

1^S^-
1
(?
= Tu2TV^/2

J
...............(xx.)

and that

This result leads to a simple construction. Let the quadries

s -1 and StEr0/

" 1CT= -1 ............(xxn.)

be constructed. Then by (xix.) S and $ are parallel to the pair
of common conjugate radii in the central plane at right angles
to the direction of the wave-velocity. Let cr and sr, be respec-

tively the vector radii of the first and second quadries parallel
to S, and let c/ and tJ/ be those parallel to S', then we have

and from this construction everything relating to the wave can

be determined. For the first set of signs in (xvin.) we have

/3'= -TD/V/W',
I

-Haf^JCxXIV.)
'

where tc^' is double the mean energy per unit volume for the

second wave.* (Compare (iv.).)

From the fifth and sixth of equations (XL) we have

eTyo-^u-W^U^ yTp-
l= w- l

VUf>.<f> ; ........(XXV.)

and as in (xv.) we may write,

..U = -l
......... -

=
<ffp-l

=,,T/
>-' > J

* Note that <j>-
l13 has the same direction as the central perpendicular on the

tangent plane to the quadric StTT^~
1CT= - 1 at the extremity of CT and that its"

length is the reciprocal of that of the perpendicular.
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and if we take e and e" to be the two axes of
<pp corresponding

to the two finite latent roots Tp~
2 and Tp"-

2 of the function, we
find as before

for it appears that W= 11??, TV= + OV.

We can write down results analogous to (xxrn.) and (xxiv.)
for the various vectors related to the waves whose ray-velocity
is along a fixed direction Up.

We now return to equation (xn.), which we may write in the form

i^V^eJf _. V .....................(xxvn.)V \m,(w w,
- iv

2
) /

^ '

where m, is the third invariant of
<f>,

and where *

v0=-S<, ?,= ~S<,e, /= - Sec^-^e, ...........(xxviil.)

because we have

SV^e^e^Y^e^^m.SV^^eV^-^ee.

Expressing p and ir1 in terms of e, by (XL),

wVY<ft<ft, __ ^ ( Z0,$ *0<^,)
'

~~

pn (w'w, w2
) }'

^6rW^"1

^
J
i w,"

1
^^ (w' zi7,

- ?
2

From these equations, on attending to (xxvm.),

';

(xxxi.)

...(^xn.)

(xxxin.)

mX^V-w^i)p=^(^/ _^-i^) iri. ............(xxxiv.)

the last relations, which alone are likely to give trouble, being derived from
(xxxii.) by operating with (uf

-w$
~l

<f>) (w,<j>r
l$ - ) on both sides, remember-

ing that in this the factors are commutative.
From (xxx.) and (xxxi.) the equations of the wave-velocity surface and of

the ray-velocity surface may be written down, and equations (xxxin.) and
(xxxiv.) are suitable for investigating the cases of ^determinations which
correspond to external and internal conical refraction,

s
^PP

se
)
for example, that w' Ww, where &2 is a latent root of the function

(jb^-
1 and that ft (not now the magnetic induction) is the corresponding axis

while p is the axis of the conjugate function 4>~
1
4> corresponding to the same

* It should be noticed that wr

has not here its recent meaning.
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root. The equation (xxxm.) fails to give a determinate value of p, and

operating on it by S/3', we find

S/3'^-^0, .................................(xxxv.)

since
<f>ft'

=
&<$>$'. Two other equations for v are obtained by putting

w'=:b2w in (xxxi.), and these are

Sv-1^2
^-

1 -^" 1
)"

1^"^
, Sv-V/v""

1^ -m,6%-2
; .........(xxxvi.)

and from these three equations we find four values of v"1
, say v{~

1 and
v^"

1
. Substituting the value if"

1 in (xxxm.) and replacing w/ by its value
in terms of p by (xxx.), we get

m/6
2 -

00,'
1
)p+m^v^Sp^P+ utfoif

1
=0, ........(xxxvu.)

and this equation represents a plane conic. For we have seen (xxxv.) that
each vector in this expression is perpendicular to ft', so that if a' and y' are
the remaining axes of <,"*< corresponding to the latent roots a2 and c2

,
the

equation is equivalent to the pair

0,'\

0./
.....- c2) Sy'p+S/^r1KSp^-V+ cV)

v
t

-iA= -Sa^o'Sa'X,

In order to calculate in the most explicit manner the vectors ^~\ etc., we
may by Art. 71, p. 100, reduce the functions <, and

<j>
to the trinomial forms

where identically A= - SaSo/A= - 2a'SaA.

Putting if1=
a'p+ ft'q -H y'r, equation (xxxv.) becomes #=0, while (xxxvi.)

reduces to ^2
(c-

2 ~&- 2
)=r

2
(Zr

2 -a-2
) and jo

2+r2=m
/
62M-2

J
and we finally get

for the four vectors

Again, taking p=cu?4-/5y-l-y^, and substituting in (xxxvu.), we find a

simple expression

mJ(&
2 -a2

)o^+(&
2-ca)y4-m/aa

2^+ y^ (XL.)

for the equation of the conic traced out by the extremity of p. We notice

thatm
; =Sa/ty

2
.

In order to obtain more explicit forms for the equations of the wave-
surface and the wave-velocity surface, we note that the first equation (xxx.)

expands into
'

3=0,

where ^ and ^ are Hamilton's auxiliary functions and where

^VAju
=V< X<f>,p.+V^A.^

By the aid of the second equation (xxx.) this becomes

In like manner

Bv-^^v-^v^if^v-^u^Bv^^^v^+u-^O ........... (XLII.)

is the equation of the wave-velocity surface, where

v^-u^-V+v^r1^"V
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Other forms may be given to the equation of the wave-surface such as

w/2Sa'p
22&%2

Sa'p
2 -

tt*m,S(&+ c2) Sa'p*+ ^^= 0,

derived from (XLI.), and
v Sa'p

2

' 2 - 2

derived from (xxx.) by the aid of the trinomial expressions for the functions,
but in problems treated by quaternions it is frequently preferable to deal

directly with vector expressions rather than with the scalar equations of

surfaces obtained by eliminating certain quantities from the vector equations.

Ex. Show that the wave-surface may be derived from a Fresnel's wave-
surface by a pure strain.

[Put P=p' and $p(w,<j>~w&)-
lp^Sp\w4>'---<wm,)-

l
p', also

etc.]



CHAPTER XVII

PKOJECTIYE GEOMETEY.

ART. 143. There are several interpretations which may be

assigned to a quaternion and which we have not yet explained.
We now propose to show that a quaternion is capable of repre-

senting a definite point loaded with a definite weight or mass,
and throughout this chapter we shall speak rather indifferently
of quaternions or of points.*

In the identity

if OQ=
g, (l.)

it is manifest that the point Q at the extremity of the vector OQ
drawn from an assumed origin is determined when the qua-
ternion q is given, and that Sq is also determined. We regard
Sq as a weight or a mass concentrated at the point. We shall

sometimes use capital letters concurrently with small letters,

g= Q.S?, Q=1+ OQ, (II.)

to denote points of unit weight, or unit points, so that Q.w
denotes the point Q weighted with w. Thus SQ= 1, VQ=OQ.
The difference of two unit points is the vector joining them,

Q-P= 1+OQ~(1+ OP)==OQ~OP--PQ; (III.)

and the origin is the scalar point

O= l. (iv.)

A vector represents the point at infinity along its direction, as

appears by allowing Sq to diminish indefinitely in (l.) while Vg
remains constant, for OQ will then increase indefinitely in length,
so that at last, V# represents the point at infinity in its direction.

*See Trans. R.I.A., vol. xxxii., and Phil. Trans., vol. 201, pt. viii. I regret
that at the time of publication of these papers I was not acquainted with an able
memoir by Dr. James Byrnie Shaw (American Journal of Mathematics, vol. xix.,

pp. 193-216), in which somewhat similar results are obtained.
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The relation

1 4- r= (Sp+Vp)+ (Sq+Vg)+ (S?'+ Vr)

= g(/p+g-|_ r)+Y(p+ g+r) (v-)

contains the principle of the centre of mass. It asserts that the

point p+q+r is situated at the centre of mass of p, q and r,

and that its weight S(p+q+r) is the sum of the weights of the

three points. In another form,

Ex. 1. The middle point of the line AB is

Ex. 2. Interpret the relation

regarding S^+Y^, etc., as representing weighted points.

Ex. 3. The centre of mass of equal and opposite weights is at infinity.

Ex. 4. The equations of the line a, I and of the plane a, 5, c are

qxa+yb, gtxa ~\-yb+zc,

where #, y and are scalars.

Ex. 5. Corresponding points of similar divisions on the lines ab and

cd are a
f
b c^d .

Si+'BP S3
+
*83'

and corresponding points of homographie divisions on the same lines are

a+tbj c+td,

t being a variable scalar.

[See Art. 37, p. 41.]

Ex. 6. The equation q=a+2bt+ct
2
represents a conic.

Ex.7. The equation q=>a+tb+ u(c+td)

represents a ruled quadric, t and u being variable scalars.

ART. 144. In order to develop this method, it becomes neces-

sary to employ certain special symbols, and with one exception

these are to be found in Art. 365 of Hamilton's Elements of

Quaternions, though in quite a different connection.

For any pair of points, we write

(i.)

and in particular, for points of unit weight (A= l + a, B = l+/3),

these become

(A, B)=B-A= /3-a, [A, B]= V. VAVB- Va/3= Va(/3-a). (ll.)
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Thus (a, b) is the product of the weights into the vector connect-

ing the points, and [ab] is the product of the weights into the
moment of the vector connecting the points with respect to
the scalar point or origin. The two functions (a, b) and [a, b]

completely determine the line ab.

For any three points we write

[a, b, c]
=

(a, b, c) [b, c]Sa [c, a]S6 [a, 6]Sc,

and for unit points A= l + a, B = l+/3, C=l + y, these become

[A, B, C] = Sa/3y
-
V/3y

-Vya- Va/3, (ABC) = S . a/3y. . . .(IV.)

Hence it appears that the quaternion [a, b, o] determines the

plane of the points, and regarded as a point symbol [a, b, o]

represents the reciprocal of the plane with respect to the unit

sphere having its centre at the scalar point. For the vector
V [abc] : S [abc] is minus the reciprocal of the vector perpendicular
from the origin on the plane SpV(/3y+ya+ a/3)

= Sa/3y ; that is,

its extremity terminates at the pole of the plane with respect to

the unit sphere. The symbol (a, 6, c) is the sextupled volume of

the pyramid OABC multiplied by the weights SaSSSc.

Any quaternion may therefore be regarded as representing at

pleasure a plane or a point reciprocals with respect to the unit

sphere.
The last special symbol we require at present is

(abcd)= Sa[bcd] ; (v.)

or for unit points,

(VI-)

Thus (ABGD) is the sextupled volume of the tetrahedron ABCD,
and (abed) is the same volume multiplied by the product of the

weights.
It will be observed that the five functions are combinatorial,

that is to say, they remain unchanged when to any of the

quaternions involved in one of the functions is added a sum of

products of the other quaternions multiplied by scalar coefficients.

For example, [a+xb+yc, b
} c]
=

[a, fe, c]. More, generally when
the constituent quaternions are replaced by linear functions of

themselves with scalar multipliers, the functions are merely

multiplied by a scalar. If any linear relation with scalar co-

efficients connects the constituents of a function, the value of

the function is zero. If any two constituents are transposed the

function changes sign, and in fact the laws of combination of

the rows or columns of an ordinary scalar determinant are

obeyed by the constituents of the functions.
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^

AKT. 145. In terras of these functions, the equation of the
line ab and of the plane abo are respectively

[q, a, &J
=

0, (q, a, b, c)
= 0; ..................... (i.)

the first expressing- that q, a and b are linearly connected, or
that the plane qab is indeterminate

;
the second requiring the

volume (QABC) to be zero.

The equation of the line ab may also be written in the form

(n.)

where p is a point wholly arbitrary ;
and the equation of the

plane may be replaced by

0, where l=[abc], ....................(HI.)

the point I being, as we have said, the reciprocal of the plane
with respect to the unit sphere*

S. 3
2= 0, ..............................(iv.)

or S . (1+OQ)
2= 0, or OQ2+ 1 = 0. Putting L = 1+ OL, the equation

of the plane takes the known vector form S(l-fOQ)(l+OL)=
The plane at infinity is

S? = 0, .................................(v.)

this being the reciprocal of the scalar point (the centre) with
respect to the unit sphere ;

or otherwise if q represents a point
at infinity it is a vector (Art. 143, p. 263), so that S#= 0.

The formulae of reciprocation

([ale] i [abd])= [ab](abcd)', \\ahc\; [abd]] = -(ab)(abcd\ (vi.)

are worthy of notice. They connect two points a and b with
two points [abc] and [abd] on the reciprocal of the line ab, and
are easily verified by vectors. Formulae, such as these, are
often suggested by the forms of the expressions. For example,
the left-hand members of the above relations evidently vanish
if a, b, c and d are linearly connected. We infer that (abed) is a
factor, and the remaining factor must be a combination of (ab)
and [ab].

It is often useful to observe that if i, j and k are mutually
rectangular unit vectors,

(MM, [i,j]=k, [M, /|=-A,
[i,/,fc]=-l, (M,;',fc)=-l; .............(VIL)

and relations such as these may be employed to ascertain the
numerical factors in expressions such as (vi.).

*In ordinary homogeneous coordinates the auxiliary quadric is generally taken
to

Jbe
&2

-f 2/
2+z2

-|-?0
2=0. It is more convenient in quaternions to employ the

unit sphere as the auxiliary. There is however no loss of generality. (ComDare
Art. 153 (X.), p. 284.)

F
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Ex. 1. Two lines, a, Z>, and c, d, intersect if

(abcd)= Q.

(a) This condition may be also written in the form

Ex. 2. The point of intersection of three planes

SZq=Q, Smq=Q, Snq= is q=\l9 m, n].

Ex. 3. The line of intersection of two planes Sg= 0, Smq=0 is

q=\l, m, n],

where n is an arbitrary quaternion.

Ex. 4. If four planes , m, n, p have a common point

(I, m,n,p)= Q.

Ex. 5. The line or, b intersects the plane Blq in the point

Ex. 6. The general equation of a conic is

where t is a scalar parameter.

(a) The expression q=at^+ b(^+ 1%)+ c

represents the pole of the chord joining the points ^ and t2,
or the tangent

at
tfj

if j?2 is variable.

(b) The pole of the line in which the plane Slq=0 meets that of the

conic is
q= aSlc - ZbSlb+ cSla.

(c) The centre is q= aSc 26S6 -h cSa.

(d) The conic is a parabola if SaSc=(Sb)
2

.

(e) What kind of a conic is represented by

(/) If q, qlt q2, q$ and q^ are any five points on a conic, and if
t,

t
lt t^ ?3

d 4 are the corresponding parameters, the anharmonic of the pencil

Ex. 7. The general twisted cubic is

<?=(, ^ c,

(a) The equation #= (a, 6, c, d$ti, ife, I)
2

represents the tangent at the point t2 , h being variable.

(b) The osculating plane at a point is

q=(a, b, c, d$tl7 1^2} ife, 1),

two of the scalars ft, if2 , ^ 3 being variable and the other being fixed.

(c) The equation in (a) represents the tangent line developable when
jfj and t% both vary.

(d) If i?i is given it represents the conic in which the osculating plane at

h cuts the developable.

(e) The locus of the poles of a fixed plane SZg=0 with respect to these

conies is the conic,

Z^^
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(/) The osculating planes at the points in which the plane Slq= meets
the curve intersect in the point

q= aSdl - SbScl+ ZcSbl - dSal,

and this point lies in the plane.

(ff) The symbol of the osculating plane Bpq=*Q at the point t is

p=[at+b, bt+c,ct+d];
and this equation also represents the cuspidal edge of the reciprocal

developable.

(h) The last equation may be written in the form

p=t3
[abc]+ #\abd\ + t[acd]+ [bed].

(i) The symbol of the plane containing three points fr, <f2 , t$ is

p= $titfo[abc\+2^3 . [abd\ 4- 2^ . [acd]+ 3[bcd].

(j) The anharmonic of the group of planes joining two variable points on
the cubic to four fixed points is constant.

ART. 146. Hamilton has given two relations connecting five

arbitrary quaternions,

)==() ...... (i.)

and -] ...(u.)

which are o great importance and which correspond to the

vector relations

35 = V/3ySa<$+ VyaS/3(5+Va/3Sy<5.

The first has been virtually proved in Art. 39, p. 43, and we
may at once verify it by writing

xa+yb+zc+ivd+ve=Q,
where x, y, 2, ^v and v are scalars to be determined. From this,

by the combinatorial property, we have

=
(a, 6, c, xa+yb+zc+wd+ve) = (a, b, c, wd+ve),

which gives the ratio of w to v. This relation enables us to

express any point in terms of four given points, so that we may
if we choose use an arbitrary tetrahedron of reference, for

example abed.

The second shows how to refer any point to four given planes

and the truth of the formula may be verified by observing that
we get consistent results when we operate with Sa, S6, Sc
and Sd.

It will be observed that the relations (i.) and (u.) are linear

with respect to each of the five quaternions, so that the weights
of the points do not enter. In fact, just as in tetrahedral

coordinates, geometrical relations depend on homogeneous func-

tions of the quaternions. Though it is in general distinctly

disadvantageous to employ any system or coordinates in
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quaternion investigations, or even to refer in thought to any
tetrahedron or axes of reference until a problem has been
reduced to its ultimate simplicity, yet it is worth while observ-

ing that if we express a variable quaternion q in terms of four

given quaternions a, b, c, d by means of the relation

q*=xa+yb+zc+wd, ...................... (in.)

the scalars x, y, z and w are the anharmonic coordinates of

Art. 40, p. 43.

Ex. 1. The line de meets the plane abc in the point

d(abce) e(abcd).
Ex. 2. Show that

( [abc] , [def])
= [ef](alcd) + [fd](abce)+ [de] (abcf),

[[abc], [def]]
= -(ef)(abcd)-(fd)(abce)-(de)(abcf).

[Compare Art. 145 (vi.). Four points on the line of intersection of the

planes abc and def are d(abce)-e(abcd) and d(abcf)~f(abcd\ and the
functions [a

f

b'~\
and (a'b

f

) for two points on the line are proportional to

the right-hand members of the above. The weights are correct, and it onJy
remains to determine the numerical factors. Putting d=a and e= b, we
verify the signs by the equations cited.]

Ex. 3. The point of intersection of the planes abc, defend ghi is

b

Wl
a c

(adef) (bdef) (cdef)

(aghi) (bgki) (cghi)

[Equating the left-hand member to xa+yb+zc, we have

x(adef)+y(bdef)+z(cdef)?=Q, etc.,

and to determine the factor we may put

The left-hand member becomes +1, and the determinant also reduces

to +1.]

Ex. 4. Given four triangles anbnCn, where %=1, 2, 3 or 4, show that six

times the volume of the tetrahedron determined by their planes is

[This follows from the last example.]

Ex. 5. Establish the identities

Saa' Sab' Sac'

Sba' Sbb' Sbc'

Sea' Scb' Sec'

Saa' Sab' Sac' Sad'

Sba' Sbb' Sbc' Sbd/

Sea' Scb' Sec' Scd'

Sdaf Sdbf

Sdc' Sdd'

-S[abc][a
f

b'c
f

]',

~-~(abcd)(a'b'c'd').



270 PEOJECTIVE GEOMETKY. [CHAP. xvn.

[The first determinant is combinatorial in a, b and c and also in a', b
f

and c
f

. It vanishes if either triangle reduces to a line, and conversely.
Hence it must be a scalar function of [abc] and of [a,'b'c'\ that is (having
regard to the weights) it must be of the form

where x and y are numerical factors. For a=za'=i, b b'j, c=c'=k we
get#= 1, and for a=a'=l, "b l>i, c =</==/ we find x= 1.]

Ex. 6. Prove that

Saa' Sab'

[This is most easily proved by vectors. Compare Art. 145, Ex. 1.]

Ex. 7. Find the equation of the hyperboloid having three given
generators ab, ar

b
r

and a"b'
r
.

[There are various methods of finding this equation, but we shall give a
method to illustrate the use of Ex. 3. If p and q are any two points on
a generator of the opposite system to the given lines, the conditions of

intersection are (pqab)~Q, (pqa'b')^ (pqa"b")=Q. Eegarding these con-

ditions as the equations of planes, p being the variable point, the condition

that the planes should intersect in a line is [[##&] [#&'&'] [^a''&'']]==0, which
becomes (aqa'b')(l)qa"b") (bqa'b')(aqa"b")Q.']

ART. 147. The results of the last article are particular cases

of a very general theory applicable not only to quaternions but
to any operators or quantities which are associative and
commutative in addition.*

If /(a, b) is a function of two quaternions distributive with

respect to each, the function

f(<*,b)-f(b,a) (i.)

is combinatorial in a and b
}
for it remains unchanged when we

replace a by a+ yb or b by b+ wa, because

f(a+yb, 6)=/(a, b)+yf(b, b) and/(6, a+yb)=f(b, a)+yf(b, b).

In like manner if /(a, 6, c) is distributive with respect to a, b

and G the function /(a, 6, c) /(&, a, c) is combinatorial in a and
b ; the function formed by subtracting from this the result, of

interchanging a and c is combinatorial in a and b and also in

a and c
;
and the function of six terms

formed by transposing a, b and c in /(a, 6, c) in every possible

way, by changing the sign after every transposition of a pair of

constituents and by adding the results together, is combinatorial

in a, b and c. Similarly if /(a, b, c, d) is distributive in a, 6, c

and d, the sum 2/(a, 6, c, d) (m.)

*See an interesting paper by Prof. A. S. Hathaway, Proc. Acad. of
Science, 1897.
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is combinatorial in a, b, c and d
;
and finally

2/(a, b, c, d, e) ........................ (iv.)

is, combinatorial in a, b, c, d, e and vanishes identically because
the five quaternions are linearly connected.

It is geometrically evident from Art. 144, that every com-
binatorial function of two quaternions a and b must be a function
of (ab) and [ab] the two vectors which determine the line ah.

Every combinatorial function of a, b and c must be a function of

[abc] which determines the plane abc
;
and the only combinatorial

function of four points is (abed) the sextupled volume of the
tetrahedron determined by them. Hence (n.) is a linear function

of [abc] and (ill.) is the product of a quaternion by the scalar

(abed).
Now in forming these sums, we may proceed step by step.

For example, let us transpose bcde in f(a, b, c, d, e), leaving a

/unchanged. We obtain the sum

where, the temporary sufBx applied to a denotes that it is free

from the operation indicated by 2+ . Next interchange a and b

and change the sign and permute a, c, d, e, leaving b unchanged,
We get -S/(6 ,a,c,d,e).

Finally the vanishing combinatorial function (iv.) is expanded
in the form

2 f(a bode)
- 2 f(bQacde)+2 f(cQabde)

- 2 f(dQabce)

+2f(eQabcd) = 0, (v.)

and this general result includes Art. 146 (I.) as a particular case.

Again we may leave two or more quaternions fixed and add

together the sums obtained, so that for example

2/(a & cd)
-2/(a c &cZ)+ etc. = 2f(abcd).......(vi.)

These expansions correspond to the expansions of determinants

by minors.

Ex. Find the sources of the functions

([abc], d), [[abc], d],

which are combinatorial in a, b and c, or in other words find linear functions

of a, b, c from which the combinatorial functions may be derived by
summation and transposition.

[Since (abc) . Y^=[6c]S . aVd+[ca]S . b~Vd+[ab]$ . cVd

and V [abc]Bd= -
[be] SaSd- [ca]SbSd- [a&] ScSd,

the first expression is 2 bc$adQ. Similarly the second expression is

~-~V.[bc]'Vd.Sa-V.[ca]'VdSb-V.[ab]'VdSc,

and the function may be derived from - V&SVcVc . Sa or from - bScd
(}Sa,
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certain parts of this latter expression vanishing under transposition and
summation. As a determinant, the function is

a b ('

Sa Sb Sc I,

Sad Sbd
Qcd\

and this may be deduced directly as follows. We may assume

[[abc\d]=%a+yb+zc since S[a6c][[a6c]c]==0 ;

and we have j?Sa+yS6+Sc=0, aSad+ySbd+sScdO.
The numerical factor of the determinant resulting from this may be
determined by substituting special values for a, 6, c, d.]

ABT. 148. We shall now consider the general linear trans-

formation of points in space.
In analogy with the linear vector function, the linear

quaternion function fq is a function which satisfies

f(a+b)=fa+fb (I.)

for all pairs of quaternions a and 6.

The relation P~fy (n.)

represents the general linear transformation from points q to

points p, lines and planes

q = a+tb+uc,

becoming lines and planes

p=fa+tfb, q=fa+tfb+ ufc,

and anharmonic properties being preserved.
If four given quaternions, a, 6, c and d, are converted by a

linear transformation into four others, a', &', d and d', the

function which effects this transformation is (compare Art. 62

(iv.), p. 88, and Art. 146 (i.)

fq^~{a\bcdq)+l\cdqa)+ c\dqab)+d\qabc)}(abcd)-
1

', (in.)

and this function is in the quadrinomial form. To reduce a

function to the quadrinomial form, we may arbitrarily assume

any four quaternions a, b, c, d and use either of the relations

connecting five quaternions. Taking the second,

fq= {/[bed] Saq -f[acd]Sbq +f[abd] Scq

-f[abc]Sdq}(abcd)~
l

, (iv.)

and thus a linear quaternion function depends on sixteen

constants, four constants being involved in each of the four

quaternions f[bcd], etc.

In (in.) we supposed the weights given. Let us n6w determine

a function which shall convert five given points A, B, C
? B, E into
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five others A7

,
B7

,
C

7

,
D7

,
E7

, paying no attention to the weights.
Such a function is

, _ A
/

(BQDg)(B
/

C
/P/E/

) B'(AGDg) (A
7C7

I)
7

E')
/? "

(BCDA)(BCDE)
"*

(ACDB)(ACDE)
G/

(ABDg)(A
7B/D /E/

) D/

(ABCg)(A
7B/

C
/E/

) t

(ABDC)(ABDE) (ABCD)(ABCE)
' '"Vv-)

for replacing q by A we get /A=A
/

(B
7C/D7

E')(BCDE)-
1

, etc., and

putting g= E, we have /E = E
/

(A
7B/C/D/

)(ABCD)-
1 in virtue of the

relation connecting five quaternions. Thus the function (v.)
effects the required transformation, and it is evidently deter-

minate to a scalar factor. (Compare Art. 65, Ex. 5, p. 92.)

ABT. 149. A linear function f being regarded as producing
a transformation of points, the inverse of its conjugate f'~

l

produces the corresponding tangential transformation.
For any quaternions p and q,

Spq = Spf-iq'= Sq'f-ip = Sq'p, if q' =fq, p=f-*p (l.)

Hence any plane Spq = 0, in which q is the current point and

p the symbol of the plane, becomes after the transformation

Sp/q
/=

J
where q' is the transformed current point and where p,

is the transformed symbol of the plane. In other words when
points are transformed by the operation of /, planes are trans-

formed by the operation of/
7 ' 1

.

ART. 150. Now the symbol of the plane may be expressed in

terms of three points in the plane (Art. 145, p. 266), and therefore

for some scalar factor n }

<~ 1
[a6c]

= [/a,/6,/c] =^K 6, c], (L)

since we may either transform the symbol of the plane in one

step by/
7 " 1 or we may transform the points a, 6, c which enter

into the symbol by /. The function F' is a new linear function

analogous to Hamilton's \)/,
and it is connected with /

/ "* 1
by the

relation n=f'F'= F'f (n.)

The scalar n may be explicitly expressed in terms of four

arbitrary points, a, 6, c, d, by operating with S .fd on (L), when
we find n(abcd)= (fafbfcfd)= S[abc]Ffd, (ra.)

where F is the conjugate of F'.

Thus in addition to (n.) we have,

n=fF=Ff; (iv.)

and we may also write

n(alcd)= (fafbfcfd)= (f'afbfcfd), }

F[cfo] = [fafbfc]**nf-
l
[dbe]. j

V ''

J.Q. S
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Replacing / by /+ 1, where t is a scalar, the relations

nt=n+tri+tV+ ffn'"+ 4=ftFt
= (/+ t)(F+tG+&H+ #) (vi.)

are obtained, where the new scalars n', n", n"' and the new
linear functions G and H are defined by

n'(abcd)= 2(a/6/c/cZ) ;
nff

(cubed)
= ^(abfcfd) ;

[ate]
=

[a,A /'c]+ [/a, 6, fc] + [fa, f'b, c] ;

IL;

=
[/'a, 6, c] + [a, /&, c]+ [a, 6, /c].

Moreover, on account of the arbitrariness of t in (VL),

n=fF, n'=f&+F, n"=fH+Q, n'"=f+H; ...(vni.)

and from the symbolical equations may be deduced the following^

explicit expressions for the auxiliary functions

H=n'"-f; G= n"-n'"f+f*; F=<n,'-n"f+<n,'"f*-f*; (ix.)

and the symbolic quartic

n-<n,
/

f+n"J*-n'"f*+f*= Q .................. (x.)

satisfied by the function /.

ABT. 151. Let t
l9

t2> t% and t4
be the roots of the scalar quartic

#>-.ri"i?+n"t*-n't+n= Q, .................... (i.)

so that the symbolic quartic may be expressed in the form

It follows just as in the case of the vector function that

tf-<i)ffi=o> where (/-^)(/-^)(/-^)?=?i> ......(i.)

and that ql
is a fixed point a united point of the transformation

one of four q19 q2 , q% and q4
. The point q is quite arbitrary.

The equations

represent respectively a united plane of the transformation and
a united line the plane [q$ t #3 , gj and

the^line ^3g4 .

We have also by the property of the conjugate,

Sfc'p-Sfc'V-yg-O if (f-tJq^Q; .......... (v.)

and thus the united points (#/, g/, qj and q) of the conjugate

(/) are the reciprocals with respect to the unit sphere (Art. 145)
of the united planes of /. In other words, the united points oj
a function and of its conjugate /orm tetrahedra reciprocal
with respect to the unit sphere.

Ex. 1. Prove that fq may be reduced to the form

and determine its latent quartic in terms of the linear vector function
<$>,

the vectors e and *' and the scalar e.
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[By the distributive principle fqf&q+f^q, etc. To determine the

quartic assume fq tq t(&q+ ~Vq)i and equate scalar and vector parts. We
find (e -t)Sq+ Se'V^O, (<$>-t}'Vq +<%= 0, so that

Ex. 2. Construct a function with four zero latent roots.

[Assume fa =6, /6= c, fc=d, fdQ.]

Ex. 3. Examine the nature of the symbolic equation satisfied by the
function

ft= a (bodq)+ b (cdqa)+ c>(dqab)+ d'(qabe).

[Every point a+ ub on the line a, 6, is a united point of the function, and
the F function of fq (abed) q vanishes identically. The quartic degrades
into a cubic.]

Ex. 4. Construct a function satisfying a symbolic quadratic.

[This may arise from one of two causes. The function may have two line

loci of united points a, b and c, d ; or it may have a plane locus of united

points a, 5, 0. In the first case the latent quartic is a perfect square. In
the second it has a triple root. For full details on these matters see Phil.

Trans,, vol. 201, viii.]

Ex. 5. Prove that two real lines remain unaltered by the general real

linear transformation.

[If the roots are all real of course the six edges of the united tetrahedron
remain unaltered. If the roots are all imaginary, they occur in conjugate

pairs, and the united points must be of the form a\/ 16, c*l Id. The
lines ab and cd are real and remain unchanged.]

ART. 152. Just as in the case of the vector function, we
obtain two new functions

t

/o=K/+A /,=H/-A ..................... (i.)

on combining a function and its conjugate by addition and
subtraction.

The function / is self-conjugate and the function /, is the

negative of its conjugate, or

as we see at once by the property of the conjugate.
Since fq is the general linear function of q, Sqfq or Sq/ q

is the general scalar quadratic function, and

S<7/ <7
= ....... . ............... . ......(in.)-

represents the general quadric surface, the surface being quite

arbitrary both in shape and position, and not now referred to

its centre as in Art. 72, p. 106.

In like manner 8^/^ = .............................. (lv-)'

is the general equation of a linear complex, or of a family of

lines p } q satisfying a single condition of the first order. For if

we replace p by p+ tq the equation remains unchanged, for we
have generally, by the property of the conjugate (li.),
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The equations SqfQa = Q, SqfJ} = Q ........................(v.)

represent respectively the polar plane of the point a with respect
to the quadric, and the plane containing the lines of the complex
which pass through b. The first equation may be deduced from
the result of substituting a+tq in the equation of the quadric,
when we find

So/>+ 2tSqfQa+t*SqfQq = 0,

and if q is on the polar plane, the points in which the line aq
meets the quadric must be expressible by a+tq, a tq, because
the polar plane is the locus of harmonic means, and the points
a, a+tq, q, a tq form a harmonic range.

If Slq = is an arbitrary plane we see on comparison with (v.)
that the pole of the plane with respect to the quadric is f

~ l
l,

and that the point of concourse of the lines of the complex which
lie in the plane is //

~ 1
^. It also appears that

SZ/o-^O and Smf,-H= Q ..................(vi.)

represent respectively the tangential equation of the quadric,
or the equation of the reciprocal quadric; and the tangential

equation of the complex (the intersection of the planes Slq 0,

Smq= Q being a line of the complex), or the equation of the

reciprocal complex.
A complete account of the nature of the united points of the

functions / and ft
is furnished by the theorem of Art. 151, Since

/ is its own conjugate, each of its united points is reciprocal to

the plane containing the remaining three, or the tetrahedron of

united points is self-conjugate to the sphere of reciprocation.
We saw in Art. 67, p. 96, that it is impossible for a real self-

conjugate linear vector function to have a pair of equal roots

without having indeterminate axes, and this because a real line

cannot be perpendicular to itself. But a real self-conjugate
linear quaternion function may have two of its united points
coalesced into a single point provided the point is on the sphere
of reciprocation. The argument about real roots does not now

apply. For suppose a+v -T& and a *J~ Ib to be two united

points of a self-conjugate quaternion function, the condition of

reciprocity is

S (a+ *f^iV)(a,
-x/^)= 8az+ Sfc

2= 0,

and this condition can be satisfied for real points a and b if one

point (a) is inside and the other (6) is outside the sphere of

reciprocation Sg
2= 0.

As regards the function / the most general form its symbolic

quartic can have is

= or (f*-s)(f*-*)=<), .........(vn.)
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because the same quartic is satisfied by the function and by
its conjugate ( /). Supposing the united points to be a, of,

b and V, where

it is evident that a is the united point of the conjugate which

corresponds to the root \/s, etc., and therefore by the theorem
of Art. 151 we must have

In other words the lines act', ab'
9 afb and lib' are generators of

the unit sphere, or aa'bb' is a quadrilateral on the sphere. The
four lines are consequently all imaginary. By Ex. 5 of the last

article it appears that the lines ab and a!V must be real; and
since these lines are reciprocal to the unit sphere, one of them

(a&) meets the sphere in two real points (a and b) and the other

meets it in two imaginary points (a' and 6
7

). Consequently one
of the scalars (s) is positive and the other ($') is negative.

The common self-conjugate tetrahedron of two quadrics-

S#/i?==0> S?/2? has the united points of f^'
1^ for its vertices.

For if Slq is the polar of a point a for both quadrics

fia = t
lfza= l or f2

" lfl
a = t

la, ...............(VIIL)

so that a is a united point and tl the corresponding latent root of

/i~
x
/2- If & is a second united point corresponding to the root t^

Sbfa= <iS&/2a = Safjb - 2Sa/2&
= 0,

because the functions are self-conjugate. These relations are,

however, geometrical consequences of (viif.) and analogous.

expressions.
A little care is necessary when dealing with the equations of

quadrics such as

= or

the second form of the equation shows that the function involved

is not self-conjugate, although /x
and /2 are self-conjugate, unless

/! is commutative with /2 .

Ex. 1. In terms of vectors prove that the forms of /and// are

e being a scalar, e
j
e
/? ^ being vectors and < being a self-conjugate linear

vector function.

Ex. 2. Prove that the latent quartic of the function/ is

^+t^-^)-(Brj^=0
and verify the conclusions respecting the roots and united points of/.
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Ex. 3. Prove that

is the locus of the poles of tangent planes of the quadric S^/j^ O with

respect to the quadric S</2<7=0.

Ex. 4. The locus of the points of concourse of lines of the complex
f,q=Q which lie in the tangent planes of the quadric BqfQq= is the

-

Ex. 5. An arbitrary quadric and an arbitrary linear complex have a
common quadrilateral of generators.

[This follows by expressing that the point of contact of a plane S^==0
with the quadric Sqf q=0 is the same as the point of concourse of the lines

of the linear complex Sy/^^O in the plane. We have//z==/j)a=='w, where t

and u are scalars, so that/
~1//

a=^a. There are thus four points (a) through
which pairs of the common generators pass, and these points are the united

points of/<fy.]

Ex. 6. If /i and/2 are an7 ^wo functions, prove that the latent quartics
of/!/2 and of /2/j are identical.

(a) Show also that the latent quartic of /o"
1
/, is of the form

[The first part follows exactly as in the case of vector functions (Art. 71) ;

the second is obtained by combining this principle with the fact that

-///o"
1 is t&e conjugate of /o"

1
/,.]

Ex. 7. If a, &, a! and b
f

are the united points of the function /(T
1

/,

corresponding to the latent roots + , , + 1'
t', prove that if we take

za'+wb' __ x'a+y'b z'a'+ w'V

the equations of the quadric and the linear complex take the canonical forms

Ex. 8. Prove that in any linear transformation the locus of a point
which with its derived is in perspective with a fixed point is a twisted cubic.

[If a is a fixed point, the condition requires [/#, ^, a] 0, so that q, fq
and a are in a line. This equation may be replaced by (f+f)q~ua, or

q^u(f+t)~
la ; and this curve meets an arbitrary plane S<7=0 in the three

points determined by the cubic S^(/+0"
1 =

0, or
'

Ex. 9. Prove that (q, fq, p, fp)=

represents the quadratic complex of lines connecting points and their

correspondents in the linear transformation produced by /.

(a) Prove that the reciprocal of this complex is "the complex of the

-conjugate /, (^f^ p> f'p)
o.

[If p and q are any two points on a line joining a point to its corre-

.spondent, we have for some scalars x> y, 2, w, the relation 3cp-}-yq=f(zp+wq).
The complex follows on the elimination of the scalars.

If SlqQ and Smq=0 are any two planes through q and its correspondent

jfy, we have S/^=0, S/m^=0, and for some scalars
f

"

Ex. 10. The lines joining points to their correspondents which meet an

arbitrary right line a, b generate a quadric
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Ex. 11. An arbitrary quadric Sqf q=Q has eight generators which join
points to their correspondents in an arbitrary linear transformation.

S!f

the line
, fq is a generator of the quadric, the point q is one of the

t intersections of the three surfaces

Sqf,q=0,

We shall see that this is the extension of Hamilton's theory of the
*' umbilicar generatrices.

55

]

Ex. 12. The generalized normal at a point on a surface being defined as
the line joining the point to the reciprocal of the tangent plane, prove that
the normals of the doubly infinite family of quadrics

compose the quadratic complex (qfypfp)~>

Ex. 13. The feet of the generalized normals of the doubly infinite

family which pass through a given point a are given by

where y and z are scalar parameters.

[Any point on the normal to the quadric #, y at the point q may be
written in the form

where -w+ =

Ex. 14. The locus of the feet of normals of the family of quadrics

y= const, which pass through a given point is a twisted cubic.

Ex. 15. A quadric has eight generators which are also normals.

[Expressing that q=fa+%a is a generator of the quadric Sg/g=0, we
have Safa=0, S#/%=0, Sa/3

a==0, which give eight points a and eight

corresponding normals. See Ex. 11.]

Ex. 16. Find the locus of poles of a fixed plane with respect to the

system of quadrics *,

(a) Prove that the plane Blq=0 touches one quadric if x is fixed, three

if y is fixed, and that if no restriction is placed on x or
?/,

the locus of the

points of contact is a conic section.

[Compare generally Exs. 12, 13, 14. In general, if p is a point of contact,

with the condition SI. - 1=0, or
f+X J+3B

(since we need not attend to the weight of p). This reduces to a quadratic

and the locus of p is a conic.]

Ex. 17. The tetrahedron formed by a point and by the poles of the

tangent planes at the point to the three quadrics of a system inscribed in a

developable taken with respect to any fourth quadric of the system, is self-

conjugate with respect to this fourth quadric.
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[The equation of a system of quadrics Inscribed in a developable is

^(/i+ff/a) ^==0, this being the reciprocal of a system passing through a
common curve. If #, y, z are the parameters of the quadrics which pass
through a point p, and if Bqf^q^O is the fourth quadric, the poles of the
tangent planes aje/^+^-ip, /2(/i+^/2)-~^ 5 Mfi+zfzYl

P- But

^^

and this vanishes since p lies on the three quadrics #, y, z. This in particular
gives the theorem that confocal quadrics cut at right angles.]

Ex. 18. The locus of the poles of a plane S#a=0 to the same system of
quadrics is the line

or

the locus of the poles of the system of planes Sq(a+tb)=Q is the ruled
quadric

?=(/i+*/)(a+0) or te/M*/^
and the locus of the points of contact of the system of planes is the twisted
cubic,

[In reducing the scalar equation of the quadric observe that the
quaternion equation is of the form ^=a1 +.m2 +zf(61+^2) and apply the
identity Art. 146 (i.) to eliminate the arbitrary weight of q and the scalars
x and t.]

Ex. 19. Prove that two planes can be drawn through an arbitrary line
to be conjugate to every quadric of the system.

[If the planes S#(a+&)=0, $q(a + t'b)=Q are conjugate to the quadrics
rl

q= and Sq/^q^Q, the conditions of conjugation

lead on elimination of t or t' to a quadratic in t which determines the two
planes in question. The case of exception arises when the line is a generator
of some quadric. The two conditions become equivalent.]

Ex. 20. Examine the particular cases of the twisted cubic locus of
Ex. 18.

[When the line of intersection of the planes is a generator of one of the
quadrics, j/i suppose, the locus becomes q-f^a+ tb). This shows that the
points of contact are honiographic with the tangent planes Bq(a+tb)=0.When the liae of intersection of the planes is not a generator of some
quadric, let Sqa-Q and S#6=0 be the specially selected planes of the last

example, and let Sa(fl +uf2)a= 0, S6(/?+v/a)60 so that u and v are the
parameters of the quadrics touched by the two planes, then the equation of
the cubic becomes

'

3-(/i+ ^j)(+*&)S^^^
The cubic is plane if (/i/2a/i&/2&)=(). (See Ex. 9.)
The cubic degrades into a conic if (/i+/2)60, or (/i+w/2)a=0, that is,

if either of the planes is a united plane of /2~Vi.]

Ex. 21. Determine the quadrics of the system Sq(fi+xft>)-"
1q**Q touched

by an arbitrary line.
*
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[Taking the line to be the intersection of the planes $qa=Q, 8^6=0
of the last example, the condition of contact is most simply obtained by
expressing that the reciprocal line q=a-\-tb touches the reciprocal quadric
S#(A+ xfz)2=0- Thus we find

or simply (x u)(x-v)= 0,

so that the line touches the quadrics touched by the planes.]

Ex. 22. Show that the equation of the tangent cone from the extremity
of the vector p to the quadric

may be written in the form

ST(61 + xB2)~~
1 r= 0, where WA= < A+ <?npSpA - enSpA -

in the notation of Ex. 1, n being equal to 1 or 2.

[The condition that the line of intersection of the planes Sa<7
= 0, $bq=Q

should touch the quadric Sqf~
1q=0 may by the last example be written

in the form

where a= 1 + a, b= l+f). This reduces to

and if the line of intersection of the planes is parallel to T and if p is the
vector to a point on it, we may take Va/3=r, /? a= Vpr (see p. 40,
Ex. 4), or /5-a= -VpYa/5. Substituting this last expression for j8-a,
we find that the condition becomes

-
eVp</2Spa

-
Vep(SeaSp/2

- Se/3Spa)}=0

or SVa/3V (<a cSpa pSea 4- tfpSpa) (</?
-
eSp/3 pSe/3+ epSp/3)= 0.

In this transformation we make use of the fact that

SVcVa^^VpYa/3
= SVpVa/3<VeVa/3

in order to have the function in the last expression self-conjugate. If then

OX,= <pX. cSAp pSAe 4- eSAp,

the condition becomes Sr^~
1T=0, and putting /==/]4-a?/2,

and therefore

OQi+ xOto the result required is obtained.]

Ex. 23. If p is any point ; p^ p2 , p% the reciprocals of the tangent planes
to the three confocals (parameters #,, #2 ? #3) which pass through the point ;

show that the tangent cone to any other confocal (parameter t) is

1 2 3

where any point q is expressed in the form xp+.v1p1 +xzp%+a3pp
[The condition that the line p+uq should touch the confocal t is

if h is the linear function defined by

Substituting in turn p, pl (
= (f+ti)~

l

p), p% andp3 for q, we find

?, etc.,
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because we have

which reduces to

since Sp(/+ Orip
- Sp(/+0^= (,

- Sp(/+ *,)->(/+*)>
The equation &qhq=Q reduces to the required form since Sp^^O, etc.]

Ex. 24. Find the equation of the tangent line developable of the

quadrics S.q
2

Q, Sqfq*=Q.
[If p is the point of contact of a tangent line pq to the common curve,

the four conditions S .^>
2
=0, Spq=0, Sjt?/p=0, Sp/=0, show that

fe &/^/?)=0, or that (/+#)#= (/+?/)?,

where #? and y are two scalars. Substituting for p in the conditions of

contact, we find four relations in
,
x and y, which are easily seen to be

equivalent to three. The second condition gi'ves A = Sq(f+at)"
1(f+y)q0 ;

and because the first and third combine into Sp(/+?/)p= 0, they give

Again the second and fourth give

<=0> or =

To eliminate x and y we have therefore to equate to zero the discriminant of

A with respect to % and to employ the condition 230. On expansion A
becomes

8q(F+x0+*fiff+*>)(f+y)q=09

and as 5=0, this reduces to the quadratic

8q(F+xG+aPH)(
the discriminant equated to zero gives

Putting for y its value in terms of q the required equation is obtained.]

Ex. 25. A plane is drawn through the line a6, and through the line cd
the plane is drawn which is conjugate to this with respect to the quadric

Sqfq=0. The locus of the intersection of the plane is

[If q is a point on the intersection, [gab"] and [qcd] are the symbols of the

two planes. The equation may be transformed by Ex. 5, Art. 146.]

ART. 153. A linear quaternion function has in general sixteen

square roots quite analogous to the square roots of a linear

vector function. A function and its square roots have the same
united points, and the latent roots of the derived functions are

the square roots of those of the original, there being sixteen

different sets according to the choice of signs. (Compare p. 99.)
In analogy with the reduction of a linear vector function to

the product of a conical rotator and of a self-conjugate function,
we may write

/P=f,ftP, fp=M.p, where /=// and /,//
= !, ....(i.)
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since if we take fs to be a square root of the product ff we must
have ftft

'= 1 because

Js ~jj
and thus we have

It appears on counting the constants that ft is not a conical

rotator, there being sixteen constants in / and only ten in the
self-conjugate function fs) so that there must be six in ft

. Con-
sidered geometrically the function ft

converts the unit sphere
into itself and leaves unchanged conditions of conjugation with

respect to that sphere, because

Sftaft
b = if Sa6 = 0.

Farther, because ft =ft~
l transformation of symbols of planes

effected by the function ft
is identical with that of points

(Art. 149).
To study the nature of a function ft

which satisfies the relation

//.'= I =/'/ or /,=//-! or //=/r i, ............(ill.)

we shall endeavour to reduce the function to the form

ft=f*fr, where /=/', /r= r( )r~\ ............(iv.)

that is to the product of a self-conjugate function and a rotator.

First we notice that if a function fr> which satisfies the condition

/r/r'=l, converts a scalar into a scalar, it is a conical rotator,
affected it may be with a minus sign. For if

/r(l) = 1 =//(!),

we have for all vectors
,

_

Thus frp is a vector, and the mutual inclinations of vectors and
their lengths remain unchanged after operation by fr because

To effect the reduction (iv.), we notice that we must have

/=!, /,(1)=/M(1), ........................ (V.)

because /,//=//,/// =/M
2 and ft(l )=//,(!) =/.(!).

Let us now for the sake of symmetry introduce two quaternions
a and b defined by the relations

1+/((1)
= = 1+A(1), 1 -/,(!)= &= !-/(!).......(VI.)

These quaternions are known when the function ft
is given,

and in virtue of (v.),

fua = a, ful=-b, Sa6==0, .................(vir.)

so that a and 6 are united points of the function fw
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Take any point c conjugate to the line a&, so that Sac= 0,

Sbc=
;
and take the point d conjugate to the plane abc so that

Sda= 0, Sd!6 = 0, Scfc = 0. Then we may assume

/<5= c, fud=z -d, .......................(vin.)

and it is evident that all conditions (Art. 152, p. 276) are satisfied

for the self-conjugation of the "function /tt ,
and that fu

2
P=p>

where p is any point whatever. The function fu is determined

by the four conditions (vii.) and (vni.), and the rotator fr is

given by fu
' l
ft

or by its equivalent fuft
. It will be noticed that

there is an infinite number of ways in which this reduction may
be made, for the point c may be any point whatever on the

reciprocal of the line ab. Also the function fu has two line loci

of united pointst he line ac and the reciprocal line bd.

Thus we can in an infinite variety of ways reduce an arbitrary
function / to the form

/=/././ ^ere /.=(//)*, /. = !, /r
= r( )r-i.....(ix.)

As a simple example, consider the transformations which
convert one quadric into another, or which change

vSg/i2
= into Sp/2p= 0, where pfq............(x.)

We have

/!=///, ^ence !=///, if /=/,-*//!*. ........ -(
XL )

and the function ft
is quite arbitrary subject to the condition

As another example we propose to show that the intersection

of two quadrics is expressible in the form

3 = (/+*)V ........................... (XIL )

where / is a linear function, t a parameter and a a constant

quaternion.
If this curve lies on the quadric Sqftf = 0, the relation

must be identically satisfied for all values of t. Now

as appears by squaring both members of each equation, so that

the condition may be written

This becomes rational in t if the square roots involving t are

identical, that is if

/r'Ax/r or //'=/,/ or if /=/r
where /2 is a self-conjugate function, the condition now becoming

)a= 0, or Sa/2a = and
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Finally,

2 = (/ry2+*)V wliere Sa/Ltt^O, Sa/2a= 0, Sa/2/ry2
a= (xv.)

is the curve of intersection of the two quadrics 8^/^ = 0,

S^/2^= 7
because if we put/1-y2 =/2

- 1

./2/1

- 1
/2,

and notice that

/2Ji/2 *s a self-conjugate function/the conditions that the curve
should lie on the second quadric are seen to be the second and
third of the conditions (xv.). Thus a is one of the points of

intersection of three known quadrics.

Ex. 1. Investigate the transformation of one quadric into another by
first transforming to the unit sphere, then transforming the sphere into

itself, and finally transforming the sphere into the second quadric.
[If Sqfiq= 0, Bqf2q= are the two quadrics, the steps are

>

where/<//=l.J

Ex. 2. Under what conditions can a function / be formed so that for all

points q and q' we shall have

Sp/ijp
/= S/2', where pfq and p'fq

f

?

(a) Find the function / when the conditions are satisfied.

[We must have ffif=fz with the implied relation //i'/=/3
'

connecting
the conjugates of these functions. Hence

/rVi'-J"
1
/!-

1/-1
-f'A'f-f-

1
./r

1
// /,

and therefore the latent roots of the function f{~
l
f% must be identical with

those of fi~
l

fi'. For if a2 > &2> tf2> d% are the united points of f^~
l
f<^ and if

^, 2J #3 and z?4 are the corresponding" latent roots we have (see p. 100)

/rVi'*>2^i/^, etc.

Further if a?, y, and w are certain scalars and if ty, &j, c1? d1 are the
united points of

jj //, we must have /a2=^al3 /^2 ~y^i> /<32 ==jSCiJ fd^wd-^ ;

and because /'/i/==/2 we have n^n^n^ where w, % and % are the fourth
invariants of/,/! and /a. But

or

and subject to this condition #, y, and w are arbitrary, and the function /
involves these arbitrary constants and is given by

fq . (aj)2czdz)= ^a^c^q)."]

Ex. 3. Under what conditions can two quadrics 83/^=0, 8^/2^=0 be
transformed into two others Sqf3q=Q, S#/4#=0?

[This is nearly the same as the last example. We must have ffif~uf3 ,

vfto where u and v are scalars, and hence /~"
1/2

""1/t/=^v~1/4~y3,
so that

e latent roots of f{~
l
f\ and of ffl

f$ must be proportional. In the same

way we obtain the conditions that a linear complex and a quadric should be

simultaneously converted into a linear complex and a quadric.]

Ex. 4. A twisted cubic q(abcd\t^ I)
3 may be converted into another

q'=(a'b'c
fd'tf

) I)
3 with arbitrary correspondence of points.

[Assuming t
f= -- where ^, v, uf and v

f

are arbitrary scalars, we

establish a homography connecting the points on one cubic with those on
the other, and if we equate corresponding powers of t in the relation

/. (dbcdfa l)
3
=(a

/

6
/

cWp^+v, u't+tf)

we have four relations which determine the function /.]
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Ex. 5. Prove that

?=V{(/+W+y)(/+*)}.6, where Se2=S^=S^/%=0,
represents a confocal of a generalized system when two of the parameters
.r, y, z vary ;

the intersection of two confocals when only one parameter
varies ; and a point common to the three confocals corresponding to given
values of the parameters. (See p. 124.)

Ex. 6. The generalized confocals are inscribed to the developable of

which

is the cuspidal edge.

[The line of the developable corresponding to x is q=(
the osculating plane is q~(f+u)(f+v)(f+x)~^e ;

the symbol of this plane

is [(/+*r*e, /(/+*)"**, /a
(/+ff)~*4 or (/+*?)*[*, fe, /%], or simply

2-0. This plane touches every confocal.]

Ex. 7. Eight generators of the circumscribing developable are generators
of an arbitrary quadric of the confocal system.

[The line (f+u)(f+aifte is a generator of Sq(f+x)~
l
q Q

9
and this is one

of eight corresponding to the eight values of e deduced from the conditions
of Ex. 5.]

Ex. 8. Eight rays of the complex of lines joining points to their

correspondents in an arbitrary linear transformation are generators of an

arbitrary quadric.

[The equation of a ray of the complex is q = (f+u)a, where a is arbitrary.
This is a generator of the quadric Sqfiq0 if Saf1a= Q, Sa(/

/

/1 +/i/)a==0,
Saf'^fa0. This is the generalization of Hamilton's theory of the umbilical

generatrices.]

Ex. 9. The reciprocal of the developable generated by the tangents to

the curve

q=(f+ t)'

m
'a is p= (f+ ty~

m
b, where b= [a,fa,f*a]

and where m is a given scalar.

Ex. 10. The family of curves q= (J-\-t}
ma includes the right line, the

conic, the twisted cubic, the quartic intersection of two quadrics, the ex-

cubo quartic and the cuspidal edge of the developable circumscribed to two

quadrics ;
the corresponding values of m are 1, 2,

- 1 or +3, J, 4 and f.

Ex. 11. The centres of generalized curvature at a point on the quadric
q-0 are

,-%*,
and C'=-X

where y and z are the parameters of the confoeals which pass through the

point q.

[The point c=(f~\-u)(f+x)~
l

q is situated on the generalized normal at q
(Ex. 12, p. 279), and if this point remains stationary, that is if it is the

point of intersection of consecutive normals,

dc==cdv= (/4-?0(/+^)~
1 &;=

since as c is stationary dc and c must represent the same point so that

dc=cd'y, where dv is some small scalar. This condition may be replaced by
dq=(f4"U)~

1

(f+w)qd.v^ where w is a scalar, and operating by S^-M*)"""
1

^, we
find almost exactly as in Art 82, Ex. 4, p. 122, the required result.]
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Ex. 12. The surface of centres of the quadric x is represented by

Ex. 13. The differential equation of right lines on the surface

0,
\ln(z)

where n(y) is the fourth invariant of /+?/.

[The differential of =

and the differential equation of right lines on the surface is obtained by
equating to zero

Now Se(f+yYl

e^n(y)-
l

&e(F+yG+y*H+y*)e=n(y)-l&eFe in virtue of

b 0.the conditions satisfied by

ial equation of g

* cb=0

Ex. 14. The differential equation of generalized geodesies on the
surface is

where w is a constant of integration.

[A generalized geodesic is a curve whose osculating plane contains the

pole or the tangent plane with respect to the quadric of reciprocation

(S.<?
2
=0). Thus ((/+#)""

1

#, q-> d^,
d2
^)=0 is the differential equation of a

geodesic in terms of q and of its deriveds.

Writing this equation in the form (/+#)~
1
#-f ^+wdg+^d

2g=0 )
where

t, u and v are scalars, operating by S^, Sdq, Stf+x^q and S(f+sc)-
l

dq, and

observing that Sdg'(/+^)"
1
dg' + Sg(/+^)""

fd2
g'0, we deduce

S .
- _

""2 -~ S . ^
2S . d^

2 - 2

This immediately integrates, and we find

Sq(f+x)-*qSdq(f+x)-
i

aq=s(S . q
2B . d?

2 -

where ^ is a scalar constant. By the last example we have

and similarly

-SeFe ;

Collecting these results "and putting #4- sw(#)=w, the required equation
is obtained.]
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ART. 154. We shall now give a few examples relating to in-

variants of linear transformation and of quadric surfaces, and
shall explain their geometrical import.*
By Art. 150 (v.), p. 273, the relation

<(/-*K </-*)&, (f-*)c, (f-t)d)
= (abcd)(n

- n't+ n"t*- n'"t*+ *
4
) ......... (i.)

is an identity for all scalars t and all quaternions a, b, c and d.

In this sense nf n', n" and n'" are invariants, and every
relation connecting them implies some peculiarity in the nature

of the transformation effected by /. But there is a wider sense

in which these four scalars are invariants. If % and n% are the

fourth invariants of two arbitrary functions /x and /2 , the

relation

4 -t> ~* *-tifM
(

.

y
'}

is evidently true since (fyo, /$, f{r} fiS^ n^pqrs), where p, q, r
and s are any quaternions. Thus any relation implying a

peculiarity of the function / and depending on its four scalar

invariants, implies also a corresponding peculiarity in the mutual
relations of the functions fiff% and /jg, that is, in the relations

of any pair of functions that can be reduced to the forms fiffz
(See p. 98 and Ex. 3, p. 101.)

Ex. 1. If the function / transforms any tetrahedron abed into another
afb'cd' having its vertices on the faces of the original, the invariant nm

vanishes and an infinite number of tetrahedra possess the property. The
converse is also true.

[The conditions are (a'6cc)
=

0, (ab'cd) ^ (abc'd)
=

Qj (abcd')=Q, and
because a'~fa, etc., we find on addition that n"' Q. Let a, b ana c be any
arbitrary points, and let d be determined from the first three conditions.

Then we have n"'(abcd)~(abcd'\ so that if 7i
/r/

=0, the point fd will lie on
the face dbc. More generally when n"'=*Q there exists an infinite number
of tetrahedra so that the tetrahedra derived from any one by the operation
of the functions/!//^ and/L/2 are related in the manner desciibed.

If ft/=0, the faces of the derived tetrahedra contain the vertices of the

original.]

Ex. 2. The invariant ^'"2 -2?&" vanishes whenever a tetrahedron abed is

so related to its correspondent in the transformation, that the tetrahedron
transformed from the correspondent has its vertices on the original.

[The sum of the squares of the latent roots of / is zero, or the first

invariant of/
2
vanishes.]

Ex. 3. When the invariant

(^'"
2
-4w/')

2 -64^

vanishes it is possible to determine an infinite number of tetrahedra (abed)

*See Phil. Trans. ,
vol. 201, "Quaternions and Projective Geometry."
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and their deriveds (a'b'c'd') so that a tetrahedron can be inscribed to abed

and circumscribed to a'b'c'd'.

[The sum of the square roots of the latent roots of / is zero, or the first

invariant of one of its square roots /^ vanishes.]

Ex. 4. If an infinite number of tetrahedra can be inscribed to one

quadric surface and circumscribed to another, find the invariant relation.

[Let abed be the four vertices of a tetrahedron inscribed to the quadric

S/ig=0, and let the faces touch Sg/#=0 at the points a'b'c'd'. If a'=fa,

etc., -we have four equations of inscription Safla=Q, etc. ;
twelve equations of

conjugation, Sa'/2&= 0, S6'/2a=0, etc., or Sa//26= 0, Sa/2/6= 0, etc. ; and four

equations of contact Sa'/2a'=0, or Sa//2/a==0. The equations of conjugation

require /2/ to be self-conjugate, or /2/=/'/2 5
and tne equations of contact

may therefore be replaced by Sa/2/%==0, etc. Hence if the first invariant

of /is zero and if f^fffzi it is possible to inscribe in the quadric Sg/g/^^O
and to circumscribe toqf<$ an infinite number of tetrahedra. For when
we assume two of the vertices a and b, we have to determine c and d to satisfy

(fo 5, c, d)= 0, (a,fb, c, d) = 0, (a, &,/c, d)= 0, Sc/2/%=0 and.Sdf2fd=0.
The first three give c? in terms of c, and on substitution in the fifth we nave

two equations in c, any solution of which will be applicable.,

The quadrics S/2/2#=0 and S#/2 =0 possess therefore the required

/^
/2

e i

Ex. 5. If a tetrahedron circumscribed to Bqf$=Q is self-conjugate to

2 2

property, and so do the quadrics 8^/^=0 and Bqf2q=*Q, if it is possible to

find a function /for which /2/*j/2/=//2 and *"/aaB 0. It is easy to see

that the conditions are satisfied if the invariant of the last example vanishes

property, and so do the quadrics 8^/^=0 and Bqf2q=*Q, if it is possible to

find a function /f
"/

that the condition

for the function f^

x. 5. If a te

7=0, the first invariant of the function/f1
/} vanishes.

[This is virtually proved in the last example, the function/3 being /2/.]

Ex. 6. "When the invariant n" vanishes, it is possible to determine an

infinite number of tetrahedra (abed) and their deriveds (a'b
f

c'd
f

)y
so that each

edge (ab) of one of the tetrahedra intersects the opposite edge (c'df) of the

correspondent.
[The invariant is (abcd)n"=^(abc'd'\ and it manifestly vanishes it opposite

edges intersect, that is if each of the six terms (abc'd') vanishes. Conversely

if 72"= o, we may arbitrarily assume two of the points a and b. We have then

to determine c and d to satisfy five conditions, {a&c'd')=0, etc. Solving for d

(Art. 146, Ex. 3, p. 269) from three of these and substituting in the remaining

two, we get two equations quartic in c, and the point c lies on part of the

curve of intersection of the quartic surfaces represented by these equations,]

Ex. 7. Find the locus of intersection of generators of a quadric which

are the sides of a triangle self-conjugate to another quadric.

[If the quadrics are S$/i=0, S/2#=0, we may first reduce the second

quadric to the sphere S^
2=0 and the first to Bgfa=0 where /=/2~Vi/?

If q is the intersection ol the generators and a ana b the remaining vertices

of the triangle, the conditions are

0, Saq= Sbq= Bab= 0.

Now for the first invariant of/we have

and the conditions require (/, 6, q, /?)=<> and (,/&, ?,/fi)
=

0, because the

four constituents of the first are reciprocal to a, while those of the second are

reciprocal to 6. Also [, b, q]=xfq, and therefore the locus is

'

J.Q.
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Ex. 8. Three intersecting edges of a tetrahedron self-conjugate to one

quadric touch another. Find the locus of the intersection.

[If the tetrahedron qdbc is self-eonjugate to S#
2
=0, we have wq=^[abc],

xa=[bcq], yb= [caq\, zc=[abq]; and if the line qa touches Sqfq 9
the

relation SqfqSafa-$qfa?==() must be satisfied. This condition of contact

may be written in the 'form Sqfq(fa, b, e, q)-Bfqa(fq, ft, c, )
=

0, and there

are two similar conditions of contact obtained from this by cyclical inter-

change of #, b and c. Writing down the identical relation connecting

a, ft, c, q and/*?, and utilizing the conditions, we find

ft, c, q)

and this reduces to &qf
2
q-ri"Sqfq = Q, when the factor S.#

2 is discarded,

remembering that [abc]

Ex. 9. Each of three planes S#a=0, Sg6=0, S^=0, mutually conjugate
to S^

2
=0, touches one of the family of confocals Sq(f+u)-

l

q*=Q. Find the

locus of the intersection of the planes.

[The points y, a, 6, c satisfy the conditions of the last example which do
not depend on the function /. The conditions of contact are of the form

=Q or u

and hence (u+v+w+ nf

")S#
2 -

Sqfq

is the locus required.]

Ex. 10. The edge ab of a tetrahedron self-conjugate to Stf2=0 touches

the quadric SqfqQ. The condition of contact may be reduced/ to

(fafbcd)=Q,

and the invariant n" vanishes if all the edges touch the quadric.

[By Ex. 6, Art. 146 and (vi.), and Ex. 1, Art. 145, this follows without

trouble.]

Ex. 11. If the functions /1? /2 , /3 , etc., are transformed by multiplying
them by an arbitrary function fx and into an arbitrary function /, the

functions /i/2"Vs> /i/a"
1

/^/*""
1
^? e^c-j undergo the same transformation and

may be said "to be covariant with the original functions for this type of

transformation.

(a) The function/123 ,
defined as the coefficient of t^t^ in the identity

where tl9 t%, %, etc., are arbitrary scalars, is (to a scalar factor) covariant

with the original functions.

(ft) Examine the nature of the transformations the inverse and the

conjugate functions undergo simultaneously with the original functions, and
find the condition that self-conjugate properties may be preserved,

ART. 155. Several important geometrical and numerical
relations may be deduced from the identity

in which pn is a rational and integral homogeneous quaternion
function o q of order mn .
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The scalar equations

represent two surfaces of orders E^m^m4
and 2

1

5m
1
m

5

respectively, and any point on their intersection satisfies the

quaternion equation

or else the three scalar equations

Hence we see that the curve of intersection of the surfaces (n.)

breaks up into two parts, one of which is represented by (ill.),

while the other the complementary curve is common to the

five surfaces (u.) and (iv.).

Now the order of the curve (m.) must be a symmetric function

of m-p m9 and m3 ,
and that of the complementary curve must be

a symmetric function of the five orders mn. The sum of the

orders is equal to the product of the orders of the surfaces (n.),

that is, to

and accordingly the order of the curve (in.) and that of the

complementary curve are respectively

mm=SjX2+ I^m^m^ and m = 21
5m1
m

2
..........(v.)

Again the points common to the three surfaces (iv.) must

either lie on the surfaces (n.) or else must satisfy the equation

(A2>5)= >
............................. (VL)

which requires p^up^, where u is a scalar. In the former case

the points lie on the complementary curve. When three surfaces

have no common curve the number of their points of intersection

is the product of their order
;
when they have a common curve,

that curve counts for a definite number of points of intersection,

and there are in general other points of intersection not on the

curve.* Now the surfaces (iv.), if they had no common curve,

would intersect in

4
3+m4

2m6

common points, the number being transformed so as to exhibit it

as a function of symmetric functions of the five orders and of

symmetric functions of w4 and m
5

. The number of points

satisfying (VL) must be a symmetric function of m4 and m5

* Salmon, Three Dimensions, Art. 355.



292 PEOJECTIYE GEOMETRY. [CHAP. xvn.

alone. The number of points of intersection of the surfaces (iv.)
absorbed by the complementary curve is (Three Dimensions,
Art. 355) a linear function of the order and rank of the curve
and the order and rank must both be symmetric functions of
the five orders. Hence the number of solutions of (vi.) is

(vii.)

In the next place, in order to find the rank and the number of

apparent double points of the curve (in.), we notice that it meets
the surface (ptPiPiPs)=*Q in m

123(21
5'm

1
ms) points. These

points, as appears from
(i.), are either solutions of (ptf^^Q or

points on the complementary curve. The number of intersections
of (in.) with the complementary curve is therefore by (vn.)

123
=mi23(2iX-m3)

- tu
=m^S/m! S^m^ E/m^mg m-^m^m^.......(vin.)

Employing the relation r-H= m(/x+ v 2) of Salmon's Three
Dimensions, Art. 346, connecting the rank r and the number of
intersections t of a curve of order m and its complementary on
two surfaces of orders

JUL and i/, we find for the surfaces (n.) of
orders 21

5m
1
-m

4 and S/m^m5 that the rank of the curve

which reduces by (vin.) to

In the next place, to find the number (hm) of apparent double
points of the curve (m.), we have (Three Dimensions, Art. 346),

The rank (rc) of the complementary curve is determined by
n= - tm+ n) c(%I,l

*>m
l
m4
-m

5
-

2),

and this may be reduced to

rc
=S/m^/mjmg+S/m^Wg- 22/971^2, . . ......(xi.)

and the number of apparent double points is

^c= Jmc(mc-l)~|rc.

We may denote the complementary curve by the symbol

((PiPzPsPtPz))^, ......................(XII.)

which is intended to denote that the points of the curve satisfy
every equation obtained by omitting one symbol. Similarly,

^ ................... (XIII.)
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may be taken, to denote the points which satisfy the surfaces
obtained by omitting two symbols. These points lie on the
curve (xii.) and also on the surface (piP^PzP^)^^ But the
intersection of the curve and the surface includes the points t^
on the curve [piP^P^l ^ Omitting these, the number of

points is mc(m1+m2+m3+me)--^23
= S

1

6m
1
m

2
m

g
.........(xiv.)

Ex. 1. The curve [q,fq> a]= 0, where/is a linear function, is a cubic ; its

rank is 4 and the numlber of its apparent double points is 1.

Ex. 2. The curve [ftf, f$, f.Aq\ is a sextic of rank 16 and with 7

apparent double points. It is the locus of points that can be destroyed by
functions of the system 1/1 + 3/2 + ^3/35 an(l the locus of united points of
functions of the system .

where t and u are scalars.

Ex. 3. The surface (ftf, f$,f3q, ftq)
=

is the locus of united points of a fainily of linear functions.

(a) "When the functions are self-conjugate, it is the Jacobian of four

quadrics.

Ex. 4. The curve ((/#, /#, /3y, /4y, /5 ))=0

is of the tenth order and its rank is 40.

(a) The Jacobians of sets of four out of five given quadrics have a common
curve, and the Jacobians of sets of four out of six quadrics have twenty
common points.

ART. 156. If Q is any homogeneous and scalar function of q
of order m, but not necessarily rational or integral, the equation

0=o .................................... (i.)

represents a surface.

We shall write the differential of the function Q in the form

dQ= mSpdq, ................... . .......(H.)

where p is a homogeneous function of q of order m 1. By
Euler's theorem concerning homogeneous functions, we see by
(a ) that Q~Spq = P, ...........................(Hi.)

where P is the function of p into which Q transforms when q

expressed as a fraction of p is substituted in Q, for we may
regard q as a function of p since p is a determinate function of q.

Again we shall write generally for the differential of p,

.......................(iv.)

where fqdq is a linear function of Aq and where the constituents

of fq involve q in the order m 2; and by Euler's theorem we
have
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This function fq is self-conjugate, as we have shown in a more

general case (Art. 60 (iv.), p/79).
Now if we differentiate (in.) we have

dQ^Spdq+ Sqdp^dP, ..................... (vi.)

and on comparison with (n.) we see that

dP= 7iS#dp, where (n l)(m-l)= l, ............(vn.)

and it is easy to verify that n is the order in which p is involved

in p.
We shall also write generally for the differential of q expressed

as a function of p, dq~(n-l)f,dp, ........................(via)

and the function fp is also self-conjugate and involves p in the

order n 2 in its constitution. Thus for any differential by (iv.)

and (vni.) we have

dp~(m-I)fqdq= (m-IXn--l)fqfp .dp~fqfp .dp ...(ix.)

by (vn.), and accordingly

/*/* = ! =/*/, ...........................(*)

or one function produces on an arbitrary quaternion the same
effect as the reciprocal of the other. In particular, applying
Euler's theorem to (vm.) as we have already applied it to (iv.),

we obtain the relations

When dq instead of being perfectly arbitrary satisfies

dQ= 0, or Spdq^Q where Q = 0, ............(xn.)

dq represents some point in the tangent plane at q, and p is the

symbol of the tangent plane or the reciprocal of the plane with

respect to the auxiliary quadric. The equation P = is that

of the reciprocal of the surface. The relations of reciprocity are

clearly exhibited by the equations (compare (IL), (in.) and (vi.))

= 0, P= if dQ = ; Q= 0;(xm.)
d2P= if also d2Q= ......(xiv.)

Consecutive tangent planes at q and q+ dq intersect in the
line common to the planes

0, ......................... (xv.)

r beiug the current point, and if q+d'q is a consecutive point on
this edge we have the group of relations

Sgdp-0, Sjd'p^O, Sd'jpdj^O, ....... (xvi.)
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remembering that in general Sdpd'q = Sd'pdq -because fq is self-

conjugate. Hence to conjugate* tangents (qdq and qd'q) on the
surface correspond conjugate tangents on the reciprocal, and the
reciprocal of a tangent to the surface is the correspondent of
the conjugate tangent, for we have S(p+ {cd'p)(q~+ydq)= Q.

The differential equation of the asymptotic lines is

-

Sdpdgr = 0, ........... , ................(xvtt.)

these lines being their own conjugates.
The differential equation of lines of curvature is

Q
) ........................(xvin.)

for this is the condition that consecutive generalized normals
should intersect. If c is a centre of curvature, we have

c= q+ tp, dc = (I+ tfg)Aq+pdt = (q+tp)du, ......(xix.)

where du and dt are some small scalars. (Compare Art. 153,
Ex. 11.) Hence a>ap=fqq we obtain the relation

and operating by Sfqq we get

S?/ff(/,-
1+0- 1

?= or Sq(fq
-*+ t)-*q = Q, .......(xx.)

since ffq
- l+ t)-

l= t-*{fg -(f-*+ t)-
1
} and

The
^theory

of generalized curvature is thus connected with
that of the generalized confocals. The scalar t is the parameter
of one of the confocals Sr(j^+<)"V=0 which pass through q }

r being the current variable. The confocal t= Q is Sr/^r= 0.

The roots of this equation in t determine the centres of cur-

vature, and because in terms ^fp(fq
~ l

) it becomes

~0 or

(since Fp=npfp
~ l= npfq and Sqfqq= Q) after discarding the

factor t, it reduces to a quadratic and gives two values of t.

Ex. L The points having common polar planes with respect to two
surfaces satisfy the equation

(jPiftHO;

the points having collinear polar planes with respect to three surfaces lie on

the points having concurrent, polar planes with respect to four surfaces

generate the JacoWn

the points having concurrent polar planes with respect to five surfaces lie on

* Consecutive tangent planes intersect in the tangent line conjugate to that

joining their points ot contact.
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and the points having concurrent polar planes with respect to six surfaces

satisfy the equation

provided we write generally &Qn=mnSpn&g, where Qn is the equation of
one of the surfaces.

Ex. 2, To find the osculating plane at a point on the curve of intersection
of two given surfaces.

[The osculating plane must pass through the intersection of the tangent
planes at the point q, and its equation must be of the form

where 8^=0 and Bjpzr=Q are the tangent planes. We have identically

Bpiq= Sp2q= Spidq= Sp2dq= 0,

and by (xiv.) the scalar t is determined by the condition

so that the osculating plane is

Bp^rSdp^dq - Sp^rSdp^q= 0.

This has now to be simplified. Assuming a quaternion a satisfyin
Sad#=0, we have dq^p^a}. Also dp^^- l)/^, dp2=(m2

~- l)/2dg, and
accordingly

since/[a6c]=[/~
1a^T

6/-
1

c]. By Art. 146, Ex. 5, this becomes

Baq

Baq

Hence the osculating plane is

^

AET. 157. If we use the notation da to denote that the
differential of q is equal to a quaternion a, we shall have for the
/c
th

polar of a with respect to the surface Q = 0,

d/()= where da = 0, ..... . ................ (i.)

and if m is the order of the surface, we may write the equation
of the 7c

th
polar in the form

d/dr
w
-*Q==0, ............................ (n.)

the quaternion r being now the variable point, and r being
regarded as constant in performing the differentiations indicated.

If we write
d.C-Sop, .............................(in.)

we may consider the quaternion p to be derived from the scalar Q
by an operator D analogous to Hamilton's operator V, and we
shall have generally and symbolically,
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and in particular when q=*w+i&+jy+kz, a= l, b~i, c=jf and
d=k, we have

In this notation (i.) and (11.) become

(SaD^.Q^O, (SaD)
fc

(SrD)
w- i\Q = ............(vi.)

We may also formally identify our notation with Aronhold's

symbolic notation by writing the second of these expressions in

the forms
(Sae)

k
(Sre)~

k= Q or eaV-*= 0, ............ (vn.)

where e is a symbolic quaternion devoid of meaning unless it

enters into a term homogeneous in e and of order m, and where
er=Ser.

There is thus a considerable latitude in the choice of an

appropriate notation for the investigation of projective properties
01 curves and surfaces.

Ex. 1. In investigations which involve differentials of the third order of

the equation of an arbitrary surface of order m, we may write

with liberty to transpose in any way the quaternions a, &, c, the function

/2 (a, b) being a bilinear function of a and b (compare Art. 60).

(a) In terms of the operator D,

= . , 1x .m ^ J
m(ra-l)

(5) We may also write

where e is a symbolic quaternion devoid of meaning unless it occurs thrice in

a term.

(c) We have

And when we differentiate fa totally we find

d ./a=/. da+(w
(d) The equation of the Hessian is

n= or <Jv,fb,fs,J&)=Q,

where n is the fourth invariant of / and where a, 6, c and d are arbitrary

points. It may also be expressed in the forms

(e<?W") Sea Se'b Se"c Se'"dSeq Se'q Se"q Se'"q
=

;

(DD'D"D'")
2

.

where 6, ', e", e
w

, etc., are equivalent symbols (compare Art. 147, p. 270).
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Ex. 2. If ^(pipzpspi)
and of order mn in the variab

Ex. 2. If ^(pipzpspi) and dQn=mnSpndq, where Qn is homogeneous
riable #,

(a) For an arbitrary differential, and for an arbitrary scalar m,

q . dJ= (m-l)J.dq+2Ql
. df^PsPJ+2 (% -

m)[

(6) If four surfaces have a common point, their Jacobian passes through
that point. If the orders of the surfaces are all equal the point of common
intersection is double on the Jacobian. If the orders of three of the surfaces

are equal, the fourth touches the Jacobian. If the orders of two surfaces are

equal, the line of intersection of the third and fourth touches the Jacobian.

(c) At a point common to the intersection of four surfaces of the same
order m,.--,23i l q, where dpn=(m-l)/ndg ;

and hence the equation of the tangent cone at the double point is

where a is an arbitrary constant quaternion.

(c?) If four surfaces have a common multiple-point of order &, we find that

where 2 and 2 ' denote sums of terms which vanish when q coincides with
the multiple point, and we also have

d* x
=mjSdgd*

~ lpl + vanishing terms.

(e) At the multiple point d4k ~ 5J and d4*" 4
. #/ vanish, and therefore d^~ 4J

vanishes (as in (6)), and the Jacobian has a multiple point of order 4 3 ;

and because we may write (as in (a))

pp.
If

it follows when the surfaces are all of the same order that the Jacobian has
a multiple point of order 4Jfc 2.

Ex. 3. Determine the equation of a surface which meets a given surface

at the points of contact of lines which meet it in four consecutive points.

[This investigation, though rather long (compare Three Dimensions,
. 559-567) affords some useful exercise in the manipulation of our formulae.

q is the point of contact and qr the tangent touching at four consecutive

points, we have

$=0, mS^= SrD.<2= (), m(m~l)Sr/r=SrI)
2

. =0, SrD J> .=0.
We may suppose the point r to lie in an arbitrary plane Sr=Q, and we

have to obtain the resultant of the four equations in r and finally to free it

from the arbitrary L Let SraQ and Sn>= Q be the equations of planes
through the generators of the quadric (r variable) SrfrQ which lie m the

tangent plane Brp=0. Thus we have r=[apl] and ^ {bpl} for the points in

which three generators meet the arbitrary plane. One or other of these

points must lie on the cubic in r. Hence

SrD3
. Q . Sr'D'3 . Q

f=
0, or SrD'3 . Q

f

. Sr'D3
. Q 0,
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where the accents applied to D and Q are temporary marks connecting
operator and operand. Now this may be written in the form

where J[ = SrDS/D, 2#=SrD'Sr'D-f Sr'DSrD', <7=* SrD'SrT',

and it is easy to express the operators A, B and C in terms of the function/.
In virtue of the definition of the planes Sra=0, Sr6= 0, we have identically

Srfr= SraSrb 4- SrpSrc,

where Src=0 is some plane. Hence we find on replacing r and r' in J, B
and C by [apt] and [bpt] that

Remembering that pfq and that S^^= 0, we have by Art. 146, Ex. 5,

Sql Sq~D
f

B^-n Sql Slf-H SIf~
lD

SgD Slf-^D Sb/-
1
]

with similar expressions for A and (7, where F nf~
l is Hamilton's auxiliary

function. Writing for the moment e=DSql ISqD and remembering that
D and D' operate on Q and Q' solely and not on q as involved in the
structure of the operators, we proceed to expand and to operate on '.

We have

=(SeFW . Sql
- SeFlSqDJ . Q'

= Se^D'3
. Q'. Sql*

- 3m(m - l)(m - 2) .

because by the identities at the beginning of this example

since 8egQ and SqD'
3

.

/

=m(m-l)(m-2). = 0.

We retain for a purpose the term in Seq.

In like manner

BO. Q' =ST)'FJ)' . SeFW . Q' . Sql*
- S^D^SD^D' . Q'SeFl

The term Sg'B' . SD'^D' . Q' may be reduced by writing for the moment
D'=2a'SaD', where as is easily seen 2Saa'= 4. This term, becomes

m(m - l)(m
- 2)2Sa//V=4m(m - l)(m

-
2) . n, and hence we find

ABO. Q'=SeFe . SeFD' . SD'FW . Q'SqP

From these two relations we get, if e'D'$ql~~lSqT>
f

,

- 3SeFeSeFe'Se'Fe
f

) . Q

- 3m(m - l)(m
-

2) . n . (SeFeSlFl
-

and the last term vanishes because Se^=0. Now it will be observed that

the operator in the first term is precisely the same as the original operator
with I)' substituted for T>'Bql

-
IBql)'- This remark allows us to write down

the result of operating on QQ
f

in the form

- 3ABO) QQ
f=
- 3m(m - l)(m

-
2) . n .
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tlie object of the retention of the term in Sqe being now apparent. But
the term we have retained vanishes by the reduction we have already made
use of. Thus Sql conies off as a factor, and the equation of the surface is

EXAMPLES TO CHAPTER XVII.

Ex. 1. A right line meets three fixed lines act', bb' and cc
r

. The locus
of the harmonic conjugate of the point of intersection on the third line with

respect to the points on the other two is the intersection of the planes

(bb'cq) (aa'cc')+ (aa cq) (bb'cc')
=

; (bb'cfq) (aa'cc')+ (aa'c'q) (bb
f
cc

f

)
= 0.

Ex. 2. The general equation of a quadric through the conic

80/0=0, S^=0 is Sqfq-SlqSl'q= Q.

Find the value of I' in order that the quadric may be a cone having its

vertex at a and show that the equation of the cone may be written in the
fomi

Ex. 3. A plane aa'p is drawn through a fixed line aa', and the lines in
which it meets the planes S^=0 and Sl'q

= Q are joined to the points b and
b' respectively. The equations of the joining planes are

(qaa'p)Slb-(baa'p)Slq^Q and (qaa'p)Sl
f

b'-(b'aa'p)Sl'q^Q,

respectively, and when p varies the locus of their intersection is the quadric
surface

Ex. 4. The four faces of a tetrahedron pass each through a fixed point,
a, b, o and d respectively. The three edges in the face p which contains the

point d lie in the planes, Z,
m and n respectively. The vertex q opposite the

face p is the intersection of the planes

SqlSap-SqpSal^O, SqmSbp-SqpSbm^Q, SqnScp~-SqpSc<n=Q,
and the vertex q describes the cubic surface

(aSql~~ qSal, bSqn qSbm, cSqn qScn, <#)=0,

having the intersection of the fixed planes as a double point.

Ex. 5. Find the locus of the vertex of a tetrahedron, if the three edges
which pass through that vertex pass each through a fixed point, if the

opposite face also passes through a fixed point and the three remaining
vertices move in fixed planes.

Ex. 6. A plane passes through a fixed point d, and the points in which
it meets three fixed lines aja2, bjb% and CjC2 are joined by planes to three
other fixed lines a3% 63&4 ,

and c.3c^. The locus of intersection of the planes
is the surface

Ex. 7. The sides of a polygon pass through fixed points, 1?
a2 ,

. . . aM
and all the vertices but one move in fixed planes, , 2> ln-i< If q is the
free vertex, the next is fiq

= Q8liai-a1Sllq, and the locus of the free vertex
is the twisted cubic

[/-i/-a...A/i0> q, <1=0.

Ex. 8. All the sides of a polygon but one pass through fixed points
!, #2, #-i> the extremities of the free side move on fixed lines bb' and co',

and all the other vertices on fixed planes l^ l^ ... n_2 ; find the surface

generated by the free side.
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Ex. 9. The points of contact q of tangent planes through the line ab to
the quadric Sqfq=Q satisfy the relation*

fq=x[abq] 9
where n+x*{S(fafb)(ab)-S[fa,fb][ab]}=0,

n being the fourth invariant of/, and if c is arbitrary

q=[fa, fb, fc+x[abc]].

Ex. 10. If the line ab is a generator of the quadric &qfqQ)

(fafb) [fafb] .
LJ.'.' - L'/ * J = a scalar.
[ab] (ab)

Ex. 11. The generators of the family of quadrics Sg
r

(#/
f

1 -l-y/2+ 2/3)^=0
compose the complex of lines of the third order represented by the deter-
minant equation

(a) When p is an arbitrarily selected fixed point, this equation represents
a cubic cone, and every edge of the cone determines a definite quadric of the

family. The tangent planes at p to the quadrics pass through the edge of

the cone which joins p to the point [flp, f%p, fzp] ;
and the tangent plane to

the cone along this edge touches at the point p the quadric of which the

edge is a generator.

(b) "When p lies on the Jacobian curve

the cubic cone breaks up into a plane and a quadric cone. The cone is a
member of the family of quadrics, and the plane touches at p all the

quadrics of the family which pass through p.

(c) The locus of points of contact of a plane Sfo=0 with quadrics of the

family is the cubic curve in which the plane cuts the surface

and the locus of points of contact of pairs of the quadrics is

Ex. 12. The integral of the differential equation

(dq,fq)=0, or dq^fq.dt,

where/is a linear function, may be written in the form

q=eV. a,

where a is a quaternion constant of integration.

(a) This integral represents a doubly infinite family of curves, and a

determinate curve of tne family passes through an arbitrary point provided
it is not a united point of the function /.

(b) The equation p=e~"V .b

is the reciprocal of the tangent line developable of the curve determined by a
if the conditions

S6a=0, 86/^=0, S6/%=0
are satisfied.

(G) An arbitrary plane which does not pass through a united point of /is
osculated by a single and determinate curve of the family.

*For another form see Art. 146, Ex. 5.
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(d) An arbitrary tangent line to an arbitrary curve of the family is cut

in a constant anharmonic ratio at the point of contact and at the points of

intersection with three of the united planes of /.

(e) A. right line which cuts the faces of the tetrahedron in points having
a certain anharmonic ratio touches a definite curve of the family, and if

p and q are two points on the line

fe />>/?)=-

( f) Any linear transformation which leaves unchanged the united points

offy merely interchanges curves of the family.

(g) The locus of points of contact of tangent lines drawn from an

arbitrary point c to curves of the family is the twisted cubic

the locus of points of contact of tangent lines drawn through an arbitrary

line cd is the quadric (cdqfq)=Q ;

and the locus of points of osculation of planes through c is the cubic surface

fe v,

Ex. 13. The equation of the complex of lines cutting a tetrahedron in

points' having a given anharmonic ratio may be written in the form

is the given anharmonic ratio, *
1} 2 ,

t3 and ^ being the latent roots^of /and
the tetrahedron being determined by the united points of the function.

(a) The differential equation of curves whose tangents cut the tetrahedron

in points having the given anharmonic ratio is

(dy, q, fdq, fq)=Q ;

and a solution of this equation is

f-^ At

q~e
]/+

~

.a,

where a is an arbitrary quaternion and where % and v are functions of L

(6) This equation includes the family of curves (compare Ex. 10, p. 286)

(c) In general the reciprocal of the tangent line developable of the

curve (a) is r/H-u
de'

where S6a=S&/a=S5/
2a=0.

(d) The anharmonic ratio of the point of contact and of the points in

which a tangent line to the curve (a) cuts the faces of the tetrahedron

corresponding to the roots ^ , 2
an$ % ^s



CHAPTER XVIII.

HYPEBSPA.CE.

ART. 158. Many of the methods of quaternions are applicable
with but slight change to the general case of a "

flat
"
space of

TV dimensions.

Commencing with the multiplication of two vectors or directed

lines in space of n dimensions, we may suppose the two vectors

to be transferred to one common plane or even to be made
coinitial, and we may define the product a/3 very nearly in the

same manner as in quaternions. In the formulae of definition

/3= V2a/3+V a/3, /3a=
-V

2a/3+V a/3, (l.)

V a/3 or Sa/3 is minus the projection of one vector on the other

multiplied by the length of the latter, and V
2a/3 is the directed

area of the parallelogram determined by a and /3, rotation in the

plane from a to /3 being positive. We can no longer identify
VoOt/3 with a vector perpendicular to the plane because in space
of many dimensions there is an infinite number of directions

perpendicular to a plane.
In particular if iv i2 ,

...in are n mutually rectangular unit-

vectors in the space of n dimensions, we have by (l.)

V^-l, #=-1, isit+iti*= 0, (II.)

where s and t are any two numbers from 1 to n.

The functions V
2a/3 and Vpa/3 are doubly distributive, and

hence the binary product a/3 is doubly distributive. We define

for products of higher order that multiplication is thoroughly
associative and distributive, and these principles in conjunction
with (l.) form an adequate symbolical basis for the whole
calculus.

If \ and i2 are any two mutually rectangular unit vectors in

the plane of a and /3, and if rotation from \ to i% is in the

same sense as that from a to /3, we may write

,,
-

(in.)
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where TV
2a/3 is the number of units in the vector area V2a/^

The symbol i^2 represents a unit vector-area in the plane of a/3
or in any parallel plane. This symbol i^i2 is of a distinct kind
from the symbols iv i

2,
... in,

and it cannot be expressed as a

linear function of the latter.

In virtue of the laws of multiplication

and hence by (in.) the effect of multiplying a vector area into a
vector in its plane is to turn that vector through a right angle
in the plane and to multiply its length by the number of units

in the area.

For three vectors, which may be transferred to a common
space of three dimensions or even rendered coinitial, the laws of

the calculus allow us to write

^y, .....................(IV.)

where V3a/3y denotes the part of the product depending on sets

of three distinct units combining in the irreducible products

i^ig, etc., and where V^^Sy arises from reducible products such
as if iv ^2= -~^>> ^iVi V *n f-U tf a 'S&fa, /3

=
22/1

i
l ,

y= 2#
1
'i
1 , where x

} y and # are scalar coefficients, we find

I

V
xa/3y= - Ey-^2^!+ Saj^Sy^- Sce^S^, J

where
| x-jj^ \

denotes a determinant.

The first part V3a/3y of the product of three vectors represents
the directed volume of the parallelepiped determined by the

vectors, it being now necessary to distinguish between volumes
in different spaces of three dimensions. In particular iflfa

represents unit volume in the space of i
lt i% and i%. The

function V
3a/3y is evidently combinatorial with respect to

the three vectors. It is unchanged when a is replaced by
a+v/3+wy, etc., and it changes sign when any two of the
vectors are transposed.
We have given the expansion for Vxa/3y in terms of the unit

vectors and of the scalars x
} y, ;

but there is another method of

wide application which we may employ. It is apparent that we
must have

Via/3y
=uaV /3y+ vftV ay+WyV a,

where u
}
v and w are numbers. Interchanging /3 and y we have

Viay/3
= WaV y/8+vxV+ ^j8V ay ;

adding and attending to (i.) we find
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and thus u= I, v+w = Q. Similarly interchanging a and ft we
find that w= l and u+v = Q, and thus

/3................ (VI.)

By the same process we arrive at the result

aftyS^y^aftyS+ ^aftyS+ V^aftyS .., ...........(VIL)

for the product of any four vectors, where

V
2a/3y <5=V2a/3V y<5

-V
2ayV /3<5+V2a(5V fty+V2/3yV a<5

^- V
2/3<SV ay+V2y<SV a/3 5

[
(vm.)

V a/3y(5
= V aj8V y<J

-V ayV /3<5+V a<$V /3y ; J

and it will be noticed that in these relations the determinant
ride of signs is in every case obeyed, namely starting with the
term aV /3y, the next term, in which /3 comes first, has a minus

sign and so on. In like manner for five vectors

)

( }V
3a/3y(5e

= 2 V
3a/3yV <5e

;
Via/3y<5e

= 2 aV /3y<5e ; J

......... V ''

the first terms in the sums being affected with the positive sign
and the determinant law of signs being obeyed. (Compare
Art. 147, p. 270.)

Considering more particularly the function of m vectors

Vma1a2
. . . am ,

it is apparent from various points of view, that it

is combinatorial with respect to the m vectors. We may prove
that it changes sign whenever any two vectors are transposed,
and hence we may deduce the combinatorial property. Adding
the products

in the second of which ax
and a

2 are transposed, the sum is

2a3a4 . . . awVoc^ag. In this sum the highest terms in the units

.are of the order m 2, and consequently interchange of con-

tiguous vectors changes the sign of Vwax
a
2

. . . ap . . . am . Hence

transposition of any two vectors changes the sign ;
for example

p 1 changes of sign accompany the transference of ap to the

first place in the function, and p 2 changes arise when ax
is

transposed with 2 ,
with a3 and so on till it reaches the place

originally occupied" by ap . The function consequently vanishes

if any two vectors are identical, and when the vectors a are

replaced by vectors ft which are given as linear functions of the

a, the function is simply multiplied by the modulus of the

transformation.

J.Q. U



306 HYPERSPACE. [CHAP. xvin.

Generally any function such as

is combinatorial with respect to the vectors, and when we
express the m vectors a in terms of w mutually perpendicular
vector units in their m-space, we find that

tyyi

. . am= 2 Vpa^ . . . apV7n -pOp+ictp+z m- (XI.)

This includes a number of relations such as

= if

Again when the m vectors lie in a space of m 1 dimensions
so that they are linearly connected, we have relations of the

form TT \r
V V w- 2?a3 ... aw - 1 >

l
am

. /v TT \-----
, ............... ^AH./

which may be verified by operating with Y a1? etc. In particular
for two and three dimensions, we recover the formulae, Art. 27

(in.) with S/>a/3
= and Art. 26 (IL).

The theory explained in this article may be compared with
Grassmann's AusdeJinungslehre* Grassmann's inner product
of two quantities is the function Y a/3, and his outer product
of a19 a2 , ... am is V^^ag ... am . These so-called products are thus

only parts of a complete associative product.

ART. 159. There is a remarkable difference between this.

general theory and the theory of quaternions which may be
illustrated by a special example. The sum of a number of
vector areas is not an area vector, or the homogeneous quadratic
function of the units

A = V&a'+VtpP+V&y'+ etc................... (r.)

cannot generally be expressed in the form Vpp. The geometrical
reason for this is that two planes, for example p^.Ty^+ oj^ and

p=%^+x^ have not necessarily a common line although they
may have a common point the origin of the vectors p in the

example.
To discover a canonical system of vector units in terms of

which a homogeneous function (q) of order m may be expressed,
observe that g

r

p= Vm+i?p+Vm _ 1gp J
and that the line vector

V
1g'Vm -ig'/o

is not generally parallel to p but that it is a linear

and distributive function of p. We are thus led to consider the
linear and distributive function_ ^o=Vl3Vm^.........................(n.)

*See Proc. JRJ.A., 3rcl Series, vol. vi., pp, 13-18 (1900).
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and because

= V . <rqVw . iqp= V . Vwl . icrqVnl _ igp

=V . Y
lll -iq<rV lll -.lpq =V . V

/,

the function is self-conjugate, and just as in quaternions its

axes are all real and mutually rectangular.
In particular for the quadratic A, let \ be an axis of

0p= Vr4Vr4 /
o so that

(f>il
= a

lf>i,, where a12
is a scalar.

Then ^V^^V^V^V^i^V^^^OjaV^, and V^
is also an axis and it is perpendicular to i

l
and parallel to i2

suppose. This shows that in terms of the canonical units

A = C6
12
i
1
i
2+ #&1&3&4+ * 4- &2w -

1, Zuiivm - 1 ifiw, ......... (iH.)

so that a quadratic in 2m 4- 1 or in 2m units may be reduced to
m terms involving pairs of units, or to the sum of m area vectors.

There is obviously indeterminateness in the units to the extent
that

i-t may be any unit in a definite plane that of \ and i
2

and i
3 may be any unit in another definite plane, and so on.

An expression such as A corresponds to an angular velocity
in the space of three dimensions. Consider the transformation
which converts line vectors (p) into line vectors (<r

=
</>) and

which preserves unchanged lengths and mutual inclinations, so

that "XT / TT , , f \T f

V
O(T(T

= V ^p0p =\ pp.

If a is an axis of this function and t the corresponding root,

we have ^a2 = Vo^a
2=V a2= a2,

and therefore t= l or else a2= 0. The former alternative cor-

responds to non-rotated directions. The latter requires a to

be of the form i, +V 1 . \ a vector perpendicular to itself

directed to one of the circular points at infinity in the plane
of % and i

2 (Ex. 1, p. 96)._Corresponding to this there is

a conjugate axis, a == i
x */ H

2
- Again if j3 is any other

axis corresponding to the root s,

so that axes, corresponding to roots which are not reciprocals
one of the other, must be perpendicular. From this it appears
that the transformation is specially related to a set of hyper-

perpendicular planes, ijiz , ifa, etc., and that it consists
^of

ordinary rotations in each of these planes, so that we may write

where q= q^q^q^ - - qtm -1,2m? q^^ cos Iai2+ '

2;
i
7/2 sm 2 a

and where the factors g12 , g34 , etc., are commutative because we
nave ^ A

'

rt

' _ rt

' - *

_ i
g
i
4
i
x
i2.
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Also we have i,i2 . \
It may at once be verified that the operator g12 ( )g12

"" 1 has no
effect except on vectors in the plane of ifo, and that it turns

vectors in this plane through the angle a
12

.

Now we may write (Art. 29 (v.), p. 28)

and because the factors are all commutative we may also write

I(owa+agtfs*4+ ) i-^

f?
= e =e ..................... (v.)

(compare (ill.) and Art. 29 (x.)), and the rotation is effected by
^A, ^A.

the operator e ( )e
For a small rotation, if dt is a small scalar whose square is to

be neglected,
lAdt -lAdt

<r~e pe =(l+^dOp(l-|Adt)= /,+d^V1J.p 3 ...(VT.)

and thus A plays the part of an angular velocity.*

ART. 160. For protective geometry in n space we may use

the method explained in the last chapter, and the symbol for a

point is the sum of a scalar and a vector, so that

(i.)

represents a point of weight V g at the extremity of the vector

The equation y^t^+t^+eic. ... + tmam ...................(n.)

esents the (m
accordance w
[o1a2

. . . am]
=

represents the (m l)-flat which contains the points a
1?
a

2 , ... aw .

In accordance with Hamilton's notation, we shall write

- 2 VM _ x . Vj^V^ . . .V
a
am

or briefly, [a]m = Vm [a]m+ V wi _i [a]TO} .................. (in.)

as the symbol of the (m l)-flat containing the m points a. To
show that this symbol really determines the flat, observe that

we have

(XU= { VjnCtjOj. . am-Vw .!(a2 a
a)(a8 a1)...(am~ ax)} IIV/^, (IV.)

where aa
V a

1
=V

1
a

1
and where IIV^ is the product of the

weights of the points (Art. 144 (IV.)). Now Vmala2 "-am or

V^ai(a2 ax)
... (awa!) is the directed region determined by the

origin and the m points, and Vw i(a2 a
x)(a3 ax )

... (am a-^)
is

*See Proc* R.LA., Series III., vol. v*, pp. 73-123.
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that determined by the fm points. Denoting the latter by
i^a ... im -iR, where R is the magnitude of the region determined

by the m points and where i{b^,.Am -\ are mutually perpen-
dicular unit vectors in the flat, the symbol becomes

[a]TO =(Gr-l)i1
i2 ...im-i.jRnV o1 ,

............... (v.)

where tz is the component of the vector a
t
which is perpendicular

to every line in the flat, or in other words, where or is the vector

perpendicular from the origin to the flat. But when we know
57 and the product of the vectors i we know the flat,* and we
have v r

-i

and ^ ...im _1== -UVm ^[a]w , ....(vi.)
-

> m - 1 l

where U has its quaternion signification. We notice also that

the point

is the reciprocal with respect to the auxiliary quadrie V g
2= of

every point in the flat in other words, this point is the point
in the m-flat of the origin and of the m points a which is

reciprocal to the (m l)-flat of the points a.

In point symbols the equation of the flat is

m]=i

9
....................... .(vm.)

the vanishing of this equation being equivalent to (IL),

Other general expressions admit easily of interpretation on
the principles laid down in this article.

*The vector equation of the flat is p=
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Aberration, 85.

Academy, Royal Irish, 101, 152, 163,

164, 263, 306, 308.

Acceleration, trajectory of point under

uniform, 64; relative, 171 , angular,
171 ; centre, 172 ;

of a particle, 184
et seq. ; of a rigid body, 194 et seq.

Activity of forces on element of strained

medium, 240 ;
of electric and mag-

netic forces, 251.

Addition of vectors, 1 ;
of qxiaternions,

9
; of vector-arcs, 16 ; of weighted

points, 264 ;
of vector areas in hyper-

space, 306.

Algebra, vectorial, 11.

Algebraic sign
-

, use of, 2.

Algorithm of , j, k, 11 ; for hyper-
space, 303.

Almucantar, example on, 176.

Amplitude of versor, 27.

Analytical expressions for V, 74, 225.

Anchor-ring, 59.

Angle of quaternion, 13; differential of,

69 ; directed, 30 ; Eulerian, 33 ; of

intersection of spheres, 50 ; element
of solid, 86 ; of contact, 134 ; of tor-

sion, 134 ;
subtended by vortex ring,

solid, 235.

Angular acceleration, 171 ; momentum,
184, 195; velocity, 170, 187; of

emanant, 132 ;
of strained element,

212
j
in hyperspace, 307.

Anharmonic coordinates, 43 ; equation
of sphere in, 54 ; in relation to

weighted points, 269 ; ratio of collin-

ear points, 41, 45; of four points in

space, 56 ;
of points on a conic, 267 ;

generation of hyperboloid, 65 ; pro-

perties of ruled surface, 139 ; of

twisted cubic, 268 ; unaltered by
linear transformation, 272 ; complex
of lines cutting faces of tetrahedron
in constant, ratio, 302.

Anisotropic medium, 243, 251.

Apparent double points, 292.

Appendix to new edition of JSlement* of
Quaternions, 99, 135, 211.

Arc, vector-, 17; cyclic, 118; of curve,
134.

Area, directed, 23 ; of spherical triangle,
33 ; -vector in hyperspace, 303.

Areal coordinates, 48 ; velocity, IS6 ;

equation of continuity, 230.
Aronhold's notation, 213, 297.

Aspect of plane, 23-

Associative addition of vectors, 2 ;

multiplication of i, j, k, 10 ; of quat-
ernions, 11, 119 ; of vectors in hyper-
space, 303.

Astatics, 160.

Astronomy, examples from, 84, 85, 130,

174, 188.

Asymptote of conic, 64 ; of curve, 152.

Asymptotic cone, 107 ; lines on surface,
295.

Attraction to fixed centre, particle
moving under, 185, 186 ; Green's

theorem, 218 ; spherical harmonics,
222.

A iMdehnuiif/stehre, 306,

Auxiliary functions, x aiu^ ^ 90, 91 ;

Jf\ G and H, 274 ; quadric, 266 ; for

hyperspace, 309.

Axes of linear vector function, 94 ; of

self-conjugate function, 96 ; of quad-
ric, 111 ;

of section of, 111
;
of screw-

systems, 163; moving, 171 ; for curve,
134; for surface, 146; for orbit, 188;
for body, 196; of inertia, 197; of

elastic symmetry, 245.
Axis of quaternion, 13 ; radical, 51 ;

Poinsors central, 156, 169 ; instan-

taneous, 170.

Bail, Sir R. S., theory of screws, 156,
163, 170, 203,' 205.
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Base-point, 171, 195.

Bilinear function, 297.
Binet's theorem on axis of inertia, 197.

Binormal, 134.

Biquadratic equation of linear quater-
nion function, 274.

Biquaternions, 20, 58.

Bisecting sides of spherical triangle,

triangle, 31.

Body, rigid, dynamics of, 196 et seq. ;

under no applied forces, 198 ; dyna-
mically equivalent to four particles,
199 ; dynamical constants of, 199,

202, 207; impact of, 203; con-

strained, 204 ; resultant force and
couple on gravitating, 225

; moving
in fluid, 241.

Bonnet's theorem, 192.

Brachistochrone, 192.

Bright curves on surface, 87.

Bulkiness of fluid, 240,

Burnside, theory of groups, 104.

Calculus, icosian, 104 ;
of variations,

192.

Canonical, form of V, 75 ; of two linear

functions, 100 ; of screw-systems,
164 ; equations of quadric and linear

tiomplex, 278 ; vectors for rotation in

hyperspace, 307.

Cavity filled with liquid, motion of body
containing, 241.

Central, sections of quadric, 111 ; sur-

faces, non-, 117; axis of forces, 156,

163; of displacement, 169; orbit, 186.

Centre, mean, of tetrahedron, of

mass, 5, 264 ; . of circle inscribed to

triangle, 48 ; radical, 52 ; of quadric,
117; of curvature of curve, 134; of

spherical curvature, 136; locus of

mean, of corresponding points, 152 ;

of forces, Hamilton's, 157; astatic,
160 ;

of three-system of screws, 164 ;

particle attracted to, 185, 186..

Centres, of curvature of quadric, 122 ;

surface of, 125 ; of surface, 144 ;
of

generalized curvature, 286, 295.

Chain on surface, equilibrium of,

166.

Characteristic surfaces in optics, 228.

Characteristics of curves and surfaces,

numerical, 290.

Charpit's differential equations, 151.

Chiastic homography, 208.

Circle, inverse of line, 53 ;
at infinity,

imaginary, 54
; monomial equation

of, 55
; quaternion equation of, 58 ;

vector equation of, 82 ; ellipse pro-

jected into, 83 ; osculating, 134, 136,

152 ; surface generated by, 154 ;

excluding point from integration,
217.

Circuit, integration round, 73, 215 ;

circulation and flux, 232; moving in

perfect fluid, 238 ; electro-magnetic,
249.

Circuitation equations for electro-mag-
netic field, 250.

Circular, points at infinity, 96, 126 ;

sections of quadric, 113 ; of cone,
118; in relation to strain, 178;
tangent cylinder. 115 ; point at in-

finity in hyperspace, 307.
Circulation of vector, 232.

Circumscribed developable of confo-

cals, 126 ; generalized, 286.

Clifford, biquaternions, 21.

Coaxial, spheres, 51, 53 ; linear vector

functions, 95, 97 ; stress and strain

functions, 238.

Co-efficient, differential, 63, 67 ; of

friction, 190; of restitution, 204;
virtual, of screws, 206 ; of viscosity,
239.

Coelostat, example on, 130.

Coincidence, of axes of function, 94 ;
of

united points, 275.

Collinearity, of three points, 5, 37,
266 ; of three planes, 39.

Collision of two bodies, 203.

Combinatorial functions, 265, 270, 304.

Commutative, addition of vectors, 1 ;

multiplication, 17 ;
order of differ-

entiation, 79 ; linear functions, 95 ;

small displacements, 169
; strains, 182.

Complementary curve, 291.

Complex, or imaginary, 3, 20, 58 ; wth

roots of quaternion, 28 ;
of right

lines, 40 ; surfaces formed by lines of,

153 ; related to astatics, 161 ; of axes

of inertia, 197 ; linear, 275 ^ seq. ;
of

lines connecting corresponding points,
278 ; of generators of systems of

quadrics, 301 ; tetrahedral, 302.

Composition, of wrenches, 164, 204;
of displacements, 168.

Concurrence of four planes, 39, 267.

Coneyclic quadrics, 121.

Conductivity, electrical, 251.

Cone, tangent to sphere, 49 ; to quadric
108 ; to confogal, 124 ; standing on

curve, 65 ;
of axes of system, fa + t<f>&

101 ; asymptotic, 107 ; edges of, in

plane, 110; and sphero-conic, 118;

through five lines, 121 ; of re-volu-

tion through three lines, 126 ; differ-

ential equation of, 149; tangent to

generalized confocal, 281.

Qonfocal, quadrics, 121 ; tangent cones,
124 ; vector equation of, 124 ; re-

lated to astatics, 162 ; related to

axes of inertia, 197 ; equipotential

system, 228; generalized confocals,

279 ; quaternion equation of, 286,
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Congruency of lines, 41 ; surfaces

generated by lines of, 153; focal

and extreme points, 153 ; of axes
of three-system of screws, 164,
103.

Conic, related to triangle, 48 ; vector

equations of, 63; focal, 114, 126;
sphere-, 118 ; and Pascal hexagon,
121 ; orbit, 187 ; on wave-surface,
261 ;

in point symbols, 264, 267 ;

anharmonic property of, 267-

Conical refraction, elastic solid, 248 ;

dielectric, 260.

Conical rotation, represented by
q ( )q~

1
,

18 ; related to spherical

triangle, 32 ; in terms of Euler's

and astatics, 160; finite displace-
ments, 168 ; examples, 173 ; strain,
178 ; and linear quaternion function,
283

;
in hyperspace, 307.

Conicoid, see Quadric.

Conjugate, of quaternion, 12; of pro-
duct, 15 ; radii of conic, 63 ; of linear

function, 89 ; axes of function and of

its, 94 ; quadric, 107 ; radii of qua-
dric, 110, 112; of quaternion function,

273, 275 ; tangents, 295.

See Self-conjugate.
Connected region, 217.

Conservative system of forces, 184 ;

acting on perfect fluid, 238.

Constant, curve having ratio of curva-
ture to torsion, 137.

Constants of linear function, 88, 178 ;

vector, of integration, 137, 186 ; dy-
namical, of rigid body, 199, 202, 207;
elastic, 239, 244 ; dielectric, 251 ; of

quaternion function, 272.

Constrained motion of particle, 189;
of rigid body, 204.

Construction of product of two quater-
nions, 15 ; fourth proportional to

three vectors, 31 ; ellipsoid, 114 ;

vectors related to wave in dielectric,

259.

Contact, of line and sphere, 49
;
and

quadric, 107 ; and confocals, 124 ;

four point, of tangent, 298.

Continuity, equation of, 72, 230, 238 ;

areal and linear, 230.

Convention respecting rotation, 7 ;
nota-

tion, 20.

Convergence of vector, 72, 212.

Co-ordinates, six, of a line, 40 ; anhar-

monic, 43, 48, 54, 269 ; curvilinear,

66, 74, 227 ; Cartesian, 75 ; elliptic,

124, 286; homogeneous or tetrahedral,
268.

Coplanar versors, 27.

Coplanarity of four points, 5, 38 ; in

point symbols, 266.

Co-reciprocal screws, 206.

Co-residuals on cubic, 101.

Correspondence, $ee Homographic,
Transformation.

Covariant linear functions, 101, 290.

Cremona transformation, 101.

Cross ratio, see anharmonic.

Crystalline medium, damped oscilla-

tions in, 186
; propagation of light

in, 256.

Cubic, of linear vector function, 93, 100 ;

twisted, 93, 104; cone, 101; twisted,
locus of feet of normals, 109 ; of

points of contact with confocals, 123 ;

tangent line and osculating plane,
133 ; related to moving body, 172 ;

developable generated by, 267 ; locus

of points in perspective with corre-

spondents, 278 ; transformation of,

285 ; characteristics of, 293.

Curl of vector, VV<r, 73, 213.

Current, electric and magnetic, 250.

Curvature, of curve, 132 ct seq. ; of

surfaces, 141 et seq., 215 ; of quadric,
122, 125 ; of orbit, 189 ; generalized,
286, 295.

Curve, in terms of parameter, 62 ; of

intersection of confocals, 125 ;
me-

trical properties of, 131 et seq. ;
uni-

cursal, 152 ; intersection of quadrics,
285 ; complementary, 291 ; character-
istics of, 292.

Curves, family of, 148 ; q = (/+ t)
m
a, 286;

q= eV.a, 301.

Curvilinear coordinates, 66, 74, 124,
226.

Cusp, condition for, 63, 83.

Cuspidal edge, 126, 136, 268, 286.

Cyclic planes of quadric, 113, 178; arcs
of sphero-conic, 118.

Cyclical transposition under sign S, 16.

Cycloid, 83, 193.

Cylinder, right circular, 45 ; standing
on curve, 65 ;

circular tangent, to

quadric, 115 ; case of general quadric,
117 ; geodesic on, 137 ; torsal tangent
planes of, 140 ; differential equation
of, 149 ; related to astatics, 161.

Cylindroid, 84, 165.

D symbol of differentiation, 229 ; of

operator analogous to V, 296,

Damped oscillations, 186.

Deformation of surfaces, 145,

Degraded, cases of quaternions, 9, 19 ;

symbolic equations, 95, 275.

Degree, see Order.

Degrees of freedom, 204.

Delta, Hamilton's operator V, 70, 21L
See Operator.
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De Moivre's theorem, 27.

Derivative, 63.

Determinants and combinatorial func-

tions, 270, 305.

Developable surface, 65 ; circumscribing
confocals, 126; related to curve, 135,
139 ; generated by tangent planes
along curve on surface, 142; of twisted
cubic, 267 ; circumscribing quadrics,
280 ; tangent-line, of two quadrics,
282; circumscribing generalized con-

focals, 286.

Development of quaternion function,
79, 85 ; of vector of curve in terms
of arc, 134.

Deviation from osculating curve, 152.

Diaphragm, 217.

Dielectric, 251 et seq.
Difference of two points, 263.

Differential, 63, 66 ; condition for per-
fect, 74, 86, 214

; indeterminate, 87 ;

of equation of surface, 142 ; equation
of geodesic, 141, 152; of lines of

curvature, 144, 147 ; of family of

surfaces, 149 ;
of curves traced on

surfaces, 287.

Differentiation, chap, vn., 62; general
formula, 66 ; successive, 79 ; with

respect to moving axes, 167 et seq. ;

of deformable elements, 212 ; follow-

ing moving point, 229.

Diffusion of electromagnetic disturb-

ance, 255.
Dilatation in strain, 178.

Direct and inverse similitude, 14.

Directed area, 23 ; angle, 31 ; curva-

ture, 132, 141 ; volume in hyperspace,
304.

Discontinuity in integration, 216.

Displacement, of a body, 18, chap, xn.,
168 ; in strain, 180 ; electric, 250.

Dissipation function, 240, 252.

Dissociative multiplication, 11.

Distortion of elements, 212, 229; of

viscous fluid, 238.

Distributive, multiplication of vector

by scalar, 4 ; by vector, 8
; property

of scalar of product, 6 ;
of product,

9 ; of differential, 66 ; of linear func-

tion, 88 ; multiplication for hyper-
space, 303.

Disturbance in electromagnetic field

propagated by waves or by diffusion,

255.

Divergence of vector, 212.

Division, of vectors reduced to multi-

plication, 11 ; homographic, 41, 65,

152, 264,

Dodecahedron, 104.

Double points, on wave surface, 248,
261 ; apparent, 292; on Jacobian, 298.

Duality for point symbol, 265.

Dynamical constants of a body, 199,

202, 207.

Dynamics, of a particle, chap, xiv.,

184; of system and rigid body, chap.
XT., 194; of continuous medium, 236* j,

electro-, 249.

Eight square roots of linear function,
99 ; umbilical generators, 125 ; geu-
eralizcXtion of, 279, 286 ; generators
which are also normals, 279.

Elastic solid, isotropicj 222, 239; aniso-

tropic, 242 et seq. ; symmetry, 245.

Electro-magnetic theory, 249 et seq. ;

of light, 256.

Element, rate of change of, 212, 229.

Element* of Quaternions referred to,

1, 3, 7, 29, 31, 34, 45, 53, 55, 56, 59,

82, 85, 114, 118, 120, 121, 132, 156,

157, 197, 211, 264; appendix to, 99,

135, 211,
Elimination of a vector, 39, 105.

Ellipse, vector equation of, 63, 82 ; pro-
jected into circle, 83; parallactic, 85 ;

aberrational, 85 ; differential equation
of surface generated by, 149 ;

related

to astatics, 163 ; locus of feet of per-

pendiculars on generators of cylin-

droid, 166 ;
in conical refraction, 261.

Ellipsoid,
1* Hamilton's construction for,

114 ;
vector equation of, 152 ; strain,

177.

Ellipsoidal linear function, 178.

Elliptic, logarithmic spiral, 82 ; co-

ordinates, 124; functions, 198; gen-
eralized, co-ordinates, 286.

Elongation, 181.

Emanant, 131, 138.

Energy equation, for particle, 184, 187;

system of particles, 194 ; rigid body,
197 ;

for impulses, 200 ; for contin-

uous medium, 239 ; in electro-mag-
netic theory, 251 ; function, for elastic

solid, 243 ; for dielectric, 252.

Envelope, examples, 128, 129 ; differen-

tial equation of, 149, 151 ;
wave-

surface as, 248, 257.

Epicycloid, 83.

Equality of vectors, 1 ; vector-arcs, 17;

points, 263.

Equilibrium, static, 156; astatic, 160.

Equipotential surfaces, 227.

Euler's angles, 33 ; four square identity,
16 ; exponential formulae, 28 ;

theorem on curvature, 143 ; equations-
of motion of rigid body, 196 ; of fluid,

230, 238.

Evoked wrench, 204.

Evolutes on polar developable, 139.

* See Linear vector function, the use of an
ellipsoid being to a great extent superseded,
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Exact differential, 74, 86, 214.

Excentricity of orbit, 187.

Excess, spherical, 38.

Expansion^ of quaternion function, 79,
85 ; of vector of curve in terms of arc,

134; in series of spherical harmonics,
223, 224.

Exponential pi quaternion, 28, 34 ;

differential of, 86 ; for hyperspace,
308.

Extreme points on line of congruency,
154.

Families of curves and surfaces, 148.

Family of equipotential surfaces, 227 ;

of curves, q=(f+t)
m
a, 286 ; q=e^a,

301.

Five vectors, 43, 44, 54
; quaternions,

43, 269 ; points linearly transformed
into live, 272; surfaces, 291.

Flat space, 303 ; symbol of, 308.

Flow of a vector, 231.

Fluid, motion, 72, 229, 236 ; viscous,
238, 240

;
motion of solid in, 241.

Flux through circuit, 233 ; strength of

tube of, 233, 235 ; in electro-magnetic
theory, 249 ; of radiated energy,

Poynting, 252, 257.

Focal, property of quadrics, Salmon's,
114; form of equation, 116; for

sphero-conic, 120 ; conies on develop-
able, 126 ; points on line of con-

gruency, 153 ; conies related to

astatics, 162.

Foci of central sections of quadric, 129.

Force, moment of, 23 ;
in statics, 156 ;

in dynamics, 184, 194
; central, 186

;

impulsive, 200 ; electric and magnetic,
251

;
in electro-magnetic field, me-

chanical, 255.

Forces, reduction to two, 158 ; con-

servative, 184, 238 ; of interaction,

,
194

; system of forces, -vee Wrench.
Formula, A, 11 ; B, 8; of differentiation,

66,

Formulae, depending on products of

vectors, chap, in., 23; of trigono-

metry, 25, 30.

Four numbers involved in quaternion,
9 ; squares, identity connecting, 16 ;

vectors, identities connecting, 24 ;

symmetrical relations for, 42 ;
linear

function rendering four vectors par-
allel to, 92 ; particles equivalent to

rigid body, 199; -system of screws,
206

; consecutive points on tangents
to surface, surface through, 298.

Fourth proportional to* three vectors,
ol .

Fractions, relations reduced by partial,
122.

Freedom, degrees of, 204.

Fresnel, 163, 262.

Frictional constraint, 190.

Function, anharmonic, of collinear

points, 41, 45, of points in space, 56,
on a conic, 267 ; linear vector, 88 ;

elliptic, 198 ; dissipation, 240 ; energy,
for elastic solid, 243, for dielectric,
252 ; combinatorial, 270, 304

;
linear

quaternion, 272.

See Linear function.

Fundamental formulae of trigonometry,
plane, 25 ; spherical, 30.

Gate, self-closing, 207.

Gauss, operator, 104; measure of cur-

vature, 144, 147 ; integration theorem,
215.

Generalised, normal, 279 ; curvature,
286, 295 ; geodesic, 287.

Generation of ruled quadric, 65 ; of

ellipsoid, 114 ;
of ruled surface, 137.

Generators of quadric, 103, 116 ;
um-

bilical, 125 ; common, and of linear

complex, 278 ; generalized umbilical,

279, 286 ; eight, are also normals,
279 ; complex of, of doubly infinite

family of quadrics, 301.

Geodesic on cylinder, 137 ; differential

equation of, 141, 152; curvature, 141,

148; Joachimstal's theorem, 152;
motion of particle along, 190 ; gen-
eralized, 287.

Geometrical meaning of invariants, 98,

288.

Geometry of Three Dimensions, Salmon's,
291, 292, 298.

Geometry, protective, chap, xvii., 263,
308,

Gilbert's theorem on confocals, 124.

Grassmann, 306.

Graves, R. P., Life of Hamilton re-

ferred to, 16, 211.

Gravitating body in field of force, 225.

Green's theorem adapted to quaternions,
219.

Groups, theory of, examples relating to,

80 ; referred to, 104.

Half-line, half-cone, 45.

Harmonic, mean of two vectors, 41, 50,

56, 109 ; properties of triangle, 45,
of polar and quadric, 50, 109 ;

spherical, 70, 76, 222 et $eq.

Hathaway, A. S., 270.

Heaviside, Oliver, 11, 249, 250, 253.

Helix, vector equation of, 64, 82 ;

vector twist of, 133 ; constant curva-
ture and torsion, 137 ; osculating,
152; particle moving on, 191

r

Herpolhode, 198.

Hessian of surface, 297.

Hexagon ? Pascal, 121.
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Higher Plane Curves, Salmon's, referred

to, 101, 105.

Hodograph, 83, 187, 189.

Homographic, ranges, 41, 42, 264 ;

locus of line joining corresponding
points, 65 j locus of mean centre of

points on, 152
; screw-systems, 208 ;

correspondence of points on twisted

cubics, 285.

Homography, chiastic, 208.

Hooke's law, 243.

Hydrodynamics, 72, 228 et seq.

Hyperbola, 64; section of quadric,
rectangular, 111

; focal, 114.

Hyperboloid, homographic generation,
65, 264

;
locus of transversals, 103,

270; generators of, 116; line of

striction of, 140 ; equilibrating forces
on generators of, 158.

Hyperspace, chap, xvin., 303.

Hypocycloid, 83.

Hysteresis, 251.

Icosian calculus, 104.

Identity, Euler's four square, 16 ; con-

necting four vectors, 24 ; five quater-
nions, 269.

Ikosahedron, 104.

Imaginary, of algebra, 3, 20, 58 ;
nih

roots of quaternions, 28 ; roots and
axes of linear function, 95, 96, 177 ;

conjugate, vectors, 95, 224, 307 ;

united points of linear transforma-

tion, 275, 276.

Impact of two bodies, 203.

Impulse, 200.

Impulsive wrench, 201, 204 ; genera-
ting motion of solid in fluid, 241.

Indeterminatenss of versor of null

quaternion, 19
;

of tensor of hi-

<|uaternion, 21 ; of a differential, 87 ;

in solution of equations, 92 ; of axes
of linear function, 95, 96 ; of square
roots of function, 99 ;

in value of

function, 216 ; related to conical

refraction, 248, 260 ; of normal to

plane in hyperspace, 303.

Index-surface, 248, 261.

Induction, magnetic, 250.

Inertia function for rigid body, 196 ;

Binet's theorem on axes of, 197 ;

deduced from observed motion, 199,

202, 207 j
related to J#d, 225,

Infinites infield of integration, 216, 219.

Infinity, anharmonic equation of plane
at, 44, of circle at, 54 ; vector to

circular points at, 96, 126, 307 ;

vector representing point at, 263 ;

equation of plane at, 266.

Inflexion on curve, 83.

Initial positions in astatics, 160.

Inscription of polygon to sphere, 55, 56.

Instantaneous twist-velocity, 170, 201 ;

orbit, 188.

Integrability, condition of, 74, 86, 214.

Integrals, line, 73, 215, 219, 231 ; sur-

face, 72, 215, 219, 233 ;
\ariation of,

192, 231, 233.

Intensity of wrench, 163.

Interaction of particles, 194, 200, 236.

Interpretations and formulae, chap m.,
23 ;

for projective geometry, 263
et seq.

Intersection of, line and plane, 35, 267,
269 ; planes, 39, 267, 269, 306 ; two
lines, 39, 267 ; line and sphere, 49

;

spheres, 50, 54 ; confocals, 121, 123,
125 ; quadrics, 285 ; generalized con-

focals, 286 ; curve and complemen-
tary, 292

;
of two surfaces, osculating

plane to carve of, 296.

Invariants, of linear vector functions,

91, 97 ; geometrical meaning of, 98 ;

of two functions, 100 ; derived by
operation of V, 102 ; depending on V,
211

;
of linear quaternion function

274; of quadrics and linear trans-

formations, 288.

Inverse, or reciprocal of vector, 1 1 ; of

product 12
; similitude, 14 ; trans-

formation, 90 ; operations of V, 218.

Inversion, geometrical, 52, correspond-

ing elements in, 69
;
of linear func-

tions, 90; of <t> + t<}>, 100; of V, 218;
of linear quaternion function, 273.

Involution on ruled surface, 140.

Irrotational distribution of vectors,
234.

Isothermal surfaces, 227.

Isotropic 'solid, 222, 239.

Jacobi, differentia], equations, 86.

Jacobian, or functional determinant,
213 ;

of four quadrics, 293 ; of sur-

faces, 295, 298.

Joachimstal's theorem on geodesies,
152.

Joulian waste of energy in electro-mag-
netic field, 252.

K, symbol for conjugate, 12
;
differen-

tial of Kg, 68.

Kelvin, Lord, flow along curve. 231.

Kinematical treatment of curves, 134 ;

of surfaces, 137, 145.

Kinematics, chap, xn., 168; of con-

tinuous medium, 228.

See also Motion.
Kinetic energy, of particle, 1$4 187 ;

of system of particles, 194; of rigid

body, 197 ; changed by impulse, 201,
207 ;

of portion of continuous med-

ium, 239.
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Kinetics of a particle, 184 ;
of rigid

body, 194; of continuous medium,
236.

Knott, C. G., 1L

Lagrange, motion of fluid, 230, 238.

Laplace's operator, 75, 227 ; inversion

of, 220.

Latent roots of linear function, 93, 96 ;

linear quaternion function, 274, 276.

Lectures on Quaternions referred to, 1,

7, 21, 59, 114, 115, 121, 211.

Lie, Sophus, 86.

Light, electro-magnetic theory, 256.

See Optics.

Limiting, points of coaxial spheres, 51 ;

ratios, 63.

Line, chap. v.
, 35 ; six coordinates of

40 ; inverse of, 53 ; of striction, 138,
140 ; of curvature, 144 ; in point
symbols, 266 ; unaltered by linear

transformation, 272; traced on sur-

face, 287, 295.

See Complex, Curve, Generator, In-

tegral.

Linear, relation connecting four vectors,

5, 24, 25 ; and distributive function,
66 ; vector function, chap. VIIL, 88 ;

related to quadrics, chap, ix., 106 ;

to surfaces, 142 ; to astatics, 159 ; to

theory of screws, 164, 205 ;
to accel

eration of point of body, 172 ; to

strain, 177 ;
to vibrations of particle,

186 ; to angular momentum of rigid

body, 196 ;
to operator V, 211 ;

to

stress, 237, 243 ; to electro-magnetic
field, 251 ; to theory of light, 258 ;

equation of continuity, 230 ; relations

connecting five quaternions, 268 ;

quaternion function, 272 et seq: ;

complex, 275 ; transformation, in-

variants of, 288.

Logarithm of a quaternion, 29.

Logarithmic spiral, 82,

Lorentz, H. A., 229, 249, 251.

Lunar theory, example on, 188.

M'Aulay, A., 21, 211, 218.

MacCullagh, index-surface, 248.

Magnetic force, 249; permeability, 251.

Maximum and minimum, 80, 111, 127.

Maxwell, J. Clerk, sense of rotation, 7 ;

curl of vector, 213 ; electro-magnetic
theory, 249.

Mean, point, 5
; harmonic, of two

vectors, 4J
, 50, 56, 109 ; centre of

corresponding points, 152 ;
in point

symbols, 264,

Measure of curvature, 144, 147.

Mechanical force in electro-magnetic
field, 251.

Medium, continuous, 228, 236, 251.

Meusnier's theorem, 141.

Minchin, 183.

Minding's theorem, 162.

Moivre's, de, theorem, 27.

Moment, of force, 23 ; resultant, 156
j:

quaternion, 157, 159 ;
of momentum,

184, 195, 196 ; of inertia, 196.

Momentum, 184; moment of, 195, 196;
of portion of medium, 236 ; of solid

and fluid, 241.

Monomial equations of circle and sphere,,
55.

Motion, three-bar, 60, 85 ; of point on

curve, 62; generating roulette, 83, 84;

apparent, 84; relative, 171, 174; of

body under no forces, 198 ; of con-

tinuous medium, 228, 236.

Moving axes, 171 ; for curve, 134 ; for

surface, 146; for orbit, 188; for body,
196 ; for electro-magnetic field, 253.

Multiple-valued function, 216 ; point
on Jacobian, 298.

Multiplication, by scalars, 3 ; distribu-

tive, 9 ; associative, 11; of versors,

versor-arcs, 16 ; symbolical, table for

S,V,K,T,U, 19 ; hyperspace, 303 ; in

Auidekmingslehre, 306.

Mutual potential, 223.

Mutually rectangular vectors, system
of three, 10 ; relations connecting two

systems, 33 ; axes of function, 96, 97 ;

vectors transformed from, 98 ; nor-

mal to confocals, 123 ;
related to curve,,

134; to surface, 146; examples relat-

ing to, 173.

Negative unity, square of unit vector

is, 10, 1 7 ; square-root of, 3, 20, 58 ;

see Imaginary.
Non-central surfaces, 117.

Non-commutative, multiplication, 8 ;

addition, 16
; displacements, 168.

Nonion, see Linear vector function.

Normal, to surface, 65, 139, 144 ; to

quadric, 108, 123 ;
to curve, 134 ;

and tangential resolution of force,.

185, 189 ; solutions, 256 ; generalized,
279 ; generator as well as, 279.

Notation, conventions respecting, 19 ;

for projective properties of surfaces,
296.

See Symbol.
Nullifier, 21.

Number of constants of linear func-

tion, 88, 178, 272, 283.

Numerical characteristics, order of

cone and surface, 101 ; of curves, 290.

O'Brien, Rev. M., 11.

Octahedron, regular, 45, 104.

Octonions, 21,

Ohm's law, 251,
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Operator, quaternion as, 14
; V, 70 et

seq, 9 chap, xvi., 211 ; various ex-

pressions for V, 74, 225 ; applica-
tions of V to Taylor's theorem, 79 ;

to theory of groups, 80, 86 ; to genera-
tion of invariants, 102; to strain,
181

;
to calculus of variations, 192 ;

to curvature, 215
; V2

, 75, 220, 227 ;

V- 1 and V- 2
, 218; Gaussian, 104;

D, analogue of V for project!ve

geometry, 296.

Opposite of vector, 1.

Optics, examples from, reflection, 19 ;

refraction, 22
; aberration, 85 ;

astronomical refraction, 85, 175 ;

bright curves, 87 ; rotating mirror,
130

;
characteristic surfaces in, 228 ;

electro-magnetic theory of, 256.

Orbit, 186 ; instantaneous, 188.

Order of surface, 101 ; of curve, 290
;

of multiple points on Jacobian, 298.

Origin, variable, 157.

Orthogonal spheres, 51, 52, 54 ; con-

focals, 121, 123, 125 ; surfaces, 227.
Oscillation of particle, 185 ; of rigid

body, 207.

Osculating plane, 132, 267, 296 ; circle,

134, 136, 152
; sphere, 136 ; quad-

ric, 144 ; helix, 152
;
curve of inter-

section of two surfaces, 296.

Parabola, 64, 267.

Paraboloid, condition that general
equation should represent, 117 ;

related to constrained motion, 191.

Parallax, 85.

Parallelepiped, volume of, 22 ; integra-
tion over faces of, 71.

Parameter, vector involving, 62, 64,
65 ; form of V suitable for, 74, 226

;

parameter of distribution, 138.

Partial differentiation, 67, 229; frac-

tions involving linear functions, 122
;

differential equations, 86, 148, 151,
153 ; involving V, 226.

Particle, dynamics of, chap, xiv., 184.

Particles, system of, 194 ; four,

dynamically equivalent to rigid

body, 199.

Pascal hexagon, 121.

Pedal of quadric, 109 ; of three-system
of screws, 164.

Permanent screws, 209.

Permutation, cyclical, of quaternions
under S, 16 ; cyclical, of linear func-

tions in product, 100 ;
of symbols in

combinatorial function, 270,

Perpendicular, on line, 36 ;
on plane,

36 ; to two lines, 40 ; line, to itself,

96 ; on tangent plane, 109 ;
on

generator of hyperboloid, 116 ; on
axis of screw, 156; in aatatics, 163;

of three-system, 164 ; of cyclindroid,
166 ; in hyperspace, 303.

Perspective, 46, 278.

Perturbed orbit, 188.

Pfaff, 86.

Philosophical transactions, 1 01 , 263, 275.

Pitch, of ruled surface, 138 ; of screw,
156; in astatics, 161; of three-system,
164; of two-system, 165; of finite

displacement, 169 ; of impulsive and
of instantaneous, 202.

Plane of quaternion, 13 ; straight line

and, chap. v. 3 35; polar, for sphere,
50

;
for quadric, 108 ; radical, 50 ;

inverse of, 53; cyclic, 113; osculat-

ing, 132; gen erating developable, 135;
of no vinal, 157 ; central, in astatics,
160 ;

of elastic symmetry, 245 ;

polarised wave in elastic solid, 247 ;

in dielectric, 257 ; protective symbol
for, 265 ; equation of, 266 ; united, of

linear transformation, 274 ; to qua-
dric, polar, 276.

Pliicker's coordinates of a line repre-
sented by (cr, r), 40.

Poinsot, central axis, 156.

Point, stationary, 63, 83 ; of inflexion,
83 ; circular, 96, 126, 307 ; double,
on wave-surface, 248, 261

;
on

Jacobian, 298 ; apparent, 292 ; sym-
bol, 263 et seq., 308 ; united, of linear

transformation, 274, 276.

Polar, harmonic, 46
; plane of point

with respect to sphere, 50 ; to qua-
dric, 108, 276 ;

line to quadric, 109 ;

developable, 136, 139; general theory
of, 296.

Polarised waves in elastic solid, 247 ;
in

dielectric, 258.

Pole, see Polar.

Poles, spherical harmonic referred to its,

224.

Polhode, 198.

Polygon, inscribed to sphere, 55 ; in-

scription of, 56 ; loci related to vari-

able, 300.

Potential, operator V~ 2
, 220; expres-

sion for, 223
; surfaces, equi-, 227 ;

velocity, due to vortices, 235.

Power of vector, 28, 69, 173 ; of quater-
nion, 29 ;

of point with respect to

sphere, 49, 50.

Poynting flux of radiated energy, 253 ;

parallel to ray- velocity, 257.

Principal, axes of section of quadric,
111; normal to curve, 134; curva-

ture, 143 ; axes of inertia, 197 ; screws,

209; circuit, 232.

Product, of two vectors defined, 8 ;

associative property of, 11 ; reciprocal

of, 12 ; of two quaternions, construc-

tion for, 14 ; conjugate of, 15 ;
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spherical representation of, 16, 31 ;

differential of, 68 ; of linear functions,

95, 100 ; of vectors in hyperspace,
303 ; G-rassmann's, 306.

Projection, of point on plane, 37 ;
of

ellipse into circle, 83 ; of vectors, in-

variants relating to, 98 ;
of curvature,

141.

Protective geometry, chap, xvn., 263;
in hyperspace, 808.

Propagation of disturbance, 255.

Proportional to three vectors, fourth, 31.

Pure strain, 177 ; converting general
wave-surface into Fresnei's, 262.

Pyramid or system of three planes, ex-

amples on, 38 ; invariant relations

for, 98.

Quadratic equation satisfied by quater-
nion, 29 ; by special linear function,
95 ; quaternion function, 274.

Quadric surfaces, chap, ix., 106; an-

harrnonic generation of, 65 ; oscula-

ting surface, 144 ; pitch, 165 ; elonga-
tion, 181 ; general, in point symbols,
275 ; inscribed in developable, 279 ;

tangent-line developable for, 282
;

invariants of, 288.

Quadrilateral, spherical, 34 ; complete,
46 ; inscribed to sphere, 56 ; common
to quadric and linear complex, 274.

Quaclrimonial form, for quaternion, 13;
for linear quaternion function, 272.

Quartic, Steiner's, 164, 166 ; symbolic,
of linear quaternion function, 274.

Quaternion, as sum of scalar and vector,
9 ; as product of two vectors, 9 ; as

function of quaternions, 12; as quo-
tient of vectors, 13 ; as operator, 14

;

as power of vector, 28 ; anharmonic,
56

;
invariants of linear vector func-

tion, 97, 159, 212
;
moment of force,

157 ; as symbol of point, 263 ; of

plane, 265 ; function, linear, 272
et fteq.

Quotient, of parallel vectors, 3 ; of

vectors, 13.

Radical plane of spheres, 50
; axis, 51 ;

centre, 5*2, 53.

Radius of quadric, 107, see Conjugate,
Curvature,

Rank of curve, 292.

Ratio, of vectors, 13 ; of torsion to cur-

vature, constant, 137.

Ray-velocity, 248, 257.

Rayleigh, Lord, 240.

Reaction, 194, 200, 236 ; of constraint,

189, 204.

Reality of roots of self-conjugate vector

function, 96 j
of principal screws,

209
,-

of united points, 276.

Reciprocal, of vector, 11 ; of product,
12; of quadric, 110; screws, 204; of

quadric, 276.

Reciprocity, for a surface, relations of,

294.

Reciprocation, quadric of, 266, 309.

Rectangular vectors, system of three

mutually, 10 ; relations connecting
two systems of, 33 ; axes of function,

96, 97 ; vectors transformed from,
98; normals to confocals, 123; re-

lated to curve, 134 ;
to surface, 146 ;

examples relating to, 173 ; in hyper-
space, 303.

Rectifying developable, 136, 139.

Reduced wrench, 205.

Reflection in plane mirror, 19 ; in

moving mirror, 130 ; of force for

brachistochrone, 193.

Refraction, 22
; astronomical, 85, 175 ;

conical, 248, 260.

Regression, edge of, 136 ;
see Develop-

able.

Regular solids, rotations related to,

104.

Relative, magnitudes and directions of

two vectors, 13 ; motion, 171.

Remainder of a series, 79.

Resolution of vector into components,
chap, in., 23; of linear function,

96, 99 ; of strain, 178 ; of force, tan-

gential and normal, 185 ; of linear

quaternion function, 282.

Resultant of statical forces, 156.

Revolution, cone of, 45 ; cylinder of,

45 ;
condition for quadric of, 114;

tangent cylinder of, 115; motion of

particle on, 190.

Rigid, see Body, Dynamics.
Root, of a quaternion, ntl

\ 28
;
differ-

ential of square-, 77 ; of linear vec-

tor function, latent, 93 ; square-, 99 ;

linear function, symbolic, wth
, of

unity, 105; linear quaternion function,
latent, of, 272, 276 ; square- of, 282.

Rotation, convention respecting sense

of, 7; conical q.v., 18; forces, 160;
finite displacement, 168 et seq. ;

strain, 177 ef e#., 182; of elements,
212 ; in hyperspace, 307.

Roulette, S3, 84.

Royal Irish Academy, see Academy.
Ruled, hyperboloid q.v., 65, 116, 264,
270 ; surfaces, 128, 137 et seq. ; sur-

face, differential equation of, 149,.

153.

Russell, Robert, 22, 61.

S symbol for scalar, 6, 19 ; differential

of #, 68.

Salmon, 114, see Geometry of Throe
Dimensions, Higher Plane Curves,



INDEX

Scalar, 3, 6 ; of product, 15 ; point.
263.

Screws, theory of, applied to, motion
of emanant 137 ; statics, 156, 159,
163 ;< displacements, 169; dynamics,
200, 204.

Segments, theorem of six, 46.

Self-conjugate, tetrahedron to sphere,
52, 276 ; vector function, 80, 96, 97 ;

tetrahedron of two quadric?, 277.

Sense of rotation, 7.

Series, exponential, 28 ; Taylor's 79 ;

of spherical harmonics, 223, 224.

Sextic curve, Jacobian, 293, 295.

Shaw, J. B., 263.

Shear, 178.

Shortest distance between lines, 40,

138, 154.

Similitude, diiect and inverse, 14.

Six, coordinates of line (<r, T), 40 ; seg-
ments, 46 ; constants of self-con-

jugate function, 96 ; screws, 166 ;

co-reciprocal, 206.

Sixteen, constants in linear quater-
nion function, 272 ; square roots of

linear quaternion function, 282.

Solenoidal distribution of vectors, 234.

Solid, harmonic, 70, 76, 222 et wq. ;

elastic, 222, 239, 242 et $eq. ; mov-
ing in fluid, 241.

Solution of equations, involving linear

function, 92, 117; involving V, 218.

Sphere, chap, vi., 49 ;
inversion of,

52
; through four points, 53, 55, 58 ;

touching four planes, 54 ;
and poly-

gon, 55, 56 ; solid, 59 ; generating
ellipsoid, 115; osculating, 136; en-

velope of, 151
;
surface generated by,

155 ; of reciprocation, unit, 266.

Spherical, trigonometry, chap. iv.
,
29 ;

excess, 33 ; harmonics, 70, 76, 222 ;

curvature, 136 ; astronomy, exam-
'

pies, 174.

Sphero-conic, 138.

Spin-vector, 96, 97 ;
of

i/>, 97 ;
in strain,

181, 182; of element, 212.

Spiral, logarithmic, 82.

Square-root of quaternion, differential

of, 77; of linear function, 99, 112,

124, 177 ; of linear quaternion func-

tion, 282.

Standard form of V, 75 ;
of two linear

functions, 100 ; of screw-system, 164 ;

of quadric and linear complex, 278.

Statics, chap. XL, 156.

Steiner's quartic, 164, 166.

Stokes's theorem, 215.

Storage of energy, elastic solid, 243 ;

electric and magnetic, 252.

Strain, chap, xm., 177, 212,238; stress

in terms of, 243.

Strength of tube, 233, 235.

Stress, 237 et seq. ; in viscous fluid, 238 ;

in isotropic solid, 239 ; in terms of

strain, 243 ; in electro-magnetic field,

255.

Striction, line of, 138 ; of quadric, 140-
Subtraction of vector, 2.

Sum of vectors, 2
; of scalar and vector,

9 ; of quaternions, 9 ; of weighted
points, 264 ; of area vectors in hyper-
space, 306.

Supplemental triangles, 29 ; related to

axes of function and conjugate, 94 ;

to propagation of light, 258.

Surface, in terms of parameters, 64 p

quadric, chap, ix., 106; non-central,.

117; of centres, 125; ruled, 137;
cun atnre of, 141

; generated by circle,
154 ; equilibrium of chain on, 167 ;

motion of particle on, 189 ; of dis-

continuity, 216 ; wave-, 248, 261 ; of

centres, generalized, 287 ; general,
293.

Surfaces, families of, 148 ; equipotential ,

227 ; characteristic, in optics, 228.

Symbol, 19, V, 70, 211 ;
see Operator;

(ft, X) for screw, 163 ; Zfr and t% de-

fined, 229 ; point-, 263, 308.
~

Symbolic, multiplication table, S, V, K,
T, U, 19; vector, V, 75; form of

Taylor's theorem, 79 ; cubic of linear

function, 93, 100 ; case of depressed,
95 ; quartic of linear quaternion
function, 274.

Symmetry, elastic, 245.

T symbol for tensor, 4, 12, 19 ; differ-

ential of T#, 68 ; development of

)
.

Tait, P. G., referred to, 7, 20, 33, 99,

163, 192, 211, 214, 218.

Tangent, to sphere, 49 ; curve, 63 ;

surface, 65 ; quadric, 108 ; confocal,
124 ; generalized confocals, 280 ; line

developable of two quadrics, 282 ;

conjugate, 295 ; meeting surface in

four consecutive points, 298.

Tangential equation of quadric, 110 ;

and normal components of force, 185,
189 ; transformation, 273 ; equation
of quadric and linear complex, 276.

Taylor's series, 79.

Telescope, examples on composition of

rotations, 175.

Tensor of vector, 4 ; quaternion, 12 ;

biquaternion, 20; of sum, develop-
ment of, 85,

Tetrahedra, in perspective, 46 ; corre-

sponding vertices of, joined by gen-
erators of hyperboloid, 103 ; recip-

"rocal, of united points of linear

transformation and its conjugate,
274.
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Tetrahedral, coordinates, q.v., 268 ;

complex, 302.

Tetrahedron, fornmlae relating to, 42 ;

regular, 45, 104 ; anharmonic rela-

tions of point and, 46; self-conjugate
to sphere, 52 ; and sphere, 53 ; forces

on edges of, 158 ; of reference, 268 ;

self-conjugate to two quadrics, 277 ;

invariants relating to, 288 ;
loci re-

lating to variable, 300.

Thomson and Tait, 200.

Three-bar motion, 60, 85; -system of

screws, 164, 205 ; plane polarised
waves in solid, 248.

Tore, 59.

Torsal generator, 140.

Torse, see Developable.
Torsion, 132, 134.

Total curvature, 148,

Transformation, effected by linear vec-

tor function, 89
; by self-conjugate

function, 97; Cremona, 101; of screws,
208 ; general linear, 272, et seq. ; ex-

amples of, 285 ; invariants of, 288.

Transversals of lines, 103.

Triangle, and point, harmonic proper-
ties, 45 ; and conic, 48.

Trigonometry, formulae for plane, 25 ;

de Moivre's theorem. 27 ; spherical,
29.

Trilinear function, 243.

Trinomial form for linear function, 89 ;

for pair of functions, 100.

Tube, motion of particle in rotating,
191 ;

in fluid motion, 233, 235.

Twist of curve, vector, 133 ; -velocity,
170, 171, 201.

Twisted, cubic g.w., 93, 104, 109, 123,

133, 172, 267, 278, 285, 293.

Two linear functions, 100 ;
reduction

to, forces, 158 ; angular velocities,
172.

U, symbol for versor, 4, 13, 19 ; cliffer-

erential of U#, 68
; development of

+ 0), 85.

calUmbilical generator, 125 ; generalized,
279, 286.

Unicursal curve, 152.

Unit, of length, 4
; vector denoted by

Ua, 4 ; vectors, system of mutually
(#.?'.) rectangular, 10, 96, 98, 134, 146;

point of anharmonic coordinates, 44 ;

weight, points of, 263 ; sphere of re-

ciprocation, 266; vectors in hyper-

space, 303.

United, screws, 209 ; points of trans-

formation, 274, 276.

V, symbol for vector, 7, 19 ; differ-

ential of Vtf, 68.

Variable origin, 157.

Variations, calculus of, 192 ; of inte-

grals, 231, 233.

Vector, as directed right line, 1 ; as

operator, 14 ; arc, 17 ; area, 23 ;

of curve, 62 ;
of surface, 64 ;

func-

tion, linear, 88
; spin-, 96 ; equation

of confocals, 124 ; emanant, 131 ; as

difference of two points, 263 ; as

point at infinity, 263 ; area, in

hyperspace, 303.

See Linear vector function, etc.

Vectorial algebra, 11.

Velocities, virtual, 157, 254.

Velocity, 63 ; hodograph, 83, 187, 189 ;

of emanant, 138 ; twist-, 170, 201
;

relative, 171 ;
of particle, 184 et seq. ;

areal, 186, 188 ;
of element of

medium, angular, 212; potential,
due to vortex rings, 235 ; wave-,
247, 257 ; ray-, 248, 257.

Versor of vector, 4, 14 ; of quaternion,
13, 16.

Versors, coplanar, chap, iv., 27.

Vibration of particle, 185.

Virial, 157.

Virtual, velocities, 157, 254 ; co-effi-

cient of two screws, 206.

Viscous fluid, 238, 240.

Volume of parallelepiped, 23 ; of tetra-

hedron, 265, 269
; directed, 304.

Vortex motion, 235, 238.

Wave-surface, 163, 248, 261 ; velocity,
247, 257,

Waves, propagation of disturbance by,
255.

Woierstrass, 199.

Wrench, in statics, 156, -163; im-

pulsive, 201, 204; evoked, 204;
reduced, 205.

SSero, square-root of, 29.
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