

TECHNICAL REPORT

MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS

PAUL D. THOMAS Marine Sciences Department

OCTOBER 1965

GC ,743 no.TR-182

ï

U. S. NAVAL OCEANOGRAPHIC OFFICE WASHINGTON, D. C. 20390 Price \$2.00

ABSTRACT

The principal objective of this study was an evaluation of the formulas basic to the geodetic inverse solution for distance computations used by the U.S. Naval Oceanographic Office in loran-type charting. The adequacy of the formulas for past requirements was verified but, in anticipation of future requirements, they were modified to give geodesic distances and azimuths between any two points on the reference ellipsoid to uncertainties of less than a meter and a second respectively.

During the study, associated geometrical configurations were developed or studied: latitudes associated with the auxiliary sphere-spheroid configuration; a spherical rectangular coordinate system on the auxiliary sphere with hyperbolic loci referenced to it; and geometrical quantities associated with arc distance, such as chord length, dip of the chord, maximum separation of chord and arc, and the geographical position of the point of maximum separation. The formulas with their derivations are presented.

FOREWORD

Increased knowledge of tropospheric and ionospheric effects on electromagnetic propagation, gained through artificial satellite experiments and related studies, foreshadows an increased accuracy requirement in the geodetic parameters involved in computing charts and tables for electromagnetic navigational and positioning systems. This report examines some of the mathematical models involved in these computations, verifying their adequacy for past requirements and introducing modifications to improve range and accuracy capabilities.

O. D. WATERS, Jr. Rear Admiral, U. S. Navy Commander U. S. Naval Oceanographic Office.

PREFACE

Early in World War II, the U. S. Navy Hydrographic Office began publishing charts and tables for the new loran system of long-range radio navigation. Loran and similar systems make use of radio waves to measure earth distances or distance-differences (hyperbolas) for positioning ships or aircraft at long ranges from the shore transmitter stations. The computation of these navigational lines of positioning is a problem in geodesy. Because of the irregularities of the shape of the actual earth over which radio waves travel, geodesists are forced to use mathematical models that approximate the shape of the earth when computing navigational lines of position.

Various models and co-ordinate systems have been used in making loran-type computations, which were originally done by desk calculators within limits of accuracy compatible with the early navigation systems. Now, however, improved system accuracies and better information of the figure of the earth have made necessary a re-examination of the mathematical formulas to ensure their adequacy at very long ranges.

The inverse distance formula used in loran computations is actually the so-called Andoyer-Lambert approximation and is the expansion of the geodesic arc length between two points on the reference ellipsoid to first order in the flattening. There are two simple and very similar forms of the approximation, one in terms of geodetic latitude and the other in terms of parametric latitude. The U. S. Naval Oceanographic Office uses the latter which requires a conversion from geodetic latitude. While the parametric form gives slightly more accurate distance computations, the objective of this study was to determine whether the latitude conversions are justified and to investigate the second-order terms in the expansions and their contribution to the accuracy of the computations.

It was the conclusion of the study that the parametric formulas which have been used are in fact adequate to meet present operational requirements but that the conversion to parametric latitude is not necessary. In anticipation of future requirements, the geodetic formulas were extended to give geodesic distances and azimuths between any two points on the reference ellipsoid to uncertanties of less than a meter and a second respectively, out to ranges of 6000 miles.

During the investigation, formulas were developed for the particular quantities involved and were transformed in terms of particular computational parameters. Some associated useful geometrical quantities were included relative to distance computations: chord distance, the dip of the chord, the maximum separation distance between chord and arc (surface), and the geographic position of the point where maximum separation occurs. Some of these relationships can be found

v

in accessible sources, but many are not readily available. Some are new, such as the expansion of the geodesic to second order in the flattening in both geodetic and parametric latitudes, and conversion formulas between the two forms.

Since the entire treatment is mathematical, an overall summary of the investigation is first presented to allow a quick assay of the topics and accomplishments. This summary is followed by a condensation of the formulas developed or included. The details of the actual development follow in three sections with computational examples in the Appendices.

> Paul D. Thomas Scientific Staff Assistant Marine Sciences Department U. S. Naval Oceanographic Office

CONTENTS

	Page
FOREWORD	iii
PREFACE	v
FIGURES AND TABLES	viii
OVERALL SUMMARY OF INVESTIGATIONS	1
COLLECTED FORMULAE	
DEVELOPMENT	
Section 1. Latitude Formulae	
New formulae	
Standard formulae	22,5
For Clarke 1866 spheroid References	22,5
Constrained track formula	22.5
Parallels to the great circle	
Coordinate system with a great circle as axis	
Spherical hyperbolas and plane equivalents	
nerences	
Section 3. Distance Formulae; Azimuths; Associated Quantities	
Normal section azimuths	40,7
Great elliptic arc distance	45,7
Geodesic in terms of great elliptic arc and geodetic latitude	,.
with second order terms in f	
with second order terms in f	
Form transformations: Geodetic to Parametric – Parametric to Geodetic	
Difference formulae to second order in t	
Angle of dip	
Maximum separation - chord and arc	
Geographic coordinates of point of maximum separation References	
APPENDICES	
position-plane approximation	
No. 2. Computations using Andover-Lambert first order approximation	
without conversion to parametric latitude	111
No. 3. Computations using Forsyth-Andoyer-Lambert type second	
order formulae without conversion to parametric latitude	125

FIGURES AND TABLES

Ī

Figure	e 1.	Latitude relationships in the auxiliary sphere-spheroid configuration	13
	2.	The great circle track configuration	24
	3.	Parallels at a given distance from a great circle	26
	4.	Spherical triangles for computation of coordinates along	
		parallels to great circle tracks	27
	5.	Spherical rectangular coordinate system with a great	
		circle base line as an axis	29
	6.	Reference for derivation of polar equation of spherical	
		hyperbolas with origin at a focus	32
	7.	Derivation of alternative equation to spherical	
		hyperbolas with origin at a focus	34
	8.	Corresponding plane hyperbola equivalents	. 35
	9.	Polar case of plane equivalent	36
	10.	Corresponding distances on the reference ellipsoid	
		and the auxiliary sphere	39
	11.	Relationship between arc length, normal section azimuth, chord length,	
		angle of depression of the chord below the horizon, maximum	
		separation of arc and chord	41
	12.	Relationships relative to the pole on the ellipsoid of reference,	
		of the geodesic, normal sections, and great elliptic section	42
	13.	The normal section azimuths	- 43
	14.	The great elliptic section azimuths	46
	15.	Elements of the great elliptic section	50
	16.	Elements of polar spherical triangles	58
	17.	Computations for distance (great elliptic section approximation),	
		normal section azimuths, chord length, angle of dip,	
		maximum separation of chord and arc	60
18	,19.	Computations, great elliptic arc distance, geodetic azimuths	52,63
	20.	Differential triangles, sphere and spheroid	70
	21.	Distance computing form, Forsyth-Andoyer-Lambert type	0.0
		approximation with second order terms in f	80
	22.	Distance computing form, Forsyth-Andoyer-Lambert type	
		approximation in terms of parametric latitude and	
		second order terms in f	89
	23.	Computations, Andoyer-Lambert first order approximation, geodetic azimuths, normal section azimuths, chord, angle of dip, maximum separation chord and area or correction according to first of maximum comparation	95
	04		102
	24.	Interception of plane hyperbolas. Example 1	109
	26	Intersection of plane hyperbolas. Example 1	110
		increases of plane approvider interaction in the	110
Table	. 1.	Lines computed	65
	2.	Comparison with true distance and azimuths	66
	3.	Error summary	67
	4.	17 geodetic lines computed from equations (110) and compared	
		with known lengths and azimuths	81

MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS

OVERALL SUMMARY OF INVESTIGATIONS

Latitude

A loran station positioned on the auxiliary sphere of the ellipsoid of reference has as its geodetic latitude the angle at the equator made by that normal to the meridian which passes through the station of the sphere. Its longitude will remain the same. See Figure 1, page 13. Now this is analogous to the geodetic latitude of a subsatellite point, if the trajectory were confined wholly to the surface of the auxiliary sphere. It is clearly not one of the three commonly associated latitudes as shown in equation (1), page 12. Actually the relationship between geocentric latitude on the sphere and geodetic latitude on the ellipsoid is given by equation (2), page 12. From these one may find the maximum value of the difference, $\Delta\phi$, and the value of ϕ , the geodetic latitude, at which this maximum difference occurs, equations (3) – (6), page 14. The expansions of $\Delta\phi$ in series in terms of ϕ were obtained and are given in equations (7) – (20), pages 15, 16.

For computation of ϕ as a function of θ , the geocentric latitude, it was necessary to employ the Lagrange expansion formula and the resulting expansion and formulas are given in equations (21) - (33), pages 16 to 18. Development of the series expansions for the height, h, of the auxiliary sphere above the ellipsoid is given in equations (43)- (48). See Figure 1, page 13 and pages 19,20. A summary of latitude formulas and a bibliography of pertinent references are included, pages 21 - 22.

The great circle track as determined by the geographical coordinates of two given points on the auxiliary sphere. Parallels at a given distance from a great circle track.

As shown in figure 2, page 24, the treatment is somewhat different than the usual one in that one works from the vertex of the great circle or the point where the great circle is orthogonal to a meridian. This simplifies computations and provides well balanced triangles from which to compute. It also facilitates the computations for parallels at a given distance from a fixed great circle track as shown in Figures 3 and 4, pages 26 and 27. See also equations (1) - (13), pages 23-27.

A spherical rectangular coordinate system with a great circle base line as an axis.

Figure 5, page 29, shows, pictorially, this coordinate system developed on the great circle base line referenced to the vertex of the great circle base line. The conversion equations are developed in equations (14) to (26), pages 28 to 30.

Derivation of the equations of spherical hyperbolas and their plane equivalents.

Having established a spherical rectangular coordinate system we are in a position to derive the equations of spherical hyperbolas referenced to the system. This is done in both spherical rectangular coordinates and spherical polar form, equations (27) to (50), pages 31 to 34. See also figures 5, 6, and 7, pages 29, 32, 34.

The plane hyperbola equivalents are developed in equations (51) to (59), pages 35 and 36 and a comparison table of the spherical and plane equivalents is given as equation (60), page 37. See also Figures (8) and (9), pages 35 and 36.

An example of computations using the plane hyperbola approximation is given as Appendix 1, pages 99 to 110.

Distance computations and conversions; Azimuths; Associated geometrical quantities.

The classical "inverse" problem of geodesy was considered here since it is inherent in the electronic navigational systems problem. In the "inverse" problem, the latitudes and longitudes of each of two points are given from which the distance between the points and the azimuths at the two given points are to be determined.

The geodesic on the reference ellipsoid, other than meridians and circular equator, is a space curve, and its vertex (the latitude where it is orthogonal to a meridian) is not easily expressible in terms of the geographical coordinates (latitude and longitude) of two points on it. The actual length involves the evaluation of an elliptic integral, whose modulus depends on the latitude of the vertex of the geodesic. Iterative solutions have been devised as Helmert's, based on the earlier work of Bessel.

Approximations based on plane curves which are near the geodesic in length as the normal sections and the great elliptic arc have been devised. An investigation of these was made, including some extensions for instance in the series development for the great elliptic arc approximation. See pages 48 to 51 and Figure 15, page 50. Also their use and expression in terms of common computational parameters with some associated geometrical quantities useful in operational applications as the angle of depression of the chord below the horizon, the maximum separation between the chord and the surface, and the geographic coordinates of the point on the surface where maximum separation occurs.

An investigation of the expansion of the geodesic length in powers of the flattening was made which to first order in the flattening are the well-known, so-called Andoyer-Lambert approximation formulas, one in terms of parametric latitude, the other in terms of geodetic latitude. Since this Office uses the Andoyer-Lambert form in terms of parametric latitude, in which geographic latitudes must first be converted to parametric, an investigation was made to see if use of the parametric form to first order in the flattening was justified or necessary in terms of operational requirements. This was done in connection with a review of an extensive study by USAF (ACIC) of geodetic lines up to 6000 miles in length where the Andoyer-Lambert approximation was recommended for such tasks as LORAN computing, since the errors in the very near geodetic distances obtained are fairly constant on lines 50 to 6000 miles in length and in all azimuths. The comparisons are given in tables 1 - 3, pages 65 to 67.

Since some of the excursions in the first order form were of the order of 10 meters, the problem of obtaining the expansion of the geodesic to second order terms in the flattening was examined. By introducing two parameters X and Y, in terms of the latitude of the vertex of the great elliptic arc, it was found that the great elliptic arc approximation produced the so-called Andoyer-Lambert first order approximations. (See pages 68-69.) Similarly they could be produced by modification of the differential equation to the geodesic (See pages 69 to 74).

In review of an 1895 paper by the British Mathematician, A. R. Forsyth, by identifying his fundamental approximation parameter as the vertex of the great elliptic arc, it was found that he actually had both so-called Andoyer-Lambert first order expansions in the flattening, but it had apparently not been recognized. Furthermore, he had an expansion to second order terms in the flattening and in terms of geodetic latitude but it had two errors in the second order term. After these had been detected and corrected, computations based on the resulting equations give distances within a meter on all lines computed from 50 to 6000 miles. See pages 75 to 81.

Forsyth did not have the expansion to the geodesic in terms of parametric latitude to second order terms in the flattening, so his results were extended to second order terms. See pages 79 to 90. Then transformation equations were developed to convert one form to the other as far as second order terms in the flattening, pages 90 to 92, and finally the difference formulas for the principal parameters, pages 92 to 93. As a result of this study, distance and azimuth formulas are available in terms of easily computed parameters, in terms of either parametric or geodetic latitude which will give distances over all lines within a meter and azimuths within a second which is adequate for any operational requirement. A more detailed summary of the investigations of this section with a bibliography of references is given on pages 93 to 97.

NEW LATITUDE FORMULAS

If θ is the geocentric latitude of a point P(acos θ , a sin θ) on the auxiliary sphere, then the corresponding geodetic latitude ϕ of P at an altitude h above the ellipsoid of reference as shown in Figure 1, is given by

$$\begin{aligned} \sin \Delta \phi &= \sin(\phi - \theta) = (e^2/2a) \operatorname{Nsin} 2\phi = (e^2 \sin \phi \cos \phi) / (1 - e^2 \sin^2 \phi) \Psi^2 \\ &= c_1 \sin 2\phi - c_2 \sin 4\phi + c_3 \sin 6\phi - c_4 \sin 8\phi, \\ c_1 &= (e^2/2) + (e^4/8) + (15e^6/256) + (35e^8/1024) \\ c_2 &= (e^4/16) + (3e^6/64) + (35e^8/1024), \\ c_3 &= (3e^6/256) + (15e^8/1024), \\ c_4 &= 5e^8/2048 \end{aligned}$$

With the same coefficients,

$$\begin{split} \phi - \theta &= \Delta \phi \; (\text{radians}) = (\text{c}_1 + \text{c}_1^3/8) \sin 2\phi - (\text{c}_2 + \text{c}_1^2\text{c}_2/4) \sin 4\phi \; + (\text{c}_3 - \text{c}_1^3/24) \sin 6\phi \\ \Delta \phi \; (\text{seconds}) &= (206, 264. 8062) \cdot \Delta \phi \; (\text{radians}). \end{split}$$

To express $\Delta \phi$ in terms of θ , we have

 $\tan\phi = \tan\theta + (e^2/a\cos\theta) \operatorname{N}\sin\phi$

 $= \tan \theta + (e^2/\cos \theta) \sin \phi/(1 - e^2 \sin^2 \phi)^{1/2},$

which, when expanded by the Lagrange expansion formula gives

 $\Delta \phi = \phi - \theta = c_1 \sin 2\theta + c_2 \sin 4\theta + c_3 \sin 6\theta + c_4 \sin 8\theta$

 $c_1 = (e^2/2) + (e^4/8) + (11e^6/256) + (31e^8/1024)$

 $c_2 = (3e^4/16) + (5e^6/64) + (25e^8/1024)$

 $c_3 = (77e^6/768) + (59e^8/1024),$

 $c_4 = 127e^8/2048$

The distance h is given by

$$\begin{aligned} h/a &= \cos \Delta \phi - a/N = \cos \Delta \phi - (1 - e^{s} \sin^{a} \phi)Y^{a} \\ &= (1 - e^{2} \sin^{2} \phi)^{-1/2} \left\{ [1 - e^{2} \sin^{2} \phi (1 + e^{2} \cos^{2} \phi)]^{\frac{1}{2}} - 1 + e^{2} \sin^{2} \phi \right\} \\ h &= a(d_{1} - d_{2} \cos 2\phi + d_{3} \cos 4\phi - d_{4} \cos 6\phi + d_{5} \cos 8\phi) \\ d_{1} &= (e^{2}/4) - (e^{4}/64) - (3e^{6}/256) - (233e^{8}/16384) \\ d_{2} &\equiv (e^{2}/4) + (e^{4}/16) + (7e^{6}/512) + (3e^{8}/2048) \\ d_{3} &= (5e^{4}/64) + (11e^{6}/256) + (115e^{8}/4096) \\ d_{4} &= (9e^{6}/512) + (37e^{8}/2048) \\ d_{5} &= 53e^{8}/16384 \end{aligned}$$

STANDARD LATITUDE FORMULAS

The three latitudes usually associated with the auxiliary sphere ellipsoid configuration as shown in Figure 1, are the geocentric, parametric, and geodetic represented here by ψ , θ , and ϕ_0 respectively and related through the equations

 $\tan\psi/{\tan\theta}=\tan\theta/{\tan\phi_{\rm 0}}=(1-{\rm e}^2)^{1\!/\!2},$

where e is the eccentricity of the meridian ellipse. The parametric latitude, θ , is also called here the geocentric latitude of points on the auxiliary sphere.

LATITUDES FOR CLARKE 1886 SPHEROID

Series representations, accurate to 0.001 second, for the differences in ϕ , ϕ_0 , θ , ψ are: $\Delta \phi$ (seconds) = $\phi - \theta = 699$ *2540 sin $2\phi - 0$ *5936 sin $4\phi + 0$ *0004 sin 6ϕ $\Delta \phi$ (seconds) = $\phi - \theta = 699$ *2520 sin $2\theta + 1$ *7769 sin $4\theta + 0$ *0064 sin 6θ $\Delta \theta_0$ (seconds) = $\phi - \phi_0 = 349$ *0318 sin $2\theta + 1$ *4796 sin $4\theta + 0$ *0061 sin 6θ h (meters) = 10,788.3852 - 10,811.2646 cos $2\phi + 22.9147$ cos $4\phi - 0.0350$ cos 6ϕ $\phi_0 - \psi = 700$ *4385 sin $2\phi_0 - 1$ *1893 sin $4\phi_0 + 0$ *0027 sin $6\phi_0$ $\phi_0 - \psi = 700$ *4385 sin $2\psi + 1$ *1893 sin $4\psi + 0$ *0027 sin 6ψ $\phi_0 - \theta = 350$ *2202 sin $2\psi - 0$ *2973 sin $4\phi_0 + 0$ *0003 sin $6\phi_0$ $\theta - \psi = 350$ *2202 sin $2\theta - 0$ *2973 sin $4\theta + 0$ *0003 sin 6θ $\theta - \psi = 350$ *2202 sin $2\theta - 0$ *2973 sin $4\theta + 0$ *0003 sin 6θ

GREAT CIRCLE TRACK FORMULAS

First compute λ_0 and θ_0 from

$$\tan \lambda_0 = \frac{\tan \theta_2 \cos \lambda_1 - \tan \theta_1 \cos \lambda_2}{\tan \theta_1 \sin \lambda_2 - \tan \theta_2 \sin \lambda_1}$$

 $\cot \theta_0 = \cot \theta_1 \cos (\lambda_0 - \lambda_1) = \cot \theta_2 \cos (\lambda_0 - \lambda_2).$ (See Figure 2).

Then compute a_1 and a_2 from

$$\sin \alpha_1 = \frac{\cos \theta_0}{\cos \theta_1} , \sin \alpha_2 = \frac{\cos \theta_0}{\cos \theta_2}$$

Next compute S1 and S2 from

 $\tan S_1 = \cos \alpha_1 \cot \theta_1$, $\tan S_2 = \cos \alpha_2 \cot \theta_2$

The computations for a_1 , a_2 , S_1 and S_2 are checked by

 $\cos (\lambda_2 - \lambda_1) = \cos \alpha_1 \cos \alpha_2 + \sin \alpha_1 \sin \alpha_2 \cos (S_1 - S_2)$

For equally spaced intervals along the great circle track, for instance in 100 nautical mile intervals, let $S = S_1 \pm 100K$, K = 1, 2, 3, - - -, n. With these values of S one computes successively corresponding values of θ' , λ' , and α' from

 $\sin \theta' = \sin \theta_0 \cos S, \tan (\lambda_0 - \lambda \uparrow) = \tan S/\cos \theta_0, \tan \alpha' = \cot \theta_0 / \sin S$ and checks by means of $\sin \theta' \cdot \tan (\lambda_0 - \lambda') \cdot \tan \alpha' = 1$.

PARALLELS AT A GIVEN DISTANCE FROM THE GREAT CIRCLE TRACK

To compute the coordinates (θp , λp) and (θp ', λp ') of points at a given distance s from a given great circle track and symmetric with respect to it one computes (see Figure 3):

 $\begin{array}{l} \sin \theta_k = A \cos S \pm B & \text{when } k = p, \, \text{use} + \text{sign} \\ \sin (\lambda_0 - \lambda_k) = C \sin S/\cos \theta_k & k = p', \, \text{use} - \text{sign} \end{array}$

S and θ_0 are the same as given under the great circle track formulas above and A = C sin θ_0 ,

 $B = \cos \theta_0 \sin s$, $C = \cos s$. The computations may be checked by

 $\cos 2s = \sin \theta p \sin \theta p' + \cos \theta p \cos \theta p' \cos (\lambda p' - \lambda p).$

SPHERICAL RECTANGULAR COORDINATE SYSTEM WITH A GREAT CIRCLE BASE LINE AS AN AXIS

It is assumed that the base line has been established, that is the coordinates (θ_0, λ_0) of the vertex of the great circle base line have been computed from the coordinates of two given points $Q_1(\theta_1, \lambda_1), Q_2(\theta_2, \lambda_2)$, see Figures 2 and 5.

 $\begin{array}{l} \label{eq:single_states} \hline \text{Formulas for computing y, S, x from θ and λ}\\ \sin y = \cos \theta_0 \sin \theta - \sin \theta_0 \cos \theta \cos (\lambda_0 - \lambda)\\ \tan S = \frac{\sin \theta_0 \cos \theta \sin (\lambda_0 - \lambda)}{\sin \theta - \cos \theta_0 \sin y} = \frac{\cos \theta \sin (\lambda_0 - \lambda)}{\sin \theta_0 \sin \theta + \cos \theta_0 \cos \theta \cos (\lambda_0 - \lambda)}\\ \sin x = \sin (S - S_t) \cos y\\ \hline \text{Formulas for computing S, θ, λ from x and y} \end{array}$

Let
$$C = \cos y$$
, $D = \sin y$, $E = \sin x$, $A = C \sin \theta_0$, $B = D \cos \theta_0$, then
 $S = \arcsin (E/C) + S_1$
 $\theta = \arcsin (A \cos S + B)$
 $\lambda = \lambda_0 - \arcsin (C \sin S/\cos \theta)$

SPHERICAL HYPERBOLA FORMULAS AND PLANE EQUIVALENTS

Spherical Plane (1) $\tan^{2}r = \frac{\tan^{2}a (\sin^{2}c - \sin^{2}a)}{\sin^{2}c \cos^{2}a - \sin^{2}a}$ $r^{2} = \frac{a^{2} (c^{2} - a^{2})}{c^{2} \cos^{2}a - a^{2}}$ (2) $\sin^{2}x = \frac{\sin^{2}a \cos^{2}c}{\sin^{2}c - \sin^{2}a} \sin^{2}y + \sin^{2}a$ $x^{2} = \frac{a^{2}y^{2}}{c^{2} - a^{2}} + a^{2}$ (3) $\tan R = \frac{\cos 2c \pm \cos 2a}{\sin 2c \cos \beta \pm \sin 2a}$ $R = \frac{a^{2} - c^{2}}{c \cos \beta - a}$ (4) $\tan^{2}(\beta/2) = \frac{\sin (c - a) \sin (R + c + a)}{\sin (c + a) \sin (R - c + a)}$ $\tan^{2}(\beta/2) = \frac{(c - a) (R + c + a)}{(c + a) (R - c + a)}$

In (1) and (2) the origin of coordinates is the midpoint of $Q_1 Q_2$, see Figure 5. Equations (3) and (4) are two polar forms with origin at a focus Q_1 , see Figures (5) and (6). Appendix 1 has computations based on the plane equivalent of (3).

DISTANCE AND AZIMUTH FORMULAS

Normal section azimuths (Geodetic latitude, ϕ)

$$\cot a_{AB} = \frac{\left[\sin \phi_2 - (N_1/N_2) \sin \phi_1\right] e^2 \cos \phi_1 \sec \phi_2 + (\sin \phi_1 \cos \Delta \lambda - \tan \phi_2 \cos \phi_1)}{\sin \Delta \lambda}$$
$$\cot a_{BA} = -\frac{\left[\sin \phi_1 - (N_2/N_1) \sin \phi_2\right] e^2 \cos \phi_2 \sec \phi_1 + (\sin \phi_2 \cos \Delta \lambda - \tan \phi_1 \cos \phi_2)}{\sin \Delta \lambda}$$

Normal Section Azimuths (parametric latitude θ)

$$\cot \alpha_{AB} = \frac{\sin \theta_1 \cos \Delta \lambda - \cos \theta_1 \tan \theta_2 + e^2 (\sin \theta_2 - \sin \theta_1) \cos \theta_1 \sec \theta_2}{(1 - e^2 \cos^2 \theta_1)^{\frac{1}{2}} \sin \Delta \lambda}$$
$$\cot \alpha_{BA} = -\frac{\sin \theta_2 \cos \Delta \lambda - \cos \theta_2 \tan \theta_1 + e^2 (\sin \theta_1 - \sin \theta_2) \cos \theta_2 \sec \theta_1}{(1 - e^2 \cos^2 \theta_2)^{\frac{1}{2}} \sin \Delta \lambda}$$

Great Elliptic Section Azimuths (Geodetic latitude ϕ)

$$\cot \alpha_{AB} = (1 - e^2) \frac{N_1^2}{a^2} \frac{(\tan \phi_1 \cos \Delta \lambda - \tan \phi_2) \cos \phi_1}{\sin \Delta \lambda}$$

$$\cot \alpha_{BA} = (1 - e^2) \frac{N_2^2}{a^2} \frac{(\tan \phi_1 - \tan \phi_2 \cos \Delta \lambda) \cos \phi_2}{\sin \Delta \lambda}$$

Great Elliptic Section Azimuths (parametric latitude θ)

$$\cot a_{AB} = \frac{(\tan \theta_1 \cos \Delta \lambda - \tan \theta_2) (\cos \theta_1) (1 - e^2 \cos^2 \theta_1)^{1/2}}{\sin \Delta \lambda}$$
$$(\tan \theta_1 - \tan \theta_2 \cos \Delta \lambda) (\cos \theta_2) (1 - e^2 \cos^2 \theta_2)^{1/2}$$

 $\cot a_{BA} =$

 $\sin \Delta \lambda$

Great Elliptic Arc Distance

$$\begin{split} \mathbf{s/a} &= (\mathbf{d_1} + \mathbf{d_2}) - \frac{1}{4} \, \mathbf{k}^2 \, \left[(\mathbf{d_1} + \mathbf{d_2}) - \sin \left(\mathbf{d_1} + \mathbf{d_2} \right) \cos \left(\mathbf{d_1} - \mathbf{d_2} \right) \right] \\ &- (1/128) \, \mathbf{k}^4 \, \left[6(\mathbf{d_1} + \mathbf{d_2}) - 8 \, \sin \left(\mathbf{d_1} + \mathbf{d_2} \right) \cos \left(\mathbf{d_1} - \mathbf{d_2} \right) + \sin \left(2(\mathbf{d_1} + \mathbf{d_2}) \cos \left(2(\mathbf{d_1} - \mathbf{d_2}) \right) \right] \\ &- (1/1536) \, \mathbf{k}^6 \, \left[30(\mathbf{d_1} + \mathbf{d_2}) - 45 \, \sin \left(\mathbf{d_1} + \mathbf{d_2} \right) \cos \left(\mathbf{d_1} - \mathbf{d_2} \right) + 9 \, \sin \left(2(\mathbf{d_1} + \mathbf{d_2}) \cos \left(2(\mathbf{d_1} - \mathbf{d_2}) \right) \right] \\ &- \sin \left(3(\mathbf{d_1} + \mathbf{d_2}) \cos \left(3(\mathbf{d_1} - \mathbf{d_2}) \right) \right] \end{split}$$

Where in terms of geodetic latitude ϕ ,

 $k = (e\sqrt{1 - e^2/a}) N_0 \sin \phi_0, d_1 = \arccos (N_1 \sin \phi_1/N_0 \sin \phi_0),$

 $d_2 = \arccos (N_2 \sin \phi_2/N_0 \sin \phi_0)$

 $\sin \phi_0 = [J/(J + \sin^2 \Delta \lambda)]^{1/2}, J = \tan^2 \phi_1 + \tan^2 \phi_2 - 2 \tan \phi_1 \tan \phi_2 \cos \Delta \lambda,$

and in terms of parametric latitude θ

 $k = e \sin \theta_0, d_1 = \arccos (\sin \theta_1 / \sin \theta_0), d_2 = \arccos (\sin \theta_2 / \sin \theta_0)$

 $\sin \theta_0 = [F/(F + \sin^2 \Delta \lambda)]^{1/2}, F = \tan^2 \theta_1 + \tan^2 \theta_2 - 2 \tan \theta_1 \tan \theta_2 \cos \Delta \lambda.$

Also in terms of parametric latitude θ , great ellipticarc distance

$$s = a \begin{bmatrix} d - (e^2/8) (Xd - Y \sin d) \\ - (e^4/512) [(6d - \sin 2d) X^2 - 8 (\sin d) XY + 2 (\sin 2d) Y^2] \\ - (e^6/12288) [3(10d - 3 \sin 2d) X^3 - 3(15 \sin d - \sin 3d) X^2Y + 18(\sin 2d) XY^2 - 4(\sin 3d) Y^3] \end{bmatrix}$$

where $X = \frac{(\sin \theta_1 + \sin \theta_2)^2}{1 + \cos d} + \frac{(\sin \theta_1 - \sin \theta_2)^2}{1 - \cos d}$

 $Y = \frac{(\sin \theta_1 + \sin \theta_2)^2}{1 + \cos d} - \frac{(\sin \theta_1 - \sin \theta_2)^2}{1 - \cos d}, d = d_2 - d_1, \text{ where } d_1, d_2 \text{ are spherical distances from } P_1(\theta_1, \lambda_1), d_2 = d_2 - d_1$

 $P_2(\theta_2, \lambda_2)$ to the vertex $P_0(\theta_0, \lambda_0)$.

NOTE: If $e^2 = 2f$, the higher order terms in f then ignored, this becomes the so-called Andoyer-Lambert approximation in terms of parametric latitude.

GEODESIC IN TERMS OF GREAT ELLIPTIC ARC, IN GEODETIC LATITUDE WITH SECOND ORDER TERMS IN THE FLATTENING

Given the points $P_1(\phi_1, \lambda_1)$, $P_2(\phi_2, \lambda_2)$ on the reference ellipsoid, P_2 west of P_1 , west longitudes considered positive.

With
$$\phi_{\rm m} = \frac{1}{2}(\phi_1 + \phi_2)$$
, $\Delta \phi_{\rm m} = \frac{1}{2}(\phi_2 - \phi_1)$, $\Delta \lambda = \lambda_2 - \lambda_1$, $\Delta \lambda_{\rm m} = \frac{1}{2}\Delta \lambda$,
Let $k = \sin \phi_{\rm m} \cos \Delta \phi_{\rm m}$, $K = \sin \Delta \phi_{\rm m} \cos \phi_{\rm m}$,
 $H = \cos^2 \Delta \phi_{\rm m} - \sin^2 \phi_{\rm m} = \cos^2 \phi_{\rm m} - \sin^2 \Delta \phi_{\rm m}$
 $L = \sin^2 \Delta \phi_{\rm m} + H \sin^2 \Delta \lambda_{\rm m} = \sin^2 (d/2)$, $1 - L = \cos^2 (d/2)$, $\cos d = 1 - 2L$,
 $t = \sin^2 d = 4L(1 - L)$, $U = 2k^2/(1 - L)$, $V = 2K^2/L$; $X = U + V$, $Y = U - V$,

$$\begin{split} T &= d/\sin d = 1 + (t/6) + 3(t^2/40) + 5(t^3/112) + 35(t^4/1152) + 63(t^5/2816) + (1 \text{ radian} = 206,264,8062 \text{ second} \\ E &= 30 \cos d \quad , A = 4T (8 + \text{TE}/15), D = 4(6 + \text{T}^2), B = -2D, \\ C &= T - \frac{1}{2}(A + E), f/4 = 0.000847518825, f^2/64 = 0.179572039 \times 10^{-6} \text{ (Clarke 1866)} \\ S &= a \sin d [T - (f/4) (TX - 3Y) + (f^2/64) \{ X(A + CX) + Y(B + EY) + DXY \}], \\ \sin (a_2 + a_1) &= (K \sin \Delta \lambda)/L, \sin (a_2 - a_1) = (k \sin \Delta \lambda)/(1 - L), \\ \frac{1}{2}(\delta a_2 + \delta a_1) &= -(f/2) \text{ H } (T + 1) \sin (a_2 + a_1), \frac{1}{2}(\delta a_2 - \delta a_1) = -(f/2) \text{ H } (T - 1) \sin (a_2 - a_3), \\ a_{1-2} &= a_1 + \delta a_1, a_{2-1} = a_2 + \delta a_2. \end{split}$$

Additional check formulae

$$\begin{split} X &= \frac{(\sin \phi_1 + \sin \phi_2)^2}{1 + \cos d} + \frac{(\sin \phi_1 - \sin \phi_2)^2}{1 - \cos d} = 2 \sin^2 \phi_0 = 2F/(F + \sin^2 \Delta \lambda) \\ Y &= \frac{(\sin \phi_1 + \sin \phi_2)^2}{1 + \cos d} - \frac{(\sin \phi_1 - \sin \phi_2)^2}{1 - \cos d} = 2 \sin^2 \phi_0 \cos (d_1 + d_2) \\ F &= \tan^2 \phi_1 + \tan^2 \phi_2 - 2 \tan \phi_1 \tan \phi_2 \cos \Delta \lambda \\ \cos (d_1 + d_2) &= Y/X, 1 + \cos d = 8k^2/(X + Y), 1 - \cos d = 8K^2/(X - Y), \\ \cos d &= 4\left(\frac{k^2}{X + Y} - \frac{K^2}{X - Y}\right), 4\left(\frac{k^2}{X + Y} + \frac{K^2}{X - Y}\right) = 1. \end{split}$$

NOTE: If the second order term is ignored, the resulting equations are the equivalent of the so called Andoyer-Lambert approximation in terms of geodetic latitude.

The quantities H, T, L, k, K enter into both distance and azimuth formulas. Distances are given within a meter and azimuths within a second over all lines in all latitudes and azimuths. Other advantages are (1) no conversion to parametric latitudes, (2) no square root calculations, (3) for desk computers the only tabular data required is a table of the natural trigonometric functions as Peter's eight place tables. (4) the formulas are adaptable to high speed computers. See Table 4 page 81 and Appendix 3, lines 12 through 16, for desk computer sample computations based on these formulas as checked against 5 Coast and Geodetic Survey specially computed lines. The mean difference for the 5 lines between true geodetic lengths and computed values was 0.15 meter with a maximum difference of 0.24 meter. The mean difference between true and computed azimuths was 0.59 second with a maximum difference of 0.93 second.

GEODESIC IN TERMS OF GREAT ELLIPTIC ARC, IN PARAMETRIC LATITUDE WITH SECOND ORDER TERMS IN THE FLATTENING

Given on the reference ellipsoid the points $P_1(\theta_1, \lambda_1)$, $P_2(\theta_2, \lambda_2)$; P_2 west of P_1 , west longitudes considered positive. (Geodetic latitudes are converted to parametric by the relation $\tan \theta = (1 - f) \tan \phi$ or an equivalent formula). With $\theta_m = \frac{1}{2}(\theta_2 + \theta_1)$, $\Delta \theta_m = \frac{1}{2}(\theta_2 - \theta_1)$, $\Delta \lambda = \lambda_2 - \lambda_1$, $\Delta \lambda_m = \Delta \lambda/2$;

et
$$k = \sin \theta_m \cos \Delta \theta_m$$
, $K = \sin \Delta \theta_m \cos \theta_m$,
 $H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \Delta \theta_m$,
 $L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m = \sin^2 d/2$, $1-L = \cos^2 d/2$,
 $\cos d = 1 - 2L$, $h = \sin^2 d = 4L(1 - L)$, $U = 2k^2/(1 - L)$,
 $V = 2K^2/L$, $X = U + V$, $Y = U - V$,
 $T = d/\sin d = 1 + (1/6)h + (3/40)h^2 + (5/112)h^3 + (35/1152)h^4 + (63/2816)h^5 + - - - - ,$
 $E_0 = -2 \cos d$, $D_0 = 4T^2$, $A_0 = -D_0E_0$, $B_0 = -2D_0$, $C_0 = T - \frac{1}{2}(A_0 + E_0)$,
 $S = a \sin d [T - (f/4) (TX - Y) + (f^2/64) (A_0X + B_0Y + C_0X^2 + D_0XY + E_0Y^2)]$
 $\sin (a_2 + a_1) = (K \sin \Delta \lambda)/L$, $\sin (a_2 - a_1) = (k \sin \Delta \lambda)/(1 - L)$
 $\frac{1}{2}(\delta a_2 - \delta a_1) = -(f/2) TH \sin (a_2 - a_1)$
 $a_{1-2} = a_1 + \delta a_1$, $a_{2-4} = a_2 + \delta a_2$

Additional check formulae

$$X = \frac{(\sin \theta_1 + \sin \theta_2)^2}{1 + \cos d} + \frac{(\sin \theta_1 - \sin \theta_2)^2}{1 - \cos d} = 2 \sin^2 \theta_0 = 2F/(F + \sin^2 \Delta \lambda)$$

$$Y = \frac{(\sin \theta_1 + \sin \theta_2)^2}{1 + \cos d} - \frac{(\sin \theta_1 - \sin \theta_2)^2}{1 - \cos d} = 2 \sin^2 \theta_0 \cos (d_1 + d_2)$$

$$F = \tan^2 \theta_1 + \tan^2 \theta_2 - 2 \tan \theta_1 \tan \theta_2 \cos \Delta \lambda$$

$$\cos (d_1 + d_2) = Y/X, 1 + \cos d = 8k^2/(X + Y), 1 - \cos d = 8K^2/(X - Y),$$

$$\cos d = 4\left(\frac{k^2}{X + Y} - \frac{K^2}{X - Y}\right), 4\left(\frac{k^2}{X + Y} + \frac{K^2}{X - Y}\right) = 1.$$

NOTE: If the second order term is ignored, the resulting equations are the equivalent of the so-called Andoyer-Lambert approximation in terms of parametric latitude.

TRANSFORMATIONS: GEODETIC TO PARAMETRIC - PARAMETRIC TO GEODETIC

If primed quantities denote those in geodetic latitude, then the transformation equations are:

$$d' = d - (f/2) Y \sin d + (f^2/16) [4Y(X-3) \sin d + (2Y^2 - X^2) \sin 2d],$$

 $\sin d' = \sin d - (f/4) Y \sin 2d$

$$X' = X[1 + f(2 - X)]$$

$$Y' = Y[1 + f(2 - X)] + (f/2) (X^2 - Y^2) \cos dt$$

$$d = d' + (f/2) Y' \sin d' + (f^{2}/16) [4Y' (X'-1) \sin d' + (2Y'^{2} - X'^{2}) \sin 2d']$$

 $\sin d = \sin d' + (f/4) Y' \sin 2d'$

$$\begin{split} X &= X' [1 - f(2 - X')] \\ Y &= Y' [1 - f(2 - X')] - (f/2) (X'^2 - Y'^2) \cos d \end{split}$$

DIFFERENCE FORMULAS TO SECOND ORDER IN THE FLATTENING

 $\begin{aligned} \mathbf{d}' - \mathbf{d} &= - \left(f/2 \right) \, \mathbf{Y} \, \sin \, \mathbf{d} \, + \left(f^{\, 2}/16 \right) \left[4 \mathbf{Y} \, \left(\mathbf{X} - 3 \right) \, \sin \, \mathbf{d} \, + \left(2 \mathbf{Y}^{\, 2} - \mathbf{X}^{\, 2} \right) \, \sin \, 2 \mathbf{d} \right], \\ &= - \left(f/2 \right) \, \mathbf{Y}' \sin \, \mathbf{d}' - \left(f^{2}/16 \right) \left[4 \mathbf{Y}' \left(\mathbf{X}' - 1 \right) \, \sin \, \mathbf{d}' \, + \left(2 \mathbf{Y}'^{\, 2} - \mathbf{X}'^{\, 2} \right) \, \sin \, 2 \mathbf{d} \right] ; \end{aligned}$

$$\begin{split} \mathbf{X}' - \mathbf{X} &= \mathbf{f} \mathbf{X} \ (2 - \mathbf{X}) \left\{ 1 + (\mathbf{f}/2) \ (3 - 2 \ \mathbf{X}) \right\}, \\ &= \mathbf{f} \mathbf{X}' \left(2 - \mathbf{X}' \right) \left\{ 1 - (\mathbf{f}/2) \ (1 - 2\mathbf{X}') \right\}; \end{split}$$

$$\begin{split} Y'-Y &= fY(2-X) + (f/2) \left(X^2 - Y^2 \right) \cos d \\ &+ \left(f^2 / 8 \left[\begin{array}{c} 4Y \left(2-X \right) \left(3-2X \right) \\ &+ \left(X^2 - Y^2 \right) \left\{ \left(11-5X \right) \cos d + Y \left(1-3 \cos^2 d \right) \right\} \right] \end{split}$$

$$= fY'(2 - X') + (f/2) (X'^{2} - Y'^{2}) \cos d'$$

- $(f^{2}/8) \begin{bmatrix} 4Y' (2 - X') (1 - 2X') \\ + (X'^{2} - Y'^{2}) \left\{ 2(5 - 3X') \cos d' + Y' (1 - 3 \cos^{2} d') \right\} \end{bmatrix}$

CHORD DISTANCE, c

$$c = a \left[\{1 - \cos (d_1 + d_2)\} \{2 - k^2 [1 - \cos (d_1 - d_2)] \} \right]^{1/2}$$

Where in terms of geodetic latitude ϕ ,

 $\begin{aligned} d_1 &= \arccos (N_1 \sin \phi_1 / N_0 \sin \phi_0), \, d_2 = \arccos (N_2 \sin \phi_2 / N_0 \sin \phi_0) \\ k^2 &= \left[e^2 (1 - e^2) / a^2 \right] N_0^2 \sin^2 \phi_0 \end{aligned}$

in terms of parametric latitude θ

 $d_1 = \arccos (\sin \theta_1 / \sin \theta_0), d_2 = \arccos (\sin \theta_2 / \sin \theta_0), k^2 = e^2 \sin^2 \theta_0.$

ANGLE OF DIP OF THE CHORD, β

$$\sin \beta = \left\{ \frac{(1-e^2) \left[1-\cos \left(d_1+d_2\right)\right]}{\left[2-k^2 \left\{1-\cos \left(d_1-d_2\right)\right\}\right] \left(1-e^2+k^2 \cos^2 d_1\right)} \right\}^{1/2}$$

with k, d1, d2 expressible in terms of either geodetic or parametric latitude as given above.

MAXIMUM SEPARATION OF CHORD AND ELLIPTIC ARC, Ho

$$H_{0} = \frac{2 \text{ abo}}{c} \sin \frac{1}{2} (d_{1} + d_{2}) [1 - \cos \frac{1}{2} (d_{1} + d_{2})],$$

where c is the chord length as given above, bo = $a\sqrt{1-k^2}$; c, k, d₁, d₂ expressible in either parametric or geodetic latitude as given above.

GEOGRAPHIC COORDINATES OF POINT OF MAXIMUM SEPARATION

 $\tan \phi = R/D$, or $\cos 2\phi = (D^2 - R^2)/(D^2 + R^2)$, $\tan \lambda = (\cos \theta_2 \sin \Delta \lambda)/(\cos \theta_1 + \cos \theta_2 \cos \Delta \lambda)$,

R = sin θ_1 + sin θ_2 , D = (0.996609925) (4 cos² $\frac{1}{2}$ d-R²) $\frac{1}{2}$ d is spherical distance between the points P₁(θ_1 , λ_1), P₂(θ_2 , λ_2) on the ellipsoid, θ is parametric latitude, $\Delta \lambda = \lambda_2 - \lambda_1$. See Figure 23 for sample computation.

DEVELOPMENT

SECTION 1. LATITUDE FORMULAE

The auxiliary sphere, associated with an ellipsoid of reference, is the sphere tangent to the spheroid along the equator. If it is desired to work on this sphere with formulae for conversion to the spheroidal surface, then a correspondence between geocentric latitude θ on the sphere and geodetic latitude ϕ on the ellipsoid is needed. Longitudes will be the same.

Now there are three latitudes in geodetic usage associated with the auxiliary-sphere ellipsoid configuration as shown in Figure 1. The θ as shown, and which we shall call geocentric latitude, is called the reduced or parametric latitude since it is the eccentric angle of the meridian ellipse. The angle ψ , as shown, is called in geodetic nomenclature, the geocentric latitude since it is the angle measured from the center of the ellipsoid to the point R on the meridian from the equator. The angle ϕ_0 , as shown, is a geodetic latitude corresponding to θ . The three latitudes ψ , θ , ϕ_0 , are related through the equations

$$\tan \psi = \sqrt{1 - e^2} \tan \theta = (1 - e^2) \tan \phi_0 \tag{1}$$

or $\tan \psi / \tan \theta = \tan \theta / \tan \phi_0 = \sqrt{1 - e^2}$.

where e is the eccentricity of the meridian ellipse [1].*

However, for working directly on the auxiliary sphere and transferring directly to the ellipsoid, if θ is the geocentric latitude of the point P (a cos θ , a sin θ) on the auxiliary sphere, then the latitude actually corresponding on the spheroid is that found by dropping a perpendicular upon the meridian ellipse from P meeting the meridian in Q as shown in Figure 1, the normal making the angle ϕ as shown with the equator. The distance PQ = h, and ϕ are needed for the conversion where $0 \le h \le a - b$, a and b the semimajor and semiminor axes of the spheroid. We now develop the necessary conversion formulas between ϕ and θ .

The law of sines applied to triangles POT, POK of figure 1, yields

$$\frac{\mathrm{Ne}^2 \mathrm{sin}\phi}{\mathrm{sin}\Delta\phi} = \frac{\mathrm{h} + \mathrm{N}}{\mathrm{cos}\,\theta} = \frac{\mathrm{a}}{\mathrm{cos}\,\phi}, \quad \frac{\mathrm{Ne}^2 \mathrm{cos}\phi}{\mathrm{sin}\Delta\phi} = \frac{\mathrm{h} + \mathrm{N}(1 - \mathrm{e}^2)}{\mathrm{sin}\,\theta} = \frac{\mathrm{a}}{\mathrm{sin}\,\phi}, \quad (2)$$

where $N = a/\sqrt{1 - e^2 \sin^2 \phi}$; e, a are the eccentricity and equatorial radius of the reference ellipsoid. ($\Delta \phi = \phi - \theta$).

*[1] Bracketed numbers refer to the list of references at the end of the section.

Figure 1. Latitude relationships in the auxiliary sphere-spheroid configuration.

From the first and last of either sets of equations (2) find

$$\sin \Delta \phi = \frac{e^2}{2a} \qquad N \sin 2\phi = \frac{e^2 \sin \phi \cos \phi}{\sqrt{1 - e^2 \sin^2 \phi}}.$$
(3)

To find the maximum value of $\Delta \phi$ and the value of ϕ at which the maximum occurs, one

differentiates
$$\Delta \phi = \operatorname{arc} \sin \frac{e^2 \sin \phi \cos \phi}{\sqrt{1 - e^2 \sin^2 \phi}}$$
 to obtain

$$\frac{d\Delta \phi}{d\phi} = e^2 \frac{e^2 \cos^2 2\phi + 2(2 - e^2) \cos 2\phi + e^2}{(2 - e^2 + e^2 \cos 2\phi) \sqrt{2(2 - e^2) - e^4 + 2e^2 \cos 2\phi + e^4 \cos^2 2\phi}};$$
(4)

neither factor of the denominator of (4) is zero for $0 \le \phi \le 90^\circ$. Hence to find the maximum from (4), place the numerator equal to zero and solve for $\cos 2\phi$ to obtain

$$\cos 2\phi = 1 + 2\left(\sqrt{1 - e^2} - 1\right) / e^2.$$
(5)

The flattening, f, of the reference ellipsoid is given by $f = (a-b)/a = 1 - b/a = 1 - \sqrt{1-e^2}$, whence $e^2 = 2f - f^2$, we can write

$$\cos 2\phi = 1 - 2(1 - \sqrt{1 - e^2})/e^2 = 1 - 2f/(2f - f^2) = -f/(2-f)$$

$$\sin^2 2\phi = 1 - \cos^2 2\phi = 1 - f^2/(2-f)^2 = 4(1-f)/(2-f)^2$$

$$\sin^2 \phi = \frac{1}{2} - \frac{1}{2}\cos 2\phi = \frac{1}{2} + \frac{f}{2(2-f)} = \frac{1}{2-f}$$

$$1 - e^2 \sin^2 \phi = 1 - f(2-f)/(2-f) = 1 - f.$$
from (3)
$$\sin^2 \Delta \phi = \frac{e^4}{4} \frac{\sin^2 2\phi}{1 - e^2 \sin^2 \phi} \frac{f^2(2-f)^2}{4} \frac{4(1-f)}{(2-f)^2} \frac{1}{1-f}$$

$$\sin^2 \Delta \phi = f^2$$

hence $\sin \Delta \phi_{\text{max}} = f = 0.0033900753$ (Clarke 1866 ellipsoid).

$$\begin{split} &\cos \ 2\phi = - \ 0.001697914 \\ &\phi = 45^\circ \ 02'55 \, "106 \ , \\ &\Delta\phi_{\rm max} \ = 0^\circ \ 11' \ 39"255, \end{split}$$

and

 $\theta = \phi - \Delta \phi = 44^{\circ} 51' 15".851.$

Now from (3) and $\theta = \phi - \Delta \phi$ a complete table for corresponding latitudes can be computed readily since complete tables for N to 0.001 meter have been computed for most reference ellipsoids. [2]

To develop sin $\Delta\phi$ is a series for computation without the necessity of tables of N, write (3) in the form sin $\Delta\phi = e^2 \sin \phi \cos \phi (1 - e^2 \sin^2 \phi)^{-1/2}$, then expand the radical by the binominal formula to get

$$\sin \Delta \phi = e^{2} \sin \phi \cos \phi (1 + \frac{e^{2}}{2} \sin^{2} \phi + \frac{3}{8} e^{4} \sin^{4} \phi + \frac{5}{16} e^{6} \sin^{6} \phi)$$

(6)

$$= \frac{e^2}{2} \sin 2\phi + \frac{e^4}{2} \sin^3\phi \cos\phi + \frac{3}{8} e^6 \sin^5\phi \cos\phi + \frac{5}{16} e^8 \sin^7\phi \cos\phi \,. \tag{7}$$

now $\sin^3\phi\cos\phi = \frac{1}{4}\sin 2\phi - \frac{1}{6}\sin 4\phi$

 $\sin^{5}\phi\cos\phi = \frac{5}{32}\sin 2\phi - \frac{1}{6}\sin 4\phi + \frac{1}{32}\sin 6\phi \tag{8}$

 $\sin {}^{7}\phi\cos\phi = {}^{7}/_{64}\sin 2\phi - {}^{7}/_{64}\sin 4\phi + {}^{3}/_{64}\sin 6\phi - {}^{1}/_{128}\sin 8\phi,$

and the values from (8) placed in (7) give

 $\sin \Delta \phi = c_1 \sin 2\phi - c_2 \sin 4\phi + c_3 \sin 6\phi - c_4 \sin 8\phi;$

where
$$c_1 = \frac{e^2}{2} + \frac{e^*}{8} + \frac{15}{2_{56}} e^6 + \frac{35}{1024} e^8$$
, $c_2 = e^4/_{16} + \frac{3}{64} e^6 + \frac{35}{1024} e^8$, (9)
 $c_3 = \frac{3}{256} e^6 + \frac{15}{1024} e^8$, $c_4 = \frac{5}{2048} e^8$

If $\Delta \phi$ in radians is desired rather than sin $\Delta \phi$, then in the expansion

 $\arctan x = x(1 + x^{2}/_{6} + - - -)$ (10)

let $\mathbf{x} = \sin \Delta \phi$, whence arc $\sin \mathbf{x} = \Delta \phi$ and

$$\Delta \phi = \sin \Delta \phi \left(1 + \frac{\sin^2 \Delta \phi}{6} + \cdots \right). \tag{11}$$

from (9) with e² = 0.006768657997, find

$$c_1 = 0.003390074081, c_2 = 0.000002878029,$$
 (12)

$$c_3 = 3.665 \times 10^{-9}$$
, $c_4 = 5 \times 10^{-12}$ (negligible).

For estimation purposes the values in (12) may be written

$$c_1 = 3 \times 10^{-3}, c_2 = 3 \times 10^{-6}, c_3 = 4 \times 10^{-9}$$

$$c_2^2 = 9 \times 10^{-6}, c_2^2 = 9 \times 10^{-12}, c_2^2 = 2 \times 10^{-17},$$
(13)

With the value of $\sin \Delta \phi$ from (9) in terms of the estimation coefficients (13) we examine the term $(\sin^3\Delta \phi)/6$ in (11), and find that (11) may be written $\Delta \phi = \sin \Delta \phi +$

$$\frac{c_1^3}{6}\sin^3 2\phi - \frac{c_1^2 c_2}{2}\sin^2 2\phi \sin 4\phi.$$
(14)

since $\sin^3 2\phi = \frac{3}{4} \sin 2\phi - \frac{1}{4} \sin 6\phi$

$$\sin^2 2\phi \, \sin 4\phi = \frac{1}{2} \, \sin 4\phi - \frac{1}{4} \, \sin 8\phi, \tag{15}$$

equation (14) may be written, with the value of sin $\Delta \phi$ from (9), as

$$\Delta\phi (\text{radians}) = \left(\left(c_1 + \frac{c_1^3}{8} \right) \right) \sin 2\phi - \left(c_2 + \frac{c_1^2 c_2}{4} \right) \sin 4\phi + \left(c_3 - \frac{c_1^3}{24} \right) \sin 6\phi, \tag{16}$$

ог

 $\Delta\phi$ (seconds) = (206,264.8062) $\Delta\phi$ (radians),

where c_1 , c_2 , c_3 , are given by the expressions in (9) in terms of the eccentricity of the meridian ellipse.

We now check equations (9) and (17), using again values for the Clarke 1866 spheroid and for the maximum value of $\Delta \phi$.

From (9) and (12) we have

 $\sin \Delta \phi = 3.390074081 \times 10^{-3} \sin 2\phi - 2.878029 \times 10^{-6} \sin 4\phi + 3.665 \times 10^{-9} \sin 6\phi.$ (18) From (12) and (17) find

 $\Delta\phi \text{ (seconds)} = 699".2540 \sin 2\phi - 0".5936 \sin 4\phi + 0".0004 \sin 6\phi. \tag{19}$

Now with $\phi = 45^{\circ} \ 02$ 55".106 from (6), find sin $2\phi = + 0.99999856$, sin $4\phi = -0.00339575$, sin $6\phi = -0.99998703$. (20)

The values from (20) placed in (18) give

 $\sin \Delta \phi = 0.0033900753$ which checks the value found before in the 10th place. (See (6)).

The values from (20) placed in (19) give $\Delta \phi$ (seconds) = 699" 2530 + "0020 - "0004 =

699" 2546, or 11' 39" 255 which is the value of $\Delta \phi_{max}$. (See (6)).

For explicit computation of ϕ as a function of θ , we obtain the following development. From the second and third of each set of equations (2), find

 $h + N = a \cos \theta / \cos \phi = Ne^2 + a \sin \theta / \sin \phi$, whence

 $\tan \phi = \tan \theta + (e^2/a \cos \theta) (N \sin \phi)$

or $\tan \phi = \tan \theta + (e^2 \sqrt{1 + \tan^2 \theta}) (\tan \phi / \sqrt{1 + (1 - e^2) \tan^2 \phi}).$ (21)

(NOTE: Equation (21) also follows directly from (3) by expanding the left hand side and dividing every term by the product $\cos \phi \cos \theta$. $\sin \Delta \phi = \sin \phi \cos \theta - \cos \phi \sin \theta$.)

Now (21) is of the form

$$\mathbf{y} = \mathbf{x} + \mathbf{h} (\mathbf{x}) \mathbf{g} (\mathbf{y})$$

Whe

and the Lagrange expansion formula may be used, [3].

Equation (21) may be written

$$y = x + e^{2} (1 + x^{2})^{\frac{1}{2}} , \quad y[1 + (1 - e^{2}) y^{2}]^{-\frac{1}{2}}$$
(22)
ere $y = \tan \phi, x = \tan \theta, h(x) = e^{2} (1 + x^{2})^{\frac{1}{2}}, g(y) = y[1 + (1 - e^{2}) y^{2}]^{-\frac{1}{2}}.$

By use of the Lagrange expansion formula, a function f(y) which has a power series representation may be written

$$f(y) = f(x) + \sum_{n=1}^{\infty} \frac{\{h(x)\}^n}{n!} \frac{d^{n-1}}{dx^{n-1}} f'(x) \{g(x)\}^n$$
(23)

With $y = \tan \phi$, $f(y) = \arctan x = \phi$; $x = \tan \theta$, $f(x) = \arctan x = \theta$, $f(x) = \frac{1}{1 + x^2} = \cos^2\theta$,

equation (23) may be written

$$\Delta \phi = \phi - \theta = \sum_{n=1}^{\infty} \frac{e^{2n} \sec^n \theta}{n!} \frac{d^{n-1}}{dx^{n-1}} G(\theta)$$
(24)

Where $G(\theta) = (\cos^2 \theta) (\tan \theta / \sqrt{1 + (1 - e^2) \tan^2 \theta})^n$, $\theta = \arctan x$.

First write $G(\theta)$ in the form

$$G(\theta) = (\cos^2\theta) \left[\sin \theta (1 - e^2 \sin^2 \theta)^{-1/2} \right]^{n}.$$

We wish to retain terms to e^{*} , but no higher. Hence we expand the radical in (25) to powers of e^{6} since for n = 1, equation (25) will be multiplied by e^{2} as seen from (24). Using the binomial formula for the expansion we can write (25) as

$$G(\theta) = (\cos^2\theta) (\sin\theta + \frac{1}{2}e^2 \sin^3\theta + (\frac{3}{8})e^4 \sin^5\theta + (\frac{5}{16})e^6 \sin^7\theta)^n.$$
(26)

(25)

To retain terms in e⁸ we will need the first four terms of the expansion (24) and hence three derivatives of (26). Now $\theta = \arctan x$, $\frac{d\theta}{dx} = \frac{1}{1+x^2} = \cos^2\theta$, $\frac{d^2\theta}{dx^2} = -2\sin\theta\cos^3\theta$,

$$\frac{d^{3}\theta}{dx^{3}} = 2(3 \sin^{2}\theta - \cos^{2}\theta) \cos^{4}\theta.$$

$$\frac{dG}{dx} = \frac{dG}{d\theta} - \frac{d\theta}{dx} = \left(\frac{dG}{d\theta}\right) \cos^{2}\theta \qquad (27)$$

$$\frac{d^{2}G}{dx^{2}} = \left(\frac{d^{2}G}{d\theta^{2}}\right) \left(\frac{d\theta}{dx}\right)^{2} + \left(\frac{dG}{d\theta}\right) \left(\frac{d^{2}\theta}{dx^{2}}\right)$$

$$= \cos^{3}\theta \left[\left(\frac{d^{2}G}{d\theta^{2}}\right) - \cos^{2}\theta - 2 \left(\frac{dG}{d\theta}\right) \sin^{2}\theta \right] \qquad (28)$$

$$\frac{d^{3}G}{dx^{3}} = \left(\frac{d^{3}G}{d\theta^{3}}\right) \left(\frac{d\theta}{dx}\right)^{3} + 3 \left(\frac{d^{2}G}{d\theta^{2}}\right) \left(\frac{d\theta}{dx}\right) \left(\frac{d^{2}\theta}{dx^{2}}\right) + \left(\frac{dG}{d\theta}\right) \left(\frac{d^{3}\theta}{dx^{3}}\right)$$

$$= \cos^{4}\theta \left[\left(\frac{d^{3}G}{d\theta^{3}}\right) \cos^{2}\theta - 6 \left(\frac{d^{2}G}{d\theta^{2}}\right) \cos^{2}\theta - \sin^{2}\theta + 2 \left(\frac{dG}{d\theta}\right) (3 \sin^{2}\theta - \cos^{2}\theta) \right] \qquad (29)$$

Because of the factor $e^{2 n}$ as a multiplier in (24), we can assume the following terms for (26) for n = 1, 2, 3, 4:

$$n = G(\theta)$$

 $1 \quad (\cos^2\theta)(\sin\theta + \frac{1}{2}e^2\sin^3\theta + (3/8)e^4\sin^5\theta + (5/16)e^6\sin^7\theta) \tag{30}$

2
$$(\cos^2\theta)$$
 $(\sin^2\theta + e^2\sin^4\theta + e^4\sin^6\theta)$

- 3 $(\cos^2\theta)$ $(\sin^3\theta + (3/2)e^2\sin^5\theta)$
- 4 $(\cos^2\theta) (\sin^4\theta)$

The terms of (24) are now formed by finding the derivatives of $G(\theta)$ with respect to θ using the appropriate form of $G(\theta)$ from (30) and finding

 $\frac{dG}{dx}$, $\frac{d^2G}{dx^2}$, $\frac{d^3G}{dx^3}$ by means of (27), (28), and (29).

Thus it is found that the first four terms of (24) are $e^2 \sin \theta \cos \theta + \frac{1}{2}e^4 \sin^3 \theta \cos \theta + (3/8)e^6 \sin^5 \theta \cos \theta + (5/16)e^8 \sin^7 \theta \cos \theta$ $e^4 \sin \theta \cos \theta + (2e^6 - 2e^4) \sin^3 \theta \cos \theta + (3e^8 - 3e^6) \sin^5 \theta \cos \theta - 4e^8 \sin^7 \theta \cos \theta;$ $e^{6} \sin \theta \cos \theta + (5e^{8} - \frac{35}{6}e^{6}) \sin^{3} \theta \cos \theta + (\frac{35}{6}e^{6} - \frac{77}{4}e^{8}) \sin^{5} \theta \cos \theta + \frac{63}{4}e^{8} \sin^{7} \theta \cos \theta;$ $e^{s} \sin \theta \cos \theta - 12e^{s} \sin^{3} \theta \cos \theta + 30e^{s} \sin^{5} \theta \cos \theta - 20e^{s} \sin^{7} \theta \cos \theta$ Adding corresponding terms of these we have $\Delta \phi = \phi - \theta = (e^2 + e^4 + e^6 + e^8) \sin \theta \cos \theta - [(3/2)e^4 + (23/6)e^6 + 7e^8] \sin^3 \theta \cos \theta$ (31)+[$(77/24)e^{6} + (55/4)e^{8}$] sin⁵ $\theta \cos \theta - (127/16)e^{8} \sin^{7} \theta \cos \theta$. Now $\sin \theta \cos \theta = \frac{1}{2} \sin 2\theta$ $\sin^3 \theta \cos \theta = \frac{1}{4} \sin 2\theta - (1/8) \sin 4\theta$ $\sin^5 \theta \cos \theta = (5/32) \sin 2\theta - (1/8) \sin 4\theta + (1/32) \sin 6\theta$ (32) $\sin^7 \theta \cos \theta = (7/64) \sin 2\theta - (7/64) \sin 4\theta + (3/64) \sin 6\theta - (1/128) \sin 8\theta$ The values from (32) placed in (31) give finally $\phi = \phi - \theta = C_1 \sin 2\theta + C_2 \sin 4\theta + C_2 \sin 6\theta + C_4 \sin 8\theta$ where $C_1 = \frac{1}{2}e^2 + (1/8)e^4 + (11/256)e^6 + (31/1024)e^8$ $C_2 = (3/16)e^4 + (5/64)e^6 + (25/1024)e^8$ $C_3 = (77/768)e^6 + (59/1024)e^8$, $C_4 = (127/2048)e^8$. Again for the Clarke 1866 spheroid $e^{2} = 0.006768657997$, $e^{4} = 0.00004581473108$. (34) $e^{6} = 0.0000003101042459$, $e^{8} = 0.00000002098989584$, whence from (33) $C_1 = 3.390069228 \times 10^{-3}$, $C_2 = 8.614540216 \times 10^{-6}$, (35) $C_3 = 3.12121 \times 10^{-8}, C_4 = 1.302 \times 10^{-10}.$ We now check (33) directly from the maximum value of $\Delta\phi$, the assumption being that if it holds for the maximum it will hold for all $\Delta \phi$. From (6) $\theta = 44^{\circ} 51' 15", 851$, whence $\sin 2\theta = 0.99998708$, $\sin 4\theta = 0.01016441$, $\sin 6\theta = -0.99988377$, $\sin 8\theta = -0.02032777$. (36)With the values from (35) and (36) find $C_1 \sin 2\theta = 0.0033900254283$ $C_3 \sin 6\theta = -0.0000000312085$ $C_4 \sin 8\theta = -0.000000000026$ $C_2 \sin 4\theta = 0.000000875617$ 0.0033901129900 -0.000000312111 $\Delta \phi$ (radians) = 0.0033900817789

 $\Delta\phi$ (seconds) = (0.0033900817789) (206,264,8062) = 699."2545611,

 $\Delta \phi_{max} = 11' 39.255$ which checks (6).

or

Note that the term $C_4 \sin 8\theta$ does not contribute to the result. Also, only eight place tables of trigonometric natural functions were used, [4].

Hence for geodetic latitude ϕ corresponding to geocentric latitude θ on the auxiliary sphere, the following formulas are sufficient for any spheroid of reference to 0.001 second:

$$\begin{aligned} \Delta\phi \ (\text{seconds}) &= \phi - \theta = (206,264,8062) \ (\text{C}_1 \sin 2\theta + \text{C}_2 \sin 4\theta + \text{C}_3 \sin 6\theta) \\ \text{C}_1 &= \frac{1}{2}\text{e}^2 + (1/8)\text{e}^4 + (11/256)\text{e}^6 + (31/1024)\text{e}^8, \ \text{C}_2 &= (3/16)\text{e}^4 + (5/64)\text{e}^6 + (25/1024)\text{e}^8, \\ \text{C}_3 &= (77/768)\text{e}^6 + (59/1024)\text{e}^8, \text{e is eccentricity of the meridian}. \end{aligned}$$
(37)

Now we have noted that the geocentric latitude θ as defined here is called the parametric or reduced latitude in geodetic nomenclature and has a corresponding geodetic latitude ϕ_0 as shown in Figure 1. From (1) we see that they are related by the equation $\tan \phi_0 = (\tan \theta)/\sqrt{1-e^2}$. (38) For instance from (6) for $\theta = 44^\circ$ 51' 15".851 find from (38) that $\phi_0 = 44^\circ$ 57' 06".069. Also from (6), $\phi = 45^\circ 02'$ 55".106, whence for $\theta = 44^\circ$ 51' 15".851 we have $\Delta\phi_0 = \phi - \phi_0 = 0^\circ$ 05' 49".037.⁽³⁹⁾

Using the values from (34), equation (37) may be written for the Clarke 1866 spheroid as $\Delta\phi$ (seconds) = $\phi - \theta = 699$. 2520 sin $2\theta + 1$. 7769 sin $4\theta + 0$. 0064 sin 6θ . (40)

From C. & G.S. special publication No. 67, [5], find

$$\phi_0 - \theta = 350".2202 \sin 2\theta + 0".2973 \sin 4\theta + 0".0003 \sin 6\theta.$$
(41)

Subtracting (41) from (40) one finds

$$\Delta\phi_0 = \phi - \phi_0 = 349".0318 \sin 2\theta + 1".4796 \sin 4\theta + 0".0061 \sin 6\theta.$$
(42)

With $\theta = 44^{\circ} 51' 15".851$ and the values from (28), equation (42) gives

 $\Delta \phi_0 = 5^{\circ}$ 49".036 which is within 0.001 second of (39).

From the second and third members of each set of equations (2) find

$$\mathbf{h} = \mathbf{a} \sin \theta \ \csc \phi - (1 - \mathbf{e}^2) \mathbf{N} = \mathbf{a} \cos \theta \sec \phi - \mathbf{N}. \tag{43}$$

To develop h in a power series in ϕ , free of N and θ , refer again to Figure 1. If the tangent at Q meets OP in P', then PP' = a - (a²/N) sec $\Delta\phi$, h = PP' cos $\Delta\phi$, whence

$$h/a = \cos \Delta \phi - a/N = \cos \Delta \phi - \sqrt{1 - e^2 \sin^2 \phi}$$
(44)

With $\cos \Delta \phi = \sqrt{1 - \sin^2 \Delta \phi}$, and the value of $\sin \Delta \phi$ from (3), (44) may be written

$$h/a = (1 - e^{2} \sin^{2} \phi)^{-1/2} \left\{ [1 - e^{2} \sin^{2} \phi (1 + e^{2} \cos^{2} \phi)]^{1/2} - 1 + e^{2} \sin^{2} \phi \right\}.$$
(45)

The relation (45) may also be obtained directly from equation (2) by eliminating θ between the equations a cos $\theta = (h + N) \cos \phi$ and a sin $\theta = [h + N(1 - e^2)] \sin \phi$.

Expanding the two radicals by the binomial formula, (45) may be written

$$h/a = (e^2/2 - e^4/2) \sin^2 \phi + [(5/8)e^4 - \frac{1}{2}e^6 - (1/8)e^8] \sin^4 \phi + [(9/16)e^6 - (1/4)e^8] \sin^6 \phi + (53/128)e^8 \sin^8 \phi$$
(46)

 $\sin^2 \phi = \frac{1}{2} (1 - \cos 2\phi)$ Now $\sin^4 \phi = 3/8 - \frac{1}{2} \cos 2\phi + (1/8) \cos 4\phi$ $\sin^6 \phi = 5/16 - (15/32) \cos 2\phi + (3/16) \cos 4\phi - (1/32) \cos 6\phi$ $\sin^8 \phi = 35/128 - (7/16) \cos 2\phi + (7/32) \cos 4\phi - (1/16) \cos 6\phi + (1/128) \cos 8\phi$

and these values placed in (46) give

$$\begin{split} h &= a \left(d_1 - d_2 \cos 2\phi + d_3 \cos 4\phi - d_4 \cos 6\phi + d_5 \cos 8\phi \right) \\ d_1 &= e^2/4 - e^4/64 - (3/256)e^6 - (233/16,384)e^8, \\ d_2 &= e^2/4 + e^4/16 + 7e^6/512 + 3e^8/2048, \\ d_3 &= 5e^4/64 + 11e^6/256 + 115e^8/4096 \\ d_4 &= 9e^6/512 + 37e^8/2048, d_5 = 53e^8/16,384 \end{split}$$

a, e are the semimajor axis, eccentricity of the reference ellipsoid.

We now check (47) using the values of a and e for the Clarke 1866 spheroid. From (34) and (47) with a = 6,378,206.4 meters one has h(meters) = 10,788.3852-10,811.2646 cos 2\$\phi\$ (48) $+ 22.9147 \cos 4\phi - 0.0350 \cos 6\phi$.

As a check, equation (48) should give

h = a - b = 6,378,206.4 - 6,356,583.8 = 21,622.6 meters

when $\phi = 90^{\circ}$. Placing $\phi = 90^{\circ}$ in (48) gives

h = 10,788.3852 + 10,811.2646 + 22.9147 + 0.0350 = 21,622.5995 meters.

Since we have the values of θ and ϕ for $\Delta \phi_{max}$ from (6) we now check the value given by (48) against the closed formula (43),

$$h = a \frac{\cos \theta}{\cos \phi} - N(\phi).$$

$$\phi = 45^{\circ} 02^{\circ} 55".106, \cos \phi = 0.70650624, \cos 2\phi = -0.00169788$$

$$\cos 4\phi = -0.99999423, \cos 6\phi = +0.00509360.$$

$$\theta = 44^{\circ} 51" 15".851, \cos \theta = 0.70890136, N(\phi) = 6,389,045.266.$$

$$h = a \frac{\cos \theta}{\cos \phi} - N(\phi) = (6,378,206.4) (0.70890136) / (0.70650624) - 6,389,045.266$$

$$= 6,399.829.094 - 6,389.045.266 = 10,783.828 \text{ meters}$$

Equation (48) gives

h = 10,788.3852 + 18.3562 - 22.9146 - 0.0002 = 10,783.827 meters,

when $\phi = 0$, h = 0 and (48) gives

h = 10,788.3852 - 10,811.2646 + 22.9147 - 0.0350 = +0.0003 meter.

Unless h were required to very high precision it is clear from the above checks that the formula (48) is adequate.

SUMMARY OF LATITUDE FORMULAE

If θ is the geocentric latitude of a point P (a cos θ , a sin θ) on the auxiliary sphere, then the corresponding geodetic latitude ϕ of P at an altitude h above the ellipsoid reference, as shown in figure 1, is given by

$$\begin{aligned} \Delta \phi &= \sin \left(\phi - \theta \right) = (e^2/2a) N \sin 2\phi = (e^2 \sin \phi \cos \phi) / \sqrt{1 - e^2 \sin^2 \phi} \\ &= c_1 \sin 2\phi - c_2 \sin 4\phi + c_3 \sin 6\phi - c_4 \sin 8\phi, \end{aligned} \tag{49} \\ c_1 &= e^2/2 + e^4/8 + 15e^6/256 + 35e^8/1024, \\ c_2 &= e^4/16 + 3e^6/64 + 35e^8/1024 \\ c_3 &= 3e^6/256 + 15e^8/1024, c_4 = 5e^8/2048 \\ e^{-\pi} eccentricity of the meridian ellipse. \end{aligned}$$

With the same coefficients as (49), we have $\Delta \phi \text{ (radians)} = (c_1 + c_1^3 / 8) \sin 2\phi - (c_2 + \frac{c_1^2}{4} c_2) \sin 4\phi + (c_3 - \frac{c_1^3}{24}) \sin 6\phi$ (50)

(51)

(53)

and in seconds

 \sin

$$\Delta\phi(\text{seconds}) = (206,264,8062) \left[(c_1 + c_1^{-3}/8) \sin 2\phi - (c_2 + c_1^{-2} c_2/4) \sin 4\phi + (c_3 - c_1^{-3}/24) \sin 6\phi \right].$$

To express $\Delta\phi$ in terms of θ , instead of ϕ , we have the relation
 $\tan \phi = \tan \theta + (e^2/a \cos \theta) \text{ N sin } \phi$
Which may be expanded by use of the Lagrange expansion formula to give

$$\Delta \phi = \phi - \theta = C_1 \sin 2\theta + C_2 \sin 4\theta + C_3 \sin 6\theta + C_4 \sin 8\theta$$

$$C_1 = e^2/2 + e^4/8 + 11e^6/256 + 31e^8/1024,$$
(52)

 $C_2 = 3e^4/16 + 5e^6/64 + 25e^8/1024,$

$$C_3 = 77e^6/768 + 59e^8/1024$$
, $C_4 = 127e^8/2048$.

For checks within 0.001 second, (52) may be written $\Delta\phi$ (seconds) = (206,264.8062)

$$(C_1 \sin 2\theta + C_2 \sin 4\theta + C_3 \sin 6\theta)$$

with C_1 , C_2 , C_3 the same as in (52).

$$\begin{aligned} h/a &= \cos \Delta \phi - a/N = (1 - e^2 \sin^2 \phi)^{-1/2} \{ [1 - e^2 \sin^2 \phi \ (1 + e^2 \cos^2 \phi)]^{1/2} - 1 + e^2 \sin^2 \phi \ \} \\ h &= a(d_1 - d_2 \cos 2\phi + d_3 \cos 4\phi - d_4 \cos 6\phi + d_5 \cos 8\phi) \end{aligned} \tag{54} \\ d_1 &= e^2/4 - e^4/64 - 3e^6/256 - 233e^8/16,384 \\ d_2 &= e^2/4 + e^4/16 + 7e^6/512 + 3e^8/2048 \qquad 0 \le h \le a - b \\ d_3 &= 5e^4/64 + 11e^6/256 + 115e^8/4096 \\ d_4 &= 9e^6/512 + 37e^8/2048, \ d_5 &= 53e^8/16,384 \end{aligned}$$

a = radius of the auxiliary sphere (semimajor axis of the reference ellipsoid).

 For the Clarke 1866 spheroid of reference we have from the above formulas:

 $\Delta\phi$ (seconds) = $\phi - \theta = 699$ "2540 sin $2\phi - 0$ "5936 sin $4\phi + 0$ "0004 sin 6ϕ ,
 (55)

 $\Delta\phi$ (seconds) = $\phi - \theta = 699$ "2520 sin $2\theta + 1$ "7769 sin $4\theta + 0$ "0064 sin 6θ ,
 (56)

 $\Delta\phi_0$ (seconds) = $\phi - \phi_0 = 349$ "0318 sin $2\theta + 1$ "4796 sin $4\theta + 0$ "0061 sin 6θ ,
 (57)

 h (meters) = 10,788.3852 - 10,811.2646 cos $2\phi + 22.9147$ cos $4\phi - 0.0350$ cos 6ϕ .
 (58)

For the Clarke 1866 spheroid, the maximum value of $\Delta\phi$ was found to be 11' 39".255 at $\phi=45^\circ\,02'$ 55".106.

The value of $\Delta\phi_0$, at this maximum of $\Delta\phi$, was found to be 5'49".037. Finally (58) was checked at $\phi = 0$, 90° and $\phi = 45^{\circ} 02$ '55".106. At $\phi = 90^{\circ}$, the check was within 0.0005 meter; at $\phi = 0$, it was within 0.0003 meter; at $\phi = 45^{\circ} 02$ '55".106, it was within 0.001 meter.

The following latitude formulae are from C & G.S. Special Publication No. 67, [5],

Where ϕ_0, ψ, θ are shown in figure 1.

 $\phi_0 - \psi = 700".4385 \sin 2\phi_0 - 1".1893 \sin 4\phi_0 + 0".0027 \sin 6\phi_0 \tag{59}$

 $\phi_0 - \psi = 700".4385 \sin 2\psi + 1".1893 \sin 4\psi + 0".0027 \sin 6\psi$ (60)

 $\phi_0 - \theta = 350''_{2202} \sin 2\phi_0 - 0''_{2973} \sin 4\phi_0 + 0''_{0003} \sin 6\phi_0 \tag{61}$

 $\phi_0 - \theta = 350".2202 \sin 2\theta + 0".2973 \sin 4\theta + 0".0003 \sin 6\theta \tag{62}$

 $\theta - \psi = 350".2202 \sin 2\theta - 0".2973 \sin 4\theta + 0".0003 \sin 6\theta \tag{63}$

 $\theta - \psi = 350".2202 \sin 2\psi + 0".2973 \sin 4\psi + 0".0003 \sin 6\psi \tag{64}$

The above are the series expansions for the expressions given as equation (1) page 12, that is

 $\tan \psi = \sqrt{1 - e^2} \, \tan \theta = (1 - e^2) \, \tan \phi_0, \tag{65}$

REFERENCES

- [1] Geodesy, Hosmer, Second Edition, John Wiley & Sons, 1930, page 181.
- [2] Army Map Service TM No. 67, Latitude Functions, Hayford Spheroid (International) 1944; AMS TM5-241-18, Latitude Functions, Clarke 1866 Spheroid, December 1960.
- [3] Course in Higher Analysis, Whittaker and Watson, 1962 Edition, page 133, Cambridge University Press.
- [4] Peters, J. Eight-place Tables of Trigonometric Functions, Berlin 1939; Edward Brothers, Inc., Photo-Lithoprint Reproductions, Ann Arbor, Michigan, 1943.
- [5] Latitude Development Connected With Geodesy and Cartography, U.S.C. & G.S. Special Publication No. 67, G.P.O., 1921.

DEVELOPMENT

SECTION 2. SPHERICAL RECTANGULAR COORDINATE SYSTEM; LOCI

THE GREAT CIRCLE TRACK AS DETERMINED BY THE GEOGRAPHICAL COORDINATES OF TWO GIVEN POINTS ON THE AUXILIARY SPHERE

In figure 2, the two given points are $Q_1(\theta_1, \lambda_1)$, $Q_2(\theta_2, \lambda_2)$. The great circle track is then determined from the spherical triangle PQ_1Q_2 . In order to simplify the computations and to have well balanced triangles from which to compute, one finds the point $O(\theta_0, \lambda_0)$ where the great circle Q_1Q_2 is orthogonal to a meridian λ_0 . One then works from the right spherical triangle POQ' by adding or subtracting increments of distance from $S_1 = OQ_1$ to get the distance S. One always has then a strong right triangle POQ' from which to compute the latitude, longitude and azimuth α of the point Q'(θ', λ') on the base line Q_1Q_2 .

DERIVATION OF FORMULAE

From right spherical triangle POQ'

$$\cos (\lambda_0 - \lambda') = \tan(\frac{\pi}{2} - \theta_0) \cot(\frac{\pi}{2} - \theta') = \cot \theta_0 \tan \theta'$$
(1)

If the points Q_1 and Q_2 satisfy (1), we have by substituting their coordinates in (1)

$$\cos \left(\lambda_0 - \lambda_1\right) = \cot \theta_0 \tan \theta_1, \qquad (2)$$

$$\cos (\lambda_0 - \lambda_2) = \cot \theta_0 \tan \theta_2$$

By forming the ratios of (2), expanding $\cos (\lambda_0 - \lambda_1)$ and $\cos (\lambda_0 - \lambda_2)$, dividing the left member numerator and denominator by $\cos \lambda_0$ one derives the formula

$$\tan \lambda_{0} = \frac{\tan \theta_{2} \cos \lambda_{1} - \tan \theta_{1} \cos \lambda_{2}}{\tan \theta_{1} \sin \lambda_{2} - \tan \theta_{2} \sin \lambda_{1}}$$
(3)

Equations (2) may be written as

$$\cot \theta_0 = \cot \theta_1 \cos \left(\lambda_0 - \lambda_1\right) = \cot \theta_2 \cos \left(\lambda_0 - \lambda_2\right) \tag{4}$$

From right spherical triangle POQ' one has also

$$\sin a' = \frac{\sin\left(\frac{\pi}{2} - \theta_0\right)}{\sin\left(\frac{\pi}{2} - \theta'\right)} = \frac{\cos \theta_0}{\cos \theta'} , \qquad (5)$$

$$\cos \alpha' = \frac{\tan S}{\tan(\frac{\pi}{2} - \theta')} = \tan S \tan \theta', \tag{6}$$

Figure 2. The great circle track configuration.

 $\sin \theta' = \cos S \sin \theta_0,$

$$\tan\left(\lambda_{0}-\lambda^{\prime}\right) = \frac{\tan S}{\sin\left(\frac{\pi}{2}-\theta_{0}\right)} = \frac{\tan S}{\cos\theta_{0}}, \qquad (8)$$

$$\tan \alpha' = \frac{\tan \left(\frac{\pi}{2} - \theta_0\right)}{\sin S} = \frac{\cot \theta_0}{\sin S}$$
(9)

 $\sin \theta' = \cot (\lambda_0 - \lambda') \cot \alpha'$ or

$$\tan \alpha' \sin \theta' \tan \left(\lambda_0 - \lambda'\right) = 1 \tag{10}$$

From the oblique spherical triangle PQ1Q2 find

$$\cos (\lambda_2 - \lambda_1) = -\cos (\pi - \alpha_2) \cos \alpha_1 + \sin (\pi - \alpha_2) \sin \alpha_1 \cos (S_1 - S_2) \text{ or}$$
$$\cos (\lambda_2 - \lambda_1) = \cos \alpha_1 \cos \alpha_2 + \sin \alpha_1 \sin \alpha_2 \cos (S_1 - S_2). \tag{10.1}$$

Computations from the formulae

First compute λ_0 and θ_0 from (3) and (4).

$$\tan \lambda_0 = \frac{\tan \theta_2 \cos \lambda_1 - \tan \theta_1 \cos \lambda_2}{\tan \theta_1 \sin \lambda_2 - \tan \theta_2 \sin \lambda_1}$$

 $\cot \theta_0 = \cot \theta_1 \cos (\lambda_0 - \lambda_1) = \cot \theta_2 \cos (\lambda_0 - \lambda_2)$

Next compute a_1 and a_2 from (5),

$$\sin \alpha_1 = \frac{\cos \theta_0}{\cos \theta_1} , \ \sin \alpha_2 = \frac{\cos \theta_0}{\cos \theta_2}$$

Then S_1 and S_2 from (6)

 $\tan S_1 = \cos \alpha_1 \cot \theta_1$, $\tan S_2 = \cos \alpha_2 \cot \theta_2$

The computations for a_1 , a_2 ; S_1 and S_2 are checked by (10.1)

 $\cos (\lambda_2 - \lambda_1) = \cos \alpha_1 \cos \alpha_2 + \sin \alpha_1 \sin \alpha_2 \cos (S_1 - S_2).$

Now for equally spaced intervals along the great circle track, for instance in 100 nautical mile intervals, let $S = S_1 \pm 100k$.

 $k = 1, 2, 3, \ldots N.$

With these values of S one computes successively corresponding values of θ' , λ' and a' from equations (7), (8), and (9)

$$\sin \theta' = \sin \theta_0 \cos S, \tan (\lambda_0 - \lambda') = \frac{\tan S}{\cos \theta_0}, \tan \alpha' = \frac{\cot \theta_0}{\sin S}$$

These last computations are checked by (10)

 $\sin \theta' \cdot \tan (\lambda_0 - \lambda') \cdot \tan \alpha' = 1.$

Figure 3. Parallels at a given distance from a great circle track.

PARALLELS AT A GIVEN DISTANCE FROM A GREAT CIRCLE TRACK

In Figure 3, the basic great circle track determined by Q_1 (θ_1 , λ_1), Q_2 (θ_2 , λ_2) is the same and the point $O(\theta_0, \lambda_0)$ is the same – (vertex of the great circle track). The point P' is the pole of the great circle determined by Q_1 , Q_2 . The angle at P' of the spherical triangle P'PQ' is the distance S = OQ' along the great circle track. If p and p' are points on the parallels at a distance s from the great circle track, then the coordinates of p and p' can be computed from the two spherical triangles PP'p, PP'p', (Figure 4).

Figure 4

From these triangles one has

 $\sin \theta p = \cos \theta_0 \quad \sin s + \sin \theta_0 \cos s \cos S$

$$\sin \theta p' = -\cos \theta_0 \sin s + \sin \theta_0 \cos s \cos S \tag{11}$$

$$\frac{\cos s}{\sin (\lambda_0 - \lambda_p)} = \frac{\cos \theta p}{\sin S} , \quad \frac{\cos s}{\sin (\lambda_0 - \lambda_p')} = \frac{\cos \theta p'}{\sin S}$$
(12)

From (11) and (12) one may write

$$\sin \theta_{k} = A \cos S \pm B$$

$$\sin (\lambda_{0} - \lambda_{k}) = C \sin S / \cos \theta_{k}$$
(13)

where $A = \sin \theta_0 \cos s$, $B = \cos \theta_0 \sin s$, $C = \cos s$.

A, B, C are constants for a given s. When k = p, the + sign is used in the first of equations (13). When k = p', the - sign is used.

The computations may be checked as before by means of the equation $\cos 2s = \sin \theta p \sin \theta p' + \cos \theta p \cos \theta p' \cos (\lambda p' - \lambda p).$

A SPHERICAL RECTANGULAR COORDINATE SYSTEM WITH A GREAT CIRCLE BASE LINE AS AN AXIS

Figure 5 is a further elaboration of Figures 2 and 3. M is the midpoint of the spherical segment Q_1Q_2 . The section MP'P'' is perpendicular to the base line at M. The general point $Q(\theta, \lambda)$ has for the foot of the perpendicular from Q upon the base line, the point $Q'(\theta', \lambda')$ as shown in figure 2. The great circle arc QQ' passes through P,' and QQ' is taken for spherical rectangular coordinate y. The great circle perpendicular to the section MP'P'' and passing through Q meets MP'P'' in T. The distance OQ' is S as shown in Figure 5. Note that the s of Figure 3 in the y of Figure 5. The great circle arc QT is taken for x. That is the spherical rectangular system chosen is x = QT, y = QQ'. Spherical polar coordinates are then r and a as shown in Figure 5, where r = MQ, and α is the angle between r and MQ'.

From the right spherical triangles MQT, MQQ 'one finds

$$\sin x = \sin r \cos a$$

$$\sin y = \sin r \sin a \tag{14}$$

whence

$$\sin r = (\sin^2 x + \sin^2 y)^{1/2}$$
(15)

 $\tan \alpha = \sin y / \sin x$,

that is (14) and (15) represent the conversion formulas between the spherical rectangular and spherical polar systems as given.

We now develop the coordinates x and y as functions of S and of θ and λ . Also θ and λ as functions of x and y.

COMPUTATION OF S, x, y, FROM θ AND λ

Assume that the base line has been established, that is the coordinates θ_0 , λ_0 of the vertex, 0, of the great circle base line have been computed from the coordinates of the two given points $Q_1(\theta_1, \lambda_1), Q_2(\theta_2, \lambda_2)$ by means of the equations as given on page 23. Then referring to Figure 5, find in spherical triangles:

PP Q:	$\cos y \sin S = \cos \theta \sin (\lambda_0 - \lambda),$		(16)
:	$\sin v = \cos \theta_0 \sin \theta - \sin \theta_0 \cos \theta \cos (\lambda_0 - \lambda),$	~	(17)

- OPQ: $\cos f = \sin \theta_0 \sin \theta + \cos \theta_0 \cos \theta \cos (\lambda_0 \lambda),$ (18)
- $OQQ': \cos y \cos S = \cos f, \tag{19}$
- $TP'Q: \quad \sin x = \sin d \cos y. \tag{20}$

Figure 5. Spherical rectangular coordinate system.

Dividing respective members of (16) and (19) find

 $\tan S = \cos \theta \sin (\lambda_0 - \lambda) / \cos f$

where cos f is given by (18).

From (17) and (18) we have $\sin \theta_0 \cos f = \sin \theta - \cos \theta_0 \sin y$ whence (21) may be written

$$\tan S = \frac{\sin \theta_0 \cos \theta \sin (\lambda_0 - \lambda)}{\sin \theta - \cos \theta_0 \sin y}$$
(22)

(21)

(25)

Referring now to Figures 1 and 5, it is seen that $d = MQ' = S - \frac{1}{2}(S_1 + S_2)$, where

 S_1 and S_2 are the distances from $O(\theta_0, \lambda_0)$ to Q_1 and Q_2 respectively.

Hence given the spherical curvilinear coordinates θ , λ of a point $Q(\theta, \lambda)$, to find S, x and y with θ_0 , λ_0 , S₁, S₂ known, compute y and S from (17) and (21) or (22) and then x from (20), i.e.

sin y = cos $\theta_0 \sin \theta$ - sin $\theta_0 \cos \theta \cos (\lambda_0 - \lambda)$

$$\tan S = \frac{\sin \theta_0 \cos \theta \sin (\lambda_0 - \lambda)}{\sin \theta - \cos \theta_0 \sin y} = \frac{\cos \theta \sin (\lambda_0 - \lambda)}{\cos f}$$

$$= \frac{\cos \theta \sin (\lambda_0 - \lambda)}{\sin \theta_0 \sin \theta + \cos \theta_0 \cos \theta \cos (\lambda_0 - \lambda)}$$

$$\sin x = \sin d \cos y = \sin \left[S - \frac{1}{2} (S_1 + S_2) \right] (1 - \sin^2 y)^{1/2}$$
(23)

COMPUTATION OF S, θ , λ FROM x AND y

From equation (20) one has sin d = sin x / cos y or sin $[S - \frac{1}{2}(S_1 + S_2)] = sin x / cos y$ whence

$$S = \arcsin(\sin x / \cos y) + \frac{1}{2}(S_1 + S_2).$$
(24)

From equations (13) page 27,

 $\sin \theta = A \cos S + B$

$$\sin (\lambda_0 - \lambda) = C \sin S / \cos \theta$$

where $A = C \sin \theta_0$, $B = D \cos \theta_0$, $C = \cos y$, $D = \sin y$

Hence to compute S, θ , λ from x and y, first compute S from (24) and then θ and λ from (25) i.e.:

let C = cos y, D = sin y, E = sin x, A = C sin θ_0 , B = D cos θ_0 .

Then

$$S = \operatorname{arc} \sin (E/C) + \frac{1}{2} (S_1 + S_2)$$

$$\theta = \operatorname{arc} \sin (A \cos S + B)$$

$$\lambda = \lambda_0 - \operatorname{arc} \sin (C \sin S/\cos \theta)$$
(26)

DERIVATION OF THE EQUATIONS TO SPHERICAL HYPERBOLAS

Having established a rectangular spherical coordinate system on a great circle base line, we are now in a position to develop the equations of spherical hyperbolas referred to our rectangular system. Referring again to Figure 5, we restrict the point $Q(\theta, \lambda)$ or Q(x,y) to the locus defined by demanding that the distances σ_1 and σ_2 from the points Q_2 and Q_1 respectively satisfy the condition

$$\sigma_1 - \sigma_2 = 2c/e = 2a \tag{27}$$

$$2c = S_1 - S_2$$
,

where as before S_1 , S_2 are the distances of Q_1 , Q_2 respectively from $O(\theta_0, \lambda_0)$; e is a number such that e > 1.

From the spherical triangles MQQ₁, MQQ₂ one has

 $\cos \sigma_2 = \cos r \cos c + \sin r \sin c \cos a$

$$\cos \sigma_1 = \cos r \cos c - \sin r \sin c \cos \alpha \tag{28}$$

Adding and substracting respective members of (28) obtain

$$\cos \sigma_1 + \cos \sigma_2 = 2 \cos r \cos c$$

$$\cos \sigma_1 - \cos \sigma_2 = -2 \sin r \sin c \cos \alpha$$
(29)

By well known trigonometric identities and condition (27), equations (29) may be

written

$$\cos \sigma_1 + \cos \sigma_2 = 2 \cos \frac{1}{2}(\sigma_1 + \sigma_2) \cos \frac{1}{2}(\sigma_1 - \sigma_2) = 2 \cos \frac{1}{2}(\sigma_1 + \sigma_2) \cos a = 2(\cos r)(\cos c),$$

$$\cos \sigma_1 - \cos \sigma_2 = 2 \sin \frac{1}{2}(\sigma_1 + \sigma_2) \sin \frac{1}{2}(\sigma_1 - \sigma_2) = 2 \sin \frac{1}{2}(\sigma_1 + \sigma_2) \sin a = -2(\sin r)(\sin c) \cos a,$$

or $\cos \frac{1}{2}(\sigma_1 + \sigma_2) = \cos r \cos c / \cos a$,

$$\sin \frac{1}{2} (\sigma_1 + \sigma_2) = \sin r \sin c \cos \alpha / \sin \alpha$$
.

(30)

Squaring and adding respective members of (30), get

$$(\cos^{2}r)(\cos^{2}c/\cos^{2}a) + (\sin^{2}r\cos^{2}a)(\sin^{2}c/\sin^{2}a) = 1.$$
(31)

Now in (31) place $\cos^2 r = 1/(1 + \tan^2 r)$,

 $\sin^2 r = \tan^2 r / (1 + \tan^2 r)$, whence (31) may be written

$$\tan^2 \mathbf{r} = \frac{\tan^2 a \left(\cos^2 a - \cos^2 c\right)}{\sin^2 c \cos^2 a - \sin^2 a} = \frac{\tan^2 a \left(\sin^2 c - \sin^2 a\right)}{\sin^2 c \cos^2 a - \sin^2 a}$$
(32)

Now (32) is the polar form of the equation to the spherical hyperbola.

From conversion formulas (15) we have

$$\tan^2 \mathbf{r} = (\sin^2 x + \sin^2 y)/(1 - \sin^2 x - \sin^2 y),$$

$$\cos^2 a = \sin^2 x/(\sin^2 x + \sin^2 y)$$
(33)

and substitutions for $\tan^2 r$, $\cos^2 a$ from (33) in (32) give the rectangular equation to the spherical hyperbola

$$\sin^2 x = \frac{\sin^2 a \cos^2 c}{\sin^2 c - \sin^2 a} \quad \cdot \ \sin^2 y + \sin^2 a. \tag{34}$$

THE POLAR EQUATION OF SPHERICAL HYPERBOLAS WITH ORIGIN AT A FOCUS

If we choose the given point Q_1 (θ_1 , λ_1) of the great circle base line as origin of coordinates and a focus, then the following figure may be abstracted from Figure 5:

Figure 6.

The polar radius is now $R = \sigma_2$, β is the angle between R and Q_1Q' . $k = Q_1Q' = S - S_1$. From spherical triangle Q_2QQ_1 we find $\cos \sigma_1 = \cos R \cos 2c - \sin R \sin 2c \cos \beta$, (35) and from (27) $\sigma_1 - R = 2a$, whence

 $\cos (\sigma_i - R) = \cos \sigma_i \cos R + \sin \sigma_i \sin R = \cos 2a, \tag{36}$

 $\sin (\sigma_1 - R) = \cos \sigma_1 \sin R + \sin \sigma_1 \cos R = \sin 2a.$

Multiply the first of (36) by sin R, the second by cos R and add respective members to solve for

	$\sin \sigma_{\rm i} = \cos 2 a \sin {\rm R} + \sin 2 a \cos {\rm R}.$	(37)
	Square and add respective members of (35) and (37) to get	
	$(\cos R \cos 2c - \sin R \sin 2c \cos \beta)^2 + (\cos 2a \sin R + \sin 2a \cos R)^2 = 1.$	(38)
	Multiply every term of (38) by sec ² R, whence it may be written	
	$(\cos 2c - \tan R \sin 2c \cos \beta)^2 + (\cos 2a \tan R + \sin 2a)^2 = \sec^2 R = 1 + \tan^2 R.$	(39)
	Expanding (39) and writing as a quadratic in tan R find	
tan	² R (sin ² 2c cos ² β - sin ² 2a) + 2tan R (sin 2a cos 2a - sin 2c cos 2c cos β)	(40)
+co	$\cos^2 2c - \cos^2 2a = 0.$	

Now equation (40) factors into [tan R (sin 2c cos β + sin 2a) - (cos 2c + cos 2a)].

 $[\tan R \ (\sin 2c \cos \beta - \sin 2a) - (\cos 2c - \cos 2a)] = 0. \tag{41}$

Whence

$$\tan R = \frac{\cos 2c + \cos 2a}{\sin 2c \cos \beta + \sin 2a}, \tan R = \frac{\cos 2c - \cos 2a}{\sin 2c \cos \beta - \sin 2a}$$

or

$$\tan R = \frac{\cos 2c \pm \cos 2a}{\sin 2c \cos \beta \pm \sin 2a}, \qquad (42)$$

where either the (two plus signs) or (two minus) signs are taken together.

Equation (42) is the polar equation to spherical hyperbolas referred to a focus as pole. We now derive expressions for the spherical rectangular coordinates x, y as functions of the polar coordinates R, β .

From right triangles WP 'Q, WQQ₁, Q₁QQ' (Figure 6) find

$$\sin x = \sin R \cos \beta,$$

$$\sin y = \sin R \sin \beta.$$

$$\sin x = \sin k \cos y;$$

$$\cos R = \cos k \cos y.$$
(43)

Equations (43) are similar to equations (14) and provide the conversions from polar to

rectangular coordinates, i.e. from (43)

$$\sin R = (\sin^2 x + \sin^2 y)^{-1/2}, \tag{45}$$

 $\tan \beta = \sin y / \sin x$.

Since moving the origin from M to Q_1 (see Figure 5) is only a translation along the x-axis, there is no change in y, but x is changed. Hence from (44) and the relations (23) and (26) we can write when the origin is at Q_1 , $k = S - S_3$:

FORMULAS FOR COMPUTATION OF S, x, y, FROM θ AND λ

$$\sin y = \cos \theta_{0} \sin \theta - \sin \theta_{0} \cos \theta \cos (\lambda_{0} - \lambda)$$

$$\tan S = \frac{\sin \theta_{0} \cos \theta \sin (\lambda_{0} - \lambda)}{\sin \theta - \cos \theta_{0} \sin y} = \frac{\cos \theta \sin (\lambda_{0} - \lambda)}{\cos f}$$

$$= \frac{\cos \theta \sin (\lambda_{0} - \lambda)}{\sin \theta_{0} \sin \theta + \cos \theta_{0} \cos \theta \cos (\lambda_{0} - \lambda)}$$
(46)

 $\sin x = \sin k \cos y = \sin (S - S_1) \cos y$

FORMULAS FOR COMPUTATION OF S, θ , λ FROM x AND y

Let C = cos y, D = sin y, E = sin x, A = C sin $\theta_0,$ B = D cos $\theta_0,$ then S = arc sin (E/C) + S1

 $\theta = \arcsin (A \cos S + B)$

 $\lambda = \lambda_0 - \arcsin (C \sin S / \cos \theta)$

AN ALTERNATIVE EQUATION TO THE SPHERICAL HYPERBOLA WITH ORIGIN AT A FOCUS If $S = \frac{1}{2}(a_0 + b_0 + c_0)$ in the spherical triangle

Figure 7.

then
$$\tan^2 \frac{1}{2}A = \frac{\sin(s - b_0)\sin(s - c_0)}{\sin S \sin(s - a_0)}$$
, [6]. (48)

Referring to figure 6, $a_0 = \sigma_1$, $b_0 = 2c$, $c_0 = R$: and from (27) we have the conditions

 $\sigma_1 - R = 2a, \sigma_1 + R = 2(R + a).$

Hence

$$s = \frac{1}{2}(\sigma_{1} + R) + c = R + a + c,$$

$$s - a_{0} = \frac{1}{2}(R - \sigma_{1}) + c = c - a,$$
(49)
$$s - b_{0} = R + a - c, \quad S - c_{0} = c + a$$

$$A = \pi - \beta, \tan \frac{1}{2}A = \tan (\pi/2 - \beta/2) = \cot \beta/2$$

With the values from (49) placed in (48) find

$$\tan^{2}\beta/2 = \frac{\sin(c-a)\sin(R+c+a)}{\sin(c+a)\sin(R-c+a)} ,$$
 (50)

which is the desired alternative form, [7].

CORRESPONDING PLANE HYPERBOLA EQUIVALENTS

For the plane case and analogous reference system, Figure 5 becomes

Given the condition $\sigma_1 - \sigma_2 = 2a$

By the law of cosines applied to triangles MQQ1 MQQ2

$$\sigma_2^2 = \mathbf{r}^2 + \mathbf{c}^2 - 2\mathbf{r}\mathbf{c}\,\cos\alpha, \,\,\sigma_1^2 = \mathbf{r}^2 + \mathbf{c}^2 + 2\mathbf{r}\mathbf{c}\,\cos\alpha$$
hence $\sigma_1^2 + \sigma_2^2 = 2(\mathbf{r}^2 + \mathbf{c}^2), \,\,\sigma_1^2 \,\,\sigma_2^2 = (\mathbf{r}^2 + \mathbf{c}^2)^2 - 4\mathbf{r}^2 \,\,\mathbf{c}^2 \,\cos^2\alpha$
(51)

Now by squaring both sides of $\sigma_1 - \sigma_2 = 2a$ obtain

$$\sigma_1^{\ 2} - 2\sigma_1 \ \sigma_2 + \sigma_2^{\ 2} = 4a^2 \text{ whence}$$

$$(\sigma_2^{\ 2} + \sigma_2^{\ 2} - 4a^2)^2 = 4\sigma_2^{\ 2}\sigma_2^{\ 2}$$
(52)

With the values of $\sigma_1^2 + \sigma_2^2$, $\sigma_1^2 \sigma_2^2$ from (51) placed in (52) obtain

$$2(r^{2} + c^{2}) - 4a^{2}]^{2} = 4[(r^{2} + c^{2})^{2} - 4r^{2}c^{2}\cos^{2}\alpha].$$
(53)

Expanding (53) find

W

$$\mathbf{r}^{2} \mathbf{c}^{2} \cos^{2} a - \mathbf{a}^{2} \mathbf{r}^{2} - \mathbf{a}^{2} \mathbf{c}^{2} + \mathbf{a}^{4} = 0$$
or
$$\mathbf{r}^{2} = \frac{\mathbf{a}^{2} (\mathbf{c}^{2} - \mathbf{a}^{2})}{\mathbf{c}^{2} \cos^{2} a - \mathbf{a}^{3}}$$
(54)

To transform to rectangular equation we have $x = r \cos \alpha$, $y = r \sin \alpha$, or $r^2 = x^2 + y^2$,

 $\tan \alpha = \frac{y}{x}$, $\cos^2 \alpha = x^2/(x^2 + y^2)$ and these values of r^2 and $\cos^2 \alpha$ placed in (54) give

$$\zeta^2 = \frac{a^2 y^2}{c^2 - a^2} + a^2$$
(55)

as corresponding rectangular equation.

If the focus Q_1 is to be the origin and $\sigma_2 = R$, the radius for polar coordinates, and β the angle which R makes with the positive x-axis, i.e. β is the angle QQ_1Q' , then our plane figure is as follows:

Figure 9.

By the law of cosines in triangle Q_2QQ_1

$$\sigma_1^2 = 4c^2 + R^2 + 4cR\cos\beta$$
(56)

From the condition $\sigma_1 - R = 2a$, $\sigma_1 = R + 2a$, and this value of σ_1 placed in (56) gives $(R + 2a)^2 = 4c^2 + R^2 + 4cR \cos \beta$, which when expanded gives

$$R = \frac{a^2 - c^2}{c \cos \beta - a}$$
(57)

For the alternative form of (57), we have the well known formula

$$\tan^{2} \frac{1}{2}A = \frac{(s - b_{0})(s - c_{0})}{s(s - a_{0})}, \text{ where } 2s = a_{0} + b_{0} + c_{0}$$
(58)

Here $a_0 = \sigma_1$, $b_0 = R$, $c_0 = 2c$, $A = \pi - \beta$, Hence: s = a + c + R, $s - a_0 = c - a$, $s - b_0 = a + c$, $s - c_0 = a - c + R$, whence $\tan^2 \frac{1}{2}\beta = \frac{(c - a)(R + c + a)}{(c + a)(R - c + a)}$, (59)

which is an alternative form of (57).

Now (54), (55), (57) and (59) could have been obtained directly from (32), (34),(42) and (50) by replacing correctly the trigonometric functions of lengths by corresponding lengths, i.e. $\tan a = \sin a = a$, $\cos a = 1$, etc. We place them side by side for direct comparison in the following table which will also serve as a summary for both:

SPHERICAL HYPERBOLA FORMULAS AND PLANE EQUIVALENTS, [7]

DI AND

(60)

$$r^{2} = \frac{4a^{2}a}{\sin^{2}c \cos^{2}a - \sin^{2}a} \qquad r^{2} = \frac{a^{2}(c^{2} - a^{2})}{c^{2}\cos^{2}a - a^{2}}$$

$$r^{2} = \frac{a^{2}(c^{2} - a^{2})}{c^{2}\cos^{2}a - a^{2}} \qquad r^{2} = \frac{a^{2}(c^{2} - a^{2})}{c^{2}\cos^{2}a - a^{2}}$$

$$r^{2} = \frac{a^{2}(c^{2} - a^{2})}{c^{2}-a^{2}} \qquad r^{2} = \frac{a^{2}(c^{2} - a^{2})}{c^{2}-a^{2}}$$

$$r^{2} = \frac{a^{2}(c^{2} - a^{2})}{c^{2}-a^{2}} \qquad r^{2} = \frac{a^{2}(c^{2} - a^{2})}{c^{2}-a^{2}}$$

$$r^{2} = \frac{a^{2}(c^{2} - a^{2})}{c^{2}-a^{2}} \qquad r^{2} = \frac{a^{2}(c^{2} - a^{2})}{c^{2}-a^{2}}$$

$$r^{2} = \frac{a^{2}(c^{2} - a^{2})}{c^{2}-a^{2}} \qquad r^{2} = \frac{a^{2}(c^{2} - a^{2})}{c^{2}-a^{2}} \qquad r^{2} = \frac{a^{2}(c^{2} - a^{2})}{c^{2}-a^{2}}$$

$$r^{2} = \frac{a^{2}(c^{2} - a^{2})}{c^{2}-a^{2}} \qquad r^{2} = \frac{a^{2}(c^{2} - a^{2})}{c^{2}-a^{2}} \qquad r$$

In (1) and (2) of equations (60), the origin of coordinates is the midpoint M_1 , of the segment Q_1Q_2 , see Figure 5. (3) and (4) are two polar forms with origin at a Focus Q_1 , see Figures (5) and (6).

REFERENCES

CONTRACT

- [6] Chauvenet, Plane and Spherical Trigonometry, 1871, page 158.
- [7] Equations (32), (34), (42), (50) to spherical hyperbolas are essentially those given without derivation in LORAN, Pierce, McKenzie, Woodward, McGraw Hill 1948, pages 173, 175.

DEVELOPMENT: DISTANCE FORMULAE;

SECTION 3. DISTANCE COMPUTATIONS AND CONVERSIONS; AZIMUTHS

If we are given two points $P_1(\phi_1, \lambda_1)$, $P_2(\phi_2, \lambda_2)$ on the ellipsoid of reference as shown in Figure 10, we may compute distances and azimuths according to known or given elements. That is we may compute the geographic coordinates of the point $P_2(\phi_2, \lambda_2)$ if we know the geographic coordinates of $P_1(\phi_1, \lambda_1)$ the distance between P_1 and P_2 , and the azimuth from P_1 to P_2 . This is the direct problem and the one most important in Geodesy relative to establishing triangulation control nets. If the coordinates of both P_1 and P_2 are given, the distance between them and the azimuths can be computed. This is the inverse problem, and the one concerned primarily in electronic positioning systems as Loran.

Since there are several possible curves connecting the points P_1 and P_2 on the ellipsoid along which distances would differ very little, for instance – the geodesic, the normal sections, the great elliptic arc, the curve of alinement, etc. – criteria for selection would be simplicity in computations relative to required accuracy. Also to be considered are other useful geometric quantities associated with the configuration and expressible in terms of common computational parameters. (See Figure 11).

The shortest distance is always the geodesic or the geodetic line between P_1 and P_2 . It is usually a space curve (that is it has a first and second curvature at each point). For instance on the reference ellipsoid, the equator and the meridians are the only plane geodesics, [8].

Now in Figure 10, the point $P_0(\phi_0, \lambda_0)$ is the vertex of the great elliptic arc, that is P_0 is the point where the great elliptic arc is orthogonal to a meridian. The goedesic, or geodetic line, between P_1 and P_2 also has a vertex where it is orthogonal to a meridian. Since the geodesic is a space curve and climbs nearer to the ellipsoid pole, T_0 , than any of the other representative curves (if P_1 and P_2 were ends of a diameter of the equator, the geodesic would be the elliptic meridian through P_1 and P_2 since it is shorter than the equator), the vertex of the geodesic is closer to T_0 than is P_0 . Unfortunately the geographic coordinates of the geodesic vertex cannot be expressed simply in terms of the geographic coordinates of P_1 and P_2 , hence an approximation scheme, usually iterative, is used. [9] The computations are usually quite lengthy for long lines. Many schemes and formulae have been devised to approximate the geodesic and studies have been made comparing them. [21] The geodetic line is of most interest to the geodesist proper, since he is primarily concerned with closure on a particular ellipsoid of reference of large arcs and areas of triangulation, hence the geodesic or geodetic line and geodetic azimuths on the ellipsoid are consonant with his mathematical model.

Figure 10. Corresponding distances on the reference ellipsoid and the auxiliary sphere.

OPERATIONAL APPLICATIONS

Requirements, accuracy wise, with respect to geodetic data obviously depend on the particular guidance system employing it. If some guidance, particularly external, is to be provided a missile, its initial launch requirements are not as critical as say for a purely ballistic missile. Since it has yet to be demonstrated that the flight of missiles are geodesic or that the traces of the trajectories upon the ellipsoid of reference are geodesics, distances can be computed by any method which will give results within the capability of the particular system. Since alinement is usually with respect to a local vertical and a "bearing", the normal section azimuth, the angle of depression of the chord below the horizon and the maximum separation between the chord and the surface are all useful associated quantities which can be "integrated" in the computations for distance as will subsequently be shown in the discussion of distance computations along the great elliptic arc. This configuration is shown in Figure 11 as abstracted from Figure 10.

HYPERBOLIC MEASURING SYSTEMS

For Loran systems, the earth must be considered an oblate ellipsoid or spheroid, but the nearest hundred feet is probably close enough particularly on long lines. [7], page 170. Hence a computational system is desirable which provides modifications to spherical elements, i.e. functions of spherical arc lengths so that the auxiliary sphere of the particular spheroid of reference can be used since the hyperbolic propagation of systems as Loran may be worldwide as base lines are added or extended. Also to be considered is the use of such computational systems in local areas as for oceanographic surveying and corresponding adaptation to a local sphere of reference. Azimuth computations should be independent, except for dependence on spherical arc length, so that one can have readily the Normal plane section azimuths as well as geodetic azimuths. Finally the system should be easily adapted to local area work in terms of plane coordinates. This can probably best be accomplished through the series of projections, all conformal; spheroid to aposphere, aposphere to sphere, sphere to plane. [8].

The present investigation will center about the configuration depicted in Figure 12 which shows the relationships, exaggerated; between the Normal sections, The Great Elliptic Section, The Geodesic, and the Chord between two points Q_1 , Q_2 on the ellipsoid. We begin by deriving the formulae for the Normal Section Azimuths and the Great Elliptic Arc Azimuths.

NORMAL SECTION AZIMUTHS

The normal section azimuths are shown in Figure 13, as extended from Figure 11. The spheroid has been referred to its center as origin of rectangular coordinates, with the reference plane - xz containing the point $Q_1(\phi_1, \lambda_3)$ as shown. The z-axis is the polar axis of the spheroid

α = Normal Section Azimuth at Pi (from North)
 S = Arc length-Geodetic distance
 C = Chord length, Pi P2
 β = Angle of depression of C below horizon at Pi
 Ho=Maximum separation of arc S and chord C

Figure 11. Relationship between arc length, normal section azimuth, chord length, angle of depression of the chord below the horizon, maximum separation of arc and chord.

Figure 12. Relationships relative to the pole on the ellipsoid of reference, of the geodesic, normal sections, and great elliptic section.

Figure 13. The normal section azimuths.

and the y-axis is then in the plane of the equator – the xy-plane is the equatorial plane of the ellipsoid. In this coordinate system the points $Q_1(\phi_1, \lambda_1), Q_2(\phi_2, \lambda_2)$ have the rectangular coordinates:

$$\begin{aligned} Q_1: x_1 &= N_1 \cos \phi_1 & Q_2: x_2 &= N_2 \cos \phi_2 \cos \Delta \lambda \\ y_1 &= 0 & y_2 &= N_2 \cos \phi_2 \sin \Delta \lambda \\ z_1 &= N_1 (1 - e^2) \sin \phi_1 & z_2 &= N_2 (1 - e^2) \sin \phi_2 \end{aligned} \tag{1}$$

The rectangular equation to the ellipsoid is

$$(1 - e^{2}) (x^{2} + y^{2}) + z^{2} - a^{2} (1 - e^{2}) = 0,$$
(2)

where a, e are respectively the semimajor axis and eccentricity of the meridian ellipse.

The tangent plane to (2) at any point (x_1, y_1, z_1) is

$$(1 - e^{2}) (xx_{1} + yy_{1}) + zz_{1} - a^{2} (1 - e^{2}) = 0.$$
(3)

Hence the tangent plane at Q_1 is, from (1) and (3)

 $xN_1 \cos \phi_1 + z N_1 \sin \phi_1 - a^2 = 0,$ (4)

The equation of the plane containing the normal at Q_1 and the point Q_2 is determined by Q_2 and the points ($N_1 e^2 \cos \phi_1$, 0,0), (0,0, $-N_1 e^2 \sin \phi_1$), see Figure 13. With the coordinates of Q_2 from (1) we can write the equation as

which upon expansion may be written

$$Ax + By - Cz - D = 0$$

where $A = N_2 \sin \phi_1 \cos \phi_2 \sin \Delta \lambda$

w

$$B = (N_1 \sin \phi_1 - N_2 \sin \phi_2) e^2 \cos \phi_1 + N_2 (\sin \phi_2 \cos \phi_1 - \sin \phi_1 \cos \phi_2 \cos \Delta \lambda)$$
$$C = N_2 \cos \phi_1 \cos \phi_2 \sin \Delta \lambda$$

(5)

 $C = N_2 \cos \phi_1 \cos \phi_2 \sin \Delta \Lambda$

 $\mathbf{D} = \mathbf{N}_1 \mathbf{N}_2 \, \mathbf{e}^2 \, \sin \, \phi_1 \, \cos \, \phi_1 \, \cos \, \phi_2 \, \sin \, \Delta \lambda \, .$

Now the direction cosines p, q, r of the intersection of two planes $A_1x + B_1y + C_1z = D_1$, $A_2x + B_2y + C_2z = D_2$ are given by

$$p = (B_1C_2 - B_2C_1)/d, \ q = (C_1A_2 - A_1C_2)/d, \ r = (A_1B_2 - A_2B_1)/d$$
(6)
here $d = [(B_1C_2 - B_1C_2)^2 + (C_1A_2 - A_1C_2)^2 + (A_1B_2 - A_2B_1)^2]^{1/2}.$

Note from figure 13 that the tangent, t_1 , to the meridian at Q_1 lies in the plane y = 0 and that defined by equation (4). To apply (6) to these two planes we have respectively $A_1 = C_1 = D_1 = 0$, $B_1 = 1$; $A_2 = N_1 \cos \phi_1$, $B_2 = 0$, $C_2 = N_1 \sin \phi_1$, $D_2 = a^2$ and (6) gives the direction cosines of t_1 as $p_1 = \sin \phi_1$, $q_1 = 0$, $r_2 = -\cos \phi_1$. (These were apparent from inspection of Figure 13 but illustrate the use of (6)).

From Figure 13, the tangent t_2 to the elliptic section lying in the plane (5) is the line of intersection of the planes (4) and (5). From (4) and (5) we have respectively $A_1 = N_1 \cos \phi_1$, $B_1 = \theta$, $C_1 = N_1 \sin \phi_1$; $A_2 = A$, $B_2 = B$, $C_2 = -C$ and applying (6) find the direction cosines of t_2 to be

$$P_{2} = (-B \sin \phi_{1})/d, q_{2} = (A \sin \phi_{1} + C \cos \phi_{1})/d, r_{2} = (B \cos \phi_{1})/d$$
where $d = [B^{2} + (A \sin \phi_{1} + C \cos \phi_{1})^{2}]^{1/2}$. (8)

The forward azimuth α_{AB} from Q_1 to Q_2 , as shown in Figure 13, is the angle reckoned clockwise from south between the tangents t_1 and t_2 . Hence from (7) and (8)

$$\cos \alpha_{AB} = p_1 p_2 + q_1 q_2 + r_1 r_2 = -\frac{B}{d} \sin^2 \phi_1 - \frac{B}{d} \cos^2 \phi_1 = -\frac{B}{d},$$

$$d = [B^2 + (A \sin \phi_1 + C \cos \phi_1)^2]^{1/2}$$
(9)

Since $\cot \alpha_{AB} = \cos \alpha_{AB} / (1 - \cos^2 \alpha_{AB})^{1/2}$ we have from (9) that

$$\cot a_{AB} = -B/(d^2 - B^2)^{1/2}, \tag{10}$$

Now $d^2 - B^2 = B^2 + (A \sin \phi_1 + C \cos \phi_1)^2 - B^2 = (A \sin \phi_1 + C \cos \phi_1)^2$, so $\sqrt{d^2 - B^2} = A \sin \phi_1 + C \cos \phi_1$ and (10) may be written

$$\cot \alpha_{AB} = -B/(A \sin \phi_1 + C \cos \phi_1). \tag{11}$$

With the values of A, B, C from (5), equation (11) may be written as

$$\cot \alpha_{\rm AB} = \frac{\left[\sin \phi_2 - (N_1/N_2) \sin_1 \phi\right] e^2 \cos \phi_1 \sec \phi_2 + (\sin \phi_1 \cos \Delta \lambda - \tan \phi_2 \cos \phi_1)}{\sin \Delta \lambda} \tag{12}$$

Referring again to figure 13, it is seen that from considerations of symmetry, we have only to interchange the subscripts 1 and 2 and change $\Delta\lambda$ to $-\Delta\lambda$ in (12) to obtain \cot_{BA} (the back azimuth on the other normal section). We thus obtain from (12)

$$\cot a_{\text{BA}} = -\frac{\left[\sin \phi_1 - (N_2/N_1) \sin \phi_2\right]e^2 \cos \phi_2 \sec \phi_1 + (\sin \phi_2 \cos \Delta \lambda - \tan \phi_1 \cos \phi_2)}{\sin \Delta \lambda}$$
(13)

GREAT ELLIPTIC SECTION AZIMUTHS

Figure 14 shows the great elliptic section and azimuths as abstracted from Figure 12. The same coordinate system is used as in Figure 13 so that most of the equations developed with the normal section azimuths can be used. The angle α_{AB} between the tangents t_1 and t_2 is the forward azimuth required. We already have the direction cosines of t_1 see equations (7). The tangent t_2 is the intersection of the great elliptic plane with the tangent plane at Q_1 , equation (4). The equation of the great elliptic plane through Q_1 , Q_2 , using equations (1), is given by the determinant

GREAT ELLIPTIC SECTION AZIMUTHS AND ASSOCIATED GEOMETRY P-point of maximum separation, chord and arc Ho-maximum separation of chord and arc

Figure 14. The great elliptic section azimuths.

which when expanded reduces to

$$Ax + By - Cz = 0,$$

$$A = (1 - e^{2}) \tan \phi_{1} \sin \Delta \lambda$$

$$B = (1 - e^{2}) (\tan \phi_{2} - \tan \phi_{1} \cos \Delta \lambda)$$

$$(\Delta \lambda = \lambda_{2} - \lambda_{1})$$

$$G = \sin \Delta \lambda$$
(14)

Since equation (11) was developed for generalized coefficients A, B, C we have only to substitute the values of A, B, C from (14) in (11) to obtain after some algebraic manipulation,

$$\cot a_{AB} = (1 - e^2) \frac{N_1^2}{a^2} \frac{(\tan \phi_1 \cos \Delta \lambda - \tan \phi_2) \cos \phi_1}{\sin \Delta \lambda}$$
(15)

By symmetrical interchange of subscripts and replacing $\Delta \lambda$ by $-\Delta \lambda$, we obtain $\cot \alpha_{BA}$ from (15) as

$$\cot a_{BA} = (1 - e^2) \frac{N_2^2}{a^2} \frac{(\tan \phi_1 - \tan \phi_2 \cos \Delta \lambda) \cos \phi_2}{\sin \Delta \lambda}$$
(16)

Equations (15) and (16) represent the azimuths of the great elliptic section as shown in Figure 14.

NORMAL SECTION AND GREAT ELLIPTIC SECTION AZIMUTHS IN TERMS OF PARAMETRIC LATITUDE θ

From the transformation equations $\tan \theta = (1 - e^2)^{1/2} \tan \phi$, $\cos \theta = \frac{N}{a} \cos \phi$, $\sin \theta = \frac{(1 - e^2)^{1/2}}{a} N \sin \phi$, $(1 - e^2 \cos^2 \theta)^{1/2} = \frac{(1 - e^2)^{1/2}}{a} N$

applied to equations (12), (13), (15), 16) we have the normal section and great elliptic section azimuths in terms of parametric latitude.

Normal Section Azimuths in terms of θ .

$$\cot \alpha_{AB} = + \frac{\sin \theta_1 \cos \Delta \lambda - \cos \theta_1 \tan \theta_2 + e^2 (\sin \theta_2 - \sin \theta_1) \cos \theta_1 \sec \theta_2}{(1 - e^2 \cos^2 \theta_1)^{1/2} \sin \Delta \lambda}$$
(17)
$$\cot \alpha_{BA} = - \frac{\sin \theta_2 \cos \Delta \lambda - \cos \theta_2 \tan \theta_1 + e^2 (\sin \theta_1 - \sin \theta_2) \cos \theta_2 \sec \theta_1}{(1 - e^2 \cos^2 \theta_2)^{1/2} \sin \Delta \lambda}$$

Great Elliptic Section Azimuths in terms of θ

$$\cot a_{AB} = + \frac{(\tan \theta_1 \cos \Delta \lambda - \tan \theta_2) (\cos \theta_1) (1 - e^2 \cos^2 \theta_1)^{1/2}}{\sin \Delta \lambda}$$

$$\cot a_{BA} = + \frac{(\tan \theta_1 - \tan \theta_2 \cos \Delta \lambda) (\cos \theta_2) (1 - e^2 \cos^2 \theta_2)^{1/2}}{\sin \Delta \lambda}$$
(18)

GREAT ELLIPTIC ARC DISTANCE

Referring to Figure 9, it is seen that the great elliptic arc is orthogonal to a meridian at a point $P_0(\phi_0, \lambda_0)$ which is the vertex of the great elliptic arc determined by the points $P_1(\phi_1, \lambda_1), P_2(\phi_2, \lambda_2)$ on the ellipsoid. The equation of the great elliptic plane through P_1 and P_2 is given by equations (14). Now a meridional plane orthogonal to (14) has an equation of the form Bx - Ay = 0 and the rectangular coordinates of $P_0(\phi_0, \lambda_0)$ must satisfy both planes. From (1), the rectangular coordinates of $P_0(\phi_0, \lambda_0)$ are $x_0 = N_0 \cos \phi_0 \cos \Delta \lambda_0$, $y_0 = N_0 \cos \phi_0 \sin \Delta \lambda_0, z = N_0(1 - e^2) \sin \phi_0$ and these placed in Bx - Ay = 0 and (14) give

$$B \cos \Delta \lambda_n - A \sin \Delta \lambda_n = 0,$$

$$A \cos \Delta \lambda_0 + B \sin \Delta \lambda_0 = C (1 - e^2) \tan \phi_0.$$
⁽¹⁹⁾

From the first of (19) find $\tan \Delta \lambda_0 = B/A$, whence $\sin \Delta \lambda_0 = B/(A^2 + B^2)^{1/2}$ and these values placed in the second of (19) give $\tan \phi_0 = (A^2 + B^2)^{1/2}/C$ (1 - e²),

$$\sin \phi_0 = \tan \phi_0 / \left(1 + \tan^2 \phi_0\right)^{1/2} = \left(\frac{A^2 + B^2}{A^2 + B^2 + C^2 (1 - e^2)^2}\right)^{1/2} , \tag{20}$$

tan $\Delta \lambda_0 = B/A$.

With the values of A, B, C from (14), equations (20) may be written

$$\sin \phi_0 = \left(\frac{\tan^2 \phi_1 - 2 \tan \phi_1 \tan \phi_2 \cos \Delta \lambda + \tan^2 \phi_2}{\tan^2 \phi_1 - 2 \tan \phi_1 \tan \phi_2 \cos \Delta \lambda + \tan^2 \phi_2 + \sin^2 \Delta \lambda} \right)^{1/2} , \qquad (21)$$
$$\tan \Delta \lambda_0 = (\cot \phi_1 \tan \phi_2 - \cos \Delta \lambda) / \sin \Delta \lambda,$$

 $\tan \phi_0 = (\tan^2 \phi_1 + \tan^2 \phi_2 - 2 \tan \phi_1 \tan \phi_2 \cos \Delta \lambda)^{1/2} / \sin \Delta \lambda .$

From the second of equations (19), dropping the subscript zero and differentiating we obtain

 $(-A \sin \Delta \lambda + B \cos \Delta \lambda) (d \Delta \lambda) = C (1 - e^2) \sec^2 \phi d \phi.$ (22)

By solving A cos $\Delta \lambda + B \sin \Delta \lambda = C (1 - e^2) \tan \phi$ with the identity $\sin^2 \Delta \lambda + \cos^2 \Delta \lambda = 1$, find

$$\sin \Delta \lambda = -\frac{BC (1 - e^2) \tan \phi + A [(A^2 + B^2) - C^2 (1 - e^2)^2 \tan^2 \phi]^{1/2}}{A^2 + B^2},$$
(23)

$$\cos \Delta \lambda = \frac{-AC (1 - e^2) \tan \phi + B [(A^2 - B^2) - C^2 (1 - e^2)^2 \tan^2 \phi]^{1/2}}{A^2 + B^2}.$$

From (23) one has then

- A sin $\Delta \lambda$ + B cos $\Delta \lambda$ = [(A² + B²) - C²(1 - e²)² tan² ϕ]^{1/2} and this value placed in

(22) gives

N

$$(d \Delta \lambda) = \frac{C(1 - e^2) \sec^2 \phi \, d \phi}{\left[(A^2 + B^2) - C^2(1 - e^2)^2 \tan^2 \phi\right]^{1/2}}$$
(24)

whence, by means of relations (20) and trigonometric identities,

$$(d\Delta \lambda)^{2} = \frac{C^{2}(1-e^{2})^{2} \sec^{4}\phi d\phi^{2}}{A^{2}+B^{2}-C^{2}(1-e^{2})^{2} \tan^{2}\phi} = \frac{\sec^{4}\phi d\phi^{2}}{\frac{A^{2}+B^{2}}{C^{2}(1-e^{2})^{2}} - \tan^{2}\phi}$$
$$= \frac{\sec^{4}\phi d\phi^{2}}{\tan^{2}\phi_{0}-\tan^{2}\phi} = \frac{\sec^{4}\phi d\phi^{2}}{\sec^{2}\phi_{0}-\sec^{2}\phi} \quad .$$
(25)

Now the linear element of the spheroid is, [8] page 62,

$$ds^{2} = \left[\sec^{2} \phi d \phi^{2} + \left(\frac{N}{R} \right)^{2} (d \Delta \lambda)^{2} \right] R^{2} \cos^{2} \phi, \qquad (26)$$

where $R = a(1 - e^2)/(1 - e^2 \sin^2 \phi)^{3/2} = \frac{1 - e^2}{a^2} N^3$; $N = a/(1 - e^2 \sin^2 \phi)^{3/2}$

Now from (25) and (26) it is seen that we will be able to express the quantity in brackets in terms of sec ϕ and sec ϕ_0 since

$$\left(\frac{N}{R}\right)^2 = \frac{(1 - e^2 \sin^2 \phi)^2}{(1 - e^2)^2} = \frac{\left[(1 - e^2) \sec^2 \phi + e^2\right]^2}{(1 - e^2)^2 \sec^4 \phi}$$
(27)
ith the values of $(d \Delta \lambda)^2$ and $\left(\frac{N}{R}\right)^2$ from (25) and (27), the linear element (26) may be

be written

W

$$ds^{2} = \left[\sec^{2}\phi + \frac{\left[(1 - e^{2}) \sec^{2}\phi + e^{2} \right]^{2}}{(1 - e^{2})^{2} (\sec^{2}\phi_{0} - \sec^{2}\phi)} \right] (R^{2} \cos^{2}\phi d\phi^{2}).$$
(28)

If the quantity in brackets is given a common denominator, then (28) may be written as

$$ds^{2} = \frac{(1 - e^{2}) \sec^{2} \phi \left[(1 - e^{2}) \sec^{2} \phi_{0} + 2e^{2} \right] + e^{4}}{(1 - e^{2})^{2} (\sec^{2} \phi_{0} - \sec^{2} \phi)} \quad (R^{2} \cos^{2} \phi d\phi^{2}) .$$
(29)

To bring (29) into manageable form we place $k = \frac{e\sqrt{1-e^2}}{a}N_0 \sin \phi_0$, and (30)

$$\cos d = \frac{N \sin \phi}{N_0 \sin \phi_0}$$

•

(Note that $k = e_0$, is the eccentricity of the great elliptic arc. See Figure 15.)

GREAT ELLIPTIC SECTION

Major semiaxis is a Minor semiaxis is $b_0 = a\sqrt{1-e^2 \sin^2 \theta_0}$ a, e are semimajor axis and eccentricity of the ellipsoidal meridian θ_0 is the geocentric latitude of the vertex P_0 of the Great Elliptic Section eo is the eccentricity of the Great Elliptic $e_0 = (a^2 b_0^2)^{\frac{1}{2}}/a = e \sin \theta_0 = (e\sqrt{1-e^2}/a)N_0 \sin \phi_0$ Coordinates of P_0 are P_0 (a cos θ_0 cos λ_0 , a cos θ_0 sin λ_0 , b sin θ_0) or in terms of geodetic latitude ϕ_0 P_0 (No cos ϕ_0 cos λ_0 , No cos ϕ_0 sin λ_0 , No (1-e²) sin ϕ_0)

Figure 15. Elements of the great elliptic section.

From the first of (30), placing
$$N_0 = a/(1 - e^2 \sin^2 \phi_0)^{\frac{1}{2}}$$
 and solving for $\sec^2 \phi_0$ find
 $\sec^2 \phi_0 = (1 - e^2 + k^2)/(1 - e^2) (1 - k^2/e^2).$ (31)

With the value of N₀ sin ϕ_0 from the first of (30) placed in the second find N sin $\phi = (ak/e\sqrt{1-e^2}) \cos d$ and with N = $a/\sqrt{1-e^2 \sin^2 \phi}$, solving for $\sec^2 \phi$ find

$$\sec^2 \phi = \frac{1 - e^2 + k^2 \cos^2 d}{(1 - e^2)[1 - (k^2/e^2) \cos^2 d]} \quad . \tag{32}$$

By differentiating N sin $\phi = (ak/e\sqrt{1-e^2}) \cos d$ obtain

$$|N \sin \phi\rangle' d\phi = -(ak/e\sqrt{1-e^2}) \sin d \,\delta d \tag{33}$$

Since $(N \sin \phi)' = \frac{R \cos \phi}{1 - e^2}$, equation (33) may be written

$$\frac{R \cos \phi}{1 - e^2} d\phi = - (ak/e\sqrt{1 - e^2}) \sin d \, \delta d \text{ or finally}$$

$$(\mathbf{R}^2 \cos^2 \phi \mathrm{d}\phi^2) = (1 - \mathrm{e}^2) \, \mathrm{a}^2 \, (\mathrm{k}^2/\mathrm{e}^2) \, \sin^2 \mathrm{d} \, \delta \mathrm{d}^2. \tag{34}$$

Now from (31) and (32) find

$$\sec^2 \phi_0 - \sec^2 \phi = \frac{(k^2/e^2) \sin^2 d}{(1 - e^2) (1 - k^2/e^2) [1 - (k^2/e^2) \cos^2 d]},$$
(35)

and the numerator of (29) becomes

$$(1 - e^{2}) \sec^{2}\phi \left[(1 - e^{2}) \sec^{2}\phi_{0} + 2e^{2} \right] + e^{4} = \frac{1 - k^{2} + k^{2} \cos^{2}d}{(1 - k^{2}/e^{2}) \left[1 - k^{2}/e^{2} \right] \cos^{2}d} \right].$$
(36)

With the values from (34), (35), (36) the linear element (29) becomes

$$ds^{2} = \frac{1 - k^{2} + k^{2} \cos^{2}d}{(1 - k^{2}/e^{2})[1 - (k^{2}/e^{2})\cos^{2}d]} \cdot \frac{(1 - e^{2})(1 - k^{2}/e^{2})[1 - (k^{2}/e^{2})\cos^{2}d]}{(k^{2}/e^{2})\sin^{2}d(1 - e^{2})^{2}} \cdot (1 - e^{2}).$$

$$a^{2}(k^{2}/e^{2})\sin^{2}d\delta d^{2} = a^{2}(1 - k^{2} + k^{2}\cos^{2}d)\delta d^{2},$$

$$ds^{2} = a^{2}(1 - k^{2}\sin^{2}d)\delta d^{2}.$$
(37)

Now equation (37) is the usual elliptic integral form with modulus k, and we write

$$s = a \left[\int_{0}^{d_{1}} + \int_{0}^{d_{2}} \right] (1 - k^{2} \sin^{2} d)^{1/2} \delta d, \qquad (38)$$

where $k = (e \sqrt{1 - e^2/a}) N_0 \sin \phi_0$, the modulus of the elliptic integral, and $d_1 = \cos^{-1} (N_1 \sin \phi_1/N_0 \sin \phi_0)$, $d_2 = \cos^{-1} (N_2 \sin \phi_2/N_0 \sin \phi_0)$. (k is equal to e_0 the eccentricity of the great elliptic arc - see Figure 15).

The integrand of (38) may be expanded by the binomial formula and integrated term by term to obtain an approximation formula for direct computation. To 6th order terms in k: $(1 - k^2 \sin^2 d)^{1/2} = 1 - \frac{1}{2}k^2 \sin^2 d - (1/8)k^4 \sin^4 d - (1/16)k^6 \sin^6 d -$. (39) Making the identity substitutions

 $\sin^2 d = \frac{1}{2} - \frac{1}{2} \cos 2d$, $\sin^4 d = (3/8) - \frac{1}{2} \cos 2d + (\cos 4d)/8$

 $\sin^{6}d = (5/16) - (15/32) \cos 2d + (3/16) \cos 4d - (1/32) \cos 6d$, in (39) and integrating

term by term according to (38) one obtains

$$s/a = (d_1 + d_2) - \frac{1}{2}k^2 [\frac{1}{2}(d_1 + d_2) - \frac{1}{4}(\sin 2d_1 + \sin 2d_2)] - (1/8)k^4 [(3/8)(d_1 + d_2) - \frac{1}{4}(\sin 2d_1 + \sin 2d_2) + (1/32)(\sin 4d_1 + \sin 4d_2)] - (1/16)k^6 [(5/16)(d_1 + d_2) - (1/15/64)(\sin 2d_1 + \sin 2d_2) + (3/64)(\sin 4d_1 + \sin 4d_2) - (1/192)(\sin 6d_1 + \sin 6d_2)].$$
(40)

By means of the identity $\sin x + \sin y =$

 $2 \sin \frac{1}{2}(x + y) \cos \frac{1}{2}(x - y)$, equation (40) may be written finally as

$$s/a = (d_1 + d_2) - \frac{1}{4}k^2 \left[(d_1 + d_2) - \sin (d_1 + d_2) \cos (d_1 - d_2) \right] - (1/128)k^4 \left[6(d_1 + d_2) - 8 \sin (d_1 + d_2) \cos d_1 - d_2) + \sin 2(d_1 + d_2) \cos 2(d_1 - d_2) \right]$$
(41)
 - (1/1536)k⁶ [30(d_1 + d_2) - 45 sin (d_1 + d_2) cos (d_1 - d_2) + 9 sin 2(d_1 + d_2) cos 2(d_1 - d_2)
 - sin 3(d_1 + d_2) cos 3(d_1 - d_2) \right],

a and e are semimajor axis and eccentricity of the meridian ellipse, $k = (e\sqrt{1-e^2}/a) N_0 \sin \phi_0$ ($k = e_0$, the eccentricity of the great elliptic arc), ϕ_0 is the vertex of the great elliptic arc as given by (21). $d_1 = \arccos(N_1 \sin \phi_1/N_0 \sin \phi_0), d_2 = \arccos(N_2 \sin \phi_2/N_0 \sin \phi_0)$. When $\phi_0 = 90^\circ$; equation (41) gives a meridian arc of the spheroid. When $\phi_0 = 0$, an arc of the equator or circle of radius a is given. Formula (41) thus consists of a circular arc and successive corrective terms.

To examine the contribution of the terms in (41) take the case $\phi_1 = \phi_2 = 0$, $\phi_0 = 45^\circ$, $d_1 = d_2 = 90^\circ$ which will give the semilength of the great ellipse making an angle of 45° with the equator. For the Clarke 1866 spheroid, $e^2 = 6.768657997 \times 10^{-3}$, a = 6.378,206.4 meters. From (41) we have then

1st term $a \times (d_1 + d_2) = 20,037,773$ meters 2nd term $-a \times 2.65804 \times 10^{-3} = -16,954$ meters 3rd term $-a \times 0.17 \times 10^{-5} = -11$ meters 4th term $-a \times 0.24 \times 10^{-8} = -0.015$ meters term $d_1 = -00$, $d_2 = -0$, $d_3 = -0.015$ meters

When $\phi_0 = 90$, $\phi_1 = \phi_2 = 0$, $d_1 + d_2 = \pi$, and (41) reduces to the usual formula for length of the semimeridian from equator to equator through the pole $s = a \pi [1 - \frac{1}{4}e^2 - (3/64)e^2 - (5/256)e^6 - --]$.

GREAT ELLIPTIC ARC LENGTH IN TERMS OF PARAMETRIC LATITUDE θ

Equation (41) gives the arc length, but the modulus k, d_1 and d_2 , and vertex ϕ_0 must be expressed in terms of parametric latitude, θ , if the geographic latitudes ϕ_1 , ϕ_2 of the given points P₁, P₂ have been first converted to parametric latitudes θ_1 , θ_2 .

The relationships $\tan \phi = \frac{\tan \theta}{(1-e^2)^{1/2}}$, $N \sin \phi = \frac{a}{(1-e^2)^{1/2}} \sin \theta$, applied to $k = (e\sqrt{1-e^2/a}) N_0 \sin \phi_0$.

 $d_1 = \arccos (N_1 \sin \phi_1/N_0 \sin \phi_0), d_2 = \arccos (N_2 \sin \phi_2/N_0 \sin \phi_0), and the last of equations (21) give$

$$\begin{split} \mathbf{e}_{0} &= \mathbf{k} = \mathbf{e} \, \sin \, \theta_{0} \,, \, \mathbf{d}_{1} = \mathrm{arc} \, \cos \, (\sin \, \theta_{1} / \sin \, \theta_{0}), \, \mathbf{d}_{2} = \mathrm{arc} \, \cos \, (\sin \, \theta_{2} / \sin \, \theta_{0}), \\ \tan \, \theta_{0} &= (\tan^{2} \theta_{r} + \tan^{2} \theta_{z} - 2 \, \tan \, \theta_{1} \, \tan \, \theta_{2} \, \cos \, \Delta \, \lambda)^{1/2} \, / \sin \, \Delta \lambda \,, \end{split}$$

whence

$$\sin \theta_0 = \tan \theta_0 / (1 + \tan^2 \theta_0)^{-1/2} , \qquad (42)$$

$$\sin \theta_0 = \left(\frac{\tan^2 \theta_1 + \tan^2 \theta_2 - 2 \tan \theta_1 \tan \theta_2 \cos \Delta \lambda}{\tan^2 \theta_1 + \tan^2 \theta_2 - 2 \tan \theta_1 \tan \theta_2 \cos \Delta \lambda + \sin^2 \Delta \lambda} \right)^{1/2} .$$

Equations (41) and (42) give then the arc length along the great elliptic arc when geographic latitudes have been converted to parametric latitudes.

THE CHORD DISTANCE

The chord distance between the points Q_1 (x_1 , O, z_1), Q_2 (x_2 , y_2 , z_2) as shown in Figures (13) and (14) is given by the usual distance formula where the coordinates may be expressed in terms of either ϕ or θ , that is from (1)

$$\begin{aligned} \mathbf{x}_1 &= \mathbf{N}_1 \cos \phi_1, \, \mathbf{y}_1 = \mathbf{0}, \, \mathbf{z}_1 = \mathbf{N}_1 \left(1 - \mathbf{e}^2\right) \sin \phi_1 \text{ (in terms of } \phi) \\ \mathbf{x}_2 &= \mathbf{N}_2 \cos \phi_2 \cos \Delta \lambda, \, \mathbf{y}_2 = \mathbf{N}_2 \cos \phi_2 \sin \Delta \lambda, \, \mathbf{z}_2 = \mathbf{N}_2 \left(1 - \mathbf{e}^2\right) \sin \phi_2 \,, \end{aligned}$$
(43)
$$\mathbf{x}_1 &= \mathbf{a} \cos \theta_1, \, \mathbf{y} = \mathbf{0}, \, \mathbf{z} = \mathbf{a} \sqrt{1 - \mathbf{e}^2} \sin \theta_1 \text{ (in terms of } \theta) \end{aligned}$$

or

 $x_2 = a \cos \theta_2 \cos \Delta \lambda$, $y_2 = a \cos \theta_2 \sin \Delta \lambda$, $z_2 = a \sqrt{1 - e^2} \sin \theta_2$.

Applying the distance formula to each set of formulas in (43) for coordinates one obtains (44)

 $\mathbf{C} = \left[(\mathbf{N}_1 \cos \phi_1 - \mathbf{N}_2 \cos \phi_2 \cos \Delta \lambda)^2 + \mathbf{N}_2^2 \cos^2 \phi_2 \sin^2 \Delta \lambda + (1 - e^2)^2 (\mathbf{N}_1 \sin \phi_1 - \mathbf{N}_2 \sin \phi_2)^2 \right]^{\frac{1}{2}}$ and in terms of θ

$$C = a \left[(\cos\theta_2 \cos\Delta\lambda - \cos\theta_1)^2 + \cos^2\theta_2 \sin^2\Delta\lambda + (1 - e^2) (\sin\theta_2 - \sin\theta_1)^2 \right]^{1/2}$$
(45)

In (45), expand the quantities in the brackets combining terms to obtain

$$C = a \left[2 - 2 \left(\sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2 \cos \Delta \lambda \right) - e^2 \left(\sin \theta_2 - \sin \theta_1 \right)^2 \right]^{1/2} .$$
(46)

Now $\cos (d_1 + d_2) = \sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2 \cos \Delta \lambda$ and with $\sin \theta_1 = \sin \theta_0 \cos d_1$,

 $\sin \theta_2 = \sin \theta_0 \cos d_2$, $k^2 = e^2 \sin^2 \theta_0$ from (42), equation (46) can be written

$$C = a [2 \{1 - \cos (d_1 + d_2)\} - k^2 (\cos d_1 - \cos d_2)^2]^{1/2}.$$
(47)

With the identity $(\cos d_1 - \cos d_2)^2 = [1 - \cos (d_1 + d_2)] [1 - \cos (d_1 - d_2)],$

we can write (47) finally as

$$C = a \left[\{1 - \cos (d_1 + d_2)\} \{2 - k^2 [1 - \cos (d_1 - d_2)] \} \right]^{1/2} .$$
(48)

Now (48) gives the chord length no matter which latitude is used, ϕ or θ , since for ϕ :

 $d_1 = \arccos (N_1 \sin \phi_1 / N_0 \sin \phi_0), d_2 = \arccos (N_2 \sin \phi_2 / N_0 \sin \phi_0),$

 $k^{2} = [e^{2}(1 - e^{2})/a^{2})] N_{0}^{2} \sin^{2}\phi_{0}$; while for θ :

 $d_1 = \arccos (\sin \theta_1 / \sin \theta_0), d_2 = \arccos (\sin \theta_2 / \sin \theta_0), k^2 = e^2 \sin^2 \theta_0$. Also (41) and (48) make it possible to prepare a computing form in terms of either ϕ or θ with corresponding azimuth forms from equations (12), (13), (15), (16), (17), (18).

THE ANGLE BETWEEN THE CHORD AND THE HORIZON AT A GIVEN POINT OF THE ELLIPSOID

Referring to Figure 13, it is seen that the angle β is determined by a perpendicular, u, from Q_2 upon the tangent at Q_1 and the chord c. That is sin B = u/c.

Now the length of u is obtained by normalizing the equation of the tangent plane at Q_1 , equation (4), and substituting the coordinates of the point Q_2 from (1):

$$u = \frac{1}{N_1} \left[a^2 - N_1 N_2 \cos \phi_1 \cos \phi_2 \cos \Delta \lambda - (1 - e^2) N_1 N_2 \sin \phi_1 \sin \phi_2 \right].$$
(49)

We can express u in parametric latitude, θ , since $(1 - e^2) N_1 N_2 \sin \phi_1 \sin \phi_2 = a^2 \sin \theta_1 \sin \theta_2$, $N_1 N_2 \cos \phi_1 \cos \phi_2 = a^2 \cos \theta_1 \cos \theta_2$, $N_1 = (a/\sqrt{1 - e^2}) \sqrt{1 - e^2 \cos^2 \theta_1}$, i.e.

$$u = a\sqrt{1 - e^2} \frac{1 - (\sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2 \cos \Delta \lambda)}{\sqrt{1 - e^2 \cos^2 \theta_1}}$$
(50)

Referring to equation (46) and the discussion there, $\cos (d_1 + d_2) = \sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2 \cos \Delta \lambda$,

 $\sin \theta_1 = \sin \theta_0 \cos d_1$, k = e sin θ_0 and (50) can be written in the form

$$u = b \frac{1 - \cos(d_1 + d_2)}{(1 - e^2 + k^2 \cos^2 d_1)^{1/2}} ,$$
(51)

Where $b = a \sqrt{1 - e^2}$ is the minor semiaxis of the reference ellipsoid. From (48) and (51) we have then

$$\sin \beta = \frac{u}{c} = \left\{ \frac{(1-e^2) \left[1 - \cos \left(d_1 + d_2\right)\right]}{\left[2 - k^2 \left\{1 - \cos \left(d_1 - d_2\right)\right\}\right] \left(1 - e^2 + k^2 \cos^2 d_1\right)} \right\}^{1/2}$$
(52)

and thus sin β is expressed in the same quantities as the distance and chord lengths; see equations (41) and (48).

MAXIMUM SEPARATION OF CHORD AND ELLIPTIC ARC

In Figure 14, H_0 is the maximum separation between the great elliptic arc and the chord. As shown, this occurs when the tangent to the ellipse is parallel to the chord. Also when this occurs the center of the ellipse, the midpoint of the chord, and the point P on the curve are collinear, [10]. Hence the geographic coordinates of the point P can be found from the intersection of the meridian through Q and the plane of the great elliptic section.

The coordinates of Q, the midpoint of the chord Q1Q2, are

$$\begin{cases} (a/2) \left(\cos\theta_2 \cos\Delta\lambda + \cos\theta_1\right) \\ (a/2) \left(\cos\theta_2 \sin\Delta\lambda\right) \\ (b/2) \left(\sin\theta_1 + \sin\theta_1\right) \end{cases}$$

(

and the meridian through Q has the equation (cos $\theta_2 \sin \Delta \lambda$) x - (cos $\theta_1 + \cos \theta_2 \cos \Delta \lambda$) y = 0. (53)

The equation to the plane of the great elliptic arc in terms of parametric latitude is

$$A_{x} + B_{y} + C_{z} = 0, \tag{54}$$

A = b tan $\theta_1 \sin \Delta \lambda$, B = b (tan $\theta_2 - \tan \theta_1 \cos \Delta \lambda$), C = $-a \sin \Delta \lambda$

(Compare equation (14), where it is in terms of geodetic latitude ϕ). Now the point P (a cos θ cos λ , a cos θ sin λ , b sin θ) on the the ellipsoid must satisfy both equations (53) and (54) if it is to be the required point P on the great elliptic arc. This leads to the equations cos $\theta_2 \sin \Delta \lambda \cos \lambda - (\cos \theta_1 + \cos \theta_2 \cos \Delta \lambda) \sin \lambda = 0$,

$$\cos\lambda + B\sin\lambda + C\tan\theta = 0, \tag{55}$$

where A, B, C are those of equation (54).

Solving (55) for λ and θ find,

A

$$P \begin{cases} \lambda = \arctan\left[(\cos\theta_{2}\sin\Delta\lambda)/(\cos\theta_{2}\cos\Delta\lambda + \cos\theta_{1})\right], \\ \theta = \arctan\left[\frac{(\tan\theta_{1}\sin\Delta\lambda)\cos\lambda + (\tan\theta_{2} - \tan\theta_{1}\cos\Delta\lambda)\sin\lambda}{\sin\Delta\lambda}\right], \\ \theta = \arctan\left[\frac{(\tan\theta_{2}\sin\lambda + \tan\theta_{1}\sin(\Delta\lambda - \lambda))}{\sin\Delta\lambda}\right] \end{cases}$$
(56)

 $\theta = \arctan\left[(\sin \theta_1 + \sin \theta_2)/(\cos^2 \theta_1 + \cos^2 \theta_2 + 2\cos \theta_1 \cos \theta_2 \cos \Delta \lambda)^{4/2}\right].$

We have seen that

$$\cos (d_1 + d_2) = \sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2 \cos \Delta\lambda$$

$$\sin \theta_1 = \sin \theta_0 \cos d_1, \sin \theta_2 = \sin \theta_0 \cos d_2$$
(57)

whence we can express

$$\begin{split} \cos^2\theta_1 + \cos^2\theta_2 + 2\cos\theta_1 \cos\theta_2 \cos\Delta\lambda &= [1 + \cos(d_1 + d_2)][2 - \sin^2\theta_0 \{1 + \cos(d_1 - d_2)\}],\\ (\sin\theta_1 + \sin\theta_2)^2 &= \sin^2\theta_0 [1 + \cos(d_1 + d_2)][1 + \cos(d_1 - d_2)] \end{split}$$

and the last equation of (56) may be written

$$\theta = \arctan \frac{\sin \theta_0 \sqrt{1 + \cos \left(d_1 - d_2\right)}}{\sqrt{2 - \sin^2 \theta_0 \left[1 + \cos \left(d_1 - d_2\right)\right]}}$$
(58)

It is known that $H_0^2 = PP'^2$ will be given by $H_0^2 = [(y - y_1)r - (z - z_1)q]^2 + [(z - z_1)p - (x - x_1)r]^2 + [(x - x_1)q - (y - y_1)p]^2$, where x,y, z, are coordinates of P; x₁, y₁, z₁ are coordinates of Q₁ and p, q, r are direction cosines of the chord c = Q₁Q₂, [11]. See Figure 14. (59)

From (56) and (58) we can express the rectangular coordinates of P as

P:

$$x = a \cos \theta \cos \lambda = \frac{a}{\sqrt{2}} \frac{\cos \theta_1 + \cos \theta_2 \cos \Delta \lambda}{\sqrt{1 + \cos (d_1 + d_2)}}$$

$$y = a \cos \theta \sin \lambda = \frac{a}{\sqrt{2}} \frac{\cos \theta_2 \sin \Delta \lambda}{\sqrt{1 + \cos (d_1 + d_2)}}$$

$$z = b \sin \theta = \frac{b}{\sqrt{2}} \frac{\sin \theta_1 + \sin \theta_2}{\sqrt{1 + \cos (d_1 + d_2)}}$$
(60)

If the coordinates from (1) are converted to parametric latitude they will be Q_1 (a cos θ_1 , O, b sin θ_1); Q_2 (a cos $\theta_2 \cos \Delta \lambda$, a cos $\theta_2 \sin \Delta \lambda$, b sin θ_2) whence the direction cosines of the chord $c = Q_1Q_2$ are

$$p = \frac{a}{c} (\cos \theta_2 \cos \Delta \lambda - \cos \theta_1)$$

$$q = \frac{a}{c} \cos \theta_2 \sin \Delta \lambda$$

$$r = \frac{b}{c} (\sin \theta_2 - \sin \theta_1)$$
(61)

From (60) and the coordinates of Q_1 (a cos θ_1 , O, b sin θ_1) we have

$$x - x_{1} = \frac{a}{\sqrt{2}R_{0}} (\cos \theta_{1} + \cos \theta_{2} \cos \Delta \lambda) - a \cos \theta_{1}$$

$$y - y_{1} = (a \cos \theta_{2} \sin \Delta \lambda) / \sqrt{2}R_{0}$$

$$z - z_{1} = \frac{b}{\sqrt{2}R_{0}} (\sin \theta_{1} + \sin \theta_{2}) - b \sin \theta_{1}$$

$$(62)$$

Where $R_0 = \sqrt{1 + \cos(d_1 + d_2)} = \sqrt{2} \cos \frac{1}{2}(d_1 + d_2)$.

With the values from (61) and (62) the expression (59) is formed to give

$$H_0^2 = \frac{a^2 (\sqrt{2} - R_0)^2}{c^2 R_0^2} \cos^2 \theta_1 \cos^2 \theta_2 \left[b^2 (\tan^2 \theta_1 + \tan^2 \theta_2 - 2 \tan^2 \theta_1 \tan^2 \theta_2 \cos^2 \Delta \lambda) + a^2 \sin^2 \Delta \lambda \right]$$
(63)

Where $R_0 = [1 + \cos (d_1 + d_2)]^{1/2} = \sqrt{2} \cos \frac{1}{2} (d_1 + d_2)$.

Using the relationships (42), (48), (57) equation (63) can be solved for H_0 in any of the following several forms:

$$H_{o} = \frac{b_{o} \left(\sqrt{2} - \sqrt{1 + \cos \left(d_{1} + d_{2}\right)}\right)}{\sqrt{2 - k^{2} \left\{1 - \cos(d_{1} - d_{2})\right\}}},$$

$$= \frac{ab_{o}}{c} \left(\frac{\sqrt{2}}{R_{o}} - 1\right) \sin \left(d_{1} + d_{2}\right),$$

$$= \frac{2ab_{o}}{c} \sin \frac{1}{2} (d_{1} + d_{2}) \left[1 - \cos \frac{1}{2} (d_{1} + d_{2})\right],$$
(64)

Where $R_0 = \sqrt{1 + \cos(d_1 + d_2)} = \sqrt{2} \cos \frac{1}{2}(d_1 + d_2)$

 $b_0 = \sqrt{1 - k^2} = a\sqrt{1 - e_0^2} = minor$ semiaxis of the great elliptic arc - see Figure 15. Thus H_0 is also expressed in quantities common with other elements of the great elliptic arc - see equations (41), (48), and (52).

A COMPUTING FORM FOR GREAT ELLIPTIC ARC LENGTH AND ASSOCIATED ELEMENTS

Since the computations to be discussed with the great elliptic arc approximation and the Andoyer-Lambert approximation both involve corrections to spherical elements, the basic spherical approximation is reviewed in Figure 16, and basic spherical formulae listed.

Now from (42) write

$$\sin^2\theta_0 = K/(K+1),$$

$$\mathbf{K} = (A \tan \theta_1 + D \tan \theta_2) / \sin \Delta A \tag{03}$$

$$A = \tan \theta_1 - \tan \theta_2 \cos \Delta \lambda, B = \tan \theta_2 - \tan \theta_1 \cos \Delta \lambda.$$
(66)

Azimuth equations (17) become

$$\cot \alpha_{AB} = D_{1} (R_{1} - B), \cot \alpha_{BA} = D_{2} (A - R_{2})$$

$$D_{1} = \cos \theta_{1} / T_{1} \sin \Delta \lambda, \quad D_{2} = \cos \theta_{2} / T_{2} \sin \Delta \lambda$$

$$R_{1} = C / \cos \theta_{2}, \quad R_{2} = -C / \cos \theta_{1}$$

$$C = e^{2} (\sin \theta_{2} - \sin \theta_{1})$$

$$T_{1} = (1 - e^{2} \cos^{2} \theta_{1})^{1/2}, \quad T_{2} = (1 - e^{2} \cos^{2} \theta_{2})^{1/2}$$
(67)

Equation (41) becomes

s = a (H + U₁ + U₂ + U₃) (68)
where
$$U_1 = -N_1 (H - Q_1), U_2 = -N_2 (6H - 8Q_1 + Q_2),$$

 $U_3 = -N_3 (30H - 45Q_1 + 9Q_2 - Q_3)$
 $k^2 = e^2 \sin^2 \theta_0 = e_0^2$ (eccentricity of the great elliptic arc).

 $\begin{array}{l} \cot A = \frac{\cos \beta_t \tan \beta_\theta - \sin \beta_t \cos \Delta \lambda}{\sin \Delta \lambda} \\ \cot B = \frac{\cos \beta_t \tan \beta_t - \sin \beta_t \cos \Delta \lambda}{\sin \Delta \lambda} \\ \cot B = \frac{\cos \beta_t \tan \beta_t - \sin \beta_t \cos \Delta \lambda}{\sin \Delta \lambda} \\ \cos(d_{1+} d_2) = (\cos \beta_t \sin \Delta \lambda) / \sin B = (\cos \beta_t \sin \Delta \lambda) / \sin A \\ \sin \beta_t = \sin \theta_0 \cos d_1 , \quad \sin \theta_t = \sin \theta_0 \cos d_2 \\ \text{NOTE:} Q_0 \text{ may be external to } Q_1 Q_2, \text{i.e. if either } A \text{ or } B \text{ is greater than } 90^\circ \end{array}$

Figure 16. Elements of polar spherical triangles.

 $N_1 = k^2/4$, $N_2 = k^4/128 = 1/8 N_1^2$, $N_3 = k^6/1536 = (1/3) N_1N_2$,

 $Q_1 = \sin H \cos P$, $Q_2 = \sin 2H \cos 2P$, $Q_3 = \sin 3H \cos 3P$, $H = d_1 + d_2$, $P = d_1 - d_2$.

d1 and d2 are computed from

$$\cos 2d_1 = 2(1 - \cos^2\theta_1)/\sin^2\theta_0 - 1$$

$$\cos 2d_2 = 2(1 - \cos^2\theta_2)/\sin^2\theta_0 - 1$$
(69)

since $\cos^2\theta_1$ and $\cos^2\theta_2$ are already needed for T_1 and T_2 , (67) above, and the use of $\sin^2\theta_0$

eliminates the computation of the square root of K/(K + 1). A check is provided by

 $\sin (d_1 + d_2) = \sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2 \cos \Delta \lambda.$

From (48) the equation of the chord may be written

$$c = a(VW)^{1/2}, V = (1 - \cos H), W = 2 - k^2 R, R = (1 - \cos P).$$
 (70)

From (51) and (52) in terms of the symbols used above find

$$u = bV/T_1 \sin \beta = bV/cT_1 = \frac{b}{T_1} \sqrt{\frac{V}{W}}.$$
(71)

From (64) in terms of the above symbols find $H_0 = \frac{2ab_0}{c} (\sin \frac{1}{2}H) (1 - \cos \frac{1}{2}H),$ (72)

 $b_0 = a\sqrt{1-k^2}, k^2 = e^2 \sin^2\theta_0.$

Figure 17, shows equations (65) through (72) arranged for computing and a computation performed on the line Moscow to Cape of Good Hope. On the form find the geodetic distance, the normal section azimuths, the chord distance, the angle between the chord and the horizon at P₁, and the maximum separation of the chord and surface. The following table lists these values and gives a comparison with the distances computed by the rigorous Helmert method and the Andoyer-Lambert Approximation. Note that the geographic coordinates of the point $P(\phi, \lambda)$ where the maximum chord separation from the surface occurs may be computed from (56), (58), and already computed quantities in Figure (17).

MOSCOW TO CAPE OF GOOD HOPE

D	ISTANCE		AZIMUTHS												
Meters	n.m.	Method	Forward	Back	Туре										
10,102,069.91	5454.6814	Great Elliptic	15° 46' 56".744	190° 39' 27".350	Great Elliptic Section										
			15° 49' 57".607	190° 41' 29".799	Normal Section										
10,102,069.06	5454.6809	Helmert	15° 48' 17".674	190° 39' 32".208	Geodetic										
10,102,065.28	5454.6789	Andoyer- Lambert	15° 48' 17".518	190° 39' 32".110	Geodetic										
			meters		n.m.										
CHORD DISTA	NCE		9,068,419.05	4	896,5546										
(MAXIMUM CHO	ORD SEPAR	ATION)	1,906,854.55	1	029.6191										
CHORD DEPRI	ESSION ANG	GLE	45° 32' 37".462.												

Computations for distance, Normal Section Azimuths, Chord length, Angle of Depression of the Chord, Maximum Separation distance of chord and arc. Based on Great Elliptic Section Approximation to geodesic. Clarke 1866 Spheroid.

a = 6,378,206.4 meters, b = 6,356,583.8 meters, e² = 6.7686580 × 10⁻³, 1 radian = 206,264,8062 sec.

• •	N1 - 37 34 15,450	N2 - 18 28 41.400	$\delta\lambda = \lambda_2 - \lambda_1 = \frac{1}{7} \frac{19}{19} \frac{05}{100} \frac{34}{100} \frac{1000}{100} \frac{1000}{100}$	sin 81 + 0 327 0 9901	cos 81 20, 944 99001	sin 28 × 20. 106 99396	- T ₁ =(1-e ² cos ² θ ₁) ^{1/2} + 0, 998 523 85	- T ₂ = (1 - e ² cos ² θ ₂) ^{1/2} + O, 497 66269	$\eta_1 = \cos \theta_1 / T_1 \sin \delta \lambda = + I_1 2 d b 20806$	$\eta_2 = \cos \theta_2 / T_2 \sin \delta \lambda = + 2 \cdot 5 + 10253$	$\ln^2 \theta_0 = K/(K+1) = +0.97651276$	- R ₂ =-C/cos θ ₂ + 0. 0/65 9283	3)+5. 296 60120(BA) 190 41 29. 299	4 H = d, + d, + 40 5-9 08.395	12 P = d1 - d2 -15-7 37 26,123	7 20226 H (radians) +1.587 99943	296809510 N1 = K2/4 +1. 65242 × 10-3	31×107 N3 = N1N2/3 + 7. 05 × 10 -1	7-3 V = 1 - cos H + 1. 0192 0226	0-6 R=1-cos P + 1. 924 70507	110-7 W= 2-k2R +1, 989 228314	L meters 5454 - 6814 n.mi.	As meters 48 76 . 5546 n.mi.	3 16276 cos 1/4 = + 0, 200 99848	_ meters 1239. 6191 n. mi.	B 45- 32 32, 462
	1 (A) Moscow	2 (B) Cape of Good Hope	$\tan \theta = 0.996609925 - 2000$		tan θ2 -0, 620 56059	- sin θ ₂ -0,536 93719	cos θ, 20. 830 55461	cos 202 + 20. 689 82096	0 68333 D	4 04044 D	6 21463 s	C336 R1 = C/cos θ2 - 0. 0/12 6832	(B) ~ 4952 602 cot a(BA)= D, (A - B	53499 d33 19 08, 80	1 72093 di +124 18 17.23	924 70507 COS H - 0.01	2, 710 158 91 k2= e2 sin2 0, 710 15	-388 62002 N, = N, 2/8 +3. 41	$U_1 = -N_1(H - Q_1) - 4. 15/82 X/0$	$U_2 = -N_2(6H - 8Q_1 + Q_2) - 5.2 22 XL$	$\sim U_3 = -N_3(30H - 45Q_1 + 9Q_2 - Q_3)$	8418 s=a5 10, 102, 069.9.	42 17820 c = a(VW) 1/2 9, 0168, 419.	6.357,092,5 sin 1/2 H = + 21	H) (1-cos 1/H) 1, 906, 854, 555	713 78531
= •	41 +55 45 19,500	4, -33 5-6 03,500	tan 41 + 11 46 9 95 2 2	tan $\phi_2 = 0.672$ 8 #157	tan 0, +1, 464 015-33	sin 0, +0, 825 2523 46	cos θ, to.564 03269	cos 20, +0.318 13288	A = tan θ , - tan θ , cos $\delta\lambda$ 72.097	$B = \tan \theta, -\tan \theta, \cos \delta \lambda = 2 \cdot 05^{-4}$	$K = (A \tan \theta, + B \tan \theta_{3}) / \sin^{2} \delta \lambda + 44 + 5 \sqrt{2} \delta \lambda$	$C = e^{2} (\sin \theta_{2} - \sin \theta_{1}) - 0.009 358 95$	$\cot \alpha_{(AB)} = D_i(R_i - B) + 2 \cdot 5 \cdot 5 \cdot 6 \cdot 24 g_{\alpha(A)}^2$	$\cos 2d. = 2(1 - \cos^2\theta_{})/\sin^2\theta_{} - 1 + 0296$	$\cos 2d_{3} = 2(1 - \cos^{2}\theta_{3})/\sin^{2}\theta_{0} - 1 - 0.264$	sin H. to. 999 85203 cos P-O.	sin 2H-0.034 34942 cos 2P+0.	sin 3H - 0. 998 6685 2 cos 3P - 0.	Q1 = sin H cos P - 0. 924 56824	Q2 = Sin 2H cos 2P-0.024 42905	Q3 = sin 3H cos 3P + D. 288 1535	$\Sigma = H(radians) + U_1 + U_2 + U_3 = + L S \$ 3$	VW = 2.0214640 (VW)1/2 = 14	$\sqrt{1-k^2}$ + 996 68968 $b_0 = a\sqrt{1-k^2}$	$H_0 = (2a b_0/c) (sin \frac{1}{2} F)$	$\sin \beta = bV/cT_1 = t$

Figure 17.

Figures 18 and 19 show the great elliptic arc formulae for distance arranged with geodetic azimuth formulae and the computations for distance and azimuth over the two lines (1) MOSCOW TO CAPE OF GOOD HOPE and (2) RAMEY AFB to MOUNTAIN HOME AFB.

No square roots are involved and only eight place tables of trigonometric functions, as Peters, are needed in addition to the constants for a particular spheroid of reference. The comparison with the Helmert rigorous and Andoyer-Lambert approximation is:

Line	Distance(meters)	Method	Forwa		Bac	k Az.	
(1)	10,102,069.91	Great Elliptic Arc	15° 48'	17".519	190°	39'	32".109
	10,102,069.06	Helmert	15° 48'	17".674	190°	39'	32".208
	10,102,065.28	Andoyer-Lambert	15° 48'	17".518	190°	39'	32".110
(2)	5,304,035.439	Great Elliptic Arc	131° 52'	34".985	285°	10'	06".870
	5,304,032.437	Helmert	131° 52'	35"29	285°	10'	06".65
	5,304,030.844	Andoyer-Lambert	131° 52'	35".043	285°	10'	06".869

REVIEW OF FORMER STUDIES

The Air Force Aeronautical Charting and Information Center made an extensive study of the Inverse Problem of Geodesy (1956-1957), over lines 50 to 6000 miles, [12]. A review of this study indicates favorably the use of the so called Andoyer-Lambert Formulae relative to requirements for Hyperbolic Electronic Systems since (1) they give very nearly geodetic distance with about the same error over all lines from 50 to at least 6000 miles. (2) azimuths are within about a second of true geodetic azimuths over all lines, (3) no tabular data for a particular spheroid is needed, (4) the only table of mathematical functions required is a table of the natural trigonometric functions as Peters eight place tables, (5) no root extraction is involved in the computations. The formulae are thus quite adaptable to small electric desk calculators or larger high speed digital machines. However, in review it seemed unnecessary to convert geographic coordinates to parametric before making the computations, hence a series of computations were made over the ACIC chosen lines for direct comparison. A representative group from 50 to 6000 miles was selected and additional comparisons were made against two lines whose true geodetic lengths and azimuths were known. No lines of 0° azimuth (meridional sections) were used because this is the trivial or limiting case and extensive tables of meridional distances for all reference ellipsoids are available or quite simple computation formulae are available for computing meridional arcs. The spherical formulae used are:

COMPUTATIONS, DISTANCE, AZIMUTHS

Great Elliptic Arc, Geodetic Azimuths

Clarke 1866 Ellipsoid; a = 6,378,206.4 meters, $e^2 = 6.6786580 \times 10^{-3}$,

 $f/2 = 0.00169503765, 1 \mbox{ radian} = 206,264.8062 \mbox{ seconds}, 1852 \mbox{ meters} = 1 \mbox{ n.m.}$

$\lambda_1 = 37 = 34 - 15.450$	$\lambda_{2} - 18 28 41,400$ $\Delta \lambda = \lambda_{2} - \lambda_{1} + 19 65^{-} 34,05^{-} 0$	sin AA + 0.329 09901	sin ² Δλ + 0, 106 99376	A = tan θ ₁ - tan θ ₂ cos Δλ ±2.097 6833 B = tan θ ₁ -tan θ ₁ cos Δλ -2.054040	$V_0 = \sin^2 \theta_0 = K/(K + 1) + O. 976 - 57276$	s 2d ₂ =2(1 - cos ² 0 ₂)/V ₀ - 1	$\frac{72456224}{7}$ N ₁ = k ² /4 $\frac{1}{7}$ / $\frac{1}{65242}$ X / $\frac{-3}{7}$	0.318 12105 N2 = N. 2/8 + 3.4/3/ × 10 - 1 0.318 1525 2 N2 = N. N. /3 + 7.05 × 10 - 11	$\frac{10^{-6}}{10^{3}} = -N_{3}(30H_{r} - 45Q_{1} + 9Q_{2} - Q_{3}) = 6.3 \times 10^{-5}$	cot B ₀ =A cos θ ₂ /sin Δλ +5. 326 3528	0 	35 01 01 - 01 22.38	18 B 2B. 20° 39 32.109	0 1 1	$I_{\rm a} = 180^{\circ} + B_{\rm a} - \delta B_{\rm a} / 90 + 3 / 32 \cdot 70 / 100 + 100$
1. (A) MOSCOW	2. (B) Cape of Good Hope 2. Always west of 1.	$\tan \theta = 0.996609925 \tan \phi$	$\sin \theta_2 = - o \cdot 55\ell + 27/9$	cos θ2 + 21 830 55461 cos 20, + 21 689 83096	596 31463	396 53499 0= d = d = d = d = d	0, 924 2050 Q1 = sin H cos P = 0.	<i>±0. 7/0 /5 § 91</i> Q₂ = sin 2H cos 2P <u>-</u> <i>∞. 388 6 70 0 2</i> 0.= sin 3H cos 3P <i>t</i>	$\frac{3}{2} U_2 = -N_2(6H_r - 8Q_1 + Q_2) - 5.77X$	b P " = f . H" 555, 289	H uis 2	$= P'' \cos^2\theta \sin^2\theta + \sqrt{3} R'' + \frac{1}{3} R'' +$	B" = P" cos 2θ, sin 2A" 42 ." 3.		17.519 aBA
» 1 " " "	2-33 56 23.500	an φ2 - 0.672 84157	sin 0, 10, 82595246	cos θ, + 0,564 03269 cos 20, + 0, 318 1328	$K = (A \tan \theta_1 + B \tan \theta_2) / \sin^2 \Delta \lambda + \frac{1}{2} + \frac{1}{2}$	$\cos 2d_1 = 2(1 - \cos^2\theta_1)/V_0 - 1 + O \cdot V_0$ H = A + A + YO + A + YO + A + A + A + A + A + A + A + A + A +	sin H ±0,995852.03 cos P =	sin 2H <i>-0, 034 35542</i> cos 2P 1 sin 3H-1, 79% 66853 cos 3P-	$U_1 = -N_1(H_r - Q_1) - 4. \lambda T/8.2 \times 10^{-1}$	2 = Hr + U ₁ + U ₂ + U ₃ + <u>U + U + U + U + U + U + U + U + U + </u>		Ao 104 14 01. 710 sin 2Ao 2 8A + 02 18, 835 8A.	-(A, -BA,) - 164 11 42.481 BF		$^{\alpha}AB = 180^{\circ} - (A_{0} - \delta A_{0}) \xrightarrow{\checkmark} \xrightarrow{\checkmark} \xrightarrow{\checkmark} \xrightarrow{\checkmark} \xrightarrow{\checkmark} \xrightarrow{\checkmark} \xrightarrow{\checkmark} \xrightarrow{\checkmark}$

:	30.3	54.7	74.4	91980	25687	380-38 9 4 4	288		224	93825	37,885	808.85	÷	061 80	687	21×10-3	03×10-3	0-8	0-11	n.m.		-0 0.26	P-21.15	26.870	06.870
	01	5-2	45-	1-24.0	1659	11 27	280 42	3104	PH 198.	x 272	48 05	05 15-	•	20 20	+. 832 17	3.394 69	1848673	4,003X1	32.55 × 11	00	8 3061	- · ·		5 10	27 70
eters = 1 n. m.	61	115	$\lambda = \lambda_2 - \lambda_1 \frac{4g}{4g}$	n Δλ + C	s da to		$\gamma_{\rm r}\cos\Delta\lambda$	0.5015.	$\theta_1 / \sin \Delta \lambda \neq 0$	V cos $\theta_2/\sin\Delta$	OS A	B	-	r - r - a (102	Hr (radians)	$\frac{77}{10}$ k ² = e ² V ₀	$k^2 N_1 = k^2/4$	N ₂ = N ₁ ² /8	$N_{3} = N_{1}N_{2}/$	2863.95	n 2B 5-0	-		(B-8B) 12	- (B - 8B) - 28
econds, 1852 m	γ.	· ~		_tanφ sin	C0	sii sii	$\mathbf{W} = \tan \theta_2 - \tan \theta$ $\mathbf{W} = \tan \theta, -\tan \theta$	= K/(K + 1) 🛨	cot A = M cos ($\frac{5}{100} \cot B = 1$	+ 0.851919	$l_2 > 0, d_1 < 0.$		11. 10	137 29892	426 46S	282 OLE	-01 × 699		meters	si	.",30 "	600	~	$\alpha BA = 180^{\circ} +$
206,264.8062 se	ir Force Base	Home AFB	st of 1.	6099335	15847	46713	60255	$-V_0 = \sin^2 \theta_0$	228	139 3987	$\sin^2\theta_2/V_0 - 1$	· 90°, d ₂ > d ₁ , d	,	, E, E, T,	$\Pi^{=0_1 \pm 0_2}$	= sin 2H cos 2 P	= sin 3H cos 3 P	$Q_1 + Q_2) = \frac{1}{2} \frac{1}{2}$]	1 035- 439	4 17410	in ² B - 10.7	VER T VZ UI)_
65, l radian = ;	(A) Ramev A	(B) Mountair	2. Always we	n θ = 0.996	1 02 to . 431	η θ ₂ +0.681	s θ ₂ τυ. 535 s ² θ, τυ. 535	4296	x +.69326	$\Delta \lambda / \sin A \mathcal{F}$	$cos 2d_2 = 2$	uadrant. If A >	:	11 11/220	36618 05	053528 0	3206820	$= -N_2 (6H_r - 80)$	10-9	= a 2 5.304	n 2A + 594	$V' = T \cos^2 \theta_2 s$	$= 1 \cos^2 \theta_1 s$	-	34. 48
= 0.001695037	59,9 1(19.6 20	400	- 90 tai	4 94 tai	<u>7/6</u> si	7/5- CO	1.006 1	$\theta_1 \cos \theta_2 \cos \Delta$	$B = \cos \theta_2 \sin \theta_2$	10 91 43 9	rst or second q	² <0.	01 - 01	cos P +. 186	cos 2P-, 53	cos 3P 53	84×10-3 U2) = - 224 X	58930 \$. 497 si	84 - 5A	SHO SHO	-	1 52
f/2	- A	43	4 5-8	225 H	33 44	16 32	99 93	$\tan \theta_2 / \sin^2 \Delta$	$n \theta$, $\sin \theta_2 + \cos \theta_3$	$\theta_1 \sin \Delta \lambda / \sin \theta_2$	$\theta_1/V_0 - 1 = -60$	lways in the fi	$> d_2 , d_1 > 0, d$		39825	626 70	24803	589299	$5Q_1 + 9Q_2 - Q_3$	+ U, <i>t, f31</i> ,	n H 3 \$3	= ~ ~	10/0	1 25.01	<u>لم</u> (Að –
		1 24	an 6, 70.33	an $\phi_2 + 0.5$	an $\theta_1 \neq \partial_1 \vec{3}$	$\sin \theta_1 \neq 0.3$	105 θ1 7 0 1 8	$\zeta = (N \tan \theta_1 + M)$	$\cos \left(\mathbf{d}_1 + \mathbf{d}_2 \right) = \mathbf{s}$	$\sin (d_1 + d_2) = cc$	$\cos 2d_1 = 2 \sin^2$	d_1 and d_2 are ε	If $B > 90^{\circ}$, $ d_1 $		20, 126 N	sin 2 H ±. 995	sin 3 H + . 601	$U_1 = -N_1(H_r - Q_1)$	$J_3 = -N_3(30H_r - 4)$	$\mathbf{\tilde{s}} = \mathbf{H}_{\mathbf{r}} + \mathbf{U}_{1} + \mathbf{U}_{2}$	$\Gamma = (f/2) H''/si$	0	44	A-5A) 48 U	$^{1}AB = 180^{\circ} - (A)$

Clark 1866 Ellipsoid: a = 6,378,206.4 meters, e² = 6.7686580 \times 10 3

COMPUTATIONS, DISTANCE, AZIMUTHS Great Elliptic Arc, Geodetic Azimuths

Figure 19.

Spherical Formulae (see Figure 16)

$$\cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda$$

$$\sin A = (\cos \phi_2 \sin \Delta \lambda) / \sin d, \quad \sin B = (\cos \phi_1 \sin \Delta \lambda) / \sin d$$
(73)

$$\cot A = (\cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda) / \sin \Delta \lambda$$

$$\cot B = (\cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda) / \sin \Delta \lambda$$

$$\sin d = (\cos \phi_1 \sin \Delta \lambda) / \sin B = (\cos \phi_2 \sin \Delta \lambda) / \sin A.$$

The Andoyer-Lambert correction [13] for distance is:

$$\delta d = -\frac{f}{4} \left[\frac{d+3\sin d}{1-\cos d} + (\sin \phi_1 - \sin \phi_2)^2 + \frac{d-3\sin d}{1+\cos d} (\sin \phi_1 + \sin \phi_2)^2 \right], \quad (74)$$

where d is spherical distance from (73) and $s = a(d + \delta d)$, f is the flattening, f = (a - b)/a, where a, b are the semiaxes of the reference ellipsoid (a is the radius of the auxiliary sphere).

Now (73) and (74) are essentially the same as used for several years in Loran computations except for the conversion to parametric latitudes which is not required with these formulas. The only difference in the appearance of the formulas is in the term 3 sin d in (74) which is simply sin d in the formulae for parametric latitude, [14].

The corrections to the spherical angles A and B as given by (73) to get geodesic azimuths are, [13]:

$$\delta A = \frac{f}{2} \begin{bmatrix} \frac{d}{\sin d} & \cos^2 \phi_2 \sin 2B - \cos^2 \phi_1 \sin 2A \end{bmatrix},$$

$$\delta B = \frac{f}{2} \begin{bmatrix} \cos^2 \phi_2 \sin 2B - \frac{d}{\sin d} & \cos^2 \phi_1 \sin 2A \end{bmatrix},$$
(75)

the geodetic azimuths being then

 $a_{AB} = 180^{\circ} - A + \delta A$, $a_{BA} = 180 + B + \delta B$.

The formulae as given by (73), (74), (75) were arranged in computing forms to make the check computations of the ACIC chosen lines. Note that the azimuths as given in the ACIC publications differ by 180° from the usual geodetic azimuths and the forward and back azimuths are interchanged from the conventions used in the check computations. The lines chosen are shown in TABLE 1, the comparisons are given in TABLES 2 and 3, while the actual computations are in Appendix 2.
TABLE 1

LINES COMPUTED

Line No.	Az.	Term	Origin					Distance		
	0	Lat. • • "	Long 0 1 "	o	La	at. 11 C	J	Jong.		Miles
1	45	40	18	40	30	37.757	17	19	43.280	50
2	90	10	18	9	59	48.349	16	31	55.877	100
3	90	70	18	69	48	-05.701	9	37	28.637	200
4	45	10	18	13	04	12.564	14	51	13.283	300
5	45	70	18	73	35	09.206	3	26	35.101	400
6	90	40	18	39	37	06.613	8	36	43.276	500
7	45	40	18	44	54	28.507	10	47	43.883	500
8	45	70N	18W	76	00	26.603N	1 28	42	03.567E	1000
9	90	40N	18W	27	49	42.130N	32	54	12 . 997E	3000
10	45	40N	18W	35	18	45.644N	105	2 0 2	29.370E	6000
11	50	43 03 19.6	115 52 54.7	18	29	57.9	67	07	30.3	3000 n.m.
12	10	33 56 03.5S	18 28 41.4E	55	45	19.5N	37	34	15.450E	5500 n.m.

1-10 From ACIC Reports 59 (page 39), 80 (page 23).

11 Ramey AFB to Mountain Home AFB, AFAC-TN-57-53, Astia Document 135972, 1957

12 Cape of Good Hope to Moscow

TABLE 2

Comparison With True Distances and Azimuths

				· · ·										
	$a_{\rm BA}^{\rm c} a_{\rm BA}^{\rm t}$ $= \Delta a_{\rm BA}$	Ξ	-1.238	+0.023	+0*076	-1.103	-0.553	+0.072	-1.166	-0.124	-0.509	+0.398	+0.622	-0.753
	True a ^t BA	= - 0	244 59 59.997	270 00 00.000	269 59 59,950	224 59 59.732	225 00 00.154	270 00 00.001	224 59 59.994	224 59 59,958	270 00 00.121	225 00 00+276	285 10 06,650	190 39 32.208
Line bistance bTrue bSc - St a ABComputed a a ABTrue a 	$\begin{array}{c} \text{Computed} \\ \alpha \text{BA} \end{array}$	-	244 59 58.759	270 00 00.023	270 00 00.026	224 59 58.629	224 59 59,601	270 00 00.073	224 59 58.828	224 59 59.834	269 59 59.612	225 00 00.674	285 10 07.272	190 39 31.445
Line Distance ScComputed S_c True $a^{C}AB$ True $a^{C}AB$ True $a^{C}AB$ No.Distance S_c $= \Delta S$ $meters= \Delta Sa^{C}ABTruea^{C}AB1B0,467.388B0,466.490+0.89845 26 00.44345 26 01.6922160,935.945160,932.956+2.98990 15 17.50690 15 17.4803321,862.977321,866.796-3.42097 52 01.10297 52 01.0634482,794.743482,798.163-3.42045 37 44.97245 37 46.1115643,728.709643,732.429-3.42045 37 44.97245 37 46.1116804,664.697321,866.796-3.42045 37 44.97245 37 46.1117804,664.697804,664.762-3.42045 37 44.97245 37 46.11181,609,315.609643,732.429-3.42045 37 44.97245 37 46.1117804,664.697804,664.762-3.42045 37 44.97245 37 46.11181,609,315.6091,609,329.066-13.45189 55 22.64389 55 22.83394,827,983.1054,827,984.247-1.142119 54 41.26094,827,983.1054,827,984.247-1.142119 54 41.26094,607,028.1065,304,032.437-1.142119 54 41.260109,655,969.751+2.467138 23 42.394138 23 42.755115,304,028.1105,304,032.437-4.327<$	$a^{c}_{AB} - a^{t}_{AB}$ $= \Delta a_{AB}$		-1.249	+0.026	+0.049	-1.139	-0.715	+0.049	-1.176	-0.190	+0.136	-0.361	+0.623	-0.735
Line No.Computed Distance ScTrue ScScSt a ^{C}AB No. S_{c} meters S_{c} meters S_{c} meters S_{c} $\sigma^{C}AB$ 1 $80,467.388$ S_{c} $80,466.490$ $H0.898$ $45,26,00.443$ 2 $160,935.945$ $160,932.956$ $+2.98163$ $45,26,00.443$ 3 $321,862.977$ $321,862.977$ $321,866.796$ -3.819 $97,52,01.112$ 4 $482,794.743$ $482,794.743$ $482,798.163$ -3.420 $45,374.972$ 5 $643,728.709$ $643,732.429$ -3.420 -3.720 $58,50.0.885$ 6 $804,664.697$ $804,664.762-3.420-3.72045,50.30.8857804,666.623804,664.77141.361-1.14249,52,14.35281,609,315.6091,609,329.066-13.451-13.45189,55,22.64394,827,983.1054,827,984.247-1.142-1.142119,54,41.306109,655,972.2189,655,969.751-4.327-1.142138,23,42.304115,304,028.1105,304,032.437-4.327-4.327-3.15,2031210,102,057.9710,102,057.96-11.0915,48,10.99$	True a ^t AB	= - 0	45 26 01.692	90 15 17.480	97 52 01.063	45 37 46.111	58 50 31.600	96 01 06.640	49 52 15.528	89 55 22.833	119 54 41.260	138 23 42.755	131 52 35.290	15 48 17.674
LineComputedTrue $S_c - S_t$ No.DistanceDistance $= \Delta S$ No. S_c S_t metersmetersmetersmeters1 $80,467.388$ $80,466.490$ $+0.898$ 2 $160,935.945$ $160,932.956$ $+2.989$ 3 $321,862.977$ $321,866.796$ -3.420 4 $482,794.743$ $482,798.163$ -3.420 5 $643,728.709$ $643,732.429$ -3.420 6 $804,664.697$ $804,664.762$ -0.065 7 $804,666.623$ $804,664.761$ $+1.861$ 8 $1,609,315.609$ $1,609,329.060$ -13.451 9 $4,827,983.105$ $4,827,984.247$ -1.142 10 $9,655,972.218$ $9,655,969.751$ $+2.467$ 11 $5,304,028.110$ $5,304,032.437$ -4.327 12 $10,102,057.97$ $10,102,065.06$ -11.09	$\begin{array}{c} \text{Computed} \\ a^{\text{C}} \text{AB} \end{array}$	=	45 26 00.443	90 15 17.506	97 52 01.112	45 37 44.972	58 50 30.885	96 01 06.689	49 52 14.352	89 55 22.643	119 54 41.396	138 23 42.394	131 52 35.913	15 48 16.939
Line No.Computed Distance Sc metersTrue St St metersNo.Sc Sc metersSt 	$S_{c} - S_{t}$ $= \Delta S$ meters		+0.898	+2.989	-3.819	-3.420	-3.720	-0.065	+1.861	-13.451	-1.142	+2.467	-4.327	-11.09
Line Computed No. Sc meters re	True Distance S _t	meters	80,466.490	160,932.956	321,866.796	482,798.163	643,732.429	804,664.762	804,664.771	1,609,329,060	4,827,984.247	9,655,969,751	5,304,032.437	10,102,069.06
Line No.	Computed Distance S _c	meters	80,467.388	160,935.945	321,862.977	482,794.743	643,728.709	804,664.697	804,666.623	1,609,315.609	4,827,983.105	9,655,972.218	5,304,028,110	10,102,057.97
	Line No.		1	2	en	4	2	9	2	8	6	10	11	12

TABLE 3

Error Summary

$\Delta a BA = \Delta a_{2-1}$	seconds	- 1.24 **	+ 0.02	+ 0.08	- 1.10	- 0.55	+ 0.07	- 1.17	- 0.12	- 0.51	+ 0.40	+ 0.62	- 0.75	
$\Delta \alpha_{AB} = \Delta \alpha_{1-2}$	seconds	- 1.25 **	+ 0.03	+ 0.05	- 1.14	- 0.72	+ 0.05	- 1.18	- 0,19	+ 0.14	- 0.36	+ 0.62	- 0.74	
Relative distance error $\Delta S_m/S_m$	l part in	89,407	53,644	84,702	141,899	173,982	11,495,214	423,509	119,210	4,389,076	3,862,388	1,233,496	910,096	
ΔS	meters feet ΔS_m	+ 0.9 + 3.0	+ 3.0 +10.0	- 3.8 +12.5	-3.4 -11.2	- 3.7 -12.2	- 0.07 - 0.2	+ 1.9 + 6.0	-13.5* -44.6	- 1.1 - 3.6	+ 2.5 + 8.2	- 4.3 -14.2	-11.1 -36.6	
S = distance	meters n.m. Sm	80,466 43.5	160,933 86.9	321,867 173.8	482,798 260.7	643,732 347.6	804,665 434.5	804,667 434.5	1,609,329 869.0	4,827,984 2606.9	9,655,970 5213.8	5,304,032 2863.9	10,102,069 5454.7	
Terminal Latitude	degrees	40N	10N	N07	10N	70N	40N	40N	70N	40N	40N	43N	34S	rror Tors
Azimuth	degrees	45	06	06	45	45	06	45	45	90	45	50	10	num distance e num azimuth er
Line No.		1	2	3	4	2	6	2	8	6	10	11	12	* Maxir ** Maxir

INVESTIGATION OF HIGHER ORDER TERMS IN ANDOYER-LAMBERT APPROXIMATION

While either form of Andoyer-Lambert approximation is probably satisfactory in the "state of the art" in hyperbolic navigational systems development, the question arises as to the higher order terms in the flattening of the Andoyer-Lambert approximation and the possibility of a single set of formulae which will give distance within one meter and azimuth within one second over all geodetic lines on the spheroid. This would be a practical operational system particularly if it maintained the several attributes of the Andoyer-Lambert first order approximation.

HISTORICAL

Now Lambert, [13], never published his derivation but had equivalent formulae for a first order approximation several years before the publication posthumously in 1932 of Andoyer's sketch, [15], of the derivation of the form as given in equation (74). Andoyer's derivation employs a differential oblique spherical triangle and it is not clear how one would proceed to higher order terms in the flattening. It is believed that Andoyer's derivation is the only recognized published one in existence.

DERIVATION FROM THE GREAT ELLIPTIC ARC

Independent derivations of the Andoyer-Lambert approximations were sought in the hopes of discovering a simple method of arriving at higher order terms in the flattening. It was noticed that the computations using the Andoyer-Lambert approximations; the ratios $(d - \sin d)/(1 + \cos d)$, $(d + \sin d)/(1 - \cos d)$ were being used in forming computational parameters, [16]. It was decided to try the ratios

$$\sin \theta_1 + \sin \theta_2)^2 / (1 + \cos d), (\sin \theta_1 - \sin \theta_2)^2 / (1 - \cos d)$$
(76)

with the hope of relating these to other parameters and identification of the Andoyer-Lambert approximations in some other extant series expansion as the great elliptic arc approximation. See equations (19) through (42).

From equations (42) we have

$$\sin \theta_1 = \sin \theta_0 \cos d_1, \sin \theta_2 = \sin \theta_0 \cos d_2. \tag{77}$$

From (77), by simple algebraic operations and trigonometric identities, we may express (76) as

$$(\sin \theta_1 + \sin \theta_2)^2 / (1 + \cos d) = 2 \sin^2 \theta_0 \cos^2 \frac{1}{2} (d_1 + d_2)$$
$$(\sin \theta_1 - \sin \theta_2)^2 / (1 - \cos d) = 2 \sin^2 \theta_0 \sin^2 \frac{1}{2} (d_1 + d_2), \qquad (78)$$

where $d = d_2 - d_1$.

From (78) by adding and subtracting respective members, we write

$$X = \frac{(\sin \theta_1 + \sin \theta_2)^2}{1 + \cos d} + \frac{(\sin \theta_1 - \sin \theta_2)^2}{1 - \cos d} = 2 [\sin^2 \theta_0]$$
(79)
$$Y = \frac{(\sin \theta_1 + \sin \theta_2)^2}{1 + \cos d} - \frac{(\sin \theta_1 - \sin \theta_2)^2}{1 - \cos d} = 2 [\sin^2 \theta_0 \cos (d_1 + d_2)],$$

where $d = d_2 - d_1$.

The Andoyer-Lambert forms can now be written in terms of X and Y of (79) as

$$S = a[d - (f/4) (Xd - Y \sin d)],$$

$$S = a[d - (f/4) (Xd - 3Y \sin d)],$$
(80)

where in the second equation, the geodetic latitude, ϕ , is used in forming the X and Y of (79).

If in the expansion of the great elliptic arc, equation (41), we place $d_1 = to \neg d_1$, and then $d = d_2 - d_1$, $k = e \sin \theta_0$, we obtain as far as sixth order terms in e:

$$S = a \begin{bmatrix} \overline{d} - \frac{1}{4} e^{2} \sin^{2}\theta_{0} \left[d - \sin d \cos \left(d_{1} + d_{2} \right) \right] \\ - (1/128)e^{4} \sin^{4}\theta_{0} \left[6d - 8 \sin d \cos \left(d_{1} + d_{2} \right) + \sin 2d \cos 2(d_{1} + d_{2}) \right] \\ - (1/1536)e^{6} \sin^{6}\theta_{0} \begin{bmatrix} 30d - 45 \sin d \cos \left(d_{1} + d_{2} \right) + 9 \sin 2d \cos 2(d_{1} + d_{2}) \\ - \sin 3d \cos 3(d_{1} + d_{2}) \end{bmatrix}$$
(81)

Using relations (79), equation (81) can be written:

$$S = a \begin{bmatrix} d - (e^{2}/8) (Xd - Y \sin d) \\ - (e^{4}/512) [(6d - \sin 2d) X^{2} - 8(\sin d) XY + 2(\sin 2d) Y^{2}] \\ - (e^{6}/12,288) \begin{bmatrix} 3(10d - 3 \sin 2d) X^{3} - 3(15 \sin d - \sin 3d) X^{2}Y \\ + 18(\sin 2d) XY^{2} - 4(\sin 3d) Y^{3} \end{bmatrix} \end{bmatrix}$$
(82)

Note in (82) that if all terms above the first power in f are ignored ($e^2 = 2f$) equation (82) reduces directly to the Andoyer-Lambert form as given by the first of (80). Now it is known that the difference in lengths of the great elliptic arc and the geodesic is of 4th order in e, [17], but the 6th order term will be useful for comparison later in the investigation.

DERIVATION FROM MODIFIED DIFFERENTIAL EQUATIONS

The corresponding differential triangles, auxiliary sphere, spheroid, where geodetic latitude has been converted to parametric are, as abstracted from Figure (20):

and since $a_{c} = a_{g}$ (property of geodesics on surfaces of revolution, i.e. $r \sin a_{c} = r \sin a_{g}$, $\mathbf{r} = \mathbf{a} \cos \theta$), $ds/aD\delta d = \mathbf{a}(1 - e^{2} \cos^{2}\theta)^{1/2} d\theta/ad\theta = (1 - e^{2} \cos^{2}\theta)^{1/2}$, which may be written $\mathbf{S} = \mathbf{a}(\mathbf{d} + \delta \mathbf{d}) = \mathbf{a} \left[\mathbf{d} + \int_{\mathbf{d}_{1}}^{\mathbf{d}_{2}} [(1 - e^{2} \cos^{2}\theta)^{1/2} - 1] D\delta \mathbf{d} \right].$ (83)

If (83) also represents the equator, then $\delta d = 0$, when $\theta = \theta_0 = 0$. Hence we add to the integrand $1 - (1 - e^2 \cos^2 \theta_0)^{1/2}$ to get

$$S = a(d + \delta d) = a \left[d + \int_{d_1}^{d_2} \left[(1 - e^2 \cos^2 \theta)^{1/2} - (1 - e^2 \cos^2 \theta_0)^{1/2} \right] D\delta d \right],$$
(84)

and we note that when $\theta = \theta_0 = 0$, $\delta d = 0$; when $\theta = \theta_0$, $s = d = \delta d = 0$; when $\theta_0 = \pi/2$, $d_1 = \theta_1$, $d_2 = \theta_2$, $D\delta d = d\theta$, $d = \theta_2 - \theta_1$ then (84) represents the meridian.

Expanding (84) to 6th order terms in e, find

$$S = a \begin{bmatrix} d - (e^{2}/2) (1 + e^{2}/2 + 3e^{4}/8) \int_{d_{1}}^{d_{2}} (\sin^{2}\theta_{0} - \sin^{2}\theta) D\delta d \\ + (e^{4}/8) (1 + 3e^{2}/2) \int_{d_{1}}^{d_{2}} (\sin^{4}\theta_{0} - \sin^{4}\theta) D\delta d \\ - (e^{6}/16) \int_{d_{1}}^{d_{2}} (\sin^{6}\theta_{0} - \sin^{6}\theta) D\delta d \end{bmatrix}$$
(85)

Now from (77), $\sin \theta = \sin \theta_0 \cos d$,

$$\sin^2\theta = \sin^2\theta_0 \cos^2 d = \frac{\sin^2\theta_0}{2}(1 + \cos 2d).$$
(86)

The value of $\sin^2\theta$ from (86) placed in (85) and the resulting integrations performed with respect to d, leads to expressions in powers of the right hand quantities in (79) so that (85) may be written finally as

$$S = a \begin{bmatrix} d - \frac{e^2}{8} (1 + \frac{e^2}{2} + 3e^4/8) (Xd - Y \sin d) \\ - (e^4/512) (1 + 3e^2/2) \begin{bmatrix} -(10d + \sin 2d) X^2 + 8(\sin d) XY \\ + 2(\sin 2d) Y^2 \end{bmatrix}$$

$$- (e^6/12,288) \begin{bmatrix} 3(22d + 3\sin 2d) X^3 - 3(15\sin d - \sin 3d) X^2Y \\ - 18(\sin 2d) XY^2 - 4(\sin 3d)Y^3 \end{bmatrix}$$
(87)

Again if all terms above first order in $f(e^2 = 2f)$ in (87) are ignored then the first two terms of (87) represent the Andoyer-Lambert form as given by the first of equations (80).

For the case where geographic latitudes, ϕ , are not first converted to parametric, but are considered spherical, the corresponding differential right triangles are:

We have for the approximation

 $\mathrm{Rd}\phi = \mathrm{ds}\,\cos\,\alpha_{\mathrm{g}}$

or

$$Rd\phi = ds \frac{d\phi}{D\delta d} , \text{ placing } \cos \alpha_{g} = \cos \alpha_{c} = \frac{d\phi}{D\delta d} .$$

$$ds = R D\delta d = a(1 - e^{2}) (1 - e^{2} \sin^{2}\phi)^{-3/2} D\delta d.$$
(88)

If (88) represents the equator, then when $\phi = 0$, $ds = aD\delta d$. Hence add $e^2 \cos^2 \phi_0$ to the integrand of (88), to obtain

$$(ds/a) = [1 - e^2) (1 - e^2 \sin^2 \phi)^{-3/2} + e^2 \cos^2 \phi_0] D\delta d.$$
(89)

Note the following for (89): When $\phi = \phi_0 = 0$, $ds = a D\delta d$; when $\phi_0 = \pi/2$, $D\delta d = d\phi$, equation (89) will represent the meridian.

Expanding (89) to 6th order terms in e get

$$(ds/a) = \begin{bmatrix} 1 + (3/2)e^{2} \sin^{2}\phi + (15/8)e^{4} \sin^{4}\phi + (35/16)e^{6} \sin^{6}\phi) \\ - e^{2}[1 + (3/2)e^{2} \sin^{2}\phi + (15/8)e^{4} \sin^{4}\phi] + e^{2}(1 - \sin^{2}\phi_{0}) \end{bmatrix} D\delta d$$
(90)

which may be written in the integral form

$$S = a \begin{bmatrix} d - (e^2/2) & \int_{d_1}^{d_2} (2 \sin^2 \phi_0 - 3 \sin^2 \phi) D \delta d \\ & - (3e^4/8) & \int_{d_1}^{d_2} \sin^2 \phi (4 - 5 \sin^2 \phi) D \delta d \\ & - (5e^6/16) & \int_{d_1}^{d_2} \sin^4 \phi (6 - 7 \sin^2 \phi) D \delta d \end{bmatrix}$$
(91)

From (77), with θ replaced by ϕ , we have $\sin^2 \phi = \frac{\sin^2 \phi_0}{2}$ (1 + cos 2d), and with the aid of

trigonometric identities we can find expressions for $\sin^4\phi$ and $\sin^6\phi$, i.e.

$$\sin^{2}\phi = \frac{\sin^{2}\phi_{0}}{2} (1 + \cos 2d),$$

$$\sin^{4}\phi = \frac{\sin^{4}\phi_{0}}{8} (3 + 4 \cos 2d + \cos 4d),$$
(92)
$$\sin^{6}\phi = \frac{\sin^{6}\phi_{0}}{32} (10 + 15 \cos 2d + 6 \cos 4d + \cos 6d).$$

(93)

(94)

The values of sin ${}^{2}\phi$, sin ${}^{4}\phi$, sin ${}^{6}\phi$ from (92) placed in (91) give

$$S = a \qquad d - (e^{2}/4) \sin^{2}\phi_{0} \int_{d_{1}}^{d_{2}} (1 - 3 \cos 2d) D\delta d$$

$$- (3e^{4}/64) \sin^{2}\phi_{0} \int_{d_{1}}^{d_{2}} \left[(16 - 15 \sin^{2}\phi_{0}) + (16 - 20 \sin^{2}\phi_{0}) \cos 2d \right] D\delta d$$

$$- (5e^{6}/512) \sin^{4}\phi_{0} \int_{d_{1}}^{d_{2}} \left[(72 - 70 \sin^{2}\phi_{0}) + (96 - 105 \sin^{2}\phi_{0}) \cos 2d \right] + (24 - 42 \sin^{2}\phi_{0}) \cos 4d D\delta d$$

$$- 7 \sin^{2}\phi_{0} \cos 6d D\delta d$$

Integration of (93) with respect to d leads to:

$$\begin{split} S &= a \\ S &= a \\ \hline d - (e^2/4) \left\{ d \left[\sin^2 \phi_0 \right] - 3 \sin d \left[\sin^2 \phi_0 \cos (d_1 + d_2) \right] \right\} \\ &- (3e^4/128) \\ \hline 32d \left[\sin^2 \phi_0 \right] - 30d \left[\sin^2 \phi_0 \right]^2 + 32 \sin d \left[\sin^2 \phi_0 \cos (d_1 + d_2) \right] \\ &- 40 \sin d \left[\sin^2 \phi_0 \right] \left[\sin^2 \phi_0 \cos (d_1 + d_2) \right] \\ &- 10 \sin 2d \left[\sin^2 \phi_0 \cos (d_1 + d_2) \right]^2 + 5 \sin 2d \left[\sin^2 \phi_0 \right]^2 \\ &- (5e^6/1536) \\ \hline 216d \left[\sin^2 \phi_0 \right]^2 - 210d \left[\sin^2 \phi_0 \right]^3 + 288 \sin d \left[\sin^2 \phi_0 \right] \left[\sin^2 \phi_0 \cos (d_1 + d_2) \right]^2 \\ &- 126 \sin 2d \left[\sin^2 \phi_0 \right]^2 \left[\sin^2 \phi_0 \cos (d_1 + d_2) \right] + 72 \sin 2d \left[\sin^2 \phi_0 \cos (d_1 + d_2) \right]^2 \\ &- 126 \sin 2d \left[\sin^2 \phi_0 \right]^3 - 28 \sin 3d \left[\sin^2 \phi_0 \cos (d_1 + d_2) \right]^3 \\ &+ 21 \sin 3d \left[\sin^2 \phi_0 \right]^2 \left[\sin^2 \phi_0 \cos (d_1 + d_2) \right] \\ &= 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &- 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &+ 21 \sin^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &= 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &- 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &- 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &- 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &- 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &- 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &- 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &- 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &- 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &- 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &- 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &- 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &- 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &- 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &- 126 \sin^2 \phi_0 \cos^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &- 126 \sin^2 \phi_0 \cos^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 (d_1 + d_2) \\ &- 126 \sin^2 \phi_0 \cos^2 \phi_0 \cos^2 \phi_0 \cos^2 (d_1 + d_2) = 126 \sin^2 \phi_0 \cos^2 \phi_0 \cos^$$

From (79), with θ replaced by ϕ , we have

$$X = \frac{(\sin \phi_1 + \sin \phi_2)^2}{1 + \cos d} + \frac{(\sin \phi_1 - \sin \phi_2)^2}{1 - \cos d} = 2[\sin^2 \phi_0],$$
(95)

$$Y = \frac{(\sin \phi_0 + \sin \phi_2)^2}{1 + \cos d} - \frac{(\sin \phi_1 - \sin \phi_2)^2}{1 - \cos d} = 2[\sin^2 \phi_0 \cos (d_1 + d_2)].$$

Substituting from (95) in (94) we obtain finally

$$S = a = d - (e^{2}/8) (Xd - 3Y \sin d) - (3e^{4}/512) = \begin{bmatrix} 64(Xd + Y \sin d) + (5 \sin 2d - 30d) X^{2} \\ - 40 (\sin d) XY - 10 (\sin 2d) Y^{2} \end{bmatrix}$$

$$- (5e^{6}/12,288) = \begin{bmatrix} (432d - 72 \sin 2d) X^{2} + 576 (\sin d) XY - 144 (\sin 2d) Y^{2} \\ + (63 \sin 2d - 210 d) X^{3} + (21 \sin 3d - 315 \sin d) X^{2}Y \\ - 126 (\sin 2d) XY^{2} - 28(\sin 3d) Y^{3} \end{bmatrix}$$

$$(96)$$

If, in (96), we place $e^2 = 2f$, ignoring all terms above first order in f, one obtains the second of equations (80), or the Andoyer-Lambert approximation in terms of geodetic latitude, ϕ .

Now the Andoyer-Lambert forms can be obtained from other modifications of differential equations. For instance if the differential for arc length along the geodesic is taken in the form, [8] page 64,

$$ds = (N^2 \cos^2 \phi / N_0 \cos \phi_0) d\lambda, N = a / (1 - e^2 \sin^2 \phi)^{1/2};$$
(97)

if the differential of arc length from (84), after converting to geodetic latitude is written

$$ds = [(1 - e^{2} \sin^{2} \phi)^{-1/2} - (1 - e^{2} \sin^{2} \phi_{0})^{-1/2}] D\delta d;$$
(98)

and if (97) and (98) are combined with the relationship $d\lambda = = (\sin a_c/\cos \phi) D\delta d = (\cos \phi_0/\cos^2 \phi) D\delta d$ from the differential right triangles above with θ replaced by ϕ , one can write

$$(ds/a) = D\delta d + \left[(1 - e^2 \sin^2 \phi)^{-1} (1 - e^2 \sin^2 \phi_0)^{1/2} - 1 \\ + (1 - e^2)^{1/2} \left\{ (1 - e^2 \sin^2 \phi)^{-1/2} - (1 - e^2 \sin^2 \phi_0)^{-1/2} \right\} \right] D\delta d$$
(99)

Expanding the expressions in (99) to first order terms in f, $e^2 = 2f$, equation (99) can be written in the integral form

$$S = a \left[d - f \int_{d_1}^{d_2} (2 \sin^2 \phi_0 - 3 \sin^2 \phi) D\delta d \right].$$
(100)

Comparison of equations (100) and (91) (with e² = 2f) shows that (100) will again give the second of equations (80) or the Andoyer-Lambert Approximation in terms of geodetic latitude.

DERIVATIONS FROM EXPANSIONS OF FORSYTH

In reviewing the literature on geodetic computation one finds that A. R. Forsyth, [18], as early as 1895 had given some series expansions for geodetic arc length in terms of the flattening and certain spherical and elliptic parameters. On page 120 of his treatise one finds the expression

$$S_{12}/a = \nu_2' - \nu_1' - \frac{1}{4} c \left(\nu_2' - \nu_1'\right) + (1/8) c \left(\sin 2\nu_2' - \sin 2\nu_1'\right) . \tag{101}$$

Now the correspondences between the parameters as used by Forsyth in deriving (101) and those used above in this investigation are to first order in f:

 $\nu'_{2} = d_{2}, \nu'_{1} = d_{1}, \nu'_{2} - \nu'_{1} = d_{2} - d_{1} = d, c = 2f \sin^{2} \theta_{0},$

 $\sin 2\nu_2' - \sin 2\nu_1' = \sin 2d_2 - \sin 2d_1 = 2 \sin (d_2 - d_1) \cos (d_1 + d_2) = 2 \sin d \cos (d_1 + d_2)$ so that equation (101) becomes equivalently

$$S = a[d - (f/2) \{d[\sin^2\theta_0] - \sin d [\sin^2\theta_0 \cos (d_1 + d_2)]\},\$$

hich in turn by means of relations (79) can be written $S = a[d - (f/4) (Xd - Y \sin d)],\$ and
entified as the first Andoyer-Lambert form of equations (80).

On page 116 of Forsyth's treatise one finds the expression

wid

$$S_{12}/a = \nu_{2} - \nu_{1} + \xi \{(3/4) \cos^{2} a_{0} (\sin 2\nu_{2} - \sin 2\nu_{1}) - (\frac{1}{2}) (\nu_{2} - \nu_{1}) \cos^{2} a_{0} \} \\ + \xi^{2} \begin{bmatrix} (\frac{1}{2}) (\nu_{2} - \nu_{1})^{2} \cos^{2} a_{0} \sin^{3} a_{0} \sin \phi_{1}' \sin \phi_{2}' / \sin 2\phi_{0} \\ + (\nu_{2} - \nu_{1}) [(1/16) \cos^{4} a_{0} + \cos^{2} a_{0} \sin^{2} a_{0}] \\ + (3/8) \sin^{3} a_{0} \cos^{2} a_{0} (\sin 2\phi_{2}' - \sin 2\phi_{1}') \\ - (3/4) \cos^{2} a_{0} \sin^{2} a_{0} (\sin 2\nu_{2} - \sin 2\nu_{1}) \\ + (23/64) \cos^{4} a_{0} (\sin 4\nu_{2} - \sin 4\nu_{1}) \end{bmatrix}$$
(102)

Now the equivalent relationships between Forsyth's parameters as used in (102) and the ones used in this investigation are:

$$\nu_{1} = d_{1}, \nu_{2} = d_{2}, \nu_{2} - \nu_{1} = d_{2} - d_{1} = d, \xi = f, l_{1} = \phi_{1}, l_{2} = \phi_{2},$$

$$2\phi_{0} = \phi_{2}' - \phi_{1}' = \phi_{2} - \phi_{1} = \lambda_{2} - \lambda_{1} = \Delta\lambda, \cos \phi_{1}' = \cot \phi_{0} \tan \phi_{1} = \cos \phi_{0} \cos d_{1} \sec \phi_{1}$$

$$\sin \phi_{1}' = \sin d_{1} \sec \phi_{1}, \cos \phi_{2}' = \cot \phi_{0} \tan \phi_{2} = \cos \phi_{0} \cos d_{2} \sec \phi_{2}$$
(103)
$$\sin \phi_{2}' = \sin d_{2} \sec \phi_{2}, \cos \nu_{1} = \cos d_{1} = \sin \phi_{1} / \sin \phi_{0},$$

$$\cos \nu_{2} = \cos d_{2} = \sin \phi_{2} / \sin \phi_{0}, a_{0} = \frac{\pi}{2} - \phi_{0}, \text{ the relationship sin } a_{0} \sin (\nu_{2} - \nu_{1})$$

$$= \cos l_{1} \cos l_{2} \sin 2\phi_{0} \text{ given on pages 106, 121 of Forsyth, [18],}$$

becomes $\cos \phi_0 \sin d = \cos \phi_1 \cos \phi_2 \sin \Delta \lambda$ in the notation of this investigation.

Assurance that Forsyth's a_0 is the complement of the geodetic latitude, ϕ_0 , of the great elliptic arc is found from his expression, [18] page 106, which is

 $\tan \alpha_0 = \sin 2 \phi_0 / \{ (\tan l_1 + \tan l_2)^2 - 4 \tan l_1 \tan l_2 \cos^2 \phi_0 \}^{1/2}.$

With equivalent substitutions from (103) and some trigonometric identities it will transform into $\tan \phi_0 = (\tan^2 \phi_1 + \tan^2 \phi_2 - 2 \tan \phi_1 \tan \phi_2 \cos \Delta \lambda)^{1/2} / \sin \Delta \lambda$

which defines the vertex of the great elliptic arc. See equations (21) of this investigation.

A cursory check of the equations just preceding (102) in Forsyth's treatise revealed that the numerical coefficient of the second order term *1 in (102) should be 15/64 instead of 23/64. Then by use of relations (103) and (95) it was found that (102) could be written as

$$S = a \begin{bmatrix} d - (f/4) (Xd - 3Y \sin d) \\ + (f^2/128) (AX - BY - CX^2 + DY^2 + EXY + FX^2Y + GX^3) \end{bmatrix}$$
(104)

where A = 64d + 16d² cot d, B = 96 sin d + 16 d² csc d - 48 sin² $\Delta\lambda$ csc d, C = 30d + 15 sin 2d + 8d² cot d + 12 sin² $\Delta\lambda$ cot d, D = 30 sin 2d, E = 48 sin d + 8d² csc d - 36 sin² $\Delta\lambda$ csc d, F = 6 sin² $\Delta\lambda$ csc d, G = 6 sin² $\Delta\lambda$ cot d.

Note that the first two terms of (104) are exactly the Andoyer-Lambert form given by the second of equations (80). But we apparently also have the second order term in the flattening. Thus, Forsyth had both so-called Andoyer-Lambert approximation forms as early as 1895 but they had not been recognized as such.

Equation (104) was used to compute several lines of known lengths. On those in which the term *2 of (102) was small, an improvement would be obtained by including the second order terms. On others, the error introduced would outweigh the first order correction, which could mean, since equation (104) is a power series in f, that the coefficient of the second order term in f is erroneous. Now examination of the second order terms of equations (82) and (96) shows no cubic terms in X and Y as are found in the second order term of (104). Hence Forsyth's paper [18], was reworked from the beginning and it was found that indeed the term *2 in (102) actually vanishes and reaffirmation was also made that the numerical coefficient of the term *1 of (102) should be 15/64 rather than 23/64. These errors are the result of carrying throughout the derivation the numerical factor 9/32 in the last term of the expression for δ , [18], section 17, page 98, when it should be 3/32. This affects the approximation equation for tan Φ , section 22, page 104. In the last term, the factor $-7 \sin^2 a$ should be $+5 \sin^2 a$. This continues to be reflected through section 27, pages 111 to 115, until the term is actually seen to vanish in collecting the terms together on page 115. Also on page 115, omission of a factor $\frac{1}{2}$ in use of a trigonometric identity in the third line from the bottom gave the printed value $\frac{1}{4}$ for the numerical coefficient of

 $\cos 4a_0 \sin 4\nu$ when it should be 1/8. This leads in turn to the printed value 23/64 as given on page 116 when it should be 15/64.

After the two errors in Forsyth's second order term in f had been detected, two papers were found which are concerned with the Forsyth derivation, Wassef 1948, [19], and Gougenheim 1950, [20]. Wassef purports to give the corrected version of Forsyth's second order term but he includes the term *2 in (102) and he gives 15/23 for the numerical coefficient of *1 in (102). Hence Wassef's results are erroneous and useless. Gougenheim, unaware of Forsyth's work, had developed his formulae independently and he has the term *2 in (102) missing in his derivation and the correct numerical coefficient 15/64 for *1 of (102). His formula for the second order term is (in the notation of Forsyth)

$$+\xi^{2} = \begin{bmatrix} -(1/2) \frac{(\nu_{2} - \nu_{1})^{2}}{\cot \nu_{2} - \cot \nu_{1}} \cos^{2} a_{0} \sin^{2} a_{0} + (1/16) & (\nu_{2} - \nu_{1}) (\cos^{2} a_{0} + 15 \cos^{2} a_{0} \sin^{2} a_{0}) \\ -(3/4) \cos^{2} a_{0} \sin^{2} a_{0} (\sin 2\nu_{2} - \sin 2\nu_{1}) \\ +(15/64) \cos^{4} a_{0} (\sin 4\nu_{2} - \sin 4\nu_{1}) \end{bmatrix}$$
(105)

Since the last two terms of (105) are the same as the last two of (102), as corrected, we have only to show that

Writing the right member of the first of (106) as

$$\begin{aligned} (1/16) & \cos^2 a_0 + (15/16) & \cos^2 a_0 \sin^2 a_0 + (1/16) & \cos^4 a_0 - (1/16) & \cos^2 a_0 & (1 - \sin^2 a_0) \\ \\ &\equiv (1/16) & \cos^4 a_0 + (1/16) & \cos^2 a_0 + (15/16) & \cos^2 a_0 & \sin^2 a_0 \\ & & - (1/16) & \cos^2 a_0 + (1/16) & \cos^2 a_0 & \sin^2 a_0 \end{aligned}$$

 $\equiv (1/16) \cos^4 \alpha_0 + \cos^2 \alpha_0 \sin^2 \alpha_0.$

From relations (103) we have

 $\sin \alpha_0 \sin (\nu_2 - \nu_1) = \cos l_1 \cos l_2 \sin 2\phi_0 \quad \text{or}$

$$\frac{\sin a_0}{\sin 2\phi_0} = \frac{\cos l_1 \cos l_2}{\sin (\nu_2 - \nu_1)}$$
(107)
$$\frac{\sin a_0 \sin \phi_1' \sin \phi_2'}{\sin 2\phi_0} = \frac{\cos l_1 \sin \phi_1' \cdot \cos l_2 \sin \phi_2'}{\sin \nu_2 \cos \nu_1 - \cos \nu_2 \sin \nu_1} = \frac{\frac{\cos l_1 \sin \phi_1'}{\sin \nu_1} \cdot \frac{\cos l_2 \sin \phi_2'}{\sin \nu_2}}{\cot \nu_1 - \cot \nu_2}$$

From pages 111, 117 of Forsyth find:

 $\tan \phi_1' \sin a_0 = \tan \nu_1, \cos \phi_1' = \tan a_0 \tan l_1, \cos \nu_1 \cos a_0 = \sin l_1,$ $\tan \phi_2' \sin a_0 = \tan \nu_2, \cos \phi_2' = \tan a_0 \tan l_2, \cos \nu_2 \cos a_0 = \sin l_2,$ whence

$$\frac{\cos l_1 \sin \phi_1'}{\sin \nu_1} = \frac{\sin l_1}{\cos \nu_1 \cos a_0} = 1,$$

$$\frac{\cos l_2 \sin \phi_2'}{\sin \nu_2} = \frac{\sin l_2}{\cos \nu_2 \cos a_0} = 1.$$
(108)

The values from (108) placed in (107) prove the second of (106) and thus Gougenheim's paper provides an independent check of the corrections given here to Forsyth's second order term. Gougenheim also gave formulae for azimuths, convergence of the meridians, and difference in longitude between the spheroidal and spherical (elliptical) vertices of geodesics in terms of the same variables. The importance of Gougenheim's work has not been recognized. He has had a correct expansion including the second order term in the flattening, in print since 1950.

THE FORSYTH-ANDOYER-LAMBERT TYPE APPROXIMATION IN GEODETIC LATITUDE WITH SECOND ORDER TERMS

With the corrections to (102), i.e. with the numerical coefficient of *1 as 15/64 and the term *2 omitted, equation (102) may be written, with relations (103) and (95), as

 $S = a[d - (f/4) (Xd - 3Y \sin d) + (f^2/128) (AX + BY + CX^2 + DXY + EY^2)],$ (109) where a, f are the semimajor axis and flattening of the reference ellipsoid; d is the spherical distance between the points $P_1 (\phi_1, \lambda_1), P_2 (\phi_2, \lambda_2)$ on the ellipsoid given by some spherical formula as cos d = sin $\phi_1 sin \phi_2 + cos \phi_1 cos \phi_2 cos \Delta\lambda$; ϕ is geodetic latitude, λ is longitude, $\Delta\lambda = \lambda_2 - \lambda_1$; $A = 64d + 16d^2 cot d$, $D = 48 sin d + 8d^2 csc d$, B = -2D, E = 30 sin 2d,

$$C = -(30d + 8d^{2} \cot d + E/2), X = \frac{(\sin \phi_{1} + \sin \phi_{2})^{2}}{1 + \cos d} + \frac{(\sin \phi_{1} - \sin \phi_{2})^{2}}{1 - \cos d},$$

 $Y = \frac{(\sin \phi_1 + \sin \phi_2)^2}{1 + \cos d} - \frac{(\sin \phi_1 - \sin \phi_2)^2}{1 - \cos d}; d = d_2 - d_1, \text{ where } d_1 \text{ and } d_2 \text{ are spherical distances}$

from the vertex of the great elliptic arc to the points $P_1(\phi_1, \lambda_1), P_2(\phi_2, \lambda_2)$.

Now by factoring sin d out of every term of (109) and using the azimuth formulae as given by Lambert, [13], we can, by means of trigonometric identities, arrange equations (109) in a form more convenient for computing as follows: Given on the reference ellipsoid the points $P_1(\phi_1, \lambda_1)$, $P_2(\phi_2, \lambda_2)$, ϕ is geodetic latitude,

 λ is longitude, P₂ is west of P₁ with west longitudes considered positive.

With
$$\phi_{\rm m} = (1/2) (\phi_1 + \phi_2), \ \Delta \phi_{\rm m} = (1/2) (\phi_2 - \phi_1), \ \Delta \lambda = \lambda_2 - \lambda_1, \ \Delta \lambda_{\rm m} = (1/2) \ \Delta \lambda;$$

Let:
$$k = \sin \phi_m \cos \Delta \phi_m$$
, $K = \sin \Delta \phi_m \cos \phi_m$,
 $H = \cos^2 \Delta \phi_m - \sin^2 \phi_m = \cos^2 \phi_m - \sin^2 \Delta \phi_m$,
 $L = \sin^2 \Delta \phi_m + H \sin^2 \Delta \lambda_m = \sin^2 (d/2), 1 - L = \cos^2 (d/2), \cos d = 1 - 2L, t = \sin^2 d = 4L(1-L)$
 $U = 2k^2/(1 - L), V = 2K^2/L, X = U + V, Y = U - V,$
 $T = d/\sin d = 1 + (t/6) + 3(t^2/40) + 5(t^3/112) + 35(t^4/1152) + 63(t^5/2816) + - - - -,$
 $E = 30 \cos d, A = 4T (8 + TE/15), D = 4(6 + T^2), B = -2D, C = T - \frac{1}{2}(A + E),$ (110)
 $S = a \sin d [T - (f/4) (TX - 3Y) + (f^2/64) {X(A + CX) + Y (B + EY) + DXY }];$
 $\sin (a_2 + a_2) = (K \sin \Delta \lambda)/L, \sin (a_2 - a_1) = (k \sin \Delta \lambda)/(1 - L)$
 $(\frac{1}{2}) (\delta a_2 + \delta a_1) = -(f/2) H (T + 1) \sin (a_2 + a_1), (\frac{1}{2}) (\delta a_2 - \delta a_1) = -(f/2) H (T - 1) \sin (a_2 - a_1),$
 $a_{1-2} = a_1 + \delta a_1, a_{2-1} = a_2 + \delta a_2.$

Note that the quantities H, T, L, k, K enter into both distance and azimuth formulas.

Figure (21) shows an arrangement of equations (110) for desk computing using an ordinary ten bank electric desk calculator and Peters eight place tables of trigonometric functions. It is arranged to show the contribution of both the first and second order terms in the flattening.

Table 4 summarizes the results of computations over 17 lines of known lengths and azimuths. The computations are given in Appendix 3. Part of these lines were used in the computations of Appendix 2. The first 11 lines are from two ACIC publications [12], lines 12 through 17 are Coast and Geodetic Survey specially computed lines, [22].

Note that all distances are within one meter and azimuths are within one second which was the objective since this is adequate for any operational requirement. Other advantages are (1) no conversion to parametric latitudes, (2) no square root calculation, (3) for desk computers the only tabular data required is a table of the natural trigonometric functions as Peters eight place tables, (4) the formulas are adaptable to high speed computers, (5) about the same accuracy is obtained over all lines in all azimuths and latitudes.

EXPANSION TO SECOND ORDER TERMS IN & USING PARAMETRIC LATITUDE

Forsyth [18], gave an expansion of the geodesic to first order in the elliptic modulus $c = (e^2 \cos^2 a)/(1 - e^2 \sin^2 a)$ where a is the complement of the parametric latitude of the vertex of the geodesic. (See pages 118-120 of his treatise). We will follow the Forsyth method and

DISTANCE COMPUTING FORM, FORSYTH-ANI	DOYER-LAMBERT							
TYPE APPROXIMATION WITH SECOND ORDER TERMS (No conversion to parametric latitudes)								
Clarke Spheroid 1866, a = 6,378,206.	4 meters							
$f/2 = 0.00169503765, f/4 = 0.000847518825, f^2/64$	$= 0.1795720390 \times 10^{-6}$							
1 radian = 206,264.8062 secon	ds o i "							
φ1 <u>8 58 25.0</u> 1. PANAMA	λ, 79 34 24.0							
φ ₂ <u>21</u> 26 06.0 <u>2.</u> HAWATI	λ. 158 01 33.0							
$\phi_{m}^{*} = \frac{1}{2}(\phi_{1} + \phi_{2}) \frac{25}{12} \frac{1}{12} \frac{1}{15.5}$ 2. Always west of 1.	$\Delta \lambda = \lambda_2 - \lambda_1 \frac{78}{27} \frac{27}{09.0}$							
$\Delta \phi_{\rm m} = \frac{1}{2} (\phi_2 - \phi_1) \frac{6}{13} \frac{13}{50.5} \frac{50.5}{100}$	$\Delta \lambda_{\rm m} = \frac{1}{2} \Delta \lambda \frac{39 \ 13 \ 34.5}{5}$							
$\sin \phi_{\rm m} \frac{\pm .262.26170}{\pm .262.26170} \sin \Delta \phi_{\rm m} \frac{\pm .10853193}{\pm .10853193}$	sin Δλ <u>+.97975909</u>							
$\cos \phi_{\rm m} + .964.996.79 \cos \Delta \phi_{\rm m} + .994.09.297$	$\frac{7}{1} \sin \Delta \lambda_{\rm m} \frac{7.63238428}{1}$							
$k = \sin \phi_m \cos \Delta \phi_m + .2607/25/2$ K = s	in Ad ros d +. 104732963							
$H = \cos^{2}\Delta\phi_{-} - \sin^{2}\phi_{-} = \cos^{2}\phi_{-} - \sin^{2}\Delta\phi_{-} + \frac{4}{2}.919439630$	$\frac{1 - L}{4.62052783}$							
$L = \sin^2 \Delta \phi + H \sin^2 \Delta \lambda + .37947217$	$\cos d = 1 - 2L + .24105566$							
d_{+} 1.327342885 $sin d_{+}$.9705/129	T = d/sin d + 1.367673822							
$U = 2k^{2}/(1-L) + 2/9074828 \qquad V = 2K^{2}/L + 0578/18469$	$E = 30 \cos d + 7.23/6698$							
X=U+V +.276886675 Y=U-V +.161262981	$D = 4(6 + T^2) \neq 3/.48212675$							
A=4T(8+ET/15) # 47.3727803 C=T-1/(A+E) -25.93455	125 B= -2D -62.9642535							
X(A+CX)+11.128587321 Y(B+EY) - 9.965738	23 DXY +1.405 726406							
$(TX-3Y)1050 93286$ $\delta f = -(f/4) (T)$	TX-3Y) + 8.90728×10-5							
$T + \delta f + 1.36776290$ S ₁ = a sin d(T	+ of) 8, 466, 618.26 meters							
$\Sigma = X(A + CX) + Y(B + EY) + DXY + 2.5635755 \delta f^{2} = +$	$-(f^2/64)\Sigma + 4.6124 \times 10^{-7}$							
$T + \delta f + \delta f^2 + 1.36776336$ $S_2 = a \sin d (T)$	$+ \delta f + \delta f^{2}$) 8,466,621.11 meters							
$\sin(a_2 + a_1) = (K \sin \Delta \lambda) / L - \frac{4}{270} \frac{270}{41001}$	a2+a1 375 ° 41' 19:197							
$\sin (a_2 - a_1) = (k \sin \Delta \lambda) / (1 - L)^{-4} . 41164222$	a2-a1 155 41 31.161							
$\frac{1}{2}(\delta a_1 + \delta a_2) = -(f/2) H(T+1) \sin(a_2 + a_1) - 9.97808513 \times 10^{-1}$	-4 Da1 761 931734 × 10-3							
$\frac{1}{2}(\delta a_2 - \delta a_1) = -(f/2) H(T-1) \sin(a_2 - a_1) - 2.35876779 \times 10^{-2}$	⁴ δa2 -1.233685292 × 10-3							
a1 109 59 54.018	a2 265 41 25.179							
δα1 _ 2 37.160	δa2 <u>4</u> 14.466							
a1-2 109 57 16.858	a2-1 265 37 10.713							
$a_{1-2} = a_1 + \delta a_1$	$a_{2-1} = a_2 + \delta a_2$							

Т	AF	BLE 4
Summary	of	Computations

Approx True Computed Length						h			C		utod		
No	Lat.	Az.	Length	$S_1(\delta f)$	$S_2(\delta f^2)$	S1 - S	$S_2 - S$	А	zim	uths	Ă	zim	uths
	0	0	S(Meters)	Meters	Meters	Meters	Meters	0	+	н	0	1	0
								45	26	01.69			00.44
1	40	45	80,466.49	67.25	67.02	+ 0.76	+ 0.53	224	59	59.997			58.76
								90	15	17.48			17.51
2	10	90	160,932.96	32.99	32.96	+ 0.03	0.0	270	0	0			00.02
								97	52	01.06			01.11
3	70	90	321,865.91	62.98	65.64	- 2.93	- 0.27	269	59	59.95	270	00	00.03
								45	37	46,11	_		44.97
4	10	45	482,798.87	94.74	99.23	- 4.13	+ 0.36	224	59	59.73			58.63
								58	50	31.60			31.30
5	70	45	643,732.43	27.96	32.44	- 4.47	+ 0.01	225	00	00.15	224	59	59.86
								91	16	14.93			14.87
6	10	90	804,664.78	65.22	65.10	+ 0.44	+ 0.32	270	0	0	269	59	59.98
								49	52	15.53			14.35
7	40	45	804,664.77	66,62	64.75	+ 1.95	- 0.02	224	59	59.99			58.83
								89	55	22.83			22.64
8	70	45	1,609,329.06	15.61	29.04	-13.45	- 0.02	224	59	59,96			59.83
								119	54	41.26			41.40
9	40	90	4,827,984.25	83.17	85.09	- 1.08	+ 0.84	270	00	00.12	269	59	59.61
								138	23	42.76			42.39
10	40	45	9,655,969.75	72.49	70.13	+ 2.74	+ 0.38	225	00	00.28			00.67
								159	54	37.21			37.78
11	70	90	9,655,977.15	63.63	77.01	-13.52	- 0.14	270	00	00.02			00.81
				599,	600,			260	17	09.79			09,78
12	70	95	600,000.00	995.26	000.24	- 4.74	+ 0.24	95	0	0	94	59	59.93
				900,	900,	•		50	0	0	49	59	59.20
13	60	50	900,000.00	000.56	000.23	+ 0.56	+ 0.23	221	03	33.54			32.73
								128	33	08.34			09.17
14	25	50	979,251.25	247.67	251.45	- 3.58	+ 0.20	305	38	13.25			14.18
								35	16	34.25			33.34
15	60	35	1,232,647.21	652.17	647.21	+ 4.96	0.0	207	08	33.82			32.91
								109	57	17.41			16.86
16	20	70	8,466,621.01	618.26	621.11	- 2.75	+ 0.10	265	37	10.59			10.71
								15	48	17.67			16.94
17	55	15	10,102,069.06	057.93	069.86	-11.13	+ 0.80	190	39	32.21			31.45

extend the results to second order in c and subsequently to second order in f since c can be expressed as a series in f.

The quantities needed to achieve the approximation are found in or derived from the results of Forsyth's work, pages 86, 97-105. We list them here for reference in the development.

$$\Phi = \phi + \frac{c}{2} u' \sec \alpha \tan \alpha \left[1 + \frac{c}{8} (1 - 6 \tan^2 \alpha) \right]$$
111a

$$u' = \nu' + c U + c^2 V$$
 111b

$$\phi = \phi' + c \Omega + c^2 \Psi$$
 111c

$$a = a_0 + cA \cot a_0 + c^2 B$$
 1111d

cn u = cos u {
$$1 - \frac{1}{4}$$
 c sin²u $-\frac{c^2}{64}$ sin²u (7 + 4 cos²u) } 111e

$$c = (e^2 \cos^2 \alpha)/(1 - e^2 \sin^2 \alpha), e^2 = 2f - f^2, e^4 = 4f^2$$

$$c = 2f \cos^2 a + f^2 \cos^2 a \ (3 - 4 \cos^2 a)$$
 111f

$$\cos \theta = \operatorname{cn} u \cos \alpha$$
 111g

$$\tan \Phi = \tan u' \csc \alpha \left[1 + \frac{1}{4}c + (1/64)c^2 \left(9 - 2\sin^2\nu' - 4\tan^2\alpha_0\right) \right]$$
 111h

$$\frac{s}{a} = (1 - e^{2} \sin^{2} \alpha)^{1/2} E(u)$$

$$= u' + \frac{c}{4} [\sin 2u' - (1 + 2 \tan^{2} \alpha) u']$$

$$+ \frac{c^{2}}{64} [\sin 4u' + 4 \sin 2u' (1 - 2 \tan^{2} \alpha) + \{8 \tan^{2} \alpha (1 + 3 \tan^{2} \alpha) - 3\} u']$$
111i

$$\sin \alpha = \sin \alpha_0 [1 + c \operatorname{A} \cot^2 \alpha_0 + c^2 \cot \alpha_0 (B - \frac{1}{2} \operatorname{A}^2 \cot \alpha_0)]$$
 111j

$$\cos \alpha = \cos \alpha_0 \left[1 - c A - c^2 \tan \alpha_0 \left(B + \frac{1}{2} A^2 \cot^3 \alpha_0 \right) \right]$$
111k

$$\tan a = \tan a_0 \left[1 + c \operatorname{A} \csc^2 a_0 + c^2 \csc^2 a_0 \left(\operatorname{A}^2 + \operatorname{B} \tan a_0 \right) \right]$$
111m

$$\sec \alpha = \sec \alpha_0 \left[1 + c A + c^2 \tan \alpha_0 \left(B + A^2 \cot \alpha_0 \left\{ 1 + \frac{1}{2} \cot^2 \alpha_0 \right\} \right) \right]$$
 111n

$$\csc a = \csc a_0 \left[1 - c \operatorname{A} \cot^2 a_0 - c^2 \cot a_0 \left\{ \operatorname{B} - \frac{1}{2} \operatorname{A}^2 \cot a_0 \left(1 + 2 \cot^2 a_0 \right) \right\} \right]$$
 1110

$$\sin u' = \sin \nu' [1 + c U \cot \nu' + c^2 (V \cot \nu' - U^2/2)]$$
111p

$$\cos u' = \cos \nu' [1 - c \ U \tan \nu' - c^2 \ (V \tan \nu' + U^2/2)]$$
 111q

$$\tan u' = \tan \nu' + c U \sec^2 \nu' + c^2 \sec^2 \nu' (V + U^2 \tan \nu')$$
 111r

$$\sin 2u' = \sin 2\nu' (1 + 2c U \cot 2\nu')$$
 (to first order in c)

$$\tan \phi' = \tan \nu' \csc a_0, \ 1 + \tan^2 \nu' \csc^2 a_0 = \sec^2 \phi'$$
 111s

$$U = - (A \cot \nu' + (1/8) \sin 2\nu'), A = - (\nu'/2) \tan^{2}a_{0} \tan \nu'$$

$$\Omega + (\nu'/2) \sin a_{0} \sec^{2}a_{0} = -A \csc^{2}a_{0} \cot \phi'$$
111t

In these formulas, α_0 is the complement of the parametric latitude of the vertex of the great

elliptic arc. To see this, find on page 119 of Forsyth, the expression

$$\sin \alpha_{0} = (\tan \phi_{0}) / [(p \sec^{2} \phi_{0} - 1) (p' \sec^{2} \phi_{0} + 1)]^{1/2},$$

ere $p = \sin^{2} \frac{1}{2} (\theta_{1} + \theta_{2}) / \sin \theta_{1} \sin \theta_{2}$ (112)

$$p' = \cos^2 \frac{1}{2} (\theta_1 + \theta_2) / \sin \theta_1 \sin \theta_2$$

wh

Now replace Forsyth's θ_1 and θ_2 by 90 - θ_1 , 90 - θ_2 respectively and his ϕ_0 by $\Delta\lambda/2$. Then find:

 $\tan \phi_0 = \tan (\Delta \lambda / 2) = (1 - \cos \Delta \lambda) / \sin \Delta \lambda$ $p \sec^2 \phi_0 - 1 = [(1 - \cos \Delta \lambda) / \sin^2 \Delta \lambda] (1 + \sec \theta_1 \sec \theta_2 - \tan \theta_1 \tan \theta_2) - 1$ $p' \sec^2 \phi_0 + 1 = [(1 - \cos \Delta \lambda) / \sin^2 \Delta \lambda] (-1 + \sec \theta_1 \sec \theta_2 + \tan \theta_1 \tan \theta_2) + 1$ (113)

The values from (113) placed in (112) give

 $\sin \alpha_0 = \sin \Delta \lambda / (\tan^2 \theta_1 + \tan^2 \theta_2 - 2 \tan \theta_1 \tan \theta_2 \cos \Delta \lambda + \sin^2 \Delta \lambda)^{1/2}$ (114)

Now the right member of (114) is $\cos \theta_0$ where θ_0 is the parametric latitude of the vertex of the great elliptic arc [17]. (See also GEODESICS AND PLANE ARCS ON AN OBLATE

SPHEROID, L. E. Ward, American Mathematical Monthly, Aug.-Sept., 1943 page 427).

From 111a, 111b, 111c, 111m, 111n we have, retaining terms to c² inclusive:

$$\Phi = \phi' + c \left(\Omega + \frac{\nu'}{2} \sec \alpha_0 \tan \alpha_0\right) \tag{115}$$

+ $c^{2} [\Psi + \frac{1}{2} \sec \alpha_{0} \tan \alpha_{0} \{U + A\nu'(1 + \csc^{2}\alpha_{0}) + (1/8)\nu'(1 - 6\tan^{2}\alpha_{0})\}]$

If R, S are the coefficients respectively of c and c² in (115), then

 $\tan \Phi = \tan \phi' + c \sec^2 \phi' R + c^2 \sec^2 \phi' (S + R^2 \tan \phi')$ (116)

With the values of R and S from (115) and the values of $\Omega + (\nu'/2) \sec \alpha_0 \tan \alpha_0$ and U

from 111t, cot ϕ from 111s, we can write (116) as

ta

$$\begin{array}{c} \sin \Phi = \tan \phi' - c \ A \ \cot \nu' \csc a_{0} \sec^{2} \phi' \\ + c^{2} \sec^{2} \phi' \\ \left[\begin{array}{c} \Psi + A^{2} \ \cot \nu' \csc^{3} a_{0} \\ + \frac{1}{2} \ \sin a_{0} \sec^{2} a_{0} \\ \left[A \left[\nu' (1 + \csc^{2} a_{0}) - \cot \nu' \right] \\ - (1/8) \ \sin 2\nu' + \frac{\nu}{8} (1 - 6 \tan^{2} a_{0}) \right] \end{array} \right]$$

$$(117)$$

From 111h, 111o, 111r we write a second formula for tan Φ :

$$\begin{aligned} & = \tan \nu' \csc a_0 - cA \left(\csc^2 \nu' + \cot^2 a_0 \right) \tan \nu' \csc a_0 \\ & + c^2 \tan \nu' \csc a_0 \\ & = \frac{1}{4} \left(2 - \csc^2 \nu' - B \cot a_0 + (9/64) + (1/32) \sin^2 \nu' \right) \\ & + \frac{A}{4} \left(2 - \csc^2 \nu' \right) - (1/16) \sec^2 a_0 \\ & + A^2 \left(\csc^2 \nu' \csc^2 a_0 + \cot^4 a_0 + \frac{1}{2} \cot^2 a_0 \right) \end{aligned}$$
(118)

From 111g, 111e, 111k, 111p, 111q, 111t we can write:

C

$$\cos \theta = \cos a_0 \cos \nu' + c \cdot 0$$

$$+ c^2 \cos a_0 \cos \nu' \left(\frac{A}{4} \cos 2 \nu' - V \tan \nu' - (5/64) \sin^2 \nu' - (3/32) \sin^4 \nu' \right)$$

$$- B \tan a_0 - A^2 (1 + \frac{1}{2} \cot^2 a_0 + \frac{1}{2} \cot^2 \nu')$$

$$(119)$$

Now in (119), the coefficient of c was zero as it should be and the coefficient of c^2 must be zero since $\cos \theta = \cos \alpha_0 \cos \nu'$. Placing the coefficient of c^2 in (119) equal to zero find:

$$- B \cot a_{0} = A^{2} (1 + \frac{1}{2} \cot^{2} a_{0} + \frac{1}{2} \cot^{2} \nu') \cot^{2} a_{0} - \frac{A}{4} \cos 2 \nu' \cot^{2} a_{0} + V \tan \nu' \cot^{2} a_{0} + (5/64) \sin^{2} \nu' \cot^{2} a_{0} + (3/32) \sin^{4} \nu' \cot^{2} a_{0}$$
(120)

With the value of – B cot α_0 from (120) placed in the second order term of (118) and with some manipulation through the identities 111s, we can write (118) as:

$$\tan \Phi = \tan \nu' \csc a_0 - c \operatorname{A} \cot \nu' \csc a_0 \sec^2 \phi' + c^2 \csc a_0 \sec^2 \phi' \left(\operatorname{A}^2 \cot \nu' (1 + (3/2) \cot^2 a_0) + V + \frac{A}{4} (\sin 2 \nu' - \cot \nu') + (1/16) \sin 2\nu' - (3/256) \sin 4\nu' - (1/32) \sin 2\nu' \tan^2 a_0 \right)$$
(121)

From (117) and (121), since $\tan \phi' = \tan \nu' \csc \alpha_0$ from 111s, the coefficients of the terms in c and c² must be respectively equal. Equating the second order terms in (117) and (121) and solving for V we find:

$$V = \Psi \sin a_0 - \frac{1}{2} A^2 \cot \nu' \cot^2 a_0$$

$$+ \frac{A}{4} \left[2\nu' \tan^2 a_0 (1 + \csc^2 a_0) - \sin 2\nu' + \cot \nu' (1 - 2 \tan^2 a_0) \right]$$

$$+ \frac{\nu'}{16} \tan^2 a (1 - 6 \tan^2 a_0) - \frac{\sin 2\nu'}{16} + \frac{3 \sin 4\nu'}{256} - \frac{\tan^2 a_0 \sin 2\nu'}{32}$$
(122)

From 111i, 111b, 111m, 111p, 111q, the value of U in terms of A from 111t, and V from (122) we may write:

$$\frac{S}{a} = \nu' + c \left[(1/8) \sin 2\nu' - A \cot \nu' - \frac{\nu'}{4} (1 + 2 \tan^2 \alpha_0) \right]$$

$$+ c^2 \left[\Psi \sin \alpha_0 - \frac{1}{2} A^2 \cot^2 \alpha_0 \cot \nu' + \frac{A}{4} (\sin 2\nu' - 2\nu') + (1/256) \left[8 \sin 2\nu' (1 - 3 \tan^2 \alpha_0) - \sin 4\nu' \right] + (3/64) \nu' (4 \tan^2 \alpha_0 - 1) \right]$$
(123)

Referring (123) to the end points of the geodesic arc we have:

$$\frac{S}{a} = (\nu_{2}' - \nu_{1}') + c \left[(1/8) \left(\sin 2\nu_{2}' - \sin 2\nu_{1}' \right) - A \left(\cot \nu_{2}' - \cot \nu_{1}' \right) - \frac{1}{4} (\nu_{2}' - \nu_{1}') \left(1 + 2\tan^{2}a_{0} \right) \right] \\ + c^{2} \left[-\frac{1}{2}A^{2} \cot^{2}a_{0} \left(\cot \nu_{2}' - \cot \nu_{1}' \right) + \frac{A}{4} \left[\left(\sin 2\nu_{2}' - \sin 2\nu_{1}' \right) - 2 \left(\nu_{2}' - \nu_{1}' \right) \right] \\ + \left(1/256 \right) \left[8 \left(1 - 3\tan^{2}a_{0} \right) \left(\sin 2\nu_{2}' - \sin 2\nu_{1}' \right) - \left(\sin 4\nu_{2}' - \sin 4\nu_{1}' \right) \right] \\ + \left(3/64 \right) \left(\nu_{2}' - \nu_{1}' \right) \left(4\tan^{2}a_{0} - 1 \right) \right]$$
(124)

Note that the term $\Psi \sin \alpha_0$ vanishes in (124).

From 111t we have from the expression for A that:

$$-A \left(\cot \nu_{2}' - \cot \nu_{1}'\right) = \frac{\tan^{2} a_{0}}{2} \quad (\nu_{2}' - \nu_{1}'),$$
(125)

$$A = \frac{1}{4} (\nu_2' - \nu_1') \tan^2 a_0 [\cot (\nu_2' - \nu_1') - \csc (\nu_2' - \nu_1') \cos (\nu_1' + \nu_2')]$$

We list also for reference the identities:

$$\sin 2\nu'_{2} - \sin 2\nu'_{1} = 2 \sin (\nu'_{2} - \nu'_{1}) \cos (\nu'_{1} + \nu'_{2}), \qquad (126)$$
$$\sin 4\nu'_{2} - \sin 4\nu'_{1} = 2 \sin 2(\nu'_{2} - \nu'_{1}) [2 \cos^{2}(\nu'_{1} + \nu'_{2}) - 1]$$

Applying (125) and (126) to (124) we obtain:

$$\frac{S}{a} = (\nu_{2}' - \nu_{1}') - (c/4) \left[(\nu_{2}' - \nu_{1}') - \sin(\nu_{2}' - \nu_{1}') \cos(\nu_{1}' + \nu_{2}') \right]$$

$$+c^{2} \left[\frac{A}{2} \sin(\nu_{2}' - \nu_{1}') \cos(\nu_{1}' + \nu_{2}') - \frac{A}{4} (\nu_{2}' - \nu_{1}') + (3/64) (\nu_{2}' - \nu_{1}') (4\tan^{2}a_{0} - 1) \right]$$

$$+ (1/16) (1 - 3\tan^{2}a_{0}) \sin(\nu_{2}' - \nu_{1}') \cos(\nu_{1}' + \nu_{2}') - (1/128) \sin 2 (\nu_{2}' - \nu_{1}') \left[2\cos^{2}(\nu_{1}' + \nu_{2}') - 1 \right]$$

$$(127)$$

Note that the first two terms of (127) are equivalent to Forsyth's equation, page 120 of his treatise.

Now for the value of c, we find on page 97 of Forsyth, that for approximations involving f^2 (second order in the flattening) a value of a that is accurate up to f inclusive must be substituted in the first term of c. Hence from 111d, 111f, 111k we have

$$c = 2f \cos^2 a_0 + 3f^2 \cos^2 a_0 - 4f^2 \cos^4 a_0 (1 + 2A) .$$
(128)

This value of c placed in (127) with the value of A from (125) gives:

$$\frac{S}{B} = (\nu_{2}^{\prime} - \nu_{1}^{\prime}) - (f/2) \cos^{2} a_{0} [(\nu_{2}^{\prime} - \nu_{1}^{\prime}) - \sin(\nu_{2}^{\prime} - \nu_{1}^{\prime}) \cos(\nu_{1}^{\prime} + \nu_{2}^{\prime})]$$
(129)
+ f²
$$\frac{1}{4} (\nu_{2}^{\prime} - \nu_{1}^{\prime})^{2} \cot(\nu_{2}^{\prime} - \nu_{1}^{\prime}) \cos^{2} a_{0} - \frac{1}{4} (\nu_{2}^{\prime} - \nu_{1}^{\prime})^{2} \cot(\nu_{2}^{\prime} - \nu_{1}^{\prime}) \cos^{4} a_{0} - \frac{1}{4} (\nu_{2}^{\prime} - \nu_{1}^{\prime})^{2} \csc(\nu_{2}^{\prime} - \nu_{1}^{\prime}) \cos^{2} a_{0} \cos(\nu_{1}^{\prime} + \nu_{2}^{\prime}) + \frac{1}{4} (\nu_{2}^{\prime} - \nu_{1}^{\prime})^{2} \csc(\nu_{2}^{\prime} - \nu_{1}^{\prime}) \cos^{4} a_{0} \cos(\nu_{1}^{\prime} + \nu_{2}^{\prime}) - (1/16) \sin 2 (\nu_{2}^{\prime} - \nu_{1}^{\prime}) \cos^{4} a_{0} \cos^{2} (\nu_{1}^{\prime} + \nu_{2}^{\prime}) + (1/16) (\nu_{2}^{\prime} - \nu_{1}^{\prime}) \cos^{4} a_{0} + (1/32) \sin 2 (\nu_{2}^{\prime} - \nu_{1}^{\prime}) \cos^{4} a_{0}$$

Now in (129) let $\alpha_0 = .90^\circ - \theta_0$, $d_1 = \nu'_1$, $d_2 = \nu'_2$, $d = d_2 - d_1 = \nu'_2 - \nu'_1$ and the equation becomes:

$$\frac{S}{a} = d - (f/2) \left[d \sin^2 \theta_0 - \sin d \sin^2 \theta_0 \cos (d_1 + d_2) \right]$$

$$+ f^2 \begin{bmatrix} \frac{1}{4} d^2 \cot d \sin^2 \theta_0 - \frac{1}{4} d^2 \cot d \sin^4 \theta_0 \\ -\frac{1}{4} d^2 \csc d \sin^2 \theta_0 \cos (d_1 + d_2) \\ +\frac{1}{4} d^2 \csc d \sin^4 \theta_0 \cos (d_1 + d_2) \\ -(1/16) \sin 2d \sin^4 \theta_0 \cos^2 (d_1 + d_2) + (1/16) d \sin^4 \theta_0 + (1/32) \sin 2d \sin^4 \theta_0 \end{bmatrix}$$
(130)

Since θ_0 is the parametric latitude of the vertex of the Great elliptic arc, we have (or may place)

$$X = \frac{(\sin \theta_1 + \sin \theta_2)^2}{1 + \cos d} + \frac{(\sin \theta_1 - \sin \theta_2)^2}{1 - \cos d} = 2 \sin^2 \theta_0,$$
(131)
$$Y = \frac{(\sin \theta_1 + \sin \theta_2)^2}{1 + \cos d} - \frac{(\sin \theta_1 - \sin \theta_2)^2}{1 - \cos d} = 2 \sin^2 \theta_0 \cos (d_1 + d_2)$$

From (131) $\sin^2\theta_0 = X/2$, $\sin^2\theta_0 \cos(d_1 + d_2) = Y/2$, and we can write (130) in the form: $\frac{S}{a} = d - (f/4) (Xd - Y \sin d)$ $+ (f^2/128) \begin{bmatrix} (16d^2 \cot d) X - (16d^2 \csc d) Y \\ + (2d + \sin 2d - 8d^2 \cot d) X^2 \\ + (8d^2 \csc d) XY - (2 \sin 2d) Y^2 \end{bmatrix}$ (132)

If we factor sin d out of every term of (132), we can write:

$$S = a \sin d [T - (f/4) (TX - Y) + (f^2/64) (A_0X + B_0Y + C_0X^2 + D_0XY + E_0Y^2)]$$

$$T = d/\sin d, E_0 = -2 \cos d, A_0 = -D_0E_0, C_0 = T - \frac{1}{2}(A_0 + E_0),$$
(133)

 $D_0 = 4T^2$, $B_0 = -2 D_0$, d is the spherical distance between the points $P_1(\theta_1, \lambda_1)$ and $P_2(\theta_2, \lambda_2)$ given by some spherical formula as

 $\cos d = \sin \theta_1 \sin \theta_2 + \cos \theta_1 \cos \theta_2 \cos \Delta \lambda, \ \Delta \lambda = \lambda_2 - \lambda_1.$

COMPARISON WITH AN EXISTING EXPANSION

On page 8, GIMRADA Research Note No. 11, E. M. Sodano, April 1963 [23] one finds the following formula:

$$\frac{S}{b_0} = (1 + f + f^2) \phi + a[(f + f^2) \sin \phi - (f^2/2) \phi^2 \csc \phi] + m \left(-\frac{f + f^2}{2} \phi - \frac{f + f^2}{2} \sin \phi \cos \phi + \frac{f^2}{2} \phi^2 \cot \phi \right)$$
(134)
$$+ m^2 \left(\frac{f^2}{16} \phi + \frac{f^2}{16} \sin \phi \cos \phi - \frac{f^2}{2} \phi^2 \cot \phi - \frac{f^2}{8} \sin \phi \cos^3 \phi \right) + am \left(\frac{f^2}{2} \phi^2 \csc \phi + \frac{f^2}{2} \sin \phi \cos^2 \phi \right) - a^2 (f^2/2) \sin \phi \cos \phi$$

Now the correspondence between the parameters as used in (133) and those of Sodano are:

 $m(Sodano) = X/2, a(Sodano) = \frac{1}{4}(Y + X \cos d), \phi(Sodano) = d, b_0(Sodano) = a(1 - f)$ (135) (a is equatorial radius, f the flattening).

If we substitute from (135) into (134) , retaining terms to f^2 inclusive, we can write (134) as

$$\frac{S}{a} = d - (f/4) (Xd - Y \sin d) + (f^2/128) \begin{bmatrix} (16d^2 \cot d) X - (16d^2 \csc d) Y \\ + (2d + \sin 2d - 8d^2 \cot d) X^2 \\ + (8d^2 \csc d) XY - (2 \sin 2d) Y^2 \end{bmatrix}$$
(136)

Now comparing (132) and (136) find that the equations are identical which gives an independent check of Sodano's inverse formula.

COMPUTING FORM IN TERMS OF PARAMETRIC LATITUDE

Given on the reference ellipsoid the points $P_1(\theta_1, \lambda_1)$, $P_2(\theta_2, \lambda_2)$; P_2 west of P_1 , west longitudes considered positive. (Geodetic latitudes are converted to parametric by tan $\theta = (1-f)$. tan ϕ or an equivalent formula). Formulas (133) may be used as follows:

With
$$\theta_{\rm m} = \frac{1}{2}(\theta_1 + \theta_2), \ \Delta \theta_{\rm m} = \frac{1}{2}(\theta_2 - \theta_1), \ \Delta \lambda = \lambda_2 - \lambda_1, \ \Delta \lambda_{\rm m} = \frac{\Delta \lambda}{2}$$

let

$$\mathbf{k} = \sin \,\theta_{\mathbf{m}} \, \cos \,\Delta \theta_{\mathbf{m}}, \, \mathbf{K} = \sin \,\Delta \theta_{\mathbf{m}} \, \cos \,\theta_{\mathbf{m}},$$

$$\begin{split} \mathrm{H} &= \cos^2 \Delta \theta_\mathrm{m} - \sin^2 \theta_\mathrm{m} = \cos^2 \theta_\mathrm{m} - \sin^2 \Delta \theta_\mathrm{m}, \\ \mathrm{L} &= \sin^2 \Delta \theta_\mathrm{m} + \mathrm{H} \sin^2 \Delta \lambda_\mathrm{m} = \sin^2 \mathrm{d}/2, \ 1 - \mathrm{L} = \cos^2 \mathrm{d}/2, \end{split}$$

$$\begin{aligned} \cos d &= 1 - 2L, h = \sin^2 d = 4L(1 - L), U = 2k^2/(1 - L), \\ V &= 2K^2/L, X = U + V, Y = U - V \\ T &= (d/\sin d) = 1 + (1/6)h + (3/40)h^2 + (5/112)h^3 + (35/1152)h^4 + (63/2816)h^5 + \dots \\ E_0 &= -2\cos d, A_0 = -D_0E_0 = -4E_0T^2, D_0 = 4T^2, B_0 = -2D_0, C_0 = T - \frac{1}{2}(A_0 + E_0) \end{aligned}$$
(137)
S = a sin d [T - (f/4) (TX - Y) + (f^2/64) (A_0X + B_0Y + C_0X^2 + D_0XY + E_0Y^2)]
sin (a_2 + a_1) = (K sin $\Delta\lambda$)/L, sin (a_2 - a_1) = (k sin $\Delta\lambda$)/(1 - L)
 $\frac{1}{2}(\delta a_2 + \delta a_1) = - (f/2)$ TH sin (a_1 + a_2)
 $\frac{1}{2}(\delta a_2 - \delta a_1) = - (f/2)$ TH sin (a_2 - a_1)
 $a_{1-2} = a_1 + \delta a_1, a_{2-1} = a_2 + \delta a_2. \end{aligned}$

The azimuth formulas of (137) are obtained by manipulation of expressions given on pages 126-128 of THE DISTANCE BETWEEN TWO WIDELY SEPARATED POINTS ON THE SURFACE OF THE EARTH, W. D. Lambert, Journal of the Washington Academy of Sciences, Vol. 32, No. 5, May 15, 1942, [13]. Note that in the distance and azimuth formulas of (137), the same quantities H, T, L, k, K are used.

Figure 22 in an example of the arrangements of equations (137) and computations for comparison with those of Figure 21, page 80. The results are:

True distance meters	Geodetic Fi	Latitude g. 21	Parametri Fi	Parametric Latitude Fig. 22			
	δf	δf^2	δf	δf^2			
8,466,621.01	618.26	621.11	622.30	621.08			
True Azimuths							
109°57'17"41		16".86		16".68			
265° 37' 10".59		10 "71		11".37			

As was to be expected both approximations are adequate within any operational requirements. The coefficients A_0 , B_0 , C_0 , D_0 , E_0 of the parametric latitude form, Figure 22, are slightly less complicated than those of the geodetic form, Figure 21. But no conversion to parametric latitudes needs to be made for Figure 21. For purely geodetic computations further investigation needs to be made and it is suggested that computations be made using both forms against the computed lines contained in the revised issues of ACIC Reports 59 and 80, Sept. 1960 and December 1959. [12]

DISTANCE COMPUTING FORM, FORSYTH-ANDOYER-LAMBERT

TYPE APPROXIMATION WITH SECOND ORDER TERMS

$\tan\,\theta=0.996609925\,\tan\,\phi$

Clarke Spheroid 1866, a = 6,378,206.4 meters

 $f/2 = 0.00169503765, \ f/4 = 0.000847518825, \ f^2/64 = 0.1795720390 \times 10^{-6}$

1 radian = 206,264.8062 seconds

		0	11
$\phi_1 = 85825.0$	1. PANAMA	λ ₁ 74 34	24.0
ϕ_2 <u>21 26 06.0</u>	2. HAWAII	λ_2 <u>158 01</u>	33.0
$\theta_{\rm m} = \frac{1}{2} (\theta_1 + \theta_2) \ 15^{\circ} \ 09^{\circ} \ 22".644$	2. Always west of 1.	$\Delta \lambda = \lambda_2 - \lambda_1 \ 78^{\circ}$	27' 09".0
$\Delta \theta_{\rm m} = \frac{1}{2} \left(\theta_{\rm 2} - \theta_{\rm 1} \right) \underline{6} \underline{12} \underline{45.386}$	$\frac{\theta_1}{\theta_2} \frac{8^\circ}{21} \frac{56!}{22} \frac{37!!258}{08.029}$	$\Delta \lambda_{\rm m} = \frac{1}{2} \Delta \lambda_{\rm m} = \frac{39}{2}$	13 34.5
$\sin \theta_{\rm m} + 0.26145290$	$\sin\Delta\theta_{\rm m}$ + 0.10821810	$\sin \Delta \lambda + 0$).97975909
$\cos \theta_{\rm m} = + 0.96521623$	$\cos \Delta \theta_{\rm m} + 0.99412718$	$\sin \Delta \lambda_m +$	0.63238428
$k = \sin \theta_{\rm m} \cos \Delta \theta_{\rm m} + 0.25991743$	$\mathbf{K} = \sin \Delta \boldsymbol{\theta}_{\mathrm{m}} \cos \boldsymbol{\theta}_{\mathrm{m}}$	+ 0.10445387	_
$H = \cos^2 \Delta \theta_m - \sin^2 \theta_m = \cos^2 \theta_m - \sin^2 \Delta \theta_m$	$\theta_{\rm m} + 0.91993122$	1 – L	+ 0.62039926
$L = \sin^2 \Delta \theta_m + H \sin^2 \Delta \lambda_m + 0.3796007$	74	cos d = 1 -	· 2L + 0.24079852
d <u>+ 1.3276078324</u>	sin d + 0.97057512	$T = d/\sin d$	+ 1.367856856
$U = 2k^2/(1 - L) + 0.2177857865$	$V = 2K^2/L + 0.05748466$	E = -2 c	os d <u>- 0.48159704</u>
X = U + V + 0.2752704532	Y = U - V + 0.16030111	.98 $D = 4T^2$	+7.484129512
$A = -DE = -4ET^{2} + 3.604334620$	$C = T - \frac{1}{2}(A + E) - 0.193$	51193 B = -	2D - 14.968259024
X(A + CX) + 0.977503686	Y (B + EY) - 2.4118040	D17 DXY	+ 0.330245911
(TX - Y) + 0.216229457	$\delta f = -$	- (f/4) (TX – Y)	-1.83259×10^{-4}
$T + \delta f + 1.367673597$	$S_1 = 3$	a sin d (T + δf)	8,466,622.30 meters
$\Sigma = X(A + CX) + Y(B + EY) + DXY -$	$1.10405442 \qquad \delta f^2 = + (f^2/$	64) Σ <u>- 1.9826</u>	× 10 ⁻⁷
$T + \delta f + \delta f^2 + 1.367673399$	$S_2 = a \sin a$	$d (T + \delta f + \delta f^2) $	3,466,621.08 meters
			0 1 11
$\sin (\alpha_2 + \alpha_1) = (K \sin \Delta \lambda)/L - 0.269$	59808	$a_1 + a_2$	375 38 25.266
$\sin (a_2 - a_1) = (k \sin \Delta \lambda) / (1 - L) + 0.$	41047190	$a_2 - a_1$	155 45 55.864
$\frac{1}{2}(\delta a_1 + \delta a_2) = -(f/2) H T \sin(a_2 + a_1)$	$-5.75032185 \times 10^{-4}$	$\delta a_1 + 0.30$	0473136×10^{-3}
$\frac{1}{2}(\delta a_2 - \delta a_1) = - (f/2) \text{ HT sin } (a_2 - a_1)$	$-$ 8.75505321 \times 10 ⁻⁴	$\delta a_2 = 1.45$	50537506×10^{-3}
O 9 II			0 1 11
a ₁ 109 56 14.701	_	a2	265 42 10.565
$\delta a_1 + 1 = 01.977$	_	δα2	- 4 59.195
a ₁₋₂ 109 57 16.678	_	a ₂₋₁	265 37 11.370

 $a_{1-2} = a_1 + \delta a_1$

 $a_{\texttt{2-1}} = a_{\texttt{2}} + \delta a_{\texttt{2}}$

TRANSFORMATION FROM SECOND ORDER FORM IN GEODETIC LATITUDE TO SECOND ORDER IN PARAMETRIC

In terms of geodetic latitude, the equations corresponding to (132) are:

$$\frac{s}{a} = d' - (f/4) (X'd' - 3Y' \sin d') + (f^2/128) (AX' + BY' + CX'^2 + DX'Y' + EY'^2) A = 64d' + 16d'^2 \cot d', B = -96 \sin d' - 16d'^2 \csc d', (138) C = -30d' - 15 \sin 2d' - 8d'^2 \cot d', D = 48 \sin d' + 8d'^2 \csc d', E = 30 \sin 2d' (See Equation (109), page 78.
equation (132) is written here in the form:
$$\frac{s}{a} = d - (f/4) (Xd - Y \sin d) + (f^2/128) (A_0X + B_0Y + C_0X^2 + D_0XY + E_0Y^2)$$
(139)$$

$$A_0 = 16d^2 \cot d$$
, $B_0 = -16d^2 \csc d$, $C_0 = 2d + \sin 2d - 8d^2 \cot d$,

$$D_0 = 8d^2 \csc d$$
, $E_0 = -2 \sin 2d$

E

Now we should be able to find transformation equations of the form:

$$d' = d'(d, X, Y), X' = X'(X, Y, d), Y' = Y'(Y, X, d)$$
(140)

which when substituted in (138) should produce equations (139).

The definitions of X', Y' and X, Y are:

$$X' = 2 \sin^2 \phi_0, X = 2 \sin^2 \theta_0$$
 (141)

 $Y' = 2 \sin^2 \phi_0 \cos (d_1' + d_2'), Y = 2 \sin^2 \theta_0 \cos (d_1 + d_2)$

where ϕ_0 , θ_0 are respectively geodetic, parametric latitude of the vertex of the great elliptic arc. From the equation tan $\theta = (1 - f) \tan \phi$, or equivalent, we find:

$$\phi_0 = \theta_0 + f \sin \theta_0 \cos \theta_0 (1 + f \cos^2 \theta_0). \tag{142}$$

From the values indicated by Forsyth on page 120, of his treatise, to first order in f, extending the results to second order in f we find:

$$d' = d - (f/2) Y \sin d + (f^2/16) [4Y (X - 3) \sin d + (2Y^2 - X^2) \sin 2d]$$
(143)
and to first order in f,

$$\cos (d_1' + d_2') = \cos (d_1 + d_2) + f \cos d \sin^2 \theta_0 - f \cos d \sin^2 \theta_0 \cos^2 (d_1 + d_2).$$
(144)

From (142), to first order in f, find

$$2\sin^2\phi_0 = 2\sin^2\theta_0 (1+2f\cos^2\theta_0).$$
(145)

From (143), to first order in f, find
sin d' = sin d - (f/4) Y sin 2d (146)
From (141), (144), and (145) find

$$X' = X + 2fX - fX^2$$
 (147)
 $Y' = Y + 2fY - fXY + (f/2) (X^2 - Y^2) \cos d$.
Hence the transformations (140) are from (143), (146), and (147) the following:
 $d' = d - (f/2) Y \sin d + (f^2/16) [4Y (X - 3) \sin d + (2Y^2 - X^2) \sin 2d]$
sin d' = sin d - (f/4) Y sin 2d
 $X' = X + 2fX - fX^2$ (148)

$$(Y' = Y + 2fY - fXY + (f/2) (X^2 - Y^2) \cos d$$

Substution of the relations (148) into (138) produces equations (139; providing a second

check of Sodano's formula for the inverse solution

The inverse of the transformations (148) which will carry (139) into (138) are:

$$d = d' + (f/2) Y' \sin d' + (f^2/16) [4Y'(X'-1) \sin d' + (2Y'^2 - X'^2) \sin 2d']$$

sin d = sin d' + (f/4) Y' sin 2d'
X = X' - 2fX' + fX'²
Y = Y' - 2fY' + fX'Y' + (f/2) (Y'^2 - X'^2) cos d'.
(149)

DIFFERENCE FORMULAE FOR THE TWO SECOND ORDER FORMS

From equation (142) to second order in f, find

 $2 \sin^2 \phi_0 = 2 \sin^2 \theta_0 \ (1 + 2f - 2f \sin^2 \theta_0 + 3f^2 - 7f^2 \sin^2 \theta_0 + 4f^2 \sin^4 \theta_0), \tag{150}$ and extending (144) to second order in f

$$\cos (d_1' + d_2') = \cos (d_1 + d_2) + f \sin^2 \theta_0 \cos d \sin^2 (d_1 + d_2)$$
(151)
- (f²/2) sin ² \theta_0 sin ² (d_1 + d_2)
+ sin ² \theta_0 cos (d_1 + d_2)
+ sin ² \theta_0 cos d - (3/2) cos d
+ (3/2) sin ² \theta_0 cos 2d cos (d_1 + d_2)
- (151)

From equations (148), by factoring sin d out of every term of the expression for d', we can write:

$$d' = \sin d \{T - (f/2) Y + (f^2/8) [2Y(X-3) + (2Y^2 - X^2) \cos d]\}$$
(152)
Since we can write $X' = 2 \sin^2 \phi_0$, $X = 2 \sin^2 \theta_0$, $Y' = 2 \sin^2 \phi_0 \cos (d_1' + d_2')$,
 $2 \sin^2 \theta_0 \cos (d_1 + d_2)$ we have from (150) and then combining (150) and (151)

(multiplying respective members together)

Y =

$$X' = X [1 + f(2 - X) \{1 + (f/2) (3 - 2X)\}]$$
(153)

$$Y' = Y [1 + f(2 - X)] + (f/2) (X^2 - Y^2) \cos d$$
(154)

$$+ (f^2/8) \left[4Y (2 - X) (3 - 2X) + (X^2 - Y^2) \{(11 - 5X) \cos d + Y (1 - 3 \cos^2 d)\} \right]$$

From Figure 22 we have

$$\begin{split} X &= 0.2752704532, \ Y = 0.1603011198, \\ \sin d &= 0.97057512, \ \cos d = 0.24079852, \\ T &= 1.367856856, \ f = 0.0033900753, \\ f/2 &= 0.00169503765, \ f^2/8 &= 1.436576317 \times 10^{-6} \end{split}$$

(156)

Using the values from (155) to compute d', X', Y' from (152), (153), (154) find:

 $d' = (0.97057512) (1.367856856 - 2.717164 \times 10^{-4} - 1.2634 \times 10^{-6})$

= (0.97057512) (1.367583876) = 1.327342885;

X' = (0.2752704532) (1.005871239) = 0.27688663;

 $Y' = 0.160301120 + 9.37275 \times 10^{-4} + 2.0440 \times 10^{-5} + 4.068 \times 10^{-6} = 0.16126290.$

From Figure 21, d' = 1.327342885, X' = 0.27688668, Y' = 0.16126298 and comparing with the values from (156), we have a "flat" check for d', 5 in the eighth place for X' and 8 in the eighth place for Y'. Now the first significant figure of f² is 1 in the 5th decimal place and of f³ is 4 in the 8th decimal place. If seven place tables are used, terms in f² are sufficient. If eight figure tables are used, as Peters trigonometric functions, there is some uncertainty in the 8th place of decimals.

Now the corresponding formulas for d, X, Y in the terms of d', X', Y'are found similarly to be, to second order terms in f inclusive;

$$d = \sin d' \{T' + (f/2) Y' + (f^{2}/8) [2 Y'(X'-1) + (2Y'^{2} - X'^{2}) \cos d']\}$$

$$X = X' [1 + f (X'-2) \{1 + (f/2) (2X'-1)\}]$$

$$Y = Y' [1 - f (2 - X')] - (f/2) (X'^{2} - Y'^{2}) \cos d'$$

$$+ (f^{2}/8) \begin{bmatrix} 4Y'(2 - X') (1 - 2X') \\ + (X'^{2} - Y'^{2}) \{(5 - 3X') 2 \cos d' + Y'(1 - 3 \cos^{2}d')\} \end{bmatrix}$$
(157)

From Figure 21 we have

$$X' = 0.276886675, Y' = 0.161262981,$$
 (158)
sin d' = 0.97051129, cos d' = 0.24105566
T' = 1.367673822.

With the values of X', Y', sin d', cos d', T' from (158) and of f, f/2, f²/8 from (155)

we find from (157) that

 $d = (0.97051129) (1.367673822 + 2.73347 \times 10^{-4} - 3.44 \times 10^{-7})$

d = (0.97051129) (1.36794682) = 1.327607833

X = (0.276886675) (0.994162934) = 0.27527047

 $Y = 0.161262981 - 9.42015 \times 10^{-4} - 2.0700 \times 10^{-5} + 8.68 \times 10^{-7} = 0.16030113.$

From (155). X = 0.27527045, Y = 0.16030112, and from Figure 22, d = 1.327607832.

Comparing with (159) we have a difference in d of 1 in the 9th decimal place; in X and Y of 2 and 1 in the 8th decimal place respectively, which is within the computational uncertainties.

From (152), (153), (154), and (157) we can express the differences as functions of either set of variables:

$$\Delta d = d' - d = -(f/2) Y \sin d + (f^2/16) [4Y (X - 3) \sin d + (2Y^2 - X^2) \sin 2d],$$

$$= -(f/2) Y' \sin d' - (f^2/16) [4Y' (X' - 1) \sin d' + (2Y'^2 - X'^2) \sin 2d'];$$

$$\Delta X = X' - X = fX(2 - X) \{1 + (f/2) (3 - 2X)\},$$

$$= fX'(2 - X') \{1 - (f/2) (1 - 2X')\};$$

$$\Delta Y = Y' - Y = fY (2 - X) + (f/2) (X^2 - Y^2) \cos d$$

(160)

(159)

$$+ (f^{2}/8) \begin{bmatrix} 4Y (2 - X) (3 - 2X) \\ + (X^{2} - Y^{2}) \{(11 - 5X) \cos d + Y (1 - 3 \cos^{2}d)\} \end{bmatrix},$$

= fY'(2 - X') + (f/2) (X'^{2} - Y'^{2}) \cos d'
- (f^{2}/8) \begin{bmatrix} 4Y'(2 - X') (1 - 2X') \\ + (X'^{2} - Y'^{2}) \{2(5 - 3X') \cos d' + Y'(1 - 3 \cos^{2}d')\} \end{bmatrix}.

SUMMARY OF DISTANCE COMPUTATIONS INVESTIGATION

As long as accuracy requirements remain within the range of the capabilities of the Andoyer-Lambert formulae, as exhibited in TABLE 3, they are quite adequate and it makes no difference if geographic latitudes are transformed to parametric latitudes first as far as accuracy requirements are concerned relative to hyperbolic electronic measuring systems. However, the formulae for geodetic azimuths are slightly more complicated in terms of geodetic latitude and some of the auxiliary quantities as chord length, dip of the chord, etc. are slightly less difficult to compute when expressed in terms of parametric latitude.

In order to arrange the computing in conformance with the Andoyer-Lambert formulae, equations (17), (48), (52), 56)), and (64) have been rearranged as follows to be expressible in common computational parameters:

The spherical length, d, is determined from formulae as given with Figure 16, $(d = d_1 + d_2);$

 $\begin{array}{l} \cot A = (\cos \theta_1 \tan \theta_2 - \sin \theta_1 \cos \Delta \lambda) / \sin \Delta \lambda \\ \cot B = (\cos \theta_2 \tan \theta_1 - \sin \theta_2 \cos \Delta \lambda) / \sin \Delta \lambda \\ \sin d = \cos \theta_t \sin \Delta \lambda / \sin B = \cos \theta_2 \sin \Delta \lambda / \sin A; \end{array}$

these will compensate for any unfavorable triangle geometry.

The Andoyer-Lambert Formulae are taken in the form [13]

$$\delta d_r = -(f/8) (VQ^2/\sin^2 \frac{1}{2}d + UR^2/\cos^2 \frac{1}{2}d)$$

(1) $s = a(d_r + \delta d_r)$, $Q = \sin \theta_2 - \sin \theta_1$, $R = \sin \theta_1 + \sin \theta_2$. $V = d_r + \sin d$, $U = d_r - \sin d$,

With corresponding geodetic azimuths computed from

T = (f/2) d''/sin d, $\delta A'' = T \cos^2 \theta_2 \sin 2B$,

(2)
$$\delta B'' = T \cos^2 \theta_1 \sin 2A; \ ga_{AB} = 180^\circ - A + \delta A; \ ga_{BA} = 180^\circ + B - \delta E$$

The Normal Section Azimuths may be written

(3)
$$\cot_{n} \alpha_{AB} = -(\cot A)/T_{1} + (e^{2}Q\cos \theta_{1})/(\sin \Delta \lambda)T_{1}\cos \theta_{2}$$
$$\cot_{n} \alpha_{BA} = (\cot B/T_{2} + (e^{2}Q\cos \theta_{2})/(\sin \Delta \lambda)T_{2}\cos \theta_{1}$$
$$T_{e} = (1 - e^{2}\cos^{2}\theta_{2})^{1/2} T_{e} = (1 - e^{2}\cos^{2}\theta_{2})^{1/2}$$

The chord length becomes

(4)
$$c = a (4 \sin^2 d/2 - e^2 Q^2)^{1/2}$$

The angle of dip of the chord may be written

(5) $\beta = \arcsin \left[2b \left(\sin \frac{2}{d} / 2 \right) / cT_1 \right]$

b = semiminor axis of ellipsoid, c = chord length, $T_1 = (1 - e^2 \cos^2\theta_1)^{4/2}$.

The maximum separation of chord and arc becomes

(6)
$$H = (a^2/c) (1 - \cos \frac{1}{2}d) [4 \sin \frac{2}{d} / 2 (\cos^2 d / 2 - M) - e^2 Q^2]^{1/2} / \cos \frac{1}{2}d$$

a = the semimajor axis of ellipsoid, c = chord length, M = $e^2 \sin \theta_1 \sin \theta_2$,

Q = sin θ_2 - sin θ_1 , e = eccentricity of the spheroid.

The geographic coordinates of the point where maximum separation of chord and arc occurs

(7)
$$\tan \lambda = (\cos \theta_2 \sin \Delta \lambda) / (\cos \theta_1 + \cos \theta_2 \cos \Delta \lambda)$$

 $\tan \phi = R/(0.996609925) \sqrt{4'\cos^2 \frac{1}{2}d - R^2}$

where $R = \sin \theta_1 + \sin \theta_2$.

Figure 23, shows the above formulae arranged in a computing form and the computations done over the line MOSCOW TO CAPE OF GOOD HOPE. See line No. 12, TABLE 1, and Figure 17.

AZIMUTHS, NORMAL AXIMUM SEPARATION, XIMUM SEPARATION 83.8 meters, e ² = 6.7686580 × 10 ⁻³ ian = 206,264,8062 seconds	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{cases} g^{a}AB = 180 - A + \delta A - \sqrt{5} - \frac{\sqrt{8}}{3} - \frac{\sqrt{10}}{3} - \frac{\sqrt{5}}{3} - \frac{\sqrt{10}}{3} - \frac{\sqrt{10}}{$
COMPUTATIONS: GEODETIC DISTANCE AND A SECTION AZIMUTHS, CHORD, ANGLE OF DIP, M GEOGRAPHIC COORDINATES OF POINT OF MA Clarke 1866 Ellipsoid: a = 6,378,206,4 meters, b = 6,356,55 f/2 = 1.69503765 × 10 ⁻³ , f/8 = 4,237594 × 10 ⁻⁴ , 1 radi	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ {}_{n} {}_{\alpha} A B = \operatorname{arc} \operatorname{cot} [-(\operatorname{cot} A)/T_{1} + (e^{2} Q \cos \theta_{1})/(\sin \Delta \lambda) T_{1} \cos \theta_{2}] \qquad ^{\prime \prime \prime} \operatorname{Geodetic} $ $ {}_{n} {}_{\alpha} B A = \operatorname{arc} \operatorname{cot} [(\operatorname{cot} B)/T_{2} + (e^{2} Q \cos \theta_{2})/(\sin \Delta \lambda) T_{2} \cos \theta_{1}] \qquad \text{Azimuths} $ $ {}_{n} {}_{\alpha} A B \xrightarrow{\Lambda} \xrightarrow{\Lambda} + \underbrace{4 \mathcal{F}}_{\lambda} \underbrace{\mathcal{I}}_{\lambda} \underbrace{\mathcal{I}}_{\lambda} \underbrace{\mathcal{I}}_{\lambda} \underbrace{\mathcal{I}}_{\lambda} \underbrace{\mathcal{I}}_{\lambda} \Big] \qquad \text{Normal Section (3)} $

(4) Chord: $c = a(4 \sin^2 1/2) - e^2 Q^{2/1/2} \frac{1}{2} Q \delta S_{1} \frac{1}{2} \frac{1}{2$ 22.538 49 52" 484 Normal Section (3)

41 29.803 \ Azimuths

190

n^aBAn^aAB -

25 Maximum separation of chord – arc; $H = (a^2/c) (1 - \cos \frac{1}{2}d) [4 \sin^2 d/2 (\cos^2 d/2 - M) - e^2 Q^2]^{1/2} (\cos^2 d/2 - M) = (\cos^2 d/2 - M) - (\cos^2 d/2 - M) = (\cos^$ 45 Angle of dip of the chord (5) $\beta = \arccos [2b (\sin^2 d/2)/cT_1]$

16,952 01.307 (6) H₀ 1 706, 856 , 210 00 1 - 26 ∧g− 23 14.143 occurs: ⁽⁷⁾ $\tan \lambda = (\cos \theta_1 \sin \Delta \lambda)/(\cos \theta_1 + \cos \theta_2 \cos \Delta \lambda) \frac{1}{\lambda + 10} \frac{1}{\sigma_3} \frac{1}{\lambda + 10} \frac{1}{\sigma_3} \frac{1}{\lambda + 10} \frac{1}{\sigma_3} \frac{1}{\lambda + 10} \frac{1}{\sigma_3} \frac{1}{\lambda + 10} \frac{1}{\lambda + 10} \frac{1}{\sigma_3} \frac{1}{\lambda + 10} \frac$ Geographic coordinates of point where maximum separation

 $(\lambda_1 + \lambda)$

1

0

02693

+.196

E

 $\tan \phi = R/(0.996609925) \sqrt{4 \cos^2 \frac{1}{2} d - R^2}$

Figure 23.

Andoyer-Lambert Approximation (Parametric latitude)

Note in Figure 23 that two values of longitude are given; λ and λg . λ is the longitude associated with the point where maximum separation of chord and arc occurs but corresponding to the rectangular coordinate system as defined in say Figure 14. λg is the true geodetic longitude of the same point and is of course obtained by adding λ to λ , since λ_1 is negative.

While a continuous system based on either the great elliptic section as depicted by Figure 17, or the Forsyth-Andoyer-Lambert approximation, Figure 23, will provide all the information as indicated and accurate enough for hyperbolic electronic systems and any present operational requirements, the Forsyth-Andoyer-Lambert is probably to be preferred because of computational simplicity and existence of programs already operating for high speed computers. Should the need arise for accuracy of the order of 1 meter in distance and 1 second in azimuth over the ellipsoid, the extension to second order terms in the flattening provided by equations (110) or (137), will suffice.

Many formulae are available for geodetic lines and differential corrections are available for transforming elements such as geodetic azimuths to normal section azimuths, etc. [24]. Usually these are complicated, involve tabular material for a particular spheroid of reference, require extensive root computation, and accuracy depends on line length. For instance, Bomford says Rudoe's formulae for the reverse problem, are "Unnecessarily complex for general use," [21], page 106. Also they give "Normal Section" distances - not geodetic. The difference between the geodesic and the Normal Section distance is of 4th order in the eccentricity of the meridian ellipse [24].

Finally this investigation has raised the question as to whether either Andoyer or Lambert should share any credit for the first order approximation formula in terms of parametric latitude recognizable intact in Forsyth's 1895 paper. While Forsyth had an erroneous second order term to the same expansion in terms of geodetic latitude, his first order term was correct and he thus had both so-called Andoyer-Lambert formulae. Gougenheim apparently had in 1950 the first correct expansion in print in terms of geodetic latitude which included the second order terms in the flattening.

REFERENCES (Distance Investigation)

- [8] Conformal Projections, P. D. Thomas, C. & G. S. Special Publication No. 251, G.P.O. 1952, pages 63, 72.
- Helmert, F. R. Die mathematischen und physikalischen Theorieen der Höheren Geodäsie 1, chapters 5 and 7, Leipzig, 1880.
- [10] Conic Sections, C. Smith, MacMillan 1930, page 164.

- [11] Coordinate Geometry of Three Dimensions, R.J.T. Bell, MacMillan, 1937, page 24.
- [12] ACIC, Technical Reports Nos. 59 and 80; Geodetic distance and azimuth computations for lines under 500 miles, Geodetic distance and azimuth computations for lines over 500 miles; June 1956, August 1957, Revisions, Sept. 1960 and Dec. 1959.
- [13] The distance between two widely separated points on the surface of the Earth, W. D. Lambert, Journal of the Washington Academy of Sciences, Vol. 32, No. 5, May 15, 1942.
- [14] H.O. Publication No. 223, Auxiliary tables for Loran computation, 1953 reprint.
- [15] Andoyer, H. Formule donnant la longueur de la géodésique, joignant 2 points de l'ellipsoide donnes par leurs coordonnées géographiques, Bulletin Géodésique, No. 34, 77-81, 1932.
- [16] Hershey, A.V., Hershey, E.J. Techniques for computing Loran maps, U.S. Naval Weapons Laboratory Report No. 1902, January 1964.
- [17] Thomas, P.D., Inverse computation for long lines, Transactions AGU, Vol. 29, No. 6, 763-766, 1948.
- [18] Forsyth, A.R., Geodesics on an oblate spheroid, Messenger of Mathematics, Vol. XXV, 81-124, 1895.
- [19] Wassef, A.M., Note on Forsyth method of direct computation of geodetic distances on an oblate spheroid, Bulletin Géodésique, No. 10, 353-355, 1948.
- [20] Gougenheim, A., Note sur la méthode de Forsyth, Bulletin Géodésique, No. 15, 69-70, 1950.
- [21] Bomford, G., Geodesy, Second Edition, Oxford at the Clarendon Press, 1962.
- [22] Personal Communication, B.K. Meade, Chief of Geoderne Computations, Coast & Geodetic Survey, Dec. 1964.
- [23] Sodano, E.M., General non-iterative solution of the inverse and direct geodetic problems, GIMRADA, Fort Belvoir, April 1963; also published as GIMRADA Research Note 11.
- [24] Geodesy, W.M. Tobey, Geodetic Survey of Canada Publication No. 11, Ottawa, 1928.

APPENDIX 1

Example of

Computations of Loran Lines of Position (Plane Approximation)
Intersections of Loran Lines of Position

(Plane Approximation)

P. D. Thomas, Mathematician

Consider the hyperbolic system as shown in Figure 24. The hyperbolic locus with foci F, F' has for equation

$$(c^{2} - a^{2}) x^{2} - a^{2}y^{2} = a^{2} (c^{2} - a^{2}), (e = \frac{c}{a} > 1)$$
(1)

As a varies (a < c) all the hyperbolas with the fixed foci F, F' (which are 2c apart) are generated.

The hyperbolic locus with the fixed foci F, F" when referred to the same coordinate system as (1), has for equation

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0, (e = d/b > 1).$$
(2)
where one may first compute $\tau = b^{2} - d^{2}, \mu = d \cos \alpha, \nu = d \sin \alpha, S = \tau - c \mu$, and then

$$A = \mu^{2} - b^{2}, B = 2\mu\nu, C = \nu^{2} - b^{2}, D = 2(\tau\mu - c A), E = 2S\nu, F = S^{2} - b^{2}c^{2}.$$

As b varies (b < d) all the hyperbolas with the fixed foci F, F "(which are 2d apart) are generated.

The respective pairs of constants c, a; d, b for each hyperbola are related to the fundamental constants of a Loran line by

$$c = kB_1/2, a = kV_1/2; d = kB_2/2, b = kV_2/2$$
 (2.1)

where $v_i = t_i$, t_i is the time difference, v_i is the difference of light microseconds, B_i is the length (measured in light microseconds) of the direct line (baseline) between two Loran stations. k is the length of a light microsecond in the linear units in which x and y are expressed.¹

Since five distinct points determine a conic uniquely, two conics can have at most four points in common. For the hyperbolas (1) and (2) there will always be four real points of intersection except when F', F, F'' are collinear ($\alpha = 0$) and then there will be two.

ALGEBRAIC SOLUTIONS

¹Loran; Pierce, McKenzie, Woodward; McGraw Hill, 1948, pages 52, 53, 174.

Figure 24. Two plane hyperbolas with a common focus.

 $M=2a^4(D\omega+\delta)/L,~N=a^4(\omega^2+GE^2)/L.$ The corresponding values of y are then given by $y=\pm[~G(x^2-a^2)]^{1/2}/a.$

Equation (3) may be solved by the standard algebraic method² or by any of a number of numerical techniques.³

II. Again, if equations (1) and (2) are written in the forms $x^2 - Qy^2 = a^2$, $x^2 + Uxy + Vy^2 + Wx + Ry + T = 0$, where $Q = a^2/(c^2 - a^2)$, U = B/A, V = C/A, W = D/A, R = E/A, T = F/A and these forms of the equations solved simultaneously with the line of slope m through the common focus F(c,o) whose equation is y = m(x - c), one obtains the two equations:

$$(Qm^{2} - 1) x^{2} - 2cQm^{2}x + (a^{2} + c^{2}Qm^{2}) = 0,$$

$$(1 + Um + Vm^{2}) x^{2} + [W + (R - cU)m - 2cVm^{2}]x + (c^{2}Vm^{2} - cRm + T) = 0.$$
(4)

The resultant of the quadratic equations (4) is the condition that they have the same solutions or correspondingly that the parameter m will be restricted to those values for the points common to the hyperbolas (1) and (2).⁴

The resultant of the quadratics $a_0x^2 + a_1x + a_2 = 0$, $b_0x^2 + b_1x + b_2 = 0$ is given by

$$(a_0b_2 - b_0a_2)^2 + (b_1a_2 - a_1b_2) (a_0b_1 - a_1b_0) = 0.$$

$$(5) m (4) a_0 = Qm^2 - 1, a_1 = -2cQm^2, a_2 = a^2 + c^2Qm^2, b_0 = 1 + Um + Vm^2,$$

 b_1 = [W + (R - cU) m - 2cVm²], b_2 = c^2Vm^2 - cRm + T, and these values placed in (5) lead to the quartic equation

$$\begin{aligned} k_1 m^4 + k_2 m^3 + k_3 m^2 + k_4 m + k_5 &= 0, \end{aligned} \tag{6} \\ \text{where with } G &= c^2 - a^2, \ \Omega &= (a^2 + c^2) \ V + 0 \ (c^2 - T), \ \theta_0 &= R + cU, \ \phi &= c^2 + cW + T, \end{aligned} \\ &= R - cU, \ \xi &= a^2 U - cR, \ \rho &= a^2 - T, \ \rho' &= a^2 + T \ \text{one finds: } k_1 &= (GV + \phi Q)^2 - a^2 \theta_0^2, \end{aligned} \\ &= 2[\ \xi \Omega + 2\eta \ ca^2 V + a^2 RQ \cdot (W + 2c) + c^2 QU(cW + 2T)], \ k_3 &= \xi^2 - a^2 \eta^2 + 2\rho' \Omega + W[4a^2 cV + c\rho Q - a^2 W], \ k_4 &= 2(\rho' \xi - a^2 W \eta), \ k_5 &= \rho'^2 - a^2 W^2. \end{aligned}$$

Again the solutions of (6) may be found by well known algebraic or numerical methods. The values of m obtained are of course the slopes of the lines through F(c,o) and the points of intersection of the hyperbolas (1) and (2).

²College Algebra, H. B. Fine, Page 486.

Fre

ν η k 2

> ³Numerical Mathematical Analysis, J. B. Scarborough, Second Edition, 1950, Pages 62–72. (The Johns Hopkins Press, Baltimore)

⁴College Algebra, H. B. Fine, Page 512.

POLAR SOLUTION

The following procedure involves tables of the trigonometric functions but no root extraction. First express the equations of (1) and (2) in polar form both referred to the common focus F(c,o), and the corresponding rectangular coordinates in terms of the polar parameters. Find for equation (1)

$$r_{a} = \frac{c^{2} - a^{2}}{\pm a - c \cos \theta} \quad (c>a) \quad (see equation (3) PLANE, page 37 with R = r_{a}, \beta = \theta)$$

$$x = c + r_{a} \cos \theta, y = r_{a} \sin \theta \quad (7)$$

and for equation (2)

$$r_{b} = \frac{(d^{2} - b^{2}) \left[d \cos \left(\theta - \alpha \right) \pm b \right]}{d^{2} \cos^{2} \left(\theta - \alpha \right) - b^{2}} \quad (d > b)$$

$$x = c + r_{b} \cos \theta, y = r_{b} \sin \theta \tag{8}$$

Since (7) and (8) express the two hyperbolas in polar form with respect to the same pole F(c,o), a common focus of the two loci, it is clear (see Figure 24) that at a point of intersection P'(x,y) the two values r_a and r_b are equal to a common value r' for a common value of θ and the distances to P' from F' and F'' are then given by $r_1 = r' + 2a$, $r_2 = r' + 2b$.

Equating the values of r_a, r_b from (7) and (8) one obtains

$$\mathbf{r}' = \frac{\mathbf{c}^2 - \mathbf{a}^2}{\pm \mathbf{a} - \mathbf{c} \cos \theta} = \frac{\mathbf{d}^2 - \mathbf{b}^2}{\mathbf{d} \cos (\theta - \alpha) \pm \mathbf{b}}$$
(9)

and since c, d, a are constants, (9) is a relation between the parameters a, b, and θ . That is given any two of the three the third may be found from (9).

Consider a and b given. First write (9) in the form

$$\frac{d \cos (\theta - a) \mp b}{\pm a - c \cos \theta} = \frac{d^2 - b^2}{c^2 - a^2} = K, \text{ whence}$$

$$(d \cos a + cK) \cos \theta + (d \sin a) \sin \theta = \pm aK \pm b. \tag{10}$$

The solution of the trigonometric equation (10) is

$$\begin{aligned} \theta_{i} &= \beta + \gamma_{i} \\ \tan \beta &= (d \sin \alpha) / (d \cos \alpha + cK) \\ \cos \gamma_{i} &= (\pm aK \pm b) \sin \beta / d \sin \alpha. \end{aligned}$$
(11)

From (11) it is seen that in general there will be four angles (γ_i), and thus four values

of θ_i , four values of \mathbf{r}'_i from (9) and four sets of rectangular coordinates from $\mathbf{x}_i = \mathbf{c} + \mathbf{r}'_i \cos \theta_i$, $\mathbf{y}_i = \mathbf{r}'_i \sin \theta_i$ (i = 1,2,3,4) (12)

and for each point of intersection two of the additional distances

$$\mathbf{r}_{i} = \mathbf{r}_{i}^{*} \pm 2\mathbf{b}, \ \mathbf{r}_{i+4} = \mathbf{r}_{i}^{*} \pm 2\mathbf{a}$$
 (i = 1,2,3,4). (13)

A procedure for using equations (9) through (13) will be described and used for two examples. Since a,b,c,d, α will be given, first compute K = $(d^2 - b^2)/(c^2 - a^2)$, $\mu = d \cos \alpha$, $\nu = d \sin \alpha$, tan $\beta = \nu / (\mu + cK)$.

From tan β , using tables, find β and sin β . Then compute $\cos \gamma_i = (\pm aK \pm b) \sin \beta / \nu$ (i = 1,2,3,4), and $\theta_i = \beta + \gamma_i$ (i = 1,2,3,4). Next compute

$$r'_{i} = \frac{c^{2} - a^{2}}{\pm a - c \cos \theta_{i}} = \frac{d^{2} - b^{2}}{d \cos (\theta_{i} - \alpha) \pm b}$$
 $i = 1, 2, 3, 4$

choosing the proper value (with respect to sign) of $\pm a$, $\pm b$ in each member which will make them equal and positive for each value of $heta_i$. Now the rectangular coordinates may be computed from $x_i = c + r'_i \cos \theta_i$, $\gamma_i = r'_i \sin \theta_i$. Useful checks are provided at this point by the relations $(x_i - c)^2 + \gamma_i^2 = r_i^2$ and by $\sum x_i = -H$ from equation (3). $H = 2a^2 (D\beta_0 - \delta)/L$, $\beta_0 = CG + Aa^2$, $\delta = BEG$, $L = \beta_0^2 - GB^2a^2$, $G = c^2 - a^2$, $A = \mu^2 - b^2$, $B = 2\mu\nu$, $C = \nu^2 - b^2$, $D = 2(\tau\mu - cA)$, $E = 2S\nu$, $\tau = b^2 - d^2$, $S = \tau - c\mu$. Finally compute the additional distances $r_i = r_i' \pm 2b$, $\mathbf{r_{i+4}} = \mathbf{r_{i'}} \pm 2\mathbf{a}, \quad (i = 1, 2, 3, 4).$ Example 1. Let c = d = 2, a = b = 1, $a = 45^{\circ}$. sin $a = \cos a = \sqrt{2}/2$. $K = (d^2 - b^2)/(c^2 - a^2) = 1$. $\nu = \mu = 2 (0.70710678) = 1.41421356$. $\tan \beta = \nu/(\mu + cK) = (1.41421356)/(3.41421356) = 0.41421356.$ $\beta = 22^{\circ}30^{\circ}$, $\sin \beta = 0.38268343$. $\cos \gamma_{\rm i} = (\pm {\rm aK} \pm {\rm b}) (\sin \beta/\nu) = (\pm 1 \pm 1) (0.27059805) = \pm (0.54119610), 0.$ $0 < \gamma_i < 2\pi$. $\gamma_1 = 57^\circ 14' \ 05".666, \ 90^\circ, \ 122^\circ 45^\circ \ 54".334, \ 270^\circ$ $\theta_1 = \beta + \gamma_1, \ \theta_1 = 79^{\circ} 44' \ 05'.666, \ \theta_2 = 112^{\circ} 30', \ \theta_3 = 145^{\circ} 15' \ 54''.334, \ \theta_4 = 292^{\circ} 30''$ $\mathbf{r_i'} = \frac{3}{\pm 1 - 2 \cos \theta_i} = \frac{3}{2 \cos (\theta_i - 45) \pm 1}$. (Choose the proper value of ± 1 in each member which

will make them equal and positive for each value of θ_i . If this cannot be done the values of θ_i may be in error.) The work may be arranged in table form as follows:

Table 1.

$\theta_{\mathbf{i}}$	$\theta_i - 45$	$\sin \theta_{i}$	$\cos \theta_{i}$	$\cos{(\theta_i - 45)}$	r,
79 [°] 44 05.666	34 44 05.666	0.98399379	0.17820275	0.82179706	4.6613215
112 30	67 30	0.92387953	-0.38268343	0.38268343	1.6993635
145 15 54.334	100 15 54.334	0.56978031	-0.82179706	-0.17820275	4.6613215
292 30	247 30	-0.92387953	0.38268343	-0.38268343	12.785918

$x_i = 2 + r_i' \cos \theta_i$	$y_i = r_i \sin \theta_i$	$\mathbf{r_i} = \mathbf{r_i'} \pm 2$	$r_{i + 4} = r_{i}' \pm 2$
2.8306603	4.5867114	r ₁ = 2.6613215	r ₅ = 6.6613215
1.3496817	1.5700072	r ₂ = 3.6993635	r ₆ = 3.6993635
-1.8306603	2,6559292	r ₃ = 6.6613215	r ₇ ≈ 2.6613215
6.8929590	-11.812648	r ₄ = 14.785918	r ₈ = 14.785918

Checks were computed but are not shown here. Figure 25 shows the results of Table 1 graphically. Example 2. Let c = 3, a = d = 2, b = 1, a = 30°. sin a = $\frac{1}{2}$, cos $a = \sqrt{3}/2$ K = 0.6, tan $\beta = 1/(\sqrt{3} + 1.8) = 1/(3.5320508) = 0.28312164$, $\nu = 1$, $\mu = \sqrt{3}$. $\beta = 15^{\circ} 48^{\circ} 28^{\circ} 676$. sin $\beta = 0.27241402$, cos $\gamma_1 = \frac{(\pm 1.2 \pm 1)}{2}$ (0.54482804) cos $\gamma_1 = \pm (1.1)$ (0.54482804), $\pm (0.1)$ (0.54482804) cos $\gamma_1 = \pm 0.59931084$, ± 0.054482804 $\gamma_1 = 53^{\circ} 10^{\circ} 46^{\circ} 1000$, $86^{\circ} 52^{\circ} 36^{\circ} 550$, $126^{\circ} 49^{\circ} 14^{\circ} 000$, $273^{\circ} 07^{\circ} 23^{\circ} 450$ $\theta_1 = \beta + \gamma_1$, $\theta_1 = 68^{\circ} 59^{\circ} 14^{\circ} 676$, $\theta_2 = 102^{\circ} 41^{\circ} 05^{\circ} 226$, $\theta_3 = 142^{\circ} 37^{\circ} 42^{\circ} 676$ $\theta_4 = 288^{\circ} 55^{\circ} 52^{\circ} 126$. $r_1' = \frac{5}{\pm 2 - 3 \cos \theta_1} = \frac{3}{2 \cos (\theta_1 - 30) \pm 1}$. The work is arranged in the following table:

Table 2

$\theta_{\mathbf{i}}$	$\theta_i - 30$	$\sin \theta_i$	$\cos \theta_{i}$	$\cos (\theta_{\rm i} - 30)$	r,
68 59 14.676	° , " 38 59 14.676	0.93350166	0.35857308	0.77728423	5.40961166
102 41 05.226	72 41 05.226	0.97559289	-0.21958714	0.29762840	1.88057496
142 37 42.676	112 37 42.676	0.60698032	-0.79471687	-0.38475484	13.015729
288 55 52,126	258 55 52,126	-0.94590914	0.32443167	-0.19198850	4.86994806

$x_i = 3 + r'_i \cos \theta_i$	$y_i = r_i \sin \theta_i$	$\mathbf{r_i} = \mathbf{r_i'} \pm 2$	$\mathbf{r_{i+4}} = \mathbf{r_{i}' \pm 4}$	$\tan heta_{i}$
4.93974111	5.04988146	r ₁ = 3.40961166	r ₅ = 9.40961161	2.60337906
2.58704992	1.83467556	r ₂ = 3.88057496	r ₆ = 5.88057496	- 4.4428508
- 7.34381941	7,90029135	r ₃ = 15.015729	r ₇ = 9.015729	- 0.76376927
4.57996538	- 4.60652838	r ₄ = 6.86994806	r _e = 8.86994806	- 2.91558822

Checks of the computations of Table 2 were made as follows:

1. Using $(x_i - 3)^2 + y_i^2 = r_i^2$ and values from Table 2:

$(x_i - 3)^2$	yi ²	$(x_i - 3)^2 + y_i^2$	r _i ²
3.762 59557	25,501 30276	29,263 89833	29.263 89831
0.170 52777	3.366 03441	3,536 56218	3,536 56218
106.994 59999	26.414 60341	169.409 20340	169,409 20140
2.496 29060	21.220 10372	23,716 39432	23.716 39410

2. From the formulas of (2) and (3) find A = 2, B = $2\sqrt{3}$, C = 0, D = $-6(\sqrt{3} + 2)$, E = $-6(\sqrt{3} + 1)$, F = $9(2\sqrt{3} + 3)$, $\delta = BEG = -60(\sqrt{3} + 3)$, $\beta_0 = a^2A + CG = 8$, L = $\beta_0^2 - a^2 GB^2 = -11 \times 2^4$ H = $-2^3 [-48(\sqrt{3} + 2) + 60(\sqrt{3} + 3)]/11 \times 2^4$, = $\mp (2/11) [26.1961524] = -4.76293680$. From Table 2, $\Sigma x_i = 4.76293700 = -H = 4.76293680$. Again computing N from equations (3), find N = -429.826515. From Table 2 find $\Pi x_i \equiv -429.826494$ and $\Pi x_i = N$. 3. From equation (6), compute the quantities: U = B/A = $\sqrt{3}$, V = C/A = 0, W = D/A = $-3(\sqrt{3} + 2)$, R = E/A = $-3(\sqrt{3} + 1)$, T = F/A = $9(2\sqrt{3} + 3)/2$, $\phi = c^2 + cW + T = 9/2$, $\theta_0 = R + cU = -3$, $\rho' = a^2 + T = \frac{1}{2}(18\sqrt{3} + 35)$, Q = $a^2/(c^2 - a^2) = 4/5$, $k_1 = (GV + \phi Q)^2 - a^2\theta_0^2 = -2^6 3^2/5^2$, $k_s = \rho''^2 - a^2W^2 = +(1189 + 684\sqrt{3})/2^2$. Now from equation (6), $\Pi m_i = \Pi \tan \theta_i = k_s/k_i = -5^2(1189 + 684\sqrt{3})/2^8 3^2 = -25.756540$. Now forming II tan θ_i from the values in Table 2, find

 $\Pi \tan \theta_i = -25.756539.$

Figure (26) depicts the solution graphically.

SUMMARY REMARKS (Plane Approximation)

While the formulas (9) through (13) are convenient for hand computing, since no root extraction is involved, the use of trigonometric tables may make it unsuitable for larger machine coding and computation, and it may be better to use the algebraic solution, equation (3). If the algebraic solution is to be used, the number of significant figures to be retained in the coefficients of the resulting quartic, equation (3), will have to be considered relative to the number of significant figures required in the rectangular coordinates of the intersections points.

If solutions only above the base line, F 'F'', are desired (see Figure 24), then in the trigonometric solution, equations (9) - (13), θ should be limited to $\pi > \theta > a$.

Note that the parameters a and b of the two families of confocal hyperbolas are related to the fundamental constants of a Loran line by the relations (2.1).

Figure 25. Intersection of plane hyperbolas. Example 1.

APPENDIX 2

Computations

Using Andoyer-Lambert First Order Formulae Without Conversion to Parametric Latitude DISTANCE COMPUTING FORM, ANDOYER-LAMBERT APPROXIMATION (No conversion to parametric latitudes) Clarke Spheroid 1866 a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825 1 radian = 206,264.8062 seconds

+ 40 30	37.757	1	Origin		λ	° 17	19	43.780
¢ 40 00	00.000	<u> </u>	Termin	115	× -	18	00	00.000
φ ₂ / / / / / / / / / / / / / / / / / / /	58722		W . C 7		Λ ₂ -		4.0	16 720
$\sin \phi_1 - \frac{\phi_1}{1/2}$	8707	2.	West of 1.	78761	$\lambda = \lambda_2 -$	λ ₁ =	70	22
$\cos \phi_1 - 10022$	0721	sin q		010101	sin	Δλ	00004	200
$\tan \phi_1 - 0040$	9131	cos q	b2 166	Oqqqq	Cos	Δλ	749931	36
$\tan \phi_2 - 8390$	9963	cos d	$l = \sin \phi_1 \sin \phi_2$	+ cos $\phi_1 \cos \phi_1$	$\phi_2 \cos$	Δλ - 3	1992	033
$M = \cos \phi_1 \tan \phi_2 - s$	$in \phi_1 \cos \Delta \lambda$	011	58604	cot A =	М		18333	047
					$\sin \Delta \lambda$			
$N = \cos \phi_2 \tan \phi_1 - s$	$\sin\phi_2\cos\Delta\lambda$	+.0	11 16282	cot B =	$\frac{N}{\sin \Delta \lambda}$	41.	00396	882
cos φ. sinΛ	λ		TILO	1000	SIII AA	121	10	AI 011-
$\sin d = \frac{\sin \varphi + 1}{\sin B}$	+.012622	2 51 sin	AO	4700	- A	10 +	40	76.010
				- 10 -			-9	
$=\frac{\cos\phi_2\sin\phi_2}{\cos\phi_2\sin\phi_2}$	AA +.0126	2 25/ sin	B - 103 7	0498	— В —	44	20 11	. 491
Sin A	12 4 62	XIC	-5	(1 0 1 1)		a Z	33 74	4947
$\mathbf{K} = (\sin \phi_1 - \sin \phi_2)$	1/7	1220	H =	= (d+3 sin d))/(1 - co	s d) 👱	N1262	20120
$L = (\sin \phi_1 + \sin \phi_2)$)2 1.616	1202	G =	= (d - 3 sin d	(1 + cc)	s d)	117 30	02020
$\delta d = (f/4) (HK + G)$	[] <u>~6./</u> 2/220	220	2	s = a (d + δd)	12	1100	o meters
d (radians)	12115	0	ha		s	43.7	1707	n.m.
$d + \delta d (rad)$	12610	77		T = d/s	sin d 🚅	,000	0333	16
2A 269	21	33.0	632 2B	ć	89	40	6 22	.994_
sin 2A 999	93749	3	sin	2B . 99	1999	7210	5	
$U = (f/2) \cos^2 \phi, \sin \theta$	2A - 9.7	97322	65×10-4	$= (f/2) \cos^2 c$	5 sin 21	+9.5	7468111	1×10-4
VT +9.9471	45 X	10-4	LIT	-9.7	976	516	× 10 -	4
$\delta A = VT - II \neq C$	201974	1468	. 01 8B	= -UT + V	+.a	7.0197	44627	1
+ 84 +	6	47.	259	01+1_ R / -		6	47.2	262
- A - 134	40	46.	816	+44	5	3	11.4	97
1 190				. 100				
45	26	00	443	+ 100 0		59	58.75	19
$a_{1-2} = a_{1-2} = 100^{\circ}$	- A : SA		a ₂	1	000, 0	- SD		
$a_{1-2} = a_{AB} = 100$	- A + 0A		α ₂ -	$a_1 = a_{BA} = 1$.ov + B	+ 0D		
Time	No 1 (1	Tee Mel	1		101			

Line No. 1 (See Tables 1,2 - pages 65,66)

DISTANCE COMPUTING FORM, ANDOYER-LAMBERT APPROXIMATION (No conversion to parametric latitudes) Clarke Spheroid 1866 a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825l radian = 206,264.8062 seconds

· · · · · · · · · · · · · · · · · · ·	× .	• •	5- 811
410 00 00.000 TEFM		18 10	10,000
φ ₂ + 1/1359355		1 28	1 04.123
$\sin \phi_1 \frac{1133}{98481756}$ 2. West of 1.	64818	.023	-61535
$\cos \phi_1 - \frac{17626874}{989}$	1 80775	- 99	967188
$\tan \phi_1 = \cos \phi_2 = \cos \phi_2$	cos /	. 99	968177
$\frac{1}{1} \frac{1}{1} \frac{1}$	$\varphi_2 + \cos \varphi_1 \cos \varphi_2 \cos \omega$	+ 004	41.295
$M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda - 7 \cdot \frac{\partial \phi_1}{\partial \lambda} - \frac{\partial \phi_2}{\partial \lambda} + \frac{\partial \phi_1}{\partial \lambda} + \frac{\partial \phi_2}{\partial \lambda} + \frac{\partial \phi_1}{\partial \lambda} + \frac{\partial \phi_1}{\partial \lambda} + \frac{\partial \phi_2}{\partial \lambda} + \frac{\partial \phi_1}{\partial \lambda} + \frac{\partial \phi_2}{\partial \lambda} + \frac{\partial \phi_1}{\partial \lambda} + \frac{\partial \phi_2}{\partial \lambda} + \frac{\partial \phi_1}{\partial \lambda} + \frac{\partial \phi_1}{\partial \lambda} + \frac{\partial \phi_2}{\partial \lambda} + \frac{\partial \phi_1}{\partial \lambda} + \frac{\partial \phi_1}$	$rac{\Delta}{\sin \Delta \lambda}$	/////	10210
$N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda - 000000 \pm 0000000 \pm 0000000000000000$	S cot B = $\frac{N}{r_{1}^{2} - A}$	0000	1483
$\cos\phi, \sin\lambda\lambda$ as $f(x) = f(x)$	sin 🗛	0	4 29 157
$\sin d = \frac{1}{\sin B} \sin A \frac{1}{\sqrt{777}} \sin A$	99007 A_	81 4	7 3 77 70 7
cos de sin A) - 12522645 - 1.00	000000	90 00	0 03.060
$= \frac{\cos \varphi_2 \sin \beta \sin \beta}{\sin A} \sin \beta$	В	/0 -	
$K = (\sin \phi_1 - \sin \phi_2)^2 - \frac{3.1 \times 10^{-1}}{2.1 \times 10^{-1}}$	$H = (d + 3 \sin d) / (1 - \cos d)$	d) <u>317-0</u>	92888
$L = (\sin \phi_1 + \sin \phi_2)^2 - \frac{12057612}{12057612}$	$G = (d - 3 \sin d) / (1 + \cos d)$	s d) GR	312 112 T
$\delta d = (f/4) (HK + GL) + 3 \cdot 2470 \times 72 \cdot 2$	$- s = a (d + \delta d) -$	×1. 848	meters
d (radians) -025232 /632	- s <u>*</u>	. 00010:	5928
	$I = d/\sin d$	10	"+ 120
2A 117 27 18.917 + 00892572	2B 780	0 19	67
$\sin 2A - \frac{1}{10^{-5}} + \frac{1}{$	$\sin 2B = \frac{1}{2} - \frac{1}{2} = \frac{1}{2}$	-4.87	8× 10-8
$U = (1/2) \cos \phi_1 \sin 2A$ $VT - 4.878 \times 10^{-8}$	$f = (1/2) \cos^2 \phi_2 \sin 2\theta_1$ $f = f + f + f + f + f + f + f + f + f + $	× 10 -	5
δA = VT - U - 1. 4722 × 10 - 5	$B = -UT + V - / \cdot$	4724 X	10-5
+ δA - 03.037	δΒ		03-037
-A - 89 44 39,457	B + 90	00 0	03.060
+ 180	+ 180		113
$a_{1-2} - \frac{40}{15} \frac{15}{17.506}$	2-1 270 6	00 00	10-2
$a_{1-2} = a_{AB} = 180^{\circ} - A + \delta A$	$a_{2-1} = a_{BA} = 180^{\circ} + B$	+ 9R	

DISTANCE COMPUTING FORM, ANDOYER-LAMBERT APPROXIMATION

(No conversion to parametric latitudes) Clarke Spheroid 1866 a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825 l radian = 206,264.8062 seconds

0 1 11	,	0	8 88
\$1 69 48 05.701 1. Origi	λ_1	9 31	28.637
\$ <u>70 00 00.000 2. TPPM</u>	inds A2	18 00	00.000
$\sin \phi_1 - 938 \cdot 50257$ 2. West of 1.	$\Delta \lambda = \lambda_2$	- X1= 8 2	2 31, 363
$\cos \phi_1 \cdot 345 \ 2722 \cdot 6 \ \sin \phi_2 \cdot 93$	969262 si	n Δλ 145	65790
tan \$ 2. 718 15224 cos \$ - 34	2 02014 00	s AA - 98	9 33502
$\tan \phi_2 \frac{2.747}{400} \frac{40742}{400} \cos d = \sin \phi_1 \sin \phi_2$	$in \phi_2 + \cos \phi_1 \cos \phi_2 \cos \phi_2$	s Δλ - 998	73458
$M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda + 0.000 13$	$\frac{128}{\text{cot A}} = M$	+.138	22992
$N = \cos \phi \tan \phi - \sin \phi \cos \lambda $	$sin \Delta \lambda$	0000	5499
$W = \cos \phi_2 \sin \phi_1 - \sin \phi_2 \cos \alpha A$	$\sin \Delta$	0	1 11
$\sin d = \frac{\cos \phi_1 \sin \Delta \lambda}{\sin B} \frac{\cancel{4.0502} \cancel{91.03}}{\sin A} \sin A \frac{\cancel{40.0502}}{\cancel{10}} \sin A$	990 58101 A	82 0	07 47.571
$= \cos \phi_2 \sin \Delta \lambda + 050 J 9/16 3 \sin B + 1.$	000 00000 R	90 0	0 11.342
sin A	d	2 5	2 57, 750
$K = (\sin \phi_1 - \sin \phi_2)^2 + 1.41622 \times 10^{-10}$	$H = (d + 3 \sin d) / (1 - d)$	$\cos d$ + 13 8	788026
$L = (\sin \phi_1 + \sin \phi_2)^2 + 3.52761717$	$G = (d - 3 \sin d) / (1 +$	cos d) <u>050</u>	294892
$\delta d = -(f/4) (HK + GL) + 000150177$	$s = a (d + \delta d)$	321,862	.917 meters
d (radians) +. 0503 1275-2	S.	193 - 79	72 / n.m.
d + d (rad) +.0504 62929	T = d/sin d	1.000 4	2
2A 164 15- 35. 154	28 18 0	00	22. 684
sin 2A +. 271 27641	sin 2B 000	10998	7
$U = (f/2) \cos^2 \phi_1 \sin 2A + 5 48169 \times 10^{-5}$	$V = (f/2) \cos^2 \phi_2 \sin^2 \phi_2$	2B - 2. 18	1×10-8
VT -2.182 × 10-8	UT + 5. 484	0 × 10-	5-
δA = VT - U - 5. 4839 × 10 - 5	$\delta B = -UT + V - 5.$	4862	X 10 - 5
+ δA [1.3]]	+δB		11,316
-A - 82 07 +7,577	+ B + 90	00	11.342
+ 180 , , , , , , , , , , , , , , , , , , ,	+ 180 。		н
a1-2 97 52 01.112	a2-1 270	00 0	0-026
$a_{1-2} = a_{AB} = 180^{\circ} - A + \delta A$	$a_{2-1} = a_{BA} = 180^{\circ} +$	Β + δΒ	

Line No. 3 (See Tables 1,2 - pages 65,66)

COMPUTING FORM, ANDOYER-LAMBERT

(No conversion to parametric latitudes) Clarke Spheroid, 1866 a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825 l radian = 206,264,8062 seconds

6. 13 04 12.564 1. Origin X. 14 51 \$ 10 00 00.0002. Terminus λ2 18 00 00.000 $\sin \phi_2$. 173 64818 2. West of 1. $\Delta \lambda = \lambda_2 - \lambda_1 3 08$ 46.717 cos d. -984 80775 sin d. . 226 14397 sin Δλ .054 88 588 cos 2 . 969 84630 cos b. . 97409389 cos AA . 998 492 63 $\cos^{2}\phi_{1} = \frac{94885891}{11869}$ cos d = sin $\phi_{1} \sin \phi_{2} + \cos \phi_{1} \cos \phi_{2} \cos \Delta \lambda = \frac{.9971869}{.9971869}$ $K = (\sin \phi_1 - \sin \phi_2)^2 + .0027558i$ 01.722 d 4 d (radians) .075 930/71 $L = (\sin \phi_1 + \sin \phi_2)^2 - .159 83376$ sind .075 85 72.3 $H = (d + 3 \sin d) / (1 - \cos d) + 105.33468$ $G = (d - 3 \sin d)/(1 + \cos d) - 07593015$ s = a(d + d) 492, 794. 743 meters δd = -f(HK + GL)/4 - 2.35734×10-4 \$ 260.6333 $R = \sin \Delta \lambda / \sin d$. 723 54184 _____ T = d/sin d 1.000 9616 $\sin A = R \cos \phi_1 - .71254961$ $-\sin B = R\cos \phi_1 - .704 79769$ B 44 48 A 134 33 26,138 47.526 2B 89 35.052 2A 269 06 52.276 sin 2B +.999 97874 - . 99988058 sin 2A _____V = (f/2) cos $^2\phi_2 \sin 2B_{--}$ $U = (f/2) \cos^2 \phi_1 \sin 2A$ V (rad) +,0016 43891 U (rad) -. 0016081595 U VT + .0016454718 VT + .0016454718 UT - 001609706 $\delta A = VT - U + 11 11.100 \delta B = -UT + V + 11 11.103$ aAB = 180° - A + δA 45 37 44 . 972 aBA = 180° + B + δB 224 59

Line No. 4 (See Tables 1,2 - pages 65,66)

COMPUTING FORM, ANDOYER-LAMBERT

1. 3 26 6. 73 35 09.2061. Origin 6, 70 00 00,0002. Terminus λ2 18 00 00.000 $\frac{\sin \phi_2 \cdot 75767262}{\cos \phi_2 \cdot 34202014} 2. \text{ West of } 1. \qquad \Delta \lambda = \lambda_2 - \lambda_1 \frac{14}{14} \frac{33}{33} \frac{24}{33}.$ cos 20, -116 97178 cos d. ,28257768 . . 96789844 $\cos^{2}\phi_{1}$.079 850/5 $\cos d = \sin \phi_{1} \sin \phi_{2} + \cos \phi_{1} \cos \phi_{2} \cos \Delta \lambda$.99493962 $K = (\sin \phi_1 - \sin \phi_2)^2 - 000 - 382272$ д 5 d (radians) . 100 64445 $L = (\sin \phi_1 + \sin \phi_2)^2 \quad 3.60596184$ $H = (d+3 \sin d)/(1-\cos d) + 79.454/1793$ sin d_ . 100 474 63 $G = (d - 3 \sin d)/(1 + \cos d) - .100644369$ s = a(d + d) 643, 728.709 meters $\delta d = -f(HK + GL)/4 \neq .0002 184 347.5857 R = sin Ad/sin d 2.5015 43125 T = d/sin d 1.0016902 $\sin A = R \cos \phi_2 = .855 57813$ $-\sin B = R\cos \phi_1 - .70688025$ A 121 10 34:813 B 44 58 53:930 2A 242 21 09.626 47.860 sin 2B +. 99999980 sin 2A -885 82060 $U = (f/2) \cos^2 \phi_1 \sin 2A$ $V = (f/2) \cos^2 \phi_2 \sin 2B$ _____ U (rad) -1.19895 × 10-4 V (rad) +1.98282 × 10 -4 U $\delta A = VT - U \neq$ $a_{AB} = 180^{\circ} - A + \delta A$ $\frac{s^{\circ}s}{s}$ $\frac{s^{\circ}}{s}$ $\frac{s^{\circ}}{s}$

Line No. 5 (See Tables 1,2 - pages 65,66)

DISTANCE COMPUTING FORM, ANDOYER-LAMBERT APPROXIMATION

(No conversion to parametric latitudes) Clarke Spheroid 1866 a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825 l radian = 206,264.8062 seconds

0 1 11		0		H
φ1 39 37 06. 613 1. OFL	$\frac{\gamma_{LV1}}{\lambda_1}$	8	36 4	13.276
\$2 40 00 00.000 2. Teri	minus λ_2	18	00 0	0.000
$\sin \phi_1 \cdot 637 \ 672 \ 79 2.$ West of 1	$\Delta \lambda = \lambda_2$	- λ ₁ = <u>9</u> -	23 /0	6.734
$\cos \phi_1 - 770 30 735 \sin \phi_2 - 63$	12 78761 si	n Δλ - 14	53 11	897
tan dy . 827 81605 cos dy . 70	6 0 4 4 4 4 co	s Ar - 48	16 60	641
$\tan \phi_1 - 839 09963 \cos d = \sin \phi_1 s$	$in \phi_2 + \cos \phi_1 \cos \phi_2 \cos \phi_2$	S AA +. 9	192 0	7441
$M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda + 0.017 232$	255 cot A = <u>M</u>	+. 105	- 64	406
00003	$\sin \Delta \lambda$	00	0211	50
$N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda$	$\cot B = \frac{1}{\sin \Delta t}$		/	11
$\sin d = \frac{\cos \phi_1 \sin \Delta \lambda}{2} \cdot 125 \cdot 65194 \sin A \cdot 099$	14 46595 A	83 .	58 0	09.874
sin B				
$= \frac{\cos \phi_2 \sin \Delta \lambda}{255} \cdot 1255 \cdot 124 \sin B \cdot 992$	999998 В	90 0	0a 4	3,623
sin A	-5	13	1500	517
$K = (\sin \phi_1 - \sin \phi_2)^2 - \frac{72.666736777}{66673677}$	$H = (d + 3 \sin d) / (1 - 4)$	cos d)	7077	no sel
$L = (\sin \phi_1 + \sin \phi_2)^2 - \frac{1.6395788}{1.6395788}$	$G = (d - 3 \sin d)/(1 + d)$	cos d)		18434
$\delta d = -(f/4) (HK + GL) + .000 17366$	s = a (d + δd	804,66	4.691	meters
d (radians) +. 125 98 480	s	434.	4842	<u>2</u> _n.m.
d + 8d (rad) + . 126 15846	T = d/sin d .	1.002	6506	6
2A 167 56 19.748	2B 180	01	21.	250
sin 2A +, 208 95 605	sin 2B 000	42.	300	
II- (f/2) 2002 d cin 24 7.0002 10166	$V = (f/2) \cos^2 \phi$ sin	2B - 4.	21 X.	10 - 7
$U = (1/2) \cos \phi_1 \sin 2A$	TT 7.0002	1072	3	
VI UT UT 0002 10588	8R - UT - V	000 2	1114	4
0A = VI - U		,	- 43.	552
$+ \partial A =$	+0D	00	43.	625
- A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+ D			
+ 180 a	$a_{2-1} = \frac{270}{2}$	00	00.0	13
$a_{1-2} = a_{AB} = 180^\circ - A + \delta A$	$a_{2-1} = a_{BA} = 180^{\circ} +$	$B + \delta B$		

Line No. 6 (See Tables 1,2 - pages 65,66)

DISTANCE COMPUTING FORM, ANDOYER-LAMBERT APPROXIMATION (No conversion to parametric latitudes) Clarke Spheroid 1866 a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825

1 radian = 206,264.8062 seconds

0 54 28.507 1 43.883 \$1 44 λ. 10 41 \$2 40 00 00.000 g Terminus 00.000 00 λ. 18 sin 6, 0. 705 96946 16.117 $\Delta \lambda = \lambda_2 - \lambda_1 = 7 12$ 2. West of 1. cos d. 0. 708 24 228 sin d. -642 78761 sin A 0-125 41075 cos AA 0. 992 10491 $\tan \phi_1 = 0.996 79091 \cos \phi_2 .766 0 4444$ $\tan \phi_2 \cdot 83909963 \cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda = 0.99205004$ $M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda - ... 106 - 10993 \cot A = \frac{M}{\sin \Delta \lambda} - ... 846 - 09916$ +1.00368 900 $N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda + 125 81339 \quad \text{cot } B = \frac{N}{\sin \Delta \lambda}$ $\sin d = \frac{\cos \phi_1 \sin \Delta \lambda}{25} \frac{.125 84404}{\sin A} \frac{.763 40687}{.130} A \frac{.30}{.130}$ 14 04.316 sin B $= \frac{\cos \phi_2 \sin \Delta \lambda}{\sin A} \frac{125 \cdot 8440 4}{\sin B} \frac{105 \cdot 80373}{\sin B} \frac{144 \cdot 53}{B} \frac{144 \cdot 53}{B} \frac{144}{B} \frac$ sin A 46.202 13 d 7 $K = (\sin \phi_1 - \sin \phi_2)^2 \frac{3.99}{1946} \frac{1946 \times 10^{-3}}{10^{-3}} H = (d+3 \sin d)/(1 - \cos d) \frac{4}{-3.360} \frac{3.360}{-563} \frac{1}{-563} \frac{1}$ $G = (d - 3 \sin d)/(1 + \cos d) - -126178331$ $L = (\sin \phi_1 + \sin \phi_2)^2 - 1.819 + 14563$ $s = a (d + \delta d)$ 804, 666.623 δd =-(f/4) (HK+GL) -- 000 019826 s 434. 4852 d (radians) - 126 17 8588 T=d/sind_ 1.002 658433 d + od (rad) -126 15-8762 47 20.492 08.632 2A 260 2Bsin 2A - . 986 19633 . 999 99322 sin 2B_ $U = (f/2) \cos^2 \phi_1 \sin 2A - 8.385 - 065 + 10^{-3}$ $V = (f/2) \cos^2 \phi_2 \sin 2B + 9.946832 \times 10^{-10}$ VT + 9.913265 × 10-4 UT - 8. 407356 × 10-4 δB = -UT + V - 18. 354178 × 10 δA = VT - U + 18. 35833 × 10 - 5 18. 582 + δA _+ 668 +δB _+ 53 + B_ 44 40-246 -A - 130 04.316 + 180 0 + 180 。 59 58.828 14.352 an 234 a1-2 - 49 $\alpha_{2-1} = \alpha_{B\Delta} = 180^{\circ} + B + \delta B$ $\alpha_{1-2} = \alpha_{AB} = 180^{\circ} - A + \delta A$ Line No. 7 (See Tables 1,2 - pages 65,66)

DISTANCE COMPUTING FORM, ANDOYER-LAMBERT APPROXIMATION

(No conversion to parametric latitudes) Clarke Spheroid 1866 a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825 l radian = 206,264.8062 seconds

0 1 11		0	1	11
φ1+76 00 26.603N1. C	IMIGIN	λ. 28	42	03.567E
\$2 + 70 00 00.000N2. Te	prininus	λ2 18	00 0	00.000 W
$\sin \phi_1 \cdot 970 \ 326 \ 92 \ 2.$ West of	f1. Δλ	$=\lambda_2 - \lambda_1 = -40$	6 42	03.567
$\cos \phi_1 - 241 - 79675 \sin \phi_2 - 9$	3969262	$\sin \Delta \lambda - 2$	27 7	8462
$\tan \phi_1 \frac{4.0129858}{\cos \phi_2 \cdot 3}$	42 02014	_ cos Δλ <u>· 6</u>	85 80	0577
$\tan \phi_2 = \frac{2.7414}{1042} \cos d = \sin \phi_2$	$\phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2$	b2 cos Δλ - 9	68 5	2 475-
$M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda00 1124$	469 cot A =	M	015-4	536
$N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda - \frac{\tau}{72807}$	535 cot B = $\frac{1}{5}$	$\frac{N}{\ln \Delta \lambda} + 1.0$	0003 9	1947
$\sin d = \frac{\cos \phi_1 \sin \Delta \lambda}{\sin B} \cdot \frac{24891730}{\sin A} \sin A$	99999880	A <u>90</u>	05 1	18.753
$= \frac{\cos \phi_2 \sin \Delta \lambda}{\sin A} \cdot \frac{2489/130}{9.38} \sin B - \frac{1}{10}$ K = $(\sin \phi_1 - \sin \phi_2)^2 - \frac{9.3846034}{10} \times \frac{10}{10}$	- 4 H = (d+3 sin d)/	$\begin{array}{c} B \\ d \\ 14 \\ 14 \\ 1-\cos d \\ 31 \end{array}$	59 1	18. 810 48.430 1323
$L = (\sin \phi_1 + \sin \phi_2)^2 3.648 17464$	$G = (d - 3 \sin d)$	/(1+cos d)	2515.	53703
$\delta d = -(f/4) (HK + GL) + 000 75 - 255.$	s = a (d	+ δd) <u>1,60</u>	9,315.6	29 meters
d (radians) - 2515623076		s 868. 9	1608	
d + od (rad) -25-23147588	T = d/si	n d <u>1. 010</u>	6250	547
2A 180 10 37. 506	2B 89	58	37	. 620
sin 2A 00309071	sin 2B	999999	92	
$U = (f/2) \cos^2 \phi_1 \sin 2A - 3.06 29403 XI$	$\frac{\sqrt{2}}{\sqrt{2}} V = (f/2) \cos^2 \phi_2$	sin 2B +1. 9	98281	25×10-
VT +2.0038860 × 10-4	UT - 3.0	954860	2 X /	0-1
δA = VT - U + 2.0069489 × 10-	$\delta B = -UT + V$	-1.9889	232-	2 X 10 - 1
+ δA + 41.396	+δB +		41	.024
-A - 40 05 18.753	+ B + 44	59	18.	810
+ 180 a1-2 89 55 23.64	$3 a_{2-1} - 3 4$	59	54.	834
$a_{1-2} = a_{AB} = 180^{\circ} - A + \delta A$	$a_{2-1} = a_{BA} = 18$	$0^{\circ} + B + \delta B$		
Line No. 8 (See Tables 1.2 -	- pages 65.66)			

COMPUTING FORM, ANDOYER-LAMBERT

(No conversion to parametric latitudes) Clarke Spheroid, 1866 a = 6,378,206,4 meters f/2 = 0.00169503765, f/4 = 0.000847518825 l radian = 206,264,8062 seconds

0 1 11		0	1 11
φ ₁ 27 49 42.130N 1. Origin	λ1 _	32 .	54 12,997E
φ ₂ <u>40 00 00.008</u> 2. <u>Terminus</u>	λ_2	18 6	00 00,000 W
$\sin \phi_2$. 642 78761 2. West of 1.	$\Delta \lambda = \lambda_2 - \lambda_1 \leq 1$	10 5	4 12.997
cos dy	458 sin Δλ_	. 776	08614
cos 2 . 58682408 cos d 884349	794 $\cos \Delta \lambda$.6300	62691
$\cos^{2}\phi_{0} = .78207482$ $\cos d = \sin \phi_{1} \sin \phi_{2} + c$	$\cos \phi$, $\cos \phi$, $\cos \Delta \lambda$. 727	28811
$K = (\sin \phi_{0} - \sin \phi_{0})^{2} - 030962988$	d	43 Z	0 25.706
$L = (\sin \phi_{1} + \sin \phi_{2})^{2} 1.2312.3921$	d (radian	s) .75	6433968
$H = (d+3 \sin d) / (1-\cos d) + 10,3238286$	sin d	. 686 .	33228
$G = (d - 3 \sin d)/(1 + \cos d)754/08629$	$s = a(d + \delta d)$,827,98	3.105 meters
$\delta d = -f(HK + GL)/4 + .000515996$	s 2	606.9	023 n.m.
$B = \sin \Delta \lambda \sin d / 1.130773/87$ T	- d/sin d 1.10	2139	575
sin A - B cos d . 866 22251	$B = B \cos \phi$	99999	1920
A GO O' 21.339	Β 90	64	21:000
120 02 42.678	2B 180	08 4	72.000
sin 24 . 86563079	sin 2B 002	3 53	072
$II = (f/2) \cos^2 d \sin^2 A$	$f = (f/2) \cos^2 \phi$ sin		
$(1/2) \cos \phi_1 \sin 2\pi$	$V_{1}(z) = 0$	17274	7×10-6
U (rau)	V (rad)	6	00.519
	V1	0	1 2n'819
	UT	c	1 21 200
$\delta A = VT - U - OT - OT - OT - OT - OT - OT - OT$	B = -UT + V	°	4 21.308
$a_{\rm AB} = 180^{\circ} - A + \delta A $ <u>114</u> <u>54</u> <u>41</u> , <u>396</u> a	$BA \approx 180^\circ + B + \delta E$	269	07 37,6/2

Line No. 9 (See Tables 1,2 - pages 65,66)

COMPUTING FORM, ANDOYER-LAMBERT

(No conversion to parametric latitudes) Clarke Spheroid, 1866 a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825 l radian = 206,264,8062 seconds

45.644 N1. 18 02 ¢, 35 Origin X. 102 0,40 00 00,000N2. Terminus $\lambda_2 / 3$ 00 00,000 11 $\sin \phi_{2} = .642.78761$ 2. West of 1. $\Delta \lambda = \lambda_2 - \lambda_1 \, I 20$ 02 cos dy_. 7660 4444 sin d. . 57803821 sin AA 0.86566309 cos 2 0, . 58682408 cos AA 0.5006270 cos d. . 81600 970 cos 20. .66587183 $-\cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda = 0.586/401$ $K = (\sin \phi_1 - \sin \phi_2)^2 - 004/924848$ d 86 38 23.060 $L = (\sin \phi_1 + \sin \phi_2)^2 \quad 1.49041568$ d (radians) 1.51214871 sind 0.99828068 $H = (d + 3 \sin d) / (1 - \cos d) 4.78761188$ $G = (d - 3 \sin d)/(1 + \cos d) - 1.40059863$ s = a(d + d) 9,655,972,218 meters δd = -f(HK+GL)/4 +. 00/75216 5213.8079 $R = \sin \Delta \lambda / \sin d + .867 15400.5$ T = d/sin d 1.51475305 $\sin A = R \cos \phi_2 + .664 27850$ $-\sin B = R\cos \phi_{1} + .70760611$ 37 25.708 37,191 B 45 A_41 14.382 51.416 2A 83 2B sin 2B +. 999 99900 sin 2A +. 99307665 $U = (f/2) \cos^2 \phi_1 \sin 2A$ $V = (f/2) \cos^2 \phi_2 \sin 2B.$ U____ 3 Ś VT_ 19.585 SB = -UT + V____ $\delta A = VT - U$ 42.394 a BA = 180° + B + δB 225 00 23 00,674 $a_{AB} = 180^{\circ} - A + \delta A - \frac{138}{138}$

Line No. 10 (See Tables 1,2 - pages 65,66)

INVERSE COMPUTATION (Andoyer-Lambert Formula) Clarke 1866 Ellipsoid 40-50-6000 Line

				~~~~			
$\phi_1 40^{\circ} 00' 00".000$ N	1. Point o	f Origin		λ,	18° (	00' C	0":000W
$\phi_2$ 35 18 45.644N	2. Termina	al Point		$\lambda_2$	102 0	2 2	9.370E
	Point 1 sh	ould be		Δλ	120° 0	2' 2	9"370
	west of po	int 2					
$\tan \beta = b/a \tan \phi$			$\sin \Delta \lambda$	0.86	556630	9	
$\tan \phi_1$ 0.83909963			$\cos \Delta \lambda$	-0.50	006270	1	
$\tan \phi_2$ 0.70837174							
tan a	ingle		sin	-			cos
$\beta_1 = 0.83625502 = 39^{\circ} 54$	1 15".203		0.6415061	8		0.70	5711787
$\beta_2 = 0.70597031 = 35 = 13$	15.443		0.5767311	5		0.8	1693401
$\cot \Lambda = \frac{\cos \beta_1 \tan \beta_2 - \sin \beta_1 \cos \Delta \lambda}{2}$			$t B = \frac{\cos \beta_2}{\cos \beta_2}$	tan /	$\beta_1 - si$	$\alpha \beta_2$	$\cos \Delta \lambda$
$\cot A = - \sin \Delta \lambda$			л D		$\sin \Delta \lambda$		
cot	angle		sin		с	os (5	places)
A 0.99659760 45° 0	5' 51".495		0.7083107	3		0.7	05901
tan B B 0.89069853 41 41	29.068		0.6651183	8		0.7	46738
$\cos \beta_1 \sin \Delta \lambda  \cos \beta_2 \sin \lambda$	Δλ	-	$\sin \sigma 0.998$	41720	)		
$\sin \sigma = \frac{1}{\sin B} = \frac{1}{\sin A}$	_		$\cos \sigma 0.056$	2413	2		
$\cos \sigma = \sin \beta$ , $\sin \beta_2 + \cos \beta$ , $\cos \beta_2$	cos Δλ		$\sigma$ 86°	46'	33".	271	
$M_{1} (-i - R_{1})^{2} = M_{1} (ARA) R^{2}$	210	7	σ″ 31239	93.27	1		
$M = (\sin p_1 + \sin p_2) \qquad M = (.404102)$ $N = (-i - \rho_1 - i - \rho_2)^2 \qquad H = 0.409602$	700		σ 1.514	5253	2		radians
$N = (\sin \beta_1 - \sin \beta_2) \qquad 0  0.400027$	:00	s	$= a \sigma - H$ (MU	+ N\	/)		
$U = \frac{\sigma - \sin \sigma}{V} \qquad \qquad N = 0.004195$	200		a 9659955 0	89	. ,		
$1 + \cos \sigma$ V 2.002090	500		H (MU + NV)	- 39	80.422		
$V = \frac{\sigma + \sin \sigma}{1060.7}$	155		0 655 074	667			motors
$1 - \cos \sigma$ $\sin \sigma$		5	9 033 974	.001			meters
$\delta A^{\prime\prime} = -\cos^2\beta_2 \sin B \cos B\left(\frac{f\sigma^{\prime\prime}}{\sin\sigma}\right)$		δΑ"	- 351.5	93			
$\delta B^{\prime\prime} = -\cos^2\beta_1 \sin A \cos A\left(\frac{f\sigma^{\prime\prime}}{\sin\sigma}\right)$		δB"	- 312.0	98			
A 45° 05' 51".495			B 41°	41'	29	.068	
δA - 05 51.593			δB –	5	12	.098	
A _f 44 59 59.902			B _f 41	36	16	.970	
$a_1 = 180^\circ + A_f 224^\circ 59! 59".902$			$a_2 = 180^{\circ} -$	B _f	138°	23'	43".030
1					-		

Line No. 10 as computed by ACIC, converting to parametric latitude.

(From Page 39 of the ACIC Technical Report No. 80 - August 1957)

#### COMPUTING FORM, ANDOYER-LAMBERT

(No conversion to parametric latitudes) Clarke Spheroid, 1866 a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825 l radian = 206,264,8062 seconds

X, 67 07 30.300 6, 18 29 57.9001. Origin 12 115 52 54.700 \$2 43 03 19.6002. Terminus Δλ=λ,-λ. 48 45 24.400 sin d. . 682 70576 2. West of 1. cos do, -130 693 39 sin do, -317 19500 sin AA .751 91780 cos 2 42 - 533 91283 cos 41 - 948 32688 cos Δλ - 659 25687  $\cos^{2}\phi_{1} - \frac{899 32387}{32387} \cos d = \sin \phi_{1} \sin \phi_{2} + \cos \phi_{1} \cos \phi_{2} \cos \Delta \lambda - \frac{613}{344206}$  $K = (\sin \phi_1 - \sin \phi_2)^2 - \frac{133}{53} - \frac{53}{5} - \frac{50}{2}$ d 47 40 00.179 d (radians) - 8-31 941144  $L = (\sin \phi_1 + \sin \phi_2)^2 - \frac{1.0000015.2}{1.0000015.2}$ H = (d+3 sind)/(1-cosd) + 9. 338 80575 sind . 739 2400  $G = (d - 3 \sin d) / (1 + \cos d) - \frac{828}{908} 100908$ s = a(d+ 8d) 5, 304028,110 δd = -f(HK+GL)/4-3 + 54993417 × 10-5 2863 - 9461 nm  $R = \sin \Delta \lambda / \sin d / .017149761$ T = d/sin d _1.125 40059 sin A = R cos d. . 143 23461 sin B = R cos d. - 964 59046 A 48 00 24.496 B 105 17 34, 164 2A 96 00 48.992 2B 210 35 08.328 sin 28-.508 82577 sin 2A - 994 49704 U (rad) 1.5.15 9992 X 10 - 3 V = (f/2) cos ² $\phi_2$  sin 2B V (rad) - 4. 60 4885-2 × 10-4 U_____ V____ V___  $\delta A = VT - U - 6 59.591 \delta B = -UT + V - 7 26.892$ aAB = 180° - A + 8A 131 52 35 913 aBA = 180° + B + 8B 285 10 07.272 Line No. 11 (See Tables 1,2 - pages 65,66)

#### DISTANCE COMPUTING FORM, ANDOYER-LAMBERT APPROXIMATION

(No conversion to parametric latitudes) Clarke Spheroid 1866 a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825 l radian = 206,264.8062 seconds

19.5(N)1. Mosonw Ø1 55 45 λ. -37 34 15.450(E) 03.5 (5) 2. Cape of Good Hope λ. -18 28 41.400(E) 6, -33 56  $\sin \phi_1 + 826 - 64295$  2. West of 1.  $\Delta \lambda = \lambda_2 - \lambda_1 = \pm 19 - 05 - 34.050$ cos d. t. 56272678 sin d. -. 558 24198 sin AA +. 327 09901 tan 0, 1.468 99522 cos 0, +.83967819 cos AA +. 944 99007  $\tan \phi_2 = -67284157 \quad \cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda = -63036782$  $M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda - 1.159 79535 \cot A = \frac{M}{\sin \Delta \lambda} - 3.54570119$  $N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda - \frac{\tau}{1.746.32643} \cot B = \frac{N}{\sin \Delta \lambda} + \frac{\tau}{5.33883129}$  $\sin d = \frac{\cos \phi_1 \sin \Delta \lambda}{\sin B} \cdot \frac{99979459}{\sin A} + 27144267 = A - 164 - 14 - 59.524$ B_10_36_32.283  $= \frac{\cos \phi_2 \sin \Delta \lambda}{\sin A} \frac{.99979459}{.99979459} \sin B + .184 10519$ d 91 09 40.825  $K = (\sin \phi_1 - \sin \phi_2)^2 + 1.91790627$ H = (d+3 sin d)/(1 - cos d) + 4.49925  $L = (\sin \phi_1 + \sin \phi_2)^2 + 0.072 + 0.0390 81$  $G = (d - 3 \sin d) / (1 + \cos d) - 1 - 437 45225$ δd =- (f/4) (HK + GL) -. 007225610 s = a (d + d) 10, 102, 05-7.965 meters d (radians) + 1. 591065538 \$ 5454.6749 n.m. d + 8d (rad) +1. 583839928 T = d/sin d 1.59139242 2A 328 04.566 59.048 2B 21 1 sin 2B +. 361 sin 2A - - 522 50250 91639  $V = (f/2) \cos^2 \phi, \sin 2B + 4.2328636 \times 10^{-10}$  $U = (f/2) \cos^2 \phi_1 \sin 2A - 2.804548 \times 10^{-10}$ UT - 4. 463 1364 × 10-4 VT+6.72023 15×10-4 δA = VT - U + 9.524 78 × 10 - $\delta B = -UT + V + 8.685$ 999 × 10 16.463 + δA _+ 59.16: +δB ____ 54,524 36 32. 283 -A -164 B + 10 +180+ 180 16.939 39 31.445 a1-2 15 an- 190  $\alpha_{1-2} = \alpha_{AB} = 180^{\circ} - A + \delta A$  $a_{2-1} = a_{BA} = 180^{\circ} + B + \delta B$ Line No. 12 (See Tables 1,2 - pages 65,66)

# APPENDIX 3

Computations

Using Forsyth-Andoyer-Lambert Type Second Order Formulae Without Conversion to Parametric Latitude

## DISTANCE COMPUTING FORM — ANDOYER-LAMBERT TYPE APPROXIMATION WITH SECOND ORDER TERMS

(No conversion to parametric latitudes) Clarke Spheroid 1866, a = 6,378,206,4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825,  $f^2/128 = 0.0897860195 \times 10^{-6}$ 

0 30 17.157 Origin 43.280 _ X. 17 19 Ø1_ 40 h 18 00 00.000 00 00.0002. TerMINUS d. 40 sin d. t. 649 58723 2. west of 1.  $\Delta \lambda = \lambda - \lambda$ . 40 16.720 cos d. + = 760 28707 sin φ, +.642 18761 sin Δλ +. 011 71632 tan d. +. 854 39731 cos d. +. 766 04444 cos AA +. 999 93136  $\tan \phi_1 + \frac{1}{39} - \frac{09963}{2093} \cos d = \sin \phi_1 \sin \phi_1 + \cos \phi_1 \cos \phi_2 \cos \Lambda + \frac{1}{999} - \frac{999}{9203}$  $M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda - - 011 58604 \quad \cot u = M/\sin \Delta \lambda - - 488 85047$ N = cos φ, tan φ, - sin φ, cos Δλ  $\frac{\tau}{2}$  011 762 82 cot y = N/sin Δλ  $\frac{\tau}{2}$ . 00396882  $\sin d = \cos \phi_1 \sin \Delta \lambda / \sin v = \cos \phi_2 \sin \Delta \lambda / \sin u \underline{\tau} 0 / 2 6 2 2 5 / u 13440$ 46.816 csc d + 7. 922 35458 cot d + 7. 92172341 v 44 53 11. 497 1+ cos d+1. 4999 2033 1-cos d +. 0000 7967 sin u +. 711 04900  $(\sin\phi, +\sin\phi_2)^2 + 1.670 23273 (\sin\phi, -\sin\phi_2)^2 + .62348321 + 55 v + .705 70448$  $K_1 = (\sin \phi_1 + \sin \phi_2)^2 / (1 + \cos d) \frac{\tau \cdot 835149633}{149633} K_2 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329259}{149633} K_2 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329259}{149633} K_2 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329259}{149633} K_2 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329259}{149633} K_2 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329259}{149633} K_2 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329}{149633} K_2 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329}{149633} K_2 = (\cos \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329}{149633} K_2 = (\cos \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329}{149633} K_2 = (\cos \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329}{149633} K_2 = (\cos \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329}{149633} K_2 = (\cos \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329}{149633} K_2 = (\cos \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329}{149633} K_2 = (\cos \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329}{149633} K_2 = (\cos \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329}{149633} K_2 = (\cos \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329}{149633} K_2 = (\cos \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329}{149633} K_2 = (\cos \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329}{149633} K_2 = (\cos \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329}{149633} K_2 = (\sin \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329}{149633} K_2 = (\cos \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329}{149633} K_2 = (\cos \phi_1 - \sin \phi_2)^2 / (1 - \cos d) \frac{\tau \cdot 580329}{149633} K_2 = (\cos \phi_1 - \cos \phi_1 - \sin \phi_2)^2 / (1 - \cos \phi_1 - \sin \phi_1)^2 / (1 - \cos \phi_1 - \sin \phi_2)^2 / (1 - \cos \phi_1)^2 / (1 - \cos \phi_1)^2 / (1$ X=K,+K, +1. 4154 78892 Y=K,-K,+. 2548 20374 XY +.3606928 61 X2 +2.003580494 Y2+.064933423 d +.01262393382 d 2 +.00015933846 A=64d, +16d 2 cot d + 8280635278 D=48 sin d +8d 2 csc d + 615 97917 B = -2D -1.23195834 E= 30 sin 2d +. 959290 30 sin 2d +. 025 24301 C=-(30d, +8d2 cot d+E/2) -. 7674310463 AX + 1.172 1064445 BY -. 313 928085 CX2 -1.53760 9875 DXY +. 2221792891  $\Sigma = AX + BY + CX^2 + DXY + EY^2 - . 40807 8174$ EY2 +,049 173 4514  $\delta d_{f} = -(f/4) (Xd_{r} - 3Y \sin d) - 6.96498 \times 10^{-6} \delta d_{f}^{2} = +(f^{2}/128) \Sigma - 3.66398 \times 10^{-8}$  $-d_{f} + \delta d_{f} + \delta d_{f}^{2} - C/2 615 93220$ d + 8d - 012 61596884  $S(\delta d_f) = a(d_r + \delta d_f) \frac{80}{467}.253$  $-_{m} S(\delta d_{f^{2}}) = a(d_{r} + \delta d_{f} + \delta d_{f^{2}}) - \frac{80}{467.020}$ 1 33.632 000033576 20 269 22-994 sin 21 -- 999 93749 sin 2v +. 999 99216  $U = (f/2)\cos^2\phi_1 \sin 2u - 9.79732565 \times 10^{-9}$  $V = (f/2) \cos^2 \phi$ , sin 2v  $f - 9.9468 IIII \times 10$ UT - 9. 7976516×10-4 VT + 9, 947145 × 10-4 δv = -UT + V +. 00197 44627 δu = VT - U +. 0019744468 47.259 + δu ____ 6 + SV + 6 47,262 46.816 11. 497 - u 134 40 53 + v 44 +180+18026 00.443 59 58,759 a1-2 45 a2-1 224  $a_{2-1} = a_{yy} = 180^{\circ} + v + \delta v$  $a_{1-2} = a_{uv} = 180^\circ - u + \delta u$ Line No. 1, See Tables 1 and 2. True distance 80, 466. 490 meters.

# DISTANCE COMPUTING FORM — ANDOYER-LAMBERT TYPE APPROXIMATION WITH SECOND ORDER TERMS

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

 $f/2 = 0.00169503765, f/4 = 0.000847518825, f^2/128 = 0.0897860195 \times 10^{-6}$ 

## DISTANCE COMPUTING FORM — ANDOYER-LAMBERT TYPE APPROXIMATION WITH SECOND ORDER TERMS

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

 $f/2 = 0.00169503765, f/4 = 0.000847518825, f^2/128 = 0.0897860195 \times 10^{-6}$ 

0 09.206 1 Origin 23 35 35,101 26 1. 3 d1 00.000 00,000 , TerMINUS 70 00 00 2 13 φ. 24.889 sin d. . 959 24441 33  $\Delta \lambda = \lambda - \lambda \cdot \frac{14}{14}$ 2. west of 1. 34162 cos 6. . 282 57768 sin dy - 93969262 sin AA -251 tan d. + 3.394 62200 cos d. . 342 02014 cos AA . 967 89844  $\tan \phi_2 + 2.141 + 111 + 491 + 492 \cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda + \frac{99493963}{99493963}$ - 05447  $M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda - ... 52 0.9537$ - cot u = M/sin  $\Delta \lambda$  --- GOS _ cot v = N/sin Δλ +1. 0006383 7  $N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda + .351 50207$  $\sin d = \cos \phi_1 \sin \Delta \lambda / \sin v = \cos \phi_2 \sin \Delta \lambda / \sin u + 100 + 1451 u + 121$ csc d +9.952 77310 cot d +9.902 408382 44 58 54,185 1+ cos d +1.994 93963 1-cos d +.00506037 sin n +,855 57916  $(\sin \phi_1 + \sin \phi_2)^2 \frac{3.605 \ 96184}{(\sin \phi_1 - \sin \phi_2)^2 \cdot coo \ 3825 \ 72 \sin v \ t. \ 706}$ 88112  $K_{1} = (\sin \phi_{1} + \sin \phi_{2})^{2} / (1 + \cos d) \frac{\tau}{1.80755437} K_{3} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) \frac{\tau}{1.0755423032}$ X=K1+K2+1.88309667 Y=K,-K2+1.73201207 XY+3.26154616 X2 +3.546 05307 Y2 +2, 99986581 d+. 1006 44334 d2 +. 010129283 A=64d, +16d² cot d +8.046 10597 D=48 sin d +8d² csc d +5.6292929204 B=-2D-11.25858408 E= 30 sin 2d + 5.991 96420 sin 2d +.19993214 C=-(30d +8d2 cot d+E/2)-6.82074642 AX +15.15159536 BY - 19.500 0035 2 CX2 - 24.18672878 DXY +18.360 19584  $\Sigma = AX + BY + CX^2 + DXY + EY^2 + 7.81814 663$ EY2 +17. 99308773  $d_{+} + \delta d_{f} + .100 926173 d_{+} + \delta d_{f} + \delta d_{f}^{2} - .100 926875^{-1}$  $S(\delta d_{f}) = a(d_{r} + \delta d_{f}) \frac{643}{732}, \frac{727}{963}, \frac{963}{732}, \frac{9}{440}$ T = d/sin d 1.001 69022 0 24 _ 242 08.804 21 sin 2v _ +, 999 sin 2u -- 885 81874  $U = (f/2) \cos^2 \phi_1 \sin 2u - 1.19895 / 10 - 4$  $V = (f/2) \cos^2 \phi_2 \sin 2v + 1.98282 \times 10^{-10}$ 17×10-4 VT + 1. 986 UT -1. 200 98 δu = VT - U + 3. 18512 × 10δv = -UT + V + 3. 18380 × 05,698" + Su -+ 0 05 01 + Sv _____ 01 34,402 - u -12/ + v + 44 +1800 +18059 59.856 31.296 a1-2 -58  $\alpha_{1-2} = \alpha_{11V} = 180^\circ - u + \delta u$  $a_{2-1} = a_{yy} = 180^{\circ} + v + \delta v$ Line No. 5, See Tables 1 and 2. True distance <u>643</u>732.429 meters.

# DISTANCE COMPUTING FORM, ANDOYER-LAMBERT TYPE APPROXIMATION WITH SECOND ORDER TERMS (No conversion to parametric latitudes) Clarke Spheroid 1866, a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825, f²/128 = 0.0897860195 × 10⁻⁶ 1 radian = 206,264.8062 seconds

4	0	1	" 00.129	1. Or	igin		)	0 10	1	12 554
$\varphi_1 - $	10		07.130	<u>2. Te</u>	rminus		λ ₁ _	10	39	43.554
$\varphi_2$	() 0	57	24.500	- 0.41		1	$\Lambda_2$	10	0	16 446
$\phi_{\rm m} = \frac{1}{2}(\phi_1 + \phi_2)$	<i>p</i> ₂ ) <u>9</u>	51	34.569	12. Alt	ways west of	1.1 2	$\Delta \lambda = \lambda_2 - \lambda_1$	1	20	16.446
$\Delta \phi_{\rm m} = \frac{1}{2}(\phi_2 - $	- \ \phi_1)	2	25.431	-		L	$\Delta \lambda_{\rm m} = \frac{1}{2} \Delta \lambda$	3	40	08,223
$\sin \phi_{\rm m}$ .	+ 0.1	72953	77	$\sin \Delta \phi_{\rm m} + 0$	.00070507	_	$\sin \Delta \lambda$	+ 0.	12772	2073
$\cos \phi_{\rm m}$	+ 0.9	84929	94	$\cos \Delta \phi_{\rm m} + 0$	.99999975		$\sin \Delta \lambda_m$	+ 0.	06399	9152
$k = \sin \phi_m c c$	os $\Delta \phi_{m} +$	0.172	95373			K = \$	$\sin\Delta\phi_{ m m}\cos$	$\phi_{\rm m} + 0.$	00069	9444
$H = \cos^2 \Delta \phi_{\rm m}$	$-\sin^2\phi_{\rm m}$	= cos	$^{2}\phi_{\mathrm{m}}$ - sir	$^{2}\Delta\phi_{\rm m} + 0.97$	7008649		1 – L	0.	99602	2708
$L = \sin^2 \Delta \phi_m$	+ H $\sin^2 \Delta$	$\Delta \lambda_{\rm m}$	+ 0.	00397292			$\cos d = 1 -$	- 2L	99203	5416
d <u>+ 0.1261</u>	458534	ŝ	sin d _+	0.12581156			$T = d/\sin d$	+ 1.	0026	5710
$U = 2k^2/(1 -$	L) + 0.0	060064	618	$V = 2K^2/L -$	0.000242767	<u> </u>	$E = 60 \cos \theta$	d <u>+ 59</u>	.5232	4960
X = U + V	+ 0.06030	)7385	_	Y = U - V	0.059821851		D ≈ 8 (6 + 7	Γ ² ) + 56	.0425	7008
A = 4T (16 +	ET/15)	+ 80.1	2738460	$C = 2T - \frac{1}{2}$	(A + E) - 67.	.8200029	0 B = - 21	D1	2.085	14016
X(A + CX)	+ 4.585	61299		Y (B + EY)	- 6.49212	745	DXY	+ 0.	2021	8475
(TX - 3Y)	- 0.118	99792	5	$\delta f = -(f/4)$ (	TX - 3Y)	+ 1.0085	$3 \times 10^{-4}$			
$T  +  \delta f$	+ 1.002	75795		$S_1 = a \sin d$ (	$T + \delta f$	804,66	5.223 met	ers		
$\Sigma = X(A + CX)$	X) + Y(B -	+ EY)	+ DXY	- 1.70432	971	$\delta f^2 =$	$+(f^2/128)$	Σ	<u>53 ×</u>	10 ⁻⁷
$T + \delta f + \delta f^2 +$	+ 1.00275	780			$S_2 \approx a$	sin d (T	+ $\delta f$ + $\delta f^2$ )	804,66	5.102	meters
nin (	(V. sin /	A ) ) /T	. 0	00000473			a   a	°	16	H 15 199
$\sin(a_2 + a_1) =$	= (K SIII 2	$\Delta \Lambda J / L$	<u>+ 0</u>	0.02232473			$a_2 + a_1$	179	42	45 107
$\sin(a_2 - a_1) =$	$= (K \sin \Delta)$	ΔΛ )/ (1·	-L) +	0.02217789	251(1210	5	$u_2 - u_1$	0644 - 1	43 0 ⁻⁵	45.107
$\frac{1}{2}(\delta a_1 + \delta a_2)$	= -(1/2) E	1(1+	$1) \sin(a$	$(2 + a_1) - /$	.351613 × 10	10-5	$0a_1 - 7.55$	$0044 \times 1$	0~5	
$\frac{1}{2}(\delta a_2 - \delta a_1)$	= -(f/2) I	H (T - 1	1) sin (a	$(a_1 - a_1) - 0.$	000969006 ×	10 -	$0a_2 - 1.35$	2582 × 1		
-	01 16 3	20.040					<i>a</i> .	270	. 00 1	5 147
u1	- 10 3	15 160					α2 <u></u>	2,0	- 1	5 166
<i>oa</i> ₁	-	14 070					a	260	50 5	9 981
a ₁₋₂ 9	1 16	14.8/8					a ₂₋₁	209	37 3	2,701
α1-	$-2 = \alpha_1 + \delta$	$\delta a_1$					a ₂₋₁	$= a_2 + \delta a$	l ₂	

d = 7° 13' 39".450 Line No. 6, see Tables 1 and 2. (Pages 65,66)

# DISTANCE COMPUTING FORM — ANDOYER-LAMBERT TYPE APPROXIMATION WITH SECOND ORDER TERMS (No conversion to parametric latitudes)

 $Clarke \ Spheroid \ 1866, \ a=6,378,206.4 \ meters \\ f/2=0.00169503765, \ f/4=0.000847518825, \ f^2/128=0.0897860195\times 10^{-6}$ 

0	1 H				0 1	п
Ø. 44	54 28.	507 1. 0	rigin	λ,	10 11	1 43.883
¢. 40	00 00.	.000 2. 70	ErMINUS	λ2	18 00	00.000
sin 6, 7. 705	96946	2.	west of 1.	$\Delta \lambda = \lambda_2 - \lambda_1$	7 12	16.117
cos d. +. 708	24228	$\sin \phi_2$	+. 642 781	$\frac{1}{1}\sin \Delta \lambda \tau$	0.125-	41025
$\tan \phi_1 + . 996$	- 79091	cos φ ₂	+ , 766 044	144 cos AA TO	0. 992	10491
tan \$ 7. 839	09963	cos d = sin	$\phi_1 \sin \phi_2 + \cos \phi_1$	$\phi_1 \cos \phi_2 \cos \Delta$	1 7.99	92 05004
$M = \cos \phi_1 \tan \phi_2$	$-\sin\phi_1\cos\Delta$	λ = - 106	10993	$\cot u = M/\sin a$	AA 84	16 09916
$N = \cos \phi_2 \tan \phi_1$	- sin $\phi_2 \cos \Delta$	x +. 125	81339	$\cot v = N/\sin a$	AA +1.0	10368900
$\sin d = \cos \phi_1 \sin \theta_2$	$\Delta\lambda/\sin v = \cos \theta$	$\phi_2 \sin \Delta \lambda / \sin$	u +. 125 84	404 u_	130 1	4 04.316
csc d + 7. 946	343744	cot d	7-883 170	629 v_	44 5	3 40.246
1 + cos d +1.99	205004	1-cos d 🗲	. 001949	96 sin u +	, 163	40687
$(\sin \phi_1 + \sin \phi_2)^2 \mathbf{z}$	1.8191456	$\frac{3}{(\sin \phi_1 - \sin \phi)}$	2) ² +3.991940	6×10 sin v 7	. 705 8	80373
$\mathbf{K}_{1} = (\sin \phi_{1} + \sin \phi_{2})$	$_{2})^{2}/(1 + \cos d)$	91320277	$\underline{\mathcal{T}}$ K ₂ =(sin $\phi_1$ -si	$(1 - \cos d)^2/(1 - \cos d)$	+.502	134098
$X = K_1 + K_2 + K_2$	5336875	Y = K ₁ - K	2 7. 41106867	9 XY -	-, 581800	0660
X2 +2.003 178	470 Y2 +. 10	68 977 459	_ dr 7.126 11	28588 dr2.	+.0159.	21036
$A = 64d_r + 16d_r^2 \cot$	d +10.08350	21536 D	$=48 \sin d + 8d_r^2$	csc d + 7. 03	26261	7
B = -2D -14.105	-252238 E=	30 sin 2d <u>+7</u> .	490 61510	sin 2d	. 2496	8 11 1
$C = -(30d_r + 8d_r^2)c$	ot d + E/2) - 8	-53473110	AX AX	+14.271	63640	6-5
BY - 5. 798 2	27405	_ CX ² /7. c	096589655	_ DXY + 4.1	03222	2531
EY ² <del>11.2657</del>	45-106	$\Sigma = AX + BY$	$+CX^{2}+DXY+EY$	2-3.254	12/27	38
$\delta d_f = -(f/4) (X d_r -$	3Y sin d) -/.	98265×10-	$\delta d_f^2 = +(f^2/f^2)$	128) Σ <u>- 2 · 9</u>	218 X /	0-1
d + δd + - 126	158 762	$d_r + \delta d_f$	+ 8d 2 - + - 12	6 15846	9	
$S(\delta d_f) = a(d_r + \delta d_f)$	1) 804, 666.	623	$S(\delta d_{f^2}) = a(d_r +$	$-\delta d_f + \delta d_{f^2}$	4,664.	75-4 m
1 1 1		T = d/cin d	1.00265	8433		
211 260	28 08	7-0/sin u_	9 _V	89 4	17 20	0,492
sin 2 9	86 196.	33		7.999	993.	22
$U = (f/2) \cos^2 \phi, si$	in 211 - 8,38	5065110-	$= \frac{4}{V} = (f/2) \cos^2$	2 d. sin 2v + 9.	94682.	2 × 10-4
VT + 9. 97.30	265 × 10	-4	UT -	-8.4073	56 X 1	10-4
$\delta u = VT - U - 1/2$	8.35-833	× 10 - 4	$\delta v = -UT$	+ V - 18.	254178	× 10-4
+ δu <u>+</u>	6	18.668	+ δv_	+	6	18.582
- u	14	04.316	+ v_	+44	53	10.246
+180 0		11		+180 °		"
a1-24	9 52	14.35	<i>a</i> ₂₋₁ <i>a</i> ₂₋₁	224	59	-58.828
$a_{1-2} = a_{1-2} = 180^{\circ}$	$^{\circ} - u + \delta u$		<i>a</i> ₂ =	$a_{m} = 180^{\circ} + v$	$r + \delta v$	

Line No. 7, See Tables 1 and 2. True distance  $\frac{904}{664}$ ,  $\frac{664}{771}$  meters.

#### DISTANCE COMPUTING FORM — ANDOYER-LAMBERT TYPE APPROXIMATION WITH SECOND ORDER TERMS (No conversion to parametric latitudes) Clarke Spheroid 1866, a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825, $f^2/128 = 0.0897860195 \times 10^{-6}$ λ, 28 d. +76 00 26-803N Origin +2 03,567 E - 18 00 00.000W d. + 70 00 00.000 N , TERMINUS Δλ=λ2-λ, 46 42 03.561 32692 sin 6, 7.970 2. west of 1. _ sin φ2 +. 93969262sin Δλ +. 727 78462 cos 0, 7.241 79675 cos \$ +. 34203014 cos AA +. 685 805 77 tan 6, 74.012 9858 $\tan \phi_2 + 2.74747742 \cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda + .96852473$ - cot u = M/sin $\Delta\lambda$ - .00154536 $M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda - .00112469$ N = cos $φ_2$ tan $φ_1$ - sin $φ_2$ cos Δλ +. 128 01535 cot y = N/sin Δλ 71.000 39941 $\frac{90 \text{ os} 18.355}{1 + \cos d \frac{1}{7} \cdot \frac{96}{8} \cdot \frac{5}{2} \cdot \frac{9}{15}} = \frac{1}{1 - \cos d \frac{1}{7} \cdot \frac{9}{8} \cdot \frac{9}{8} \cdot \frac{9}{15}} = \frac{90 \text{ os} 18.355}{1 - \cos d \frac{1}{7} \cdot \frac{9}{2} \cdot \frac{9}{15} \cdot \frac{9}{15}} = \frac{90 \text{ os} 18.355}{1 - \cos d \frac{1}{7} \cdot \frac{9}{2} \cdot \frac{9}{15} \cdot \frac{9}{15}} = \frac{90 \text{ os} 18.355}{1 - \cos d \frac{1}{7} \cdot \frac{9}{2} \cdot \frac{9}{15} \cdot \frac{9}{15}} = \frac{90 \text{ os} 18.355}{1 - \cos d \frac{1}{7} \cdot \frac{9}{2} \cdot \frac{9}{15} \cdot \frac{9}{15}} = \frac{90 \text{ os} 18.355}{1 - \cos d \frac{1}{7} \cdot \frac{9}{2} \cdot \frac{9}{15} \cdot \frac{9}{15}} = \frac{90 \text{ os} 18.355}{1 - \cos d \frac{1}{7} \cdot \frac{9}{2} \cdot \frac{9}{15} \cdot \frac{9}{15}} = \frac{90 \text{ os} 18.355}{1 - \cos d \frac{1}{7} \cdot \frac{9}{2} \cdot \frac{9}{15} \cdot \frac{9}{15}} = \frac{90 \text{ os} 18.355}{1 - \cos d \frac{1}{7} \cdot \frac{9}{2} \cdot \frac{9}{15} \cdot \frac{9}{15}} = \frac{90 \text{ os} 18.355}{1 - \cos d \frac{1}{7} \cdot \frac{9}{2} \cdot \frac{9}{15} \cdot \frac{9}{15}} = \frac{90 \text{ os} 18.355}{1 - \cos d \frac{1}{7} \cdot \frac{9}{2} \cdot \frac{9}{15} \cdot \frac{9}{15}} = \frac{90 \text{ os} 18.355}{1 - \cos d \frac{1}{7} \cdot \frac{9}{2} \cdot \frac{9}{15} \cdot \frac{9}{15}} = \frac{90 \text{ os} 18.355}{1 - \cos d \frac{1}{7} \cdot \frac{9}{2} \cdot \frac{9}{15}} = \frac{90 \text{ os} 18.355}{1 - \cos d \frac{1}{7} \cdot \frac{9}{2} \cdot \frac{9}{15}} = \frac{90 \text{ os} 18.355}{1 - \cos d \frac{1}{7} \cdot \frac{9}{2} \cdot \frac{9}{15}} = \frac{90 \text{ os} 18.355}{1 - \cos d \frac{1}{7} \cdot \frac{9}{15}} = \frac{90 \text{ os} 18.355}{1 - \cos d \frac{1}{7} \cdot \frac{9}{15}} = \frac{90 \text{ os} 18.35}{1 - \cos \frac{1}{15}} = \frac{90 \text$ 05 18.75.3 $(\sin \phi, +\sin \phi)^2 3.648 1746 4 (\sin \phi, -\sin \phi)^2 9.384603410 \sin v + .70696556$ $K_{1} = (\sin \phi_{1} + \sin \phi_{2})^{2} / (1 + \cos d) + \frac{1.85 \cdot 325 \cdot 3/2}{1 \cdot 85 \cdot 325 \cdot 3/2} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 585 \cdot 325 \cdot 3}{1 \cdot 85 \cdot 325 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 585 \cdot 325 \cdot 3}{1 \cdot 85 \cdot 325 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 585 \cdot 325 \cdot 3}{1 \cdot 85 \cdot 325 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 585 \cdot 325 \cdot 3}{1 \cdot 85 \cdot 325 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 585 \cdot 325 \cdot 3}{1 \cdot 85 \cdot 325 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 585 \cdot 325 \cdot 3}{1 \cdot 85 \cdot 325 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 585 \cdot 325 \cdot 3}{1 \cdot 85 \cdot 325 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 325 \cdot 3}{1 \cdot 85 \cdot 325 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 325 \cdot 3}{1 \cdot 85 \cdot 325 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 325 \cdot 3}{1 \cdot 85 \cdot 325 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 325 \cdot 3}{1 \cdot 85 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 325 \cdot 3}{1 \cdot 85 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 325 \cdot 3}{1 \cdot 85 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 325 \cdot 3}{1 \cdot 85 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 325 \cdot 3}{1 \cdot 85 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 3}{1 \cdot 85 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 3}{1 \cdot 85 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 3}{1 \cdot 85 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 3}{1 \cdot 85 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 3}{1 \cdot 85 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 3}{1 \cdot 85 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) + \frac{0.298 \cdot 3}{1 \cdot 85 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos \phi_{$ X=K1+K2 +1.883 06894 Y=K1-K2 +1.82343930XY +3.433 65814 X2 +3. 545 94863 X2+3.32492359 d. 2515 622076 d.2.0632835443 A=64d, +16d² cot d+20.03971099 D=48 sin d +8d² csc d +18.98191215 B = -2D - 27. 963 83430 E= 30 sin 2d +14. 464 95396 sin 2d +. 482 165 132 C= - (30d, +8d2 cot d+E/2) - 16. 74920803 AX +37. 736 1572 2 CX2-59.39/83127 DXY + 48. 00910647 BY -50. 99028028 $\Sigma = AX + BY + CX^{2} + DXY + EY^{2} + 23.45 801879$ EY2 +48.09486665 $\delta d_{f} = -(f/4) (Xd_{r} - 3Y \sin d) + 00075 - 255/2 \qquad \delta d_{f}^{2} = +(f^{2}/128) \Sigma + 2.106 - 2021 \times 10^{-6}$ d + 8d + . 2523147588 d + 8d + 8d + . 25231685 $S(\delta d_{f}) = a(d_{r} + \delta d_{f}) \frac{1}{609} \frac{609}{315} \frac{315}{609} \frac{609}{7} S(\delta d_{f^{2}}) = a(d_{r} + \delta d_{f} + \delta d_{f^{2}}) \frac{1}{609} \frac{609}{329} \frac{329}{900} \frac{943}{900} \frac{943}{1000} \frac{1}{1000} \frac{1}{1000}$ T = d/sin d_ 1,010625647 37.620 27.506 89 2u _ 180 10 sin 2u _ -. 003 09071 sin 2v 7. 999 99992 VT + 2. 0038860 × 10 - 4 UT - 3.095 4860 × 10 -7 δu = VT - U+2.006 9489× 10 - 4 δv = -UT + V +1. 988 92322 × 10 41,024 41.396 + Su ____ 18. 753 + v + 4 - u _ --90 +180+1800 59.834 22,643 $a_{1-2} =$ $a_{2-1} = a_{yy} = 180^{\circ} + v + \delta v$ $a_{1-2} = a_{uv} = 180^\circ - u + \delta u$ Line No. 8, See Tables 1 and 2. True distance 1, 609, 329. 060 meters.

### DISTANCE COMPUTING FORM --- ANDOYER-LAMBERT TYPE APPROXIMATION WITH SECOND ORDER TERMS

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825,  $f^2/128 = 0.0897860195 \times 10^{-6}$ 

0 A. 32 54 12.491 E 49 42.1301. Origin Ø1_ 27 00 00,000 W 00.000 % TerMINUS N 18 da 40 111 54 12,997 sin 0, +. 466 82458  $\Lambda \lambda = \lambda - \lambda$ . 50 2. west of 1. cos \$, T- 884 34994 08614 sin do +. 642 78761 sin AA +. 776 62691 tan 0, 7. 527 87314 _ cos φ, +. 166 04444 cos Δλ +.630 04963 cos d = sin  $\phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda$   $\frac{7.727}{2881}$ tan d. 7.839  $M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda + 447 \ 66557 \quad \cot u = M/\sin \Delta \lambda + 576 \ 82459$  $N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda = -000 984 88 \text{ cot } v = N/\sin \Delta \lambda = -001 2690$  $\sin d = \cos \phi_1 \sin \Delta \lambda / \sin v = \cos \phi_2 \sin \Delta \lambda / \sin u + 686 33229 u 60 01$ csc d +1. 45702018 cot d + 1.059 69346 v 90 04 31.758 1-cos d +. 272 71189 sin 1 +.866 22251 1 + cos d + 1. 7292 8811  $(\sin\phi_1 + \sin\phi_2)^2 + ... 23/2392/(\sin\phi_1 - \sin\phi_2)^2 + ... 03096299 \sin v + ... 99999999199$  $K_{1} = (\sin \phi_{1} + \sin \phi_{2})^{2} / (1 + \cos d) \frac{\tau}{12} \frac{7/2}{8/6352} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) \frac{\tau}{12} \frac{7/3}{537360} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) \frac{\tau}{12} \frac{7/3}{537360} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) \frac{\tau}{12} \frac{7/3}{537360} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) \frac{\tau}{12} \frac{7/3}{537360} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) \frac{\tau}{12} \frac{7/3}{537360} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) \frac{\tau}{12} \frac{7/3}{537360} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) \frac{\tau}{12} \frac{1}{537360} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) \frac{\tau}{12} \frac{\tau}{12} \frac{1}{537360} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) \frac{\tau}{12} \frac{\tau}{1$ X=K,+K, +. 826 353 11 Y=K,-K, +. 599 20899XY+.495 21642 X2 +. 682 86045 Y2 +. 359 13531 d. +. 756 433978d. 2 +. 572 1923 48 A=64d, +16d² cot d + 58. 11.3 16731 D=48 sin d +8d² csc d + 37.531 4881 B = -2D = 75.042 9114 E= 30 sin 2d +29.949 6783 sin 2d +.998 32361 C=-(30d, +8d2 cot d+E/2)-42.51855 485 AX +48, 0220-3141 BY-44. 91/62970 CX2-29.034 23950 DXY 418.58/25731 EY2 +10.755 98700 S=AX+BY+CX2+DXY+EY2 +3. 353 35652  $d_{1} + \delta d_{1} + \frac{1}{256949974} d_{1} + \delta d_{1} + \delta d_{1}^{2} + \frac{1}{256950275}$  $S(\delta d_{f}) = a(d_{r} + \delta d_{f}) - \frac{4}{827} - \frac{983}{169} - \frac{169}{169} = a(d_{r} + \delta d_{f} + \delta d_{f}) - \frac{4}{1827} - \frac{985}{9855} - \frac{985}{169} - \frac{985}{169} - \frac{169}{169} - \frac{169}{$ T = d/sin d_ 1.102 1395-74 11 02 180 43.516 42.678 211 sin 2u_+,865-63079 sin 2v -.002 5380  $U = (f/2)\cos^2\phi, \sin 2\psi \cdot 00114 753032 \quad V = (f/2)\cos^2\phi, \sin 2\psi - 2.52459X$ VT -. 00000 218245 +,00126 472 745 δu = VT - U -. 001 15030267 δy = -UT + V-,001267252 04 57.267 3 21.339 + 90 - 60 – u ___ +180+1800 0 41.394 a 2-1 - 2 70 10 a1-2 ---- $a_{2-1} = a_{yy} = 180^{\circ} + v + \delta v$  $a_{1-2} = a_{11V} = 180^\circ - u + \delta u$ Line No. 9, See Tables 1 and 2. True distance 4, 827, 984. 247

# DISTANCE COMPUTING FORM --- ANDOYER-LAMBERT TYPE APPROXIMATION WITH SECOND OBDEB TERMS

(No conversion to parametric latitudes) Clarke Spheroid 1866, a = 6,378,206,4 meters f/2 = 0.00169503765, f/4 = 0.000847518825,  $f^2/128 = 0.0897860195 \times 10^{-6}$ 

02 29.370 E OrIGIN. A. 102 35 18 45-644NZ 00 00.000N2 TERMINUS 2 18 00 00,000 N 29,310 sin 0, +. 578 03821 2. west of 1.  $\Lambda \lambda = \lambda - \lambda$ , 130 02 00990 66309 cos 0, t. 816 sin do +.642 78761 sin AA +.865 tan 0, 1,708 37 194 _ cos φ, +. 166 04444 cos Δλ -. 50062901 tan d. T. 839 09964  $-\cos d = \sin \phi_1 \sin \phi_2 + \cos \phi_1 \cos \phi_2 \cos \Delta \lambda + 0.5861407$  $M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda + 974 094 9862 \cot u = M/\sin \Delta \lambda + 1.1252587$ N = cos  $φ_2$  tan  $φ_1$  = sin  $φ_2$  cos Δλ  $\frac{\tau.864}{4410}$   $\frac{4410}{122}$  cot y = N/sin Δλ  $\frac{\tau.998588}{4410}$  $\sin d = \cos \phi_1 \sin \Delta \lambda / \sin v = \cos \phi_2 \sin \Delta \lambda / \sin u + 99828072 + 41 37'$ csc d +1.00172224 cot d +1058 71496 1 45 1-cos d +.941 38599 sin u +.664 21 1 + cos d T1.058 61401  $(\sin \phi_1 + \sin \phi_2)^2 + 1.49041568 (\sin \phi_1 - \sin \phi_2)^2 + .0041924848 \sin v + .70760605$  $K_{1} = (\sin \phi_{1} + \sin \phi_{2})^{2} / (1 + \cos d) \frac{1.407 893402}{1.407 893402} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) \frac{1.004453524}{1.004453524}$ X=K,+K,+1.412346926 Y=K,-K,+1.403 439878 XY +1.982 143998 X2 +1. 994123839 V2 +1. 969643491 d. +1.512 148751 d.2 + 2.286593845 A=64d, + 16d 2 cot d +98.925 6.36.322 D=48 sin d +8d2 csc d +66.2417298 B = -2D -132.48345966 E= 30 sin 2d + 3.516794166 sin 2d + . 117026472  $C = -(30d_{r} + 8d_{r}^{2} \cot d + E/2) - 48.193817744$ AX +139,717318359 BY -185.93257052 CX2 -96. 133357 138 DXY + 131. 300 64720  $\Sigma = AX + BY + CX^{2} + DXY + EY^{2} - 4.132 94922$ EY2 +6. 915 012877  $\delta d_{f} = -(f/4) (Xd_{r} - 3Y \sin d) + 001752 / 62 \qquad \delta d_{f}^{2} = +(f^{2}/128) \sum - 000000 + 71/162 + (f^{2}/128) \sum - 0000000 + (f^{2}/128) \sum - 000000 + (f^{2}/128) - (f^{2}/128) \sum - 0000000 + (f^{2}/128) - (f^{2}/128$  $- d_{r} + \delta d_{r} + \delta d_{r}^{2} + 1.513900542$ d + 8d + +1. 513 900913  $S(\delta d_{f}) = a(d_{r} + \delta d_{f}) \frac{9.655, 972, 492}{700, 120} S(\delta d_{f^{2}}) = a(d_{r} + \delta d_{f} + \delta d_{f^{2}}) \frac{9.655, 970, 120}{700, 120} S(\delta d_{f^{2}}) = a(d_{r} + \delta d_{f} + \delta d_{f^{2}}) \frac{9.655, 970, 120}{700, 120} S(\delta d_{f^{2}}) = a(d_{r} + \delta d_{f} + \delta d_{f^{2}}) \frac{9.655, 970, 120}{700, 120} S(\delta d_{f^{2}}) = a(d_{r} + \delta d_{f} + \delta d_{f^{2}}) \frac{9.655, 970, 120}{700, 120} S(\delta d_{f^{2}}) = a(d_{r} + \delta d_{f} + \delta d_{f^{2}}) \frac{9.655, 970, 120}{700, 120} S(\delta d_{f^{2}}) = a(d_{r} + \delta d_{f} + \delta d_{f^{2}}) \frac{9.655, 970, 120}{700, 120} S(\delta d_{f^{2}}) = a(d_{r} + \delta d_{f} + \delta d_{f^{2}}) \frac{9.655, 970, 120}{700, 120} S(\delta d_{f^{2}}) = a(d_{r} + \delta d_{f} + \delta d_{f^{2}}) \frac{9.655, 970, 120}{700, 120} S(\delta d_{f^{2}}) = a(d_{r} + \delta d_{f} + \delta d_{f^{2}}) \frac{9.655, 970, 120}{700, 120} S(\delta d_{f^{2}}) = a(d_{r} + \delta d_{f} + \delta d_{f^{2}}) \frac{9.655, 970, 120}{700, 120} S(\delta d_{f^{2}}) = a(d_{r} + \delta d_{f} + \delta d_{f^{2}}) \frac{9.655, 970, 120}{700, 120} S(\delta d_{f^{2}}) = a(d_{r} + \delta d_{f} + \delta d_{f^{2}}) \frac{9.655, 970, 120}{700, 120} S(\delta d_{f^{2}}) = a(d_{r} + \delta d_{f} + \delta d_{f^{2}}) \frac{9.655, 970, 120}{700, 120} S(\delta d_{f^{2}}) = a(d_{r} + \delta d_{f} + \delta d_{f^{2}}) \frac{9.655, 970, 120}{700, 120} S(\delta d_{f^{2}}) \frac{9.655, 970, 120}{700, 12$ T = d/sin d +1.51475305 11 0 2v . 90 14.382 04 83 211 sin 2v +. 999 49900 sin 2u _ +. 993 07665  $V = (f/2) \cos^2 \phi_2 \sin 2v + 0009946879$  $U = (f/2) \cos^2 \phi_1 \sin 2u \, \underline{\tau}, 001120864$ 50,203 10:180 5 UT_ VT_ 19,585  $\delta v = -UT + V$  $\delta u = VT - U$ 19. 585 + δy____ + Su -+ 02 + v + 45 - 11 - 4/ +180+1800 00.67 00 a12 _____38  $a_{2-1} = a_{VU} = 180^\circ + v + \delta v$  $a_{1-2} = a_{11V} = 180^\circ - u + \delta u$ Line No.10, See Tables 1 and 2. True distance 9, 655 969. 751 meters.

#### DISTANCE COMPUTING FORM - ANDOYER-LAMBERT TYPE APPROXIMATION WITH SECOND OBDER TERMS (No conversion to parametric latitudes) Clarke Spheroid 1866, a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825, $f^2/128 = 0.0897860195 \times 10^{-6}$ . 0 55 17.425 Kh Origin 50 04.869E 20 λ. 00 00.000 (N), TerMINUS 00 00.000 1 70 - h -18 φ2. AA= 2-2, +88 50 04.86 sin d. +.050 96783 2. west of 1. 70029 cos d. - 998 sin do + 93969262 sin AA + 999 79318 tan 0, -051 03416 cos d. t. 342 02014 cos MA +. 020 33717 $\tan \phi_{1} = 2.747 + 17142 \cos d = \sin \phi_{1} \sin \phi_{2} + \cos \phi_{1} \cos \phi_{2} \cos \Delta \lambda + 0.05484078$ $M = \cos \phi_1 \tan \phi_2 - \sin \phi_1 \cos \Delta \lambda \frac{t_2.742869955}{t_2.742869955} \cot u = M/\sin \Delta \lambda \frac{t_2.74343735}{t_2.74343735}$ $N = \cos \phi_2 \tan \phi_1 - \sin \phi_2 \cos \Delta \lambda = -001 6559781 \quad \cot v = N/\sin \Delta \lambda = -001656321$ $\sin d = \cos \phi_1 \sin \Delta \lambda / \sin v = \cos \phi_2 \sin \Delta \lambda / \sin u \frac{\tau \cdot 998}{495} \frac{49511}{9511} = \frac{20}{3} \frac{01}{3}$ 7607 csc d + 1.00150716 cot d t- 05492343 v 90 05-41.640 1+ cos d+1.054 84078 1-cos d+.945 1592 2 sin u +. 342 464 $(\sin \phi, +\sin \phi_{0})^{2}$ , 981 408127 $(\sin \phi, -\sin \phi_{0})^{2}$ +. 789831752 $\sin v$ +. 99999863 $K_{2} = (\sin \phi_{1} + \sin \phi_{2})^{2} / (1 + \cos d) \frac{t - 930 \cdot 38 \cdot 508 \cdot 3}{1 + 930 \cdot 38 \cdot 508 \cdot 3} K_{2} = (\sin \phi_{1} - \sin \phi_{2})^{2} / (1 - \cos d) \frac{t \cdot 835 \cdot 65 \cdot 999 \cdot 98}{1 + 835 \cdot 65 \cdot 999 \cdot 98}$ X=K.+K.+1.766045081 Y=K.-K.+.094725085 XY+.162288 X2+3.11891523 Y2+.00891284117 d 1.515-928018 d +2+2.29803796 A=64d + 16d 2 cot d 79.03885/009 D=48 sin d +8d 2 csc d +66.33977544 B = -2D -132-61955088 E = 30 sin 2d + 3-285 4950 sin 2d + 10951650 C= - (30d, +8d2 cot d+E/2) - 48-13031697 AX +174-907075654 BY-12.569081137 CX2-150.114378622 DXY +11.097899235 $EY^2 + 029480237$ $\Sigma = AX + BY + CX^2 + DXY + EY^2 + 23.35799496$ $\delta d_{f} = -(f/4) (Xd_{a} - 3Y \sin d) - 0020284936 \delta d_{f}^{2} = +(f^{2}/128) \Sigma + 00000209668$ d + 8d + 1.51.3899.524 d + 8d + 8d = + 1.51.3401621 $S(\delta d_{f}) = a(d_{r} + \delta d_{f}) \frac{9}{7} \underbrace{6.5.5}_{, 96.3.6.3.3} \underbrace{6.3.3}_{m} S(\delta d_{f^{2}}) = a(d_{r} + \delta d_{f} + \delta d_{f^{2}}) \underbrace{9}_{, 65.5}_{, 977,008} \underbrace{977,008}_{m}$ T = d/sin d +1-51821276 1 211 40 03 15-214 2N 180 13.280 11 sin 2n +, 643 51232 sin 2v -. 0033/263 U = (f/2) cos² $\phi_1$ sin 2u <u>+1.087944 × 10⁻³ V</u> =(f/2) cos² $\phi_2$ sin 2v <u>-6.56834 × 10</u> UT +1.65/7306× 10 -3 VT - 9.972/38 X 10-7 δu = VT - U -. 001088941 δv = -UT + V -. 001652 3874 44.610 03 + Su ____ 05 37.607 + 90 - u ----20 05 +180+1800 . 37.783 00.811 a2-1 ____ 270 10 a1-2 -15 $a_{2-1} = a_{yy} = 180^\circ + v + \delta v$ $a_{1-2} = a_{11V} = 180^{\circ} - u + \delta u$ Line No.11, See Tables 1 and 2. True distance 9, 655, 977.148 meters.
(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825,  $f^2/128$  = 0.0897860195  $\times$  10  $^{-6}$ 

1 radian = 206,264.8062 seconds

6, 70 00 10.0 1. Origin λ. \$ 69 46 36-574 , Terminus λ  $\phi_m = \frac{1}{2} (\phi_2 + \phi_1) \underline{695318.287} 2$ . Always west of 1.  $\Delta \lambda = \lambda_2 - \lambda_1 \underline{15393} 2 \underline{38.298}$ cos φm + , 343 84960 cos Δφm +. 899 99810 sin Δλm +. 136215  $k = \sin \phi_{m} \cos \Delta \phi_{m} \frac{f.939022956}{K} = \sin \Delta \phi_{m} \cos \phi_{m} \frac{m}{m} \frac{100066}{M}$  $H = \cos^{2}\Delta\phi_{m} - \sin^{2}\phi_{m} = \cos^{2}\phi_{m} - \sin^{2}\Delta\phi_{m} t - 118 - 228745 - 1 - L t - 997802502$ cos d = 1-21 7-995605004  $L = \sin^2 \Delta \phi_m + H \sin^2 \Delta \lambda_m = 002197498$ d+.093 789 35 93 sind+ .09365191 T=d/sind+ 1.001467661  $U = 2k^{2}/(1-E) + 1.767 + 12.109 \qquad V = 2K^{2}/L + .000 + 08 + 1504$ X=U+V7.767820259 Y=U-V+1.767003959 XY+3.123745396 x2 + 3- 125 188 468 x2 + 3- 122302991 E=60 cos d + 59- 136 30024  $A = 4 \left[ 16T + (E/15)T^2 \right] + 80.070403444 \qquad D = 8(6+T^2) + 56.02349$ B=-2D=112.046999616 C=2T-1/(A+E)-67. 900 41652 AX +141, 550081348 BY -197, 987491887 CX2-212.2015-98681 DXY +175. 003149599 EY2 +186-574828911 8f = -(f/4) (TX-3Y) +-00299224747  $T + \delta_f + 1.004459909$   $S_1 = a \sin d (T + \delta_f) = 599,995.255$  $\delta_{f^2} = + (f^2/128) (AX + BY + CX^2 + DXY + EY^2) + 8.33923 \times 10^{-6}$  $T + \delta_{f} + \delta_{f^{2}} + \frac{1.004468248}{600,000.236}$  S₂ = a sin d (T +  $\delta_{f} + \delta_{f^{2}}$ ) <u>600,000.236</u>  $\sin(a_2 + a_1) = (K \sin \Delta \lambda) / L - .082 24926 a_2 + a_1 355 16 56.099$  $\sin (a_2 - a_1) = (k \sin \Delta \lambda)/(1 - L) + 25399325 a_2 - a_1$ 17 09.821 165  $\frac{1}{2}(\delta a_1 + \delta a_2) = -(f/2) H(T+1) \sin(a_1 + a_2) + \frac{3298925 \times 10^{-4}}{3} \delta a_1 + \frac{3306396 \times 10^{-4}}{3}$  $\frac{1}{2}(\delta a_2 - \delta a_1) = -(f/2) H(T-1) \sin(a_2 - a_1) - coor491 \times 10 - 4$ - Sa, +. 3291454×10-4 a2 94 59 53.139 a. 260 17 02.960 00 06.789 δa. + 10 16.820 San 7 a2-1 94 59 12 09.180 a. 260  $a_{2-1} = +a_2 + \delta a_2$  $a_{1-2} = + a_1 + \delta a_1$ 22 25.444 True distance 600,000.00 d = _____5 True Azimuths 260 17 09.79 95 00 00.000

Line No. 12

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825,  $f^2/128 = 0.0897860195 \times 10^{-6}$ 

1 radian = 206,264.8062 seconds

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

 $f/2 = 0.00169503765, f/4 = 0.000847518825, f^2/128 = 0.0897860195 \times 10^{-6}$ 

1 radian = 206,264.8062 seconds

. .  $\phi_1 - \frac{19}{51} \frac{51}{31.432} \frac{1}{2.5} \frac{0risin}{12} \frac{1}{03.231} \frac{0risin}{2.5} \frac{1}{2.5} \frac$ AA=A, 7 35 26-397  $\phi_m = \frac{1}{2}(\phi_2 + \phi_1) - \frac{2}{2} - \frac{31}{47.332} - 2$ . Always west of 1. Δλm=1/2 Δλ 3 41 43.188 Adm=1/2(do-do) 2 40 15.899 sin d. T. 383 1641 3 sin Ad. T. 046 60331 sin AA T. 132 09481  $k = \sin \phi_{m} \cos \Delta \phi_{m} \frac{1.382.747.830}{0.45-6.34} K = \sin \Delta \phi_{m} \cos \phi_{m} \frac{1.043.045-6.34}{0.45-6.34}$  $H = \cos^{2}\Delta\phi_{m} - \sin^{2}\phi_{m} = \cos^{2}\phi_{m} - \sin^{2}\Delta\phi_{m} + \frac{1}{85101347} = 1 - L + \frac{1}{940995} + \frac{1}{47}$  $L = \sin^{2}\Delta\phi_{m} + H \sin^{2}\Delta\lambda_{m} + \frac{1}{2005} + \frac{900}{900} + \frac{45}{3} \cos d = 1-2L + \frac{988}{19909} + \frac{909}{19909}$ d +  $\frac{1}{1537803447} \sin d + \frac{-15317496}{1903952243}$ T = d/sin d +  $\frac{1}{1003952243}$  $U = 2k^{2}/(1-L) + 294730848 \qquad V = 2K^{2}/L + 628062491$ X=U+V+, 922793339 Y=U-V-, 333331643 XY-.307596220 X2 +. 851547547 547 Y2 +. 111 109 984 E=60 cos d + 59. 29/945400  $A = 4 \left[ 16T + (E/15)T^2 \right] + \frac{780 - 189355 - 264}{100} D = 8(6 + T^2) + 56 \cdot 0633 608 48$ B=-2D -112.126 72170 C=2T-1/(A+E) -67.732 745846 AX + 73. 998202 893 BY + 37.375 384256 CX2 - 57.677653580 DXY -17.244 877 878 EY2 +6.587927105 & = -(f/4) (TX-3Y) -.0016326902  $T + \delta_f \frac{+1.002}{319} \frac{319}{533} \qquad S_1 = a \sin d (T + \delta_f) \frac{979}{247} \frac{247}{671}$  $\delta_{f^2} = + (f^2/128) (AX + BY + CX^2 + DXY + EY^2) + 3.8643 \times 10 - 6$  $T + \delta_{f} + \delta_{f^{2}} \frac{1.002}{1.002} \frac{323}{323} \frac{417}{417} \qquad S_{2} = a \sin d \left(T + \delta_{f} + \delta_{f^{2}}\right) \frac{979}{2.51.446} m$  $\sin(a_2 + a_1) = (K \sin \Delta \lambda) / L + 963 672 59 a_2 + a_1 + 34 30 32 - 531$  $\sin(a_2 - a_1) = (k \sin \Delta \lambda)/(1 - L)$ <u> $\tau.050$ </u> 85909  $a_2 - a_1$  177 05 05.131  $\frac{1}{2}(\delta a_1 + \delta a_2) = -(f/2) H(T+1) \sin(a_1 + a_2) - 2 \cdot 785 \cdot 689/18 \times 10^{-3} \delta a_1 - 2 \cdot 785 \cdot 39923 \times 10^{-3}$  $\frac{1}{2}(\delta a_2 - \delta a_1) = -(f/2) H(T-1) \sin(a_2 - a_1) - 0002 8 995 \chi_{10} - 3 \delta a_2 - 2.785 - 979 13 \chi_{10} - 3$ 47 48.831 42 43,700 a2 305 a. 128 34.530 34.649 Sa. - 0 9 δα, -38 14.182 a1-2 128 33 09.170 a2-1 305  $\begin{array}{cccc} a_{2-1} &= & +a_2 + \delta a_2 \\ \hline 48 & 39. \frac{4}{7} & 3 \end{array}$ True distance  $\begin{array}{cccc} 979. 251. 25 \end{array}$  $a_{2-1} = + a_2 + \delta a_2$  $a_{1-2} = +a_1 + \delta a_1$ d = _____8__ 305 38 13,25 True Azimuths 128 33 08.34 Line No. 14

(No conversion to parametric latitudes) Clarke Spheroid 1866, a = 6,378,206.4 meters f/2 = 0.00169503765, f/4 = 0.000847518825, f²/128 = 0.0897860195 × 10⁻⁶ 1 radian = 206,264,8062 seconds

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 & 1 \\ \phi_{1} & \underline{Sg} & \underline{30} & \underline{12-0} \\ \phi_{1} & \underline{Sg} & \underline{12-0} \\ \phi_{2} & \underline{12-0} \\ \phi_$$

Line No. 15

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825,  $f^2/128$  = 0.0897860195  $\times$  10  $^{-6}$ 

1 radian = 206,264.8062 seconds

4 8 58 25.0 1. PANAMA X. 79 34 24.0 - X, 158 01 33.0 6. 21 26 06.0 2. HAWATT AA=A2-A, 28 27 09.0  $\phi_m = \frac{1}{2} (\phi_2 + \phi_1) / 5 / 2 / 5 . 5 2$ . Always west of 1.  $\Delta \phi_m = \frac{1}{2} (\phi_2 - \phi_1) \frac{1}{6} \frac{13}{50} \frac{50}{5} \frac{50}{5}$  $\Delta \lambda_m = \frac{1}{2} \Delta \lambda_s = \frac{3}{2} \mathcal{I}$ 13 24.5 sin d. t. 26226170 sin Adm t. 10853193 sin AA t. 979 75909 cos \$ m T. 964 99679 cos A fm T. 99409297 sin AA +.632 38428  $k = \sin \phi_m \cos \Delta \phi_m \frac{t \cdot 2607/12512}{K} = \sin \Delta \phi_m \cos \phi_m \frac{t \cdot 10473296}{K}$  $H = \cos^{2}\Delta\phi_{m} - \sin^{2}\phi_{m} = \cos^{2}\phi_{m} - \sin^{2}\Delta\phi_{m} - t - 919 + 39630 - 1 - L + t - 620537830$  $L = \sin^2 \Delta \phi_m + H \sin^2 \Delta \lambda_m \frac{t.379 472 / 70}{t.379 472 / 70} \cos d = 1 - 2L \frac{t-24}{0.55 660}$ d+<u>1.337342885</u> sin d+ +.97051129 T=d/sin d+<u>1.367673822</u> U=2k²/(1-L) + 219074 8283 V=2K²/L + 057 8118 469 X=U+V+.276 886 6752 Y=U-V.16/262 9814 XY T.044651 571 X2 +.0766662309 Y2 +.0260057492 E=60 cos d +14.4633396  $A = 4 \left[ 16T + (E/15)T^2 \right] + 94.745 56060 D = 8(6+T^2) + 62.964253 + 64$ B=-2D -125. 928506 928 C=2T-1/(A+E)-51. 869102 456 AX+26.233783264 BY-20.307606466 CX2-3.976608 586 DXY +2.811452821 EY2 +0.376129982 SE = -(f/4) (TX-3Y) +8.90728 × 10- $T + \delta_f + \frac{1.367762895}{5}$  S₁ = a sin d (T +  $\delta_f$ ) 8, 466, 618. 258 m  $\delta_{f^2} = + (f^2/128) (AX + BY + CX^2 + DXY + EY^2) + 4 \cdot 6124 \times 10^{-7}$  $T + \delta_{f} + \delta_{f^{2}} \frac{\pm 1.367763356}{5_{2}} = a \sin d (T + \delta_{f} + \delta_{f^{2}}) \frac{8.466.631.112}{5} m$  $\sin(a_2 + a_1) = (K \sin \Delta \lambda) / L + 270 + 1001 a_2 + a_1 + 375 + 41 + 19.197$  $\sin (a_2 - a_1) = (k \sin \Delta \lambda) / (1 - L) + 4// 6 + 222 a_2 - a_1 - 155$ 41 31.161  $\frac{1}{2}(\delta a_1 + \delta a_2) = -(f/2) H(T+1) \sin(a_1 + a_2) - \frac{000997808513}{5} \delta a_1 - \frac{761931734}{931734} M - 3$  $\frac{1}{2}(\delta a_2 - \delta a_1) = -(f/2) H(T-1) \sin(a_2 - a_1) - \frac{1}{2335876779} \delta a_2 - \frac{1}{233685292} \frac{1}{2792} \frac{1}{10} - \frac{1}{3} \frac{1}{233685292} \frac{1}{2792} \frac{1}{10} - \frac{1}{3} \frac{1}{233685292} \frac{1}{2792} \frac{1}{10} - \frac{1}{3} \frac{1}{10} \frac{1}{10}$ 59 54,018 a, 265 41 15 179 a. 109 37.160 δa, ____ 2 δα. an 265 37 10.713 57 16.858 a1-2 109  $a_{1-2} = + a_1 + \delta a_1$  $a_{2-1} = + a_2 + \delta a_2$ True distance 8, 466, 621.01 meters d = _____ True Azimuths 109 57 17.41 265 37 10.59 Line No. 16

(No conversion to parametric latitudes)

Clarke Spheroid 1866, a = 6,378,206.4 meters

f/2 = 0.00169503765, f/4 = 0.000847518825,  $f^2/128 = 0.0897860195 \times 10^{-6}$ 

1 radian = 206,264.8062 seconds

4, 55 45 19.5 (N) 1. MOSCOW 1, -37 34 15.450 (E)
4-33 56 03.5(5) 2. CAPE OF GOOD HOPE - 18 28 41. 400 (E)
$\phi_{\rm m} = \frac{1}{2} (\phi_2 + \phi_1) \frac{\pm 10}{54} \frac{54}{38.0} 2.$ Always west of 1. $\Delta \lambda = \lambda_2 - \lambda_1 \frac{\pm 19}{50} \frac{05}{34.050}$
$\Delta \phi_{m} = \frac{1}{2} (\phi_{2} - \phi_{1}) = \frac{44}{50} \frac{50}{41.5} \frac{41.5}{50} \Delta \lambda_{m} = \frac{1}{2} \Delta \lambda \frac{79}{32} \frac{32}{47.025} \frac{47.025}{50}$
$\sin \phi_m \frac{T.189 27635}{\sin \Delta \phi_m} = .705 - 18957 \sin \Delta \lambda \frac{T.327}{09901}$
$\cos \phi_m + .98192386 \cos \Delta \phi_m + .709 01881 \sin \Delta \lambda_m + .165 84631$
$k = \sin \phi_{\rm m} \cos \Delta \phi_{\rm m} \frac{\pm .134}{20049} \frac{20049}{\rm K} = \sin \Delta \phi_{\rm m} \cos \phi_{\rm m} \frac{692}{692} \frac{44346}{44346}$
$H = \cos^{2}\Delta\phi_{m} - \sin^{2}\phi_{m} = \cos^{2}\phi_{m} - \sin^{2}\Delta\phi_{m} + \frac{1}{2}\frac{466}{88214} = 1 - L + \frac{1}{2}\frac{489}{86609} = \frac{1}{2}\frac{1}{1}\frac{1}{1}$
$L = \sin^{2}\Delta\phi_{m} + H \sin^{2}\Delta\lambda_{m} - \frac{T \cdot 510}{1 \cdot 3391} \cos d = 1 - 2L - \frac{02026782}{1 \cdot 2026782}$
d + 1.591065538  sin d + .99979459  T = d/sin d + 1.59139242
$U = 2k^{2}/(1-L) + 0.073529368 \qquad V = 2K^{2}/L + 1.879806657$
X=U+V+1.953336025 Y=U-V-1.806277289XY-3.528266500
X ² + 3.8/552/627 Y ² + 3.262637645 E=60 cos d - 1.2/6069200
$A = 4 \left[ 16T + (E/15)T^2 \right] + 101.03785315^2 D = 8(6+T^2) + 68.260238672$
$B = -2D - \frac{136.52047734}{(A+E)} - \frac{46.72370772}{(A+E)}$
AX + 197. 34/345 184 BY + 246.59383763 CX2 - 178.273025691
$DXY - 140.8403/338/ EY^2 - 3.96759315 f_{0f} = -(f/4)(TX - 3Y) - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007257095 - 007575705757575757575757575757575757575$
$T + \delta_f \frac{f_{1.5}g_{4.165}}{g_{1.5}g_{4.165}} S_1 = a \sin d (T + \delta_f) \frac{f_{1.5}g_{4.165}}{g_{1.5}g_{1.5}g_{2.5}} m$
$\delta_{f^2} = + (f^2/128) (AX + BY + CX^2 + DXY + EY^2) + \frac{1}{2} \frac{9}{2} \frac{2}{4} \frac{2}{2} \frac{1}{2} \frac{1}{2$
$T + \delta_{f} + \delta_{f^{2}} \frac{+1.584/67/147}{16.069.863} $ $S_{2} = a \sin d (T + \delta_{f} + \delta_{f^{2}}) \frac{10.102069.863}{10.2069.863} $
$\sin(a_2 + a_1) = (K \sin \Delta \lambda) / L$
$\sin (a_2 - a_1) = (k \sin \Delta \lambda) / (1 - L) + 0.89 60989 a_2 - a_1 - 174 51 31.807$
$\frac{1}{2}(\delta a_1 + \delta a_2) = -(f/2) H (T+1) \sin (a_1 + a_2) + 9.105 - 3893 \times 10^{-4} \delta a_1 + 9.5 - 344709 \times 10^{-4}$
$\frac{1}{2}(\delta a_2 - \delta a_1) = -(f/2) H(T-1) \sin(a_2 - a_1) - \frac{119}{2902} \frac{3902}{10^{-4}} \frac{10^{-4}}{\delta a_2} \frac{\delta a_2}{48.685} - \frac{48.685}{999} \frac{999}{10^{-4}} \frac{10^{-4}}{10^{-4}}$
a1 15 45 00.476 a2 190 36 32.283
$\delta a_1 + 3 - 16.463 = \delta a_2 + 2 - 59.162$
$a_{1-2} = 15 + 48 - 16 \cdot 939 = a_{2-1} - 190 - 39 - 31 \cdot 445$
$a_{1-2} = + a_1 + \delta a_1$ $a_{2-1} = + a_2 + \delta a_2$
d = True distance $10,102,069.06$ meters
True Azimuths 15 48 17.674 190 39 32.208
Line No. 17

Unclassified Security Classification							
DOCUMENT CO	NTROL DATA - R&D						
(Security classification of title, body of abstract and indexi	ng annotation must be entered when	the overall report is classified)					
1. ORIGINATING ACTIVITY (Corporate author)	2a. REPO	ORT SECURITY CLASSIFICATION					
U. S. Naval Oceanographic Office		Unclassified					
Washington, D. C. 20390	2 <i>b.</i> GRO	2.b. GROUP					
3. REPORT TITLE							
MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS (U)							
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Technical Report							
5. AUTHOR(S) (Last name, first name, initial) THOMAS Paul							
inonas, rau	LT D.						
6. REPORT DATE October 1965	78. TOTAL NO. OF PAGES	7b. NO. OF REFS					
	142	25					
8a. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT NUMBER(S)						
	Technical Report (TR)-182						
b. PROJECT NO. HF-103-04-02							
c. F31-36-ANB	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)						
10. AVAILABILITY/LIMITATION NOTICES							
subsit results of or this publication is controlled. Qualified DDC users shall							
Washington D. C. 20300 ATTN: Code H000							
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY						
	IL S Naval Oceanographic Office						
	Washington, D. C. 20390						
13. ABSTRACT							
The principal objective of this st	udy was an evaluation	of the formulas					
basic to the geodetic inverse solution for distance computations used by the							
U. S. Naval Oceanographic Office in loran-type charting. The adequacy of the							
formulas for past requirements was verified but, in anticipation of future							
requirements, they were modified to give geodesic distances and azimuths							
between any two points on the reference ellipsoid to uncertainties of less							
than a meter and a second respectively	•						
Duning the study associated goome	trical configurations	ware daveloped or					
burning the study, associated geometrical configurations were developed or							
a spherical rectangular coordinate system on the auviliary sphere with human							
bolic loci referenced to it; and geometrical quantities associated with arc							
distance, such as chord length, dip of the chord, maximum separation of chord							
and arc, and the geographical position	of the point of maximum a	mum separation. The					
formulas with their derivations are presented. (U)							

### Unclassified

Security Classification

14.	LINK A		LINK B		LINK C	
KET WORDS		WΤ	ROLE	wτ	ROLE	WΤ
Geodetic distance inverse solution Andoyer-Lambert formulae generalization Forsyth method for geodesics(Corrected) Geodetic formulae(latitude, distance, azimuths) Geodesic approximations(spheroid)						

### INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paring for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rdles, and weights is optional.

# U. S. Naval Oceanographic Office

L

MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS, by P. D. Thomas, October 1965.142 p. Including figures and tables. (TR-182)

latitudes and geometric quantities referenced to the sions of formulae to give distance and azimuths on the reference ellipsoid within a meterand a second solution as used in loran-type charting with exten-An evaluation is given of the inverse distance respectively. Also developed or studied were auxiliary sphere-spheroid configuration.

- 1. Geodesy 2. Loran
- Computation Distance ŝ
- Spheroidal Sphere-4
- Geometry
- matical models for navigation author: P. D. title: Mathe-Thomas 11.
  - TR-182

iii.

U. S. Naval Oceanographic Office

 $\vdash$ 

Г

1. Geodesy

2. Loran

MATHEMATICAL MODELS FOR NAVIGATION SY STEMS, by P. D. Thomas, October 1965.142 p. Including figures and tables. (TR-182)

Distance

ů

atitudes and geometric quantities referenced to the the reference ellipsoid within a meterand a second sions of formulae to give distance and azimuths on solution as used in loran-type charting with exten-An evaluation is given of the inverse distance respectively. Also developed or studied were auxiliary sphere-spheroid configuration.

matical models for navigation author: P. D. i. title: Mathe-Computation Spheroidal Geometry Sphere-4. 11.

Thomas

TR-182

111.

# U. S. Naval Oceanographic Office

_

MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS, by P. D. Thomas, October 1965.142 p. Including figures and tables. (TR-182)

latitudes and geometric quantities referenced to the the reference ellipsoid within a meterand a second sions of formulae to give distance and azimuths on solution as used in loran-type charting with exten-An evaluation is given of the inverse distance respectively. Also developed or studied were auxiliary sphere-spheroid configuration.

1. Geodesy

+

- Loran 2.
- Computation Distance ŝ
  - Sphere-4
    - Spheroidal Geometry
- matical models i. title: Mathe
  - for navigation author: P. D. 11.
- - Thomas iii. TR-182

# U. S. Naval Oceanographic Office

MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS, by P. D. Thomas, October 1965.142 p. Including figures and tables. (TR-182)

atitudes and geometric quantities referenced to the the reference ellipsoid within a meterand a second sions of formulae to give distance and azimuths on solution as used in loran-type charting with exten-An evaluation is given of the inverse distance respectively. Also developed or studied were auxiliary sphere-spheroid configuration.

Distance 2. Loran ŝ

Т

1. Geodesy

- Computation
  - Spheroidal Geometry Sphere-4
- matical models i. title: Mathe
  - for navigation li. author: P. D. Thomas
- iii. TR-182





