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MATHEMATICAL AND PHYSICAL PAPERS.

[From the Cambridge and Dublin Mathematical Journal, Vol. in. p. 121,

March, 1848.]

NOTES ON HYDRODYNAMICS*.

III. On the Dynamical Equations.

IN reducing to calculation the motion of a system of rigid

bodies, or of material points, there are two sorts of equations with

which we are concerned
;
the one expressing the geometrical con

nexions of the bodies or particles with one another, or with curves

or surfaces external to the system, the other expressing the rela

tions between the changes of motion which take place in the system
and the forces producing such changes. The equations belonging
to these two classes may be called respectively the geometrical, and

the dynamical equations. Precisely the same remarks apply to

the motion of fluids. The geometrical equations which occur in

* The series of &quot;notes on Hydrodynamics&quot; which are printed in Vols. n., in.

and rv. of the Cambridge and Dublin Mathematical Journal, were written by agree
ment between Sir William Thomson and myself mainly for the use of Students. As
far as my own share in the series is concerned, there is little contained hi the

&quot;notes&quot; which may not be found elsewhere. Acting however upon the general

advice of my friends, I have included my share of the series in the present reprint.

It may be convenient to give here the references to the whole series.

I. On the Equation of Continuity (Thomson), Vol. n. p. 282.

II. On the Equation of the Bounding Surface (Thomson), Vol. in. p. 89.

IIL (Stokes) as above.

IV. Demonstration of a Fundamental Theorem (Stokes), Vol. in. p. 209.

V. On the Vis Viva of a Liquid in motion (Thomson), Vol. iv. p. 90.

VI. On Waves (Stokes), Vol. rv. p. 219.

s. n. 1



2 NOTES ON HYDRODYNAMICS.

Hydrodynamics have been already considered by Professor Thom
son, in Notes I. and II. The object of the present Note is to form

the dynamical equations.

The fundamental hypothesis of Hydrostatics is, that the mutual

pressure of two contiguous portions of a fluid, separated by an

imaginary plane, is normal to the surface of separation. This

hypothesis forms in fact the mathematical definition of a fluid.

The equality of pressure in all directions is in reality not an inde

pendent hypothesis, but a necessary consequence of the former.

A proof of this may be seen at the commencement of Prof. Miller s

Hydrostatics. The truth of our fundamental hypothesis, or at

least its extreme nearness to the truth, is fully established by
experiment. Some of the nicest processes in Physics depend upon
it

;
for example, the determination of specific gravities, the use of

the level, the determination of the zenith by reflection from the

surface of mercury.

The same hypothesis is usually made in Hydrodynamics. If it

be assumed, the equality of pressure in all directions will follow as

a necessary consequence. This may be proved nearly as before,

the only difference being that now we have to take into account,

along with the impressed forces, forces equal and opposite to the

effective forces. The verification of our hypothesis is however

much more difficult in the case of motion, partly on account of the

mathematical difficulties of the subject, partly because the experi

ments do not usually admit of great accuracy. Still, theory and

experiment have been in certain cases sufficiently compared to

shew that our hypothesis may be employed with very little error

in many important instances. There are however many pheno
mena which point out the existence of a tangential force in fluids

in motion, analogous in some respects to friction in the case of

solids, but differing from it in this respect, that whereas in solids

friction is exerted at the surface, and between points which move

relatively to each other with a finite velocity, in fluids friction is

exerted throughout the mass, where the velocity varies continu

ously from one point to another. Of course it is the same thing

to say that in such cases there is a tangential force along with a

normal pressure, as to say that the mutual pressure of two adjacent

elements of a fluid is no longer normal to their common surface.
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The subsidence of the motion in a cup of tea which has been

stirred may be mentioned as a familiar instance of friction, or,

which is the same, of a deviation from the law of normal pressure ;

and the absolute regularity of the surface when it comes to rest,

whatever may have been the nature of the previous disturbance,

may be considered as a proof that all tangential force vanishes

when the motion ceases.

It does not fall in with the object of this Note to enter into the

theory of the friction of fluids in motion*, and accordingly the

hypothesis of normal pressure will be adopted. The usual nota

tion will be employed, as in the preceding Notes. Consider the

elementary parallelepiped of fluid comprised between planes parallel

to the coordinate planes and passing through the points whose co

ordinates are x, y, 2, and x -f dx, y + dy, z + dz. Let X, Y, Z be

the accelerating forces acting on the fluid at the point (x, y, z) ;

then, p and X being ultimately constant throughout the element,

the moving force parallel to x arising from the accelerating forces

which act on the element will be ultimately pX dx dy dz. The

difference between the pressures, referred to a unit of surface, at

opposite points of the faces dy dz is ultimately dp/dx . dx, acting in

the direction of x negative, and therefore the difference of the total

pressures on these faces is ultimately dp/dx . dx dy dz
;
and the

pressures on the other faces act in a direction perpendicular to the

axis of x. The effective moving force parallel to x is ultimately

p . D*x/Df . dx dy dz, where, in order to prevent confusion, D is

used to denote differentiation when the independent variables are

supposed to be t, and three parameters which distinguish one

particle of the fluid from another, as for instance the initial coordi

nates of the particle, while d is reserved to denote differentiation

when the independent variables are x, y, z, t. We have therefore,

ultimately,

V dD

* The reader who feels an interest in the subject may consult a memoir by

Navier, Memoires de VAcademie, torn. vi. p. 389 ;
another by Poisson, Journal de

I Ecole Poll/technique, Cahier xx. p. 139 ; an abstract of a memoir by M. de Saint-

Venant, Comptes Eendus, torn. xvn. (Nov. 1843) p. 1240; and a paper in the Cam

bridge Philosophical Transactions, Vol. vui. p. 287. [Ante, Vol. i. p. 75.]
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4 NOTES ON HYDRODYNAMICS.

with similar equations foi&amp;gt; y and z. Dividing by p dx dy dz, trans

posing, and taking the limit, we get

ldp_ = =
pdx~ D?&amp;gt; pdy

~

L&amp;gt;f&amp;gt; pdz
~W

These are the dynamical equations which must be satisfied at

every point in the interior of the fluid mass
;
but they are not at

present in a convenient shape, inasmuch as they contain differen

tial coefficients taken on two different suppositions. It will be

convenient to express them in terms of differential coefficients

taken on the second supposition, that is, that x, yy z, t are the

independent variables. Now Dx/Dt = u, and on the second suppo
sition u is a function of t, x, y, z, each of which is a function of t

on the first supposition. We have, therefore, by Differential Cal

culus,

Du D*x du duDx duDu duDz__ s\Y_ , _ I
.__ l ___ 7 i__ ___ .

Dt Dt 2
dt

&quot;*&quot;

dx Dt^ dy ~Dt
&quot;*&quot;

dz Dt

or, since by the definitions of u, v, w,

Dx Dy Dz
M = U

&amp;gt; to= v
&amp;gt; Dt

=W
&amp;gt;

, D*x du du du du
we have -n72

=
~T,+ U -J- + v :r + w T~

JJt at ax dy dz

with similar equations for y and z.

Substituting in (1), we have

1 dr&amp;gt; ^ du du du du ~\

--f X--.
-- u-j

-- v-,-- w -j-
pdx dt dx dy dz

1 dp ^T dv dv dv dv~=Y -j- rr u -^ v-j ^-7-
p dy dt dx dy dz

1 dp dw dw dw dw
- -- Z

^
u --.
-- v -j

-- w -=-
p dz dt dx dy dz

which is the usual form of the equations.

The equations (1) or (2), which are physically considered the

same, determine completely, so far as Dynamics alone are concerned,

the motion of each particle of the fluid. Hence any other purely

dynamical equation which we might set down would be identically

satisfied by (1) or (2). Thus, if we were to consider the fluid
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which at the time t is contained within a closed surface S, and set
down the last three equations of equilibrium of a rigid body be
tween the pressures exerted on S, the moving forces due to the

accelerating forces acting on the contained fluid, and the effective

moving forces reversed, we should not thereby obtain any new
equation. The surface 8 may be either finite or infinitesimal, as,
for example, the surface of the elementary parallelepiped with
which we started. Thus we should fall into error if we were to
set down these three equations for the parallelepiped, and think
that we had thereby obtained three new independent equations.

If the fluid considered be homogeneous and incompressible, p
is a constant. If it be heterogeneous and incompressible, p is a
function of x, y, z, t, and we have the additional equation DpjDt = 0,

which expresses the fact of the
iricompressibility. If the~fluid be

elastic and homogeneous, and at the same temperature through
out, and if moreover the change of temperature due to con
densation and rarefaction be neglected, we shall have

(4),

where k is a given constant, depending on the nature of the gas,
and a a known constant which is the same for all gases [nearly].
The numerical value of a, as determined by experiment, is 00366,
being supposed to refer to the centigrade thermometer.

If the condensations and rarefactions of the fluid be rapid, we
may without inconsistency take account of the increase of tempe
rature produced by compression, while we neglect the communica
tion of heat from one part of the mass to another. The only
important problem coming under this class is that of sound. If we
suppose the changes in pressure and density small, and neglect the

squares of small quantities, we have, putting Pl , Pi for the values
of p, p in equilibrium,

f)

K being a constant which, as is well known, expresses the ratio of
the specific heat of the gas considered under a constant pressure
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to its specific heat when the volume is constant. We are not,

however, obliged to consider specific heat at all; but we may if we

please regard K merely as the value of d log p/d log p for p
=
p l}

p being that function of p which it is in the case of a mass of air

suddenly compressed or dilated. In whichever point of view we

regard K, the observation of the velocity of sound forms the best

mode of determining its numerical value.

It will be observed that in the proof given of equations (1) it

has been supposed that the pressure exerted by the fluid outside

the parallelepiped was exerted wholly on the fluid forming the

parallelepiped, and not partly on this portion of fluid and partly

on the fluid at the other side of the parallelepiped. Now, the

pressure arising directly from molecular forces, this imposes a re

striction on the diminution of the parallelepiped, namely that its

edges shall not become less than the radius of the sphere of activity

of the molecular forces. Consequently we cannot, mathematically

speaking, suppose the parallelepiped to be indefinitely diminished.

It is known, however, that the molecular forces are insensible at

sensible distances, so that we may suppose the parallelepiped to

become so small that the values of the forces, &c., for any point of

it, do not sensibly differ from their values for one of the corners,

and that all summations with respect to such elements may be

replaced without sensible error by integrations ;
so that the values

of the several unknown quantities obtained from our equations by

differentiation, integration, &c. are sensibly correct, so far as this

cause of error is concerned
;
and that is all that we can ever attain

to in the mathematical expression of physical laws. The same

remarks apply as to the bearing on our reasoning of the supposition

of the existence of ultimate molecules, a question into which we

are not in the least called upon to enter.

There remains yet to be considered what may be called the

dynamical equation of the bounding surface.

Consider, first, the case of a fluid in contact with the surface of

a solid, which may be either at rest or in motion. Let P be a

point in the surface, about which the curvature is not infinitely

great, &&amp;gt; an element of the surface about P, PN a normal at P,

directed into the fluid, and let PN = h. Through N draw a plane

A perpendicular to PN, arid project o&amp;gt; on this plane by a circum

scribing cylindrical surface. Suppose h greater than the radius r
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of the sphere of activity of the molecular forces, and likewise large

enough to allow the plane A not to cut the perimeter of &&amp;gt;. For
the reason already mentioned r will be neglected, and therefore no

restriction imposed on k on the first account. Let II be the pres
sure sustained by the solid, referred to a unit of surface, II having
the value belonging to the point P, and let p be the pressure of

the fluid at N. Consider the element of fluid comprised between

&&amp;gt;,
its projection on the plane A, and the projecting cylindrical sur

face. The forces acting on this element are, first, the pressure of

the fluid on the base, which acts in the direction NP, and is ulti

mately equal to peo ; secondly, the pressure of the solid, which

ultimately acts alongPN and is equal to IIco; thirdly, the pressure
of the fluid on the cylindrical surface, which acts everywhere in a

direction perpendicular to PN
; and, lastly, the moving forces due

to the accelerating forces acting on the fluid
;
and this whole sys

tem of forces is in equilibrium with forces equal and opposite to

the effective moving forces. Now the moving forces due to the

accelerating forces acting on the fluid, and the effective moving
forces, are both of the order ah, and therefore, whatever may be

their directions, vanish in the limit compared with the force pa),
if we suppose, as we may, that h vanishes in the limit. Hence we

get from the equation of the forces parallel to PN, passing to the

limit,

^ = n (6),

p being the limiting value of p ,
or the result obtained by substi

tuting in the general expression for the pressure the coordinates of

the point P for x, y, z.

It should be observed that, in proving this equation, the forces

on which capillary phenomena depend have not been taken into

account. And in fact it is only when such forces are neglected
that equation (6) is true.

In the case of a liquid with a free surface, or more generally in

the case of two fluids in contact, it may be proved, just as before,

that equation (6) holds good at any point in the surface, p, II being
the results obtained on substituting the coordinates of the point
considered for the general coordinates in the general expressions

for the pressure in the two fluids respectively. In this case, as

before, capillary attraction is supposed to be neglected.



[From the Philosophical Magazine, Vol. xxxn. p. 343, May, 1848.]

ON THE CONSTITUTION OF THE LUMINIFEROUS ETHER.

THE phenomenon of aberration may be reconciled with the

undulatory theory of light, as I have already shown (Phil. Mag.,
Vol. xxvil. p. 9*), without making the violent supposition that the

ether passes freely through the earth in its motion round the sun,

but supposing, on the contrary, that the ether close to the surface

of the earth is at rest relatively to the earth. This explanation

requires us to suppose the motion of the ether to be such, that the

expression usually denoted by udx -f- vdy + wdz is an exact diffe

rential. It becomes an interesting question to inquire on what

physical properties of the ether this sort of motion can be explained.

Is it sufficient to consider the ether as an ordinary fluid, or must

we have recourse to some property which does not exist in ordinary

fluids, or, to speak more correctly, the existence of which has not

been made manifest in such fluids by any phenomenon hitherto

observed ? I have already attempted to offer an explanation on

the latter supposition (Phil. Mag., Vol. xxix. p. 6&quot;f*).

In my paper last referred to, I have expressed my belief that

the motion for which udx + &c. is an exact differential, which

would take place if the ether were like an ordinary fluid, would be

unstable ;
I now propose to prove the same mathematically, though

by an indirect method.

Even if we supposed light to arise from vibrations of the ether

accompanied by condensations and rarefactions, analogous to the

vibrations of the air in the case of sound, since such vibrations

would be propagated with about 10,000 times the velocity of the earth,

*
Ante, Vol. i. p. 13 - t Ante, Vol. i. p. 153.
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we might without sensible error neglect the condensation of the

ether in the motion which we are considering. Suppose, then, a

sphere to be moving uniformly in a homogeneous incompressible

fluid, the motion being such that the square of the velocit}
7 may

be neglected. There are many obvious phenomena which clearly

point out the existence of a tangential force in fluids in motion,

analogous in many respects to friction in the case of solids. When
this force is taken into account, the equations of motions become

(Cambridge Philosophical Transactions, Vol. vm. p. 297*)

d du d2
u d*u d

with similar equations for y and z. In these equations the square

of the velocity is omitted, according to the supposition made above,

p is considered constant, and the fluid is supposed not to be acted

on -by external forces. We have also the equation of continuity

du dv dw A ,~.

-r + ;r + :r =0 ........................ (2 )&amp;gt;

dx dy dz

and the conditions, (1) that the fluid at the surface of the sphere

shall be at rest relatively to the surface, (2) that the velocity shall

vanish at an infinite distance.

For my present purpose it is not requisite that the equations

such as (1) should be known to be true experimentally ;
if they

were even known to be false they would be sufficient, for they may
be conceived to be true without mathematical absurdity. My
argument is this. If the motion for which udx+...is an exactO

differential, which would be obtained from the common equations,

were stable, the motion which would be obtained from equations

(1) would approach indefinitely, as
p, vanished, to one for which

udx+ ... was an exact differential, and therefore, for anything

proved to the contrary, the latter motion might be stable
;
but if,

011 the contrary, the motion obtained from (1) should turn out

totally different from one for which udx + ... is an exact differen

tial, the latter kind of motion must necessarily be unstable.

Conceive a velocity equal and opposite to that of the sphere

impressed both on the sphere and on the fluid. It is easy to prove

*
Ante, Vol. i. p. 93.
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that udx + ... will or will not be an exact differential after the

velocity is impressed, according as it was or was not such before.

The sphere is thus reduced to rest, and the problem becomes one

of steady motion. The solution which I am about to give is

extracted from some researches in which I am engaged, but which

are not at present published. It would occupy far too much room

in this Magazine to enter into the mode of obtaining the solution :

but this is not necessary ;
for it will probably be allowed that

there is but one solution of the equations in the case proposed, as

indeed readily follows from physical considerations, so that it will

be sufficient to give the result, which may be verified by differen

tiation.

Let the centre of the sphere be taken for origin ;
let the direc

tion of the real motion of the sphere make with the axes angles
whose cosines are I, m, n, and let v be the real velocity of the

sphere; so that when the problem is reduced to one of steady

motion, the fluid at a distance from the sphere is moving in the

opposite direction with a velocity v. Let a be the sphere s radius :

then we have to satisfy the general equations (1) and (2) with the

particular conditions

u = 0, v = 0, w = 0, when r = a (3) ;

u= lv
}

v = mv, w = nv, when r = oo
(4),

r being the distance of the point considered from the centre of the

sphere. It will be found that all the equations are satisfied by
the following values,

p = II -f
-

JJLV -3 (lx + my + nz\

u =- f-. ?} t\L :?_

with symmetrical expressions for v and w. II is here an arbitrary

constant, which evidently expresses the value of p at an infinite

distance. Now the motion defined by the above expressions does

not tend, as
//, vanishes, to become one for which udx + ... is an

exact differential, and therefore the motion which would be

obtained by supposing udx -\- ... an exact differential, and applying
to the ether the common equations of hydrodynamics, would be
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unstable. The proof supposes the motion in question to be steady ;

but such it may be proved to be, if the velocity of the earth be

regarded as uniform, and an equal and opposite velocity be con

ceived impressed both on the earth and on the ether. Hence the

stars would appear to be displaced in a manner different from that

expressed by the well-known law of aberration.

When, however, we take account of a tangential force in the

ether, depending, not on relative velocities, or at least not on rela

tive velocities only, but on relative displacements, it then becomes

possible, as I have shewn (Phil. Mag., Vol. xxix. p. 6), to explain

not only the perfect regularity of the motion, but also the circum

stance that udx + . . . is an exact differential, at least for the ether

which occupies free space ;
for as regards the motion of the ether

which penetrates the air, whether about the limits of the atmo

sphere or elsewhere, I do not think it prudent, in the present

state of our knowledge, to enter into speculation ;
I prefer resting

in the supposition that udx-}- ... is an exact differential. Accord

ing to this explanation, any nascent irregularity of motion, any

nascent deviation from the motion for which udx + ... is an exact

differential, is carried off into space, with the velocity of light, by

transversal vibrations, which as such are identical in their physical

nature with light, but which do not necessarily produce the sensa

tion of light, either because they are too feeble, as they probably

would be, or because their lengths of wave, if the vibrations take

place in regular series, fall beyond the limits of the visible spec

trum, or because they are discontinuous, and the sensation of light

may require the succession of a number of similar vibrations. It

is certainly curious that the astronomical phenomenon of the

aberration of light should afford an argument in support of the

theory of transversal vibrations.

Undoubtedly it does violence to the ideas that we should have

been likely to form a priori of the nature of the ether, to assert

that it must be regarded as an elastic solid in treating of the

vibrations of light. When, however, we consider the wonderful

simplicity of the explanations of the phenomena of polarization

when we adopt the theory of transversal vibrations, and the diffi

culty, which to me at least appears quite insurmountable, of

explaining these phenomena by any vibrations due to the conden-
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sation and rarefaction of an elastic fluid such as air, it seems

reasonable to suspend our judgement, and be content to learn from

phenomena the existence of forces which we should not beforehand

have expected. The explanations which I had in view are those

which belong to the geometrical part of the theory; but the

deduction, from dynamical calculations, of the laws which in the

geometrical theory take the place of observed facts must not be

overlooked, although here the evidence is of a much more compli

cated character.

The following illustration is advanced, not so much as explain

ing the real nature of the ether, as for the sake of offering a

plausible mode of conceiving how the apparently opposite proper
ties of solidity and fluidity which we must attribute to the ether

may be reconciled.

Suppose a small quantity of glue dissolved in a little water, so

as to form a stiff jelly. This jelly forms in fact an elastic solid : it

may be constrained, and it will resist constraint, and return to its

original form when the constraining force is removed, by virtue of

its elasticity ;
but if we constrain it too far it will break. Suppose

now the quantity of water in which the glue is dissolved to be

doubled, trebled, and so on, till at last we have a pint or a quart
of glue water. The jelly will thus become thinner and thinner,

and the amount of constraining force which it can bear without

being dislocated will become less and less. At last it will become

so far fluid as to mend itself again as soon as it is dislocated. Yet

there seems hardly sufficient reason for supposing that at a certain

stage of the dilution the tangential force whereby it resists con

straint ceases all of a sudden. In order that the medium should

not be dislocated, and therefore should have to be treated as an

elastic solid, it is only necessary that the amount of constraint

should be very small. The medium would however be what we
should call a fluid, as regards the motion of solid bodies through it.

The velocity of propagation of normal vibrations in our medium
would be nearly the same as that of sound in water

;
the velocity

of propagation of transversal vibrations, depending as it does on

the tangential elasticity, would become very small. Conceive now
a medium having similar properties, but incomparably rarer than

air, and we have a medium such as we may conceive the ether to
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be, a fluid as regards the motion of the earth and planets through
it, an elastic solid as regards the small vibrations which constitute

light. Perhaps we should get nearer to the true nature of the

ether by conceiving a medium bearing the same relation to air

that thin jelly or glue water bears to pure water. The sluggish
transversal vibrations of our thin jelly are, in the case of the ether,

replaced by vibrations propagated with a velocity of nearly 200,000
miles in a second : we should expect, d priori, the velocity of

propagation of normal vibrations to be incomparably greater. This

is just the conclusion to which we are led quite independently,
from dynamical principles of the greatest generality, combined

with the observed phenomena of optics*.

* See the introduction to an admirable memoir by Green, &quot;On the laws of the

Reflexion and Refraction of Light at the common surface of two nou-crystaUized
media.&quot; Cambridge Philosophical Transactions, Vol. vn. p. 1.



[From the Philosophical Transactions for 1848, p. 227.]

ON THE THEORY OF CERTAIN BANDS SEEN IN THE SPECTRUM.

[Read May 25, 1848.]

SOME months ago Professor Powell communicated to me an

account of a new case of interference which he had discovered

in the course of some experiments on a fluid prism, requesting

at the same time my consideration of the theory. As the pheno
menon is fully described in Professor Powell s memoir, and is

briefly noticed in Art. 1 of this paper, it is unnecessary here to

allude to it. It struck me that the theory of the phenomenon
was almost identical with that of the bands seen when a spectrum
is viewed by an eye, half the pupil of which is covered by a plate

of glass or mica. The latter phenomenon has formed the subject

of numerous experiments by Sir David Brewster, who has dis

covered a very remarkable polarity, or apparent polarity, in the

bands. The theory of these bands has been considered by the

Astronomer Royal in two memoirs &quot; On the Theoretical Expla
nation of an apparent new Polarity of

Light,&quot; printed in the

Philosophical Transactions for 1840 (Part II.) and 1841 (Part I).

In the latter of these Mr Airy has considered the case in which

the spectrum is viewed in focus, which is the most interesting

case, as being that in which the bands are best seen, and which is

likewise far simpler than the case in which the spectrum is viewed

out of focus. Indeed, from the mode of approximation adopted,

the former memoir can hardly be considered to belong to the

bands which formed the subject of Sir David Brewster s experi

ments, although the memoir no doubt contains the theory of a

possible system of bands. On going over the theory of the bands

seen when the spectrum is viewed in focus, after the receipt of



BANDS SEEN IN THE SPECTRUM. 15

Professor Powell s letter, I was led to perceive that the intensity

of the light could be expressed in finite terms. This saves the

trouble of Mr Airy s quadratures, and allows the results to be

discussed with great facility. The law, too, of the variation of

the intensity with the thickness of the plate is very remarkable,
on account of its discontinuity. These reasons have induced me
to lay my investigation before the Koyal Society, even though
the remarkable polarity of the bands has been already explained

by the Astronomer Royal. The observation of these bands seems

likely to become of great importance in the determination of the

refractive indices, and more especially the laws of dispersion, of

minerals and other substances which cannot be formed into prisms
which would exhibit the fixed lines of the spectrum.

SECTION I.

Explanation of the formation of the bands on the imperfect theory

of Interferences. Mode of calculating the number of bands

seen in a given part of the spectrum.

1. The phenomenon of which it is the principal object of the

following paper to investigate the theory, is briefly as follows.

Light introduced into a room through a horizontal slit is allowed

to pass through a hollow glass prism containing fluid, with its

refracting edge horizontal, and the spectrum is viewed through
a small telescope with its object-glass close to the prism. On

inserting into the fluid a transparent plate with its lower edge

horizontal, the spectrum is seen traversed from end to end by

very numerous dark bands, which are parallel to the fixed lines.

Under favourable circumstances the dark bands are intensely

black
;
but in certain cases, to be considered presently, no bands

whatsoever are seen. When the plate is cut from a doubly re

fracting crystal, there are in general two systems of bands seen

together; and when the light is analysed each system disappears

in turn at every quarter revolution of the analyser.

2. It is not difficult to see that the theory of these bands

must be almost identical with that of the bands described by
Sir David Brewster in the Report of the Seventh Meeting of the
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British Association, and elsewhere, and explained by Mr Airy in

the first part of the Philosophical Transactions for 1841. To
make this apparent, conceive an eye to view a spectrum through
a small glass vessel with parallel faces filled with fluid. The

vessel would not alter the appearance of the spectrum. Now con

ceive a transparent plate bounded by parallel surfaces inserted

into the fluid, the plane of the plate being perpendicular to the

axis of the eye, and its edge parallel to the fixed lines of the

spectrum, and opposite to the centre of the pupil. Then we
should have bands of the same nature as those described by Sir

David Brewster, the only difference being that in the present case

the retardation on which the existence of the bands depends is

the difference of the retardations due to the plate itself, and

to a plate of equal thickness of the fluid, instead of the ab

solute retardation of the plate, or more strictly, the difference

of retardations of the solid plate and of a plate of equal thick

ness of air, contained between the produced parts of the bound

ing planes of the solid plate. In Professor Powell s experiment
the fluid fills the double office of the fluid in the glass vessel and

of the prism producing the spectrum in the imaginary experiment

just described.

It might be expected that the remarkable polarity discovered

by Sir David Brewster in the bands which he has described, would

also be exhibited with Professor Powell s apparatus. This anticipa

tion is confirmed by experiment. With the arrangement of the

apparatus already mentioned, it was found that with certain

pairs of media, one being the fluid and the other the retarding

plate, no bands were visible. These media were made to exhibit

bands by using fluid enough to cover the plate to a certain

depth, and stopping by a screen the light which would otherwise

have passed through the thin end of the prism underneath the

plate.

3. Although the explanation of the polarity of the bands

depends on diffraction, it may be well to account for their for

mation on the imperfect theory of interferences, in which it is

supposed that light consists of rays which follow the courses as

signed to them by geometrical optics. It will thus readily appear

that the number of bands formed with a given plate and fluid,

and in a given part of the spectrum, has nothing to do with the
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form or magnitude of the aperture, whatever it be, which limits

the pencil that ultimately falls on the retina. Moreover, it seems

desirable to exhibit in its simplest shape the mode of calculating

the number of bands seen in any given case, more especially as

these calculations seem likely to be of importance in the deter

mination of refractive indices.

4. Before the insertion of the plate, the wave of light be

longing to a particular colour, and to a particular point of the slit,

or at least a certain portion of it limited by the boundaries of

the fluid, after being refracted at the two surfaces of the prism
enters the object-glass with an unbroken front. The front is here

called unbroken, because the modification which the wave suffers

at its edges is not contemplated. According to geometrical optics,

the light after entering the object-glass is brought to a point near

the principal focus, spherical aberration being neglected ;
accord

ing to the undulatory theory, it forms a small, but slightly dif

fused image of the point from which it came. The succession of

these images due to the several points of the slit forms the image
of the slit for the colour considered, and the succession of coloured

images forms the spectrum, the waves for the different colours

covering almost exactly the same portion of the object-glass, but

differing from one another in direction.

Apart from all theory, it is certain that the image of a point or

line of homogeneous light seen with a small aperture is diffused.

As the aperture is gradually widened the extent of diffusion de

creases continuously, and at last becomes insensible. The perfect

continuity, however, of the phenomenon shows that the true

and complete explanation, whatever it may be, of the narrow

image seen with a broad aperture, ought also to explain the dif

fused image seen with a narrow aperture. The undulatory theory

explains perfectly both the one and the other, and even pre
dicts the distribution of the illumination in the image seen

with an aperture of given form, which is what no other theory

has ever attempted.

As an instance of the effect of diffusion in an image, may
be mentioned the observed fact that the definition of a tele

scope is impaired by contracting the aperture. With a mode

rate aperture, however, the diffusion is so slight as not to prevent

s. II. 2
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fine objects, such as the fixed lines of the spectrum, from being
well seen.

For the present, however, let us suppose the light entering

the telescope to consist of rays which are brought accurately to a

focus, but which nevertheless interfere. When the plate is in

serted into the fluid the front of a wave entering the object-glass

will no longer be unbroken, but will present as it were a fault, in

consequence of the retardation produced by the plate. Let R be

this retardation measured by actual length in air, p the retardation

measured by phase, M the retardation measured by the number of

waves lengths, so that

then when M is an odd multiple of J, the vibrations produced by
the two streams, when brought to the same focus, will oppose
each other, and there will be a minimum of illumination; but

when M is an even multiple of the two streams will combine,
and the illumination will be a maximum. Now M changes in

passing from one colour to another in consequence of the varia

tions both of R and of A,
;
and since the different colours occupy

different angular positions in the field of view, the spectrum will

be seen traversed by dark and bright bands. It is nearly thus

that Mr Talbot has explained the bands seen when a spectrum
is viewed through a hole in a card which is half covered with a

plate of glass or mica, with its edge parallel to the fixed lines

of the spectrum. Mr Talbot however does not appear to have

noticed the polarity of the bands.

Let h, k be the breadths of the interfering streams
;

then

we may take
_ . o \

h sin vt, k sin f vt p j

to represent the vibrations produced at the focus by the two

streams respectively, which gives for the intensity /,

which varies between the limits (h
-

k)
z and (h + k)\

5. Although the preceding explanation is imperfect, for the

reason already mentioned, and does not account for the polarity,
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it is evident that if bands are formed at all in this way, the

number seen in a given part of the spectrum will be determined

correctly by the imperfect theory; for everything will recur, so

far as interference is concerned, when M is decreased or increased

by 1, and not before. This points out an easy mode of deter

mining the number of bands seen in a given part of the spectrum.
For the sake of avoiding a multiplicity of cases, let an accelera

tion be reckoned as a negative retardation, and suppose R positive
when the stream which passes nearer to the edge of the prism is

retarded relatively to the other. From the known refractive

indices of the plate and fluid, and from the circumstances of the

experiment, calculate the values of R for each of the fixed lines

B, G H of the spectrum, or for any of them that may be

selected, and thence the values of M
t by dividing by the known

values of X. Set down the results with their proper signs opposite
to the letters B

y
C ... denoting the rays to which they respectively

refer, and then form a table of differences by subtracting the

value of J/ for B from the value for 0, the value for G from the

value for D, and so on. Let N be the number found in the table

of differences corresponding to any interval, as for example from

F to G
;
then the numerical value of N, that is to say, N or

3&quot;,

according as N is positive or negative, gives the number of bands

seen between F and G. For anything that appears from the

imperfect theory of the bands given in the preceding article, it

would seem that the sign of N was of no consequence. It will

presently be seen, however, that the sign is of great importance :

it will be found in fact that the sign + indicates that the second

arrangement mentioned in Art. 2 must be employed; that is to

say, the plate must be made to intercept light from the thin end

of the prism, while the sign indicates that the first arrange

ment is required. It is hardly necessary to remark that, if N
should be fractional, we must, instead of the number of bands,

speak of the number of band-intervals and the fraction of an

interval.

Although the number of bands depends on nothing but the

values of N, the values of M are not without physical interest.

For M expresses, as we have seen, the number of waves lengths

whereby one of the interfering streams is before or behind the

other. Mr Airy speaks of the formation of rings with the light of
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a spirit-lamp when the retardation of one of the interfering

streams is as much as fifty or sixty waves lengths. But in some

of Professor Powell s experiments, bands were seen which must

have been produced by retardations of several hundred waves

lengths. This exalts our ideas of the regularity which must be

attributed to the undulations.

6. It appears then that the calculation of the number of

bands is reduced to that of the retardation R. As the calculation

of R is frequently required in physical optics, it will not be neces

sary to enter into much detail on this point. The mode of per

forming the calculation, according to the circumstances of the

experiment, will best be explained by a few examples.

Suppose the retarding plate to belong to an ordinary medium,
and to be placed so as to intercept light from the thin end of the

prism, and to have its plane equally inclined to the faces of the

prism. Suppose the prism turned till one of the fixed lines, as F
}

is seen at a minimum deviation
;
then the colours about F are

incident perpendicularly on the plate ;
and all the colours may

without material error be supposed to be incident perpendicularly,

since the directions of the different colours are only separated by
the dispersion accompanying the first refraction into the fluid, and

near the normal a small change in the angle of incidence produces

only a very small change in the retardation. The dispersion

accompanying the first refraction into the fluid has been spoken of

as if the light were refracted from air directly into the fluid, which

is allowable, since the glass sides of the hollow prism, being
bounded by parallel surfaces, may be dispensed with in the expla
nation. Let T be the thickness of the plate, //-

the refractive

index of the fluid, fjf
that of the plate ;

then

R = W-tiT. (2).

If the plate had been placed so as to intercept light from the

thick end of the prism, we should have had R = (/* //,) T,

which would have agreed with (2) if we had supposed T negative.

For the future T will be reckoned positive when the plate inter

cepts light from the thin end of the prism, and negative when it

intercepts light from the thick end, so that the same formulae will

apply to both of the arrangements mentioned in Art. 2.
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If we put /i
=

1, the formula (2) will apply to the experiment
in which a plate of glass or mica is held so as to cover half the

pupil of the eye when viewing a spectrum formed in any manner,

the plate being held perpendicularly to the axis of the eye. The

effect of the small obliquity of incidence of some of the colours is

supposed to be neglected.

The number of bands which would be determined by means of

the formula (2) would not be absolutely exact, unless we suppose
the observation taken by receiving each fixed line in succession at

a perpendicular incidence. This may be effected in the following

manner. Suppose that we want to count the number of bands

between F and G, move the plate by turning it round a horizontal

axis till the bands about F are seen stationary ;
then begin to

count from F, and before stopping at G incline the plate a little

till the bands about G are seen stationary, estimating the fractions

of an interval at F and G, if the bands are not too close. The

result will be strictly the number given by the formula (2). The

difference, however, between this result and that which would be

obtained by keeping the plate fixed would be barely sensible. If

the latter mode of observation should be thought easier or more

accurate, the exact formula which would replace (2) would be

easily obtained.

7. Suppose now the nearer face of the retarding plate made

to rest on the nearer inner face of the hollow prism, and suppose
one of the fixed lines, as F, to be viewed at a minimum deviation.

Let
(j&amp;gt;, $ be the angles of incidence and refraction at the first

surface of the fluid, i, i those at the surface of the plate, 2e the

angle of the prism. Since the deviation of F is a minimum, the

angle of refraction
&amp;lt;p f for F is equal to 6, and the angle of inci

dence
(/&amp;gt;

is given by sin
&amp;lt;j&amp;gt;

=
/JL^

sin
&amp;lt;j&amp;gt;
F ,

and
cf&amp;gt;

is the angle of inci

dence for all the colours, the incident light being supposed white.

The angle of refraction
(/&amp;gt;

for any fixed line is given by the equa
tion sin

(/&amp;gt;

=
I/fj,

. sin $ = fj,f /fi . sin e
;
then i = 2e

&amp;lt;/&amp;gt;
,
and i is

known from the equation

p sin i =
/JL

sin i ........................ (3).

The retardation is given by either of the formula?

=
Bnt

R = T^ cosi -pcosi) ............... (5).
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These formulae might be deduced from that given in Airy s

Tract, modified so as to suit the case in which the plate is im

mersed in a fluid
;
but either of them may be immediately proved

independently by referring everything to the wave s front and not

the ray.

By multiplying and dividing the second side of (5) by cos i,

and employing (3), we get

R = T sec i .
(jjtf fj,) Tp sec i versin (ii }

......... (6).

When the refractive indices of the plate and fluid are nearly

equal, the last term in this equation may be considered insensible,

so that it is not necessary to calculate i at all.

8. The formulse (2), (4), (5), (6) are of course applicable to the

ordinary ray of a plate cut from a uniaxal crystal. If the plate be

cut in a direction parallel to the axis, and if moreover the lower

edge be parallel to the axis, so that the axis is parallel to the

refracting edge of the prism, the formulae will apply to both rays.

If
/ji , fjbe be the principal indices of refraction referring to the

ordinary and extraordinary rays respectively, JJL
in the case last

supposed must be replaced by fJL
for the bands polarized in a plane

perpendicular to the plane of incidence, and by ^e
for the bands

polarized in the plane of incidence. In the case of a plate cut

from a biaxal crystal in such a direction that one of the principal

axes, or axes of elasticity, is parallel to the refracting edge, the

same formula? will apply to that system of bands which is polarized

in the plane of incidence.

If the plate be cut from a biaxal crystal in a direction perpen

dicular to one of the principal axes, and be held in the vertical

position, the formula (2) will apply to both systems of bands, if the

small effect of the obliquity be neglected. The formula would be

exact if the observations were taken by receiving each fixed line

in succession at a perpendicular incidence.

If the plate be cut from a uniaxal crystal in a direction per

pendicular to the axis, and be held obliquely, we have for the

extraordinary bands, which are polarized in a plane perpendicular

to the plane of incidence,

(7),
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which is the same as the formula in Airy s Tract, only modified so

as to suit the case in which the plate is immersed in fluid, and

expressed in terms of refractive indices instead of velocities. If

we take a subsidiary angle j, determined by the equation

sinj = sini
(8),

P e

the formula (7) becomes

R=T(p cosj-tj,cosi) (9),

which is of the same form as (5), and may be adapted to logarith

mic calculation if required by assuming fijfi
= tan 0. The pre

ceding formula will apply to the extraordinary bands formed by a

plate cut from a biaxal crystal perpendicular to a principal axis,

and inclined in a principal plane, the extraordinary bands being
understood to mean those which are polarized in a plane perpen
dicular to the plane of incidence. In this application we must

take for
//,e , fjb

those two of the three principal indices of refraction

which are symmetrically related to the axis normal to the plate,

and to the axis parallel to the plate, and lying in tne plane of

incidence, respectively; while in applying the formula (4), (5) or

(6) to the other system of bands, the third principal index must be

substituted for
//,

.

It is hardly necessary to consider the formula which would

apply to the general case, which would be rather complicated.

9. If a plate cut from a uniaxal crystal in a direction perpen
dicular to the axis be placed in the fluid in an inclined position,

and be then gradually made to approach the vertical position, the

breadths of the bands belonging to the two systems will become

more and more nearly equal, and the two systems will at last

coalesce. This statement indeed is not absolutely exact, because

the whole spectrum cannot be viewed at once by light which

passes along the axis of the crystal, on account of the dispersion

accompanying the first refraction, but it is very nearly exact.

With quartz it is true there would be two systems of bands seen

even in the vertical position, on account of the peculiar optical

properties of that substance
;

but the breadths of the bands

belonging to the two systems would be so nearly equal, that it

would require a plate of about one-fifth of an inch thickness to

give a difference of one in the number of bands seen in the whole
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spectrum in the case of the two systems respectively. If the plate

should be thick enough to exhibit both systems, the light would

of course have to be circularly analyzed to show one system by
itself.

SECTION II. Investigation of the intensity of the light on the

complete theory of undulations, including the explanation of the

apparent polarity of the bands.

10. The explanation of the formation of the bands on the im

perfect theory of interferences considered in the preceding section

is essentially defective in this respect, that it supposes an annihi

lation of light when two interfering streams are in opposition ;

whereas it is a most important principle that light is never lost by

interference. This statement may require a little explanation,

without which it might seem to contradict received ideas. It is

usual in fact to speak of light as destroyed by interference.

Although this is true, in the sense intended, the expression is

perhaps not very happily chosen. Suppose a portion of light

coming from a luminous point, and passing through a moderately
small aperture, to be allowed to fall on a screen. We know that

there would be no sensible illumination on the screen except
almost immediately in front of the aperture. Conceive now the

aperture divided into a great number of small elements, and

suppose the same quantity of light as before to pass through each

element, the only difference being that now the vibrations in the

portions passing through the several elements are supposed to

have no relation to each other. The light would now be diffused

over a comparatively large portion of the screen, so that a point P
which was formerly in darkness might now be strongly illuminated.

The disturbance at P is in both cases the aggregate of the disturb

ances due to the several elements of the aperture ;
but in the first

case the aggregate is insensible on account of interference. It is

only in this sense that light is destroyed by interference, for the

total illumination on the screen is the same in the two cases
;
the

effect of interference has been, not to annihilate any light, but

only to alter the &quot;distribution of the illumination,&quot; so that the

light, instead of being diffused over the screen, is concentrated in

front of the aperture.
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Now in the case of the bands considered in Section I., if we

suppose the plate extremely thin, the bands will be very broad
;

and the displacement of illumination due to the retardation being
small compared with the breadth of a band, it is evident, without

calculation, that at most only faint bands can be formed. This

particular example is sufficient to show the inadequacy of the im

perfect theory, and the necessity of an exact iuvestigation.

11. Suppose first that a point of homogeneous light is viewed

through a telescope. Suppose the object-glass limited by a screen

in which there is formed a rectangular aperture of length 21.

Suppose a portion of the incident light retarded, by passing

through a plate bounded by parallel surfaces, and having its edge

parallel to the length of the aperture. Suppose the unretarded

stream to occupy a breadth h of the aperture at one side, the re

tarded stream to occupy a breadth k at the other, while an interval

of breadth 2g exists between the streams. In the apparatus men
tioned in Section I., the object-glass is not limited by a screen, but

the interfering streams of light are limited by the (Dimensions of

the fluid prism, which comes to the same thing. The object of

supposing an interval to exist between the interfering streams, is

to examine the effect of the gap which exists between the streams

when the retarding plate is inclined. In the investigation the

effect of diffraction before the light reaches the object-glass of the

telescope is neglected.

Let be the image of the luminous point, as determined by

geometrical optics, f the focal length of the object-glass, or rather

the distance of from the object-glass, which will be a little greater

than the focal length when the luminous point is not very distant.

Let C be a point in the object-glass, situated in the middle of the

interval between the two streams, and let the intensity be required
at a point M, near 0, situated in a plane passing through and

perpendicular to 00. The intensity at any point of this plane will

of course be sensibly the same as if the plane were drawn perpen
dicular to the axis of the telescope instead of being perpendicular
to 00. Take 00 for the axis of z, the axes of # and y being
situated in the plane just mentioned, and that of y being parallel

to the length of the aperture. Let p, q be the co-ordinates of M
;

x, y, z those of a point P in the front of a wave which has just

passed through the object-glass, and which forms part of a sphere
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with for its centre. Let c be the coefficient of vibration at the

distance of the object-glass; then we may take

c 1 ^TT

(a),

to represent the disturbance at M due to the element dxdy of the

aperture at P, P being supposed to be situated in the unretarded

stream, which will be supposed to lie at the negative side of the

axis of x. In the expression (a), it is assumed that the proper

multiplier of c/PM is I/A,.
This may be shown to be a necessary

consequence of the principle mentioned in the preceding article,

that light is never lost by interference
;
and this principle follows

directly from the principle of vis viva. In proving that X&quot;

1

is the

proper multiplier, it is not in the least necessary to enter into the

consideration of the law of the variation of intensity in a secondary

wave, as the angular distance from the normal to the primary wave

varies
;
the result depends merely on the assumption that in the

immediate neighbourhood of the normal the intensity may be re

garded as sensibly constant.

In the expression (a) we have

PM = *~

2 + x -* + -

&amp;gt; nearly,

if we write / for V(/
2

+P* +
&amp;lt;f}-

It will be sufficient to replace

l/PM outside the circular function by l/f. We may omit the con

stant/under the circular function, which comes to the same thing
as changing the origin of t. We thus get for the disturbance at M
due to the unretarded stream,

or on performing the integrations and reducing,

2chl A/ . 2-rrql \f . irpli . 2?r / pq ph\ .,.
- - sin -T^T. ^ sm -f? .sin - Ivt-^ -

. ...(6).
\f Trph X/ \ \ f tfj

^

For the retarded stream, the only difference is that we must

subtract H from vt, and that the limits of x are g and g + k. We
thus get for the disturbance at M due to this stream,

\f . 27rql \f . wpk . 2?r /
. n pq pk

. _ +
7
sm -^-.-^y sm -^- . sm -, (vt- R+^- +^

2-Trql X/ Trpk \f X \ / -/
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If we put for shortness r for the quantity under the last circular

function in (b), the expressions (6), (c) may be put under the forms

usiu T, vsm (T a), respectively ;
and if / be the intensity, I will

be measured by the sum of the squares of the coefficients of sin T

and cos r in the expression
u sinr + vsin (T a),

so that

1= u 2 + v
2 + -iiv cos or,

which becomes, on putting for u, v and a, their values, and putting

12. Suppose now that instead of a point we have a line of

homogeneous light, the line being parallel to the axis of y. The
luminous line is supposed to be a narrow slit, through which light

enters in all directions, and which is viewed in focus. Consequently
each element of the line must be regarded as an independent source

of light. Hence the illumination on the object-glass due to a por
tion of the line which subtends the small angle ft at the distance

of the object-glass varies as ft, and may be represented by Aft.

Let the former origin be referred to a new origin situated in

the plane xyt
and in the image of the line

;
and let 77, q be the

ordinates of 0, M referred to
,
so that q

=
q 77. In order that

the luminous point considered in the last article may represent an

element of the luminous line considered in the present, we must

replace c
2

by Adft or Af~
l

d7) ;
and in order to get the aggregate

illumination due to the whole line, we must integrate from a large

negative to a large positive value of 77, the largeness being esti

mated by comparison with \f/l. Now the angle ^irql/\f changes

by TT when q changes by \f/2l, which is therefore the breadth, in

the direction of y, of one of the diffraction bands which would be

seen with a luminous point. Since I is supposed not to be ex

tremely small, but on the contrary moderately large, the whole

system of diffraction bands would occupy but a very small portion
of the field of view in the direction of y, so that we may without
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sensible error suppose the limits of ij to be oo and + o .

have then

V ^(q -r)}}* \ff /sin ^ .

by taking the quantity under the circular function in place of 77
for

the independent variable. Now it is known that the value of the

last integral is TT, as will also presently appear, and therefore we
have for the intensity / at any point,

which is independent of q, as of course it ought to be.

13. Suppose now that instead of a line of homogeneous light

we have a line of white light, the component parts of which have

been separated, whether by refraction or by diffraction is imma

terial, so that the different colours occupy different angular posi
tions in the field of view. Let Bft-fy be the illumination on the

object-glass due to a length of the line which subtends the small

angle /3, and to a portion of the spectrum which subtends the small

angle -^ at the centre of the object-glass. In the axis of x take a

new origin 0&quot;,
and let f, p be the abscissae of

,
M reckoned from

0&quot;,
so that p p ^- In order that (12) may express the intensity

at M due to an elementary portion of the spectrum, we must

replace A by Bdty, or Bf~
l

d; and in order to find the aggregate
illumination at M, we must integrate so as to include all values of

f which are sufficiently near to p to contribute sensibly to the

illumination at M. It would not have been correct to integrate

using the displacement instead of the intensity, because the differ

ent colours cannot interfere. Suppose the angular extent, in the

direction of a?, of the system of diffraction bands which would be

seen with homogeneous light, or at least the angular extent of the

brighter part of the system, to be small compared with that of the

spectrum. Then we may neglect the variations of B and of X in

the integration, considering only those of f and p, and we may
suppose the changes of p proportional to those of f ;

and we may
moreover suppose the limits of f to be GO and + oo . Let p be

the value of p }
and w that of dpfdg, when f =p, so that we may
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put p = p + r (p
-

f) ;
and take p instead of f for the independent

variable. Then putting for shortness

)=,,, ...... (13),V A/
we have for the intensity,

/=
2 ,- 1 (sin

2

A^+sin
2

&,p + 2 sin ^_p . sin k
tp . cos(p -ffjal)} -^

.

Now
I

sin
2

&,p
-2 = /H sin

2

-^
=

TT^, .

J - oo _p J - oo

Similarly, sin
2

&,p . -^ = TT&,.
J - P

Moreover, if we replace

cos (p

f

gtp) by cos p . cos
&amp;lt;/,)

+ sin p . sin ^r^,

the integral containing sin p will disappear, because the positive

and negative elements will destroy each other, and we have only to

find w, where

r t 7 ^w = I sm hjp . sin ^^p . cos g tp .
~

.

Now we get by differentiating under the integral sign,

dw r i -7 dp
-j

= I sm h
(p . sin k

tp .smg tp.

1 f
00

= -
(sin (gt

+ h
t
+ k

t) p + sin (g t
-h

t

- k)p
* J -00

- sin (gt
+ h,- k) p - sin (g t

+ ^ -
^) ^}

-^
.

But it is well known that

/&quot;* sin sp j
dp = 7r

)
or =

TT,

J -00 P

according as 5 is positive or negative. If then we use F (s) to de

note a discontinuous function of 5 which is equal to + 1 or 1

according as 5 is positive or negative, we get

This equation gives

- =
0, from gt

= - oo to g,
= -

(ht
+ &,)
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=
| ,

from gt

= -
(A, + k) to gt

= -
(A,

~ &
)

=
0, from gt

= -
(A,

-
k,) to gt

= + (A,
~ & )

= -
^ ,

from gt

=
A,

~
k, to g,

= h
t + k,

= 0, from gt
=

A, + Jc
t
to g t

= GO .

Now w vanishes when g t
is infinite, on account of the fluctuation

of the factor cos gtp under the integral sign, whence we get by

integrating the value of dw/dg, given above, and correcting the

integral so as to vanish for gt
oo

,

w 0, from g t
GO to g t (]i/ + h,) \

w =
^ (A, + k, + g), from g t

= -
(h, + k) to gt

= -
(A,

~
Jc) ;

w = irk
i
or = &amp;gt;irh

iy (according as h, &amp;gt; k
t
or h

/
&amp;lt; k

/} )

from g = - (ht

-
k) to gt

= + (^
- A;

,) ;

^ = --
(A^ -f ^ &amp;lt;7 y),

from g t

= ti ~ k
t
to gt

= A
/
4- k

t ;

w =
0, from ^ = A

7
+ ^ to g t

= co .

Substituting in the expression for the intensity, and putting

in (13) g t

=
irtffKf, so that

g =
^--*g-h-k ..................... (14),

we get
07?7

/-^(A
+ i) ........................... (15),

when the numerical value of g exceeds h + k;

9 7^7

I=~~{h + k+(h + k-Jg *)cosp} ............... (16),

when the numerical value of g lies between A -f k and li~k\

-
) ...(17),

according as A or k is the smaller of the two, when the numerical

value of g is less than A - k.

The discontinuity of the law of intensity is very remarkable.
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By supposing g t

= 0, Jc
/

= h
/
in the expression for w, and observ

ing that these suppositions reduce w to

we get

f.

-

f

00

J - p

a result already employed. This result would of course have been

obtained more readily by differentiating with respect to hr

14. The preceding investigation will apply, with a very trifling

modification, to Sir David Brewster s experiment, in which the

retarding plate, instead of being placed in front of the object-glass

of a telescope, is held close to the eye. In this case the eye itself

takes the place of the telescope ;
and if we suppose the whole

refraction to take place at the surface of the cornea, which will not

be far from the truth, we must replace / by the diameter of the

eye, and ty by the angular extent of the portion of the spectrum

considered, diminished in the ratio of m to 1, m being the refrac

tive index of the cornea. When a telescope is used in this experi

ment, the retarding plate being still held close to the eye, it is

still the naked eye, and not the telescope, which must be assimi

lated to the telescope considered in the investigation ;
the only

difference is that
i/r

must be taken to refer to the magnified, and

not the unmagnified spectrum.

Let the axis of x be always reckoned positive in the direction

in which the blue end of the spectrum is seen, so that in the

image formed at the focus of the object-glass or on the retina,

according as the retarding plate is placed in front of the object-

glass or in front of the eye, the blue is to the negative side of the

red. Although the plate has been supposed at the positive side,

there will thus be no loss of generality, for should the plate be at

the negative side it will only be requisite to change the sign of p.

First, suppose p to decrease algebraically in passing from the

red to the blue. This will be the case in Sir David Brewster s

experiment when the retarding plate is held at the side on which

the red is seen. It will be the case in Professor Powell s experi

ment when the first of the arrangements mentioned in Art. 2 is

employed, and the value of N in the table of differences mentioned
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in Art. 5 is positive, or when the second arrangement is employed
and N is negative. In this case OT is negative, and therefore

g &amp;lt;- (h+k), and therefore (15) is the expression for the inten

sity. This expression indicates a uniform intensity, so that there

are no bands at all.

Secondly, suppose p to increase algebraically in passing from

the red to the blue. This will be the case in Sir David Brewster s

experiment when the retarding plate is held at the side on which

the blue is seen. It will be the case in Professor Powell s experi

ment when the first arrangement is employed and N is negative,

or when the second arrangement is employed and N is positive.

In this case cr is positive ;
and since CT varies as the thickness of

the plate, g may be made to assume any value from (4sg + h+ k)

to + oo by altering the thickness of the plate. Hence, provided the

thickness lie within certain limits, the expression for the intensity

will be (16) or (17). Since these expressions have the same form

as (1), the magnitude only of the coefficient of cos p, as compared
with the constant term, being different, it is evident that the

number of bands and the places of the minima are given correctly

by the imperfect theory considered in Section I.

15. The plate being placed as in the preceding paragraph,

suppose first that the breadths h, k of the interfering streams are

equal, and that the streams are contiguous, so that g = 0. Then

the expression (17) may be dispensed with, since it only holds

good when # =
0, in which case it agrees with (16). Let T be

the value of the thickness T for which g = 0. Then T = corre

sponds to g = -
(h + k), T= T

Q
to g = 0, and T= &amp;lt;2T tog = k + k;

and for values of T equidistant from T
,
the values of g are equal

in magnitude but of opposite signs. Hence, provided T be less

than 2T
,
there are dark and bright bands formed, the vividness of

the bands being so much the greater as T is more nearly equal to

jP
,
for which particular value the minima are absolutely black.

Secondly, suppose the breadths h, k of the two streams to be

equal as before, but suppose the streams separated by an interval

2g ;
then the only difference is that g =

(h + k) corresponds to a

positive value, T
z suppose, of T. If T be less than T

2 ,
or greater

than 2T T^ there are no bands; but if T lie between T
2
and

2T T
z
bands are formed, which are most vivid when T=T ,

in

\vhich case the minima are perfectly black.
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Thirdly, suppose the breadths h, fc of the interfering streams

unequal, and suppose, as before, that the streams are separated by
an interval 2g ;

then g =
(h + k) corresponds to a positive value,

T
2 suppose, of T : g =

(h
~
k) corresponds to another positive

value, Tl suppose, of T, 2\ lying between T
2
and T

,
T being, as

before,, the value of T which gives g = 0. As T increases from T
Q ,

fj
becomes positive and increases from 0, and becomes equal to

h ~ k when T=2T
Q
-T

lt
and to h + k when T=2T - T

2
. When

T &amp;lt; T
z
there are no bands. As T increases to T

l
bands become

visible, and increase in vividness till T T
lt
when the ratio of the

minimum intensity to the maximum becomes that of h k to

h + 3/i
,
or of k h to k + 3/z, according as h or k is the greater of

the two, h, k. As T increases to 27J, T
lt

the vividness of the

bands remains unchanged ;
and as T increases from 2T T

l
to

2T T
Z)

the vividness decreases by the same steps as it before in

creased. When T = 2T T^ the bands cease to exist, and no

bands are formed for a greater value of T.

Although in discussing the intensity of the bands the aperture
has been supposed to remain fixed, and the thickness of the plate

to alter, it is evident that we might have supposed the thickness

of the plate to remain the same and the aperture to alter. Since

woe T, the vividness of the bands, as measured by the ratio of the

maximum to the minimum intensity, will remain the same when

T varies as the aperture. This consideration, combined with the

previous discussion, renders unnecessary the discussion of the effect

of altering the aperture. It will be observed that, as a general

rule, fine bands require a comparatively broad aperture in order

that they may be well formed, while broad bands require a narrow

aperture.

16. The particular thickness T
Q may be conveniently called

the best thickness. This term is to a certain extent conventional,

since when h and k are unequal the thickness may range from T
l

to 2T T
x
without any change being produced in the vividness of

the bands. The best thickness is determined by the equation

Now in passing from one band to its consecutive, p changes by 27r,

and f by e, if e be the linear breadth of a band; and for this small

s. ii. 3
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change of f we may suppose the changes of p and f proportional,
or put dp/di;

=
%7T/e. Hence the best aperture for a given thick

ness is that for which

4# -|- h + k = ^
.

If g = and k = h, this equation becomes h = \f/e.

The difference of distances of a point in the plane xy whose

coordinates are f, from the centres of the portions of the object-

glass which are covered by the interfering streams, is nearly

and if S be the change of f when this difference changes by X,

40 + h + k = -^
Hence, when the thickness of the plate is equal to the best thick

ness, e = 8, or the interval between the bands seen in the spectrum
is equal to the interval between the bands formed by the inter

ference of two streams of light, of the colour considered, coming
from a luminous line seen in focus, and entering the object-glass

through two very narrow slits parallel to the axis of y, and situated

in the middle of the two interfering streams respectively. This

affords a ready mode of remembering and calculating the best

thickness of plate for a given aperture, or the best aperture for a

given thickness of plate.

17. According to the preceding explanation, no bands would

be formed in Sir David Brewster s experiment when the plate was

held on the side of the spectrum on which the red was seen. Mr

Airy has endeavoured to explain the existence of bands under such

circumstances*. Mr Airy appears to speak doubtfully of his ex

planation, and in fact to offer it as little more than a conjecture to

account for an observed phenomenon. In the experiments of Mr
Talbot and Mr Airy, bands appear to have been seen when the

retarding plate was held at the red side of the spectrum; whereas

Sir David Brewster has stated that he has repeatedly looked for

the bands under these circumstances and has never been able to

1
Philosophical Transactions for 1841, Part i. p, 6.
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find the least trace of them; and he considers the bands seen by
Mr Talbot and Mr Airy in this case to be of the nature of Newton s

rings. While so much uncertainty exists as to the experimental
circumstances under which the bands are seen when the retarding

plate is held at the red side of the spectrum, if indeed they are seen

at all, it does not seem to be desirable to enter into speculations as

to the cause of their existence.

3-2



[From the Cambridge and Dublin Mat/wmatical Journal, Vol. in. p. 209

(November, 1848)].

NOTES ON HYDRODYNAMICS.

IV. Demonstration of a Fundamental Theorem.

THEOREM. Let the accelerating forces X, Y, Z, acting on the

fluid, be such that Xdx -f Ydy 4- Zdz is the exact differential d V
of a function of the coordinates. The function V may also contain

the time t explicitly, hut the differential is taken on the suppo
sition that t is constant. Suppose the fluid to be either homo

geneous and incompressible, or homogeneous and elastic, and of

the same temperature throughout, except in so far as the tem

perature is altered by sudden condensation or rarefaction, so that

the pressure is a function of the density. Then if, either for the

whole fluid mass, or for a certain portion of it, the motion is at

one instant such that udx + vdy + wdz is an exact differential,

that expression will always remain an exact differential, in the

first case throughout the whole mass, in the second case throughout
the portion considered, a portion which will in general continually

change its position in space as the motion goes on. In particular,

the proposition is true when the motion begins from rest.

Two demonstrations of this important theorem will here be

given. The first is taken from a memoir by M. Cauchy,
&quot; Me-

moire sur la Theorie des Ondes, &c.&quot; (Mem. des Savans Etran-

gers, Tom. I. (1827), p. 40). M. Cauchy has obtained three

first integrals of the equations of motion for the case in which

Xdx + Ydy + Zdz is an exact differential, and in which the pres

sure is a function of the density ;
a case which embraces almost

all the problems of any interest in this subject. M. Cauchy, it is
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true, has only considered an incompressible fluid, in accordance

with the problem he had in hand, but his method applies to

the more general case in which the pressure is a function of the

density. The theorem considered follows as a particular conse

quence from M. Cauchy s integrals. As however the equations

employed in obtaining these integrals are rather long, and the

integrals themselves do not seem to lead to any result of much

interest except the theorem enunciated at the beginning of this

article*, I have given another demonstration of the theorem,

which is taken from the Cambridge Philosophical Transactions

(Vol. VIII. p. 307 1). A new proof of the theorem for the case

of an incompressible fluid will be given by Professor Thomson in

this Journal.

FIRST DEMONSTRATION. Let the time t and the initial co

ordinates a, 6, c be taken for the independent variables
; and

let I
= P, p being by hypothesis a function of p. Since we

have, by the Differential Calculus,

dP dP dx dP dy dP dz
. I &

_j

da dx da dy da dz da y

with similar equations for b and c, we get from equations (1),

p. 124 (Notes on Hydrodynamics, No. III.) [Ante, p. 4],

(1).

In these equations d^xjdf, dx/da, &c. have been written for D*x/Df,

Dx/Da, &c., since the context will sufficiently explain the sense in

which the differential coefficients are taken. By differentiating

the first of equations (1) with respect to b, the second with respect

*
[See however the note at p. 47.]

t [Ante, Vol. i. p. 108. Although given already in nearly the same form, the

demonstration is here retained, to avoid breaking the continuity of the present article.]

dV dP_d*xdx tfydy d?z dz^

da da
~
df da

+
~di? da

+
df da

dV dP tfxdx d?ydy d*z dz
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to a, and subtracting, we get, after putting for dx/dt, dy/dt, dzjdt

their values u
y v, w,

d?u dx d2u dx d*v dy d?v dy d*w dz

dtdb da dtda db dtdb da dtda db dtdb da

^
*wdtdadb

By treating the second and third, and then the third and first

of equations (1) as the first and second have been treated, we

should get two more equations, which with (2) would form a

symmetrical system. Now it is easily seen, on taking account of

the equations dx/dt
= u, &c., that the first side of (2) is the dif

ferential coefficient with respect to t of

du dx ^ du dx dv dy _ dv dy dw dz ^ dw dz .~ +~~ + ~~ ......

the differential coefficient in question being of course of the kind

denoted by D in No. in. of these Notes. Hence the expression

(3) is constant for the same particle. Let w
,
v

,
w be the initial

velocities of the particle which at the time t is situated at the

point (x, y, z); then if we observe that x = a, y = b, z = c, when

t = 0, we shall get from (2) and the two other equations of that

system,

du dx du dx dv dy dv dy dw dz dw dz _ du dv
n

db da da db db da da db db da da db db da

du dx du dx dv dy dv dy dw dz dw dz dv
n

dwn

dc db db dc do db db dc dc db db dc
~

dc db

du dx du dx dv dy dv dy dw dz dw dz dw
n

du

da dc dc da da dc dc da da dc dc da da ~dc

....(4).

These are the three first integrals of the equations of motion

already mentioned. If we replace the differential coefficients

of u, v and w, taken with respect to a, b and c, by differential

coefficients of the same quantities taken with respect to x, y
and z, and differential coefficients of x, y and z taken with respect

to a, b and c, the first sides of equations (4) become
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du dv\ fdy dx dy dx\ fdv
dw\

fdz dy dz dy\

dy dx) \db da da db) \dz dy ) \db da da db)

fdw du\
fdx

dz dx dz\
f
Us

&quot;&quot;

dz) (db da
~
da db)

fdu dv\ fdy dx dy dx\ fdv dw\ fdz dy dz dy\

\dy dx) \dc db db dc) \dz dy) \dcdb db dc)

fdw du\ fdx dz dx dz\
^
\dx~fa) \dcdb~ dbdc)

fdu
dv\

fdy
dx dy dx\

fdv
dw\

fdz dy dz dy
\dy dx) \da dc dc da) \dz dy ) \da dc dc da

fdw du
f
\dx

~
dz

dx dz

da dc

dx dz

dc da

...(5).

Having put the first sides of equations (4) under the form (5),

we may solve the equations, regarding

du dv dv dw dw du

dy dx dz dy dx dz

as the unknown quantities. For this purpose multiply equations

(4) by dzjdc, dzjda, dz/db, and add
;
then the second and third

unknown quantities will disappear. Again, multiply by dx/dc,

dx/da, dx/db, and add
;
then the third and first will disappear.

Lastly, multiply by dyjdc, di//da, dy/db, and add
;
then the first

and second will disappear. Putting for shortness

dx dy dz dx dy dz dx dy dz dx dy dz

da db dc da dc db db dc da db da dc

dx dy dz dx dy dz _ ^ ,,

dc da db dc db da

we thus get

dy
~~

Tx
=

~R (dc (~db

~
~da)

+
da \dc

~
~db )

+
db \da

~
~dc

.

dv dw _ 1 (dx fdu
Q __

dv\ dx
fdv

dw \ dx
fdv\ ^ du^

dz~dy~R\fc\^~fa)
+
fa(^~~db)

+
db \da

~~

~db

du,

etcdx dz~Rc\ab da
- Q

4-

da\dc db)^cib\da
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Consider the element of fluid which at first occupied the

rectangular parallelepiped formed by planes drawn parallel to

the coordinate planes through the points (a, b, c) and (a + da
y

b + db, c + dc). At the time t the element occupies a space
bounded by six curved surfaces, which in the limit becomes an

oblique-angled parallelepiped. The coordinates of the particle

which at first was situated at the point (a, b, c) are x, y, z at the

time t
;
and the coordinates of the extremities of the three edges

of the oblique-angled parallelepiped which meet in the point

(x, y, z) are

dx j dy 7 dz ,

x + -=- da, y + -/-da, z + -y- da ;da da da

dx , 7 dy ,, dz , T

x
+db

db y + db
db

- z+ M db

dx
1 dy , dz ,

xj--j-dct y + / dc, z -f dc.
dc dc dc

Consequently, by a formula in analytical geometry, the volume

of the element which at first was da db dc is R dadbdc at the

time t. Hence if p be the initial density,

R = p̂
(8).

P

From the mode in which this equation has been obtained, it is

evident that it can be no other than the equation of continuity

expressed in terms of a, b, c and t as independent variables, and

integrated with respect to t.

The preceding equations are true independently of any par
ticular supposition respecting the motion. If the initial motion

be such that u
Q
da + v

Q
db + w dc is an exact differential, and in

particular if the motion begin from rest, we shall have

^ _ o = ^o _ ffo&amp;gt; _ n
dw du

Q _
db da dc db

~

da dc
&quot;

and since by (8) R cannot vanish, it follows from (7) that at any
time t

du dv _ . dv dw _ dw du _ n

dy dx dz dy
~

dx dz
~

or u dx + v dy + w dz is an exact differential.



DEMONSTRATION OF A FUNDAMENTAL THEOREM. 41

Since any instant may be taken for the origin of the time,

and t may be either negative or positive, it is evident that for

a given portion of the fluid udx + vdy + wdz cannot cease to

be an exact differential if it is once such, and cannot become an

exact differential, not having been such previously.

SECOND DEMONSTRATION. The equations of motion in their

usual form are

1 dp vr du- -f =X -
-TT

p ax at

1 dp Tr dv-~ = Y -j-
p dy at

I dp ~ dw-
-f = Z -IT -

p dz at

du
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Da&amp;gt;

&quot;
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The integral of this equation is H=
(7e&quot;;

and since = when
= 0, (7=0; therefore the general value of H is zero. But H

is the sum of the three quantities &/, &quot;, a/&quot;,
which evidently

cannot be negative, and therefore the general values of
, a)&quot;,

w&quot;

are each zero. Since, then, o&amp;gt;

, &&amp;gt;&quot;,

&/&quot; wrould have to be equal to

zero, even if they satisfied equations (13), they must a fortiori be

equal to zero in the actual case, since they satisfy equations (12),

which proves the theorem enunciated.

It is evident that it is for a given mass of fluid, not for the

fluid occupying a given portion of space, that the proposition is

true, since equations (12) contain the differential coefficients

Dco /Dt, &c. and not dw /dt, &c. It is plain also that the same

demonstration will apply to negative values of t.

If the motion should either be produced at first, or modified

during its course, by impulsive pressures applied to the surface

of the fluid, which of course can only be the case when the fluid

is incompressible, the proposition will still be true. In fact, the

change of motion produced by impulsive pressures is merely the

limit of the change of motion produced by finite pressures, when

the intensity of the pressures is supposed to increase and the

duration of their action to decrease indefinitely. The proposition

may however be proved directly in the case of impulsive forces

by using the equations of impulsive motion. If q be the impulsive

pressure, U
Q ,

V
Q ,
w the velocities just before, u, v, w the velocities

just after impact, it is very easy to prove that the equations of

impulsive motion are

1 da .
x

1 dq . 1 dq . .

pl--&amp;lt;

w-^
-pTy

^-** par
No forces appear in these equations, because finite forces disappear
from equations of impulsive motion, and there are no forces which

bear to finite forces, like gravity, acting all over the mass, the

same relation that impulsive bear to finite pressures applied at

the surface
;
and the impulsive pressures applied at the sur

face will appear, not in the general equations wrhich hold good

throughout the mass, but in the particular equations which have

to be satisfied at the surface. The equations (14) are appli

cable to a heterogeneous, as well as to a homogeneous liquid.

They must be combined with the equation of continuity of a

liquid, (equation (G), p. 286 of the preceding volume.) In the



44 NOTES ON HYDRODYNAMICS.

case under consideration, however, p is constant
;
and therefore

from (14)

(u
-

&amp;lt;)
dx + (v- v ) dy + (w- w )

dz

is an exact differential d(qjp}\ and therefore if u
ot

v
,
W be

zero, or if they be such that u
Q
dx + v

Qdy + w dz is an exact dif

ferential d(f) Q ,
udx + vdy + wdz will also be an exact differential

When udx + vdy + wdz is an exact differential
cZ&amp;lt;,

the expres
sion for dP obtained from equations (9) is immediately integrable,

and we get

supposing the arbitrary function of t introduced by integration
to be included in

&amp;lt;f&amp;gt;.

M. Cauchy s proof of the theorem just considered does not

seem to have attracted the attention which it deserves. It does

not even appear to have been present to Poisson s mind when
he wrote his Traite de Mecanique. The demonstration which

Poisson has given* is in fact liable to serious objections (*.
Poisson

indeed was not satisfied as to the generality of the theorem. It

is not easy to understand the objections which he has raised]:,

which after all do not apply to M. Cauchy s demonstration, in

which no expansions are employed. As Poisson gives no hint

where to find the
&quot;examples&quot;

in which he says the theorem

fails, if indeed he ever published them, we are left to conjecture.

In speaking of the developments of u, v, w in infinite series of

exponentials or circular functions, suited to particular problems,

by which all the equations of the problem are satisfied, he re

marks that one special character of such expansions is, not always
to satisfy the equations which are deduced from those of motion

by new differentiations. It is true that the equations which

would apparently be obtained by differentiation would not always
be satisfied

;
for the differential coefficients of the expanded

functions cannot in general be obtained by direct differentiation,

that is by differentiating under the sign of summation, but must

* Traite de Mecanique, torn. u. p. 688 (2nd edition).

t See Cambridge Philosophical Transactions, Vol. viu. p. 305. [Ante, Vol. i.p. 110.]
Traite de Mecanique, torn. u. p. 690.
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be got from formulas applicable to the particular expansions*.
Poisson appears to have met with some contradiction, from

whence he concluded that the theorem was not universally true,

the contradiction probably having arisen from his having dif

ferentiated under the sign of summation in a case in which it

is not allowable to do so.

It has been objected to the application of the theorem proved
in this note to the case in which the motion begins from rest,

that we are not at liberty to call udx + vdy + wdz an exact dif

ferential when u, v, and w vanish with t, unless it be proved that

if u
l}

v
lt w^ be the results obtained by dividing u, v, w by the

lowest power of t occurring as a factor in u, v, w, and then putting

t= 0, Ujdx + Vjdy + w^dz is an exact differential. Whether we call

udx -f vdy + wdz in all cases an exact differential when u, v and w
vanish, is a matter of definition, although reasons might be as

signed which would induce us to allow of the application of the

term in all such cases : the demonstration of the theorem is not

at all affected. Indeed, in enunciating and demonstrating the

theorem there is no occasion to employ the term exact differential

at all. The theorem might have been enunciated as follows.

If the three quantities dujdy dv/dx, &c. are numerically equal

to zero when =
0, they will remain numerically equal to zero

throughout the motion. This theorem having been established,

it follows as a result that when u, v, and w vanish with t,

is an exact differential.

The theorem has been shewn to be a rigorous consequence
of the hypothesis of the absence of all tangential force in fluids

in motion. It now becomes a question, How far is the theorem

practically true, or nearly true
;
or in what cases would it lead

to results altogether at variance with observation ?

As a general rule it may be answered that the theorem will

lead to results nearly agreeing with observation wrhen the motion

of the particles which are moving is continually beginning from

rest, or nearly from rest, or is as good as if it were continually

beginning from rest
;
while the theorem will practically fail when

the velocity of a given particle, or rather its velocity relatively

* See a paper &quot;On the Critical Values of the sums of Periodic Series,&quot; Cambridge

Philosophical Transactions, Vol. vin. Part 5. [Ante* Vol. i, p. 236.]
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to other particles, takes place for a long continuance in one

direction.

Thus, when a wave of sound is propagated through air, a new
set of particles is continually coming into motion

;
or the motion,

considered with reference to the individual particles, is continually

beginning from rest. When a wave is propagated along the

surface of water, although the motion of the water at a distance

from the wave is not mathematically zero, it is insensible, so that

the set of particles which have got any sensible motion is con

tinually changing. When a series of waves of sound is propa

gated in air, as for example the series of waves coming from

a musical instrument, or when a series of waves is propagated

along the surface of water, it is true that the motion is not

continually beginning from rest, but it is as good as if it were

continually beginning from rest. For if at any instant the dis

turbing cause were to cease for a little, and then go on again,

the particles would be reduced to rest, or nearly to rest, when

the first series of waves had passed over them, and they would

begin to move afresh when the second series reached them. Again,
in the case of the simultaneous small oscillations of solids and

fluids, when the forward and backward oscillations are alike, equal

velocities in opposite directions are continually impressed on the

particles at intervals of time separated by half the time of a com

plete oscillation. In such cases the theorem would generally lead

to results agreeing nearly with observation.

If however water coming from a reservoir where it was sen

sibly at rest were to flow down a long canal, or through a long

pipe, the tendency of friction being always the same way, the

motion would soon altogether differ from one for which

udoo + vdy + wdz was an exact differential. The same would

be the case when a solid moves continually onwards in a fluid.

Even in the case of an oscillating solid, when the forward and

backward oscillations are not similar, as for example when a

cone oscillates in the direction of its axis, it may be con

ceived that the tendency of friction to alter the motion of

the fluid in the forward oscillation may not be compensated in

the backward oscillation
;

so that, even if the internal friction

be very small, the motion of the fluid after several oscillations

may differ widely from what it would have been had there been
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absolutely no friction. I do not expect that there would be this

wide difference
;
but still the actual motion would probably not

agree so well with the theoretical, as in those cases in which

the forward and backward oscillations are alike. By the theo

retical motion is of course meant that which would be obtained

from the common theory, in which friction is not taken into

account.

It appears from experiments on pendulums that the effect

of the internal friction in air and other gases is greater than

might have been anticipated. In Dubuat s experiments on spheres

oscillating in air the spheres were large, and the alteration in

the time of oscillation due to the resistance of the air, as de

termined by his experiments, agrees very nearly with the result

obtained from the common theory. Other philosophers, however,

having operated on smaller spheres, have found a considerable

discrepancy, which is so much the greater as the sphere employed
is smaller. It appears, moreover, from the experiments of Colonel

Sabine, that the resistance depends materially upon the nature

of the gas. Thus it is much greater, in proportion to the density,
in hydrogen than in air.

NOTE REFERRED TO AT P. 37.

[It may be noticed that two of Helmholtz s fundamental pro

positions respecting vortex motion* follow immediately from

Cauchy s integrals ;
or rather, two propositions the same as those

of Helmholtz merely generalized so as to include elastic fluids

follow from Cauchy s equations similarly generalized.

On substituting in (7) for R the expression given by (8), and

introducing the notation of angular velocities, as in (11), equa
tions (7) become

, p fdx t dx dx

I db
w

^dc&quot;

/// _ _/&amp;gt;_

fdz ,
dz , r dz ,fl\

~~p^(da
(0

db 5c
W

/

*
Crelle s Journal, Vol. LV. p. 25.

(a).
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We see at once from these equations that if

da db dc
(b),

., dx dy dz
,

.

then = -4,
= -,- ........................

(
c ),

CO CO (i)

but (b) are the differential equations of the system of vortex lines

at the time 0, and (c), as being of the form

dx dy _ dz

~P
=

~Q

=
~R&amp;gt;

are the differential equations of the loci of the particles at the

time t which at the time formed the vortex lines respectively.

But when we further take account of the values of P, Q, R, as

exhibited in (c), we see that (c) are also the differential equations
of the system of vortex lines at the time t. Therefore the same

loci of particles which at one moment are vortex lines remain

vortex lines throughout the motion.

Let I1 be the resultant angular velocity at the time of a

particle P which at the time t is at P, and has fl for its angular

velocity ;
let d*

Q
drawn from P be an element of the vortex line

at time passing through P ,
and ds the element of the vortex

line passing through P at the time t which consists of the same

set of particles. Then each member of equations (b) is equal
to c?s /f! ,

and each member of equations (c) equal to cfo/H. Hence

we get from any one of equations (a)

Let A be the area of a perpendicular section, at P
,
of a vortex

thread containing the vortex line passing through P at the time 0,

a vortex thread meaning the portion of fluid contained within

an elementary tube made up of vortex lines
;
then by what pre

cedes the same set of particles will at the time t constitute a

vortex thread passing through P; let A be a perpendicular section

of it passing through P at the time t, and draw two other per

pendicular sections passing respectively through the other ex

tremities of the elements ds and ds. Then if we suppose, as

we are at liberty to do, that the linear dimensions of A are

indefinitely small compared with the length ds
,
we see at once

that the elements of volume comprised between the tube and
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the pair of sections at the time and at the time t respectively
contain ultimately the same particles, and therefore

pAds = pQ
A ds

,

whence

or the angular velocity of any given particle varies inversely
as the area of a perpendicular section through it of the vortex

thread to which it belongs, and that, whether the fluid be incom

pressible or elastic.

When these results are deduced from Cauchy s integrals,

the state of the fluid at any time is compared directly with its

state at any other time
;

in Helmholtz s method the state at

the time t is compared with the state at the time t + dtt
and

so on step by step.

A remaining proposition of Helmholtz s, that along a vortex

line the angular velocity varies at any given time inversely as

the perpendicular section of the vortex thread, has no immediate

relation to Cauchy s integrals, inasmuch as it relates to a com

parison of the state of the fluid at different points at the same

moment. It may however be convenient to the reader that the

demonstration, which is very brief, should be reproduced here.

We have at once from (11)

da) da&quot; dw&quot;

f

~7
--

1

--
~J
--

f~ /

- == Ojdx ay dz

and consequently

day day&quot; da&amp;gt;

where the integration extends over any arbitrary portion of the

fluid. This equation gives

ffu dyds + jj
&amp;lt;*&quot;dzdx +

ff** d*dy
= 0,

where the double integrals extend over the surface of the space

in question. The latter equation again becomes by a well-known

transformation

where dS is an element of the surface of the space, and 6 the

s. ii. 4
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angle between the instantaneous axis and the normal to the

surface drawn outwards.

Let now the space considered be the portion of a vortex thread

comprised between any two perpendicular sections, of which let

A and A denote the areas. All along the side of the tube 6 90,

and at the two ends 6 = 180 and = 0, respectively, and therefore

if fl denotes the angular velocity at the second extremity of the

portion of the vortex thread considered

which proves the theorem.]



[From the Philosophical Magazine, Vol. xxxm., p. 349 (November, 1848.)]

OX A DIFFICULTY IN THE TflEORY OF SOUND.

THE theoretical determination of the velocity of sound has

recently been the occasion of a discussion between Professor

Challis and the Astronomer Royal. It is not my intention to

enter into the controversy, but merely to consider a very re

markable difficulty which Professor Challis has noticed in con

nexion with a known first integral of the accurate equations of

motion for the case of plane waves.

The difficulty alluded to is to be found at page 496 of the

preceding volume of this Magazine*. In what follows I shall use

Professor Challis s notation.

*
[The following quotation will suffice to put the reader in possession of the

apparent contradiction discovered by Professor Challis. It should be stated that

the investigation relates to plane waves, propagated in the direction of *, and that

the pressure is supposed to vary as the density.
&quot; The function / being quite arbitrary, we may give it a particular form. Let,

therefore,

w m sin -
{z
-

(a + w) t],
A

This equation shows that at any time fj we shall have ic = at points on the axis

of 2, for which

or

At the same time tr will have the value =tm at points of the axis for which

or = -_ + Wjf
1
- -

4-2
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Without entering into the consideration of the mode in which

Poisson obtained the particular integral

(1),

it may easily be shown, by actual differentiation and substitution,

that the integral does satisfy our equations. The function/ being

arbitrary, we may assign to it any form we please, as representing

a particular possible motion, and may employ the result, so long as

no step tacitly assumed in the course of our reasoning fails. The

interpretation of the integral (1) will be rendered more easy by

the consideration of a curve. In Fig. 1 let oz be the axis of
z&amp;gt;

and let the ordinate of the curve represent the values of w for

t = 0. The equation (1) merely asserts that whatever value the

Fig. 2.

velocity w may have at any particular point when t 0, the same

value will it have at the time t at a point in advance of the former

by the space (a + w) t. Take any point P in the curve of Fig. 1,

and from it draw, in the positive direction, the right line PP
parallel to the axis of z, and equal to (a + w) t. The locus of all the

points P will be the velocity-curve for the time t. This curve is

represented in Fig. 2, except that the displacement at common
to all points of the original curve is omitted, in order that the

modification in the form of the curve may be more easily perceived.

This comes to the same thing as drawing PP equal to wt instead

of (a + w) t. Of course in this way P will lie on the positive or

negative side of P, according as P lies above or below the axis of z.

It is evident that in the neighbourhood of the points a, c the curve

becomes more and more steep as t increases, while in the neigh-

Here it is observable that no relation exists between the points of no velocity

and the points of maximum velocity. As m, t
lt and X are arbitrary constants, we

may even have

in which case the points of no velocity are also points of maximum velocity,&quot;]
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bourhood of the points o, b, z its inclination becomes more and

more gentle.

The same result may easily be obtained analytically. In

Fig. 1, take two points, infinitely close to each other, whose

abscissas are z and z + dz
;
the ordinates will be iy and

dw j
10+-T- dz.

dz

After the time t these same ordinates will belong to points whose

abscissas will have become (in Fig. 2) z + wt and

dw

(**
Hence the horizontal distance between the points, which was dz,

will have become

and therefore the tangent of the inclination, which was dwjdz, will

have become
dw

..(A).

At those points of the original curve] at which the tangent is

horizontal, dwjdz = 0, and therefore the tangent will constantly

remain horizontal at the corresponding points of the altered curve.

For the points for which dwjdz is positive, the denominator of the

expression (A) increases with t, and therefore the inclination of

the curve continually decreases. But when dwjdz is negative,

the denominator of (A) decreases as t increases, so that the curve

becomes steeper and steeper. At last, for a sufficiently large

value of t, the denominator of (A) becomes infinite for some value

of z. Now the very formation of the differential equations of

motion with which we start, tacitly supposes that we have to deal

with finite and continuous functions
;
and therefore in the case

under consideration we must not, without limitation, push our

results beyond the least value of t which renders (A) infinite.

This value is evidently the reciprocal, taken positively, of the

greatest negative value of dwjdz ;
w here, as in the whole of this

paragraph, denoting the velocity when t = 0.
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By the term continuous function, I here understand a function

whose value does not alter per saltum, and not (as the term

is sometimes used) a function which preserves the same alge

braical expression. Indeed, it seems to me to be of the utmost

importance, in considering the application of partial differential

equations to physical, and even to geometrical problems, to con

template functions apart from all idea of algebraical expression.

In the example considered by Professor Challis,

2?r
w = m sin [z (a + w) t],A

where m may be supposed positive ;
and we get by differentiating

and putting t 0,

dw 2
T- = COS -

,

dz A A

the greatest negative value of which is 2?rm/\ ;
so that the

greatest value of t for which we are at liberty to use our results

without limitation is X/2?rm, whereas the contradiction arrived at

by Professor Challis is obtained by extending the result to a larger

value of t, namely X/4m.

Of course, after the instant at which the expression (A) be

comes infinite, some motion or other will go on, and we might
wish to know what the nature of that motion was. Perhaps the

most natural supposition to make for trial is, that a surface of

discontinuity is formed, in passing across which there is an abrupt

change of density and velocity. The existence of such a surface

will presently be shown to be possible*, on the two suppositions

that the pressure is equal in all directions about the same point,

and that it varies as the density. I have however convinced

myself, by a train of reasoning which I do not think it worth while

to give, inasmuch as the result is merely negative, that even on

the supposition of the existence of a surface of discontinuity, it is

not possible to satisfy all the conditions of the problem by means

of a single function of the form f{z-(a + w)t}. Apparently,

something like reflexion must take place. Be that as it may, it

is evident that the change which now takes place in the nature

of the motion, beginning with the particle (or rather plane of

particles) for which (A) first becomes infinite, cannot influence a

*
[Not so: see the substituted paragraph at the end.]
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particle at a finite distance from the former until after the expi

ration of a finite time. Consequently even after the change in

the nature of the motion, our original expressions are applicable,

at least for a certain time, to a certain portion of the fluid. It

was for this reason that I inserted the words &quot; without limitation,&quot;

in saying that we are not at liberty to use our original results

without limitation beyond a certain value of t The full discussion

of the motion which would take place after the change above

alluded to, if possible at all, would probably require more pains

than the result would be worth.

[So long as the motion is continuous, and none of the diffe

rential coefficients involved become infinite, the two principles

of the conservation of mass and what may be called the conserva

tion of momentum, applied to each infinitesimal slice of the fluid,

are not only necessary but also sufficient for the complete determi

nation of the motion, the functional relation existing between the

pressure and density being of course supposed known. Hence any
other principle known to be true, such for example as that of the

conservation of energy, must be virtually contained in the former.

It was accordingly a not unnatural mistake to make to suppose
that in the limit, when we imagine the motion to become dis

continuous, the same two principles of conservation of mass and

of momentum applied to each infinitesimal slice of the fluid should

still be sufficient, even though one such slice might contain a

surface of discontinuity. It was however pointed out to me by
Sir William Thomson, and afterwards independently by Lord

Bayleigh, that the discontinuous motion supposed above involves

a violation of the principle of the conservation of energy. In fact,

the equation of energy, applied to the fluid in the immediate

neighbourhood of the surface of discontinuity, and combined with

the two equations deduced from the two principles first mentioned,

leads in the case ofpxp to

where p, p are the densities at the two sides of the supposed
surface of discontinuity ;

but this equation has no real root except

P
=

/&amp;gt; ]



[From the Transactions of the Cambridge Philosophical Society,

Vol. VIIL p. 642.]

ON THE FORMATION OF THE CENTRAL SPOT OF NEWTON S

RINGS BEYOND THE CRITICAL ANGLE.

[Read December 11, 1848.]

WHEN Newton s Rings are formed between the under surface

of a prism and the upper surface of a lens, or of another prism
with a slightly convex face, there is no difficulty in increasing the

angle of incidence on the under surface of the first prism till it

exceeds the critical angle. On viewing the rings formed in this

manner, it is found that they disappear on passing the critical

angle, but that the central black spot remains. The most obvious

way of accounting for the formation of the spot under these cir

cumstances is, perhaps, to suppose that the forces which the

material particles exert on the ether extend to a small, but sen

sible distance from the surface of a refracting medium ;
so that in

the case under consideration the two pieces of glass are, in the

immediate neighbourhood of the point of contact, as good as a

single uninterrupted medium, and therefore no reflection takes

place at the surfaces. This mode of explanation is however liable

to one serious objection. So long as the angle of incidence falls

short of the critical angle, the central spot is perfectly explained,

along with the rest of the system of which it forms a part, by

ordinary reflection and refraction. As the angle of incidence

gradually increases, passing through the critical angle, the ap

pearance of the central spot changes gradually, and but slightly.

To account then for the existence of this spot by ordinary re

flection and refraction so long as the angle of incidence falls short
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of the critical angle, but by the finite extent of the sphere of

action of the molecular forces when the angle of incidence exceeds

the critical angle, would be to give a discontinuous explanation to

a continuous phenomenon. If we adopt the latter mode of expla

nation in the one case we must adopt it in the other, and thus

separate the theory of the central spot from that of the rings,

which to all appearance belong to the same system ; although the

admitted theory of the rings fully accounts likewise for the exist

ence of the spot, and not only for its existence, but also for

some remarkable modifications which it undergoes in certain cir

cumstances*.

Accordingly the existence of the central spot beyond the criti

cal angle has been attributed by Dr Lloyd, without hesitation, to

the disturbance in the second medium which takes the place of

that which, when the angle of incidence is less than the critical

angle, constitutes the refracted light*)*. The expression for the in

tensity of the light, whether reflected or transmitted, has not how
ever been hitherto given, so far as I am aware. The object of the

present paper is to supply this deficiency.

In explaining on dynamical principles the total internal reflec

tion of light, mathematicians have been led to an expression for

the disturbance in the second medium involving an exponential,

which contains in its index the perpendicular distance of the point
considered from the surface. It follows from this expression that

the disturbance is insensible at the distance of a small multiple of

the length of a wave from the surface. This circumstance is all that

need be attended to, so far as the refracted light is concerned, in

explaining total internal reflection
;
but in considering the theory

of the central spot in Newton s Kings, it is precisely the super
ficial disturbance just mentioned that must be taken into account.

In the present paper I have not adopted any special dynamical

theory : I have preferred deducing my results from Fresnel s for

mula for the intensities of reflected and refracted polarized light,

which in the case considered became imaginary, interpreting these

imaginary expressions, as has been done by Professor O Brien
J,

* I allude especially to the phenomena described by Mr Airy in a paper printed

in the fourth volume of the Cambridge Philosophical Transactions, p. 409.

t Eeport on the present state of Physical Optics. Reports of the British

Association, Vol. in. p. 310.

$ Cambridge Philosophical Transactions, Vol. Tin. p. 20.
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in the way in which general dynamical considerations show that

they ought to be interpreted.

By means of these expressions, it is easy to calculate the in

tensity of the central spot. I have only considered the case in

which the first and third media are of the same nature : the

more general case does not seem to be of any particular interest.

Some conclusions follow from the expression for the intensity,

relative to a slight tinge of colour about the edge of the spot,

and to a difference in the size of the spot according as it is seen by

light polarized in, or by light polarized perpendicularly to the plane
of incidence, which agree with experiment.

1. Let a plane wave of light be incident, either externally or

internally, on the surface of an ordinary refracting medium, sup

pose glass. Kegard the surface as plane, and take it for the plane

xy; and refer the media to the rectangular axes of x, y, z, the

positive part of the last being situated in the second medium,
or that into which the refraction takes place. Let I, m, n be the

cosines of the angles at which the normal to the incident wave,
measured in the direction of propagation, is inclined to the

axes
;

so that m if we take, as we are at liberty to do,

the axis of y parallel to the trace of the incident wave on the

reflecting surface. Let F, V
t ,
V denote the incident, reflected,

and refracted vibrations, estimated either by displacements or

by velocities, it does not signify which
;
and let a, a,, a denote

the coefficients of vibration. Then we have the following possible

system of vibrations :

2jr -}V = a cos- (vt Ix nz),

2V = a cos
~

(vt Ix + nz), 5* (A).

V = a cos~ (v t I x n z),
Ai

In these expressions v, v are the velocities of propagation, and

X, X the lengths of wave, in the first and second media
;

so

that v, v
,
and the velocity of propagation in vacuum, are propor

tional to X, X
,
and the length of wave in vacuum : I is the sine,

and n the cosine of the angle of incidence, I the sine, and ri the
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cosine of the angle of refraction, these quantities being connected

by the equations

i r

v v&quot;

v ^ V
*

2. The system of vibrations (A) is supposed to satisfy certain

linear differential equations of motion belonging to the two media,

and likewise certain linear equations of condition at the surface of

separation, for which z = 0. These equations lead to certain

relations between a, a
/5

and a, by virtue of which the ratios

of a, and a to a are certain functions of I, v, and v
,
and it

might be also of X. The equations, being satisfied identically,
will continue to be satisfied when I becomes greater than 1, and

consequently n imaginary, which may happen, provided v &amp;gt; v ;

but the interpretation before given to the equations (A) and

(1) fails.

When n becomes imaginary, and equal to v \/( 1), v being

equal to *J(l
2

].),
z instead of appearing under a circular func

tion in the third of equations (A), appears in one of the expo
nentials ** * *

,
k

1

being equal to 2ir/\ . By changing the sign of

V( 1) we should get a second system of equations (A), satisfying,

like the first system, all the equations of the problem ;
and we

should get two new systems by writing vt + X/4 for vt. By com

bining these four systems by addition and subtraction, which is

allowable on account of the linearity of our equations, we should

be able to get rid of the imaginary quantities, and likewise of the

exponential e +k v z
,
which does not correspond to the problem,

inasmuch as it relates to a disturbance which increases inde

finitely in going from the surface of separation into the second

medium, and which could only be produced by a disturbing
cause existing in the second medium, whereas none such is sup

posed to exist.

3. The analytical process will be a good deal simplified by

replacing the expressions (A) by the following symbolical ex

pressions for the disturbance, where k is put for 2?r/X, so that

kv = k v
;

V

(B).
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In these expressions, if each exponential of the form ep^~V be re

placed by co&P+fj( 1) sinP, the real part of the expressions

will agree with (A), and therefore will satisfy the equations of the

problem. The coefficients of
/^/( 1) in the imaginary part will be

derived from the real part by writing t +
\/4&amp;lt;v

for t, and therefore

will form a system satisfying the same equations, since the form of

these equations is supposed in no way to depend on the origin of

the time
;
and since the equations are linear they will be satisfied

by the complete expressions (B).

Suppose now I to become greater than 1, so that ri becomes

v V(~ !) Whichever sign we take, the real and imaginary

parts of the expressions (B), which must separately satisfy the

equations of motion and the equations of condition, will represent

two possible systems of waves
;
but the upper sign does not corre

spond to the problem, for the reason already mentioned, so that we

must use the lower sign. At the same time that ri becomes

z/&amp;gt;v/( 1), let a, a
/}
a become

pe^, p,e
&amp;lt;

vrl
, //e

e vrl
, respectively:

then we have the symbolical system

y 6-0 V^T ^
Jc(vt-lx-nz)^/^l

of which the real part

V = p cos
{/ (vt Ix nz) 6], 1

V
I

= p / cos{k(vt-lx + nz)-e/ } ) [
............ (D)

V = p e-W* cos {& (v t - I x)
-

ff], \

forms the system required.

As I shall frequently have occasion to allude to a disturbance

of the kind expressed by the last of equations (D), it will be con

venient to have a name for it, and I shall accordingly call it a

superficial undulation.

4. The interpretation of our results is not yet complete, inas

much as it remains to consider what is meant by V. When the

vibrations are perpendicular to the plane of incidence there is no

difficulty. In this case, whether the angle of incidence be greater

or less than the critical angle, V denotes a displacement, or
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else a velocity, perpendicular to the plane of incidence. When
the vibrations are in the plane of incidence, and the angle of

incidence is less than the critical angle, V denotes a displacement
or velocity in the direction of a line lying in the plane xz, and

inclined at angles TT i
, (\TT i ) to the axes of #, z

y
i being

the angle of refraction. But when the angle of incidence

exceeds the critical angle there is no such thing as an angle of

refraction, and the preceding interpretation fails. Instead there

fore of considering the whole vibration V, consider its resolved

parts Vx , V, in the direction of the axes of x, z. Then when the

angle of incidence is less than the critical angle, we have

F; = - riv = - cos i
f

. v
; F; = i

fw = sin i
f

. v,

V being given by (A), and being reckoned positive in that direc

tion which makes an acute angle with the positive part of the

axis of z. When the angle of incidence exceeds the critical angle,

we must first replace the coefficient of V in Vx , namely ri, by

j/gin-V-i^ an(j then, retaining v for the coefficient, add JTT to the

phase, according to what was explained in the preceding article.

Hence, when the vibrations take place in the plane of inci

dence, and the angle of incidence exceeds the critical angle, V
in (D) must be interpreted to mean an expression from which the

vibrations in the directions of x, z may be obtained by multiplying

by v, I respectively, and increasing the phase in the former case

by JTT. Consequently, so far as depends on the third of equations

(D), the particles of ether in the second medium describe small

ellipses lying in the plane of incidence, the semi-axes of the

ellipses being in the directions of x, z, and being proportional to

i/, I
,
and the direction of revolution being the same as that in

which the incident ray would have to revolve in order to diminish

the angle of incidence.

Although the elliptic paths of the particles lie in the plane of

incidence, that does not prevent the superficial vibration just con

sidered from being of the nature of transversal vibrations. For it

is easy to see that the equation

dx dz

is satisfied
;
and this equation expresses the condition that there
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is no change of density, which is the distinguishing characteristic

of transversal vibrations.

5. When the vibrations of the incident light take place in the

plane of incidence, it appears from investigation that the equa
tions of condition relative to the surface of separation of the two

media cannot be satisfied by means of a system of incident, re

flected and refracted .waves, in which the vibrations are trans

versal. If the media be capable of transmitting normal vibrations

with velocities comparable with those of transversal vibrations,

there will be produced, in addition to the waves already men
tioned, a series of reflected and a series of refracted waves in

which the vibrations are normal, provided the angle of incidence

be less than either of the two critical angles corresponding to the

reflected and refracted normal vibrations respectively. It has

been shown however by Green, in a most satisfactory manner, that

it is necessary to suppose the velocities of propagation of normal

vibrations to be incomparably greater than those of transversal

vibrations, which comes to the same thing as regarding the ether

as sensibly incompressible ;
so that the two critical angles men

tioned above must be considered evanescent*. Consequently the

reflected and refracted normal waves are replaced by undulations

of the kind which I have called superficial. Now the existence of

these superficial undulations does not affect the interpretation
which has been given to the expressions (A) when the angle of

incidence becomes greater than the critical angle corresponding to

the refracted transversal wave
;

in fact, so far as regards that

interpretation, it is immaterial whether the expressions (A) satisfy

the linear equations of motion and condition alone, or in con

junction with other terms referring to the normal waves, or

rather to the superficial undulations which are their represen
tatives. The expressions (D) however will not represent the

whole of the disturbance in the two media, but only that part

of it which relates to the transversal waves, and to the superficial

undulation which is the representative of the refracted tranversal

wave.

6. Suppose now that in the expressions (A) n becomes imagi

nary, ri remaining real, or that n and n both become imaginary.

*
Cambridge Philosophical Transactions, Vol. vn. p. 2.
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The former case occurs in the theory of Newton s Rings when
the angle of incidence on the surface of the second medium be

comes greater than the critical angle, and we are considering the

superficial undulation incident on the third medium : the latter

case would occur if the third medium as well as the second were of

lower refractive power than the first, and the angle of incidence on

the surface of the second were greater than either of the critical

angles corresponding to refraction out of the first into the second,

or out of the first into the third. Consider the case in which n
becomes imaginary, n remaining real

;
and let *J(l

2

1)
= v. Then

it may be shown as before that we must put v \J( 1), and not

v V( 1), for n
;
and using p, 6 in the same sense as before, we get

the symbolical system,

to which corresponds the real system

V =
pe-*&amp;gt;

z cos [k(vt-lx)-6} 9

cos vt-lz -0 .

(F).

When the vibrations take place in the plane of incidence,

V and V
t
in these expressions must be interpreted in the same

way as before. As far as regards the incident and reflected super
ficial undulations, the particles of ether in the first medium will

describe small ellipses lying in the plane of incidence. The ellipses

will be similar and similarly situated in the two cases
;
but the

direction of revolution will be in the case of the incident undula

tion the same as that in which the refracted ray would have to

turn in order to diminish the angle of refraction, whereas in the

reflected undulation it will be the opposite.

It is unnecessary to write down the formulas which apply to

the case in which n and n both become imaginary.

7. If we choose to employ real expressions, such as (D) and

(F), we have this general rule. When any one of the undula

tions, incident, reflected, or refracted, becomes superficial, remove

z from under the circular function, and insert the exponential
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-h&amp;gt;z

f 6Jcvz
f or -k v z

} according as the incident, reflected, or re

fracted undulation is considered. At the same time put the

coefficients, which become imaginary, under the form

p {cos V (- 1) sin 0},

the double sign corresponding to the substitution of

v V (
-

1), or + v J (- 1) for n or ri,

retain the modulus p for coefficient, and subtract 9 from the

phase.

It will however be far more convenient to employ symbolical

expressions such as (B). These expressions will remain applicable

without any change when n or n becomes imaginary : it will only
be necessary to observe to take

+ v V (
-

1), or v V (
-

1)

with the negative sign. If we had chosen to employ the expres

sions (B) with the opposite sign in the index, which would have

done equally well, it would then have been necessary to take the

positive sign.

8. We are now prepared to enter on the regular calculation of

the intensity of the central spot ;
but before doing so it will be

proper to consider how far we are justified in omitting the

consideration of the superficial undulations which, when the vibra

tions are in the plane of incidence, are the representatives of normal

vibrations. These undulations may conveniently be called normal

superficial undulations, to distinguish them from the superficial

undulations expressed by the third of equations (D), or the first

and second of equations (F), which may be called transversal.

The former name however might, without warning, be calculated

to carry a false impression ;
for the undulations spoken of are not

propagated by way of condensation and rarefaction
;
the disturb

ance is in fact precisely the same as that which exists near the

surface of deep water when a series of oscillatory waves is propa

gated along it, although the cause of the propagation is extremely

different in the two cases.

Now in the ordinary theory of Newton s Kings, no account is

taken of the normal superficial undulations which may be sup

posed to exist
;
and the result so obtained from theory agrees very
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well with observation. When the angle of incidence passes through

the critical angle, although a material change takes place in the

nature of the refracted transversal undulation, no such change

takes place in the case of the normal superficial undulations : the

critical angle is in fact nothing particular as regards these undu

lations. Consequently, we should expect the result obtained from

theory when the normal superficial undulations are left out of con

sideration to agree as well with experiment beyond .the critical

angle as within it.

9. It is however one thing to show why we are justified in

expecting a near accordance between the simplified theory and

experiment, beyond the critical angle, in consequence of the

observed accordance within that angle ;
it is another thing to show

why a near accordance ought to be expected both in the one case

and in the other. The following considerations will show that the

effect of the normal superficial undulations on the observed

phenomena is most probably very slight.

At the point of contact of the first and third media, the reflec

tion and refraction will take place as if the second medium were

removed, so that the first and third were in contact throughout.

Now Fresnel s expressions satisfy the condition of giving the same

intensity for the reflected and refracted light whether we suppose
the refraction to take place directly out of the first medium into

the third, or take into account the infinite number of reflections

which take place when the second medium is interposed, and then

suppose the thickness of the interposed medium to vanish. Conse

quently the expression we shall obtain for the intensity by neg

lecting the normal superficial undulations will be strictly correct

for the point of contact, Fresnel s expressions being supposed cor

rect, and of course will be sensibly correct for some distance round

that point. Again, the expression for the refracted normal su

perficial undulation will contain in the index of the exponential

klz, in place of kj (I

2
v
2

/ v
2

) z, which occurs in the expres
sion for the refracted transversal supeificial undulation; and there

fore the former kind of undulation will decrease much more rapidly,
in receding from the surface, than the latter, so that the effect

of the former will be insensible at a distance from the point of

contact at which the effect of the latter is still important. If we
cembine these two considerations, we can hardly suppose the

s. ii. 5
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effect of the normal superficial undulations at intermediate points
to be of any material importance.

10. The phenomenon of Newton s Rings is the only one in

which I see at present any chance of rendering these undulations

sensible in experiment ; for the only way in which I can conceive

them to be rendered sensible is, by their again producing trans

versal vibrations; and in consequence of the rapid diminution of

the disturbance on receding from the surface, this can only happen
when there exists a second reflecting surface in close proximity
with the first. It is not my intention to pursue the subject further

at present, but merely to do for angles of incidence greater than

the critical angle what has long ago been done for smaller angles,

in which case light is refracted in the ordinary way. Before quitting
the subject however I would observe that, for the reasons already

mentioned, the near accordance of observation with the expression

for the intensity obtained when the normal superficial undula

tions are not taken into consideration cannot be regarded as any
valid argument against the existence of such undulations.

11. Let Newton s Rings be formed between a prism and a

lens, or a second prism, of the same kind of glass. Suppose the

incident light polarized, either in the plane of incidence, or in a

plane perpendicular to the plane of incidence. Let the coefficient

of vibration in the incident light be taken for unity; and, accord

ing to the notation employed in Airy s Tract, let the coefficient be

multiplied by b for reflection and by c for refraction when light

passes from glass into air, and by e for reflection and / for refrac

tion when light passes from air into glass. In the case contem

plated 6, c, e,f become imaginary, but that will be taken into ac

count further on. Then the incident vibration will be represented

symbolically by
J (vt-lx-ns) tt

)

according to the notation already employed ;
and the reflected and

refracted vibrations will be represented by

ce
-

Ic v z
e
k (v t

-
I x) V-T

t

Consider a point at which the distance of the pieces of glass is

D\ and, as in the usual investigation, regard the plate of air about

that point as bounded by parallel planes. When the superficial



NEWTON S RINGS BEYOND THE CRITICAL ANGLE. 67

undulation represented by the last of the preceding expressions is

incident on the second surface, the coefficient of vibration will be

come cq, q being put for shortness in place of e~ Vv D \
and the re

flected and refracted vibrations will be represented by

z being now measured from the lower surface. It is evident that

each time that the undulation passes from one surface to the other

the coefficient of vibration will be multiplied by q,
while the phase

will remain the same. Taking account of the infinite series of

reflections, we get for the symbolical expression for the reflected

vibration

[I + cefq* (1 + ey + eV +...)} e^*-*****)^.

Summing the geometric series, we get for the coefficient of the

exponential

Now it follows from Fresnel s expressions that

b=-e, cf=I-e
z

*&amp;gt;

These substitutions being made in the coefficient, we get for the

symbolical expression for the reflected vibration

&-*^-*^/=T ..................... (G).

Let the coefficient, which is imaginary, be put under the form

p {cosi/r + /

v/( l)sim/r}; then the real part of the whole expres

sion, namely
p cos [k (vt -lx + nz] + -^r},

will represent the vibration in the reflected light, so that p* is the

intensity, and ^ the acceleration of phase.

1 2. Let i be the angle of incidence on the first surface of the

plate of air, JJL
the refractive index of glass; and let X now denote

the length of wave in air. Then in the expression for q

T &amp;gt; / o . o . =-
K v ~

*Jir am i 1.
X

*
I have proved these equations in a very simple manner, without any reference

to Fresnel s formulae, in a paper which will appear in the next number of the

Cambridge and Diillin Mathematical Journal [p. 89 of the present volume].

52
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In the expression for b we must, according to Art. 2, take the

imaginary expression for cos i with the negative sign. We thus

get for light polarized in the plane of incidence (Airy s Tract,

p. 362, 2nd edition*), changing the sign of *J~1,

b = cos 2(9 +V^ sin 20,

where

fj,
COS I

Putting C for the coefficient in the expression (G), we have_
b~

l - fb (i
_
f) Cos 2(9 - V- 1 (1 + f) sin 2(9

_ (i
_

g ) {(i
_

&amp;lt;f)

cog 2(9 +J^l (1 + &amp;lt;f)

sin 20} .

(l-2*)
a +V sin

2
2(9

whence
1 i 2

ten/-~ tea 20 ..................... (3),

where
2irD ._--

j Vu2siua i-l

2 = 6 ..................... (5).

If we take p positive, as it will be convenient to do, we must

take ^r so that cos ty and cos 2$ may have the same sign. Hence

from (3) sin^ must be positive, since sin 20 is positive, inasmuch

as 6 lies between and ^TT. Hence, of the two angles lying be

tween TT and TT which satisfy (2), we must take that which lies

between and TT.

For light polarized perpendicularly to the plane of incidence,

we have merely to substitute &amp;lt; for 6 in the equations (3) and (4),

where

LiJu? sin
2
i l ,.

A-^----- ..................... (6).
cos^

The value of q does not depend on the nature of the polarization.

* Mr Airy speaks of &quot;vibrations perpendicular to the plane of incidence,&quot; and

&quot;vibrations parallel to the plane of incidence,&quot; adopting the theory of Fresnel; but

there is nothing in this paper which requires us to enter into the question whether

the vibrations in plane polarized light are in or perpendicular to the plane of

polarization.
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13. For the transmitted light we have an expression similar

to (G), with nz in place of nz, and a different coefficient
(7,,

where

When the light is polarized in the plane of incidence we have

-V^l .2? sin 2(9
&quot;

- 2

)
cos 20 - V (1 + 2

2

)
sin 2&amp;lt;9

_ 2g sin 2(9 {(1 + g
2

)
sin 20 - V^T (1

-
g
2

)
cos 2(9} .

(l-g
2

)

2 + 42
2
sin

2 20

so that if ^r, and p, refer to the transmitted light we have

1 tf
2

tan -f,

= ~= 2, cot 20 ........................ (8),

22

If we take p, positive, as it will he supposed to be, we must

take ^ such that cos ^i may be positive ;
and therefore, of the

two angles lying between TT and TT which satisfy (8), we must

choose that which lies between ^TT and + JTT. Hence, since from

(3) and (8) ^ is of the form
^jr -f- |TT + mr, n being an integer, we

must take ^ = ^ \ TT.

For light polarized perpendicularly to the plane of incidence

we have only to put c/&amp;gt;

for 6. It follows from (4) and (9) that the

sum of the intensities of the reflected and transmitted light is

equal to unity, as of course ought to be the case. This renders it

unnecessary to discuss the expression for the intensity of the trans

mitted light.

14. Taking the expression (4) for the intensity of the reflected

light, consider first how it varies on receding from the point of

contact.

As the point of contact D = 0, and therefore from (5) q
=

1, and

therefore p
z =

0, or there is absolute darkness. On receding from

the point of contact q decreases, but slowly at first, inasmuch as D
varies as ?*

2

,
r being the distance from the point of contact. It

follows from (4) that the intensity p
2
varies ultimately as r4

,
so
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that it increases at first with extreme slowness. Consequently
the darkness is, as far as sense can decide, perfect for some

distance round the point of contact. Further on q decreases more

rapidly, and soon becomes insensible. Consequently the intensity

decreases, at first rapidly, and then slowly again as it approaches

its limiting value 1, to which it soon becomes sensibly equal. All

this agrees with observation.

15. Consider next the variation of intensity as depending on

the colour. The change in 9 and
cf&amp;gt;

in passing from one colour to

another is but small, and need not here be taken into account :

the quantity whose variation it is important to consider is q.
Now

it follows from (5) that q changes the more rapidly in receding

from the point of contact the smaller be X. Consequently the

spot must be smaller for blue light than for red
;
and therefore

towards the edge of the spot seen by reflection, that is beyond the

edge of the central portion of it, which is black, there is a pre

dominance of the colours at the blue end of the spectrum ;
and

towards the edge of the bright spot seen
, by transmission the

colours at the red end predominate. The tint is more conspicuous

in the transmitted, than in the reflected light, in consequence of

the quantity of white light reflected about the edge of the spot.

The separation of colours is however but slight, compared with

what takes place in dispersion or diffraction, for two reasons.

First, the point of minimum intensity is the same for all the

colours, and the only reason why there is any tint produced is,

that the intensity approaches more rapidly to its limiting value 1

in the case of the blue than in the case of the red. Secondly, the

same fraction of the incident light is reflected at points for which

D oc X, and therefore r oc *J\ and therefore, on this account also,

the separation of colours is less than in diffraction, where the

colours are arranged according to the values of X, or in dispersion,

where they are arranged according to values of X~
2

nearly. These

conclusions agree with observation. A faint blueish tint may be

perceived about the dark spot seen by reflection ;
and the fainter

portions of the bright spot seen by transmission are of a decided

reddish brown.

16. Let us now consider the dependance of the size of the

spot on the nature of the polarization. Let s be the ratio of the
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intensity of the transmitted light to that of the reflected; s
lt

s
2 ,

the particular values of s belonging to light polarized in the plane

of incidence and to light polarized perpendicularly to the plane of

incidence respectively; then

4g
2
sin

2 2# 4^
2
sin

2

2^&amp;gt;

& +
&quot;^

-. o\ o i &~ &quot; ~
7&quot;-* o\~o

sin 20V
r 2

.
2 .

N
. =

](/A +1) Sin I 11
(!&quot;/

1
2&amp;lt;p/

Now according as 5 is greater or less, the spot is more or less

conspicuous ;
that is, conspicuous in regard to extent, and intensity

at some distance from the point of contact
;
for in the immediate

neighbourhood of that point the light is in all cases wholly trans

mitted. Very near the critical angle we have from (10) s
z
=

fjfsl ,

and therefore the spot is much more conspicuous for light polarized

perpendicularly to the plane of incidence than for light polarized
in that plane. As i increases the spots seen in the two cases

become more and more nearly equal in magnitude : they become

exactly alike when i = t, where

When i becomes greater than L the order of magnitude is

reversed
;
and the spots become more and more unequal as i

increases. When i 90 we have s^ /jfs2 ,
so that the inequality

becomes very great. This however must be understood with

reference to relative, not absolute magnitude ;
for when the angle

of incidence becomes very great both spots become very small.

I have verified these conclusions by viewing the spot through
a rhomb of Iceland spar, with its principal plane either parallel or

perpendicular to the plane of incidence, as well as by using a

doubly refracting prism ;
but I have not attempted to determine

experimentally the angle of incidence at which the spots are

exactly equal. Indeed, it could not be determined in this way
with any precision, because the difference between the spots is

insensible through a considerable range of incidence.

17. It is worthy of remark that the angle of incidence L at

which the spots are equal, is exactly that at which the difference

of acceleration of phase of the oppositely polarized pencils, which

arises from total internal reflection, is a maximum.
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When i = i we have

sin 26 = sin 2&amp;lt;
=

8 ; whence cot = tan
(j&amp;gt;

= p ......... (11) ;

f^ 4~ 1

and J- (1 + /0 (1 -9*)

-(l + /*T(l- 27 + 16A2

27rZ&amp;gt; m2-!

where = e
* ^+1

.......................... (12).

If we determine in succession the angles 6, f, T; from the equa

tions cot 6
p,,

tan f= g, tan 97
= sin 20 tan 2f,

we have pf
= 1 p

2 =
-|

versin 2?;.

The expression for the intensity may be adapted to numerical

computation in the same way for any angle of incidence, except
that 9 or

&amp;lt;/&amp;gt;

must be determined by (2) or (6) instead of (11), and

q by (5) instead of (12).

18. When light is incident at the critical angle, which I shall

denote by 7, the expression for the intensity takes the form 0/0.

Putting for shortness
VO&quot;-

2
sin

2
{ !)

= w, we have ultimately

, .

A,
/A cos i Jp? 1

and we get in the limit

V A,

according as the light is polarized in or perpendicularly to the

plane of incidence. The same formulae may be obtained from the

expression given at page 304 of Airy s Tract, which gives the

intensity when i &amp;lt; 7, and which like (4) takes the form 0/0 when i

becomes equal to 7, in which case e becomes equal to 1.

19. When i becomes equal to 7, the infinite series of Art. 11

ceases to be convergent : in fact, its several terms become ulti

mately equal to each other, while at the same time the coefficient

by which the series is multiplied vanishes, so that the whole takes

the form x co . The same remark applies to the series at page
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303 of Airy s Tract. If we had included the coefficient in each

term of the series, we should have got series which ceased to be

convergent at the same time that their several terms vanished.

Now the sum of such a series may depend altogether on the point
of view in which it is regarded as a limit. Take for example the

convergent infinite series

f(x &amp;gt; y} x gin y + i #
3
sin 3j/ + i #5

sin 5^ + . . .
=

J tan
~J

,

where x is less than 1, and may be supposed positive. When x

becomes 1 and y vanishes / (x, y} becomes indeterminate, and its

limiting value depends altogether upon the order in which we

suppose x and y to receive their limiting values, or more generally

upon the arbitrary relation which we conceive imposed upon the

otherwise independent variables x and y as they approach their

limiting values together. Thus, if we suppose y first to vanish,

and then x to become 1, we have/(x, y}
=

;
but if we suppose x

first to become 1, and then y to vanish, f (x, y) becomes + ?r/4,

+ or according as y vanishes positively or negatively.. Hence in

the case of such a series a mode of approximating to the value of

x or y, which in general was perfectly legitimate, might become
inadmissible in the extreme case in which x = 1, or nearly = 1.

Consequently, in the case of Newton s Rings when i ~ y is

extremely small, it is no longer .safe to neglect the defect of paral
lelism of the surfaces. Nevertheless, inasmuch as the expression

(4), which applies to the case in which
i&amp;gt;%

and the ordinary

expression which applies when i &amp;lt; 7, alter continuously as i alters,

and agree with (13) when i=y, we may employ the latter expres
sion in so far as the phenomenon to be explained alters continu

ously as i alters. Consequently we may apply the expression (13)

to the central spot when i= 7, or nearly
=

7, at least if we do not

push the expression beyond values of D corresponding to the limits

of the central spot as seen at other angles of incidence. To explain
however the precise mode of disappearance of the rings, and to

determine their greatest dilatation, Ave should have to enter on a

special investigation in which the inclination of the surfaces should

be taken into account.

20. I have calculated the following Table of the intensity of

the transmitted light, taking the intensity of the incident light at

100. The Table is calculated for values of D increasing by X/4,
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and for three angles of incidence, namely, the critical angle, the

angle i before mentioned, and a considerable angle, for which I

have taken 60. I have supposed //,
= 1*63, which is about the

refractive index for the brightest part of the spectrum in the case

of flint glass. This value of
//, gives 7 = 37 51

,
i = 42 18 . The

numerals I., II. refer to light polarized in and perpendicularly to

the plane of incidence respectively.

4D
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distance from the point of contact, when i is considerably greater

than 7 than when 1 = 7 nearly, This agrees with observation.

What may be called the ragged edge of the bright spot seen by
transmission is in fact much broader in the latter case than in the

former.

When i becomes equal to 90 there is no particular change in

the value of q, but the angles 6 and
&amp;lt;/&amp;gt;

become equal to 90, and

therefore sin 29 and sin 2&amp;lt; vanish, so that the spot vanishes.

Observation shows that the spot becomes very small when i

becomes nearly equal to 90.

23. Suppose the incident light to be polarized in a plane

making an angle a with the plane of incidence. Then at the

point of contact the light, being transmitted as if the first and

third media formed one uninterrupted medium, will be plane

polarized, the plane of polarization being the same as at first.

At a sufficient distance from the point of contact there is no

sensible quantity of light transmitted. At intermediate distances

the transmitted light is in general elliptically polarized, since

it follows from (8) and the expression thence derived by writing

(j)
for that the two streams of light, polarized in and perpen

dicularly to the plane of incidence respectively, into which the

incident light may be conceived to be decomposed, are unequally

accelerated or retarded. At the point of contact, where q
=

1,

these two expressions agree in giving -fy= 0. Suppose now

that the transmitted light is analyzed, so as to extinguish

the light which passes through close to the point of contact.

Then the centre of the spot will be dark, and beyond a certain

distance all round there will be darkness, because no sensible

quantity of light was incident on the analyzer ;
but at interme

diate distances a portion of the light incident on the analyzer will

be visible. Consequently the appearance will be that of a lumi

nous ring with a perfectly dark centre.

24. Let the coefficient of vibration in the incident light be

taken for unity ;
then the incident vibration may be resolved into

two, whose coefficients are cos or, sin a, belonging to light polarized

in and perpendicularly to the plane of incidence respectively. The

phases of vibration will be accelerated by the angles ^r t) i/r /y ,
and

the coefficients of vibration will be multiplied by p t , /?, if ^ /y , p tl
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are what ^r,, p t
in Art. (13) become when &amp;lt; is put for 6. Hence

we may take

p /
cos a . cos

-j

-
(vt

;27r
, .

p it
sin a . cos &amp;lt;- (vt

to represent the vibrations which compounded together make up
the transmitted light, x being measured in the direction of propa

gation. The light being analyzed in the way above mentioned, it

is only the resolved parts of these vibrations in a direction perpen
dicular to that of the vibrations in the incident light which are

preserved. We thus get, to express the vibration with which we

are concerned,

sin a cos a {p cos I (vt px ) + ty ) /o
cos

( \ A- / x .

which gives for the intensity (/) at any point of the ring

=
i sm22* {/&amp;gt;;

+ p,
2 -

2/o /P//
cos (f - f,)}.

Let P0, QQ be respectively the real part of the expression at the

second side of (7) and the coefficient of *J(1), and let P^, Q^ be

what P0, Q0 become when
(j&amp;gt;

is put for 6. Then we may if we

please replace (14) by

H&amp;lt;2*

- (W
2

! (15).

The ring is brightest, for a given angle of incidence, when
a = 45. When i = i, the two kinds of polarized light are trans

mitted in the same proportion; but it does not therefore follow

that the ring vanishes, inasmuch as the change of phase is different

in the two cases. In fact, in this case the angles &amp;lt;,
are comple

mentary ;
so that cot

2(/&amp;gt;,

cot 20 are equal in magnitude but oppo
site in sign, and therefore from (8) the phase in the one case is

accelerated and in the other case retarded by the angle

tan&quot;

It follows from (14) that the ring cannot vanish unless

p /
cos tyt pn cos i/r//}

and p t
sin ^ = pn sin

-^rn . This requires
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that pj = p*, which is satisfied only when i = i, in which case

as we have seen the ring does not vanish. Consequently a

ring is formed at all angles of incidence; but it should be

remembered that the spot, and consequently the ring, vanishes

when i becomes 90.

25. When i = 7, the expressions for Pd , Qe ,
take the form 0/0,

and we find, putting for shortness 7rD/\ =p,

_

If we take two subsidiary angles %, co, determined by the

equations

Jrf 1 = tan % = /A
2
tan

&&amp;gt;,

A.

we get
Pe

= cos
2

%, P$ = cos
2

G&amp;gt;,

Qe
= sin % cos %, Q&amp;lt;t&amp;gt;

sin o&amp;gt; cos w.

Substituting in (15) and reducing we get, supposing a= 45,

-2*&amp;gt;)
..................... (16).

When i = i, cos 20 = -cos 20, sin 20 = sin 20
;

and therefore

P^ = P0) Q$ = - Qe, which when a = 45 reduces (15) to 7 = $fl

2
.

If we determine the angle r from the equation

1 - (f
= 2q sin 20 tan r, or tan w = cot 2? . cosec 20,

we get
7=isin2 2sr.cos

2 20 ..................... (17).

In these equations

26. The following Table gives the intensity of the ring for

the two angles of incidence 1 = 7 and i = i, and for values of D
increasing by X/10. The intensity is calculated by the formulae

(16) and (17). The intensity of the incident polarized light is

taken at 100, and p, is supposed equal to 1*63, as before.
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dull central patch was seen, which became darker and darker till

it appeared quite black, after which it broke up into a dark ring

which travelled outwards till it was lost in the dark field surround

ing the spot. The appearance was a good deal disturbed by the

imperfect annealing of the prisms. When the plane of incidence

was inclined at an angle of about 45 to the plane of primitive

polarization, the same appearance as before was presented on

reversing the direction of rotation of the analyzer.

28. Although the complete theoretical investigation of the

moving dark ring would require a great deal of numerical calcu

lation, a general explanation may very easily be given. At the

point of contact the transmitted light is plane polarized, the plane
of polarization being the same as at first*. At some distance

from the point of contact, although strictly speaking the light is

elliptically polarized, it may be represented in a general way by

plane polarized light with its plane of polarization further removed

than at first from the plane of incidence, in consequence of the

larger proportion in which light polarized perpendicularly to the

plane of incidence is transmitted, than light polarized in that

plane. Consequently the transmitted light may be represented
in a general way by plane polarized, with its plane of polarization

receding from the plane of incidence on going from the centre

outwards. If therefore we suppose the position of the plane of

incidence, and the direction of rotation of the analyzer, to be those

first mentioned, the plane of polarization of light transmitted by
the analyzer will become perpendicular to the plane of polarization

of the transmitted light of the spot sooner towards the edge of the

spot than in the middle. The locus of the point where the two

planes are perpendicular to each other will in fact be a circle, whose

radius will contract as the analyzer turns round. When the

analyzer has passed the position in which its plane of polarization

is perpendicular to that of the light at the centre of the spot, the

inclination of the planes of polarization of the analyzer and of the

transmitted light of the spot decreases, for a given position of the

analyzer, in passing from the centre outwards
;
and therefore there

is formed, not a dark ring travelling outwards as the analyzer turns

round, but a dark patch, darkest in the centre, and becoming
* The rotation of the plane of polarization due to the refraction at the surfaces

at -which the light enters the first prism and quits the second is not here mentioned,

as it has nothing to do with the phenomenon discussed.
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brighter, and therefore less and less conspicuous, as the analyzer
turns round. The appearance will of course be the same when the

plane of incidence is turned through 90, so as to be equally in

clined to the plane of polarization on the opposite side, provided
the direction of rotation of the analyzer be reversed.

29. The investigation of the intensity of the spot formed

beyond the critical angle when the third medium is of a

different nature from the first, does not seem likely to lead to

results of any particular interest. Perhaps the most remark

able case is that in which the second and third media are both

of lower refractive power than the first, and the angle of inci

dence is greater than either of the critical angles for refraction

out of the first medium into the second, or out of the first

into the third. In this case the light must be wholly reflected;

but the acceleration of phase due to the total internal reflection

will alter in the neighbourhood of the point of contact. At that

point it will be the same as if the third medium occupied the

place of the second as well as its own
;
at a distance sufficient to

render the influence of the third medium insensible, it will be the

same as if the second medium occupied the place of the third as

well as its own. The law of the variation of the acceleration from

the one to the other of its extreme values, as the distance from the

point of contact varies, would result from the investigation. This

law could be put to the test of experiment by examining the

nature of the elliptic polarization of the light reflected in the

neighbourhood of the point of contact when the incident light is

polarized at an azimuth of 45, or thereabouts. The theoretical

investigation does not present the slightest difficulty in principle,

but would lead to rather long expressions ;
and as the experiment

would be difficult, and is not likely to be performed, there is no

occasion to go into the investigation.

30. In viewing the spot formed between a prism and a

lens, I was struck with the sudden, or nearly sudden disappearance
of the spot at a considerable angle of incidence. The cause of

the disappearance no doubt was that the lens was of lower re

fractive power than the prism, and that the critical angle was

reached which belongs to refraction out of the prism into the lens.

Before disappearing, the spot became of a bright sky blue, which
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shows that the ratio of the refractive index of the prism to that of

the lens was greater for the blue rays than for the red. As the

disappearance of the spot can be observed with a good deal of

precision, it may be possible to determine in this way the refrac

tive index of a substance of which only a very minute quantity
can be obtained. The examination of the refractive index of the

globule obtained from a small fragment of a fusible mineral might
afford the mineralogist a means of discriminating between one
mineral and another. For this purpose a plate, which is what a

prism becomes when each base angle becomes 90, would probably
be more convenient than a prism. Of course the observation is

possible only when the refractive index of the sub3tance to be
examined is less than that of the prism or plate.

s. ii.



[From the Philosophical Magazine, Vol. xxxiv. p. 52, (January, 1849.)]

ON SOME POINTS IN THE EECEIVED THEOKY OF SOUND*.

I PROCEED now to notice the apparent contradiction at which

Professor Challis has arrived by considering spherical waves, a

contradiction which it is the chief object of this communication to

consider. The only reason why I took no notice of it in a former

communication was, that it was expressed with such brevity by
Professor Challis (Vol. xxxn. p. 497), that I did not perceive how

the conclusion that the condensation varies inversely as the square
of the distance was arrived at. On mentioning this circumstance

to Professor Challis, he kindly explained to me his reasoning,

which he has since stated in detail (Vol. xxxni. p. 463) f.

* The beginning and end of this Paper are omitted, as being merely contro

versial, and of ephemeral interest.

t The objection is put in two slightly different forms in the two Papers. The

substance of it may be placed before the reader in a &quot;few words.

Conceive a wave of sound of small disturbance to be travelling outwards from

a centre, the disturbance being alike in all directions round the centre. Then

according to the received theory the condensation is expressed by equation (1),

where r is the distance from the centre, and s the condensation. It follows from

this equation that any phase of the wave is carried outwards with the velocity

of propagation a, and that the condensation varies inversely as the distance from

the centre. But if we consider the shell of infinitesimal thickness a comprised

between spherical surfaces of radii r and r + a corresponding to given phases, so

that these surfaces travel outwards with the velocity a, the excess of matter in the

shell over the quantity corresponding to the undisturbed density will vary as the

condensation multiplied by the volume, and therefore as r2s ;
and as the constancy

of mass requires that this excess should be constant, s must vary inversely as

r2 not r.

Or instead of considering only an infinitesimal shell, consider the whole of an

outward travelling wave, and for simplicity s sake suppose it to have travelled

so far that its thickness is small compared with its mean radius r or at, t being
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The whole force of the reasoning rests on the tacit supposition

that when a .wave is propagated from the centre outwards, any

arbitrary portion of the wave, bounded by spherical surfaces con

centric with the bounding surfaces of the wave, may be isolated,

the rest of the wave being replaced by quiescent fluid
;
and that

being so isolated, it will continue to be propagated outwards as

before, all the fluid except the successive portions which form the

wave in its successive positions being at rest. At first sight it

might seem as if this assumption were merely an application of

the principle of the coexistence of small motions, but it is in

reality extremely different. The equations are competent to decide

whether the isolation be possible or not. The subject may be

considered in different ways ; they will all be found to lead to the

same result.

1. We may evidently without absurdity conceive an outward

travelling wave to exist already, without entering into the question

of its original generation ;
and we may suppose the condensation

to be given arbitrarily throughout this wave. By an outward

travelling wave, I mean one for which the quantity usually denoted

by &amp;lt;f&amp;gt;

contains a function of r at, unaccompanied by a function of

r + at, in which case the expressions for v and s will likewise con

tain functions of r at only. Let

a,
=/&amp;gt;;&quot;

)

(1).

We are at liberty to suppose f (z)
=

0, except from z = b to

z = c, where b and c are supposed positive ;
and we may takey (2)

to denote any arbitrary function for which the portion from z = b

the time of travelling from the origin to the distance r. Then assuming the

expression (1), and putting the factor r outside the sign of integration, as we are at

liberty to do in consequence of the supposition made above as to the distance

the wave has travelled, we have for the quantity of matter existing at any time in

the wave beyond what would occupy the same space hi the quiescent state of the

fluid,

4.TT . a-t-xp If (r
-

at) dr+a-t

very nearly, or ^irpAt, putting A for the value of the integral If (r
-
at) dr taken from

the inner to the outer boundary of the wave. Hence the matter increases in

quantity with the time.

62
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to z = c has been isolated, the rest having been suppressed. Equa

tion (1) gives

fc=M^dL + +(r),. ..(2),

-\Jr (r) being an arbitrary function of r, to determine which we must

substitute the value of &amp;lt; given by (2) in the equation which &amp;lt; has

to satisfy, namely

r~s u/ ; a * \ /
df dr

2

This equation gives ^r (r)
= C + D/r, C and D being arbitrary

constants, whence

^ _/ (r
~ ot

} ^_f(
r ~^) _ -^

(4)

Now the function f(z) is merely defined as an integral of

/ (z} dz, and we may suppose the integral so chosen as to

vanish when z = b, and therefore when z has any smaller value.

Consequently we get from (4), for every point within the sphere

which forms the inner boundary of the wave of condensation,

,^J (5).
r

Again, if we put f(c)
= A, so that f(z)=A when z&amp;gt;c,

we

have for any point outside the wave of condensation,

.(6).

The velocities expressed by (5) and (6) are evidently such

as could take place in an incompressible fluid. Now Professor

Challis s reasoning requires that the fluid be at rest beyond the

limits of the wave of condensation, since otherwise the conclusion

cannot be drawn that the matter increases with the time. Conse

quently we must have D =
0, A =

;
but if A = the reasoning at

p. 463 evidently falls to the ground.

2. We may if we please consider an outward travelling wave

which arose from a disturbance originally confined to a sphere of

radius e. At p. 463 Professor Challis has referred to Poisson s

expressions relating to this case. It should be observed that

Poisson s expressions at page 706 of the Traite de Mecanique

(second edition) do not apply to the whole wave from r = at-e
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to r = at + e, but only to the portion from r = at e to r = at
;
the

expressions which apply to the remainder are those given near the

bottom of page 705. We may of course represent the condensa

tion s by a single function 1/ar. % (r ai), where

*(-*) =/(*). * (*)=*&quot;.

z being positive ;
and we shall have

A =
[ X (z) dz =/(e) -/(O) +*()- **(&amp;lt;&amp;gt;).

J -e

Now Poisson has proved, and moreover expressly stated at

page 706, that the functions F,f vanish at the limits of the wave
;

so that/(e) = 0, .F(e)
= 0. Also Poisson s equations (6) give in

the limiting case for which z = 0, /(O) + ^(0) = 0, so that A = Q

as before.

3. We may evidently without absurdity conceive the velocity
and condensation to be both given arbitrarily for the instant at

which we begin to consider the motion; but then we must take

the complete integral of (3), and determine the two arbitrary

functions which it contains. We are at liberty, for example, to

suppose the condensation and velocity when t = given by the

equations

_&amp;gt;, =/&amp;gt;)-/&amp;gt;),
r r r

2

from r = b to r = c, and to suppose them equal to zero for all other

values of r
;
but we are not therefore at liberty to suppress the

second arbitrary function in the integral of (3). The problem is

only a particular case of that considered by Poisson, and the

arbitrary functions are determined by his equations (6) and (8),

where, however, it must be observed, that the arbitrary functions

which Poisson denotes by /, F must not be confounded with the

given function here denoted by f, which latter will appear at the

right-hand side of equations (8). The solution presents no diffi

culty in principle, but it is tedious from the great number of cases

to be considered, since the form of one of the functions which

enter into the result changes whenever the value of r + at or of

r at passes through either 6 or c, or when that of r at passes

through zero. It would be found that unless/ (6)
=

0, a backward

wave sets out from the inner surface of the spherical shell contain-
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ing the disturbed portion of the fluid
;
and unless /(c)

=
0, a

similar wave starts from the outer surface. Hence, whenever the

disturbance can be propagated in the positive direction only, we

must have A, or f(c) f(b\ equal to zero. When a backward

wave is formed, it first approaches the centre, which in due time

it reaches, and then begins to diverge outwards, so that after the

time c/a there is nothing left but an outward travelling wave, of

breadth 2c, in which the fluid is partly rarefied and partly con

densed, in such a manner that/rrdr taken throughout the wave,

or A
t
is equal to zero.

It appears, then, that for any outward travelling wave, or for

any portion of such a wave which can be isolated, the quantity A
is necessarily equal to zero. Consequently the conclusion arrived

at, that the mean condensation in such a wave or portion of a wave

varies ultimately inversely as the distance from the centre, proves

not to be true. It is true, as commonly stated, that the conden

sation at corresponding points in such a wave in its successive

positions varies ultimately inversely as the distance from the

centre
;

it is likewise true, as Professor Challis has argued, that

the mean condensation in any portion of the wave which may be

isolated varies ultimately inversely as the square of the distance
;

but these conclusions do not in the slightest degree militate

against each other.

If we suppose b to increase indefinitely, the condensation or

rarefaction in the wave which travels towards the centre will be a

small quantity, of the order 6&quot;

1

, compared with that in the shell.

In the limiting case, in which b = oo
,
the condensation or rarefac

tion in the backward travelling wave vanishes. If in the equations
of paragraph 3 we write b + x for r, bar (x) for/ (r), and then sup

pose b to become infinite, we shall get as = cr (x), v =
&amp;lt;r(x).

Con

sequently a plane wave in which the relation v = as is satisfied

will be propagated in the positive direction only, no matter

whether f cr (x) dx taken from the beginning to the end of the

wave be or be not equal to zero
;
and therefore anv arbitrary

portion of such a wave may be conceived to be isolated, and being

isolated, will continue to travel in the positive direction only,

without sending back any wave which will be propagated in the

negative direction. This result follows at once from the equations
which apply directly to plane waves

;
I mean, of course, the approxi-
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mate equations obtained by neglecting the squares of small quan
tities. It may be observed, however, that it appears from what
has been proved, that it is a property of every plane wave which is

the limit of a spherical wave, to have its mean condensation equal
to zero

; although there is no absurdity in conceiving a plane wave

in which that is not the case as already existing, and inquiring in

what manner such a wave will be propagated.

There is another way of putting the apparent contradiction

arrived at in the case of spherical waves, which Professor Challis

has mentioned to me, and has given me permission to publish.

Conceive an elastic spherical envelope to exist in an infinite mass

of air which is at rest, and conceive it to expand for a certain time,

and then to come to rest again, preserving its spherical form and

the position of its centre during expansion. We should apparently
have a wave consisting of condensation only, without rarefaction,

travelling outwards, in which case the conclusion would follow,

that the quantity of matter altered with the time.

Now in this or any similar case we have a perfectly definite

problem, and our equations are competent to lead to the complete

solution, and so make known whether or not a wave will be propa

gated outwards leaving the fluid about the envelope at rest, and if

such a wave be formed, whether it will consist of condensation

only, or of condensation accompanied by rarefaction : that conden

sation will on the whole prevail is evident beforehand, because a

certain portion of space which was occupied by the fluid is now

occupied by the envelope.

In order to simplify as much as possible the analysis, instead

of an expanding envelope, suppose that we have a sphere, of a

constant radius 6, at the surface of which fluid is supplied in such

a manner as to produce a constant velocity V from the centre out

wards, the supply lasting from the time to the time r, and then

ceasing. This problem is evidently just as gocd as the former for

the purpose intended, and it has the advantage of leading to a

result which may be more easily worked out. On account of the

length to which the present article has already run, I am unwilling

to go into the detail of the solution
;
I will merely indicate the

process, and state the nature of the result.

Since we have no reason to suspect the existence of a function

of the form F (r + at) in the value of
(/&amp;gt;

which belongs to the
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present case, we need not burden our equations with this function,

but we may assume as the expression for &amp;lt;

(7).

For we can always, if need be, fall back on the complete integral

of (3) ;
and if we find that the particular integral (7) enables us to

satisfy all the conditions of the problem, we are certain that we

should have arrived at the same result had we used the complete

integral all along. These conditions are

&amp;lt;

= when t 0, from r = b to r oo (8) ;

for
&amp;lt;f&amp;gt;

must be equal to a constant, since there is neither condensa

tion nor velocity, and that constant we are at liberty to suppose

equal to zero
;

J?= F when r = 6, from = to t = r (9);

-p
= when r = 6, fronU = r to t = oo (10).

(8) determines /(V) from z = b to z oo
; (9) determines/ (V) from

z = b to z b ar, and (10) determines f(z) from z = b ar to

z = oo
,
and thus the motion is completely determined.

It appears from the result that if we consider any particular

value of r there is no condensation till at = r b, when it suddenly
commences. The condensation lasts during the time T, when it is

suddenly exchanged for rarefaction, which decreases indefinitely,

tending to as its limit as t tends to oo . The sudden commence

ment of the condensation, and its sudden change into rarefaction,

depend of course on the sudden commencement and cessation of

the supply of fluid at the surface of the sphere, and have nothing
to do with the object for which the problem was investigated.

Since there is no isolated wave of condensation travelling outwards,

the complete solution of the problem leads to no contradiction, as

might have been confidently anticipated.



[From the Cambridge and Dublin Mathematical Journal, Vol. iv. p. 1,

(February, 1849.)]

ON THE PERFECT BLACKNESS OF THE CENTRAL SPOT IN NEWTON S

RINGS, AND ON THE VERIFICATION OF FRESNEL s FORMULAE

FOR THE INTENSITIES OF REFLECTED AND REFRACTED RAYS.

WHEN Newton s rings are formed between two glasses of the

same kind, the central spot in the reflected rings is observed to be

perfectly black. This result is completely at variance with the

theory of emissions, according to which the central spot ought to

be half as bright as the brightest part of the bright rings, supposing

the incident light homogeneous. On the theory of undulations,

the intensity of the light reflected at the middle point depends

entirely on the proportions in which light is reflected and refracted

at the two surfaces of the plate of air, or other interposed medium,

whatever it may be. The perfect blackness of the central spot

was first explained by Poisson, in the case of a perpendicular

incidence, who shewed that when the infinite series of reflections

and refractions is taken into account, the expression for the inten

sity at the centre vanishes, the formula for the intensity of light

reflected at a perpendicular incidence first given by Dr Young

being assumed. Fresnel extended this conclusion to all incidences

by means of a law discovered experimentally by M. Arago, that

light is reflected in the same proportions at the first and second

surfaces of a transparent plate*. I have thought of a very simple

mode of obtaining M. Arago s law from theory, and at the same

* See Dr Lloyd s Report on Physical Optics. Reports of the British Association,

Vol. in. p. 344.
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time establishing theoretically the loss of half an undulation in

internal, or else in external reflection.

This method rests on what may be called the principle of rever

sion, a principle which may be enunciated as follows.

If any material system, in which the forces acting depend only

on the positions of the particles, be in motion, if at any instant the

velocities of the particles be reversed, the previous motion will be

repeated in a reverse order. In other words, whatever were the

positions of the particles at the time t before the instant of rever

sion, the same will they be at an equal interval of time t after

reversion
;
from whence it follows that the velocities of the par

ticles in the two cases will be equal in magnitude and opposite in

direction.

Let S be the surface of separation of two media which are both

transparent, homogeneous, and uncrystallized. For the present

purpose 8 may be supposed a plane. Let A be a point in the

surface S where a ray is incident along IA in the first medium.

Let AR, AF be the directions of the reflected and refracted rays,

APi the direction of the reflected ray for a ray incident along FA,
and therefore also the direction of the refracted ray for a ray inci

dent along RA. Suppose the vibrations in the incident ray to be

either parallel or perpendicular to the plane of incidence. Then
the vibrations in the reflected and refracted rays will be in the

first case parallel and in the second case perpendicular to the plane
of incidence, since everything is symmetrical with respect to that

plane. The direction of vibration being determined, it remains to

determine the alteration of the coefficient of vibration. Let the

maximum vibration in the incident light be taken for unity, and,

according to the notation employed in Airy s Tract, let the coeffi

cient of vibration be multiplied by b for reflection and by c for

refraction at the surface S, and by e for reflection and /for refrac

tion at a parallel surface separating the second medium from a

third, of the same nature as the first.

Let x be measured from A negatively backwards along AI,
and positively forwards along AR or AF, and let it denote the

distance from A of the particle considered multiplied by the refrac

tive index of the medium in which the particle is situated, so that

it expresses an equivalent length of path in vacuum. Let X be the
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length of a wave, and v the velocity of propagation in vacuum
;

and for shortness sake let

Then sin X, b sin X, c sin X may be taken to represent respec

tively the incident, reflected, and refracted rays ;
and it follows

from the principle of reversion, if we suppose it applicable to light,

that the reflected and refracted rays reversed will produce the

incident ray reversed. Now if in the reversed rays we measure x

positively along AI or AR
,
and negatively along AR or AF, the

reflected ray reversed will give rise to the rays represented by

6
2
sin X, reflected along A I;

be sin X
}
refracted along AR ;*

and the refracted ray reversed will give rise to

c/sin X, refracted along A I

ce sin Xt reflected along AR .

The two rays along AR superposed must destroy each other, and

the two along AI must give a ray represented by sin X. We have

therefore

be + ce = 0, 6
2 + cf= 1

;

*
It does not at once appear whether on reversing a ray we ought or ought not

to change the sign of the coefficient ; but the following considerations will shew

that we must leave the sign unaltered. Let the portion of a wave, in which the

displacement of the ether is in the direction which is considered positive, be called

the positive portion, and the remaining part the negative portion; and let the

points of separation be called nodes. There are evidently two sorts of nodes : the

nodes of one sort, which may be called, positive nodes, being situated in front of the

positive portions of the waves, and the nodes of the other sort, which may be called

negative nodes, being situated behind the positive portions or in front of the

negative, the terms in front and behind referring to the direction of propagation.

Now when the angle X vanishes, the particle considered is in a node
;
and since, at

the same time, the expression for the velocity of the particle is positive, the co

efficient of sin X being supposed positive, the node in question is a positive node.

When a ray is reversed, we must in the first instance change the sign of the

coefficient, since the velocity is reversed ; but since the nodes which in the direct

ray were positive are negative in the reversed ray, and vice versa, we must more

over add TT to the phase, which comes to the same thing as changing the sign

back again. Thus we must take I- sin X, as in the text, and not - 68 sin X, to

represent the ray reflected along A I, and so in other cases.
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and therefore, since c is not zero,

(1),

(2).

Equation (1) contains at the same time M. Arago s law and the

loss of half an undulation; and equations (1) and (2) together

explain the perfect blackness of the centre of Newton s rings.

(See Airy s Tract.)

If the incident light be common light, or polarized light, of any
kind except plane polarized for which the plane of polarization

either coincides with the plane of incidence or is perpendicular to

it, we can resolve the vibrations in and perpendicular to the plane
of incidence, and consider the two parts separately.

It may be observed that the principle of reversion is just as

applicable to the theory of emissions as to the theory of undula

tions
;
and thus the emissionists are called on to explain how two

rays incident along EA, FA respectively can fail to produce a ray

along AR . In truth this is not so much a new difficulty as an old

difficulty in a new shape ;
for if any mode could be conceived of

explaining interference on the theory of emissions, it would pro

bably explain the non-existence of the ray along AR .

Although the principle of reversion applies to the theory of

emissions, it does not lead, on that theory, to the law of intensity

resulting from equations (1) and (2). For the formation of these

equations involves the additional principle of superposition, which

on the theory of undulations is merely a general dynamical

principle applied to the fundamental hypotheses, but which does

not apply to the theory of emissions, or at best must be assumed,
on that theory, as the expression of a property which we are

compelled to attribute to light, although it appears inexplicable.

In forming equations (1) and (2) it has been tacitly assumed

that the reflections and refractions were unaccompanied by any

change of phase, except the loss of half an undulation, which may
be regarded indifferently as a change of phase of 180, or a change
of sign of the coefficient of vibration. In very highly refracting

substances, however, such as diamond, it appears that when the

incident light is polarized in a plane perpendicular to the plane
of incidence, the reflected light does not wholly vanish at the
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polarizing angle ;
but as the angle of incidence passes through the

polarizing angle, the intensity of the reflected light passes through
a small minimum value, and the phase changes rapidly through
an angle of nearly 180. Suppose, for the sake of perfect gener

ality, that all the reflections and refractions are accompanied by

changes of phase. While the coefficient of vibration is multiplied

by b, c, e, or/, according to the previous notation, let the phase of

vibration be accelerated by the angle /3, 7, e, or c, a retardation

being reckoned as a negative acceleration. Then, if we still take

sinX to represent the incident ray, we must take 6sin(X + /8),

c sin (X+ 7) to represent respectively the reflected and the re

fracted rays. After reversion we must change the signs of /3 and

7, because, whatever distance a given phase of vibration has

receded from A in consequence of the acceleration accompanying
reflection or refraction, the same additional distance will it have to

get over in returning to A after reversion. We have therefore

bsin(X /3), csin(X 7) to represent the rays incident along

RA, FA, which together produce the ray sinX along AL Now
the ray along RA alone would produce the rays

6
2
sin X along AT, be sin (X ft + 7) along AR ;

and the ray along FA alone would produce the rays

cf sin (X 7 4-
&amp;lt;) along AT, ce sin (X 7 -f e) along AR .

We have therefore in the same way as before

c/sin (X - 7 + (/&amp;gt;)

=
(1
-

1-} sin X,

b sin (X- j3 + 7) + e sin (X - 7 + e)
= 0.

Now each of these equations has to hold good for general

values of X, and therefore, as may very easily be proved, the

angles added to X in the two terms must either be equal or must

differ by a multiple of 180. But the addition of any multiple of

360 to the angle in question leaves everything the same as before,

and the addition of 180 comes to the same thing as changing the

sign of c or f in the first equation, or of b or e in the second. We
are therefore at liberty to take

= 7 (
3

)&amp;gt;

/3 + e = 27 (4);

and the relations between b, c, e, and / will be the same as before.
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Hence M. Arago s law holds good even when reflection and re

fraction are accompanied by a change of phase.

Equations (3) and (4) express the following laws with refer

ence to the changes of phase. The sum of the accelerations of

phase at the two reflections is equal to the sum of the accelerations

at the two refractions ; and the accelerations at the two refractions

are equal to each other. , It will be observed that the accelerations

are here supposed to be so measured as to give like signs to c and

fj and unlike to b and e.

If we suppose the reflections and refractions accompanied by

changes of phase, it is easy to prove, from equations (3) and (4),

that when Newton s rings are formed between two transparent

media of the same kind, the intensities of the light in the re

flected and transmitted systems are given by the same formulae as

when there are no changes of phase, provided only we replace the

retardation SvrF/X (according to the notation in Airy s Tract)

by 2-TrF/A, 2e, or replace D, the distance of the media, by
D Ae/27r cos j3.

Let us now consider some circumstances which might at first

sight be conceived to affect the conclusions arrived at.

When the vibrations of the incident light take place in the

plane of incidence, it appears from investigation that the condi

tions at the surface of separation cannot all be satisfied by means

of an incident, reflected, and refracted wave, each consisting of

vibrations which take place in the plane of incidence. If the

media could transmit normal vibrations with velocities com

parable to those with which they transmit tranversal vibrations,

the incident wave would occasion two reflected and two refracted

waves, one of each consisting of normal, and the other of trans

versal vibrations, provided the angle of incidence were less than

the smallest of the three critical angles (when such exist), cor

responding to the refracted transversal vibrations and to the re

flected and refracted normal vibrations respectively. There appear
however the strongest reasons for regarding the ether as sensibly

incompressible, so that the velocity of propagation of normal vibra

tions is incomparably greater than that of transversal vibrations.

On this supposition the two critical angles for the normal vibra

tions vanish, so that there are no normal vibrations transmitted in

the regular way whatever be the angle of incidence. Instead of
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such vibrations there is a sort of superficial undulation in each

medium, in which the disturbance is insensible at the distance of

a small multiple of X from the surface : the expressions for these

disturbances involve in fact an exponential with a negative index,

which contains in its numerator the distance of the point consi

dered from the common surface of the media. It is easy to see

that the existence of the superficial undulations above mentioned

does not affect the truth of equations (1), (2), (8), (4) ; for, to ob

tain these equations, it is sufficient to consider points in the media

whose distances from the surface are greater than that for which

the superficial undulations are sensible.

No notice has hitherto been taken of a possible motion of the

material molecules, which we might conceive to be produced by the

vibrations of the ether. If the vibrations of the molecules take

place in the same period as those of the ether, and if moreover

they are not propagated in the body either regularly, with a

velocity of propagation of their own, or in an irregular manner, the

material molecules and the ether form a single vibrating system ;

they are in fact as good as a single medium, and the principle of

reversion will apply.

In either of the excepted cases, however, the principle would

not apply, for the same reason that it might lead to false results if

there were normal vibrations produced as well as transversal, and

the normal vibrations were not taken into account. In the case

of transparent media, in which there appears to be no sensible loss

of light by absorption for the small thicknesses of the media with

which we are concerned in considering the laws of reflection and

refraction, we are led to suppose, either that the material mole

cules are not sensibly influenced by the vibrations of the ether, or

that they form with the ether a single vibrating system ;
and

consequently the principle of reversion may be applied. In the

case of opaque bodies, however, it seems likely that the labour

ing force brought by the incident luminous vibrations is partly

consumed in producing an irregular motion among the molecules

themselves.

When a convex lens is merely laid on a piece of glass, the

central black spot is not usually seen
;
the centre is occupied by

the colour belonging to a ring of some order. It requires the

exertion of a considerable amount of pressure to bring the glasses
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into sufficiently intimate contact to allow of the perfect formation

of the central spot.

Suppose that we deemed the glasses to be in contact when

they were really separated by a certain interval A, and for simpli

city suppose the reflections and refractions unaccompanied by any

change of phase, except the loss of half an undulation. It evidently
comes to the same thing to suppose the reflections and refractions

to take place at the surfaces at which they do actually take place,

as to suppose them to take place at a surface midway between the

glasses, and to be accompanied by certain changes of phase ;
and

these changes ought to satisfy equations (3) and (4). This may
be easily verified. In fact, putting //,, fjf for the refractive

indices of the first and second media, i, i for the angles of in

cidence and refraction, we easily find, by calculating the retarda

tions, that

Q 2-TrA . TrA
yu,

. .., ..

from which we get, by interchanging i and i
, p and /& ,

and chang

ing the signs, since for the first reflection and refraction the true

surface conies before the supposed, but for the second the supposed
surface comes before the true,

2-TrA , ., TrA u! .., ,= -- -
fj,

cosz
,
6 = -; . sin u t);

A, X sm i

and these values satisfy equations (3) and (4), as was foreseen.

Hitherto the common surface of the media has been spoken of

as if the media were separated by a perfectly definite surface, up to

which they possessed the same properties respectively as at a

distance from the surface. It may be observed, however, that the

application of the principle of reversion requires no such restriction.

We are at liberty to suppose the nature of the media to change in

any manner in approaching the common surface
;
we may even sup

pose them to fade insensibly into each other
;
and these changes

may take place within a distance which need not be small in com

parison with X.

It may appear to some to be superfluous to deduce particular
results from hypotheses of great generality, when these results may
be obtained, along with many others which equally agree with

observation, from more refined theories which start with more
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particular hypotheses. And indeed, if the only object of theories

were to group together observed facts, or even to allow us to pre
dict the results of observation in cases not very different from

those already observed, and grouped together by the theory, such

a view might be correct. But theories have a higher aim than

this. A well-established theory is not a mere aid to the memory,
but it professes to make us acquainted with the real processes of

nature in producing observed phenomena. The evidence in favour

of a particular theory may become so strong that the fundamental

hypotheses of the theory are hardly less certain than observed

facts. The probability of the truth of the hypotheses, however,

cannot be greater than the improbability that another set of

equally simple hypotheses should be conceivable, which should

equally well explain all the phenomena. When the hypotheses
are of a general and simple character, the improbability in ques
tion may become extremely strong ;

but it diminishes in propor
tion as the hypotheses become more particular. In sifting the

evidence for the truth of any set of hypotheses, it becomes of great

importance to consider whether the phenomena explained, or some
of them, are explicable on more simple and general hypotheses, or

whether they appear absolutely to require the more particular

restrictions adopted. To take an illustration from the case in

hand, we may suppose that some theorist, starting with some par
ticular views as to the cause of the diminished velocity of light

in refracting media, and supposing that the transition from one

medium to another takes place, if not abruptly, at least in a space
which is very small compared with A,, has obtained as the result of

his analysis M. Arago s law and the loss of half an undulation. We
may conceive our theorist pointing triumphantly to these laws as

an evidence of the correctness of his particular views. Yet, as we
have seen, if these were the only laws obtained, the theorist would

have absolutely no solid evidence of the truth of the particular

hypotheses with which he started.

This fictitious example leads to the consideration of the ex

perimental evidence for Fresnel s expressions for the intensity of

reflected and refracted polarized light.

There are three particular angles of incidence, namely the

polarizing angle, the angle of 90, and the angle 0, for which

special results are deducible from Fresnel s formulae, which admit

of being put, and which have been put, to the test of experiment.

s. ii. 7
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The accordance of the results with theory is sometimes adduced as

evidence of the truth of the formulae : but this point will require

consideration.

In the first place, it follows from Fresnel s formula for the

intensity of reflected light Avhich is polarized in a plane perpen
dicular to the plane of incidence, that at a certain angle of inci

dence the reflected light vanishes
;
and this angle is precisely that

determined by experiment. This result is certainly very remark

able. For Fresnel s expressions are not mere empirical formulae,

chosen so as to satisfy the more remarkable results of experiment.

On the contrary, they were obtained by him from dynamical con

siderations and analogies, which, though occasionally somewhat

vague, are sufficient to lead us to regard the formulas as having a

dynamical foundation, as probably true under circumstances which

without dynamical absurdity might be conceived to exist; though
whether those circumstances agree with the actual state of reflect

ing transparent media is another question. Consequently we

should a priori expect the formulae to be either true or very nearly

true, the difference being attributable to some modifying cause

left out of consideration, or else to be altogether false : and there

fore the verification of the formulae in a remarkable, though a

particular case, may be looked on as no inconsiderable evidence of

their general truth. It will be observed that the truth of the

formulae is here spoken of, not the truth of the hypotheses con

cerned in obtaining them from theory.

Nevertheless, even the complete establishment of the formula

for the reflection of light polarized in a plane perpendicular to the

plane of incidence would not establish the formula for light pola

rized in the plane of incidence, although it would no doubt increase

the probability of its truth, inasmuch as the two formulae were

obtained in the same sort of way. But, besides this, the simplicity

of the law, that the reflected ray vanishes when its direction be

comes perpendicular to that of the refracted ray, is such as to lead

us to regard it as not improbable that different formulae, corre

sponding to different hypotheses, should agree in this point. And
in fact the investigation shews that when sound is reflected at the

common surface of two gases, the reflected sound vanishes when

the angle of incidence becomes equal to what may be called, from

the analogy of light, the polarizing angle. It is true that the

formula for the intensity of the reflected sound agrees with the
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formula for the intensity of reflected light when the light is pola

rized in a plane perpendicular to the plane of incidence, and that

it is the truth of the formulas, not that of the hypotheses, which is

under consideration. Nevertheless the formulae require further

confirmation.

When the angle of incidence becomes 90, it follows from

Fresnel s expressions that, whether the incident light is polarized

in or perpendicularly to the plane of incidence, the intensity of the

reflected light becomes equal to that of the incident, and conse

quently the same is true for common light. This result has been

compared with experiment, and the completeness of the reflection

at an incidence of 90 has been established*. The evidence, how

ever, for the truth of Fresnel s formula which results from this

experiment is but feeble: for the result follows in theory from the

principle of vis viva, provided we suppose none of the labouring
force brought by the incident light to be expended in producing

among the molecules of the reflecting body a disturbance which is

propagated into the interior, as appears to be the case with opaque
bodies. Accordingly a great variety of different particular hypo

theses, leading to formula differing from one another, and from

Fresnel s, would agree in giving a perfect reflection at an incidence

of 90. Thus for example the formula which Green has given-f-for

the intensity of the reflected light, when the incident light is pola
rized in a plane perpendicular to the plane of incidence, gives the

intensities of the incident and reflected light equal when the angle
of incidence becomes 90, although the formula in question differs

from Fresnel s, with which it only agrees to a first approximation
when

fju
is supposed not to differ much from 1. It appeared in

the experiment last mentioned that the sign of the reflected vibra

tion was in accordance with Fresnel s formulae, and that there was

no change of phase. Still it is probable that a variety of formulas

would agree in these respects.

When the angle of incidence vanishes, it follows from Fresnel s

expressions, combined with the fundamental hypotheses of the

theory of transversal vibrations, that if the incident light be circu

larly polarized, the reflected light will be also circularly polarized,

but of the opposite kind, the one being right-handed, and the other

*
Transactions of the Eoyal Irish Acadimy, vol. xvii. p. 171.

t Transactions of the Camlridge Philosophical Society, vol. vn. p. 22.
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left-handed*. The experiment has been performed, at least per

formed for a small angle of incidence f, from whence the result

which would have been observed at an angle of incidence may
be inferred

;
and theory has proved to be in complete accordance

with experiment. Yet this experiment, although confirming the

theory of transversal vibrations, offers absolutely no confirmation of

Fresnel s formula?. For when the angle of incidence vanishes,

there ceases to be any distinction between light polarized in, and

light polarized perpendicularly to the plane of incidence: be the

intensity of the reflected light what it may. it must be the same in

the two cases; and this is all that is necessary to assume in de

ducing the result from theory. The result would necessarily be

the same in the case of metallic reflection, although Fresnel s for

mulae do not apply to metals.

By the fundamental hypotheses of the theory of transverse

vibrations, are here meant the suppositions, first, that the vibrations,

at least in vacuum and in ordinary media, take place in the front

of the wave; and secondly, that the vibrations in the case of plane

polarized light are, like all the phenomena presented by such light,

symmetrical with respect to the plane of polarization, and conse

quently are rectilinear, and take place either in, or perpendicularly

to the plane of polarization. From these hypotheses, combined

with the principle of the superposition of vibrations, the nature of

circularly and elliptically polarized light follows. As to the two

suppositions above mentioned respecting the direction of the vibra

tions in plane polarized light, there appears to be nothing to choose

between them, so far as the geometrical part of the theory is con

cerned : they represent observed facts equally well. The question

of the direction of the vibrations, it seems, can only be decided, if

decided at all, by a dynamical theory of light. The evidence ac

cumulated in favour of a particular dynamical theory may be con

ceived to become so strong as to allow us to regard as decided the

question of the direction of the vibrations of plane polarized light.

It appears, however, that Fresnel s expressions for the intensities,

and the law which gives the velocities of plane waves in different

directions within a crystal, have been deduced, if not exactly, at

least as approximations to the exact result, from different dyna-

*
Philosophical Magazine (Netv Series), vol. xxu. (1843) p. 92.

t Ibid. p. 262.
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mical theories, in some of which the vibrations are supposed to be

in, and in others perpendicular to the plane of polarization.

It is worthy of remark that, whichever supposition we adopt,

the direction of revolution of an ethereal particle in circularly

polarized light formed in a given way is the same. Similarly, in

elliptically polarized light the direction of revolution is the same

on the two suppositions, but the plane which on one supposition
contains the major axis of the ellipse described, on the other sup

position contains the minor axis. Thus the direction of revolution

may be looked on as established, even though it be considered

doubtful whether the vibrations of plane polarized light are in, or

perpendicular to the plane of polarization.

The verification of Fresnel s formulae for the three particular

angles of incidence above mentioned is, as we have seen, not suffi

cient: the formulae however admit of a very searching comparison
with experiment in an indirect way, which does not require any

photometries] processes. When light, polarized in a plane making
a given angle with the plane of incidence, is incident on the sur

face of a transparent medium, it follows from Fresnel s formulae

that both the reflected and the refracted light are plane polarized,
and the azimuths of the planes of polarization are known functions

of the angles of incidence and refraction, and of the azimuth of

the plane of polarization of the incident light, the same formulae

being obtained whether the vibrations of plane polarized light are

supposed to be in, or perpendicular to the plane of polarization.
It is found by experiment that the reflected or refracted light is

plane polarized, at least if substances of a very high refractive

power be excepted, and that the rotation of the plane of polariza
tion produced by reflection or refraction agrees with the rotation

determined by theory. This proves that the two formulae, that is

to say the formula for light polarized in, and for light polarized

perpendicularly to the plane of incidence, are either both right,
within the limits of error of very precise observations, or both

wrong in the same ratio, where the ratio in question may be any
function of the angles of incidence and refraction. There does not

appear to be any reason for suspecting that the two formulas for

reflection are both wrong in the same ratio. As to the formulae

for refraction, the absolute value of the displacement will depend
on the particular theory of refraction adopted. Perhaps it would
be best, in order to be independent of any particular theory, to
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speak, not of the absolute displacement within a refracting medium,
but of the equivalent displacement in vacuum, of which all that we

are concerned to know is, that it is proportional to the absolute

displacement. By the equivalent displacement in vacuum, is here

meant the displacement which would exist if the -light were to pass

perpendicularly, and therefore without refraction, out of the medium

into vacuum, without losing vis viva by reflection at the surface.

It is easy to prove that Fresnel s formulae for refraction would be

adapted to this mode of estimating the vibrations by multiplying

by /\//z; indeed, the formulas for refraction might be thus proved,

except as to sign, by means of the principle of vis viva, the

formulae for reflection being assumed. It will be sufficient to shew

this in the case of light polarized in the plane of incidence.

Let i, i be the angles of incidence and refraction, A any area

taken in the front of an incident wave, I the height of a prism

having A for its base and situated in the first medium. Let r be

the coefficient of vibration in the reflected wave, that in the inci

dent wave being unity, q the coefficient of the vibration in vacuum

equivalent to the refracted vibration. Then the incident light

which fills the volume Al will give rise to a quantity of reflected

light filling an equal volume Al, and to a quantity of refracted

light which, after passing into vacuum in the way supposed, would

fill a volume Al cos i /cosi. We have therefore, by the principle

of vis viva,

cos % sin
2

(i i} 4 sin i cos i
1

sin i cos i
f.&quot;

__ __ 1 _ *j* - 1 __J__ / __;__
1 cos i sin

2

(i + i) sin
2

(i -\- i)

This equation does not determine the sign of q: but it seems

impossible that the vibrations due to the incident light in the

ether immediately outside the refracting surface should give rise

to vibrations in the opposite direction in the ether immediately
inside the surface, so that we may assume q to be positive. We
have then

_ 2 cos i V(sin % sin i) 2 sin i cos i

sin
( +

&amp;lt;) sin(t*+0
f
..

as was to be proved. The formula for light polarized perpendicu

larly to the plane of incidence may be obtained in the same way.

The formula (5), as might have been foreseen, applies equally well

to the hypothesis that the diminished velocity of propagation

within refracting media is due to an increase of density of the
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ether, which requires us to suppose that the vibrations of plane

polarized light are perpendicular to the plane of polarization, and

to the hypothesis that the diminution of the velocity of propaga
tion is due to a diminution of elasticity, which requires us to sup

pose the vibrations to be in the plane of polarization.

If the refraction, instead of taking place out of vacuum into a

medium, takes place out of one medium into another, it is easy

to shew that we have only got to multiply by .Jfjf/fjL
instead of

\//x; /-t, fj! being the refractive indices of the first and second media

respectively.



[From the Cambridge and Dublin Mathematical Journal, Vol. iv. p. 194

(May and November, 1849).]

ON ATTRACTIONS, AND ON CLAIKAUT S THEOREM.

CLAIRAUT S Theorem is usually deduced as a consequence
of the hypothesis of the original fluidity of the earth, and the

near agreement between the numerical values of the earth s ellip-

ticity, deduced independently from measures of arcs of the meridian

and from pendulum experiments, is generally considered as a

strong confirmation of the hypothesis. Although this theorem is

usually studied in connection with the hypothesis just mentioned,
it ought to be observed that Laplace, without making any assump
tion respecting the constitution of the earth, except that it consists

of nearly spherical strata of equal density, and that its surface

may be regarded as covered by a fluid, has established a connexion

between the form of the surface and the variation of gravity, which

in the particular case of an oblate spheroid gives directly Clairaut s

Theorem*. If, however, we merely assume, as a matter of obser

vation, that the earth s surface is a surface of equilibrium, (the

trifling irregularities of the surface being neglected), that is to say

that it is perpendicular to the direction of gravity, then, indepen

dently of any particular hypothesis respecting the state of the

interior, or any theory but that of universal gravitation, there

exists a necessary connexion between the form of the surface and

the variation of gravity along it, so that the one being given the

other follows. In the particular case in which the surface is an

* Sec the Mccanique Celeste, Liv. in., or the reference to it in Pratt s Mechanics,

Chap. Figure of the Earth.
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oblate spheroid of small eccentricity, which the measures of arcs

shew to be at least very approximately the form of the earth s

surface, the variation of gravity is expressed by the equation which

is arrived at on the hypothesis of original fluidity. I am at present

engaged in preparing a paper on this subject for the Cambridge

Philosophical Society: the object of the following pages is to give

a demonstration of Clairaut s Theorem, different from the one

there employed, which will not require a knowledge of the pro

perties of the functions usually known by the name of Laplace s

Functions. It will be convenient to commence with the demon

stration of a few known theorems relating to attractions, the law

of attraction being that of the inverse square of the distance*.

Preliminary Propositions respecting Attractions.

PROP. I. To express the components of the attraction of any
mass in three rectangular directions by means of a single function.

Let m be the mass of an attracting particle situated at the

point P ,
the unit of mass being taken as is usual in central

forces, m the mass of the attracted particle situated at the point

P, x, y t
z the rectangular co-ordinates ofP referred to any origin,

x, y, z those of P
; X, Y, Z the components of the attraction of

m on m, measured as accelerating forces, and considered positive

when they tend to increase x, y, z
; then, if PP = r,

,,- 111 f , .,^711,, \ ry HI f , ^

* My object in giving these demonstrations is simply to enable a reader who

may not have attended particularly to the theory of attractions to follow with

facility the demonstration here given of Clairaut s Theorem. In speaking of the

theorems as &quot;known&quot; I have, I hope, sufficiently disclaimed any pretence at

originality. In fact, not one of the &quot;propositions respecting attractions&quot; is new,

although now and then the demonstrations may differ from what have hitherto

been given. &quot;NYith one or two exceptions, these propositions will all be found in

a paper by Gauss, of which a translation is published in the third volume of

Taylor s Scientific Memoirs, p. 153. The demonstration here given of Prop. iv. is

the same as Gauss s; that of Prop, v., though less elegant than Gauss s, appears to

me more natural. The ideas on which it depends render it closely allied to a paper

by Professor Thomson, in the third volume of this Journal (Old Series), p. 71.

Prop. ix. is given merely for the sake of exemplifying the application of the same

mode of proof to a theorem of Gauss s.
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Since r
2 =

(x
- xf + (y

f - yf + (z
-

z}\

,dr , , N
, v m dr d m

we have r -y- = (x x} ;
whence X. ^ j

=
-j r ;

dx r ax dx r

with similar equations for Y and Z.

If instead of a single particle m we have any number of

attracting particles m }
m ... situated at the points (x , y, 2

),

(#&quot;, y&quot;, z&quot;}...,
and if we put

r tt r

&quot;7

+ 77 + &quot;
=

r
= V ^

we get

v d /m m&quot; \ dF . ., , v dV c^F
JT=^- I 7 H 77 + ... =&quot;^ ; similarly Y =

-j ,
^ = -y-. . . (2).dx\rr J dx dy dz

If instead of a set of distinct particles we have a continuous

attracting mass M
,
and if we denote by dm a differential element

ofM , and replace (1) by

F-W.. -.(3),

equations (2) will still remain true, provided at least P be external

to M
;
for it is only in that case that we are at liberty to consider

the continuous mass as the limit of a set of particles which are all

situated at finite distances from P. It must be observed that

should M occupy a closed shell, within the inner surface of which

P is situated, P must be considered as external to the mass M .

Nevertheless, even when P lies within M r

t
or at its surface, the

expressions for F and dV/d%, namely III r and / / 1 (x x) j- ,

admit of real integration, defined as a limiting summation, as may
be seen at once on referring M to polar co-ordinates originating

at P
;

so that the equations (2) still remain true.

PROP. II. To express the attraction resolved along any line

by means of the function V.

Let s be the length of the given line measured from a fixed

point up to the point P ; X, ft, r, the direction-cosines of the

tangent to this line at P, F the attraction resolved along this

tangent ;
then

dV dV dV-r- + v-r-.

dy dz
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Now if we restrict ourselves to points lying in the line s, V will

be a function of s alone
;
or we may regard it as a function of x, y,

and z, each of which is a function of s
;
and we shall have, by

Differential Calculus,

dV= dV dx dV dy dV dz
t

ds
~

dx ds dij ds dz ds

and since dxjds X, dy/ds
=

/z, dzjds
=

v, we get

PROP. in. To examine the meaning of the function V.

This function is of so much importance that it will be well to

dwell a little on its meaning.

In the first place it may be observed that the equation (1)

or (3) contains a physical definition of V, which has nothing to do

with the system of co ordinates, rectangular, polar, or any other,

which may be used to define algebraically the positions of P and

of the attracting particles. Thus F is to be contemplated as a

function of the position of P in space, if such an expression may
be allowed, rather than as a function of the co-ordinates of P;

although, in consequence of its depending upon the position of P,

V will be a function of the co-ordinates of P, of whatever kind

they may be.

Secondly, it is to be remarked that although an attracted

particle has hitherto been conceived as situated at P, yet V has

a definite meaning, depending upon the position of the point P,

whether any attracted matter exist there or not. Thus V is to be

contemplated as having a definite value at each point of space,

irrespective of the attracted matter which may exist in some

places.

The function V admits of another physical definition which

ought to be noticed. Conceive a particle whose mass is m to move

along any curve from the point P to P. If F be the attraction

of M resolved along a tangent to ra s path, reckoned as an accele

rating force, the moving force of the attraction resolved in the

same direction will be mF, and therefore the work done by the

attraction while m describes the elementary arc ds will be ulti

mately mFds, or by (4) in . dV/ds . ds. Hence the whole work done

as m moves from P to P is equal to m (V- F ), F being the
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value of V at P . If P be situated at an infinite distance, F
vanishes, and the expression for the work done becomes simply
mV. Hence V might be called the work of the attraction, referred
to a unit of mass of the attracted particle ; but besides that such

a name would be inconveniently long, a recognized name already
exists. The function V is called the potential of the attracting

mass*.

The first physical definition of V is peculiar to attraction ac

cording to the inverse square of the distance. According to the

second, V is regarded as a particular case of the more general
function whose partial differential coefficients with respect to x, y, z

are equal to the components of the accelerating force; a function

which exists whenever Xdx -f Ydy-\- Zdz is an exact differential.

PROP. IV. If 8 be any closed surface to which all the attract

ing mass is external, dS an element of 8, dn an element of the

normal drawn outwards at dS, then

If:

the integral being taken throughout the whole surface 8.

Let ra be the mass of any attracting particle which is situated

at the point P, P being by hypothesis external to S. Through
P draw any right line L cutting S, and produce it indefinitely in

one direction from P . The line L will in general cut S in two

points; but if the surface 8 be re-entrant, it may be cut in four,

six, or any even number of points. Denote the points of section,

taken in order, by Pt ,
P

2 ,
P

8 , &c., Pl being that which lies nearest

to P . With P for vertex, describe about the line L a conical

surface containing an infinitely small solid angle a, and denote by
A

lt
A

2
... the areas which it cuts out from 8 about the points

P!, P2
.... Let

1? 2
... be the angles which the normals drawn

outwards at P
lt
P

2
... make with the line L, taken in the direction

from Pj to P
;
N

lt
N

2
... the attractions of ra at P

t ,
P

2
... resolved

along the normals; r
lt

r
2
... the distances of P

x ,
P

2
... from P . It

*
[The term &quot;

potential,&quot; as used in the theory of Electricity, may be defined in

the following manner : &quot;The potential at any point P, in the neighbourhood of

electrified matter, is the amount of work that would be necessary to remove a small

body charged with a unit of negative electricity from that position to an infinite

distance.&quot; w. T.]
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is evident that the angles lt 2
... will be alternately acute and

obtuse. Then we have

^ =^ cos
lt
N

2
= -

z
cos (TT

-
t)
&c.

7\ r
2

We have also in the limit

A^ = a?\
2
sec

l ,
A

2
= ar* sec (TT

-
2),

&c.
;

and therefore N^A^ = am, N2
A

2
= am, N3

A
3
= am, &c.;

and therefore, since the number of points Plt
P

z
... is even,

h\A l
+N2

A
2
+N3

A
3 + N^A^. . .

= am - am + am - am ... - 0.

Now the whole solid angle contained within a conical surface

described with P r

for vertex so as to circumscribe S may be divided

into an infinite number of elementary solid angles, to each of which

the preceding reasoning will apply; and it is evident that the

whole surface S will thus be exhausted. We have therefore

limit of 2-V4 = 0;

or, by the definition of an integral,

The same will be true of each attracting particle m\ and there

fore if N refer to the attraction of the whole attracting mass, we

shall still have JfNdS=0. Bat by (4) N=dV/dn, which proves
the proposition.

PROP. v. If V be equal to zero at all points of a closed surface

S, which does not contain any portion of the attracting mass, it

must be equal to zero at all points of the space T contained with

in &
For if not, V must be either positive or negative in at least a

certain portion of the space T, and therefore must admit of at least

one positive or negative maximum value Fr Call the point, or

the assemblage of connected points, at which V has its maximum
value F

I}
Tr It is to be observed, first, that T^ may denote either

a space, a surface, a line, or a single point; secondly, that should

V happen to have the same value V
l
at other points within T,

such points must not be included in Tr Then, all round T
lf
V is

decreasing, positively or negatively according as V
l

is positive or

negative. Circumscribe a closed surface S
l
around T

l9 lying
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wholly within 8, which is evidently possible. Then if S
l
be drawn

sufficiently close round T
lt
V will be increasing in passing out

wards across $
x *; and therefore, if n^ denote a normal drawn out

wards at the element dS
1
of S

t , dV/dn^ will be negative or positive

according as F
x

is positive or negative, and therefore lldS
lt

taken throughout the whole surface $
1?
will be negative or positive,

which is contrary to Prop. IV. Hence V must be equal to zero

throughout the space T.

COR. 1. If F be equal to a constant A at all points of the

surface S, it must be equal to A at all points within S. For it

may be proved just as before that F cannot be either greater or

less than A within 8.

COR. 2. If F be not. constant throughout the surface 8, and if

A be its greatest, and B its least value in that surface, F cannot

anywhere within S be greater than A nor less than B.

COR. 3. All these theorems will be equally true if the space T
extend to infinity, provided that instead of the value of F at the

bounding surface of T we speak of the value of F at the surface by
which T is partially bounded, and its limiting value at an infinite

distance in T. This limiting value might be conceived to vary
from one direction to another. Thus T might be the infinite space

lying within one sheet of a cone, or hyperboloid of one sheet, or

the infinite space which lies outside a given closed surface S, which

contains within it all the attracting mass. On the latter suppo

sition, if F be equal to zero throughout $, and vanish at an infinite

distance, F must be equal to zero everywhere outside S. If F
vanish at an infinite distance, and range between the limits A and

B at the surface S, V cannot anywhere outside S lie beyond the

limits determined by the two extremes of the three quantities A,

B, and 0.

*
It might, of course, be possible to prevent this by drawing S

t sufficiently

puckered, but Sl is supposed not to be so drawn. Since V is decreasing from T
x

outwards, if we consider the loci of the points where F has the values F2 ,
F

3 ,
F

4 ...

decreasing by infinitely small steps from F
1;

it is evident that in the immediate

neighbourhood of 7\ these loci will be closed surfaces, each lying outside the

preceding, the first of which ultimately coincides with 7\ if T
l
be a point, a line, or

a surface, or with the surface of T
1

if 2\ be a space. If now we take for S
1 one of

these &quot;surfaces of equilibrium,&quot; or any surface cutting them at acute angles, what
was asserted in the text respecting Sj_ will be true.
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PROP. vi. At any point (x, y, z) external to the attracting

mass, the potential V satisfies the partial differential equation

dx* dif dz*
~

For if V denote the potential of a single particle m, we have,

employing the notation of Prop. I.,

T/, m dV m dr m d*V 3m
, m

=
r&quot; ~d^- -V*^x=^ (x -*&amp;gt; ~Sf

=
/* (

X -*) -? *

with similar expressions for cPV/dy* and d2V /dz*; and therefore

V satisfies (6). This equation will be also satisfied by the poten
tials

V&quot;,
V&quot;... of particles m&quot;,

m &quot;... situated at finite distances

from the point (x, y, z\ and therefore by the potential V of all the

particles, since F= V + V&quot; + V&quot; + ... Now, by supposing the

number of particles indefinitely increased, and their masses, as

well as the distances between adjacent particles, indefinitely

diminished, we pass in the limit to a continuous mass, of which all

the points are situated at finite distances from the point (x, y, z}.

Hence the potential V of a continuous mass satisfies equation (6)

at all points of space to which the mass does not reach.

SCHOLIUM to Prop. v. Although the equations (5) and (6)

have been proved independently of each other from the definition

of a potential, either of these equations is a simple analytical con

sequence of the other*. Now the only property of a potential

* The equation (6) will be proved by means of (5) further on (Prop, vin.), or

rather an equation of which (6) is a particular case, by means of an equation of

which (5) is a particular case. Equation (o) may be proved from (6) by a known
transformation of the equation fff\V dx dij dz= 0, where TjV denotes the first

member of (6), and the integration is supposed to extend over the space T. For,

taking the first term in yF, we get

where
(

-
) , ( )

denote the values of -= at the points where S is cut by
\dx ) a \dx ), dx

a line drawn parallel to the axis of .T through the point whose co-ordinates are

0, y, z. Now if X be the angle between the normal drawn outwards at the element

of surface dS and the axis of x,

where the first integration is to be extended over the portion of S which lies to the
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assumed in Prop. V, is, that it is a quantity which varies continu

ously within the space T, and satisfies the equation (5) for any
closed surface drawn within T. Hence Prop. V, which was enun

ciated with respect to the potential of a mass lying, outside T, is

equally true with respect to any continuously varying quantity

which within the space I7
satisfies the equation (6). It should be

observed that a quantity like r~
l
is not to be regarded as such, if r

denote the distance of the point (x, y, z] from a point Pt
which lies

within T, because r
1 becomes infinite at P

t
.

Clairaut s Theorem.

1. Although the earth is really revolving about its axis, so

that all problems relating to the relative equilibrium of the earth

itself and the bodies on its surface are really dynamical problems,

we know that they may be treated statically by introducing, in

addition to the attraction, that fictitious force which we call the

centrifugal force. The force of gravity is the resultant of the

attraction and the centrifugal force
;
and we know that this force

is perpendicular to the general surface of the earth. In fact, by
far the larger portion of the earth s surface is covered by water,

the equilibrium of which requires, according to the principles of

hydrostatics, that its surface be perpendicular to the direction of

gravity; and the elevation of the land above the level of the sea,

or at least the elevation of large tracts of land, is but trifling com

pared with the dimensions of the earth. We may therefore regard
the earth s surface as a surface of equilibrium.

positive side of the curve of contact of S and an enveloping cylinder with its gene

rating lines parallel to the axis of x, and the second integration over the remainder

of S. If then we extend the integration over the whole of the surface S, we get

His dx dy dz I I cos X . dS.

Making a similar transformation with respect to the two remaining terms of yF,
and observing that if ju, v be for y, z what X is for x,

. dV dV dV dV
COS X -7- + COS it h COS V -r- = ^r ,dx dy dz dn

we obtain equation (5).

If V be any continuously varying quantity which within the space T satisfies

the equation yF 0, it may be proved that it is always possible to distribute

attracting matter outside T in such a manner as to produce within T a potential

equal to F.
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2. Let the earth be referred to rectangular axes, the axis of z

coinciding with the axis of rotation. Let V be the potential of

the mass, co the angular velocity, X, Y, Z the components of the

whole force at the point (x, y, z) ;
then

av dv dv

Now the general equation to surfaces of equilibrium is

$(Xdx + Ydy + Zdz] = const.,

and therefore we must have at the earth s surface

r+K(^+jf) = c ........................ (7),

where c is an unknown constant. Moreover V satisfies the equa
tion (6) at all points external to the earth, and vanishes at an

infinite distance. But these conditions are sufficient to determine

V at all points of space external to the earth. For if possible

let V admit of two different values F
t , V^ outside the earth, and

let Fj F
3
= V. Since F, and F

2
have the same value

at the surface, V vanishes at the surface
;
and it vanishes likewise

at an infinite distance, and therefore by Prop. v. F =0 at all points

outside the earth. Hence if the form of the surface be given, F
is determinate at all points of external space, except so far as

relates to the single arbitrary constant c which is involved in its

complete expression.

3. Now it appears from measures of arcs of the meridian,

that the earth s surface is represented, at least very approximately,

by an oblate spheroid of small ellipticity, having its axis of figure

coinciding with the axis of rotation. It will accordingly be more

convenient to refer the earth to polar, than to rectangular co

ordinates. Let the centre of the surface be taken&quot; for origin ;
let r

be the radius vector, 6 the angle between this radius and the axis

of z, $ the angle between the plane passing through these lines

and the plane xz. Then if the square of the ellipticity be neg

lected, the equation to the surface may be put under the form

r = a (l-ecos
2

0) ........................ (8);

and from (7) we must have at the surface

F+ JG&amp;gt;V
sin

2 = c ........................ (9).

s. ii. 8
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If we denote for shortness the equation (6) by yF=0, we have

by transformation to polar co-ordinates*

= ......... (10).

4. The form of the equations (8) and (9) suggests the occur

rence of terms of the form
ijr (r) + %(?*) cos

2
in the value of F.

Assume then

F-*Vr(r) + x(r)cos
f
tf+t0.................. (11).

We are evidently at liberty to make this assumption, on account

of the indeterminate function w. Now if we observe that

sin 9 d

we get from (10) and (11)

t&quot; W + *V W + p %W +
{%&quot; W +

^ % M ~
p % (

r
)l

cos^

+ V^ = ...... (12).

If now we determine the functions ty, % from the equations

x&quot;W+% W-xW=0 ............ (14),

we shall have yw - 0.

By means of (14), equation (13) may be put under the form

and therefore ^ (r)
= ^% (r) is a particular integral of (13). The

equations (14), and (13) when deprived of its last term, are easily

integrated, and we get

&amp;gt;*

(15).

Now F vanishes at an infinite distance
;
and the same will be the

*
Cambridge Mathematical Journal, Vol. r. (Old Series), p. 122, or O Brien s

Tract on the Figure of the Earth, p. 12.
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case with w provided we take B =
0, D =

0, when we get from

(11) and (15)

5. It remains to satisfy (9). Now this equation may he satis

fied, so far as the large terms are concerned, by means of the

constant A, since appears only in the small terms. We have
a right then to assume C to be a small quantity of the first order.

Substituting in (16) the value of r given by (8), putting the re

sulting value of Fin (9), and retaining the first order only of small

quantities, we get

w
t being the value of w at the surface of the earth. Now the

constants A and C allow us to satisfy this equation without the
aid of w. We get by equating to zero the sum of the constant

terms, and the coefficient of cos
2

0,

A __G_
a &?

These equations combined with (17) give 1^
= 0. Now we

have seen that w satisfies the equation y^ = at all points ex

terior to the earth, and that it vanishes at an infinite distance
;

and since it also vanishes at the surface, it follows from Prop. V.

that it is equal to zero every where without the earth.

It is true that w
t

is not strictly equal to zero, but only to a

small quantity of the second order, since quantities of that order

are omitted in (17). But it follows from Prop. v. Cor. 3, that if

w
,

w&quot; be respectively the greatest and least values of w
t ,
w cannot

anywhere outside the earth lie beyond the limits determined by
the two extremes of the three quantities 10 , w&quot;,

and 0, and there

fore must be a small quantity of the second order
;
and since we

are only considering the potential at external points, we may omit
w altogether.

If E be the mass of the earth, the potential at a very great

82
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distance r is ultimately equal to E/r. Comparing this with the

equation obtained from (16) by leaving out w, we get

The first of equations (18) serves only to determine c in terms

of E, and c is not wanted. The second gives

whence, we get from (16)

IT E &quot; / a/i i \ /i rv\F= ~
~&quot; ( * .......... (

6. If g be the force of gravity at any point of the surface, v

the angle between the vertical and the radius vector drawn from

the centre, g cos v will be the resolved part of gravity along the

radius vector
;
and we shall have

.................. (20),

where after differentiation r is to be put equal to the radius vector

of the surface. Now v is a small quantity of the first order, and

therefore cos v may be replaced by 1, whence we get from (8), (19)&amp;gt;

and (20),

g = ?
(1 + 2e cos

2

0)
- 3

( 2
-

\&amp;lt;Ja } (cos
2 6 -

)
-

a&amp;gt;*a (1
- cos

2

0),d \ &
&quot;

/

or g =(l +e)|_| a
+(4

B a- J) cos
2

............ (21).

At the equator 6 = JTT ;
and if we put G for gravity at the equator,

m for the ratio of the centrifugal force to gravity at the equator,

we get o)
2a = mGr, and

whence J=(l+fm-e) a
2
..................... (22);

and (21) becomes g= G (1 + (fm - e) cos
2

&amp;lt;9}

.................. (23).

7. Equation (22) gives the mass of the earth by means of the

value of G determined by the pendulum. In the preceding investi

gation, 6 is the complement of the corrected latitude
;
but since 6

occurs only in the small terms, and the squares of small quantities
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have been omitted throughout, we may regard 6 as the comple
ment of the true latitude, and therefore replace cos 6 by the sine

of the latitude. In the case of the earth, ra is about -^ and e

about
-jj&amp;lt;y,

and therefore f &amp;gt;?i e is positive. Hence it appears
from (23) that the increase of gravity from the equator to the pole

varies as the square of the sine of the latitude, and the ratio which

the excess of polar over equatorial gravity bears to the latter, added

to the ellipticity, is equal to | x the ratio of the centrifugal force

to gravity at the equator.

8. If instead of the equatorial radius a, and equatorial gravity

G, we choose to employ the mean radius a
lt
and mean gravity Glt

we have only to remark that the mean value of cos
2

6, or

is J, which gives

0,=0(1-J), ff,= 0(1 +}*-$),
which reduces equations (8), (22), and (23) to

r = a
1 {l-e(cos 0-l)},

9. We get from (19), for the potential at an external point,

rr 771
z

*) ................ (24).

Now the attraction of the moon on any particle of the earth,

and consequently the attraction of the whole earth on the moon,
will be very nearly the same as if the moon s mass were collected

at her centre of gravity. Let r be the distance between the

centres of the earth and moon, 6 the moon s north polar distance,

P the attraction of the earth on the moon, resolved along the

radius vector drawn from the earth s centre, Q the attraction per

pendicular to the radius vector, a force which will evidently lie in

a plane passing through the earth s axis and the centre of the

moon. Then, supposing Q measured positive towards the equator,

we have from (4),

dV IdV.2
dr

V rde
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whence, from (24),

Ea*
\

Q = 2 (e
- \m] -- sin 6 cos

The moving force arising from the attraction of the earth on

the moon is a force passing through the centre of the moon, and

having for components MP along the radius vector, and MQ per

pendicular to the radius vector, M being the mass of the moon
;

and on account of the equality of action and reaction, the moving
force arising from the attraction of the moon on the earth is equal

and opposite to the former. Hence the latter force is equivalent

to a moving force MP passing through the earth s centre in the

direction of the radius vector of the moon, a force MQ passing

through the earth s centre in a direction perpendicular to the

radius vector, and a couple whose moment is MQr tending to turn

the earth about an equatorial axis. Since we only want to deter

mine the motion of the moon relatively to the earth, the effect of

the moving forces MP, MQ acting on the earth will be fully taken

into account by replacing E in equations (25) by E -\- M. If p be

the moment of the couple, we have

^ = 2 (e-^m)^f sin cos ............... (26).

This formula will of course apply, mutatis mutandis, to the moment
of the moving force arising from the attraction of the sun.

10. The force expressed by the second term in the value of P,

in equations (25), and the force Q, or rather the forces thence

obtained by replacing E by E + M, are those which produce the

only two sensible inequalities in the moon s motion which depend
on the oblateness of the earth. We see that they enable us to

determine the ellipticity of the earth independently of any hypo
thesis respecting the distribution of matter in its interior.

The moment
ILL,

and the corresponding moment for the sun, are

the forces which produce the phenomena of precession and nuta

tion. In the observed results, the moments of the forces are

divided by the moment of inertia of the earth about an equatorial

axis. Call this EO?K
;
let M =

Ejti ;
let b be the annual precession,
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andf the coefficient in the lunar nutation in obliquity ;
then we

shall have

where A, B, C denote certain known quantities. Hence the

observed values of b and f will serve to determine the two unknown

quantities n, and the ratio of e ^m to K. If therefore we suppose
e to be known otherwise, we shall get the numerical value of K.

11. In determining the mutual attraction of the moon and

earth, the attraction of the moon has been supposed the same as if

her mass were collected at her centre, which we know would be

strictly true if the moon were composed of concentric spherical
strata of equal density, and is very nearly true of any mass, how
ever irregular, provided the distance of the attracted body be very

great compared with the dimensions of the attracting mass, and

the centre be understood to mean the centre of gravity. It will

be desirable to estimate the magnitude of the error which is likely

to result from this supposition. For this purpose suppose the

moon s surface, or at least a surface of equilibrium drawn imme

diately outside the moon, to be an oblate spheroid of small ellip-

ticity, having its axis of figure coincident with the axis of rotation.

Then the equation (24*) will apply to the attraction of the moon on

the earth, provided we replace E, a, by M, a
,
where a is the

moon s radius, take 6 to denote the angular distance of the radius

vector of the earth from the moon s axis, and suppose e and m to

have the values which belong to the moon. Now E is about 80

times as great as M
t
and a about 4 times as great as a

,
and there

fore Ea? is about 1200 times as great as J/a 2
. But m is extremely

small in the case of the moon; and there is no reason to think

that the value of e for the moon is large in comparison with its

value for the earth, but rather the contrary ;
and therefore the

effect of the moon s oblateness on the relative motions of the

centres of the earth and moon must be altogether insignificant, .

especially when we remember that the coefficients of the two

sensible inequalities in the moon s motion depending on the earth s

*
!/( + !) will appear in these equations rather than l[n, because, if S be the

mass, and r, the distance of the sun, the ratio of 37/r
3 to Sjr^ is equal to l/(n+l)

multiplied by that of (E + J/)/r
3 to S/r,

3
,
and the latter ratio is known by the mean

motions of the sun and moon.
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oblateness are only about 8&quot;. It is to be observed that the suppo
sition of a spheroidal figure has only been made for the sake of

rendering applicable the equation (24), which had been already

obtained, and has nothing to do with the order of magnitude of the

terms we are considering*.

Although however the effect of the moon s oblateness, or rather

of the possible deviation of her mass from a mass composed of con

centric spherical strata, may be neglected in considering the motion

of the moon s centre, it does not therefore follow that it ought to

be neglected in considering the moon s motion about her own axis.

For in the first place, in comparing the effects produced on the

moon and on the earth, the moment of the mutual moving force of

attraction of the moon and earth is divided by the moment of

inertia of the moon, instead of the moment of inertia of the earth,

which is much larger ;
and in the second place, the effect now con

sidered is not mixed up with any other. In fact, it is well known
that the circumstance that the moon always presents the same face

to us has been accounted for in this manner.

12. In concluding this subject, it may be well to consider the

degree of evidence afforded by the figure of the earth in favour

of the hypothesis of the earth s original fluidity.

In the first place, it is remarkable that the surface of the earth

is so nearly a surface of equilibrium. The elevation of the land

above the level of the sea is extremely trifling compared with the

breadth of the continents. The surface of the sea must of course

necessarily be a surface of equilibrium, but still it is remarkable

that the sea is spread so uniformly over the surface of the earth.

There is reason to think that the depth of the sea does not exceed

a very few miles on the average. Were a roundish solid taken at

random, and a quantity of water poured on it, and allowed to

settle under the action of the gravitation of the solid, the proba

bility is that the depth of the water would present no sort of

*
If the expression for V be formed directly, and be expanded according to

inverse powers of r, the first term will be Jl//r. The terms involving r~ 2 will

disappear if the centre of gravity of the moon be taken for origin, those involving

r~3 are the terms we are here considering. If the moon s centre of gravity, or

rather its projection on the apparent disk, did not coincide with the centre of the

disk, it is easy to see the nature of the apparent inequality in the moon s motion

which would thence result.
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uniformity, and would be in some places very great. Nevertheless

the circumstance that the surface of the earth is so nearly a surface

of equilibrium might be attributed to the constant degradation
of the original elevations during the lapse of ages.

In the second place, it is found that the surface is very nearly
an oblate spheroid, having for its axis the axis of rotation. That

the surface should on the whole be protuberant about the equator
is nothing remarkable, because even were the matter of which the

earth is composed arranged symmetrically about the centre, a

surface of equilibrium would still be protuberant in consequence

of the centrifugal force
;
and were matter to accumulate at the

equator by degradation, the ellipticity of the surface of equi
librium would be increased by the attraction of this matter.

Nevertheless the ellipticity of the earth is much greater than

the ellipticity (|??i) due to the centrifugal force alone, and even

greater than the ellipticity which would exist were the earth

composed of a sphere touching the surface at the poles, and con

sisting of concentric spherical strata of equal density and of a

spherico-spheroidal shell having the density of the rocks and clay

at the surface*. This being the case, the regularity of the surface

is no doubt remarkable
;
and this regularity is accounted for on

the hypothesis of original fluidity.

The near coincidence between the numerical values of the

ellipticity of the terrestrial spheroid obtained independently from

the motion of the moon, from the pendulum, by the aid of

Clairaut s theorem, and from direct measures of arcs, affords no

additional evidence whatsoever in favour of the hypothesis of

original fluidity, being a direct consequence of the law of universal

gravitation*f.

*
It may be proved without difficulty that the value of e corresponding to this

supposition is T^ nearly, if we suppose the density of the shell to be to the mean

density as 5 to 11.

t With respect to the argument derived from the motion of the moon, this

remark has already been made by Professor O Brien, who has shewn that if the

form of the surface and the law of the variation of gravity be given independently,
and if we suppose the earth to consist approximately of spherical strata of equal

density, without which it seems impossible to account for the observed regularity of

gravity at the surface, then the attraction on the moon follows as a necessary con

sequence, independently of any theory but that of universal gravitation. (Tract on

the Figure of the Earth.) If the surface be not assumed to be one of equilibrium,

nor even nearly spherical, and if the component of gravity in a direction perpen-
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If the expression for F given by (24) be compared with the

expression which would be obtained by direct integration, it may
easily be shewn that the axis of rotation is a principal axis, and
that the moments of inertia about the other two principal axes are

equal to each other, so that every equatorial axis is a principal
axis. These results would follow as a consequence of the hypo
thesis of original fluidity. Still it should be remembered that

we can only affirm them to be accurate to the degree of accuracy
to which we are authorized by measures of arcs and by pendulum

experiments to affirm the surface to be an oblate spheroid.

The phenomena of precession and nutation introduce a new
element to our consideration, namely the moment of inertia of

the earth about an equatorial axis. The observation of these

phenomena enables us to determine the numerical value of the

quantity K, if we suppose e known otherwise. Now, indepen

dently of any hypothesis as to original fluidity, it is probable that

the earth consists approximately of spherical strata of equal

density. Any material deviation from this arrangement could

hardly fail to produce an irregularity in the variation of gravity,
and consequently in the form of the surface, since we know that

the surface is one of equilibrium. Hence we may assume, when
not directly considering the ellipticity, that the density p is a

function of the distance r from the centre. Now the mean density
of the earth as compared with that of water is known from the

result of Cavendish s experiment, and the superficial density

dicular to the surface, as well as tlie form of the surface, be given independently, it

may be shewn that the attraction on an external particle follows, independently of

any hypothesis respecting the distribution of matter in the interior of the earth.

It may be remarked that if the surface be supposed to differ from a surface of

equilibrium by a quantity of the order of the ellipticity, the component of gravity
in a direction perpendicular to the surface may be considered equal to the whole

force of gravity. Since however, as a matter of fact, the surface is a surface of

equilibrium, if very trifling irregularities be neglected, it seems better to assume it

to be such, and then the law of the variation of gravity, as well as the attraction on

the moon, follow from the form of the surface.

It must not here be supposed that these irregularities are actually neglected.

Such an omission would ill accord with the accuracy of modern measures. In

geodetic operations and pendulum experiments, the direct observations are in fact

reduced to the level of the sea, and so rendered comparable with a theory in which

it is supposed that the earth s surface is accurately a surface of equilibrium. I have

considered this subject in detail in the paper referred to at the beginning of this

article, which has since been read before the Cambridge Philosophical Society.
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may be considered equal to that of ordinary rocks, or about 2J
times that of water

;
and therefore the ratio of the mean to the

superficial density may be considered known. Take for simplicity

the earth s radius for the unit of length, and let p
= pl

when r = 1.

From the mean density and. the value of K we know the ratios

of the integrals I prdr and I pr
4Jr to p^ Now it is probable

J o * o

that p increases, at least on the whole, from the surface to the

centre. If we assume this to be the case, and restrict p to satisfy

the conditions of becoming equal to p l
when ? = !, and of giving

to the two integrals just written their proper numerical values,

it is evident that the law of density cannot range within any very
wide limits

;
and speaking very roughly we may say that the

density is determined.

Now the preceding results will not be sensibly affected by

giving to the nearly spherical strata of equal density one form or

another, but the form of the surface will be materially affected.

The surface in fact might not be spheroidal at all, or if spheroidal,

the ellipticity might range between tolerably wide limits. But

according to the hypothesis of original fluidity the surface ought
to be spheroidal, and the ellipticity ought to have a certain

numerical value depending upon the law of density.

If then there exist a law of density, not in itself improbable
d priori, which satisfies the required conditions respecting the

mean and superficial densities, and which gives to the ellipticity

and to the annual precession numerical values nearly agreeing

with their observed values, we may regard this law not only as

in all probability representing approximately the distribution of

matter within the earth, but also as furnishing, by its accordance

with observation, a certain degree of evidence in favour of the

hypothesis of original fluidity. The law of density usually con

sidered in the theory of the figure of the earth is a law of this

kind.

It ought to be observed that the results obtained relative to

the attraction of the earth remain just the same whether we sup

pose the earth to be solid throughout or not
;
but in founding any

argument on the numerical value of K we are obliged to consider

the state of the interior. Thus if the central portions of the earth

be, as some suppose, in a state of fusion, the quantity Ecfic must
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be taken to mean the moment of inertia of that solid, whatever

it may be, which is equivalent to the solid crust together with

its fluid or viscous contents. On this supposition it is even con

ceivable that K should depend on the period of the disturbing

force, so that different numerical values of K might have to be used

in the precession and in the lunar nutation, in which case the

mass of the moon deduced from precession and nutation would not

be quite correct.

Additional Propositions respecting Attractions.

Although the propositions at the commencement of this paper
were given merely for the sake of the applications made of them

to the figure of the earth, there are a few additional propositions

which are so closely allied to them that they may conveniently be

added here.

Prop. vn*. If V be the potential of any mass M
lt
and ifM

Q

be the portion ofM
l
contained within a closed surface S,

!l^ds *^ -w-

n and dS having the same meaning as in Prop. IV., and the inte

gration being extended to the whole surface S.

* This and Prop. iv. are expressed respectively by equations (7) and (8) in the

article by Professor Thomson already referred to (Vol. in. p. 203), where a demon

stration of a theorem comprehending both founded on the equation

is given. In the present paper a different order of investigation is followed
; direct

geometrical demonstrations of the equations

I I -j- dS= in one case, and / / dS= - 47rJ/ in another,

are given in Props, iv. and vn. ; and a new proof of the equation (a) is deduced

from them in Prop. viu.

These equations may be obtained as very particular cases of a general theorem

originally given by Green (Essay on Electricity, p. 12). It will be sufficient to

suppose U=l in Green s equation, and to observe that dw=-dn, and 5F=0
or= -47Tp, if V be taken to denote the potential of the mass whose attraction is

considered.
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Let m be the mass of an attracting particle situated at the

point P inside S. Through P draw a right line L, and produce it

indefinitely in one direction. This line will in general cut S in

one point ;
but if S be a re-entrant* surface it may be cut by L in

three, five, or any odd number of points. About L describe a

conical surface containing an infinitely small solid angle a, and let

the rest of the notation be as in Prop. IV. In this case the angles

lf 8 ,
will be alternately obtuse and acute, and we shall have

AT m
t A \

m /#
l
=--i C06 (TT- 0J = -5 cos ev

1
1 i

A
l
=

ar,
2
sec (TT #J = ar* sec 6

V ,

and therefore -^1^-1
~ ~ am/ -

Should there be more than one point of section, the terms N
2
A

Z ,

N
ZA^ &c. will destroy each other two and two, as in Prop. IV.

Now all angular space around P may be divided into an infinite

number of solid angles such as a, and it is evident that the whole

surface S will thus be exhausted. We get therefore

limit of %NA = Sam = m&quot;Zi ;

or, since 2a = 4?r, JfNdS= 47rm .

The same formula will apply to any other internal particle, and it

has been shewn in Prop. iv. that for an external particle f/NdS = 0.

Hence, adding together all the results, and taking N now to refer

to the attraction of all the particles, both internal and external, we

get ffNdS = 4?rJ/ . But N= d V/dn, which proves the proposi
tion.

Prop. vm. At an internal point (x, y, z) about which the

density is p, the potential F satisfies the equation

Consider the elementary parallelepiped dx dy dz, and apply to

it the equation (27). For the face dy dz whose abscissa is x, the

value of I I-T- dSis ultimately dV/dx . dy dz, and for the opposite

fdV d*V \
face it is ultimately + ( -^

h -73 dx \dydz\ and therefore for this
\ctx (IX /

* This term is here used, and has been already used in the demonstration of

Prop, iv., to denote a closed surface which can be cut by a tangent plane.
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pair of faces the value of the integral is ultimately d* V/da? . dx dy dz.

Treating the two other pairs of faces in the same way, we get ulti

mately for the value of the first member of equation (27),

J*
\ dx&quot; dy* dz

But the density being ultimately constant, the value of J/
,
which

is the mass contained within the parallelepiped, is ultimately

p dx dy dz, whence by passing to the limit we obtain equation

(28).

&quot;

The equation which (28) becomes when the polar co-ordinates

r, 0,
&amp;lt;j&amp;gt;

are employed in place of rectangular, may readily be

obtained by applying equation (27) to the elementary volume

dr . rdO . r sin
0d&amp;lt;j),

or else it may be derived from (28) by transfor

mation of co-ordinates. The first member of the transformed

equation has already been written down (see equation (10),) ;
the

second remains

Example of the application of equation (28). In order to give

an example of the practical application of this equation, let us

apply it to determine the attraction which a sphere composed of

concentric spherical strata of uniform density exerts on an internal

particle.

Refer the sphere to polar co-ordinates originating at the centre.

Let p be the density, which by hypothesis is a function of r, R the

external radius, V the potential of the sphere, which will evidently

be a function of r only. For a point within the sphere we get

from (28)

For a point outside the sphere the equation which V has to satisfy

is that which would be obtained from (29) by replacing the second

member by zero
;
but we may evidently apply equation (29) to all

space provided we regard p as equal to zero outside the sphere.

Since the first member of (29) is the same thing as 1/r . eZV V/dr
2

,

we get
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Now we get by integration by parts,

f(jprdr) dr = rfprdr fpr*dr,

whence V= - Rfprdr + -
7&quot; $pr*dr,

where the arbitrary constants are supposed to be included in the

signs of integration. Now F vanishes at an infinite distance, and

does not become infinite at the centre, and therefore the second

integral vanishes when r = 0, and the first when r = oc, or, which
is the same, when r = R, since p.= when r&amp;gt;R. We get there

fore finally,
rR 4,^ rr

V= 4?r
I

pr dr H-- I pr
z
dr.

If F be the required force of attraction, we have F= d V/dr ; and

observing that the two terms arising from the variation of the

limits destroy each other, we get

Now 4-7T I prdr is the mass contained within a sphere de-
o

scribed about the centre with a radius r, and therefore the attrac

tion is the same as if the mass within this sphere were collected at

its centre, and the mass outside it were removed.

The attraction of the sphere on an external particle may be

considered as a particular case of the preceding, since we may first

suppose the sphere to extend beyond the attracted particle, and
then make p vanish when r &amp;gt; R.

Before concluding, one or two more known theorems may be

noticed, which admit of being readily proved by the method

employed in Prop. v.

Prop. ix. If T be a space which contains none of the attract

ing matter, the potential V cannot be constant throughout any
finite portion of T without having the same constant value through
out the whole of the space T and at its surface. For if possible
let F have the constant value A throughout the space T

lt
which

forms a portion of T, and a greater or less value at the portions of

T adjacent to Tr Let R be a region of T adjacent to T^ where F
is greater than A. By what has been already remarked, Fmust
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increase continuously in passing from T^ into R. Draw a closed

surface cr lying partly within T
l
and partly within R, and call the

portions lying in T^ and R, a
1 ,

cr
2 respectively. Then if v be a

normal to cr, drawn outwards, d V/dv will be positive throughout cr,

if (T
I
be drawn sufficiently close to the space Tt (see Prop. V. and

note), and dV/dv is equal to zero throughout the surface cr
2 ,

since

V is constant throughout the space T
l ;

and therefore 1 1 -, da-,

taken throughout the whole surface cr, will be positive, which is

contrary to Prop. IV. Hence V cannot be greater than A in any

portion of T adjacent to T
lt

and similarly it cannot be less, and

therefore F must have the constant value A throughout T, and

therefore, on account of the continuity of F, at the surface of T.

Combining this with Prop. v. Cor. 1, we see that if F be

constant throughout the whole surface of a space T which contains

no attracting matter, it will have the same constant value through
out T

;
but if F be not constant throughout the whole surface, it

cannot be constant throughout any finite portion of T, but only

throughout a surface. Such a surface cannot be closed, but must

abut upon the surface of T, since otherwise F would be constant

within it.

Prop. x. The potential F cannot admit of a maximum or

minimum value in the space T.

It appears from the demonstration of Prop. v. that F cannot

have a maximum or minimum value at a point, or throughout a

line, surface, or space, which is isolated in T. But not even can F
have the maximum or minimum value V

l throughout T^ if T
t

reach up to the surface 8 of T; though the term maximum or

minimum is not strictly applicable to this case. By Prop. IX. F
cannot have the value F

t throughout a space, and therefore T
l
can

only be a surface or a line.

If possible, let F have the maximum value V
l throughout a

line L which reaches up to S. Consider the loci of the points

where F has the successive values F
2 ,
F

3 ..., decreasing by infi

nitely small steps from Fr In the immediate neighbourhood of

L, these loci will evidently be tube-shaped surfaces, each lying

outside the preceding, the first of which will ultimately coincide

with L. Let s be an element of L not adjacent to S, nor reaching
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up to the extremity of L, in case L terminate abruptly. At each

extremity of 5 draw an infinite number of lines of force, that is,

lines traced from point to point in the direction of the force, and

therefore perpendicular to the surfaces of equilibrium. The assem

blage of these lines will evidently constitute two surfaces cutting

the tubes, and perpendicular to s at its extremities. Call the

space contained within the two surfaces and one of the tubes 7
T

2 ,

and apply equation (5) to this space. Since Fis a maximum at L,

dV/dn is negative for the tube surface of T
9 ,
and it vanishes for

the other surfaces, as readily follows from equation (4). Hence

dV
-T- dS, taken throughout the whole surface T

2 ,
is negative,

Ollli

which is contrary to equation (5). Hence F cannot have a maxi

mum value at the line L
;
and similarly it cannot have a minimum

value.

It may be proved in a similar manner that V cannot have a

maximum or minimum value F
t throughout a surface 8^ which

reaches up to S. For this purpose it will be sufficient to draw a

line of force through a point in S
l}
and make it travel round an

elementary area a which forms part of 8
lf
and to apply equation

(5) to the space contained between the surface generated by this

line, and the two portions, one on each side of 8
lt

of a surface of

equilibrium corresponding to a value of V very little different

from Fr
It should be observed that the space T considered in this

proposition and in the preceding need not be closed : all that is

requisite is that it contain none of the attracting mass. Thus, for

instance, T may be the infinite space surrounding an attracting
mass or set of masses.

It is to be observed also, that although attractive forces have

been spoken of throughout, all that has been proved is equally
true of repulsive forces, or of forces partly attractive and partly

repulsive. In fact, nothing in the reasoning depends upon the

sign of m
;
and by making m negative we pass to the case of

repulsive forces.

Prop. XI. If an isolated particle be in equilibrium under the

action of forces varying inversely as the square of the distance, the

equilibrium cannot be stable with reference to every possible

s, n. 9



130 ON ATTRACTIONS, AND ON CLAIRAUT s THEOREM.

displacement, nor unstable, but must be stable with reference to

some displacements and unstable with reference to others
;
and

therefore the equilibrium of a free isolated particle in such circum

stances must be unstable*.

For we have seen that V cannot be a maximum or minimum,

and therefore either 7 must be absolutely constant, (as for instance

within a uniform spherical shell), in which case the particle may

be in equilibrium at any point of the space in which it is situated,

or else, if the particle be displaced along any straight line or curve,

for some directions of the line or curve V will be increasing and

for some decreasing. In the former case the force resolved along

a tangent to the particle s path will be directed from the position

of equilibrium, and will tend to remove the particle still farther

from it, while in the latter case the reverse will take place.

* This theorem was first given by Mr Earnshaw in his memoir on Molecular

Forces read at the Cambridge Philosophical Society, March 18, 1839 (Tram.

Vol. vii.). See also a paper by Professor Thomson in the first series of this Journal,

Vol. iv. p. 223.



[From the Transactions of the Cambridge Philosophical Society, Vol. vin. p. 672.]

Ox THE VARIATION OF GRAVITY AT THE SURFACE OF THE

EARTH.

[Read April 23, 1849.]

Ox adopting the hypothesis of the earth s original fluidity,

it has been shewn that the surface ought to be perpendicular to

the direction of gravity, that it ought to be of the form of an oblate

spheroid of small ellipticity, having its axis of figure coincident

with the axis of rotation, and that gravity ought to vary along the

surface according to a simple law, leading to the numerical relation

between the ellipticity and the ratio between polar and equatorial

gravity which is known by the name of Clairaut s Theorem.
Without assuming the earth s original fluidity, but merely sup

posing that it consists of nearly spherical strata of equal density,
and observing that its surface may be regarded as covered by a

fluid, inasmuch as all observations relating to the earth s figure
are reduced to the level of the sea, Laplace has established a

connexion between the form of the surface and the variation of

gravity, which in the particular case of an oblate spheroid agrees
with the connexion which is found on the hypothesis of original

fluidity. The object of the first portion of this paper is to establish

this general connexion without making any hypothesis whatsoever

respecting the distribution of matter in the interior of the earth,

but merely assuming the theory of universal gravitation. It ap
pears that if the form of the surface be given, gravity is determined

throughout the whole surface, except so far as regards one arbitrary
constant which is contained in its complete expression, and which

92



132 ON THE VARIATION OF GRAVITY

may be determined by the value of gravity at one place. Moreover

the attraction of the earth at all external points of space is de

termined at the same time; so that the earth s attraction on the

moon, including that part of it which is due to the earth s ob-

lateness, and the moments of the forces of the sun and moon

tending to turn the earth about an equatorial axis, are found

quite independently of the distribution of matter within the earth.

The near coincidence between the numerical values of the

earth s ellipticity deduced independently from measures of arcs,

from the lunar inequalities which depend on the earth s oblate-

ness, and, by means of Clairaut s Theorem, from pendulum ex

periments, is sometimes regarded as a confirmation of the hy

pothesis of original fluidity. It appears, however, that the form

of the surface (which is supposed to be a surface of equilibrium),

suffices to determine both the variation of gravity and the attrac

tion of the earth on an external particle*, and therefore the coinci

dence in question, being a result &quot;of the law of gravitation, is no

confirmation of the hypothesis of original fluidity. The evidence

in favour of this hypothesis which is derived from the figure and

attraction of the earth consists in the perpendicularity of the

surface to the direction of gravity, and in the circumstance that

the surface is so nearly represented by an oblate spheroid having
for its axis the axis of rotation. A certain degree of additional

evidence is afforded by the near agreement between the observed

ellipticity and that calculated with an assumed law of density

which is likely a priori to be not far from the truth, and which

is confirmed, as to its general correctness, by leading to a value

for the annual precession which does not much differ from the

observed value.

*
It has been remarked by Professor O Brien (Mathematical Tracts, p. 56) that

if we have given the form of the earth s surface and the variation of gravity, we

have data for determining the attraction of the earth on an external particle, the

earth being supposed to consist of nearly spherical strata of equal density; so that

the motion of the moon furnishes no additional confirmation of the hypothesis of

original fluidity.

If we have given the component of the attraction of any mass, however irregular

as to its form and interior constitution, in a direction perpendicular to the surface,

throughout the whole of the surface, we have data for determining the attraction at

every external point, as well as the components of the attraction at the surface in

two directions perpendicular to the normal. The corresponding proposition in

Fluid Motion is self-evident.
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Since the earth s actual surface is not strictly a surface of

equilibrium, on account of the elevation of the continents and
islands above the sea level, it is necessary to consider in the first

instance in what manner observations would have to be reduced
in order to render the preceding theory applicable. It is shewn in
Art. 13 that the earth may be regarded as bounded by a surface of

equilibrium, and therefore the expressions previously investigated
may be applied, provided the sea level be regarded as the bounding
surface, and observed gravity be reduced to the level of the sea

by taking account only of the change of distance from the earth s

centre. Gravity reduced in this manner would, however, be liable
to vary irregularly from one place to another, in consequence
of the attraction of the land between the station and the surface
of the sea, supposed to be prolonged underground, since this

attraction would be greater or less according to the height of the
station above the sea level. In order therefore to render the
observations taken at different places comparable with one another,
it seems best to correct for this attraction in reducing to the level
of the sea; but since this additional correction is introduced in

violation of the theory in which the earth s surface is regarded
as one of equilibrium, it is necessary to consider what effect the
habitual neglect of the small attraction above mentioned produces
on the values of mean gravity and of the ellipticity deduced from
observations taken at a number of stations. These effects are

considered in Arts. 17, 18.

Besides the consideration of the mode of determining the values
of mean gravity, and thereby the mass of the earth, and of the

ellipticity, and thereby the effect of the earth s oblateness on the
motion of the moon, it is an interesting question to consider
whether the observed anomalies in the variation of gravity may
be attributed wholly or mainly to the irregular distribution of

land and sea at the surface of the earth, or whether they must
be referred to more deeply seated causes. In Arts. 19, 20, I have
considered the effect of the excess of matter in islands and conti

nents, consisting of the matter which is there situated above the
actual sea level, and of the defect of matter in the sea, consisting
of the difference between the mass of the sea, and the mass of an

equal bulk of rock or clay. It appears that besides the attraction

of the land lying immediately underneath a continental station,
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between it and the level of the sea, the more distant portions of

the continent cause an increase in gravity, since the attraction

which they exert is not wholly horizontal, on account of the cur

vature of the earth. But besides this direct effect, a continent

produces an indirect effect on the magnitude of apparent gravity.

For the horizontal attraction causes the verticals to point more

inwards, that is, the zeniths to be situated further outwards, than

if the continent did not exist
;
and since a level surface is every

where perpendicular to the vertical, it follows that the sea level

on a continent is higher than it would be at the same place if the

continent did not exist. Hence, in reducing an observation taken

at a continental station to the level of the sea, we reduce it to

a point more distant from the centre of the earth than if the

continent were away ;
and therefore, on this account alone, gravity

is less on the continent than on an island. It appears that this

latter effect more than counterbalances the former, so that on the

whole, gravity is less on a continent than on an island, especially

if the island be situated in the middle of an ocean. This circum

stance has already been noticed as the result of observation. In

consequence of the inequality to which gravity is subject, de

pending on the character of the station, it is probable that the

value of the ellipticity which Mr Airy has deduced from his dis

cussion of pendulum observations is a little too great, on account

of the decided preponderance of oceanic stations in low latitudes

among the group of stations where the observations were taken.

The alteration of attraction produced by the excess and defect

of matter mentioned in the preceding paragraph does not con

stitute the whole effect of the irregular distribution of land and

sea, since if the continents were cut off at the actual sea level,

and the sea were replaced by rock and clay, the surface so formed

would no longer be a surface of equilibrium, in consequence of

the change produced in the attraction. In Arts 25 27, I have

investigated an expression for the reduction of observed gravity to

what would be observed if the elevated solid portions of the earth

were to become fluid, and to run down, so as to form a level bottom

for the sea, which in that case would cover the whole earth. The

expressions would be very laborious to work out numerically, and

besides, they require data, such as the depth of the sea in a great

many places, &c., which we do not at present possess; but from a



AT THE SURFACE OF THE EARTH. 135

consideration of the general character of the correction, and from

the estimation given in Art. 21 of the magnitude which such

corrections are likely to attain, it appears probable that the ob

served anomalies in the variation of gravity are mainly due to the

irregular distribution of land and sea at the surface of the earth.

1. Conceive a mass whose particles attract each other ac

cording to the law of gravitation, and are besides acted on by a

given force/, which is such that if X, Y, Z be its components along

three rectangular axes, Xdx + Ydy + Zdz is the exact differential

of a function U of the co-ordinates. Call the surface of the mass S,

and let V be the potential of the attraction, that is to say, the

function obtained by dividing the mass of each attracting particle

by its distance from the point of space considered, and taking the

sum of all such quotients. Suppose 8 to be a surface of equi

librium. The general equation to such surfaces is

V+U=c ............................ (1),

where c is an arbitrary constant
;
and since S is included among

these surfaces, equation (1) must be satisfied at all points of the

surface S, when some one particular value is assigned to c. For

any point external to S, the potential V satisfies, as is well known,

the partial differential equation

and evidently V cannot become infinite at any such point, and

must vanish at an infinite distance from S. Now these conditions

are sufficient for the complete determination of the value of V for

every point external to S, the quantities U and c being supposed
known. The mathematical problem is exactly the same as that of

determining the permanent temperature in a homogeneous solid,

which extends infinitely around a closed space S, on the conditions,

(1) that the temperature at the surface S shall be equal to c U,

(2) that it shall vanish at an infinite distance. This problem is

evidently possible and determinate. The possibility has moreover

been demonstrated mathematically.

If U alone be given, and not c, the general value of V will

contain one arbitrary constant, which may be determined if we
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know the value of V, or of one of its differential coefficients, at

one point situated either in the surface S or outside it. When V
is known, the components of the force of attraction will be obtained

by mere differentiation.

Nevertheless, although we know that the problem is always

determinate, it is only for a very limited number of forms of the

surface 8 that the solution has hitherto been effected. The

most important of these forms is the sphere. When S has very

nearly one of these forms the problem may be solved by approxi

mation.

2. Let us pass now to the particular case of the earth. Although
the earth is really revolving about its axis, so that the bodies on

its surface are really describing circular orbits about the axis of

rotation, we know that the relative equilibrium of the earth itself,

or at least its crust, and the bodies on its surface, would not be

affected by supposing the crust at rest, provided that we introduce,

in addition to the attraction, that fictitious force which we call the

centrifugal force. The vertical at any place is determined by the

plumb-line, or by the surface of standing fluid, and its determi

nation is therefore strictly a question of relative equilibrium. The

intensity of gravity is determined by the pendulum ;
but although

the result is not mathematically the same as if the earth were at

rest and acted on by the centrifugal force, the difference is alto

gether insensible. It is only in consequence of its influence on

the direction and magnitude of the force of gravity that the earth s

actual motion need be considered at all in this investigation : the

mere question of attraction has nothing to do with motion
;
and

the results arrived at will be equally true whether the earth be

solid throughout or fluid towards the centre, even though, on the

latter supposition, the fluid portions should be in motion relatively

to the crust.

We know, as a matter of observation, that the earth s surface

is a surface of equilibrium, if the elevation of islands and conti

nents above the level of the sea be neglected. Consequently the

law of the variation of gravity along the surface is determinate, if

the form of the surface be given, the forcef of Art. 1 being in this

case the centrifugal force. The nearly spherical form of the

surface renders the determination of the variation easy.



AT THE SURFACE OF THE EAETR. 137

3. Let the earth be referred to polar co-ordinates, the origin

being situated in the axis of rotation, and coinciding with the

centre of a sphere which nearly represents the external surface.

Let r be the radius vector of any point, 6 the angle between the

radius vector and the northern direction of the axis,
&amp;lt;/&amp;gt;

the angle
which the plane passing through these two lines makes with a

plane fixed in the earth and passing through the axis. Then the

equation (2) which V has to satisfy at any external point becomes

by a common transformation

d\rV 1 d . dVf . Q dV\ I (TV
sm# T +^3 -77^-

= ..... (3).
\ dB J sm2

d$*
, 2

^
dr* sm

Let co be the angular velocity of the earth
;
then

7=io&amp;gt;Vsin
2

0,

and equation (1) becomes

F+|a&amp;gt;Vsin
2

6&amp;gt;

= c ...................... (4),

which has to be satisfied at the surface of the earth.

For a given value of r, greater than the radius of the least

sphere which can be described about the origin as centre so as to

lie wholly without the earth, V can be expanded in a series of

Laplace s functions

F.+ F,+ F,+...;

and therefore in general, provided r be greater than the radius of

the sphere above mentioned, V can be expanded in such a series,

but the general term Vn will be a function of r, as well as of

6 and
&amp;lt;/&amp;gt;. Substituting the above. series in equation (3), and

observing that from the nature of Laplace s functions

we get .

where all integral values of n from to oo are to be taken.

Now the differential coefficients of Vn with respect to r are

Laplace s functions of the nih order as well as Vn itself; and since

a series of Laplace s functions cannot be equal to zero unless
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the Laplace s functions of the same order are separately equal
to zero, we must have

(P rV
r-jJ-&quot;-n(n

+ l)Vn = ..................... (6).

The integral of this equation is

where Yn and Zn are arbitrary constants so far as r is concerned,

but contain 6 and
(/&amp;gt;.

Since these functions are multiplied by
different powers of r, Yn cannot be a Laplace s function of the nih

order unless the same be true of Yn and Zw We have for the

complete value of V
Y Y Y^ + -.} + -*+... + ZQ + Z1

r + ......
y* ry**

tv^

Now V vanishes when r = oo
,
which requires that Z

Q
= 0, Z1

=
0,

&c.
;
and therefore

Y Y Y

4. The preceding equation will not give the value of the

potential throughout the surface of a sphere which lies partly

within the earth, because although V, as well as any arbitrary but

finite function of 6 and
&amp;lt;,

can be expanded in a series of Laplace s

functions, the second member of equation (3) is not equal to

zero in the case of an internal particle, but to 47r/or
2

,
where

p is the density. Nevertheless we may employ equation (7)

for values of r corresponding, to spheres which lie partly within

the earth, provided that in speaking of an internal particle we

slightly change the signification of V}
and interpret it to mean,

not the actual potential, but what would be the potential if the

protuberant matter were distributed within the least sphere which

cuts the surface, in such a manner as to leave the potential un

changed throughout the actual surface. The possibility of such a

distribution will be justified by the result, provided the series to

which we are led prove convergent. Indeed, it might easily be shewn

that the potential at any internal point near the surface differs

from what would be given by (7) by a small quantity of the second

order only ;
but its differential coefficient with respect to r, which
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gives the component of the attraction along the radius vector,

differs by a small quantity of the first order. We do not, how

ever, want the potential at any point of the interior, and in fact

it cannot be found without making some hypothesis as to the dis

tribution of the matter within the earth.

5. It remains now to satisfy equation (4). Let r=a (1 -f u)

be the equation to the earth s surface, where u is a small quantity

of the first order, a function of 6 and
&amp;lt;f&amp;gt;.

Let u be expanded in a

series of Laplace s functions u + 1^+ ... The term u will vanish

provided we take for a the mean radius, or the radius of a sphere

of equal volume. We may, therefore, take for the equation to

the surface

r=.-a(l+w1
+ ?/

2
+ ...) ........................ (8).

If the surface were spherical, and the earth had no motion of

rotation, V would be independent of 6 and
&amp;lt;,

and the second

member of equation (7) would be reduced to its first term. Hence,

since the centrifugal force is a small quantity of the first order, as

well as u
t
the succeeding terms must be small quantities of the

first order
;

so that in substituting in (7) the value of r given by

(8) it will be sufficient to put r = a in these terms. Since the

second term in equation (4) is a small quantity of the first order,

it will be sufficient in that term likewise to put r = a. We
thus get from (4), (7), and (8), omitting the squares of small

quantities,

The most general Laplace s function of the order is a con

stant
;
and we have

sin
2 =

f + (4-cos
2

0),

of which expression the two parts are Laplace s functions of the

orders 0, 2, respectively. We thus get from (9), by equating to

zero Laplace s functions of the same order,

7,
=
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The first of these equations merely gives a relation between
the arbitrary constants F and c; the others determine F

I}
F

2 ,

&c.
;
and we get by substituting in (7)

6. Let g be the force of gravity at any point of the surface of

the earth, dn an element of the normal drawn outwards at that

point; then g = d(V+ U)/dn. Let ^ be the angle between
the normal and the radius vector

;
then g cos ^ is the resolved

part of gravity along the radius vector, and this resolved part is

equal to d
( V+ U) /dr. Now ^ is a small quantity of the first

order, and therefore we may put cos^ =
1, which gives

where, after differentiation, r is to be replaced by the radius vector

of the surface, which is given by (8). We thus get

9 = 5 (
1 -2t*

1
-2M,-2n8 ...)+ (2^ + 3^ + 4*,...)

-
1 *a

(J
~ cos

2

6}
- o)

2
a (f + i - cos

2

0),

which gives, on putting

I -fo. a-e, J = m .................. (11),

and neglecting squares of small quantities,

9= {l-fm(i-cos
2

&amp;lt;9)-f-u2 +2^3 + 3 ?
4
......

}
...... (12).

In this equation G is the mean value of g taken throughout

the whole surface, since we know that I I un sin d6d&amp;lt;k&amp;gt;
=

0, if n
Jo Jo

be different from zero. The second of equations (11) shews that ra

is the ratio of the centrifugal force at a distance from the axis

equal to the mean distance to mean gravity, or, which is the same,
since the squares of small quantities are neglected, the ratio of the

centrifugal force to gravity at the equator. Equation (12) makes
known the variation of gravity when the form of the surface is

given, the surface being supposed to be one of equilibrium ; and,

conversely, equation (8) gives the form of the surface if the varia

tion of gravity be known. It may be observed that on the latter
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supposition there is nothing to determine w
4

. The most general
form of u

t
is

a sin 6 cos
(f&amp;gt;

-f fB sin 6 sin
&amp;lt;/&amp;gt;

-f 7 cos 0,

where a, 0, y are arbitrary constants; and it is very easy to prove
that the co-ordinates of the centre of gravity of the volume are

equal to aa, aft, ay respectively, the line from which 6 is measured

being taken for the axis of z, and the plane from which
&amp;lt;f&amp;gt;

is

measured for the plane of scz. Hence the term u^ in (8) may be

made to disappear by taking for origin the centre of gravity of the

volume. It is allowable to do this even should the centre of

gravity fall a little out of the axis of rotation, because the term

involving the centrifugal force, being already a small quantity of

the first order, would not be affected by supposing the origin to be

situated a little out of the axis.

Since the variation of gravity from one point of the surface to

another is a small quantity of the first order, its expression will

remain the same whether the earth be referred to. one origin or

another nearly coinciding with the centre, and therefore a know

ledge of the variation will not inform us what point has been
taken for the origin to which the surface has been referred.

7. Since the angle between the vertical at any point and the

radius vector drawn from the origin is a small quantity of the first

order, and the angles 6,
(f&amp;gt;

occur in the small terms only of equa
tions (8), (10), and (12), these angles may be taken to refer to the

direction of the vertical, instead of the radius vector.

8. If E be the mass of the earth, the potential of its attraction

at a very great distance r is ultimately equal to E-r. Comparing
this with (10), we get Y

Q
= E

y
and therefore, from the first of

equations (11),

E= a* + Ja&amp;gt;V=Ga
8

(l+Jw) (13),

which determines the mass of the earth from the value of G deter

mined by pendulum experiments.

9. If we suppose that the surface of the earth may be repre
sented with sufficient accuracy by an oblate spheroid of small ellip-

ticity, having its axis of figure coincident with the axis of rotation,

equation (8) becomes

r = a{l + 6(4-cos*0)} (14),
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where e is a constant which may be considered equal to the ellip-

ticity. We have therefore in this case u^
= 0, u

ti

= ^~ cos
2

0, un
=

when n&amp;gt; 2; so that (12) becomes

0={l-(fm-e)(i-cos
8

0)} .................. (15),

which equation contains Clairaut s Theorem. It appears also from

this equation that the value of G which must be employed in (13)

is equal to gravity at a place the square of the sine of whose

latitude is ^.

10. Retaining the same supposition as to the form of the

surface, we get from (10), on replacing F by E, and putting in the

small term at the end o&amp;gt;

2a5 = mOa* = mEa2

,

V=~ +(e-im)^- (J-cos*0) ............ (1C).

Consider now the effect of the earth s attraction on the moon.

The attraction of any particle of the earth on the moon, and there

fore the resultant attraction of the whole earth, will be very nearly

the same as if the moon were collected at her centre. Let there

fore r be the distance of the centre of the moon from that of the

earth, 6 the moon s North Polar Distance, P the accelerating force

of the earth on the moon resolved along the radius vector, Q the

force perpendicular to the radius vector, which acts evidently in a

plane passing through the earth s axis
;
then

whence we get from (16)

(17).

The moving forces arising from the attraction of the earth on

the moon will be obtained by multiplying by M, where M denotes

the mass of the moon
;
and these are equal and opposite to the

moving forces arising from the attraction of the moon on the earth.

The component MQ of the whole moving force is equivalent to an

equal and parallel force acting at the centre of the earth and a

couple. The accelerating forces acting on the earth will be
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obtained by dividing by E\ and since we only want to determine

the relative motions of the moon and earth, we may conceive equal
and opposite accelerating forces applied both to the earth and to

the moon, which comes to the same thing as replacing E by E +M
in (17). If K be the moment of the couple arising from the

attraction of the moon, which tends to turn the earth about an

equatorial axis, K = MQr, whence

m0cos0 ............... (18).

The same formula will of course apply, mutatis mutandis, to the

attraction of the sun.

11. The spheroidal form of the earth s surface, and the cir

cumstance of its being a surface of equilibrium, will afford us some

information respecting the distribution of matter in the interior.

Denoting by x, y, z the co-ordinates of an internal particle whose

density is p ,
and by x, y, z those of the external point of space to

which I
7

refers, we have

dx d dz

-
y Y+(z - )

,J

the integrals extending throughout the interior of the earth.

Writing dm for p dx dy dz, putting X, yu,,
v for the direction-

cosines of the radius vector drawn to the point (x, y, z}, so that

x = \r, y = pr, z = vr, and expanding the radical according to

inverse powers of r, we get

V = ~
fffdm + S ^ fffx dm +~ 2 (3X

2 -
1) fjfx&quot;

2 dm

ydm + ...... (19),

2 denoting the sum of the three expressions necessary to form a

symmetrical function. Comparing this expression for Fwith that

given by (10), which in the present case reduces itself to (16), we

get Y = jffdm = E, as before remarked, and

//jy dm =
o, j/jy dm =

o, //jv dm=o ............ (20),

J 2 (3X
2 -

1) Jffjc&quot;
dm + 32Xyu fffx y dm

= (e-Jm) JEa2

(J-cos
2

6&amp;gt;)

......... (21);
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together with, other equations, not written down, obtained by

equating to zero the coefficients of 1/r
4

, 1/r
5
&c. in (19).

Equations (20) shew that the centre of gravity of the mass

coincides with the centre of gravity of the volume. In treating

equation (21), it is to be remarked that X, //&amp;gt;,

v are not independent,

but connected by the equation X2 + ^ + v
2

1. If now we insert

X2 + /u,

2 + z;
2
as a coefficient in each term of (21) which does not

contain X, //,,
or v, the equation will become homogeneous with

respect to X, ^, v, and will therefore only involve the two inde

pendent ratios which exist between these three quantities, and

consequently we shall have to equate to zero the coefficients of

corresponding powers of X, /it,
v. By the transformation just men

tioned, equation (21) becomes, since cos 6 v,

2 (X
2 -

i/u,

2 -
|z/) /J&amp;gt;

/2 dm + 3I,\pffJa/y dm

and we get

Sffx y dm = 0, jjjy z dm =
0, fffz xdm = ......... (22),

=
fffy *dm

-
J//jyw - 1- fffaTdm (23)

Equations (22) shew that the co-ordinate axes are principal

axes. Equations (23) give in the first place

which shews that the moments of inertia about the axes of x and

y are equal to each other, as might have been seen at once from

(22), since the principal axes of x and y are any two rectangular

axes in the plane of the equator. The two remaining equations of

the system (23) reduce themselves to one, which is

JJfaf&amp;gt;dm
-

fjfz
2dm =

f (e
-

J m) Ea\

If we denote the principal moments of inertia by A, A, C, this

equation becomes

C-A = %(e-m)Ea* .................. (24),

which reconciles the expression for the couple K given by (18)

with the expression usually given, which involves moments of

inertia, and which, like (18), is independent of any hypothesis as

to the distribution of the matter within the earth.
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It should be observed that in case the earth be not solid to the

centre, the quantities A, C must be taken to mean what would be
the moments of inertia if the several particles of which the earth

is composed were rigidly connected.

12. In the preceding article the surface has been supposed
spheroidal. In the general case of an arbitrary form we should
have to compare the expressions for V given by (10) and (19). In
the first place it may be observed that the term ^ can always
be got rid of by taking for origin the centre of gravity of the
volume. Equations (20) shew that in the generai case, as well
as in the particular case considered in the last article, the

centre of gravity of the mass coincides with the centre of gravity
of the volume.

Now suppress the term u^ in u, and let u = u + u&quot;,
where

u&quot;
= Jm Q-

- cos
2

0). Then u
r

may be expanded in a series of

Laplace s functions u\ + u\ + ... ;
and since Y = E, equation (10)

will be reduced to

(25).

If the mass were collected at the centre of gravity, the second

member of this equation would be reduced to its first term, which

requires that u
t
= 0, u

s
=

0, &c. Hence (8) would be reduced to

r a(\ + u
f

),
and therefore au&quot; is the alteration of the surface

due to the centrifugal force, and au the alteration due to the

difference between the actual attraction and the attraction of

a sphere composed of spherical strata. Consider at present only
the term u

2
of u. From the general form of Laplace s functions

it follows that au
2
is the excess of the radius vector of an ellipsoid

not much differing from a sphere over that of a sphere having
a radius equal to the mean radius of the ellipsoid. If we take

the principal axes of this ellipsoid for the axes of co-ordinates,

we shall have

u\ = e (s
- sin2 cos2

&amp;lt;W
+

&quot;

(i
~ sin

2
# sin2

&amp;lt;)
+ e

&quot;

(i
- cos

2

(9),

e
, e&quot;,

e&quot; being three arbitrary constants, and 0, &amp;lt; denoting angles
related to the new axes of x, y, z in the same way that the

angles before denoted by 0, $ were related to the old axes.

Substituting the preceding expression for u\ in (25), and com

paring the result with (19), we shall again obtain equations (22).

s. II. 10
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Consequently the principal axes of the mass passing through

the centre of gravity coincide with the principal axes of the ellip

soid. It will be found that the three equations which replace (23)

are equivalent to but two, which are

A -
le Ea? = B-y Ea* = C-

%e&quot;

f

Ea\

where A, B, C denote the principal moments.

The permanence of the earth s axis of rotation shews however

that one of the principal axes of the ellipsoid coincides, at least

very nearly, with the axis of rotation
; although, strictly speaking,

this conclusion cannot be drawn without further consideration

except on the supposition that the earth is solid to the centre. If

we assume this coincidence, the term e&quot;
(-J

cos
2

0) will unite

with the term u&quot; due to the centrifugal force. Thus the most

general value of u is that which belongs to an ellipsoid having

one of its principal axes coincident with the axis of rotation, added

to a quantity which, if expanded in a series of Laplace s functions,

would furnish no terms of the order 0, 1, or 2.

It appears from this and the preceding article that the coin-

dence of the centres of gravity of the mass and volume, and that of

the axis of rotation and one of the principal axes of the ellipsoid

whose equation is r = a (1 + w
a),

which was established by Laplace

on the supposition that the earth consists of nearly spherical strata

of equal density, holds good whatever be the distribution of matter

in the interior.

13. Hitherto the surface of the earth has been regarded as a

surface of equilibrium. This we know is not strictly true, on ac

count of the elevation of the land above the level of the sea. The

question now arises, By what imaginary alteration shall we reduce

the surface to one of equilibrium ?

Now with respect to the greater portion of the earth s surface,

which is covered with water, we have a surface of equilibrium

ready formed. The expression level of the sea has a perfectly de

finite meaning as applied to a place in the middle of a continent,

if it be defined to mean the level at which the sea-water would

stand if introduced by a canal. The surface of the sea, supposed

to be prolonged in the manner just considered, forms indeed a

surface of equilibrium, but the preceding investigation does not

apply directly to this surface, inasmuch as a portion of the at-
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tracting matter lies outside it. Conceive however the land which

lies above the level of the sea to be depressed till it gets below it,

or, which is the same, conceive the land cut off at the level of the

sea produced, and suppose the density of the earth or rock which

lies immediately below the sea-level to be increased, till the

increase of mass immediately below each superficial element is

equal to the mass which, has been removed from above it. The

whole of the attracting matter will thus be brought inside the

original sea-level
;
and it is easy to see that the attraction at

a point of space external to the earth, even though it be close

to the surface, will not be sensibly affected. Neither will the

sea-level be sensibly changed, even in the middle of a continent.

For, suppose the sea-water introduced by a pipe, and conceive the

land lying above the sea-level condensed into an infinitely thin

layer coinciding with the sea-level. The attraction of an infinite

plane on an external particle does not depend on the distance of

the particle from the plane ;
and if a line be drawn through the

particle inclined at an angle a to the perpendicular let fall on the

plane, and be then made to revolve around the perpendicular, the

resultant attraction of the portion of the plane contained within

the cone thus formed will be to that of the whole plane as versin a

to 1. Hence the attraction of a piece of table-land on a particle
close to it will be sensibly the same as that of a solid of equal
thickness and density comprised between two parallel infinite

planes, and that, even though the lateral extent of the table-land

be inconsiderable, only equal, suppose, to a small multiple of the

length of a perpendicular let fall from the attracted particle on the

further bounding plane. Hence the attraction of the land on the

water in the tube will not be sensibly altered by the condensation

we have supposed, and therefore we are fully justified in regarding
the level of the sea as unchanged.

The surface of equilibrium which by the imaginary displace

ment of matter just considered has also become the bounding

surface, is that surface which at the same time coincides with

the surface of the actual sea, where the earth is covered by water,

and belongs to the system of surfaces of equilibrium which lie

wholly outside the earth. To reduce observed gravity to what

would have been observed just above this imaginary surface, we

must evidently increase it in the inverse ratio of the square of

the distance from the centre of the earth, without taking ac-

102
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count of the attraction of the table-land which lies between the

level of the station and the level of the sea. The question now

arises, How shall we best determine the numerical value of the

earth s ellipticity, and how best compare the form which results

from observation with the spheroid which results from theory on

the hypothesis of original fluidity ?

14. Before we consider how the numerical value of the earth s

ellipticity is to be determined, it is absolutely necessary that we

define what we mean by ellipticity ; for, when the irregularities of

the surface are taken into account, the term must be to a certain

extent conventional.

Now the attraction of the earth on an external body, such as

the moon, is determined by the function V
y
which is given by (10).

In this equation, the term containing r~
z
will disappear if r be

measured from the centre of gravity ;
the term containing r~

4
, and

the succeeding terms, will be insensible in the case of the moon, or

a more distant body. The only terms, therefore, after the first,

which need be considered, are those which contain r~
z

. Now the

most general value of u
z
contains five terms, multiplied by as many

arbitrary constants, and of these terms one is ^ cos
2

6, and the

others contain as a factor the sine or cosine of &amp;lt; or of 2$. The

terms containing sin &amp;lt; or cos $ will disappear for the reason men
tioned in Art. 1 2

;
but even if they did not disappear their effect

would be wholly insensible, inasmuch as the corresponding forces

go through their period in a day, a lunar day if the moon be the

body considered. These terms therefore, even if they existed, need

not be considered
;
and for the same reason the terms containing

sin 2&amp;lt; or cos 20 may be neglected ;
so that nothing remains but a

term which unites with the last term in equation (10). Let e be

the coefficient of the term
-J-

cos
12

6 in the expansion of n : then e

is the constant which determines the effect of the earth s oblate-

ness on the motion of the moon, and which enters into the expres

sion for the moment of the attractions of the sun and moon on the

earth
;
and in the particular case in which the earth s surface is an

oblate spheroid, having its axis coincident with the axis of rotation,

e is the ellipticity. Hence the constant e seems of sufficient

dignity to deserve a name, and it may be called in any case the

ellipticity.

Let r be the radius vector of the earth s surface, regarded as
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coincident with the level of the sea; and take for shortness

m {/(#, &amp;lt;)}
to denote the mean value of the function / (0, (/&amp;gt;)

throughout all angular space, or

Then it follows from the theory of Laplace s functions that

e^mKj-sin QrJ ..................... (26),

I being the latitude, or the complement of 9. To obtain this

equation it is sufficient to multiply both sides of (8) by l/4?r x

(J cos
2

0) sin 0dOd(j), and to integrate from 6 = to # = TT, and

from $ = to
&amp;lt;/&amp;gt;

= 2?r. Since J cos
2 6 is a Laplace s function of

the second order, none of the terms at the second side of (8) will

furnish any result except u^ and even in the case of u
z
the terms

involving the sine or cosine of
&amp;lt;f&amp;gt;

or of
2(/&amp;gt;

will disappear.

15. Let g be gravity reduced to the level of the sea by taking
account only of the height of the station. Then this is the

quantity to which equation (12) is applicable; and putting for u
2

its value we get by means of the properties of Laplace s functions

# = m (ff),
G (f m -

e)
= - V tn (tt

- sin I) g} ...... (27).

If we were possessed of the values of g at an immense number
of stations scattered over the surface of the whole earth, we might

by combining the results of observation in the manner indicated

by equations (27) obtain the numerical values of G and e. We
cannot, however, obtain by observation the values of g at the

surface of the sea, and the stations on land where the observations

have been made from which the results are to be obtained are not

very numerous. We must consider therefore in what way the

variations of gravity due to merely local causes are to be got rid of,

when we know the causes of disturbance
;

for otherwise a local

irregularity, which would be lost in the mean of an immense
number of observations, would acquire undue importance in the

result.

16. Now the most obvious cause of irregularity consists in the

attraction of the land lying between the level of the station and the

level of the sea, This attraction would render the values of g
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sensibly different, which would be obtained at two stations only a

mile or two apart, but situated at different elevations. To render

our observations comparable with one another, it seems best to

correct for the attraction of the land which lies underneath the

pendulum; but then we must consider whether the habitual

neglect of this attraction may not affect the mean values from

which G and e are to be found.

Let g=gi
+ g ,

where g is the attraction just mentioned, so

that a, is the result obtained by reducing the observed value ofU 1 i/O
gravity to the level of the sea by means of Dr Young s formula*.

Let h be the height of the station above the level of the sea, cr the

superficial density of the earth where not covered by water
;
then

by the formula for the attraction of an infinite plane we have

g = %7ro-h. To make an observation, conceived to be taken at the

surface of the sea, comparable with one taken on land, the correc

tion for local attraction would be additive, instead of subtractive
;

we should have in fact to add the excess of the attraction of a

layer of earth or rock, of a thickness equal to the depth of the sea

at that place, over the attraction of so much water. The formula

g = ^Trcrh will evidently apply to the surface of the sea, provided
we regard h as a negative quantity, equal to the depth of the sea,

and replace a by cr 1, the density of water being taken for the

unit of density ;
or we may retain &amp;lt;j as the coefficient, and diminish

the depth in the ratio of cr to a 1.

Let p be the mean density of the earth, then

^2ir&amp;lt;rAGj ~**G~.
4 &quot;^ 2.QLI

If we suppose &amp;lt;r

=
2J, p = 5J, a = 4000 miles, and suppose h

expressed in miles, with the understanding that in the case of the

sea h is a negative quantity equal to fths of the actual depth, we

have g = 00017 Gh nearly.

* Phil. Trans, for 1819. Dr Young s formula is based on the principle of taking

into account the attraction of the table-land existing between the station and the

level of the sea, in reducing the observation to the sea level. On account of this

attraction, the multiplier 2/t/a which gives the correction for elevation alone must

be reduced in the ratio of 1 to
l-3&amp;lt;r/4/),

or 1 to 66 nearly, if &amp;lt;r

= 2i, p= 5^. Mr

Airy, observing that the value &amp;lt;r

= 2^ is a little too small, and p = 5^ a little too

great, has employed the factor -G, instead of GO.
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17. Consider first the value of G. We have by the preceding

formula, and the first of equations (27),

G = m
(g}&amp;gt;

+ G x -00017 m (k).

According to Professor Rigaud s determination, the quantity of

land on the surface of the earth is to that of water as 100 to 276*.

If we suppose the mean elevation of the land Jth of a mile, and

the mean depth of the sea 3J miles, we shall have

-. $x3J x276-ixlOO
(*)--* - = -1-49 nearly;

so that the value of G determined by gl
would be too great by

about 000253 of the whole. Hence the mass of the earth deter

mined by the pendulum would be too great by about the one four-

thousandth of the whole; and therefore the mass of the moon,
obtained by subtracting from the sum of the masses of the earth

and moon, as determined by means of the coefficient of lunar

parallax, the mass of the earth alone, as determined by means of

the pendulum, would be too small by about the one four-thousandth

of the mass of the earth, or about the one fiftieth of the whole.

18. Consider next the value of e. Let e
l
be the value which

would be determined by substituting gl
for g in (27), and let

In considering the value of q we may attend only to the land,

provided we transfer the defect of density of the sea with an

opposite sign to the land, because if g were constant, q would

vanish. This of course proceeds on the supposition that the depth
of the sea is constant. Since e = e

l q, if q were positive, the

ellipticity determined by the pendulum would appear too great in

consequence of the omission of the force g . I have made a sort of

rough integration by means of a map of the world, by counting the

quadrilaterals of land bounded each by two meridians distant 10,
and by two parallels of latitude distant 10, estimating the fraction

of a broken quadrilateral which was partly occupied by sea. The

number of quadrilaterals of land between two consecutive parallels,

as for example 50 and 60, was multiplied by 12
(-J-

sin
2

) cos I, or

3 cos 31 + cos I, where for I was taken the mean latitude, (55 in the

example,) the sum of the results was taken for the whole surface,

*
Cambridge Philosophical Transactions, Vol. vi. p. 297.
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and multiplied by the proper coefficient. The north pole was

supposed to be surrounded by water, and the south pole by land,

as far as latitude 80. It appeared that the land lying beyond the

parallels for which sin
2
^ = J, that is, beyond the parallels 35 N. and

35 S. nearly, was almost exactly neutralized by that which lay

within those parallels. On the whole, q appeared to have a very

small positive value, which on the same suppositions as before

respecting the height of the land and the depth of the sea, was

0000012. It appears, therefore, that the omission of the force g
will produce no sensible increase in the value of e, unless the land

be on the whole higher, or the sea shallower, in high latitudes

than in low. If the land had been collected in a great circular

continent around one pole, the value of q would have been 000268
;

if it had been collected in a belt about the equator, we should

have had q
= 000302. The difference between these values of

q is about one fifth of the whole ellipticity.

19. The attraction g is not the only irregularity in the mag
nitude of the force of gravity which arises from the irregularity in

the distribution of land and sea, and in the height of the land and

depth of the sea, although it is the only irregularity, arising from

that cause, which is liable to vary suddenly from one point at the

surface to another not far off. The irregular coating of the earth

will produce an irregular attraction besides that produced by the

part of this coating which lies under and in the immediate neigh

bourhood of the station considered, and it will moreover cause an

irregular elevation or depression in the level of the sea, and

thereby cause a diminution or increase in the value of gv

Consider the attraction arising from the land which lies above

the level of the sea, and from the defect of attracting matter in the

sea. Call this excess or defect of matter the coating of the earth :

conceive the coating condensed into a surface coinciding with the

level of the sea, and let AS be the mass contained in a small

element A of this surface. Then S = o-h in the case of the land,

and 8 = (a 1) h in the case of the sea, li being in that case the

depth of the sea. Let V
c
be the potential of the coating, V, V&quot;

the values of Vc
outside and inside the surface respectively. Con

ceive 8 expanded in a series of Laplace s functions S
Q + 8

X -f . . ., then

it is easily proved that
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(28),

r being the distance of the point considered from the centre.

These equations give

(29)&amp;lt;

i v *= 4-TrZ7 &quot; *&quot;* O ~t

dr 2i -f 1 \u,/ j

Consider two points, one external, and the other internal,

situated along the same radius vector very close to the surface.

Let E be an element of this surface lying around the radius vector,

an element which for clear ideas we may suppose to be a small

circle of radius s, and let s be at the same time infinitely small

compared with a, and infinitely great compared with the distance

between the points. Then the limiting values of dV/dr and

dV jdr will differ by the attraction of the element #, an attraction

which, as follows from what was observed in Art. 13, will be ulti

mately the same as that of an infinite plane of the same density,

or 2-TrS*. The mean of the values of dV/dr and dV&quot;/dr will

express the attraction of the general coating in the direction of

the radius vector, the general coating being understood to mean

the whole coating, with the exception of a superficial element

lying adjacent to the points where the attraction is considered.

Denoting this mean by dVJdr, we get, on putting r = a,

dV S;

This equation becomes by virtue of either of the equations (28)

&amp;lt;^

=-f ............................ (30),
dr 2a

This result readily follows from equations (29), which give, on putting r=a,

dr dr

This difference of attraction at points infinitely close can evidently only arise from

the attraction of the interposed element of surface, which, being ultimately plane,

will act equally at both points ; and, therefore, the attraction will be hi each case

2?r5, and will act outwards in the first case, and inwards in the second.
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which is a known equation. Let either member of this equation
be denoted by g&quot;

. Then gravity will be increased by g&quot; ,
in

consequence of the attraction of the general coating.

20. But besides its direct effect, the attraction of the coating

will produce an indirect effect by altering the sea-level. Since the

potential at any place is increased by V
c
in consequence of the

coating, in passing from what would be a surface of equilibrium if

the coating were removed, to the actual surface of equilibrium

corresponding to the same parameter, {that is, the same value of

the constant c in equation (1),} we must ascend till the labouring
force expended in raising a unit of mass is equal to F

c,
that is, we

must ascend through a space VJg, or VJG nearly. In consequence
of this ascent, gravity will be diminished by the quantity corre

sponding to the height VJG, or h suppose. If we take account

only of the alteration of the distance from the centre of the earth,

this diminution will be equal to G . Zti/a, or 2 VJa, or
4$r&quot; ,

and

therefore the combined direct and indirect effects of the general

coating will be to diminish gravity by 3&amp;lt;/
.

But the attraction of that portion of the stratum whose thick

ness is h
,
which lies immediately about the station considered,

will be a quantity which involves li as a factor, and to include this

attraction we must correct for the change of distance h by Dr

Young s rule, instead of correcting merely according to the square
of the distance. In this way we shall get for the diminution of

gravity due to the general coating, not
3#&quot;,

but only 4 (1
-

3o-/4p)

g&quot; g&quot; ,
or

kg&quot; suppose. If cr : p :: 5 : 11, we have &=16 4

nearly.

If we cared to leave the mean value of gravity unaltered, we
should have to use, instead of 8, its -excess over its mean value S .

In considering however, only the variation of gravity from one place

to another, this is a point of no consequence.

21. In order to estimate the magnitude which the quantity

3&amp;lt;/
is likely to attain, conceive two stations, of which the first is

surrounded by land, and the second by sea, to the distance of 1000

miles, the distribution of land and sea beyond that distance being
on the average the same at the two stations. Then, by hypothesis,

the potential due to the land and sea at a distance greater than
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1000 miles is the same at the two stations; and as we only care

for the difference between the values of the potential of the earth s

coating at the two stations, we may transfer the potential due to

the defect of density at the second station with an opposite sign

to the first station. We shall thus have around the first station,

taking h for the depth of the sea around the second station,

B = ah + (o- 1) h . In finding the difference V of the potentials

of the coating, it will be amply sufficient to regard the attracting

matter as spread over a plane disk, with a radius s equal to 1000

miles. On this supposition we get

Now G =
^ TTpa, and therefore

3F 9Ss 9 o7n- (o- -!)/ s
- -

.
-

.

4 pa a

Making the same suppositions as before with regard to the

numerical values of a, p^h, h
, and a, we get 3j&quot;

= 000147 G. This

corresponds to a difference of 6 35 vibrations a day in a seconds

pendulum. Now a circle with a radius of 1000 miles looks but

small on a map of the world, so that we may readily conceive that

the difference depending on this cause between the number of

vibrations observed at two stations might amount to 15 or 20, that

is 7 5 or 10 on each side of the mean, or even more if the height
of the land or the depth of the sea be under-estimated. This

difference will however be much reduced by using kg&quot;
in place of

22. The value of Vc at any station is expressed by a double

integral, which is known if 8 be known, and which may be cal

culated numerically with sufficient accuracy by dividing the

surface into small portions and performing a summation. Theo

retically speaking, Vc could be expressed for the whole surface

at once by means of a series of Laplace s functions; the constants

in this series could be determined by integration, or at least the

approximate integration obtained by summation, and then the

value of V
c
could be obtained by substituting in the series the

* The effect of tlie irregularity of the earth s surface is greater than what is

represented by kg&quot;,
for a reason which will be explained further on (Art. 25).
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latitude and longitude of the given station for the general latitude

and longitude. But the number of terms which would have to be

retained in order to represent with tolerable accuracy the actual

state of the earth s surface would be so great that the method, I

apprehend, would be practically useless; although the leading

terms of the series would represent the effect of the actual

distribution of land and sea in its broad features. It seems

better to form directly the expression for V
c
at any station. This

expression may be calculated numerically for each station by

using the value of 8 most likely to be correct, if the result be

thought worth the trouble
;

but even if it be not calculated

numerically, it will enable us to form a good estimate of the

variation of the quantity Sg&quot;
or

Jcg&quot;
from one place to another.

Let the surface be referred to polar co-ordinates originating at

the centre, and let the angles ty, ^ be with reference to the station

considered what 0, &amp;lt; were with reference to the north pole. The

mass of a superficial element is equal to 8a2
sin tyd-frd^, and its

distance from the station is 2a sin ^. Hence we have

V =afJScosWd1rdx (31)

Let 8m be the mean value of S throughout a circle with an

angular radius ty, then the part of V
c
which is due to an annul us

having a given infinitely small angular breadth dty is proportional

to Sm cos
J-vJr,

or to Sm nearly when ^ is not large. If we regard
the depth of the sea as uniform, we may suppose 8 = for the

sea, and transfer the defect of density of the sea with an opposite

sign to the land. We have seen that if we set a circle of land

^ mile high of 1000 miles radius surrounding one station against

a circle of sea 3|- miles deep, and of the same radius, surround

ing another, we get a difference of about i x 1*64 x 6 35, or 3J

nearly, in the number of vibrations performed in one day by a

seconds pendulum. It is hardly necessary to remark that high
table-land will produce considerably more effect than land only

just raised above the level of the sea, but it should be observed

that the principal part of the correction is due to the depth of the

sea. Thus it would require a uniform elevation of about 2*1

miles, in order that the land elevated above the level of the sea

should produce as much effect as is produced by the difference

between a stratum of land 3J miles thick and an equal stratum of

water.



AT THE SURFACE OF THE EARTH. 157

23. These considerations seem sufficient to account, at least in

a great measure, for the apparent anomalies which Mr Airy has

noticed in his discussion of pendulum experiments*. The first

table at p. 230 contains a comparison between the observations

which Mr Airy considers first-rate and theory, The column

headed &quot;Error in Vibrations&quot; gives the number of vibrations

per diem in a seconds pendulum corresponding to the excess of

observed gravity over calculated gravity. With respect to the

errors Mr Airy expressly remarks &quot;

upon scrutinizing the errors of

the first-rate observations, it would seem that, cceteris paribus,

gravity is greater on islands than on continents.&quot; This circum

stance appears to be fully accounted for by the preceding theory.

The greatest positive errors appear to belong to oceanic stations,

which is just what might be expected. Thus the only errors with

the sign + which amount to 5 are, Isle of France + 7 ;
Marian

Islands + 6 8; Sandwich Islands + 5 2; Pulo Gaunsah Lout (a

small island near New Guinea and almost on the equator), + 5 0.

The largest negative errors are, California 6 ;
Maranham

5*6
;

Trinidad 5 2. These stations are to be regarded as

continental, because generally speaking the stations which are

the most continental in character are but on the coasts of conti

nents, and Trinidad may be regarded as a coast station. That

the negative errors just quoted are larger than those that stand

opposite to more truly continental stations such as Clermont,

Milan, &c. is no objection, because the errors in such different

latitudes cannot be compared except on the supposition that the

value of the ellipticity used in the comparison is correct.

Now if we divide the 49 stations compared into two groups,

an equatorial group containing the stations lying between latitudes

35 N. and 35 S., and a polar group containing the rest, it will

be found that most if not all of the oceanic stations are contained

in the former group, while the stations belonging to the latter

are of a more continental character. Hence the observations will

make gravity appear too great about the equator and too small

towards the poles, that is, they will on the whole make gravity

vary too little from the equator to the poles ;
and since the

variation depends upon %m e, the observations will be best

satisfied by a value of e which is too great. This is in fact pre-

*
Encyclopedia Metropolitana. Art. Figure of the Earth.
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cisely the result of the discussion, the value of e which Mr Airy
has obtained from the pendulum experiments ( 003535) being

greater than that which resulted from the discussion of geodetic

measures (-003352), or than any of the values
( 003370, 003360,

and
&quot;003407), obtained from the two lunar inequalities which

depend upon the earth s oblateness.

Mr Airy has remarked that in the high north latitudes the

greater number of errors have the sign + ,
and that those about

the latitude 45 have the sign ;
those about the equator being

nearly balanced. To destroy the errors in high and mean latitudes

without altering the others, he has proposed to add a term

A sin
2X cos

2

X, where X is the latitude. But a consideration of the

character of the stations seems sufficient, with the aid of the

previous theory, to account for the apparent anomaly. About

latitude 45 the stations are all continental; in fact, ten con

secutive stations including this latitude are Paris, Clermont, Milan,

Padua, Fiume, Bordeaux, Figeac, Toulon, Barcelona, New York.

These stations ought, as a group, to appear with considerable nega
tive errors. Mr Airy remarks &quot; If we increased the multiplier of

sin
2

X,&quot;
and consequently diminished the ellipticity,

&quot; we might
make the errors at high latitudes as nearly balanced as those at

the equator : but then those about latitude 45 would be still

greater than at
present.&quot;

The largeness of the ellipticity used in the comparison accounts

for the circumstance that the stations California, Maranham,

Trinidad, appear with larger negative errors than any of the

stations about latitude 45, although some of the latter appear
more truly continental than the former. On the whole it would

seem that the best value of the ellipticity is one which, supposing
it left the errors in high latitudes nearly balanced, would give a

decided preponderance to the negative errors about latitude 45 N.

and a certain preponderance to the positive errors about the

equator, on account of the number of oceanic stations which occur

in low latitudes.

If we follow a chain of stations from the sea inland, or from the

interior to the coast, it is remarkable how the errors decrease

algebraically from the sea inwards. The chain should not extend

over too large a portion of the earth s surface, as otherwise a small

error in the assumed ellipticity might effect the result. Thus for
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example, Spitsbergen + 4 3, Hammerfest 4, Drontheim - 27.

In comparing Hammerfest with Drontheim, we may regard the

former as situated at the vertex of a slightly obtuse angle, and

the latter as situated at the edge of a straight coast. Again,
Dunkirk - 01, Paris - 1 9, Clermont - 3 9, Figeac

- 3 8, Toulon

O l, Barcelona O O, Fomentera + 2. Again, Padua + 07, Milan
- 2 8. Again, Jamaica - O S, Trinidad - 5 2.

24. Conceive the correction
kg&quot; calculated, and suppose it

applied, as well as the correction g t
to observed gravity reduced

to the level of the sea, or to g, and let the result be g lt
Let e

/y
be

the ellipticity which would be determined by means of gn ,
e
/t
+ Ae

/y

the true ellipticity. Since g tt
= g g -f kg&quot;,

and therefore

9 = 9, l
+ 9 -ty&quot;&amp;gt;

we g^ by (27)

Ki-sm
2

(/-/)} ............ (32).

Now g = 27ro-7z = 27rS = 27r28&amp;lt; ;
and we get from (30) and (28)

dr 2a

All the terms 8
4
will disappear from the second side of (32) except

S
2 ,
and we therefore get

Hence the correction Ae
/y

is less than that considered in Art. 18, in

the ratio of 5 k to 5, and is therefore probably insensible on ac

count of the actual distribution of land and water at the surface of

the earth.

25. Conceive the islands and continents cut off at the level of

the sea, and the water of the sea replaced by matter having the

same density as the land. Suppose gravity to be observed at the

surface which would be thus formed, and to be reduced by Dr

Young s rule to the level of what would in the altered state of the

earth be a surface of equilibrium. It is evident that gn expresses

the gravity which would be thus obtained.

The irregularities of the earth s coating would still not be

wholly allowed for, because the surface which would be formed

in the manner just explained would no longer be a surface of equi-
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librium, in consequence of the fresh distribution of attracting

matter. The surface would thus preserve traces of its original

irregularity. A repetition of the same process would give a surface

still more regular, and so on indefinitely. It is easy to see the

general nature of the correction which still remains. Where a

small island was cut off, there was previously no material elevation

of the sea-level, and therefore the surface obtained by cutting off

the island will be very nearly a surface of equilibrium, except in so

far as that may be prevented by alterations which take place on a

large scale. But where a continent is cut off there was a consider

able elevation in the sea-level, and therefore the surface which is

left will be materially raised above the surface of equilibrium which

most nearly represents the earth s surface in its altered state.

Hence the general effect of the additional correction will be to in

crease that part of
g&quot;

which is due to causes which act on a larger

scale, and to leave nearly unaffected that part which is due to

causes which are more local.

The form of the surface of equilibrium which would be finally

obtained depends on the new distribution of matter, and conversely,

the necessary distribution of matter depends on the form of the

final surface. The determination of this surface is however easy

by means of Laplace s analysis.

26. Conceive the sea replaced by solid matter, of density or,

having a height from the bottom upwards which is to the depth
of the sea as 1 to a. Let h be the height of the land above

the actual sea-level, h being negative in the case of the sea,

and equal to the depth of the sea multiplied by 1 l/cr. Let

x be the unknown thickness of the stratum which must be re

moved in order to leave the surface a surface of equilibrium,

and suppose the mean value of x to be zero, so that on the whole

matter is neither added nor taken away. The surface of equili

brium which would be thus obtained is evidently the same as

that which would be formed if the elevated portions of the irre

gular surface were to become fluid and to run down.

Let V be the potential of the whole mass in its first state,

Vx the potential of the stratum removed. The removal of this

stratum will depress the surface of equilibrium by the space

G~1 VX : and the condition to be satisfied is, that this new
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surface of equilibrium, or else a surface of equilibrium belong

ing to the same system, and therefore derived from the former

by further diminishing the radius vector by the small quantity

c
t

shall coincide with the actual surface. We must therefore

have
G- l Vt +c=x-h ........................ (33).

Let h and x be expanded in series of Laplace s functions

/? -f 7^4- ... and ac
Q + ac

l
+ ... Then the value of Vx at the sur

face will be obtained from either of equations (28) by replacing 8

by ax and putting r = a. We have therefore

After substituting in (33) the preceding expressions for Vx , h,

and x, we must equate to zero Laplace s functions of the same

order. The condition that X
Q
= may be satisfied by means of the

constant c, and we shall have

which gives, on replacing G
1

. ^TTO-CL by its equivalent

We see that for terms of a high order #
4 is very nearly equal

to h^ but for terms of a low order, whereby the distribution of land

and sea would be expressed as to its broad features, a\ is sensibly

greater than h im

27. Let it be required to reduce gravity g to the gravity
which would be observed, in the altered state of the surface,

along what would then be a surface of equilibrium. Let the cor

rection be denoted by g %g&quot;,
where g is the same as before. The

correction due to the alteration of the coating in the manner con

sidered in Art. 20 has been shewn to be equal to

&
2i + 1

and the required correction will evidently be obtained by replacing
8 by ex. Putting for x

i
its value got from (35) we have

, , v (2i -2}p , ^ f , S/a-So-
g 3^r

= 27TC72 r hi = 27T&amp;lt;rS (I r-^ ;

S. II.
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which gives, since
27r&amp;lt;r2^

= 27ro-A = g and G =

_ 3&amp;lt;r 3/3
- So- Ji

i

If we put &amp;lt;r

=
2J, p = 5J, a = 4000, and suppose A expressed

in miles, we get

.21 iA
4 +...) ...... (37).

Had we treated the approximate correction
Sg&quot;

in the same

manner we should have had

.429/i
3 + .333/i

4

whereas, since k 3 (1 cr/p),
we get

kg&quot;
= S== (? x .00017 x

(2z + 1) p

...) ...... (38).

The general expressions for
3/&quot;, 3g&quot;,

and
%&quot;

shew that the

approximate correction
kg&quot; agrees with the true correction Sg

&quot;

so far as regards terms of a high order, whereas the leading terms,

beginning with the first variable term, are decidedly too small
;

so that, as far as regards these terms, %g&quot;
is better represented

by 3g&quot;
than by kg&quot;.

This agrees with what has been already

remarked in Art. 25.

If we put g g -f ^g&quot; g llfl
and suppose G and e determined

by means of g llfl
small corrections similar to those already investi

gated will have to be applied in consequence of the omission of the

quantity g %g&quot;
in the value of g. The correction to would

probably be insensible for the reason mentioned in Art. 18. If

we are considering only the variation of gravity, we may of

course leave out the term h
Q

.

The series (37) would probably be too slowly convergent to be

of much use. A more convergent series may be obtained by sub

tracting kg&quot;
from 3g

&quot;

,
since the terms of a high order in 3g

&quot;

are

ultimately equal to those in
kg&quot;.

We thus get

3g &quot;=kg&quot; + G x .00017 x

(- 6.1367/ + .455^ + .1237*,+ .056A.
3
+ .032/*

4 + ...) (30),
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which gives g&quot;
if

g&quot;
be known by quadratures for the station

considered.

Although for facility of calculation it has been supposed that

the sea was first replaced by a stratum of rock or earth of less

thickness, and then that the elevated portions of the earth s

surface became fluid and ran down, it may be readily seen that it

would come to the same thing if we supposed the water to remain

as it is, and the land to become fluid and run down, so as to form

for the bottom of the sea a surface of equilibrium. The gravity

gln would apply to the earth so altered.

28. Let us return to the quantity Vc of Art. 19, and consider

how the attraction of the earth s irregular coating affects the

direction of the vertical. Let I be the latitude of the station,

which for the sake of clear ideas may be supposed to be situated

in the northern hemisphere, -GJ- its longitude west of a given p^ace,

f the displacement of the zenith towards the south produced by
the attraction of the coating, 77 its displacement towards the east.

Then

\_ dV, =
secZ dVc

*
~
Ga di

V ~ Ga dv

because a&quot;

1

dVJdl and sec I . a-
1 dVe/d-& are the horizontal compo

nents of the attraction towards the north and towards the west

respectively, and G may be put for g on account of the smallness

of the displacements.

Suppose the angle ^ of Art. 22 measured from the meridian,

so as to represent the north azimuth of the elementary ma=s

So? sin -^rd^rd^. On passing to a place on the same meridian

whose latitude is l + dl, the angular distance of the elementary
mass is shortened by cos % . dl, and therefore its linear distance,

which was a chord ^r, or 2a sin
J-^r, becomes

2a sin |\/r a cos
J&amp;gt;|r

cos ^ . dl.

Hence the reciprocal of the linear distance is increased by

l/4a . cos IT/T cosec
2

Ji|r cos x . dl,

and therefore the part of Vc due to this element is increased by

JSa cos
2^ cosec ^ty cos

Hence we have

dr.
Bd d

dl &quot;2 Jj sin^
112



164 OX THE VARIATION OF GRAVITY

Although the quantity under the integral sign in this expres
sion becomes infinite when ^r vanishes, the integral itself has a

finite value, at least if we suppose 8 to vary continuously in the

immediate neighbourhood .of the station. For if 8 becomes 8

when % becomes % + TT, we may replace 8 under the integral sign

by 8 8 ,
and integrate from ^ = to % = TT, instead of inte

grating from % = to % = 2-zr, and the limiting value of

(8 8
) / sin J-^r

when
-ty

vanishes is AdS/dty, which is finite.

To get the easterly displacement of the zenith, we have only to

measure ^ from the west instead of from the north, or, which

comes to the same, to write % + JTT for ^, and continue to measure

^ from the north. We get

sec I ,
c = ~ o//cos

a

\ty cosec
J-vJr sin^. d^d% ...(41).

20. The expressions (40) and (41) are not to be applied to

points very near the station if 8 vary abruptly, or even very

rapidly, about such points. Recourse must in such a case be had

to direct triple integration, because it is not allowable to consider

the attracting matter as condensed into a surface. If however 8

vary gradually in the neighbourhood of the station, the expression

(40) or (41) may be used without further change. For if we

modify (40) in the way explained in the preceding article, or else

by putting the integral under the form

/o
r

/o
2 r cos2 i^ cosec i^ cos X@~~ ^i) d^dfe

where 8
t
denotes the value of 8 at the station, we see that the

part of the integral due to a very small area surrounding the

station is very small. If 8 vary abruptly, in consequence suppose
of the occurrence of a cliff, we may employ the expressions (40),

(41), provided the distance of the cliff from the station be as much
as three or four times its height.

These expressions shew that the vertical is liable to very

irregular deviations depending on attractions which are quite
local. For it is only in consequence of the opposition of attractions

in opposite quarters that the value of the integral is not con

siderable, and it is of course larger in proportion as that opposition

is less complete. Since sin^ is but small even at the distance

of two or three hundred miles, a distant coast, or on the other

hand a distant tract of high land of considerable extent, may
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produce a sensible effect
; although of course in measuring an arc

of the meridian those attractions may be neglected which arise

from masses which are so distant as to affect both extremities

of the arc in nearly the same way.

If we compare (40) or (41) with the expression for
g&quot;

or
&amp;lt;/ &quot;,

we shall see that the direction of the vertical is liable to far more

irregular fluctuations on account of the inequalities in the earth s

coating than the force of gravity, except that part of the force

which has been denoted by g ,
and which is easily allowed for.

It has been supposed by some that the force of gravity alters

irregularly along the earth s surface
;
and so it does, if we compare

only distant stations. But it has been already remarked with

what apparent regularity gravity when corrected for the inequality

g appears to alter, in the direction in which we should expect, in

passing from one station to another in a chain of neighbouring
stations.

30. There is one case in which the deviation of the vertical

may become unusually large, which seems worthy of special con

sideration.

For simplicity, suppose S to be constant for the land, and equal
to zero for the sea, which comes to regarding the land as of

constant height, the sea as of uniform depth, and transferring

the defect of density of the sea with an opposite sign to the land.

Apply the integral (40) to those parts only of the earth s surface

which are at no great distance from the station considered, so that

we may put cos^ =
1, sin

J-v/r
=^ = s

t

2a
t

if s be the distance

of the element, measured along a great circle. In going from the

station in the direction determined by the angle ^, suppose that

we pass from land to sea at distances s
lf

s
s , s.,... and from sea

to land at the intermediate distances s.2 ,
s
4
... On going in the

opposite direction suppose that we pass from land to sea at the

distances s_^ s_3 , s_., ... and from sea to land at the distances

s_2 , s_4
Then we get from (40),

dV_ = aS /(log S
l -log 5_t

-
(log *

2
-

log S_2)
+ log S

3
-

log S_3

-...}cosx-&amp;lt;*X

If the station be near the coast, one of the terms log^, log.9_ t

will be large, and the zenith will be sensibly displaced towards the
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sea by the irregular attraction. On account of the shelving of the

coast, the preceding expression, which has been formed on the

supposition that S vanished suddenly, would give too great a

displacement ;
but the object of this article is not to perform any

precise calculation, but merely to shew how the analysis indicates

a case in which there would be unusual disturbance. A cliff

bounding a tract of table-land would have the same sort of effect

as a coast, and indeed the effect might be greater, on account of

the more sudden variation of 8. The effect would be nearly the

same at equal horizontal distances from the edge above and

below, that distance being supposed as great as a small multiple

of the height of the cliff, in order to render the expression (40)

applicable without modification.

31. Let us return now to the force of gravity, and leaving the

consideration of the connexion between the irregularities of gravity

and the irregularities of the earth s coating, and of the possibility

of destroying the former by making allowance for the latter, let us

take the earth such as we find it, and consider further the con

nexion between the variations of gravity and the irregularities of

the surface of equilibrium which constitutes the sea-level.

Equation (12) gives the variation of gravity if the form of the

surface be known, and conversely, (8) gives the form of the surface

if the variation of gravity be known. Suppose the variation of

gravity known by means of pendulum- experiments performed at a

great many stations scattered over the surface of the earth
;
and

let it be required from the result of the observations to deduce

the form of the surface. According to what has been already

remarked, a series of Laplace s functions would most likely be

practically useless for this purpose, unless we are content with

merely the leading terms in the expression for the radius vector
;

and the leading character of those terms depends, not necessarily

upon their magnitude, but only on the wide extent of the ine

qualities which they represent. We must endeavour therefore

to reduce the determination of the radius vector to quadratures.

For the sake of having to deal with small terms, let g be

represented, as well as may be, by the formula which applies to an

oblate spheroid, and let the variable term in the radius vector be

calculated by Clairaut s Theorem. Let
cjc

be calculated gravity,
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r
c the calculated radius vector, and put g = gc + A#, r = r

c + aAM.

Suppose A# and AM expanded in series of Laplace s functions.

It follows from (12) that A^ will have no term of the order 1
;

indeed, if this were not the case, it might be shewn that the

mutual forces of attraction of the earth s particles would have a

resultant. Moreover the constant term in A# may be got rid of by

using a different value of G. No constant term need be taken in

the expansion of AM, because such a term might be got rid of by

using a different value of a, and a of course cannot be determined

by pendulum-experiments. The term of the first order will dis

appear if r be measured from the common centre of gravity of

the mass and volume. The remaining terms in the expansion

of AM will be determined from those in the expansion of A# by
means of equations (8) and (12).

Let A? = (va + v
8 + t;

4 +...) ............... (42),

and we shall have
Att = v

a + Jv8 + Jv4 + ..................... (43).

Suppose A^ = GF (0, &amp;lt;/&amp;gt;).

Let -^ be the angle between the

directions determined by the angular co-ordinates 0,
(f&amp;gt;

and & ,
&amp;lt; ,

Let (1 -2fcos^+ f
2

)* be denoted by R, and let Q t
be the coef

ficient of f* in the expansion of .ZT
1
in a series according to ascend

ing powers of f. Then

) Q|Sin ffdffdtf,

and therefore if f be supposed to be less than 1, and to become 1

in the limit, we shall have 4nrAu = limit of

f&quot; j&quot;F(ff, f)(5J o J o

Now assume

and we shall have

whence we get, putting Z for -ZT
1 - Qa

-
?Q, , y = 2/f

&quot;

f d . $
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Integrating by parts, arid observing that 7 vanishes with f, we get

7 = 2r
:^+ 3jfr-iza?.

The last integral may be obtained by rationaliz:tion. If we

assume R = w %,
and observe that Q = 1, Qt

= cos f,
and that

w = 1 when f vanishes, we shall find

i

.log
~ -

1

Whenf=lwehaveZ=(2
and

= - 2 sin if (1
- sin if)

- cos f log [sin if (1 + sin

Putting/ (f) for the value of 7 when f = 1, we have

/(f)
= cosec -|f -f 1 6 sin Jf

5 COST/T 3 cos flog (sin -|f (1 + sin Jf)j ......... (45).

In the expression for AM, we may suppose the line from which

& is measured to be the radius vector of the station considered.

We thus get, on replacing F(6 t
&amp;lt;j&amp;gt; ) by G~*kg, and employing the

notation of Art. 22,

A =
4~Qj:fi*9-fW sm^d^dx

............ (46).

32. Let A$r
= g + A tjr.

Then A
^r

is the excess of observed

gravity reduced to the level of the sea by Dr Young s rule over

calculated gravity; and of the two parts g and A # of which A^r

consists, the former is liable to vary irregularly and abruptly from

one place to another, the latter varies gradually. Hence, for the

sake of interpolating between the observations taken at different

stations, it will be proper to separate A# into these two parts, or,

which comes to the same, to separate the whole integral into two

parts, involving g and A
(/ respectively, so as to get the part of Aw

which is due to g by our knowledge of the height of the land and

the depth of the sea, and the part which depends on A # by the

result of pendulum-experiments. It may be observed that a con

stant error, or a slowly varying error, in the height of the land

would be of no consequence, because it would enter with opposite

signs into g and A
*/.

It appears, then, that the results of pendulum-experiments
furnish sufficient data for the determination of the variable part of
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the radius vector of the earth s surface, and consequently for the

determination of the particular value which is to be employed at

any observatory in correcting for the lunar parallax, subject how
ever to a constant error depending on an error in the assumed

value of a.

33. The expression for
g&quot;

in Art. 27 might be reduced to

quadratures by the method of Art. 31, but in this case the inte

gration with respect to could not be performed infinite terms, and

it would be necessary in the first instance to tabulate, once for all,

an integral of the form J7/( cos ^r) d% for values of
t/r,

which need

not be numerous, from to TT. This table being made, the tabu

lated function would take the place of f($) in (46), and the rest

of the process would be of the same degree of difficulty as the

quadratures expressed by the equations (31) and (46).

34. Suppose A?* known approximately, either as to its general

features, by means of the leading terms of the series (43), or in

more detail from the formula (46), applied in succession to a great

many points on the earth s surface. By interpolating between

neighbouring places for which AM has been calculated, find a

number of points where Au has one of the constant values 2/3,

/3, 0, P, 2/3 . . ., mark these points on a map of the world, and join

by a curve those which belong to the same value of AM. We shall

thus have a series of contour lines representing the elevation or

depression of the actual sea-level above or below the surface of

the oblate spheroid, which has been employed as most nearly

representing it. If we suppose these lines traced on a globe, the

reciprocal of the perpendicular distance between two consecutive

contour lines will represent in magnitude, and the perpendicular
itself in direction, the deviation of the vertical from the normal to

the surface of the spheroid, or rather that part of the deviation

which takes place on an extended scale : for sensible deviations

may be produced by attractions which are merely local, and which

would not produce a sensible elevation or depression of the sea-

level
; although of course, as to the merely mathematical question,

if the contour lines could be drawn sufficiently close and exact,

even local deviations of the vertical would be represented.

Similarly, by joining points at which the quantity denoted in

Art. 19 by Vc has a constant value, contour lines would be formed
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representing the elevation of the actual sea-level above what

would be a surface of equilibrium if the earth s irregular coating
were removed. By treating Vx in the same way, contour lines

would be formed corresponding to the elevation of the actual

sea-level above what would be the sea-level if the solid portions of

the earth s crust which are elevated were to become fluid and to

run down, so as to form a level bottom for the sea, which would in

that case cover the whole earth.

These points of the theory are noticed more for the sake of

the ideas than on account of any application which is likely to be

made of them; for the calculations indicated, though possible with

a sufficient collection of data, would be very laborious, at least if

we wished to get the results with any detail.

35. The squares of the ellipticity, and of quantities of the

same order, have been neglected in the investigation. Mr Airy,

in the Treatise already quoted, has examined the consequence, on

the hypothesis of fluidity, of retaining the square of the ellipticity,

in the two extreme cases of a uniform density, and of a density

infinitely great at the centre and evanescent elsewhere, and has

found the correction to the form of the surface and the variation of

gravity to be insensible, or all but insensible. As the connexion

between the form of the surface and the variation of gravity fol

lows independently of the hypothesis of fluidity, we may infer that

the terms depending on the square of the ellipticity which would

appear in the equations which express that connexion would be

insensible. It may be worth while, however, just to indicate the

mode of proceeding when the square of the ellipticity is retained.

By the result of the first approximation, equation (1) is satis

fied at the surface of the earth, as far as regards quantities of the

first order, but not necessarily further, so that the value of V + U
at the surface is not strictly constant, but only of the form c + H,
where II is a small variable quantity of the second order. It is

to be observed that V satisfies equation (3) exactly, not approxi

mately only. Hence we have merely to add to V a potential V
which satisfies equation (3) outside the earth, vanishes at an

infinite distance, and is equal to H at the surface. Now if we

suppose V to have the value // at the surface of a sphere whose

radius is a, instead of the actual surface of the earth, we shall only
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commit an error which is a small quantity of the first order com

pared with H, and H is itself of the second order, and therefore

the error will be only of the third order. But by this modifica

tion of one of the conditions which V is to satisfy, we are enabled

to find V just as V was found, and we shall thus have a solution

which is correct to the second order of approximation. A repeti

tion of the same process would give a solution which would be

correct to the third order, and so on. It need hardly be remarked

that in going beyond the first order of approximation, we must

distinguish in the small terms between the direction of the vertical,

and that of the radius vector.



[From the Report of the British Association for 1849. Part n. p. 10.]

ON A MODE OF MEASURING THE ASTIGMATISM OF A DEFECTIVE

EYE.

BESIDES the common defects of long sight and short sight,

there exists a defect, not very uncommon, which consists in the

eye s refracting the rays of light with different power in different

planes, so that the eye, regarded as an optical instrument, is not

symmetrical about its axis. This defect was first noticed by the

present Astronomer Koyal in a paper published about 20 years

ago in the Transactions of the Cambridge Philosophical Society.

It may be detected by making a small pin-hole in a card, which is

to be moved from close to the eye to arm s length, the eye mean
while being directed to the sky, or any bright object of sufficient

size. With ordinary eyes the indistinct image of the hole remains

circular at all distances
;
but to an eye having this peculiar defect

it becomes elongated, and, when the card is at a certain distance,

passes into a straight line. On further removing the card, the

image becomes elongated in a perpendicular direction, and finally,

if the eye be not too long-sighted, passes into a straight line

perpendicular to the former. Mr Airy has corrected the defect in

his own case by means of a spherico-cylindrical lens, in which the

required curvature of the cylindrical surface was calculated by
means of the distances of the card from the eye when the two focal

lines were formed. Others however have found a difficulty in

preventing the eye from altering its state of adaptation during the

measurement of the distances. The author has constructed an

instrument for determining the nature of the required lens, which

is based on the following proposition :

Conceive a lens ground with two cylindrical surfaces of equal

radius, one concave and the other convex, with their axes crossed
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at right angles ;
call such a lens an astigmatic lens ; let the reci

procal of its focal length in one of the principal planes be called its

power, and a line parallel to the axis of the convex surface its

astigmatic axis. Then if two thin astigmatic lenses be combined

with their astigmatic axes inclined at any angle, they will be

equivalent to a third astigmatic lens, determined by the following

construction : In a plane perpendicular to the common axis of

the lenses, or axis of vision, draw through any point two straight

lines, representing in magnitude the powers of the respective

lenses, and inclined to a fixed line drawn arbitrarily in a direc

tion perpendicular to the axis of vision at angles equal to twice

the inclinations of their astigmatic axes, and complets the

parallelogram. Then the two lenses will be equivalent to a single

astigmatic lens, represented by the diagonal of the parallelogram
in the same way in which the single lenses are represented by the

sides. A piano-cylindrical or spherico-cylindrical lens is equi
valent to a common lens, the power of which is equal to the semi-

sum of the reciprocals of the focal lengths in the two principal

planes, combined with an astigmatic lens, the power of which is

equal to their semi-difference.

If two piano cylindrical lenses of equal radius, one concave and

the other convex, be fixed, one in the lid and the other in the

body of a small round wooden box, with a hole in the top and

bottom, so as to be as nearly as possible in contact, the lenses

will neutralize each other when the axes of the surfaces are

parallel ; and, by merely turning the lid round, an astigmatic lens

may be formed of a power varying continuously from zero to twice

the astigmatic power of either lens. When a person who has the

defect in question has turned the lid till the power suits his eye,

an extremely simple numerical calculation, the data for which are

furnished by the chord of double the angle through which the lid

has been turned, enables him to calculate the curvature of the

cylindrical surface of a lens for a pair of spectacles which will

correct the defect of his eye.

[The proposition here employed is easily demonstrated by a

method founded on the notions of the theory of undulations,

though of course, depending as it does simply on the laws of

reflection and refraction, it does not involve the adoption of any

particular theory of light.
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Consider a thin lens bounded by cylindrical surfaces, the axes

of the cylinders being crossed at right angles. Kefer points in the

neighbourhood of the lens to the rectangular axes of x, y, z, the

axis of z being the axis of the lens, and those of x and y parallel

to the axes of the two cylindrical surfaces respectively, the origin

being in or near the lens, suppose in its middle point. Let r, s,

measured positive when the surfaces are convex, be the radii of

curvature in the planes of xz, yz respectively. Then if T be the

central thickness of the lens, the thickness near the point (x, y)

will be

very nearly. As T is constant, and is supposed very small, we may

neglect it, and regard the thickness as negative, and expressed by
the second term in the above formula. The incident pencil being

supposed to be direct, or only slightly oblique, and likewise slender,

the retardation of the ray which passes through the point (x, y)

may be calculated as if it were incident perpendicularly on a

parallel plate of thickness

so that if E be the retardation, measured by equivalent space in

air, and p be the index of refraction

The effect therefore of our lens, to the lowest order of approxi

mation, which gives the geometrical foci in the principal planes, is

the same as that of two thin lenses placed in contact, one an

ordinary lens, and the other an astigmatic lens. If / be the radius

of curvature of the piano-spherical lens equivalent to the ordinary

lens, and r&quot; that of the astigmatic lens, we have

as above enunciated. If p be the power of the astigmatic lens,
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and for the retardation produced by this lens alone

where p, 6 are polar co-ordinates in the plane of xy.

If two thin astigmatic lenses of powers p, p and with their

astigmatic axes inclined at azimuths a, a to the axis of y be com

bined, we shall have for the combination

-R = %pp* cos 2 (0
-

a) + i/p
2
cos 2 (6

- a ),

which is the same as would be given by a single astigmatic lens of

power PI at an azimuth a
1 , provided

pp* cos 2 (6
-

a) +p p* cos 2(0- a
) =plP

*
cos 2(0- aj,

which will be satisfied for all values of 6 provided

p cos 2a +p cos 2/ =pl
cos 2^,

p sin 2z 4- p sin 2a =
j^ sin 2^.

These two equations geometrically interpreted give the propo
sition enunciated above for the combination of astigmatic lenses.]



[From the Report of the British Association for 1849. Part n. p. 11.]

ON THE DETERMINATION OF THE WAVE LENGTH CORRESPONDING

WITH ANY POINT OF THE SPECTRUM.

MR STOKES said it was well known to all engaged in optical

researches that Fraunhofer had most accurately measured the wave

lengths of seven of the principal fixed lines of the spectrum. Now
he found that by a very simple species of interpolation, which he

described, he could find the wave length for any point intermediate

between the two of them. He then exemplified the accuracy to

be obtained by his method by applying it to the actually known

points, and shewed that in these far larger intervals than he ever

required to apply the method to the error was only in the eighth,

and in one case in the seventh, place of decimals. By introducing

a term depending on the square into the interpolation still greater

accuracy was attainable. The mode of interpolation depended on

the known fact that, if substances of extremely high refractive

power be excepted, the increment A//, of the refractive index in

passing from one point of the spectrum to another is nearly propor

tional to the increment AX&quot;
2
of the squared reciprocal of the wave

length. Even in the case of flint glass, the substance visually

employed in the prismatic analysis of light, this law is nearly true

for the whole spectrum, and will be all but exact if restricted to

the interval between two consecutive fixed lines. Hence we have

only to consider
/z,

as a function, not of X, but of X~
2

,
and then take

proportional parts.

On examining in this way Fraunhofer s indices for flint glass,

it appeared that the wave length B\ of the fixed line B was too

great by about 4 in the last, or eighth, place of decimals. It is
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remarkable that the line B was not included in Fraunhofer s

second and more accurate determination of the wave lengths, and
that the proposed correction to B\ is about the same, both as to

sign and magnitude, as one would have guessed from Fraunhofer s

own corrections of the other wave lengths, obtained from his

second .series of observations.

[A map of the spectrum laid down according to the values of

X&quot;

2
instead of \ refers equally to a natural standard, that is, one

independent of the material of any prism, and is much more con
venient for comparison with spectra obtained by dispersion, not

diffraction.]

s. ii. 12



[From the Transactions of the Cambridge Philosophical Society, Yol. viu.

p. 707.]

DISCUSSION OF A DIFFERENTIAL EQUATION RELATING TO THE

BREAKING OF RAILWAY BRIDGES.

[Read May 21, 1849.]

To explain the object of the following paper, it will be best to

relate the circumstance which gave rise to it. Some time ago
Professor Willis requested my consideration of a certain differen

tial equation in which he was interested, at the same time explain

ing its object, and the mode of obtaining it. The equation will be

found in the first article of this paper, which contains the substance

of what he communicated to me. It relates to some experiments
which have been performed by a Royal Commission, of which Pro

fessor Willis is a member, appointed on the 27th of August, 1847,
&quot;

for the purpose of inquiring into the conditions to be observed

by engineers in the application of iron in structures exposed to

violent concussions and vibration.&quot; The object of the experiments
was to examine the effect of the velocity of a train in increasing or

decreasing the tendency of a girder bridge over which the train

is passing to break under its weight. In order to increase the

observed effect, the bridge was purposely made as slight as possible :

it consisted in fact merely of a pair of cast or wrought iron bars,

nine feet long, over which a carriage, variously loaded iri different

sets of experiments, was made to pass with different velocities.

The remarkable result was obtained that the deflection of the

bridge increased with the velocity of the carriage, at least up to a

certain point, and that it amounted in some cases to two or three

times the central statical deflection, or that which would be pro

duced by the carriage placed at rest on the middle of the bridge.

It seemed highly desirable to investigate the motion mathemati

cally, more especially as the maximum deflection of the bridge,

considered as depending on the velocity of the carriage, had not
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been reached in the experiments*, in some cases because it corre

sponded to a velocity greater than any at command, in others

because the bridge gave way by the fracture of the bars on increas

ing the velocity of the carriage. The exact calculation of the

motion, or rather a calculation in which none but really insignifi

cant quantities should be omitted, would however be extremely

difficult, and would require the solution of a partial differential

equation with an ordinary differential equation for one of the

equations of condition by which the arbitrary functions would have

to be determined. In fact, the forces acting on the body and on

any element of the bridge depend upon the positions and motions,

or rather changes of motion, both of the body itself and of every
other element of the bridge, so that the exact solution of the

problem, even when the deflection is supposed to be small, as it is

in fact, appears almost hopeless.

In order to render the problem more manageable, Professor

Willis neglected the inertia of the bridge, and at the same time

regarded the moving body as a heavy particle. Of course the

masses of bridges such as are actually used must be considerable
;

but the mass of the bars in the experiments was small compared
with that of the carriage, and it was reasonable to expect a near

accordance between the theory so simplified and experiment.

This simplification of the problem reduces the calculation to an

ordinary differential equation, which is that which has been already
mentioned

;
and it is to the discussion of this equation that the

present paper is mainly devoted.

This equation cannot apparently be integrated in finite terms
-f-,

except for an infinite number of particular values of a certain

constant involved in it
;
but I have investigated rapidly convergent

series whereby numerical results may be obtained. By merely

altering the scale of the abscissae and ordinates, the differential

equation is reduced to one containing a single constant /?, which is

defined by equation (5). The meaning of the letters which appear
in this equation will be seen on referring to the beginning of

Art. 1. For the present it will be sufficient to observe that (3

varies inversely as the square of the horizontal velocity of the

* The details of the experiments will be found in the Report of the Commission,
to which the reader is referred.

t [The integral can be expressed by definite integrals. See Art. 7, and last

paragraph but one in the paper.]

122
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body, so that a small value of ft corresponds to a high velocity, and

a large value to a small velocity.

It appears from the solution of the differential equation

that the trajectory of the body is unsymmetrical with respect to

the centre of the bridge, the maximum depression of the body occur

ring beyond the centre. The character of the motion depends mate

rially on the numerical value of {3. When /3 is not greater than

J, the tangent to the trajectory becomes more and more inclined

to the horizontal beyond the maximum ordinate, till the body gets

to the second extremity of the bridge, when the tangent becomes

vertical. At the same time the expressions for the central deflec

tion and for the tendency of the bridge to break become infinite.

&quot;When fi is greater than J, the analytical expression for the ordi

nate of the body at last becomes negative, and afterwards changes
an infinite number of times from negative to positive, and from

positive to negative. The expression for the reaction becomes

negative at the same time with the ordinate, so that in fact the

body leaps.

The occurrence of these infinite quantities indicates one of two

things : either the deflection really becomes very large, after which

of course we are no longer at liberty to neglect its square; or else

the effect of the inertia of the bridge is really important. Since

the deflection does not really become very great, as appears from

experiment, we are led to conclude that the effect of the inertia is

not insignificant, and in fact I have shewn that the value of the

expression for the vis viva neglected at last becomes infinite.

Hence, however light be the bridge, the mode of approximation

adopted ceases to be legitimate before the body reaches the second

extremity of the bridge, although it may be sufficiently accurate

for the greater part of the body s course.

In consequence of the neglect of the inertia of the bridge, the

differential equation here discussed fails to give the velocity for

which T, the tendency to break, is a maximum. When ft is a

good deal greater than J, T is a maximum at a point not very
near the second extremity of the bridge, so that we may apply the

result obtained to a light bridge without very material error. Let

T
v
be this maximum value. Since it is only the inertia of the

bridge that keeps the tendency to break from becoming extremely

great, it appears that the general effect of that inertia is to

preserve the bridge, so that we cannot be far wrong in regarding
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jP
t
as a superior limit to the actual tendency to break. When /3 is

very large, Tt may be calculated to a sufficient degree of accuracy
with very little trouble.

Experiments of the nature of those which have been mentioned

may be made with two distinct objects; the one, to analyse experi

mentally the laws of some particular phenomenon, the other, to

apply practically on a large scale results obtained from experi
ments made on a small scale. With the former object in view,

the experiments would naturally be made so as to render as con

spicuous as possible, and isolate as far as might be, the effect which

it was desired to investigate; with the latter, there are certain

relations to be observed between the variations of the different

quantities which are in any way concerned in the result. These

relations, in the case of the particular problem to which the present

paper refers, are considered at the end of the paper.

1. It is required to determine, in a form adapted to numerical

computation, the value of y in terms of x
,
where y is a function

of x defined by satisfying the differential equation

with the particular conditions

y=0, ^,
=

0, when* = ..................... (2),

the value of y not being wanted beyond the limits and 2c of x.

It will appear in the course of the solution that the first of the

conditions (2) is satisfied by the complete integral of (1), while the

second serves of itself to determine the two arbitrary constants

which appear in that integral.

The equation (1) relates to the problem which has been ex

plained in the introduction. It was obtained by Professor Willis

in the following manner. In order to simplify to the very utmost

the mathematical calculation of the motion, regard the carriage as

a heavy particle, neglect the inertia of the bridge, and suppose the

deflection very small. Let x
f

, y be the co-ordinates of the moving
body, x being measured horizontally from the beginning of the

bridge, and y vertically downwards. Let M be the mass of the

body, Fits velocity on entering the bridge, 2c the length of the

bridge, g the force of gravity, S the deflection produced by the
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body placed at rest on the centre of the bridge, R the reaction

between the moving body and the bridge. Since the deflection is

very small, this reaction may be supposed to act vertically, so that

the horizontal velocity of the body will remain constant, and there

fore equal to V. The bridge being regarded as an elastic bar or

plate, propped at the extremities, and supported by its own stiff

ness, the depth to which a weight will sink when placed in succes

sion at different points of the bridge will vary as the weight

multiplied by (2cx
- x 2

)

2

,
as may be proved by integration, on

assuming that the curvature is proportional to the moment of the

bending force. Now, since the inertia of the bridge is neglected,

the relation between the depth y to which the moving body has

sunk at any instant and the reaction R will be the same as if R
were a weight resting at a distance x from the extremity of the

bridge ;
and we shall therefore have

y = CR (2cx
-

x*f,

C being a constant, which may be determined by observing that

we must have y = S when R = Mg and x =
c; whence

MgJ

We get therefore for the equation of motion of the body

dx
which becomes on observing that -5- = V

which is the same as equation (1), a and b being defined by the

equations

2. To simplify equation (1) put

x = 2c#, y = IGc afc- y, b =

which gives

tfy _ Q Py /
4)

3? * ^? 1
.............
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It is to be observed that x denotes the ratio of the distance of the

body from the beginning of the bridge to the length of the bridge;

y denotes a quantity from which the depth of the body below the

horizontal plane in which it was at first moving may be obtained

by multiplying by 16c
4
a6&quot;

x
or 16$; and & on the value of which

depends the form of the body s path, is a constant defined by the

equation

gc
*

3. In order to lead to the required integral of (4), let us first

suppose that x is very small. Then the equation reduces itself to

of which the complete integral is

and (7) is the approximate integral of (4) for very small values of

x. Now the second of equations (2) requires that A = 0, B =
,

so that the first term in the second member of equation (7) is the

leading term in the required solution of (4).

4. Assuming in equation (4) y = (x #2

)

2
zt
we get

Since (4) gives y=(x x*)* when /3
= oo

,
and (5) gives

= oo

when V= 0, it follows that z is the ratio of the depression of the

body to the equilibrium depression. It appears also from Art. 3,

that for the particular integral of (8) which we are seeking, z

is ultimately constant when x is very small.

* When
/3&amp;gt;|,

the last two terms in (7) take the form x* {Ccos (qlogx)

+D sin (q log x) } ; and if y l
denote this quantity we cannot in strictness speak of

the limiting value of dyjdx when x = 0. If we give x a small positive value, which

we then suppose to decrease indefinitely, dyjdx will fluctuate between the constantly

increasing limits .r~fv/{ (|(7 + qD)* + (^D -qC)-}, or oriN/{/3(C
2 + D2

)}, since

q =V(j3- ). But the body is supposed to enter the bridge horizontally, that is, in

the direction of a tangent, since the bridge is supposed to be horizontal, so that we
must clearly have C2 +D2 = 0, and therefore C=0, D=0. When

/3
= the last two

terms in (7) take the form x* (E + Flogx], and we must evidently have E= 0, F.O.
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To integrate (8) assume then

(9),

and we get

2 (i + 2) (i + 1) Atf - 22 (i + 3) (* + 2) Atf&quot;

+ 2(i+ 4) (i + 3) A#F* + plAtf = ,

or

2 {[(i + 1) (f + 2) + /3] 4,
- 2 (i + 1) (i + 2) 4w

+ (i + l)(i + 2)4 (Jo; = y3 ......... (10)

where it is to be observed that no coefficients Ai with negative

suffixes are to be taken.

Equating to zero the coefficients of the powers 0, 1, 2... of a; in

(10), we get

(6 +/3) ^-12^=0, &c.

and generally

{( + !) (i + 2)+/3}A i
-Z (i + 1) (i + 2) AM
+ (i + l)(i+2)^ (_2

= ......... (11).

The first of these equations gives for A the same value which

would have been got from (7). The general equation (11), which

holds good from i = 1 to i = GO
,
if we conventionally regard A_^ as

equal to zero, determines the constants A
I}
A

z ,
A

3
... one after

another by a simple and uniform arithmetical process. It will be

rendered more convenient for numerical computation by putting it

under the form

(12);

for it is easy to form a table of differences as we go along ;
and

when i becomes considerable, the quantity to be subtracted from

A^ + A A.^ will consist of only a few figures.

5. When i becomes indefinitely great, it follows from (11)

or (12) that the relation between the coefficients A
i
is given by

the equation

4-S4..+4..-0 .................... (is),

of which the integral is

A
t

= C + (7f .......................... (14).
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Hence the ratio of consecutive coefficients is ultimately a ratio

of equality, and therefore the ratio of the (i + l)th term of the

series (9) to the iih is ultimately equal to x. Hence the series is

convergent when x lies between the limits 1 and -f 1
;
and it

is only between the limits and 1 of a; that the integral of (8)

is wanted. The degree of convergency of the series will be ulti

mately the same as in a geometric series whose ratio is x.

6. When x is moderately small, the series (9) converges so

rapidly as to give z with little trouble, the coefficients A
I}
A

2
...

being supposed to have been already calculated, as far as may be

necessary, from the formula (12). For larger values, however, it

would be necessary to keep in a good many terms, and the labour

of calculation might be abridged in the following manner.

When i is very large, we have seen that equation (12) reduces

itself to (13), or to A2

J,_2
=

0, or, which is the same, AM. = 0.

When i is large, A
2^

4
will be small

;
in fact, on substituting in the

small term of (12) the value of A
t given by (14), we see that

Al4j is of the order i~
l
. Hence A3

^, AM f
... will be of the orders

2~
2

,
i~

3

..., so that the successive differences of A
i
will rapidly de

crease. Suppose i terms of the series (9) to have been calculated

directly, and let it be required to find the remainder. We get by
finite integration by parts

and taking the sum between the limits i and oo we get

(15);.
I

1 - x \1 - x

z will however presently be made to depend on series so rapidly

convergent that it will hardly be worth while to employ the series

(15), except in calculating the series (9) for the particular value \

of x, which will be found necessary in order to determine a certain

arbitrary constant*.

* A mode of calculating the value of z for x=\ will presently be given, which is

easier than that here mentioned, unless ,3 be very large. See equation (42) at the

end of this paper.
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7. If the constant term in equation (4) be omitted, the equa
tion reduces itself to

The form of this equation suggests that there may be an inte

gral of the form y = xm (1 x)
n

. Assuming this expression for trial,

we get

i) (m+n 1)#
2

).

The second member of this equation will be proportional to y, if

m + n-l =
(17),

and will be moreover equal to /3y, if

m2-m + /3 = (18).

It appears from (17) that m, n are the two roots of the quad
ratic (18). We have for the complete integral of (16)

The complete integral of (4) may now be obtained by replacing

the constants A, B by functions R, S of x, and employing the

method of the variation of parameters. Putting for shortness

xm (1
-

x}
n =

u, xn (1
-

x)
m =

v,

we get to determine R and 8 the equations

dR dS
u -=- + v -T- = 0,ax dx

du dR dv dS _ ~

dx dx dx dx

Since
v-j u-j-

= m n, we get from the above equations
CLOG CLOO

dR = /3v diS= j3u

dx m n dx m n
y

whence we obtain for a particular integral of (4)



RELATING TO THE BREAKING OF RAILWAY BRIDGES. 187

and the complete integral will be got by adding together the

second members of equations (19), (20). Now the second member
of equation (20) varies ultimately as x*, when # is very small, and

therefore, as shewn in ^.rt. 3, we must have A =
0, B =

0, so that

(20) is the integral we want.

When the roots of the quadratic (18) are real and commen

surable, the integrals in (20) satisfy the criterion of integrability,

so that the integral of (4) can be expressed in finite terms without

the aid of definite integrals. The form of the integral will, how

ever, be complicated, and y may be readily calculated by the

method which applies to general values of ft.

8. Since
[* F(x)dx=\ F

(a?)
dx - f

*

F (1
-

x) dx, we have
J Jo J

from (20)

in n
xm (l-x)

n xn

(\-xfdx-x
n

(l-x)
m xm (l-x)

n

dx]

+j^-{x
n

(i-x)
m f

x

(i-x}
m
x&quot;dx-x(i-xY p &quot;(i-*)wfcj.

If we put f(x) for the second member of equation (20), the

equation just written is equivalent to

/(*)=/(! -*) + (*) ..................... (21),

where

Now since m + n = 1,

At the limits x = and x = 1, we have w = x and w =
1, s = x and

5 = 0, whence if / denote the definite integral,

We get by integration by parts

s
m
ds s

m m
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and again by a formula of reduction

Now /3 being essentially positive, the roots of the quadratic (18)

are either real, and comprised between and 1, or else imaginary
with a real part equal to J. In either case the expressions which
are free from the integral sign vanish at the limits 5 = and s = co

,

and we have therefore, on replacing m (1 m) by its value /3,

T _/3 [&quot;s^ds

~2j 1 + .9

The function
(/&amp;gt; (#) will have different forms according as the

roots of (18) are real or imaginary. First suppose the roots real,

and let m = J + r, n = J r, so that

* = i- (23).

In this case m is a real quantity lying between and 1, and we
have therefore by a known formula

f ? =
.

&quot;* = -?L-... ..(24)
o 1 +s siu ?n7r COS^ TT

whence we get from (22), observing that the two definite integrals

in this equation are equal to each other,

.1 (25).r COS 9 TT (\
- XJ \ X

This result might have been obtained somewhat more readily

by means of the properties of the first and second Eulerian inte

grals.

When /3 becomes equal to J, r vanishes, the expression for

$ (x) takes the form J, and we easily find

(26).

When /3 &amp;gt; J, the roots of (18) become imaginary, and r becomes

p V 1, where

P = V/3~i ........................... (27).

The formula (25) becomes

/o (e*&quot;

7 + e-^j V 1 -
...... (28).
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If f (x} be calculated from x = to x = J, equation (21) will

enable us to calculate it readily from x = ^ to x = 1, since it is easy

to calculate
$&amp;gt;(%)

9. A series of a simple form, which is more rapidly convergent
than (9) when x approaches the value

-J, may readily be investi

ated.

Let x = ^(l + w}\ then substituting in equation (8) we get

l^{(l-V }+^=/3 .................. (29).

Assume

z = B +B
i
w* + B.2 w*...=2Bi

w*
i

............... (30),

then substituting in (29) we get

2,{2i (2t
-

1) w
*-* - 2 (2i -f 2) (2i + 1) w&quot;

+ (2i + 4) (2i + 3) U7
8H* + 4/3^ }

=
4/3,

or,

2 {i(2i
-

1) B(

- 2 [i(2i
-

1)
-

/3] 5M + 1(2
-

1) ^. 2}
i^ 2 =

2/3.

This equation leaves B
Q arbitrary, and gives on dividing by

i(2i 1), and putting in succession i= 1, i = 2, &c.,

(31),

and generally when z &amp;gt; 1,

B
t

= B
l_i
+ B

l_,-^?-T}
B

i_l
............... (32).

The constants B
I} B^... being thus determined, the series (30)

will be an integral of equation (29), containing one arbitrary con

stant. An integral of the equation derived from (29) by replacing

the second member by zero may be obtained in just the same way

by assuming z= C w + C
1
w3 + . . . when C

it
C

2
. . . will be determined

in terms of C
lt
which remains arbitrary. The series will both be

convergent between the limits w = 1 and w = l, that is, between

the limits x = and x=\. The sum of the two series will be the

complete integral of (29), and will be equal to (x-x^f
i

f(x} if the.



190 DISCUSSION OF A DIFFERENTIAL EQUATION

constants Z?
,
C be properly determined. Denoting the sums of

the two series by Fe (w), FQ (w) respectively, and writing a (x) for

(x x
2

)

*

f(x) }
so that z = cr (x), we get

and since ZF
Q (w)

= a (x) cr (1 x)
=

(x x*}
2

&amp;lt; (x) by (21), we get

a.n-)-^wi-.Jto-^i^A(i) : ^
To determine Bn we have

which may be calculated by the series (9).

10. The series (9), (30) will ultimately be geometric series

with ratios #, w?
2

,
or x, (2x I)

2

, respectively. Equating these

ratios, and taking the smaller root of the resulting quadratic, we

get x = J. Hence if we use the series (9) for the calculation of

a (x) from x = to x \, and (30) for the calculation of cr (x) from

x = i to x = J, we shall have to calculate series which are ulti

mately geometric series with ratios ranging from to J.

Suppose that we wish to calculate a- (x) or z for values of x

increasing by &quot;02. The process of calculation will be as follows.

From the equation (2 + (3)A =
(3 and the general formula (12),

calculate the coefficients A , A^ J
2 ,...

as far as may be necessary.

From the series (9), or else from the series (9) combined with the

formula (15), calculate cr (J) or B
(}

,
and then calculate B

{ ,
B

2
...

from equations (31), (32). Next calculate cr(x) from the series

(9) for the values 02, 04,... 26 of or, and F
e (w) from (30) for the

values 04, 08..., &quot;44 of w, and lastly (x x*f
2

&amp;lt;/&amp;gt; (x) for the values

52, 54..., 98 of x. Then we have a- (x) calculated directly from

x = to x= 2G; equations (33) will give cr (x} from #= 28 to

x = 72, and lastly the equation cr (x)
= a (1 x) + (x x2

f
2

$ (x)

will give a (x) from x = 74 to x = 1.

11. The equation (21) will enable us to express in finite terms

the vertical velocity of the body at the centre of the bridge. For

according to the notation of Art. 2, the horizontal and vertical co

ordinates of the body are respectively Zcx and 16/%, and we have

also d . 2cx/dt = V, whence, if v be the vertical velocity, we get

d.lQSda; 8SV ,
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But (21) givesf () = \ &amp;lt; (), whence if vc be the value of v at the

centre, we get from (25) or (28)

= 4,7rSVj3* S7TSVI3*
V ~

C COS T7T ~C (6
pjr +

-?&quot;)

&quot; -( I)

according as ft &amp;lt; &amp;gt; J.

In the extreme cases in which F is infinitely great and infinitely

small respectively, it is evident that vc must vanish, and therefore

for some intermediate value of F, ve must be a maximum. Since

Foe f}-% when the same body is made to traverse the same bridge
with different velocities, vc will be a maximum when p or q is a

minimum, where

p = 2~* cos TTT,
= /3~* (e

pw + e ^).

Putting for cos TTT its expression in a continued product, and

replacing r by its expression (23) in terms of j3, we get

whence

The same expression would have been obtained for dlogq/dfl.
Call the second member of equation (36) F(f$), and let -3, P be

the negative and positive parts respectively of F (P). When {3
= 0,

N= oo
,
and P = - - + x ... = 1, and therefore P(/3) is nega-

L . *2t 25 o

tive. When /3 becomes infinite, the ratio of P to JV^ becomes

infinite, and therefore F (ft) is positive when {$ is sufficiently large;

and F (j3) alters continuously with /3. Hence the equation F (/3)
=

must have at least one positive root. But it cannot have more

than one; for the rates of proportionate decrease of the quantities

-tV, P, or - 1/JV. dXjdfr -
1/P . dPflfr are respectively

and the several terms of the denominator of the second of these

expressions are equal to those of the numerator multiplied by
1 . 2 + @, 2 . 3 + /3,... respectively, and therefore the denominator is
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equal to the numerator multiplied by a quantity greater than

2 -f- j3, and therefore greater than /3; so that the value of the

expression is less than I//3. Hence for a given infinitely small

increment of /3 the change dN in N bears to N a greater ratio

than dP bears to P, so that when N is greater than or equal to

P it is decreasing more rapidly than P, and therefore after having
once become equal to P it must remain always less than P. Hence

vc admits of but one maximum or minimum value, and this must

evidently be a maximum.

When /3 =4, N=2, andP&amp;lt; -^ + ^ + ... or &amp;lt; 1, and there

fore F (/3) has the same sign as when @ is indefinitely small.

Hence it is q and not p which becomes a minimum. Equating

dq/d/3 to zero, employing (27), and putting %7rp
= loge f, we find

The real positive root of this equation will be found by trial to

be 36-3 nearly, which gives p = 5717, /3
= J + p

z = 5768. If V
l
be

the velocity which gives vc a maximum, v
t
the maximum value of

vc ,
27 the velocity due to the height S, we get

/7c
2

C U S7T/3
2 S jrF -V ira-SJ5

and v
&amp;gt;

=
F+F* c

F
&quot;

whence

F=-465o|?7, v =-G288tf.
A .VI

12. Conceive a weight TF placed at rest on a point of the

bridge whose distance from the first extremity is to the whole

length as x to 1. The reaction at this extremity produced by W
will be equal to (1 x) W, and the moment of this reaction about

a point of the bridge whose abscissa 2c^ is less than 2cx will be

2c (1 x) x^W. This moment measures the tendency of the bridge
to break at the point considered, and it is evidently greatest when
x

l
= x, in which case it becomes 2c (1 x) xW. Now, if the inertia

of the bridge be neglected, the pressure R produced by the moving

body will be proportional to (x #2

)~
2

y, and the tendency to break

under the action of a weight equal to R placed at rest on the

bridge will be proportional to (1 x) x x (x #2

)&quot;

2

y, or to (x x*) z.
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Call this tendency T, and let T be so measured that it may be

equal to 1 when the moving body is placed at rest on the centre of

the bridge. Then T = C (x
- x2

) z, and 1 = C (J
-

J), whence

The tendency to break is actually liable to be somewhat greater
than T, in consequence of the state of vibration into which the

bridge is thrown, in consequence of which the curvature is alter

nately greater and less than the statical curvature due to the same

pressure applied at the same point. In considering the motion of

the body, the vibrations of the bridge were properly neglected, in

conformity with the supposition that the inertia of the bridge is

infinitely small compared with that of the body.

The quantities of which it will be most interesting to calculate

the numerical values are z, which expresses the ratio of the de

pression of the moving body at any point to the statical depression,

T, the meaning of which has just been explained, and y t
the actual

depression. When z has been calculated in the way explained in

Art. 10, T will be obtained by multiplying by 4 (x #2

),
and then

y /S will be got by multiplying T by 4 (x x9

).

13. The following Table gives the values of these three quan
tities for each of four values of /3, namely -fa, ^, , and {, to which

correspond r = J, ?* = 0, p
=

J, p = 1, respectively. In performing
the calculations I have retained five decimal places in calculating

the coefficients A
,
A

lt
A

2
... and B

,
B

lt
B

a
... and four in calcula

ting the series (9) and (30). In calculating c/&amp;gt; (x) I have used four-

figure logarithms, and I have retained three figures in the result.

The calculations have not been re-examined, except occasionally,

when an irregularity in the numbers indicated an error.

14. Let us first examine the progress of the numbers. For

the first two values of /3, z increases from a small positive quantity

up to GO as x increases from to 1. As far as the table goes, z is

decidedly greater for the second of the two values of ft than for

the first. It is easily proved however that before x attains the

value 1, z becomes greater for the first value of ft than for the

second. For if we suppose x very little less than !,/(! x) will

be extremely small compared with &amp;lt;

(a?), or, in case $ (x} contain a

sine, compared with the coefficient of the sine. Writing x
v
for

s. n. 13
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1 x, and retaining only the most important term in f(x), we get
from (21), (25), (26), and (28)

TT
j 7T

or = ^ - a?* sin (p log -} (37)
p (* + -*)

*
V^ ^/

according as /3 &amp;lt; J, /3
=

J, or &amp;gt; J ;
and * will be obtained by

dividing /(#) by x* nearly. Hence if \ &amp;gt; /32
&amp;gt; /3X

&amp;gt; 0, 2 is ultimately

incomparably greater when /S
=

/3t
than when /3

=
/32 ,

and when
=

#, than when =
J. Since/(0) = .4 =

/3 (2 + /3)
1 - (2/T

1 + I)
1

,

/(O) increases with ft so that /(a?) is at first larger when @ = /3a

than when ft =j3lt
and afterwards smaller.

When /3 &amp;gt; J, 2; vanishes for a certain value of x, after which it

becomes negative, then vanishes again and becomes positive, and

so on an infinite number of times. The same will be true of T.

If p be small, f(x) will not greatly differ, except when x is nearly

equal to 1, from what it would be if p were equal to zero, and

therefore f(x) will not vanish till x is nearly equal to 1. On the

other hand, if p be extremely large, which corresponds to a very
slow velocity, z will be sensibly equal to 1 except when x is nearly

equal to 1, so that in this case also /(a;) will not vanish till x is

nearly equal to 1. The table shews that when /3
=

, f (x) first

vanishes between x = -98 and x = 1, and when /3
=

J between x = &quot;94

and x = 96. The first value of # for which f(x) vanishes is pro

bably never much less than 1, because as /3 increases from | the

denominator p(ep7r + e~ p
~) in the expression for &amp;lt; (#) becomes

rapidly large.

15. Since when
/3&amp;gt;^,

T vanishes when x = 0, and again for a

value of x less than 1, it must be a maximum for some inter

mediate value. When /5
= ^ the table appears to indicate a maxi

mum beyond x = 98. When $ = j, the maximum value of T is

about 2 61, and occurs when x = 86 nearly. As /3 increases

indefinitely, the first maximum value of T approaches indefinitely

to 1, and the corresponding value of x to ^. Besides the first

maximum, there are an infinite number of alternately negative
and positive maxima ;

but these do not correspond to the problem,
for a reason which will be considered presently.

1-32
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16. The following curves represent the trajectory of the body

for the four values of /3 contained in the preceding table. These

curves, it must be remembered, correspond

to the ideal limiting case in which the inertia

of the bridge is infinitely small.

In this figure the right line AB repre

sents the bridge in its position of equi

librium, and at the same time represents

the trajectory of the body in the ideal limit

ing case in which {S= or V oo . AeeeB

represents what may be called the equilibrium

trajectory, or the curve the body would de

scribe if it moved along the bridge with an

infinitely small velocity. The trajectories

corresponding to the four values of j3 con

tained in the above table are marked by

1,1,1,1; 2,2,2; 3,3,3; 4,4,4,4 respec

tively. The dotted curve near B is meant

to represent the parabolic arc which the body

really describes after it rises above the hori

zontal line AB*. C is the centre of the

right line AB: the curve AeeeB is symme
trical with respect to an ordinate drawn

through C.

17. The inertia of the bridge being neg

lected, the reaction of the bridge against the

body, as already observed, will be repre

sented by Cyj(x
- a?

2

)

2

,
where C depends on

the length and stiffness of the bridge. Since

this expression becomes negative with y, the

preceding solution will not be applicable

beyond the value of x for which y first

vanishes, unless we suppose the body held

down to the bridge by some contrivance. If

it be not so held, which in fact is the case,

it will quit the bridge when y becomes nega-

* The dotted curve ought to have been drawn wholly outside the full curve.

The two curves touch each other at the point where they are cut by the line ACB,

as is represented in the figure.
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tive. More properly speaking, the bridge will follow the body, in

consequence of its inertia, for at least a certain distance above the

horizontal line AB, and will exert a positive pressure against the

body : but this pressure must be neglected for the sake of consist

ency, in consequence of the simplification adopted in Art. 1, and

therefore the body may be considered to quit the bridge as soon as

it gets above the line AS. The preceding solution shews that

when &amp;gt; J the body will inevitably leap before it gets to the end

of the bridge. The leap need not be high ;
and in fact it is

evident that it must be very small when ft is very large. In

consequence of the change of conditions, it is only the first maxi

mum value of T which corresponds to the problem, as has been

already observed.

18. According to the preceding investigation, when ft &amp;lt; \ the

body does not leap, the tangent to its path at last becomes vertical,

and T becomes infinite. The occurrence of this infinite value

indicates the failure, in some respect, of the system of approxima
tion adopted. Now the inertia of the bridge has been neglected

throughout; and, consequently, in the system of the bridge and

the moving body, that amount of labouring force which is requisite

to produce the vis viva of the bridge has been neglected. If f, 77

be the co-ordinates of any point of the bridge on the same scale on

which #, y represent those of the body, and f be less than x, it may
be proved on the supposition that the bridge may be regarded at

any instant as in equilibrium, that

When x becomes very nearly equal to 1, y varies ultimately as

(1 a?)*&quot;*&quot;,
and therefore 77 contains terms involving (1 oi)~*~

r
,
and

(dij/dx)*, and consequently (drj/dt)* contains terms involving

(1 #)~
3~2r

. Hence the expression for the vis viva neglected at

last becomes infinite
;
and therefore however light the bridge may

be, the mode of approximation adopted ceases to be legitimate
before the body comes to the end of the bridge. The same result

would have been arrived at if fi had been supposed equal to or

greater than j.

19. There is one practical result which seems to follow from

the very imperfect solution of the problem which is obtained when
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the inertia of the bridge is neglected. Since this inertia is the

main cause which prevents the tendency to break from becoming

enormously great, it would seem that of two bridges of equal length

and equal strength, but unequal mass, the lighter would be the

more liable to break under the action of a heavy body moving

swiftly over it. The effect of the inertia may possibly be thought

worthy of experimental investigation.

20. The mass of a rail on a railroad must be so small com

pared with that of an engine, or rather with a quarter of the mass

of an engine, if we suppose the engine to be a four-wheeled one,

and the weight to be equally distributed between the four wheels,

that the preceding investigation must be nearly applicable till the

wheel is very near the end of the rail on which it was moving,

except in so far as relates to regarding the wheel as a heavy point.

Consider the motion of the fore wheels, and for simplicity suppose

the hind wheels moving on a rigid horizontal plane. Then the

fore wheels can only ascend or descend by the turning of the whole

engine round the hind axle, or else the line of contact of the hind

wheels with the rails, which comes to nearly the same thing. Let

M be the mass of the whole engine, I the horizontal distance

between the fore and hind axles, h the horizontal distance of the

centre of gravity from the latter axle, k the radius of gyration

about the hind axle, xt y the coordinates of the centre of one of the

fore wheels, and let the rest of the notation be as in Art. 1. Then

to determine the motion of this wheel we shall have

Mk* 2̂ (}=Mgh- 7
df\l)

*

whereas to determine the motion of a single particle whose mass is

M Cy

JJ/.we should have had

Now h must be nearly equal to ^l, and /j
2 must be a little greater

than J
2

, say equal to
-|-

2

,
so that the two equations are very nearly

the same.

Hence, /? being the quantity defined by equation (5), where S
denotes the central statical deflection due to a weight \Mg, it

appears that the rail ought to be made so strong, or else so short,
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as to render ft a good deal larger than J. In practice, however, a

rail does not rest merely on the chairs, but is supported throughout
its whole length by ballast rammed underneath.

21. In the case of a long bridge, ft would probably be large in

practice. When ft is so large that the coefficient ffn/p (e
p7r + e~ pir

),

or 7r/3
ie~ rsi

nearly, in
&amp;lt;f&amp;gt;(x) may be neglected, the motion of the

body is sensibly symmetrical with respect to the centre of the

bridge, and consequently T, as well as y, is a maximum when x = \.

For this value of x we have 4 (x x*)
=

1, and therefore z = T = y.

Putting Ci
for the (i + l)

th term of the series (9), so that C
i
= ApT\

we have for x = \

T=G
a + C

l + C, + (39)

/3 GO

and generally,

2) + /3

whence Tis easily calculated. Thus for /?
= 5 we have 7rft% e~ ffft = 031

nearly, which is not large, and we get from the series (39) T= 1 27

nearly. For ft
= 10, the approximate value of the coefficient in

&amp;lt;p (x) is 0048, which is very small, and we get T 1*14. In these

calculations the inertia of the bridge has been neglected, but the

effect of the inertia would probably be rather to diminish than to

increase the greatest value of T.

22. The inertia of a bridge such as one of those actually in

use must be considerable : the bridge and a carriage moving over

it form a dynamical system in which the inertia of all the parts

ought to be taken into account. Let it be required to construct

the same dynamical system on a different scale. For this purpose
it will be necessary to attend to the dimensions of the different

constants on which the unknown quantities of the problem depend,
with respect to each of the independent units involved in the

problem. Now if the thickness of the bridge be regarded as very
small compared with its length, and the moving body be regarded
as a heavy particle, the only constants which enter into the prob
lem are M, the mass of the body, JJ/

,
the mass of the bridge, 2c,

the length of the bridge, S, the central statical deflection, V, the
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horizontal velocity of the body, and g, the force of gravity. The

independent units employed in dynamics are three, the unit of

length, the unit of time, and the unit of density, or, which is equi

valent, and which will be somewhat more convenient in the present

case, the unit of length, the unit of time, and the unit of mass.

The dimensions of the several constants M, M , &c., with respect

to each of these units are given in the following table.

Unit of length. Unit of time. Unit of mass.

ifandJf . 001
c and S. 1

V. 1-1
g.

1-20
Now any result whatsoever concerning the problem will consist

of a relation between certain unknown quantities x
,

x&quot; ... and the

six constants just written, a relation which may be expressed by

/&amp;gt; , x&quot;, ...M, M , c, S, V,g)
=

(40).

But by the principle of homogeneity and by the preceding table

this equation must be of the form

x M S V*\_
-

o?y- M&amp;gt; ~c )

where (x }, (x&quot;) ..., denote any quantities made up of the six

constants in such a manner as to have with respect to each of the

independent units the same dimensions as x, x&quot; ..., respectively.

Thus, if (40) be the equation which gives the maximum value T
f

of T in terms of the six constants, we shall have but one unknown

quantity x
,
where x =T^ and we may take for (a), Meg, or else

M V2
. If (40) be the equation to the trajectory of the body, we

shall have two unknown constants, x
} x&quot;,

where x is the same as

in Art. 1, and x&quot;
=
y, and we may take (x)

=
c, (x&quot;}

= c. The

equation (41) shews that in order to keep to the same dynami

cal system, only on a different scale, we must alter the quantities

M, M ,
&c. in such a manner that

JlToclf, tfoc c, F2

occ#,

and consequently, since g is not a quantity which we can alter at

pleasure in our experiments, V must vary as \fc. A small system

constructed with attention to the above variations forms an exact

dynamical model of a larger system with respect to which it may

J*
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be desired to obtain certain results. It is not even necessary for

the truth of this statement that the thickness of the large bridge

be small in comparison with its length, provided that the same

proportionate thickness be preserved in the model.

To take a numerical example, suppose that we wished, by
means of a model bridge five feet long and weighing 100 ounces,

to investigate the greatest central deflection produced by an

engine weighing 20 tons, which passes with the successive velo

cities of 80, 40, and 50 miles an hour over a bridge 50 feet long

weighing 100 tons, the central statical deflection produced by
the engine being one inch. We must give to our model carriage

a weight of 20 ounces, and make the small bridge of such a stiff

ness that a weight of 20 ounces placed on the centre shall cause

a deflection of -jL-th of an inch
;
and then we must give to the

carriage the successive velocities of 3\/10, 4/v/lO, 5\/10, or 9*49,

12-65, 15-81 miles per hour, or 13 91, 18-55, 2319 feet per second.

If we suppose the observed central deflections in the model to be

12, 16, 18 of an inch, we may conclude that the central deflec

tions in the large bridge corresponding to the velocities of 30, 40,

and 50 miles per hour would be 1*2, 1/6, and 1 8 inch.

Addition to the preceding Paper.

Since the above was written, Professor Willis has informed me
that the values of /9 are much larger in practice than those which

are contained in Table I., on which account it would be interesting

to calculate the numerical values of the functions for a few larger

values of /3. I have accordingly performed the calculations for

the values 3, 5, 8, 12, and 20. The results are contained in

Table II. In calculating z from x = to x = 5, I employed the

formula (12), with the assistance occasionally of (15). I worked

with four places of decimals, of which three only are retained.

The values of z for x 5, in which case the series are least con

vergent, have be^n verified by the formula (42) given below : the

results agreed within two or three units in the fourth place of

decimals. The remaining values of z were calculated from the
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expression, for (x x?)~*&amp;lt;f&amp;gt; (#). The values of T and y/S were

deduced from those of z, by merely multiplying twice in succes

sion by 4# (1 a?).
Professor Willis has laid down in curves the

numbers contained in the last five columns. In laying down

these curves several errors were detected in the latter half of the

Table, that is, from x = *55 to x 95. These errors were corrected

by re-examining the calculation ;
so that I feel pretty confident

that the table as it now stands contains no errors of importance.

The form of the trajectory will be sufficiently perceived by

comparing this table with the curves represented in the figure.

As fi increases, the first point of intersection of the trajectory with

the equilibrium trajectory eee moves towards A. Since z = 1 at

this point, we get from the part of the table headed &quot;

z? for the

abscissa of the point of intersection, by taking proportional parts,

&quot;34, 29, &quot;26, 24, and 22, corresponding to the respective values

3, 5, 8, 12, and 20 of /3. Beyond this point of intersection the

trajectory passes below the equilibrium trajectory, and remains

below it during the greater part of the remaining course. As ft

increases, the trajectory becomes more and more nearly sym
metrical with respect to C : when /3

= 20 the deviation from sym

metry may be considered insensible, except close to the extremities

A, B, where however the depression itself is insensible. The

greatest depression of the body, as appears from the column which

gives y y
takes place a little beyond the centre; the point of

greatest depression approaches indefinitely to the centre as /3

increases. This greatest depression of the body must be carefully

distinguished from the greatest depression of the bridge, which

is decidedly larger, and occurs in a different place, and at a dif

ferent time. The numbers in the columns headed &quot;

T&quot; shew that

T is a maximum for a value of x greater than that which renders

y a maximum, as in fact immediately follows from a consideration

of the mode in which y is derived from T. The first maximum

value of T, which according to what has been already remarked

is the only such value that we need attend to, is about 1*59 for

= 3, 1-33 for {3
=

5, 119 for =
8, I ll for (3

= 12, and 1-06 for

= 20.

When /3 is equal to or greater than 8, the maximum value

of T occurs so nearly when x = *5 that it will be sufficient to sup

pose x= 5. The value of z, T, or y /S for x= 5 may be readily
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calculated by the method explained in Art. 21. I have also ob

tained the following expression for this particular value

(42).
. 2 + 2734- 3 .

When ft is small, or only moderately large, the series (42)

appears more convenient for numerical calculation, at least with

the assistance of a table of reciprocals, than the series (39), but

when ft is very large the latter is more convenient than the

former. In using the series (42), it will be best to sum the series

within brackets directly to a few terms, and then find the re

mainder from the formula

The formula (42) was obtained from equation (20) by a trans

formation of the definite integral. In the transformation of Art. 8,

the limits of s will be 1 and oo
,
and the definite integral on which

the result depends will be

1+5

The formula (42) may be obtained by expanding the denomi

nator, integrating, and expressing m in terms of ft.

In practice the values of ft are very large, and it will be con

venient to expand according to inverse powers of ft. This may be

easily effected by successive substitutions. Putting for shortness

x s? = X, equation (4) becomes by a slight transformation

and we have for a first approximation y = X2

, for a second

and so on. The result of the successive substitutions may be ex

pressed as follows :

where each term, taken positively, is derived from the preceding by

differentiating twice, and then multiplying by ft~
lXz

.

For such large values of ft, we need attend to nothing but the

value of z for x =
,
and this may be obtained from (43) by putting
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x = J, after differentiation, and multiplying by 16. It will how
ever be more convenient to replace x by \ (1 -f- w), which gives
tf/da?

= 4 . d*/dw* ;
X2 = TV W, where W=

(1
- w2

)

2
. We thus get

from (43)

where we must put w = after differentiation, if we wish to get
the value of z for x \. This equation gives, on performing the

differentiations and multiplications, and then putting w = 0,

2 = l+/3-
1 + |/3-

2

+13/3-
3 + ............... (44).

In practical cases this series may be reduced to 1 + /3&quot;

1

. The
latter term is the same as would be got by taking into account the

centrifugal force, and substituting, in the small term involving that

force, the radius of curvature of the equilibrium trajectory for the

radius of curvature of the actual trajectory. The problem has

already been considered in this manner by others by whom it has

been attacked.

My attention has recently been directed by Professor Willis

to an article by Mr Cox On the Dynamical Deflection and Strain

of Railway Girders, which is printed in The Civil Engineer and
Architect s Journal for September, 1848. In this article the

subject is treated in a very original and striking manner. There

is, however, one conclusion at which Mr Cox has arrived which
is so directly opposed to the conclusions to which I have been led,

that I feel compelled to notice it. By reasoning founded on the

principle of vis viva, Mr Cox has arrived at the result that the

moving body cannot in any case produce a deflection greater than
double the central statical deflection, the elasticity of the bridge

being supposed perfect. But among the sources of labouring force

which can be employed in deflecting the bridge, Mr Cox has omitted

to consider the vis viva arising from the horizontal motion of the

body. It is possible to conceive beforehand that a portion of this

vis viva should be converted into labouring force, which is ex

pended in deflecting the bridge. And this is, in fact, precisely
what takes place. During the first part of the motion, the hori

zontal component of the reaction of the bridge against the body
impels the body forwards, and therefore increases the vis viva due
to the horizontal motion

;
and the labouring force which produces

this increase being derived from the bridge, the bridge is less



200 DISCUSSION OF A DIFFERENTIAL EQUATION

deflected than it would have been had the horizontal velocity of the

body been unchanged. But during the latter part of the motion

the horizontal component of the reaction acts backwards, and a

portion of the vis viva due to the horizontal motion of the body is

continually converted into labouring force, which is stored up in the

bridge. Now, on account of the asymmetry of the motion, the

direction of the reaction is more inclined to the vertical when the

body is moving over the second half of the bridge than when it is

moving over the first half, and moreover the reaction itself isO

greater, and therefore, on both accounts, more vis viva depending

upon the horizontal motion is destroyed in the latter portion of

the body s course than is generated in the former portion; and

therefore,, on the whole, the bridge is more deflected than it would

have been had the horizontal velocity of the body remained un

changed.

It is true that the change of horizontal velocity is small
;
but

nevertheless, in this mode of treating the subject, it must be taken

into account. For, in applying to the problem the principle of

vis viva, we are concerned with the square of the vertical velocity,

and we must not omit any quantities which are comparable with

that square. Now the square of the absolute velocity of the body

is equal to the sum of the squares of the horizontal and vertical

velocities
;
and the change in the square of the horizontal velocity

depends upon the product of the horizontal velocity and the

change of horizontal velocity; but this product is not small in

comparison with the square of the vertical velocity.

In Art. 22 I have investigated the changes which we are allowed

by the general principle of homogeneous quantities to make in

the parts of a system consisting of an elastic bridge and a travel

ling weight, without affecting the results, or altering anything but

the scale of the system. These changes are the most general that

we are at liberty to make by virtue merely of that general prin

ciple, and without examining the particular equations which relate

to the particular problem here considered. But when we set down

these equations, we shall see that there are some further changes

which we may make without affecting our results, or at least

without ceasing to be able to infer the results which would be

obtained on one system from those actually obtained on another.

In an apparatus recently constructed by Professor Willis, which
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will be described in detail in the report of the commission, to which
the reader has already been referred, the travelling weight moves
over a single central trial bar, and is attached to a horizontal arm
which is moveable, with as little friction as possible, about a

fulcrum carried by the carriage. In this form of the experiment,
the carriage serves merely to direct the weight, and moves on rails

quite independent of the trial bar. For the sake of greater gene

rality I shall suppose the travelling weight, instead of being free,

to be attached in this manner to a carriage.

Let J/ be the mass of the weight, including the arm, k the

radius of gyration of the whole about the fulcrum, h the horizontal

distance of the centre of gravity from the fulcrum, I the horizontal

distance of the point of contact of the weight with the bridge, x, y
the co-ordinates of that point at the time t, f, 77 those of any
element of the bridge, R the reaction of the bridge against the

weight, Mf

the mass of the bridge, R ,
R&quot; the vertical pressures

of the bridge at its two extremities, diminished by the statical

pressures due to the weight of the bridge alone. Suppose, as

before, the defection to be very small, and neglect its square.

By D Alembert s principle the effective moving forces reversed

will be in statical equilibrium with the impressed forces. Since

the weight of the bridge is in equilibrium with the statical pres
sures at the extremities, these forces may be left out in the equa
tions of equilibrium, and the only impressed forces we shall have
to consider will be the weight of the travelling body and the

reactions due to the motion. The mass of any element of the

bridge will be M /2c . d% very nearly ;
the horizontal effective force

of this element will be insensible, and the vertical effective force

will be M 1

/2c . d^jdf . dg, and this force, being reversed, must be

supposed to act vertically upwards.

The curvature of the bridge being proportional to the moment
of the bending forces, let the reciprocal of the radius of curvature
be equal to K multiplied by that moment. Let A, B be the

extremities of the bridge, P the point of contact of the bridge
with the moving weight, Q any point of the bridge between A
and P. Then by considering the portion AQ of the bridge we get,

taking moments round Q,
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V being the same function of f that 77
is of f. To determine K,

let $ be the central statical deflection produced by the weight My
resting partly on the bridge and partly on the fulcrum, which is

equivalent to a weight h/l . My resting on the centre of the bridge.

In this case we should have

d*ri _ _ Mgh
~d%~ 21 *

Integrating this equation twice, and observing that dq/d**Q
when f = c, and 77

= when f = 0, and that S is the value of 77

when f = c, we get

K- QIS
..(46).&quot;

Mghc
3

&quot;

Returning now to the bridge in its actual state, we get to de

termine Rr

, by taking moments about B,

K. 2c-B(2c -* +
*

2c-!; ) d? = ...... (47).

Eliminating R between (45) and (47), putting for A its value

given by (46), and eliminating t by the equation dx/dt
= V, we get

d r

(48)&amp;gt;

This equation applies to any point of the bridge between A
and P. To get the equation which applies to any point between

P and B, we should merely have to write 2c f for f,
2c a? for as.

If we suppose the fulcrum to be very nearly in the same hori

zontal plane with the point of contact, the angle through which

the travelling weight turns will be y/l very nearly ;
and we shall

have, to determine the motion of this weight,

We have also the equations of condition,

77
= when x = 0, for any value of f from to 2c

;

rj
= y when f = oc

t
for any value of x from to 2c

;
&amp;gt;. ..(50).

77
= when f =. or = 2c

; y = Q and dy/doc
= when a? = O
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Now the general equations (48), (or the equation answering to

it which applies to the portion PB of the bridge,) and (49), com

bined with the equations of condition (50), whether we can manage
them or not, are sufficient for the complete determination of the

motion, it being understood that rj and drj/dt; vary continuously in

passing from AP to PB, so that there is no occasion formally to

set down the equations of condition which express this circum

stance. Now the form of the equations shews that, being once

satisfied, they will continue to be satisfied provided 77
oc y,

% oc x x c, and

y ISR lSM V*y ,, 78T7S y ,, tl D72-
&amp;lt;* irr-n. : ,,

7 / ,
MtfV* ^ oc Mghl oc Rl*.

c* Mghc
2

Mghc* c
2

These variations give, on eliminating the variation of R,

c
z

k* M P
,_,&amp;gt;&amp;lt;

(ol)

Although g is of course practically constant, it has been

retained in the variations because it may be conceived to vary,
and it is by no means essential to the success of the method that

it should be constant. The variations (51) shew that if we have

any two systems in which the ratio of Mk* to JJ/7
2
is the same, and

we conceive the travelling weights to move over the two bridges

respectively, with velocities ranging from to oo
, the trajectories

described in the one case, and the deflections of the bridge, corre

spond exactly to the trajectories and deflections in the other case,

so that to pass from one to the other, it will be sufficient to alter

all horizontal lines on the same scale as the length of the bridge,

and all vertical lines on the same scale as the central statical

deflection. The velocity in the one system which corresponds to a

given velocity in the other is determined by the second of the

variations (51).

We may pass at once to the case of a free weight by putting
h = k = l, which gives

yxS, F2

Soc#c
2
,
JfocJf ..................... (52).

The second of these variations shews that corresponding veloci

ties in the two systems are those which give the same value to the

constant @. When S oc c we get F2
oc gc, which agrees with

Art. 22.

S. n. 14
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In consequence of some recent experiments of Professor Willis s,

from which it appeared that the deflection produced by a given

weight travelling over the trial bar with a given velocity was in

some cases increased by connecting a balanced lever with the

centre of the bar, so as to increase its inertia without increasing its

weight, while in other cases the deflection was diminished, I have

been induced to attempt an approximate solution of the problem,

taking into account the inertia of the bridge. I find that when we

replace each force acting on the bridge by a uniformly distributed

force of such an amount as to produce the same mean deflection

as would be produced by the actual force taken alone, which

evidently cannot occasion any very material error, and when we

moreover neglect the difference between the pressure exerted by
the travelling mass on the bridge and its weight, the equation

admits of integration in finite terms.

Let the notation be the same as in the investigation which

immediately precedes; only, for simplicity s sake, take the length

of the bridge for unity, and suppose the travelling weight a heavy

particle. It will be easy in the end to restore the general unit of

length if it should be desirable. It will be requisite in the first

place to investigate the relation between a force acting at a given

point of the bridge and the uniformly distributed force which

would produce the same mean deflection.

Let a force F act vertically downwards at a point of the bridge

whose abscissa is #, and let y be the deflection produced at that

point. Then, f, 77 being the co-ordinates of any point of the bridge,

we get from (38)

4 (1
-

x)

To obtain fx
l

r)dt;, we have only got to write 1 x in place

of x. Adding together the results, and observing that, according

to a formula referred to in Art. 1, y 16S . F/Mg . x2

(1 x)*, we

obtain

xY} ............ (53);

and this integral expresses the mean deflection produced by the

force F, since the length of the bridge is unity.
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Now suppose the bridge subject to the action of a uniformly
distributed force F . In this case we should have

-g = K !iF -
ft (|

- f) Fd?} = JKF (f
- p).

Integrating this equation twice, and observing that drj/dj;
=

when =i, and 77
= when f = 0, and that (46) gives, on putting

I = h and c = i K =
4&amp;lt;SS/Mg,

we obtain

f-Sf + F) ..................... (54).

This equation gives for the mean deflection

/ww .

(oo);

and equating the mean deflections produced by the force F acting
at the point whose abscissa is x, and by the uniformly distributed

force F
,
we get F = uF, where

tt = 5j?(l-3?) + 5ff
8

(l-a?)
s
..................... (56).

Putting fju
for the mean deflection, expressing F

1

in terms of
yu-,

and slightly modifying the form of the quantity within parentheses
in (54), we get for the equation to the bridge when at rest under

the action of any uniformly distributed force

^=5Mf(i-f) + ra-m ............... (57).

If D be the central deflection, 77
= .D when f = 1

;
so that

D : p :: 25 : 16.

Now suppose the bridge in motion, with the mass M travelling

over it, and let x, y be the co-ordinates of M. As before, the

bridge would be in equilibrium under the action of the force

M(g dz

y/d?) acting vertically downwards at the point whose

abscissa is x, and the system of forces such as l
r

d.cPi)/df acting

vertically upwards at the several elements of the bridge. Accord

ing to the hypothesis adopted, the former force may be replaced by
a uniformly distributed force the value of which will be obtained

by multiplying by u, and each force of the latter system may be

replaced by a uniformly distributed force obtained by multiplying

by u
} where u is what u becomes when f is put for x. Hence if

F
l
be the whole uniformly distributed force we have

142
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Now according to our hypothesis the bridge must always have

the form which it would assume under the action of a uniformly

distributed force
;
and therefore, if

fju
be the mean deflection at the

time t, (57) will be the equation to the bridge at that instant.

Moreover, since the point (#, y) is a point in the bridge, we must

have ?;
= y when =

x, whence y = JJLU. We have also

_ 155

We get from (55), Fi
=

oMg/ji/2S. Making these various sub

stitutions in (58), and replacing d/dt by V.d/dx, we get for the

differential equation of motion

155 ,,, Tr2 /KnN-MV* ...... (o9).

Since
//-

is comparable with S, the several terms of this equa

tion are comparable with

%, Mg, MV2

S, M VZ

S,

respectively. If then V2S be small compared with g, and likewise

M small compared with M
t
we may neglect the third term, while

we retain the others. This term, it is to be observed, expresses

the difference between the pressure on the bridge and the weight

of the travelling mass. Since c = J, we have V 2

S/g
=

1/16/3, which

will be small when ft is large, or even moderately large. Hence

the conditions under which we are at liberty to neglect the differ

ence between the pressure on the bridge and the weight of the

travelling mass are, first, that ft be large, secondly, that the mass

of the travelling body be small compared with the mass of the

bridge. If ft be large, but M be comparable with Mf

,
it is true

that the third term in (59) will be small compared with the lead

ing terms; but then it will be comparable with the fourth, and the

approximation adopted in neglecting the third term alone would

be faulty, in this way, that of two small terms comparable with

each other, one would be retained while the other was neglected.

Hence, although the absolute error of our results would be but

small, it would be comparable with the difference between the

results actually obtained and those which would be obtained on

the supposition that the travelling mass moved with an infinitely

small velocity.
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Neglecting the third term in equation (59), and putting for u

its value, we get

where

_1008J//3

The linear equation (60) is easily integrated. Integrating, and

determining the arbitrary constants by the conditions that
/JL
= 0,

and dp/dx 0, when x = 0, we get

24
(62);

and we have for the equation to the trajectory

y = ov,(x-2x* + x*)=op(X+X*) ............ (63),

where as before X = x (1 x).

When V = 0, q=x, and we get from (62), (63), for the

approximate equation to the equilibrium trajectory,

y=lOS(X+X*)* ..................... (64);

whereas the true equation is

(65).

Since the forms of these equations are very different, it will be

proper to verify the assertion that (64) is in fact an approximation
to (65). Since the curves represented by these equations are both

symmetrical with respect to the centre of the bridge, it will be

sufficient to consider values of x from to ^, to which correspond
values of X ranging from to J. Denoting the error of the

formula (64), that is the excess of the y in (64) over the y in (65),

by SB, we have

8 = - 6.Y
2 + 20Z 3

-f 10Z4
,

= 4 (- 3 + 1oX + 10Z2

) X m

ax dx

Equating dS/dx to zero, we get X= 0, x 0, S = 0, a maximum;
X = 1787, x = 233, S = 067, nearly, a minimum; and # = ^,

8 = 023, nearly, a maximum. Hence the greatest error in the
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approximate value of the ordinate of the equilibrium trajectory is

equal to about the one-fifteenth of S.

Putting p=pQ +plt y = y, + yl ,
where ^, yQ

are the values of

//,, y for q = oo
,
we have

{19

/i io\ 94 ^

^(l-^)-g
+
^)sm^

+
^(l-cos^)j...(66),

x)}^ .................................. (67).

The values of ^ and y1 may be calculated from these formulae

for different values of q, and they are then to be added to the

values of
yit , yQ , respectively, which have to be calculated once for

all. If instead of the mean deflection
//,
we wish to employ the

central deflection D, we have only got to multiply the second sides

of equations (62), (66) by ff ,
and those of (63), (67) by f ,

and to

write D for
/Lt.

The following table contains the values of the

ratios of D and y to 8 for ten different values of q, as well as for

the limiting value q= oo
,
which belongs to the equilibrium tra

jectory.

The numerical results contained in Table III. are represented

graphically in figs. 2 and 3 of the woodcut on p. 216, where how

ever some of the curves are left out, in order to prevent confusion

in the figures. In these figures the numbers written against the

several curves are the values of 2^/?r to which the curves respect

ively belong, the symbol oo being written against the equilibrium

curves. Fig. 2 represents the trajectory of the body for different

values of q, and will be understood without further explanation.

In the curves of fig. 3, the ordinate represents the deflection of

the centre of the bridge when the moving body has travelled over

a distance represented by the abscissa. Fig. 1, which represents

the trajectories described when the mass of the bridge is neglected,

is here given for the sake of comparison with fig. 2. The num
bers in fig.

1 refer to the values of ft. The equilibrium curve

represented in this figure is the true equilibrium trajectory ex

pressed by equation (65), whereas the equilibrium curve repre

sented in fig. 2 is the approximate equilibrium trajectory ex

pressed by equation (64). In fig. 1, the body is represented as

flying off near the second extremity of the bridge, which is in fact

the case. The numerous small oscillations which would take

place if the body were held down to the bridge could not be
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TABLE III.
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properly represented in the figure without using a much larger

scale. The reader is however requested to bear in mind the

existence of these oscillations, as indicated by the analysis, because,

Fig. I Forms of the trajectory whenj^&amp;gt;
is very large.

Fig.2 -Forms of the trajectory when
jfc,

is very small.

Fig.3~Corresponding curves of deflexion

if the ratio of M to M altered continuously from GO to 0, they

would probably pass continuously into the oscillations which are

so conspicuous in the case of the larger values of q in fig. 2. Thus

the consideration of these insignificant oscillations which, strictly

speaking, belong to fig. 1, aids us in mentally filling up the gap
which corresponds to the cases in which the ratio of M to M is

neither very small nor very large.

As everything depends on the value of q, in the approximate

investigation in which the inertia of the bridge is taken into

account, it will be proper to consider further the meaning of this

constant. In the first place it is to be observed that although

M appears in equation (61), q is really independent of the mass

of the travelling body. For, when M alone varies, j3 varies in

versely as $, and 8 varies directly as M, so that q remains constant.

To get rid of the apparent dependence of q on M, let $
t
be the

central statical deflection produced by a mass equal to that of the
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bridge, and at the same time restore the general unit of length.

If x continue to denote the ratio of the abscissa of the body to the

length of the bridge, q will be numerical, and therefore, to restore

the general unit of length, it will be sufficient to take the general

expression (o) for p. Let moreover r be the time the body takes

to travel over the bridge, so that 2c = FT
;
then we get

If we suppose T expressed in seconds, and S
l
in inches, we must

put g = 32 2 x 12 = 386, nearly, and we get,

Conceive the mass M removed
; suppose the bridge depressed

through a small space, and then left to itself. The equation of

motion will be got from (59) by putting M=Q, where M is not

divided by S, and replacing M/S by M jS,, and F. d/dx by d/dt.

We thus get

and therefore, if P be the period of the motion, or twice the time

of oscillation from rest to rest,

-*- ............... (70) -

Hence the numbers 1, 2, 3, &c., written at the head of Table III.

and against the curves of figs. 2 and 3, represent the number of

quarter periods of oscillation of the bridge which elapse during
the passage of the body over it. This consideration will materially

assist us in understanding the nature of the motion. It should be

remarked too that q is increased by diminishing either the velocity

of the body or the inertia of the bridge.

In the trajectory 1, fig. 2, the ordinates are small because the

body passed over before there was time to produce much deflection

in the bridge, at least except towards the end of the body s course,

where even a large deflection of the bridge would produce only a

small deflection of the body. The corresponding deflection curve,

(curve 1, fig. 3,) shews that the bridge was depressed, and that its

deflection was rapidly increasing, when the body left it. When
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the body is made to move with velocities successively one-half and

one-third of the former velocity, more time is allowed for deflecting

the bridge, and the trajectories marked 2, 3, are described, in

which the ordinates are far larger than in that marked 1. The
deflections too, as appears from fig. 3, are much larger than before,

or at least much larger than any deflection which was produced in

the first case while the body remained on the bridge. It appears
from Table III., or from fig. 3, that the greatest deflection occurs

in the case of the third curve, nearly, and that it exceeds the

central statical deflection by about three-fourths of the whole.

&quot;When the velocity is considerably diminished, the bridge has time

to make several oscillations while the body is going over it. These

oscillations may be easily observed in fig. 3, and their effect on

the form of the trajectory, which may indeed be readily under

stood from fig. 3, will be seen on referring to fig. 2.

When q is large, as is the case in practice, it will be sufficient

in equation (66) to retain only the term which is divided by the

first power of q. With this simplification we get

25 25 .

so that the central deflection is liable to be alternately increased

and decreased by the fraction 25/8g of the central statical deflec

tion. By means of the expressions (61), (69), we get

It is to be remembered that in the latter of these expressions

the units of space and time are an inch and a second respectively.

Since the difference between the pressure on the bridge and weight
of the body is neglected in the investigation in which the inertia

of the bridge is considered, it is evident that the result will be

sensibly the same whether the bridge in its natural position be

straight, or be slightly raised towards the centre, or, as it is tech

nically termed, cambered. The increase of deflection in the case

first investigated would be diminished by a camber.

In this paper the problem has been worked out, or worked out

approximately, only in the two extreme cases in which the mass of

the travelling body is infinitely great and infinitely small respect

ively, compared with the mass of the bridge. The causes of the



RELATING TO THE BREAKING OF RAILWAY BRIDGES. 219

increase of deflection in these two extreme cases are quite distinct.

In the former case, the increase of deflection depends entirely on

the difference between the pressure on the bridge and the weight
of the body, and may be regarded as depending on the centrifugal

force. In the latter, the effect depends on the manner in which

the force, regarded as a function of the time, is applied to the

bridge. In practical cases the masses of the body and of the

bridge are generally comparable with each other, and the two

effects are mixed up in the actual result. Nevertheless, if wre find

that each effect, taken separately, is insensible, or so small as to be

of no practical importance, we may conclude without much fear of

error that the actual effect is insignificant. Now we have seen

that if we take only the most important terms, the increase of

deflection is measured by the fractions 1//3 and 2o/8q of S. It is

only when these fractions are both small that we are at liberty to

neglect all but the most important terms, but in practical cases

they are actually small. The magnitude of these fractions will

enable us to judge of the amount of the actual effect.

To take a numerical example lying within practical limits, let

the span of a given bridge be 44 feet, and suppose a weight equal
to | of the weight of the bridge to cause a deflection of i inch.

These are nearly the circumstances of the Ewell bridge, mentioned

in the report of the commissioners. In this case, S1

=
j x 2 = 15;

and if the velocity be 44 feet in a second, or 30 miles an hour, we

have T = 1, and therefore from the second of the formulas (72),

! = -0434, = 721 = 45-9 xf.
8&amp;lt; 4

The travelling load being supposed to produce a deflection of

2 inch, we have /3
= 127, 1/0 = 0079. Hence in this case the

deflection due to the inertia of the bridge is between 5 and 6 times

as great as that obtained by considering the bridge as infinitely

light, but in neither case is the deflection important. With a

velocity of 60 miles an hour the increase of deflection 04345 would

be doubled.

In the case of one of the long tubes of the Britannia bridge ft

must be extremely large; but on account of the enormous mass of

the tube it might be feared that the effect of the inertia of the tube

itself would be of importance. To make a supposition every way
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disadvantageous, regard the tube as unconnected with the rest of

the structure, and suppose the weight of the whole train collected

at one point. The clear span of one of the great tubes is 460 feet,

and the weight of the tube 1400 tons. When the platform on

which the tube had been built was removed, the centre sank 10

inches, which was very nearly what had been calculated, so that

the bottom became very nearly straight, since, in anticipation of

the deflection which would be produced by the weight of the tube

itself, it had been originally built curved upwards. Since a uni

formly distributed weight produces the same deflection as f ths of

the same weight placed at the centre, we have in this case

^ = 1x10 = 16; and supposing the train to be going at the rate

of 30 miles an hour, we have r = 460 -j- 44 = 10 5, nearly. Hence

in this case 25/8^ = 043. or -^ nearly, so that the increase of de

flection due to the inertia of the bridge is unimportant.

In conclusion, it will be proper to state that this &quot;Addition&quot;

has been written on two or three different occasions, as the reader

will probably have perceived. It was not until a few days after

the reading of the paper itself that I perceived that the equation

(16) was integrable in finite terms, and consequently that the

variables were separable in (4). I was led to try whether this

might not be the case in consequence of a remarkable numerical

coincidence. This circumstance occasioned the complete remodel

ling of the paper after the first six articles. I had previously

obtained for the calculation of z for values of x approaching 1, in

which case the series (9) becomes inconvenient, series proceeding

according to ascending powers of 1 x
t
and involving two arbitrary

constants. The determination of these constants, which at first

appeared to require the numerical calculation of five series, had

been made to depend on that of three only, which were ultimately

geometric series with a ratio equal to J.

The fact of the integrability of equation (4) in the form given

in Art. 7, to which I had myself been led from the circumstance

above mentioned, has since been communicated to me by Mr

Cooper, Fellow of St John s College, through Mr Adams, and by
Professors Malmsten and A. F. Svanberg of Upsala through Pro

fessor Thomson; and I take this opportunity of thanking these

mathematicians for the communication.
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NOTES ON HYDRODYNAMICS.

IV, On Waves.

THE theory of waves has formed the subject of two profound
memoirs by MM. Poisson and Cauchy, in which some of the

highest resources of analysis are employed, and the results deduced

from expressions of great complexity. This circumstance might

naturally lead to the notion that the subject of waves was unap

proachable by one who was either unable or unwilling to grapple
with mathematical difficulties of a high order. The complexity,

however, of the memoirs alluded to arises from the nature of the

problem which the authors have thought fit to attack, which is the

determination of the motion of a mass of liquid of great depth
when a small portion of the surface has been slightly disturbed in

a given arbitrary manner. But after all it is not such problems
that possess the greatest interest. It is seldom possible to realize

in experiment the conditions assumed in theory respecting the

initial disturbance. Waves are usually produced either by some

sudden disturbing cause, which acts at a particular part of the

fluid in a manner too complicated for calculation, or by the wind

exciting the surface in a manner which cannot be strictly investi

gated. What chiefly strikes our attention is the propagation of

waves already produced, no matter how : what we feel most desire

to investigate is the mechanism and the laws of such propagation.
Bat even here it is not every possible motion that may have been

excited that it is either easy or interesting to investigate ;
there

are two classes of waves which appear to be especially worthy of

attention.
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The first consists of those whose length is very great compared
with the depth of the fluid in which they are propagated. To this

class belongs the great tidal wave which, originally derived from

the oceanic oscillations produced by the disturbing forces of the

sun and moon, is propagated along our shores and up our channels.

To this class belongs likewise that sort of wave propagated along a

canal which Mr Russell has called a solitary wave. As an example
of this kind of wave may be mentioned the wave which, when a

canal boat is stopped, travels along the canal with a velocity

depending, not on the previous velocity of the boat, but merely

upon the form and depth of the canal.

The second class consists of those waves which Mr Russell has

called oscillatory. To this class belong the waves produced by the

action of wind on the surface of water, from the ripples on a pool

to the long swell of the Atlantic. By the waves of the sea which

are referred to this class must not be understood the surf which

breaks on shore, but the waves produced in the open sea, and

which, after the breeze that has produced them has subsided,

travel along without breaking or undergoing any material change

of form. The theory of oscillatory waves, or at least of what may
be regarded as the type of oscillatory waves, is sufficiently simple,

although not quite so simple as the theory of long waves.

Theory of Long Waves.

Conceive a long wave to travel along a uniform canal. For the

sake of clear ideas, suppose the wave to consist entirely of an

elevation. Let Jc be the greatest height of the surface above the

plane of the surface of the fluid at a distance from the wave, where

the fluid is consequently sensibly at rest
;
let X be the length of

the wave, measured suppose from the point where the wave first

becomes sensible to where it ceases to be sensible on the opposite

side of the ridge ;
let b be the breadth, and h the depth of the

canal if it be rectangular, or quantities comparable with the

breadth and depth respectively if the canal be not rectangular.

Then the volume of fluid elevated will be comparable with ~b\k.

As the wave passes over a given particle, this volume (not how

ever consisting of the same particles be it observed) will be trans-
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ferred from the one side to the other of the particle in question.

Consequently if we suppose the horizontal motions of the particles

situated in the same vertical plane perpendicular to the length of

the canal to be the same, a supposition which cannot possibly give

the greatest horizontal motion too great, although previously to

investigation it might be supposed to give it too small, the hori

zontal displacement of any particle will be comparable with b\k/bh

or \k/h. Hence if X be very great compared with h
y
the horizontal

displacements and horizontal velocities will be very great compared
with the vertical displacements and vertical velocities. Hence we

may neglect the vertical effective force, and therefore regard the

fluid as in equilibrium, so far as vertical forces are concerned, so

that the pressure at any depth 8 below the actual surface will be

gp8, g being the force of gravity, and p the density of the fluid, the

atmospheric pressure being omitted. It is this circumstance that

makes the theory of long waves so extremely simple. If the canal

be not rectangular, there will be a slight horizontal motion in a

direction perpendicular to the length of the canal
;
but the corre

sponding effective force may be neglected for the same reason as

the vertical effective force, at least if the breadth of the canal be

not very great compared with its depth, which is supposed to be

the case; and therefore the fluid contained between any two

infinitely close vertical planes drawn perpendicular to the length of

the canal may be considered to be in equilibrium, except in so far

as motion in the direction of the length of the canal is concerned.

It need hardly be remarked that the investigation which applies
to a rectangular canal will apply to an extended sheet of standing

fluid, provided the motion be in two dimensions.

Let x be measured horizontally in the direction of the length
of the canal

;
and at the time t draw two planes perpendicular to

the axis of #, and passing through points whose abscissas are x
and x + dx. Then if

rj be the elevation of the surface at

any point of the horizontal line in which it is cut by the first

plane, 77 + drj/dx . dx will be the elevation of the surface where
it is cut by the second plane. Draw a right line parallel to the

axis of x, and cutting the planes in the points P, P . Then if

8 be the depth of the line PP below the surface of the fluid

in equilibrium, the pressures at P, P will be gp (8 + 77) and

gp (8 + 77 + drj/dx . dx) respectively ;
and therefore the difference
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of pressures will be gp dy/dx . dx . About the line PP describe

an infinitely thin cylindrical surface, with its generating lines per

pendicular to the planes, and let re be the area which it cuts from

either plane ;
and consider the motion of fluid which is bounded

by the cylindrical surface and the two planes. The difference of

the pressures on the two ends is ultimately gpK drj/dx. dx ,
and the

mass being pK dx, the accelerating force is g dr
t/dx. Hence the

effective force is the same for all particles situated in the same

vertical plane perpendicular to the axis of x
;
and since the parti

cles are supposed to have no sensible motion before the wave

reaches them, it follows that the particles once in a vertical plane

perpendicular to the length of the canal remain in such a vertical

plane throughout the motion.

Let x be the abscissa of any plane of particles in its position of

equilibrium, x + % the common abscissa of the same set of particles

at the time t, so that and 77 are functions of x and t. Then

equating the effective to the impressed accelerating force, we get

^ =
-&amp;lt;7^ (1).

df 9 dx
..............

and we have x x + ^ ............................... (2).

Thus far the canal has been supposed to be not necessarily

rectangular, nor even uniform, provided that its form and dimen

sions change very slowly, nor has the motion been supposed to be

necessarily very small. If we adopt the latter supposition, and

neglect the squares of small quantities, we shall get from (1)

and (2)

tf? dTJ

It remains to form the equation of continuity. Suppose the

canal to be uniform and rectangular, and let b be its breadth and h

its depth. Consider the portion of fluid contained between two

vertical planes whose abscissae in the position of equilibrium are x

and x -f dx. The volume of this portion is expressed by bh dx. At

the time t the abscissae of the bounding planes of particles are

a? -f f and x + f + (1 4- d/dx) dx
;
the depth of the fluid contained

between these planes is h + rj and therefore the expression for

the volume is b (h + 77) (1 4- dg/dx) dx. Equating the two expres-
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sions for the volume, dividing by bdx, and neglecting the product
of the two small quantities, we get

Eliminating f between (3) and (4), we get

tfi, , d2
rj

-de =ffh d?
The complete integral of this equation is

.............. (6),

where/, F denote two arbitrary functions. This integral evidently

represents two waves travelling, one in the positive, and the other

in the negative direction, with a velocity equal to *J(gh), or to

that acquired by a heavy body in falling through a space equal
to half the depth of the fluid. It may be remarked that the

velocity of propagation is independent of the density of the

fluid.

It is needless to consider the determination of the arbitrary
functions /, F by means of the initial values of 77 and drjidt, sup
posed to be given, or the reflection of a wave when the canal is

stopped by a vertical barrier, since these investigations are pre

cisely the same as in the case of sound, or in that of a vibrating

This equation is in fact a second integral of the ordinary equation of con

tinuity, corrected so as to suit the particular case of motion which is under con
sideration. For motion in two dimensions the latter equation is

du dv

and denoting by ?/ the vertical displacement of any particle, we have

d dr,u=
Tt&amp;gt;

v =Tf
Substituting in (a), and integrating with respect to t, we get

$ (*, y) denoting an arbitrary function of .r, ?/, that is, a quantity which may vary
from one particle to another, but is independent of the time. To determine ^ we
must observe that when any particle is not involved in the wave 17

= 0, and does
not vary in passing from one particle to another, and therefore ^(.r, y)=0. Inte

grating equation (b) with respect to y from y= Q to y = li + 77, observing that is

independent of y, and that the limits of
77 are and 97, and neglecting 77 d^dx,

which is a small quantity of the second order, we get the equation in the
text.

S. II. 15
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string. The only thing peculiar to the present problem consists in

the determination of the motion of the individual particles.

It is evident that the particles move in vertical planes parallel

to the length of the canal. Consider an elementary column of

fluid contained between two such planes infinitely close to each

other, and two vertical planes, also infinitely close to each other,

perpendicular to the length of the canal. By what has been

already shewn, this column of fluid will remain throughout the

motion a vertical column on a rectangular base
;
and since there

can be no vertical motion at the bottom of the canal, it is evident

that the vertical displacements of the several particles in the

column will be proportional to their heights above the base. Hence

it will be sufficient to determine the motion of a particle at the

surface
;
when the motion of a particle at a given depth will be

found by diminishing in a given ratio the vertical displacement of

the superficial particle immediately above it, without altering the

horizontal displacement,

The motion of a particle at the surface is defined by the values

of
T?
and . The former is given by (6), where the functions /, F

are now supposed known, and the latter will be obtained from (4)

by integration. Consider the case in which a single wave con

sisting of an elevation is travelling in the positive direction
;

let

\ be the length of the wave, and suppose the origin taken at the

posterior extremity of the wave in the position it occupies when

t = : then we may suppress the second function in (6), and

we shall have/ (a;)
= from a?=-oo to = 0, and from x = \ to

x = + oo
, and/(#) will be positive from x = to x = X. Let

c = J(gh) .............................. (7),

so that c is the velocity of propagation, and let
the^

position of

equilibrium of a particle be considered to be that which it occu

pies before the wave reaches it, so that vanishes for x = + oo .

Then we have from (4) and (6)

=l
(%&amp;lt;to=4 f(x-ct)dx ............... (8).

li J n&amp;gt;Jx

Consider a particle situated in front of the wave when t = 0,

so that #&amp;gt;X. Since /(#)
= when a?&amp;gt;\, we shall have

/(#-c) = 0, until ct = x-\. Consequently from (6) and (8)

there will be no motion until t = x-\/c, when the motion will

commence. Suppose now that a very small portion only of the
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wave, of length s, has passed over the particle considered. Then
act = \ s

,
and we have from (6) and (8)

n =/(x -),* =
\\&quot;

/(x - ) d. =
J f &amp;gt;(x

-
) &amp;lt;fe :

for since f(x) vanishes when x&amp;gt; X, we may replace the limits

ft
x&amp;gt; and s by and s. Since I f(\ s)ds is equal to s mul-

^o

tiplied by the mean value of/(X - s) from to 5, and this mean
value is comparable with / (X s), it follows that f is at first very
small compared with ?;. Hence the particle begins to move verti

cally; and since 77 is positive the motion takes place upwards.
As the wave advances, f becomes sensible, and goes on increasing

positively. Hence the particle moves forwards as well as upwards.
When the ridge of the waves reaches the particle, 77 is a maxi
mum

; the upward motion ceases, but it follows from (8) that f is

then increasing most rapidly, so that the horizontal velocity is

a maximum. As the wave still proceeds, 77 begins to decrease,
and f to increase less rapidly. Hence the particle begins to

descend, and at the same time its onward velocity is checked.
As the wave leaves the particle, it may be shewn just as before

that the final motion takes place vertically downwards. When the
wave has passed, 77

=
0, so that the particle is at the same height

from the bottom as at first
;
but f is a positive constant, equal to

*&amp;lt;** or to !

that is, to the volume elevated divided by the area of the section
of the canal. Hence the particle is finally deposited in advance of
its initial position by the space just named.

If the wave consists of a single depression, instead of a single
elevation, everything is the same as before, except that the parti
cle is depressed and then raised to its original height, in place of

being first raised and then depressed, and that it is moved back
wards, or in a direction contrary to that of propagation, instead of

being moved forwards.

These results of theory with reference to the motions of the in
dividual particles may be compared with Mr Russell s experiments
described at page 342 of his second report on waves*.

*
Keport of the 14th meeting of the British Association. Mr Russell s first

report is contained in the Report of the 7th meeting.

152
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In the preceding investigation the canal has been supposed

rectangular. A very trifling modification, however, of the pre

ceding process will enable us to find the velocity of propagation in

a uniform canal, the section of which is of any arbitrary contour.

In fact, the dynamical equation (3) will remain the same as before
;

the equation of continuity alone will have to be altered. Let A be

the area of a section of the canal, b the breadth at the surface of

the fluid
;
and consider the mass of fluid contained between two

vertical planes whose abscissae in the position of equilibrium are

x and x + dx, and which therefore has for its volume Adx. At the

time t, the distance between the bounding planes of particles is

(1 + dfydx) d.c, and the area of a section of the fluid is A + brj

nearly, so that the volume is

nearly. Equating the two expressions for the volume, we get

A --. + bri = 0.
ax

Comparing this equation with (4), we sec that it is only

necessary to write A/b for h
;

so that if c be the velocity of

propagation,

~J(94}. .().

The formula (9) of course includes (7) as a particular case.

The latter was given long ago by Lagrange* : the more compre
hensive formula (9) was first given by Prof. Kelland-f-, though at

the same time or rather earlier it was discovered independently

* Berlin Memoirs, 1786, p. 192. In this memoir Lagrange has obtained the

velocity of propagation by very simple reasoning. Laplace had a little earlier (Mem.
de VAcademic for 1776, p. 542) given the expression (see equation (29) of this note)

for the velocity of propagation of oscillatory waves, which when h is very small

compared with X reduces itself to Lagrange s formula, but had made an unwarrant

able extension of the application of the formula. In the Mecaniqne Analytique

Lagrange has obtained analytically the expression (7) for the velocity of propagation

when the depth is small, whether the motion take place in two or three dimensions,

by assuming the result of an investigation relating to sound.

For a full account of the various theoretical investigations in the theory of

waves, which had been made at the date of publication, as well as for a number of

interesting experiments, the reader is referred to a work by the brothers Weber,

entitled WellenleJire auf Experimente fjegriindet, Leipzig, 1825.

f Transactions of the Royal Society of Edinburgh, Vol. xiv. pp. 524, 530.
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by Green*, in the particular case of a triangular canal. These
formulae agree very well with experiment, when the height of the

waves is small, which has been supposed to be the case in the

previous investigation, as may be seen from Mr Russell s reports. A
table containing a comparison of theory and experiment in the

case of a triangular canal is given in Green s paper. In this table

the mean error is only about 1 60th of the whole velocity.

As the object of this note is merely to give the simplest cases

of wave motion, the reader is referred to Mr Airy s treatise on tides

and waves for the effect produced by a slow variation in the dimen
sions of the canal on the length and height of the wavef, as well

as for the effect of the finite height of the wave on the velocity of

propagation. With respect to the latter subject, however, it must
be observed that in the case of a solitary wave artificially excited

in a canal it does not appear to be sufficient to regard the wave as

infinitely long when we are investigating the correction for the

height; it appears to be necessary to take account of the finite

length, as well as finite height of the wave.

Theory of Oscillatory Waves.

In the preceding investigation, the general equations of hydro
dynamics have not been employed, but the results have been
obtained by referring directly to first principles. It will now be
convenient to employ the general equations. The problem which
it is here proposed to consider is the following.

The surface of a mass of fluid of great depth is agitated by a

series of waves, which are such that the motion takes place in two
dimensions. The motion is supposed to be small, and the squares
of small quantities are to be neglected. The motion of each

particle being periodic, and expressed, so far as the time is con

cerned, by a circular function of given period, it is required to

determine all the circumstance of the motion of the fluid. The
case in which the depth is finite and uniform will be considered
afterwards.

*
Transactions of the Cambridge Philosophical Society, Vol. vn. p. 87.

t Encyclopedia Metropolitan/!. Art. 200 of the treatise.
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It must be observed that the supposition of the periodicity of

the motion is not, like the hypothesis of parallel sections, a mere

arbitrary hypothesis introduced in addition to our general equa

tions, which, whether we can manage them or not, are sufficient

for the complete determination of the motion in any given case.

On the contrary, it will be justified by the result, by enabling us

to satisfy all the necessary equations ;
so that it is used merely to

define, and select from the general class of possible motions, that

particular kind of motion which we please to contemplate.

Let the vertical plane of motion be taken for the plane of xy.

Let x be measured horizontally, and y vertically upwards from the

mean surface of the fluid. If a, b be the co-ordinates of any parti

cle in its mean position, the co-ordinates of the same particle at

the time t will be a + Judt, b +fvdt, respectively. Since the

squares of small quantities are omitted, it is immaterial whether

we conceive u and v to be expressed in terms of a, b, t, or in terms

of x, y, t\ and, on the latter supposition, we may consider x and y

as constant in the integration with respect to t. Since the varia

ble terms in the expressions for the co-ordinates are supposed to

contain t under the form sin nt or cos nt, the same must be the case

with u and v. We may therefore assume

u = u
l
sin nt + u

z
cos nt, v = v

l
sin nt + v

2
cos nt,

where u
lt u^ v

l}
v
2
are functions of x and y without t. Substituting

these values of u and v in the general equations of motion, neglect

ing the squares of small quantities, and observing that the only

impressed force acting on the fluid is that of gravity, we get

I dp
-f- = nu, cos nt + nua sin nt,

pdx
......... (10),

I dp
--**- = q nv, cos nt + nv

t
sin nt

and the equation of continuity becomes

du. dv^\ . (du dv
-p

1 + 7
-1- sin nt + 7 + -T- cos nt = ........ (11.

dx dy I \dx dy

Eliminating p by differentiation from the two equations (10),

we get
f

du^

dy dx)
~

\dy

(du dv\ ,

cos nt - \-r - -

y s

\dy dx)
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and in order that this equation may be satisfied, we must have

separately

^*i = 0, ^-^ = ...... (13).
dy ax ay ax

The first of these equations requires that u^dx + v^dy be an

exact differential dfa, and is satisfied merely by this supposition.

Similarly the second requires that u^dx + v^dy be an exact differ

ential
d(f&amp;gt;2

. The functions
(/&amp;gt; x ,

c/&amp;gt;2 may be supposed not to contain

t, provided that in integrating equations (10) we express explicitly

an arbitrary function of t instead of an arbitrary constant. In

order to satisfy (11) we must equate separately to zero the coeffi

cients of sin nt and cos nt. Expressing u
l}

v
l}

H
2 ,

v
2
in terms of

&amp;lt;j&amp;gt; l j
&amp;lt;

a
in the resulting equations, we get

with a similar equation for
&amp;lt;/&amp;gt;2

. Integrating the value of dp

given by (10), we get

- =
fjy ?i(/&amp;gt; 1

cos nt + nfa sin nt + tyfy) ...... (15).

It remains to form the equation of condition which has to

be satisfied at the free surface. If we suppose the atmospheric

pressure not to be included in p, we shall have p = at the free

surface
;
and we must have at the same time (Note II.)

^ + !
&amp;gt; +^ = ............ (16).

dt dx dy

The second term in this equation is of the second order, and

-in the third we may put for dp dy its approximate value gp.

Consequently at the free surface, which is defined by the

equation

gij + nfa cos nt nfa sin nt ^r (t)
= ......... (17),

we must have

n fa sin nt + n fa cos nt +^ (t)
- g (~^ sin nt +^2 cos

nty
=

(18) :

and we have the further condition that the motion shall vanish

at an infinite depth. Since the value of y given by (17) is a

small quantity of the first order, it will be sufficient after differen

tiation to put y = in (18).
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Equations (18), (14), and the corresponding equation for
c/&amp;gt; 2

shew that the functions &amp;lt;

1} &amp;lt;/&amp;gt;2
are independent of each other;

and (15), (17) shew that the pressure at any point, and the

ordinate of the free surface are composed of the sums of the parts
due to these two functions respectively. Consequently we may
temporarily suppress one of the functions c

2 , which may be easily

restored in the end by writing t + 7r/2n for t, and changing the

arbitrary constants.

Equation (14) may be satisfied in the most general way by
an infinite number of particular solutions of the form Ae ni x+m

y,

where any one of the three constants A, m, m may be positive

or negative, real or imaginary, and m, m are connected by the

equation m/2 +m2 = 0.* Now m cannot be wholly real, nor partly

real and partly imaginary, since in that case the corresponding

particular solution would become infinite either for x = oo or

for as + co
,
whereas the fluid is supposed to extend indefinitely

in the direction of x, and the expressions for the velocity, &c.

must not become infinite for any point of space occupied by the

fluid. Hence m must be wholly imaginary, and therefore m
wholly real. Moreover m must be positive, since otherwise the

expression considered would become infinite for y = oo . The

equation connecting m and m gives m= m\/( 1). Unitino^

in one the two corresponding solutions with their different arbi

trary constants, we have for the most general particular solution

which we are at liberty to take (J. e
mV

&amp;lt;-
1

&amp;gt; + Be~m^ (

-V) em
,
which

becomes, on replacing the imaginary exponentials by circular

functions, and changing the arbitrary constants,

(A sin mac + B cos mx) e
m

-&amp;gt;.

Hence we must have

(/&amp;gt; a

= S (A sin mx + B cos mx) emv
(19),

the sign 5 denoting that we may take any number of positive

values of m with the corresponding values of A and B.

Substituting! now in (18), supposed to be deprived of the

function $2 , the value of
&amp;lt;f) l given by (19), and putting y = after

differentiation, we have

sin nt S (n* wig) (A sin tnx + B cos m,r) + ty (t) 0.

* See Poisson, Traite de Mecanique, Tom. n. p. 347, or Theorie dc la Chaleur,

Chap. v.



ox WAVES. 233

Since no two terms such as A sin mx or B cos mx can destroy
each other, or unite with the term

-fy (t), we must have sepa

rately ^r (t)
=

0, and

u*-my = Q (20).

The former of these equations gives ^ (t)
= k, where k is a

constant
;

but (17) shews that the mean value of the ordinate

y of the free surface is kfg, inasmuch as
&amp;lt;/&amp;gt; :

and
t/&amp;gt;2

consist of

circular functions so far as x is concerned, and therefore we must

have k 0, since we have supposed the origin of co-ordinates to

be situated in the mean surface of the fluid. The latter equation
restricts (19) to one particular value of in,

To obtain $2
it will be sufficient to take the expression for

&amp;lt;j

with new arbitrary constants. If we put &amp;lt;/&amp;gt;

for

&amp;lt;f)l
sin nt + 2

cos nt, so that
&amp;lt;p

=
f(ud.v + vdy),

we see that
&amp;lt;f&amp;gt;

consists of four terms, each consisting of the pro
duct of an arbitrary constant, a sine or cosine of nt, a sine or

cosine of mx and of the same function emy of y. By replacing
the products of the circular functions by sines or cosines of sums

or differences, and changing the arbitrary constants, we shall get
four terms multiplied by arbitrary constants, and involving sines

and cosines of mx nt and of mx + nt. The terms involving
mx nt will represent a disturbance travelling in the positive

direction, and those involving mx -\-nt a disturbance travelling in

the negative direction. If we wish to consider only the disturb

ance which travels in the positive direction, we must suppress the

terms involving mx+nt, and we shall then have got only two
terms left, involving respectively sin (mx nt) and cos (mx nt}.

One of these terms, whichever we please, may be got rid of by
altering the origin of x

;
and we may therefore take

&amp;lt;

= A sin (mx - nt) e
m^

(21) ;

and
&amp;lt;t&amp;gt; determines, by its partial differential coefficients with

respect to x and y, the horizontal and vertical components of the

velocity at any point. We have from (21), and the definitions of

4v *,.

&amp;lt;&amp;gt;

= A cos m r . e
m

, &amp;lt;.,

= A sin mx . emy .
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Substituting in (15) and (17), putting ty (t)
=

0, and replacing

y by in the second and third terms of (17), we get

P

which gives the pressure at any point, and

y = cos (mx nt) (23)*,

which gives the equation to the free surface at any instant.

If X be the length of a wave, T its period, c the velocity of

propagation, we have m =
2-Tr/X, n = 2-7T/7

7

,
n = cm

;
and therefore

from (20)

-y M-
Hence the velocity of propagation varies directly, and the period

of the wave inversely, as the square root of the wave s length.

Equation (23) shews that a section of the surface at any instant

is the curve of sines.

It may be remarked that in consequence of the form of
(/&amp;gt;

equation (18) is satisfied, not merely for y = 0, but for any value

of y; and therefore (16) is satisfied, not merely at the free surface,

but throughout the mass. Hence the pressure experienced by a

given particle is constant throughout the motion. This is not true

when the depth is finite, as may be seen from the value of
(f&amp;gt;

adapted to that case, which will be given presently; but it may be

shewn to be true when the depth is infinite, whether the motion

take place in two, or three dimensions, and whether it be regular

or irregular, provided it be small, and be such that udx + vdy -f wdz

is an exact differential.

It will be interesting to determine the motions of the indi

vidual particles. Let x + f, y -f 77 be the co-ordinates of the par

ticle whose mean position has for co-ordinates x, y. Then we have

d d(fr drj dd&amp;gt;

dt dx dt dy

and in the values of u, v we may take x, y to denote the actual

*
Equations (22), (23) may be got at once from the equations

p fld&amp;gt; dip= -
fjy -, , q\i + ~-

.

p at at
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co-ordinates of any particle or their mean values indifferently, on

account of the smallness of the motion. Hence we get from (21)

after differentiation and integration

inA . , mA . .

% = sin (mx nt) e
J

, 77
= cos (mx nt)e

y
. . . (25).n ii

Hence the particles describe circles about their mean places, with a

uniform angular motion. Since 77 is a maximum at the same time

with y in (23), and dg/dt is then positive, any particle is in its

highest position when the crest of the wave is passing over it, and

is then moving horizontally forwards, that is, in the direction of

propagation. Similarly any particle is in its lowest position when

the middle of the trough is passing over it, and it is then moving

horizontally backwards. The radius of the circle described is equal

to mA/n . e
m
*, and it therefore decreases in geometric progression as

the depth of the particle considered increases in arithmetic. The

rate of decrease is such that at a depth equal to \ the displace

ment is to the displacement at the surface as e&quot;*

71
&quot;

to 1, or as 1 to

.&quot;)o5 nearly.

If the depth of the fluid be finite, the preceding solution may
of course be applied without sensible error, provided e

m* be insensi

ble for a negative value of y equal to the depth of the fluid. This

will be equally true whether the bottom be regular or irregular,

provided that in the latter case we consider the depth to be repre

sented by the least actual depth.

Let us now suppose the depth of the fluid finite and uniform.

Let h be the mean depth of the fluid, that is, its depth as unaffected

by the waves. It will be convenient to measure y from the bottom

rather than from the mean surface. Consequently we must put

y = h, instead of y = 0, in the values of
$&amp;gt;v &amp;lt;/&amp;gt;2

, and their differential

coefficients, in (17) and (18). The only essential change in the

equations of condition of the problem is, that the condition that

the motion shall vanish at an infinite depth is replaced by the

condition that the fluid shall not penetrate into, or separate from

the bottom, a condition which is expressed by the equation

^ = when
i/
= (} (26).

ay

Everything is the same as in the preceding investigation till

we come to the selection of a particular integral of (14). As before,
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y must appear in an exponential, and x under a circular function
;

but both exponentials must now be retained. Hence the only

particular solution which we are at liberty to take is of the form

Aemu cos mx + Bemy sin mx -f Ce~my cos mx + De~my sin mx,

or, which is the same thing, the coefficients only being altered,

(t
m!l + e~

my
) (A cos mx + B sin mx)

+ (e
mv

e~
my

) (
C cos mx -f D sin mx).

Now (26) must be satisfied by fa and fa separately. Substituting
then in this equation the value of

(f) 1
which is made up of an infi

nite number of particular values of the above form, we see that we
must have for each value of m in particular C = 0, D 0; so that

(j) l
=

(e
my + e~

my
) (A cos mx 4- B sin mx).

Substituting in equation (18), in which fa is supposed to be

suppressed, and y put equal to h after differentiation, we get

n2

(e
mh + &amp;lt;T

&amp;gt;Hh

)
- mg (e

mh -
-&quot;*)

- ......... (27),

and
ifr (t)

=
0, which gives ty (t)

= k. The equation (17) shews

that this constant k must be equal to h, which is the mean value

of y at the surface. It is easy to prove that equation (27), in

which m is regarded as the unknown quantity, has one and but

one positive root. For, putting mh =
p, and denoting by v the

function of
//,

defined by the equation

v (& + e-M) =At (e
M_

-&amp;gt;)
.................. (28),

we get by taking logarithms and differentiating

Idvl * + e-^ e^ e ^

Now the right-hand member of this equation is evidently positive

when /A is positive; and since v is also positive, as appears from

(28), it follows that dv/dfji is positive; and therefore
//,

and v in

crease together. Now (28) shews that v passes from to GO as ^
passes from to oc

,
and therefore for one and but one positive

value of
/A, v is equal to the given quantity w?h/ff, which proves the

theorem enunciated. Hence as before the most general value of

corresponds to two series of waves, of determinate length, which

are propagated, one in the positive, and the other in the negative



ON WAVES. 237

direction. If c be the velocity of propagation, we get from (27),

since n = cm = c . 2ir/\t

If we consider only the series which is propagated in the posi

tive direction, we may take for the same reason as before

&amp;lt;f&amp;gt;

= A (e
my +

e-&quot;&quot;)
sin (mx-nf) ............... (30);

which gives

V = g (h -ij} + nA (e
wy + e

1

&quot;*)
cos (mx - nt) ....... (31 ),

and for the equation to the free surface

g (y
-

h)
= nA

(e&quot;

A +
-

n&amp;lt;h

) cos (mx -nt) ......... (32).

Equations (21), (22), (23) may be got from (30). (31), (32) by

writing y + h for ^, Ae~&quot;
h

for A, and then making h infinite.

When X is very small compared with h, the formula (29) reduces

itself to (24) : when on the contrary X is very great it reduces it

self to (7). It should be observed however that this mode of prov

ing equation (7) for very long waves supposes a section of the

surface of the fluid to be the curve of sines, whereas the equation
has been already obtained independently of any such restriction.

The motion of the individual particles may be determined, just
as before, from (30;. We get

%= -
(

m +
&quot;*)

sin (mx - nt),

77
=

(e
m* - e

m
&quot;)

cos (mx - nt) ............. (33).
7i

Hence the particles describe elliptic orbits, the major axes of

which are horizontal, and the motion in the ellipses is the same

as in the case of a body describing an ellipse under the action of a

force tending to the centre. The ratio of the minor to the major
axis is that of 1 e~

2my to 1 + e~
2 &quot;I2/

,
which diminishes from the

surface downwards, and vanishes at the bottom, where the ellipses

pass into right lines.

The ratio of the horizontal displacement at the depth h y
to that at the surface is equal to the ratio of 6

v + e~&quot;

&amp;lt;v to e
mh + e~

m
\

The ratio of the vertical displacements is that of e&quot;

ty
e&quot;

2

to

&amp;gt;*_
-&quot;i*

! The former of these ratios is greater, and the latter
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less- than that of
~m(h~y] to 1. Hence, for a given length of wave,

the horizontal displacements decrease less, and the vertical dis

placements more rapidly from the surface downwards when the

depth of the fluid is finite, than when it is infinitely great.

In a paper
&quot; On the Theory of Oscillatory Waves* &quot;

I have

considered these waves as mathematically defined by the character

of uniform propagation in a mass of fluid otherwise at rest, so that

the waves are such as could be propagated into a portion of fluid

which had no previous motion, or excited in such a portion by
meaus of forces applied to the surface. It follows from the latter

character, by virtue of the theorem proved in Note IV, that

udx + vdy is an exact differential. This definition is equally

applicable whether the motion be or be not very small
;
but in the

present note I have supposed the species of wave considered to be

defined by the character of periodicity, which perhaps forms a

somewhat simpler definition when the motion is small. In the

paper just mentioned I have proceeded to a second approximation,

and in the particular case of an infinite depth to a third approxima

tion. The most interesting result, perhaps, of the second approxi

mation is, that the ridges are steeper and narrower than the

troughs, a character of these waves which must have struck every

body who has been in the habit of watching the waves of the

sea, or even the ripples on a pool or canal. It appears also from

the second approximation that in addition to their oscillatory

motion the particles have a progressive motion in the direction of

propagation, which decreases rapidly from the surface downwards.

The factor expressing the rate of decrease in the case in which

the fluid is very deep is e~
2

&quot;^ y being the depth of the particle

considered below the surface. The velocity of propagation is

the same as to a first approximation, as might have been seen

a priori, because changing the sign of the coefficient denoted by

A in equations (21) and (30) comes to the same thing as shifting

the origin of x through a space equal to |X, which does not alter

the physical circumstances of the motion; so that the expression

for the velocity of propagation cannot contain any odd powers of

A. The third approximation in the case of an infinite depth gives

an increase in the velocity of propagation depending upon the

height of the waves. The velocity is found to be equal to

*
Cambridge Philosophical Transactions, Vol. vm. p. 441. [Ante, Vol. i. p. 197.]
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C (l + 27rV X2

), c being the velocity given by (24), and a the

height of the waves above the mean surface, or rather the coeffi

cient of the first term in the equation to the surface.

A comparison of theory and observation with regard to the

velocity of propagation of waves of this last sort may be seen at

pages 271 and 274 of Mr Russell s second report, The following
table gives a comparison between theory and experiment in the

case of some observations made by Capt. Stanley, RN. The
observations were communicated to the British Association at its

late meeting at Swansea*.

In the following table

A is the length of a wave, in fathoms
;

B is the velocity of propagation deduced from the observations,

expressed in knots per hour
;

C is the velocity given by the formula (24), the observations

being no doubt made in deep water
;

D is the difference between the numbers given in columns
B and C.

In calculating the numbers in table C, I have taken g = 32 2

feet, and expressed the velocity in knots of 1000 fathoms or 6000

feetf.

A
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formula (24) gives a velocity a little too small to agree with obser

vations under the circumstances of the experiments. The height

of the waves from crest to trough is given in experiments No. 1,

2, 3, 6, 7, by numbers of feet ranging from 17 to 22. I have

calculated the theoretical correction for the velocity of propagation

depending upon the height of the waves, and found it to be 5 or

*6 of a knot, by which the numbers in column C ought to be

increased. But on the other hand, according to theory, the par

ticles at the surface have a progressive motion of twice that

amount
;
so that if the ship s velocity, as measured by the log-

line, were the velocity relatively to the surface of the water, her

velocity would be under-estimated to the amount of 1 or 1 2 knot,

which would have to be added to the numbers in column B, or

which is the same subtracted from those in column (7, in order to

compare theory and experiment ;
so that on the whole *5 or 6

would have to be subtracted from the numbers in column C.

But on account of the depth to which the ship sinks in the sea,

and the rapid decrease of the factor e~
2 &quot;^ from the surface down

wards, the correction 1 or 1*2 for the &quot;heave of the sea*&quot; would

be too great; and therefore, on the whole, the numbers in column

C may be allowed to stand. If the numbers given in Capt.

Stanley s column, headed &quot;Speed
of

Ship&quot; already contain some

such correction, the numbers in column C must be increased, and

therefore those in column D diminished, by &quot;5 or *6.

It has been supposed in the theoretical investigation that

the surface of the fluid was subject to a uniform pressure. But in

the experiments the wind was blowing strong enough to propel

the ship at the rate of from 5 to 7 8 knots an hour. There is

nothing improbable in the supposition that the wind might have

slightly increased the velocity of propagation of the waves.

There is one other instance of wave motion which may be

noticed before we conclude. Suppose that two series of oscillatory

waves, of equal magnitude, are propagated in opposite directions.

The value of
&amp;lt;/&amp;gt;

which belongs to the compound motion will be

*
I have been told by a naval friend that an allowance for the &quot; heave of

the sea&quot; is sometimes actually made. As well as I recollect, this allowance

might have been about 10 knots a day for waves of the magnitude of those here

considered.
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the squares of small quantities being neglected, as throughout this

note. Since

cos (mx nt) + cos (inx + nt + a)
= 2 cos (??kz + Ja) cos (?i + Ja),

we get by writing \A for ^, and altering the origins of x and t, so

as to get rid of a,

&amp;lt;/&amp;gt;

= A (e
m* + e~

my
) cos mx . cos ?^ (34).

This is in fact one of the elementary forms already considered,

from which two series of progressive oscillatory waves were derived

by merely replacing products of sines and cosines by sums and

differences. Any one of these four elementary forms corresponds
to the same kind of motion as any other, since any two may be

derived from each other by merely altering the origins of x and t;

and therefore it will be sufficient to consider that which has

just been written. We get from (34)

\i = - mA (e
my + e~

my
)
sin mx cos nt}

v = mA (e
my

e~
my

)
cos mx cos nt

We have also for the equation to the free surface

nA
y-h =

(e
my + e~

my
)
cos mx sin nt (36).

Equations (35) shew that for an infinite series of planes for

which mx = 0,
= + TT,

= + 2?r, &c., i. e. x = 0, = JX, = X, &c.,

there is no horizontal motion, whatever be the value of t
;
and for

planes midway between these the motion is entirely horizontal.

When t = 0, (36) shews that the surface is horizontal
;
the parti

cles are then moving with their greatest velocity. As t increases,

the surface becomes elevated (A being supposed positive) from

x = to x = JX, and depressed from x = JX to x = JX, which suffi

ciently defines the form of the whole, since the planes whose

equations are x = 0, x = JX, are planes of symmetry. When
nt = |TT, the elevation or depression is the greatest ;

the whole

fluid is then for an instant at rest, after which the direction of

motion of each particle is reversed. When nt becomes equal to TT,

the surface again becomes horizontal
;
but the direction of each

particle s motion is just the reverse of what it was at first, the

magnitude of the velocity being the same. The previous motion

of the fluid is now repeated in a reverse direction, those por
tions of the surface which were elevated becoming depressed, and

vice versa. When nt = 27r, everything is the same as at first,

s. ii. 16



242 NOTES ON HYDRODYNAMICS.

Equations (35) shew that each particle moves backwards and

forwards in a right line.

This sort of wave, or rather oscillation, may be seen formed

more or less perfectly when a series of progressive oscillatory waves

is incident perpendicularly on a vertical wall. By means of this

kind of wave the reader may if he pleases make experiments

for himself on the velocity of propagation of small oscillatory

waves, without trouble or expense. It will be sufficient to pour

some water into a rectangular box, and, first allowing the water

to come to rest, to set it in motion by tilting the box, turning

it round one edge. The oscillations may be conveniently counted

by watching the bright spot on the wall or ceiling occasioned

by the light of the sun reflected from the surface of the water,

care being taken not to have the motion too great. The time

of oscillation from rest to rest is half the period of a wave, and

the length of the interior edge parallel to the plane of motion is

half the length of a wave; and therefore the velocity of propaga

tion will be got by dividing the length of the edge by the time of

oscillation. This velocity is then to be compared with the for

mula (29).



[From the Transactions of the Cambridge Philosophical Society,

Vol. ix. p. L]

T. ON THE DYNAMICAL THEORY OF DIFFRACTION.

[Read November 26, 1849.]

WHEN light is incident on a small aperture in a screen, the

illumination at any point in front of the screen is determined, on

the undulatory theory, in the following manner. The incident

waves are conceived to be broken up on arriving at the aperture ;

each element of the aperture is considered as the centre of an

elementary disturbance, which diverges spherically in all direc

tions, with an intensity which does not vary rapidly from one

direction to another in the neighbourhood of the normal to the

primary wave
;

and the disturbance at any point is found by
taking the aggregate of the disturbances due to all the secondary

waves, the phase of vibration of each being retarded by a quantity

corresponding to the distance from its centre to the point where

the disturbance is sought. The square of the coefficient of vibra

tion is then taken as a measure of the intensity of illumination.

Let us consider for a moment the hypotheses on which this pro
cess rests. In the first place, it is no hypothesis that we may
conceive the waves broken up on arriving at the aperture : it is

a necessary consequence of the dynamical principle of the superpo
sition of small motions

;
and if this principle be inapplicable to

light, the undulatory theory is upset from its very foundations.

The mathematical resolution of a wave, or any portion of a wave,
into elementary disturbances must not be confounded with a phy
sical breaking up of the wave, with which it has no more to do

than the division of a rod of variable density into differential

162
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elements, for the purpose of finding its centre of gravity, has to do

with breaking the rod in pieces. It is a hypothesis that we may
find the disturbance in front of the aperture by merely taking the

aggregate of the disturbances due to all the secondary waves, each

secondary wave proceeding as if the screen were away ;
in other

words, that the effect of the screen is merely to stop a certain

portion of the incident light. This hypothesis, exceedingly pro

bable a priori, when we are only concerned with points at no

great distance from the normal to the primary wave, is confirmed

by experiment, which shews that the same appearances are pre

sented, with a given aperture, whatever be the nature of the screen

in which the aperture is pierced, whether, for example, it consist

of paper or of foil, whether a small aperture be divided by a hair

or by a wire of equal thickness. It is a hypothesis, again, that

the intensity in a secondary wave is nearly constant, at a given
distance from the centre, in different directions very near the

normal to the primary wave ;
but it seems to me almost impossible

to conceive a mechanical theory which would not lead to this

result. It is evident that the difference of phase of the various

secondary waves which agitate a given point must be determined

by the difference of their radii; and if it should afterwards be

found necessary to add a constant to all the phases the results will

not be at all affected. Lastly, good reasons may be assigned why
the intensity should be measured by the square of the coefficient

of vibration
;
but it is not necessary here to enter into them.

In this way we are able to calculate the relative intensities at

different points of a diffraction pattern. It may be regarded as

established, that the coefficient of vibration in a secondary wave

varies, in a given direction, inversely as the radius, and conse

quently, we are able to calculate the relative intensities at differ

ent distances from the aperture. To complete this part of the

subject, it is requisite to know the absolute intensity. Now it has

been shewn that the absolute intensity will be obtained by taking
the reciprocal of the wave length for the quantity by which to

multiply the product of a differential element of the area of the

aperture, the reciprocal of the radius, and the circular function

expressing the phase. It appears at the same time that the phase
of vibration of each secondary wave must be accelerated by a

quarter of an undulation. In the investigations alluded to, it is

supposed that the law of disturbance in a secondary wave is the
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same iii all directions
;
but this will not affect the result, provided

the solution be restricted to the neighbourhood of the normal to

the primary wave, to which indeed alone the reasoning is appli

cable
;

and the solution so restricted is sufficient to meet all

ordinary cases of diffraction.

Now the object of the first part of the following paper is, to

determine, on purely dynamical principles, the law of disturbance

in a secondary wave, and that, not merely in the neighbourhood of

the normal to the primary wave, but in all directions. The oc

currence of the reciprocal of the radius in the coefficient, the

acceleration of a quarter of an undulation, and the absolute value

of the coefficient in the neighbourhood of the normal to the

primary wave, will thus appear as particular results of the general
formula.

Before attacking the problem dynamically, it is of course

necessary to make some supposition respecting the nature of that

medium, or ether, the vibrations of which constitute light, accord

ing to the theory of undulations. Now, if we adopt the theory of

transverse vibrations and certainly, if the simplicity of a theory
which conducts us through a multitude of curious and complicated

phenomena, like a thread through a labyrinth, be considered to

carry the stamp of truth, the claims of the theory of transverse

vibrations seem but little short of those of the theory of universal

gravitation if, I say, we adopt this theory, we are obliged to

suppose the existence of a tangential force in the ether, called into

p!ay by the continuous sliding of one layer, or film, of the medium
over another. In consequence of the existence of this force, the

ether must behave, so far as regards the luminous vibrations, like

an elastic solid. We have no occasion to speculate as to the cause

of this tangential force, nor to assume either that the ether does,

or that it does not, consist of distinct particles ;
nor are we directly

called on to consider in what manner the ether behaves with

respect to the motion of solid bodies, such as the earth and

planets.

Accordingly, I have assumed, as applicable to the luminiferous

ether in vacuum, the known equations of motion of an elastic

medium, such as an elastic solid. These equations contain two

arbitrary constants, depending upon the nature of the medium.
The argument which Green has employed to shew that the lumi

niferous ether must be regarded as sensibly incompressible, in
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treating of the motions which constitute light*, appears to me of

great force. The supposition of iiicompressibility reduces the two

arbitrary constants to one
;
but as the equations are not thus

rendered more manageable, I have retained them in their more

general shape.

The first problem relating to an elastic medium of which the

object that I had in view required the solution was, to determine

the disturbance at any time, and at any point of an elastic medium,

produced by a given initial disturbance which was confined to a

finite portion of the medium. This problem was solved long ago by
Poisson, in a memoir contained in the tenth volume of the Memoirs

of the Academy of Sciences. Poisson indeed employed equations

of motion with but one arbitrary constant, which are what the

general equations of motion become when a certain numerical

relation is assumed to exist between the two constants which

they involve. This relation was the consequence of a particular

physical supposition which he adopted, but which has since been

shewn to be untenable, inasmuch as it leads to results which are

contradicted by experiment. Nevertheless nothing in Poisson s

method depends for its success on the particular numerical rela

tion assumed; and in fact, to save the constant writing of a

radical, Poisson introduced a second constant, which made his

equations identical with the general equations, so long as the

particular relation supposed to exist between the two constants

was not employed. I might accordingly have at once assumed

Poisson s results. I have however begun at the beginning, and

given a totally different solution of the problem, which will I hope
be found somewhat simpler and more direct than Poi.sson s. The

solution of this problem and the discussion of the result occupy the

first two sections of the paper.

Having had occasion to solve the problem in all its generality,

I have in one or two instances entered into details which have no

immediate relation to light. I have also occasionally considered

some points relating to the theory of light which have no imme
diate bearing on diffraction. It would occupy too much room to

enumerate these points here, which will be found in their proper

place. I will merely mention one very general theorem at which

I have arrived by considering the physical interpretation of a

* Camb. Phil Trans. Vol. vn. p. 2.
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certain step of analysis, though, properly speaking, this theorem

is a digression from the main object of the paper. The theorem

may be enunciated as follows.

If any material system in which the forces acting depend only

on the positions of the particles be slightly disturbed from a

position of equilibrium, and then left to itself, the part of the

subsequent motion which depends on the initial displacements

may be obtained from the part which depends on the initial

velocities by replacing the arbitrary functions, or arbitrary con

stants, which express the initial velocities by those which express

the corresponding initial displacements, and differentiating with

respect to the time.

Particular cases of this general theorem occur so frequently

in researches of this kind, that I think it not improbable that the

theorem may be somewhere given in all its generality. I have

not however met with a statement of it except in particular cases,

and even then the subject was mentioned merely as a casual re

sult of analysis.

In the third section of this paper, the problem solved in the

second section is applied to the determination of the law of

disturbance in a secondary wave of light. This determination

forms the whole of the dynamical part of the theory of diffraction,

at least when we confine ourselves to diffraction in vacuum, or,

more generally, within a homogeneous singly refracting medium :

the rest is a mere matter of integration ;
and whatever difficulties

the solution of the problem may present for particular forms of

aperture, they are purely mathematical.

In the investigation, the incident light is supposed to be

plane-polarized, and the following results are arrived at. Each

diffracted ray is plane-polarized, and the plane of polarization is

determined by this law
;
The plane of vibration of the diffracted

ray is parallel to the direction of vibration of the incident ray.

The expression plane of vibration is here used to denote the plane

passing through the ray and the direction of vibration. The

direction of vibration in any diffracted ray being determined by
the law above mentioned, the phase and coefficient of vibration

at that part of a secondary wave are given by the formulae of

Art. 33.

The law just enunciated seems to lead to a crucial experiment
for deciding between the two rival theories respecting the direc-



248 ON THE DYNAMICAL THEORY OF DIFFRACTION.

tions of vibration in plane-polarized light. Suppose the plane of

polarization, and consequently the plane of vibration, of the

incident light to be turned round through equal angles of say

5 at a time. Then, according to theory, the planes of vibration

of the diffracted ray will not be distributed uniformly, but will be

crowded towards the plane perpendicular to the plane of diffrac

tion, or that which contains the incident and diffracted rays.

The law and amount of the crowding will in fact be just the

same as if the planes of vibration of the incident ray were repre

sented in section on a plane perpendicular to that ray, and then

projected on a plane perpendicular to the diffracted ray. Now

experiment will enable us to decide whether the planes ofpolariza
tion of the diffracted ray are crowded towards the plane of dif

fraction or towards the plane perpendicular to the plane of dif

fraction, and we shall accordingly be led to conclude, either that

the direction of vibration is perpendicular, or that it is parallel to

the plane of polarization.

In ordinary cases of diffraction, the light is insensible at such

a small distance from the direction of the incident ray produced
that the crowding indicated by theory is too small to be detected

by experiment. It is only by means of a fine grating that we
can obtain light of considerable intensity which has been diffracted

at a large angle.

On mentioning to my friend, Professor Miller, the result at

which I had arrived, and making some inquiries about the fine

ness, &c. of gratings, he urged me to perform the experiment

myself, and kindly lent me for the purpose a fine glass grating,

which he has in his possession. For the use of two graduated
instruments employed in determining the positions of the planes

of polarization of the incident and diffracted rays I am indebted

to the kindness of my friend Professor O Brien.

The description of the experiments, and the discussion of the

results, occupies Part II. of this Paper. Since in a glass grating

the diffraction takes place at the common surface of two different

media, namely, air and glass, the theory of Part. I. does not quite

meet the case. Nevertheless it does not fail to point out where

abouts the plane of polarization of the diffracted ray ought to lie,

according as we adopt one or other of the hypotheses respecting

the direction of vibration. For theory assigns exact results on the

two extreme suppositions, first, that the diffraction takes place



ON THE DYNAMICAL THEORY OF DIFFRACTION. 249

before the light reaches the grooves ; secondly, that it takes place

after the light has passed between them; and these results are

very different, according as we suppose the vibrations to be per

pendicular or parallel to the plane of polarization. Most of the

experiments were made on light which was diffracted in passing

through the grating. The results appeared to be decisive in

favour of Fresnel s hypothesis. In fact, theory shews that diffrac

tion at a large angle is a powerful cause of crowding of the planes

of vibration of the diffracted ray towards the perpendicular to the

plane of diffraction, and experiment pointed out the existence of a

powerful cause of crowding of the planes of polarization towards the

plane of diffraction
;
for not only was the crowding in the contrary

direction due to refraction overcome, but a considerable crowding
was actually produced towards the plane of diffraction, especially

when the grooved face of the glass plate was turned towards the

incident light.

The experiments were no doubt rough, and are capable of

being repeated with a good deal more accuracy by making some

small changes in the apparatus and method of observing. Never

theless the quantity with respect to which the two theories are

at issue is so large that the experiments, such as they were, seem

amply sufficient to shew which hypothesis is discarded by the

phenomena.
The conclusive character of the experimental result with

regard to the question at issue depends, I think, in a great
measure on the simplicity of the law which forms the only result

of theory that it is necessary to assume. This law in fact merely
asserts that, whereas the direction of vibration in the diffracted

ray cannot be parallel to the direction of vibration in the incident

ray, being obliged to be perpendicular to the diffracted ray, it

makes with it as small an angle as is consistent with the above

restriction. This law seems only just to lie beyond the limits of

the geometrical part of the theory of undulations. At the same
time I may be permitted to add that, for my own part, I feel very

great confidence in the equations of motion of the luminiferous

ether in vacuum, and in that view of the nature of the ether

which would lead to these equations, namely, that in the propa

gation of light, the ether, from whatever reason, behaves like an

elastic solid. But when we consider the mutual action of the

luminiferous ether and ponderable matter, a wide field, as it
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seems to me, is thrown open to conjecture. Thus, to take the

most elementary of all the phenomena which relate to the action

of transparent media on light, namely, the diminution of the

velocity of propagation, this diminution seems capable of being
accounted for on several different hypotheses. And if this elemen

tary phenomenon leaves so much room for conjecture, much more

may we form various hypotheses as to the state of things at the

confines of two media, such as air and glass. Accordingly, con

clusions in favour of either hypothesis which are derived from the

comparison of theoretical and experimental results relating to the

effects of reflection and refraction on the polarization of light,

appear to me much more subject to doubt than those to which we
are led by the experiments here described.

In commencing the theoretical investigation of diffraction, I

naturally began with the simpler case of sound. As, however, the

results which I have obtained for sound are of far less interest

than those which relate to light, I have here omitted them, more

especially as the paper has already swelled to a considerable size.

I may, perhaps, on some future occasion bring them before the

notice of this Society.

PART I.

THEORETICAL INVESTIGATION.

SECTION I. Preliminary Analysis.

1. IN what follows there will frequently be occasion to ex

press a triple integration which has to be performed with respect

to all space, or at least to all points of space for which the quantity
to be integrated has a value different from zero. The conception
of such an integration, regarded as a limiting summation, presents
itself clearly and readily to the mind, without the consideration of

co-ordinates of any kind. A system of co-ordinates forms merely
the machinery by which the integration is to be effected in par
ticular cases

; and when the function to be integrated is arbitrary,

and the nature of the problem does not point to one system rather

than another, the employment of some particular system, and the
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analytical expression thereby of the function to be integrated,

serves only to distract the attention by the introduction of a

foreign element, and to burden the pages with a crowd of un

necessary symbols. Accordingly, in the case mentioned above, I

shall merely take dV to represent an element of volume, and

write over it the sign J/J, to indicate that the integration to be

performed is in fact triple. Integral signs will be used in this

manner without limits expressed when the integration is to extend

to all points of space for which the function to be integrated differs

from zero.

There will frequently be occasion too to represent a double

integration which has to be performed with reference to the sur

face of a sphere, of radius r, described round the point which is

regarded as origin, or else a double integration which has to be

performed with reference to all angular space. In this case the

sign // will be used, and dS will be taken to represent an element

of the surface of the sphere, and da- to represent an elementary
solid angle, measured by the corresponding element of the surface

of a sphere described about its vertex with radius unity. Hence,
if dV, dS, da- denote corresponding elements, dS=r*da-

)
dV

= drdS = r^drda-. When the signs /// and //, referring to differen

tials which are denoted by a single symbol, come together, or

along with other integral signs, they will be separated by a dot, as

for example ///.//UdVda;

2. As the operation denoted by -^ + -=-
9 + -^ will be per-

y

petually recurring in this paper, I shall denote it for shortness

by y. This operation admits of having assigned to it a geometri
cal meaning which is independent of co-ordinates. For if P be

the point (#, ?/, z), T a small space containing P, which will finally

be supposed to vanish, dn an element of a normal drawn outwards

at the surface of J7

,
U the function which is the subject of the

operation, and if y be defined as the equivalent of -j-g + -^-5
+ y^ ,

it is easy to prove that

= limit of -^ dS (1),

the integration extending throughout the surface of T, of which
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dS is an element. In fact, if l
t m, n be the direction-cosines of the

normal, we shall have

UdU , a {{ddU dU dU,
\\-T- dS = III -

1
~ + m-r

- + n-T- dS
JJ dn Jj V dx dy dz

We have also, supposing the origin of co-ordinates to be at the

point P, as we may without loss of generality,

dU dU\ d*U\ d z U\ d*U

+ terms of the 2nd order, &c...................... (3),

where the parentheses denote that the differential coefficients

which are enclosed in them have the values which belong to the

point P. In the integral 1 1 ,
-

dy dz, each element must be

taken positively or negatively, according as the normal which

relates to it makes an acute or an obtuse angle with the positive

direction of the axis of x. If we combine in pairs the elements of

the integral which relate to opposite elements of the surface of T,

ff/dU, dU\ .

we must write II (-7-^ ~~^~~j dy dz, where the single and double

accents subscribed refer respectively to the first and second points

in which the surface of T is cut by an indefinite straight line

drawn parallel to the axis of x, and in the positive direction,

through the point (0, y, z]. We thus get by means of (3), omitting

the terms of a higher order than the first, which vanish in the

limit,

[[fdU,, dU\j , (d
z U\ [[. ...

II (^ ~
7B#

dv dz =
(w) JJ

fc - ^ dy **.

Bat JJ (x/f a?,) dy dz is simply the volume T. Treating in the

same manner the two other integrals which appear on the right-

hand side of equation (2), we get

[fdU
-j-

JJ dn
j T u .

j-dS=T\ ho )
+ 1:3-7) + (~J-*)f ultimately.dn [\darj \dy J \dz )}

Dividing by T and passing to the limit, and omitting the paren

theses, which are now no longer necessary, we obtain the theorem

enunciated.
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If in equation (1) we take for T tlie elementary volume

?-
2
sin 6 dr d6 dQ, or r dr dd dz, according as we wish to employ

polar co-ordinates, or one of three rectangular co-ordinates com
bined with polar co-ordinates in the plane of the two others, we

may at once form the expression for y U, and thus pass from rect

angular co-ordinates to either of these systems without the trouble

of the transformation of co-ordinates in the ordinary way.

3. Let / be a quantity which may be regarded as a function

of the rectangular co-ordinates of a point of space, or simply, with

out the aid of co-ordinates, as having a given value for each point
of space. It will be supposed that f vanishes outside a certain

portion T of infinite space, and that within T it does not become

infinite. It is required to determine a function U by the conditions

that it shall satisfy the partial differential equation

(4)

at all points of infinite space, that it shall nowhere become in

finite, and that it shall vanish at an infinite distance.

These conditions are precisely those which have to be satisfied

by the potential of a finite mass whose density is //4?r ;
and we

shall have accordingly, if be the point for which the value of U
is required, and r be the radius vector of any element drawn from 0,

U=-^-

In fact, it may be proved, just as in the theory of potentials, that

the expression for U given by (5) does really satisfy (4) and the

given conditions
;
and consequently, if U+ If be the most general

solution, U must satisfy the equation vU = a^ all points, must

nowhere become infinite, and must vanish at an infinite distance.

But this being the case it is easy to prove that U cannot be

different from zero.

The solution will still hold good in certain cases when / is

infinite at some points, or w7hen it is not confined to a finite space

T, but only vanishes at an infinite distance. But such instances

may be regarded as limiting cases of the problem restricted as

above, and therefore need not be supposed to be excluded by those

restrictions.
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4. Let Z7be a quantity depending upon the time t, as well as

upon the position of the point of space to which it relates, and

satisfying the partial differential equation

*U &quot;

(6).

It is required to determine 7 by the above equation and the con

ditions that when =
0, U and dU/dt shall have finite values

given arbitrarily within a finite space T, and shall vanish outside T.

Let be the point for which the value of U is sought, r the

radius vector of any element drawn from
; f(r), F (r) the initial

values of U
t dU/dt. By this notation it is not meant that these

values are functions of r alone, for they will depend likewise upon
the two angles which determine the direction of r

;
but there will

be no occasion to express analytically their dependence on those

angles. The solution of the problem is

See a memoir by Poisson Mem. de rAcademie, Tom. ill. p. 130,

or Gregorys Examples, p. 499.

5. Let S be a function which has given finite values within

a finite portion of space, and vanishes elsewhere
;
and let it be

required to determine three functions f, 17, f by the conditions

^_*? =^_^ = *?_^l = ... ..(8)
dy dz dz dx dx dy

........................ .

dx dy dz

The functions
, 77,

are further supposed not to become infinite,

and to vanish at an infinite distance. To save repetition, it will

here be remarked, once for all, that the same supposition will be

made in similar cases.

By virtue of equations (8), d& + i}dy+ %dz is an exact diffe

rential d^r, and (9) gives v^ = & Hence we have by the

formula (5)

and
T/T being known, f, 77, % will be obtained by mere differentia-
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tion. To differentiate ^ with respect to x, it will be sufficient to

differentiate 8 under the integral sign. For draw 00 parallel to

the axis of #, and equal to A.r, let P, P be two points similarly

situated with respect to 0, (7, respectively, and consider the part

of ^r and that of -^ + A-v/r
due to equal elements of volume dV

situated at P, P respectively. For these two elements r has the

same value, since OP = O P
,
and in passing from the first to the

second 8 is changed into 8 + A8, and therefore the increment of
&amp;gt;|r

is simply AS/47T?*. dV. To get the complete increment of ^ we

have only to perform the triple integration, an integration which

is always real, even though r vanishes in the denominator, as may
be readily seen on passing momentarily to polar co-ordinates.

Dividing now by A;e and passing to the limit, we get

By employing temporarily rectangular co-ordinates in the

triple integration, integrating by parts with respect to x
t
and

observing that the quantity free from the integral sign vanishes at

the limits, we get

as might have been readily proved from (l6), by referring to

a fixed origin, and then differentiating with respect to x. The

expressions for r) and f may be written down from symmetry.

6. Let tzr
, OT&quot;,

TX
&quot;

be three functions which have given finite

values throughout a finite space and vanish elsewhere
;

it is re

quired to determine three other functions, f, 77, by the condi

tions

#--*,. --*-, p-
d
-f -a.&quot; ...(is).

dy dz dz d,c dx dy

+$ + -0 . ..(14).dx dy dz

It is to be observed that ta-
, TV&quot;,

vr&quot; are not independent. For

differentiating equations (13) with respect to x, y, z, and adding,
we get

dx dy dz (15).
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Hence -G/, &quot;,
-ST

&quot;

must be supposed given arbitrarily only in so

far as is consistent with the above equation.

Eliminating from (14), and the second of equations (13),

we get

.df &quot;

dz

d dr

which becomes by the last of equations (13)

/^ z.

V - 2U dy

Consequently, by equation (5),

u dz i r
u

Transforming this equation in the same manner as (11), sup

posing x, y y
z measured from 0, and writing down the two equa

tions found by symmetry, we have finally,

(16).

7. Let S, w ,
TO-

,
is&quot; be as before

;
and let it be required to

determine three functions 77, f from the equations (9) and (13).

From the linearity of the equations it is evident that we have

merely to add together the expressions obtained in the last two

articles.

8. Let f , ?7 ,
be three functions given arbitrarily within

a finite space outside of which they are equal to zero : it is re

quired to decompose these functions into two parts fl3 77,,
and

?2 ^2 ?2
sucn ^na^ ^dx + y^y -\-%jLz may be an exact differential

dfa, and f2 , 17, , fa may satisfy (14).
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Observing that &= ? -?lf 17,
=

i?
-

i? t
, ?8

=
&amp;gt;-?i expressing

j, 77^ in terms of ^rp and substituting in (14), we get

where S is what 8 becomes when f , 7; , f are written for f, 77, f.

The above equation gives

whence
t

, 77^ ft ,
and consequently 2 , ?72 , ,, are known.

SECTION II.

Propagation of an Arbitrary Disturbance in an Elastic Medium.

9. THE equations of motion of a homogeneous uncrystallized
elastic medium, such as an elastic solid, in which the disturbance

is supposed to be very small, are well known. They contain two

distinct arbitrary constants, which cannot be united in one with

out adopting some particular physical hypothesis. These equations

may be obtained by supposing the medium to consist of ultimate

molecules, but they by no means require the adoption of such a

hypothesis, for the same equations are arrived at by regarding the

medium as continuous.

Let x
y y, z be the co-ordinates of any particle of the medium in

its natural state; f, 77, f the displacements of the same particle at

the end of the time t, measured in the directions of the three axes

respectively. Then the first of the equations may be put under

the form

dy* &amp;lt;& dx \dx cTu

where a2

,
Z/
2

,
denote the two arbitrary constants. Put for shortness

,
-j- + ~r T j&quot;

= ^
dx dy dz

S. n. 17
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and as before represent by yf the quantity multiplied by Z&amp;gt;

2
. Ac

cording to this notation, the three equations of motion are

, 72N

(a
2 - 6

2

) -7-

dy
(18).

It is to be observed that 8 denotes the dilatation of volume of

the element situated at the point (as, y, z). In the limiting case

in which the medium is regarded as absolutely incompressible B

vanishes
;
but in order that equations (18) may preserve their

generality, we must suppose a at the same time to become infinite,

and replace a
2
S by a new function of the co-ordinates. If we take

p to denote this function, we must replace the last terms in these

equations by -(-
,

-t-
,

-jr&amp;gt;
respectively, and we shall thus

have a fourth unknown function, as well as a fourth equation,

namely that obtained by replacing the second member of (17) by
zero. But the retention of equations (18) in their present more

general form does not exclude the supposition of incompressibility,

since we may suppose a to become infinite in the end just as well

as at first.

10. Suppose the medium to extend infinitely in all directions,

and conceive a portion of it occupying the finite space T to receive

any arbitrary small disturbance, arid then to be left to itself, the

whole of the medium outside the space T being initially at rest
;

and let it be required to determine the subsequent motion.

Differentiating equations (18) with respect to x, y, z, respec

tively, and adding, we get by virtue of (17)

Again, differentiating the third of equations (18) with respect to y,

and the second with respect to z
y
and subtracting the latter of the

two resulting equations from the former, and treating in a similar
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manner the first and third, and then the second and first of equa
tions (18), we get

Cl CT ,
,

(I CT 72 a CT
- = 6

2

Vw
f

,

- = bVw ,

where CT
, CT&quot;,

CT
&quot;

are the quantities defined by equations (13).

These quantities express the rotations of the element of the

medium situated at the point (JT, y, z) about axes parallel to the

three co-ordinate axes respectively.

Now the formula (7) enables us to express 8, CT
, CT&quot;,

and CT&quot; in

terms of their initial values and those of their differential coeffi

cients with respect to t, which are supposed known
;
and these

functions being known, we shall determine f, 77,
and f as in Art. 7.

Our equations being thus completely integrated, nothing will

remain but to simplify and discuss the formulae obtained.

11. Let be the point of space at which it is required to

determine the disturbance, r the radius vector of any element

drawn from
;
and let the initial values of 8, d$ dt be represented

by f(r), F (r), respectively, with the same understanding as in

Art. 4. By the formula (7), we have

The double integrals in this expression vanish except when a

spherical surface described round as centre, with a radius equal
to at, cuts a portion of the space T. Hence, if be situated out

side the space T, and if r
lt

?
2
be respectively the least and greatest

values of the radius vector of any element of that space, there will

be no dilatation at until at =
?\.

The dilatation will then com

mence, will last during an interval of time equal to a&quot;

1

(r8 rj, and

will then cease for ever. The dilatation here spoken of is under

stood to be either positive or negative, a negative dilatation being
the same thing as a condensation.

Hence a wave of dilatation will be propagated in all directions

from the originally disturbed space T, with a velocity a. To find

the portion of space occupied by the wave, we have evidently only

got to conceive a spherical surface, of radius at, described about

each point of the space T as centre. The space occupied by the

assemblage of these surfaces is that in which the wave of dilatation

172



260 ON THE DYNAMICAL THEORY OF DIFFRACTION.

is comprised. To find the limits of the wave, we need evidently

only attend to those spheres which have their centres situated in

the surface of the space T. When t is small, this system of spheres

will have an exterior envelope of two sheets, the outer of these

sheets being exterior and the inner interior to the shell formed by
the assemblage of the spheres. The outer sheet forms the outer

limit to the portion of the medium in which the dilatation is differ

ent from zero. As t increases, the inner sheet contracts, and at

last its opposite sides cross, and it changes its character from being

exterior, with reference to the spheres, to interior. It then ex

pands, and forms the inner boundary of the shell in which the

wave, of condensation is comprised. It is easy to shew geometri

cally that each envelope is propagated with a velocity a in a normal

direction.

12. It appears in a similar manner from equations (20) that

there is a similar wave, propagated with a velocity b, to which are

confined the rotations &
, vr&quot;,

TB&quot; . This wave may be called for

the sake of distinction, the wave of distortion, because in it the

medium is not dilated nor condensed, but only distorted in a man

ner consistent with the preservation of a constant density. The

condition of the stability of the medium requires that the ratio

of b to a be not greater than that of ^/3 to 2*.

13. If the initial disturbance be such that there is neither

dilatation nor velocity of dilatation initially, there will be no wave

of dilatation, but only a wave of distortion. If it be such that the

expressions %dx + ydy + ^dz and d/dt . dx -f- drj/dt . dy + d/dt . dz

are initially exact differentials, there will be no wave of distortion,

but only a wave of dilatation. By making b = we pass to the

case of an elastic fluid, such as air. By supposing a = oo we pass

to the case of an incompressible elastic solid. In this case we

must have initially 8 = and dB/dt
=

)
but in order that the

results obtained by at once putting a = oo may have the same

degree of generality as those which would be obtained by retaining

a as a finite quantity, which in the end is supposed to increase

indefinitely, we must not suppose the initial disturbance confined

* See a memoir by Green On the reflection and refraction of Light. Caiiib. Phil.

Trans. Vol. vii. p. 2. See also Camb. Phil Trans. Vol. vin. p. 319. [Ante, Vol. i.

p. 128.]
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to the space T, but only the initial rotations and the initial

angular velocities. Consequently, outside T the expression

must be initially an exact differential
cfyr, where ty satisfies the

equation y-v/r
= derived from (14), and the expression

^f 7 ^7 7 ^f 7- tfg -f rfy + -/ d.3
tw dt dt

must be initially an exact differential d^lt
where ^ satisfies the

equation ^^ = 0. So long as a is finite, it comes to the same

thing whether we regard the medium as animated initially by
certain velocities given arbitrarily throughout the space T, or as

acted on by impulsive accelerating forces capable of producing
those velocities

;
and the latter mode of conception is equally

applicable to the case of an incompressible medium, for which a
is infinite, although we cannot in that case conceive the initial

velocities as given arbitrarily, but only arbitrarily in so far as is

compatible with their satisfying the condition of incompressibility.
It is not so easy to see what interpretation is to be given, in the
case of an incompressible medium, to the initial displacements
which are considered in the general case, in so far as these dis

placements involve dilatation or condensation. As no simplicity
worth mentioning is gained by making a at once infinite, this

constant will be retained in its present shape, more especially as

the results arrived at will thus have greater generality.

14. The expressions for the disturbance of the medium at the
end of the time t are linear functions of the initial displacements
and initial velocities

;
and it appears from (21), and the corre

sponding equations which determine
, OT&quot;,

and -or
&quot;,

that the part
of the disturbance which is due to the initial displacements may
be obtained from the part which is due to the initial velocities by
differentiating with respect to t, and replacing the arbitrary func
tions which represent the initial velocities by those which represent
the initial displacements. The same result constantly presents
itself in investigations of this nature : on considering its physical

interpretation it will be found to be of extreme generality.

Let any material system whatsoever, in which the forces acting

depend only on the positions of the particles, be slightly disturbed
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from a position of equilibrium, and then left to itself. In order

to represent the most general initial disturbance, we must suppose

small initial displacements and small initial velocities, the most

general possible consistent with the connexion of the parts of the

system, communicated to it. By the principle of the superposition

of small motions, the subsequent disturbance will be compounded
of the disturbance due to the initial velocities and that due to

the initial displacements. It is immaterial for the truth of this

statement whether the equilibrium be stable or unstable
; only,

in the latter case, it is to be observed that the time t which has

elapsed since the disturbance must be sufficiently small to allow

of our neglecting the square of the disturbance which exists at

the end of that time. Still, as regards the purely mathematical

question, for any previously assigned interval t, however great, it

will be possible to find initial displacements and velocities so

small that the disturbance at the end of the time t shall be as

small as we please ;
and in this sense the principle of superposi

tion, and the results which flow from it, will be equally true

whether the equilibrium be stable or unstable.

Suppose now that no initial displacements were communicated

to the system we are considering, but only initial velocities, and

that the disturbance has been going on during the time t. Let

f(t) be the type of the disturbance at the end of the time t, where

f (t) may represent indifferently a displacement or a velocity,

linear or angular, or in fact any quantity whereby the disturbance

may be defined. In the case of a rigid body, or a finite number

of rigid bodies, there will be a finite number of functions / (t) by
which the motion of the system will be defined : in the cases of

a flexible string, a fluid, an elastic solid, &c., there will be an

infinite number of such functions, or, in other words, the motion

will have to be defined by functions which involve one or more

independent variables besides the time. Let V be in a similar

manner the type of the initial velocities, and let r be an incre

ment of t, which in the end will be supposed to vanish. The

disturbance at the end of the time t -f r will be represented by

f(t + r)j but since by hypothesis the forces acting on the system

do not depend explicitly on the time, this disturbance is the same

as would exist at the end of the time t in consequence of the

system of velocities v communicated to the material system at the

commencement of the time T, the system being at that instant
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in its position of equilibrium. Suppose then the system of velo

cities v communicated in this manner, and in addition suppose
the system of velocities v communicated at the time 0. On
account of the smallness of the motion, the disturbance produced

by the system of velocities V
Q
will be expressed by linear functions

of these velocities
;
and consequently, if f (t) represent the dis

turbance due to the system of velocities V
Q , f(t) will represent

the disturbance due to the system V
Q

. Hence the disturbance

at the end of the time t will be represented by f(t + r) f(t).

Now we may evidently regard the state of the material system

immediately after the communication of the system of velocities

V
Q
as its initial state, and then seek the disturbance which would

be produced by the initial disturbance. The velocities V
Q going on

during the time T will have produced by the end of that time a

system of displacements represented by TV
O

. By hypothesis, the

system was in a position of equilibrium at the commencement of

the time r
;
and since the forces are supposed not to depend

on the velocities, but only on the positions of the particles, the

effective forces during the time r vary from zero to small quan
tities of the order r, and therefore the velocities generated by the

end of the time T are small quantities of the order r
2

. Hence

the velocities V
Q
communicated at the time destroy the pre

viously existing velocities, except so far as regards small quantities

of the order r
2

,
which vanish in the limit, and therefore we have

nothing to consider but the system of displacements rv
Q

. Hence

the disturbance produced by a system of initial displacements TV
O

is represented by f(t + r) f(t), ultimately; and therefore the

disturbance produced by a system of initial displacements v is

represented by the limit of {/ (t + r) / (t)} /T, or by/ (t). Hence,
to get the disturbance due to the initial displacements from that

due to the initial velocities, we have only to differentiate with

respect to t, and to replace the arbitrary constants or arbitrary

functions which express the initial velocities by those which

express the corresponding initial displacements. Conversely, to

get the disturbance due to the initial velocities from that due to

the initial displacements, we have only to change the arbitrary

constants or functions, and to integrate with respect to t, making
the integral vanish with t if the disturbance is expressed by dis

placements, or correcting it so as to give the initial velocities when

t = if the disturbance is expressed by velocities.
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The reader may easily, if he pleases, verify this theorem on

some dynamical problem relating to small oscillations.

15. Let us proceed now to determine the general values of

f, 77, f in terms of their initial values, and those of their differential

coefficients with respect to t. By the formulae of Section I., f, 77, f

are linear functions of S, CT
, -or&quot;,

and w
&quot;,

and we may therefore

first form the part which depends upon S, and afterwards the part

which depends upon OT
, OT&quot;,

-&
&quot;,
and then add the results together.

Moreover, it will be unnecessary to retain the part of the expres

sions which depends upon initial displacements, since this can be

supplied in the end by the theorem of the preceding article.

Omitting then for the present -sr
, -or&quot;,

-BT&quot;
,
as well as the

second term in equations (21), we get from equations (10) and (21),

To understand the nature of the integration indicated in this

equation, let be the point of space for which the value of ty is

sought ;
from draw in an arbitrary direction OP equal to r, and

from P draw, also in an arbitrary direction, PQ equal to at. Then
F (at) denotes the value of the function F, or the initial rate of

dilatation, at the point Q of space, and we have first to perform a

double integration referring to all such points as Q, P being fixed,

and then a triple integration referring to all such points as P. To
facilitate the transformation of the integral (22), conceive PQ
produced to Q ,

let P Q =
s, let dV be an element of volume,

and replace the double integral // F . do- by the triple integral

h
1

fffF . s~
2 dV t

taken between the limits defined by the imparities

at&amp;lt; s &amp;lt; at 4- h, which may be done, provided h be finally made to

vanish. We shall thus have two triple integrations to perform,

each of which we may conceive to extend to all space, provided we

regard the quantity to be integrated as equal to zero when PQ ,

(or as it may now be denoted PQ,Q being a point taken generally,)

lies beyond the limits at and at -f h-
t
as well as when the point Q

falls outside the space T, to which the disturbance was originally

confined. Now perform the first of the two triple integrations on

the supposition that Q remains fixed while Pis variable, instead

of supposing P to remain fixed while Q is variable. We shall thus

have .F constant and r variable, instead of having F variable and r
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constant. This first triple integration must evidently extend

throughout the spherical shell which has Q for centre and at, at + h

for radii of the interior and exterior surfaces. We get, on making
h vanish,

dV dS

dS being an element of the surface of a sphere described with Q
for centre and at for radius. Now if OQ = r

,
the integral JJ r~

l

dS,

which expresses the potential of a spherical shell, of radius at and

density unity, at a point situated at a distance r from the centre,

is equal to 4&amp;gt;7rat or 47raV/r , according as r &amp;lt;&amp;gt; at. Substituting

in (22), and omitting the accents, which are now no longer necessary,

we get

where the limits of integration are defined by the imparities written

after the integrals, as will be done in similar cases.

16. Let
,
v

,
w

ot
be the initial velocities

;
then

F= du
+
d

+ &amp;lt;fao

m

dx dij dz

Substituting in the first term of the right-hand member of equation

(23), and integrating by parts, exactly as in Art. 5, we get

where the S denotes that we must take the sum of the expression

written down and the two formed from it by passing from x to y
and from y to z, and the single and double accents refer respectively

to the first and second point in which the surface of a sphere

having for centre, and at for radius, is cut by an indefinite line

drawn parallel to the axis of x, and in the positive direction, through
the point (0, y, z). Treating the last term in equation (23) in the

same way, and observing that the quantities once integrated vanish

at an infinite distance, or, to speak more properly, at the limits of

the space T, we get

-
(V +W + WQ*)

--
(r &amp;gt; at).
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The double integrals arising from the transformation of the

second member of equation (23) destroy one another, and we get

finally

17. To obtain the part of the displacement f due to the

initial velocity of dilatation, we have only to differentiate ^r with

respect to oc, and this will be effected by differentiating w
,
v

,
W

Q

under the integral signs, as was shewn in Art. 5. Treating the

resulting expression by integration by parts, as before, and putting

I, m, n for the direction-cosines of the radius vector drawn to the

point to which the accents refer, and ft
for the part of f due to F,

we get

\} dy dz

* i r 1 1
d x d y d z , 7 T7 ,

.

+ zdll(.^;3 +^S? + w 3~=| )
d7

( -&amp;gt; flO-

Let qQ
be the initial velocity resolved along the radius vector,

so that q
= lu + mv + nw

,
and (qQ) at

be the value of qQ
at a dis

tance at from
;
then

mv

d x d

Substituting in the expression for ^, we get finally

18. Let us now form the part of f which depends on the

initial rotations and angular velocities, and which may be denoted

by fa
. The theorem of Art. 14 allows us to omit for the present

the part due to the initial rotations, which may be supplied in the

end. Let &&amp;gt;

,
&&amp;gt;

&quot;,
&&quot; be the initial angular velocities. Then f2

is given in terms of OT&quot; and OT
//X

by the first of equations (16), and

IP&quot;,
is&quot; are given in terms of &amp;lt;w

&quot;,
&&amp;gt;

&quot;

by the formula (7), in which

however b must be put for a. We thus get

* , ,,dVd&amp;lt;T
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The integrations in this expression are to be understood as in

Art. 15, and &&amp;gt;

&quot;,

o&amp;gt;

&quot;

are supposed to have the values which belong
to the point Q, but PQ is now equal to bt instead of at. The

quintuple integral may be transformed into a triple integral just

as before. We get in the first place

The double integration in this expression refers to all angular

space, considered as extending round Q; x, y, z are the co-ordi

nates, measured from 0, of a point P situated at a distance bt from

Q, and r = OP. If dS= (bidder, the expressions for the integrals

Hxr-
3

dS, ffyr~
3

dS, ffzr~
3 dS

may be at once written down by observing that these integrals

express the components of the attraction of a spherical shell, of

radius bt and density 1, having Q for centre, on a particle situated

at 0. Hence if x
, y ,

z be the co-ordinates of Q, measured from

0, and r = OQ, the integrals vanish when r &amp;lt; bt, and are equal to

477 (fo)Vr
-3

,
47r (btfy r

-3
,
^ (Ufz r -\

respectively, when r &amp;gt; bt. Hence we get from (26), omitting the

accents, whicli are now no longer necessary, since we have done

with the point P,

Now
,

dw
Q

dv _ ,, _ da dw
n f

, _ dvn du
&quot; ) =

~dy

~
~dz

W &quot;~

~dz

~
~dx

&quot; &) ~
~dx

~
~dy

Substituting in (27), and adding and subtracting x . dujdx under

the integral signs, we get

t ffff / d
.

d
.

.

dx ^ dx dx )} r

But x . d/dx + y . djdy + z . djdz is the same thing as r . d/dr, and

we get accordingly

d d d\ dV .

= (M
d
-p dr do-

(/
&amp;gt; bt)

= -
1 1 (u^dv.

J JJ dr JJ
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The second part of f2
is precisely the expression transformed in

the preceding article, except that the sign is changed, and b put
for a. Hence we have

*-Mri ~(r&amp;gt;U] ...(28).

19. Adding together the expressions for and f2 ,
we get for

the disturbance due to the initial velocities

29).

The part of the disturbance due to the initial displacements

may be obtained immediately by the theorem of Art. 14. Let f ,

?7 , f be the initial displacements, p the initial displacement
resolved along a radius vector drawn from 0. The last term in

equation (29), it will be observed, involves t in two ways, for t

enters as a coefficient, and likewise the limits depend upon t. To
find the part of the differential coefficient which relates to the

variation of the limits, we have only to replace d V by r*dr do-, and
treat the integral in the usual way. We get for the part of the

disturbance due to the initial displacements

(30).

It is to be recollected that in this and the preceding equation I

denotes the cosine of the angle between the axis of x and an arbi

trary radius vector drawn from 0, whose direction varies from one

element da- of angular space to another, and that the at or bt sub

scribed denotes that r is supposed to be equal to at or bt after

differentiation. To obtain the whole displacement parallel to x
which exists at the end of the time t at the point 0, we have only
to add together the second members of equations (29) and (30).

The expressions for
TJ and f may be written down from symmetry,

or rather the axis of x may be supposed to be measured in the

direction in which we wish to estimate the displacement,
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20. The first of the double integrals in equations (29), (30)

vanishes outside the limits of the wave of dilatation, the second

vanishes outside the limits of the wave of distortion. The triple

integrals vanish outside the outer limit of the wave of dilatation,

and inside the inner limit of the wave of distortion, but have finite

values within the two waves and between them. Hence a particle

of the medium situated outside the space T does not begin to move
till the wave of dilatation reaches it. Its motion then commences,
and does not wholly cease till the wave of distortion has passed,

after which the particle remains absolutely at rest.

21. If the initial disturbance be such that there is no wave of

distortion, the quantities OT
, -cr&quot;,

vr
&quot;

,
aj

, &&amp;gt;&quot;,

w&quot; must be separately

equal to zero, and the expression for f will be reduced to ft , given

by (25), and the expression thence derived which relates to the

initial displacements. The triple integral in the expression for ft

vanishes when the wave of dilatation has passed, and the same is

the case with the corresponding integral which depends upon the

initial displacements. Hence the medium returns to rest as soon

as the wave of dilatation has passed ;
and since even in the general

case each particle remains at rest until the wave of dilatation

reaches it, it follows that when the initial disturbance is such that

no wave of distortion is formed the disturbance at any time is con

fined to the wave of dilatation. The same conclusion might have

been arrived at by transforming the triple integral.

22. When the initial motion is such that there is no wave of

dilatation, as will be the case when there is initially neither dilata

tion nor velocity of dilatation, f will be reduced to f2 , given by

(28), and the corresponding expression involving the initial dis

placements. By referring to the expression in Art. 17, from which

the triple integral in equation (28) was derived, we get

d x d d

Now
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the parentheses denoting that the quantity enclosed in them is to

be taken between limits. By the condition of the absence of initial

velocity of dilatation we have

Substituting in the second member of equation (31), and writing
down for the present only the terms involving V

Q ,
we obtain

dvn x d y\ i 7 7

-y- -o + v -,- Adxdy dz,
dy r

3 dx r
3
J

which, since d/dx . y/r
3 =

d/dy . xjr
3

,
becomes

Treating the terms involving w in the same manner, and substitu

ting in (31), we get

Now the integration is to extend from r = bt to r = oo . The

quantities once integrated vanish at the second limit, and the first

limit relates to the surface of a sphere described round as centre

with a radius equal to It. Putting dS or 6
2 a

dcr for an element of

the surface of this sphere, we obtain for the value of the second

member of the last equation

~
(&*) *// (k + + nwJJdS, or - ffl (q ) bt

da
;

and therefore the triple integral in equation (28) destroys the

second part of the double integral in the same equation. Hence,

writing down also the terms depending upon the initial displace

ments, we obtain for f the very simple expression

This expression might have been obtained at once by applying
the formula (7) to the first of equations (18), which in this case

take the form (6), since 8 = 0.

23. Let us return now to the general case, and consider

especially the terms which alone are important at a great distance

from the space to which the disturbance was originally confined
;
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and, first, let us take the part of f which is due to the initial

velocities, which is given by equation (29).

Let the three parts of the second member of this equation be

denoted by fa , f6 , fc , respectively, and replace dcr by (at)~* dS
or (lt)~* dS, as the case may be

;
then

............................
&amp;lt;

32
&amp;gt;-

Let Oj be a fixed point, taken within the space T, and regarded as

the point of reference for all such points as 0. Then when is at

such a distance from O
l
that the radius vector, drawn from 0, of

any element of T makes but a very small angle with 00
lt
we may

regard I as constant in the integration, and equal to the cosine of

the angle between 00
t
and the direction in which we wish to

estimate the displacement at 0. Moreover the portion of the

surface of a sphere having for centre which lies within T will be

ultimately a plane perpendicular to 00
lt
and qQ

will be ultimately

the initial velocity resolved in the direction 00
t
. Hence we have

ultimately

where, for a given direction of Ofl, the integral receives the same

series of values, as at increases through the value 00
19
whatever

be the distance of from Or Since the direction of the axis of x

is arbitrary, and the component of the displacement in that direc

tion is found by multiplying by I a quantity independent of the

direction of the axes, it follows that the displacement itself is in

the direction 00v or in the direction of a normal to the wave. For

a given direction of
1 )

the law of disturbance is the same at one

distance as at another, and the magnitude of the displacements
varies inversely as at, the distance which the wave has travelled in

the time t.

&quot;We get in a similar manner

where I, and the direction of the resolved part, qQ ,
of the initial

velocity are ultimately constant, and the surface of which dS is an

element is ultimately plane. To find the resolved part of the dis

placement in the direction 00
lf

we must suppose x measured in
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that direction, and therefore put I = 1, q
= u

,
which gives %b

= 0.

Hence the displacement now considered takes place in a direction

perpendicular to 00
lt

or is transversal.

For a given direction of Of), the law of disturbance is constant,

but the magnitude of the displacements varies inversely as bt, the

distance to which the wave has been propagated. To find the dis

placement in any direction, OE, perpendicular to 00
X ,
we have

only to take OE for the direction of the axis of x, and therefore

put I = 0, and suppose u to refer to this direction.

Consider, lastly, the displacement, fc , expressed by the last

term in equation (29). The form of the expression shews that

fc
will be a small quantity of the order t/r* or 1/r

2

,
since t is of the

same order as r
;
for otherwise the space T would lie outside the

limits of integration, and the triple integral would vanish. But

frt
and f6

are of the order 1/r, and therefore fc may be neglected,

except in the immediate neighbourhood of T.

To see more clearly the relative magnitudes of these quantities,

let v be a velocity which may be used as a standard of comparison
of the initial velocities, H the radius of a sphere whose volume is

equal to that of the space T, and compare the displacements fa , fw

fc
which exist, though at different times, at the same point 0,

where O
l

= r. These displacements are comparable with

vl? vtf vR5
t

ar &quot;

br r*

which are proportional to

I I R t

a b r r

But, in order that the triple integral in (29) may not wholly vanish,

t/r must lie between the limits I/a and 1/b, or at most lie a very

little outside these limits, which it may do in consequence of the

finite thickness of the two waves. Hence the quantity neglected
in neglecting fc

is of the order R/r compared with the quantities

retained.

The important terms in the disturbance due to the initial dis

placements might be got from equation (30), but they may be

deduced immediately from the corresponding terms in the disturb

ance due to the initial velocities by the theorem of Art. 14.
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24. If we confine our attention to the terms which vary

ultimately inversely as the distance, and which alone are sensible

at a great distance from T, we shall be able, by means of the

formulae of the preceding article, to obtain a clear conception of

the motion which takes place, and of its connexion with the initial

disturbance.

From the fixed point O
lf
draw in any direction the right line

O
l equal to r, r being so large that the angle subtended at by

any two elements of T is very small
;
and let it be required to

consider the disturbance at 0. Draw a plane P perpendicular to

00
1?
and cutting 00^ produced at a distance p from Or Let p lf

+ p2
be the two extreme values of p for which the plane P cuts

the space T. Conceive the displacements and velocities resolved

in three rectangular directions, the first of these, to which f and u

relate, being the direction 00^. Let/M (p),fv (p), fw (p) be three

functions ofp defined by the equations

/. (P) =//o*&amp;gt; . /. (P)
=JIMS /. (p)

= fjwadS, ...... (34),

and
/(&amp;gt;), /, (p),f{ (p) three other functions depending on the initial

displacements as the first three do on the initial velocities, so that

ft (?)
= JTfcA /, 00 &quot;SMS, f{ (p)

= H&s........(:).

These functions, it will be observed, vanish when the variable lies

outside of the limits p^ and +p.2
. They depend upon the direc

tion Of), so that in passing to another direction their values

change, as well as the limits of the variable between which they
differ from zero. It may be remarked however that in passing
from any one direction to its opposite the functions receive the same

values, as the variable decreases from +pl
to pz , that they before

received as the variable increased from p^ to -f p2 , provided the

directions in which the displacements are resolved, as well as the

sides towards which the resolved parts are reckoned positive, are

the same in the two cases.

The medium about remains at rest until the end of the time

(r p^ a, when the wave of dilatation reaches 0. During the

passage of this wave, the displacements and velocities are given by
the equations

(86)

s. u. 18
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The first term in the right-hand member of the first of these

equations is got from (32) by putting 2 = 1, introducing the func

tion fn ,
and replacing a t in the denominator by r, which may

be done, since a t differs from r only by a small quantity depending

upon the finite dimensions of the space T. The second term is

derived from the first by the theorem of Art. 14, and u is of

course got from f by differentiating with respect to t. Had t

been retained in the denominator, the differentiation would have

introduced terms of the order t~*, and therefore of the order r~
2

,

but such terms are supposed to be neglected.

The wave of dilatation will have just passed over at the end of

the time
(t&quot;+J&amp;gt;t)/B*

The medium about will then remain

sensibly at rest in its position of equilibrium till the wave of

distortion reaches it, that is, till the end of the time (rpj/h.
During the passage of this wave, the displacements and velocities

will be given by the equations

.(37).

After the passage of the wave of distortion, which occupies an

interval of time equal to (p l + pt)/b f
the medium will return

absolutely to rest in its position of equilibrium.

25. A caution is here necessary with reference to the em

ployment of equation (30). If we confine our attention to the

important terms, we get

dr

Now the initial displacements and velocities are supposed to have

finite, but otherwise arbitrary, values within the space T, and to
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vanish outside. Consequently we cannot, without unwarrantably

limiting the generality of the problem, exclude from considera

tion the cases in which the initial displacements and velocities

alter abruptly in passing across the surface of T. In particular,

if we wish to determine the disturbance at the end of the time t

due to the initial disturbance in a part only of the space through
out which the medium was originally disturbed, we are obliged

to consider such abrupt variations
;
and this is precisely what

occurs in treating the problem of diffraction. In applying equa
tion (38) to such a case, we must consider the abrupt variation as

a limiting case of a continuous, but rapid, variation, and we shall

have to add to the double integrals found by taking for dpjdr
and d% dr the finite values which refer to the space T, certain

single integrals referring to the perimeter of that portion of the

plane P which lies within T. The easiest way of treating the

integrals is, to reserve the differentiation with respect to t from

which the differential coefficients just written have arisen until

after the double integration, and we shall thus be led to the for-

mulse of the preceding article, where the correct values of the

terms in question were obtained at once by the theorem of

Art. 14.

26. It appears from Arts. 11 and 12, that in the wave of

distortion the density of the medium is strictly the same as in

equilibrium ;
but the result obtained in Art. 23, that the displace

ments in this wave are transversal, that is, perpendicular to the

radius of the wave, is only approximate, the approximation

depending upon the largeness of the radius, r, of the wave

compared with the dimensions of the space T, or, which comes

to the same, compared with the thickness of the wave. In fact,

if it were strictly true that the displacement at due to the

original disturbance in each element of the space T was trans

versal, it is evident that the crossing at of the various waves

corresponding to the various elements of T under finite, though
small angles, would prevent the whole displacement from being

strictly perpendicular to the radius vector drawn to from an

arbitrarily chosen point, Ov within T. But it is not mathemati

cally true that the disturbance proceeding from even a single

point Ov when a disturbing force is supposed to act, or rather

that part of the disturbance which is propagated with the velocity

182
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b, is perpendicular to 00V as will be seen more clearly in the next

article. It is only so nearly perpendicular that it may be re

garded as strictly so without sensible error. As the wave grows

larger, the inclination of the direction of displacement to the

wave s front decreases with great rapidity.

Thus the motion of a layer of the medium in the front of a

wave may be compared with the tidal motion of the sea, or rather

with what it would be if the earth were wholly covered by water.

In both cases the density of the medium is unchanged, and there

is a slight increase or decrease of thickness in the layer, which

allows the motion along the surface to take place without change
of density : in both cases the motion in a direction perpendicular
to the surface is very small compared with the motion along the

surface.

27. From the integral already obtained of the equations of

motion, it will be easy to deduce the disturbance due to a given

variable force acting in a given direction at a given point of the

medium.

Let O
l
be the given point, T a space comprising O

x
. Let the

time t be divided into equal intervals r
;
and at the beginning of

the nih interval let the velocity rF (n r) be communicated, in the

given direction, to that portion of the medium which occupies

the space T. Conceive velocities communicated in this manner at

the beginning of each interval, so that the disturbances produced

by these several velocities are superposed. Let D be the den

sity of the medium in equilibrium ;
and let F(n r)

= (DT)~
l

f (n r),

so that rf (n r) is the momentum communicated at the beginning
of the ?i

th
interval. Now suppose the number of intervals

r indefinitely increased, and the volume T indefinitely dimin

ished, and we shall pass in the limit to the case of a moving
force which acts continuously.

The disturbance produced by given initial velocities is ex

pressed, without approximation, by equation (29), that is, without

any approximation depending on the largeness of the distance

OOjj for the square of the disturbance has been neglected all

along. Let 00
l r; refer the displacement at to the rect

angular axes of x, y, z
;

let I, m, n be the direction-cosines of

I
, m, n those of the given force, and put for shortness k for
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the cosine of the angle between the direction of the force and the

line 00^ produced, so that

k = II 4- mm + nn.

Consider at present the first term of the right-hand side of

(29). Since the radius vector drawn from to any element of T
ultimately coincides with 0, ,

we may put I outside the integral

signs, and replace da- by r^dS. Moreover, since this term vanishes

except when at lies between the greatest and least values of the

radius vector drawn from to any element of T, we may replace t

outside the integral signs by r/a. Conceive a series of spheres,
with radii ar, 2ar. ..??ar,... described round 0, and let the nih of

these be the first which cuts T. Let Slt S9
... be the areas of the

surfaces of the spheres, beginning with the ?i
th

, which lie within T \

then

nr) Sl
+ krF

[t
-

(n 4 1) r} S2 4 . . .

But F(tnr), F{t (n + 1) T} ... are ultimately equal to each

other, and to

and ar8
t

4- arS^ 4 ... is ultimately equal to T. Hence we get, for

the part of f which arises from the first of the double integrals,

Zfc

The second of the double integrals is to be treated in exactly the

same way.

To find what the triple integral becomes, let us consider first

only the impulse which was communicated at the beginning of the

time t nr, where nr lies between the limits rja and r/b, and is

not so nearly equal to one of these limits that any portion of the

space T lies beyond the limits of integration. Then we must
write m for t in the coefficient, and 3lqQ

U
Q
becomes ultimately

(3lk l
) rF(t nT\ and, as well as r, is ultimately constant in the

triple integration. Hence the triple integral ultimately becomes

(Mk-l )T

and we have now to perform a summation with reference to
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different values of n, which in the limit becomes an integration.

Putting nr = t
,
we have ultimately

r = dt
9 SnT.T-F(*-fiT)f t F(t-t )dt .

a

It is easily seen that the terms arising from the triple integral

when it has to be extended over a part only of the space T vanish

in the limit. Hence we have, collecting all the terms, and express

ing F (t)
in terms of/(),

l]^f(t _
r\ I -M r f _r\

tfr? \ a) 4*TT-DtfrJ \ b)

t
)
dl (39).

To get 77 and f, we have only to pass from /, I to m, m and

then to n, ri. If we take 00
l

for the axis of x, and the plane

passing through 00
l
and the direction of the force for the plane

xz, and put a for the inclination of the direction of the force to

00
j produced, we shall have

I = 1, Tii = 0, n 0, I = k = cos y. y
m 0, ri = sin a

;

whence

cos a ,/ r\ .cos a {
b

,, f ,. ,/\ -,.

f(t -- + ^~^^- tf(tt)dtJ
\ a 27rDr5

J;
J v

?=
Sln

^/ ft^-^3 f tf(t
~ t

(40).

In the investigation, it has been supposed that the force began
to act at the time 0, before which the fluid was at rest, so that

f(t)=0 when t is negative. But it is evident that exactly the

same reasoning would have applied had the force begun to act at

any past epoch, as remote as we please, so that we are not obliged

to suppose f(t) equal to zero when t is negative, and we may even

supposef (t) periodic, so as to have finite values from t = oo to

t = + oo .

By means of the formula (39), it would be very easy to write

down the expressions for the disturbance due to a system of forces

acting throughout any finite portion of the medium, the disturbing
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force varying in any given manner, both as to magnitude and

direction, from one point of the medium to another, as well as

from one instant of time to another.

The first term in f represents a disturbance which is propa

gated from O
l
with a velocity a. Since there is no corresponding

term in 77 or f, the displacement, as far as relates to this disturb

ance, is strictly normal to the front of the wave. The first term in

f represents a disturbance which is propagated from O
l
with a

velocity b, and as far as relates to this disturbance the displace

ment takes place strictly in the front of the wave. The remaining
terms in f and represent a disturbance of the same kind as that

which takes place in an incompressible fluid in consequence of the

motion of solid bodies in it. Iff (t) represent a force which acts

for a short time, and then ceases, f (t t } will differ from zero

only between certain narrow limits of t, and the integral contained

in the last terms of f and f will be of the order ?, and therefore

the terms themselves will be of the order r&quot;

2

,
whereas the leading

terms are of the order r~
l

. Hence in this case the former terms

will not be sensible beyond the immediate neighbourhood of 0^
The same will be true if/ (t) represent a periodic force, the mean

value of which is zero. But if/ (t) represent a force always acting

one way, as for example a constant force, the last terms in f and f
will be of the same order, when r is large, as the first terms.

28. It has been remarked in the introduction that there is

strong reason for believing that in the case of the luminiferous

ether the ratio of a to b is extremely large, if not infinite. Conse

quently the first term in f, which relates to normal vibrations, will

be insensible, if not absolutely evanescent. In fact, if the ratio of

a to 6 were no greater than 100, the denominator in this term

would be 10000 times as great as the denominator of the first

term in f. Now the molecules of a solid or gas in the act of com

bustion are probably thrown into a state of violent vibration, and

may be regarded, at least very approximately, as centres of disturb

ing forces. We may thus see why transversal vibrations should

alone be produced, unaccompanied by normal vibrations, or at

least by any which are of sufficient magnitude to be sensible. If

we could be sure that the ether was strictly incompressible, we

should of course be justified in asserting that normal vibrations

are impossible.
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29. If we suppose a = oo
,
and f(t)=c sin %7rbt/X, we shall get

from (40)

g
cX cos a. 2-7T ,, v cX2

cos a . TTT *&amp;gt;-?r

,=
csna 2ir

T
cXsina ?r ,,

C S ~

c\ sm QL

3
87r

3D6r
sin

T&quot;
cos

T&quot;X X

and we see that the most important term in f is of the order X/?rr

compared with the leading term in
,
which represents the trans

versal vibrations properly so called. Hence f, and the second and

third terms in will be insensible, except at a distance from 0^

comparable with X, and may be neglected ;
but the existence of

terms of this nature, in the case of a spherical wave whose radius

is not regarded as infinite, must be borne in mind, in order to

understand in what manner transversal vibrations are compatible
with the absence of dilatation or condensation.

30. The integration of equations (18) might have been effected

somewhat differently by first decomposing the given functions f ,

?7 , f ,
and u

,
V
Q ,
W into two parts, as in Art. 8, and then treating

each part separately. We should thus be led to consider separately

that part of the initial disturbance which relates to a wave of dila

tation and that part which relates to a wave of distortion. Either

of these parts, taken separately, represents a disturbance which is

not confined to the space T, but extends indefinitely around it.

Outside T, the two disturbances are equal in magnitude and oppo
site in sign.

SECTION III.

Determination of the Law of the Disturbance in a Secondary
Wave of Light.

31. Conceive a series of plane waves of plane-polarized light

propagated in vacuum in a direction perpendicular to a fixed

mathematical plane P. According to the undulatory theory of

light, as commonly received, that is, including the doctrine of
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transverse vibrations, the light in the case above supposed consists

in the vibrations of an elastic medium or ether, the vibrations

being such that the ether moves in sheets, in a direction perpen
dicular to that of propagation, and the vibration of each particle

being symmetrical with respect to the plane of polarization, and

therefore rectilinear, and either parallel or perpendicular to that

plane. In order to account for the propagation of such vibrations,

it is necessary to suppose the existence of a tangential force, or

tangential pressure, called into play by the continuous sliding of

the sheets one over another, and proportional to the amount of the

displacement of sliding. There is no occasion to enter into any

speculation as to the cause of this tangential force, nor to entertain

the question whether the luminiferous ether consists of distinct

molecules or is mathematically continuous, just as there is no

occasion to speculate as to the cause of gravity in calculating the

motions of the planets. But we are absolutely obliged to suppose
the existence of such a force, unless we are prepared to throw over

board the theory of transversal vibrations, as usually received, not

withstanding the multitude of curious, and otherwise apparently

inexplicable phenomena which that theory explains with the ut

most simplicity. Consequently we are led to treat the ether as an

elastic solid so far as the motions which constitute light are con

cerned. It does not at all follow that the ether is to be regarded
as an elastic solid when large displacements are considered, such

as we may conceive produced by the earth and planets, and solid

bodies in general, moving through it. The mathematical theories

of fluids and of elastic solids are founded, or at least may be

founded, on the consideration of internal pressures. In the case

of a fluid, these pressures are supposed normal to the common sur

face of the two portions whose mutual action is considered : this

supposition forms in fact the mathematical definition of a fluid.

In the case of an elastic solid, the pressures are in general oblique,

and may even in certain directions be wholly tangential. The

treatment of the question by means of pressures presupposes the

absence of any sensible direct mutual action of two portions of the

medium which are separated by a small but sensible interval. The

state of constraint or of motion of any element affects the pressures

in the surrounding medium, and in this way one element exerts an

indirect action on another from which it is separated by a sensible

interval.
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Now the absence of prismatic colours in the stars, depending

upon aberration, the absence of colour in the disappearance and

reappearance of Jupiter s Satellites in the case of eclipses, and, still

more, the absence of change of colour in the case of certain periodic

stars, especially the star Algol, shew that the velocity of light of

different colours is, if not mathematically, at least sensibly the

same. According to the theory of undulations, this is equivalent
to saying that in vacuum the velocity of propagation is independ
ent of the length of the waves. Consequently the direct action of

two elements of ether separated by a sensible interval must be

sensibly if not mathematically equal to zero, or at least must be

independent of the disturbance
; for, were this not the case, the

expression for the velocity of propagation would involve the length

of a wave. An interval is here considered sensible which is com

parable with the length of a wave. We are thus led to apply to

the luminiferous ether in vacuum the ordinary equations of motion

of an elastic solid, provided we are only considering those disturb

ances which constitute light.

Let us return now to the case supposed at the beginning of

this section. According to the preceding explanation, we must

regard the ether as an elastic solid, in which a series of rectilinear

transversal vibrations is propagated in a direction perpendicular to

the plane P. The disturbance at any distance in front of this

plane is really produced by the disturbance continually transmitted

across it; and, according to the general principle of the superposi

tion of small motions, we have a perfect right to regard the dis

turbance in front as the aggregate of the elementary disturbances

due to the disturbance continually transmitted across the several

elements -into which we may conceive the plane P divided. Let it

then be required to determine the disturbance corresponding to an

elementary portion only of this plane.

In practical cases of diffraction at an aperture, the breadth of

the aperture is frequently sensible, though small, compared with

the radius of the incident waves. But in determining the law of

disturbance in a secondary wave we have nothing to do with an

aperture; and in order that we should be at liberty to regard the

incident waves as plane all that is necessary is, that the radius of

the incident wave should be very large compared with the wave s

length, a condition always fulfilled in experiment.
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32. Let O
l
be any point in the plane P; and refer the medium

to rectangular axes passing through O
t ,
x being measured in the

direction of propagation of the incident light, and z in the direc

tion of vibration. Let/ (6^ x) denote the displacement of the

medium at any point behind the plane P, x of course being nega
tive. Let the time t be divided into small intervals, each equal
to T, and consider separately the effect of the disturbance which is

transmitted across the plane P during each separate interval. The

disturbance transmitted during the interval r which begins at the

end of the time t occupies a film of the medium, of thickness br,

and consists of a displacement / (bt )
and a velocity bf (bf). By

the formulae of Section II. we may find the effect, over the whole

medium, of the disturbance which exists in so much only of the

film as corresponds to an element dS of P adjacent to Or By
doing the same for each interval T, and then making the number
of such intervals increase and the magnitude of each decrease

indefinitely, we shall ultimately obtain the effect of the disturb

ance which is continually propagated across the element dS.

Let be the point of the medium at which the disturbance is

required; I, m, n the direction-cosines of
V

measured from 0,,
and therefore I, -m, n those of 00

l
measured from 0; and

let 00^ r. Consider first the disturbance due to the velocity of

the film. The displacements which express this disturbance are

given without approximation by (29) and the two other equations
which may be written down from symmetry. The first terms in

these equations relate to normal vibrations, and on that account

alone might be omitted in considering the diffraction of light.

But, besides this, it is to be observed that t in the coefficient of

these terms is to be replaced by r. a. Now there seems little

doubt, as has been already remarked in the introduction, that in

the case of the luminiferous ether a is incomparably greater
than b, if not absolutely infinite*; so that the terms in question
are insensible, if not absolutely evanescent. The third terms are

insensible, except at a distance from
4 comparable with X, as has

been already observed, and they may therefore be omitted if we

suppose r very large compared with the length of a wave. Hence
it will be sufficient to consider the second terms only. In the

* I have explained at full my views on this subject in a paper On the constitution

of the luminiferous ether, printed in the 32nd volume of the Philosophical Magazine,

p. 349. [Ante, p. 12.]
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coefficient of these terms we must replace t by r/b ;
we must put

u =
0, v = Q, w = bf (bt r), write I, m, n for I, m, n, and

put g = nw = nbf (bt r). The integral signs are to be

omitted, since we want to get the disturbance which corresponds
to an elementary portion only of the plane P.

It is to be observed that dcr represents the elementary solid

angle subtended at by an element of the riband formed by that

portion of the surface of a sphere described round 0, with radius r,

which lies between the plane yz and the parallel plane whose

abscissa is br. To find the aggregate disturbance at correspond

ing to a small portion, S, of the plane P lying about O
lt
we must

describe spheres with radii ... r 2br, r br, r, r + 6r, r + 2br ...,

describing as many as cut S. These spheres cut 8 into ribands,

which are ultimately equal to the corresponding ribands which lie

on the spheres. For, conceive a plane drawn through 00
1 per

pendicular to the plane yz. The intersections of this plane by two

consecutive spheres and the two parallel planes form a quadrilate

ral, which is ultimately a rhombus
;
so that the breadths of corre

sponding ribands on a sphere and on the plane are equal, and their

lengths are also equal, and therefore their areas are equal. Hence

we must replace da by r~
2

dS, and we get accordingly

Since Zf+wwy-fnf0, the displacement takes place in a plane

through perpendicular to Ofl. Again, since f : 77 :: I : m, it

takes place in a plane through Oft and the axis of z. Hence

it takes place along a line drawn in the plane last mentioned

perpendicular to 00r The direction of displacement being known,
it remains only to determine the magnitude. Let be the dis

placement, and
&amp;lt;p&amp;gt;

the angle between
1

and the axis of z, so that

n cos 0. Then sin $ will be the displacement in the direction

of z, and equating this to f in (42) we get

(43).

The part of the disturbance due to the successive displace

ments of the films may be got in the same way from (30) and the



LAW OF DISTURBANCE IX A SECONDARY WAVE. 285

two other equations of the same system. The only terms which it

will be necessary to retain in these equations are those which

involve the differential coefficients of f , rj , f ,
and p in the second

of the double integrals. We must put as before r for bt, and write

r~*dS for da-. Moreover we have for the incident vibrations

|=0, 77
=

0, S=f(W-x) t p
= -nf(bt -x).

To find the values of the differential coefficients which have to be

used in (30) and the two other equations of that system, we must

differentiate on the supposition that f, 77, f, p are functions of r in

consequence of being functions of x, and after differentiation we

must put x = 0, t = t r/b. Since d/dr = I . d/dx, we get

whence we get, remembering that the signs of I, m, n in (30) have

to be changed,

j.
PndS ,, ,

N
ImndS n .=

-. -f (bt r), 77
= -- -/ (bt r),J v J *

The displacement represented by these equations takes place along

the same line as before
;
and if we put f3 for the displacement,

and write cos 6 for I, we get

= cos sin
&amp;lt;/&amp;gt;/(&&amp;lt;-,)

................().

33. By combining the partial results obtained in the preceding

article, we arrive at the following theorem.

Let = 0, 77
=

0, =f(bt x) be the displacements correspond

ing to the incident light ;
let O

t
be any point in the plane P, dS

an element of that plane adjacent to 0^ ;
and consider the disturb

ance due to that portion only of the incident disturbance which

passes continually across dS. Let be any point in the medium
situated at a distance from the point O

l
which is large in compari

son with the length of a wave
;
let

V =r, and let this line make

angles 6 with the direction of propagation of the incident light, or

the axis of x, and
(f&amp;gt;

with the direction of vibration, or the axis of

z. Then the displacement at will take place in a direction per-
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pendicular to
1 0, and lying in the plane zOfl; and if f be the

displacement at 0, reckoned positive in the direction nearest to

that in which the incident vibrations are reckoned positive,

1/4 /

In particular, if

9

f(bt
- x}=c sin ^- (bt x),

A,

~~(l 4- cos 60 sinc/&amp;gt;
cos

^(fo-r)
......... (46).

we shall have

34. On finding by means of this formula the aggregate dis

turbance at due to all the elements of the plane P, being

supposed to be situated at a great distance from P, we ought to

arrive at the same result as if the waves had not been broken up.

To verify this, let fall from the perpendicular 00 on the

plane P, and let 00 p, or = p ) according as is situated in

front of the plane P or behind it. Through draw O x
f

, O y ,

parallel to 0& Ojj, and let
l
= r

, Oft y = a). Then

dS = rdr dto = rdrdco,

since r
2

=^
2
-f r

2

,
and p is constant. Let = s sin &amp;lt;. The dis

placement % takes place in the plane zOf), and perpendicular to

OjO; and resolving it along and perpendicular to O/, we get for

resolved parts s sin
2

&amp;lt;,
s sin &amp;lt; cos $, of which the latter is estimated

in the direction OM, where M is the projection of O
l
on O y . Let

MOO %, % being reckoned positive when M falls on that side of

on which y is reckoned positive ; then, resolving the displace

ment along OM parallel to O x, O y ,
we get for resolved parts

s sin
(f&amp;gt;

cos
(f&amp;gt;

cos %, s sin &amp;lt; cos &amp;lt; sin ^. Hence we get for the dis

placements f, 77, f at

j* = s sin
&amp;lt;f)

cos ( cos ^, T;
= 5 sin

^&amp;gt;

cos
(f&amp;gt;

sin ^, ^=5 sin
2

&amp;lt;.

Now produce O Oj to
2 ,
and refer 0^, 0^, 0^, OjO^ OjO to a

sphere described round
1
with radius unity. Then zOf) forms a

spherical triangle, right-angled at
2 ,
and

* The corresponding expression which I have obtained for sound differs from

this only in having cos 6 in place of sin 0, provided we suppose 6 to be the velocity,

of propagation of sound, and f to represent a displacement in the direction OjO.
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whence we get from spherical trigonometry,

cos $ = sin 6 sin
&&amp;gt;,

sin &amp;lt; cos ^ = cos 0,

sin
(f&amp;gt;

sin ^ = cos 6 tan ^ = sin cos co.

We have therefore

f = 5 sin 6 cos # sin
o&amp;gt;, 77

= 5 sin
2

sin o&amp;gt; cos w,

To find the aggregate disturbance at 0, we must put for s its

value, and perform the double integrations, the limits of to being
and 2?r, and those of r being *Jp* and cc . The positive and nega
tive parts of the integrals which give f and 77 will evidently destroy
each other, and we need therefore only consider f. Putting for s

its value, and expressing 9 in terms of r, we get

f = //(&amp;lt;
+ J) (r

5
C 3

J +/ sin cos (fc
-

r) ~-. . ..(47).
A, A, /

Let us first conceive the integration performed over a large area

A surrounding ,
which we may afterwards suppose to increase

indefinitely. Perform the integration with respect to r first, put
for shortness F (r) for the coefficient of the cosine under the inte

gral signs, and let R, a function of
o&amp;gt;,

be the superior limit of r.

We get by integration by parts

fF(r)cos~(bt-r)dr
Ay

= - -~ F (r) sin ^ (bt
-

r) + (
--VF (r) cos^ (bt

-
r) + . . .

~7T A, \~7T/ A,

Now the terms after the first must be neglected for consistency s

sake, because the formula (46) is not-exact, but only approximate,
the approximation depending on the neglect of terms which are of

the order \ compared with those retained. The first term, taken

between limits, gives

-

2

X~ f
( P) sm f (bt +p)-^ F (R) sin^ (bt

-
/?),

where the upper or lower sign has to be taken according as lies

in front of the plane P or behind it. We thus get from (47)
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When R becomes infinite, F (R) reduces itself to cos
2

w, and the

last term in becomes

j-j-
I cos

2
co sin

-^ (It R) da.

Suppose that no finite portion of the perimeter of A is a circular

arc with for centre, and let this perimeter be conceived to ex

pand indefinitely, remaining similar to itself. Then, for any finite

interval, however small, in the integration with respect to
&&amp;gt;,

the

function sin ZirX
1

(bt R) will change sign an infinite number of

times, having a mean value which is ultimately zero, and the limit

of the above expression will be rigorously zero. Hence we get in

the limit

fcsin (btp), or = 0,
A-

according as p is positive or negative. Hence the disturbance

continually transmitted across the plane P produces the same

disturbance in front of that plane as if the wave had not been

broken up, and does not produce any back wave, which is what

it was required to verify.

It may be objected that the supposition that the perimeter of

A is free from circular arcs having for centre is an arbitrary

restriction. The reply to this objection is, that we have no right

to assume that the disturbance at which corresponds to an area

A approaches in all cases to a limit as A expands, remaining

similar to itself. All we have a right to assert a priori is, that

if it approaches a limit that limit must be the disturbance which

would exist if the wave had not been broken up.

It is hardly necessary to observe that the more general formula

(45) might have been treated in precisely the same way as (46).

35. In the third Volume of the Cambridge Mathematical

Journal, p. 46, will be found a short paper by Mr Archibald Smith,

of which the object is to determine the intensity in a secondary

wave of light. In this paper the author supposes the intensity

at a given distance the same in all directions, and assumes the

coefficient of vibration to vary, in a given direction, inversely as

the radius of the secondary wave. The intensity is determined

on the principle that when an infinite plane wave is conceived to

be broken up, the aggregate effect of the secondary waves must
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be the same as that of the primary wave. In the investigation,

the difference of direction of the vibrations corresponding to the

various secondary waves which agitate a given point is not taken

into account, and moreover a term which appears under the form

cos oo is assumed to vanish. The correctness of the result arrived

at by the latter assumption may be shewn by considerations simi

lar to those which have just been developed. If we suppose the

distance from the primary wave of the point which is agitated by
the secondary waves to be large in comparison with X, it is only

those secondary waves which reach the point in question in a

direction nearly coinciding with the normal to the primary wave

that produce a sensible effect, since the others neutralize each

other at that point by interference. Hence the result will be

true for a direction nearly coinciding with the normal to the

primary wave, independently of the truth of the assumption that

the disturbance in a secondary wave is equal in all directions,

and notwithstanding the neglect of the mutual inclination of

the directions of the disturbances corresponding to the various

secondary waves. Accordingly, when the direction considered is

nearly that of the normal to the primary wave, cos 6 and sin &amp;lt;

in (46) are each nearly equal to 1, so that the coefficient of the

circular function becomes cdS
(Xr)&quot;

1

, nearly, and in passing from

the primary to the secondary waves it is necessary to accelerate

the phase by a quarter of an undulation. This agrees with Mr
Smith s results.

The same subject has been treated by Professor Kelland in a

memoir On the Theoretical Investigation of tlie Absolute Intensity

of Interfering Light, printed in the fifteenth Volume of the

Transactions of the Eoyal Society of Edinburgh, p. 315. In this

memoir the author investigates the case of a series of plane
waves which passes through a parallelogram in front of a lens,

and is received on a scieen at the focus of the lens, as well as

several other particular cases. By equating the total illumination

on the screen to the area of the aperture multiplied by the illu

mination of the incident light, the author arrives in all cases at

the conclusion that in the coefficient of vibration of a secondary
wave the elementary area dS must be divided by \r. In con

sequence of the employment of intensities, not displacements, the

necessity for the acceleration of the phase by a quarter of an

undulation does not appear from this investigation.

s. ii. 19
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In the investigations of Mr Smith and Professor Kelland, as

well as in the verification of the formula (46) given in the last

article, we are only concerned with that part of a secondary wave

which lies near the normal to the primary. The correctness of

this formula for all directions must rest on the dynamical theory.

36. In any given case of diffraction, the intensity of the

illumination at a given point will depend mainly on the mode of

interference of the secondary waves. If however the incident

light be polarized, and the plane of polarization be altered, every

thing else remaining the same, the mode of interference will not

be changed, and the coefficient of vibration will vary as sin
&amp;lt;,

so that the intensity will vary between limits which are as 1 to

cos
2
0. If common light of the same intensity be used, the inten

sity of the diffracted light at the given point will be proportional

to i(l+cos
2

0).

PART II.

EXPERIMENTS ON THE ROTATION OF THE PLANE OF
POLARIZATION OF DIFFRACTED LIGHT.

SECTION I.

Description of the Experiments.

IF a plane passing through a ray of plane-polarized light, and

containing the direction of vibration, be called the plane of vibra

tion, the law obtained in the preceding section for the nature of

the polarization of diffracted light, when the incident light is

plane-polarized, may be expressed by saying, that any diffracted

ray is plane-polarized, and the plane of vibration of the diffracted

ray is parallel to the direction of vibration of the incident ray.

Let the angle between the incident ray produced and the diffracted

ray be called the angle of diffraction, and the plane containing
these two rays the plane of diffraction; let otit a d be the angles

which the planes of vibration of the incident and diffracted rays

respectively make with planes drawn through those rays perpen-
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dicular to the plane of diffraction, and the angle of diffraction.

Then we easily get by a spherical triangle

tan ad = cos 6 tan a..

If then the plane of vibration of the incident ray be made to

turn round with a uniform velocity, the plane of vibration of the

diffracted ray will turn round with a variable velocity, the law

connecting these velocities being the same as that which connects

the sun s motions in right ascension and longitude, or the motions

of the two axes of a Hook s joint. The angle of diffraction

answers to the obliquity of the ecliptic in the one case, or the

supplement of the angle between the axes in the other. If we

suppose a series of equidifferent values given to a., such as 0, 5,
10,... 355, the planes of vibration of the diffracted ray will not be

distributed uniformly, but will be crowded towards the plane

perpendicular to the plane of diffraction, according to the law

expressed by the above equation.
Now the angles which the planes of polarization of the inci

dent and diffracted rays, (if the diffracted ray prove to be really

plane-polarized,) make with planes perpendicular to the plane of

diffraction can be measured by means of a pair of graduated
instruments furnished with NicoPs prisms. Suppose the plane of

polarization of the incident light to be inclined at the angles
0, 5, 10..., successively to the perpendicular to the plane of

diffraction
;
then the readings of the instrument which is used as

the analyzer will shew whether the planes of polarization of the

diffracted ray are crowded towards the plane of diffraction or

towards the plane perpendicular to the plane of diffraction. If tzr,

a be the azimuths of the planes of polarization of the incident and
diffracted rays, both measured from planes perpendicular to the

plane of diffraction, we should expect to find these angles con
nected by the equation tan = sec 6 tan OT in the former event,
and tan a = cos 6 tan OT in the latter. If the law and amount of

the crowding agree with theory as well as could reasonably be

expected, some allowance being made for the influence of modify
ing causes, (such as the direct action of the edge of the diffracting

body,) whose exact effect cannot be calculated, then we shall be
led to conclude that the vibrations in plane-polarized light are

perpendicular or parallel to the plane of polarization, according as

the crowding takes place towards or from the plane of diffraction.

192



292 ON THE DYNAMICAL THEORY OF DIFFRACTION.

In all ordinary cases of diffraction, the light becomes insensible

at uch a small angle from the direction of the incident ray pro
duced that the crowding indicated by theory is too small to be

sensible in experiment, except perhaps in the mean of a very

great number of observations. It is only by means of a fine

grating that we can obtain strong light which has been diffracted

at a large angle. I doubt whether a grating properly so called,

that is, one consisting of actual wires, or threads of silk, has ever

been made which would be fine enough for the purpose. The

experiments about to be described have accordingly been performed
with the glass grating already mentioned, which consisted of a

glass plate on which parallel and equidistant lines had been ruled

with a diamond at the rate of about 1300 to an inch.

Although the law enunciated at the beginning of this section

has been obtained for diffraction in vacuum, there is little doubt

that the same law would apply to diffraction within a homogeneous

uncrystallized medium, at least to the degree of accuracy that we

employ when we speak of the refractive index of a substance,

neglecting the dispersion. This is rendered probable by the

simplicity of the law itself, which merely asserts that the vibra

tions in the diffracted light are rectilinear, and agree in direction

with the vibrations in the incident light as nearly as is consistent

with the necessary condition of being perpendicular to the dif

fracted ray. Moreover, when dispersion is neglected, the same

equations of motion of the luminiferous ether are obtained, on

mechanical theories, for singly refracting media as for vacuum; and

if these equations be assumed to be correct, the law under con

sideration, which is deduced from the equations of motion, will

continue to hold good. In the case of a glass grating however the

diffraction takes place neither in air nor in glass, but at the

confines of the two media, and thus theory fails to assign exact

values to a. Nevertheless it does not fail to assign limits within

which, or at least not far beyond which, a must reasonably be

supposed to lie
;
and as the values comprised within these limits

are very different according as one or other of the two rival

theories respecting the direction of vibration is adopted, experi

ments with a glass grating may be nearly as satisfactory, so far as

regards pointing to one or other of the two theories, as experiments

would be which were made with a true grating.

The glass grating was mounted for me by Prof. Miller in a
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small frame fixed on a board which rested on three screws, by
means of which the plane of the plate and the direction of the

grooves could be rendered perpendicular to the plane of a table on
which the whole rested.

The graduated instruments lent to me by Prof. O Brien con
sisted of small graduated brass circles, mounted on brass stands, so

that when they stood on a horizontal table the planes of the circles

were vertical, and the zeros of graduation vertically over the
centres. The circles were pierced at the centre to admit doubly
refracting prisms, which were fixed in brass collars which could be
turned round within the circles, the axes of motion being perpen
dicular to the planes of the circles, and passing through their

centres. In one of the instruments, which I used for the polarizer,
the circle was graduated to degrees from to 360, and the collar

carried simply a pointer. To stop the second pencil, I attached a
wooden collar to the brass collar, and inserted in it a Nicol s

prism, which was turned till the more refracted pencil was extin

guished. In a few of the latest experiments the Nicol s prism was

dispensed with, and the more refracted pencil stopped by a screen
with a hole which allowed the less refracted pencil to pass. In the
other instrument, which I used for the analyzer, the brass collar

carried a vernier reading to 5 . In this instrument the doubly
refracting prism admitted of being removed, and I accordingly
removed it, and substituted a Nicol s prism, which was attached

by a wooden collar. The Nicol s prism was usually inserted into
the collar at random, and the index error was afterwards deter
mined from the observations themselves.

The light employed in all the experiments was the sun light
reflected from a mirror placed at the distance of a few feet from
the polarizer. On account of the rotation of the earth, the mirror

required re-adjustment every three or four minutes. The continual

change in the direction of the incident light was one of the chief
sources of difficulty in the experiments and inaccuracy in the

results; but lamplight would, I fear, be too weak to be* of much
avail in these experiments.

The polarizer, the grating, and the analyzer stood on the same
table, the grating a few inches from the polarizer, and the analyzer
about a foot from the grating. The plane of diffraction was as
sumed to be paraUel to the table, which was nearly the case;
but the change in the direction of the incident light produced



294 ON THE DYNAMICAL THEORY OF DIFFRACTION.

continual small changes in the position of this plane. In most

experiments the grating was placed perpendicular to the incident

light, by making the light reflected from the surface go back into

the hole of the polarizer. The angle of diffraction was measured

at the conclusion of each experiment by means of a protractor,

lent to me for the purpose by Prof. Miller. The grating was

removed, and the protractor placed with its centre as nearly as

might be under the former position of the bright spot formed on

the grating by the incident light. The protractor had a pair of

opposite verniers moveable by a rack
;
and the directions of the

incident and diffracted light were measured by means of sights

attached to the verniers. The angle of diffraction in the different

experiments ranged from about 20 to 60.

The deviation of the less refracted pencil in the doubly re

fracting prism of the polarizer, though small, was very sensible,

and was a great source both of difficulty and of error. To under

stand this, let AB be a ray incident at B on a slip of the surface of

the plate contained between two consecutive grooves, BC a dif

fracted ray. On account of the interference of the light coming
from the different parts of the slip, if a small pencil whose axis is

AB be incident on the slip, the diffracted light will not be sensible

except in a direction BC, determined by the condition that AB +
BC shall be a minimum, A and C being supposed fixed. Hence

AB
}
BC must make equal angles with the slip, regarded as a line,

the acute angles lying towards opposite ends of the slip, and there

fore C must lie in the surface of a cone formed by the revolution

of the produced part of AB about the slip. If AB represent the

pencil coming through the polarizer, it will describe a cone of

small angle as the pointer moves round, and therefore both the

position of the vertex and the magnitude of the vertical angle of

the cone which is the locus of C will change. Hence the sheet of

the cone may sometimes fall above or below the eye-hole of the

analyzer. In such a case it is necessary either to be content to

miss one or more observations, corresponding to certain readings of

the polarizer, or else to alter a little the direction of the incident

light, or, by means of the screws, to turn the grating through a

small angle round a horizontal axis. The deviation of the light

which passed through the polarizer, and the small changes in

the direction of the incident light, 1 regard as the chief causes

of error in my experiments. In repeating the experiments so
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as to get accurate results, these causes of error would have to

be avoided.

At first 1 took for granted that the instrument-maker had

inserted the doubly refracting prism in the polarizer in such a

manner that the plane of polarization of the less refracted pencil

was either vertical or horizontal, (the instrument being supposed

to stand on a horizontal table,) when the pointer stood at 0, having
reason to know that it was not inserted at random

;
and having

determined which, by an exceedingly rough trial, I concluded it

was vertical. Meeting afterwards with some results which were

irreconcileable with this supposition, I was led to make an actual

measurement, and found that the plane of polarization was vertical

when the pointer stood at 25. Consequently 25 is to be regarded

as the index error of the polarizer, to be subtracted from the

reading of the pointer. The circumstance just mentioned accounts

for the apparently odd selection of values of -sr in the earlier

experiments, the results of which are given in the tables at the end

of this section.

On viewing a luminous point or line through the grating, the

central colourless image was seen accompanied by side spectra,

namely, the spectra which Fraunhofer called Spectra of the second

class. After a little, these spectra overlapped in such a manner

that the individual spectra could no longer be distinguished, and

nothing was to be seen but two tails of light, which extended, one

on each side, nearly 90 from the central image. On viewing the

flame of a spirit lamp through the grating, the individual spectra

of the second class could be seen, where, with sun-light, nothing
could be perceived but a tail of light. The tails themselves were

not white, but exhibited very broad impure spectra ;
about two

such could be made out on each side. These spectra are what

were called spectra of the first class by Fraunhofer, who shewed

that their breadth depended on the smaller of the two quantities,

the breadth of a groove, and the breadth of the polished interval

between two consecutive grooves. In the grating, the breadth of

the grooves was much smaller than the breadth of the intervals

between*.

* On viewing the grating under a microscope, the grooves were easily seen to be

much narrower than the intervals between; their breadth was too small to be

measured. On looking at the flame of a spirit lamp through the grating, I counted

sixteen images on one side, then several images were too faint to be seen, and
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In the experiments, the diffracted light observed belonged to a

bright, though not always the brightest, part of a spectrum of the

first class. The compound nature of the light was easily put in

evidence by placing a screen with a vertical slit between the

grating and the eye, and then viewing the slit through a prism
with its edge vertical*. A spectrum was then seen which con

sisted of bright bands separated by dark intervals, strongly resem

bling the appearance presented when a pure spectrum is viewed

through a pinhole, or narrow slit, which is half covered by a plate
of mica, placed on the side at which the blue is seen. At a con

siderable angle of diffraction as many as 15 or 20 bands might
be counted.

In the first experiment the grating was placed with its

plane perpendicular to the light which passed through the pola

rizer, the grooved face being turned from the polarizer. The

light observed was that which was diffracted at emergence
from the glass. It is only when the eye is placed close to

the grating, or when, if the eye be placed a few inches off, the

whole of the grating is illuminated, that a large portion of a tail of

light can be seen at once. When only a small portion of the

grating is illuminated, and the eye is placed at the distance of

several inches, as was the case in the experiments, it is only a

small portion of a tail which can enter the pupil. The appearance

presented is that of a bright spot on the grooved face of the glass.

The angle of diffraction in the first experiment was large, 57 5 by
measurement. Besides the principal image, or bright spot, a row

of images were seen to the left: the regularly transmitted light

lay to the right, right and left being estimated with reference to

the position of the observer. These images were due to internal

diffraction and reflection, as will be better understood further on.

further still the images again appeared, though they were fainter than before.

I estimated the direction of zero illumination to be situated about the eighteenth

image. If we take this estimation as correct, it follows from the theory of these

gratings that the breadth of a groove was the eighteenth part of the interval

between any point of one groove and the corresponding point of its consecutive, an

interval which in the case of the present grating was equal to the l-1300th part of

an inch. Hence the breadth of a groove was equal to the l-23400th part of an

inch.
* To separate the different spectra, Fraunhofer used a small prism with an

angle of about 20, fixed with its edge horizontal in front of the eye-piece of the

telescope through which, in his experiments, the spectra were viewed.
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They were separated by small angles, depending on the thickness

of the glass, but sufficient to allow of one image being observed by
itself. The observations were confined to the principal or right-

hand image.
In the portion of a spectrum of the first class which was

observed there was a predominance of red light. In most posi

tions of the pointer of the polarizer the diffracted light did not

wholly vanish on turning round the analyzer, but only passed

through a minimum. In passing through the minimum the light

rapidly changed colour, being blue at the minimum. This shews

that the different colours were polarized in different planes, or

perhaps not strictly plane-polarized. Nevertheless, as the intensity

of the light at the minimum was evidently very small compared
with its intensity at the maximum, and the change of colour was

rapid, it is allowable to speak in an approximate way of the plane
of polarization of the diffracted light, just as it is allowable to

speak of the refractive index of a substance, although there is

really a different refractive index for each different kind of light.

It was accordingly the angular position of the plane which was the

best representative of a plane of polarization that I sought to

determine in this and the subsequent experiments.

In the first experiment the plane of polarization of the dif

fracted light was determined by six observations for each angle at

which the pointer of the polarizer was set. This took a good deal

of time, and increased the errors depending on changes in the

direction of the light. Accordingly, in a second experiment, I

determined the plane of polarization by single observations only,

setting the pointer of the polarizer at smaller intervals than

before. Both these experiments gave for result that the planes
of polarization of the diffracted light were distributed very

nearly uniformly. This result already points very decidedly

to one of the two hypotheses respecting the direction of

vibration. For according to theory the effect of diffraction alone

would be, greatly to crowd the planes either in one direction or in

the other. It seems very likely that the effect of oblique emer

gence alone should be to crowd the planes in the manner of

refraction, that is, towards the perpendicular to the plane of dif

fraction. If then we adopt Fresnel s hypothesis, the two effects

will be opposed, and may very well be supposed wholly or nearly

to neutralize each other. But if we adopt the other hypothesis we
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shall be obliged to suppose that in the oblique emergence from the

glass, or in something else, there exists a powerful cause of crowd

ing towards the plane of diffraction, that is, in the manner of re

flection, sufficient to neutralize the great crowding in the contrary
direction produced by diffraction, which certainly seems almost

incredible.

The nearly uniform distribution of the planes of polarization of

the diffracted light shews that the two streams of light, polarized

in and perpendicular to the plane of diffraction respectively, into

which the incident light may be conceived to be decomposed, were

diffracted at emergence from the glass in very nearly the same

proportion. This result appeared to offer some degree of vague

analogy with the depolarization of light produced by such sub

stances as white paper. This analogy, if borne out in other cases,

might seem to throw some doubt on the conclusiveness of the

experiments with reference to the decision of the question as to

the direction of the vibrations of plane-polarized light. For the

deviation of the light from its regular course might seem due

rather to a sort of scattering than to regular diffraction, though

certainly the fact that the observed light was very nearly plane-

polarized does not at all harmonize with such a view. Accord

ingly, I was anxious to obtain a case of diffraction in which the

planes of polarization of the diffracted light should be decidedly

crowded one way or other. Now, according to the explanation
above given, the approximate uniformity of distribution of the

planes of polarization in the first two experiments was due to

the antagonistic effects of diffraction, (according to Fresnel s

hypothesis respecting the direction of vibration), and of oblique

emergence from the glass, or irregular refraction, that is, refraction

produced wholly by diffraction. If this explanation be correct,

a very marked crowding towards the plane of diffraction ought

to be produced by diffraction at reflection, since diffraction

alone and reflection alone would crowd the planes in the same

manner.

To put this anticipation to the test of experiment, I placed the

grating with its plane perpendicular to the incident light, and the

grooved face towards the polarizer, and observed the light which

was diffracted at reflection. Since in this case there would be no

crowding of the planes of polarization in the regularly reflected

light, any crowding which might be observed would be due either
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to diffraction directly, or to the irregular reflection due to diffrac

tion, or, far more probably, to a combination of the two.

The experiments indicated indeed a marked crowding towards

the plane of diffraction, but the light was so strong at the mini

mum, for most positions of the pointer of the polarizer, that the

observations were very uncertain, and it was evidently only a

rough approximation to regard the diffracted light as plane-pola

rized. The reason of this was evident on consideration. Of the

light incident on the grating, a portion is regularly reflected,

forming the central image of the system of spectra produced by
diffraction at reflection, a portion is diffracted externally at such

an angle as to enter the eye, a small portion is scattered, and the

greater part enters the glass. Of the light which enters the glass,

a portion is diffracted internally at such an angle that after regular

reflection and refraction it enters the eye, a portion diffracted at

other angles, but the greater part falls perpendicularly on the

second surface. A portion of this is reflected to the first surface,

and of the light so reflected a portion is diffracted at emergence
at such an angle as to enter the eye. Thus there are three princi

pal images, each formed by the light which has been once diffracted

and once reflected, the externally diffracted light being considered

as both diffracted and reflected, namely, one which has been dif

fracted internally, and then regularly reflected and refracted, a

second in which the light has been regularly refracted and reflected,

and then diffracted at emergence, and a third in which the light
has been diffracted externally. Any other light which enters the

eye must have been at least twice diffracted, or once diffracted and

at least three times reflected, and therefore will be comparatively

weak, except perhaps when the angle of incidence, or else the

angle of diffraction, is very large. Now when the grating is per

pendicular to the incident light the second and third of the

principal images are necessarily superposed; and as they might be

expected to be very differently polarized, it was likely enough that

the light arising from the mixture of the two should prove to be

very imperfectly polarized.

To separate these images, I placed a narrow vertical slit in

front of the grating, between it and the polarizer, and inclined

the grating by turning it round a vertical axis so that the normal

fell between the polarizer and the analyzer. As soon as the

grating was inclined, the image which had been previously
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observed separated into two, and at a certain inclination the

three principal images were seen equidistant. The middle image,

which was the second of those above described, was evidently

the brightest of the three. The three images were found to be

nearly if not perfectly plane-polarized, but polarized in different

planes. The third image, and perhaps also the first, did not

wholly vanish at the minimum. This might have been due

to some subordinate image which then appeared, but it was more

probably due to a real defect of polarization.

The planes of polarization of the side images, especially the

first, were greatly crowded towards the plane of diffraction, or,

which is the same, the plane of incidence. Those of the middle

image were decidedly crowded in the same direction, though
much less so than those of the side images. The light of the

first and second images underwent one regular refraction and

one regular reflection besides the diffraction and the accompany

ing irregular refraction. The crowding of the planes of polari

zation in one direction or the other produced by the regular

refraction and the regular reflection can readily be calculated

from the known formulae*, and thus the crowding due to diffrac

tion and the accompanying irregular refraction can be deduced

from the observed result.

The crowding of the planes of polarization of the third image
is due solely to diffraction and the accompanying irregular
reflection. The crowding in one direction or the contrary, ac

cording as one or other hypothesis respecting the direction of

vibrations is adopted, is readily calculated from the dynamical

theory, and thus is obtained the crowding which is left to be

attributed to the irregular reflection. In the absence of an exact

theory little or no use can be made of the result in the way of

confirming either hypothesis; but it is sufficient to destroy the

vague analogy which might have been formed between the effects

of diffraction and of irregular scattering.

The crowding of the planes of polarization of the middle

image, after the observations had been reduced in the manner
which will be explained in the next section, appeared somewhat

*
It is here supposed that the regularly reflected or refracted light which forms

the central colourless image belonging to a system of spectra is affected as to its

polarization in the same way as if the surface were free from grooves.
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greater than was to have been expected from the first two

experiments. This led me to suspect that the crowding in the

manner of reflection produced by diffraction accompanying the

passage of light from air, across the grooved surface, into the

glass plate, might be greater than the crowding had proved to

be which was produced by diffraction accompanying the passage
from -glass, across the grooved surface, into air. I accordingly

placed the grating with its plane perpendicular to the incident

light, and the grooved face towards the polarizer, and placed the

analyzer so as to receive the light which was diffracted in passing
across the first surface, and then regularly refracted at the second.

I soon found that the planes of polarization were very decidedly
crowded towards the plane of diffraction, and that, notwithstand

ing the crowding in the contrary direction which must have been

produced by the regular refraction at the second surface of the

plate, and the crowding, likewise in the contrary direction, which

might naturally be expected to result from the irregular refraction

at the first surface, considered apart from diffraction. This result

seemed to remove all doubt respecting the hypothesis as to the

direction of vibration to which the experiments pointed as the

true one.

On account of the decisive character of the result just men

tioned, I took several sets of observations on light diffracted in

this manner at different angles. I also made two more careful

experiments of the same nature as the first two. The result

now obtained was, that there was a very sensible crowding
towards the plane of diffraction when the grooved face was turned

from the polarizer, although there was evidently a marked differ

ence between the two cases, the crowding being much less than

when the grooved face was turned towards the polarizer. Even

the first two experiments, now that I was aware of the index

error of the polarizer, appeared to indicate a small crowding in

the same direction.

Before giving the numerical results of the experiments, it may
be as well to mention what was observed respecting the defect

of polarization. I would here remark that an investigation of

the precise nature of the diffracted light was beside the main

object of my experiments, and only a few observations were taken

which belong to such an investigation. In what follows, trr

denotes the inclination of the plane of polarization of the light
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incident on the grating to a vertical plane passing through the

ray, that is, to a plane perpendicular to the plane of diffraction.

It is given by the reading of the pointer of the polarizer corrected

for the index error 25, and is measured positive in the direction

of revolution of the hands of a watch placed with its back towards

the incident light.

Whether the diffraction accompanied reflection or refraction,

external or internal, the diffracted light was perfectly plane-

polarized when OT had any one of the values 0, 90, 180, or

270. The defect of polarization was greatest about 45 from any
of the above positions. When the diffracted light observed was

red or reddish, on analyzation a blue light was seen at or near

the minimum
;
when the diffracted light was blue or blueish,

a red light was seen at or near the minimum. When the angle
of diffraction was moderately small, such as 1 5 or 20, the defect

of polarization was small or insensible
;
when the angle of

diffraction was large, such as 50 or 60, the defect of polarization

was considerable. For equal angles of diffraction, the defect of

polarization was much greater when the grooved face was turned

towards the polarizer than when it was turned in the contrary

direction. By the term angle of diffraction, as applied to the

case in which the grooved face was turned towards the polar

izer, is to be understood the angle measured in air, from which

the angle of diffraction within the glass may be calculated, from

a knowledge of the refractive index.

The grating being placed perpendicularly to the incident light,

with the grooved face towards the polarizer, the light diffracted at

a considerable angle, (59 52 by measurement,) to the left of the

regularly transmitted light was nearly white. When the pointer

of the polarizer stood at 70, so that -& = + 45, on turning the

Nicol s prism of the analyzer in the positive direction through the

position of minimum illumination, the light became in succession

greenish yellow, blue, plum colour, nearly red. When -nr was

equal to 45, the same appearance was presented on reversing

the direction of rotation. Since the colours appeared in the order

blue, red, when r = + 45, and in the order red, blue, when

^ = 45, the analyzer being in both cases supposed to turn in the

direction of the hands of a watch, the deficiency of colour took

place in the order red, blue, when is = + 45, and in the order blue,

red, when w = 45. Hence the planes of polarization, or approxi-
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mate polarization, of the blue were more crowded towards the

plane of diffraction than those of the red.

On placing a narrow slit so as to allow a small portion only of

the diffracted light to pass, and decomposing the light by a prism,

in the manner already described, so as to get a spectrum consisting

of bright bands with dark intervals, and then analyzing this spec

trum with a Nicol s prism, it was found that at a moderate angle

of diffraction all the colours were sensibly plane-polarized, though
the planes of polarization did not quite coincide. At a large angle

of diffraction the bright part of the spectrum did not quite dis

appear on turning round the Nicol s prism, while the red and blue

ends, probably on account of their less intensity, appeared to be

still perfectly plane-polarized, though not quite in the same plane.

On treating in the same manner the diffracted light produced
when the grooved face of the glass plate was turned from the

polarizer, all the colours appeared to be sensibly plane-polarized.

In the former case the light of the brightest part of the spectrum
was made to disappear, or nearly so, by using a thin plate of mica

in combination with the Nicol s prism, which shews that the defect

of plane polarization was due to a slight elliptic polarization.

The numerical results of the experiments on the rotation of the

plane of polarization are contained in the following table. In this

table OT is the reading of the polarizer corrected for the index

error 25. A reading such as 340 is entered indifferently in the

column headed &quot;w&quot; as +315 or -45, that is, 340 -25 or

(360 340) 25. a is the reading of the analyzer, determined

by one or more observations. The analyzer was graduated only
from 90 to + 90, and any reading such as - 20 is entered

indifferently as 20, +160, or +340, being entered in such a

manner as to avoid breaking the sequence of the numbers. On
account of the light left at the minimum, the determination of a

was very uncertain when the angle of diffraction was large, except
when OT had very nearly one of the values 0, 90, 180, or 270.

In the most favourable circumstances the mean error in the deter

mination of a was about a quarter of a degree. In some of the

experiments a red glass was used to assist in rendering the obser

vations more definite. This had the advantage of stopping all

rays except the red, but the disadvantage of considerably diminish

ing the intensity of the light. The minutes in the given value of

6, the angle of diffraction, cannot be trusted
;
in fact, during any
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experiment was liable to changes to at least that extent in con

sequence of the changes in the direction of the light. The same

remark applies to i, the angle of incidence, in experiments 11 arid

12. In these experiments the three principal images already
described were observed separately. The angle of diffraction is

measured from the direction of the regularly reflected ray, so that

i is the angle of incidence, and i + 6 the angle of reflection, or, in

the case of the images which suffered one internal reflection, the

angle of emergence.
The eleven experiments which are not found in the following

tables consist of five on diffraction by reflection, which did not

appear worth giving on account of the superposition of different

images ;
one on diffraction by refraction, to which the same remark

applies, the grating having been placed at a considerable distance

from the polarizer, so that the spot illuminated was too large to

allow of the separate observation of different images; one on

diffraction by reflection, in which the grating was placed perpen

dicularly to the incident light, with the grooved face turned from

the polarizer, but the errors of observation, though much smaller

than the whole quantity to be observed, were so large on account

of the large angle of diffraction, (about 75,) with which the obser

vations were attempted, that the details are not worth giving ;
one

on diffraction by refraction, in which the different observations

were so inconsistent that the experiment seemed not worth reduc

ing ;
one which was only just begun ;

and two qualitative experi

ments, the results of which have been already given. I mention

this that I may not appear to have been biassed by any particular

theory in selecting the experiments of which the numerical results

are given.

The following remarks relate to the particular experiments :

No. 1. In this experiment each value of a was determined by
six observations, of which the mean error* ranged from about 15

* The difference between each individual observation and the mean of the six is

regarded as the error of that observation, and the mean of these differences taken

positively is what is here called the mean error. When two observations only are

taken, the mean error is the same thing as the semi-difference between the observa

tions. Since, for a given position of the pointer of the polarizer, the readings

of the analyzer were usually taken one immediately after another, the mean error

furnishes no criterion by which to judge of the errors produced by the small

changes in the direction of the light incident on the grating, but only of those

which arise from the vagueness of the object observed. The reader will be much
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to 55 . So far the experiment was very satisfactory, but it was

vitiated by changes in the direction of the light, sufficient care not

having been taken in the adjustment of the mirror.

No. 2. a. determined by single observations.

No. 13. a determined by two observations at least, of which

the mean error ranged from about 10 to nearly 1, but was usually

decidedly less than 1. At and about the octants, that is to say,

when CT was nearly equal to 45, or an odd multiple of 45, the

light was but very imperfectly polarized in one plane.

No. 14. a determined by two observations. Marked in note

book as
&quot; a very satisfactory experiment.&quot; The mean of the mean

errors was only 11 .

No. 15. a determined by three observations at least. The

light was very imperfectly polarized, except near the standard

points, that is to say when -& was equal to or 90, or a multiple

of 90. This rendered the observations very uncertain. About

the octants the mean error in a set of observations taken one

immediately after another amounted to near 2.

No. 17. a determined by two observations. The light was

very imperfectly polarized, except near the standard points. Yet

the observations agreed very fairly with one another. The mean
of the mean errors was 25

,
and the greatest of them not quite 1.

No. 18. a determined by two observations, which, generally

speaking, agreed well with one another. For OT = 90 and

-53- = +225 the light observed was rather scattered than regularly

diffracted, the sheet of the cone of illumination having fallen above

or below the hole of the analyzer.

No. 21. a determined by two observations at least. In this

experiment the polarizer was covered with red glass.

No. 22. a determined by two observations. Marked in note

book as
&quot; a very satisfactory experiment, though the light was not

perfectly polarized.&quot;

No. 23. a determined by two observations at least. The hole

in a screen placed between the polarizer and the grating was

covered with red glass. This appears to have been a good experi
ment.

better able to judge of the amount of probable error from all causes after examining
the reduction of the experiments given in the next section.

s. ii. 20
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No. 11. a determined by two observations, which agreed well

with one another. In the table, a (1), a (2), a (3) refer respec

tively to the first, second, and third of the three principal images

already mentioned. In this experiment the polarizer was reversed,

that face being turned towards the mirror which in the other

experiments was turned towards the grating, which is the reason

why a and r increase together, although the light observed

suffered one reflection. The same index error as before, namely

25, is supposed to belong to the polarizer in its reversed position.

No. 12. a. determined by three observations. The largeness

of the angle of diffraction rendered the determination of a very

uncertain.

TABLE I.

w
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TABLE I. (continued).
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veloped in this paper, the same law obtains in the case of diffrac

tion in air, or even within an uncrystallized medium, but m has a

value distinct from the two former. It seems then extremely

likely that the same law should hold good in the case of that

combination of diffraction with reflection or refraction which exists

when the diffraction takes place at the common surface of two

transparent uncrystallized media, such as air and glass. If this be

true, it is evident that by combining all the observations belonging
to one experiment in such a manner as to get the value of m which

best suits that experiment, we shall obtain the crowding of the

planes of polarization better than we could from the direct obser

vations, and we shall moreover be able in this way easily to

compare the results of different experiments. It seems reasonable

then to try in the first instance whether the formula (48) will

represent the observations with sufficient accuracy.

In applying this formula to any experiment, there are two

unknown quantities to be determined, namely, m, and the index

error of the analyzer. Let e be this index error, so that a = a! 4- e.

The regular way to determine e and m would no doubt be to

assume an approximate value
e,

of e, put e = e
1
+ Ae

x ,
where Ae, is

the small error of e
lt

form a series of equations of which the

type is

tan (a ej sec
2

(a ej AeA
= m tan r,

and then combine the equations so as to get the most probable

values of Ae
t
and m. But such a refinement would be wholly

unnecessary in the case of the present experiments, which are

confessedly but rough. Moreover e can be determined with accu

racy, except so far as relates to errors produced by changes in the

direction of the light, by means of the observations taken at the

standard points, the light being in such cases perfectly polarized.

By accuracy is here meant such accuracy as experiments of this

sort admit of, where a set of observations giving a mean error of a

quarter of a degree would be considered accurate. Besides, when

ever the values of r selected for observation are symmetrically

taken with respect to one of the standard points, a small error in e

would introduce no sensible error into the value of m which would

result from the experiment, although it might make the formula

appear in fault when the only fault lay in the index error.

Accordingly I have determined the index error of the analyzer

in a way which will be most easily explained by an example.
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Suppose the values of a to have been determined by experiment

corresponding to the following values of OT, 15, 0, + 15,... + 75,

+ 90, + 105. The value of a for = 0, and the mean of the

values for -15 and ta- = + 15, furnish two values of e; and the

value of a. for vr = + 90, and the mean of the values for w = + 75

and ts = + 105, furnish two values of e + 90. The mean of the

four values of e thus determined is likely to be more nearly

correct than any of them. In some few experiments no two

values of were symmetrically taken with respect to the stand

ard points. In such cases I have considered it sufficient to take

proportional parts for a small interval. Thus if a,,
a
2
be the

readings of the analyzer for tar = 10, iv = + 5, assuming

tti
= e _ 10 - 2x

t
a
z
= e + 5 + #, we get 3x = a

2
- a

1

- 15,

whence e, which is equal to
2

5 x, is known. The index

error of the analyzer having been thus determined, it remains to

get the most probable value of ra from a series of equations of the

form (48). For facility of numerical calculation it is better to put
this equation under the form

logm =
log tan a -

log tan -& .................. (49) ,

where it is to be understood that the signs of a and w are to be

changed if these angles should lie between and 90, or their

supplements taken if they should lie between +90 and +180.
Now the mean of the values of log m determined by the several

observations belonging to one experiment is not at all the most

probable value. For the error in log tan a produced by a small

given error in a increases indefinitely as a approaches indefinitely

to or 90, so that in this way of combining the observations an

infinite weight would be attributed to those which were taken

infinitely close to the standard points, although such observations

are of no use for the direct determination of log m, their use being
to determine e. Let a -f Aa be the true angle of which a is the

approximate value, a being deduced from the observed angle a

corrected for the assumed index error e. Then, neglecting (Aa )

2

,

we get for the true equation which ought to replace (49),

, ,
,

.

logm =
log tan a + -: r^ -

log tan r,

M being the modulus of the common system of logarithms. Since

the effect of the error Aa is increased by the division by sin 2*
,
a

quantity which may become very small, in combining the equations
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such as (49) I have first multiplied the several equations by
sin 2a

,
or the sine of 2 (a e) taken positively, and then added

together the equations so formed, and determined log m from the

resulting equation, Perhaps it would have been better to have

used for multiplier sin
2 2a

,
which is what would have been given

by the rule of least squares, if the several observations be supposed

equally liable to error
;
but on the other hand the use of sin 2x for

multiplier instead of sin
2 2a has the effect of diminishing the

comparative weight of the observations taken about the octants,

where, in consequence of the defect of polarization, the observa

tions were more uncertain.

The following table contains the result of the reduction of the

experiments in the way just explained. The value of e used in

the reduction, and the resulting value of log m, are written down

in each case. The second column belonging to each experiment

gives the value of a tzr calculated from (49) with the assumed

value of log m, and is put down for the sake of comparison with

the value of a r deduced from the difference, a OT, of the

observed angles a, -or, corrected for the assumed index error e. In

the table, the experiments are arranged in classes, according to

their nature, and those belonging to the same class are arranged

according to the values of 0. The first three experiments in the

table relate to diffraction at refraction, in which the grooved face

of the grating was turned from the polarizer, the next six to

diffraction at refraction, in which the grooved face was turned

towards the polarizer, and the last two to the experiments in

which the grating was a little inclined, and the three principal

images were observed. The result of Experiment No. 1, is here

given separately, on account of the different values of OT there

employed.

Experiment No. 1.0 = 575 ;
assumed index error e = 405 .

-si a OT

-115 -146
-
92J

- 03r
-70
- 47i + 033
- 25 - 014
_ 2J + 016

+ 20 + 1

+ 42i + 019

+ Ho + 141
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The values of a for w = 115 and CT = -f- 65 ought to differ by
180, whereas they differ by 327 more. This angle is so large

compared with the angles OLW given just above, that it seems

best to reject the experiment. The experiment is sufficient how
ever to shew that the crowding of the planes of polarization, be it

in what direction it may, is very small. On combining all the

observations belonging to this experiment in the manner already

described, a small positive value of log ra, namely + *002, appeared
to result. This value, if exact, would indicate an extremely small

crowding in the manner of reflection.

TABLE II.

Experiment, No. 14.
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TABLE II. (continued).

Experiment, No. 22.
= 5538
e= - 727

logw= + -035
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TABLE II. (continued}.

Experiment, No. 15.

= 5952
e=- 68015

logm=:+-225

UJ
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A nearly constant error appearing in the table of differences

would indicate merely that the value of e used in the reduction

was slightly erroneous. A slight error in e, it is to be remembered,

produces no sensible error in log m, whenever the observations are

balanced with respect to one of the standard points.

In the first two experiments entered in the table, the crowding
of the planes of polarization is so small that it is masked by errors

of observation, and it is only by combining all the observations

that a slight crowding towards the plane of diffraction can be

made out. In all the other experiments, however, a glance at

the numbers in the third column is sufficient to shew in what

direction the crowding takes place. From an inspection of the

numbers found in the columns headed &quot;diff.&quot; it seems pretty
evident that if the formula (49) be not exact the error cannot be

made out without more accurate observations. In the case of

experiment No. 15, the errors are unusually large, and moreover

appear to follow something of a regular law. In this experiment
the observations were extremely uncertain on account of the large

angle of diffraction and the great defect of polarization of the light

observed, but besides this there appears to have been some con

fusion in the entry of the values of w. This confusion affecting

one or two angles, or else some unrecorded change of adjustment,
was probably the cause of the apparent break in the second column

between the third and fourth numbers. Since the value of log m
is deduced from all the observations combined, there seems no

occasion to reject the experiment, since even a large error affecting

one angle would not produce a large error in the value of log m
resulting from the whole series. In the entry of experiment
No. 12 the signs of us have been changed, to allow for the reversion

produced by reflection. This change of sign was unnecessary in

No. 11, because in that experiment the polarizer was actually

reversed. The results of experiment No. 12 would be best satisfied

by using slightly different values of the index error of the analyzer

for the three images, adding to the assumed index error about

1 J, + 1J, +2, for the first, second, and third images respec

tively. The largest error in the third columns, 2*7, is for w
= + 25, third image. The three readings by which a was deter

mined in this case were 15, 1330 ,
12? Hence the error

4- 2 7, even if no part of it were due to an index error, would

hardly be too large to be attributed to errors of observation.
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Since the formula (49), even if it be not strictly true, repre

sents the experiments with sufficient accuracy, we may consider

the value of logm which results from the combination of all the

observations belonging to one experiment as itself the result of

direct observation, and proceed to discuss its magnitude. Let us

consider first the experiments on diffraction at refraction, in which

the light was incident perpendicularly on the grating.

Although the theory of this paper does not meet the case in

which diffraction takes place at the confines of air and glass, it

leads to a definite result on each of the three following suppo
sitions :

First, that the diffraction takes place in air, before the light

reaches the glass :

Second, that the diffraction takes place in glass, after the light

has entered the first surface perpendicularly :

Third, that the diffraction takes place in air, after the light has

passed perpendicularly through the plate.

On the first supposition let a
l ,

a
2 ,

a be the azimuths of the

plane of polarization of the light after diffraction, after the first

refraction, and after the second refraction respectively, and 6 the

angle of refraction corresponding to the angle of incidence 6, so

that sin =
//,

sin
, JJL being the refractive index of the plate : and

first, let us suppose the vibrations of plane-polarized light to be

perpendicular to the plane of polarization. Then by the theory of

this paper we have tan
a^
= sec 6 tan OT, and by the known formula

applying to refraction we have tana
2
= cos (6 6

}
tan a

l5 tana
= cos (6 6

}
tan or

2 ,
whence tan a m tan OT, where

On the second supposition, if cq be the azimuth after diffraction

at an angle & within the glass, we have tan (X
1

= sec & tan or,

tan a = cos (6 6
]
tan

o^, whence tan a = m tan OT, where

m = sec cos (6 6 ).

On the third supposition we have tan a = m tan or, where

m = sec 6.

If we suppose the vibrations parallel to the plane of polarization,

we shall obtain the same formulas except that cos 6, cos & will

come in place of sec 0, sec 6 , the factor cos (6 &} being un

altered.
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Theory would lead us to expect to find the value of logm
deduced from observations in which the grooved face was turned

from the polarizer lying between the values obtained on the

second and third of the suppositions respecting the place of diffrac

tion, or at most not much differing from one of these limits.

Similarly, we should expect from theory to find the value of log m
deduced from observations in which the grooved face was turned

towards the polarizer lying between the values obtained on the

first and second suppositions, or at most not lying far beyond one

of these values.

The following table contains the values of logm calculated

from theory on each of the hypotheses respecting the direction of

vibration, and on each of the three suppositions respecting the

place of diffraction. The numerals refer to these suppositions.

The table extends from = to =
90&quot;,

at intervals of 5. When
6 0, m =

1, and log m = 0, in all cases. In calculating the table,

I have supposed //,
= 1*52, or rather equal to the number, (1*5206,)

whose common logarithm is *182. This table is followed by an

other containing the values of log m deduced from experiment.

TABLE III. Values of logm from theory, p being supposed

equal to To 206.
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TABLE IV. Values of log m from observation.

Nature of Experiment.
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which belong to diffraction within the glass plate, are large com

pared with the errors of observation
;
for the probable cause of

the large errors in experiment No. 15, has been already mentioned.

In the following figure the abscissa} of the curves represent
the angle of diffraction, and the ordinates the values of log m
calculated from theory. The numerals refer to the three supposi

tions respecting the place of diffraction, and the letters E, A,

(the first vowels in the words perpendicular and parallel,} to the

two hypotheses respecting the direction of vibration. The dots

represent the results of the experiments in which the grooved
face of the glass plate was turned towards the polarizer, and

the crosses those of the experiments in which it was turned in

the contrary direction.
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The smallness of log m in experiment No. 23, to which the

5th dot belongs, is probably due in part to the use of the red

glass, since, as has been already remarked, the planes of polariza

tion of the blue were more crowded towards the plane of diffrac

tion than those of the red. On this account the dot ought to

be slightly raised to make this experiment comparable with its

neighbours. On the other hand it will be seen by referring to

Table II, that No. 23 wras a much better experiment than No. 15,

which is represented by the 6th dot, and apparently also better

than No. 17, which is represented by the 4th dot. No. 21,

represented by the 2nd dot, seems to have been decidedly better

than No. 13, which is represented by the 3rd. Nos. 14 and 22,

represented by the 1st and 3rd crosses respectively, were probably
much better, especially the latter of them, than No. 2, which is

represented by the 2nd cross. Now, bearing in- mind the cha

racter of the experiments, conceive two curves drawn with a free

hand, both starting from the origin, where they touch the axis,

and passing, the one among the dots, and the other among the

crosses. The former of these would apparently lie a little below

the curve marked I. E, and the latter a very little below the

curve II. E.

Hence the observations are very nearly represented by adopting
Fresnel s hypothesis respecting the direction of vibration, and,
whether the grooved face be turned towards or from the incident

light, supposing the wave broken up before it reaches the grooves.
I think a physical reason may be assigned why the supposition

of the wave s being broken up before it reaches the grooves should

be a better representation of the actual state of things than the

supposition of its being broken up after it has passed between

them. Till it reaches the grooves, the wave is regularly propa

gated, and, according to what has been already remarked in the

introduction, we have a perfect right to conceive it broken up at any
distance we please in front of the grooves.
Let the figure represent a section of the J

grooves, &c., by the plane of diffraction. ..&amp;lt;&amp;gt;. ?h

Let aA, bB be sections of two consecutive i
7

^Ls . \

grooves, AB being the polished interval.

Let eh be the plane at which a wave in

cident in the direction represented by the

arrow is conceived to be broken up. Let be any point in eh,
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and from draw OR8 in the direction of a ray proceeding regu

larly from and entering the eye ;
so that OR, RS are inclined to

the normal at angles 6, 6 ,
or 6 , 6, according as the light is passing

from air into glass or from glass into air. The latter case is repre
sented in the figure. Of a secondary wave diverging spherically

from 0, which is only partly represented in the figure, those

rays which are situated between the limits OA, OB, and are

not inclined at a small angle to either of these limiting di

rections, may be regarded as regularly refracted across AB.
In a direction inclined at a small angle only to OA or OB,
it would be necessary to take account of the diffraction at the

edge A or B. Let 7 be a small angle such that if OR be inclined

to OA and OB at angles greater than 7 the ray OR may be

regarded as regularly refracted, and draw Ae, Bg inclined at angles

7 to OR, and Af, Bh inclined at angles 7. Then, in finding the

illumination in the direction RS, all the secondary waves except
those which come from points situated in portions such as ef, gh
of the plane eh may be regarded as regularly refracted, or else com

pletely stopped, those which come from points in fg and similar

portions being regularly refracted, and those which come from

points to the left of e, between e and the point which bears to a the

same relation that h bears to 6, as well as those which come from

similar portions of the plane eh, being completely stopped. Now
the whole of the aperture AB is not effective in producing illu

mination in the direction RS. For let G be the centre of AB,
and through C draw a plane perpendicular to RS, and then draw

a pair of parallel planes each at a distance |X from the former

plane, cutting AB in M
t , Nv another pair at a distance X, and

cutting AB in Mv NZ)
and so on as long as the points of section

fall between A and B. Let M, N be the last points of section.

Then the vibrations proceeding from MN in the direction RS
neutralize each other by interference, so that the effective portions

of the aperture are reduced to AM, NB. Now the distance

between the feet of the perpendiculars let fall from A, M on RS
may have any value from to JX, and for the angle of diffraction

actually employed AM was equal to about twice that distance on

the average, or rather less. Hence AM may be regarded as

ranging from to X
;
and since for the brightest part of a band

forming that portion of a spectrum of the first class which belongs

to light of given refrangibility AM has just half its greatest value,
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we may suppose AM= ^X. But if the distance between the planes

eh, ab be a small multiple of X, and 7 be small, ef will be small

compared with X, and therefore compared with AM. Hence the

breadth of the portions of the plane eh, such as ef, for which we
are not at liberty to regard the light as first diffracted and then

regularly refracted, is small compared with the breadth of the

portions of the aperture, such as AM, which are really effective;

and therefore, so far as regards the main part of the illumination,

we are at liberty to make the supposition just mentioned. But

we must not suppose the wave to be first regularly refracted and

then diffracted, because the regular refraction presupposes the

continuity of the wave.

The above reasoning is not given as perfectly satisfactory, nor

could we on the strength of it venture to predict with confidence

the result; but the result having been obtained experimentally,

the explanation which has just been given seems a plausible way
of accounting for it. According to this view of the subject, the

result is probably not strictly exact, but only a very near approxi
mation to the fact. For, if we suppose the distance between the

planes eh, ab to be only a small multiple of X, we cannot apply the

regular law of refraction, except as a near approximation. More-,

over, the dynamical theory of diffraction points to the existence of

terms which, though small, would not be wholly insensible at the

distance of the plane ab. Lastly, when the radius of a secondary
wave which passes the edge A or B is only a small multiple of X,

we cannot regard 7 as exceedingly small.

Let us consider now the results of experiments Nos. 11 and 12.

In diffraction at refraction, the amount of crowding with respect
to which the theory leaves us in doubt vanishes along with

/JL
1

;

and although this amount is far from insensible in the actual

experiments, it is still not sufficiently large to prevent the results

from being decisive in favour of one of the two hypotheses re

specting the direction of vibration. Thus the curves marked &quot;A&quot;

in the first figure are well separated from those marked &quot;

E&quot;, and

if
jj,
were to approach indefinitely to 1, the curves I. A and II. A

would approach indefinitely to III. A, and I. E, and II. E to

III. E. In diffraction at reflection, however, the case is quite

different, and in the absence of a precise theory little can be made
of the experiments, except that they tend to confirm the law

expressed by the equation (49). In the case of the first and second

s. n. 21
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images the diffraction accompanied refraction, and so far the

experiments were of the same nature as those which have been

just discussed, but the angle of incidence was not equal to zero,

and in that respect they differ.

Let i
t p be the angles of refraction corresponding to the angles

of incidence, i,i+9. Then in the case of the first image the

tangent of the azimuth of the plane of polarization is multiplied

by cos (i -f 6 p) sec (i + 9 + p) in consequence of reflection, and

by cos (i + p) in consequence of refraction; and in the case of

the second image by cos (i i
)
in consequence of refraction, and

by cos (i i] sec (i + i
)

in consequence of reflection. Hence if

m be the factor corresponding to diffraction and the accompany

ing refraction, m the factor got from observation, and regarded
as correct, we have

for Istimage, log 771 = log m + log cos (i + 9 -H p) 2 log cos (i +0 p),

for 2nd image, log m =
log m + log cos (i + i ) 2 log cos (i i ).

In the case of the first image, m relates to diffraction at refrac

tion from air into glass, where i is the angle of incidence in air,

and p i the angle of diffraction in glass. In the case of the

second image, m relates to diffraction from glass into air, where i

is the angle of incidence in glass, and 9 the angle of diffraction in

air.

In experiment No. 11, 1st image, we have from Table II, log

m= + 289; for the 2nd image logm = + 061. In this experi

ment i = 1450
,

= 22 30
,
whence i&quot;

= 9 41
,

/&amp;gt;

= 2330 . We
thus get

for 1st image, log m = + 289 - 286 = + 003,

for 2nd image, log m = + -061 - 037 = + 024.

The positive values of log m which result from these experi

ments, notwithstanding the refraction which accompanied the

diffraction, bear out the results of the experiments already dis

cussed, and confirm the hypothesis of Fresnel. It may be re

marked that log m comes out larger for the second image, in

which diffraction accompanied refraction from air into glass, than

for the first image, in which diffraction accompanied refraction

from glass into air. This also agrees with the experiments just re

ferred to.

In experiment No. 12, the light which entered the eye came

in a direction not much different from that in which light regu

larly reflected would have been perfectly polarized. Since in
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regularly reflected light the amount of crowding of the planes of

polarization changes rapidly about the polarizing angle, it is pro
bable that small errors in /t, i, and would produce large errors in

m. Hence little can be made of this experiment beyond confirm

ing the formula (49).

I will here mention an experiment of Fraunhofer s, which,

when the whole theory is made out, will doubtless be found to

have a most intimate connexion with those here described. In

this experiment the light observed was reflected from the grooved
face of a glass-grating; the reflection from the second surface was

stopped by black varnish. In Fraunhofer s notation e is the

interval from one groove to the corresponding point of its consecu

tive, and is measured in parts of a French inch, or is the angle of

incidence, r the inclination of the light observed to the plane of

the grating, (Er) the value of r for the fixed line E, and the

numerals mark the order of the spectrum, reckoned from the axis,

or central colourless image, the order being reckoned positive on

the side of the acute angle made by the regularly reflected light

with the plane of the grating. The following is a translation of

Fraunhofer s description of the experiment.

&quot;It is very remarkable that, under a certain angle of incidence,

a part of a spectrum arising from reflection consists of perfectly

polarized light. This angle of incidence is very different for the

different spectra, and even very sensibly different for the different

colours of one and the same spectrum. With the glass-grating

e = 0-0001223 there is polarized : (Er}
(
+

l}
,
that is, the green part of

this first spectrum, when cr = 49; (Er)
(+u

\ or the green part in

the second spectrum lying on the same side of the axis, when
cr = 40; lastly, (Er)

(

~
l)

,
or the green part of the first spectrum

lying on the opposite side of the axis, when cr=69. When

(JT)
(+I) is polarized perfectly, the remaining colours of this spec

trum are still but imperfectly polarized. This is less the case

with (ErY
+Il

\ and cr can be sensibly changed while this colour still

remains polarized. (Er)
(-I) is under no angle of incidence so com

pletely polarized (so ganz vollstandig polarisirt) as (Er)
(+I}

. With
a grating in which e is greater than in that here spoken of, the

angle of incidence would have to be quite different in order that

the above-mentioned spectra should be polarized*.&quot;

*
Gilbert s Annalen der Physik, B. xiv. (1823) S. 364.

212
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If we suppose vv a function of v such that cr_ 1
= 69, cr +1

= 49,

cr +2
= 40, we get by interpolation CT

O
= 58*33; so that if we suppose

the central colourless image, which arises from light reflected

according to the regular law, to have been polarized at the polar

izing angle for light reflected at a surface free from grooves, we

get yu,
= tan 58 40 = 1 64, from which it would result that the

grating was made of flint glass. The inclination of E in the spec

trum of the order v to the plane of the grating may be calculated

from the formula cos T = sin cr + z^V/e*, given by Fraunhofer, and

obtained from the theory of interference; and = 90 T cr,

where is the angle of diffraction. We thus get for green light

polarized by reflection and the accompanying ditfraction,

order of spectrum cr cr + 9

-1 69 -18 13 50 47

58 40 58 40

+ 1 49 +17r G6l
+ 2 40 +33 52 73 52 .

If we suppose the formula (49) to hold good in this case, m
becomes infinite for the angles of incidence cr and the correspond

ing angles of reflection cr + contained in the preceding table.

Another observation of Fraunhofer s described in the same

paper deserves to be mentioned in connexion with the present

investigation, because at first sight it might seem to invalidate the

conclusions which have been built on the results of the experi

ments. On examining the spectra produced by refraction in

another glass-grating on which the light was incident perpendicu

larly, Fraunhofer found that the spectra on one side of the axis

were more than twice as bright as those on the other
[.

To

account for this phenomenon, he supposed that in ruling the

grating the diamond had had such a position with respect to the

plate that one side of each groove was sharp, the other less defined.

This view was confirmed by finding that a glass plate covered with

a thin coat of grease, and purposely ruled in such a manner, gave
similar results. Now with reference to the present investigation

the question might naturally be asked, If such material changes in

intensity are capable of being produced by such slight modifications

in the diffracting edge, how is it possible to build any certain con-

* In Fraunhofer s notation the wave length is denoted by u\

t Gilbert s Anrialen der Pliysik, B. xiv. p. 353.
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elusions on an investigation in which the nature of the diffracting

edge is not taken into account ?

To facilitate the explanation of the apparent cause of the

above-mentioned want of symmetry, suppose the diffraction pro

duced by a wire grating in which the section of each wire is a

right-angled triangle, with one side of the right angle parallel to

the plane of the grating, and perpendicular to the incident light,

and the equal acute angles all turned the same way. The tri

angles ABC, DEF in the figure repre

sent sections of two consecutive wires,

and GB, HD, IE represent incident

rays, or normals to the incident waves,

which are supposed plane. Let BE = e,

and BD : DE :: nil- n. Draw BK,
DL, E^I parallel to one another in the

direction of the spectrum of the order v

on the one side of the axis, so that v\ is the retardation of the

ray EM relatively to BK, and therefore sin 6 =
i/X/e, being the

angle of diffraction, or the inclination of BK to GB produced.
Draw BN, FO, EP at an inclination 6 on the other side of the

axis, and let L DBF = a. Then the retardation of DL relatively

to BK is equal to nv\ or ne sin 6, and that of BN relatively to

FO is equal to ne sin 6 + ne tan a cos 6 ne tan a, so that if we
denote these retardations by

M
I}

_R
2 ,
R

i
= ne sin 9, R^ = ne sin ne tan a versin 6.

Let plt pz
be the greatest integers contained in the quotients of

R
lt
R

2
divided by X, and let JR

1 =^iX + r
i
R

*
=P^ + r* Tnen

the relative intensities of the two spectra of the order -f v and v

depend on r
lt

r
2

: in fact, we find for the ratio of intensities, on

the theory of interference, sin?

irrj\ : sin
2

irrJX. Now this ratio

may have any value, and we may even have a bright spectrum on

one side of the axis answering to an evanescent spectrum on the

other side. It appears then in the highest degree probable that

the want of symmetry of illumination in Fraunhofer s experiment
was due to a different mode of interference on opposite sides of the

axis. But this has nothing whatsoever to do with the nature of

the polarization of the incident light, and consequently does not

in the slightest degree affect the ratio of the intensities, or rather

the ratio of the coefficients of vibration, of the two streams of
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light belonging to the same spectrum corresponding to the two

streams of oppositely polarized light into which we may conceive

the incident light decomposed, and consequently does not affect

the law of the rotation of the plane of polarization of the diffracted

light.

P. S. Since the above was written, Professor Miller has de

termined for me the refractive index of the glass plate by means

of the polarizing angle. Four observations, made by candle-light,

of which the mean error was only l |, gave for the double angle
113 20

,
whence /j,= tan 56 40 = 1 52043, which agrees almost

exactly with the value I had assumed. In two of these obser

vations the light was reflected at the ruled, and in two at the

plane surface. The accordance of the results bears out the sup

position made in Part II, that the light belonging to the central

colourless image, which is reflected or refracted according to the

regular laws, is also affected as to its polarization in the same

manner as if the surface were free from grooves. The refractive

index of the plate being now known for certain, the experiments
described in this paper render it probable that the crowding of

the planes of polarization which actually takes place is rather less

than that which results from theory on the supposition (which is

in a great measure empirical), that the diffraction takes place

before the light reaches the grooves. The difference is however so

small that more numerous and more accurate experiments would

be required before we could affirm with confidence that such is

actually the case.

When a stream of light is incident obliquely on an aperture,

it is sometimes necessary to conceive each wave broken up as its

elements arrive in succession at the plane of the aperture. In

applying the formula (46) to such a case, it will be sufficient to

substitute for dS the projection of an element of the aperture on

the wave s front, 6 being measured as before from the normal to

the wave, which no longer coincides with the normal to the plane

of the aperture.

Before concluding, it will be right to say a few words re

specting M. Cauchy s dynamical investigation of the problem of

diffraction, if it be only to shew that I have not been anticipated
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in the results which I here lay before the Society. This investi

gation is referred to in Moigno s Repertoire d Optique moderne,

p. 190, and will be found in the fifteenth Volume of the Comptes

Rendus, where two short memoirs of M. Cauchy s on the subject

are printed, the first of which begins at p. 6Qo, and the second at

p. 670. The first contains the analysis which M. Cauchy had

some years before applied to the problem. This solution he after

wards, as it appears, saw reason to abandon, or at least greatly to

restrict; and he has himself stated (p. 675), that it is only ap

plicable when certain conditions are fulfilled, and when moreover

the nature of the medium is such that normal and transversal

vibrations are propagated with equal velocity. This latter con

dition, as Green has shewn, is incompatible with, the stability of

the medium. In the second memoir M. Cauchy has explained the

principles of a new solution of the problem which he had obtained,

without giving any of the analysis. The principal result, it would

appear, at which he has arrived is, that light incident on an aper
ture in a screen is capable of being reflected, so to speak, by the

aperture itself (p. 675); and he proposes seeking, by the use of

very black screens, for these new rays which are *

reflected and

diffracted. But it follows from reasoning similar to that of Art.

34, or even from the general formula (45) or (46\ that such rays

would be wholly insensible in all ordinary cases of diffraction, even

were the screen to reflect absolutely no light. The only way
apparently of rendering them sensible would be, to construct a

grating of actual threads, so fine as to allow of observations at

a large angle of diffraction. Such a grating I believe has never

been made
;
and even if it could be made it would apparently

be very difficult, if not impossible, to separate the effect to be

investigated from the effect of reflection at the threads of the

grating.

[A few years after the appearance of the above Paper, the

question was re-examined experimentally by M. Holtzmann*, who

at first employed glass gratings, but without getting consistent

results (though there seemed some indication of a conclusion the

same as that which I had obtained), and afterwards had recourse

*
Poggendorff s Annalen, Vol. 99 (1856) p. 446, or Philosophical Magazine,

Vol. 13, p. 135.
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to a Schwerd s lampblack grating. With the latter consistent

results were obtained. But the crowding of the planes of polari

zation was towards the plane of diffraction
;
and when instead of

measuring the azimuths of the planes of polarization of the

incident and diffracted light, the incident light was polarized

at an azimuth of 45 to the lines of the grating, and the diffracted

light was divided by a double-image prism into two beams

polarized in and perpendicularly to the plane of diffraction, it was

the latter that was the brighter. From these experiments the

conclusion seemed to follow that in polarized light the vibrations

are in the plane of polarization. The amount of rotation did not

very well agree with theory. The subject was afterwards more

elaborately investigated by M. Lorenz^. He commences by an

analytical investigation which he substitutes for that which I

had given, which latter he regards as incomplete, apparently

from not having seized the spirit of my method. He then gives

the results of his experiments, which were made with gratings of

various kinds, especially smoke gratings. His results with these do

not confirm those of Holtzmann, and he points out an easily over

looked source of error, which he himself had not for some time

perceived, which he thinks may probably have affected Holtz-

mann s observations. Lorenz s results like mine were decisively

in favour of the supposition that in polarized light the vibrations

are perpendicular to the plane of polarization. He found as I had

done that the results of observation as to the azimuth of the plane

of polarization of the diffracted light agreed very approximately

with the theoretical result, provided we imagine the diffraction

to take place before the light reaches the ruled lines.]

*
PoggendorfFs Annalen, Vol. Ill (1860) p. 315, or Philosophical Magazine,

Vol. 21, p. 321.



[From the Transactions of the Cambridge Philosophical Society. Vol. ix.

Part L]

OX THE NUMERICAL CALCULATION OF A CLASS OF DEFINITE

INTEGRALS AND INFINITE SERIES.

[Read March 11, 1850.]

IN a paper &quot;On the Intensity of Light in the neighbourhood

of a Caustic*,&quot; Mr Airy the Astronomer Royal has shewn that the

undulatory theory leads to an expression for the illumination in-

r
30

TT

volving the square of the definite integral I cos ^ fa
3

mw] dwy

where m is proportional to the perpendicular distance of the point

considered from the caustic, and is reckoned positive towards the

illuminated side. Mr Airy has also given a table of the numerical

values of the above integral extending from m = 4 to m = + 4, at

intervals of O2, which was calculated by the method of quadratures.

In a Supplement to the same paper (
the table has been re-calcu

lated by means of a series according to ascending powers of m, and

extended to m = 5 6. The series is convergent for all values of

m, however great, but when m is at all large the calculation be

comes exceedingly laborious. Thus, for the latter part of the

table Mr Airy was obliged to employ 10-figure logarithms, and

even these were not sufficient for carrying the table further. Yet

this table gives only the first two roots of the equation W= 0, W
denoting the definite integral, which answer to the theoretical

places of the first two dark bands in a system of spurious rainbows,

whereas Professor Miller was able to observe 30 of these bands.

To attempt the computation of 30 roots of the equation W by

* Camb. Phil. Trans. Vol. vi. p. 379. t Vol. vm. p. 595.
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means of the ascending series would be quite out of the question,

on account of the enormous length to which the numerical calcula

tion would run.

After many trials I at last succeeded in putting Mr Airy s

integral under a form from which its numerical value can be calcu

lated with extreme facility when m is large, whether positive or

negative, or even moderately large. Moreover the form of the

expression points out, without any numerical calculation, the law

of the progress of the function when m is large. It is very easy to

deduce from this expression a formula which gives the ^
th root of

the equation IF=0 with hardly any numerical calculation, except

what arises from merely passing from (m/3)f, the quantity given

immediately, to m itself.

The ascending series in which IF may be developed belongs to

a class of series which are of constant occurrence in physical ques

tions. These series, like the expansions of e~
x

,
sin x, cos x, are

convergent for all values of the variable x, however great, and are

easily calculated numerically when x is small, but are extremely
inconvenient for calculation when x is large, give no indication of

the law of progress of the function, and do not even make known

what the function becomes when x = oo . These series present

themselves, sometimes as developments of definite integrals to

which we are led in the first instance in the solution of physical

problems, sometimes as the integrals of linear differential equations

which do not admit of integration in finite terms. Now the method

which I have employed in the case of the integral W appears to

be of very general application to series of this class. I shall at

tempt here to give some sort of idea of it, but it does not well

admit of being described in general terms, and it will be best

understood from examples.

Suppose then that we have got a series of this class, and let

the series be denoted by y QT f (x), the variable according to as

cending powers of which it proceeds being denoted by x. It will

generally be easy to eliminate the transcendental function / (x)

between the equation y =f (x) and its derivatives, and so form a

linear differential equation in y t the coefficients in which involve

powers of x. This step is of course unnecessary if the differential

equation is what presented itself in the first instance, the series
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being only an integral of it. Now by taking the terms of this

differential equation in pairs, much as in Lagrange s method of

expanding implicit functions which is given by Lacroix*, we shall

easily find what terms are of most importance when x is large: but

this step will be best understood from examples. In this way we

shall be led to assume for the integral a circular or exponential

function multiplied by a series according to descending powers of x,

in which the coefficients and indices are both arbitrary. The

differential equation will determine the indices, and likewise the

coefficients in terms of the first, which remains arbitrary. We
shall thus have the complete integral of the differential equation,

expressed in a form which admits of ready computation when x is

large, but containing a certain number of arbitrary constants,

according to the order of the equation, which have yet to be deter

mined.

For this purpose it appears to be generally requisite to put the

infinite series under the form of a definite integral, if the series be

not itself the developement of such an integral which presented
itself in the first instance. We must now endeavour to determine

by means of this integral the leading term in /(a?) for indefinitely

large values of x, a process which will be rendered more easy by
our previous knowledge of the form of the term in question, which

is given by the integral of the differential equation. The arbitrary
constants will then be determined by comparing the integral just

mentioned with the leading term iny*(#).

There are two steps of the process in which the mode of pro

ceeding must depend on the particular example to which the

method is applied. These are, first, the expression of the ascending-

series by means of a definite integral, and secondly, the determina

tion thereby of the leading term in / (x) for indefinitely large

values of x. Should either of these steps be found impracticable,

the method does not on that account fall to the ground. The arbi

trary constants may still be determined, though with more trouble

and far less elegance, by calculating the numerical value of / (x)

for one or more values of x, according to the number of arbitrary

constants to be determined, from the ascending and descending
series separately, and equating the results.

*
Traite du Calcul, &c. Tom. i. p. 104.
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In this paper I have given three examples of the method just

described. The first relates to the integral W, the second to an

infinite series which occurs in a great many physical investigations,

the third to the integral which occurs in the case of diffraction

with a circular aperture in front of a lens. The first example
is a good deal the most difficult. Should the reader wish to see

an application of the method without involving himself in the

difficulties of the first example, he is requested to turn to the

second and third examples.

FIRST EXAMPLE.

1. Let it be required to calculate the integral

W I cos (w
3

mw) dw (1),
J ^

for different values of m, especially for large values, whether posi

tive or negative, and in particular to calculate the roots of the

equation W 0.

2. Consider the integral

/.QO

U= I ^(
&amp;gt; o

where 6 is supposed to lie between ?r/6 and -f Tr/6, in order that

the integral may be convergent.

Putting x= (cos 9 V 1 sin#) z,

we get dx = (cos 6 V 1 sin 6) dz, and the limits of z are and oo
;

whence, writing for shortness

p = (cos 26 + J~l sin 20) n ..................
(.3),

.00

we get tt = (co80-/-l sintf) I e&quot;^~^ dz* ............ (4).
J

* The legitimacy of this transformation rests on the theorem that if f(x) be a

continuous function of x, which does not become infinite for any real or imaginary,

but finite, value of x, we shall obtain the same result for the integral of f(x)dx
between two given real or imaginary limits through whatever series of real or

imaginary values we make x pass from the inferior to the superior limit. It is

unnecessary here to enunciate the theorem which applies to the case in which f(x)

becomes infinite for one or more real or imaginary values of x. In the present case
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3. Let now 0, which hitherto has been supposed less than Tr/6,

become equal to TT/(J.
The integral obtained from (2) by putting

=
7T/6 under the integral sign may readily be proved to be con

vergent. But this is not sufficient in order that we may be at

liberty to assert the equality of the results obtained from (2), (4) by

putting 6 TT/ O before integration. It is moreover necessary that

the convergency of the integral (2) should not become infinitely

slow when 6 approaches indefinitely to TT 6, in other words, that if

X be the superior limit to which we must integrate in order to

render the remainder, or rather its modulus, less than a given

quantity which may be as small as we please, X should not become

infinite when 9 becomes equal to Tr/6*. This may be readily

proved in the present case, since the integral (2) is even more

convergent than the integral

I

DO
- \ -

1 sin 30 x3 - nx j
e dx,

which may be readily proved to be convergent.

Putting then =
7r/6 in (2) and (4), we get

cos (a? nx) dx \/ I
|

sin (x
3

nx) dx : (5),f.

u= cos^-V-lsJn^ e-V-*&amp;gt;d* (6),
C

. 7T
where p (

cos ^ -f V 1 sin
)
n .................... (7).o

Let u=U-\/^\U
,

and in the expression for ZJgot from (5) put

7T\

w, n -

then we get Tf= C\ U (9).

the limits of .r are and real infinity, and accordingly we may first integrate with

respect to z from to a large real quantity z
l ,

6 (which is supposed to be written

for 6 in the expression for x) being constant, then leave z equal to z
l , make 6 vary,

and integrate from 9 to 0, and lastly make z^ infinite. But it may be proved

without difficulty (and the proof may be put in a formal shape as in Art. 8), that

the second integral vanishes when z
1 becomes infinite, and consequently we have

only to integrate with respect to z from to real infinity.
* See Section m. of a paper &quot;On the Critical Values of the sums of Periodic

Series.&quot; Camb. Phil. Tram. Vol. vm. p. 5G1. [Ante, Vol. I. p. 279.]
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4. By the transformation of u from the form (5) to the form

(6), we are enabled to differentiate it as often as we please with

respect to n by merely differentiating under the integral sign. By
expanding the exponential e

pz in (6) we should obtain u, and there

fore U
t
in a series according to ascending powers of n. This series

is already given in Mr Airy s Supplement. It is always conver

gent, but is not convenient for numerical calculation when n is

large.

We get from (6)

1 / 7T ,
- 7T\= - cos - - V - 1 sin -

,

S\ 6 67

which becomes by (7)

Equating to zero the real part of the first member of this

equation, we get

5. We might integrate this equation by series according to

ascending powers of n, and we should thus get, after determining
the arbitrary constants, the series which have been already
mentioned. What is required at present is, to obtain for U an

expression which shall be convenient when n is large.

The form of the differential equation (11) already indicates

the general form of U for large values of n. For, suppose n large

and positive, and let it receive a small increment Sn. Then the

proportionate increment of the coefficient w/3 will be very small
;

and if we regard this coefficient as constant, and &n as variable,

we shall get for the integral of (11)

N
Bm{^(?).Bn}

... (12),

where N, N are regarded as constants, Sn being small, which does

not prevent them from being in the true integral of (11) slowly

varying functions of n. The approximate integral (12) points out
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the existence of circular functions such as cos/(w), sin f (n) in the

true integral ;
and since V(w/3) . &n must be the small increment

of f (n), we get f(ri) =| V(n
8

/3), omitting the constant, which it is

unnecessary to add. When n is negative, and equal to n, the

same reasoning would point to the existence of exponentials with

f &amp;lt;/(n */3) in the index. Of course the exponential with a posi
tive index will not appear in the particular integral of (11) with

which we are concerned, but both exponentials would occur in the

complete integral. Whether n be positive or negative, we may, if

we please, employ exponentials, which will be real or imaginary
as the case may be.

6. Assume then to satisfy (11)

U= 6 3
N/-T{^ln + Bnft + Cn* +...}* ............ (13),

where A, B, C... x, j3, y... are constants which have to be deter

mined. Differentiating, and substituting in (11), we get

a (a
-

1) An*-2 + (-)! Brf-* + ...

+... }
= 0.

As we want a series according to descending powers of n, we
must put

* The idea of multiplying the circular functions by a series according to de

scending powers of n was suggested to me by seeing in Moigno s Repertoire d optique

moderne, p. 189, the following formulas which M. Cauchy has given for the calcu

lation of Fresnel s integrals for large, or moderately large, values of the superior
limit :

cos - z-dz = \
-N cos - Hi

2 +M sin ^ m-
;

o * * *

f
m

. 7T 7T 7T
I sin - z-dz= I,

- J/ cos - m* -N sin - m- ;

./ o
2 2 ^

1 1.3 1.3.5.7 1 1.3.5
where M= ^ + . . . ; N=

,
_ - + . ..

mir ii^ii3 77i
9
7r wV2

?
7
jr
4

The demonstration of these formula? will be found in the 15th Volume of the

Comptes Eendus, pp. 554 and 573. They may be readily obtained by putting

irz&quot;=2x, and integrating by parts between the limits ^wm- and oo of x.
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whence

F.^-Mv-Tn-Vi* 1^1 ^ [

1.2.3

By changing the sign of *J( 1) both in the index of e and in the

series, writing B for A, and adding together the results, we shall

obtain the complete integral of (11) with its two arbitrary con

stants. The integral will have different forms according as n is

positive or negative.

First, suppose n positive. Putting the function of n of which

A is the coefficient, at the second side of (14) under the form

P + V( 1) Q&amp;gt;

and observing that an expression of the form

where A and B are imaginary arbitrary constants, and which is

supposed to be real, is equivalent to AB + BQ, where A and B are

real arbitrary constants, we get

U = An-* R cos + 8 sin

...... (15),

where

1.5.7 .Jl_ 1 . 5 . 7 . 11 . 13 . 17 . 19 . 23
R =

!

&quot;

1 . &quot;2Tl 6
2
7&quot;3n

3 +
1 . 2.3.4 . 1 6

4
. &quot;3V

1.5 _ 1 .5.7.11.13.17
o T&quot;

&quot;

i r^imi o, i

,...(16).

Secondly, suppose n negative, and equal to - n. Then, writing

-n for n in (14), and changing the arbitrary constant, and the

sign of the radical, we get

It is needless to write down the part of the complete in

tegral of (11) which involves an exponential with a positive
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index, because, as has been already remarked, it does not appear
in the particular integral with which we are concerned.

7. When n or ri is at all large, the series (16) or (17) are at

first rapidly convergent, but they are ultimately in all cases hyper-

geometrically divergent. Notwithstanding this divergence, we

may employ the series in numerical calculation, provided we do

not take in the divergent terms. The employment of the series

may be justified by the following considerations.

Suppose that we stop after taking a finite number of terms of

the series (16) or (17), the terms about where we stop being so

small that we may regard them as insensible
;
and let U^ be the

result so obtained. From the mode in which the constants A, B,

0,... a, /3, 7... in (13) were determined, it is evident that if we

form the expression

according as n is positive or negative, the terms will destroy each

other, except one or two at the end, which remain undestroyed.
These terms will be of the same order of magnitude as the terms

at the part of the series (16) or (17) where we stopped, and there

fore will be insensible for the value of n or ri for which we are

calculating the series numerically, and, much more, for all superior

values. Suppose the arbitrary constants A, B in (16) determined

by means of the ultimate form of U for n = so
,
and C in (17) by

means of the ultimate form of U for n = oo . Then U
t

satisfies

exactly a differential equation which differs from (11) by having
the zero at the second side replaced by a quantity which is in

sensible for the value of n or ri with which we are at work, and

which is still smaller for values comprised between that and the

particular value, (namely x
), by means of which the arbitrary

constants were determined so as to make C^ and U agree. Hence

L\ will be a near approximation to U. But if we went too far

in the series (16) or (17), so as, after having gone through the

insensible terms, to take in some terms which were not insensible,

the differential equation which U^ would satisfy exactly would

differ sensibly from (11), and the value of
7J

obtained would be

faulty.

s. n. -22
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8. It remains to determine the arbitrary constants A, B, C.

For this purpose consider the integral

_ /

J
(18),

where q is any imaginary quantity whose amplitude does not

lie beyond the limits 7r/6 and + Tr/6. Since the quantity under

the integral sign is finite and continuous for all finite values of x,

we may, without affecting the result, make x pass from its initial

value to its final value &amp;lt;x&amp;gt; through a series of imaginary values.

Let then x = q + y, and we get

-Q

where the values through which y passes in the integration are

not restricted to be such as to render x real. Putting y (3g)~* t,

where that value of the radical is supposed to be taken which has

the smallest amplitude, we get

The limits of t are 3%^ and an imaginary quantity with an

infinite modulus and an amplitude equal to Ja, where a denotes

the amplitude of q. But we may if we please integrate up to

a real quantity p, and then, putting t = pe
6^~ 1

\ and leaving p

constant, integrate with respect to 6 from to Ja, and lastly put

p = oo . The first part of the integral will be evidently convergent

at the limit oo
,
since the amplitude of the coefficient of f in the

index does not lie beyond the limits | TT and + JTT ;
and calling

the two parts of the integral with respect to t in (19) T, T4 ,
we

get

(20),

^
J o

We shall evidently obtain a superior limit to either the real or

the imaginary part of T
4 by reducing the expression under the

integral sign to its modulus. The modulus is e~ where

6 = (3c)
~*

p* cos (30
-

fa) + /a

2
cos 20,

c being the modulus of q. The first term in this expression is
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never negative, being only reduced to zero in the particular case

in which 6 = and a- ir/G. The second term is never less than

p
2
cos JTT or ip

2
,
and is in general greater. Hence both the real

and the imaginary parts of the expression of which T
4
is the limit

are numerically less than ^ape-^ *,
which vanishes when p

= oc
,

and therefore T
t
= 0. Hence we have rigorously

Q = (3q)-*eWT ........................ (22).

Let us now seek the limit to which T tends when c becomes

infinite. For this purpose divide the integral T into three parts

Tv T
2 ,
T

3 ,
where T

l
is the integral taken from -3^ to a real

negative quantity a, T2
from a to a real positive quantity + &

and T
3
from b to x

;
and suppose c first to become infinite, a and b

remaining constant, and lastly make a and b infinite.

Changing the sign of t in T^ and the order of the limits, we get

* dt.

r

=
l

Put =pe0N/(
~

i;
. Then we may integrate first from p = a to

p = S*cr while 6 remains equal to 0, and afterwards from 6 =

to 6 = a. while f p remains equal to 3M. Let the two parts of the

integral be denoted by T
, T&quot;. We shall evidently obtain a

superior limit to T by making the following changes in the

integral : first, replacing the quantity under the integral sign by
its modulus

; secondly, replacing t
3
in the index by the product

of t
z and the greatest value (namely 3M) which t receives in the

integration ; thirdly, replacing a by the smallest quantity (namely

0) to which it can be equal, and, fourthly, extending the superior

limit to oc . Hence the real and imaginary parts of T are both

/*

numerically less than I e~^
2

dt, a quantity which vanishes in the

limit, when a becomes infinite.

We shall obtain a superior limit to the real or imaginary part

of T&quot; by reducing the quantity under the integral sign to its

modulus, and omitting V(~ 1) in the coefficient. Hence L will be

such a limit if

[ \-W&amp;gt;d6, where f(6) = 3 cos 20 - cos (3(9
-

fa).
^0

We may evidently suppose a to be positive, if not equal to zero,

since the case to which it is negative may be reduced to the case

22_2
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in which it is positive by changing the signs of a and 6. When
# = 7r/6, the first term in f(0) is equal to f, which, being greater

than 1, determines the sign of the whole, and therefore /(0) is

positive; and /(0) is evidently positive from 6 = to 0=7r/6,
since for such values cos 26 &amp;gt; . Also in general f(0) = 6 sin 20

+ 3 sin (30 fa), which is evidently positive from 6 ?r/6 to

= 7r
/4&amp;lt;

)
and the latter is the largest value we need consider, being

the extreme value of when a has its extreme value 77/6. When
has its extreme value fa,/(0)

= 2 cos 3a, which is positive when

a &amp;lt; 7T/6, and vanishes when a = Tr/6. Hence /(0) is positive when

6 &amp;lt; fa ;
for it has been shewn to be positive when 6 &amp;lt; Tr/6, which

meets the case in which a &amp;lt; ?r/9 or =
Tr/9, and to be constantly

decreasing from 6 = Tr/6 to 9 = f2, which meets the case in which

6 &amp;gt; 7T/9. Hence when a &amp;lt; ?r/6 the limit of L for c = oo is zero,

inasmuch as the coefficient of c
3
in the index of e is negative and

finite
;
and when a. = Tr/6 the same is true, for the same reason,

if it be not for a range of integration lying as near as we please to

the superior limit. In this case put for shortness f(9)
= S, regard

|a as a function of S, F(B), and integrate from ^ = to 3 = ft,

where yS is a constant which may be as small as we please. By
what precedes, F (8) will be finite in the integration, and may
be made as nearly as we please equal to the constant F (0) by

diminishing ft. Hence the integral ultimately becomes

/:

which vanishes when c becomes infinite. Hence the limit of
r

l\

is zero.

We have evidently T
z

&amp;lt; I e-^dt,

which vanishes when b becomes infinite. Hence the limit of T
is equal to that of T

z
. Now making c first infinite and afterwards

a and 6, we get

limit of T
2
= limit of f e~&amp;lt;

2

dt =
|
V* dt = VTT,

J -a, J - oo

and therefore we have ultimately, for very large values of c,

a
8

(22).
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In order to apply this expression to the integral u given by (6),

we must put

o 2 jf^i i fn\* JV^i
oq = ne*

,
whence q

=
^ )

e ,

o/

whence we get ultimately

Comparing with (15) we get

9. We cannot make ?i pass from positive to negative through
a series of real values, so long as we employ the series according
to descending powers, because these series become illusory when
n is small. When n is imaginary we cannot speak of the integrals
which appear at the right-hand side of (5), because the exponential
with a positive index which would appear under the integral signs
would render each of these integrals divergent. If however we
take equation (6) as the definition of u, and suppose U always
derived from u by changing the sign of \/( 1) in the coefficient

of the integral and in the value of p y
but not in the expression

for n, and taking half the sum of the results, we may regard u
and U as certain functions of n whether n be real or imaginary.

According to this definition, the series involving ascending integral

powers of n, which is convergent for all values of n, real or imagi

nary, however great be the modulus, will continue to represent u

* This result might also have been obtained from the integral U in its original

fx
shape, namely, |

cos (z
3 - nx) dx, by a method similar to that employed in Art. 21.

If xl be the positive value of x which renders x? -nx a minimum, we have a^s=:8~~*li*.

Let the integral U be divided into three parts, by integrating separately from x=0
to x= x

l
- a, from x= xl -a to x=x^+ 6, and from x=x

l + b to oj=x ; then make n

infinite while a and b remain finite, and lastly, let a and 6 vanish. In this

manner the second of equations (23) will be obtained, by the assistance of the

known formula
30/*&amp;gt; /

I vosx-dx=l
J - x J -
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when n is imaginary. The differential equation (11), and conse

quently the descending series derived from it, will also hold good
when n is imaginary ;

but since this series contains radicals, while

U is itself a rational function of n, we might expect beforehand

that in passing from one imaginary value of n to another it should

sometimes be necessary to change the sign of a radical, or make

some equivalent change in the coefficients A, B. Let n = r^e
1
&quot;^&quot;

1

where n
v

is positive. Since both values of 2 (ft/3)
2 are employed

in the series, with different arbitrary constants, we may without

loss of generality suppose that value of n% which has
fz/

for its

amplitude to be employed in the circular functions or exponentials,

as well as in the expression for S. In the multiplier we may

always take z^/4 for the amplitude of n~$ by including in the

constant coefficients the factor by which one fourth root of n differs

from another; but then we must expect to find the arbitrary

constants discontinuous. In fact, if we observe the forms of R
and S, and suppose the circular functions in (15) expanded in

ascending series, it is evident that the expression for U will be

of the form

An-*N+Bn*N (25),

where N and N are rational functions of n. At least, this will be

the case if we regard as a rational function a series involving de

scending integral powers of n, and which is at first rapidly con

vergent, though ultimately divergent, or rather, if we regard as

such the function to which the convergent part of the series is a

very close approximation when the modulus of n is at all large.

Now, if A and B retained the same values throughout, the above

expression would not recur till v was increased by STT, whereas U
recurs when v is increased by 2?r. If we write v + 2?r for v, and

observe that N and N recur, the expression (25) will become

- J~^lAn~* N + J^lBn* N ;

and since Urecurs it appears that A, J5 become A/( 1) -4, A/( 1) J5,

respectively, when v is increased by 2?r. Also the imaginary part

of the expression (25) changes sign with v, as it ought; so that, in

order to know what A and B are generally, it would be sufficient

to know what they are from v to v = TT.

If we put ?r
1
e7rV(

~
1) for n in the second member of equation (15),

and write ft for 2 . 3~ f
n*, and E

I}
S

1
for what E, S become when
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?^ is put for n in the second members of equations (16) and all

the terms are taken positively, we shall get as our result

Now the part of this expression which contains (^ + S^e? ought
to disappear, as appears from (17). If we omit the first part of

the expression, and in the second part put for A and B their values

given by (24), we shall obtain an expression which will be identi

cal with the second member of (17) provided

tf=
, ........... ..(26).

2.3*

This mode of determining the constant C is anything but satis

factory. I have endeavoured in vain to deduce the leading term

in Z7for n negative from the integral itself, whether in the original

form in which it appears in (5), or in the altered form in which it

is obtained from (6)*. The correctness of the above value of C
will however be verified further on.

10. Expressing n, U in terms of in, W by means of (8) and

(9), putting for shortness

-*&-&amp;lt;

where the numerical values of ra and n are supposed to be taken

when these quantities are negative, observing that 16 */(3n
3

)
=

and reducing, we get when ra is positive

TF= 2* (3m)-

where
1.5.7.11 1 . 5 . 7 . 11 . 13 . 17 . 19 . 23-
1.2 (720)*

+
1.2.3.4(720)*

1.5 1.5.7.11.13.17
-

J1.2.3 (720)

When m is negative, so that W is the integral expressed by writ

ing m for m in (1), we get

[* The difficulty was overcome in a later paper entitled &quot;On the discontinuity

of arbitrary constants which appear in divergent developments.&quot; (Transactions

of the Cambridge Philosophical Society, Vol. x. p. 105.)]
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11. Reducing the coefficients of
&amp;lt;j&amp;gt;~

1

, 0~
2
... in the series (29)

for numerical calculation, we have, not regarding the signs,

order
(i) (ii) (iii)

logarithm 2 841638; 2-569766; 2 579704;
coefficient 0694444; 0371335; 0379930;

(iv) (v) (vi)

2760793; 1-064829; 1-464775;

0576490; 116099; 291592.

Thus, for m =
3, in which case &amp;lt;

=
TT, we get for the successive

terms after the first, which is 1,

022105, -003762, 001225, 000592, -000379, 000303.

We thus get for the value of the series in (30), by taking half the

last term but one and a quarter of its first difference, 980816;
whence for m=3, W=6-*x 9808166-^ = 0173038, of which the

last figure cannot be trusted. Now the number given by Mr Airy
to 5 decimal places, and calculated from the ascending series and

by quadratures separately, is 01730, so that the correctness of the

value of C given by (26) is verified.

For m = + 3 we have from (28)

W= - 3-* (R-8) = - 3-*
(&quot;9965

-
-0213) = - 5632,

which agrees with Mr Airy s result 56322 or 56823. As m
increases, the convergency of the series (29) or (30) increases

rapidly.

12. The expression (28) will be rendered more easy of numeri

cal calculation by assuming R^Mcosty, $ = I/sin -^ and ex

panding M and tan ^r in series to a few terms. These series will

evidently proceed, the first according to even, and the second

according to odd inverse powers of &amp;lt;. Putting the several terms,

taken positively, under the form 1, ac/T
1

, a6&amp;lt;~

2

,
a&c&amp;lt;~

3

, abcd(f&amp;gt;~

4

, &c.,

and proceeding to three terms in each series, we get

tan
-\|r

=
a&amp;lt;f&amp;gt;~

1

ab(c- a) &amp;lt;~

3
-f ab [cd (e

-
a)
- ab (c a)} c/T

5
. . .(32).

The roots of the equation W=0 are required for the physical

problem to which the integral W relates. Now equations (28),
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(29) shew that when??* is at all large the roots of this equation are

given very nearly by the formula
(f&amp;gt;

=
(i J) TT, where i is an inte

ger. From the definition of ^r it follows that the root satisfies

exactly the equation

&amp;lt;/,

=
(&amp;lt;-!)

,r + t ...................... (S3).

By means of this equation we may expand &amp;lt;$&amp;gt;

in a series according

to descending powers of
^&amp;gt;,

where &amp;lt;J&amp;gt;

=
(i J) TT. For this purpose

it will be convenient first to expand ^ in a series according to

descending powers of
&amp;lt;f&amp;gt;, by means of the expansion of tan&quot;

1 x and

the equation (32), and having substituted the result in (33) to

expand by Lagrange s theorem. The result of the expansion
carried as far as to &amp;lt;J&amp;gt;~

5
is

-
{ab (c

-
a) + Ja

3 + a2

}
Q 3

+ {ab [cd (e a) ab(c a)] 4- a
3
6 (c

-
a) + ia5

a) + Ja
3

] + 2rt
3

J&amp;lt;-

5
............ (34).

13. To facilitate the numerical calculation of the coefficients

let

a , b c

and let the coefficients of &amp;lt;~

2
, $~

4
in (31) be put under the forms

A A-
j-9^)i&amp;gt; x 2 3

4

4iy
- and similarly with respect to (32), (34).

Then to calculate W for a given value of m, we have

where J/= 1 - ^ *- + ^-

and for calculating the roots of the equation TF=0, we have
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The coefficients in these formulae are given by the equations

A
a
= a (V

- a
) ; A^ = a {b c (d

f -
4a) + 3a 2

(2V -a)}^
Q = a- C

s
= ab (c

- 3a ); Os
= a V [c d (e

- 5a
f

)
- 10 C

s ]
I

E
l

= a
;
#

3
= C

3 + 2a 2

(3D + a
)

I

# = C/. + 20a (4D + a
)
(7

3
+ 24a 5 + 80a 3 D (3D + 2a )

J

14. Putting in these formulae

a = 1 . 5
;
b = 7 . 11

;
c = 13 . 17; Z = 19 . 23; e = 25 . 29; D = 72

;

we get

^1
2 =5.72; ^1

4
= 3.5.72

2

.457; ^ =
5; (7

3
= 2.5.7.11.103;

C
3
= 42

.5
3
.7

2
. 11. 23861; ^=5; ^

3
= 72.1255; #5

=4.53
.72

2
. 10883;

whence we obtain, on substituting in (36), (37), (38),

,, - 5 2285

_ 39655 _ 321526975 .

ar* -* +2902376448*

72 31104 2239488

Keducing to decimals, having previously divided the last equation

by TT, and put for &amp;lt;E&amp;gt; its value (i ^) TT, we get

M=!- 034722
&amp;lt;/&amp;gt;-

2 + -055097
^&amp;gt;

4
............ (40),

tan ^ = -069444 0-
1 - -035414 4f

3 + 110781
^&amp;gt;

5
..... .(41),

&amp;lt;/&amp;gt;_.

-028145 -026510 -129402

TT&quot;

- &quot;

4^-&quot;T ~(4i-l)
3+

(4i-l)
5

15. Supposing z = 1 in (42), we get

* = -75 + -0094 - -0010 + 0005 = 7589;
7T

whence m = 3
(&amp;lt;^&amp;gt;/7r)

3 = 2 496. The descending series obtained in

this paper fail for small values of m; but it appears from Mr Airy s

table that for such values the function W is positive, the first

change of sign occurring between m = 2 4 and m = 2*6. Hence the

integer i in (42) is that which marks the order of the root. A
more exact value of the first root, obtained by interpolation from

Mr Airy s table, is 2 4955. For i 1 the series (42) is not conver-
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gent enough to give the root to more than three places of decimals,

but the succeeding roots are given by this series with great

accuracy. Thus, even in the case of the second root the value of

the last term in (42) is only 000007698. It appears then that

this term might have been left out altogether.

16. To determine when W is a maximum or minimum we

must put d Wjdrii 0. We might get dW/dm by direct differen

tiation, but the law of the series will be more easily obtained from

the differential equation. Kesuming equation (11), and putting

V for dU/dn, we get by dividing by n and then differentiating_.
an n an 3

This equation may be integrated by descending series just as

before, and the arbitrary constants will be determined at once by

comparing the result with the derivative of the second member
of (15), in which J., B are given by (24). As the process cannot

fail to be understood from what precedes, it will be sufficient to

give the result, which is

F== 3-t^y IJT cos
U&amp;gt;
+
^J

+ sin
( * +

^J[
(43),

where

-1.7.5.13 -1.7.5.13.11.19.17.25 1
xi = 1

1.2(72c/&amp;gt;)

2

1.2.3.4(720)* ,

-1.7 _ -1.7.5.13.11.19~
1.2.3(72c)

3
J

17. The expression within brackets in (43) may be reduced

to the form NCOS
((f&amp;gt;

+ JTT ifr) just as before, and the formulas

of Art. 13 will apply to this case if we put

a =-1.7; 6 = 5.13; c = 11.19; &c., D = 72.

The roots of the equation dW/dm = Q are evidently the same as

those of V= 0. They are given approximately by the formula

&amp;lt;f&amp;gt;

=
(i J) TT, and satisfy exactly the equation &amp;lt;

=
(i J)TT + ty.

The root corresponding to any integer i may be expanded in a

series according to the inverse odd powers of 4i 3 by the formulae



348 ON THE NUMERICAL CALCULATION OF A CLASS OF

of Art. 13. Putting (i f )TT for
&amp;lt;3&amp;gt;,

and taking the series to three

terms only, we get

whence
&amp;lt;/&amp;gt;

==
3&amp;gt;

-
fa &amp;lt;&~

l

or, reducing as before,

6 . ,_. -039403 -024693

This series will give only a rough approximation to the first

root, but will answer very well for the others.

For i=l the series gives Tr&quot;

1 = 25 - 039 + 025, which

becomes on taking half the second term and a quarter of its first

difference 25 - -019 - 004 = 227, whence m = 112. The value

of the first root got by interpolation from Mr Airy s table is T0845.
For the second and third roots we get from (45)

for i= 2, TT&quot;

1 = 1 25 - -00788 + 00020 = 1-24232
;

for i = 3, Tr&quot;

1

(/&amp;gt;

= 2-25 - 00438 + -00003 = 2 24565.

For higher values of i the last term in (45) may be left out

altogether.

18. The following table contains the first fifty roots of the

equation W=0, and the first ten roots of the derived equation.

The first root in each case was obtained by interpolation from

Mr Airy s table
;
the sbries (42) and (45) were sufficiently con

vergent for the other roots. In calculating the second root of

the derived equation, a rough value of the first term left out in

(45) was calculated, and its half taken since the next term would

be of opposite sign. The result was only 000025, so that the

series (45) may be used even when i is as small as 2. By far

the greater part of the calculation consisted in passing from the

values of Tr&quot;

1

cf&amp;gt;

to the corresponding values of m. In this part
of the calculation 7-figure logarithms were used in obtaining the

value of m, and the result was then multiplied by 3.

A table of differences is added, for the sake of exhibiting the

decrease indicated by theory in the interval between the con

secutive dark bands seen in artificial rainbows. This decrease

will be readily perceived in the tables which contain the results
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of Professor Miller s observations*. The table of the roots of the

derived equation, which gives the maxima of W2

,
is calculated for

the sake of meeting any observations which may be made on the

supernumerary bows accompanying a natural rainbow, since in

that case the maximum of the red appears to be what best admits

of observation.

diff. diff.

1
2

3
4
5

6

7

8

9
10
11

12

13
14
15
16

17

18
19
20
21

22
23
24
25

2 4955
A OA014-3631

Q.17QQ84/88

12-7395
13-6924

14-6132

15-5059

18-8502
19-6399

20-4139
21-1736

21-9199

22-6536

23-3757
24-0868

, ., 9

10335

.

^991
iff}

26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50

26-1602
26-8332
27-4979

28-8037
29-4456

30-0805

30-7089
31-3308

32*5567

33-1610
33-7599
34-3535

34-9420
35-5256

36-1044

37-2484

3&amp;lt;

38-9323
39-4855
40-0349

40-5805

-6100
.604
.043

1-0845

3-4669
e-

O

1-1914

8

9

10

1 1
-

1 1
-i oo 1

~&quot;

12 24&amp;lt;o

13-2185

,.,-,.1T170

.nill^-*- * -*

*
Cambridge Philosophical Transactions, Vol. vn. p. 277.
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SECOND EXAMPLE.

19. Let us take the integral

...... (46)

which occurs in a great many physical investigations. If we

perform the operation x . d/dx twice in succession on the series

we get the original series multiplied by x2

,
whence

cPW 1 du

20. The form of this equation shews that when x is very

large, and receives an increment $%, which, though not necessarily

a very small fraction itself, is very small compared with x, u is

expressed by A cos bx + B sin &x, where under the restrictions

specified A and B are sensibly constant
(.

Assume then, according

to the plan of Art. 5,

u = eK^{Aaf+Bafi+ Ca?+...J ............. (48).

On substituting in (47) we get

J-=l {(2a +

Since we want a descending series, we must put

2a+l=0; =a-l; 7 = -l...;

1) 5 = 7^1 aM ; (2y + 1) C = J

* This integral has been tabulated by Mr Airy from x= Q to x=W, at intervals

of 2. The table will be found in the 18th Volume of the Philosophical Magazine,

page 1.

t That the 1st and 3rd terms in (47) are ultimately the important terms, may

readily be seen by trying the terms two and two in the way mentioned in the intro

duction. Thus, if we suppose the first two to be the important terms, we get

ultimately U=A or U=Blogx, either of which would render the last term more

important than the 1st or 2nd, and if we suppose the 2nd and 3rd to be the

important terms, we get ultimately u= Ae~x* 2̂
,
which would render the first term

more important than either of the others.
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whence = -
5

= -
I J 7 = ~ f J

22

Substituting in (48), reducing the result to the form

adding another solution of the form B (P J IQ), and changing
the arbitrary constants, we get

^ = ^.^-i(Ecos^ + /S sina;) + Bx~* (R sinoj - 5 cos #).... (49),

I
2 32

I
2
3

2
5
2
7

2

~ *

1.2(8^)
2

1.2.3.4(8#)
4

J. (50).
I

2
1
2
.3

2
.5

2

21. It remains to determine the arbitrary constants A, B. In

equation (46) let cos 6 = 1
//,,

whence

where I/ = (2^
- ^) -i -

(2^) -*,

a quantity which does not become infinite between the limits of /*.

Substituting in (46) we get

w =^ fcos}(l -^)^}/^-^ya+- I
cos

{(!-/*)*}#&amp;lt;*/*... (51).
7? J o

Tr J o

By considering the series whose 71
th term is the part of the

latter integral for which the limits of
/z-

are mraT1 and (?i -f 1) irx~
l

respectivel}^ it would be very easy to prove that the integral has

a superior limit of the form HaT1

,
where H is a finite constant,

and therefore this integral does not furnish any part of the leading

terms in u. Putting /^c
= v in the first integral in (51), so that
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observing that the limits of v are and x, of which the latter

ultimately becomes co
,
and that

I cos v . v ^dfji 2 I c

-00 -&amp;gt;CO

= 2 sin \2d\ = I sin i/ . v
- l- dv

y

J o ^ o

we get ultimately for very large values of x

u = (TTX)-? (cos x + sin #).

Comparing with (49) we get

A = B=Tr-*,

, / 2 \* / 7T\ / 2 \i . / 7T\*
,.*whence ?t = - - -

)
H cos ar T I + I o sin hr --

}
... (o2).

VTTX/ V 4/ V77&quot;^/ V 4/

For example, when # = 10 we have, retaining 5 decimal places

in the series,

E = 1 _ -00070 + -00001 = -99931
;
S = 01250 - -00010 = 01240

7T

Angle x - = 527 95780 = 3 x 180 - 12 2 32&quot;
;

whence u = -24594, which agrees with the number (- -2460)

obtained by Mr Airy by a far more laborious process, namely, by

calculating from the original series.

22. The second member of equation (52) may be reduced to

the same form as that of (28), and a series obtained for calculating

the roots of the equation u = Q just as before. The formulae of

Art. 13 may be used for this purpose on putting

a = l
2

;
& = 3

2

;
c = 5

2

; &c.; D = 8,

and writing x, X for c, &amp;lt;,
where X(i ^) TT. We obtain

J
2
= 8; J 4

= 3.82

.53; 0,
= !; 0,

= 2.8M1;

C
6
= 32

. 42
. 5 . 1139 ;

E
t

= 1
; E, = 8 . 31

;
E

s
= 44

. 3779 ;

* This expression for w, or rather an expression differing from it in nothing but

notation and arrangement, has been already obtained in a different manner by

Hir William E. Hamilton, in a memoir &quot; On Fluctuating Functions.&quot; See Tramac-

tions of the Royal Irish Academy, Vol. xix. p. 313.
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whence we get for calculating u for a given value of x

M=l-4,x*+Jk*-*,
tan + = i of - ,% x 3 + ^jyfc x&quot;,

For calculating the roots of the equation u = we have

x-X + lX-i-fa A- + tfjfr T-. : . ,

Reducing to decimals as before, we get

M=l- -0625 of
2 + -103516 af* ........................ (54),

tani/r
= 125 a?

1 - 064453 af
3 + 208557 sf

5
............... (55),

&amp;lt;c -050661 053041 -262051

As before, the series (56) is not sufficiently convergent when
i = l to give a very accurate result. In this case we get

7T-
1 x = 75 + -017 - -002 + -001 = 766,

whence # = 2 41. Mr Airy s table gives u = -f -0025 for x = 2 4,

and u = 0968 for x = 2 6, whence the value of the root is 2 P4050

nearly.

The value of the last term in (56) is 0000156 for z = 2, and

00000163 for i = 3, so that all the roots after the first may be

calculated very accurately from this series.

THIRD EXAMPLE.

23. Consider the integral

2 f* f2
v = -I i cos (x cos 6) xdx dO

7T./0 Jo

x* a;
4 2r* The series 1 - - + ... or -^ has been tabulated by Mr Airy from x =

to a: = 12 at intervals of 0-2. See Camb. Phil. Trans. Vol. v. p. 291. The same

function has also been calculated in a different manner and tabulated by M. Schwerd

s. IT. 23
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which occurs in investigating the diffraction of an object-glass

with a circular aperture.

By performing on the series the operation denoted by
as . d/dx . x~

l

, d/dx, we get the original series with the sign

changed, whence

d*v Idv /~

We may obtain the integral of this equation in a form similar

to (49). As the process is exactly the same as before, it will be

sufficient to write down the result, which is

-tfcosa?) (59),

where

_-1^3.1.5 -1.3.1.5.3.7.5.9
1 . 2~(8i)

a
&quot;

1.2.3.4 (8#)
4

-1.3
__
-1.3.1.5.3

._7

T78aT 1.2.3 /Q-N3
&quot;

i
&quot;

&quot;

the last two factors in the numerator of any term being formed by

adding 2 to the last two factors respectively in the numerator of

the term of the preceding order.

The arbitrary constants may be easily determined by means of

the equation

Writing down the leading terms only in this equation, we have

x* (- A sin x + B cos x) = 7r&quot;M (cos x + sin x) t

whence

(62).

24. Putting in the formulae of Art. 13,

a =-l .3; & = 1.5; c =3.7; d = 5 . 9; e = 7. 11; D = 8;

in his work on diffraction. The argument in the latter table is the angle 180/7r . x,

and the table extends from to 1125 at intervals of 15, that is, from x= to

x = 19-63 at intervals of 0-262 nearly.
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we get

J
2
= -3.8; ^

4
= -33

.8Ml; (^
= -3; C

3
= - 2 . 3

2
. 5

2

;

C^-S .tf.o .m; ^ = -3; #
3
= -32

.8; E6
= - 3

3
. 4. 8

2
. 131

;

whence we get for the formulae answering to those of Art. 22,

tan VT
= - af + #3^
= A -

3 Z- + T|s X-
3 + Iffi X-*,

X being in this case equal to (i 4- J) TT.

Reducing to decimals as before, we get for the calculation of v

for a given value of x,

M= 1 + 1875 x~* + -193359 af* .................... (63),

tan ^ = --3753T1

-f 146484 a;
3 - 348817 af

5
...... (64),

and for calculating the roots of the equation v = 0,

9 . -15:1982 -015399 245835-- + &amp;gt; ^ + 1

.

(60) ;

,(66).

25. The following table contains the first 12 roots of each of

the equations u = 0, and of
2
v = 0. The first root of the former

i
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was got by interpolation from Mr Airy s table, the others were

calculated from the series (56). The roots of the latter equation

were all calculated from the series (66), which is convergent

enough even in the case of the first root. The columns which

contain the roots are followed by columns which contain the

differences between consecutive roots, which are added for the

purpose of shewing how nearly equal these differences are to 1,

which is what they ultimately become when the order of the root

is indefinitely increased.

26. The preceding examples will be sufficient to illustrate

the general method. I will remark in conclusion that the pro

cess of integration applied to the equations (11), (47), and (58)

leads very readily to the complete integral in finite terms of the

equation

where % is an integer, which without loss of generality may be

supposed positive. The form under which the integral imme

diately comes out is

4-

where each series will evidently contain {+1 terms. It is well

known that (67) is a general integrable form which includes as a

particular case the equation which occurs in the theory of the

figure of the earth, for q in (67) is any quantity real or imaginary,

and therefore the equation formed from (67) by writing + fy for

(y may be supposed included in the form (67).

It may be remarked that the differential equations discussed

in this paper can all be reduced to particular cases of the equation

obtained by replacing i(i+ 1) in (67) by a general constant. By

taking gn , where g is any constant, for the independent variable
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in place of n in the differential equations which. U, V in the first

example satisfy, these equations are reduced to the form

CttX/ 00 QJL/

and (47), (58) are in this form already. Putting now y = af
a
z, we

shall reduce the last equation to the form required.



[The four following are from the Report of the British Association for 1850,

Part n. p. 19.]

ON THE MODE OF DISAPPEARANCE OF NEWTON S RINGS IN PASSING

THE ANGLE OF TOTAL INTERNAL REFLEXION.

WHEN Newton s rings are formed between the under surface of

a prism and the upper surface of a lens, there is no difficulty in

increasing the angle of incidence so as to pass through the angle of

total internal reflexion. When the rings are observed with the

naked eye in the ordinary way, they appear to break in the upper

part on approaching the angle of total internal reflexion, and pass

nearly into semicircles when that angle is reached, the upper edges
of the semicircles, which are in all cases indistinct, being slightly

turned outwards when the curvature of the lens is small.

The cause of the indistinctness will be evident from the follow

ing considerations. The order of the ring (a term here used to

denote a number not necessarily integral) to which a ray reflected

at a given obliquity from a given point of the thin plate of air

belongs, depends partly on the obliquity and partly on the thick

ness of the plate at that point. When the angle of incidence is

small, or even moderately large, the rings would not be seen, or at

most would be seen very indistinctly, if the glasses were held near

the eye, and the eye were adapted to distinct vision of distant

objects, because in that case the rays brought to a focus at a given

point of the retina would correspond to a pencil reflected at a

given obliquity from an area of the plate of air, the size of which

would correspond to the pupil of the eye ;
and the order of the

rays reflected from this area would vary so much in passing from

the point of contact outwards that the rings would be altogether
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confused. When, however, as in the usual mode of observation,

the eye is adapted to distinct vision of an object at the distance of

the plate of air, the rings are seen distinctly, because in this case

the rays proceeding from a given point of the plate of air, and

entering the pupil of the eye, are brought to a focus on the retina,

and the variation in the obliquity of the rays forming this pencil
is so small that it may be neglected.

When, however, the angle of incidence becomes nearly equal to

that of total internal reflexion, a small change of obliquity pro
duces a great change in the order of the ring to which the reflected

ray belongs, and therefore the rings are indistinct to an eye

adapted to distinct vision of the surfaces of the glass. They are

also indistinct, for the same reason as before, if the eye be adapted
to distinct vision of distant objects.

To see distinctly the rings in the neighbourhood of the angle

of total internal reflexion, the author used a piece of blackened

paper in which a small hole was pierced with the point of a

needle. When the rings were viewed through the needle-hole,

in the light of a spirit-lamp, the appearance was very remarkable.

The first dark band seen within the bright portion of the field of

view where the light suffered total internal reflexion was some

what bow-shaped towards the point of contact, the next still more

so, and so on, until at last one of the bands made a great bend and

passed under the point of contact and the rings which surrounded

it, the next band passing under it, and so on. As the incidence

was gradually increased, the outermost ring united with the bow-

shaped band next above it, forming for an instant a curve with a

loop and two infinite branches, or at least branches which ran out

of the field of view : then the loop broke, and the curve passed

into a bulging band similar to that which had previously sur

rounded the rings. In this manner the rings, one after another,

joined the corresponding bands till all had disappeared, and nothing

was left but a system of bands which had passed completely below

the point of contact, and the central black spot which remained

isolated in the bright field where the light suffered total internal

reflexion. Corresponding appearances were seen with daylight or

candlelight, but in these cases the bands were of course coloured,

and not near so many could be seen at a time.
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ON METALLIC REFLEXION.

THE effect which is produced on plane-polarized light by re

flexion at the surface of a metal, shews that if the incident light

be supposed to be decomposed into two streams, polarized in and

perpendicularly to the plane of reflexion respectively, the phases as

well as the intensities of the two streams are differently affected

by the reflexion. It remains a question whether the phase of

vibration of the stream polarized in the plane of reflexion is acce

lerated or retarded relatively to that of the stream polarized per

pendicularly to the plane of reflexion. This question was first

decided by the Astronomer Royal, by means of a phenomenon

relating to Newton s rings when formed between a speculum and

a glass plate. Mr Airy s paper is published in the Cambridge

Philosophical Transactions. M. Jamin has since been led to the

same result, apparently by a method similar in principle to that of

Mr Airy. In .repeating Mr Airy s experiment, the author expe
rienced considerable difficulty in observing the phenomenon. The

object of the present communication was to point out an extremely

easy mode of deciding the question experimentally. Light polar

ized at an azimuth of about 45 to the plane of reflexion at the

surface of the metal was transmitted, after reflexion, through a

plate of Iceland spar, cut perpendicular to the axis, and analysed

by a Nicol s prism. When the angle of incidence was the smallest

with which the observation was practicable, on turning the Nicol s

prism properly the dark cross was formed almost perfectly; but on

increasing the angle of incidence it passed into a pair of hyperbolic

brushes. This modification of the ring is very well known, having
been, described and figured by Sir D. Brewster in the Philosophical

Transactions for 1830. Now the question at issue may be imme

diately decided by observing in which pair of opposite quadrants
it is that the brushes are formed, an observation which does not

present the slightest difficulty. In this way the author was led

to Mr Airy s result, namely, that as the angle of incidence increases

from zero, the phase of vibration of light polarized in the plane of

incidence is accelerated relatively to that of light polarized in a

plane perpendicular to the plane of incidence.
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Ox A FICTITIOUS DISPLACEMENT OF FRINGES OF

INTERFERENCE.

THE author remarked that the mode of determining the refrac

tive index of a plate by means of the displacement of a system of

interference fringes, is subject to a theoretical error depending

upon the dispersive power of the plate. It is an extremely simple

consequence (as the author shewed) of the circumstance that the

bands are broader for the less refrangible colours, that the point of

symmetry, or nearest approach to symmetry, in the system of

displaced fringes, is situated in advance of the position calculated

in the ordinary way for rays of mean refrangibility. Since an

observer has no other guide than the symmetry of the bands in

fixing on the centre of the system, he would thus be led to attri

bute to the plate a refractive index which is slightly too great.

The author has illustrated this subject by the following experi

ment. A set of fringes, produced in the ordinary way by a flat

prism, were viewed through an eye-piece, and bisected by its cross

wires. On viewing the whole through a prism of moderate angle,

held in front of the eye-piece with its edge parallel to the fringes,

an indistinct prismatic image of the wires was seen, together with

a distinct set of fringes which lay quite at one side of the cross

wires, the dispersion produced by the prism having thus occasioned

an apparent displacement of the fringes in the direction of the

general deviation.

In conclusion, the author suggested that it might have been

the fictitious displacement due to the dispersion accompanying
eccentrical refraction, which caused some philosophers to assert

that the central band was black, whereas, according to theory,

it ought to be white. A fictitious displacement of half an

order, which might readily be produced by eccentrical refraction

through the lens or eye-piece with which the fringes were viewed,

would suffice to cause one of the two black bands of the first

order to be the band with respect to which the system was sym
metrical.
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ON HAIDINGER S BRUSHES.

IT is now several years since these brushes were discovered, and

they have since been observed by various philosophers, but the

author has not met with any observations made with a view of

investigating the action of different colours in producing them.

The author s attention was first called to the subject, by observing
that a green tourmaline, which polarized light very imperfectly,

enabled him to see the brushes very distinctly, while he was un

able to make them out with a brown tourmaline which trans

mitted a much smaller quantity of unpolarized light. He then

tried the effect of combining various coloured glasses with a Nicol s

prism. A red glass gave no trace of brushes. A brownish yellow

glass, which absorbed only a small quantity of light, rendered the

brushes very indistinct. A green glass enabled the author to see

the brushes rather more distinctly than they were seen in the

light of the clouds viewed without a coloured glass. A deep blue

glass gave brushes of remarkable intensity, notwithstanding the

large quantity of light absorbed. With the green and blue glasses,

the brushes were not coloured, but simply darker than the rest of

the field.

To examine still further the office of the different colours in

producing the brushes seen with ordinary daylight, the author

used a telescope and prism mounted for shewing the fixed lines of

the spectrum. The sun s light having been introduced into a

darkened room through a narrow slit, it was easy, by throwing the

eye-piece a little out of focus, to form a pure spectrum on a screen

of white paper, placed a foot or two in front of the eye-piece. On

examining this spectrum with a Nicol s prism, which was suddenly
turned round from time to time through about a right angle, the

author found that the red and yellow did not present the least

trace of brushes. The brushes began to be visible in the green,

about the fixed line E of Fraunhofer. They became more distinct

on passing into the blue, and were particularly strong about the

line F. The author was able to trace them about as far as the

line G
;
and when they were no longer visible, the cause appeared

to be merely the feebleness of the light, not the incapacity of the

greater part of the violet to produce them. With homogeneous
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light, the brushes, when they were formed at all, were simply
darker than the rest of the field, and, as might have been ex

pected, did not appear of a different tint. In the blue, where the

brushes were most distinct, it appeared to the author that they
were somewhat shorter than usual. The contrast between the

more and less refrangible portions of the spectrum, in regard to

their capability of producing brushes, was most striking. The
most brilliant part of the spectrum gave no brushes

;
and the in

tensity of the orange and more refrangible portion of the red,

where not the slightest trace of brushes was discoverable, was

much greater than that of the more refrangible portion of the blue,

where the brushes were formed with great distinctness, although
cceteris paribus a considerable degree of intensity is favourable to

the exhibition of the brushes.

These observations account at once for the colour of the brushes

seen with ordinary daylight. Inasmuch as no brushes are seen

with the less refrangible colours, and the brushes seen with the

more refrangible colours consist in the removal of a certain

quantity of light, the tint of the brushes ought to be made up of

red, yellow, and perhaps a little green, the yellow predominating,
on account of its greater brightness in the solar spectrum. The

mixture would give an impure yellow, which is the colour ob

served. The blueness of the side patches may be merely the effect

of contrast, or the cause may be more deeply seated. If the total

illumination perceived be independent of the brushes, the light

withdrawn from the brushes must be found at their sides, which

would account, independently of contrast, both for the comparative

brightness and for the blue tint of the side patches.

The observations with homogeneous light account likewise for

a circumstance with which the author had been struck, namely,
that the brushes were not visible by candle-light, which is ex

plained by the comparative poverty of candle-light in the more

refrangible rays. The brushes ought to be rendered visible by

absorbing a certain quantity of the less refrangible rays, and ac

cordingly the author found that a blue glass, combined with a

Nicol s prism, enabled him to see the brushes very distinctly when

looking at the flame of a candle. The specimen of blue glass
which shewed them best, which was of a tolerably deep colour,

gave brushes which were decidedly red, and were only compara
tively dark, so that the difference of tint between the brushes and
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side patches was far more conspicuous than the difference of in

tensity. This is accounted for by the large quantity of extreme

red rays which such a glass transmits. That the same glass gave
red brushes with candle-light, and dark brushes with daylight, is

accounted for by the circumstance, that the ratio which the in

tensity of the transmitted red rays bears to the intensity of the

transmitted blue rays is far larger with candle-light than with

daylight.
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overhauled by the Rev. R. Sinker, of Trinity ries. The Indices have also been revised and
College. The whole text and notes have been enlarged Altogether this appears to be the
most carefully examined and corrected, and most complete and convenient edition as yet
special pains have been taken to verify the al- published of a work which has long been re-

most innumerable references. These have been cognised in all quarters as a standard one.&quot;

more clearly and accurately given in very many Guardian.

London : Cambridge University Press Warehouse, 17 Paternoster Row.
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AN ANALYSIS OF THE EXPOSITION OF THE
CREED written by the Right Rev. JOHN PEARSON, D.D. late Lord
Bishop of Chester, by W. H. MILL, D.D. late Regius Professor of
Hebrew in the University of Cambridge. Demy 8vo. 5^.

VVHEATLY ON THE COMMON PRAYER, edited by
G. E. CORRIE, D.D. Master of Jesus College, Examining Chaplain
to the late Lord Bishop of Ely. Demy Svo. js. 6d.

CAESAR MORGAN S INVESTIGATION OF THE
TRINITY OF PLATO, and of Philo Judaeus, and of the effefts

which an attachment to their writings had upon the principles and
reasonings of the Fathers of the Christian Church. Revised by H. A.

HOLDEN, LL.D., formerly Fellow of Trinity College, Cambridge.
Crown Svo. 4?.

TWO FORMS OF PRAYER OF THE TIME OF QUEEN
ELIZABETH. Now First Reprinted. Demy Svo. 6d.

&quot;From Collections and Notes 18671876, ker Society s volume of Occasional Forms of
by \V. Carew Hazlitt (p. 340), we learn that Prayer, but it had been lost sight of for 200
A very remarkable volume, in the original years. By the kindness of the present pos-

vellum cover, and containing 25 Forms of sessor of this valuable volume, containing in all

Prayer of the reign of Elizabeth, each with the 25 distinct publications, I am enabled to re-

autograph of Humphrey Dyson, has lately fallen print in the following pages the two Forms
into the hands of my friend Mr H. Pyne. It is of Prayer supposed to have been lost.&quot; Ex~
mentioned specially in the Preface to the Par tractfront the PREFACE.

SELECT DISCOURSES, by JOHN SMITH, late Fellow of

Queens College, Cambridge. Edited by H. G. WILLIAMS, B.D. late

Professor of Arabic. Royal Svo. js. 6d.

&quot;The Select Discourses of John Smith, with the richest lights of meditative genius...
collected and published from his papers after He was one of those rare thinkers in whom
his death, are, in my opinion, much the most largeness of view, and depth, and wealth of
considerable work left to us by this Cambridge poetic and speculative insight, only served to

School [the Cambridge Platonists]. They have evoke more fully the religious spirit, and while
a right to a place in English literary history.&quot; he drew the mould of his thought from Plotinus,
Mr MATTHEW ARNOLD, in the Contenipo- he vivified the substance of it from St Paul.&quot;

retry Review. Principal TULLOCH, Rational Theology in
&quot;Of all the products of the Cambridge England in tJie \-jth Century.

School, the Select Discourses are perhaps &quot;We may instance Mr Henry Griffin Wil-
the highest, as they are the most accessible liams s revised edition of Mr John Smith s

and the most widely appreciated. ..and indeed Select Discourses, which have won Mr
no spiritually thoughtful mind can read them Matthew Arnold s admiration, as an example
unmoved. They carry us so directly into an of worthy work for an University Press to

atmosphere of divine philosophy, luminous undertake.&quot; Times.

THE HOMILIES, with Various Readings, and the Quo
tations from the Fathers given at length in the Original Languages.
Edited by G. E. CORRIE, D.D., Master of Jesus College. Demy
Svo. 73. 6d.

DE OBLIGATIONS CONSCIENTLE PR^ELECTIONES
decem Oxonii in Schola Theologica habitas a ROBERTO SANDERSON,
SS. Theologias ibidem Professore Regio. With English Notes, in

cluding an abridged Translation, by W. WHEWELL, D.D. late

Master of Trinity College. Demy Svo. 7.$-.
6d.

ARCHBISHOP USHER S ANSWER TO A JESUIT,
with other Trafts on Popery. Edited by J. SCHOLEFIELD, M.A. late

Regius Professor of Greek in the University. Demy Svo. 7^. 6d.

London: Cambridge University Press Warehouse, 17 Paternoster Row.
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WILSON S ILLUSTRATION OF THE METHOD OF
explaining the New Testament, by the early opinions of Jews and
Christians concerning Christ. Edited by T. TuRTON, D.D. late

Lord Bishop of Ely. Demy 8vo. 5^.

LECTURES ON DIVINITY delivered in the University
of Cambridge, by JOHN HEY, D.D. Third Edition, revised by T.

TURTON, D.D. late Lord Bishop of Ely. 2 vols. Demy 8vo. 15^.

ARABIC, SANSKRIT AND SYRIAC.
POEMS OF BEHA ED DIN ZOHEIR OF EGYPT.

With a Metrical Translation, Notes and Introduction, by E. H.

PALMER, M.A., Barrister-at-Law of the Middle Temple, late Lord
Almoner s Professor of Arabic, formerly Fellow of St John s College,

Cambridge. 3 vols. Crown 4to.

Vol. I. The ARABIC TEXT. los. 6d.
;
Cloth extra. 15^.

Vol. II. ENGLISH TRANSLATION. ios.6d.\ Cloth extra. 15.?.

&quot;We have no hesitation in saying that in remarked, by not unskilful imitations of the
both Prof. Palmer has made an addition to Ori- styles of several of our own favourite poets,
ental literature for which scholars should be living and dead.&quot; Saturday Review.
grateful ; and that, while his knowledge of &quot; This sumptuous edition of the poems of
Arabic is a sufficient guarantee for his mastery Beha-ed-din Zoheir is a very welcome addition
of the original, his English compositions are to the small series of Eastern poets accessible

distinguished by versatility, command of Ian- to readers who are not Orientalists.&quot; Aca-
guage, rhythmical cadence, and, as we have demy.

KALILAH AND DIMNAH, OR, THE FABLES OF
PILPAI ; being an account of their literary history, together with
an English Translation of the same, with Notes, by I. G. N. KEITH-
FALCONER, M.A., Trinity College, formerly Tyrwhitt s Hebrew
Scholar. Demy 8vo. \In the Press.

THE CHRONICLE OF JOSHUA THE STYLITE, com
posed in Syriac A.D. 507 with an English translation and notes, by
W. WRIGHT, LL.D., Professor of Arabic. Demy 8vo. los. 6d.

&quot; Die lehrreiche kleine Chronik Josuas hat ein Lehrmittel fur den syrischen Unterricht ; es

nach Assemani und Martin in Wright einen erscheint auch gerade zur rechten Zeit, da die

dritten Bearbeiter gefunden, der sich um die zweite Ausgabe von Roedigers syrischer Chres-
Emendation des Textes wie um die Erklarung tomathie im Buchhandel vollstandig vergriffen
der Realien wesentlich verdient gemacht hat und diejenige von Kirsch-Bernstein nur noch
. . . Ws. Josua-Ausgabe ist eine sehr dankens- in wenigen Exemplaren vorhanden ist.&quot;

werte Gabe und besonders empfehlenswert als Deutsche Litteratitrzeitung.

NALOPAKHYANAM, OR, THE TALE OF NALA
;

containing the Sanskrit Text in Roman Characters, followed by a

Vocabulary in which each word is placed under its root, with refer

ences to derived words in Cognate Languages, and a sketch of

Sanskrit Grammar. By the late Rev. THOMAS JARRETT, M.A.

Trinity College, Regius Professor of Hebrew. Demy 8vo. los.

NOTES ON THE TALE OF NALA, for the use of
Classical Students, by J. PEILE, M.A. Fellow and Tutor of Christ s

College. Demy 8vo. i2s.

CATALOGUE OF THE BUDDHIST SANSKRIT
MANUSCRIPTS in the University Library, Cambridge. Edited

by C. BENDALL, M.A., Fellow of Gonville and Caius College. Demy
8VO. I2S.

&quot;It is unnecessary to state how the com- those concerned in it on the result . . . Mr Ben-
pilation of the present catalogue came to be dall has entitled himself to the thanks of all

placed in Mr Bendall s hands; from the cha- Oriental scholars, and we hope he may have
racter of his work it is evident the selection before him a long course of successful labour in

was judicious, and we may fairly congratulate the field he has chosen.&quot; Athenaum,

London: Cambridge University Press Warehouse, 17 Paternoster Row.
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GREEK AND LATIN CLASSICS, &c. (See also pp. 24-27.)

SOPHOCLES : The Plays and Fragments, with Critical

Notes, Commentary, and Translation in English Prose, by R. C.

JEBB, M.A., LL.D., Professor of Greek in the University of Glasgow.
Parti. Oedipus Tyrannus. Demy 8vo. 15^.

&quot;In undertaking, therefore, to interpret for the first class . . . The present edition of

Sophocles to the classical scholar and to the Sophocles is to consist of eight volumes one
British public, Professor Jebb expounds the being allowed to each play and the eighth,
most consummate poetical artist of what com- containing the fragments and a series of short
mon consent allows to be the highest stage in essays on subjects of general interest relating
Greek culture ... As already hinted, Mr Jebb to Sophocles. If the remaining volumes main-
in his work aims at two classes of readers. tain the high level of the present one, it will,

He keeps in view the Greek student and the when completed, be truly an edition de luxe&quot;

English scholar who knows little or no Greek. Glasgmv Herald.
His critical notes and commentary are meant

AESCHYLI PABULAR IKETIAES XOH&amp;lt;OPOJ IN
LIBRO MEDICEO MENDOSE SCRIPTAE EX VV. DD.
CONIECTURIS EMENDATIUS EDITAE cum Scholiis Graecis
et brevi adnotatione critica, curante F. A. PALEY, M.A., LL.D.

Demy 8vo. js. 6d.

THE AGAMEMNON OF AESCHYLUS, With a Trans
lation in English Rhythm, and Notes Critical and Explanatory.
New Edition Revised. By BENJAMIN HALL KENNEDY, D.D.,
Regius Professor of Greek. Crown Svo. 6^.

&quot;One of the best editions of the masterpiece value of this volume alike to the poetical
of Greek tragedy.&quot; Atltenteum. translator, the critical scholar, and the ethical

&quot;It is needless to multiply proofs of the student.&quot; Saturday Review.

THE THE^ETETUS OF PLATO with a Translation and
Notes by the same Editor. Crown Svo. js. 6d.

THE CEDIPUS TYRANNUS OF SOPHOCLES with a
Translation and Notes by the same Editor. Crown Svo. 6s.

&quot;Dr Kennedy s edition of the (Edipits no more valuable contribution to the study
Tyrannus is a worthy companion to his of Sophocles has appeared of late years.&quot;

Agamemnon, and we may say at once that Saturday Review.

PLATO S PH^DO, literally translated, by the late E. M.
COPE, Fellow of Trinity College. Cambridge. Demy Svo. 5^.

ARISTOTLE. IIEPI AIKAIO2TNH2. THE FIFTH
BOOK OF THE NICOMACHEAN ETHICS OF ARISTOTLE.
Edited by HENRY JACKSON, M.A., Fellow of Trinity College, Cam
bridge. Demy Svo. 6s.

&quot;It is not too much to say that some of the will hope that this is not the only portion of

points he discusses have never had so much the Aristotelian writings which he is likely to

light thrown upon them before. . . . Scholars edit.&quot; AtJieneeum.

ARISTOTLE. IIEPI ^TXHS. ARISTOTLE S PSY
CHOLOGY, in Greek and English, with Introduction and Notes,

by EDWIN WALLACE, M.A., Fellow and Tutor of Worcester College,
Oxford. Demy Svo. iSs.

&quot; In an elaborate introduction Mr Wallace and to those who read it as students of philo-
collects and correlates all the passages from the soph} .&quot; Scotsman.
various works of Aristotle bearing on these &quot;The notes are exactly what such notes

points, and this he does with a width of learn- ought to be, helps to the student, not mere

ing that marks him out as one of our foremost displays of learning. By far the more valuable

Aristotlic scholars, and with a critical acumen parts of the notes are neither critical nor lite-

that is far from common.&quot; Glasgmu Herald. rary, but philosophical and expository of the

&quot;As a clear exposition of the opinions of thought, and of the connection of thought, in

Aristotle on psychology, Mr Wallace s work is the treatise itself. In this relation the notes are

of distinct value the introduction is excellently invaluable. Of the translation, it may be said

wrought out, the translation is good, the notes that an English reader may fairly master by
are thoughtful, scholarly, and full. We there- means of it this great treatise of Aristotle.&quot;

fore can welcome a volume like this, which is Spectator.
useful both to those who study it as scholars,

London: Cambridge University Pt ess Warehouse, 17 Paternoster Row.
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A SELECTION OF GREEK INSCRIPTIONS, with
Introductions and Annotations by E. S. ROBERTS, M.A. Fellow
and Tutor of Gonville and Caius College. \In the Press.

PINDAR. OLYMPIAN AND PYTHIAN ODES. With
Notes Explanatory and Critical, Introductions and Introductory
Essays. Edited by C. A. M. FENNELL, M.A., late Fellow of Jesus
College. Crown 8vo. gs.

&quot;Mr Fennell deserves the thanks of all clas- of the vitality and development of Cambridge
sical students for his careful and scholarly edi- scholarship, and we are glad to see that it is to

tion of the Olympian and Pythian odes. He be continued.&quot; Saturday Review.
brings to his task the necessary enthusiasm for &quot;Mr C. A. M. Fennell s Pindar displays
his author, great industry, a sound judgment, that union of laborious research and unassum-
and, in particular, copious and minute learning ing directness of style which characterizes the
in comparative philology. To his qualifica- best modern scholarship . . . The notes, which
tions in this last respect every page bears wit- are in English, and at the foot of each page, are
ness.&quot; Athenceum. clear and to the point. There is an introduc-

&quot;

Considered simply as a contribution to the tion to each Ode. There are Greek and Eng-
study and criticism of Pindar, Mr Fennell s lish Indices, and an Index of Quotations.&quot;

edition is a work of great merit. . . Altogether, Westminster Review.
this edition is a welcome and wholesome sign

THE ISTHMIAN AND NEMEAN ODES. By the same
Editor. Crown 8vo. gs.

&quot;Encouraged by the warm praise with Fennell s Pindar.
&quot; Athen&um.

which Mr Fennell s edition of the Olympian
&quot; Mr Fennell, whose excellent edition of

and Pythian odes was everywhere received, the Olympian and Pythian Odes of Pindar
the Pitt Press Syndicate very properly invited appeared some four years ago, has now pub-
him to continue his work and edit the re- lished the Nemean and Isthmian Odes, toge-
mainder of Pindar . . . His notes are full of therwith a selection from the extant fragments
original ideas carefully worked out, and if he of Pindar. This work is in no way inferior to
often adopts the opinion of other editors, he the previous volume. The commentary affords
does not do so without making it sufficiently valuable help to the study of the most difficult

plain that he has discussed the question for of Greek authors, and is enriched with notes
himself and decided it upon the evidence. As on points of scholarship and etymology which
a handy and instructive edition of a difficult could only have been written by a scholar of
classic no work of recent years surpasses Mr very high attainments.&quot; Saturday Review.

ARISTOTLE. THE RHETORIC. With a Commentary
by the late E. M. COPE. Fellow of Trinity College, Cambridge, re

vised and edited by J. E SANDYS, M.A., Fellow and Tutor of St John s

College, Cambridge, and Public Orator. With a biographical Memoir
by H. A. J. MUNRO, M.A. Three Volumes, Demy 8vo. i. i u. 6d.

&quot;This work is in many ways creditable to the &quot;Mr Sandys has performed his arduous
University of Cambridge. Ifan English student duties with marked ability and admirable tact,

wishes to have a full conception of what is con- ... In every part of his work revising, sup-
tained in the/?hetoric of Aristotle, to Mr Cope s plementing, and completing he has done ex-
edition he must

go.&quot; Academy. ceedingly well.&quot; Examiner.

PRIVATE ORATIONS OF DEMOSTHENES, with In
troductions and English Notes, by F. A. PALEY, M.A. Editor of

Aeschylus, etc. and J. E. SANDYS, M.A. Fellow and Tutor of St John s

College, and Public Orator in the University of Cambridge.
PART I. Contra Phormionem, Lacritum, Pantaenetum, Boeotum

de Nomine, Boeotum de Dote, Dionysodorum. Crown 8vo. 6^.

PART II. Pro Phormione, Contra Stephanum I. II.; Nicostra-

tum, Cononem, Calliclem. Crown 8vo. js. 6d.

DEMOSTHENES AGAINST ANDROTION AND
AGAINST TIMOCRATES, with Introductions and English Com
mentary, by WILLIAM WAYTE, M.A., late Professor of Greek, Uni
versity College, London, Formerly Fellow of King s College, Cam
bridge, and Assistant Master at Eton. Crown 8vo. 7^. 6d.

&quot;The present edition may therefore be used each paragraph of the text there is a summary
by students more advanced than school-boys, of its subject-matter . . . The notes are uni-
and to their purposes it is admirably suited. formly good, whether they deal with questions
There is an excellent introduction to and ana- of scholarship or with points of Athenian law.&quot;

lysis of each speech, and at the beginning of Saturday Review.

London : Cambridge University Press Warehouse, 17 Paternoster Row.
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THE TYPES OF GREEK COINS. By PERCY GARDNER,
M.A., F.S.A., Disney Professor of Archaeology. With 16 Autotype
plates, containing photographs of Coins of all parts of the Greek World.

Impl. 4to. Cloth extra, i. i is. 6d.; Roxburgh (Morocco back), 2. 2s.

&quot;Professor Gardner s book is written with which he supplies) or casts of the original
such lucidity and in a manner so straightfor- medals.&quot; Saturday Review.
ward that it may well win converts, and it may The Types of Greek Coins is a work which
be distinctly recommended to that omnivorous is less purely and dryly scientific. Neverthe-
class of readers men in the schools. The his- less, it takes high rank as proceeding upon a

tory of ancient coins is so interwoven with and truly scientific basis at the same time that it

so vividly illustrates the history of ancient States, treats the subject of numismatics in an attrac-

that students of Thucydides and Herodotus can- tive style and is elegant enough to justify its

not afford to neglect Professor Gardner s intro- appearance in the drawing-room .... Six-

duction to Hellenic numismatics . . . The later teen autotype plates reproduce with marvellous

part of Mr Gardner s useful and interesting reality more than six hundred types of picked
volume is devoted to the artistic and archaeo- specimens of coins in every style, from the

logical aspect of coins, and can scarcely be cabinets of the British Museum and other col-

studied apart from photographs (like those ections. AtJtetueum.

THE BACCHAE OF EURIPIDES. With Introduction,
Critical Notes, and Archaeological Illustrations, by J. E. SANDYS,
M.A., Fellow and Tutor of St John s College, Cambridge, and Public
Orator. Crown 8vo. los. 6d.

&quot;Of the present edition of the BaccJue by Mr able advance in freedom and lightness of style.
Sandys we may safely say that never before has . . . Under such circumstances it is superfluous
a Greek play, in England at least, had fuller to say that for the purposes of teachers and ad-
justice done to its criticism, interpretation, vanced students this handsome edition far sur-
and archaeological illustration, whether for the passes all its predecessors.&quot; Atlietueum.

young student or the more advanced scholar.
&quot;

It has not, like so many such books, been
The Cambridge Public Orator may be said to hastily produced to meet the momentary need
have taken the lead in issuing a complete edi- of some particular examination ; but it has em-
tion of a Greek play, which is destined perhaps ployed for some years the labour and thought
to gain redoubled favour now that the study of of a highly finished scholar, whose aim seems
ancient monuments has been applied to its il- to have been that his book should go forth totus
lustration.&quot; Saturday Review. teres atque rotundus, armed at all points with

&quot; The volume is interspersed with well- all that may throw light upon its subject. The
executed woodcuts, and its general attractive- result is a work which will not only assist the
ness of form reflects great credit on the Uni- schoolboy or undergraduate in his tasks, but
versity Press. In the notes Mr Sandys has more will adorn the library of the scholar.&quot; The
than sustained his well-earned reputation as a Guardian.
careful and learned editor, and shows consider-

ESSAYS ON THE ART OF PHEIDIAS. By C. WALD-
STEIN, M.A., Phil. D., Reader in Classical Archaeology in the Uni
versity of Cambridge. Royal 8vo. With Illustrations.

\_In the Press.

M. TULLI CICERONIS DE FINIBUS BONORUM
ET MALORUM LIBRI OUINQUE. The text revised and ex

plained ;
With a Translation by JAMES S. REID, M.L., Fellow and

Assistant Tutor of Gonville and Caius College. In three Volumes.

[In the Press.
VOL. III. Containing the Translation. Demy Svo. 8j-.

M. T. CICERONIS DE OFFICIIS LIBRI TRES,
with Marginal Analysis, an English Commentary, and copious
Indices, by H. A. HOLDEX, LL.D., late Fellow of Trinity College,
Cambridge. Fourth Edition. Revised and considerably enlarged.
Crown Svo. 9^.

&quot;Dr Holden has issued an edition of what assumed after two most thorough revisions,
is perhaps the easiest and most popular of leaves little or nothing to be desired in the full-

Cicero s philosophical works, the de Officiis, ness and accuracy of its treatment alike of the

which, especially in the form which it has now matter and the language.&quot; Academy.

M. TVLLI CICERONIS PRO C RABIRIO [PERDVEL-
LIONIS REO] ORATIO AD OVIRITES With Notes Introduc
tion and Appendices by W E HEITLAND MA, Fellow and Lecturer
of St John s College, Cambridge. Demy Svo. Js. 6d.

London : Cambridge University Press Warehouse, 17 Paternoster Row.
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At. TULLII CICERONIS DE NATURA DEORUM
Libri Tres, with Introduction and Commentary by JOSEPH B.

MAYOR, M.A., late Professor of Moral Philosophy at King s Col

lege, London, together with a new collation of several of the English
MSS. by J. H. SWAINSON, M.A., formerly Fellow of Trinity College,

Cambridge. Vol. I. Demy 8vo. los. 6d. Vol. II. i2s. 6d.
&quot; Such editions as that ofwhich Prof. Mayor way admirably suited to meet the needs of the

has given us the first instalment will doubtless student . . . The notes of the editor are all that

do much to remedy this undeserved neglect. It could be expected from his well-known learn -

is one on which great pains and much learning ing and scholarship.&quot; Academy.
have evidently been expended, and is in every

P. VERGILI MARONIS OPERA cum Prolegomenis
et Commentario Critico pro Syndicis Preli Academici edidit BEN
JAMIN HALL KENNEDY, S.T.P., Graecae Linguae Professor Regius.
Extra Fcap. 8vo. $s.

MATHEMATICS, PHYSICAL SCIENCE, &c.

MATHEMATICAL AND PHYSICAL PAPERS. By
Sir W. THOMSON, LL.D., D.C.L., F.R.S., Professor of Natural Phi

losophy in the University of Glasgow. Collected from different

Scientific Periodicals from May 1841, to the present time. Vol. I.

Demy 8vo. i&r. [Vol.11. In the Press.
Wherever exact science has found a fol- borne rich and abundant fruit. Twenty years

lower Sir William Thomson s name is known as after its date the International Conference of
a leader and a master. For a space of 40 years Electricians at Paris, assisted by the author
each of his successive contributions to know- himself, elaborated and promulgated a series of

ledge in the domain of experimental and mathe- rules and units which are but the detailed out-

matical physics has been recognized as marking come of the principles laid down in these
a stage in the progress of the subject. But, un- papers.&quot; The Times.

happily for the mere learner, he is no writer of &quot;We are convinced that nothing has had a
text-books. His eager fertility overflows into greater effect on the progress of the theories of
the nearest available journal . . . The papers in electricity and magnetism during the last ten
this volume deal largely with the subject of the years than the publication of Sir W. Thomson s

dynamics of heat. They begin with two or reprint of papers on electrostatics and magnet-
three articles which were in part written at the ism, and we believe that the present volume is

age of 17, before the author had commenced destined in no less degree to further the ad-
residence as an undergraduate in Cambridge vancement of physical science. We owe the
. . . No student of mechanical engineering, modern dynamical theory of heat almost wholly
who aims at the higher levels of his profession, to Joule and Thomson, and Clausius and Ran-
can afford to be ignorant of the principles and kine, and we have here collected together the
methods set forth in these great memoirs . . . whole of Thomson s investigations on this sub-
The article on the absolute measurement of ject, together with the papers published jointly
electric and galvanic quantities (1851) has by himself and Joule.&quot; Glasgow Herald.

MATHEMATICAL AND PHYSICAL PAPERS, by
GEORGE GABRIEL STOKES, M.A., D.C.L., LL.D., F.R.S., Fellow of

Pembroke College, and Lucasian Professor of Mathematics in the

University of Cambridge. Reprinted from the Original Journals and
Transactions, with Additional Notes by the Author. Vol. I. Demy
8vo. 15^. VOL. II. i5j.

&quot; The volume of Professor Stokes s papers necessary, dissertations. There nothing is

contains much more than his hydrodynamical slurred over, nothing extenuated. We learn

papers. The undulatory theory of light is exactly the weaknesses of the theory, and
treated, and the difficulties connected with its the direction in which the completer theory of

application to certain phenomena, such as aber- the future must be sought for. The same spirit

ration, are carefully examined and resolved. pervades the papers on pure mathematics which
Such difficulties are commonly passed over with are included in the volume. They have a severe
scant notice in the text-books . . . Those to accuracy of style which well befits the subtle
whom difficulties like these are real stumbling- nature of the subjects, and inspires the corn-
blocks will still turn for enlightenment to Pro- pletest confidence in their author.&quot; The Times.
fessor Stokes s old, but still fresh and still

VOLUME III. In the Press.

THE SCIENTIFIC PAPERS OF THE LATE PROF.
J. CLERK MAXWELL. Edited by W. D. NIVEN, M.A. In 2 vols.

Royal 4to. \In the Press.

London: Cambridge University Press Warehouse, 17 Paternoster Row.
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A TREATISE ON NATURAL PHILOSOPHY. By
Sir W. THOMSON, LL.D., D.C.L., F.R.S., Professor of Natural

Philosophy in the University of Glasgow, and P. G. TAIT, M.A.,
Professor of Natural Philosophy in the University of Edinburgh.
Part I. Demy 8vo. i6.r.

&quot; In this, the second edition, we notice a form within the time at our disposal would be
large amount of new matter, the importance of utterly inadequate.&quot; Nature.
which is such that any opinion which we could

Part II. Demy 8vo. i8j.

ELEMENTS OF NATURAL PHILOSOPHY. By Pro
fessors Sir W. THOMSON and P. G. TAIT. Part I. Demy 8vo.
Second Edition, gs.

A TREATISE ON THE THEORY OF DETERMI
NANTS AND THEIR APPLICATIONS IN ANALYSIS AND
GEOMETRY, by ROBERT FORSYTH SCOTT, M.A., of St John s

College, Cambridge. Demy 8vo. 12s.
&quot; This able and comprehensive treatise will searches on this subject which have hitherto

be welcomed by the student as bringing within been for the most part inaccessible to him.&quot;

his reach the results of many important re- AtJienceum.

HYDRODYNAMICS, a Treatise on the Mathematical
Theory of the Motion of Fluids, by HORACE LAMB, M.A., formerly
Fellow of Trinity College, Cambridge ;

Professor of Mathematics in

the University of Adelaide. Demy 8vo. I2&amp;gt;y.

THE ANALYTICAL THEORY OF HEAT, by JOSEPH
FOURIER. Translated, with Notes, by A. FREEMAN, M.A., Fellow
of St John s College, Cambridge. Demy 8vo. i6s.

&quot;

It is time that Fourier s masterpiece, The process employed by the author.&quot; Contempo-
Analytical TJteory of Heat, translated by Mr rary Revievu, October, 1878.
Alex. Freeman, should be introduced to those &quot;There cannot be two opinions as to the

English students of Mathematics who do not value and importance of the Tfieorie de la Cha-
follow with freedom a treatise in any language leur ... It is still t)ie text-book of Heat Con-
but their own. It is a model of mathematical duction, and there seems little present prospect
reasoning applied to physical phenomena, and of its being superseded, though it is already
is remarkable for the ingenuity of the analytical more thaiu half a century old.&quot; Nature.

THE ELECTRICAL RESEARCHES OF THE Honour
able HENRY CAVENDISH, F.R.S. Written between 1771 and 1781.
Edited from the original manuscripts in the possession of the Duke
of Devonshire, K. G., by the late J. CLERK MAXWELL, F.R.S.

Demy 8vo. i&r.

&quot;Every department of editorial duty ap- faction to Prof. Maxwell to see this goodly
pears to have been most conscientiously per- volume completed before his life s work was
formed ; and it must have been no small satis- done.&quot; Athenaum.

AN ELEMENTARY TREATISE ON QUATERNIONS.
By P. G. TAIT, M.A., Professor of Natural Philosophy in the Uni

versity of Edinburgh. Second Edition. Demy Svo. 14^.

THE MATHEMATICAL WORKS OF ISAAC BAR
ROW, D.D. Edited by W. WHEWELL, D.D. Demy Svo. js. 6d.

AN ATTEMPT TO TEST THE THEORIES OF
CAPILLARY ACTION by FRANCIS BASHFORTH, B.D., late Pro
fessor of Applied Mathematics to the Advanced Class of Royal
Artillery Officers, Woolwich, and J. C. ADAMS, M.A., F.R.S.

Demy 4to. i. is.

NOTES ON QUALITATIVE ANALYSIS. Concise and
Explanatory. By H. J. H. FENTON, M.A., F.I.C., F.C.S., Demon
strator of Chemistry in the University of Cambridge. Late Scholar
of Christ s College. Crown 410. js. 6d.

London : Cambridge University Press Warehousep

, 17 Paternoster Row.
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A TREATISE ON THE GENERAL PRINCIPLES OF
CHEMISTRY, by M. M. PATTISON Mum, M.A., Fellow and Pre
lector in Chemistry of Gonville and Caius College. Demy 8vo.

[In the Press.

A TREATISE ON THE PHYSIOLOGY OF PLANTS,
by S. H. VINES, M.A., Fellow of Christ s College. [In the Press.

THE FOSSILS AND PAL^EONTOLOGICAL AFFIN
ITIES OF THE NEOCOMIAN DEPOSITS OF UPWARE
AND BRICKHILL with Plates, being the Sedgwick Prize Essay
for the Year 1879. By WALTER KEEPING, M.A., F.G.S. Demy 8vo.

icxr. 6d.

COUNTERPOINT. A Practical Course of Study, by Pro
fessor Sir G. A. MACFARREN, M.A., Mus. Doc. Fourth Edition,
revised. Demy 4to. js. 6d.

ASTRONOMICAL OBSERVATIONS made at the Obser
vatory of Cambridge by the Rev. JAMES CHALLIS, M.A., F.R.S.,

F.R.A.S., late Plumian Professor of Astronomy and Experimental
Philosophy in the University of Cambridge. For various Years, from
1 846 to 1 860.

ASTRONOMICAL OBSERVATIONS from 1861 to 1865.
Vol. XXI. Royal 410. 15.?. From 1866 to 1869. Vol. XXII.

Royal 4to. [Nearly ready.

A CATALOGUE OF THE COLLECTION OF BIRDS
formed by the late H. E. STRICKLAND, now in the possession of the

University of Cambridge. By OSBERT SALVIN, M.A., F.R.S., &c.

Strickland Curator in the University of Cambridge. Demy 8vo. i. I s.

&quot;The discriminating notes which Mr Salvin &quot;The author has formed a definite and, as

has here and there introduced make the book it seems to us, a righteous idea of what the

indispensable to every worker on what the catalogue of a collection should be, and, allow-

Americans -call &quot;the higher plane&quot; of the ing for some occasional slips, has effectively

science of birds.&quot; Academy. carried it out.&quot; Notes and Queries.

A CATALOGUE OF AUSTRALIAN FOSSILS (in

cluding Tasmania and the Island of Timor), Stratigraphically and

Zoologically arranged, by R. ETHERIDGE, Jun., F.G.S.
, Acting Palae

ontologist, H.M. Geol. Survey of Scotland. Demy 8vo. los. 6d.

&quot;The work is arranged with great clearness, consulted by the author, and an index to the

and contains a full list of the books and papers genera.&quot; Saturday Review.

ILLUSTRATIONS OF COMPARATIVE ANATOMY,
VERTEBRATE AND INVERTEBRATE, for the Use of Stu

dents in the Museum of Zoology and Comparative Anatomy. Second
Edition. Demy 8vo. 2s. 6d.

A SYNOPSIS OF THE CLASSIFICATION OF THE
BRITISH PALAEOZOIC ROCKS, by the Rev. ADAM SEDGWICK,
M.A., F.R.S., and FREDERICK M c

CoY, F.G.S. One vol., Royal 410.

Plates, l. is.

A CATALOGUE OF THE COLLECTION OF CAM
BRIAN AND SILURIAN FOSSILS contained in the Geological
Museum of the University of Cambridge, by J. W. SALTER, F.G.S.

With a Portrait of PROFESSOR SEDGWICK. Royal 410. 7s. 6d.

CATALOGUE OF OSTEOLOGICAL SPECIMENS con
tained in the Anatomical Museum of the University of Cambridge.

Demy 8vo. 2s. 6d.

London : Cambridge University Press Warehouse, 1 7 Paternoster Row.
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LAW.

AN ANALYSIS OF CRIMINAL LIABILITY. By E. C.

CLARK, LL.D., Regius Professor of Civil Law in the University of Cam
bridge, also of Lincoln s Inn, Barrister-at-Law. Crown 8vo. js. 6d.

&quot;Prof. Clark s little book is the substance Students of jurisprudence will find much to

of lectures delivered by him upon those ppr- interest and instruct them in the work of Prof,

tions of Austin s work on jurisprudence which Clark,&quot; Athewzum.
deal with the &quot;operation of sanctions&quot; . . .

PRACTICAL JURISPRUDENCE, a Comment on AUSTIN.
By E. C. CLARK, LL.D. Regius Professor of Civil Law. Crown
Svo. 9-y.

A SELECTION OF THE STATE TRIALS. By J. W.
WILLIS-BUND, M.A., LL.B., Barrister-at-Law, Professor of Con
stitutional Law and History, University College, London. Vol. I.

Trials for Treason (1327 1660). Crown Svo. i&r.

&quot;Mr Willis-Bund has edited A Selection of as it may be gathered from trials before the

Cases from the State Trials which is likely to ordinary courts. The author has very wisely
form a very valuable addition to the standard distinguished these cases from those of im-
literature . . . There can be no doubt, therefore, peachment for treason before Parliament, which
of the interest that can be found in the State he proposes to treat in a future volume under
trials. But they are large and unwieldy, and it the general head Proceedings in Parliament.

&quot;

is impossible for the general reader to come T/ie Academy.
across them. Mr Willis-Bund has therefore

&quot; This is a work of such obvious utility that

done good service in making a selection that the only wonder is that no one should have un-
is in the first volume reduced to a commodious dertaken it before ... In many respects there-

form.&quot; TJie Examiner. fore, although the trials are more or less

&quot;This work is a very useful contribution to abridged, this is for the ordinary student s pur-
that important branch of the constitutional his- pose not only a more handy, but a more useful

tory of England which is concerned with the work than Howell s.&quot; Saturday Review.

growth and development of the law of treason,

VOL. II. In two parts. Price 145. each.

&quot;

But, although the book is most interesting judicious selection of the principal statutes and
to the historian of constitutional law, it is also the leading cases bearing on the crime of trea-

not without considerable value to those who son ... For all classes of readers these volume?

seek information with regard to procedure and possess an indirect interest, arising from the

the growth of the law of evidence. We should nature of the cases themselves, from the men
add that Mr Willis-Bund has given short pre- who were actors in them, and from the numerous
faces and appendices to the trials, so as to form points of social life which are incidentally illus-

a connected narrative of the events in history trated in the course of the trials. On these

to which they relate. We can thoroughly re- features we have not dwelt, but have preferred
commend the book.

&quot; Law Times. to show that the book is a valuable contribution
&quot; To a large class of readers Mr Willis- to the study of the subject with which it pro-

Bund s compilation will thus be of great as- fesses to deal, namely, the history of the law of

sistance, for he presents in a convenient form a treason.&quot; Athenaum.

Vol. III. In the Press.

THE FRAGMENTS OF THE PERPETUAL EDICT
OF SALVIUS JULIANUS, collected, arranged, and annotated by
BRYAN WALKER, M.A., LL.D.. Law Lecturer of St John s College, and

late Fellow of Corpus Christi College, Cambridge. Crown Svo. 6s.

&quot; In the present book we have the fruits of such a student will be interested as well as per-

the same kind of thorough and well-ordered haps surprised to find how abundantly the ex-

study which was brought to bear upon the notes tant fragments illustrate and clear up points

to the Commentaries and the Institutes . . . which have attracted his attention in the Corn-

Hitherto the Edict has been almost inac- mentanes, or the Institutes, or the Digest.

cessible to the ordinary English student, and Law Times.

London : Cambridge University Press Warehouse, 17 Paternoster Row.
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AN INTRODUCTION TO THE STUDY OF JUS
TINIAN S DIGEST. Containing an account of its composition
and of the Jurists used or referred to therein, together with a full

Commentary on one Title (de usufructu), by HENRY JOHN ROBY,
M.A., formerly Classical Lecturer in St John s College, Cambridge,
and Professor of Jurisprudence in University College, London.

[/ the Press.

THE COMMENTARIES OF GAIUS AND RULES OF
ULPIAN. (New Edition, revised and enlarged.) With a Trans
lation and Notes, by J. T. ABDY, LL.D., Judge of County Courts,
late Regius Professor of Laws in the University of Cambridge, and
BRYAN WALKER, M.A., LL.D., Law Lecturer of St John s College,

Cambridge, formerly Law Student of Trinity Hall and Chancellor s

Medallist for Legal Studies. Crown 8vo. i6s.

&quot;As scholars and as editors Messrs Abdy way of reference or necessary explanation,
and Walker have done their work well . . . For Thus the Roman jurist is allowed to speak for

one thing the editors deserve special commen- himself, and the reader feels that he is really
dation. They have presented Gaius to the studying Roman law in the original, and not a
reader with few notes and tho&quot;se merely by fanciful representation of it.&quot; Athenceum

THE INSTITUTES OF JUSTINIAN, translated with
Notes by J. T. ABDY, LL.D., Judge of County Courts, late Regius
Professor of Laws in the University of Cambridge, and formerly
Fellow of Trinity Hall

;
and BRYAN WALKER, M.A., LL.D., Law

Lecturer of St John s College, Cambridge ;
late Fellow and Lecturer

of Corpus Christi College ;
and formerly Law Student of Trinity

Hall. Crown 8vo. i6s.

&quot;We welcome here a valuable contribution the ordinary student, whose attention is dis-

to the study ofjurisprudence. The text of the tracted from the subject-matter by the dif-

Institutes is occasionally perplexing, even to ficulty of struggling through the language in

practised scholars, whose knowledge of clas- which it is contained, it will be almost indis-

sical models does not always avail them in pensable.&quot; Spectator.

dealing with the technicalities of legal phrase- &quot;The notes are learned and carefully com
ology. Nor can the ordinary dictionaries be piled, and this edition will be found useful to

expected to furnish all the help that is wanted. students.&quot; Law Times.
This translation will then be of great use. To

SELECTED TITLES FROM THE DIGEST, annotated
by B. WALKER, M.A., LL.D. Part I. Mandati vel Contra. Digest
xvn. i. Crown 8vo. $s.

&quot;This small volume is published as an ex- Mr Walker deserves credit for the way in which
periment. The author proposes to publish an he has performed the task undertaken. The
annotated edition and translatipn of several translation, as might be expected, is scholarly.&quot;

books of the Digest if this one is received with Law Times.

favour. We are pleased to be able to say that

Part II. De Adquirendo rerum dominio and De Adquirenda vel

amittenda possessione. Digest XLI. I and n. Crown 8vo. 6s.

Part III. De Condictionibus. Digest xn. i and 4 7 and Digest
XIII. I 3. Crown 8vo. 6^.

GROTIUS DE JURE BELLI ET PACIS, with the Notes
of Barbeyrac and othefs ; accompanied by an abridged Translation
of the Text, by W. WHEWELL, D.D. late Master of Trinity College.

3 Vols. Demy 8vo. 12s. The translation separate, 6s.

London: Cambridge University Press Warehouse, 17 Paternoster Row.
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THE GROWTH OF ENGLISH INDUSTRY AND
COMMERCE. By W. CUNNINGHAM, M.A., late Deputy to the

Knightbridge Professor in the University of Cambridge. With
Maps and Charts. Crown 8vo. 12s.

dimensions to which English industry and com
merce have grown. It is with the process of

growth that he is concerned ; and this process
he traces with the philosophical insight which
distinguishes between what is important and
what is trivial. He thus follows with care,

&quot;He is, however, undoubtedly sound in the

main, and his work deserves recognition as the
result of immense industry and research in a
field in which the labourers have hitherto been

comparatively few.&quot; Scotsman.
&quot; Mr Cunningham is not likely to disap

point any readers except such as begin by mis

taking the character of his book. He does not

promise, and does not give, an account of the

skill, and deliberation a single thread through
the maze of general English history.&quot; Guar
dian.

LIFE AND TIMES OF STEIN, OR GERMANY AND
PRUSSIA IN THE NAPOLEONIC AGE, by J. R. SEELEY,
M.A., Regius Professor of Modern History in the University of

Cambridge, with Portraits and Maps. 3 Vols. Demy 8vo. 48^.

&quot; If we could conceive anything similar to

a protective system in the intellectual depart
ment, we might perhaps look forward to a time
when our historians would raise the cry of pro
tection for native industry. Of the unquestion
ably greatest German men of modern history
I speak of Frederick the Great, Goethe and
Stein the first two found long since in Carlyle
and Lewes biographers who have undoubtedly
driven their German competitors out of the
field. And now in the year just past Professor

Seeley of Cambridge has presented us with a

biography of Stein which, though it modestly
declines competition with German works and
disowns the presumption of teaching us Ger
mans our own history, yet casts into the shade

by its brilliant superiority all that we have our
selves hitherto written about Stein.&quot; DeutscJie
RundscJiau.

&quot; In a notice of this kind scant justice can
be done to a work like the one before us ; no
short resume can give even the most meagre
notion of the contents of these volumes, which
contain no page that is superfluous, and none
that is uninteresting .... To understand the

Germany of to-day one must study the Ger
many of many yesterdays, and now that study
has been made easy by this work, to which no
one can hesitate to assign a very high place
among those recent histories which have aimed
at original research.&quot; Atfiejueum.

&quot;The book before us fills an important gap
in English nay, European historical litera

ture, and bridges over the history of Prussia
from the time of Frederick the Great to the

days of Kaiser Wilhelm. It thus gives the
reader standing ground whence he may regard
contemporary events in Germany in their pro
per historic light . . . We congratulate Cam
bridge and her Professor of History on the

appearance of such a noteworthy production.
And we may add that it is something upon
which we may congratulate England that on
the especial field of the Germans, history, on
the history of their own country, by the use of
their own literary weapons, an Englishman has

produced a history of Germany in the Napo
leonic age far superior to any that exists in

German. &quot; Examiner.

THE UNIVERSITY OF CAMBRIDGE FROM THE
EARLIEST TIMES TO THE ROYAL INJUNCTIONS OF
1535, by JAMES BASS MULLINGER, M.A. Demy 8vo. (734 pp.), 12*.

&quot;We trust Mr Mullinger will yet continue
his history and bring it down to our own day.&quot;

Academy.
&quot;He has brought together a mass of in

structive details respecting the rise and pro
gress, not only of his own University, but of

all the principal Universities of the Middle

Ages . . . We hope some day that he may con

tinue his labours, and give us a history of the

University during the troublous times of the
Reformation and the Civil War.

&quot; A tlietueum.
&quot; Mr Mullinger s work is one of great learn

ing and research, which can hardly fail to

become a standard book of reference on the

subject . . . We can most strongly recommend
this book to our readers.&quot; Spectator,

VOL. II. In the Press.

London: Cambridge University Press Warehouse. 17 Paternoster Row.
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CHRONOLOGICAL TABLES OF GREEK HISTORY.
Accompanied by a short narrative of events, with references to the

sources of information and extracts from the ancient authorities, by
CARL PETER. Translated from the German by G. CHAWNER,
M.A., Fellow and Lecturer of King s College, Cambridge. Demy
4to. los.

&quot;As a handy book of reference for genuine ticular point as quickly as possible, the Tables

students, or even for learned men who want to are useful.&quot; Academy.
lay their hands on an authority for some par-

CHRONOLOGICAL TABLES OF ROMAN HISTORY.
By the same. \Preparing.

HISTORY OF THE COLLEGE OF ST JOHN THE
EVANGELIST, by THOMAS BAKER, B.D., Ejected Fellow. Edited

by JOHN E. B. MAYOR, M.A., Fellow of St John s. Two Vols.

Demy 8vo. 24^.

&quot;To antiquaries the book will be a source &quot;The work displays very wide reading, and
of almost inexhaustible amusement, by his- it will be of great use to members of the col-

torians it will be found a work of considerable lege and of the university, and, perhaps, of

service on questions respecting our social pro- still greater use to students of English his-

gress in past times; and the care and thorough- tory, ecclesiastical, political, social, literary
ness with which Mr Mayor has discharged his and academical, who have hitherto had to be
editorial functions are creditable to his learning content with Dyer.

&quot;

Academy.
and industry.&quot; Athenceutn.

HISTORY OF NEPAL, translated by MUNSHI SHEW
SHUNKER SINGH and PANDIT SHR! GUNANAND; edited with an

Introductory Sketch of the Country and People by Dr D. WRIGHT,
late Residency Surgeon at Kathmandu, and with facsimiles of native

drawings, and portraits of Sir JUNG BAHADUR, the KING OF NEPAL,
&c. Super-royal 8vo. 2is.

&quot;The Cambridge University Press have interesting.&quot; Nature.
done well in publishing this work. Such trans- &quot;The history has appeared at a very op-
lations are valuable not only to the historian portune moment...The volume. ..is beautifully
but also to the ethnologist ; . . . Dr Wright s printed, and supplied with portraits of Sir Jung
Introduction is based on personal inquiry and Bahadoor and others, and with excellent

observation, is written intelligently and can- coloured sketches illustrating Nepaulese archi-

didly, and adds much to the value of the tecture and religion.&quot; Exattiiner.

volume. The coloured lithographic plates are

SCHOLAE ACADEMICAE: some Account of the Studies
at the English Universities in the Eighteenth Century. By CHRIS
TOPHER WORDSWORTH, M.A., Fellow of Peterhouse ; Author of
&quot; Social Life at the English Universities in the Eighteenth Century.&quot;

Demy 8vo. 15^.
&quot;The general object of Mr Wordsworth s &quot;Only those who have engaged in like la-

book is sufficiently apparent from its title. He bours will be able fully to appreciate the

has collected a great quantity of minute and sustained industry and conscientious accuracy
curious information about the working of Cam- discernible in every page ... Of the whole

bridge institutions in the last century, with an volume it may be said that it is a genuine
occasional comparison of the corresponding service rendered to the study of University
state of things at Oxford ... To a great extent history, and that the habits of thought of any
it is purely a book of reference, and as such it writer educated at either seat of learning in

will be of permanent value for the historical the last century will, in many cases, be far

knowledge of English education and learning.&quot; better understood after a consideration of the

Saturday Review. materials here collected.&quot; Academy.

THE ARCHITECTURAL HISTORY OF THE UNI
VERSITY AND COLLEGES OF CAMBRIDGE, by the late

Professor WILLIS, M.A. With numerous Maps, Plans, and Illustra

tions. Continued to the present time, and edited by JOHN WILLIS

CLARK, M.A., formerly Fellow of Trinity College, Cambridge.
\In the Press.

London: Cambridge University Press Warehouse, 17 Paternoster Row.
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MISCELLANEOUS.
A CATALOGUE OF ANCIENT MARBLES IN GREAT

BRITAIN, by Prof. ADOLF MICHAELIS. Translated by C. A. M.
FENNELL, M.A., late Fellow of Jesus College. Royal 8vo. Roxburgh
(Morocco back), 2. 2s.

&quot;The object of the present work of Mich-
aelis is to describe and make known the vast

treasures of ancient sculpture now accumulated
in the galleries of Great Britain, the extent and
value of which are scarcely appreciated, and

chiefly so because there has hitherto been little

accessible information about them. To the

loving labours of a learned German the owners
of art treasures in England are for the second

German, but appears for the first time in the
English translation. All lovers of true art and
of good work should be grateful to the Syndics

liversity Press for the liberal facilities

time indebted for a full description of their rich

possessions. Waagen gave to the private col

lections of pictures the advantage of his in

spection and cultivated acquaintance with art,

and now Michaelis performs the same office

for the still less known private hoards of an

tique sculptures for which our country is so

remarkable. The book is beautifully executed,
and with its few handsome plates, and excel

lent indexes, does much credit to the Cam
bridge Press. It has not been printed in

of the University rress lor the liberal facilities
afforded by them towards the production of
this important volume by Professor Michaelis.&quot;

Saturday Review.
&quot; Ancient Marbles here mean relics of

Greek and Roman origin which have been
imported into Great Britain from classical
soil. How rich this island is in respect to
these remains of ancient art, every one knows,
but it is equally well known that these trea
sures had been most inadequately described
before the author of this work undertook the
labour of description. Professor Michaelis has
achieved so high a fame as an authority in
classical archaeology that it seems unneces
sary to say how good a book this is.&quot; The
A ntiquary.

LECTURES ON TEACHING, delivered in the University
of Cambridge in the Lent Term, 1880. By J. G. FITCH, M.A., Her
Majesty s Inspector of Schools. Crown Svo. New Edition.

5.5-.

&quot;The lectures will be found most interest

ing, and deserve to be carefully studied, not

only by persons directly concerned with in

struction, but by parents who wish to be able

to exercise an intelligent judgment in the

choice of schools and teachers for their chil

dren. For ourselves, we could almost wish to

be of school age again, to learn history and

geography from some one who could teach

them after the pattern set by Mr Fitch to his

audience . . . But perhaps Mr Fitch s observa

tions on the general conditions of school-work
are even more important than what he says on

this or that branch of study.&quot; Saturday Re
view.

&quot;

It comprises fifteen lectures, dealing with

such subjects as organisation, discipline, ex

amining, language, fact knowledge, science,
and methods of instruction; ana though the

lectures make no pretention to systematic or

exhaustive treatment, they yet leave very little

of the ground uncovered ;
and they combine in

an admirable way the exposition of sound prin

ciples with practical suggestions and illustra

tions which are evidently derived from wide
and varied experience, both in teaching and in

examining.&quot; -Scotsman.

&quot;As principal of a training college and as a
Government inspector of schools, Mr Fitch has
got at his fingers ends the working of primary
education, while as assistant commissioner to
the late Endowed Schools Commission he has
seen something of the machinery of our higher
schools . . . Mr Fitch s book covers so wide a
field and touches on so many burning questions
that we must be content to recommend it as
the best existing vade mecum for the teacher.
. . . He is always sensible, always judicious,
never wanting in tact ... Mr Fitch is a scholar ;

he pretends to no knowledge that he does not
possess ; he brings to his work the ripe expe
rience of a well-stored mind, and he possesses
in a remarkable degree the art of exposition.&quot;
Pall Mall Gazette.

&quot;Therefore, without reviewing the book for
the second time, we are glad to avail ourselves
of the opportunity of calling attention to the
re-issue of the volume in the five-shilling form,
bringing it within the reach of the rank and
file of the profession. We cannot let the oc
casion pass without making special reference to
the excellent section on punishments in the
lecture on Discipline.

&quot; SchoolBoard Chron
icle.

THEORY AND PRACTICE OF TEACHING. By the
Rev. EDWARD THRING, M.A., Head Master of Uppingham School,
late Fellow of King s College, Cambridge. Crown 8vo. 6s.

under the compulsion of almost passionate&quot;Any attempt to summarize the contents of

the volume would fail to give x&amp;gt;ur readers a

taste of the pleasure that its perusal has given
us.&quot; Journal of Education.

&quot;In his book we have something very dif

ferent from the ordinary work on education.

It is full of life. It comes fresh from the busy
workshop of a teacher at once practical and
enthusiastic, who has evidently taken up his

pen, not for the sake of writing a book, but

earnestness, to give expression to his views
on questions connected with the teacher s life

and work. For suggestiveness and clear in

cisive statement of the fundamental problems
which arise in dealing with the minds of chil

dren, we know of no more useful book for any
teacher who is willing to throw heart, and
conscience, and honesty into his work.&quot; New
York Evening Post.

London : Cambridge University Press Warehouse, 1 7 Paternoster Row.
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STATUTES OF THE UNIVERSITY OF CAMBRIDGE
and for the Colleges therein, made published and approved (1878
1882) under the Universities of Oxford and Cambridge Act, 1877.
With an Appendix. Demy 8vo. i6s.

THE WOODCUTTERS OF THE NETHERLANDS
during the last quarter of the Fifteenth Century. In two parts.
I. History of the Woodcutters. II. Catalogue of their Woodcuts.
By WILLIAM MARTIN CONWAY. [/# the Press.

THE DIPLOMATIC CORRESPONDENCE OF EARL
GOWER, English Ambassador at the court of Versailles from June
1790 to August 1792. From the originals in the Record Office with
an introduction and Notes, by OSCAR BROWNING, M.A. [Preparing.

A GRAMMAR OF THE IRISH LANGUAGE. By Prof.
WINDISCH. Translated by Dr NORMAN MOORE. Crown 8vo. js. 6d.

STATUTA ACADEMIC CANTABRIGIENSIS. Demy
8vo. 2s. sewed.

STATUTES OF THE UNIVERSITY OF CAMBRIDGE.
With some Acts of Parliament relating to the University. Demy
8vo. 3^. 6d.

ORDINATIONES ACADEMIC CANTABRIGIENSIS.
Demy 8vo. 3^. 6d.

TRUSTS, STATUTES AND DIRECTIONS affecting
(i) The Professorships of the University. (2) The Scholarships
and Prizes. (3) Other Gifts and Endowments. Demy 8vo. 5^.

COMPENDIUM OF UNIVERSITY REGULATIONS,
for the use of persons in Statu Pupillari. Demy 8vo. 6d.

CATALOGUE OF THE HEBREW MANUSCRIPTS
preserved in the University Library, Cambridge. By Dr S. M.
SCHiLLER-SziNESSY. Volume I. containing Section I. The Holy
Scriptures; Section II. Commentaries on the Bible. Demy 8vo. gs.

Volume II. In the Press.

A CATALOGUE OF THE MANUSCRIPTS preserved
in the Library of the University of Cambridge. Demy 8vo. 5 Vols.

icxr. each.

INDEX TO THE CATALOGUE. Demy 8vo. los.

A CATALOGUE OF ADVERSARIA and printed books
containing MS. notes, preserved in the Library of the University of

Cambridge. $s. 6d.

THE ILLUMINATED MANUSCRIPTS IN THE LI
BRARY OF THE FITZWILLIAM MUSEUM, Catalogued with

Descriptions, and an Introduction, by WILLIAM GEORGE SEARLE,
M.A., late Fellow of Queens College, and Vicar of Hockington,
Cambridgeshire. Demy 8vo. js. 6d.

A CHRONOLOGICAL LIST OF THE GRACES,
Documents, and other Papers in the University Registry which
concern the University Library. Demy 8vo. 2s. 6d.

CATALOGUS BIBLIOTHEC^E BURCKHARDTIAN^.
Demy 4to. $s.
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Cfee Cambridge $tble for ^eboote anti

GENERAL EDITOR : THE VERY REVEREND J. J. S. PEROWNE, D.D.,

DEAN OF PETERBOROUGH.

THE want of an Annotated Edition of trie BIBLE, in handy portions, suitable for

School use, has long been felt.

In order to provide Text-books for School and Examination purposes, the

CAMBRIDGE UNIVERSITY PRESS has arranged to publish the several books of the

BIBLE in separate portions at a moderate price, with introductions and explanatory-

notes.

The Very Reverend J. J. S. PEROWNE, D.D., Dean of Peterborough, has

undertaken the general editorial supervision of the work, assisted by a staff of

eminent coadjutors. Some of the books have been already edited or undertaken

by the following gentlemen :

Rev. A. CARR, M.A., Assistant Master at Wellington College.

Rev. T. K. CHEYNE, M.A., Fellow ofBalliol College, Oxford.
Rev. S. Cox, Nottingham.
Rev. A. B. DAVIDSON, D.D., Professor of Hebrew, Edinburgh.
The Ven. F. W. FARRAR, D.D., Archdeacon of Westminster.

C. D. GINSBURG, LL.D.
Rev. A. E. HUMPHREYS, M.A., Fellow of Trinity College, Cambridge.
Rev. A. F. KIRKPATRICK, M.A., Fellow of Trinity College, Regius Professor

ofHebrew.

Rev. J. J. LIAS, M.A., late Professor at St Davids College, Lampeter.

Rev. J. R. LUMBY, D.D., Norrisian Professor ofDivinity.
Rev. G. F. MACLEAR, D.D., Warden ofSt Augustine s College, Canterbury.
Rev. H. C. G. MOULE, M.A., Fellow of Trinity College, Principal of Ridley

Hall, Cambridge.

Rev. W. F. MOULTON, D.D., Head Master of the Leys School, Cambridge.

Rev. E. H. PEROWNE, D.D., Master of Corpus Christi College, Cambridge,

Examining Chaplain to the Bishop of St Asaph.

The Ven. T. T. PEROWT

NE, M.A., Archdeacon ofNorwich.

Rev. A. PLUMMER, M.A., D.D., Master of University College, Durham.

The Very Rev. E. H. PLUMPTRE, D.D., Dean of Wells.

Rev. W. SIMCOX, M.A., Rector of Weyhill, Hants.

ROBERTSON SMITH, M.A., Lord Almoner s Professor ofArabic.

Rev. H. D, M. SPENCE, M.A., Hon. Canon of Gloucester Cathedral.

Rev. A. W. STREANE, M.A., Fellofiu of Corpus Christi College, Cambridge.
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PUBLICATIONS OF

THE CAMBRIDGE BIBLE FOR SCHOOLS & COLLEGES.

Continued.

Now Ready. Cloth, Extra Fcap. 8vo.

THE BOOK OF JOSHUA. By the Rev. G. F. MACLEAR, D.D.
With i Maps. is. 6d.

THE BOOK OF JUDGES. By the Rev. J. J. LIAS, M.A.
With Map. 3-y.

6d.

THE FIRST BOOK OF SAMUEL. By the Rev. Professor

KIRKPATRICK, M.A. With Map. 3*. 6d.

THE SECOND BOOK OF SAMUEL. By the Rev. Professor

KIRKPATRICK, M.A. With 2 Maps. 3-y. 6d.

THE BOOK OF ECCLESIASTES. By the Very Rev. E. H.
PLUMPTRE, D.D., Dean of Wells.

5-5-.

THE BOOK OF JEREMIAH. By the Rev. A. W. STREANE,
M.A. With Map. 4j. 6d.

THE BOOKS OF OBADIAH AND JONAH. By Archdeacon
PEROWNE. is. 6d.

THE BOOK OF JONAH. By Archdeacon PEROWNE. is. 6d.

THE BOOK OF MICAH. By the Rev. T. K. CHEYNE, M.A.
is. 6d.

THE GOSPEL ACCORDING TO ST MATTHEW. By the
Rev. A. CARR, M.A. With i Maps. is. 6d.

THE GOSPEL ACCORDING TO ST MARK. By the Rev.
G. F. MACLEAR, D.D. With 2 Maps. is. 6d.

THE GOSPEL ACCORDING TO ST LUKE. By Archdeacon
F. W. FARRAR. With 4 Maps. 4.?. 6d.

THE GOSPEL ACCORDING TO ST JOHN. By the Rev.
A. PLUMMER, M.A., D.D. With 4 Maps. ^s. 6d.

THE ACTS OF THE APOSTLES. By the Rev. Professor

LUMBY, D.D. Part I. Chaps. I XIV. With 2 Maps. 2s. 6d.

PART II. Chaps. XV. to end. With 2 Maps. 2s. 6d.

PARTS I. and II., complete. With 4 Maps. 4$. 6d.

THE EPISTLE TO THE ROMANS. By the Rev. H. C. G.
MOULE, M.A. 3-r. 6d.

THE FIRST EPISTLE TO THE CORINTHIANS. By the Rev.
J. J. LIAS, M.A. With a Map and Plan. is.

THE SECOND EPISTLE TO THE CORINTHIANS. By the
Rev. J. J. LIAS, M.A. is.

THE EPISTLE TO THE HEBREWS. By Archdeacon FARRAR.
y. 6d.

THE GENERAL EPISTLE OF ST JAMES. By the Very Rev.
E. H. PLUMPTRE, D.D., Dean of Wells, is. 6d.

THE EPISTLES OF ST PETER AND ST JUDE. By the
same Editor, is. 6d.
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THE CAMBRIDGE BIBLE FOR SCHOOLS & COLLEGES.

Continued.

Preparing.

THE BOOK OF GENESIS. By ROBERTSON SMITH, M.A.

THE BOOK OF EXODUS. By the Rev. C. D. GINSBURG, LL.D.

THE BOOK OF JOB. By the Rev. A. B. DAVIDSON, D.D.

THE BOOKS OF HAGGAI AND ZECHARIAH. By Arch
deacon PEROWNE.

THE EPISTLES OF ST JOHN. By the Rev. A. PLUMMER,
M.A., D.D.

THE BOOK OF REVELATION. By the Rev. W. SIMCOX, M.A.

THE CAMBRIDGE GREEK TESTAMENT,
FOR SCHOOLS AND COLLEGES,

with a Revised Text, based on the most recent critical authorities, and

English Notes, prepared under the direction of the General Editor,

THE VERY REVEREND J. J. S. PEROWNE, D.D.,
DEAN OF PETERBOROUGH.

Now Ready.
THE GOSPEL ACCORDING TO ST MATTHEW. By the

Rev. A. CARR, M.A. With 4 Maps. 4*. 6d.
&quot; With the Notes, in the volume before us, we are much pleased ; so far as we have searched,

they are scholarly and sound. The quotations from the Classics are apt ; and the references to

modern Greek form a pleasing feature.&quot; The Churchman.
&quot;

Copious illustrations, gathered from a great variety of sources, make his notes a very valu
able aid to the student. They are indeed remarkably interesting, while all explanations on
meanings, applications, and the like are distinguished by their lucidity and good sense.&quot;

Pall Mall Gazette.

THE GOSPEL ACCORDING TO ST MARK. By the Rev.
G. F. MACLEAR, D.D. With 3 Maps. 4*. 6d.

&quot;The Cambridge Greek Testament, of which Dr Maclear s edition of the Gospel according to

St Mark is a volume, certainly supplies a want. Without pretending to compete with the leading
commentaries, or to embody very much original research, it forms a most satisfactory introduction
to the study of the New Testament in the original . . . Dr Maclear s introduction contains all that

is known of St Mark s life, with references to passages in the New Testament in which he is

mentioned ;
an account of the circumstances in which the Gospel was composed, with an estimate

of the influence of St Peter s teaching upon St Mark ; an excellent sketch of the special character
istics of this Gospel ; an analysis, and a chapter on the text of the New Testament generally . . .

The work is completed by two good maps, one of Palestine in the time of our Lord, the other, on
a large scale, of the Sea of Galilee and the country immediately surrounding it.&quot; Saturday
Review.

&quot;The Notes, which are admirably put together, seem to contain all that is necessary for the

guidance of the student, as well as a judicious selection of passages from various sources illustrat

ing scenery and manners.&quot; Academy.

THE GOSPEL ACCORDING TO ST LUKE. By Archdeacon
FARRAR. \_Nearly ready.

THE GOSPEL ACCORDING TO ST JOHN. By the Rev. A.

PLUMMER, M.A., D.D. With 4 Maps. 6s.

&quot;A valuable addition has also been made to The Cambridge Greek Testament for Schools,
Dr Plummer s notes on the Gospel according to St John are scholarly, concise, and instructive,
and embody the results of much thought and wide reading.&quot; Expositor.

London: Cambridge University Press Warehouse, 17 Paternoster Row



24 PUBLICATIONS OF

THE PITT PRESS SERIES.

I. GREEK.
THE ANABASIS OF XENOPHON, BOOKS I. III. IV.

and V. With a Map and English Notes by ALFRED PRETOR, M.A., Fellow
of St Catharine s College, Cambridge ; Editor of Persius and Cicero ad Atti-

cum Book I. is. each.

_&quot;

In Mr Pretor s edition of the Anabasis the text of Kiihner has been followed in the main,
while the exhaustive and admirable notes of the great German editor have been largely utilised.

These notes deal with the minutest as well as the most important difficulties in construction, and
all questions of history, antiquity, arid geography are briefly but very effectually elucidated.&quot; The
Examiner.

&quot;We welcome this addition to the other books of the Anabasis so ably edited by Mr Pretor.

Although originally intended for the use of candidates at the university local examinations, yet
this edition will be found adapted not only to meet the wants of the junior student, but even
advanced scholars will find much in this work that will repay its perusal.&quot; The Schoolmaster.

&quot;Mr Pretor s Anabasis of Xenophon, Book IV. displays a union of accurate Cambridge
scholarship, with experience of what is required by learners gained in examining middle-class
schools. The text is large and clearly printed, and the notes explain all difficulties. . . . Mr
Pretor s notes seem to be all that could be wished as regards grammar, geography, and other
matters.&quot; The Academy.

BOOKS II. VI. and VII. By the same Editor. 2s. 6d. each.
&quot;Another Greek text, designed it would seem for students preparing for the local examinations,

is Xenophon s Anabasis, Book II., with English Notes, by Alfred Pretor, M.A. The editor has
exercised his usual discrimination in utilising the text and notes of Kuhner, with the occasional
assistance of the best hints of Schneider, Vollbrecht and Macmichael on critical matters, and of
Mr R. W. Taylor on points of history and geography. . . When Mr Pretor commits himself to

Commentator s work, he is eminently helpful. . . Had we to introduce a young Greek scholar

to Xenophon,, we should esteem ourselves fortunate in having Pretor s text-book as our chart and
guide.&quot; Contemporary Review.

THE ANABASIS OF XENOPHON, by A. PRETOR, M.A.,
Text and Notes, complete in two Volumes. js. 6d.

AGESILAUS OF XENOPHON. The Text revised
with Critical and Explanatory Notes, Introduction, Analysis, and Indices.

By H. HAILSTONE, M.A., late Scholar of Peterhouse, Cambridge, Editor of

Xenophon s Hellenics, etc. is. 6d.

ARISTOPHANES RANAE. With English Notes and
Introduction by W. C. GREEN, M.A., Assistant Master at Rugby School.

3J-. 6d.

ARISTOPHANES AVES. By the same Editor. New
Edition. 3-y. 6d.

&quot;The notes to both plays are excellent. Much has been done in these two volumes to render
the study of Aristophanes a real treat to a boy instead of a drudgery, by helping him to under
stand the fun and to express it in his mother tongue.&quot; The Examiner.

ARISTOPHANES PLUTUS. By the same Editor. $s.6d.

EURIPIDES. HERCULES FURENS. With Intro
ductions, Notes and Analysis. ByJ. T. HUTCHINSON, M.A., Christ s College,
and A. GRAY, M.A., Fellow of Jesus College, is.

&quot;Messrs Hutchinson and Gray have produced a careful and useful edition.&quot; Saturday
Review.

THE HERACLEID^E OF EURIPIDES, with Introduc
tion and Critical Notes by E. A. BECK, M.A., Fellow of Trinity Hall. 3.?. 6d.

London : Cambridge University Press Warehouse, 17 Paternoster Row.
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LUCIANI SOMNIUM CHARON PISCATOR ET DE
LUCTU, with English Notes by W. E.. HEITLAND, M.A., Fellow of

St John s College, Cambridge. New Edition, with Appendix. $s. 6d.

OUTLINES OF THE PHILOSOPHY OF ARISTOTLE.
Edited by E. WALLACE, M.A. (See p. 30.)

II. LATIN.
M. T. CICERONIS DE AMICITIA. Edited by J. S.

REID, M.L., Fellow and Assistant Tutor of Gonville and Caius College,

Cambridge. New Edition, with Additions. $s. 6d.

&quot;Mr Reid has decidedly attained his aim, namely, a thorough examination of the Latinity
of the dialogue. The revision of the text is most valuable, and comprehends sundry
acute corrections. . . . This volume, like Mr Reid s other editions, is a solid gain to the scholar

ship of the country.&quot; AtJien&um.
&quot;A more distinct gain to scholarship is Mr Reid s able and thorough edition of the De

Amicitia of Cicero, a work of which, whether we regard the exhaustive introduction or the
instructive and most suggestive commentary, it would be difficult to speak too highly. . . . When
we come to the commentary, we are only amazed by its fulness in proportion to its bulk.

Nothing is overlooked which can tend to enlarge the learner s general knowledge of Ciceronian
Latin or to elucidate the text.&quot; Saturday Review.

M. T. CICERONIS CATO MAJOR DE SENECTUTE.
Edited by J. S. REID, M.L. 3*. &/.

&quot; The notes are excellent and scholarlike, adapted for the upper forms of public schools, and
likely to be useful even to more advanced students.&quot; Guardian.

M. T. CICERONIS ORATIO PRO ARCHIA POETA.
Edited by J. S. REID, M.L. is. 6d.

41
It is an admirable specimen of careful editing. An Introduction tells us everything we could

wish to know about Archias, about Cicero s connexion with him, about the merits of the trial, and
the genuineness of the speech. The text is well and carefully printed. The notes are clear and
scholar-like. . . . No boy can master this little volume without feeling that he has advanced a long
step in scholarship.&quot; TJte Academy.

M. T. CICERONIS PRO L. CORNELIO BALBO ORA-
TIO. Edited by J. S. REID, M.L. is. 6d.

&quot; We are bound to recognize the pains devoted in the annotation of these two orations to the
minute and thorough study of their Latinity, both in the ordinary notes and in the textual

appendices.&quot; Saturday Review.

M. T. CICERONIS PRO P. CORNELIO SULLA
ORATIO. Edited by J. S. REID, M.L. 3j. 6d.

&quot;Mr Reid is so well known to scholars as a commentator on Cicero that a new work from him
scarcely needs any commendation of ours. His edition of the speech Pro Sulla is fully equal in

merit to the volumes which he has already published ... It would be difficult to speak too highly
of the notes. There could be no better way of gaining an insight into the characteristics of
Cicero s style and the Latinity of his period than by making a careful study of this speech with
the aid of Mr Reid s commentary . . . Mr Reid s intimate knowledge of the minutest details of

scholarship enables him to detect and explain the slightest points of distinction between the

usages of different authors and different periods . . . The notes are followed by a valuable

appendix on the text, and another on points of orthography ;
an excellent index brings the work

to a close.&quot; Saturday Review.

M. T. CICERONIS PRO CN. PLANCIO ORATIO.
Edited by H. A. HOLDEN, LL.D., late Head Master of Ipswich School.

4-r. 6d.

&quot;As a book for students this edition can have few rivals. It is enriched by an excellent intro

duction and a chronological table of the principal events of the life of Cicero ; while in its ap
pendix, and in the notes on the text which are added, there is much of the greatest value. The
volume is neatly got up, and is in every way commendable.&quot; The Scotsman.

&quot;Dr Holden s own edition is all that could be expected from his elegant and practised

scholarship. ... Dr Holden has evidently made up his mind as to the character of the

commentary most likely to be generally useful ; and he has carried out his views with admirable

thoroughness.&quot; Academy.
&quot; Dr Holden has given us here an excellent edition. The commentary is even unusually full

and complete; and after going through it carefully, we find little or nothing to criticize. T]
is an excellent introduction, lucidly explaining the circumstances under which the speech was

There
ch was

delivered, a table of events in the life of Cicero and a useful index.&quot; Spectator, Oct. 29, 1881.

London : Cambridge University Press Warehouse, 17 Paternoster Row.
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M. T. CICERONIS IN Q. CAECILIUM DIVINATIO
ET IN C. VERREM ACTIO PRIMA. With Introduction and Notes

by W. E. HEITLAND, M.A., and HERBERT COWIE, M.A., Fellows of

St John s College, Cambridge. y.

M. T. CICERONIS ORATIO PRO L. MURENA, with

English Introduction and Notes. By W. E. HEITLAND, M.A., Fellow
and Classical Lecturer of St John s College, Cambridge. Second Edition,

carefully revised.
3-5-.

&quot;Those students are to be deemed fortunate who have to read Cicero s lively and brilliant

oration for L. Murena with Mr Heitland s handy edition, which may be pronounced four-square
in point of equipment, and which has, not without good reason, attained the honours of a

second edition.&quot; Saturday Review.

M, T. CICERONIS IN GAIUM VERREM ACTIO
PRIMA. With Introduction and Notes. By H. COWIE, M.A., Fellow

of St John s College, Cambridge, is. 6d.

M. T. CICERONIS ORATIO PRO T. A. MILONE,
with a Translation of Asconius Introduction, Marginal Analysis and

English Notes. Edited by the Rev. JOHN SMYTH PURTON, B.D., late

President and Tutor of St Catharine s College. vs. 6d.

&quot;The editorial work is excellently done.&quot; The Academy.

M. T. CICERONIS SOMNIUM SCIPIONIS. With In
troduction and Notes. By W. D. PEARMAN, M.A., Head Master of Potsdam

School, Jamaica, vs.

P. OVIDII NASONIS FASTORUM LIBER VI. With
a Plan of Rome and Notes by A. SIDGWICK, M.A. Tutor of Corpus Christi

College, Oxford, is. 6d.
&quot; Mr Sidgwick s editing of the Sixth Book of Ovid s Fasti furnishes a careful and serviceable

volume for average students. It eschews construes which supersede the use of the dictionary,
but gives full explanation of grammatical usages and historical and mythical allusions, besides

illustrating peculiarities of style, true and false derivations, and the more remarkable variations ol

the text.&quot; Saturday Review.
&quot;

It is eminently good and useful. . . . The Introduction is singularly clear on the astronomy of

Ovid, which is properly shown to be ignorant and confused ; there is an excellent little map of

Rome, giving just the places mentioned in the text and no more ; the notes are evidently written

by a practical schoolmaster.&quot; The Academy.

GAI IULI CAESARIS DE BELLO GALLICO COM
MENT. I. II. With English Notes and Map by A. G. PESKETT, M.A.,
Fellow of Magdalene College, Cambridge, Editor of Caesar De Bello Gallico,

VII. is. 6d.

BOOKS III. AND VI. By the same Editor, is. 6d. each.
&quot; In an unusually succinct introduction he gives all the preliminary and collateral information

that is likely to be useful to a young student ; and, wherever we have examined his notes, we
have found them eminently practical and satisfying. . . The book may well be recommended for

careful study in school or college.&quot; Saturday Review.

&quot;The notes are scholarly, short, and a real help to the most elementary beginners in Latin

prose.&quot; The Examiner.

BOOKS IV. AND V. AND BOOK VII. by the same Editor.

2s. each.

BOOK VIII. by the same Editor. [In the Press.

London : Cambridge University Press Warehouse, 1 7 Paternoster Row.
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P. VERGIL1 MARONIS AENEIDOS LIBRI L, II., IV.,
V., VI., VII., VIII., IX., X., XL, XII. Edited with Notes by A.

SIDGWICK, M.A. Tutor of Corpus Christi College, Oxford, is. 6d. each.

&quot;Much more attention is given to the literary aspect of the poem than is usually paid to it in

editions intended for the use of beginners. The introduction points out the distinction between
primitive and literary epics, explains the purpose of the poem, and gives an outline of the story.&quot;

Saturday Review.
&quot; Mr Arthur Sidgwick s Vergil, Aeneid, Book XII. is worthy of his reputation, and is dis

tinguished by the same acuteness and accuracy of knowledge, appreciation of a boy s difficulties

and ingenuity and resource in meeting them, which we have on other occasions had reason to

praise in these pages.&quot; Tfie Academy.
&quot;As masterly in its clearly divided preface and appendices as in the sound and independent

character of its annotations. . . . There is a great deal more in the notes than mere compilation
and suggestion. ... No difficulty is left unnoticed or unhandled.&quot; Saturday Review.

&quot;This edition is admirably adapted for the use of junior students, who will find in it the result

of much reading in a condensed form, and clearly expressed.&quot; Cambridge Independent Press.

BOOKS VII. VIII. in one volume. 3*

BOOKS IX. X. in one volume. 3*.

BOOKS X., XL, XII. in one volume. 3*. 6d.

QUINTUS CURTIUS. A Portion of the History.
(ALEXANDER IN INDIA.) By W. E. HEITLAND, M. A., Fellow and Lecturer
of St John s College, Cambridge, and T. E. RAVEN, B.A., Assistant Master
in Sherborne School. 3^. 6d.

&quot;Equally commendable as a genuine addition to the existing stock of school-books is

Alexander in India, a compilation from the eighth and ninth books of Q. Curtius, edited for

the Pitt Press by Messrs Heitland and Raven. . . . The work of Curtius has merits of its

own, which, in former generations, made it a favourite with English scholars, and which still

make it a popular text-book in Continental schools The reputation of Mr Heitland is a
sufficient guarantee for the scholarship of the notes, which are ample without being excessive,
and the book is well furnished with all that is needful in the nature of maps, indexes, and ap
pendices.&quot; Academy.

M. ANNAEI LUCANI PHARSALIAE LIBER
PRIMUS, edited with English Introduction and Xotes by \V. E. HEITLAND,
M.A. and C. E. RASKINS, M.A., Fellows and Lecturers of St John s Col

lege, Cambridge, is. 6d.

&quot;A careful and scholarlike production.&quot; Times.
&quot; In nice parallels of Lucan from Latin poets and from Shakspeare, Mr Haskins and Mr

Heitland deserve praise.&quot; Saturday Re-view.

BEDA S ECCLESIASTICAL HISTORY, BOOKS
III., IV., the Text from the very ancient MS. in the Cambridge University
Library, collated with six other MSS. Edited, with a life from the German of

EBERT, and with Notes, &c. by J. E. B. MAYOR, M.A., Professor of Latin,
and J. R. LUMBY, D.D., Norrisian Professor of Divinity. Revised edition.

is. 6d.

&quot;To young students of English History the illustrative notes will be of great service, while
the study of the texts will be a good introduction to Mediaeval Latin.&quot; The Nonconformist.

&quot;In Bede s works Englishmen can go back to origines of their history, unequalled for

form and matter by any modern European nation. Prof. Mayor has done good service in ren

dering a part of Bede s greatest work accessible to those who can read Latin with ease. He
has adorned this edition of the third and fourth books of the Ecclesiastical History with that

amazing erudition for which he is unrivalled among Englishmen and rarely equalled by Germans.
And however interesting and valuable the text may be, we can certainly apply to his notes
the expression, La sauce z aut mieux que le poisson. They are literally crammed with interest

ing information about early English life. For though ecclesiastical in name, Bede s history treats

of all parts of the national life, since the Church had points of contact with all.&quot; Examiner.

BOOKS I. and II. In the Press.
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Ml. FRENCH.
LE BOURGEOIS GENTILHOMME, Commie-Ballet en

Cinq Actes. Par J.-B. POQUELIN DE MOLIERE (1670). With a life of
Moliere and Grammatical and Philological Notes. By the Rev. A. C.

CLAPIN, M.A., St John s College, Cambridge, and Bachelier-es-Lettres of
the University of France, is. 6d.

LA PICCIOLA. By X. B. SAINTINE. The Text, with
Introduction, Notes and Map, by the same Editor, is.

LA GUERRE. By MM. ERCKMANN-CHATRIAN. With
Map, Introduction and Commentary by the same Editor. 3^.

LAZARE HOCHE PAR EMILE DE BONNECHOSE.
With Three Maps, Introduction and Commentary, by C. COLBECK, M.A.,
late Fellow of Trinity College, Cambridge; Assistant Master at Harrow
School. is.

HISTOIRE DU SIECLE DE LOUIS XIV PAR
VOLTAIRE. Parti. Chaps. I. XIII. Edited with Notes Philological and

Historical, Biographical and Geographical Indices, etc. by GUSTAVE MASSON,
B.A. Univ. Gallic., Officier d Academie, Assistant Master of Harrow School,
and G. W. PROTHERO, M.A., Fellow and Tutor of King s College, Cam
bridge, is. 6d.

&quot;Messrs Masson and Prothero have, to judge from the first part of their work, performed
with much discretion and care the task of editing Voltaire s Siecle de Louis XIV for the Pitt
Press Series. Besides the usual kind of notes, the editors have in this case, influenced by Vol
taire s summary way of treating much of the history, given a good deal of historical informa

tion, in which they have, we think, done well. At the beginning of the book will be found
excellent and succinct accounts of the constitution of the French army and Parliament at the

period treated of.&quot; Saturday Review.

Part II. Chaps. XIV. XXIV. With Three Maps of the
Period. By the same Editors, is. 6d.

Part III. Chap. XXV. to the end. By the same Editors.
is. 6d.

LE VERRE D EAU. A Comedy, by SCRIBE. With a

Biographical Memoir, and Grammatical, Literary and Historical Notes. By
C. COLBECK, M.A., late Fellow of Trinity College, Cambridge; Assistant

Master at Harrow School, is.

&quot;It may be national prejudice, but we consider this edition far superior to any of the series

which hitherto have been edited exclusively by foreigners. Mr Colbeck seems better to under
stand the wants and difficulties of an English boy. The etymological notes especially are admi
rable. . . . The historical notes and introduction are a piece of thorough honest work.&quot; Journal
ofEducation,

M. DARU, par M. C. A. SAINTE-BEUVE, (Causeries du
Lundi, Vol. IX.). With Biographical Sketch of the Author, and Notes

Philological and Historical. By GUSTAVE MASSON. is.

LA SUITE DU MENTEUR. A Comedy in Five Acts,
by P. CORNEILLE. Edited with Fontenelle s Memoir of the Author, Voltaire s

Critical Remarks, and Notes Philological and Historical. By GUSTAVE
MASSON. is.

LA JEUNE SIBERIENNE. LE LEPREUX DE LA
CITfi D AOSTE. Tales by COUNT XAVIER DE MAISTRE. With Bio

graphical Notice, Critical Appreciations, and Notes. By GUSTAVE MASSON.

London: Cambridge University Press Warehouse, 17 Paternoster Row.
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LE DIRECTOIRE. (Considerations sur la Revolution
Franaise. Troisieme et quatrieme parties.) Par MADAME LA BARONNE DE
STAEL-HOLSTEIN. With a Critical Notice of the Author, a Chronological
Table, and Notes Historical and Philological, by G. MASSON, B.A., and
G. W. PROTHERO, M.A. Revised and enlarged Edition, is.

&quot;

Prussia under Frederick the Great, and France under the Directory, bring us face to face

respectively with periods of history which it is right should be known thoroughly, and which
are well treated in the Pitt Press volumes. The latter in particular, an extract from the
world-known work of Madame de Stae l on the French Revolution, is beyond all praise for
the excellence both of its style and of its matter.&quot; Times.

DIX ANNEES D EXIL. LIVRE II. CHAPITRES i 8.

Par MADAME LA BARONNE DE STAEL-HOLSTEIN. With a Biographical
Sketch of the Author, a Selection of Poetical Fragments by Madame de
Stael s Contemporaries, and Notes Historical and Philological. By GUSTAVE
MASSON and G. W. PROTHERO, M.A. Revised and enlarged edition, is.

FREDEGONDE ET BRUNEHAUT. A Tragedy in Five
Acts, by N. LEMERCIER. Edited with Notes, Genealogical and Chrono

logical Tables, a Critical Introduction and a Biographical Notice. By
GUSTAVE MASSON. is.

LE VIEUX CELIBATAIRE. A Comedy, by COLLIN
D HARLEVILLE. With a Biographical Memoir, and Grammatical, Literary
and Historical Notes. By the same Editor, is.

&quot; M. Masson is doing good work in introducing learners to some of the less-known French

play-writers. The arguments are admirably clear, and the notes are not too abundant.&quot;

A cadenty.

LA METROMANIE, A Comedy, by PlRON, with a Bio

graphical Memoir, and Grammatical, Literary and Historical Notes. By the

same Editor, is.

LASCARIS, ou LES GRECS DU XVE
. SIECLE,

Nouvelle Historique, par A. F. VILLEMAIN, with a Biographical Sketch of

the Author, a Selection of Poems on Greece, and Notes Historical and

Philological. By the same Editor, is.

IV. GERMAN.
CULTURGESCHICHTLICHE NOVELLEN, von W. H.

RIEHL, with Grammatical, Philological, and Historical Notes, and a Com
plete Index, by H. J. WOLSTENHOLME, B.A. (Lond.). 4^. 6d.

ERNST, HERZOG VON SCHWABEN. UHLAND. With
Introduction and Notes. By H. J. WOLSTENHOLME, B.A. (Lond.),
Lecturer in German at Newnham College, Cambridge. 3-5-.

6d.

ZOPF UND SCHWERT. Lustspiel in fiinf Aufzugen von
KARL GUTZKOW. With a Biographical and Historical Introduction, English
Notes, and an Index. By the same Editor. 3^. 6d.

&quot;We are glad to be able to notice a careful edition of K. Gutzkow s amusing comedy
Zopf and Schwert by Mr H. J. Wolstenholme. . . . These notes are abundant and contain

references to standard grammatical works.&quot; Academy.

London: Cambridge University Press Warehouse, 17 Paternoster Row.
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oetfye S
tfnabenjaljjre. (17491759.) GOETHE S BOY-

HOOD: being the First Three Books of his Autobiography. Arranged
and Annotated by WILHELM WAGNER, Ph. D., late Professor at the

Johanneum, Hamburg, is.

HAUFF. DAS WIRTHSHAUS IM SPESSART. Edited
by A. SCHLOTTMANN, Ph.D., Assistant Master at Uppingham School.

3J. 6d.

DER OBERHOF. A Tale of Westphalian Life, by KARL
IMMERMANN. With a Life of Immermann and English Notes, by WILHELM
WAGNER, Ph.D., late Professor at the Johanneum, Hamburg. y.

A BOOK OF GERMAN DACTYLIC POETRY. Ar-
ranged and Annotated by the same Editor. $s.

lDer erfte reu$aug (THE FIRST CRUSADE), by FRIED-
RICH VON RAUMER. Condensed from the Author s History of the Hohen-
staufen

,
with a life of RAUMER, two Plans and English Notes. By

the same Editor, is.

&quot;Certainly no more interesting book could be made the- subject of examinations. The story
of the First Crusade has an undying interest. The notes are, on the whole, good.&quot; Educational
Times.

A BOOK OF BALLADS ON GERMAN HISTORY.
Arranged and Annotated by the same Editor, is.

&quot;It carries the reader rapidly through some of the most important incidents connected with
the German race and name, from the invasion of Italy by the Visigoths under their King Alaric,
down to the Franco-German War and the installation of the present Emperor. The notes supply
very well the connecting links between the successive periods, and exhibit in its various phases of

growth and progress, or the reverse, the vast unwieldy mass which constitutes modern Germany.&quot;
Times.

DER STAAT FRIEDRICHS DES GROSSEN. By G.
FREYTAG. With Notes. By the same Editor, is.

&quot;Prussia under Frederick the Great, and France under the Directory, bring us face to face

respectively with periods of history which it is right should be known thoroughly, and which
are well treated in the Pitt Press volumes.&quot; Times.

GOETHE S HERMANN AND DOROTHEA. With
an Introduction and Notes. By the same Editor. Revised edition by J. W.
CARTMELL, M.A. $s. 6d.

&quot;The notes are among the best that we know, with the reservation that they are often too

abundant.&quot; Academy.

3afyr 1813 (THE YEAR 1813), by F. KOHLRAUSCH.
With English Notes. By the same Editor, is.

V. ENGLISH.
OUTLINES OF THE PHILOSOPHY OF ARISTOTLE.

Compiled by EDWIN WALLACE, M.A., LL.D. (St Andrews), Fellow and
Tutor of Worcester College, Oxford. Third Edition Enlarged. 4^. 6d.

THREE LECTURES ON THE PRACTICE OF EDU
CATION. Delivered in the University of Cambridge in the Easter Term,
1882, under the direction of the Teachers Training Syndicate, is.

&quot; Like one of Bacon s Essays, it handles those things in which the writer s life is most conver

sant, and it will come home to men s business and bosoms. Like Bacon s Essays, too, it is full of

apophthegms.
&quot;

Journal ofEducation.

GENERAL AIMS OF THE TEACHER, AND FORM
MANAGEMENT. Two Lectures delivered in the University of Cambridge
in the Lent Term, 1883, by F. W. FARRAR, D.D. Archdeacon of West
minster, and R. B. POOLE, B.D. Head Master of Bedford Modern School.

London: Cambridge Universitv Press Warehouse, 17 Paternoster Row.
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MILTON S TRACTATE ON EDUCATION. A fac-
simile reprint from the Edition of 1673. Edited, with Introduction and
Notes, by OSCAR BROWNING. M.A., Fellow and Lecturer of King s College,
Cambridge, and formerly Assistant Master at Eton College, is.

&quot;A separate reprint of Milton s famous letter to Master Samuel Hartlib was a desideratum,
and we are grateful to Mr Browning for his elegant and scholarly edition, to which is prefixed the
careful resumi of the work given in his History of Educational Theories.

&quot;

Journal of
Education.

LOCKE ON EDUCATION. With Introduction and Notes
by the Rev. R. H. QUICK, M.A. y. 6d.

&quot;The work before us leaves nothing to be desired. It is of convenient form and reasonable

price, accurately printed, and accompanied by notes which are admirable. There is no teacher
too young to find this book interesting; there is no teacher too old to find it profitable.&quot; The
School Bulletin, New York.

THE TWO NOBLE KINSMEN, edited with Intro
duction and Notes by the Rev. Professor SKEAT, M.A., formerly Fellow
of Christ s College, Cambridge. $s. 6d.

&quot;This edition of a play that is well worth study, for more reasons than one, by so careful a
scholar as Mr Skeat, deserves a hearty welcome.&quot; Athetueum.

&quot;Mr Skeat is a conscientious editor, and has left no difficulty unexplained.&quot; Times.

BACON S HISTORY OF THE REIGN OF KING
HENRY VII With Notes by the Rev. J. RAWSON LUMBY, D.D., Nor-
risian Professor of Divinity ;

late Fellow of St Catharine s College. 3^.

SIR THOMAS MORE S UTOPIA. With Notes by the
Rev. J. RA\VSON LUMBY, D.D., Norrisian Professor of Divinity ; late Fellow
of St Catharine s College, Cambridge. %s. 6d.

&quot;To Dr Lumby we must give praise unqualified and unstinted. He has done his work
admirably Every student of history, every politician, every social reformer, every one
interested in literary curiosities, every lover of English should buy and carefully read Dr
Lumby s edition of the Utopia. We are afraid to say more lest we should be thought ex

travagant, and our recommendation accordingly lose part of its force.&quot; T/ie Teacher.
&quot;

It was originally written in Latin and does not find a place on ordinary bookshelves. A very-

great boon has therefore been conferred on the general English reader by the managers of the
Pitt Press Series, in the issue of a convenient little volume of More s Utopia not in the original

Latin, but in the quaint English Translation thereof made by Raphe Robynson, which adds a

linguistic interest to the intrinsic merit of the work. . . . All this has been edited in a most com
plete and scholarly fashion by Dr J. R. Lumby, the Norrisian Professor of Divinity, whose name
alone is a sufficient warrant for its accuracy. It is a real addition to the modern stock of classical

English literature.&quot; Guardian.

MORE S HISTORY OF KING RICHARD III. Edited
with Notes, Glossary and Index of Names. By J. RAWSON LUMBY, D.D.
Norrisian Professor of Divinity, Cambridge ; to which is added the conclusion
of the History of King Richard III. as given in the continuation of Hardyng s

Chronicle, London, 1543. y. 6d.

A SKETCH OF ANCIENT PHILOSOPHY FROM
THALES TO CICERO, by JOSEPH B. MAYOR, M.A., late Professor of

Moral Philosophy at King s College, London. 3^. 6d.
&quot;In writing this scholarly and attractive sketch, Professor Mayor has had chiefly in view

undergraduates at the University or others who are commencing the study of the philosophical
works of Cicero or Plato or Aristotle in the original language, but also hopes that it may be
found interesting and useful by educated readers generally, not merely as an introduction to the

formal history of philosophy, but as supplying a key to our present ways of thinking and judging
in regard to matters of the highest importance.

&quot; Mind.
&quot;Professor Mayor contributes to the Pitt Press Series A Sketch of Ancient Philosophy in

which he has endeavoured to give a general view of the philosophical systems illustrated by the

genius of the masters of metaphysical and ethical science from Thales to Cicero. In the course
of his sketch he takes occasion to give concise analyses of Plato s Republic, and of the Ethics and
Politics of Aristotle ; and these abstracts will be to some readers not the least useful portions ot

the book. It may be objected against his design in general that ancient philosophy is too vast

and too deep a subject to be dismissed in a sketch* that it should be left to those who will make
it a serious study. But that objection takes no account of the large class of persons who desire

to know, in relation to present discussions and speculations, what famous men in the whole world

thought and wrote on these topics. They have not the scholarship which would be necessar} for

original examination of authorities ; but they have an intelligent interest in the relations between
ancient and modern philosophy, and need just such information as Professor Mayor s sketch will

give them.&quot; The Guardian.

[Ofher Volumes are in preparation^

London : Cambridge University Press Warehouse, 17 Paternoster Row.
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LOCAL EXAMINATIONS.
Examination Papers, for various years, with the Regulations for the
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