

MEMOIRS

ASIATIC SOCIETY OF BENGAL

VOL. II.

1907-1910.

CALCUT'IA :
Printed at the Baptist Mission Press, and pubiished by The Asiatic Societt, 1, Park Street.
1911.

DATES OF PUBLICATION.

Memoir	No.	1	.	pp.	I-IO	.	9th	February	1907
"	No.	2	.	,	II-24	.	5 th	June	,,
"	No.	3	.	"	25-42	\cdots		May	"
",	No.	4	.	",	43-84	.	25th	"	"
",	No.	5	.	",	85-120	.	2Ist	December	",
"	No.	6	.	,	12I-I54	\cdots	25th	April	1908
"	No.	7	.	"	155-168	.	29th	July	"
"	No.	8	.	,	169-252	.	6th	,,	1909
"	No.	9	.	,	253-340	.	18th	May	,,
"	No.		.	"	341-346		18th	January	1910
"	No.	II	-	"	347430	.	18th	March	"

INSTRUCTIONS FOR BINDING.

Insert pp. i-iv as a preface before p. I2I, and those pages numbered I-I4 which have Chinese characters on them as an appendix after p. 340.

Plates	i \& ii to	follow	.	.	.	p. 10
"	iii \& iv	"	.	.	.	,, 24
,	v \& vi	"	.	.	.	,, 84
",	vii to x	"	.	.	.	,, 252
,	xi to xvii	",	.	.	.	,, 346
"	xviii	,	.		\cdots	,, 430

Or all to be placed at the end of the volume.

ERRATUM.

Page 413 at the top of the Table, for 2327 read 1327.

CONTENTS.

MEMOIRS

OF THE

ASIATIC SOCIETY OF BENGAL

VOL. II, No. 1, pp. 1-10.

CIRRHIPEDES OPERCULES DE LE L'INDIAN MUSEUM DE CALCUTTA.
 PAR

M. A. GRUVEL,

Maître de Conférences de Zoologio à la Faculté des Sciences (Université de Bordeaux).
WITH TWO PLATES,

CALCUTTA:
Printed at the Baptist Mission Press, and pubiashed by The Astatio Society, 57, Park Street.
1907.

Price Rs. 2 ; or $28.10 d$.

Cirrhipèdes operculés de l'Indian Museum de C'alcutta (avec deux planches).
 Par A. Gruvel, Maître de Conférences de Zoologie à la Facul'é dis Sciences (Université de Bordeaux).

[Lu le 7 Novembre, 1906.]
J'ai reçu au mois d'Août r905, une assez belle collection de Cirrhipèdes Operculés, qui m'étaient amiablement envoyèe par le Prof. Annandale, Deputé Superintendant de 1'Indian Museum Calcutta.

Il m'avait été jusqu'ici, impossible d'examiner ces echantillons, dont la plupart sont très intéressants et beaucoup même nouveaux pour la science.

On sait que le Dr. Annandale a déja publié la description de plusieurs espèces de Cirrhipèdes Pédonculés, provenant tous du même établissement et récoltés par 1'"Investigator.'

Les espèces de Pédonculés nouvelles, signalées par Annandale sont les suivantes: Scalpellum inerme, Sc. sociabile, Alepas gigas, Al. ma'aysiana, ' et en outre: Scalpel’um gruveli, Sc. gruveli var. quadratum, Sc. alcockianum, Sc. laccadivicum, Sc. laccadivicum var. investigatoris, Sc. bengalense, Sc. woodmasoni, Sc. subflavum, Megalasma striatum sub-sp. minus et enfin, Alepas xenophorce. ${ }^{2}$

La série des Operculés n'est ni moins riche, ni moins interessante que celle des Pedonculés, car presque tous les espèces appartenant au genre Verruca sont nouvelles, ainsi qu'une espèce, appartenant au genre Balanus.

Mais le principal intérêt de cette collection réside dans la présence d'une forme tout à fait inédite, qui ne se rattache à aucun genre existant et que, à cause de la resemblance de sa muraille et de ses pièces operculaires avec les Pyrgoma, j'ai designé sous le nom de Pyrgopsis et j'ai dédié avec plaisir"cette première espèce au savant Directeur de l'Indian Museum, qui a bien voulu me confier l'étude de cette intéressante collection, en le priant de m'excuser d'avoir tant tardé à repondre à son amabilité.

La plus grande partie des échantillons examinés proviennent du Golfe du Bengale, plus spécialement de l'Archipel des Iles Andamans, quelques uns du Golfe Persique et de la côté d'Arabie.

A. CIRRHIPEDES OPERCULES ASYMETRIQUES.

Genve Verruca, Schumacher.
Les cinq groupes de Verruca, contenus dans la collection, contiennent quatre espèces nouvelles. L'une d'elles était fixée sur le scutum d'un Scalpellum squamuli-

[^0]ferum, Weltner, d'autres sur des tiges de Gorgonides et enfin, la plus grande partie, sur des spicules d'éponges (Hyalonema ou formes voisines).
I. Verruca plana-n. sp. (P1. I, fig. 5 et 6.)

Diagnose: Test non déprimé: plan scuto-tergal mobile, à peu près perpendiculaire au plan de la base : surface absolument lisse, avec quelques stries à peine visibles, même à la loupe. Il est difficile de reconnaitre la ligne de suture entre le rostre et 'a carène. Couleur d'un blanc absolument pur, sans aucune autre teinte, ni tâche. Scutum mobile à peu près triangulaire, sans arête articulaire, avec, à la surface, quelques stries d'accroissement peu visibles: bord tergal droit, sauf dans sa partie supérieure, ou il présente une légère encoche, destinée à reçevoir une petite dent articulaire de la partie correspondante du bord scutal du tergum. Tergum mobile de forme losangique presque régulière et de surface externe absolument plane: cette pièce porte deux sillons très légers, allant de l'apex à l'angle basi-scutal qui dilimitent un petite côté, en diagonale, absolument rectilique. Le bord scutal est droit et porte, à sa partie supérieure, la petite dent articulaire signalée plus haut. Le bord basal est légèrement concave et le bord carénal présente une convexité externe peu sensible. Scutum fixe à peu près triangulaire, très épaté à la base, avec des stries d'accroissement parallèles et un peu plus v sibles que sur la pièce mobile correspondente. Pas de côtes longitudinales. Tergum fixe de forme quadrilatère irrégulière, avec une côte légèrement saillante, partant de l'apex et venant rejoindre la base à son point de soudure avec le scutun fixe. Pas d'apex n: à la carène ni au rostre, dont la forme est régulièrement arrondie. Les denticulations que l'on observe tout autour de la base très allongée dans le sens rostrocarènal, sont dûes aux saillies épineuses du Gorgonide sur lequel se trouve fixé 1'animal.

Dimensions: Diamètre transversal moyen : 3 mm .
De l'apex du tergum fixe à la base : 3 mm .
Habitat: Passages des Iles Andamans par 380 à 465 m . de fond, deux échantillons entiers et que'ques fragments, fixés sur des tiges de Gorgones, Explorations de 1'" Investigator," Collections de 1'Indian Museum de Calcutta.

Observationset affinités: L'impression qui se dégage le mieux de l'examen de cette espèce, est une régularité parfaite de toute la surface externe, qui est absolument lisse, très caractéristique par conséquent, et qui suffirait, à elle seule, à la distinguer de toutes les formes déja connues appartenant à ce genre. En l'absence complète de toute arête articulaire nette sur les pièces operculaires, V. plana vient donc se placer en tête de la famille, à côté de V. erecta, A. Gruvel, dont elle ne présente aucun des caractères spécifiques.

2. Verruca cristallina-n. sp. (Pl. I, fig. 9 et Io.)

Diagnose: Test non déprimé. Plan scuto-tergal mobile à peu près perpendiculaire au plan de la base qui est généralement très allongée dans le sens rostro-carèna 1 : surface générale rugueuse, d'une couleur blanche, legèrement teintée de jaune. Scutum
mobile à apex pointu, de forme à peu près triangulaire, avec quatre arêtes articulaires, dont l'axiale, étroites. L'axiale est la plus étroite et aussi la plus saillante. La 3^{e} (en partant du sommet) est la plus large. La première (supérieure) est assez difficilement visible et se confond presque avec le bord libre. La surface comprise entre l'arête axiale et le bord rostral n'est pas lisse, mais présente, une ou deux côtes longitudinales peu saillantes, du reste, avec des stries d'accroissement souvent peu nettes. Tergum mobile nettement losangique avec, aussi, quatre arêtes articulaires, dont l'axiale, très saillante. L'arête moyenne est la plus large; la seconde, la plus courte est de beaucoup la plus étroite, parfois à peine visible et le tergum semble, alors ne porter que trois arêtes. La surface comprise entre l'arête axiale et le bord carènal ne présente aucune côte longitudinale, mais les stries d'accroissement sont nettement accusées ; 1'apex est mousse. Scu'um fixe avec trois arêtes articulaires, dont l'axiale saillante, la moyenne peu nette et la supérieure large: striés d'accroissement bien marquées. Tergum fixe, avec l'apex en pointe presque aiguë, présentant deux côtes articulaires, dont i'axiale. Apex du rostre, mousse et situé à une distance de la base égale environ à la moitié de celle qui sépare celle-ci de l'apex de la carène qui est également mousse. La limite entre ces deux pièces, du côté mobile, est reportée toujours du côté carènal, parfois très fortement, ce qui donne à cette espèce un aspect bien caractéristique. Le rostre et la carène portent, chacun, trois côtes articulaires très nettes, à stries d'accroissement saillantes. En outre, le rostre présente deux petites côtes articulaires supérieures qui viennent s'articu' er avec la base de l'arête axiale du scutum mobile.

Dimensions : de l'apex du rostre à celui de la carène : 3.5 mm . de l'apex du tergum fixe à la base : 4 mm .
Habitat: Iles Andamans, Cap Bluff, par 768 m . de fond, Explorations de 1'Investigator et Cinque Island (Andamans) par 785 m . de fond, Investigator: Une quinza ne d'exemplaires, Collections de 1'Indian Museum, Calcutta.

Observations et affinités: Les mandibules portent trois dents, la supérieure étant la plus forte et séparée de la 2^{e} par un intervalle égal environ à deux fois celu. qui sépare la 2^{e} de la 3^{e}, laquelle est située très près de 1 'angle basal orné de deux groupes de pointes courtes et raides en lame de poignard (P1. I, fig. 9). Les machoires ont le bord libre orné d'un groupe supérieur de pointes ortes et longues puis une encoche située entre deux pointes courtes et enfin, l'angle basal formant un mamelon saillant orné de quelques pointes fortes et longues, mélées de soies p us nombreuses et moins fortes (Pl. I, fig. Io). Le bord libre du labre présente une légère encoche médiane mais pas de dents. Le pénis est court, trapu, annelé sur toute sa longueur sauf vers son extrémité 1 .bre qui est lisse et converte de quelques soies nombreuses et irrégu". èrement disséminées. Les appendices terminaux (filamenteux) sont longs et grèles, atteignant environ la moitié de la longueur de la 6^{e} paire de cirrhes et portent environ 25 articles allongés.

Par son scutum et son tergum mobiles à quatre arêtes articulaires et par sa forme générale, cette espèce se rapproche de V. vadiata, A. Gruvel, mais le scutum et le tergum fixe, ainsi que la carène et le rostre sont tout à fait différents et la ligne de suture de ces deux dernières pièces se trouve reportée beaucoup plus du côté carènal.
3. Verruca multicostata-n. sp. (Pl. I, fig. I et 2.)

Diagnose: Test non déprimé. Plan scuto-tergal mobile à peu près perpendiculaire à la base qui est très allongée dans le sens carèno-rostral et dont les bord libres viennent en contact sur presque toute la longueur. Test de couleur générale jaunâtre, très rugueux. Scutum mobi.e avec cinq arêtes articulaires, dont l'axiale, toutes très rapprochées, sa llantes et étroites. Surface en avant de l'arête axiale, avec des lignes d'accroissement très accentuées et moniliformes. Apex très pointu. Tergum mobile avec cinq arêtes articu'aires, la supérieure se confondant avec le bord libre. Toutes ces arêtes sont sai.lantes, sourtout l'axiale. Surface sitû́e en arrière de l'axiale portant des lignes d'accroissement très nettes, légèrement denticuiées, mais non pas moniliformes. Apex mousse. Scu um fixe triangulaire avec trois arêtes articulaires, dont 1'axia.e, la moyenne ttroite et la supérieure large. Toute la surface est ornée de côtes longitudinales saillantes étroites, séparées par des sillons assez profonds. Les lignes d'accroissement sont nettement en relief. Apex pointu. Tergum fixe avec une arête articulaire large et divisée par des sillons longitudinaux, en plusieurs côtes étroites. Le reste de la surface est également convert de côtes saillantes avec des lignes d'accroissement accentuées. Apex du rostre et de la carène mousses et situées à peu près à la même distance de la base. Rostre plus large que la carène avec trois côtes articu aires principales, dont la supérieure est formée par la récunion de plusieurs côtes secondaires. Le reste de la surface est orné de nombreux plis saillants partant de l'apex et à stries d'accroissement en relief. La carène porte trois côtes articulaires simples et le reste de la surface comme pour le rostre.

Dimensions: de 1'apex du rostre à celui de la carène: 9.5 mm . de l'apex du tergum fixe à la base: 9 mm .
Habitat: Un seul échantillon fixé sur un spicule d'Hyalonema et recueilli aux environs au Détroit de Malacca ($6^{\circ} \mathrm{I} 8^{\prime}$ lat. N. et $90^{\circ} 40^{\prime}$ long. E.) par 160 m . de fond, Exp.orations de 1' "Investigator,' Collections de l'Indian Museum, Calcutta.

Observations et affinités: Cette espèce vient se placer dans la classification que nous avons adoptée après V. costata, Auriv., dont elle se distingue très nettement par la mutiplicité de ses côtes longitudinales et par les positions relatives des apex du rostre et de la carène.

4. Verruca kehleri-n. sp. (Pl. I, fig. 7 et 8.)

Diagnose: Test fortement déprimé : plan scuto-tergal mobile à peu près parallèle à la base qui est presque régu ièrement circulaire. Test de couleur blanche, très rugueux. Scutum mobile avec quatre arêtes articulaires (dont d'axiale), très saillantes, avec des lignes d'accroisement très accusées; la 3^{e} (à partir du sommet) est la plus large, mais l'axiale est la plus saillante. La surface comprise entre l'arête axiale et le bord rostral, présente trois côtes longitudinales saillantes dont la moyenne est la plus étroite. Apex très pointu et fortement recourbé vers la base. Tergum mobile avec
quatre arêtes articula res sail lantes surtout l'axiale qui est à peu près de la même largeur que la seconde. La surface située entre l'arête axiale et le bord carènal ne présente comme ornement que des lignes d'accroissement saillantes et pas de côtes longitudinales. Apex mousse. Scutum fixe irregulièrement triangulaire avec des plis ongitudinaux plus ou moins réguiers. Tergum fixe avec la partie centrale triangulaire ornée de plis longitudinaux et deux ailes latérales bien developpées, surtout celle qui s'articule avec la carène. Apex de la carène et du rostre situés à peu près à la même distance de la base. Carène avec trois côtes articulaires, longitudinales, saillantes, dont la moyenne est la plus large. Le reste de la surface porte seulement quelques plis irréguliers. Quant au rostre, son aspect est tout à fait caractéristique et ne se retrouve dans aucune des formes actuellement connues. Non seulement, on aperçoit partant de l'apex, les trois côtes longitudinales qui viennent s'articuler avec la carène, mais au-dessus de ces trois côtes on trouve encore quatre côtes courtes étroites, mais saillantes, qui viennent s'articuler avec la base du scutum correspondant et une série de plis étroits et très courts, plus externes, qui s'articulent avec la base du scutum fixe.

Dimensions : de l'apex du rostre à celui de la carène : 6.5 mm .
de l'apex du tergum fixe à la base : 2.5 mm .
Habitat: Iles Andamans par 435 m . de fond, Explorations de 1' 'Investigator,' Un seul échantillon fixé sur le scutum d'un Scalpellum squamuliferum, Weltner., Collections de 1'Indian Museum, Calcutta.

Observations et affinités: Par son test déprimé, ses quatre arêtes articulaires au scutum et au tergum mobiles et par son aspect général cette espèce vient se p.acer entre V. magna, A. Gruvel, et V. imbricata, A. Gruvel, sans pouvoir se confondre, du reste, ni avec l'une ni avec l'autre, à cause du nombre des arêtes articulaires qui est de trois chez la première, de cinq chez la seconde, et surtout à cause de la forme du rostre si caractéristique, qu'elle constitue un caractère spécifique de première importance.

Je dédie cette curieuse espèce à mon savant collègue et ami le Professeur Kœhler de la Faculté des Sciences de Lyon, dont on connait les très intéressants travaux sur l'anatomie et l'histologie des Cirrhipèdes.

B. OPERCULES SYMETRIQUES.

Deux familles sont représentées dans la collection par un certain nombre d'échantillons, ce sont: les Hexameridæ et les Tetrameridæ.

Famille des HEXAMERID无.
Genve Chthamalus Ranzani.
Ce genre est représenté par une seule espèce, la plus commune, Ch. stellatus, Ranz., fixée sur des Patelles recuei.lies sur les rochers de Penang.

Genve Balanus.

Le genre Balanus est beaucoup mieux représenté que le précédent par les espèces suivantes, dont une nouvelle pour la science.

Balanus perforatus, Brug., var. angustus, Gmelin.
Il provient des rochers d'Andamans dans une grotte qu'il tapissait, sans doute. Le test est assez déformé et peu reconnaissable.

Balanus amphitrite, Darw., var. communis, Darw.
Côtés de Vizagapatam et Iles de Santapilly, ainsi que à la Station 336 des Explorations de $1^{\prime \prime}$ "Investigator," $7^{\circ} 37^{\prime}$ lat. N. et $41^{\circ} \mathrm{O}^{\prime}$ long. E., par environ 1000^{m}. de fond.

Balanus amphitrite, Darw., var. niveus, Darw.
Iles Andamans, Station 29I de 1'" Investigator," $\operatorname{II}{ }^{\circ} 49^{\prime} 30^{\prime \prime}$ lat. N. et $92^{\circ} 55^{\prime} 55^{\prime \prime}$ long. E., sur de coquilles de Gastéropodes.

Balanus amphitrite, Darw., var. variegatus, Darw.
Nombreux échantillons mélés à de petites Modioles, recueillés à la station 283 de de 1' " Investigator '" par 1750^{m}. environ de fond.

Balanus carenatus-n. sp. (P1. 2, fig. I à 6.)
Diagnose: Parois et base calcaires et poreuses, rayons non poreux. Test lisse, de cou'eur généralement rosé, avec, sur les parois, des bandes rosées, longitudinales, séparées par des bandes d'un blanc-jaunâtre plus étroites. Carène avec l'apex très fortement recourbé en arrière. Base entièrement poreuse. Scuta avec les stries d'accroissement saillantes; la crête articulaire droite, très nette, saillante, mais n'atteignant pas le bord tergal de la pièce. Crête pour 1'adducteur nette, mais peu saillante, régulièrement arrondie et située à peu près à égale distance du bord rostral et du bord tergal. Cavité pour le muscle adducteur des scuta presque nulle. Cavité pour le muscle dépresseur latéral assez profonde. Terga avec la crête articulaire courte, peu saillante, et le sillon articulaire éga'ement court et peu profond. Eperon très saillant, avec le bord postérieur arrondi, l'extrémité coupée carrément et une dent antérieurt très nette, séparée par une encoche étroite et profonde de l'angle basi-scutal qui ese pointu. L'éperon est séparé du bord scutal par une distance égale environ à la moit é de sa propre largeur. Le bord basal en arrière de l'éperon est légèrement échancré et présente des crêtes saillantes pour le muscle dépresseur qui forment des dents accentuées le long du bord basal Sillon longitudina externe très net peu profond, mais occupant la presque totalité de la largeur de l'éperon qui égale presque la moitié de a largeur totale de la pièce. Le bord carènal des terga est régulièrement arrondi et l'apex est terminé en pointe presque aiguë.

Dimensions : Diamètre de base: 12 mm . Hauteur verticale: 9 mm .
Habitat: Akyab (Birmanie) sur coquilles, deux échantillons, Collections de l'Indian Museum, Calcutta.

Description: Les canaux longitudinaux des parois de la muraille sont à la base de section carrée et chacun d'eux présente du côté interne de la paroi externe, des dissépiments plus ou moins nombreux et développés, mais qui ne viennent jamais au contact de la face interne. Le labre porte une forte encoche médiane avec, de chaque côté sur son bord libre, trois dents fortes mais courtes; le bord libre et la face interne sont garnis de soies courtes. Les mandibules portent trois dents, à peu près de même force avec l'angle inférieur carré et mousse, non pectiné La rere $^{\text {et }}$ la 2^{e} dent sont à une distance un peu plus grande que celle qui sépare la 2^{e} de la 3^{e} qui est contiguë à l'angle basal. Les machoires ont le bord libre droit, mais l'angle inférieur est très saillant, conique, et porte trois soies fortes, dont la supérieure est la plus longue. L'angle supérieur présente aussi 2 à 3 pointes fortes, plus 7 ou 8 plus fines, allant rejoindre l’angle inférieur. Il n'y-a pas de véritable échancrure sur le bord libre. Les palpes de la lèvre inférieure sont très développés, très aplatis latéralement, et garnis sur leur bord libre de nombreuses soies longues et flexibles. Les branchies sont foliacées et bien développées. Première paire de cirrhes : rame antérieure un peu pus longue que la postérieure dont les articles forment, du côté antérieur, des sortes de mamelons coniques ornés de touffes de so es nombreuses et barbelées. Seconde paire : rame antérieure un peu plus longue que la postérieure, avec, toutes deux, à partir de la moitié terminale, des prolongements coniques antérieurs, moins saillants que dans la iere paire. Troisième paire : même caractères, mais un peu plus de différence entre 1a longueur des rames. Quatrième, 5^{e} et 6^{e} paires: longues flexibles, à rames presque égales et à nombreux articles. Pas d' appendices terminaux. Pénis très long, flexible, avec une partie basilaire courte et lisse, armée d'un éperon dorsal pointu très net, et une partie annelée, d'abord renflée, puis s'amincissant régulièrement jusqu'à son extrémité libre, avec quelques soies irrégulièrement disseminées à sa surface et un peu plus nombreuses vers le sommet.

A fifinités: Cette espèce à cause des caractéres de ses parois, de sa base, et de ses rayons, se place dans la Section C. Par le sillon longitudinal des terga, l'échancrure du bord basal, en arrière de l'éperon et la forme générale du test, elle vient se placer à côté de Balanus amphitrite, Darw., mais elle s'en distingue facilement par la forme très recourbée en arrière de la carène très développée et celle de ses pièces operculaires en particulier des terga, par les des machoires, etc.

Je propose le nom de cavenatus pour rappeler une particularité intéressante de la carène.

Balanus amaryllis, Darw.

Nombreux échantillons de petite taille et de couleur très blanche provenant d'Akyab (Birmanie), ainsi que de grands exemplaires probablement detachés d'un bateau ou d'un cable sous-marin et provenant des Iles Nicobar.

Genve Chelonobia, Leach.
Chelonobia testudinarta, Ellis.
Deux beaux exemplaires provenant de tortues capturées aux Iles Andamans.
Chelonobia patula, Ranz.
Un échantillon provenant d'Akyab en Birmanie.
Famille des TETRAMERID压.
Genve Tetraclita, Schumacher.
Tetraclita porosa, Gm. var. communis, Darw.
Deux échantillons jeunes fixés sur une coquille de Patelle, de Muscat (Arabie).
Tetraclita porosa, Gm. var. patellaris, Darw.
Un seul exemplaire fixé sur une énorme coquille de Patelle provenant des Iles Andamans, Explorations de 1' " Investigator.'"

Genve Pyrgopsis, n. gen.
PyRgopsis anNandalei-n. sp. (Pl. 2, fig. 7 à I3.)
Enfin une forme qui ne resemble à aucune de celles connues et qui constitue un genre et une espèce nouveaux.

Diagnose du Genre: Muraille sub-conique (ressemblant à s'y méprendre à celle de Pyrgoma) d'une seule pièce, sans trace de soudure. Base membraneuse formant un véritable petit pédoncule servant d'organe de fixation.

Diagnose de l'espèce: Murail e sub-conique, d'une seule pièce, légèrement striée à la surface et recouverte d'une cuticule chitineuse parfois assez épaisse; mince friable, et d'un blanc légèrement rosé. Orifice externe supérieur, ovalaire, allongé dans le sens antéro-postérieur comme l'ensemble de 'a muraille et placé beaucoup plus près du bord carènal que du bord rostral. Base membraneuse très développée, avec un prolongement inférieur musculeux, parfois assez long, formant pédoncule et par lequel 1'animal est fixé à son support. Scutum et tergum d'un même côté, non soudés. Scuta allongés et étroits, environ cinq fois aussi longs que hauts. Bord tergal avec une crête articulaire très nette, quoique peu saillante. Arête pour l'adducteur peu développée ; cavité pour 1'adducteur allongée et assez profonde. Bord basal droit. Terga courts et étroits. Bord articulaire (scutal) droit, légèrement denticulé vers la base ; bord carènal légèrement courbe : bord basal droit, avec un éperon saillant, tronqué carrément, dirigé du côté de la carène et placé à une distance de l'angle basi-scutal, égale environ au tiers de la longueur totale du bord basal.

Dimensions: ${ }^{\text {D }}$ Diamètre careno-rostrale : 8 mm .
Diamètre transversal : 3.5 mm .
Hauteur verticale 7 mm .

Habitat: Iles Andamans sur les récifs ($\mathrm{II}^{\circ} 49^{\prime} \cdot 30^{\prime \prime}$ lat. N., et $92^{\circ} 55^{\prime} 55^{\prime \prime}$ long. E.) par environ $9^{\circ} \mathrm{m}$. de fond, station 239 de 1^{\prime} " " Investigator," Trois échantillons, Collections de l'Indian Museum, Calcutta.

Description: Si l'on n'aperçevait de cette curieuse forme; que la partie supérieure de la muraille, on en ferait, sans hésitation possible, une espèce de Pyrgoma et spécialement P. millepore; Darw., bien que l'orifice externe soit un peu plus grand et la forme de la muraille un peu plus allongée et plus étroite que dans cette dernière espèce. Mais, la présence d'une base membraneuse très nette, en rapport direct avec la cuticule qui recouvre lá muraille et se prolongeant inférieurement par un véritable petit pédoncule, place cette forme en dehors des Pyrgoma et, du reste, de tous les Operculés actuel ement connus.

A cause de la resemblance de sa muraille et de ses pièces operculaires avec celles des Pyrgoma je propose de lui donner le nom de Pyrgopsis et je dédie avec grand plaisir cette première espèce au savant Superintendant de l'Indian Museum de Calcutta, le Dr. Annandale, qui a bien voulu m'envoyet à étudier cette très interessante collection.

L'enveloppe chitineuse de la base et du pédoncule est lisser,' mince, mais résistante. Elle est doublée intérieurement dans toute la partie pédonculaire, par une couche de fibres musculaires longitudinales lisses, caractéristiques des muscles du pédoncule de tous les Pédonculés en général.

Le muscle adducteur est formé de fibres striées très nettes, comme chez tous les Operculés, sauf le Xenobalanus et chez quelques Pédonculés comme Conchoderma aurita, C. virgata et Scalpellum velutinum. Pas de branchies. Les ovaives sont très intriqués et semblent ne former qu'une seule masse. Ils sont situés au fond et sur les parois de la cuvette membraneuse formant la base et une partie même s'engage jusque dans la région supérieure du petit pédoncule. La muraille est percée de canaux radiaires à section rectangulaire partant de l'orifice externe et se dirigeant vers la périphérie. Il-y a des stries parallèles d'accroissement recouvertes d'une cuticule chitineuse qui forme entre chaque strie de petits cones membraneux portant une soie assez rigide à leur extrémité. Le labre présente une encoche médiane profonde sans dents latérales sur le bord libre. Les mandibules portent cinq dents, dont la cinquième se confond presque avec l'angle basal garni de soies.' Les machoires ont le bord libre droit, sans encoche, avec deux grandes pointes chitineuses à l'angle supérieur et sept ou huit un peu moins fortes, mélangés à des soies raides dans 1'intervalle. Première paire de cirrhes, rame antérieure très courte (8 à 9 articles) par rapport à la postérieure (19 à 20 art .) Ces rames sont garnies de soies glabres du côté dorsal, barbelées, au contraire, du côté ventral. Deuxième paive: la rame postérieure égale environ les $\frac{2}{3}$ de la longueur de la rame antérieure, mais le nombre des articles est à peu près le même pour les deux (8 à 10). Troisième paire : rame postérieure égale aussi environ les $\frac{2}{3}$ de l'antérieure. Quatrième, cinquième et sixième paires: rames longues et flexibles à nombreux articles et respectivement de longueur à peu près égale. Pénis très long, flexible, sans éperon à la base, trés annelé avec quelques soies irrégulièrement disséminées, surtout sur les artic'es terminaux. Un peu avant l'extremité libre l'annulation cesse ; de chaque côté de la pointe on trouve un bouquet de soies courtes et glabres mais très
flexibles. Quant au sommet, il se prolonge par une sorte de forte papille hérissée de crochets chitineux recourbés en arrière et qui occupent toute la moitié de la papille du côté libre. Pas d'appendices terminaux.

Affinités: Cette forme tout à fait nouvelle pour la science se rapproche beaucoup, indubitablement du genre Pyrgoma avec lequel on serait tenté de la confondre, si on n'aperçevait que la muraille. Par son aspect extérieur, la coalescence des pièces du test, la forme de l'orifice externe, celle des pièces operculaires, la présence de cinq dents aux. mandibules, l'absence d appendices terminaux, etc., c'est un Pyrgoma; mais par sa base membraneuse et nettement pédonculée, 'absence d'éperon à la base du pénis, de dents sur le bord libre du labre, etc., elle se distingue nettement, et sans doute possible, du genre précédement indiqueé.

Le genre Pyrgopsis semble constituer un type plus évolué que les Pyrgoma dans ¿e sens de la mobilité. Il s'est passé pour lui des faits que nous avons déja signa'és à propos de l'appareil de protection du pédoncule chez les Pédonculés et du genre Xenobalanus pour les operculés.

En même temps que se développe un pédoncule chez Pyrgopsis 1 élément musculaire réduit encore, il est vrai, fait son apparition et présente histologiquement tous les caractères des muscles du pédoncule des Pédonculés normaux

PLANCHE I.

Fig. I. Vervuca multicostata, n. sp. Côté de l'opercule mobile.
, 2. - Vue du côté fixe.
,, 3. Verruca cristallina, n. sp. Vue du côté mobile.
, 4. Vue du côté fixe.
,, 5. Verruca plana, n. sp. Côté mobile.
,, 6. - Côté fixe.
,, 7. Vervuca keehleri, n. sp. Côté mobile.
,, 8. due côté fixe
,, 9. Verruca ristallina, n. sp Machoire.
,, 10.
Mandibule.

Memoirs, Asiatic. Soc.Bendegal.

Fig. 3.

Figé. 6.

A. Gruvel ad nat. del,

Vol.ii. Plate 1.

Fig. 4.

Fig 5.

Fig. 7.

Imp. L. Lafontaine, Paris.

Fig. 9.

PLANCHE II.

Fig. 1. Balanus carenatus, n. sp. Vue d'ensemble.

1à 6. Balanus carenatus, n.sp.-7à13_Pyrgopsis Annandalei, n.é; n. sp.

Memoirs of the Asiatic Society of Bengal.

Vol. I.

I. On certain Tibetan-Scrolls and Images lately brought from Gyants.-By Prof. Satis Chandra Vidyábhợana, M.A., M.R.A.S. (Price Re. 1-8; or 2s. 3d.)
II. Sal-Ammoniac: a Study in Primitive Chemistry-By H. E. Stapleton; B.A., B.Sc. (Price Re. i ; or Is. 6d.)
III. The Similarity of the Tibetan to the Kashgar-Brahmi Alphabet.-By The Rev. A. H. Francke. (Price Rs. 2 ; or $2 s$. Iod.)
IV. Alchemical Equipment in the Eleventh Century, A.D.-By H. E. Stafleton and R. F. Azo. (Price Re. 1-8; or 2s. 3d.)
V. Malaysian Barnacles in the Indian Museum, with a list of the Indian Pedunculata.By N. Annandale, B.A., D.Sc. (Price Re. 1-8; or $2 s .3$ d.)
VI. Ashrafpur Copper-plate Grants of Devakhadga.--By Ganga Mohan Laskar, M.A. (Price Annas 8; or iod.)
VII. Festivals and Folklore of Gilgit.-By Ghulam Muhammad. (Price Rs. 2; or 2s. Iod.)
VIII. Notes on the Bhotias of Almora and British Garhwal.-By C. A. Sherring, M.A., F.R.G.S., I.C.S. (Price Re. I-5 ; or 2 s. .)
IX. Religion and Customs of the Uraons.-By the late Rev. Father Dehon, S.J. (Price Rs. 2 ; or 2 s .1 I d.)
X. Notes on the Fauna of a Desert Tract in Southern India (Herpetology and Entomology).-By N. Annandale, D.Sc., C.M.Z.S., with a list of Mammals by R. C. Wroughton, F.E.S. (Price Rs. 2 ; or 2 s. 10d.)
XI. Amulets as Agents in the Prevention of Disease in Bengal.-Compiled in the Office of the Superintendent of Ethnography, Bengal. (Price Annas 12 ; or 1s. 2d.)
XII. Earth-Eating and the Earth-Eating Habit in India,-By D. Hooper and H. H. Mann. (Price Re. I; or Is. $6 d$.)
XIII. On a Cup-Mark Inscription in the Chumbi Valley--By E. H. C. Walsh, I.C.S. (Price Re. I.; or 1s. 6d.)
XIV. A Descriptive List of the Sea-Snakes (Hydrophiidæ) in the Indian Museum, Calcutta. —By Captain F. Wall, I.M.S., C.M.Z.S. . (Price Re. 1 ; or 1 s .6 d .)
XV. Common Saws and Proverbs collected, chiefly from Dervishes, in Southern Persia.-By Lieut.-Col. D. C. Phillott. (Price Re:-1; or 1s. 6 d.)
XVI. The Common Hydra of Bengal: its Systematic Position and Life History.-By N. Annandale, B.A., D.Sc., C.M.Z.S. (Price Re. 1; or is. $6 \mathrm{~d}_{\text {. }}$)
XVII. Animals in the Inscraptions of Piyadasi.-By Monmohan Chakravarti, M.A. (Price Annas. 12 ; or 1s. $2 d$.)
XVIII. Some curvent Persian Tales told by Professional Story-Tellers.-By Lieut.-CoL. D. C. Phillotr. (Price Re. I; or is. $6 d$. .)
XIX. The Dards at Rhalatse in Western Tibet.-By Rev. A. H. Francke," (Price Re. I-6; or $2 s$.)

Supplement, Miscellanea Ethnographica. 1. The Blow-Gun in Southern India. ${ }_{2}$ Miscellaneouis objects from the Rámanád subdivision of the Madura district. 3. Indian Weighing-beams.-By N. Annandale, D.Sc. (Price Re. 1.)

MEMOIRS

ASIATIC SOCIETY OF BENGAL

VOL. II, No. 2, pp. 11-23.

THE COINAGE OF TIBET.

BY
E. H. C. WALSH.

CALCUTTA:
Printed at the Baptist Mission Press, and published by The Asiatio Society, 57, Park Street.
1907.

Price One Rupee ; or One Shilling and Sixpence.

The Coinage of Tibet.

By E. H. C. Walsh.

(Read on 2nd May, I906.)
The Tibetan system of coinage is very simple, as it consists of a single coin, the tang-ka ($\mathrm{N}^{\circ} \pi^{\circ}$ and $\overline{5}^{\circ} \pi^{\circ}$ or $5^{-} \pi^{\circ}$), which is cut up into pieces of different size for its fractional values.

In ancient times, according to the Chinese author Wei Yüan, referred to by Mr. W. W. Rockhill in his "Notes on the Ethnology of Tibet,"' the Tibetans used cowrie shells and knife-shaped coins, but since the Sung, Chin and Ming periods (i.e., since the twelfth century) they have used silver, and since the Cheng-tung period of the Ming (A.D. 1436) Wei Yüan states that they have paid their tribute to China in silver coins.

The oldest coin, however, that I have come across or heard of in Tibet, is one coined in Nepal for currency in Tibet, by the Newar King Jaya Bhupatindra Malla Deva in the year 816 of the Newar Era corresponding to A.D. 1696, though silver coins were minted in Nepal for currency in Tibet from the reign of Mahendra Malla, 155I A.D.

It is difficult to say what has become of the previous coins of Nepal mintage, but I made very careful enquiries for them when in Tibet, and was unable to hear of any. I had, however, heard from Tibetans of the coin I have mentioned above, which
 years before I actually obtained one in Tibet. The previous coins of Nepal mintage would seem to have disappeared. I have, however, obtained, in Nepal, coins, which, for the reasons I give below, I have no doubt were of these previous Tibetan currencies.

Possibly the still earlier silver coins referred to by the Chinese author were merely struck for the purpose of paying the Tribute, and were not in general circulation, and silver coins did not come into general circulation until the coins that were minted for Tibet by the Newar Dynasty of Nepal.

As already noted the coinage of Tibet is very simple, consisting of a single coin, the tang-ka, the value of which is nominally six annas, though three of them exchange for an Indian rupee. The weight of the tang-ka is supposed to be 15 karmas (젱'ㅎ
 however, varies ; as no care is taken in minting to see that it is exact.

The sub-divisions of the coin, like those of the Old English silver penny, are made by cutting up the coin itself. These sub-divisions are :-

[^1]Sho-kang (夭َब무) $\frac{2}{3}$ of a tang-ka $=4$ annas (Plate ${ }^{1} \operatorname{III}(A) \& \operatorname{III}(B)$, fig. 12).

The last sub-division, the "half kha," is one-half of the portion shewn in fig. I5 of Plate $\operatorname{III}(\mathrm{A})$ and $\operatorname{III}(\mathrm{B})$. It is rarely made and is generally merely a term of calculation.

These sub-divisions, which, if the coins were merely cut up, would be the portion of the coin corresponding to the value they represent, are in reality merely tokens; as the edges are nearly always clipped and the centre is generally cut out, as shewn in the examples given, and the silver so clipped is kept by the smith, who cuts up the coin, as his remuneration, or by the owner, if he cuts his own coin. These subdivisions, however, always exchange at their nominal value irrespective of their being clipped. The division of the coin in Lhasa and Central Tibet ${ }^{z}$ is always made by a straight line cut across it, as shewn in the plate. Mr. Rockhill in his book "The Land of the Lamas," and also in his description of the collections in the United States National Museum, gives an example of a tang-ka cut up differently as shewn below. The upper line of figures shews the method of cutting in Lhasa and Centeral Tibet generally, and the lower line the method followed in Eastern Tibet as shewn by Mr. Rockhill

The (Cho-tang and Kong-par) Tangka as subdivided in Lhasa and Central Tibet.
(The dotted lines shew the usual clipping).

1

2

3

The (Gaden) Tangka subdivided, as shewn by Rockhill.
I. Sho-kang. 2. Chhi-ke. 3. Karma-nya. 4. Kha-kang.

[^2]This mode of cutting the tang-ka must be peculiar to North Eastern and Eastern Tibet. The tang-ka so cut up which he gives in the plate referred to, is also a Ga-den-tang-ka, the standard tang-ka, which coin is never cut up at all in Central Tibet.

Mr. Rockhill also mentions that in Eastern Tibet, about Ta-chien-lu at the time of his visit (in 1888) only Indian Rupees were current, and when a smaller piece of money was needed rupees were chopped in half or quartered

There are six different kinds of tang-kas current in Tibet ': -
(I) The Ga-den Pho-dang tang-ka, so called from its inscription. Minted at Lhasa (Plates III(A) and III(B), figs. I and 2).
(2) The Kong-par tang-ka, minted at Giamda on the borders of the Province of KONG-Bo. (Plates III(A) and III(B), figs. 3, 4, 5 and 6).
(3) The Pa-nying tang-ka or "Old Nepalese" Coinage: The currency coined by the Newar kings of Nepal. (Plates III(A) and III(B), fig. 7, and Plates IV(A) and IV(B), figs. I to 6).
(4) The Nag-tang or "black tanka," a name given to the Nepalese coinage of Ranjit Malla Deva, A.D. 1722. (Plates $\operatorname{III}(A)$ and $\operatorname{III}(B)$, fig. 8, and Plates $\operatorname{IV}(\mathrm{A})$ and $\operatorname{IV}(\mathrm{B})$, fig. 7).
(5) Chinese tankas minted for currency in Tibet. (Plates III(A) and III(B), figs. 9, 10 and II).
(6) Chö-tang or "cutting tanka."-Nepalese coins since the Gorkha conquest, not struck for currency in Tibet but which are generally current (Plates III(A) and III(B), fig. I3). The name means the tanka that is cut up, ${ }^{2}$ as this tanka chiefly and also the kong-par tang-ka are the only ones that are sub-divided.
The tang-ka has not a fixed standard either of weight or size, or assay. The following table gives the size and weight of the coins figured on Plates III(A) and III(B) :-

Number of coins on plate.

I	.	.
2	.	.
3	-	.
4	. .	.
5	.	-
6	-	.
7	-.	\cdots
8	. .	-
9	.	.
I.	.	.
II	.	.

[^3]Diameter in inches.

I•I5	.		80
I•II	\cdots		72
I. 07	\cdots	.	64
I. 04	.	.	76
I.05	.	.	93
1.04	.	.	88
I.II	.	.	104
I'IO	.	.	IOI 5
I.05	.	.	78.5
I.09	-.	-	$77 \cdot 5$
I.06	.	.	78

The tang-kas are hand-struck. I obtained a machine-struck Gaden tang-ka from Tibet in 1902. The die is similar, but the appearance is different from the hand-struck coins, the compression of the metal being much greater. This coin was said by the person, who brought it for me from Lhasa, to have been struck at the arsenal there by a machine. But the minting by machine cannot have lasted long; as coins were not being so minted when the mission went to Lhasa, and I have not seen any other machine-struck coin than this one.

The Ga-den Pho-dang tang-ka (Plates III(A) and III(B), figs. I and 2) is so called from the inscription on it. Ga-den Pho-dang chhog-le nam-gyal, "The Ga-den Palace victorious on all sides.' This coin is minted at Lhasa, and the Ga-den Pho-dang is a name for the Tibetan Government Headquarters there, and means "The Tibetan Government.'

On the reverse (Plate III(B), figs. I and 2) are the $T a-s h i t a-g y e^{2}$ or the eight lucky signs of the Buddhist religion. The signs are not always given in the same order ; the order is, in fact, different in the two coins figured. Taking the order in which they occur in fig. 2, Plate $\operatorname{III}(B)$, and commencing with the top one and going round with the clock they are as following :-
(1) The umbrella of sovereignty; (2) The two golden fishes of good luck; (3) The pot of ambrosia; (4) The lotus; (5) The conch shell ; (6) The symbol of endless rebirths ; (7) The banner of victory ; (8) The wheel of empire.

There is a floral design in the centre of the reverse. None of these coins bear any date or any other mark, by which their date can be ascertained. The coin shewn in fig. I is an old coin, whereas fig. 2 is a perfectly new coin.

These coins were probably first minted about I750 A.D., when, owing to the dispute between Prithi Narain, the first Gorkha ruler of Nepal, and the Tibetan Government regarding the exchange value of the previous debased Nepal coinage of the Newar kings then in circulation in Tibet, the Nepal Government stopped the coining of silver for Tibet. But this is merely conjecture ; as I was not able to find any Tibetan who could give any information on the point.

This coin has remained unaltered, since it was first introduced, with the exception of such minor variations as have occurred in the making of fresh dies.

The Ga-den tang-ka is not subdivided. If it ever is cut it is called Pongo mig$p a^{3}$ or "donkey's hoof." I have never seen one of these coins cut. The " donkey hoof " cutting is, no doubt, the form of cutting figured by Mr. Rockhill of the example in the collection of the United States National Museum and in "The Land of the Lamas" already referred to.

There is no doubt that the design of the Ga-den tang-ka was taken from the Newar coinage of the time it was struck, and I give an example of the coin it would

seem to have been taken from, on Plates $\operatorname{IV}(\mathrm{A})$ and $\operatorname{IV}(\mathrm{B})$, fig. I3. This coin is a Newar coin of Jaya Jagajjaya Malla Deva and bears date 852 (Newar Sambat) corresponding to 1732 A.D.

The Ga-den tang-ka (Plates IV(A) and IV(B), fig. I4) both on its obverse and reverse is an exact copy of the coin of Jaya Jagajjaya. On the obverse, the form of the eight leaves or petals, which contain the inscription, has been faithfully copied and only the Tibetan inscription substituted, and a wheel substituted for the Newar inscription and symbol of the sword and garland in the centre. On the reverse the eight Buddhist signs (ashta mangala) have been retained and the form of the petals containing them exactly copied, and also the three dots between each petal. Only a floral design has been substituted in the central circle for the Newar trident (trisul) and inscription. Even in this floral design it is curious to note that the Newar symbols of the sun and moon, to shew descent from the solar and lunar races, have been retained without any significance.

The imitation of this coin of Jaya Jagajja is so complete, and there is no other Newar coin to which there is such complete resemblance, that I have little doubt that the Ga-den tang-ka was copied from this particular coin. If this is so, it is interesting ; as it fixes the first mintage of the Ga-den tang-ka subsequent to 1732 A.D.

The Kong-par-tang-ka.-This tang-ka bears a date (Plates III(A) and III(B), figs. $3,4,5$ and 6). The date is given in the Chinese Cycle of sixty years, wh ch was introduced into Tibet in 1026 A.D. The earliest coin of this mintage (figs. 3 and 4) bears the date $\frac{1}{4} \frac{3}{6}$, which means the forty-sixth year of the thirteenth cycle, and therefore corresponds to 1792 A.D. The coins bearing this date are not constant either in die, or in size, and, though they are none of them recent, would appear to have been struck at different times. The design on the coin shewn in fig. 4 differs from that in fig. 3, and though these represent the two types of these coins, there are others which follow one or other of these two types with minor variations due to fresh die. It is, therefore, probable that the coin having been first struck in that year the inscription was preserved without change as in the case of the Ga-den tang-ka.

Even educated Tibetans do not, as a rule, know what these figures are, and the uneducated, of course, have no idea. One educated Tibetan, whom I once asked about them, said he believed the top figure represented the age of the Dalai Lama at the time, and the lower figure that of the Regent !

The only other two dates that I have seen on these coins are $\frac{1}{2} \frac{5}{4}$ (fig. 5), namely, the twenty-fourth year of the fifteenth cycle, corresponding to 1890 A.D., and $\frac{1}{2} \frac{5}{5}$ (fig. 6) corresponding to 1891 . Some of the latter coins are quite freshly minted, and the die of 189 I has, therefore, remained in use without altering the date, as was doubtless the case with the original die of 1792 . This coin is sub-divided (Plates III(A) and III(B), fig. I5).

The Pa-nying (चबํㅗㅇㄷ) "Old Nepalese" tang-ka, is also known as the Dungtang "spear tangka" or dung-tse (75 §ें) "spear point" from the trident emblem of the Newar kings, which is minted on the reverse. They were minted to the
same standard as the Newar coins current at the time in Nepal, and the Indian name. tang-ka was probably introduced with these coins, although in Nepal they are called mohars.

Although these coins bear on the obverse the inscription of the Newar king who minted them, and on the reverse the Hindu symbols of the trident in the central circle, and also the Newar symbols of the kharag and mala, the Newar sword and garland, which also appear on the Newar coins, they were specially struck for the Tibetan coinage and bear no resemblance in other respects than the above to the Newar coins current in Nepal at the same time.

This will be clearly seen by reference to Plates $\operatorname{IV}(A)$ and $\operatorname{IV}(B)$, in which fig. 8 is a Nepal coin of Sri Nivasa Malla, whose name is also on the Pa-nying tang-ka, fig. 2. Similarly fig. 9 is a Nepal coin of Jaya Pratapa Malla who struck the Pa-nying tang$k a$, fig. 4 ; fig. 12 is a Nepal coin of Bhupatindra Malla Deva, who struck the Panying tang-ka shewn in fig. 6 and bears the same date; and figures 10 and II are Nepal coins of Jaya Ranajita Malla Deva who struck the Nag-tang tang-ka (fig. 7) and bear the same date.

Although, therefore, the only Nepal-minted Tibetan coins that I have seen or heard of in Tibet are the pa-nying tang-ka of Jaya Bhupatindra, known as the ang-truk or " number six" from the last figure of its Newar date, and the Nag-tang tankas of Ranajita Malla Deva, I have no doubt that the other coins of similar design, which I have obtained at different times from Nepal, were of the coinage minted for circulation in Tibet and that coins similar to them were in circulation in Tibet.

The distinctive mark of these coins are the characters which surround the enclosure containing the Newar inscription and the circle containing the Trisul. I am not able to decipher these characters nor have I found any Tibetan or Newar who has any idea what they are intended for.

Allowing for differences in fresh dies, they are practically constant, both in their individual form and their relative position on the coin (Plate IV(A) and (B), figs. I to 7).

My own opinion is that they are probably an imitation of the characters on the official seal of the Dalai Lama, of which I give a facsimile for comparison.

Official Seal of the Dalai Lama.
(If the Seal is looked at sideways in the direction of the arrow, the resemblance of the characters to those on the coins will be noticed.)

The characters on the seal appear to be in the old Uigur form of Mongolian characters, which are written perpendicularly from above downwards and the lines follow from left to right. These Uigur characters, from which the Mongolian character has been derived, were themselves derived from the Syriac, having been brought to the Uigurs by Nestorian Missionaries ; while the arrangement in vertical lines was adopted from the Chinese practice.'

The Dalai Lama's seal is the mark of sovereignty in Tibet, and it would be very natural that the Tibetan Government might wish it to be reproduced, or at least indicated, on the coins, which were to be current in Tibet. The characters on the coin are not any of them a correct reproduction of characters on the seal, which might be expected from workmen who did not understand what the characters were intended to represent, and the resemblances suggest that the Newar artificers took the characters as running horizontally and not vertically, which is also natural ; as they would assume the lines to be horizontal, as in the Indian and Tibetan languages, with which they were acquainted.

That the Newar coiners were in the habit of imitating characters which they did not understand, and consequently rendering them meaningless, is also shewn by the fact that such meaningless imitations of Persian characters, with the object of imitating the titles of the coins of the Moghul Emperors, are found on other Newar coins. An example of this is found on both the obverse and reverse of the coin of Jaya Pratápa Malla (Plates IV(A) and IV(B), fig. 9) and is of frequent occurrence on Newar coins.

As regards the inscription on the Dalai Lama's seal being in the Uigur character, I would note that Colonel Waddell gives a copy of the seal ${ }^{8}$ and describes it as "in square Indian characters." ${ }^{2}$ I think there is no doubt that he is wrong in this. He has also printed the seal, in the example he gives of it, with the lines of characters running horizontally and not vertically which they should do, and in which position it is always affixed. If so printed with the lines of characters running horizontally, there are some of the characters which bear a superficial resemblance to certain Indian characters.

As I have already said, the Newar artificers appear to have made a similar mistake, expecting a horizontal script and not a vertical one ; and, if the seal be looked at in that direction, as indicated by the arrow, the resemblance of characters on the coins to some of those on the seal will be at once noticed.

This character of the Dalai Lama's seal is called in Tibetan Shintu-Jod-pa or "perfectly finished," and resembles the Uigur characters, known in Tibet as Gyaser Yige, or "Great golden letters," and is found in almost all old seals of Tibet."

There are also certain distinctive symbols on these coins which do not occur on

[^4]the ordinary Newar coins. These are the damaru, a small double hand-drum, used by Lamas in dances and exorcising, and a loop of the following form γ. The damaru is usually made of the tops of two skulls fastened together. It has a leather thong, with a knob at the end of it, attached to the middle of the drum, and, by turning the drum quickly in the hand, the thong strikes each side of the drum alternately and produces a noise like a rattle. It is peculiar to Tibetan Lamas and would, therefore, not unnaturally suggest itself to Newar artificers as a suitable religious symbol for a Tibetan coin, being distinct from the Newar Buddhist and Hindu symbols which they affixed to their own coinage.

This double drum occurs above the circle on the reverse of coins $3,4,5,6$ and 7 with the loop to the left of it. In the other two (figs. I and 2) its place is taken by part of the inscription.

The loop also occurs at the top of the obverse of all the coins (figs. I to 7).

There are also certain other symbols round the margin of the coins which do not appear on the Dalai Lama's seal. One of these is the three dots within two wavy lines on the left-hand side of the reverse of these coins (Plates IV(A) and IV(B), figs. I to 7) and in the symbol immediately below it, namely a dot inside an angle, and in the symbol at the bottom of the coin under the circle. As regards this last I would hazard a suggestion, for the reasons I give below, that it may be a conventional representation of the Potala, the Dalai Lama's Palace, which is the seat of the Tibetan Government.

Kirkpatrick, in the account of his mission to the kingdom of Nepal in 1793, writes : "The silver eight-anna piece, now called Mohr and Adheeda, was formerly denominated Mehnder-Mulie, after the Prince who first struck it, and by treaty established it in the neighbouring kingdom of Tibet; this prince would appear to have been one of the successors of Hur Sing Deo, and of the dynasty of Khatmanda, which city is said to have exclusively enjoyed for some time the privilege of supplying Tibet with coin, a privilege the more singular as it was from this very country that Nepal obtained her silver bullion. The origin of this practice is ordinarily referred to the superstitious reverence in which the valley of Nepal, and, more especially, the northwest parts of it (highly celebrated for their sanctity), has been wont to be held by the spiritual sovereigns of Tibet; but, whatever may have been the cause of it, there is not a doubt that the present Nepal Government made the departure of the Tibetans from ancient usage in this respect, the pretext for the war which it waged about four years ago against the confederated Lamas ; as evidently appears from a memorial transmitted to me from Nepal on this subject, an extract of which is given in Appendix No. II."
"The Mehnder-Mulie exhibited anciently a representation of Lehassa on one side, and, on the reverse, the name, titles and emblems of the reigning sovereign of Khatmanda. Since the conquest of Nepal by Purthi Narain, no allusion to Lehassa has been preserved, the Mohr bearing on one side the following inscription: Sri Sri Sri Run Behauder Shah Dewa, and, on the other, Sri Sri Goorknâth Sri Bhowâni, with
the year of the Soka and certain emblems allusive to the Hindoo superstition, as the sun, moon, Trisool of Mahadeo, etc."

The Mehnder-Mul (Mahendra Malla) referred to as having first coined silver for currency in Tibet reigned in 1566 A.D.

From the above extract it is clear that the distinctive feature of the Newar coinage minted for Tibet was that "it exhibited anciently a representation of Lehassa on the one side, and on the reverse the name, titles and emblems of the reigning sovereign of Khatmanda." The only symbol which can be taken as a representation of Lhasa is that under the circle (Plate IV(A), figs. I to 7). In the earlier examples (figs. I to 5) the symbol conveys a general impression very like that of the Potala, the Dalai Lama's place, a long mass of high buildings, towering high above some lower buildings at its foot. This idea is kept up throughout all the earlier examples, but the figure is distorted and loses its meaning in the later coins (figs. 6 and 7).

The originally exclusive privilege of the Raja of Khatmândû to coin for Tibet, mentioned by Kirkpatrick, did not long continue, but was also shared by the other two Newar kingdoms of Bhatgaon and Patan. Of the coins figured on Plates IV(A) and IV(B), figs. I and 2 are minted by kings of Patan; figs. 3 and 4 by kings of Khatmândû, and figs. 5, 6 and 7 by kings of Bhatgaon.

The reason for the discontinuance of this coinage was, that it became so debased under the later kings of Bhatgaon, that when the Gorkhas conquered the country they would not continue coining coins for Tibet if they had to exchange at par with the debased coins then in circulation, and the dispute over this question was made the pretext of the war between Nepal and Tibet in ry68. Kirkpatrick publishes an "extract from a Memorial of the Court of Khatmândû, relative to the origin of the War with Tibet," which gives a full account of the dispute. I give below the portion which relates to the coinage :-
"In ancient times there subsisted a close union between the Rajahs of Nepaul and Bhoat (i.e., Tibet) ; when the pure Mehnder-mulli of the coinage of the former country was the current money of the latter. During the respective reigns, however, of Rajah Jy Purkaush Mull, the sovereign of Nepal, and of Rajah Runjeet Mull, the ruler of Bhatgong, the Mehnder-mulli became much debased, the consequence of which was, that at the period Nepal passed into the possession of the Goorkha, Bhoat was full of this base coin. The Maharajah (i.e., Pirthi Nerain) immediately put a stop to this improper practice, sending, at the same time, a friendly deputation to Bhoat, for the purpose of stating the mischievous consequences that would ensue, were it persisted in ; and of engaging the Lamas to revert to the ancient usage, by giving circulation only to a pure currency.
"To this representation the rulers of Bhoat replied that the amount of base Mehnder-mulli then in their country was very considerable; that the suppression of it would consequently be attended with great loss to their people ; and that, therefore, they could not agree to the introduction of the pure Mehnder-mrulli proposed by the

[^5]Maharajah, but must desire that the Goorkhas would continue to supply them with the adulterated coin."
"Nine or ten years elapsed in this negociation between the two governments, without their being able to fix on any plan of accommodation. At length the Goorkha envoy proposed that, as they could not stop the circulation of the base coin with which they had been supplied, they should, at least, establish a just rate of exchange between the base and pure coinage, to the end that the merchants of either country might stand in their commercial transactions on the same footing as formerly. The Bhootias, however, would by no means consent to such a regulation; but, on the contrary, absolutely directed that the base and genuine money should be considered, in all negociations of trade, as one and the same ; the consequence of which was that for three or four years there was no sort of traffic carried on between the two countries. The circulation of the Nepaulian coin accordingly ceased (i.e., in Tibet). The Goorkha, nevertheless, continuing to retain his friendly disposition towards the Bhootias, endeavoured to prevail on them to depute some respectable person to the common boundary, there to meet and, in concert with deputies from Nepaul, devise some arrangement for the mutual benefit of the two states, as, without a speedy adjustment of the matter, it was evident that the trade of the two countries must be inevitably ruined. The Bhootias, however, were so far from listening to this reasonable proposal, that they, on the contrary, sent word vauntingly to the Goorkha that they had constructed a new road through the plain or valley of Tingri ; that they were establishing a post on the common frontier ; and that they had assembled an army of 125,000 men and that, if the Goorkha wished for war, he was welcome to advance."

The profits made by the Nepal Government on the silver coinage for Tibet are said by Kirkpatrick to have been a lakh of rupees annually. ${ }^{2}$ He adds, "It is to be observed that all silver brought into Nepaul from Tibet, in the way of commerce, must be carried to the mint at Khatmanda, no silver bullion being allowed to pass into Hindostan. In exchange for his bullion the merchant receives Nepaul rupees, the Government deriving a profit of twelve per cent. from the transaction, four per cent. being charged on account of coinage and eight arising from the alloy of the rupee."
" With respect to gold, it has usually been a monopoly in the hands of Government, who obliged the traders from Tibet to sell it at the mint at the rate of eight rupees per tolah, whence the Ticksâli ${ }^{3}$ retails it sometimes at the advanced price of fourteen rupees per tolah." ${ }^{4}$

So, altogether, the Newar Government made a large profit out of their monopoly of the coinage for Tibet.

Since the Gorkha conquest, Nepal has not again coined for Tibet, though, since the conclusion of the war, the Nepalese-Gorkha mohars have passed freely current in Tibet along with the Tibetan currency and are called chö-tang or "tang-kas for cutting" owing to there being the tang-ka that is generally sub-divided. The examples on Plates III(A) and III(B), figs. 12,13 and I4, are all portions of Goorkha tang-kas.

[^6]The Nag tang "Black tang-ka" (Plates III(A) and III(B), fig. 8; Plates IV(A) and $\operatorname{IV}(\mathrm{B})$, fig. 7) is the name given to the last of the Pa-nying tang-kas coined in 842 (Newar Sambat) corresponding to 1722 A.D., by Ranjit Malla Deva, the last Newar king of Bhatgaon. There are a large number of these coins still in circulation, and many years of grease have made them black enough to deserve their name. A large number of these coins are also still current in Bhutan.

There only remains to notice the Chinese tang-kas minted for currency in Tibet. I have only come across three kinds of these.

 equivalent to 1795 A.D. The Chinese inscription on the other side is to the same effect. Mr. Kang-yu-wei informed me that this Chinese emperor's name was Shenglung. I have also similar coins of this emperor bearing dates 58 and 59, i.e., 1793 and I794 A.D. It is given as Keen-lung in Haydn's Dictionary of Dates.

 - margin $\overline{5} \cdot$ q. $^{\prime \prime}$ ". "twenty-five," and is equivalent to 1820 A.D. I have also a similar coin of this emperor bearing the date 9 , i.e., 1804 A.D. The name of this emperor as given me by Mr. Kang-yu-wei was Jau Sengs, great grandfather of the present emperor of China. His name does not appear in the Dictionary of Dates.

The third (Plates III(A) and III(B), fig. II) bears the inscription in Tibetan बतन $\mathfrak{J}^{\circ} 5^{\circ}$ चan =a•型上" " the pure money of Dao Kwong," and in the margin the date in words
 This emperor's name is given in Haydn's Dictionary of Dates as Taou Kwang. In the two latter, as in the first, the Chinese inscription on the other side corresponds to the Tibetan.

There is no copper coinage in Tibet, but Nepalese pice are occasionally met with,

In addition to the coinage, there are certain nominal sums of money which are used in accounts and business transactions. These are :-

$$
\begin{aligned}
& \text { Ka-cha }=5 \text { annas. } \\
& \text { Sho-ng } a=5 \text { sho-kangs }=3 \text { tang-kas and one karma-nga=Rs. I-4-o. } \\
& \text { Srang or ngu-srang }=2 \text { sho-ng } a=\text { Rs. } 2-8-0 . \\
& \text { Do-tse }=50 \text { srangs }=\text { Rs. } 125 .
\end{aligned}
$$

Silver ingots from China are also used as currency. The value of these varies and
 ＂horse－hoof，＂the value of which varies according to its weight between 60 and 70

 three rupees．

The Indian rupee is also current throughout Tibet and exchanges as equivalent to three tang－kas．It is called Gor－mo（剂「市＂）or＂The round coin，＂Phi－ling or Chhi－ ling gor－mo（気率乐）＂The foreign round coin．＂

When rupees bearing the King＇s head were first brought into Tibet with the Tibet mission，the Tibetans were at first not always willing to take them；as they were only accustomed to those bearing the head of Queen Victoria which they knew， and the reverse of which was also different ；but the distrust soon passed away and King Edward＇s rupees were taken as freely as Queen Victoria＇s．

In parts of the interior of the country，however，money is little used and its place is taken by barter．Chinese brick tea，too，is largely used as medium of exchange．It is made in different qualities which bear a distinctive label and are of a different value．

List of Coins on Plates IV(A) and IV(B).

The obverse is on Plate IV(A) and the reverse on Plate IV(B), with tine exception of figs. 12 and 13, the obverse of which is on Plate $I V(B)$ and the reverse on Plate IV(A). The dates are in the Newar Samvat Era.

$\begin{aligned} & \text { Figure } \\ & \text { on } \\ & \text { the Plate. } \end{aligned}$	Inscription.	Corresponding date A.D.	Kingdom by which minted.	Diameter in inches.	Weight in grains.
I	(Obv.) Srī Srī Sidi. (Rev.) Nar "Singha" (i.e., the figure of the lion "Singha" in the centre) 75 t	1631	Patan	$1 \cdot 10$	83
2	$\begin{array}{cc} \left(\text { Obvı.) Srī Srī Jaya. }\left(\text { Rev. }_{0}\right):\right. & (\text { at top }) \text { Srī Ni (in } \\ \text { centre) vása Malla, } 78 \mathrm{r} & \text {... } \end{array}$	1661	"	-98	79'5
3	(Obv.) Srī. (Rev.) Srī Lakshmi Nar Sim	Kathmāndū	$1 \cdot 03$	68.5
4	(Obv.) Srī (Rev.) Srī Pratápa Malla 761 ...	164 I	"	1.05	83.5
5	$\begin{array}{ccc}\left(O b v_{0}\right) \\ \left.783 \ldots \text {... } R e v_{0}\right) & \text { Srī Srī Jaya Jitamitra Malla, } \\ \text {.... } & \text {... }\end{array}$	1763	Bhatgãon	1×10	$86 \cdot 5$
6	(Obv.) - (Rev.) Srī Srī Jaya Bhupatīndra Malla Deva, 816	1696	"	I ${ }^{\circ} \mathrm{O}$	$78 \cdot 5$
7	(Obv.) - (Ret.) Srī Srī Jaya Ranajita Malla Deva, 842	1722	"	$1{ }^{\prime} 10$	82
8	(Obv.): (in centre) Srī Srī Jaya (outside) Srī Nivāsa malla ($R e v$.) Nepáleswara, 786 ...	1666	Patan	10	83
9	(Obv.) Srī Srī Kavindra Jaya. (Rev.) Pratāpā Malla, 779	1659	Kathmāndu	ro	84
10	(Obv.) Srī Srī Jaya Raṇa (Rev.) Jita Malla Deva, 842	1722	Bhatgāon	1.06	83
11	(Obv.) Srī Srī Jaya Raṇajita Malla Deva. (Rev.) Baisa(kh) Sambat, 842	1722	"	99	41
12	(Obv.) Srī Srī Jaya Bhupa (Rev.) tíndra Malla Deva, 816	1696	"	-68	$20^{\circ} 5$
13	(Obv.) Srī Srī Jaya Jagajjaya. (Rev. in centre) Malla Deva, 852. (Round margin) Rájendra Nepáleswara	1732	Kathmāndu	1×10	82.5
14	(Obv.) (in Tibetan) Dgah. Idan. Pho. Brang. Phyogs Las Rnam-rgyal	...	Lhasa

Reverse of the Coins, the obverse of (B.) which is shewn on Plate III (A.)

[^7]
Memoirs of the Asiatic Society of Bengal.

Vol. I.
I. On certain Tibetan Scrolls and Images lately brought from Gyantse.-By Pror. Satis Chandra Vidyabhoṣana, M.A., M.R.A.S. (Price Re. 1-8; or 2s. 3d.)
II. Sal-Ammoniac: a Study in Primitive Chemistry.-By H. E. Stapleton, B.A., B.Sc. (Price Re. I; or Is. $6 d$.)
III. The Similarity of the Tibetan to the Kashgar-Brahmi Alphabet.-By The Rev. A. H. Francke. (Price Rs. $2 ;$ or 2 s . rod.)
IV. Alchemical Equipment in the Eleventh Century, A.D.-By H. E. Stapleton and R. F. Azo. (Price Re. I-8; or 2s. 3 d .)
V. Malaysian Barnacles in the Indian Museum, with a list of the Indian Pedunculata.By N. Annandale, B.A., D.Sc. (Price Re. 1-8; or 2 s .3 d .)
VI. Ashrafpur Copper-plate Grants of Devakhadga.-By Ganga Mohan Laskar, M.A. (Price Annas 8; or 10d.)
VII. Festivals and Folklove of Gilgit.-By Ghulam Muhammad. (Price Rs. 2 ; or 2s. 10d.)
VIII. Notes on the Bhotias of Almora and British Garhwal.-By C. A. Sherring, M.A., F.R.G.S., I.C.S. (Price Re. I-5; or $2 s_{\text {. }}$)
IX. Religion and Customs of the Uraons.-By the late Rev. Father Dehon, S.J. (Price Rs. 2 ; or 2 s. 1od.)
X. Notes on the Fauna of a Desert Tract in Southern India (Herpetology and Entomology).-By N. Annandale, D.Sc., C.M.Z.S., with a list of Mammals by R. C. Wroughton, F.E.S. (Price Rs. 2 ; or $2 s .10 \mathrm{~d}$. .)
XI. Amulets as Agents in the Prevention of Disease in Bengal.-Compiled in the Office of the Superintendent of Ethnography, Bengal. (Price Annas 12 ; or 1s. 2d.)
XII. Earth-Eating and the Earth-Eating Habit in India.-By D. Hooper and H. H. Mann. : (Price Re. I ; or is. 6d.)
XIII. On a Cup-Mark Inscription in the Chumbi Valley.-By E. H. C. Walsh, I.C.S. (Price Re. 1 ; or 1s. $6 d$. .)
XIV. A Descriptive List of the Sea-Snakes (Hydrophiidæ) in the Indian Museum, Calcutta. -By Captain F. Wall, I.M.S., C.M.Z.S. (Price Re. i; or is. 6 d .)
XV. Common Saws and Proverbs collected, chiefly from Dervishes, in Southern Persia.-By Lieut.-Col. D. C. Phillott. (Price Re. 1 ; or is. $6 d$.)
XVI. The Common Hydra of Bengal: its Systematic Position and Life History.-By N. Annandale, B.A., D.Sc., C.M.Z.S. (Price Re. i ; or is. 6 d.)
XVII. Animals in the Inscraptions of Piyadasi-By Monmohan Chakravarti, M.A. (Price Annas 12; or 1s. 2d.)
XVIII. Some curvent Persian Tales told by Professional Story-Tellers.-By Lieut.-Col. D. C. Phillott. (Price Re. I; or is. $6 d$. .)
XIX. The Dards at Khalatse in Western Tibet.-By Rev. A. H. Francke. (Price Re. 1-6; or $2 s_{\text {. }}$)
Supplement, Miscellanea Ethnographica. Part 1. I. The Blow-Gun in Southern India. 2. Miscellaneous objects from the Rámanád subdivision of the Madura district. 3. Indian Weighing-beams.-By N. Annandale, D.Sc. (Price Re. i.)

Supplement, Miscellanea Ethnographica. Part II. I. Some Malayan Weapons-By N. Annandale. 2. Plan of a Persian Gentleman's House.-By Lieur.-Col. D. C. Phillott. (Price Annas 8 ; or iod.)

Memoirs of the Asiatic Society of Bengal.

Vol. II.
I. Cirrhipèdes operculés de l'Indian Museum de Calcutta.-Par M. A. Gruvel. (Price Rs. 2 ; or $2 \mathrm{~s} . \mathrm{IO}$.)
II. The Coinage of Tibet.-By E. H. C. Walsh. (Price Re. 1 ; or 1s. 6d.).
III. The Exact Determination of the Fastness of the more Common Indigenous Dyes of Bengal, and comparison with typical synthetic Dye-stuffs. Part I. Dyeing on Cotton.-By E. R. Watson. (Price Re. I; or is. $6 d$.)
IV. The Saorias of the Rajmahal Hills.-By R. B. Bainbridge. (Price Rs. 2 ; or 2s. Iod.) Tarikh-i-Nuṣatjangi.-By Hari Nath De. (In the press).

MEMOIRS

OF THE

ASIATIC SOCIETY OF BENGAL

VOL. II, No. 3, pp. 25-41.

THE FASTNESS OF THE INDIGENOUS BYES OF BENGAL.

${ }^{B Y}$
E. R. WATSON, M.A. (Cantab.), B.Sc. (Lond.)

CALCUTTA:
Printed at the Baptist Mission Press, and published by The Asiatio Society, 57, Park Street.
1907.

Price One Rupee ; or One Shilling and Sixpence.

\because

The Exact Determination of the Fastness of the more Common Indigenous Dyes of Bengal, and comparison with typical synthetic Dye-stuffs.

> Part I.-Dyeing on Cotton.

By E. R. Watson, M.A. (Cantab.), B.Sc. (Lond.).

Introduction.

Probably on no subject is it possible to find greater diversity of opinion than on the subject of the fastness of the natural dyes. A great deal of the confusion, no doubt, arises from the attempt to compare natural dyes as a class with the synthetic dyes as a class, whilst, as a matter of fact, both classes include both fast and fugitive dyes. The popular opinion in India is still perhaps in favour of the natural dye-stuffs. In the course of the last year, the State of Cashmere has imposed an import duty on aniline dyes, with the express purpose of fostering the use of the old natural dyes, in preparing the textiles for which Cashmere is renowned, and of discouraging the use of aniline dyes in this industry, as it was feared that the use of fugitive aniine dyes would lower the esteem in which these textiles are held. The imposition of this duty provided the occasion for expressions of opinion in the daily papers on the relative merits of the indigenous Indian dyes and the so-called 'aniline' dyes, e.g.,--

Statesman, August Ist, 1906:-" The Kashmir Durbar has taken a step which will, it may be hoped, go a long way to save various beautiful arts, for which the Vale of Kashmir is famous, from deterioration or destruction. The Durbar has decided to charge a heavy (45 per cent.) duty on all aniline dyes at the frontier, and at a certain distance within the frontier to confiscate and at once destroy them."

Statesman, August 9th, I906 :--" The use of aniline dyes by Indian artisans and handicraftsmen is a danger to which attention has been drawn frequently."

It appears then that the popular opinion in this country is still in favour of the natural dyes, and that the aniline dyes are ousting the natural dyes only on account of their greater cheapness, and of the greater ease with which they can be used. An expression of this opinion may be found in "A Monograph on Dyes and Dyeing in Bengal," by N. N. Banerjee, Asst. Director of Land Records and Agriculture, Bengal, 1896. This author says: "European dyes, which are not as fast as indigenous dyes, appear to commend themselves to the people of this country on account of their cheapness and their brilliancy of colour. The ease with which they can be used makes them also more popular."

For many years a similar opinion has been held in Europe as to the relative merits of artificial dyes and of the natural dyes there available. (It will be seen from the context that all the more valuable Bengal indigenous dye-stuffs have been examined
by the chemists and dyers of Europe : the opinion, which is wide-spread in this country, that many of the Indian indigenous dyes are not known in Europe, appears to be without foundation). The following remarks by G. von Georgievics are worthy of note :-" The artificial dye-stuffs first produced were much handsomer and brighter, but not so fast as the majority of the natural dyes, and, by a somewhat hasty generalisation, artificial dyes were at first regarded as handsome but fugitive-a prejudice which, for a long time, acted adversely on the artificial dyes......... At the present time we have artificial dyes, some of which are just as fast, and others even more so, than those of natural origin." (Chemistry of Dye-stuffs, 1903).

From these remarks on a general comparison of the natural and artificial dyestuffs it would probably be concluded that the natural dye-stuffs are, as a whole, fairly fast ; but this conclusion is at variance with the remarks on particular natural dye-stuffs which can be found in various books on dyes and dyeing. I will here quote a few opinions on the more important indigenous dye-stuffs of Bengal.

According to N. N. Banerjee (loc. cit.) the more important dye-stuffs of Bengal are :-Indigo (Indigofera tinctoria), turmeric (Curcuma longa), lac, kusum or safflower (Carthamus tinctorius), bakam (Casalpinia sappan), singhar (Nyctanthes arbor-tristis), kamala (Mallotus philippinensis), palas (Butea frondosa), atkan (Bixa orellana) and al (Morinda tinctoria). Other dye-stuffs mentioned in this monograph are manjista (Rubia cordifolia), mehndi (Lawsonia alba), gab (Diospyros embryopteris), kanthal or jak (Artocarpus integrifolia), and toon (Cedrela toona). Catechu or kath (Acacia catechu) is mentioned as an auxiliary used in dyeing. This list is in substantial conformity with the list given in "Report on the Dyes and Tans of Bengal, H. W. McCann, 1883."
'Banerjee makes the following remarks as to the fastness of these dyes :-

Indigo	.	No remark.
Turmeric	.	. Yields a colour of a fleeting character only.
Lac	.	. Describes a method to produce a permanent red colour (p. 20).
Kusum		. . No remark.
Bakam		.. Describes a method to produce a pucka (fast) red colour (p. 23).
Singhar		.. Orange colour, which is very fleeting (p. 18).
Kamala	.	No remark.
Palas		.. The colour produced is a fugitive yellow inclined to red (p. 24).
Latkan		. . Describes a method to produce a fast colour (p. 24).
Al	.	. . Produces a fast red colour.
Manjista	.	No remark.
Mehndi		Ditto.
Gab		Ditto.
Kanthal		Ditto.
Toon		.. The colour obtained is fugitive.

"A Manual of Dyeing," J. Napier, 1875; " Die Chemie der natürlichen Farbstoffe," H. Rupe, 1900; "Commercial Organic Analysis," A. H. Allen, Igor ; and "Chemistry of Dye-stuffs," G. von Georgievics, 1903; may be taken as representing European opinion during the last thirty years.

Indigo.-This dye will not be further considered, as it admittedly stands in the very first rank and has been the subject of numerous investigations.
Saflower.-" The colours obtained by safflower are the prettiest and cleanest that can be had upon cotton, but they are fugitive."-Napier.
"The shades obtained by dyeing with safflower are very fugitive, discharged completely by quite small quantities of soda, also by chlorine and sulphur dioxide, bleached quickly by light, but not so quickly as the eosin dye-stuffs."
"The dyeings are very fugitive."-Georgievics.
Bakam (Casalpinia sappan).-"All the colours obtained by this wood are exceedingly fugitive, losing their brilliancy on a short exposure to air. The sun has a very powerful influence upon colours dyed by this wood. By a short exposure the red colour assumes a blackish tint, passes into a brown and fades away into a light dun colour. Heat is also very destructive to this colour.' '-Napier.
" The colours obtained are not fast, either to soap, alkalies or acids." -Rupe.
" These dyeings are not very fast." -Georgievics.
Latkan or annatto (Bixa orellana).-" All the co'ours dyed by annatto are exceedingly fugitive, and although neither acids nor alkalies can completely remove the colours dyed by it, still they constantly change and fade by exposure to air and light. On this account annatto is now very seldom used in cotton dyeing, and when it is used it is only as an auxiliary. It is, however, still used for silks and woollens, as the objections to its use for cotton do not apply so strongly in relation to these substances. ''-Napier.
" The colours dyed by annatto are fine and bright and resist well acids, soap and chlorine. But they easily fade in light."-Rupe.
Al (Morinda tinctoria). "On cloth mordanted for Turkey-red, Anderson obtained a dark, brownish-red colour, devoid of beauty but perfectly fixed, with other mordants not very stable nor very fast to washing. So far as this colouring matter is concerned, there is a field of enquiry yet open to the practical dyer." -Napier.
" Used in a manner similar to Madder in Turkey-red dyeing, one obtains a fast red."-Rupe.
Manjista (Rubia cordifolia).-" Reds dyed with manjista are very brilliant but fugitive, being destroyed by a short exposure to light and air."-Napier.
" Dyes cotton, mordanted with alumina or oil, of an orange-red colour, but the colour is not fast to light or soap." -Rupe.
Catechu.-" Is an extremely valuable dye-stuff. It is used only for silk-dyeing, in cotton-dyeing and cal:co-printing for browns. The colour obtained is redbrown or grey-brown according as chrome or iron mordants are used; neither is handsome or bright, but both are extremely fast."-Georgievics.

Such is the evidence at present available as to the fastness of the natural dyes of Bengal. It is, to a great extent, self-contradictory and throughout there is a want of precision indicated by the use of such expressions as " moderately fast," "very fugitive," \&c., \&c. I have, therefore, attempted to supplement the available evidence, and, as the result of a series of systematic observations and quantitative determinations, to make precise and numerical statements as to the fastness of the more common of these dyes.

Part I.-Dyeing on Cotton.

List of Natural Dyes examined.'

Turmeric (Curcuma longa).
Kusum or Safflower (Carthamus tinctorius).
Bakam (Casalpinia sappan).
Palas (Butea frondosa).
Latkan (Bixa orel'ana).
A1 (Morinda tinctoria).
Manjista (Rubia cordifolia).
Catechu (Acacia catechu).
Red Sandal (Pterocarpus santalinus).
Padauk (Pterocarpus dalbergioides).
The dye-stuffs lac and kamala, which have been used in the second part of this investigation, viz., on silk-dyeing, are apparently unsuitable and never used for cotton dyeing.

Methods employed for dyeing with these materials.

As will be seen from the following details I have, in all cases, attempted to dye by one or more methods reported to be used by the native dyers.

In some cases I have been unable to produce dyed specimens by following the methods described. This may be due to one of several causes :-
(a) The descriptions of the methods are not in all cases detailed, e.g., frequently the quantities of the materials required are not mentioned, and, in the absence of specific directions, I may not have been able to exactly reproduce the methods used by the native dyers.
(b) The reports of the methods employed (N. N. Banerjee, loc. cit.; H. W. McCann, loc. cit.) have generally been supplied by men without any special technical or chemical knowledge (district officers of the Civil Service) and frequently are by no means first-hand reports, and at each reproduction errors have probably crept in.

[^8](c) The methods described in some instances may not have yielded dyed cloth, even in the hands of the native dyers, who may not have discriminated between cloth properly dyed and cloth merely charged with unfixed colouring matter.

When I have been unable to obtain a satisfactory dyed sample by the native methods, I have resorted to methods employed in Europe It is well known that the fastness of a dye depends not only on the nature of the dye-stuff itself, but also to some extent on the nature of the fabric and on the auxiliaries used in dyeing. There is, therefore, always the possibility that these dye-stuffs may, in the hands of the native dyers, yield dyeings of superior fastness to those obtained in Europe from the same materials. An examination of the native methods gives rise, however, to the conviction that this possibility is very remote, and that from any given dye-stuff European dyers will obtain a dyeing as good as, if not superior to, the native production.

A very general defect of Indian methods of dyeing is their inability to give really full shades. As this indicates that there is little affinity under the conditions between the dye-stuff and the fabric, such methods cannot be considered as satisfactory.

Turmeric.-Process described by Banerjee (loc. cit., p. 2I, § 82 (i.)).
(I) Turmeric decoction prepared by soaking dry root in water, pounding, then adding more water and straining through a cloth. One seer of turmeric gave two seers of decoction. The cloth was soaked for five minutes in this decoction, washed lightly in water and then dipped in water acidulated with juice of the lime. A full, bright yellow shade was obtained.
(2) As in process (I), but water acidulated with juice of lime replaced by a ten per cent. alum solution. The colour produced was slightly duller than (I).

Kusum.-The method described by Banerjee (loc cit., pp. 16-17, 22) gave quite satisfactory dyeings, both full and lighter shades. One-quarter of a pound of the florets was mixed with two seers of water and worked with the hands for fifteen minutes or so. The water was then decanted off through a coarse cloth strainer. Fresh, cold water was added and this process was repeated until the water strained off was practically colourless. This preliminary washing of the florets was done six times and occupied 36 hours. Then one and a quarter tolas of sajimati and one and a half pounds of cold water were added to the flowers and the mixture well worked with the hands and allowed to stand four hours The liquor was then strained off through the cloth and acidulated with the juice of the lime. Cloth was dyed to a full red shade in this liquor at the ordinary temperature in fifteen minutes. A bath giving lighter shades was obtained by working the residual florets with a further quantity of water, straining and acidulating with a little lime-juice.

Bakam.-Mention is made both of the wood and the bark for dyeing purposes. Only the wood was available in the bazaars of Calcutta. According to McCann (loc. cit., p. 3) a simple aqueous decoction made by boiling the wood in water may be used for dyeing, but frequently alum is added to the decoction. These methods appear from the descriptions to be applicable for both cotton and silk, but on cotton I was quite unable to obtain satisfactory results by either method.

Banerjee describes the production of a deep, maroon colour by soaking the cloth first in water prepared with myrabolams and green vitriol, and afterwards in bakamwater. Cotton cloth was mordanted by 2 per cent. tannin solution followed by working in a ferrous sulphate solution ($2 \frac{1}{2}^{\circ} \mathrm{Tw}$.) for 20 minutes, washed and worked in bakam decoction at the boil for 30 minutes. A dull, purplish-black shade (full) was obtained.

To obtain a satisfactory red dyeing on cotton a European method was employed. The cloth was mordanted with tannin and red spirits ${ }^{1}$ and worked at about $60^{\circ} \mathrm{C}$. in an aqueous decoction of the wood for half an hour. Then a little red spirit was added to the bath and the working of the cloth continued for another fifteen minutes. In this way a very full and bright crimson shade was obtained.

Palas.-Banerjee (loc. cit., p. 24). "The dyeing with palas is effected simply by steeping in the infusion obtained by boiling the flowers in water. Alum is sometimes added."
(1) Aqueous infusion alone gave a pale, yellow colour.
(2) To an aqueous decoction from 25 grs. flowers in 100 cc . water 7 grs . alum were added ; a green, slimy precipitate was thrown down. This was strained off and the clear, bright orange liquid used for dyeing. After 30 minutes' immersion cotton cloth was dyed a medium orange shade.

Latkan.-Native processes described in considerable detail by Banerjee (loc. cit., p. 24).
" When silk is dyed with latkan the process, as described in the report from Murshidabad, is to mix a powa and a half of latkan seeds with 15 seers of water and half a seer of sajimati, and to boil the whole with the silk to be dyed...... Cotton may be dyed in the same way. In Nadia the colour is made fast by the following process : 'The bark of the babul is pounded and boiled with water in an earthen pot. If cotton cloth is to be dyed, the cloth is steeped in the decoction thus prepared and kept for 24 hours. After drying it in the sun it is steeped and kept for 12 hours in latkan solution obtained by boiling latkan seeds in water. The cloth is again dried in the shade and then steeped for six hours in babul water. It is dried again and then washed with pure water.' This gives a fast orange colour."

Cotton cloth was dyed both by the Murshidabad and Nadia processes. In both cases a full bright orange shade was obtained.

In following the Murshidabad process, the cloth was boiled in the decoction for o minutes.

[^9]In following the Nadia process, it was found necessary to add sajimati to the water to obtain the latkan solution. A decoction was used similar to that described in the Murshidabad process. Fifty gms. of babul bark were used to give 100 cc . of babul water.

Al.-There appears to be some confusion in nomenclature with regard to this substance. It seems that both Morinda tinctoria and M. citrifolia are called al or ach or aich and that both are equally effective for dyeing.

I was unable to obtain this material from the Calcutta bazaars, but was kindly supplied with a sample from the Indian Museum by Mr. Vieux, Assistant Curator, Industrial Section. I have, however, been quite unable to obtain a satisfactory dyeing with this material by any method.

According to McCann (loc. cit., pp. 30-36), the cloth is generally prepared by steeping for three to four days in a mixture of crushed castor-seed and cow-dung. It is then thoroughly rinsed in soft water and may be dyed by simply boiling in water along with the root or the bark of the root. A repetition of this process gave only the faintest colouration to the cloth.

According to Napier (loc. cit.) and Rupe (loc. cit.) this material gives a full and fast dyeing on cloth mordanted for Turkey-red. A sample of cloth mordanted in this way was scarcely coloured even after boiling for two hours with its own weight of the root or with its own weight of the bark of the root.

Manjista.-According to McCann (loc.cit., p. 48) the decoction obtained by boiling the stems in water may alone be used for dyeing (Darjeeling) or the cloth may be first mordanted by tannin or by steeping successively in alkaline solution and in alum (Midnapur). No discrimination is made as to the material dyed by these different methods.

Samples were prepared by the following processes :-
(I) By working the plain cloth in the aqueous decoction for 30 minutes in the cold only a very light shade was obtained;
(2) by previously mordanting the cloth in a tannin solution (3 per cent.) and afterwards working in manjista decoction as in (I), only a light pink shade was obtained ;
(3) by previously mordanting the cloth with aluminium acetate, ${ }^{1}$ steeping in cold manjista decoction, gradually raising to the boil and working for 30 minutes, a fairly full red shade obtained.
(4) In view of the similarity between alizarine and the colouring-matter of manjista, and in order to obtain strictly comparable samples of Turkey-red and

[^10]manjista-dyed cloth, I also dyed cloth mordanted for Turkey-red ' by boiling for two hours in water along with its own weight of manjista. The cloth was afterwards finished as in Turkey-red dyeing, viz., by steaming and brightening. The shade obtained was orange-red only of medium fullness, although every effort had been made to obtain a really full shade.

Catechu.-This material is apparently scarcely used by the native dyers.
A European method was employed for dyeing. Catechu was dissolved in dilute acetic acid (Io per cent.) and filtered from insoluble impurities. Cotton cloth was padded with this solution so that ro per cent. (reckoned on weight of cotton) of catechu was on the cloth and dried. It was then passed through hot potassium dichromate solution (Io per cent. reckoned on weight of cotton) rolled up and left for several hours ; afterwards washed and dried. A light to medium brown shade was obtained by this method and by repeating the whole process once a full shade was obtained.

Red Sandal.-This material is apparently not used as a dye in Bengal.
Cotton cloth mordanted with tannin and red spirits was boiled with raspings of the wood suspended in water for 30 minutes. The bath was kept in constant motion. A medium red shade was obtained.

Padauk.-This wood is chiefly grown in the Andamans and is not used as a dye-stuff. On account of its similarity to red sandal wood I attempted to dye with it in the manner described for red sandal. On cotton a medium brownish red shade was obtained.

Synthetic Dyes used for comparison with the Indigenous Dyes.

The following considerations were kept in mind in deciding which synthetic dyes to use for comparison :-
(I) To use dyes of which the fastness had been already exactly determined and recorded. These could then be conveniently used as standards.
(2) To use dyes which would, singly, give tints to match the dyeings with indigenous materials.
(3) To use well-known dyes representative of the more important groups of synthetic dyes.

Those selected were :-
Eosin.
Congo-red.
Primuline developed with β. Naphthol.

| ,", | ," | Resorcin. |
| :--- | :--- | :--- | :--- |
| ," | Phenol. | |

Magenta.
Safranine.
Alizarine.

[^11]This list includes direct cotton dyes, basic dyes, acid dyes and developed dyes, and the fastness varies from the lowest to the highest grade.

The dyed samples were prepared according to the best European methods as described in modern text-books.

Determination of Fastness of dyed samples.
The dyed samples were examined with regard to the following points :-
(i) Fastness to light.
(ii) ,, to washing with soap.
(iii) ,, to alkali.
(iv) ," to acid.
(I.) Fastness to Light.

In order to determine the fastness to light the samples were exposed to the full sunlight from sunrise to sunset for many days. Strips of the samples ($10 \mathrm{~cm} . \times \mathrm{I} \cdot 5$ cm .) were arranged on white writing paper fastened to plates of glass. The glasses were laid on stools on the roof of a building, so that no shadows should fall on them. The strips were so arranged that half of each could be covered by an opaque screen. The screen could be removed to compare the exposed and unexposed portions and replaced exactly in its original position. All the samples were exposed together, both those dyed with indigenous and those with synthetic materials. Since the time required to produce an appreciable fading depends to some extent on the depth or intensity of the dyeing, in many cases dyeings of different depths were made and exposed ; and in all cases a dyeing with an indigenous material was matched by an equally deep dyeing with some standard synthetic dye, which was exposed under the same conditions. The samples were exposed to light at the Civil Engineering Col'ege, Sibpur, during the latter half of November 1906, December 1906, and January 1907, viz., on the following days: Nov. 25, 26, 27, 29, 30 ; Dec. I, 2, 3, 4, 5, 6, 7, 8, 30, 3I; Jan. $I, 2,3,4,5,6,7, I I, I 2, I 3, I 4, I 5, I 6, I 7, I 8, I 9,20,2 I$. The samples were examined each day and thus it was determined how many days were required (I) to produce the first sign of fading; (2) to reduce the shade to one-quarter of the original intensity ; (3) to completely bleach the fabric.

Although the majority of the days could be considered as typical, sunshiny, cold weather days, there were a few days on which the sun was for a time obscured by clouds. These days would have less effect than cloudless days, and their relative values were obtained in the following manner : The Sunshine Recorder at the Alipore Meteorological Observatory (which is only about two miles distant from Sibpur) registered the number of hours of sunshine per diem. The maximum number during this period was $8 \cdot 1$ hours and on many days the number registered was a close approximation to this. The day on which $8 \cdot$ I hours of sunshine were recorded was taken as the unit " I day of bright sunshine." It was assumed that one hour during which the sun was obscured was only equal to half an hour of bright sunshine, and on this assumption the value of each day was determined. These values are given in Table O , overleaf.

Table 0.

Date.	Number of hours sunshine recorded.*	Value of day in arbitrary units.	Date.	Number of hours' sunshine recorded.*	Value of day in arbitrary units.
Nov. 25	$8 \cdot 1$	1.00	Jan. 2	8.0	$0 \cdot 99$
26	$8 \cdot 1$	roo	3	$7 \cdot 5$	- 96
27	8.0	0.99	4	78	0.97
29	8.1	$1 \cdot 00$	5	7.1	-0.94
30	8.0	- 99	6	8.0	0.99
Dec. I	$7{ }^{\circ} 4$	- 95	7	79	- 99
2	$8{ }^{\circ}$	- 99	11	73	0.95
3	79	- 99	12	7×9	- 99
4	7×9	- 99	13	55	$0 \cdot 84$
5	$7 \cdot 6$	$\bigcirc \cdot 96$	14	7×9	- 999
6	3.3	0.70	15	779	- 99
7	$7 \cdot 4$	0×95	16	8.0	0×99
8	$7 \cdot 6$	-0.96	17	7.5	- 96
30	$2 \cdot 3$	$0 \cdot 64$	18	8.0	-999
31	$8 \cdot 0$	$0 \cdot 99$	19	$8 \cdot 0$	- 99
Jan. I	$8 \cdot 1$	1.00	20	$8 \cdot 0$	- 99

* Supplied by courtesy of C. W. Peake, Esq., Meteorological Reporter to Govt. of Bengal.

This table was used to correct the determinations above mentioned, and thus was obtained the number of days of bright sunshine required ' 1) to produce first sign of fading ; (2) to reduce the shade to one-quarter of the original intensity ; (3) to completely bleach the fabric. These figures are given in Table I, opposite.

The rough estimate of the relative values of the different days was quite sufficient for the purpose, as an error of one day or more is quite possible in estimating both (2) and (3).

The amount to which the shades had faded at any time was determined by examining the strips (part faded, part unfaded) by the aid of a set of standards. These standards were made by dyeing with exactly weighed quantities of pure synthetic dyes (those dyes being chosen which are readily taken up by the fabric) : e.g., dyeings were made with Congo-red of $2.0 \%, \mathrm{r} 0 \%, 0.5 \%, 0.25 \%, 0.12 \%, 0.06 \%$. The

THE INDIGENOUS DYES OF BENGAL.
Table I.-Fastness to Light of Dyeings on Cotton..

[^12]shades of these dyeings are proportional to the percentage of dye used. It was found on examining the strips along with these standards, that it was fairly easy to say what were the relative intensities of the exposed and unexposed portions of a strip.

In the last column of Table I. the dye-stuffs are placed in Groups I-IV. according to their fastness to light. In Group I. are placed the most fugitive, in Group IV. the most permanent.

This system of classification has been applied by Messrs. Cassella \& Co., to a large number of synthetic dyes (consult "Cotton Dyeing " published by the firm). The groups to which the synthetic dyes employed belong are thus already known, and by comparison with these we can at once determine into which groups the various indigenous dyes fall.

The folowing peculiarities observed during the fading may be noted :-
Latkan fades rapidly from orange to light pink, and then little further fading occurs. This indicates that there are probably two different dye-stuffs in this material.

Red Sandal and Padauk both darken rapidly on first exposure and become colder in tint. Real fading sets in much later.
(II.) Fastness to washing with soap.

The dyed samples were all treated with warm soap and water under the same conditions. They were all steeped for 15 minutes at $60^{\circ} \mathrm{C}$. in an aqueous solution of neutral soap containing 15 grms. per litre. [The soap was tested for neutrality previous to use. It dissolved completely in absolute alcohol, and the alcoholic solution was not alkaline to phenol phthaleïn]. The samples were afterwards washed, dried and compared with the original dyeing. The dyes have been arranged in this way into four groups, I. being the most affected by washing with soap and water, and IV. the least affected. These results are given in Table II, opposite.
(III.) Fastness to Alkali.

The dyed samples were all steeped for ten minutes in a solution of sodium carbonate (Io grms. cryst. carbonate per litre) at $60^{\circ} \mathrm{C}$. washed, dried and compared with original. Also the colour of the alkaline bath after the steeping was noted (for I grm. of cloth 250 cc . alkaline solution used). Roughly speaking, the faster the dye the less the bath will be coloured. These results are given in Table III., and from them the dyeings are arranged into four groups, I. being the most affected by the alkaline bath and IV. the least affected.

Together Tables II. and III. indicate the fastness of the dyeings to washing under ordinary conditions.
(IV.) Fastness to Acid.

The dyed samples were all steeped for one hour in io per cent. acetic acid solution at 40 C . washed, dried and compared with the original. Also the colour of the acid bath after the steeping was noted (for I grm. of cloth 250 cc . acid solution used). Roughly speaking, the faster the dye the less the bath will be coloured. These results are given in Table IV., and from them the dyeings are arranged into four groups, I. being the most affected by the acid and IV. the least affected.

This treatment with acid measures the fastness of the dyeings to perspiration.

Table II.-Fastness to Soaping of Dyeings on Cotton.

* Results agree with observations of Messrs. Cassella \& Co. (loc. cit.).

Table III.-Fastness to Alkali of Dyeings on Cotton.

[^13]Table IV.-Fastness to Acid of Dyeings on Cotton.

* Completely blue whilst in acid bath.

Conclusion.

A summary of the results of the work recorded in this paper is given in Table V .
Table V. Summary-Fastness to various Agencies of Dyeings on Cotton.

Dyeing.	Fastness to light.	Fastness to soaping.	Fastness to alkali.	Fastness to acid.
Turmeric with acid ,, with alum	I	I	\} I	III-IV
Kusum	I	I	I	III-IV
Bakam (Tannin-tin mordant)	III	II	II	III-IV
,, (Tannin-iron mordant)	IV	IV	III	I
Palas without mordant ,, with alum	I	I	\}) I
Latkan (Murshidabad process) ,, (Nadia process)	I	III	\} III	\} III-IV
Manjista (alumina mordant) ,, (Turkey-red mordant)	II-III	IV	III IV	III IV
Catechu	II-III	IV	IV	III
Red Sandal	I	III	III	IV
Padauk	I	III	III	IV
Eosin (sodium stannate mordant)	I	II	II	IV
Congo-red	I	IV	IV	I
Primuline (developed β Napthol)	I	IV	IV	IV
", (developed Resorcin)		IV	IV	IV
Magenta	I	IV	III	IV
Safranine	III	IV	III	III-IV
Primuline (developed Phenol)	III-IV	IV	IV	IV
Alizarine (alumina mordant) ,, (Turkey-red ,,)	IV	II IV	\} IV	II IV

It is at once seen from this table that the majority of the indigenous dyes, as used, give dyeings which are very fugitive and not worthy of further attention. In
the range of the synthetic products it would be difficult to find dyes so easily affected by all agencies as turmeric, kusum and palas. Latkan, red sandal and padauk are scarcely worthy of further consideration, as they so readily fade in light. On the other hand the dye-stuffs bakam, manjista and catechu do not rank in the very highest grade along with, say, turkey-red, but they compare very favourably with the great majority of the synthetic products ; and, but for the question of cost, might well hold a prominent place even in the modern scientific dyeing trade.

There is, further, always the possibility that, by some comparatively slight modification of the dyeing process, the fastness of some of the other indigenous dyes might be very considerably improved. When we recollect that, e.g., in the case of Primuline developed with β. Napthol by merely passing the dyed fabric through a weak solution of copper sulphate, we are able to change the fastness to light from I. to III. in our scale (Cotton Dyeing, Messrs. Cassella \& Co., p. 93), there seems to remain always at least some ground for hope in this direction.

Memoirs of the Asiatic Society of Bengal.

Vol. I.

I. On certain Tibetan Scrolls and Images lately brought from Gyantse-By Prof. Satis Chandra Vidyabiợana, M.A., M.R.A.S. (Price Re. 1-8; or 2s. 3d.)
II. Sal-Ammoniac: a Study in Primitive Chemistry.-By H. E. Stapleton, B.A., B.Sc. (Price Re. I; or Is. 6 d.)
III. The Similavity of the Tibetan to the Kashgar-Brahmi Alphabet.-By The Rev. A. H. Francke. (Price Rs. 2 ; or 2 s . Iod.)
IV. Alchemical Equipment in the Eleventh Century, A.D.-By H. E. Stapleton and R. F. Azo. (Price Re. 1-8; or $2 s .3$ d.)
V. Malaysian Barnacles in the Indian Museum, with a list of the Indian Pedunculata.By N. Annandale, B.A., D.Sc. '(Price Re. 1-8; or 2s. 3d.)
VI. Ashrafpur Copper-plate Grants of Devakhadga.-By Ganga Mohan Laskar, M.A. (Price Annas 8; or 10d.)
VII. Festivals and Folklore of Gilgit.-By Ghulam Muhammad. (Price Rs. 2 ; or 2 s. Iod.)
VIII. Notes on the Bhotias of Almora and British Garinwal.-By C. A. Sherring, M.A., F.R.G.S., I.C.S. (Price Re. I-5; or $2 s_{\text {. }}$)
IX. Religion and Customs of the Uraons.-By the late Rev. Father Dehon, S.J. (Price Rs. 2 ; or $25.10 d$.)
X. Notes on the Fauna of a Desert Tract in Southern India (Herpetology and Entomology).-By N. Annandale, D.Sc., C.M.Z.S., with a list of Mammals by R. C. Wroughton, F.E.S. (Price Rs. 2 ; or $2 s .10 d_{0}$.)
XI. Amulets as Agents in the Prevention of Disease in Bengal.-Compiled in the Office of the Superintendent of Ethnography, Bengal, (Price Annas 12; or Is. 2d.)
XII. Earth-Eating and the Earth-Eating Habit in India.-By D. Hooper and H. H. Mann. (Price Re. I ; or Is. 6d.)
XIII. On a Cup-Mark Inscription in the Chumbi Valley.-By E. H. C. Walsih, I.C.S. (Price Re. I ; or Is. 6d.)
XIV. A Descriptive List of the Sea-Snakes (Hydrophiidæ) in the Indian Museum, Calcutta. - By Captain F. Wall, I.M.S., C.M.Z.S. (Price Re. I; or Is. 6 d.)
XV. Common Saws and Proverbs collected, chiefly from Dervishes, in Southern Persia.-By Lieut.-Col. D. C. Phillotr. (Price Re. I; or is. 6 d.)
XVI. The Common Hydra of Bengal: its Systematic Position and Life History.-By N, Annandale, B.A., D.Sc:, C.M.Z.S. (Price Re. 1 ; or 1 s .6 d .)
XVII. Animals in the Inscmptions of Piyadasi-By Monmohan Chakravarti, M.A. (Price Annas 12 ; or $1 s .2 d$.)
XVIII. Some current Persian Tales told by Professional Story-Tellers.-By Lieut.-Col. D. C. Phillott. (Price Re. 1; or 1s. 6d.)

XIX: The Dards at Khalatse in Western Tibet.-By Revi. A. H. Francke. (Price Re. 1 -6; or $2 s$.)
Supplement, Miscellanea Ethnographica, Pavt I. 1. The Blow-Gun in Southern Indîa. 2. Miscellaneous objects from the Rámanád subdivision of the Madura district. 3. Indian Weighing-beams.-By N. Annandale, D.Sc. (Price Re, I.)

Supplement, Miscellanea Ethnographica. Part II. 1. Some Malayan Weapons-By N. Annandale. 2. Plan of a Persian Gentleman's House.-By Lieut.-Col. D. C. Phillott. (Price Annas 8 ; or 10 d.)

Memoirs of the Asiatic Society of Bengal.

Vol. II.
I. Cirrhipèdes operculés de le l'Indian Museum de Calcutta.-Par M. A. Gruvel. (Price Rs. 2 ; or 2 s. rod.)
II. The Coinage of Tibet.-By E. H. C. Walsh. (In the press).
III. The Exact Determination of the Fastness of the more Common Indigenous Dyes of Bengal, and comparison with typical synthetic Dye-stuffs. Part I. Dyeing on Cotton.-By E. R. Watson. (Price Re. I ; or is. $6 d$. .).
IV. The Saorias of the Rajmahal Hills.-By R. B. Bainbridge. (In the press).

- Tarikh-i-Nuṣratjangi.-By Hari Nath De. (In the press).

MEMOIRS

of the

ASIATIC SOCIETY OF BENGAL

VOL. II, No. 4, pp. 43-84.

THE SAORIAS OF THE RAJMAHAL HILLS.

BY
R. B. BAINBRIDGE.

CALCUTTA:
Printed at qhe Baptist Mission Press, and published by The Asiatio Sodiety, 57, Park Street. 1907.

Price Iwo Rupees; or Two Shillings and Tenpence.

The Saorias of the Rajmahal Hills.

By R. B. Bainbridge

[Read December 5th, 1906.]
In endeavouring to illustrate the customs and ethnological peculiarities of the Saorias, it is difficult to refrain from dwelling briefly on the climate and nature of their habitat. Glancing at the old maps, the eye is attracted by the wide sweep of the Rajmahal Hills, which rise to an altitude of $2,000 \mathrm{ft}$. above the level of the sea. South of the Saoria tract runs the Bansloi River, a roaring torrent in the rains, and, in the dry season, a sandy-bed with here and there a glistening pool to mark its course. East and west the hills are met by the zemindari tract and the "Damin-i-Koh," falling away in gentle undulations until they merge themselves into the fat rice lands of Bengal. Northwards the hills stand out boldly, and stem the Ganges, driving its waters with tremendous force against the piers and bastions of the ancient city of Rajmahal.

This remarkable tract has an average rainfall of 50 inches, and a thermometer which frequently reaches 115 degrees (Farht.). In such a climate great muscular development is not to be expected; and the typical Saoria is short of stature, light of build, wiry and capable of undergoing considerable fatigue. Pale complexions are not uncommon ; but the characteristic colour is a chocolate brown, sometimes merging into black. The women are well favoured, robust, often elegantly proportioned, and pleasing in feature. They move with that swing of the hips peculiar to those habituated to weighty anklets, and toilsome marches up and down hills : a carriage as far removed from the sweeping grace of the high-caste Hindu woman, as the roll of the lugger is from the glide of the racing yacht.

The measurement of the nasal index gives an average of 94.5 . Turning to the Brahman the figures are $70^{\circ} 4$. In the Parisian the figures are $69^{\circ} 4$. The difference between the Aryan and the typical Dravidian is in marked contrast. In fact, the figures of the Saoria correspond closely to those of the Negro. The head is, however, dolichocephalic, and, in this respect, is similar to that of the Aryan. But the opinion may be hazarded that a set of more extensive measurements would considerably modify the figures 94.5 . The Saorias have, in bygone times, intermarried with Aryans, and traces of the facial beauties of that commanding race have not been entirely obliterated. In physique the Sonthal and the Uraon are typically Dravidian, whereas, in the Saoria, if the figures $94^{\circ} 5$ be accepted as representative, the affinity only exists in the proportions of the nasal index. The present speculation is, no doubt, opposed to that of high authority (see H. H. Risley, Tribes and Castes of Bengal); but a prolonged course of observations leads to the conclusion that, the Saoria lacks the characteristic squat and sturdy build of the typical Dravidian. It needs but a casual observer to distinguish the Saoria from the Uraoñ or the Sonthal. They are dissimilar, though the precise line of demarcation may not be easily definable. It would
be obviously illogical to attack the theory of a Dravidian origin on the sole ground of dissimilarity of physique. But it is well that facts ascertained should be dispassionately enumerated. Nor is this all, there are other obstacles: The inviolable ramifications of the totemistic system are absent; endogamy and exogamy are not the arbiters of nuptial alliances; marriage is regulated solely by the prohibitions of blood relationship; and the termination of the interdict, and the appearance of the fourth cousin, are simultaneous.

Turning to the moral faculty, it will be observed that some of the differences gradually disappear. The Sonthal and the Saoria are indiscriminate in appetite; articles regarded with loathing by Aryans are to them clean and wholesome. An animal that has died of anthrax or rinderpest is eaten. Sexual license though prohibited in theory is tolerated in practice. Professional prostitution is abhorred, but a religious festival, and a feast end in riotous indulgence. In both peoples there is the same amazing capacity for alcohol, a capacity by no means confined to the men. In the Sonthal there is a trait of treachery. In the Saoria it is lacking. The Sonthal is apt to trade upon his apparent simplicity, and conceals, beneath his stolid exterior, a large measure of low cunning. Less influenced by civilization, and adaptable to circumstances, the craft of the Saoria is superficial. The Sonthal hankers after strange gods and the flesh pots of Egypt. The Saoria prefers starvation on his beloved hills, and renders loyal allegiance to his confused pantheon of godlings and demons. Education and foreign association fail to equip the Saoria with the tortuous windings of the Oriental mind when bent on evil ; whereas, in the Sonthal, they enable him to cope not unsuccesfully with the sagacity of the Brahman. Thriftless to a degree the Saoria garners but to squander at a festival, or to become the fortunate possessor of a godling. Superstition, and its handmaid Imagination, mould him at will, and in the grove, or the tree he beholds with terror the "Jampori" (Demno ghost) and invests the inexplicable power of the railway train with a capacity for compassing the direst evil. He ascribes an epidemic of small-pox, or cholera, to the advent of inimical spirits by railway. He exorcises them by constructing a rude model of a train, wheels it through the village, and into the jungle, and desires the invisible passengers to journey onwards. Such is the Saoria of to-day, and such has he been for countless generations.

The exploits of the Saoria, with the bow and spear, form the subject of many a Hindu ballad. The Maharatta horsemen harrowed the rich valley of the Ganges ; but his fierce charge was stemmed by the dense jungle and the poisoned arrow of the Hillman. The resolute claims to independence maintained by the ill-equipped Hillman prove that the Mogul too was baffled.

What the sword failed to accomplish the tact and discrimination of Cleveland well nigh achieved. Under his masterly hands was evolved the "Hill assembly," a tribunal composed of chiefs, and vested with authority to try misdemeanants and felons. Under him the Hillman was weaned from lawlessness by the payment of stipends. These arrangements met with the approbation of the illustrious Warren Hastings. The inducements offered were, indeed, calculated to persuade the Saoria
to abandon the hills, and settle in that spacious belt of forest, and fertile country below, and ply the arts of peace. But it was not to be,-Cleveland was cut off in the flower of his youth. The incursion of the ubiquitous Sonthal commenced. Sal forest (Shorea robusta) and game were things of the past, and the Saoria clung to his heights eking out a precarious livelihood, his constant companions small-pox and starvation. Settlement operations subsequently rendered the position of the Saoria still more uncertain, and accorded to the incursion of the Sonthal the rights appertaining to prescription. The disappearance of the forest on the north of the Saoria Hills and the shrewd counsels of business men created the important industry in Sabai grass. To the native banker and middleman it has, in many cases, been profitable beyond the dreams of avarice ; to the Saoria it has, in the majority of cases, brought a temporary affluence, which is the portal to wretchedness. Abject poverty is no misnomer among the Saorias of to-day; six annas has to suffice many a family for victuals over eight weary days. Land-settlement, the Sabai grass industry and forest conservancy are indeed complex problems. The solution is intimately connected with the prosperity and preservation of a race. To solve them on broad and humane principles, and maintain a link with the past, may well tax the sagacity of a statesman.

I. Drvisions. ${ }^{1}$

Male.
Male " would mean hillman and is, probably, of Sanscrit origin. "Rama to his brother said as on Malya's cloud-capped ranges, in their hermit guise they strayed" (Ramayan) : the word "Mal" suggests hardy in the Sanscrit. Among the Saorias it also conveys the sense of virility and manliness. The word "male" may, therefore, be appropriately amplified as a "hardy hillman"; and, indeed, this is actually the meaning which the Soaria intends to convey.

[^14]\[

$$
\begin{array}{llllll}
\text { (Mas.) Nom. Maleh. } & \text { Gen. Maleki. } & \text { Dat. Malek. } \\
& \text { Acc. Malen. } & \text { Abl. Malente. } & \text { Loc. Maleno. } \\
& \text { Inst. } & \text { Malet. } & \text { Voc. } & \text { O'Male. } & \\
\text { (Fem.) } & \text { Nom. Malinth. } & \text { Gen. Malniki. } & \text { Dat. Malnik. } \\
& \text { Acc. } & \text { Malnin. } & \text { Abl. Malninte. } & \text { Loc. Malnino. } \\
& \text { Inst. Malnit. } & \text { Voc. O'Malni. } & &
\end{array}
$$
\]

Saoria.

This term is of doubtful origin, but has probably arisen in the expression "Savala \bar{a} Pahār,"' the name by which the Rajmahal Hills have been known to the Hindus.

The Sonthals call the Saorias Munda, and the Hindus call them Paharias. The term "Munḍa" is used by Sonthals who have seen the "Munḍas" of Chota Nagpore. The Saorias, however, protest against the appellation.

The Saorias have five divisions; these are territorial in nature, viz., Parte, Manḍro, Púbbi, Chetteh and Dakṛñi. Parte occupies the centre of the Hill Tract; Manḍro is found on the north ; Púbbi on the east; Chetteh is found on the east from TinPahar ; Dakṛñi is found on the South and in Pakur Subdivision. The inhabitants of these divisions marry without restriction. Great dissimilarity in language exists; and the Mandro is frequently unable to comprehend the speech and intonation of the Dakṛñi.

II. Traditions and Legends.

The traditions and legends of the Saorias are meagre, and I am unable to spare time to dwell on their folklore and fairy tales. The following legend is related by aged men after festivals to the youth of both sexes. I have translated the story exactly as related. Questions as to what became of the participants, in the feast, only result in imaginary exaggerations :-
"In the beginning lived Bhim Rajah and Bhim Rani ; they had seven sons and seven daughters. The sons were great hunters-they hunted every day. The sevep daughters were great cooks, and they used to cook for their brothers. Food was always ready for the hunters in their dwellings ; but the cooks were never seen as they used to conceal themselves in the paddy stacks (dhan stacks) within the houses. The seven brothers desired to see the cooks, and, accordingly, took counsel together, and left the eldest brother concealed within the house in a straw-heap. His watch was unsuccessful, but the food was placed for him. In this way six brothers hid themselves and failed to discover the cook. The youngest brother then concealed himself in the tatti (screen) of his dwelling. It was the custom of the girls to cook in Bhim Rajah's house and then carry the food to the houses of their brothers. He saw the girls husking rice in the same $u k r h i$ all together. They brought food to each house and then returned to Bhim Rajah's house, and, sitting in a line, began to search for lice in each others heads. Then the youngest brother appeared before them and said: ' It is you then who have been giving us food ?' They said : 'Yes, why should you tell it everywhere ?' He answered : 'I will tell.' Then the youngest brother, touching their persons, said: ' You are my eldest sister-in-law, and so on, until he came to the youngest, when he said: 'You are my wife.' He then took them to the houses of his brothers, and he hid his own wife in a dili (large basket used for keeping rice). When the other brothers came back they asked him: 'Have you found anyone ?' He said : ' Yes, see in your own houses, you have all received but I have got nothing.' The rothers then ate their meal and again questioned the youngest brother. Then he confessed and produced his wife. Being very happy the brothers arranged a great feast and
collected goats, fowls, fish, pigs and other things. These were cooked in separate pots. Beef, mutton, fish, fowls, pigs, etc., each had its own pot. The eldest brother said, 'Let each take what best pleases him.' They were sitting in a line with their wives, the youngest brother was given the preference as he had found the wives. He chose beef and makai rice, and left, and became a Saoria Paharia taking the cooking-pots with him. The other brothers took what pleased them and also left with their wives, and they formed the other castes. Hence it is that Saorias, when cooking away from their homes, never leave their cooking-pots behind them. They always carry them to their homes."

III. Ethics and Morals.

Dalton, referring to Lieut. Shaw's Asiatic Researches, Vol. IV, p. 48, writes as follows: "The Paharias have a firm belief in the transmigration of souls. Their high-toned moral code is, in respect to rewards and punishments, after death, entirely based on that doctrine which, with the code, was, it is said, revealed to their first parents by the Creator. It will be sufficiently understood by a perusal of the following little homily :-
" Whoever obeys God's commandments will behave well in all respects. He will neither injure, abuse, beat, nor kill anyone; nor rob, nor steal, nor waste food or clothes, nor quarrel ; but he will praise God morning and evening ; and the women must do this too. When a good man has lived this life as long as God pleases, God sends for him and says, " You have behaved well and have kept my commandments, and I will exalt you, but for a season you must remain with me."
"The object of the sojourn is not stated, but, when it is completed, the spirit of the good man is remitted to earth to be born again of a woman as a Rajah, or chief, or in some higher position than that he previously held. If he show himself unmindful or ungrateful in his exaltation, his days are cut short, and he is born again as an inferior animal."
"The abuse of riches or other good gifts is often punished in this world. The riches disappear or calamity befalls the offender. Concealment of crime, as murder or adultery, is looked upon as a great aggravation of the offence. It becomes still more heinous if the object of the concealment is to throw blame on another. God sees all that is done, and though mortals may be deceived, and punishment fall on the innocent, the really guilty is sure, in the end, to suffer a greater calamity than he inflicts. Suicide is a crime in God's eyes, and the soul of one who so offends shall not be admitted into heaven, but must hover, eternally, as a ghost between heaven and earth, and a like fate awaits the soul of the murderer."

Dalton (p. 268, Ethnology of Bengal) is inclined to doubt the genuineness of this moral code. It is true, however, that the Saorias possess a "Code of Ethics and Morals," although it is not nearly so elaborate as that quoted by Lieut. Shaw. The Saorias do not believe in a life after death-they deny the truth of the doctrine of transmigration of souls. I have described their ceremonies and am only concerned with facts: let others draw the inferences ; in a paper of this kind speculation is out of place.

The Saorias say that God, at the Creation, drew up a " Code of Ethics and Morals" for the guidance of all true Saorias. God handed this code to the first Saoria and he handed it to his son, and so on to posterity. According to the Saorias it runs as follows:-
" Good deeds are rewarded by God in this world, and bad deeds are likewise punished in this world. A good man suffers no harm : he has plenty to eat, he has good health, his herds increase and multiply, and, most important of all, the evil spirits possess no power to do him harm. The wicked man never prospers, his cattle die suddenly. The chief of all virtues is Truth. He who tells a lie commits the greatest of all sins. Let no one tell a lie or covet another man's things. Let no one injure another in body or in property. Adultery is wicked : let no one commit adultery."

This code came from Darmáre Gosain and Laihú Gosain, and it is as old as the hills. During ceremonies and festivals the Demno or the Bandári preaches and expounds the " Code of Ethics and Morals " to the young men and maidens. He exhorts them to obey the commandments, to observe Saoria customs and to be good Saorias. The practice of preaching in this strain is said to have existed from time immemorial.

Dalton, in speaking of the Oraons (Ethnology of Bengal, p. 257), observes: " I have not found amongst the Pagan Oṛaons a trace of the high moral code that their cousins of the Rajmahal Hills are said to have accepted." To theorise in this connection would be ill-advised. Admittedly, there is similarity of language between these two peoples; but similarity of language alone is not a sufficient reason for classing them as " cousins."

IV. Tattooing.

Ethnologically tattooing is of profound interest. But the enquiry was beset with difficulties. The girls were shy and the men suspicious. The question the maidens propounded to themselves appears to have been: " Does the enquiry endanger a custom which heightens our charms?" The problem before the men suggested mysterious designs connected with land settlement and forest conservancy. Question and problem though hazy were yet sufficiently defined to be obstacles. But compliments and presents, I found, had not lost their potency with the gentler sex, even in a matter which, questioned closely as to the reason for a design on a maiden's chin, or a mark on her nose, which appeared to increase the radiance of her black eyes.

Tattooing among the hill-folk cannot be compared with the marvellous designs of Japan ; indeed, the style has little of the artistic, and the completed picture is crude and, apparently, meaningless.

Among the recognized masters of this art several colours are used. The Paharias have only one medium, black. The instrument is the ordinary needle, or the thorn of the "Kandeh" (Malto), "Merleh" (Sonthali)—(Latin name not available). The colour is madel by mixing charcoal with " mahua" juice (Bassia latifolia) ; and the operator is an inexperienced friend. Under these circumstances, it is not surprising that the operation is painful and the design inelegant. The Paharia maiden tattoos.

Tattooing is exclusively her privilege ; and the men frankly admit an unbounded admiration for the marks on the faces of their girls.

Tradition has no tales to tell in regard to this interesting custom. Legend weaves no history, either in song or story among the hill-folk. Fashion appears to be the origin of tattooing. In days gone by, it is probable that the custom was not in vogue among the Saorias. Impenetrable jungle clad the fastnesses of the hill-folk, paths there were but few, and danger not unknown, -hence the hill-women did not extend their excursions to the plains, and render themselves liable to be enslaved by a custom, which was, no doubt, common enough in the broad valley of the Ganges.

Among the hill-people tattooing demands no preliminary ceremonies, and no special diet is observed by the subject during the period of operation. The non-Hinduized Paharia does not employ a professional artist. A jungle flower, an arrow, a spear, the stars, are ever at hand to serve as models, and one girl essays her rude powers of imitation on the person of another.

The wife of a hill chief employs no special design to mark her position. All designs are common property and heredity plays no part in their existence. The hill-folk proper tattoo the face as shown by the illustrations annexed.' With the Sonthals human-milk is employed for mixing the pigment ; with the Paharia the juice of the "mahua" tree is utilized. The difference in the materials used, human-milk and " mahua" juice, indicates that the interpretation, with respect to the Sonthal, is to be found in religious belief and tradition. In fact it is so. Tattooing among the Sonthals is intimately connected with certain immemorial superstitions. The philosophy which regards death as the donor of endless life and beatitude, may vest tattooing with power to propitiate a deity, or comfort a soul on its last journey. To the Saoria, death is the mysterious and the terrible! It may produce a spirit with an infinite capacity for evil, or it may be the portal to annihilation. In such a creed the exquisite sense of comfort possessed by the faithful is lacking. But it is not without its compensations ; and the Saoria claims to be of the same caste as the "Sahib" ; and in his own simple way glories in propounding opinions that find elaboration among the materialistic philosophers of Europe.

V. Marriage.

I would note that I have given an exact translation of what the Saorias have themselves related to me, in their own language, at various times, regarding their customs and ceremonies. What the narrative probably lacks in style, it gains in accuracy of detail : a desideratum in a work on ethnology.

There is no fixed time for marriages, they may take place all the year round. Oracles are not consulted. The girl should have reached the age of puberty, and the youth should be at least 17 or 18 years old. Marriages do not take place in the month of Puis, and during the dark o' the moon. The youth's mother begins the negotiations. Seeing a suitable girl, she betakes herself to the house of the parents. Her first enquiry

[^15]is as to whether the girl has been bespoken, and as to whether her affections are already engaged. If there be a previous arrangement, the youth's mother seeks in another village for a bride. A girl having been found, her mother and father consult her. When ascertained that her affections are not engaged, the youth's mother says that she will return in the course of three or four days; this is in order to allow the girl's relatives time for consultation. The second visit must not be paid on a Sunday ; any other day is auspicious. Sunday is an unlucky day and pujahs are forbidden, also agricultural operations. Visits and marriages may not take place on Sunday, and, neither marriages, nor negotiations, may take place during the dark o' the moon. The moon is required to witness the ceremony. There is also a superstition that marriages may not be fruitful if consummated during the dark o' the moon ; and that there may be general bad luck and maladies as well. On the day fixed the youth's mother and father do not, as a rule, keep the appointment. A man of good character and intelligence, who is not a relative, is selected for the purpose. He, on his part, chooses two or three companions to witness the discussions. He and his companions are fed and are then sent off with a malla (necklace) and a rupee. The necklace is made of glass beads or silver as the case may be. The would-be-groom has to accompany the "go-between" or "marriage-broker." The time for departure is not fixed beforehand, and pujahs and offerings are not made before setting out. On arrival the marriage-broker and his companions are asked to be seated, tobacco and water are offered, and the guests wash their feet and then take their seats. The marriage-broker opens the discussion by saying, "Your daughter has been seen and is desired in marriage. The youth is with me, and, if you are agreeable and pleased with his appearance, further arrangements regarding the ceremony may take place." The girl is then sent for by the parents, and she, and all her relatives, uncles, aunts, and brothers appear. All parties sit in a circle, the "go-between," the groom and his companions being apart. The girl stands up and is told by her father and mother, "See, this youth desires you in marriage, and he has brought a malla and a rupee ; if you are pleased with him, and wish to accept him as a husband, take the malla and the rupee." The young man, at this stage, is standing opposite the girl, outside the circle of her relatives. The girl's consent is indicated when she takes the malla and the rupee. In this particular matter the girl is her own mistress. The malla and the rupee are handed to the youth by the marriage-broker or Situ or Situdár, and the girl, if agreeable, walks up and takes the offerings. If the girl be not agreeable, the Situdar rises and says to the assembly, "See, there was at first a talk of this marriage, but the girl is not agreeable ; this being so, I sprinkle water over her person to show the arrangements and our claims are washed away : take your daughter, she is doubtless precious, and her marriage will be made with silver and gold (will be sold for gold and silver-Malto)." Uttering this sarcasm the Situ, the disappointed groom and his companions depart. The water for this ceremony is handed to the Situdar by the girl's parents. No mantras or spells are said before sprinkling the water over the girl's person. If the youth is displeased with the girl, he tells the Situdar who makes the fact known to the assembly. The girl's parents ask what fault has been found in their daughter. It being shown
that the youth is not agreeable, whatever may be the reasons, the parents say, "Very well," and a lota of water is handed to the Situdar. This may be brought by anyone. The girl then sits facing the east, the Situdar places a rupee on her head and pours the water over her ; in this case it is necessary to pour the water, not to sprinkle it. After this the Si \dagger udar says, "See your daughter is free to marry elsewhere," and then they take their departure. The rupee is the property of the girl's parents.

In case the young man and the girl are agreeable, the youth faces the east and the girl stands and faces her swain. The sun is a god, called "Beru Gosain" ; hence the custom of facing the east. The girl takes the malla and the rupee. The Situdar, the young man and their companions are then fed, and after eating they depart. Before starting the Situdar is asked to bring information within a few days as to when the youth and his parents wish the actual wedding to take place. The Situdar carries the request to the boy's parents who say, "Good, go after four days and tell the girl's parents that we fix the I5th day hence for our visit." No special day of the week is selected and no oracle is consulted. But a date is fixed for the purpose of enabling the girl's parents to prepare pochai. Pochai is also made ready at the house of the youth's parents. The parents now visit their relatives-the mother her relatives and the father his relatives-and tell them as regards the marriage about to take place. This is not, however, done by the girl's parents. These relatives present gifts according to immemorial custom, such as, money, mallas, arrows, and tangas (axes), knives, etc. The male relatives give knives, tangas, arrows and money, and the female relatives mallas and money. Bows are not presented. These offerings are all collected in the youth's house. Edibles of all kinds are gathered on both sides according to circumstances. When the day fixed by the youth's parents has arrived, two persons from the girl's parents called Lapsitu (Feast-broker) come round. They are relatives of the girl's parents, and they come empty-handed. On arrival, they ask the young man's parents as regards the quantity of gifts collected. The answer to this question is not given immediately. They are asked to be seated and water is given by the Bedsitu, the Lapsitus wash their feet, and their persons are oiled by the Bedsitu and they smoke. Food is now offered and then pochai. While drinking and making merry the boy's parents produce the gifts collected,-money, arrows, etc.,-and count them out before the Lapsitus. This is done by the father or the Bedsitu. But, in the case of money, the whole sum collected is not shown ; about half the sum is counted out in a flat basket or brass vessel. If all the money be shown many pseudo relatives collect on the side of the girl, and so about half the sum collected is kept hidden. The Lapsitus are, however, told that all the money collected has been shown and that, being poor folk, the girl is desired in marriage as an honour, it being unfortunate that more money could not be collected, and other words to this effect. These words are said by the Bedsitu, and the father. Then the Lapsitus are presented with one rupee each as earnest money, so that they may favour the side of the youth and his parents. One rupee each is the fixed sum, but less is sometimes paid. After this the Situs, Bed and Lap, the boy's father and others, go outside and see the bull or ox that is to be sent to the girl's house-buffalos or pigs cannot be sent. The animal should not be lame,
blind, or have a broken horn, and it must be young. After looking at the animal they return and the Lapsitus say, "We have seen all things, money and other gifts, so get ready and come with us." The relatives having assembled in the youth's house food and drink are given to all. Then one of the Lapsitus and one of the youth's relatives take the bull, or ox, and walk ahead to the girl's house. Allowing them a a sufficient start, the others follow with the youth, the money, the arrows, and other gifts. Palanquin and drums are forbidden by old custom. The young man dresses himself in white or in any other colour except yellow, yellow being the symbol of death. He adorns himself with mallas and other ornaments according to means. The bull and his attendants having arrived, the girl's parents are informed, khatias (beds) are brought and water is offered. When the marriage party arrives near the village, the Lapsitu, who has accompanied it, takes all the arrows and tangas, and stands outside the village on the path, and he counts the party as it passes by into the village. This is done so that the presents and food may be properly apportioned. On arrival, a girl on the bride's side washes the feet of the whole party, and she is given a rupee in the vessel wherein she brought the water. A larger or a smaller sum may be paid. The party sits and tobacco and refreshments are offered and accepted. These attentions are paid by the Lapsitus. The Bedsitu is now taken inside the girl's house and he is accompanied by the youth's father, the groom himself, and all his near relatives. The young man is given a seat in the centre of the house, adjoining the central post, which is found in all Paharia houses. The young man faces the east and his relatives also take their seats. Pochai is brought and is placed in front of the boy's father. The girl's near relatives also go inside the house. The women (girl's relatives) sit on the western side of the house and all the male relatives on the eastern side. It is essential that the young man should sit and face the east. The Lapsitu gives pochai to the groom's father, to his mother and to all the near relatives of the groom and to the groom himself. The Bedsitu then takes some pochai and pours it on the ground, saying, " O Sun god and truth god, in the name of the youth, and the maid, I pour this offering to you ; may they live long and prosper and have many children !" The question of pon (bride price) is now discussed and the bride herself is brought in. She may stand or sit and no special seat is placed for her. The Lapsitu gives a narrative relating to his journey to the groom's house, and the hospitality which he has received. He also gives a list of arrows, and other things, seen by him and brought, including the bull-he adds, "The parents said, we are but beggars and desire the girl to honour our house-let her be given to us accordingly." Then the groom's parents repeat the story about poverty and supplicate for the possession of the girl. The girl's parents accept the situation. Half the money is then produced by the young man's father and presented and accepted. The arrows, axes and knives, are also given. The girl's grandmothers then appear and demand their rights, Re. I each. This has naturally to be paid from the hidden store. Then come the girl's elder sister and husband and take Re. I each, the maternal aunt also gets a rupee from the hidden store-this is her right. The village headman demands his rupee, mándla táká; he takes this money in order to catch the girl in case she afterwards runs away from her husband. The village
watchman, if any, receives two annas for the same purpose. The bride's sister, or other female relative, then takes a pailá of rice (measure) for the groom and bride and four annas. The rice and other victuals brought by the youth's parents, amounting to five or ten seers, are presented to the girl's parents. The girl is brought before the groom and is clad by the young man's married or unmarried sister (not a widow) in her marriage garments (two garments presented by the groom's parents). After this a rupee and a cloth are given to the bride's mother. This is called kochrenkitteh and is compensation for the clothes spoiled by the girl during her infancy. The girl's father also gets a siropah (turban) and a rupee. All these sums are paid from the hidden store. The groom and bride then sit together, opposite each other, on the ground, in the centre of the hut. The groom faces the west and the bride the east. The Bedsitu places sindur on the little finger of the right hand of the groom, and, taking the groom's hand, he forms a cross between the eyes and nose of the bride, tracing the figure over five times according to custom. Then the bride's brother, or father, or cousin, places one spot of sindur on the groom's forehead. After this ceremony the brother, or father, as the case may be, washes the bride's hand, and, placing it in the Bedsitu's hand, says, "Behold, this girl I give to you being free from disease and blame, and without tarnish; take her and see that she is properly maintained." The Bedsitu hands the girl, in a similar manner, to the groom's father, and, in his absence, to the groom's brother, or to the groom himself. One rupee is taken by the girl's brother for the sindur and one rupee for making over the girl's hand; this money is paid by the groom and is called tetțapeheh sundrá tudeh panrond taka. The Bedsitu says: "Take the girl ; if she leaves her husband without cause, he will be entitled to get the expenses of the marriage, and, if he turns the girl out without cause, he will lose his marriage expenses."

After the sindur ceremony, the girl's brother and her maternal uncles take two arrows and, going outside, shoot the bull, máthi bichī. The first arrow is shot by the girl's brother, and the second by the maternal uncle. The animal is finished off by the bride's paternal uncle with an axe, and the axe becomes his property. The animal is cut up by the girl's brother or uncles, and a piece of the liver is taken into the house and broiled; it is then cut into small pieces, and a piece, with pochai, is given to the groom by the Bedsitu. The Bedsitu performs a similar office for the bride and all her relatives. The Lapsitu does the same for the groom's relatives. The pochai for the groom is brought from his own house: two ghaylas (pots) must be brought, one for the mother and one for the father of the girl, called bandi taddi. Now every one sits down to the feast. The guests have their hands washed by the Bedsitu and Lapsitus. The rice brought, as noted above, is cooked, and given in the same dish to the bride and the groom with a little curry. After the feast the bride and bridegroom and the guests all drink, and then the Bedsitu takes the girl's hand and gives her to the groom, who, taking hold of the little finger of her right hand with his right hand, makes his way oustide the house followed by the grests and relatives. The groom and bride are stopped at the doorway by some one on behalf of the girl's relatives, and are not allowed to go until the groom has cast two annas in pice on the ground. They then
proceed to the Jandi Gosain outside the house and seat themselves beside it. The Bandári who corresponds to the Gorait (the individual who gives invitations and performs other offices for the village) comes forward with a fowl on behalf of the girl (not a capon) and a loṭa of water (brass vessel) and says, "O Jandi Gosain, O Beru, Bilpu, itinte e! u dokánandá narrah cote meno mallá," which, being interpreted, means, "OSun God and Moon and Jandi Gosain, from this day forth may they be happy; may no evil approach them!" The fowl's head is now severed and the blood is sprinkled over the Jandi Gosain, the bride and the bridegroom. The water is also poured over them. A general shaking of hands takes place and the married pair and party make their way homewards. The marriage and these ceremonies occupy one day. It is usual for the groom and his bride to leave after the marriage, but sometimes the groom and party stay over two or three days. In such a case it is forbidden for the contracting parties to cohabit. The rule is, however, not very strictly observed.

On arrival at the groom's house, the bride and her husband sit beside the Jandi Gosain. The village Bandári performs the ceremony described above, and the wedded pair are now free to enter the house.

Five days having elapsed a hanriya (earthen pot) filled with pochai and a khassi (goat) or pig is killed and taken by the Bedsitu to the bride's father. The married couple and their companions accompany the Bedsitu. These things are presented, and, after eating, the party returns the same day with any meat, or pochai, which may have been offered in return. These are the proper customs, but expenditure is curtailed according to circumstances. The contracting parties meet before marriage, but they are not supposed to have any sexual intercourse. In case of sexual intercourse, the young man is fined by the village panchayat two pigs, one for the girl and the other for her lover (qedpáke). These pigs are killed and the blood is sprinkled at the door of every house in the girl's village, and the flesh is eaten by the villagers and the panchayat. This is done to cleanse the village and prevent the entry of diseases. The marriage then takes place according to the wishes of the parties. In such a case the girl's father claims his pon Rs. 20 or so, and the erring pair are considered to be married and proceed to the groom's house. The Bandari then kills the fowl as described above and the groom and his bride enter the house.

Drums are not beaten at marriages, and songs are not sung, nor are there any dances.

VI. Prohibitions.

A girl may not marry her brother, or first cousin ; she may, however, marry her fourth cousin removed. The same rules prevail on the side of the mother. A girl cannot marry any near blood relatives. A man may marry an elder sister, and a younger sister, but not a younger sister and then an elder sister. A man may marry five or six wives, he may marry five or six sisters provided the eldest sister be willing.

There are no tribes or castes among the Maler. First and second cousins can only come together of their own free will. The marriage would not be allowed by the
parents and by the village panch. When a case of this kind is indicated by the girl's pregnancy or otherwise, a panchayat is called, and, on satisfactory proof, two pigs are taken from the parties, also two fowls (not capons). They are slaughtered and the blood is sprinkled with water at all the houses in the village by the Bandári. Salt is then brought by the Bandári and mixed with water in a leaf in the presence of the panchayat. The Bandári then says, " If you two come together again you will die within five days of the connection. You are henceforth separate. O Gosain, these two are henceforth separate, if they come together again destroy them within five days." The salt is placed in the leaf with the point of a sword, or knife, or with the claw of a tiger or leopard. The offenders are made to drink the mixture by the Bandári. As the delinquents get up to go the Bandári tears in two sal leaves, one for each offender, repeating the curse. The delinquents then go different ways. The girl and her parents keep the offspring of such a union, and the child is admitted into caste without any special ceremonies. But until marriage he is not allowed to eat at pujahs performed by the village. After marriage he is allowed to do so having feasted the village. In the case of a girl, she takes her place with other women after marriage. In any case women are not allowed to eat offerings made at pujahs. The husband of such a girl has, however, to feed the village to wash away the stain as it were.

A man having married the youngest sister in a family cannot marry any elder sister. The prohibitions in this connection are very strictly observed. The elder sister, in such a case, may not sit on or touch the bed or clothes of her younger sister's husband, nor may she smoke his huka. There are punishments prescribed for these offences. If a younger sister's husband and an elder sister come together, the man is fined Rs. 20 and is outcasted; the woman has her head shaved, and painted with saffron, and lime, and she is taken all round the village by the Bandári and made a public spectacle. The offenders are also told, "Go and die in the jungle or anywhere." Such offenders having obtained property and a fresh household godling, are readmitted to caste, after giving a feast to the village. The man's wife does not desert him in such cases. The Rs. 20 wash away the sin so far as she is concerned. This money is spent in a feast, and the liver of a pig is broiled and offered with patki taddi (dáru) to the ancestors of the offenders with these words: "Grant, O ancestors, that this sin be not put to the account of the village, but to the account of the offenders themselves "! The liver and dáru are disposed of by the panchayat.

There is nothing to prohibit a Saoria from marrying a woman of another caste. This cannot be done according to custom, but when parties come together, they are admitted to caste by means of the usual feast. When the man and woman die they are not buried in the Paharia cemetery without payment of Re. I each to the village headman. This sum is termed bewah koveh-bewah, offering at a pujah, and koveh, together. The children of such unions are Saorias, and are subject to no fines and ceremonies, and pay nothing to be buried in the village graveyard. In olden days it was customary for Saorias to rush down into the plains and capture wives and cattle. Occasionally there used to be reprisals on the part of the zamindars and their rayats. There are many cases in which the descendants of Gualins are still alive. Boys, too,
were captured by the Paharias and they became Saorias by intermarriage. Such expeditions were made by armed bands. Khetaurin and Dhanukain wives were also captured and their descendants are still living. The Hindus have also taken wives from the Saorias.

VII. Adoption.

The custom of adoption is well known. The boy's father is given money according to circumstances, and a bull, or ox, is given to the village for the usual feast, and the selected boy is then handed over. A daughter may also be taken in the same way. In the latter case, however, no money or animal is given, and the girl is only entitled to a half share of the property of her parents by adoption. The balance goes to the other relatives. An adopted son is entitled to the whole of the property. A man may also adopt a brother : in this case he pays nothing, he merely informs the village of his intention. Such a brother is not entitled to any of the ancestral property. The adopted brother may marry the younger sister of his sister-in-law by adoption, but not the elder sister. He may not marry the sister or daughter of his brother by adoption.

The custom of exchanging daughters is prevalent and is a very ancient one. The Manjhi Bhuiyas intermarry with Saorias and eat with them. The Saorias do likewise. Such marriages are not brought about by go-betweens according to ancient custom. The Saorias assign no reason for this practice. The Bhuiyas are looked upon as of the same caste, so to speak, but as to whether they broke away, or were outcasted, for some transgression is not known ; and there are no traditions or stories on the subject. There are no restrictions in regard to marriage from the point of view of social status. For instance, the daughter of a chief may espouse the son of a rayat and vice versa. In the matter of geographical position, there are no restrictions of any moment, and distance is not a bar to the performance of such marriages. There are no differences of belief, or religious practice, and, accordingly, there is no restriction as regards marriage. Differences of occupation offer no bar to marriages.

Infant marriage is not observed. The parties must be of an age to please themselves. In the case of a girl, the fact that she is fit for courtship, is indicated by her wearing a cloth, passing from under her right arm, and tied in a knot on her left shoulder, and falling over her breasts and stomach. It is not essential that the girl should have menstruated. The time for wearing this cloth is fixed by the girl's mother, elder sister or other female relative. There is no special ceremony attached, but the cloth is worn by the girl for the first time on some festival day. Age is no restriction to marriage, and girls are never married to arrows, or trees, nor are they dedicated to temples. The Paharias have no temples. There is no blame or penalty attached to a girl who is not lucky enough to find a husband, nor do her parents and relatives suffer in any way.

Widows are free to re-marry. Such a marriage is called bandiawoh. There are no go-betweens in the proper sense of the term for such marriages. Sindur is not used, but, in other respects the marriage is the same as the regular ceremony. The expendi-
ture is less, however, that is in all things the expenditure must be one-half of that required for the marriage of a maid.

A menstruating female is subject to several restrictions. She is not allowed to touch any beds but her own. She is not allowed to touch the clothes and other articles of any one in the family. She is not allowed to cook for the family. These restrictions last for four or five days as the case may be. But these restrictions are imposed only when people are looking on as a general rule!

Polyandry is not known. In the case of the death of an elder brother his wife may be kept by a younger minor brother. In this case the girl lives with her husband's parents or relatives ; but she is not allowed to co-habit with any one. As soon as the youth is capable, the Bandári kills two fowls at the Jandi Gosain, and sprinkles the pair with the blood and with a lota of water. They are then allowed to co-habit. There is no feast. The Bandári invokes the Sun god and asks for a blessing on the pair while sprinkling them with blood. The binding portion of the ceremony is the placing of sindur and the eating of the broiled liver. The blood of the fowl consummates the marriage ; vide marriages of those unable to pay. The slaughter of the fowl and the sprinkling of water are essential. A widower taking a young girl in marriage has to pay twice the usual amount of marriage expenses. The pon money and expenses vary according to means, from Rs. 2 to Rs. 100 and more.

A widow cannot, under any circumstances, marry her husband's elder brother. An elder brother's wife might, however, be taken in marriage by a younger brother. She may also marry her fourth cousin removed ; it is not compulsory that she should marry in the family ; she may marry an outsider.

The first wife is the chief wife and all others are her subordinates. (Meqri Peli, big wife). All the household property is considered to be under her charge. The servants (if any) are under her orders. She has the privilege of cooking for the family. Her sons succeed to the father's property, that is to a third share. The balance goes to the other wives and their children. In case of illness or absence of the first wife, the second wife occupies her place, and is vested with her privileges.

The wives all live in the same house. There is no custom enjoining the wives to occupy separate houses. The chief wife serves her husband first with food, and she has the privilege of making the beds. She and her co-wives do not eat until the husband has finished. She then serves her co-wives, children and servants, and, finally, she serves herself. At night the husband sleeps in the centre, and the wives occupy their beds on either side. In case of intercourse with a younger wife, without the consent of the elder wife, the husband is liable, on complaint, to a fine according to circumstances. For the first offence a warning is administered. A man may keep as many concubines as he can afford plus wives. This can only be done, however, with the consent of the chief wife and the girls themselves. Concubines are taken in order to increase the number of servants; and concubines may be of different castes. A Saoria would not be outcasted for keeping a concubine of another caste. In the case of division of property, the youngest wife's share is divided in two shares,
one share goes to the younger wife and her children, and the balance to the concubines and their children.

Professional prostitution is not a Saoria custom. But it is admitted that girls and women do sometimes prostitute themselves by stealth. The offence is said to be of recent origin. They do not, under such circumstances, confine their attentions to the Saorias. A woman caught prostituting herself has to undergo the salt punishment and is cursed. Prostitution has its origin in poverty and in association with the Hindus, due to the larger number of markets and better facilities of communication. In olden days, the Paharias say, the soil was richer and there was a more abundant production ; there is a smaller quantity now as the soil is worn out!

The bride gets no part of the pon money if any be paid. This belongs to her parents and becomes a portion of the ancestral property, and is inherited according to rules already laid down. The bride's personal share is the rupee and malla presented by her husband.

VIII. Physical and other Defects.

Physical defects, on the part of the girl, are not permitted after marriage to annul the contract. Defects such as fractured limbs, idiocy, lunacy, are not considered by the panchayat to be good grounds for annulment. Physical defects are compensated by the fact that a man can take another wife. In such cases the wife herself counsels the taking of another wife. An incurable disease, after marriage, is not a sufficient ground for annulment. The panch will, however, allow an annulment on payment of Rs. 5, which are placed on the girl's head, water is sprinkled over her person by her husband, and he then breaks a straw in two and the annulment is complete. In such a case he has no claim on the pon money paid by him.

If the girl finds defects in her husband, such as mutilation, or impotence, or a filthy and incurable disease, the panch annuls the marriage on payment of the pon money. No fine has to be paid to the panchayat; the Bedsitu sprinkles the girl's head with water, and he breaks the straw as shown above. The annulment is then complete. As a general rule, there would be no marriage in the case of material defects. Such defects as a broken limb, a blind eye, etc., would be mentioned on either side during the preliminary negotiations; and it has to be borne in mind that parties have ample opportunities of intercourse before marriage.

IX. Divorce.

Divorce is allowed in cases of illicit intercourse on the part of the wife. In such a case the husband is entitled to get compensation from the lover, ranging from Rs. 9 upwards, according to circumstances. The husband breaks the straw and pours water over the wife's head; this ceremony dissolves the marriage. If the wife can show that she was forcibly betrayed, her husband keeps her after taking the fine and obtaining a promise from her as regards another wife. Arrangements for a fresh wife are made by the erring woman among her own relatives. In such cases the
first wife loses her privileges as head wife, they pass on to the second wife. A wife may not divorce her husband for adultery.

A divorcée may marry again. Her children by the first marriage remain with the father. The marriage in such cases is similar to the bandiáwoh of widows. The children of divorcées and widows share as in the case of younger wives, if there be another wife, if not the widow or divorcee becomes the head wife and enjoys the privileges of that individual.

The children of concubines of another caste are classed as Saorias and not after the mother.

The widow of an elder brother may marry a younger brother. But this is not compulsory. Parties please themselves. The younger brother's wife cannot, under any circumstances, marry an elder brother. A widow's children remain with the first husband's family in case of re-marriage. She, however, has no rights in her first husband's property. In case she marries a younger brother she shares her first husband's property with her children. In the case of the widow being childless by her first husband, the second husband, being a brother of the deceased, succeeds to the property and through him his children inherit. In the case of issue from both brothers the children only inherit the shares of their respective fathers.

X. Shares of Property.

If a man has two sons the property is divided in the proportion of 6 to 4. For instance, if there are io heads of cattle, the elder son gets six heads and the younger four heads. Similarly with land and other property. In the case of other brothers they share equally in the second brother's property. Unmarried brothers are, however, entitled to a separate share from the ancestral property termed the marriage portion. If there be no sons the daughters inherit equally, but in this case the panchayat is entitled to a buffalo, or a pig, for the usual feast. If there be sons and daughters, the daughters are entitled to one cow and a thallia each (brass plate). Grandsons are entitled to an equal half share of the grandfather's property. The balance goes to the uncles on the father's side. On the mother's side the uncles have no rights. The daughters of uncles are not entitled to any share. In all cases of dispute the matter is referred to a panchayat. As a matter of fact, property always descends among the Saorias in the male line, except in the absence of male descendants.

A widow with children may not alienate except with the consent of the children. This implies years of discretion on the part of the children. In the case of minors, the husband's male relatives have to give their consent, and the alienation is effected by these relatives. In case the alienation is indispensable, and these refuse their consent, they are required to see to the maintenance of the children till the days of trial are over. A widow is not entitled to alienate property by gifts or otherwise. Being childless she holds the property during her liftime. As soon as she dies, it passes to the male relatives. But in case of re-marriage a widow's rights disappear and she no longer holds the property. Movable and imnovable property are divided accord-
ing to the "rules laid down above. There is no distinction. Ancestral property is divided; self-acquired property is not divided except by the sons, or other relatives in the direct line: that is, the father's property, or grandfather's property, is divided by sons; but the elder son's property is not subject to division except by his own sons, and, in the absence of sons, by his daughters. If there be no issue of the elder son, his brothers inherit equally, and the panchayat is entitled to a cow, or ox, or pig for the usual feast. The issue being daughters and sons, the daughters are maintained by the sons until marriage. The same rules apply in the case of self-acquired property of the daughters, that is, the eldest daughter's self-acquired property passes to her legal descendants, and, in the case of her death unmarried, the sisters share equally. The rights of daughters do not disappear with marriage. Their rights only disappear in the case of death without issue ; that is, the daughter's husband does not inherit the property, and, on her death, the property passes to the male relatives of her father. In case one daughter dies, her sisters divide her share, ancestral and acquired. A widow with self-acquired property is entitled to the portion acquired by her when she re-marries. A stepson has no rights in his stepfather's property, either ancestral or acquired; it is, however, customary for stepfathers to maintain their stepsons and to provide expenses for their marriage. After marriage the stepson seeks his own fortune. In the case of a man dying without relatives, in the male or female line, the property, ancestral and self-acquired, goes to the village headman. In such a case the headman gives a feast, expenses being provided from the property in question.

XI. Modes of Addressing one Another.

A wife calls her husband by the name of her son or daughter, e.g., "O father of so and so, come here." If there are no children, she will say, "A re come here"-Are being equivalent to ehji (Hindi). The husband also calls his wife by the name of his children, and, if there be no children, he says, "Ore come here"-Ore feminine of ehji. A man addresses his brother-in-law and his sister-in-law by his or her name, such as, Mahesha or Maheshi. Other relatives are called by their names. The eldest brother is not addressed by name by the younger brothers. They call him, " O elder or eldest brother," e.g. Bedo baya itik barra (Big brother, come hither).

XII. Birth and Pregnancy.

There are no ceremonies of any kind connected with pregnancy, but women in such a state refrain from drinking patki taddi (country liquor) ; this, however, is not enjoined.

During accouchement, a woman is made to sit on a pinrah (wooden stool) ; a rope is fastened to the roof of the hut, and the expectant mother grasps the rope, while the Dai (midwife) maqodariy $\bar{\imath}$ (Malto) holds the patient from behind and accelerates and helps delivery by gentle pressure on the stomach downwards. The maqodariy $\bar{\imath}$
attends to the mother and child for four or five days as the case may be. The fee is four annas and a cloth, but more is sometimes paid. The navel-string is tied and then severed with an arrow head: the dai charges one anna for this operation. The arrow must belong to the householder, otherwise the panchayat levies a fine in the shape of a fowl. If there is no arrow, the operation is performed with a sharpened bamboo taken from the roof of the hut. Cloth is bound round the mother's hips and stomach very tightly, and, after washing her with warm water, the child and mother are put to bed ; oil is used. The father is not allowed to do any work for five days; he stays in the house ; he may not do anything besides bring firewood. His daily avocations are done by his neighbours, or relatives, and he is not permitted to walk across his own fields or the fields of any other villager. Should he touch the beds of others, or go to the fields or jhums (clearings) of others, a fowl has to be paid and a pujah has to be performed. The blood of the fowl has to be sprinkled on the bed or field to wash away the stain. This pujah is performed by the owner of the bed or field. The reason is that the man is unclean, and his touch brings sickness to the owner of the bed and destroys the crops in the jhum or field.

After five days the navel-string drops off and is taken up by the dai (midwife) and is put into a leaf cup with oil ; the ashes from the hearth are taken out and heaped on an earthen plate and the leaf cup and navel-string are placed on the top ; a miniature bow and arrow are stuck into the ashes, and these are covered with a cloth, and taken before dawn and placed under a " Kusum" tree (Schleichera trijuga). This is the old custom, but now any tree may be selected. The ceremony is performed by the father who says, while doing so, "I have a son, may he be a great hunter." In the case of a girl the operation is varied by sticking a bamboo spoon for mixing rice, into the ashes, and the father carries it and the navel-string as before, and places them under a tree saying, " May she be a good housewife." Returning home he consults his wife as to the name which should be given to the infant ; the name of a relative is selected. The eldest son takes the name of his paternal grandfather, and the eldest daughter the name of her maternal grandmother. The father and mother then blow into the ears of the child calling it by the name selected. This completes the ceremony. The house is now cleaned and the clothes are washed. For a month, in the case of a boy, the parents visit no one, nor are they permitted to touch the things of other people. The husband is not allowed to shave or cut his hair. In the case of a girl these taboos last for two months. After a month the father brings a sal twig, with two leaves on either side, and he fixes it on the path west of the village. Beside the twig he places a handful of rice. On the top of the rice he pours the contents of a fowl's egg, and the shell he fills with water, saying, "May my infant's life be as full and complete." He places this on the top of the rice and returns home. The mother and child are not required to be present at this ceremony. This is the cleansing ceremony and the parents are permitted after it to eat with the villagers ; and the father shaves and cuts his hair. In the case of twins the same ceremonies are followed. One egg suffices for the cleansing ceremonies. A well-to-do father makes rice beer and feasts the villagers. Paharia chiefs and village headmen use the same ceremonies.

XIII. Death and Burial.

The dead are buried; the ancient custom is interment. After death the corpse is washed and oiled by the relatives. It is then clothed in its best apparel, sindur is placed on the forehead and chest, one line down the nose and one line down the chest. Bows, arrows, all personal property, are brought and placed with the corpse. In the case of a woman, all her jewellery is put with the corpse ; only one article belonging to the deceased is retained and produced on days of festival and pujahs as a " souvenir." After this the corpse is carried outside the house, and placed with its head towards the west, the feet being towards the east. Before taking the corpse outside, grain is scattered within and without the house, and, as a rule, the path taken by the corpse to the graveyard has grain scattered along its length for some distance. There is general lamentation. The eorpse is carried by four individuals, relatives or others. A fowl is killed and is cooked with makai (Indian corn) and put in an earthern plate. On the way to the graveyard the khatia (bed) is placed on the ground and all the relatives have one last look. From this point all the women-folk return. On reaching the graveyard, the grave is dug in depth to the height of an ordinary man, the bottom of the grave is laid out with poles, and leaves, and the corpse is taken off the khatia and placed at the bottom of the grave on the poles and leaves. Then one of the relatives takes two leaves of the bhelua plant (Semecarpus anacardium) and places them over the face of the corpse. Poles are then driven in horizontally about half-way up the grave so as to make a platform over the dead body. After this the grave is filled in. The corpse is rifled of its jewellery and brass plates by the bearers. All the clothes of the corpse are torn in pieces and buried with the body. The grave finally has stones put on the top and the cooked makai and fowl are placed at the four corners of the grave, saying, "This is for you, O son, or wife; may your ancestors eat this and keep you in safety with them." The party then bathes and returns home.

A corpse is buried on the day of death. Arrows and bows, sticks and bead necklaces are buried: articles of real value are brought away. The grave is dug east and west and the body is placed with its head to the west. No prayers or mantras are repeated and the Demno is not required to be present. All articles taken away by the bearers are sold and a khassi (goat) is bought by them with the proceeds and eaten.

When the bearers return they receive a bull, cow, goat, pig or fowl, according to circumstances. The animal is killed outside the village, and cooked rice is provided by the relatives of the deceased. The party eats, and, after eating, the leaves used as plates are collected by the Bandári, who places a wattle screen thereon; he then sits on it with two other persons-five persons may sit but not more ; everyone is brought forward and asked, "What claims have you against the deceased and what suspicions have you regarding his death ?" Claims not put forward at this time receive no recognition afterwards. Suspicion as regards witchcraft, or death by poison, also must be put forward at this time. This being done, the Bandári collects the leaf plates and carries them, with the receptacle in which they are carried,
and places them on the spot where the dead body was put down in order to enable the relations to have a last look. There are no ceremonies in respect of purification in the case of death. Death does not render the relatives unclean. During five days the near relatives of the deceased abstain from eating food cooked with oil and turmeric. After five days an animal is killed on behalf of the deceased within the village. The same day the bearers kill the animal purchased by them with the proceeds of property taken from the deceased. This animal is killed, cooked and eaten by them outside the village ; the bearers and relatives and all the villagers, women and children, sit outside their houses and makai rice and meat are given in bhelua leaves to everybody. Pochai is also given. Before feasting, some broiled liver, pochai and makai rice are placed by all the guests at the spot where the body was first laid down. These things are placed in bhelua leaves and the relatives take precedence in making the offering. The deceased is called upon by name to accept the offerings made, and he is told of all that has been done for him ; then everyone begins the feast. After this the elders sit and repeat a homily to the relatives, which may be translated as folows: " Be not sorrowful, his days are ended and he has now been taken by the Láihu Gosain (Maker)." After the lapse of a year invitations to another feast are sent to all relatives, and these relatives bring offerings of rice and pochai.

The Charri Beddu ties a stone to a string, or balances a bow, and sits facing the east, holding the string and the stone suspended. He says, " O Ber Gosain, in whose name shall the drums be beaten to please the deceased ?" Names are repeated until the pendulum or bow oscillates. The drums are beaten according to the measure for this ceremony by the individual thus selected. The Charri Beddu then asks, "Who shall kill the goat to please thee O deceased Rama ?" (white goat). The name being ascertained, the Demno, who is present, is given some pochai inside the house, and he comes outside and everyone follows him. Straw is placed for him and he sits thereon. He takes a quantity in his hands. He washes his feet and hands and then sits and calls to the deceased waving the straw in his hands, "Oh come, these things are for thee ; come, oh come! By the godlings and demons, by the rocks and the jungles, by all the powers of darkness and light, come, O Rama, come to the feast provided for thee, etc." This incantation has to be seen ; it is indescribable. The Demno becomes more and more excited, his limbs tremble and his voice comes from him in gasps and yells until, on a sudden, he says, "I am here! I am Rama!!" Then his relatives fall on him, and, weeping and laughing, dress him in saffron-stained garments. The Demno asks for things required by him, brass plates, and money too, if he has taken the trouble beforehand to find out where it is hidden. He says, "O mother, where is my thallia, or money: bring it mother. I and my ancestors are very poor and I wish to take it with me ; bring me so and so, father or aunt or sister!" Everything desired is given without suspicion. He also asks for food and a quantity of each of the different kinds of food provided is heaped on a plate, and placed in the Demno's hands; being Rama he eats and drinks and throws pieces of food over his shoulders to his deceased relatives calling them by name! While he is eating, the goat is killed
and some of the blood is sprinkled over the food; while the blood is being sprinkled, the Demno seizes the goat, and, placing his mouth to the severed neck, drinks the blood. He also eats the mixture in his plate. The deceased's relatives have all placed something in the plate according to request, or, according to their own wishes. The Demno's mouth and face are smeared with blood. He yells and groans : he is truly an appalling spectacle! The opportunity is taken by the deceased's relatives to ask questions as to why he left them, etc., etc., and these are answered according to the ingenuity of the Demno, or they are met by requests for articles! Menstruating females are not permitted to feed the Demno. Having satiated himself with blood, the Demno says, " I am now going back, I have eaten and drunken and I am going back to Ber Gosain or Laihu Gosain ; saying this, he falls down in a fit, rigid, and, to all intents and purposes, dead! Water is then poured over him and uncooked rice is thrown on him. This brings him back to consciousness. He then takes water, and, after striking the near relatives with his matted locks, he sprinkles the water on the assembled crowd, saying, "All sins are washed away." He now throws away the straw. The articles collected by him, while personating the deceased, become his own property. Having been given to the deceased, at his own request, no one dares to touch them except the Demno and his personal companions ; gifts called bákára (Malto). All parties then adjourn to the feast which lasts all night to the beating of drums. Dances are given by the girls and men and the feast lasts as long as the pochai and food hold out. Before the guests leave, the nearest male relatives of the deceased on the father's and mother's side offer a piece of broiled liver and pochai and rice to Ber Gosain, saying, "Let not such a feast be given again in his house, let such feasts be given again only on occasions of rejoicing and festival!'" This ceremony is callen amte (Malto), bhauj and farewell (Hindi). Then the relatives and guests give money or other gifts to their hosts; and the hosts present two pigs or more to their guests. These are shot with arrows, and, after being cut up, the guests divide the meat, leaving one share to the hosts, and then take their departure after a general shaking of hands in the English fashion : the shaking of the right hand is a very old custom amongst men and women.

These ceremonies apply to men, females and boys, but not to infants unable to speak. Such infants are buried outside the regular graveyard, and the bearers, before re-entering the village, are sprinkled with water by the Bandári. He also breaks an egg by casting it into the jungle, saying, " May the disease which killed the child not attack the villagers."

A man or woman dying of small-pox is not buried. The body is covered with thorns, or wood, and left in the jungle in a hole! The five days' ceremony does not take place. When the village is free from disease the feast and rejoicings described above take place. In such cases only clothes go with the corpse ; and on the amte day the bearers get an extra share of the feast. In cholera the same customs are followed and the village is under taboo. In neither case is the corpse placed on the ground for a last view on its way to the jungle.

In case of death by accident, or snake-bite, the usual ceremony is observed. In
case of death by tigers, or other wild animals, the same customs are followed if the body is found, if not the usual feast takes place after the lapse of a year.

The Paharias do not employ Brahmans or Hindus as priests. In the case of a Paharia suffering capital punishment, or dying in a far country, the bhauj always takes place.

The Simlong (Pakur), and Chandna (Godda) Paharias burn their dead sometimes, but this is comparatively a new custom.

It is inaccurate to say that the Demno is not buried. He is buried except when he dies without relatives ; but anyone dying without relatives is left in the jungle.

In the case of a chief a house is built over the grave, but this house is not repaired and gradually disappears.

On the horizontal stakes at the bottom of the grave bhelua, or sal leaves, are laid, and the corpse is placed thereon. In some cases the whole corpse is covered with leaves.

Demnos after death become, as a rule, Jamporis. This is a devil that seeks especially for pregnant women and kills them. The Jampori is very black, with long hair and enormous and terrible eyes. He kills women with a staff. He lives in palas trees (Butea frondosa), simal trees (Bombax malabaricum), and banyan trees (Ficus bengalensis). He appears at midday and midnight and sits watching from the foot of his tree.

XIV. Religion.

The Maler have no temples. The following deities are worshipped: Ber or Beru Gosain, Bilp Gosain, Láihu Gosain, Darmáve Gosain, Jármátre Gosain. These gods are not represented by idols, and no special form of worship is fixed for them, nor is there any special day fixed for their worship. These gods have no priests, and sacrifices are not offered to them except when the godlings of the Saoria pantheon are worshipped. It may be noted that Darmáre Gosain has never been represented by any symbol ; the Maler deny that they have ever fashioned a block of wood to represent this deity.

Janai or Janda Gosaiñ is quite distinct from Darmáre Gosain , and Darmáre Gosain and Ber Gosain are separate deities. Ber Gosain, Bilp Gosain and Láihu Gosain are also separate deities. It is asserted that Laihu Gosain is the most powerful of all the gods.

It would be contrary to custom, and belief, to represent any one of these gods by idols: some Saoria authorities contend that a man doing so would be outcasted.

Láihu, Darmáre and Jarmátre Gosains ' are invisible: the representations of Ber Gosain and Bilp Gosain are seen in the heavens, as the sun and the moon. These gods are invoked at all ceremonies. They have power to benefit cultivation and also the public health. They possess much greater power than the godlings. Jarmatre and Darmáre Gosains, although separate deities, are regarded as attributes of Láihu Gosain.

[^16]
Terminology.

Godlings =Gosain, Erwe, Náddu $;$ Erwe $=$ Pujah or Propitiation.
(I) Chal Náddu = Jáhirthán Pujah (Sacred grove) ; (2) Chamḍa Gosaiñ or Chamḍ Eṛwe ; (3) Gúm Eṛwe or Gúmo Gosain ; (4) Móri Eṛve (Peafowl) ; (5) Barya Chúki or Koñra Gosaiñ ; (6) Paú Dúri Gosain or Paú Eṛwe ; (7) Dál Eṛwe ; (8) Kuṭ̣i Eṛwe or Ṭanḍ Kuṭti Náddu ; (9) Cháng Eṛwe ; (Io) Sarkari Palki Gosaiñ ; (II) Janḍi Gosaiñ or Janḍa Gosain ; (I2) Bajotro Gosain ; (I3) Ṭanḍe Eṛwe ; (I4) Gurya Gosaiñ or Guṛa Gosain ; (I5) Aḍwa Eṛwe (Gosain of Harvests) ; (I6) Chark or Áṭ Machli Gosaiñ ; (I7) Bodri Gosaiñ ; (I8) Raksi Gosain ; (I9) Kanḍo Gosain or Makáro Gosain ; (20) Lanj Eṛwe (seats for the godlings) ; (2I) Dúára Gosain or Bárá Dúári Gosain (slightly different from Chark Gosaiñ) ; (22) Mangre Eṛwe ; and (23) Gosain Ṭaḍdi.

PaÚ DÚRi Gosaiñ.

Godling of Highways and Journeys.--The legend is that a Saoria, in ancient times, went a journey to a far and strange country. He returned afflicted with a peculiar skin disease. The oracle of the swinging stone was consulted, and he was told to sacrifice to Paú Dúri Gosain. He did so and became well; hence the origin of this deity or godling. The pujah for this godling takes place at the end of the cold season. There is no fixed day and the actual date depends on the quantity of things collected by the villagers, or householder, who is going to do honour to the godling. The Charri Beddu fixes the auspicious day for brewing the pochai. A little oil and cooked rice are taken by the Charri Beddu for his pains. The only essential is that the pujah is forbidden during the dark o' the moon. A great deal of pochai is not made, but every householder in the village brews a little. Invitations to relatives are carried by the village Bandári. The Charri Beddu is brought to the village and is asked to fix the day for the brewing of pochai. A lota of water is handed to him, and, after washing his hands and feet, he sits facing the east with the swinging stone suspendod. He says, "O Ber Gosain, the Paú Gosain is to be worshipped; tell us who is to brew the first pot of pochai so that it may be pleasing to Paú Gosain ?" Names of women are repeated, and, when the stone swings in answer, the girl or woman has been selected. She must be a relative of someone in the village, or the wife or sister, or niece, of the householder who has arranged the sacrifice. The girl is called and is made to sit near the Charri Beddu. She is oiled by one of the women ; she has sindur placed on her forehead, one line down the forehead, and one line over each eyebrow, which runs down her cheeks and meets under her chin. Water in an earthern-pot is brought and a little rice ; the earthen-pot is placed on the fire and the girl selected takes the rice in her right hand and says, " O Ber Gosain , in my father's house, or brother's house, Paú Gosain pujah is going to take place, and I have been chosen by the Charri Beddu to brew the first pot of pochai, let the pochai be good and let there be peace and joy in his house. Lo! I scatter the rice." She then casts the rice which need not fall into the pot. After this the serious business of brewing pochai begins. The Charri

Beddu is given oil and food, and one spot of sindur is placed on his forehead (anyone may affix the vermilion). Then the Charri Beddu takes his leave.

When all things are ready (pochai takes from five to seven days), the Bandári and another individual go to the Demno, taking with them some rice, sindur and a fowl's egg. They tell the Demno that Páu Dìri is to be worshipped, and ask him to fix the date, and select the man who is to perform the pujah, in order to please the godling. The offerings brought are presented, but no answer is given immediately, and the visitors stay the night. At dawn the Demno rises, and, after washing his hands and feet, takes his seat facing the east, with a sal leaf in his hands. Oil is put on the sal leaf and the Demno still holding it, says, "O Ber Gosain, so and so has the feast and pujah ready for Paú Gosain, tell us who should begin the pujah in order to please the Paì Gosain." He takes some of the rice brought and throws it at the oiled leaf, repeating names as he does so, and, as soon as one grain sticks in answer to a name, the man is found. The auspicious day is fixed by the same means.

The Demno has a godling made of mud in his house, and, before consulting the oracle of the leaf, he offers this godling some rice, and paints it with sindur, and he prays for help to ascertain the auspicious day and the proper man. A Demno will not disclose the name of this godling, but it is probably called Gurya Gosain ; this is the godling of fits and hypnotism. After giving the Demno an invitation the visitors return, and arrangements for food and leaf plates are made. One day before the pujah the guests and the Demno arrive at midday. Drums are brought and beaten and the Demno is given rice and pochai; he then says, "Banroh Manjhi (or any other name) has invited me to this Paù Gosain pujah, and has prepared all things, and has given me this food and this pochai, may his pujah be acceptable and his days many!" He then places some rice on the ground and pours a quantity of pochai on the earth. After this he eats and drinks and everyone follows suit. Then the men and women dance and sing all night. In the morning the householder, who is offering the pujah, starts out with the Demno and the drummers, who dance and beat their drums. The Demno leads the way. Everything prepared for the feast, a little of each is taken in a sùp (flat basket) with oil and sindur and some uncooked rice (ahora chawal), and a bottle of patki taddi (dáru)-this is essential. The pochai taken is for drinking purposes ; it is not intended for the pujah. A white he-goat is led by the householder's brother, or cousin, who carries an axe or sword, also a sal twig, with two leaves on either side and a miniature bow and arrow. The Demno marches in front of the procession carrying his bamboo staff. Outside the village, on the western path, he selects a spot, and, clearing it with the help of others, he plasters a small part of it with water and then fixes the sal twig and arrow thereon in line. The Demno now repeats spells and mantras and generally excites himself. The bow is laid down in front and the offerings are also laid beside it. The oil and sindur are mixed together and the two brothers paint the ground, the twig and the arrow, and invoke Ber Gosain, making mention of the offerings such as the goat and the dáru, and desire the deity to render the pujah efficacious on behalf of Paú Gosain, asking, at the same time, that health and prosperity may follow. The head of the goat is marked with sindur, the first finger of the
right hand being used for the purpose. The householder and his brother then take a little dáru in leaf cups, and, calling on Ber Gosain, repeat the above prayer and pour the dáru over the plastered earth and over the other offerings. In the meantime the drummers dance and sing. The Demno does not permit much waste of dáru; he seizes the leaf cups and drinks the greater part, being by this time beside himself with frenzied incantations. The goat is now brought before the sal twig and its head is taken off with one blow : if done with one blow, it is a good omen and the sacrifice is accepted, if not, twice as much expenditure has to be incurred for the next pujah. As soon as the blood is sprinkled on the sacrifice, the Demno seizes the goat, and, placing his mouth to the severed neck, drinks the blood as it gushes forth! The remainder of the dáru is drunk by the Demno, the householder and his brother. As soon as the goat's head falls, a lota of water is poured thereon. The pochai is then divided and more singing and dancing take place. The head of the goat is cooked and eaten on the spot by the party. While the pujah is going on, the drummers dance and sing all round the spot. Two of the men are dressed as women with short skirts and are adorned with bells, bracelets, etc. The song is as follows,-in the name of the householder offering the pujah :-
> " Oṛe Banroh majie Pawe eṛwene, Ariojario-qegrojah ; Errwathraweh kilesoh, Eṛwathrani kileso!"

(Malto).
The song is full of indecent suggestions with respect to the householder and his wife, and I refrain, therefore, from giving a translation.

The party now returns beating drums and singing the song given above, and then enters the dwelling of the householder. They dance at least five times round the house, to a slower measure, still rendering the same song. The drums are then given back to the householder who offers more pochai. After this there is a general feast ending in a dance with the girls : this is a different dance with a different measure. The dance finishes in an orgie, and the young men and maidens usually give free vent to their amorous desires by disappearing into the jungle! This describes the great festival in honour of the godling. But in the case of journeys, etc., these elaborate ceremonies are not observed, the Charri Beddu and Demno are not consulted, pochai and other articles are not required. On the day of departure, in the morning, the traveller proceeds with the sal twig, a fowl, a little oil, some rice, and a miniature bow and arrow, and he performs the pujah on the western path, while he sits and faces the east. He repeats a prayer asking for a prosperous journey and a safe return. The fowl is killed and the blood is sprinkled on the sacrifice, but the fowl and the severed head are taken home.

This godling has no idol or image, the two leaves on the sal twig represent the male and female on the same branch so to speak. (Maq kóró (Malto) equals sal-twig, the godling itself).

A bachelor or a widower can offer no pujah. On the fifth day after a man's death, all the godlings acquired by him, and to whom pujah has been offered, are carried out by the Bandári and male relatives, along the same path over which the corpse was taken, and are, finally, formed into a heap and abandoned. The formula on abandoning these godlings is as follows: "He who used to obey you, and make offerings to you, has gone, and there is now no one to look after you; go, therefore, with him and return no more to the house." A man marrying again gradually acquires godlings according to circumstances ; he cannot immediately acquire all his godlings or guardian spirits. Bachelors can perform no pujahs with the exception of the bhauj pujah to the deceased.

Offerings made at pujahs are never taken by anyone: they are always left at the place where they have been offered, with the exception of certain things as already described.

Gurya Gosaiñ or Gurka Gosaiñ.

Gurya means without teachers or self taught, but a Gurya Demno will affirm that he gets his knowledge from a snake, on whose back he sits at night, eating mud and weeds found in stagnant water. This snake lives in the jungle in a bath of mud and slush. Gurya pujah takes place in Phalgun or Magh. The origin of this pujah is somewhat curious. In Magh or Phalgun a girl or woman in the village suddenly becomes possessed ; this is signified by tremblings and screams and extreme agitation. She is questioned and answers that Gurya or Gurka Gosain has come into the village. The villagers then take some uncooked rice and some water and proceed to the girl's house, and throw the rice at her and sprinkle the water over her person and say, "Dance outside, we will obey you as the chosen one and do his pujah." She then comes outside and dances ; and this is the signal to the other girls, who also gradually become possessed and join the dance. This goes on for a month or more. During this time the "chosen woman" or girl, while under Gu! ya's influence, makes known the various intrigues in the village! She accuses men and women by name! "You did this, you did so and so, bring fowls." In such a case there is never a denial. The offenders bring a fowl each. If there be any hesitation, the Gurya Gosain possessing the girl threatens to get on the top of the offender's house or inside! The terror this threat inspires always produces compliance. The fowls are killed by the Bandári and the houses of the delinquents are sprinkled with the blood and with water. The chosen girl then, or a few days later (the dancing going on every night) selects a boy or young man as the Gurya Lállú Sardáre. The person selected takes a cane stick and, putting sindur thereon, says that he has been selected and that he should dance and do well. He also becomes possessed and dances with the woman holding his cane. The Lallú Sardáve is under a vow of chastity for the time being. Drums are beaten while this dance goes on. After a month or so, the "chosen woman" while possessed, gives out the day when Gurya is to leave the village. Arrangements ${ }^{1}$ are
now made for pochai, and money is collected for the purpose of buying a he-goat (white) and such things as pan, súpári (betel leaf and areca nut), ganja and a pankha (fan) are essential, also an earthern pot with a cover. Another dance takes place in the village, and those who become possessed, dance in the centre of the village. The girl who was first possessed dances with the fan in her hand. The Lállú Sardáre (dancing master) then kills a fowl at the Qep Jhanda (sal post in the centre of the village), now called Sarkári Jhanda, and he sprinkles it with the blood and with water. The "chosen girl" with her fan then marches out of the village followed by the Lállú Sardáre, and the girls, all dancing and shouting, " Dance dance, come, come, children, girls, dance dance '" and so on. The Lállí Sardáve carries the offerings in a sup (flat basket) and the earthen pot contains the ganja, súpári and sweets. Some pochai also is taken. The "chosen girl" halts when the spirit suggests that she has arrived at a suitable place. The men here make a miniature house of bamboos and grass, while the party keeps on dancing round and round. A bamboo of full length is planted in front of the house, also a sal post two or three feet in height and 12 inches in girth. The sal post has roughly fashioned teeth cut on the top. A small mound of earth is made below. All these things are touched with sindur and the offerings brought are placed here, and then the goat is killed by the Lállú Sardáre. The "chosen woman" sits and drinks the blood from the neck of the goat as in the case of the Demno. The Lállú Sardáre then takes an egg and some water, and, sprinkling the crowd, casts the egg away, saying, "Now all things are finished, and Gurya has come outside, may there be peace and good health and prosperity." Everyone now returns to the village. When the house and post become dilapidated, a similar procession and dance take place and the godling is housed once again. This godling is the guardian of the village and is supposed to remain outside and thereby prevent other evil influences from entering the village.

Champa Gosain.

Chamda Gosain lives in the house and he is represented by three bamboos, each five cubits in length. These are one for the husband, one for the wife, and one for the old woman, such as grandmother. The bamboos are oiled and dried by a fire and are then wrapped in páth údáli (indigenous fibre) until they become a maund or more in weight. They are then painted with black and red bands. A big plume of peacock feathers is fastened to the top of a piece of rounded wood, which, in turn, is fixed to the top of the bamboo ; each bamboo is similarly dealt with. The páth falls three feet or so below the bamboos, and, in fact, forms a thick veil all round it. Chamda pujah takes place in April as a rule. The arrangements are made after all harvests have been garnered. Chamda worship has its origin in sickness. In such cases the Charri Beddu and Demno are consulted, who, in turn, consult the oracle and order a pujah to be offered to Chamda Gosain. Only the well-to-do can afford to perform this pujah and the Charri Beddu and Demno do not, therefore, select poor people for the purpose. (It will be observed, from what appears later, that the chief godlings can only be
worshipped and acquired in regular order, and Chamda cannot, therefore, be worshipp $\epsilon \mathrm{d}$ by a man who has not already acquired the godlings below Chamda Gosain). After consulting the Demno and Charri Beddu, the householder returns and takes some uncooked alwa rice and water, and scatters them all over his house and walls and on the patient saying, " O Ber Gosain and Darmáre Gosain, the Demno and Charri Beddu say that Chamda has afflicted this unfortunate one, let him become well and, at the end of a season, I will perform a pujah to Chamda." Should the case recover the promise is kept, not otherwise! After the year has gone by, the Demno is consulted as regards the date. A fowl's egg, some sindur and rice are taken to him and the Demno fixes a day by casting rice at the oiled leaf. First he ascertains the name of the woman who is to brew the preliminary pot of pochai, then the name of the man who is to do the pujah, also the name of the individual who is to start the music.

The man selected to perform the pujah is a brother, or nephew, or uncle of the householder. The woman chosen ${ }^{1}$ puts on clean clothes and applies sindur to her forehead and nose, two lines passing round her eyes and meeting on each side of her nostrils. She places the earthern pot on the fire and fills it with water. She then throws rice into the pot saying, "May the pochai and pujah be good." The male relatives do the same. After this the real business of brewing pochai begins. Tassar is gathered and all kinds of eatables, also a white he-goat and two pigs are obtained for the actual pujah. When everything is ready (this takes eight days or more), the householder fixes a date and sends a knotted string to his relatives with six or seven knots as the case may be.

It takes a whole day to get the three bamboos ready. These are prepared outside the village. As soon as the bamboos are ready (at this pujah all the neighbouring villagers gather) the Tállu, that is the man who is to perform the pujah, kills a fowl and sprinkles the three bamboos with blood and some pochai. When the fibre is put on, a pig is killed by the Tállu Beddu, and the Chamdas are sprinkled with the blood. The musician selected gives the signal for general tom-toming and he circles round the three bamboos followed by the drummers. The fibre-clad bamboos are now raised by three men of sufficient strength, and held erect by bands strapped to their stomachs and a dance is performed. These three men are completely veiled by the fibre fringe, and it requires a man of singular strength to lift the Chamda and dance with it, as, frequently the weight is two maunds and more! Pochai is drunk here and food is eaten. It may be noted that the householder's bamboo must be towards the east, his wife's in the centre, and the old woman's towards the west. ${ }^{2}$ The three dancers dance in line and the drummers dance all round them, and, finally towards morning, the party returns to the village carrying with them the Chamda Gosains. Then the dance goes on in front of the householder's dwelling. After everyone has danced his fill, the Chamdas are placed standing against a thek (store-house or gollah) for makai outside the house. The Demno now appears on the scene, and sits down facing the east, inspiring himself as usual; in the centre sits the Tállu, and, on the
west, the householder himself. A place is plastered with water in front of the thek and the three Chamdas, saying, "O Ber Gosain , Darmáre Gosain Chamda having brought us wealth and prosperity we now offer in return the pujah promised "; then the ground, the three Chamdas, the thek, the he-goat's forehead and the Demno's forehead are marked in the order named with sindur, also the Pitta Beddu's forehead. The relatives and their wives, the Demno and others have thick tassar bands fastened round their necks: this is essential ; the offerings of rice and pochai are then placed before the Chamdas.

As soon as the Chamdas are raised, the man holding up the householder's Chamda shouts a set of very indecent questions. ${ }^{\text {' }}$ He in turn is questioned and answered by his " confrère" holding up the second Chamda. In the meantime the old woman's Chamda performs on its own account. There is no attempt to suggest: a spade is a spade indeed! The villagers join and repeat things, the most gross and improper, although the women-folk are within hearing distance! Finally, there is general license until the Chamdas are hung up inside the house.

The Demno, having by this time become sufficiently self-hypnotised, springs on the top of the thek, the he-goat's head is taken off by the Tállu's brothers; the omen is good if it falls clear at one blow, if not, the indication is that the pujah has not been accepted, and that it has to be done again when circumstances permit. As soon as the head falls, the Demno seizes the trunk and, placing his mouth to the severed neck, drinks the blood! He then says, "The godling, Sàhári Náddú, who gives you all good things has arrived." He now commences searching in the makai, saying, "Here it is-no, it has fled "! until he finally seizes and produces it and gives it to the Tállu. This Sáhári Náddú is always kept for pujahs and devotional purposes, and is a piece of quartzite, or other oval-shaped stone, found in streams. During this performance the Demno displays considerable sleight of hand. Sindur is applied to the Sáhári Náddú and it is then put into an earthern vessel, covered over and hung up in the house. After this the Chamdas are taken into the house and hung up north and south. Then the feasting begins. The relatives on the wife's side get a big hog^{2} and a special offering of pochai. These things are divided and then the wife's relatives present money and the husband's relatives also present money. All this time the dancing has been going on ; and the women join the dances as soon as the Chamdas are hung up. These carousals continue for two or three nights, as the case may be, and general license prevails among the young men and maidens. People come from great distances for this Chamda pujah, bringing with them their own food, and take part in the dancing and in the general license.

Five days having elapsed the Chamdas are again brought outside the house; they are washed with water, and offerings of sindur, and makai-rice, and pochai are made to them. A fowl is killed and the Chamdas are sprinkled with blood. This is followed by a dance,--of the men only,-lasting for an hour or so, the indecently gross

[^17]questions being repeated. After this the Chamdas are hung up once more and "the" pujah is at an end.

The Sáhári Náddú henceforth accompanies the householder to all pujahs, and it is oiled and marked with sindur. The Demno's perquisites are the breast and loins of the he-goat-Tokereh (Malto)-rice and oil, and etc., pochai.

Gúmó Gosaiñ or Naddú.

In the case of illness, should the Demno or Charri Beddu advise a pujah to Gúmó Náddú, the householder takes rice and water and sprinkles them on the patient and in his house, saying, "If recovery takes place, I will sacrifice to thee, O Gúmó Gosaiñ." The year having gone by, the date and name of the Tallu Beddu are ascertained and pochai is made ready. Two sal trees ' are selected and the Tállu kills a fowl and sprinkles them with the blood. He then paints them with sindur and offers rice, pochäi and patki taddi (daru). After this the trees are felled and the bark is taken off. They are then carried and placed in front of the householder's dwelling in line on the ground. The height of the house is measured while the Demno starts his incantations. When the poles are ready, the Demno gets astride of them and he is carried round the house five times. Before taking him round, however, his body is covered with the red ants found on mango trees, in order to ascertain whether the spirit has really entered, or, whether the Demno is shamming! The bite of this large red ant is excruciating! The poles are then taken inside the dwelling, and fixed to, and lashed side by side with the central post of the house on the south. ${ }^{2}$ A mud altar is erected and sindur is applied thereon. Offerings of rice and makai are scattered and daru is sprinkled. The Demno does not allow the liquor to be wasted, he also eats the offerings in his excitement, saying, "The god comes from this path," and other matters. Then the goat is brought and its head is taken off, the Demno drinking the blood as usual from the severed neck. This finishes the pujah and the feasting and carousals begin. Men and women dance together and the festival ends in a licentious orgie!

Dal ERwe.

Dal Erwe takes place in Mágh, Jeyth and Akhár. Disease or trouble is the origin of this worship. The Demno is consulted and he finds out from the oracle that Dálá Gosain has to be propitiated. On his return from the Demno, the householder scatters rice and water over the sick person and in the house, saying, "If the sickness disappear, I will sacrifice to thee, O Dálá Gosaiñ." The patient having recovered, the householder collects materials for the pujah, which takes place about a year after the consultation with the Demno. The Charri Beddu or Demno are again approached, and the woman who is to brew the first pot of pochai, is selected, also the man who is to perform the pujah, Tállu Beddú. The procedure already described is followed. A white she-goat is
obtained and the date is fixed, while the Bandári gives the invitations. One day before the pujah a clump of bamboos ${ }^{1}$ is chosen and pochai, rice, sindur and a fowl are taken to it. The sindur is applied to the bamboos and the offerings are placed beneath. The fowl is killed and the blood is sprinkled over the bamboos saying, "O Ber Gosain , Darmáre Gosain, may the Dálá Gosain be pleased to accept these things and give us prosperity." Two bamboos are cut down, and carried into the village, and placed in front of the householder's doorway. Two plantain trees are then cut down with a sword or axe, the bark is split into small pieces and the singers sit thereon. The bamboos are now split into thin strips and these strips are woven to form an oblongshaped shallow basket. After this a pot of pochai is given to the weavers, who sprinkle a little on the basket, saying, "Mayst thou be pleased with our labours." The Tállú then takes the Dálá inside the house and places it beside the Gúmó Gosain . The Demno sits here and begins his incantations, while the Tállú Beddu puts makai, pochai and oil into the Dálá. He also kills a fowl and sprinkles the blood over the Dálá and the Gúmó Gosaiñ. It may be borne in mind that a man cannot sacrifice to Dálá Gosain, without having sacrificed to Gúmó Gosain in the first instance. On this occasion Gúmó Gosain receives a he-goat. After this the Dálá Gosain is given to the Demno, who, placing it on his head, goes round the Gumó Gosain five times with four men holding the four corners of the Dálá Gosain. This is in reality a dance and the makai is scattered all over the house inside, while drums are beaten outside The Demno and others sing :-
"Sári Bayí bareni qáṭion kú, Cudeh Baiyí bareni qárion kú."-(Malto).

Translation:

The younger sister comes, abuse her not , The younger sister comes, reject her not.

After this the party goes outside, with the Dálá Gosain and joins the drummers. Every one then carries the Dálá Gosain five times round the house singing :-
" Majúreri, pakireri, jolnihi, dignihi kel kelatri., Itháhi mãrá menja, Dálá Gosaiñyi." ${ }^{2}$-(Malto).
Translation:
"With drums and peacock plumes we play and dance, And dreaded Dálá greatly pleased perchance!"

The greater part of this scene cannot be described without shocking the proprieties. A grotesquely indecent dance is performed by the Demno and others who are mad with drink as a rule. The Demno fans himself during this amazing performance.

[^18]Drums, cymbals and conch shells are used while the dancers slap their buttocks and thighs shouting :-

> " Nin óhó lállá enóhó lálen Lekureh ! laleh chámen páṛa."-(Malto.)

Translation:

> "Lo I dance, then dance thou well, While shout and song united swell!"

The women-folk look on and some even join the dancers. Makai is scattered all round the house during these rites. The dance goes on the whole night and the Dálá Gosain is placed on the makai thek outside the house. Pochai is given to everyone, and in the morning offerings are made; and then, on a sudden, the Demno springs on the top of the makai thek. The she-goat is killed and he drinks the blood and produces a stone Gosain from the thek, which the Tállú takes. This stone is placed inside the house. The Dálá Gosain is now brought within and is placed beside the Gumo Gosain; the Demno takes his seat beside it. Offerings, as usual, are made and the white he-goat is killed. The Demno, who has been calling on the Gúmó Gosain and the Dálá Gosain to come and be pleased, drinks the blood as usual. The Dálá Gosain is then hung on the two Gúmó Gosain poles, and the Demno has water sprinkled over him to bring him back to consciousness. The Dálá Gosain becomes the receptacle for all the stone godlings produced by the Demno. The Demno gets the breast of the goat and the Tállú Beddu the forequarter. The pujah is concluded by the Tállú Beddu who has to eat, at least a part, of the testicles of the he-goat broiled! After this the feast and the dance take place, and presents are given and received as already described. These carousals also end in an orgie and in licentious indulgence among the young men and maidens.

Order of Worship-
(I) Paú Dúri Gosain-Errwe or Náddú.
(2) Koñra Gosain or Baryá Chúki.
(3) Ṭand Kuțṭi Náddú or Eṛve.
(4) Gúmó Gosain-Errwe or Náddú.
(5) Chamḍa Gosain or Chamḍ Eṛwe.
(6) Dálá Gosain or Dál Erwe.
(7) Kanḍo Gosain or Náddú.

These are the chief godlings and Chamda holds the highest rank. Others outside this list are godlings and demons. The chief godlings require a great deal of expenditure. The other godlings and demons may be sacrificed to, by poor people, and they are not worshipped in any regular order.

Chal Náddú-Jahirthan Godling (Village grove).
The villagers gather at the Jahirthan and, as a rule, the Demno performs the $p u$ jah. Fowls, pigs, pochai, dáru, new grain of all kinds or fruit are offered.

Women may not participate in this pujah. Drums are beaten during the dances and the pujah takes place after the principal crops are harvested, that is in Bhaddra and in Pus (Bengalee). The Demno selects a stone at the Jahirthan, and this represents the godling for the time being.

Móri Eṛwe-Peafowl.
This pujah is celebrated by the head of the household. Pigs are sacrificed before the feathers of a peacock tied together, and these feathers are waved over the sick person to drive away the malady.

Chíng ERwe.

This godling is sacrificed to after the grain has been harvested and stored. A pig is offered in order that the grain collected may remain in safety. The meat of the slaughtered animal can only be eaten by the males of the householder's family. The Demno, as usual, has to drink the pig's blood.

Sarkári Pálki Gosaiñ.
This pujah is performed in the middle of the village. A post is set up about two cubits in height and four notches are cut at the top, and new Indian corn cobs are tied thereto. Occasionally, pigs are sacrificed to this godling. This pujah is performed prior to enjoying the new Indian corn.

Bajotro Gosain.

This godling is propitiated so that epidemics may be driven away. The pujah is performed at a selected place outside the village and each householder contributes something to the cost. A branch of the native ebony tree is used during the ceremony and pieces of this branch, when the pujah is finished, are stuck in the roof of every house in the village. This is supposed to preserve the villagers from epidemics.

Tande Erpwe.

This godling is worshipped, during the months of Bhaddra and Pus, inside the cow-shed, where a sal post about three feet in height is erected. Three, four or five notches are cut in the post. Sabai-grass is placed beside it and sindur is applied to the post and the sabai-grass. The presence of the cattle is necessary and the pujah is chiefly intended to keep them in safety. The offerings are rice, milk, pigs, spirits, fowls and pigeons, but the presence of the Demno is not essential. Dances are enjoined, but the women-folk are prohibited from participating. They cannot take part in the pujah and are only permitted to look on from a distance. After the ceremonies feats of arms and strength are displayed.

Dúará Gosain or Bárá Dúari Gosaiñ.

This godling is somewhat similar to Chark Gosain. The pujah is, however, performed at the door or entrance of a house. The offering is a goat. No swing is required for this pujah.

The Saorias deny that there is any godling named Kul Gosain. They say that if anyone has written about Kúl Gosain, it was under a misapprehension. Kul Gosain would mean " all the godlings," and the misapprehension has arisen in this meaning, or in the Kul of the Sonthal meaning, " tiger." Similarly the Saorias do not recongnize Autga Gosain (see Dalton). They assert that someone has confused Autga with Ondga Bonga of the Sonthals. I would here note that Saorias agree with me in thinking that Bedo by itself is not one of the terms applied to God. Bedo means, large, great, chief, big; it might be used with Gosain as, for instance, Bedo Gosain (see Dalton), but not by itself.

Chark Gosain Át Machli gosain.

This godling is sacrificied to in the case of small-pox, cholera and other epidemics. A swing is made and fixed outside the village, and those possessed ride thereon. The place is selected by the Demno or other individual possessed. It is essential in this case or the Demno and the Gurya priestess to ride on the swing. After doing so, the Demno says, "The sickness now wishes to leave the village, kill the goat "(a white he-goat is required) ; the goat being killed, the Demno sprinkles water all round ; the swing is left standing and the people go home.

Bodri Gosain, Chicken-Pox and Coughis.

In this case no model is made. If the whole village joins the ceremony, a black he-goat is essential and every householder offers something. These offerings are carried to the spot indicated by the Demno, or other person possessed, and the devil is here asked to leave the village. The person possessed drinks the blood of the he-goat, or black fowl, in the case of the pujah being performed by a single householder.

MANG̣Re ERWE.
This pujah takes place on the Rajmahal side of the Hills and is done by subscription. It has its origin in maladies and epidemics. The ceremony takes place within the village. This pujah has a dance and song.

Song (Malto.)
Sáki bállo keyeni dirá manágṛú
Danđ̣á taká ongirá dira manágṛú

Tállú baya mangṛú páne mókene
Tallu baya ḍáni mangṛú pane mókeni
Qesa, qesi meneni dirá manágṛú Ithahi mãrá menjá dirá manágṛú Ithahi mãrá menjá Surjá darmáre.

Translation :

Thou diest unfriended and alone,
O Buffalo of the plains;
The gold that bought thee shall condone.
O Buffalo of the plains.
The Tállún ${ }^{1}$ eats thy parts unclean,
O Buffalo of the plains;
His bride too joins the feast I ween,
O Buffalo of the plains.
Bespattered shalt thou be with gore,
O Buffalo of the plains;
Yea, thou art glad and Suria ${ }^{2}$ more,
O Buffalo of the plains!

Jandi or Janḍa Gosaiñ.

This Gosain is put up after the harvests-makai or other crops. It also originated in illness. The Demno or the Charri Beddu says that Jandi or Janda has to be propitiated. The patient having become well, the householder vows to perform the ceremonies after the harvest. The day having arrived, a bamboo is cut down and brought (full length) and a small sal post; the post is cut all round and rough teeth are fashioned on the top similar to those of Gurya Gosain. Should the Charri Beddu give directions, a small piece of salu or other cloth is tied to the top of the bamboo. The bamboo and post are planted together in front of the house, a little to the east of the doorway. The earth is plastered, offerings are made and sindur is applied ; a fowl is then killed and the blood is sprinkled (cock as a rule) ; finally water is poured on the offerings. This closes the pujah. There are no dances and songs. This Gosain is regarded as Kali of the Hindus by some Paharia authorities.

Gosain Tịappi.

This is the great Paharia festival. It is not confined to any particular village and is generally observed after the harvests are garnered, that is in January and February. The Demno and Charri Beddu are not required to fix an auspicious day for the preparation of pochai, etc. Before the dancing and carousal the Bandári
makes a collection of offerings from each house. He puts these in a basket and carries them outside the village, and leaves them to all devils, demons and maladies. He then waves an egg round his head calling upon all devils and diseases not to enter the village and throws it into the jungle. Then the feast begins, and, after the feast, the dance. The girls crown themselves with flowers and dance with the men. Drinking, feasting and general licentiousness prevail for three or four days. This is the season for new songs, and girls and young men give full play to their poetical powers.

Song (Malto)
Túnḍi kiáre pachiá táke
Túnḍi kiáre púrabe táke
Qeḍe bari tariki neken eta Chándi.

Translation :

The western wind has come and gone,
The eastern wind has come and gone,
Who cares for weary feet and woe
Tell, O Chándi, tell!
Agarn-
Ejúgen ayáth áre andilá
Nájúgen abáth áre anḍiláh
Ikó chúdi Máháráni allengeno
Aṭunḍiyá Chándi ?

Translation :

Our mothers saw not such a sight, Our fathers saw not such a light, Whence doth the white queen view The radiance of the beacons bright

Tell, O Chandi, tell !
N.B.-This song was composed to commemorate the coronation bonfires of His Majesty the King-Emperor !-R. B.

Kóñạ́ Gosaiñ.

In this case the pujah has its origin in illness, and the ceremony takes place a year after the convalescence of the patient. The Tállí Beddu and Pitta Beddu are selected. A sow, patki taddi, three small earthern pots, and peacock feathers are essential. The pujah takes place at the household hearth, the Demno being present. The offerings are placed before the hearth with rice, sindur and oil. The dáru is sprinkled and the Tallú Beddu then cuts the sow's throat, and the animal's blood is also sprinkled over the hearth and the offerings. The Demno quaffs the blood from the severed neck; the peacock feathers and the earthern pots are kept with the
household gods. This pujah only takes place when all materials have been collected, and the ceremony ends with a great dance and general licentious indulgence.

Tánd Kutț Náddú.

This also originates in illness and in the convalescence of the patient. The Tállu Beddu, the Pitta Beddu, pa!ki taddi, a sow, and two pigeons are essential. A sal tree is selected by the Demno and is felled by the Tállú after it has been painted with sindur and sprinkled with the blood of a fowl. Out of the tree a post three or four feet in height is made, the top is rounded off and bands are cut along the length of the post ; these bands are painted with sindur and drums are beaten all round the cowshed. On the day fixed for the pujah, all the cattle are shut up in the guhal (cowshed). The Demno selects a spot and the post is planted beside the cowshed. The offerings are now made and the Demno selects a cow and paints its forehead with sindur. The Tállí cuts the throats of the pigeons and the blood is sprinkled over the sacrifice and the post; the pig is then brought and its throat is cut, and the Demno drinks the blood. Water is now sprinkled over the Demno and he recovers. Then everyone adjourns to the feast ; and drinking and general licentiousness take place.

Raksi Gosain.

The pujah to this godling is performed towards the Rajmahal side of the hills. A stone ' is selected outside the village, and it is garlanded with flowers ; and the trees and branches round about are also garlanded. Sindur is applied to the godling. The essentials are a he-goat and patki taddi. Sweets are hung with the flowers, and a miniature umbrella is suspended in front of the Gosain. The Demno is required to be present. After the pujah dances take place as well as general licentiousness. This Gosain has a fowl and other edibles offered to it by the Bandári on days of festival. The Mandro and Chetteh Saorias worship this Gosain.

Kando Gosain.

This also originates in sickness, and the Tálluí Beddu and Pittá Beddu are selected. Everything being ready a sal tree is chosen by the Demno, and a fowl having been sacrificed the tree is felled. From it a post three or four feet in length is taken and this is fashioned into five rough stools or pinvahs. These are carried inside the house and placed in front of the Grimó Gosain, sindur is applied and the usual offerings are made with pochai. Then the he-goat is brought, its head is cut off and the Demno drinks the blood. These stools are afterwards placed on the Dálá Gosain which has already been hung up. The stools are covered with a white cloth and are offered to the godlings as seats. The usual dances, songs and licentiousness take place.

[^19]
Ner Lalleh.

The Ner Lalleh or snake dance may be seen during the Durga-pujah. This great Hindu festival takes place, as a rule, in the month of October. The rains no longer whip the roads into yellow foam and sweep down the hill sides in roaring rivulets. The crops are ripening and the heart of the rayat is glad. He pauses in his toil and anticipates plenty, and a warm fireside in the winter. This is the season of reunion, of good cheer and fellowship-the Eastern Christmas! The courts are closed, the overworked official seeks relaxation in the hills or at Calcutta, and the Hindu is likewise on pleasure bent. The Saoria also descends from his fastnesses, carrying long, tasselled bamboo staves ringed with gleaming brass; his, head-dress is adorned with plumes and peacock feathers. His ankles and knees are encircled with tinkling bells; and he makes merry to the sound of ringing drums. But a Cobra-di-Capello is essential. Prior to leaving home, a pujah is performed on the village dancing ring ; a fowl or pigeon is sacrificed, and Ber Gosain and Darmáre Gosain are implored to protect the snake-master from harm. The Guru and his companions catch a snakeconsiderable dexterity is displayed-and place the reptile in a basket. The dancers and the Guru then visit the neighbouring villages and even extend their excursions to the hamlets in the plains. The snake is placed in the centre and the dancers circle in ever-changing step, while the cobra uprears its hood before the Gúru. The measure is very intricate and is accompanied by a weird and deep chant in unison. Forty or fifty men dressed in red, blue, or crimson, dance in circle, and, finally the dancers imitate, with marvellous precision, dancing all the while, the winding movement of a snake in motion! The excitement and picturesqueness of this amazing spectacle are better imagined than described.

The following is the song.

Malto :-

Utari bandlá, Púrabi bandlá
Bandlá púrab sánjre sámdre
Gúrúdar gúrúkiáre, sanpre
Bandáre Utari bandlá
Púrabi bandlá bandlá púrab
Sánjre sámdre ámer bimer
Goler káți eto darm karore
Sánp, sánp tori ailo, chutaki keláwóh
Translation:
A spell from East and North I wis; A spell from the Ocean's boom; The master binds the dreaded hiss, Nor fears he the bite that's doom.
A spell from East and North I ween
And the Death all helpless lies ;

Nor ire nor sting, ah me! the scene While our song doth swelling rise. Oh, bring ye gifts and service true, Lo, the master plays the snake With snapping finger ; bring his due And offerings freely make.

The festival continues for a month and more. The snake is then taken to the middle of a running stream and liberated. The disciples who offer pigeons, etc., are here taught snake lore and incantations; and the necessary drugs are given to them by the Guiru. A goat and two pigeons are sacrificed on the bank and the party betakes itself homewards. The Gúru, it may be observed, is often given money by his disciples.

Devils and Evil Spirits.

Mãr \tilde{a} Kambe is a devil who lives in trees; he is seen swinging on creepers by the privileged at midday or midnight. He is a male devil, absolutely black, with white eyes and very long matted hair, and feet and hands turned backwards. This devil is the ghost of an old man who has died unmarried. He cannot bear to see pregnant women. Should they approach his abode, he beats them and kills the unborn child, causing an immediate miscarriage ; also, frequently, he causes the death of the mother. He pays very little attention to sacrifices and pujahs. Goats, fowls, eggs and other things are offered to him. This devil has much power for harm and only attacks pregnant women.

Dindeh, a female devil. She also lives in trees. She is black with yellow eyes ; she pays some attention to sacrifices. She attacks both men and women. This is the ghost of an old unmarried woman, who wrestles with men and beats women and causes maladies. In such cases the Demno and others sacrifice eggs, a black fowl and a small black cloth rubbed with soot. These are offered in a small basket at the place fixed upon by the Demno.

Póri.-Male or female devil. This is the ghost of either a man, woman or child. This spirit lives in graveyards but wanders about. This is a black spirit with white eyes, who wears a dirty cloth round its loins and wrestles with people, causing diarrhoea, vomiting, etc. To this ghost a fowl's egg, burnt makai and burnt rice, tobacco mixed with lime are offered in a mud plate at the place selected by the Charri Beddu or Demno.

Nârráh.-Sex unknown. This devil lives in dirty and stagnant pieces of water and slush. It assumes all forms such as, pigs, tigers, rats, etc. This ghost causes sickness and death at night by licking the bodies of human beings. I tbrings dropsy and other awful diseases. The Demno and Charri Beddu administer jungle medicines.

A Demno is said to have poisoned one of these devils with pig's blood mixed with poison. The ghost died as a musk-rat. Sacrifices are not offered to this devil.

Jámpóri.—Demnos, after death, as a rule become Jámpóris. This devil seeks especially for pregnant women and kills them. The Jámpóri is very black, with long hair and terrible and enormous eyes. He appears at midday and midnight and lives in Banyan and other trees. He watches from the foot of the tree. (See also Burial).

Alm Nárráh.-This is similar to Nárráh but is smaller. This devil lives in a clear spring of water. It receives offerings ${ }^{1}$ of pigs, the sattu of Indian corn, the tulsi tree, sindur and incense.

Úmet Nárráh.-This devil lives under big rocks and in the hollows of rocks near springs. His victims suffer from mirgi (epilepsy).

Mahesh Náddú.

A boy named Mahesha, if ill, should make a sacrifice to Mahesh Náddú; this is decided by the Demno or Charri Beddu and the ceremony takes place when the child becomes well. The day before the pujah, the family and guests sleep in the jungle over night ; the site is selected by the Demno, rice, oil, sindur and a white he-goat are offered at the spot indicated, and afterwards the boy's hair is cut. The Demno does not remain present and the boy's father has to perform the ceremony. This is done only in the case of a boy named Mahesha.

XV. New Pujahs.

Pujahs are offered on the village path to models of trains, umbrellas, elephants with three constables and two mahauts armed with swords and guns, also to leopards and tigers. When a pujah is necessary, models of these are made and the ceremony takes place on the pathway leading to the village. In case of illness sometimes the Demno fixes upon a train after consulting the oracles. He says, "Many devils have come into the village by train, make offerings and cast them out." In the case of the elephant, constables and mahauts, the same thing is done. Leopards and tigers are propitiated, and pujahs are offered to prevent them from entering the village. Pujah to the umbrella is also offered in the case of sickness. These ceremonies may take place during the course of an illness, and they are performed immediately, except in the case of the umbrella, as more elaborate arrangements are required, and the ceremony ends with a dance.

Small-pox and cholera epidemics are often ascribed to the advent of many devils by train. The elephant is also able to bring a number of devils, and it is said to be wise to sacrifice to them. These devils are not described and the models of the train and elephant are thrown in the place indicated by the Demno, or by one of the village women who is in the habit of being possessed by Guryá Gosain.

[^20]
XVI. Panchayat.

Composed as follows :-
Old Custom-
I. Sinyare $=$ Village headman.
2. Bånḍári $=$ Gorait messenger, etc.
3. Koṭwáre $=$ In charge of panch arrangements.
4. Giri $=$ Most influential rayat.

The dormitory system prevails among the Saorias. The marriageable girls have a house to themselves and the youths have another to themselves called Koḍbahá adá ; murs maq koḍbahá, Bachelors, dwelling house ; Pel maq koḍbahá, Maidens' dwelling house.
XVII. Houses.

Saoria houses are always erected north and south, and bamboos and grass are used in the construction. The walls are made of wattles, etc.; earth is sometimes used, but old custom does not sanction this innovation. The floor of the house is depressed, that is, it is lower than the level of the village site. Pujahs are not offered before building a new Saoria dwelling.

XVIII. Prohibitions Regarding Food.

Saorias no not eat cats, ponies, vultures, kites, crows, adjutants, dogs, jackals, wolves and hyenas. The flesh of leopards and tigers is used medicinally. Bears are eaten. It is forbidden to kill dogs and cats, and pujahs have to be performed in case a tiger or leopard is killed. The individual who kills a dog or a cat has to offer rice, pochai and a fowl's egg on the western path of the village. He says, "O Ber Gosain, do not allow Singni Bauri to come into the village." This is the ghost of dogs, cats, leopards and tigers, etc. Singni Bauri causes sickness.

Among the territorial divisions differences in these connections are found, but these differences relate to details and not to essentials.

I am indebted to Dúleh Sardáre (Chief), Surja Sardáre (Chief), Samson Surja Sinyáre (Headman), Banroh Siñyáre, Dohrah Sinyáre, Kallia Munsi, Rupah Sardáre (Rajmahal), Keso Sardáre (Rajmahal), and a host of others who have, at various times, supplied me with valuable information regarding the customs and ceremonies of their own people the Maler.

Fig. i.

Fig. 8.

Fig. 9.

Fig. io.

FIG. 1 I.
FIG. 12.

的。

$$
0
$$

Memoirs of the Asiatic Society of Bengal.

Vol. I.

I. On certain Tibetan Scrolls and Images lately brought from Gyantse.-By Prof. Satis Chandra Vidyabhosana, M.A., M.R.A.S. (Price Re. I-8; or 2s. 3d.)
II. Sal-Ammoniac : a Study in Primitive Chemistry.-By H. E. Stapleton, B.A., B.Sc. (Price Re. 1; or 1s. $6 d$.)
III. The Similarity of the Tibetan to the Kashgar-Brahmi Alphabet.-By The Rev.
A. H. Francke. (Price Rs. 2 ; or 2 s . iod.)
IV. Alchemical Equipment in the Eleventh Century, A.D.-By H. E. Stapleton and R. F. Azo. (Price Re. 1-8; or 25. 3d.)
V. Malaysian. Barnactes in the Indian Museum, with a list of the Indian Pedunculata.By N. Annandale, B.A., D.Sc. (Price Re. 1-8; or $2 s$ s. 3 d.)
VI. Ashrafpur Copper-plate Grants of Devakhadga.-By Ganga Mohan Laskar, M.A. (Price Annas 8; or rod.)
VII. Festivals and Folklore of Gilgit.-By Ghulam Muhammad. (Price Rs: 2 ; or 2 s . rod.)
VIII. Notes on the Bhotias of Almora and British Garhwal.-By C. A. Sherring, M.A., F.R.G.S., I.C.S. (Price Re. I-5; or 2s.)
IX. Religion and Customs of the Uraons.-By the late Rev. Father Dehon, S.J. (Price Rs. 2 ; or 2 s. 1od.)
X. Notes on the Fauna of a Desert Tract in Southern India (Herpetology and Entomology).-By N. Annandale, D.Sc., C.M.Z.S., with a list of Mammals by R. C. Wroughton, F.E.S. (Price Rs. 2 ; or 2 s. iod.)
XI. Amulets as Agents in the Prevention of Disease in Bengal.-Compiled in the Office of the Superintendent of Ethnography, Bengal. (Price Annas 12 ; or Is. 2d.)
XII. Earth-Eating and the Eaith-Eating Habit in India.-By D. Hooper and H. H. Mann. (Price Re. I; or is. 6 d .)
XIII. On a Cup-Mark Inscription in the Chumbi Valley--By E. H. C. Walsh, I.C.S. (Price Re. I ; or is. 6 d.)
XIV. A Descriptive List of the Sea-Snakes (Hydrophiidæ) in the Indian Museum, Calcutta. -By Captain F. Wall, I.M.S., C.M.Z.S." (Price Re. i; or Is. 6d.)
XV. Common Saws and Proverbs collected, chiefly from Dervishes, in Southern Persia.-By Lieut.-Col. D. C. Phillott. .(Price.Re. i; or 1s. 6d.)
XVI. The Common Hydra of Bengal: its Systematic Position and Life History.-By N. Annandale, B.A., D.Sc., C.M.Z.S. (Price Re. I; or Is: 6d.)
XVII. Animals in the Inscruptions of Piyadasi-By Monmohan Chakravarti, M.A. (Price Annas 12 ; or 1 s. $2 d$. .)
XViII. Some current Persian Tales told by Professional Story-Tellers.-By Lieut.-Col. D. C. Phillotr. (Price Re. I; or is. 6d.)
XIX. The Dards at Khalatse in Western Tibet.-By Rev. A. H. Francke. (Price Re. I-6; or $2 s$. .)
Supplement, Miscellanea Ethnographica. Part 1. I. The Blow-Gun. in Southern India. 2. Miscellaneous objects from the Ramanad subdivision of the Madura district.
3. Indian Weighing-beams.-By N. Annandale, D.Sc. (Price Re. r.)

Supplement, Miscellanea Ethnographica Part 11. 1. Some Malayan Weapons-By N. Annandale. 2. Plan of a Persian Gentleman's. House-By Lieut.-Col. D. C. Phillott. (Price Annas 8 ; or rod.)

Memoirs of the Asiatic Society of Bengal.

Vol. II.
I. Cirrhipèdes operculés de l'Indian Museum de Calcutta.-Par M. A. Gruvel. (Price Rs. 2 ; or 2 s. Iod.)
II. The Coinage of Tibet.-By E. H. C. Walsh. (In the press).
III. The Exact Determination of the Fastness of the move Common Indigenous Dyes of Bengal, and comparison with typical synthetic Dye-stuffs. Part I. Dyeing on Cotton.-By E. R. Watson. (Price Re. I ; or Is. $6 d$.)
IV. The Saorias of the Rajmahal Hills.-By R. B. Bainbridge. (Price Rs. 2 ; or 2 s. Iod.) Taríhh-i-Nuṣratjangi.-By Hari Nath De. (In the press).

MEMOIRS

ASIATIC SOCIETY OF BENGAL

VOL. II, No. 5, pp. 85-120.

MUNDARI POETRY, MUSIC AND DANCES.

REV. FR. J. HOFFMANN, S.J.

CALCUTTA:
Printed at the Baptist Mission Press, and published by The Asiatio Sootety, 57, Park Street.
1907.

Price One Rupee ; or One Shilling and Sixpence.

Mundari Poetry, Music and Dances.

PART I.

By Rev. Fr. J. Hoffmann, S.J. Communicated by Mr. E. A. Gait

A study of the features of Mundari poetry presupposes two considerations of a general character, viz., the comparatively low stage of culture in which the Mundas still are, and the character of their language.

The Mundas never either invented an alphabet of their own nor have they adopted any from aliens. They are, as a race, up to the present, entirely illiterate. Hence their mythology and ritual formularies as well as their folk-lore and poetry remain exclusively treasured up in the popular memory, and through it alone are they handed down from generation to generation. It is, therefore, not surprising that their poetry, like their whole civilization, should be very primitive and simple and remain even nowadays in the melic stage. It is made to be sung, and the few simple melodies to which it has to adapt itself are all meant to regulate or to follow their dances. It is never recited or declaimed. We need not, therefore, look for those developments which recitative poetry has gradually evolved, such as the ballad, the idyl, the ode, the elegy. It consists of a great number of short pieces, lyric in character, all of which are nothing more or less than songs. Any other name for this or that particular piece would hardly be justified.

The Mundari language consists mainly of monosyllabic and dissyllabic original words. These are combined into living speech by means of affixes; most of which are suffixes and infixes. In this way compound words of five, six or even seven syllables are frequently obtained. Regarding the structure of the line and the stanza it is difficult to give a satisfactory account. There is first the question of the rhythm in the line which embraces the accentuation of words, the length or brevity of syllables and the number of syllables in the line ; secondly the form of the stanza as such.

The accent is not nearly as marked as it is in the Teutonic languages ; in originally dissyllabic words it falls, with rare exceptions, on the first syllable. Grammatical formations do not change the accent of the original word; hence reduplicated monosyllables keep the accent on the last syllable, v.g., nel, to see ; nenél, to see repeatedly, to look after. The same rule holds good in those cases where an inserted functional consonant turns a monosyllable into a dissyllabic word, v.g., nel, to see ; nepél, to see each other. Whenever affixes of one or several syllables are added for functional purposes to mono- or polysyllabic words, the resulting compound has more than one accent; for the original word, as well as the affix, keep their respective accents, v.g., háturénko.

Regarding the length or brevity of syllables, there is a certain distinction between
long and short syllables, but it is not easy to ascertain the exact rules, because the distinction is not sufficiently marked to be readily perceived throughout. Even the most educated among the Mundas can give no satisfactory account of it. Distinctly long syllables are met with only in the comparatively few cases where two vowels are contracted into one; this happens mainly in a small number of contracted frequentatives, and in the indeterminate tense, i.e., that form which is used to make general statements. Besides this, in vivid descriptions the Mundas lengthen out the tense affixes as well as the vowels of other words into distinctly long syllables in an arbitrary manner. This is done in conversational language for the sake of emphasis. Vowels thus lengthened become prominently accentuated, v.g., horāre, instead of hóraré; nirjänae, instead of nivjánae. There exists also quite a number of very short neutral vowels which seem mainly intended to form a sort of easy transition between two consonants; these vowels are so short as to be often hardly perceived by a foreigner. These, as well as the arbitrarily lengthened syllables mentioned above, do not enter as rhythmic factors into the line.

When actually singing, the Mundas lengthen any vowel, even the short neutrals just mentioned, in an apparently arbitrary manner just to suit the melody. It is, therefore, difficult to decide whether there be or not a really sustained verbal rhythm in the lines, and to point out in what it consists. Some pieces seem to have it distinctly, whereas in others hardly a trace of it can be seen. Similarly, for the sake of the melody, the following euphonic, or rather melic, additions are made to words :-
(a) Words beginning with a vowel, especially when they stand first in a line, often take an initial n by way of an easy start for the first note, v.g. nokorega for okorega, napu for $a p u$. In the case of words beginning with an h, the aspirate is thrown out by this initial n, v.g. nora for hora.
(b) Vowels are either infixed or suffixed to words. These inserted vowels have the full value of the ordinary Mundari vowels ; they must, therefore; not be confounded with the short or neutral vowels mentioned above, v.g. Sel-e-kuti for Selkuti, miru-o for miru.
(c) Vowels, instead of being merely lengthened, are sometimes changed into diphthongs: osair for osar.

All these changes make it sometimes difficult for a foreigner to recognize words in a song ; he will not, for instance, at once recognize the word osar in nosair, or hojortan in nojoretan.

We do not, therefore, in the lines of Mundari poetry, find that pronounced rhythm, arising out of the original word-form, which is such an essential feature of our own poetry. On the contrary the words have to submit to certain changes in order to accommodate themselves to that kind of rhythm which is inherent in the melody. Nor is there anywhere any attempt at rhyming. Since the pieces are not intended for recitation, the need for rhyme has probably never been felt by the Mundas.

There is a distinct attempt to have a fixed number of syllables in the lines of the same piece. However that attempt is hardly ever entirely successful. The number of syllables varies considerably in different songs.

Whether such lines may or may not be called verses is a mere question of terminology.

So much for what, from our point of view, may be called the negative side of Mundari poetry.

In describing its positive side, its national characteristics, we might conveniently distinguish between its soul, or the ideals which it pursues, and its body, or the outward form in which the poets or bards clothe those ideals.

As to the first, we could hardly expect to meet with either the heights of the Aryan epos and drama, or with the variegated charms of the lighter kinds of Aryan poetry. For these suppose a degree of intellectual culture which the Mundas were partly too indolent and partly too unfavourably circumstanced to work out for themselves. Ever since the great Munda or Kherwarian race was broken up, and its unabsorbed remnant driven in small fragments into the various mountain fastnesses of Central India by the northern invaders, the mental horizon of the fraction who are now called Mundaris or Mundas has been limited to the joys and sorrows of a very simple life. Their world is a narrow circle of villages hidden away in forest-clad mountains, where the appearance of an alien has, till recently, been quite an extraordinary sight. And they are quite content to leave the wide world and its wonders to such races as may care for them. Their only desire regarding that world has been, and still is, to be left alone by it.

Hence, of the shock of nations and of races impinging on each other, of the unbounded longings of soaring minds after a nobler life and a higher world, of the mystic, the melancholic, or the fairy dreams of the romantic school, which form the subjectmatter of so much of our poetry, little or no traces are to be found in theirs.

And yet it would be wronging them to suppose that they are devoid of poetic instinct. It is not as mere animals, or as incipient men, that they move through their simple life. They see it, they look at it in an intensely human way. It cannot be said that they allow themselves to be smothered by the hard struggle for existence. They see the joys and sorrows of life; they perceive them as such, and, culling them as it were, they clothe them in a profusion of songs which seem almost inexhaustible.

Besides the old and ever new theme of poesy, the fairy dreamland of first love, with its counterpart, the poignant grief of the disappointed lover, the following are the ordinary subjects of their songs :-the golden worth of friendship, the fitness or becoming nature of the good old customs, the pleasures of the chase, the terrors of the tigerinfested forests, the horrors of war the pangs of poverty, the complaint of the servant, the foolishness of forming unsuitable attachments, the reprehensible ways of the giddyheaded village belle who seeks to attract attention in a manner which stands condemned by the social customs, the more pardonable little vanities of youth, the chaff and banter between youths and maidens, the chiding between husband and wife, the remembrance of some stirring event, such as a battle, a great panchayat, etc., the surprise and delight caused by the occasional sight of a so-called Rajah's gaudy suite, and even the amusement caused by the somewhat comical appearance of the itinerant Hindu merchant as he jogs along astride the bulging pack-saddle of his wretched little country "tattoo" (pony).

They are keenly alive to the beauties of scenery as well as to the charm of flowers, of colours and of the play of light ; and they show their appreciation of all these charms in striking word-pictures, sometimes of great and deeply poetic beauty, which they use as terms of comparison, as symbols or as frames to the subjects treated of. Simple, limited and hard, as their life may seem to us, and to a great extent is in reality, it still offers to them a source from which they draw in abundance the honey of poetry, one of the greatest and truest blessings, ever ready for the lowest as well as the highest of men.

This original poetry will of course be worthless to the scoffer ; and to narrow minds, unable to appreciate aught that lies beyond their own little circle, refined or otherwise, it must appear crude. But though it lays no claim to artistic perfection, it brightens the Mundas' lives ; and it certainly is not without its own intrinsic merits. Not the least among these merits is the fact, that of the hundreds of songs, which after the day's work resound over the whole country evening after evening, not one is defiled by a lewd expression nor even by an indecent allusion.

Horace enunciated but the verdict of common sense when, comparing poetry to honey, he said that even as honey that was not entirely sweet had better not be served up, so verses that were not very good had better not be made at all. Do these aboriginal forest-dwellers instinctively feel that what the Roman poet exacted for the outward form applies with even greater force to the inward soul, or essence of all human ideals, amongst which poesy occupies a foremost place, viz., that a single vice destroys them as such ? A lesson from an unexpected quarter indeed to a certain school who, under the specious pretence of art being its own end, produce would-be ideals, poetry and other so-called works of art, which contribute more to the degradation of art and of life itself than can easily be expressed.

In considering the outward form we first meet with a very characteristic feature which is in a way akin to the Hebrew psalms, but has no distinct counterpart in Aryan poetry. In most of the songs, two lines are devoted to the expression of one and the same idea. This is done in various ways :-
(I) If the idea is adequately expressed in the first line, then the second line merely repeats the same idea. But this repetition must be made, not in the same but in synonymous terms. The perfection aimed at is the substitution of a synonym for each term of the first line. This is frequently not attained, but the leading words of the second line are generally synonymous with the leading words of the first line.

By way of illustration, take the first stanza of a song which inculcates, on the members of a family, the necessity of submitting to any inconvenience rather than break any of those sacred rules which have done so much for the maintenance of mutual respect and a really wonderful morality among all the members of the often very large families huddled together, so to say, in comparatively small huts. One of these rules forbids the wife of a junior brother to stand or sit on the same mat with either the senior brothers or sisters of her husband; for to these she owes respect, and in return the seniors in question owe her the consideration due to a junior brother's wife. On her mat she is queen. Nobody may so much as step on it except her husband, her
parents and those junior members of the family who must look up to her as to their own mother.

In this first stanza temptation sings to her, addressing her by one of those terms of endearment that are so freely used in their songs, uru. The corresponding synonyms are recognizable by the words italicised.

Bolome nuru bolome! rabanga nuru rabanga.
Sorome nuru sorome! reara nuru reara nairi!
Enter, my chafer, enter! 'tis cold, chafer, 'tis cold.
Dart in, my chafer, dart in! 'tis chilly, chafer, so chilly !
In the next stanza she exclaims with indignation, " How could I enter, how dart in, since in one part of the hut my senior brothers-in-law are seated, and in the other my senior sisters-in-law?" In other words: "What is the inconvenience of cold and chill to that of breaking the sacred rule handed down by our ancestors?"

Here the question naturally arises: Have they then such an abundance of words that they can render any and every idea in two sets of synonymous terms? Has it not been said that their language is poor rather than rich in words? Their language is indeed rather poor in words, and yet they find a way out of that difficulty.

To understand the solution of this apparent paradox, we must here revert to a short consideration of the most fundamental characteristic of their language. In the so-called organic languages words are no longer bare roots ; they are parts of speech, i.e., ready-made, spoken, or written signs which not only denote objects and actions in a very precise manner, but also clearly connote the various ways in which the mind conceives those objects and actions. They are directly denotative of objects and actions, and equally directly connotative of almost every form of abstraction the mind is capable of. In Mundari, on the contrary, we meet mostly with bare roots, not only entirely devoid of the abovementioned connotative power, but also, to a great extent, of any very precise denotation, with words of a very vague signifying power and therefore of great functional elasticity. Whereas they denote objects and actions merely in their widest or vaguest sense, they hardly ever connote, by themselves alone, the precise manner in which the mind may conceive objects and forms of activity. That connotation is left almost entirely to the context of a given sentence and to the circumstances under which it is uttered. The same root or word-form may be used as a concrete or an abstract noun, as an adjective or a verb. Even pronouns, conjunctions and interjections may perform the function of a verb; and vice versa, every one of their twenty-one tense-forms in any of the four voices may resume the function of a noun, an adjective or an adverb.

It is to this vagueness of signifying power, to this functional elasticity of his words, that the Munda has recourse to produce the number of synonyms he requires for his songs. He even pushes it to extremes which to us may appear sometimes ridiculous and sometimes almost shocking. Provided a word have even but one feature, one element in common with another, he will unhesitatingly use it in a song as a synonym,
although the main denotation of the second word differ so entirely from that of the first that in ordinary conversation it may never be used as synonymous with it.

The following examples may serve as illustrations :-
Sen, used as a verb, means to walk, to go, to go away, and denotes the ordinary measured step.
Hojor denotes a faster step ; the kind of trot so common among Indian carriers.
Here, therefore, are two words which denote two different degrees of intensity of generically the same action. Now, if the word sen occurs in one line of a song, the word hojor or its poetic form nojor occurs frequently as its variant in the next line. The poet does not intend it to denote a faster step than that signified by the word sen. Singers and listeners accept it as a perfect synonym to sen. The fact or circumstance that it appears as variant to sen in a song determines its de facto meaning in the line of a stanza.

Birid means to stand up, to get up. Mundas carry on all their conversation in a sitting posture. When anyone wants to talk to another, whether on business or for a simple chat, he will not begin talking before both he and his interlocutor have comfortably squatted down. When the talk is over he will get up. That is the sign that he has nothing more to say and is now going his way. In such circumstances, therefore, birid denotes indirectly the beginning of the act of going away. This very slight common element in the denotation of the two words is sufficient to allow, in poetry, the use of birid as a perfect synonym of sen. Hence when birid occurs as variant to sen, it no longer means to stand $u p$, to get $u p$, but, like sen, it means to go, to go away, to get on, to walk.

Soan denotes any odour whether agreeable or otherwise, and if used as a verb it is equivalent to the English to smell. Sinrin in ordinary conversation always denotes a disagreeable odour of stale or decaying food in general and of fish in particular. The unwary foreigner, sufficiently acquainted with Mundari just to translate a song literally, might naturally feel shocked at finding this predicate connected with the names of some of the sweetest scented flowers that are met with in Chota Nagpur. However, if a preceding line speaks of a sweet-smelling flower, then the fact that in a subsequent line sinrin occurs as variant to soan, suffices for the Munda to call up the mental picture of the sensation caused by a sweetly scented flower : he unhesitatingly accepts sinvin as under the circumstances meaning fragrant.

The following may suffice as an illustration of this. Munda maidens are exceeding. ly fond of ornamenting their hair with flowers. These are generally arranged in a row, like a crest over the heavy knots into which the hair is gathered near the left ear. Youths are equally fond of flower ornaments, but they stick either single flowers or tiny bouquets over one and sometimes over both ears. This act of sticking anything over the ear is called dandid'. Hence this word is, in songs, very often used as denoting a flower or a small bouquet, just as the English buttonhole is used to denote the flower or flowers fastened to a button hole. Such a bouquet might, therefore, be translated by the word earstick, though this may sound even more injurious to the pretty flowers
than the English buttonhole. Dali or daili is nowadays used only in songs and denotes, primarily, a bunch or bouquet of flowers. Hence again it is also used as synonymous with the generic term : $b a$, flower or flowers.

In this song a youth sings to his sweetheart :-

Corresponding variants are marked with the same number.
The song may be closely translated as follows :-
I. Into what flower hast thou blossomed, maiden ?

Thou art fragrant like the flowers.
Into what bunch of flowers hast thou grown, maiden ?
Thou art full of perfume like a bouquet.
II. (Or) dost thou wash thyself in flowers, maiden ?
(That) thou art fragrant like the flowers.
(Or) dost thou bathe in blossoms, maiden ?
(That) thou art full of perfume like a bouquet.
This very peculiar use of words cannot be sufficiently insisted on, if we want to do justice to their little songs and realize, to some extent, what those songs are to them.

In addition to this almost inexhaustible stock of synonyms the Mundas have two other means at their disposal : first, they have retained, for their songs, a certain number of words which are now quite obsolete so far as conversational language is concerned; secondly, they readily use in songs such Hindi or Sadāni words as they have picked up, as synonyms to their own ; thus rai, mustard-plant, occurs as variant to the Mundari mani ; dhar, path or road, as variant to hora, etc.
(2) If the idea is only adumbrated in the first line so as to require either a simple expansion or absolute generalization, then the second line repeats it in such a manner as to obtain the desired effect. This is done in two ways, either (a) by using in the second line a word denoting an object of the same kind or genus but of a different class or species from that denoted by the corresponding term of the first line, or (b) by using a contrasting term.

If the poet desire to call up a mental image of the pleasure caused in general by the sight of bright flowers, he will mention in the first line a tree or shrub with a gaudy flower, and, as a corresponding variant, he will, in the next line, give the name of another tree or shrub with an equally pleasing flower, though the second flower differ ever so much in shape and colour from the first.

Similarly, to evoke the mental image of the pleasure caused by sweet scents he will, in the first line, name some scented flower, and, in the next line, name another flower having an agreeable though specifically distinct smell. He thereby intimates that he really makes abstraction of the particular objects he names and uses them only as steps to reach a broader and higher view or level.

This is carried to great lengths, especially in the extensive use of similes and allegories, which a language of this type must have recourse to in the treatment of wholly abstract subjects, such as mental states and affections, lying so much beyond the reach of their simple concrete verbal means. The following song in two stanzas may serve as an illustration of this.

A maiden, after having hesitated for a time, intimates her resolution to marry her admirer because she is satisfied that his love is true. She represents herself as a tree and then pictures her admirer's love allegorically by two characteristic creepers which entwine many a tree from stem to crown in the Chota Nagpur forests. The kunduru is a hardwooded creeper starting without support under a tree at some distance from the trunk until it reaches the first branches, when it rapidly spreads through the crown. As its trunk and branches are studded with sharp little thorns, it forms a certain protection to the tree, whilst its abundant tiny little leaves add grace to the foliage.

The palandu is a softer creeper which grows in spirals around the trunk of a tree and beautifies its crown with its large dark-green leaves. The spirals around the trunk and the larger branches gradually increase in diameter until they attain a strength sufficient to uphold the tree even when its roots are destroyed or the lower end of the trunk is too decayed to allow of the tree standing by itself alone.

The winding winding kunduru is holding me enclosed with his windings, the winding kunduru is holding me enclosed.
The creeping creeping palandu is holding me enclosed with his spirals, the creeping palandu is holding me enclosed.
Since then the mind is at ease come along, kunduru ; thou and I will go together (through life), thou and I will go together, kunduru.
Since then the heart finds its rest come along, palandu; thou and I will walk together, thou and I will walk together, palandu.

The creeper is not inappropriately chosen as a symbol of the chief, i.e., the unifying tendency, of true love. But the use of two different kinds of creepers is intended to develop and complete its description. The first line exhibits in the thorns of the kunduru that element of jealousy, which is inseparable from love among the so-called semi-savages, as well as among the most refined of men. The second line portrays in
the powerful rings of the palandu that element of faithfulness or strength which is proof against trials and lasts even unto death.

The following song may serve as another striking instance of this method of generalizing, and thus idealizing :-
I. Who, brother, made the golden battle-axe ?

Who, brother, made the silvery arrow-heads and shafts ?
II. The blacksmith, brother, made the golden battle-axe.

The silversmith made the silvery arrow-heads and shafts.
III. Don't, please brother, bring out the golden battle-axe.

Don't, please brother, parade the silvery arrow-heads and shafts.
IV. 'Tis dripping with blood, the golden battle-axe.

They are wet with gore, the silvery arrow-heads and shafts.
Now there is not a trace of gold on the Munda's battle-axe nor a thread of silver adorning his arrows. But gold and silver being the brightest among metals and of different hues, are here used to call up a vivid picture of the flash and glitter which the brandishing of polished arms produces in the bright sun ight. The poet simply intends to place the fighting youth and their armour in the most favourable light, in order to put all this sheen and glamour over against its real end, and thus condemn it by presenting, in the last stanza, the once dazzling arms as covered and darkened with the blood of fel'ow-men, as instruments and sgns of the agonies of the s'ain and the wounded. It is the Munda's way of saying in a poet ${ }^{\circ} \mathrm{c}$ manner, that all the fascinating sheen and glamour of a nation's youth in arms can never be either a justification or a compensation for the horrors of war.

Two examples may suffice to illustrate the use of contrasting terms in two subsequent lines for the purpose of widening or generalizing.

A young man invites his comrade to come with him to the forest and dig out the fresh bamboo shoots, which are considered a great delicacy. His friend dissuades him from the dangerous errand, and winds up by these four lines :-

Let us not go, my friend! it is full of tigers you know!
Let us not go, my chum! it is full of wild beasts you know !
These mauled the man-servant you know !
These mangled the maid-servant you know !

The contrasting terms man-servant and maid-servant are not here intended to designate any particular servants at all. They are used to convey the idea of dependants, and even of others whom need or duty obliges to enter the forest, even like manservants who must procure from it the necessary building and fire-wood, or like the maid-servant who has to bring in the leaves required daily for drinking cups and rice and stew-dishes, as well as the leaves of the stunted palm for plaiting the indispensable mat. Hence the lesson of the song is: Don't, for a mere delicacy, enter the dread forests that swarm with wild and ferocious beasts, since so many whom need or duty calls thither fall victims to them.

A young man has been commissioned to guard a mustard-field against pilferers. Two girls walk up to him and ask permission to pluck some of the coveted leaves, but he remains true to his trust and refuses the permission, although they offer him their trinkets. The song is meant to inculcate honesty, and does so in a truly poetic way by pointing to a youth who for honesty's sake resists not only the coaxing, but even the proffered trinkets, of the two charming temptresses, who after all ask but little and offer more than the few mustard leaves are worth. A strong temptation indeed! It begins with an address by one of the girls drawing her companion's attention to the beautiful picture which the light-green, gold-crested mustard fields present at a particular season of the year.

Виги burure manido. Bera berare ${ }^{\mathrm{r}} \mathrm{r}^{2}$. Limang-lomonga mani

Buru means " mountain," bera means "valley"; mani is the Mundari, rai the Hindi word for " mustard " ; $r e$ is " in," and do here means " behold!"

Limang-lomong means " fresh and tender," kidar-kodor means " light and wavy."
The repetitions buru buru and beva bera mean, even in prose, "every mountain, every valley." Hence the song may closely be rendered thus :-

Behold on every mountain mustard fields!
Behold in every valley mustard fields !
Behold the mustard fields so fresh and tender!
Behold the mustard fields so light and wavy !
Here the contrasts " mountain and valley" are equivalent to such phrases as " the whole country," " all around," " everywhere."

It may be remarked here en passant that a close translation of Mundari songs is often very difficult, and sometimes impossible, partly for the want of a sufficient number of English synonyms, and partly for other inherent reasons. It can hardly ever be more than a very poor rendering. Amongst other defects it robs them of that peculiar charm which these synonymous repetitions have for the Mundas, and consequently
it can never be for our minds what the original is for theirs. That charm is considerably heightened by the alternating manner in which the repetitions are sung by the boys and girls at their dances. When the boys have sung two lines, the girls take up the second line and sing only that, so that the synonymous repetition sounds like an echo of the idea expressed.

Boys \{ Buru burure manido! Limang lomonga manido!
Bera berare rai! Kidar kodora rai!
Girls-Bera berare rai! Kidar kodora rai!
These echo-like repetitions are certainly well calculated to deepen the impression intended in certain graver songs, as well as to heighten the point in such as are meant as friendly banter.

Thus the last stanza of the song about the horrors of war, given above, cannot but become more impressive by the echo :-
Boys $\quad\left\{\begin{array}{l}\text { Maiomtana dada samrom kapiho! } \begin{array}{l}\text { Kirumotana dada rupa mailsar! } \begin{array}{l}\text { Tipping with blood, brother, the } \\ \text { golden battle-axe. }\end{array} \\ \text { They are wet with gore, brother, the } \\ \text { silvery arrow-heads and shafts. }\end{array} \\ \text { Kirumotana dada rupa mailsar! } \begin{array}{l}\text { They are wet with gore, brother, the } \\ \text { silvery arrow-heads and shafts. }\end{array}\end{array}\right.$

The following is a piece of banter against the very natural anxiety of maidens to hide their ordinary shortcomings when their intended pays a visit to the family. A few words of explanation are required to understand it fully. The ordinary fare of the Munda is rice, with generally some stewed edible herbs or leaves. On special occasions a stew or curry of pulse (ramra, i.e., the Hindi urid or dal) is served up with the rice. Ordinarily they are not over particular about the rice being perfectly washed before it goes into the cooking-pot, or about removing inferior and foreign grains or even small pebbles from the pulse previous to roasting or stewing. Some are more careless than others, and it is against these that the song is directed. Salha or sala means " to select." In connexion with pulse it means to remove every impurity carefully so as to leave only the best grains. Gugura and dambar kom denote tiny little round bells. Of these there are two kinds. The very smallest are attached to the neck of hunting hawks, whereas a slightly larger kind are attached to leathern ankle rings, as well as to belts, which young men tie above the ankle and round the waist in the war dances called paiki. The sound of both kinds is weak enough, especially that of the hawk-bell, which is intended to give only a clue to the hunter as he follows his bird into some thicket or bush. These little bells are introduced on purpose to hint in a bantering way at the quick sympathy with which lovers seem endowed with regard to all that concerns them mutually.

Since the piece is throughout a good illustration of the feature under consideration, it may be given here in full :-
I.

Boys Okoe hijutan? chaulim chapitan!
$\underset{ }{\mathrm{I}} \underset{\text { Chimae setertan, ramram salatan! }}{2} \stackrel{4}{4}$
Girlṣ- Chimae setertan? ramram salatan!
II.

Boys
Gatim hijutan? chaulim chapitan!

Sangam setertan? ramram salatan!
Girls- Sangam hijutan? ramram salatan!

Girls- Meretem atenli? ramram salatan!

V. $\quad\left\{\begin{array}{r}\text { Richi-gugura riringkenado }{ }^{2}, \\ \text { Boys }\end{array}\right.$

Besra-dambarkom rarangkenado.
Girls- Besra dambarkom rarangkenado.
VI. \quad Enategeho! chaulim chapitan!

Boys \{Enategeho! ramram salatan!
Girls- Enategeho! ramram salatan!

Who is coming (that) thou art busy washing the rice ?

Which one is nearing ? thou art selecting grains!

Is thy friend coming ? thou art wast.ing the rice!

Is thy lover coming? thou art selecting the urid grains!

By what did'st thou hear him (approach) thou art, etc.

By what did'st thou make out (his approach) ? thou art, etc.

His feet forsooth are full of hawksignals.

His waist forsooth is full of falconbells.

The following considerations may perhaps be suggested as a possible explanation of this very peculiar feature.

The alternating chora arrangement just shown demands of course a repetition. But it does not exact the substitution of synonymous terms Similar'y whenever expansion or generalization is required by means of a contrasting or a specfically differing term, repetition of the rest of the line is a necessity. But here again the expansion or generalization wou'd be attained equally well by the mere repetition of
the identical remaining terms of the line. The substitution of synonyms has nothing to do with the expansion or generalization.

Would it be a satisfactory explanaticn to ascribe this substitution to a mere dread of monotony, to the mere desire of changing just for the sake of changing ? But such a desire would seem to point to a refinement which we hard"y expect from an entirely illiterate aboriginal race. It is an exigency of style as style, and therefore seems to presuppose a literature.

On the other hand, poetic instinct may very well be conceived as exacting such an expedient in languages of a certain type, whereas languages developed along other and higher lines would naturally reject it as monotonous and tedious, because they have other and better means at their disposal to obtain the same or similar effects.

Mundari is far from being a very apt instrument for the expression of abstract thought, whether of the ratiocinative or of the emotional character. It is too much tied down to a rather close, not to say slavish, imitation of concrete realities, and it can hardly rise beyond the lower forms of abstraction. But poetry is essentially an abstraction of a very high order. It cares little or nothing for the concrete realities it touches on, but out of these it draws only those elements which cause in men the great emotions and passions of love and hate, of pleasure, joy and delight, of grief or anguish, of hope or dread, of terror or despair. It must therefore present concrete things precisely under those aspects under which they are most likely to give rise to these emotions and leave their other attributes in the background. It is said that poetry is essentially concrete. In a sense it certainly is, inasmuch as it hardly ever reasons, but depicts concrete realities, and does so in the most vivid manner. The concrete realities it uses must, by poetry, be transformed as it were into very words, and into precisely such words as will most intelligibly and most irresistibly speak to the emotional nature in man. And in this sense it is a very high abstraction indeed.

Like the power or faculty of speech, which, out of a few material sounds, creates an instrument attuned to the almost infinite variety of mental activity, this power of using concrete realities for the purpose of addressing and deeply stirring the equally noble emotional part of the human spirit is, in its essentials, not a reward of effort and study, nor the result of high culture, but a free gift to man in all ages and all climes. It is a gift enabling the simplest, as well as the most intellectual, to absorb, to force into his own soul, the whole of nature, nay at times the whole of the universe, and there attune it to the spirits own present disposition, impregnating it with all its own joys and sorrows, so as to transform that objectively cold and unchangeable, unfeeling universe into very words, which sing, or sigh, or laugh, or cry, or glow with brightest hope, or darken with despair. In this sense poetry certainly is an abstraction of the very highest order, not an abstraction wrought by the intellectual, but by the emotional, nature of the spirit that lives in man. But the outward means used for its expression must naturally differ from race to race, from nation to nation, according to their different tempers and degrees of culture, which manifest themselves so strikingly in the structural character as well as in the single words of their languages.

Now we have quite a number of ready-made words which present objects to the
mind precisely in that light in which true poesy must present them. To give but one example: the word horse simply calls up the picture of a-domesticated quadruped which is one of the most useful among man's animal helpmates. The word steed calls up the picture of the same animal, but this picture brings out prominently those very qualities which we admire with fond pleasure in the horse: his noble bearing, his graceful swiftness and his fiery courage even to death on the battle-field.

In addition to poetic words the Aryan poet has, at his disposal, the greater elasticity of his sentences and the generally more ample and abstract character of his whole language. These advantages, coupled with rhyme and rhythm, powerfully assist and stimulate the mind to conceive objects easily as causes of the emotions and passions which form the very inner essence of poesy.

The Munda must, with his simpler means, try to obtain the same effect. Possibly the synonymous repetitions under consideration are precisely intended as one of these means.

By expressing his idea once in the concrete terms at his disposal, he calls up in the first line the image he intends using or idealizing for his poetic purpose. By repeating it in the subsequent line in synonymous terms, he helps and urges the mind to look for special features, i.e., to bring into prominence those very features which are calculated to cause the emotions he wants to stir up. Habit lends a charm to these repetitions and thus assists this primitive means to do for the Munda what our richer and subtler means do for us.

The Mundas have a large number of qualitative words which belong to the class of jingles, because they are formed, either by the repetition of the same word, v.g., chom-chom, pir-pir, jiliz-jilib, or by the juxtaposition of two similarly sounding words. In this class of words the second word presents either one or two vowel changes, e.g., kandang-kundung, bangad-bungud, or one or two consonant changes, e.g. keleng-beleng rarae-barae, or both consonant and vowel changes, e.g., nambar-dumbar, keve-bore.

With regard to their meaning these jingles may be divided into two classes :
(I) Those which are clearly intended to imitate some sounds, v.g., siraen-soroen, whizzing ; chere-bere, used of the twittering of many birds; varae-barae, used of the con fused noise caused by a multitude of people all talking at the same time.
(2) Such as would appear to be imitative in a wider sense, i.e., not of sounds only, but of impressions produced through the senses of sight and touch, smell and taste. Thus jilib-jilib is descriptive of the flashes caused (e.g.) by the movements of polished arms of men marching : bijiv-balang differs from jilib-jilib inasmuch as it is descriptive of the shimmering effects of bright light reflected from shining or brilliant objects in rapid motion, such as the twirling of a sword, the play of small silvery fish in clear water : biana-bocona is descriptive of graceful wavy movements, such as the flight of certain birds, the swaying of tall trees with rather flexible branches: kere-bore is descriptive of the smoothness and tenderness of fresh young plants and animals: liz lang-lomong is descriptive of the impression of softness and richness produced on the eye by young plants : rese-pese is used of the pleasing effect produced by a regularly arranged or co-ordinated number of small bright objects, such as a fine set of small
pearly teeth, the beads of a necklace, tiny flowers growing in bunches: mondol-mondol used of a rich, sweet scent : binga-banga of objects striped in a regular manner.

There is hardly any natural phenomenon producing distinctly pleasing or charming, delightful or disagreeable, painful or distressing, impressions which has not its own corresponding jingle. Whereas binga-banga is used of objects which are pleasing on account of their being striped regularly in variegated colour, bangad-bungud is reserved for the description of the striped tiger. It seems to convey something of the terror that beast inspires: ari-ari describes that feeling of despondency or despair which arises either from repeated failure or in the presence of insurmountable difficulties in the struggle for life.

Regarding the function and position in the sentence of these jingles, the following may be taken as general rules:
(Ist.) They are nearly always used predicatively, i.e., as Intransitive predicates, very seldom as qualifying appositions to a noun.
(2nd.) When used as appositions qualifying a noun, they stand after the noun. This is a remarkable deviation from the otherwise invariable law, according to which every Mundari adjective must precede the noun it qualifies. Marang ova': a large house ; chom chom horo : a taciturn individual. The inversion is allowed only in poetry. Jingles thus following a noun are in reality equivalent to a qualifying relative clause, or to an adjectival phrase introduced by so.

Dandom ora' chome chome, dandom ora' lingitana.

The umbrella house, which is so snug and cosy, or, the umbrella house, so snug and cosy, the umbrella house is leaking.
(3rd.) As predicates they generally take as affix the linkword a, which is the verbalizing factor for any Mundari word.

Ale disumdona bhuina Bindi kapi jiliz-jilib-a.
In our country, my darling daughter Bindi, the battle-axe is flashing, i.e., war is raging.
(4th.) However, in poetry mere juxtaposition of subject and predicate is often met with, e.g.

Chirpingkodoko bijir-balang.
 Aeraingkodako bian-boeon

My (darling) chirpis (a tiny silvery fish) (are) shimmering (because of their rapid movements).
My (darling) aeras (a small shining fish) (are) moving in graceful curves.
The Mundas are quick in perceiving natural defects as well as acquired shortcomings. They have thus coined quite a number of derisive jingles. These are often repeated twice :

Kandang-kundung or kandang-kundang-kandang-kundung is used to describe the
walk of a lanky, weak-kneed, long-legged individual, who threatens to fall to pieces at every step he takes: tapa-tupu or tapa-tupu-tapa-tupu describes the waddling kind of walk of stout but stunted individuals : sil-sil is used of an unkempt, disorderly head of hair.

J ngles, like other words, may be used metaphorically, i.e., transferred to mental or moral dispositions. Thus chom-chom is applied to any roof or covering that spreads regularly downward from a single point, and, therefore, presents the shape of a dome, a pyramid, an umbrella. Hence it denotes the pleasant impression made by the regularity of shape, as well as by that of a safe and snug dwelling or covering. It corresponds therefore to the English cosy or snug. This idea of covering or enclosing a material space is transferred to the moral sphere by being applied to the character or disposition of persons; thus chom-chom is used of a reticent character, or a forbidding behaviour, as opposed to a frank and cordial manner.

Often they take the present tense affix tan, plus the linkword a. In the subsequent line the a is then generally left out.

Burure mandukam hale ribi-ribitana ho Berare sarajom hale gasa-gasatan.

On the mountain the mhowa-fruit lies thick and dense like the big black ants when they move in a body,
In the valley the sal-tree fruit lies closely packed like the small red ants when they crawl over each other,
i.e., just now, or at this season, edible fruit is plentiful everywhere on hills and in valleys.

These jingles are used also in vivid descriptions or in excited moods in the ordinary conversational language, but not nearly so frequently as in the songs. In these they occur with such a profusion that they must be considered as a distinct factor in the outward form of Mundari poetry.

They are, in their own way, very apt means towards the main end of poetry as the following considerations will show :-

They directly describe not so much the objects, as the pleasant or painful impressions and feelings caused by them, $c f$. the meanings given above on pp. 98 and 99.

It may, perhaps, be said that they seem to point to a widened sense of imitative harmony or that faculty of imitating, by so-called words, certain impressions made on us. Whereas with us such words are now mainly restricted to sensations of sounds, these aborigines would seem to have preserved and developed that faculty so as to extend it to all the other sensations and even to purely mental (non-sensational) impressions : cf. doed'-doed' descriptive of the feeling of weariness and annoyance at the dreary monotony of a long road or an apparently endless plain one is traversing ; and ari-ari dessriptive of the utter dejection and despair caused by repeated failure.

This seems to derive some confirmation from the two following facts:-
(a) If these jingles be broken up and either the first or the second part be taken by itself alone, it has no longer any meaning for the Mundas themselves. Everyone
knows what is meant by biana-boeona, keve-bore, limang-lomong, mondol-mondol, etc., etc. But if you ask them what is the meaning of biana or of bove or of lomong or of mondol, etc., etc., they will answer that they do not know ; some will even say that they never heard that word. As soon, however, as you reconstitute the jingle and say : biana-bocona, kere-bore, limang-lomong, mondol-mondol, etc., they at once recognize it as a familiar sound or word.
(b) Even in their full form they cannot, like all other Mundari words, be used as independent predicates in ordinary conversational language. They must be completed i.e., specified by some other appropriate predicate.
$H e$! means, yes! Used as intransitive predicate it means to agree. Hence heeae, he will agree ; hetanae, he does agree ; hekedae, he agreed ; heakadae, he has agreed.

But you cannot say mondol-mondol ea, it will smell sweetly ; mondol-mondoltana, it does smell sweetly; mondol-mondol-keda, it did smell sweetly. The specifying predicate soan, to smell, must be added to the jingle: mondol-mondolge soana, it will smell sweetly ; mondol-mondolge soankena, it did smell sweetly, etc.

It is noteworthy, however, that an independent predicate can be formed with the present tense affix tan and with that only : mondol-modol'tana, it does smell sweetly.

It would be interesting to find out from a comparison with cognate languages whether the component parts of these jingles had or still have, in some of them, a distinct meaning of their own which enabled them to stand as independent predicates in ordinary conversation, or whether they were orginally intended to simply imitate certain impressions.

In poetry they enjoy a greater liberty ; they can stand as independent or complete predicates without being specified by any other words. As such they may take the categorical affix a, or the present tense affix \tan with or without the affix a. These affixes, however, seem to be used rather to complete the line; the tendency is to merely juxtapose them with their subjects, leaving to the mind the task of referring them to their subject. It cannot be denied that this mode of forming sentences is very effective in the presentation of word-pictures since these gain in proportion to their very simplicity of structure: here everything that could possibly distract the imagination is purposely left aside, and only that feature or attribute which the poet intends presenting is placed over against the subject.

It may be remarked here that this mode of forming sentences is not limited to the case where jingles stand as predicates, but it is extensively used in most of their wordpictures. There are whole stanzas, sometimes entire songs in which no link-word appears. As an instance take the following :-

> Pokri-pindire keora bado
> Ba mondol-mondol keosr bado
> Raja bandare barangubado
> Ba nurae-barae.

On the tank-bank the keora flower,
The flower sweetly, sweetly smelling, the keora flower,

Near the raja's dam the barangu flower, The flower fresh and fragrant, the barangu flower.
Though the jingles be by their very nature intransitive predicates, they may be used transitively with a peculiar effect. When so used they can generally be rendered into a foreign language only by circumlocutory explanations. By way of example take the first two stanzas of a song warning young people against falling in love with persons whom social exigencies prevent them from marrying : -

Chetan tolarea' kota baam leon-leonaea Kota bam leon leon
Latar tolarea' nambar baam numbar-dumbaraea
Oke nagengea kota-baam 1eon-leonaea Kota baam leon-leon
Chimae nagengea nambar-baam nambar-dumbaraea
Nambar-baam nambar-dumbar ?
Nambar baam nambar-dumbar.

Leon-leon describes the gentle, graceful waving in the breeze of some very elastic tree tops. Nambar-dumbar describes an aimless and constant going about hither and thither of people who shun steady work, as though it appeared that showing themselves everywhere was the chief pleasure and business of their lives. Here both jingles are used transitively. The stanzas may be literally rendered as follows :-

Thou art gracefully waving the Kota flower of (i.e., plucked in) the upper hamlet, The Kota flower waving gracefully like a tree top in the breeze.
Thou art aimlessly and incessantly hithering and thithering, i.e., taking or parading hither and thither the Nambar flower of (i.e., plucked in) the lower hamlet,
The Nambar flower aimlessly and incessantly hither and thither.
For whose sake art thou gracefully waving the Kota flower of the upper hamlet,
The Kota flower waving gracefully like a tree top in the breeze.
For which one art thou aimlessly and incessantly parading hither and thither the Nambar flower of the lower hamlet,
The Nambar-flower aimlessly and incessantly hither and thither!
But this does not do full justice to the force of the transitive predicates. They contain a distinct allusion to the predilection of young people for adorning their hair with single flowers or with flowering twigs. When walking, these flowers move with their heads, and it is this movement of the flowers which is here compared with the gentle swaying of flexible tree-tops in the breeze. Hence the real meaning may freely be rendered in some such way as the following :-

Thou art walking about with a kota-flower of the upper hamlet waving on thy head like a tree-top swaying in the breeze,
Thou art incessantly moving about exhibiting in thy hair the nambar flower of the lower hamlet.

If now we remember that the variants kota-flower and nambar-flower, upper hamlet and lower hamlet are intended to expand and generalize, and if we consider this in connexion with the peculiar meaning of nambar-dumbar, we shall easily see that the following is the pith of the two stanzas :-

Now-a-days thou art thinking of nothing else but exhibiting thyself everywhere decked out with any flowers thou mayest chance to find in the whole village :
All this surely is not aimless. For whose sake then art thou thus bent on ostentatious show?
But what a variety of shades these transitive jingles introduce into the expression of that thought.

The difficulty of a close, single-worded rendering is, however, not confined to the transitive use of jingles, but it is rather general. For very frequently jingles by their very nature imply compatísons which are in no way implied by English terms more or less corresponding to them. Cf. leon-leon in the stanzas given above and ribi-ribitan and gasa-gasatan, p. Ioo. Sometimes the difficulty arises from the fact that the jingle attributes directly to its subject some striking attribute not inherent in the subject itself, but in something closely connected with the subject. This may be illustrated by a stanza from a song embodying a complaint against the rough ways of boys and youths. Some girls go to gather flowers for their hair from some trees close by the village. They find the trees bare of every flower. They ask who may have done this and then answer that it must have been the huntsmen who have passed. In the hunting season bands of fifties and sometimes of one or several hundreds pass and repass in all directicns. A tree is soon bare of its last flower if the boys and youths of these bands take it into their heads, as they generally will, to stick a bunch of fowers over the r ears on their way to and from the chase. Here the girls complain that they not only took all the flowers but also tore them off in such a ruthless manner as to disfigure the very appearance of the trees. However, to show that their hearts are divided between the flowers and the rough-handed hunstmen, they throw into their taunt a flattering jingle for the latter:-

Sendrako jilibe jilib, sendarako petékeda, Karengako jolobe-jolob, Karengako changarked.

The huntsmen, the glittering ones, the huntsmen have plucked them, The sportsmen, the flashing ones, the sportsmen have torn them off.
Jilib'-jilib' means " glittering," but is rather applied to small objects, though it may be applied to larger ones too. Hence here it refers to the arrow-heads carried to the chase.

Jolob'-jolob' is synonymous with jilib'-jilib', but applies to larger oljects giv'ng greater flashes when in motion. Here it applies to the kapies, battle axes.

Hence the lines taken separately really mean :
The huntsmen with their glittering arrows, etc.
The sportsmen with their flashing axes, etc.

But, as explained above, they belong to each other as two factors or means for the expression of a single idea, and if so taken together they'mean :

The huntsmen bright with armour.
This example may serve at the same time to illustrate another very striking feature of a certain number of jingles:

To denote nuances or varying degrees in the appearance of phenomena described by jingles, the vowels are changed, as is done in jilib'-jilib' jolob'-jolob'. Fallen leaves are driven about quickly by a strong wind, but slowly by a slighter breeze. Hence the variation in the following song which inculcates the national custom: " no marriage price paid, no wife to be had." Marriageable girls are symbolized by fallen tamarind and mangoe-leaves, i.e., they are no longer held fast by the needs and affections of young children, and they are as plentiful as the fallen leaves at a certain season ; they move about everywhere even as those leaves are wafted about by the winds. The song says: "If thou payest the customary marriage price thou canst stop a leaf, if not the leaf continues travelling with the wind." But it says so in a graphic way :-

> Jojo-sakam uli-sakam pire-piretan otangtanaga Pire-piretan otangtan.
> Jojo-sakam ulisakam pare-paretan dopalitanaga Pare-paretan dopalitan.

The tamarind leaf, the mangoe leaf is fluttering fast in the wind, my dear, Fluttering, twirling fast with the wind.
The tamarind leaf, the mangoe leaf is wafted down from the tree by the breeze, my dear,
Wafted down from the tree by the breeze.
There exists another set of words of sufficiently frequent occurrence in the songs to claim consideration as a distinct verbal factor in Mundari poetry. These are the terms of endearment.

The frequency of these terms arises from three causes, two of which are common to human nature, viz., the tendency of parents to apply such terms to their children, and of lovers to apply them to each other Among the Mundas this tendency is very strong. The third cause is connected with the racial conception of friendsh p between individuals of the same sex. These friendships are considered very sacred and as binding throughout life. Though their marriage rites distinctly state that the marriage tie is not a thing of a few days, but for the whole of life, they say: "Marriage may break, but friendship never." When a boy or a young man wants to enter into friendship with another, he informs his parents of the fact, and the tie is then consecrated as it were by certain formalities and to a certain extent shared in by the families of the two boys or young men. One of the formalities consists in the adoption of a new name for each other. This is always the name of some bright or some fragrant flower. Thenceforward they address each other and speak of each other only by and under that name.

The same holds good for girls. These friendships may be thus formed also among two grown-up married men or two grown-up married women.

Parents as well as senior brothers and sisters adopt, as terms of endearment for their children or juniors, chiefly the names of bright coloured birds or insects, more rarely of flowers. This practice extends to close relatives such as cousins to even the third or fourth degree.

Lovers never ostentatiously use either names of flowers or of birds. They simply add the general affectionate affix $g a$, or the more tender $n a$, to pronominal addresses : Amga! thou dear, or am na! thou darling, or ama. These affixes are added also to proper nouns, predicates and to affirmative or negative particles he-ga he-na, hea!

All three are ordinary terms of either affection or familiarity used currently by parents to children, by relatives to each other, by friends and close acquaintances. But unmarried youths and grown-up unmarried girls will never use them unless they have declared their love for each other.

Ga and a may be addressed to both boys and girls, $n a$ to girls only.
Sometimes the occurrence of a term of endearment is the only clue to tell us who the speaker or questioner is in a given song.

From what has been said so far we may conclude that terms of endearment, jingles and synonymous variants as such, constitute the sum total of poetic words in Mundari.

There now remains to be considered another factor of the outward form of their poetry which is distinct both from words as such and from their arrangement with regard to each other, viz., the use of metaphors and chiefly of similes sustained throughout the whole of quite a number of songs.

The Mundas exhibit a marked predilection for clothing their ideas so completely in similes and symbols always taken from nature as it surrounds them, that an alien might understand every word of a song without as much as guessing what idea the song is meant to convey. Songs of this kind they call banita kaji "fictions" or jonoka kaji "word measures," i.e., a piece where the ostensible words are used as a measure or counterpart of something not expressly stated. They will symbolize an idea by translating it into a different order of nature, sometimes in its more striking outlines, sometimes into its details (vide p. 94) and leave to the listener the task of applying the simile, and of feeling and dreaming himself into the emotion the poet intends to stir up by the picture he presents. Many of these similes are chosen with a genuine poetic instinct and with a correctness which reveals depth of feeling as well as a close and appreciative observation of nature. The pictures themselves are generally drawn in sharp, correct outlines, unencumbered by any superfluous detail. We may at times think that their simplicity savours of poverty rather than of artistic purpose. However, in judging them we must remember that these aborigines, living in closer contact with nature than we do, have in many respects a keener eye for its details. Simply raise before their mental eye, e.g., the vision of a particular tree, and they will, in their imagination, directly see that tree's characteristic structure together with the shape, colour
and peculiar fragrance of its blossoms and its fruit. Can there be anything more simple than the lines already quoted :-

Buru-burure manido! Behold on every mountain mustard fields!
Bera-berare rai! In every valley mustard fields!
I have purposely criticised the extreme simplicity of these and similar lines. To the question: "Why does the song say nothing about the fine, light green colour of the stalks and the bright golden colour of the flowers ?" the answer was given : " Because everybody sees that." On asking: " But do you and other Mundas then really like and enjoy the nice mixture of colours of a flowering mustard field ?" an intelligent young man replied: "Who would not like it! it is beautiful!"

This must be borne in mind if we want to appreciate correctly the word pictures used for their similes and metaphors, and it is obvious, moreover, that to realize their beauty presupposes a close acquaintance with the flora and the fauna of their country. If we would or could see and appreciate them as they do, we should easily realize that these pieces of nature culled here and there, these landscapes so often appropriately vivified by the introduction of birds, fishes and other animals into the picture, are sometimes admirably calculated to raise the mind into the very mood or Stimmung which best suits the emotion the picture is meant to stir up.

These emotions again, though the common property of mankind, are often intimately connected with peculiar racial customs. Hence a knowledge of these is indispensable for a thorough understanding of their poetry.

The feature here under consideration may have been guessed already by the reader from some of the examples adduced in the preceding pages to illustrate other features. A complete explanation of a few more pieces will help to illustrate it and bring it out more prominently.

In the following piece, the poet singles out two trees which strike the eye even amid the rich and pleasing hues of a Chota Nagpur forest, viz., the gigantic cotton tree, edel, and the wild plantain tree, kadal.

Straight as a candle, the cotton tree always throws out branches, generally three or five in number, around the same point or section of the trunk. When full grown its lowest branches are always at a good height above the ground, sometimes as much as thirty feet and more. The branches like the trunk are, as a rule, perfectly straight and slant up slightly from the trunk. Above the first set of branches it throws out other sets similarly disposed, but of gradually decreasing lengths so as frequently to produce a cone-shaped crown. The twigs starting from the branches support each at its end a trio of large, well-shaped leaves of a light green colour. The foliage is not thick, and, as the different sets of branches are at a distance from each other, the gracefully tapering trunk is shown to advantage along its whole length. When in full vigour, this giant forms a pleasing contrast to the more leafy but less graceful trees and shrubs of the forests and is found here and there on the cultivated hillsides and highlands. When blossoming it is covered with a profusion of large chalice-like flowers of a bright red hue and thus offers a sight which cannot but strongly attract the attention of these
children of nature who delight so much in bright colours. Now the poet does not waste words on the description of the tree. The purpose for which he uses the picture supposes that it is at its best, and every Munda knows what that means. Nor does he take the trouble to clothe his idea in the conventional form of a grammatical sentence. With more effect he simply juxtaposes with the name of the tree the jingle jenged' jenged' which is used of bright red flowers, Edel jenged'-jenged', and this to the Munda means : the majestic cotton tree is bright with red flowers.

The wild plantain tree is larger than its cultivated namesake. It grows chiefly in valleys or dells close by mountain streams and near the clear ponds so frequently excavated by the streams, when, in the rainy season, they rush as wild torrents down the mountain side over the steep rocks. Before the leaves are torn by storm or age, these trees with their smooth, straight stems, and their crown of erect, gigantic leaves, offer a pleasing picture of rich and graceful proportions standing out prominently among the high grasses and shrubs generally covering the sides of streams. Here again the poet draws his picture by simply putting over against the name of the tree a jingle applied chiefly to men and women of perfect proportions and somewhat above the ordinary height.

Kadal kore-bore : The (shining) plantain tree, strong and gracefully tall.
To introduce the much appreciated contrast into his picture he places the cotton tree on the top of the hill or on the hill side, by means of the locative case of buru, hill or mountain, burura' ; since this may mean on the top of the hill or on the side or slope of the hill, the hearer is at liberty to see the tree in either of the two positions that suits him best. So far then we have the lines :

> Burura' edel jenged'-jenged'
> Berara' kadal kere-bore.

This may be a very good word-picture with a charming contrast included, but it would hardly be correct Mundari poetry. The lines so far contain no real synonyms, and one at least of these is necessary. Since the song is a dialogue, the poet brings in the person addressed by the speaker, and this offers a chance for the required synonym. Parrots, on account of their bright plumage, furnish terms of endearment used by parents for their children as well as by relatives for any members of the family younger than themselves. Miru and Kave both denote a parrot more variegated in colour than the common green parrot, kead'. These two are introduced as variants:

> Burura' edel miru! jenged'-jenged'
> Berara' kadal kare! kere-bore.

Adaptation to a given melody by means of a fixed number of syllables is now all that remains to be done for the first stanza. This is effected by adding a euphonic or rather melic 0 to edel and Kadal and jenged' and by repeating the terms of endearment miru and kare at the end of the lines:

> Burura edelo, miru' jenged'-jengedo' miru.
> Beva'va' kadalo, kare! kere-bore kare.

The terms miru and kare imply that the person addressed by the speaker is a relation of his and somewhat younger than himself ; at the same time they show that he speaks to him with a confiding tenderness, for these terms of endearment are not currently used by mere relatives, but only in confidential and affectionate conversation. Since in the typical Mundari village all the male members of the community are descendants of the same ancestors, they are all more or less closely related. Hence we may conclude that the speaker addresses one of his cousins of his own village who chances to be just a trifle younger than himself and whom, consequently, he may call miru or kare.

Having completed his picture the poet now proceeds to use it for the purpose he has in view.

Composed on the same principles as the first, his second stanza is intended to form a shocking contrast with the first : the pleasing picture must be utterly destroyed, and this is done by simply substituting for the jingles jenged'-jenged' and kere-bore, two synonymous predicates denoting the felling and the downfall of trees: gur to fell and rauruo' to fall down. In the first of these a melic e is inserted before the passive affix $j a n$ and an o added at the end. In the second line the predicate rauruo' changes the u into e and throws off the categorical a at the end.

> Burura' edelo, miru! gurejanao miru! Berara' kadalo, kare! raurejan!

The (majestic) cotton tree of the mountain side is felled! The (shining) plantain in the valley fallen.

I may here remark that the linkword or, as it is called by some, the categorical a is very frequently and evidently purposely left out at the end of second lines. This intensifies the impression produced. In prose this can never be done with transitive or intransitive predicates; for this a is the verbalizing factor, i.e., precisely that which transforms words into verbs, i.e., transitive or intransitive predicates. This omission in poetry is a remarkable grammatical violence done to such predicates. Is it perhaps the result of a greater elasticity of the mind as it rises to poetic descriptions, an attempt at breaking through the rigorous and rather narrow frame-work of the Mundari proposition or sentence?

The third stanza begins to reveal the purpose for which the strongly contrasting pictures have been used.

The disappointed youth asks his confidant by whose words this sad change may have been brought about, and thereby indicates that he did not mean to speak of the felling of real trees, that these were but used as terms of comparison with another beauty which had captivated his heart even as the sight of the two trees in question might well captivate an appreciative eye. The greater part of the second stanza remains intact.

To the words: burura' edelo and bevara' kadalo two very idiomatic Mundari questions are substituted, Okoe kajite : literally, by whom being speaking, i.e., by whose words, and chimae bakanvate, by which one being talking, i.e., by whose talk.

Okoe kajite miru! gurejanae miru?
Chimae bakanvate kave! raurejan?
By whose words, my dear! has it been felled, my dear ? By whose talk, my dear! is it down, my dear ?

In the fourth stanza his plaint grows pathetic as may be judged from the answer he gives to his own question.

He complains that it is one of his listener's own friends who, by his words, has wrought all this desolation. To the interrogatives Okoe and Chimae, two synonyms for friend are substituted with the possessive affix m thy :

Gatim kajite miru! gurejanaea miru!
 Sangam bakanrate kave! vaurejan!

By the words of thine own friend, my dear, it (the cotton tree) is felled!
By the talk of thine own companion, it (the plantain tree) is down.
In the fifth and last stanza he solaces himself with the only consolation which real love can find at all in such a case, by saying that the maiden whose loss he bewails has found a husband who is rich and kind enough to make her happy. But he says so in the terms of the simile adopted in the beginning:

Toaleka otereo miru! gurejanaea miru; Daileka madive kare! vaurejan.

It (the cotton tree) was felled unto a ground (as sweet) as milk, It (the plantain tree) fell unto a manured field as rich as curds.

Synonyms go on increasing in number from stanza to stanza, until in the last stanza every word of the second line is a synonymous variant to a corresponding word in the first.

The whole song is the plaint of a young Munda over the marriage with another man of the maiden he had set his heart on. The following is a real if poorly rendered English equivalent:-

The maiden I loved was fair and bright like the majestic cotton tree in bloom on the mountain side, and graceful as the plantain tree in the valley. Her loss robs my life of its joy even as the felling of the cotton tree robs the hill side of its brightest ornament, even as the fall of the plantain tree robs the valley of its greatest charm. And it is a friend of mine and cousin (and hence a good companion of my own) who by marrying her has brought this desolation on me. However, as I loved her truly, I may at least comfort myself with the thought that she has found a husband who can offer her a comfortable home.'

[^21]The grief so poetically depicted in this song is one that falls to the lot of many young people owing to the social system and especially to the marriage customs.

On the one hand their system, so far as the treatment of women is concerned, differs radically from that of the Hindus. There is nowhere a trace of seclusion ; even the simplest form of it, viz., the veil, is entirely unknown. Nothing in fact but a flower or a load is ever seen on the head of Mundari women. In return for the large share of in and outdoor work which falls to their lot they enjoy the greatest liberty. They do nearly all the marketing, they freely pay visits to relatives in different villages, they frequent fairs; noth'ng in fact hampers their movements except a set of traditional rules framed as safeguards of general morality. Hence young people see enough of each other to allow of attachments based on real or fancied love.

On the other hand stands a set of rigid racial marriage customs which but too often oblige young people to sacrifice their feelings on the altar of tribal traditions and superstitions. It is true that parents will never definitely arrange a marriage without asking both the young people concerned whether they agree to the union. Young men and, for the matter of that, even girls may reveal their predilections to their parents and ask them to try a settlement in conformity with their inclinations. But two factors are always ready to destroy even the fondest hopes. Since the wife must be paid for the parents make a claim to be consulted in the matter, and many a young heart is at least temporarily broken over a difference in the number of cattle or the size and quality of rice fields or over some social or superstitious stain attaching to either his or the young woman's family. Supposing, however, all these difficulties to be either

The second stanza in this variant shows the trees as budding:
Burura' edelo miru temporjanaea miru Berara' kadalo kare kandiakana kare

The cotton tree on the hill, my dear, is budding my dear: The plantain tree in the valley is throwing out its bunch.

[^22]Burura' edelo miru bajanado jenged jengeda miru
Berara' kadalo kare kandijana leon-leona kare.
The cotton tree on the hill is flowering bright red, my friend
The plantain tree in the valley, my friend, bears its bunch of flowers gracefully waving, my friend.

[^23]non-existing or safely got over, there remain the inexorable omens to be taken into account. If they be unfavourable, the marriage cannot take place, however suitable and desirable it may appear to all the parties concerned.

It happens occasionally that two young people disregard the consent of their parents and live together awaiting a subsequent settlement by both families of social and financial points, and generally that settlement is eventually arrived at. However, such a proceeding is not considered good form. Most young people will submit to their parents' will and to the decision of the omens as to a sad but irresistible fate.

The small bright king-fisher, gara-kikir, makes its nest either in holes on steep river banks or in newly thrown up white-ant hills. There is a grey and brown dove called gara putam, because it prefers the proximity of rivulets and streams to forests or the wide fields. Its cooing is louder than that of other doves. It nests chiefly in the densely leafed branches of the young sal-tree. These two furnish the terms of comparison for the sorrow of a widow over the premature death of her husband. Even as these two birds whistle and coo with happiness as they fly incessantly from spot to spot around their nesting place, so the wife and mother moves in the enjoyment of domestic happiness about the house and fields which rest on her husband's strength and wisdom. A sudden storm sometimes transforms the white-ant hill into a wet grave for the young king-fishers and throws down the sal-tree with the turtle-doves' nest. So sickness and death sometimes rob the wife and children of their only support and joy.

The two first stanzas graphically depict the birds as they fly rapidly from place to place, whistling and cooing for joy.

Gara kikir gole gole ho! naija putam reara ruiur
Gararia chidobariho! nairia chi tikurare?
Gole-goleteng aiumli' a ho! riurtegeng atenli' a;
Bale'bunum chetanria ho! lindung sarjom latarri?
Hark! the king-fisher whistles and whistles, the river dove is cooing,
Is he on the river, is he on some pool? is it (the dove) near the stream or is it on the height?
Hark ! I heard his whistle, I caught its cooing,
Hark! he is on the fresh ant-hill! it is under the young sal-tree.
The third stanza describes in the simplest words one of those cyclonic storms which, in the rainy season, sometimes cause much damage to crops, trees and huts even in Chota Nagpur. The earth is so saturated with the continuous rain that water oozes out and wells up in many places and the sky is roaring with the storm- wind which seems to blow from every quarter.

Chetanate hoeoleda ho! latarate vampiled
 Bale' bunum vaurejana ho! lindung sarjom latumjan.

Hark! from above it blew! from below (the waters) oozed through.
The soft ant-hill collapsed! the tender sal-tree (is) broken in two.

The last stanza states the grief of the birds, alluding to the customary wailing of Mundari women which enumerates the good qualities of the deceased and different kinds of miseries brought on the survivor by his loss.

> Gara-kikir ragetana ho! naiputam niamtan!
> Jati jati ragetana ho! kilinalang niamtan!

Hark! The king-fisher is weeping ! the river-dove is wailing!
He is weeping all kinds of grief! it is wailing every kind of sorrow!
The following is a counterpart to the above piece: Parents bewail the lot of a daughter who following her own inclination and disregarding all the laws of caste and clan (kili) marries a young man of either the blacksmith or the weaver caste. The Mundas tolerate these castes in their villages and respect them as useful and necessary inferiors, but they will neither eat nor intermarry with them.

There are at least three kinds of silk worms cultivated in the country. Lumam is the generic term for all of them. Barwaluman is the largest and attaches its cocoon by one tie only. Laria is a slightly smaller kind attaching its cocoon by two, sometimes three and even four ties. These two are much brighter than the so-called kandeorlumam the smallest of all, and are therefore often used as terms of endearment. Lumam and laria occur here as variants. It is on this use that the whole simile is based. Lumam-ing means: "my silk-worm," laria-ing, "my small silk-worm." The affectionate affix go is added in this piece so that the whole compound lumaming go and lariating go mean " my darling silkworm," i.e., my darling child.

Silk worms feed on the tenderest leaves of young sal trees and two or three other kinds of Chota Nagpur forest trees. The showy but hard and stringy palm-leaf can afford no nourishment to them : a silkworm attached to a palm-leaf must needs perish miserably.

Hence the parents complain that their daughter, deceived by mere outward appearances, has contracted a union which must eventually prove as disastrous to her as the palm-leaf to the silkworm. For, on account of that union, she becomes an outcast forfeiting all the benefits which traditional membership confers on all the individuals of the Munda race in general and of a given kili or clan in particular. Furthermore blacksmiths and weavers, besides being socially inferior to the Mundas, are generally landless and therefore poor. Finally they themselves will not extend to the intruded Munda girl the same care and affection which they owe to a daughter-in-law of their own caste. The first stanza is a simple cry of horror.

Lumaming go lumaming go! kita suba lumaming go! Lariaing go lariaing go! tali suba lariaing go!
My sweet silkworm, my sweet silkworm! under a palm-tree (is) my sweet silkworm!
My darling laria, my darling laria! under a palmyra (is) my darling laria!
Kita is the generic term for palms ; tali is the Mundarized Sadani or Hindi word for the palmyra or toddy palm.

The second stanza states the fact of the mesalliance:
Kita suba lumaming go! kitarege tolenjana!
Tali suba lariaing go! talirege neonranjan!
My sweet silkworm under a palm tree! to the palm tree it has attached itself !
My darling laria under a palmyra! to the palmyra is wound fast!
The third stanza complains of the senselessness of that mesalliance: Were there not plenty of suitable young Mundas to choose a husband from?

Bale opad'bano'leka kitarege tolenjana! Lindung sarjom bano'leka talirege neonranjan!

As though there were no young saplings, it attached itself to a palm-tree !
As though there were no tender young sal trees, to a palmyra it is wound fast.
The last stanza foreshadows the dreary future of the wayward girl and reproaches her for her ingratitude in having thus left her own :

Kitage chiaputia, kitarege tolenjana?
Talige chi engatia, talirege neonranjan?
Will or can the palm tree ever be a father to it, that it attached itself to a palm tree ?
Can the palmyra ever be a mother to it, that to the palmyra it wound itself fast ?
Mundas are exceedingly fond of their children, in fact unreasonably so. They willhardly ever inflict corporal punishment and even with a sharp reprimand they are far too sparing " lest the little one cry." The children know that where asking and coaxing fails, a few tears are pretty sure to procure whatever there is to be had. True, that is always little enough. Very often they have to cry not for the gratification of a mere whim but for very pain and not rarely from hunger. Malaria fever carries off numbers of babies, and the survivors are all subject to more or less regular attacks of that dread infliction up to the age of about fifteen, when they appear to be pretty well immunized for a long period.

For an ordinary attack of malaria nobody would think of offering a sacrifice, no more than for curing a sprain or a broken limb. This shows that they consider malaria as a very natural thing, a necessary evil which is quite different from other diseases caused always by evil spirits or by witchcraft, according to them. Through these fits of icy cold and burning fever the children must pull as best they can. Not that the parents abandon them, but they have neither the means nor the knowledge to offer such relief as might be given.

Besides this universal infliction there is for a great many the actual want of sufficient food for a part of the year. The people who have grain enough to serve up even a single full meal of rice every day of the year are comparatively few. From May to October many a child cries in vain for a meal of plain rice, but the parents have nothing to offer but an unsavoury and weak food of a little coarse pulse and herbs which few other men would care to touch. It would be a great mistake to fancy that the parents,
especially the mothers, do not suffer keenly from their own helplessness in presence of so much suffering of their children. However, the children have inherited the lightheartedness and, unfortunately too, the light-headedness of the race. They quickly forget a past pain and never seem to think of the new one ahead.

This characteristic and the parents' intense participation in their children's alternations of pain and pleasure form the subject of the following song.

Among the several kinds of small fish, which during the rains leave tanks and streams to roam about in the flooded rice fields, there are two, conspicuous for their silvery scales, the chirpis, a tiny little thing, and the aera, slightly bigger. Evidently many a young Munda has watched with pleasure the bright and varying metallic shimmer of the chirpis as they rush and tumble about in the clear, shallow, sunlit waters as well as the graceful undulating movements of the aeras. The song shows sufficiently that the lookers-on have made the following reflexions: These little things seem to have nothing to do but to amuse themselves and play about the livelong day. And yet by leaving the stream the majority of them are doomed to a speedy and painful death. For the rice-field ridges will soon be closed to keep the water standing in them and thus a return to the stream is cut off. As the fields are gradually drying up, chirpis and aeras may be seen struggling in agony : their playground is turning into a graveyard. Sometimes an occasional shower partly refills the fields with water, and then the survivors who were but now on the point of breathing their last, suddenly play about again as though there had been no trouble at all and as though certain destruction did not await them with the final and complete drying up of the fields.

The first stanza depicts the happy play of the fishes in the flooded fields. The second stanza shows the contrast : the fields drying up and the fishes gasping in pain. The third shows a passing shower of rain with the accompanying welling up of water from the field springs and the renewed play of the light-hearted aeras and chirpis. And here it stops. It does not intend to leave on the mind the sad emotion produced by the scene of the second stanza; by thus ending with the picture of regained happiness it does, at the same time, inculcate the lesson that it is, in the long run, a wiser philosophy to dwell on the bright rather than on the dark side of life. A poetic rendering of the saying: "After rain comes sunshine." Or as the Mundas put it: "We can eat and drink and enjoy ourselves like kings when we have it, and when we haven't, then we can fast too in a royal manner," i.e., we don't allow ourselves to be downcast by misery, we never say die.

The piece is a good example, too, of the accuracy and the detailed thoroughness with which they choose their similes. The flooded rice fields are the happy play ground of the bright little fishes, the dry fields are their doom So too for the people; when the rice fields have abundance of water there will be a rich harvest and the children's natural playfulness will not be marred by hunger and concomitant sickness. But when the fields remain dry the children are suffering even as the gasping chirpis and aras.

The fields are very appropriately called toa-leka. Toa means not only milk, but also breast. Hence here toa-leka means breast-like or breasts.

They are here exhibited as the breasts of mother earth from which men, earth's children, draw their sustenance. The word dai, curds, being used as a variant to toa, assumes the same meaning.
I.

Toa-leka otere chirpingkodo.
Dahi-leka badive aeraingkodo.
Chirpingkodo bijir-balang, Aeraingkodo bian boeon.
In the breast-like rice fields (are) my chirpis. In the breast-like terraced uplands (are) my aeras. My chirpis shimmering and glitter ng (in rapid play) My aeras gracefully moving about

II.

Toaleka otedo anjed'jana! Dahileka badido dundajan! Chirpingkodoko ragetana! Aeraingkodoko saiad'tan!
The breast-like rice fields are drying up ! The breast-like terraced uplands drying! My chirpis are crying !
My aeras gasping!

III.

Pisir-pisirdoe gamaleda! Javam-jaramdoe rampiled; Toa-leka otedo pere'jana Dahileka badido charangjan Chirpingkodoko rasikatana Aeraingkodoko landatan
Gently, gently it rained, Bubbling-bubbling it welled up, The breast-like rice fields are filled up, The breast-like terraced uplands flooded: My chirpis are rejoicing My aevas laughing.

In the three preceding pieces we meet with two terms of comparison. Thus in the song, p. I08, the cotton-tree and the plantain tree. In that on p. III the kingfisher and the river dove, and, in the last, the chirpi and the aera. The same remark applies to all their similes. These duplicate terms of comparison are demanded by the law of synonymous variants. As stated, p. 95, these variants themselves seem to be ultimately based on the alternating choral system of singing at the dances.

So that the form of the stanza as such rests on and is conditioned by the manner in which it is sung.

What is deserving of notice is the adroit way in which they make use of this peculiar structure of their stanza for purely poetic purposes, quite independent of both song and dance. The chief of these are: the presentation of vivid contrasts, the widening and generalization of ideas in a concrete, picturesque manner and the development of their similes into details, both poetic and exhaustive without being overloaded.

It may, I think, be claimed for these songs that they frequently depict graphically, that their conception is sometimes really highly poetical.

On the other hand, however, they are devoid of one feature which is essential to that kind of poetry which we consider as the highest. They only sing of feelings and emotions that are shared in and experienced by every normally constituted human individual in certain circumstances. We find in them nowhere a personality above the average, nowhere a character of overwhelming power for either good or evil or of extraordinary moral beauty. Nowhere do they reveal to us the emotions and struggles of those masterminds and superior natures who live as it were in a world of their own creation. Heroes, such as Homer, Sophocles or Shakespeare depict, are absolute strangers to the world of which these songs are echoes. Nor has that world any room for such characters. Even the figure of the typical king is wanting in it. If here and there the rajah is mentioned, he comes in more as a mere occasional object of curiosity than as a human factor who influenced that world in any way. Nor do we find an allusion, much less an exposition, of any definite religious system. The Karam songs, it is true, here and there attempt the inculcation of a certain philosophy. But then these are evidently alien and they are so uncongenial to the Munda taste that they are called hambal durangko, difficult or heavy songs.

Of the genuine Mundari songs it may be said therefore that they do, in their own way, reveal to us a stage of civilization in which the individual disappears in the community ; a stage of culture which is entirely identified with the communal system in its original form. This system rests entirely on a mixture of general ethical principles and characteristically racial customs and traditions. These are the unwritten laws framed to be the safeguards of that system. As such they are considered so sacred and all-important that the individual may never step beyond them without being held guilty of endangering the community itself.

So much appears evident from even a cursory perusal of the songs. A more attentive consideration or study would seem to justify the conclusion that they are directly intended for the purpose of inculcating in the simplest, and perhaps the best and only way at the disposal of such a civilization, the social and moral customs of the community and the race. They do no doubt bear abundant traces of being spontaneous effusions of a poetic conception of life. But it is natural that among the many songs which welled up spontaneously, the vast majority should depict life as it stands in the frame of the peculiar racial customs and as moulded by the communal system ;
and it is quite conceivable that among them those which seemed best suited to inculcate the moral and social precepts, grown on and out of that system, should have been preferred and have received the public sanction of being allowed as standard poetry on the dancing ground.

It is a striking feature of the whole social and religious life of the Mundas that they have no ex officio teachers of either secular or religious knowledge and no schools of any description. What there is of teaching is done by the family in the most primitive way. Besides, children and young people are constantly in requisition for grazing cattle and for other domestic and field work. Hence the only time that they could all gather and would do so willingly is after the day's work for dance and song. The idea of using these gatherings for the purpose of impressing on the minds of the young nearly all they had to teach them socially and morally may, therefore, have quite naturally suggested itself to the community.

These dances are no longer what they used to be but a couple of decades ago, and still are here and there in a few isolated villages hardly touched by alien influences. They have lost so much in good form and decency that the older folk are complaining of what they call the wild and unseemly character of both the dance and the reckless, rowdy drum accompaniment. Even if with regard to this complaint we make an allowance for that propensity of old age which gained for it the somewhat sarcastic title of laudator temporis acti, it is certain that it contains more regrettable truth than exaggeration.

In " the good old times" of which the elders speak, the dancing ground was always in the village itself and was never the exclusive domain of the young people, whereas now-a-days they but too often gather for a dance outside the village. The whole community would be there. Parents and grand-parents would sit around listening to the songs and the drums and sharing in the joy of the young people, and the children would be there, learning on the dancing ground itself the songs and the melodies and the steps of the various dances. It need hardly be said that all this constituted by itself alone a great safeguard of decency and morality.

If such a school be very primitive, it cannot be denied that it is an attractive one and in its way effective in bringing home the social and moral wisdom of the race to a light-hearted and not a very highly gifted youth. In its way it may be an ornament for the civilization which developed it, inasmuch as "Omne tulit punctum qui miscuit utile dulci."

The following may perhaps be adduced in support of the view advanced above : -
(I) The songs as well as the dances are classified according to different periods, beginning with the year's chief festivals, and this classification is strictly adhered to so that songs and dances belonging to one period are never sung during another.
(2) The Karam-feast of Hindu origin is even now-a-days not universally accepted by the Mundas. The Karam-songs are, however, pretty generally known.

Many of these songs contain distinctly philosophic teachings, which, as already stated, seem but little palatable to the Mundas. It would appear as though the new alien teachers, despairing of the success of their methods of oral teachings, conformed
to the national taste and clothed their ideas in the form of popular songs as the only chance of getting a hearing at all.
(3) In certain songs it is pretty evident that it is not so much the individual nature which reveals its own personal emotions, but rather the philosophy or wisdom of the race which shows how the individual of the community should feel under certain circumstances. There are plainly didactic features traceable among the really poetic features of the songs. To quote but one example: In the last stanza of the song given above, pp. Io8 and 109, the consolation which the young man suggests to himself over the loss of his sweetheart may be very disinterested and highminded, it may even be the only real consolation available in such a case. But it certainly is not the common feeling of the disappointed lover. Here it is the communal system with its racial marriage laws which tells the young man that that is the way he has to feel if he wants to be wise at all.
(4) There exist some songs which are rigorously excluded from the dancing ground because they are not decent enough, because they contain either a lewd expression or an unbecoming allusion.

I have never myself heard any of these songs and could so far not even obtain a sample of them. I am credibly informed that there are very few of the kind and that only here and there some young men will venture to sing them when out alone about the fields, but never in company.

If that be so, it is a proof that the community as such exercises a rigorous control over the songs. It would hardly do this if it did not consider them as valuable means of inculcating the racial wisdom and maintaining it on a high moral level.

It is easy to see how such a control discourages and practically reduces to a minimum indecent and inferior productions.

Now-a-days a great many Sadani songs are in vogue (chiefly Karam-songs), especially in those parts where Mundas live side by side with Hindus or Hinduized aborigines and Uraons.

But with them the present paper has no concern. Song-making, as already remarked, is in recent times at a very low ebb. The race is going through a crisis which it has but scanty chances of surviving. Its very ancient and primitive civilization contains no safeguards against great and sudden changes, such as the British occupation has brought on it by its judicial and executive system and by allowing and favouring an unlimited influx of Hindus and Mahomedans. The unequal struggle with the latter for the ancestral rights in their village lands, and that by means of legal technicalities about which they understand nothing, the unhealthy and often frightfully demoralizing influences of labour recruiting agencies, keep them in constant alarm and apprehension of losing what they naturally cherish most : their lands, their children and even their wives or husbands. ${ }^{\text {s }}$

Add to this the efforts of missionaries trying to substitute different and antagonistic forms of Christianity in place of their old beliefs and practices. It is easy to see how entirely all these influences, however different and opposed to each other, must dislocate the whole mental and moral balance. And such a state of things is anything
but favourable to poetry. True they continue to sing and to dance, but as already stated, in a less decent and a less intelligent way, and many young people no longer understand all the songs handed down by the preceding generations.

To us their jingling adjectives and predicates may seem childish, their repetitions tedious and as means of generalizing or idealizing they may appear rather absolutely embryonic or abnormally clumsy ; the method by which the synonyms are got is so absolutely alien and uncongenial that we can hardly accept them as genuine synonyms, so that they may make on us a more unfavourable impression than the efforts of a rhymster, who, for the sake of his rhymes, drags all kinds of words together into some sort of thythm with an utter disregard of ideas or æsthetic fitness.

But it is not by our standards that we must judge these songs, if we want to estimate their character with objective correctness. Looked at and judged by our standard they must, of course, stand condemned as rude attempts, as products of a lower mental culture, even as their material culture can stand no comparison with that of the West. Compared with European agricultural machinery, the Mundas' implements are children's toys, the product of childrens' wits and hands. Before an English residence or an ordinary hotel the Munda's house is abject poverty, and his village is a hygienic horror if compared with the sanitary and other arrangements of any decent Municipality. But to the Munda his implements, his hut and his village appear in a very different light; he cannot make the comparison which depreciates these things in our eyes, because the European term of comparison does not exist for him. To him, his primitive implements and fields mean security against want and famine, his hut means comfort and a cosy shelter against cold and rain, and his village stands for all the amenities and safeguards afforded by a regulated communal life. If we consider these things in themselves, we too shall realize that the field, the hat, and the village embody the thought and the experience of generations, and they will appear to us an immense advance on the state of those who lived by the chase and had to face their prey with crude stone weapons; we shall see in them elevating factors that made the lives of generations better and happier, we shall in a word appreciate them as living evidences of that spirit and reason in man which ever urges onwards and upwards in all directions without rest and without discouragement even in the face of the greatest obstacles.

Similarly we must consider the poetry embodied in these songs in itself and not as compared with that of more advanced and more highly gifted races, if we wish to realize what it is to the Mundas and what it is in itself.

There is first the mere fact of its existence at all, which is full of meaning. If bare language, as has been so well said, constitutes an impassable barrier between man and - beast, then poetry must be admitted to do so in a much higher degree. For it takes a view of life which we cannot by any stretch of imagination or any effort of thought attribute to the dumb animal. The beast may be, and indeed is, in its way very busi-ness-like, but it is never a poet.

Secondly there is the fact of its abundance among the Mundas. These songs are endless and spring up on all sides.

Schiller said :-
Wo man singt, da lass dich fröhlich nieder ; Böse Menschen haben keine Lieder.

If he was right, then this abundance of songs points to a fundamentally good trait in the natural character of the Mundas, a trait which still wins a good side from life, however hard that life may be in its struggle with nature and with other races pressing on it from all sides.

Finally, if we consider it in itself as presented to us, we find in its very mechanism, i.e., in the means it uses, a striking evidence of that wonderful instinctive and nnate versatility and resourcefulness of the human mind which knows how to attain the highest ends with the simplest means. Here is a race which, partly owing to adverse circumstances and more probably through its own mental indolence, has so far neglected to evolve its own language into a fit and pliable instrument for the expression of highly abstract thought. Its words are vague and comparatively few, its sentences rigid, often obscure and dependent on trivial circumstances for perfect intelligibility ; yet, when the racial mind feels impelled to manifest and express itself in that high class of abstraction which poetry implies, it is not at a loss to do so with the scanty material at its disposal. The vagueness of its words seems poverty to us. The racial mind turns that very feature to account for its purpose ; out of that very poverty it draws the material form of its poetry, that innate treasure of the soul which does more to really enrich and ennoble life than any amount of ringing coin could ever do What else indeed is the creation of the numerous synonyms out of the very indefiniteness and vagueness of their words, but a tour de force, if I may say so, of that mind which refuses to be checkmated by material difficulties when it is really bent on accomplishing the outward expression of one of its strongest and highest impulses or instincts? What else but this again is the expression of complex and highly abstract ideas by means of a mere collocation in two lines of contrary or generically the same but specifically differing terms, which considered in themselves are both incapable of expressing such ideas?
(To be continued.)

Memoirs of the Asiatic Society of Bengal.

Vol. 1.

I. On certain Tibetan Scrolls and Images lately brought from Gyantse.-By Prof. Satis Chandra Vidyabhoṣana, M.A., M.R.A.S. (Price Re. 1-8; or 2s. 3 d.)
II. Sal-Ammoniac: a Study in Primitive Chemistry.-By H. E. Stapleton, B.A., B.Sc. (Price Re. I; or Is. $6 d$.)
III. The Similarity of the Tibetan to the Kashgar-Brahmi Alphabet.-By The Rev. A. H. Francke. (Price Rs. 2 ; or 2 s. 1od.)
IV. Alchemical Equipment in the Eleventh Century, A.D.-By H. E. Stapleton and R. F. Azo. (Price Re. 1-8; or 2 s .3 d .)
V. Malaysian Barnacles in the Indian Museum, with a list of the Indian Pedunculata.By N. Annandale, B.A., D.Sc. (Price Re. I-8; or 2 s .3 d .)
VI. Ashrafpur Copper-plate Grants of Devakhadga.-By Ganga Mohan Laskar, M.A. (Price Annas 8; or 1od.)
VII. Festivals and Folklove of Gilgit.-By Ghulam Muhammad. (Price Rs. 2 ; or 2s. Iod.)
VIII. Notes on the Bhotias of Almora and British Garhwal.-By C. A. Sherring, M.A., F.R.G.S., I.C.S. (Price Re. 1-5; or $2 s_{\text {. }}$)
IX. Religion and Customs of the Uraons.-By the late Rev. Father Dehon, S.J. (Price Rs. 2 ; or 2 s. Iod.)
X. Notes on the Fauna of a Desert Tract in Southern India (Herpetology and Entomology).-By N. Annandale, D.Sc., C.M.Z.S., with a list of Mammals by R. C. Wroughton, F.E.S. (Price Rs. 2.; or 2 s. Iod.)
XI. Amulets as Agents in the Prevention of Disease in. Bengal.-Compiled in the Office of the Superintendent of Ethnography, Bengal. (Price Annas 12 ; or Is. 2d.)
XII. Earth-Eating and the Earth-Eating Habit in India.-By D. Hooper and H. H. Mann. (Price Re. I ; or Is. 6d.)
XIII. On a Cup-Mark Inscription in the Chumbi Valley.-By E. H. C. W.alsh, I.C.S. (Price Re. I; or is. $6 d$.)
XIV. A Descriptive List of the Sea-Snakes (Hydrophiidæ) in the Indian Museum, Calcutta. - By Captain F. Wall, I.M.S., C.M.Z.S. (Price Re. I; or is. 6 d .)
XV. Common Saws and Proverbs collected, chiefly from Dervishes, in Southern Persia.-By Lieut.-Col. D. C. Phillott. (Price Re. I; or Is. 6d.)
XVI. The Common Hydra of Bengal: its Systematic Position and Life History.-By. N. Annandale, B.A., D.Sc., C.M.Z.S. (Price Re. 1; or is. 6 d.)
XVII. Animals in the Inscroptions of Piyadasi- By Monmohan Chakravarti, M.A. (Price Annas 12 ; or $1 s .2 d$.)
XVIII. Some, current Persian Tales told by Professional Story-Tellers.-By Lieut.-Col. D. C. Phillott. (Price Re. I ; or Is. $6 d$. .)
XIX. The Dards at Khalatse in Western Tibet.-By Rev. A. H. Francke. (Price Re. I-6; or $2 s_{\text {.) }}$
Supplement, Miscellanea Ethnographica. Part I. 1. The Blow-Gun in Southern India. 2. Miscellaneous objects from the Ramanád subdivision of the Madura district.
3. Indian Weighing-beams.-By N. Annandale, D.Sc. (Price Re. 1.)

Supplement, Miscellanea Ethnographica. Part 11. 1. Some Malayan Weapons-By N. Annandale. 2. Plan of a Persian Gentleman's House.-By Lieut.-Col. D. C.
Phillott. (Price Annas 8 ; or 10 d.)

Memoirs of the Asiatic Society of Bengal.

Vol. II.

I. Cirrhipèdes operculés de l'Indian Museuim de Calcutta.-Par M. A. Gruvèl. (Price Rs. 2 ; or $2 s$. Iod.)
II. The Coinage of Tibet.-By E. H. C. Walsh. (Price Re. I; or is. $6 d_{0}$).
III. The Exact Determination of the Fastness of the more Common Indigenous Dyes of Bengal, and comparison with typical synthetic. Dye-stuffs. Part. I. Dyeing on Cotton.-By E. R. Watson. (Price Re. I ; or is. $6 d$.).
IV. The Saorias of the Rajmahal Hills.-By R. B. Bainbridge. (Price Rs، 2 ; or 2s. Iod.)
V. Mundari Poetry, Music and Dances.-By Rev. Fr. J. Hoffmann, S.J. (Price Re. i; or Is. $6 d$.)
Tarikh-i-Nuṣatjangi-By Hary Nath De. (In the press).

MEMOIRS

or the

ASIATIC SOCIETY OF BENGAL

VOL. II, No. 6, pp. 121-153.

TARĪKH-I-NUṢRATJANGI.

BY

HARINATH DE.

FEC 18 1911
 National Musaum

CALCUTTA:
Printed at the Baptist Mission Press, and publishidd by The Astatio Society, 67, Park Street.
1908.

Abstract

－

\qquad路 ．

T
[
 \section*{\section*{侸
 \section*{\section*{侸

 號

 號

 隹

 隹

 家

 家

 ？

 ？ ． ． ． ． － － ． ．

为为

 ？

 ？

 ？

 ？

 侸

 侸 ？ ？

 ？

 ？

 1

 1

 －

 － 8 8

 都

 都

 ，

 ，

 ？

 ？

 （7）

 （7）

 \begin{tabular}{l}
1

\hline

1

\hline
\end{tabular} $\cdots \cdot$ $\cdots \cdot$ P P ？ ？ － －

 －

 －

 ？ ？ ． ．

 这

 这

 ？

 ？

 $-$

 $-$ － － ． ． ． ．

 ？ ？ 電電

 ． ．

 ． ．

 \begin{tabular}{l}
8

\hline

\hline

8

\hline

\hline
\end{tabular} 4 4 （ （

 ， ，

 ． ． } }
.

PREFACE.

The Tārikh-i-Nuşratjangi was written by Nawab Nusrat Jang of Dacca, who died in 1822 . It is difficult to ascertain the exact year in which the book was composed, but it is certain that the work was finished before 1817, for the MS. of it, which was presented to the library of the Asiatic Society, Bengal, by Mr. Swinton in 1820, bears on its last page the following words :-
"Account of Dacca by the Nawab Nuṣrat Jung, the present Nawab of that city, 1817."

The book was undertaken, as the author states in his preface, at the request of some of his English friends. After Nawab Nucrat Jang's death, it was continued by his arzbegi's son Sayyid 'Abdul Ghani alias Hamid Mir, who brought it down to the year 1843 when the line of Jasārat Khän became extinct with the death of Ghāziuddin Muḷammad.

In editing the Tārikh-i-Nuṣatjangi I have made use of the following MSS.:-
(I) A very good MS. in nastāliq in the possession of Maulavi Abu Musa Ahmad-ul-Haq, Assistant-master, Collegiate School, Dacca. This MS. was copied from an original, now lost, and is the only MS. which gives the continuation of Nawab Nucrat Jang's work by Sayyid 'Abdul Ghani.
(2) A manuscript in shikastā, belonging to my pupil Maulavi 'Abdul Mu'id Khan of Noäkhäli. It does not contain the portion written by Sayyid 'Abdul Ghanì.
(3) The MS. (Persian Catalogue D 170) in the possession of the Asiatic Society of Bengal. It is written in shikast \bar{a} and comes down as far as Nuṣrat Jang's own time. It bears the well-known autograph note of the late H. Blochmann, the correctness of which is more than doubtful :-
"This book is good-for-nothing. The history of Dacca is written in the last two leaves. The other leaves contain the history of Bengal, but most facts are wrong and nothing is new."
I have not noted the varietates lectionis as the subject-matter of the work is much more important than its artificial Hindustani-Persian diction.

I avail myself of this opportunity to express my gratitude to Mr. J. T. Rankin, I.C.S., Secretary to the Board of Revenue, Eastern Bengal and Assam, without winose generous encouragement I should never have found myself in a position to edit this booklet. Had it been customary for the editor of a Memoir submitted to the Asiatic Society of Bengal, to prefix a formal dedication to his work, these pages would have most certainly been dedicated to Mr. Rankin, whose knowledge of the history of Dacca is, if not unrivalled, at least unsurpassed.

A translation of this book, with historical notes, will follow in due course.
Harinath De.

Imperial Library, Calcutta:
18-3-1907.

ديبإجه از هـهتهم

سّهاس و حهـ و ثُنا بالعشي و الالشراق * نثنار با رگا منعم ملى الاطلاق

 .

 نظرم كز,'نيده - ليكن از جزء العاقي سيد عبدا'غني عازي ست ع

 -بديع و نادو ندارد

 اكر خواست ايزدي ست توجمه و حواشي كنّاب بمقّضاسـ وقت مطرز بطراز اشاعت

$$
\begin{aligned}
& \text { غوري نانت دــ }
\end{aligned}
$$

فهرسـت مضامين تارييخ جهانگـــير نـكر دَهاكه موســوم بـتاريخ
 -

ديباجه از مهتهم
ديباجه از •ؤلفـ

ذا فكر آمل غلع

ذr J ذ

Tarīkh-i-Nuṣratjangi.

By Harinath De.

الرحيم

 هروانهآسا هسهو و مبتلام شُمع جمال جهان آرالى خويش ساختّه و بطلوع طليعلُ خورشيد وجود مسعود خود

 * وزارت كلاه گوشهُ عزت بعيوت كيوان سود

ذكر عوبـه داري قطب الحيـ خان وغيهرا ونالطّان ديگر كه در زمان سلطنتت جهانگير بادشالا بامر ايالتت جهانگير نكر مامور شن:لـ

 *

رامهل بيهوهم شه •

ذكر صوبه داري مرشد قلي خان

 - مي' نكارد

برخى از ذكر شاله شجاع برادرعالم گير بادشاه

 بنغاله نام زد ساخته كسيل فرورد

ذكر صوبه داري معظم خان

 بنغاله إينه : -

ذكوهجههلاً صوبه داري او لاد جعفر خاب نصير ي وغيرا

,

 ,

 * مير دبيب تسليم بافتـ

 .

ذكر سراج الحوله و حسين قلى خان و حسيّن الليّن خان وغيورا اميوأن جهانتيير نكر

 * بعهر هشآاد سالكي ازنّم دار فنا در كذششت

ذكر نواب جسارت خان صو بـه دار جهانغيرنغر

ذكر صوبله داوبي نوالب سيل هـكمـ خاب بههادو حشهـت جنگ

رحات فرمودذل *

ذ5ر مسنف نشينـي نوالِب نصرِتب جنگت بهوادو

 ايُ اضعف عبادالله بافضال الهي , ابذال نوازثشات سركار مهدرح بر ان استّقامت

بوخـى از تذكرُ نواب نصريت جنگـ بهادر

 هه و بست

بسر مزار نصير ملك نوشت كاتب كى نكان * كه هساب سال رحيل اوس ت هن هذا هو نصر الهجنان

ذكر رياست نوانب شهس الحوله بههادر

'

 * * *

ذكر رياسـت نواب قمر الحوله بههادر

 * لاحق شدل بصرعه انجاميل

 * تاريخ وناش آن مرحروه *

هو رهات قد قديه بيكم نمودند * ز دنيا باغم و اندرلا , تليف خرد سال و;اتنش كفـت افسوس * كشيدلا رنجها بردند تششريغت

 خै

 , e.

 * مرششدآباد كرديدند

ذكر دازوغغگي مولوي عبدالْليم

 * غبط و نسق سركار را بجهمعنار مذكور سهردند

ذكر خيواتي جهعدار

 ,

ذكردار وغغيي مير علي نقي و گلزازلبيگم و هـكـبوب و مير

 بو گثشت بروز هيگ, نواب ها

ديوانه وار خواست كه خود را بكشثه - نواب ماحبس سراسيهه شده اورا نيز از خرد معدل آررده بديوانخانه ييش خاذه

 سركار ظهورن بييًّ فرهودند -

 ساخت ليكن فضول خرهي هضور را ضبط نتوانسست كود - شمغ آن ايم سـت كه هشاهرf ظهورن بيكم هزار روبيم

 موصونف بكضور نواب گورنر جنرل بهادر كذرانيدند عندالاستفسار نواب ماحب جواب شابفي ارقام فرمودند -

 "ي يرداخت و شب و ورز برابى سلامتي عهد

 دارد و مادر , خواهرش هستنه زن فاحشه نيست كه بكضور حاضو, آيد نواب ماحب ببازا, گرميش زياده امرار

 ديكر كه هتصل خاذه بود بودر باش اختيار نرمودند

ذكر داروغگي شييخ كانوهتهِوا ومير أفضل علي مكافظ سركار نواب ماحب

بايماى سلطاذه مذكورل شوغر خواهرش كه شيخ كانو نام داشت جميع اصورات سركار باو تفريض زمودند

 و اسبابهالی معروقه نيلام شده بهاجنان ادا نموده شد

ذكر دار وغكي مير مـكهـ أسماعيل مرتّبهُ دو م و اقا جان

ذكو دأروغگي منشي عننايـت علمي و لكهي نوايّن داس و بوجو شالا

مهاجن و مانكـ گماشتـه

 هير هاحب

 باقبال انجام اخراجات سركار فرستاده بود ليمك پيش نه رفت كه كغته اند مرغ از قغس رفته نتوان كوفت

 قيامت نمودار گرديد - مردمان هتعلق وغيرآن ديوانه وار بسهـت دولت خانه دويدند از صكدن تا جلوه خانه كويا

ذكر بعض عهايح و ر وساى ايد. ديار

بعد فوت نواب نصرت جنالـ جنت هـكان تا غازي/الدئر مصهمد خان مغفور كه عرهه بسـت سال شد از عمايد

 زهي رفت كارخانه عالي و خرةٍ فزاوان بود و فرزندان جوان علي مهلي خذان بهادر وعلي حسس خان بهادر را

 راجه نرسرام ,

ذكرمتفرقات كه نوأب نصرت جنگـ مرحوم بقيد قلم خود در آورده بودند

Memoirs of the Asiatic Society of Bengal.

$1905-1906$.

1. On certain Tibetan Scrolls and Images lately brought from Gyantse.-By Prof. Satis Chandra Vidyabioṣana, M.A., M.R.A.S. (Price Re. 1-8; or 2s. 3 d.)
II. Sal-Ammoniac: a Study in Primitive Chemistry.-By H. E. Stapleton, B.A., B.Sc. (Price Re. I; or is. $6 d$.)
III. The Similarity of the Tibetan to the Kashgar-Brahmi Alphabet.-By The Rev. A. H. Francke. (Price Rs. 2 ; or 2 s. 1od.)
IV. Alchemical Equipment in the Eleventh Century, A.D.-By H. E. Stapleton and R. F. Azo. (Price Re. 1-8; or $2 s .3 d$.)
V. Malaysian Barnacles in the Indian Museum, with a list of the Indian Pedunculata. By N. Annandale, B.A., D.Sc. (Price Re. 1-8; or $2 s . \dot{3} d$.)
VI. Ashrafpur Copper-plate Grants of Devakhadga-By Ganga Mohan Laskar, M.A. (Price Annas 8 ; or rod.)
VII. Festivals and Folklore of Gilgit.-By Ghulam Muhammad. (Price Rs. 2 ; or 2s. iod.)
VIII. Notes on the Bhotias of Almora and British Garhwal.-By C. A. Sherring, M.A., F.R.G.S., I.C.S. (Price Re. 1-5; or $2 s_{\text {. }}$)
IX. Religion and Customs of the Uraons.-By the late Rev. Father Deyon, S.J. (Price Rs. 2 ; or 2 s .10 d.)
X. Notes on the Fauna of a Desert Tract in Southern India (Herpetology and Entomology).-By N. Annandale, D.Sc., C.M.Z.S., with a list of Mammals by R. C. Wroughton, F.E.S. (Price Rs. 2 ; or 2 s .1 lod .)
XI. Amulets as Agents in the Prevention of Disease in Bengal.-Compiled in the Office of the Superintendent of Ethnography, Bengal. (Price Annas 12 ; or $\mathbf{1 s}, 2 d$.)
XII. Eavth-Eating and the Earth-Eating Habit in India.-By D. Hooper and H. H. Mann. (Price Re. I; or Is. $6 d$.)
XIII. On a Cup-Mark Inscription in the Chumbi Valley.-By E. H. C. Walsh, I.C.S. (Price Re. I ; or Is. 6d.)
XIV. A Descriptive List of the Sea-Snakes (Hydrophiidæ) in the Indian Museum, Calcutta. —By Captain F. Wall, I.M.S., C.M.Z.S. (Price Re. I; or is. 6d.)
XV. Common Saws and Proverbs collected, chiefly from Dervishes, in Southern Persia.-By Lieut.-Col. D. C. Phillott. (Price Re. I; or is. 6d.).
XVI. The Common Hydra of Bengal: its Systematic Position and Life History.-By N Annandale, B.A., D.Sc., C.M.Z.S. (Price Re. i ; or 1 s. 6 d.)
XVII. Animals in the Inscruptions of Piyadasi.-By Monmohan Chakravarti, M.A. (Price Annas 12 ; or 1s. 2d.)
XVIII. Some curvent Persian Tales told by Professional Story-Tellers.-By Lieut.-Col. D. C. Phillott. - (Price Re. I ; or is. $6 d$. .)
XIX. The Dards at Rhalatse in Western Tibet.-By Rev. A. H. Francke. (Price Re. 1-6; or $2 s$.)
Supplement, Miscellanea Ethnographica. Part 1. 1. The Blow-Gun in Southern India 2. Miscellaneous objects from the Ramanád subdivision of the Madura district 3. Indian Weighing-beams.-By N. Annandale, D.Sc. (Price Re. 1.)

Supplement, Miscellanea Ethnographica. Part II. I. Some Malayan Weapons-By N. Annandale. 2. Plan of a Persian Gentleman's House.-By Lieut.-Col. D. C. Phillotr. (Price Annas 8 ; or 10 d.)

Memoirs of the Asiatic Society of Bengal.

Vol. II.

I.: Cirrhipèdes operculés de l'Indian : :Museum de Calcutta.-Par M. A. Gruvel. (Price Rs. 2 ; or $2 s_{\text {. }} \mathrm{IO}$ d.)
II. The Coinage of Tibet.-By E. H. C. Walsh. (Price Re. 1; or 1s. $6 d$.).
III. The Exact Determination of the Fastness of the more Common Indigenous Dyes of Bengal, and comparison with typical synthetic. Dye-stuffs. Part I. Dyeing on Cotton.-By E. R. Watson. (Price Re. I; or is. $6 d$.)
IV. The Saorias of the Rajmahal Hills.-By. R. B. Bainbridge. (Price Rs. 2 ; or 2s. 1od.)
V. Mundari Poetry, Music and Dances.-By Rev. Fr. J. Hoffmann, S.J. (Price Re. i; or 1 s .6 d .)
VI. Tarikh-i-Nuṣratjangi.-By Harinath De. (Price Re. I ; or is, $6 d$. .)

An Arabic translation of Controversial Pamphlets in Urdu and Persian by Rafi Al-Khuli.-By Harinath De. (In the press).
Monograph on Sea Snakes.-By Major F. Wall, I.M.S. (In the press).
The Exact Determination of the Fastness of the more Common Indigenous Dyes of Bengal, and comparison with typical synthetic Dye-stuffs. Part II. Dyeing on Silk. -By E. R. Watson. (In the press).

MEMOIRS

ASIATIC SOCIETY OF BENGAL

VOL. II, No. 7, pp. 155-168.

THE FASTNESS OF THE INDIGENOUS DYES OF BENGAL.

BY
E. R. WATSON; M.A. (Cantab.); B.Sc. (Lond.).

CALCUTTA:
Printed at the Baptist Mission Press, and published by The Asiatio Society, 57, Park Street.
1908.

The Exact Determination of the Fastness of the more Common Indigenous Dyes of Bengal, and comparison with typical Synthetic Dye-stuffs.

Part II.--Dyeing on Silk.
By E. R. Watson, M.A. (Cantab.), B.Sc. (Lond.).

List of Natural Dyes examined.

Turmeric or Huldi (Curcuma longa, Linn.).
Safllower or Kusum (Carthamus tinctorius, Linn.).
Sapan Wood or Bakam (Casalpinia Sappan, Linn.).
Palas (Butea frondosa, Roxb.).
Annatto, Orleans or Latkan (Bixa Orellana, Linn.).
Manjista (Rubia cordifolia, Linn.).
Lac-dye.
Kamala (Mallotus philippinensis, Muell.-Arg.).
Singhar (Nyctanthes Arbor-tristis, Linn.).
Jackwood, jak or kanthal (Avtocarpus integrıfolia, Linn. f.).

Methods employed for dyeing with these materials.

As in the case of cotton dyeing I have, in this investigation, also followed as closely as possible the native methods of dyeing. My success has been greater than in the former case; for, with each of the materials examined, I have succeeded in dyeing to a moderately full shade by at least one native method, and in consequence I have had no occasion to resort to any European, as opposed to Indian, method. It may be concluded that the native methods for dyeing silk are, on the whole, more satisfactory than the native methods for dyeing cotton. I have, in each case, aimed at obtaining as full a shade as possible, as such shades are the most useful for this investigation.

The silk used was a sample of cloth purchased from the Rajshahi Diamond Jubilee Industrial School. I was told that the only treatment to which the silk had been subjected was a boiling with sajimati (crude carbonate of soda). The cloth was further cleansed by boiling for half an hour in soap solution, $2 \frac{1}{2} 1 \mathrm{lbs}$. of soap for every Io lbs . of silk, and was then rinsed once or twice in cold water.

Turmeric.-Processes essentially as described by Nagendra Nath Banerjee (Monograph on Dyes and Dyeing in Bengal, Calcutta, 1896, p. 21, §82 (i)).
(I) Five gms. of turmeric were pounded and mixed with 200 cc . of water, and 5 gms . of the silk were worked in this decoction for half an hour at $65^{\circ} \mathrm{c}$., then rinsed in water and dipped in water acidulated with acetic acid [' raised' in 2 per cent. (on weight of silk) acetic acid]. Excess of turmeric was taken in order to get as full a shade as possible. A full bright yellow shade was obtained.
(2) Five gms. of silk were boiled for 15 minutes in 200 cc . of alum solution (saturated at ordinary temperature), then rinsed in water and worked for half an hour at $65^{\circ} \mathrm{c}$. in a turmeric bath as in (I). Rinsed in water. In this case, as in others where alum is used as a mordant, the cloth was mordanted previously to dyeing in order that the effect of the mordant should be as great as possible. A full bright yellow shade was obtained.
Saflower or Kusum.-Process as described by Banerjee (loc. cit., pp. 16, 17) and as employed for dyeing on cotton. One quarter of a pound of florets were used in making the bath, and as only 5 gms . of silk were dyed, a very large excess of dye was available. Worked for one hour in the bath a full pink shade was obtained.

Sapan Wood or Bakam.-McCann (Report on the Dyes and Tans of Bengal, Calcutta, 1883, p. 3) says: "The wood is either cut into small pieces or else pounded into a powder in a native mortar and is then boiled in water for from 5 to 8 hours.... Cloth or yarn to be dyed red is sometimes simply steeped in this infusion for about half an hour without the use of any mordant." In my hands this method only gave a light shade, which was not further examined. McCann continues: "But alum is sometimes employed as a mordant to fix the colour, being added to the water in which the pounded bakam-wood is boiled.'" This method gave a deeper shade, but, owing to the fact that alum added to the decoction of the wood throws down a precipitate, and necessitates keeping the bath vigorously on the stir the whole time the cloth is immersed, it was preferred to adopt the following modification :-
(I) The cloth was mordanted with alum as in dyeing with turmeric (2), then boiled for one hour with a decoction from 5 gms . of the wood (Ioo per cent. reckoned on weight of silk). A medium red shade was obtained.
(2) The cloth was mordanted in an alum-soda bath prepared by dissolving $4 \frac{1}{2}$ lbs. alum in a little less than $7 \frac{1}{2}$ gallons water, adding $7 \frac{1}{2} \mathrm{oz}$. soda crystals dissolved in a little water and making up to $7 \frac{1}{2}$ gallons exactly. The cloth was worked in this bath for 20 minutes, allowed to steep all night and wrung out. This mordanted cloth was worked at $170^{\circ} \mathrm{F}$. for half an hour in a decoction from ro gms. of the dye-wood (200 per cent. on weight of silk). A full crimson shade was obtained.
Banerjee (loc. cit., p. 23) describes the production of a deep maroon, or of a dark purple colour, by soaking the cloth first in water prepared with myrabolams and green vitriol and afterwards in bakam water. This process was carried out as follows :-
(3) Silk mordanted for one hour in io per cent. solution tannin, wrung out and dried, then worked for half an hour in a solution of 5 gms . cryst. ferrous
sulphate in $r_{50} \mathrm{cc}$. water (for 5 gms . cloth), wrung out and dried; then boiled for one hour in a decoction made from 10 gms. bakam-wood. A full shade, purplish black, was obtained.
Palas.-Banerjee (loc. cit., p. 24).
(I) Boil the silk for 30 minutes in water with an equal weight of the dried flowers. A light yellow shade was obtained.
(2) Cloth previously mordanted with alum was similarly treated. A medium orange yellow shade was obtained.
The opportunity was taken in February to use fresh flowers in the hope of dyeing deeper shades, but no better result was given than by the old dried flowers.

Annatto, Orleans or Latkan.-Native processes described in considerable detail by Banerjee (loc. cit., p. 24).

The Murshidabad process for dyeing silk with latkan was incidentally quoted in Part I of this investigation. The Nadia process for dyeing cotton a fast orange colour was also quoted. Banerjee continues: "Silk is dyed in Nadia in the same way with the following variation in the time for steeping : Three hours in babul water, four hours in latkan water, three hours again in babul water, and 18 hours in alum water."
(I) In following the Murshidabad process, 5 gms . of silk were boiled for 30 minutes in a decoction of 5 gms. latkan seeds, 7 gms. sajimati and 200 cc . water. A full bright orange shade was obtained.
(2) In following the Nadia process the silk was first mordanted in a solution containing io per cent. tannin, wrung out and dried, then dyed in a bath containing 5 gms. latkan and 7 gms. sajimati (for 5 gms. silk), then again entered in the tannin solution and finally into an alum solution (saturated at the ordinary temperature) entering in this last bath at the boil and subsequently allowing to cool. A full bright orange shade was obtained.
Manjista.-A summary of the processes described by McCann for dyeing with this material has been already given (Part I of this investigation).

On silk neither the dyeing without mordant in the aqueous decoction alone, nor the dyeing after previously mordanting with tannin, gave full shades, and the samples prepared by these processes were not further examined.
(I) In imitation of the Midnapur process, the silk was first mordanted with alum-soda, as described in dyeing with bakam-wood, and then boiled for one hour in a bath made from io gms. of manjista (for 5 gms . cloth). A full orange-red shade was obtained.
(2) Silk dyed according to (I) was subsequently boiled for half an hour in a soap-bath containing 25 per cent. soap (reckoned on weight of silk), then rinsed and passed for ten minutes through a 3 per cent. solution of acetic acid at $180^{\circ} \mathrm{F}$. A full red shade remained These subsequent operations were carried out in order that a sample dyed with manjista might compete on equal terms with alizarine dyeings. The dye contained in manjista is known to be similar to alizarine, and this subsequent soaping
and raising, apparently by removing a small quantity of imperfectly fixed dye, is known to improve alizarine dyeings on silk and is invariably resorted to.
Lac-dye.-McCann (loc.cit., p. 54) states that to prepare the dye bath the lac-dye is generally boiled with water to which alum and an alkali are added. In some districts, however, alum is not employed, the dye being merely boiled with saji or wood ashes. In other districts no auxiliary of any kind is employed.

I was unable to obtain satisfactory dyeings either with the lac-dye alone without auxiliary, or by using lac-dye mixed with alkali. Silk mordanted with alum or alum-soda was dyed when boiled with the lac-dye and water only.
(I) Five gms. of crude stick-lac were boiled with water, cooled and strained. The residue was again extracted with hot water. Five gms. of silk mordanted with alum (as previously described) were boiled for 30 minutes in the coloured liquor obtained from the stick-lac. A medium purplish-red shade was obtained.
(2) Five gms. of silk mordanted with alum-soda (as previously described) were boiled for 30 minutes in the dye decoction from 10 gms . of crude stick-lac. A full purplish-red shade was obtained.
Kamala.-McCann (loc. cit., p. 19) : "The kamala-guri powder is used for dyeing silks, and occasionally cottons, a brilliant yellow In Bengal the red powder is dissolved by the addition of a solution of various alkaline ashes, obtained by burning plants; and the development of the yellow colouring principle is, in no case, brought about by the addition of acids, but merely by allowing the cloth steeping in the red liquid to dry by exposure to the air. It is said not to require a mordant, but frequently alum is added for that purpose."
(土) Five gms. of silk were boiled for 30 minutes in a dye-bath containing 5 gms. of sajimati and 5 gms . kamala powder. A full bright yellow shade was obtained.
(2) Five gms. of silk mordanted with alum (as previously described), were boiled for 30 minutes in a bath containing I gm. of sajimati and 5 gms . of kamala powder. A full orange yellow shade was obtained.
Singhar.-Banerjee (loc. cit., p. 24) says with regard to the applicatiòn of this dye: "The cloth to be dyed is immersed in an infusion of this flower and then dried in the shade. A little acid or alum is sometimes added."
(I) Five gms. of silk boiled for 30 minutes in a bath containing 5 gms . of flowers. A full bright yellow shade was obtained.
(2) Silk mordanted with alum was similarly dyed. A similar shade was obtained.

Jackwood.-Banerjee (loc. cit., p. 26) : "It is generally used for silks. Ordinarily, cloth is coloured by simply steeping it in a solution obtained by boiling saw-dust of jackwood in water. From Chittagong the following interesting account has been received: "The following process is used by Buddhist priests (Funghi)* or by their disciples in dyeing the yellow robes worn by them. The heart of an old jack tree is

[^24]immersed in cool water for two or three days, and then boiled in a brass pot with some alum. When the colour is sufficiently deep, the water is poured into a vesselmore is poured into the vessel containing the wood and more colour extracted. The cloth to be dyed is placed in a wooden dish and kept soaked with the dye for two or three days. It is then dried in the sun. The process is repeated from three to six times to the satisfaction of the Funghi."

I did not obtain a satisfactory dyeing from the jackwood decoction alone.
(I) Five gms. of silk was boiled for 30 minutes in a bath containing 5 gms. of jackwood chips and I gm. of alum. A moderately full yellow shade was obtained.

Synthetic Dyes used for comparison with the Indigenous Dyes.

Unfortunately no systematic determinations of the fastness to various agencies of the dyeings with synthetic dyestuffs on silk appear to have been published. Messrs. Cassella \& Co. have undertaken such determinations for their dyes used in cotton and wool dyeing, but apparently not for silk-dyes. The absence of such information has rendered it necessary to examine a more extended series of synthetic dyes than was necessary when studying cotton dyeing. In making a selection of synthetic dyes, care was taken that those selected should be well-known dyes, should include members of each of the more important groups, should include dyes generally recognised as fast, and should give dyeings more or less similar in shade to the dyeings with the indigenous dyes under examination. In making this selection the following works and publications were consulted :-
"Silk Dyeing, Printing and Finishing," by G. H. Hurst.
"Chemical Technology of Textile Fibres," by G. von Georgievics.
"Silk Dyeing," by Messrs. L. Cassella \& Co. (Shade-card).
"Silk Dyeings fast to boiling off," by Messrs. L. Cassella \& Co. (Shade-card).
"Aniline Colours on Silk" (shade-card, from Badische Anilin und Soda Fabrik).
The dyes selected were:--

Basic-

Auramine II (Badische Anilin und Soda Fabrik).
Safranin, pur, (Dr. G. Grübler \& Co.).
Magenta.

Neutral-

Chrysophenine BB (Fr. Bayer \& Co.).
Sulphine A (Badische Anilin und Soda Fabrik) = Primuline
Thiazine Red R (Badische Anilin und Soda Fabrik).

Acid-

Orange No. 2. (Badische Anilin und Soda Fabrik).
Naphthole Yellow S 8960 (Fr. Bayer \& Co.).
Metanil Yellow E (Meister Lucius \& Brüning).

Scarlet RRR (Fr. Bayer \& Co.) = Biebrich Scarlet or Ponceau 3R.

Fast Pink CGL (Fr. Bayer \& Co.) = Magdala Red.

Developed-

Primuline, subsequently treated by Soda.
,, developed with Phenol.
,, ,, ," β. Naphthol.

```
Adjective-
Alizarine, dry 50 \% (Fr. Bayer \& Co.).
```

That the dyes chosen are well known and commonly used in the silk-dyeing trade may be judged from von Georgievic's observations; he points out that great fastness is not generally looked for in silk dyeing, and that acid dyes are very generally used. In a short list of the more commonly used dyestuffs Orange II is one out of the only two oranges mentioned, and the Ponceaus and Magdala Red are both mentioned in a list of only seven reds. The shade-card above mentioned issued by the Badische Anilin and Soda Fabrik contains only dyeings with 40 different dyestuffs, and of these six have been used in this investigation, viz., Magenta, Auramine II, Orange II, Metanil Yellow, Naphthol Yellow S and Thiazine Red. Again, that several of the dyes chosen have a high reputation for fastness is shown by the following remarks: Hurst, in speaking of dyeing with Primuline developed by β-Naphthol, says: "The red thus got is bright and fast to acids, soaping and alkalies." Chrysophenine, the same author remarks, "gives bright yellows fast to light and washing" and " all the (neutral) yellow colouring matters are pretty fast to light and resist soaping very well, especially chrysophenine." Auramine " gives greenish yellows very fast to light and soaping." Messrs. Cassella \& Co.'s select list of dyeings especially fast to boiling off includes Primuline subsequently treated with Soda, Primuline developed with Phenol and the same dye developed with β-Naphthol. These Primuline dyeings are said to stand a very severe treatment with soap, and their fastness to acids is characterised as very satisfactory. Subsequently treated with Soda, Primuline is designated as eminently fast to light. The same firm includes Orange II in its list of acid colours, all of which are characterised as very fast to rubbing and acids and possessing good resistance to light and ironing.

The dyed samples were prepared according to the methods described in the publications above mentioned.

Determination of Fastness of dyed samples.

As in the case of cotton dyeings, the dyed samples were examined with regard to the following points:-
(i) Fastness to light.

(ii) \quad,	to washing with soap.	
(iii),	to alkali.	
(iv)	,	to acid.

(I). Fastness to Light.

Determinations carried out as in the case of cotton dyeings (Part I of this investigation). The samples were exposed to light at the Civil Engineering College, Sibpur, during January Igo8 and the early part of February 1908, viz., on the following days: January 2-II, 15-24, 26-3I ; February I-6. The Sunshine Records of the Alipore Meteorological Observatory were again utilised and the same correction made for cloudy periods as in Part I. Again the day on which $8 \cdot 1$ hours of consecutive sunshine were recorded was taken as the unit " one day of bright sunshine," in order that the figures in this investigation should be directly comparable with the figures recorded in Part I. It will be observed that the two investigations were carried out in the same season of successive years. Moreover, by exposing along with the silk dyeings a few samples of cotton dyeings prepared in the former part of the work, the assumption that the figures in this paper and in Part I are directly comparable was shown to be justified.

In Table O the corrected values for the days of exposure are given :

Table O.

Date.		Number of hours' sunshine recorded.	Value of day in arbitrary units.	Date.		Number of hours' sunshine recorded.	Value of day in arbitrary units.
January	2	$7 \cdot 6$	0.98	J anuary	21	7.8	0×99
,	3	7×9	1-00	,'	22	7.9	I*OO
"	4	8.1	I-OI	,"	23	7.9	I-OO
,'	5	77	0.99	"	24	$7 \cdot 8$	0×99
",	6	6.9	0.94	,"	26	$6 \cdot 3$	0×90
"		$8 \cdot 1$	I'OI	",	27	6.0	- 88
",	8	8.2	I-OI	,"		$7 \cdot 3$	- 0.6
",	9	7.5	0.98	"	29	$8 \cdot 0$	I 00
"	10	$7 \cdot 1$	0.95	"	30	$8 \cdot 1$	I'OI
"	II	75	$0 \cdot 98$	シ	31	$8 \cdot 0$	I 00
",	15	$8 \cdot 1$	I-OI	February	I	$8 \cdot 2$	I'OI
",	16	$8 \cdot 2$	I. ${ }^{\text {ar }}$	",	2	$7{ }^{\circ}$	0.94
"	17	$8 \cdot 3$	r.02	,	3	3.4	0.72
1,	18	$8 \cdot 1$	I'OI	",	4	$7 \cdot 6$	0.98
",	19	8.0	1.00	",	5	$7{ }^{\circ}$	- 94
"	20	7.5	0.98	"	6	2.5	0.67

The results of the observations on the fading of the dyed samples are recorded in Table I. In the last column of this table the dyeings are placed in Groups I-IV according to their fastness to light. In Group I are placed the most fugitive, in Group IV the most permanent. These groups are identical with the corresponding groups into which cotton dyeings were classified, that is to say, a silk dyeing belonging to Group I has the same fastness to light as a cotton dyeing which was classed in Group I; and so on.

The change of shade from orange to pink, which was noted in the case of latkan dyeings on cotton, was scarcely noticeable on silk.

It is interesting to note the irregular way in which the nature of the textile material affects the fastness of the dyeings. Thus in the case of palas, latkan, manjista and primuline developed with β-Naphthol the dyeings on silk are faster to light than the corresponding dyeings on cotton; but the reverse is true for safranine and for primuline developed with phenol.
(II). Fastness to washing with soap.

The samples were treated in the same way as were the cotton samples previously, i.e., they were all steeped for 15 minutes at $60^{\circ} \mathrm{C}$. in an aqueous solution of neutral soap containing $\mathrm{I}_{5} \mathrm{gms}$. per litre, 250 cc . of solution being used for I gm. of silk. The results are recorded in Table II ; and here again the groups are identical with the corresponding groups into which cotton dyeings were classified in the previous paper. As a result of experience gained in examining the cotton dyeings, it was considered advisable to make a further set of observations, viz., as to the tendency of the dyed cloth to stain a piece of white cloth placed in contact with it in the soapbath. It was found that there was a tendency to over-rate the fastness of dyeings of a full shade and to under-rate the fastness of dyeings of light shades. The reason for this is fairly obvious: a deep shade can lose a considerable amount of colouring matter and still not be rendered relatively much lighter than the original shade, whereas the loss of even a smaller quantity of colouring matter from a light shade would be very noticeable. On the other hand the sample losing the large amount of colouring matter would be more likely to stain white fabrics in contact with it in the soap-bath. (The problem, it is true, is complicated by the fact that the extent to which the white fabric would be stained would depend not only on the amount of dyestuff brought into solution in the bath, but also on the nature and preliminary treatment of the white fabric). An equal weight of pure white silk cloth was folded and loosely knotted together with the dyed sample before entering in the soap-bath, and after the 15 minutes' treatment in the bath the previously white piece of cloth was rinsed, dried and examined. The scale employed to indicate the extent of the marking is (I) not marked; (2) scarcely marked ; (3) slightly marked ; (4) considerably marked ; and (5) much marked.

These observations show that the majority of dyeings with synthetic dyestuffs do not stand soaping at all well, and in this respect the indigenous dyes manjista, bakam on tannin-iron mordant, lac and kamala compare very favourably with the synthetic products.

(III). Fastness to Alkali.

Determined as in case of cotton dyeings, i.e., samples were all steeped for Io minutes in a solution of sodium carbonate (ro gms. cyst. carbonate per litre) at $60^{\circ} \mathrm{C}$., washed, dried and compared with original. For I gm. of cloth 250 cc . of solution were used. The groups into which the dyeings are classified are identical with the corresponding groups for cotton dyeings.
(IV). Fastness to Acid.

Also determined as in case of cotton dyeings, i.e., samples were all steeped for one hour in io per cent. acetic acid solution at $40^{\circ} \mathrm{C}$., washed, dried and compared with original. For I gm. of cloth 250 cc . of solution were used. The groups into which the dyeings are classified are identical with the corresponding groups for cotton dyeings.

Conclusion.

A summary of the results of the work recorded in this paper is given in Table V
The general result of the present work has been to show that the indigenous dyes of Bengal are considerably more useful for dyeing on silk than for cotton dyeings, and that the dyeings obtained are frequently considerably faster on silk than on cotton This, taken in conjunction with the fact that many of the commonly used synthetic dyes do not give at all fast dyeings on silk, causes the indigenous dyes to compare much more favourably with their synthetic adversaries in this field than was the case in the field of cotton-dyeing. The shades obtained from bakam on a tannin-iron mordant, from manjista, from lac, kamala and jackwood may be said to have all-round good fastness, as in no respect does any one of these dyeings come lower than III in the scale. Thus of io dyestuffs examined, 5 have yielded dyeings which may be characterised as all-round good. Of the I2 synthetic dyestuffs used for comparison only 4, viz., alizarine, primuline, chrysophenine and magdala red are capable of yielding dyeings which may by the same criterion be similarly characterised. My work would lead me to form a somewhat higher opinion of the value of kamala as a silk dye than has been recorded by A. G. Perkin (Journ. Soc. Chem. Industry, XIV, I895, p. 460). The dyeings with lac proved to be faster to soaping even than the synthetic dyes which were fastest in this respect. In fact the general fastness of lac dyeings made it appear to me a matter of surprise that this material has been so completely superseded by synthetic dyes, the more so as it is necessarily obtained as a by-product in the purification of lac, a material for which there is an ever rapidly increasing demand.

Finally it may be remarked that in the matter of brightness and cleanness of shade the vegetable dyeings do not compare unfavourably with those obtained from synthetic materials, nor is it any more troublesome to dye with the vegetable materials than with those synthetic materials which yield the faster dyeings.

It may be that I have attached more importance than is usual, when considering silk dyes, to the fastness of the dyeings to washing and soaping; but I can scarcely imagine a dyeing which is very sensitive to washing to be altogether satisfactory for any class of textiles.

Table I.-Fastness to Light of Dyeings on Silk.

Dyeing.	Fulness shade.	No. of days' required to produce first sign of fading	No. of days' bright sunshine required to reduce shade original intensity.	No. of days' bright sunshine required to completely bleach.	Grour.
Turmeric, raised with acid , ", alum mordant	$\begin{aligned} & \text { full } \\ & \text { full } \end{aligned}$	I	3 3	6	\}
Kusum .. - ..		I	3	II	I
Bakam, alum mordant	medium	I	5	15	II
,, alum-soda mordant	full	3	+	\dagger	II-IIl
,, tannin-iron mordant	full	13	+	\dagger	
Palas, without mordant	light	5	22	28	
, alum mordant	mediu	3	22	28	$\} \text { III }$
Latkan, Murshidabad process	full	2 2	8	\dagger) II
,, Nadia process Manjista, alum-soda mordant		2	${ }_{28}^{88}$	T	! 11
Manjista, alum-soda mordant ditto	medium full	9	$\stackrel{28}{\dagger}$	\dagger	
", ditto followed by soaping					IV
and raising	medium	4	28	\dagger	
," ditto ditto		8	\dagger	\dagger	
Lac, alum mordant alum-soda mordant	medium full	4	28	\dagger	$\underset{\mathrm{II}}{\mathrm{III}-\mathrm{IV}}$
Kamala, without mordant	full	3	17	\dagger	II-III
,, alum mordant	full	2	9	\dagger	II
,, ditto*	full	4	то	\dagger	II
Jackorwood, alum mordant mordant \quad.	full med.-full		9	\dagger) III
Orange II, 3%		9	22	\dagger	IV
Naphthole Yellow S., 0.5%	\cdots	2	3	7) I
", ${ }^{\text {\% }}$	\cdots	2	7	14	\} 1
Metanil Yellow E., I\%	.	3	17	28	
" \quad, 3%	\cdots	3	28	\dagger	\} III
', Scarlet RRR.',	\cdots	3 3	${ }_{12}^{\dagger}$	\dagger) II
Fast Pink, 5\%	\cdots	6	19	\dagger	III-IV
Auramine II, 3\%		I	8	20	I
Magenta, O.I3\%	\cdots	I	4	12) I
S' $\quad 1 \%$	\cdots	2	4	28	
Safranin, $\quad 0.4 \%$		${ }_{2}$	4	II	II
Chrysophenine BB, ${ }^{\text {a }}$, $\begin{aligned} & 4 \% \\ & 3 \%\end{aligned}$	\cdots	${ }^{2}$	$\stackrel{15}{+}$	\dagger	IV
		9	\dagger	\dagger	
Primuline, 2%		${ }_{8}$	9	\dagger	II
Thiazine Red R, 5\%		8	29	\dagger	IV
Primuline 8%, treated with soda	.	4	19	\dagger	III
8%, developed	.	4	19	\dagger	III
, $\quad 8 \%$, developed with		3	15	\dagger	II-III
Alizarine (Hurst loc. cit., 3 r	..	\dagger	+	+	IV

[^25]Table II.-Fastness to Soaping of Dyeings on Silk.

[^26]Table III.-Fastness to Alkali of Dyeings on Silk.

Dyeing.	Fulness of shade.	Intensity and tint after treatment with alkali, washing and drying. (Original Intensity $=$ I.)	Colour of alkaline bath afterwards.	Grour.
Turmeric, raised with acid	full	I., duller tint	full orange	
,, alum mordant	full	I., much duller tint	medium orange	II-III
Kusum ..	full	nil	medium orange	I
Bakam, alum mordant	medium	$\frac{1}{4}$ I., much bluer tint	medium pink	
,, alum-soda mordant	full	$\frac{1}{2}$ I., much bluer tint	full claret	
,, tannin-iron mordant	full	I., tint almost unchanged	full claret	III-IV
Palas, without mordant	light	$\frac{1}{4}$ I., much duller tint	medium orange	II
,, alum mordant	medium	I., warmer tint	medium orange	II--III
Latkan, Murshidabad process	full	I, tint unaltered	med.-full yellow	III
, ${ }^{\prime}$ Nadia process	full	I., ditto	medium yellow	III
Manjista, alum-soda mordant	medium	I., ditto	light salmon-pink	
" ditto	full	I., ditto	light salmon-pink	
ditto followed by soaping and raising	medium	I., ditto	colourless	IV
, ditto ditto ..	full	I., ditto	colourless	
Lac, alum mordant	medium	I., ditto	colourless	
,, alum-soda mordant	full	I., ditto	light pink	
Kamala, without mordant	full	I., ditto	light yellow	III-IV
,, alum mordant	full	I., ditto	medium yellow	III
, ditto*	full	I., ditto	medium yellow	
Singhar, without mordant	full	$>\frac{1}{2}$ I., ditto	med.-full yellow	II-III
,, alum mordant	full	$>\frac{1}{2}$ I., ditto	med.-full yellow	II-II
Jackwood, alum mordant	med.-full	I., warmer tint	medium orange	III
Orange II., 3%	\ldots	$\frac{1}{8}$ I., tint unchanged	full orange	I
Naphthole Yellow S., 0.5%	.	nil	light yellow	I
, \quad, 4%	\cdots	nil	med.-full yellow	
Metanil yellow E., $\quad 1 \%$	\cdots	$\frac{1}{4}$ I., tint unchanged		
$, \quad, \quad 3 \%$	\ldots	$<\frac{1}{2}$ I. ditto	med.-full orange	II
,,, 5\%	\ldots	슬 I., ditto	full yellowish orange.	
Scarlet RRR., 3%	\cdots	$\frac{1}{8}$ I., ditto	full crimson	I
Fast Pink, 5%	\cdots	$\frac{1}{2}$ I., ditto	light-med. pink	II-III
Auramine II., 3%	.	I., ditto	colourless	IV
Magenta, $\quad 0.13 \%$.	I., ditto	colourless	
"', I\%		I., ditto	colourless	IV
Safranin, 0.4%	\cdots	I., ditto	colourless med.-full pink	III
Chrysophenine BB., $\quad 3 \%$	\cdots	I., ditto I., ditto	med.-full pink almost colourless	
Chrysophenine BB., 	\cdots	I., ditto	light yellow	IV
Primuline, $\quad 2 \%$	\cdots	I., ditto	colourless	IV
Thiazine Red R., 5%		$>\frac{1}{2}$ I., ditto	full crimson	II-III
Primuline 8% treated with Soda	\cdots	I., ditto	colourless	IV
8% Phenol..		I., ditto	colourless	IV
,, 8% developed with β-Napthol	\cdots	I., ditto	colourless	IV
Alizarine (Hurst loc. cit., 3I appendix)		I., ditto	colourless	IV

[^27]Table IV.-Fastness to Acid of Dyeings on Silk.

Dyerng.	Fulness of shade.	Intensity and tint atter treatment with acid, washing and drying. (Original Intersity = I.)	Colour of acid bath afterwards.	Group.
Turmeric, raised with acid	fu11	I., tint unaltered	medium yellow	III
,, alum mordant	full	I., ditto	light yellow	III-IV
Kusum . .	full	I., ditto	colourless	IV
Bakam, alum mordant	medium	$<\frac{1}{8}$ I., ditto	light yellow	I
,, alum-soda mordant	full	$<\frac{1}{8} \mathrm{I}$., ditto	medium orange	I
,, tannin-iron mordant	full	I., tint almost unchanged	light yellow	III-IV
Palas, without mordant	light	$>\frac{1}{2}$ I., tint unaltered	almost colourless	IV
,, alum mordant	medium	$\frac{1}{4}$ I., ditto	almost colourless	II
Latkau, Murshidabad process	full	I., ditto	colourless	IV
,, Nadia process	full	I., ditto	colourless	IV
Manjista, alum-soda mordant	medium	$\geq \frac{1}{2} \mathrm{I}$., ditto	colourless	
", ditto followed by soap-	full	I., ditto	colourless	IV
ing and raising	medium	$>\frac{1}{2}$ I., ditto	colourless	
, ditto ditto	full	I., ditto	colourless	
Lac, alum mordant ...	medium	I., ditto	colourless	IV
, alum-soda mordant	full	I., ditto	light orange	III-IV
Kamala, without mordant	full	I., ditto	colourless	
, alum mordant	full	$>\frac{1}{2}$ I., ditto	colourless	IV
Singhar, without mordant	full	$\frac{1}{2}$ I., ditto	colourless	
Singhar, without mordant ,, alum mordant		$\begin{array}{lll}\gg 1 \\ \gg & \text { I I., } & \\ \text { I., } & \text { ditto } \\ \text { ditto }\end{array}$	med.-full yellow med.-full yellow	III
Jackwood, alum mordant	med.-full	$>\frac{1}{2} \mathrm{I}$., ditto	almost colourless	IV
Orange II., 3%	-•	I., ditto	medium orange	III
Naphthole Yellow S., 0.5\%	.	I., ditto	colourless	IV
,", 4%	\cdots	I., ditto	colourless	IV
Metanil Yellow E., $\quad 1 \%$	-	I., ditto	colourless	
, \quad, 3%	\cdots	I., ditto	colourless	IV
Scarlet RRR", 5\%	.	I., ditto	colourless	
Scarlet RRR., 3\%	.	I., ditto	colourless	IV
Fast Pink, 5\%	.	I., ditto	colourless	IV
Auramine II., 3\%	.	$<\frac{1}{8}$ I., ditto	full yellow	I
Magenta, 0.13\%	-	$\frac{1}{8}$ I., ditto	med.-full magenta	I
', 1 \%	.	$\frac{1}{8}$ I., ditto	full magenta	1
$\begin{array}{lr}\text { Safranin, } & 0.4 \% \\ 4 \%\end{array}$.	\% $\frac{1}{8}$ I., ditto	medium pink	I
$\begin{array}{ll}\text { Chrysophenine BB., } & 4 \% \\ 3 \%\end{array}$	-	$\frac{1}{8}$ I., ditto	full red .	
		I., ditto	colourless colourless	IV
Primuline, 2%	.	I., ditto	colourless	IV
Thiazine Red R., 5%..		I., ditto	colourless	IV
Primuline 8\% treated with Soda		I., ditto	colourless	IV
,, 8% developed with Phenol , 8% developed with	.	I., ditto	colourless	IV
β Napthol		I., ditto	colourless	IV
Alizarine appendix) (Hurst, loc. cit., $3 I$.	I., ditto	colourless	IV

[^28]Table V.-Summary-Fastness to various Agencies of Dyeings on Silk.

Memoirs of the Asiatic Society of Bengal.

1905-1906.
I. On certain Tibetan Scrolls and Images lately brought from Gyants.-By Prof. Satis Chandra Vidyabhoṣana, M.A., M.R.A.S. (Price Re. 1-8; or 2s. 3d.)
II. Sal-Ammoniac: a Study in Primitive Chemistry.-By H. E. Stapleton, B.A., B.Sc. (Price Re. 1; or Is. 6d.)
III. The Similarity of the Tibetan to the Kashgar-Brahmi Alphabet.-By The Rev. A. H. Francre. (Price Rs. 2 ; or 2 s. 1od.)
IV. Alchemical Equipment in the Eleventh Century, A.D.-By H. E. Stapleton and R. F. Azo. (Price Re. I-8; or $2 s .3 d$.)
V. Malaysian Barnacles in the Indian Museum, with a list of the Indian Pedunculata.By N. Annandale, B.A., D.Sc. (Price Re. 1-8; or $2 s .3 d$. .)
VI. Ashrafpur Copper-plate. Grants of Devakhadga.-By Ganga Mohan Laskar, M.A. (Price Annas 8; or 1od.)
VII. Festivals and Folklore of Gilgit.-By Ghulam Muhammad. (Price Rs. 2 ; or 2s. iod.)
VIII. Notes on the Bhotias of Almora and British Garhwal.-By C. A. Sherring, M.A., F.R.G.S., I.C.S. (Price Re. I-5; or $2 s_{\text {. }}$)
IX. Religion and Customs of the Uraons.-By the late Rev. Father Dehon, S.J. (Price Rs. 2 ; or 2 s .10 d.)
X. Notes on the Fauna of a Desert Tract in Southern India (Herpetology and Entomology).-By N. Annandale, D.Sc., C.M.Z.S., with a list of Mammals by R. C. Wroughton, F.E.S. (Price Rs. 2 ; or 2 s .1 I d.)
XI. Amulets as Agents in the Prevention of Disease in Bengal.-Compiled in the Office of the Superintendent of Ethnography, Bengal. (Price Annas 12; or 1s. 2d.)
XII. Earth-Eating and the Earth-Eating Habit in India.-By D. Hooper and H. H. Mann. (Price Re. I ; or Is. $6 d$.)
XIII. On a Cup-Mark Inscription in the Chumbi Valley.-By E. H. C. Walsh, I.C.S. (Price Re. 1; or Is. $6 d$.)
XIV. A Descriptive List of the Sea-Snakes (Hydrophiidæ) in the Indian Museum, Calcutta. —By Captain F. Wall, I.M.S., C.M.Z.S. (Price Re. I; or is. 6d.)
XV. Common Saws and Proverbs collected, chiefly from Dervishes, in Southern Persia.-By Lieut. Col. D. C. Phillott. (Price Re. I; or is. $6 d$. .)
XVI. The Common Hydra of Bengal: its Systematic Position and Life History.-By N. Annandale, B.A., D.Sc., C.M.Z.S. (Price Re. 1 ; or $1 s .6 d$.)
XVII. Animals in the Inscruptions of Piyadasi-By Monmohan Chakravarti, M.A. (Price Annas 12 ; or 1s. 2d.)
XVIII. Some curvent Persian Tales told by Professional Story-Tellers.-By Lieut.-Col. D. C. Phillott., (Price Re. I; or is. $6 d$. .)
XIX. The Dards at Khalatse in Western Tibet.-By Rev. A. H. Francke. (Price Re. x-6; or $2 s$.)
Supplement, Miscellanea Ethnographica. Part 1. 1. The Blow-Gun in Southern India 2. Miscellaneous objects from the Ramanád subdivision of the Madura district 3. Indian Weighing-beams.-By N. Annandale, D.Sc. (Price Re. 1.)

Supplement, Miscellanea Ethnographica. Part II. I. Some Malayan Weapons-By N. Annandale. 2. Plan of a Persian Gentleman's House.-By Lieut.-Col. D. C.
Phillotr. (Price Annas 8 ; or $10 \mathrm{~d}_{\text {. }}$)

Memoirs of the Asiatic Society of Bengal.

Vol. II.
I. Cirrhipèdes operculés de l'Indian.Museum de Calcutta.-Par M. A. Gruvel. (Price Rs. 2 ; or $2 s$. IOd.).
II: The Coinage of Tibet.-By E. H. C. Walsh. (Price Re. 1 ; or $\mathbf{1} s .6 d_{0}$.).
III. The Exact Determination of the Fastness of the more Common Indigenous Dyes of Bengal, and comparison with typical synthetic Dye-stuffs. Part I. Dyeing on Cotton.-By E. R. Watson. (Price Re. 1; or is. $6 d$.)
IV. The Saorias of the Rajmahal Hills.-By R. B. Bainbridge. (Price Rs. 2 ; or 2s. 1od.)
V. Mundari Poetry, Music and Dances.-By Rev. Fr. J. Hoffmann, S.J. (Price Re. i ; or 1s. $6 d$. .)
VI. Tarikh-i-Nușratjangi.-By.Harinath De. (Price Re. I ; or is. 6d.)
VII. The Exact Determination of the Fastness of the more Common Indigenous Dyes of Bengal, and comparison with typical Synthetic Dye-stuffs. Part II. Dyeing on Silk. -By E. R. Watson. (Price Annas 12 ; or is. 2d.)
An Arabic translation of Controversial Pamphlets in Urdu and Persian by Rafi Al Khuli.-By Harinath De. (In the press).
Monograph on Sea Snakes,-By Major F. Wall, I.M.S. (In the press).

MEMOIRS

ASIATIC SOCIETY OF BENGAL

VOL. II, No. 8, pp. 169-251.

A MONOGRAPH OF THE SEA SNAKES.

BY
MAJOR F. WALL; I.M.S., C.M.Z.S.
(WITH FOUR PLATES.)

CALCUTTA:
Printed at qhe Baptist Mission Pbess, and published by The Asiatio Sooiety; 57, Párk Street.
1909.

Price Rs. 5 ; or $7 s$.

A Monograph of the Sea-Snakes (Hydrophiinæ).

(With four plates).

By Major F. Wall, I.M.S., C.M.Z.S.

More than ten years have now elapsed since the publication of Professor Boulenger's colossal work, Catalogue of Snakes in the British Museum, the third and last volume of which appeared in 1896 . This last volume contains, among other matter, a detailed classification and description of the Hydrophiince, which remains the standard work on this admittedly difficult subject.

Within the last few years I have examined all the specimens of this sub-family contained in the following institutions: The Royal College of Surgeons, London; The Indian Museum, Calcutta ; The Natural History Society, Bombay ; The Government Museum, Colombo; The Medical College Museum, Madras; The Bangalore Museum ; The City Hall Museum, Hongkong ; The Shanghai Museum, and lately the entire British Museum collection. In addition I examined in Yokohama a large collection made by Mr. A. Owston in the seas about Japan and the Loo Choo Islands, a second large collection from the same source, a fine collection made by Mr. J. R. Henderson in Madras, and many smaller private collections from various parts as well as many specimens obtained by myself on the coasts of India and Burmah.

I have detailed notes of every specimen examined and propose in the following monograph to review this confused subject, which, I venture to think, requires a thorough revision ; and this must necessarily entail much allusion to Professor Boulenger's work.

As collections become enriched it almost inevitably follows that with a larger series of specimens available, previous views require modification and correction. It is therefore not surprising that my views are in many ways substantially different from those held by Professor Boulenger a decade back. Since that authority's treatment of the subject the British Museum collection has acquired, as a matter of course, many additions, and the collections in many of the other institutions referred to above have grown, in most instances considerably, since any account of their contained material has been published. I am very decidedly of opinion that the actual number of species is much below that set forth in Professor Boulenger's work. This authority has already in his catalogue, in some instances, united under one heading many forms that had been previously considered distinct, and I think the generalisation commenced by him should be pushed very much further.

The conception of a species is of course, to a more or less extent, a matter of personal opinion. I shall therefore, in the following remarks, take every pains to set forth in detail the reasons in support of my views. But, beyond this, there are discrepancies between Mr. Boulenger's work and mine affecting questions of actual fact; I refer in particular to the supposed presence or absence of grooves in the posterior maxillary
teeth, a point of material importance in the present accepted classification. Where my observations differ from Mr. Boulenger's, I can only explain the discrepancy on the supposition that my vision may be keener than his, and the lens I worked with of higher power. Certain it is that grooves which were invisible under the lens I had previously used under the assurance that it was the strongest made, became clearly revealed by a new lens of the very highest power and quality specially recommended me for this work by Messrs. Baker, opticians, Holborn. More recently inspection with the aid of the microscope has confirmed my observations with this pocket lens.

Mr. Boulenger records the occurrence of solid posterior maxillary teeth in the genera Hydrus, Acalyptus, Hydvelaps, Enhydrina, Platurus and Hydrophis (in all of which, however, I can discern grooves). So far as the first five are concerned, this point does not influence his classification, but the genera Hydrophis and Distiva are divided solely on the assumption that the small teeth are solid in Hydrophis, grooved in Distira. Now I find that in Hydrophis the small teeth are all grooved (not solid as Mr. Boulenger states), and being so, conform to the condition he claims to characterise the genus Distiva. The error is one easy to understand, for many of his species of Hydrophis are snakes with very small constricted heads, and some of them, even when adult, are of notably small proportions. I could find no specimen for instance, of H. gracilis in the British Museum collection that enabled me to clear up this point, but in the Colombo Museum I saw three well-grown adults in which the grooves were plainly visible. In this connection I may point out that Mr. Boulenger in the "Fauna of British India Reptiles and Batrachia," published in 1892, says that the small maxillary teeth behind the fangs in the genera Naia and Bungarus are solid, but recognises and corrects these mistakes four years later in his Catalogue, Vol. III, pp 373 and 365 , where he rightly pronounces them grooved. This question of grooves has led to much confusion, for Mr. Boulenger has, in many cases, been led to describe as a new Distiva a well-grown specimen of some previously known species of Hydrophis, the grooves well marked in the large adult snake having escaped detection in smaller or less perfect specimens. I have failed to discover a single species in the whole of the sub-family Hydrophiina with the posterior maxillary teeth ungrooved.

Some remarks upon the external characters concerning classification are, I think, called for, and in dealing with these I shall refer to them in what I consider their order of relative importance beginning with the ventrals.

Ventrals.-The presence or absence of these shields, and their development especially as regards breadth, are of the greatest importance in the separation of genera and species. They are absent in Astrotia stokesi being replaced by scales but little modified from those of the adjacent costal rows (see fig. 65 D). They are so illdeveloped in the genus Enhydris that, except anteriorly in E.curtus, they might be better considered absent (see fig. 63). They are barely as broad as the last costal row in Hydrus, Acalyptus and Thalassophis. In Hydrelaps, Enhydrina and Distiva they are rather less than twice the last costal row (see fig. 38). In Distiva viperina they are unique, the anterior shields being three or four times as broad as the last costal row, the
rest of the series barely twice as broad (see fig. 57). In Platurus, Emydocephalus, and Aipysurus they attain their maximum development, being more than three times as broad in the whole body length and very similar to the same shields in Colubrine terrestrial snakes.

Numerically the value of these shields is of importance in distinguishing certain genera, but in closely allied species like those of the genus Distira, the range of variation in individuals is so considerable, and the figures of the specific ranges overlap so much, that the assistance to be derived from the number of these shields is decidedly limited. They are fewest in the genera Emydocephalus, Aipysurus, and Hydvelaps, being less than 200 ; most numerous in Distiva fasciata where they may exceed 500.

The specific range of variation depends largely upon the numerical strength of the individuals available. If we exclude species but poorly represented numerically, the smallest range of variation is that met with in Distiva jerdoni (219 to 248), and D. viperina (235 to 267); on the other hand the largest ranges of variation are seen in Distira fasciata (376 to 531), D. torquata (310 to 438), and D. cyanocincta (280 to 397).

The ventrals of most species are entire or mostly entire in the whole body length, the few shields that are divided being seen about the umbilical scar and before the anus. In Hydrus platurus, and in some specimens of Distira major, many of the shields are divided, but subject to a good deal of variation in number and position in individuals. In D.cantoris and D. gracilis all the shields in the posterior half or so of the body are very constantly divided (see fig. I3). In the very broad shields in some Emydocephalus and Platurus a median obtuse keel is seen posteriorly, but this is an inconstant feature found in only certain individuals, and, I believe, irrespective of age and sex.

The remarks made with reference to keels, tubercles, etc., under costals apply equally to these shields.

The ventrals in many of the species, specially in the genus Distiva, are often very difficult to count accurately. The difficulty may arise from the detail of these shields being obscured by damage, desquamation, a local sodden condition, or the puckering in places occasioned by the way the specimen has been folded in the bottle. Often too small scales are interpolated on one or other side, which would alter the count on the two sides. Some observers count these, some do not. Again some appear not to count the shields which may be broken up, especially those just before the anus, and others again do not count the early ill-developed ones in the neck. The result is that the counts of various authors for the same specimen differ considerably. To take a single instance, the type-specimen of Distiva cyanocincta has 308 ventrals according to Russell, 296 according to Boulenger, more than 320 according to Günther, and I count them 310. It is not very unusual for me to make these shields a little different in three or four counts in the same specimen, which may appear extraordinary for one to confess who strives at accuracy : still it is the fact.

Costals.-(The "scales" of other authors). The importance of these shields in classification is only second to that of the ventrals.

Numbers.-These may be the same or proximately the same (within 2) in the whole body length, or relatively more numerous posteriorly than anteriorly, and this is of great importance in separating genera. In Platurus, Emydocephalus and Aipysurus the rows are the same throughout, or vary but slightly. The same is a noticeable feature of Distiva jerdoni, and one of my strongest reasons for believing that this species should occupy a place apart under a genus to itself. The degree to which the rows posteriorly may exceed those anteriorly in the same specimen varies considerably in different genera and species, but the range of variation to be met with in these two counts in individuals of the same species is such as to detract considerably from the assistance to be derived from this condition, especially in closely allied forms. In order to obtain the best results, I count these scales in three situations, viz., anteriorly, i.e., two headslengths behind the head, in mid body, and posteriorly, i.e., two headslengths before the anus. Theterms " anterior" and " posterior" used throughout this monograph are therefore precise. In Distiva spiralis they may be from two to nine more posteriorly than anteriorly, in D. fasciata 10 to 22 more, and between these extremes every degree is to be met with in various other species.

The actual numbers of rows are very important in another way, assisting the distinction of genera and species. They are fewest in Emydocephalus (17 to 19), Aipysurus (except lavis) (I7 to 19), and Distiva jerdoni (19) ; most numerous in Thalassophis annandalei (90 to 100), Enhydrina (50 to 70), Hydrus (45 to 62), and Astrotia (48 to 59). In Distiva gracilis they are very few anteriorly ($I 7$ to 2 I), and rather numerous posteriorly (27 to 35). Again the numbers of rows may be very constant in individuals of the same species, or the reverse, a condition influencing generic and specific classification. In Platurus, Emydocephalus and Aipysurus, individuals have a like number of rows, or range within two of the normal ; on the other hand in certain species the rows counted at the same site vary in individuals very considerably, notably in Enhydrina from 50 to 70 , Hydrus 45 to 62, Distiva fasciata 37 to 51. Every degree of variation may be met with between these extremes.

Imbrication.-The costals may be imbricate, subimbricate, or juxtaposed, and this condition is of great importance generically, as well as assisting the separation of certain species in the genus Distiva. In the genera Platurus, Emydocephalus, Aipysurus and Astrotia imbrication is pronounced in the whole body length, also in Distiva jerdoni. In Hydrus and Enhydris the costals are juxtaposed throughout, and in certain species, notably Distira cantoris and D. gracilis, these scales are imbricate anteriorly, juxtaposed posteriorly. In certain species this condition is subject to variation, notably in Distiva fasciata, D. torquata, D. ornata, D. carulescens, etc., specimens being met with in which these scales are juxtaposed, and others in which they are distinctly imbricate or subimbricate posteriorly. This fact shows that, important as this condition is, it cannot be completely relied upon, and one is to expect a similar aberration in individuals of other allied forms.

Size.-This varies in the genera and in some species. The costals are comparatively large in the genera Platurus, Emydocephalus and Aipysurus, and in Distiva jerdoni, but comparatively small in Hydrus and some Distiva, notably fasciata, carules-
cens, and torquata, and very small in Thalassophis annandalei. With rare exceptions the costals are of equal or sub-equal size in the whole body length. In the genus Enhydris, however, there is a notable enlargement of the three or four rows near the ventral median line. This point is not very well brought out in figure 63, which is intended to show the imperfect ventrals. In Emydocephalus ijima some vertebrals are much enlarged, but even in this species this is not a constant feature throughout the same individual, nor in different individuals.

Shape.-As a general rule the costals are rhomboidal when imbricate, more or less hexagonal where juxtaposed. The edges of the scales are peculiar in one species especially, viz., Astrotia stokesi, where in the lowest rows they are irregularly dentate, and the apices emarginate (see fig. 66 D).

Carination.-In many genera the costals are quite smooth as in Platurus, Emydocephalus and Aipysurus, but in other genera they are furnished with short, median keels or tubercles to which many authors have attached considerable importance. Personally I do not share their views. Much attention to this character leads me to think little if any weight can be attached to it, either in the separation of genera or species. I find the degree to which these tubercles are developed varies very much in individuals from birth to maturity, and in individuals of the same species of similar growth. It is not unusual to see young specimens with these tubercles so little in evidence that the scales feel smooth, or almost smooth to the touch, and to meet with old examples which are very rough to the touch. Some authors are inclined to think the degree of development dependent upon the sexes, the males especially showing more pronounced tuberculation. In the case of Enhydris curtus, I have seen specimens in which the lowest and enlarged costal rows have the tubercles modified, so as to form spines resembling in size and shape the teats of some small mammals like the guinea-pig. Mr. Boulenger believes this occurs in males (Catalogue, Vol. iii, page 300), but my notes on this point are too imperfect to criticise this, or the belief entertained by others that males are more strongly tuberculate than others. In many species the scales are bi-, tri- or pluri-tuberculate or spinose, but I cannot see in this condition any means of assisting the classification of genera or species.

Head Shields.-The actual presence in their entirety of many of these shields is of great importance in the separation of genera and species, but the relationship of these shields is of far less importance, and very secondary to most characters which affect the ventrals and costals. I find that the relationship of many of those shields which preserve the greatest degree of constancy in individuals, and which one must employ in the separation of species, is open to some variation in certain of these species, and it is therefore impossible to lay down hard-and-fast rules regarding head shields for distinguishing the various forms. A very open mind must be kept to prevent creating new species on insufficient grounds.

I find these shields in most, if not in all, species very prone to become rough and granular with age. In the young they are usually quite smooth, and often glossy, but in very old specimens the asperities are sometimes very pronounced. A good example
is to be seen in the type-specimen of Hydrophis aspera from Singapore now considered by Mr. Boulenger as D. cyanocincta, an opinion with which I am in accord. This specimen in this respect, as in all other important ones, is exactly like the large specimens labelled grandis in the British Museum, which I cannot separate from cyanocincta.

I cannot derive any help in distinguishing either species or genera from this condition, which appears to me one dependent largely upon age, possibly too upon sex.

Rostral.-This is entire in all the genera except Thalassophis, where it is divided in one species. A partial, median vertical suture is seen sometimes as an aberrant feature in some species, especially in Platurus schistorhynchus. ${ }^{1}$ In Emydocephalus ijime it may be furnished with a prominent, sharp spine directed forwards (see fig. 4), but this only occurs in certain individuals and has, I believe, no relation to sex.

The portion of this shield reflected backwards on the snout varies in some species, but the ranges of variation met with in individuals of the same species overlap so considerably that the point is of very limited importance. In Distiva cantoris and D. gracilis the visible portion is from two-thirds to greater than the inter-nasal suture, and in two other slender-necked species, viz., obscura and fasciata, but little less. In nearly all other forms it is less than two-thirds, or even distinctly less than half.

The contact with surrounding shields is quite constant. In the genus Platurus and Thalassophis, owing to the presence of internasals, it touches five or six shields, five in P. schistorhynchus, six in the rest; but in all the other genera it touches four shields only. The sutures made with contiguous shields are peculiar in Platurus, the rostro-labial being the longest. In Platurus laticaudatus and P. colubrinus again the height exceeds the breadth of this shield, whereas in all the other species in the subfamily the reverse condition obtains ; but the degree of breadth relative to height is subject to so much variation in individuals of many of the same species that I cannot utilise this feature in attempting to separate different forms.

In Enhydrina the lower margin of the shield is projected downwards to be received into the gap in the mental region, and this feature is peculiar to this snake only.

NASALS.-These are present in every species. Their position is of generic importance in Platurus only, owing to the presence in this genus of internasals. Here the nasals are lateral and separated, and the nostrils lateral ; but in all other genera, except perhaps Thalassophis, the species have nasals in contact with one another on the snoutbehind the rostral, and the nostrils are superior. Where these shields are superior, sutures are frequently seen running from the nostril to adjacent shields. These are very inconstant in all the species, but there is a decided tendency for a suture to run outwards to the supralabials, backwards to the præfrontals, or inwards towards the opposite nasal. Sometimes three such sutures may radiate from the nostril, and in so doing split each nasal into three parts. The suture running outward is the one most constantly seen, and when present it almost invariably runs to the second supralabial. Exceptions

[^29]occur in Enhydris hardroickii, where it always runs to the first supralabial, and in rare examples of Distira ornata and Enhydrina valakadyn where it takes a similar course. The tendency for these shields to split is seen not infrequently in Acalyptus peroni, both Thalassophis, Enhydris hardwickii, Enhydrina valakadyn, Distira nigrocincta, D. viperina and D. ornata. (See figs. 40, 55 and 59). The condition is too inconstant to offer any help in classification.

Internasals.-These shields are present in the genera Platurus only, where there are two, except in P. schistorhynchus. In this species there are two rows of shields, one anteriorly and usually two behind. (See fig. I).

Praefrontals.-These are present in all the species and consist of a pair with a few exceptions, which occur in the genera Platurus, Emydocephalus and Aipysurus and Thalassophis. In Platurus schistorhynchus there are three, and in Emydocephalus ijimee and in Aipysurus there may be four, but the condition in the two last is an inconstant one, the usual præfrontals seen in other forms being subdivided on one or both sides in some specimens only, so that the number of these shields does not aid classification. In Thalassophis annandalei there are many.

Normally in all the species the fellows of the pair are in contact, but in rare individuals of certain species the frontal is projected so far forward as to completely separate the fellows. I have seen this most frequently in Distira viperina, but also in D.jerdoni and some other species. It occurs in the type-specimen of Jan's frontalis, in a specimen in the British Museum referred by Mr. Boulenger to frontalis (Jan), but which I take to be ornata (Gray), and in the type-specimen of brookii (Günther). In the latter case the specimen is a gravid female, and the condition is not inherited by her unborn young (Boulenger Catalogue, vol. iii, p. 283). The relationship of the præfrontals with the supralabials is, I consider, of great importance. I find the relationship invariable in most genera, but in individuals of Enhydrina and Astrotia it is subject to some variation, and also in individuals of some species of Distira. In order to justify this assertion, I may remark that in some examples the relationship differs on the two sides, and it is usually very obvious when attention is paid to other characters which to consider the abnormal side. The unilateral abnormality naturally prepares one for the still rarer exception, in which the abnormality is bilateral. This remark applies with equal force to many other abnormalities alluded to as such in the headshields of individuals. In many genera these shields touch no supralabial, as for instance Platurus, Aipysurus, Emydocephalus, Acalyptus, Thalassophis and a few species of Distiva, notably jerdoni, nigrocincta and viperina. In nearly all the other species the contact is with the second supralabial. In Hydvelaps darwiniensis it touches the second and third, as it does also in some specimens of A strotia stokesi and Hydrus platurus. In Distiva cantoris it touches the third supralabial only (rarely the second also). The contact of this shield with the eye is unique in Hydrelaps darwiniensis. (See fig. 8). I have, however, seen this as an aberrant feature in D. obscura owing to a confluence of the praeocular with the praefrontal. In one specimen it occurs on one side only, in another on both sides, and in one example of D. jerdoni on both sides. The
praefrontal is sometimes, too, divided externally so as to produce a pseudo-1oreal. I have seen this in Distira ornata and some other species, but it is an obvious abnormality.

Frontal.-This is present in all species, and, with few exceptions, is normally entire. In Aipysurus australis and Acalyp us peroni it is divided into fragments, the integral parts of which, however, taken collectively, clearly reveal the conformation of the shield as normally met with in other species.

It is occasionally divided by a partial or complete longitudinal suture, but the condition is an abnormal one. I have seen it in examples of Hydrus platurus, Enhydris curtus, Distiva carulescens, D. cyanocincta; and others (see figs. 34 and 42). The length of this shield relative to that of the supraoculars and parietals has a limited importance. In Platurus colubrinus it is much longer, and may even be twice as long as the supraocular. In most other species the lengths of each are subequal. In Platurus schistorhynchus it is longer than the parietals, but in all other species it is usually distinctly shorter. Its length compared with the length of the snout varies considerably in individuals of the same species, and the ranges of variation for the different species overlap so considerably that I cannot utilise the point in their separation, though Mr. Boulenger attaches much importance to it.

The breadth of the shield relative to that of the supraoculars, with few notable exceptions, is of no use in assisting the isolation of species. In all the species it is about as broad as or a little broader than the supraocular, but in Distiva viperina the breadth is remarkable, amounting to more than twice and often thrice that of the supraoculars (see figs. 55 and 56) ; and in Platurus colubrinus and P. laticaudatus it is about twice that of the supraoculars. Of equally limited importance is the length of this shield relative to its breadth, which I find is about equal in Distira viperina. In other species the length is distinctly in excess of the breadth, but the relative proportions are so closely alike in all the species that the point offers no further help in isolating them.

Again the relative lengths of the sutures it makes with contiguous shields is practically the same in all the species, being subequal, or the fronto-praefrontals rather the shortest, and the fronto-parietals rather the longest. In the genus Distiva, however, two species are peculiar. In D. viperina the fronto-supraoculars are the shortest and only about half the length of the fronto-parietals. In D. nigrocincta the frontopraefrontals are shortest and only about half the length of the fronto-parietals.

Supraoculars.-These shields are present and entire in all forms excepting the genus Aipysurus. In A. australis and A. lavis they are divided.

Parietals.-These are present and normally entire in all species except Aipysurus australis, A. levis and Enhydris curtus, but a tendency to division is very frequently seen in individuals of many other species, notably Emydocephalus ijime and Thalassophis annandalei. I have seen them divided in a specimen of Distiva carulescens in the Indian Museum (No. 13160), and the tendency to division is also seen in figures $34 \mathrm{~A}, 45 \mathrm{C}, 60 \mathrm{~A}$ and 66A. They are in contact with the postocular in all the species of the subfamily except Distira cerulescens normally, and in a few aberrant examples of Hydvus platurus.

Prefoculars.-The absence of these shields is of generic importance in one instance, viz., Hydrelaps darwiniensis (see fig. 8) ; in all other forms they are present, but they do not assist the separation of either genera or species. In most of the species they are single, but I find in some species of Distiva individuals occur with two where one is the rule, as in viperina, and similarly where two is the rule they are replaced sometimes by a single shield. In the latter case a notable example is nigrocincta. I have seen a confluence of the præocular and præfrontal in one example of D. jerdoni and two examples of D. obscura.

Postoculars.-These are present in all the species, but are of no importance in classification. As will be seen under my remarks dealing with supralabials, authors are not agreed what to regard as postoculars, many applying this term to the upper part of a divided supralabial (usually the fifth); even when the term is restricted, as I propose, these shields are of no consequence, for in many of the species, specially of the genus Distira, one sees many individuals showing departures from the normal number.

Supralabials.-These are of generic importance in one notable instance, viz. Emydocephalus. In this genus the second shield is a remarkably long one, bordering the major length of the upper lip and also touching the eye (see fig. 4B). In all the other genera they number five or more, and the third is the first of the series to touch the eye; but the inconstancy in the number, disposition, and integrity of these shields in individuals of many species is such that a very little, if any, reliance can be placed on them in differentiating species. In Distiva jerdoni there are six, the last of the series being confluent with a large anterior temporal shield (see fig. 58), but a similar confluence of the ultimate or penultimate supralabial with the anterior temporal is seen in individuals in D. spiralis, D. fasciata, D.obscura, etc. (seefig. I9B). In a few species such as D.gracilis, D. cantoris, D. fasciata, these shields are very constantly six, but in all the other species of Distiva, in Hydrus, Enhydrina, Enhydris and Astrotia they vary very much in individuals, and especially the posterior shields in the series which are very prone to subdivision. I have seen the first subdivided in more than one example of D. nigrocincta including the type, and in one example of D.ccrulescens (No. I3I58 in the Indian Museum). It is divided, too, in Jan's specimen of frontalis (see fig. 34). The second is more frequently so distinguished as an abnormal condition, and the succeeding shields in the series become more and more prone to division. For a good example take Distiva cyanocincta. In figure 28 from a typical specimen the third, fifth and sixth are divided. I do not think any one could reasonably doubt that this is the correct way of viewing these shields. In figure 29 taken from Jan, and acknowledged by Mr. Boulenger among others to represent the same species, the same three shields are seen entire on the right side, whilst the fourth and sixth are divided on the left side of the same specimen. I think it a mistake to record these shields in figure 28 as 8 , with the fourth touching the eye, and in figure 29 B , 8 with the third and fifth touching the eye. It appears to me obvious that in all three profile views the third, fourth and fifth touch the eye. In recording these shields in my
notes I use the following formula: In fig. 28, Lab. 8 ; I2 ($\left.\frac{3}{3} 4 \frac{5}{5}\right) \frac{6}{6}$, the bracketted figures implying contact with the eye. To take another example of the tendency to variation in these shields see figure 66. Here these shields are 9, the anterior 7 entire, the fourth, fifth and sixth touching the eye. In figure 67 B representing the same species, the third, fourth, fifth and sixth shields are divided, the upper portions of the fourth and fifth being confluent. I would use the formula IO, $\mathrm{I} 2 \frac{3}{3}\left(\frac{4}{4} \frac{5}{5} \frac{6}{6}\right)$, and in so doing imply that three labials touch the eye, though in reality only two do so. It seems to me the only reasonable way of recording it. Unfortunately many herpetologists have taken a different view, and on the strength of their view created new species on grounds to my mind quite unjustifiable. To take a good case as illustration see figures 39 and 40 . Mr. Boulenger presumably on the assumption that the posterior maxillary teeth in nigrocincta are not grooved (though this is a mistake) compared the specimen he subsequently described as hendersoni only with species he had tabulated as Distiva, not heeding the many extremely close affinities this specimen bears to nigrocincta. In describing the specimen he calls the upper part of the divided second supralabial a loreal, the upper part of the third a præocular, and the upper parts of the fourth and fifth suboculars. He says that no labial touches the eye on the left side, and only the fourth on the right side. Now it appears to me obvious that the supralabials should be considered as follows on the left side : $8, \mathrm{I} \frac{2}{2}\left(\frac{3}{3}, \frac{4}{4}, \frac{5}{5}\right), \frac{6}{6}$. On the right side in this specimen they are $8, \mathrm{I} \frac{2}{2}\left(\frac{3}{3}, 4 \frac{5}{5}\right) \frac{6}{6}$. On both sides three shields touch the eye. A comparison of these figures side by side with those of P. cyanocincta and A. stokes i shows how complete is the analogy. In the majority of species the third and fourth supralabials touch the eye with great constancy, though they may be divided or not; in many species, however, examples are to be found in which the fifth also finds contact. The result is that with the one or two exceptions first noted these shields do not assist classification in any way.

Temporals.-These shields have been conceded, I consider, undue prominence in classification; for although it is true that a single large anterior shield is to be seen with great constancy in many of the species including many of the genus Distiva, such as gracilis, cantoris, fasciata, obscura, etc., it is equally true that in many of the species of Distira especially, these shields present in many individuals departures from the normal. As in the case of prcoculars and postoculars, the number of these shields depends, to a large extent, upon the tendency of the supralabials to subdivision, for many herpetologists regard as lower temporals what appear to me to be the upper parts of divided supralabials. I find, however, that even when these shields are viewed, as I regard them, they vary considerably in the individuals of many species, and their value has, I think, been overrated. There are some instances of an abnormal condition in these shields prompting the creation of a new species.

Infralabials.-I regard as infralabials only those enlarged shields which are in contact with the sublinguals. They are distinctive and of generic value in one instance, viz., Emydocephalus, where the second of the series is a very long shield bordering most of the lower lip (see fig. 4B) ; specifically their value is but limited. In

Distira jerdoni (fig. 58) there are three only, but in all the other forms four are present excepting Aipysurus australis, where they are too ill developed to deserve the name.

The first on each side meet behind the mental (except in a few abnormal individuals of a few species) and form a suture, the length of which compared with that between the anterior sublinguals has some importance. In Distira cantoris, D. gracilis, D. obscura and D. fasciata, etc, this suture is much longer than that between the anterior sublinguals, but in almost all the other species it is little longer and often shorter. The last infralabial is peculiar in Aipysurus eydouxii, Acalyptus peroni, Platurus schistorhynchus, Distira cantoris, D.gracilis and D. jerdoni, in that it touches but two scales behind. In all the other species it touches three or four.

Marginals.-I apply this term to certain small cuneate scales which are, in many species, intercalated between the infralabials at the labial margin. They are very distinctive in form, and not to be confused with divided infralabials, the outer parts of which are not cuneate in outline. Examples of divided infralabials are shown in figs. 12 B where the third is divided on the left side, in 24 C where the first is so distinguished on the left side, and in 59 C where the fourth is divided on both sides.

Their constancy though apparently complete in many species is less so in others, thereby detracting somewhat from their value; still they are fully as important as many other characters upon which one has to rely in separating species, especially those of the genus Distira. They are absent in D. gracilis, D. cantoris and D. jerdoni, there being no exceptions in the large series of each that I have examined. Similarly, one or more are present in the large series of viperina (20), carulescens (29), fasciata (34), torquata (29), without any exception. In most of the other species of Distiva the constancy is not so complete though very striking. The constancy in the number of these little shields when present is not so striking, for though a very large number of individuals in many species have but one, and that wedged between the third and fourth infralabials, there is a tendency for more to be present and they may succeed the second infralabial. In fasciata, for instance, five specimens out of 38 have two marginals occurring after the second or third infralabials on one or both sides, in all the rest there is but one, and that after the third. The constancy in number and disposition though not complete is as striking in obscura, carulescens, etc.

Sublinguals.-The "Chin shields" of other authors. There are usually two pairs, the fellows of each in contact with one another. In Astrotia both pairs are absent. In Hydrus, Enhydris and Enhydrina they are poorly developed, especially the posterior, if they can be said to be present at all ; and the anterior pair frequently present though small, has the fellows widely separated. In Distivà major, D. ornata and D. carulescens they may also be small, but the anterior pair is very generally present and the fellows in contact ; the posterior, when recognisable, are usually well separated by small scales.

The contact or separation of the posterior pair when developed, though showing great constancy in some species, manifests frequent variation in individuals of other
species, so that this character is one not to be relied on. Its value and place is on a par with the contact of the præfrontal and supralabials, the condition of the anterior temporals and the arrangement of the marginals, and in no case should new species be based upon any of these characters singly, or even when combined, on the existence of a solitary example, unless there are other good grounds for doing so.

Colour and Markings.-These vary so in examples from birth to senility, and in many individuals of similar growth, in such well differentiated forms as, for instance, Enhydrina valakadyn and Hydrus platurus, about which there can be no confusion, that I cannot attach the slightest importance to them in classification. So far as the genus Distiva is concerned, the species of which present the greatest difficulties in identification, it may be said, as a general rule, that they are marked with annuli in the young. These are usually well defined, complete and conspicuous, but tend to become less defined, partially or entirely obscured, or completely obliterated with age. It is noteworthy, too, that in many species where the head is completely black in the juvenile state, it loses its depth of hue with age, very frequently becomes mottled with lighter hues which show a great tendency to the formation of a horseshoe, or crown-shaped mark, and this in turn may disappear as the whole head acquires a yellowish or light colour. These changes are very remarkable.

Bodily Configuration.-This in certain forms is very distinctive, but does not influence generic separation owing chiefly to the fact that the genus Distira, as at present understood, contains species exhibiting extremes in the relative proportions of their bodies, between which every degree of relative variation may be found ; thus we see the extremely slender-necked forms of cantoris, gracilis, etc., associated with those of remarkably even girth throughout such as jerdoni and spiralis. I cannot but think that anatomical conditions will be revealed, which will enable the genus, as herein represented, to be split up into three or four genera at least.

In certain genera the bodies are cylindroid or feebly compressed throughout as Platurus, Emydocephalus and Aipysurus. In the others the posterior part of the body is moderately or extremely compressed: In certain Distira the anterior part of the body is cylindrical, the posterior very distinctly compressed, especially so in cantoris gracilis, fasciata, obscura and neglecta. I find that the relative girths of the neck and body vary considerably from birth to adult life, in the sexes, and in the female from conception to parturition. In an example of Distiva obscura, I have found the forebody considerably more than one-fourth the greatest body depth, and in another very distinctly less than one-fifth, and a very proximate range of variation is seen in other species. In many cases, however, the range given by me is likely to be considerably increased by measurements taken from heavily gravid females.

The difference in individuals in obscura is considerable, so much so that it is evident that in closely allied species corporeal habit cannot be relied upon to assist the isolation of species. Such terms as "small," " moderate" and "large" used by many herpetologists in application to calibre are, I need hardly say, far too indefinite. A further remark is necessary regarding the laxity that the tissues acquire in old age
in sea snakes in common with many other creatures. This laxity is to be seen especially in the bloated features, puffy lips, and about the chin shields of senile specimens which alters the approximation of the shields, obliterates their detail, destroys the clearness and definition of the head lines to such a purpose, that a dapper juvenile specimen of the same species appears a different creature. Figures 22 and 25 exemplify this statement. In case, however, my views with regard to these two forms being identical are not shared by others, I may say that I have seen as great a difference in general aspect between young and old specimens in such well differentiated species as Enhydrina valakadyn.

With the exception of the characters above made reference to I can find none which possess any weight at all in the separation of the species, and, as has been already remarked, many of those referred to are subject to some degree of inconstancy in certain species, making them at the best of somewhat uncertain value. Many of these very characters, however, cannot be dispensed with; they are essential to the separation of the species of Distira, but in making use of them one has to guard against allowing a single or dual aberration to form the basis of a new species as has undoubtedly so often been the case. Naturally it is the species that most lack definite characters that have suffered most separation and confusion, especially Distiva spiralis and cyanocincta.

It is more than probable that many of my views expressed above may not be completely shared by other herpetologists, and I would remark that I believe that the only possible way to establish the constancy of the various shields in a given species is by a comparison of these in the gravid female with those of her unborn progeny. My opportunities for doing so have been limited, but in one species in particular I have been fortunate viz., Enhydrina valakadyn. I have had many gravid females, and examined the scale characters of each attentively with that of their contained foetus. The result was instructive, and modified my previous views considerably. The inconstancy of many shields relied upon by other authors implicitly in classification was found to be proximately similar in the few gravid females of other species, notably those of the genus Distiva, which fortune has from time to time offered me for examination.

A series of gravid Distiva spiralis and D. cyanocincta would alone, I feel assured, clear up the conception of these species as viewed by me in partial opposition to those held by other herpetologists. So far as the numbers of the costals and ventrals are concerned, I think it is reasonable to expect to find a proximate range of variation in individuals of species which are similar in corporeal habit. Now if one takes a well differentiated species such as Enhydrina valakadyn, which could not be confused with any other, the costals in the neck according to Mr. Boulenger's showing vary within twenty in individuals. A similar range is recorded by him for the body scales. The ventrals by the same authority's showing vaty by 84 . Now in some of the genus Distiva, where a large series of specimens is available and these from the widest geographical area, a proximate degree of variation is seen in the costals, and even an excess in the range of the ventrals amounting to 155 in fasciata. Moderate
departures from the range hitherto recorded are to be expected as the series available becomes entiched in numbers, and especially when specimens are derived from a larger geographical area. It will be seen that my figures for both costals and ventrals in many species exceed those given in Mr. Boulenger's catalogue; at the same time they are well within the range given for certain other species even in Distira spiralis and cyanocincta into which I have tried to justify the absorption of many other forms previously considered distinct. It certainly appears significant that of 44 species recognised by Mr. Boulenger as distinct, and included by him in his genera Hydrophis and Distiva, no less than I4 are known from the British Museum alone. It appears to me remarkable that none of these 14 are represented in the many continental and other museums, many of which have large collections of sea snakes. I am forced to think that other herpetologists have recognised the inconsistency of the characters used by Mr. Boulenger in classification, and in consequence have been deterred from describing new species on the uncertain basis offered by many of them.

Key to the Genera.

A. Ventrals three or more times as broad as the last costal row in whole body-length.
(a) Rostral touches 6 shields
.. .. Platurus.
(b) ,, , 4 ,"
(a^{\prime}) Two or three supralabials, second very large Emydocephalus
(b^{\prime}) Six or more supralabials AIPYSURUS.
B. Ventrals nearly or more than twice the last costal row in midbody.
(a) Præfrontal touching the eye, no mental furrow. Ventrals less than 200 Hydrelaps.
(b) Præfrontal not touching the eye. Ventrals more than 200.
(a^{\prime}) A mental furrow Enhydrina.
(b^{\prime}) No mental furrow Distira.
C. Ventrals not as broad or little broader than last costal row.
(a) Costals subimbricate. Præfrontal touches no labial. Frontal and parietals broken up AcALYPTUS.
(b) Costals juxtaposed. Præfrontal broken up, or if entire not touching second labial Thalassophis.
(c) Costals juxtaposed. Præfrontal touches second labial.
(a^{\prime}) Lowest three or four costal rows enlarged. Ventrals less than 250 EnHydris.
(b^{\prime}) Lowest costals not enlarged. Ventrals more than 350 . Hydrus.
D. Ventrals absent. Replaced by imbricate scales like the costals .. Astrotia.
Synopsis of Generic Sheld Characters．

		Prefrrontals．								Pairs of sublinguals．		Cos 1	ALS．		Ventrals．		Genus．
		出 克 号		$\begin{aligned} & \dot{\circ} \\ & 0 \\ & 0 \\ & 0.0 \\ & \text { 鴰 } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$							$\begin{aligned} & \text { H } \\ & \text { H } \\ & \text { 莗 } \end{aligned}$				岂 品 号		
Entire	1 or 2	2 or 3	o	No	Entire	Entire	Entire	7 to 8	Yes or no．	I or 2	$\begin{gathered} \text { I9 } \\ \text { to } \\ 25 \end{gathered}$	$\begin{aligned} & 19 \\ & \text { to } \\ & 25 \end{aligned}$	Imbric	No	178－246	Thrice or more．	Platurus．
do．	o	2 to 4	0	do．	do．	do．	do．	3	No	2	$\begin{gathered} \text { I5 } \\ \text { to } \\ \text { I7 } \end{gathered}$	$\begin{aligned} & \text { I7. } \\ & \text { to } \\ & \text { I9 } \end{aligned}$	do．	In one species	137－143	do．	Emydo－ CEPHALUS．
do．	o	2 to 4	0	do．	Entire or divided	Entire or divided．	Entire or divided．	6 to Io	do．	2 oro	$\begin{gathered} 17 \\ \text { to } \\ 25 \end{gathered}$	$\begin{aligned} & \text { I7 } \\ & \text { to } \\ & 25 \end{aligned}$	do．	$\begin{gathered} \text { Yes } \\ \text { or } \\ \text { no. } \end{gathered}$	137－166	do．	Aipysurus．
do．	0	2	2nd and 3 rd．	Yes	Entire	Entire	Entire	6	do．	2	27	$\begin{aligned} & 27 \\ & \text { to } \\ & 28 \end{aligned}$	do．	No	172－173	About twice．	Hydrelaps．
do．	0	2	2nd （o）	No	do．	do．	do．	7 to 9	do．	Small hidden I or 2	40 to 60	$\begin{aligned} & 50 \\ & \text { to } \\ & 70 \end{aligned}$	Imbric or sub－ imbric．	do．	230－314	Less than twice．	Enhydrina．
do．	o	2	$\begin{gathered} \text { 2nd } \\ \text { or } \\ \text { o } \end{gathered}$	do，	do．	do．	do：	5 to II	$\begin{gathered} \text { Yes } \\ \text { or } \\ \text { no. } \end{gathered}$	2	I7 to 48	$\begin{aligned} & 17 \\ & \text { to } \\ & 54 \end{aligned}$	Imbric or juxt．	do．	219－53I	do．	Distira．
do．	o	2	o	do．	Divided	do．	Divided	7	Yes	2	19 to 23	$\begin{aligned} & 24 \\ & \text { to } \\ & 29 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Sub- } \\ & \text { imbric. } \end{aligned}$	do．	I56－209	$\begin{aligned} & \text { Less } \\ & \text { than } \end{aligned}$	Acaliyptus．
Divided or entire	o＊	$\begin{aligned} & 4 \text { or } \\ & \text { many } \end{aligned}$	o	do．	$\begin{gathered} \text { Entire } \\ \text { or } \\ \text { divided. } \end{gathered}$	do．	Sub－ entire．	7 to 12	No	I or 2	？	$\begin{array}{r} 3 I \\ \text { to } \\ 100 \end{array}$	Juxt	do．	247－370	Small or Absent	Thalasso－ PHIS．
Entire	0	2	2nd （3rd）	do．	Entire	do．	Entire or divided．	7 to 8	Yes	2 oro	29 to 36	$\begin{aligned} & 27 \\ & \text { to } \\ & 45 \end{aligned}$	do．	do．	130－219	do．	Enhydris．
do．	0	2	2nd̉	do．	do．	do．	Entire	7 to 10	No	I or 2 small．	40 to 54	$\begin{aligned} & 45 \\ & \text { to } \\ & 62 \\ & \hline \end{aligned}$	do．	do．	378－440	Small	Hydrus．
do．	－	2	2nd， 3rd or 0	do．	do．	do．	do．	7 to 9	Yes	2 or 0	4 I to 48	$\begin{aligned} & 48 \\ & \text { to } \\ & 59 \end{aligned}$	Imbric	do．	Absent． placed －267	$\mathrm{Re}-$ by 230 costals．	Astrotia．

PLATURUS.

Key to the species of Platurus.
(A Rostral touches five shields
.. schistorhynchus.
(B) Rostral touches six shields
(a) Frontal touches six shields laticaudatus.
(b) Frontal touches seven shields colubrinus.

Platurus schistorhynchus (Günther).

Platurus schistorhynchus, Günther in Proc. Zool. Soc., 1874, p. 297; pl. xlv, " fig. A. Boulgr. in Blantord, Fauna Brit. Ind. Rept. I890, p. 375, and Cat. iii, 1896, p. 309.

-Fig. I.-Platurus schistorhynchus (nat. size).
I have examined over 40 examples.
Description. Rostra1, -touches five shields; the rostro-labial and rostrointernasal sutures subequal, largest. Internasa1s,-one anterior succeeded by one rather irregular row which might be considered either posterior internasals, or anterior præfrontals. Præfrontals, -three in one transverse series, the outer not touching any supralabial Fronta 1,--touches seven shields; the fronto-parietal and frontosupraocular sutures subequal and largest. Supraoculars,-entire; about half as broad and three quarters as long as the frontal. Parietals, -entire; as broad or broader than long, shorter than the frontal. N a sals,-lateral ; in contact with the first three supralabials. Præoculars, -one. Postoculars,-two. Tempora1s,two (rarely three) small. Supralabials,-seven ; the third and fourth touching the eye. Infralabials, -the fourth is the largest of the series, and in contact with three scales behind. Marginals, —usually after the fourth infralabial. Sublinguals, anterior well-developed; the posterior if they can be recognised as such, small, and quite separated. Costa1s, -anteriorly 2 I to 23 , midbody 21 to 23 (usually 23), posteriorly 19 to 21 ; smooth; imbricate. Ventrals 178 to 200 ; three or more times as broad as the last costal row, the last one or two frequently divided; the posterior obtusely keeled in the median line. Anal,-divided. Colour,-broadly banded, dark brown and yellowish or greyish; the bands well defined, and the brown rather broader.

Habitat.-Loo Choo Islands, Moluccas, Savage Island, Society Islands, Samoa.

Platurus laticaudatus (Linnæus). ${ }^{1}$

Coluber laticaudatus, Linn. Mus. Ad. Fred., 1754, p. 3I, pl. xvi, fig. I. Platurus laticaudatus, Boulgr. in Blanford, Fauna Ind. Rept., 189o, p. 395 and fig. and Cat. iii, 1896, p. 307.
Sclater, List Snakes Ind. Mus., 1891, p. 61.
Wall in Proc. Zool. Soc. Lond., 1903, pp. 96 and Ior.
", fischeri, Günther, Rept. Brit. Ind. 1864, p. 356, p1. xxv, fig. A.
,", .. Jan, Icon. Gén., I872, livr. 40, pl. I, fig. 2.
", ", Fayrer, Thanat. Ind., I874, pl. xix.
,. muelleri, Boulgr., Cat. iii, I896, p. 309.
? ,, affinis, Anderson in Proc. Zool. Soc. Lond., I87I, p. I9o.

A
Fig. 2.-Platurus laticaudatus (11at. size).
Description. Rostral,--touches six shields, the rostro-labial suture is much the largest; portion visible above about onefourth the internasal suture. Internasals, -a pair. Præfrontals, -two; not in contact with any supralabial Fronta1,--touches six shields; the fronto-parietal sutures largest. Supraoculars,single; from $\frac{1}{2}$ to $\frac{3}{4}$ the length, and breadth of the frontal Parieta1s, -entire. Nasa1s,-lateral ; in contact with the first and second supralabials. Præoculars,one. Postoculars,-two. Temporals,—one. Supralabials, -seven or eight; the third and fourth touching the eye (the fourth only in one specimen on one side). Infralabials, -the fifth is the largest of the series, and in contact with three scales behind. Margina1s, -a complete row after the second or third infralabial usually (the first rarely). Sublinguals, -two pairs in contact with their fellows. Costa1s,—anteriorly 19, midbody 19, posteriorly I7; smooth; imbricate; the vertebrals are enlarged where the costals number I7. Ventrals, -2 Io to 246 three or more times as broad as the last costal row ; with a more or less distinct lateral obtuse keel in the basal half of each shield; sometimes with an obtuse median keel posteriorly; the last shield sometimes divided. Ana1,-divided. Colour,-alternately banded with dark brown, and yellowish, or greyish. The bands well defined, and the dark rather broader.

Habitat. Bay of Bengal, through the Malayan Region, China, Loo Choos, Philippines to New Guinea and Australia (Van Diemen's Land, Günther).

[^30]
Platurus colubrinus (Schneider.)

Hydrus colubrinus, Schneid., Hist. Amph., I799, i, p. 238.
? Hydrophis colubrinus, Schlegel, Phys. Serp. ii, 1837, p. 514, pl. xviii, figs. 21 and 22.
Platurus colubrinus, Boulgr. in Blantord, Fauna Ind. Rept. and Batrach., 1890, p. 395 and Cat. iii, 1896, p. 308.

,$"$	" \quad Sclater, List Snakes Ind. Mus., I891, p. 62.
,	Wall in Proc. Zool. Soc. Lond., Igo3, pp. 96 and ior.
",	fasciatus, Jan, Icon. Gén., I872, livr. 40, pl. i, fig. I.
,;	scutatus, Günther, Rept. Brit. Ind., 1864, p. 356 .

Fig. 3.-Platurus colubrinus (nat. size).
I have examined upwards of twenty of this species.
Description.-Rostral,--touches six shields; the rostro-labial sutures much the largest. Internasals, - a pair. Præfrontals, -three subequal shields in one transverse row; the outer touching no supralabial. Frontal, -entire; touches seven shields; the fronto-parietal sutures largest. Supraoculars, -half to about twothirds as broad, and as long as the frontal. Parietals,-entire. Nasa1s,-lateral; in contact with the first three supralabials usually (sometimes only the first two). Præoculars, -one. Postoculars, -two. Temporals, -one (sometimes two). Supralabials,--seven ; the third and fourth touching the eye. Infralabials, the fourth is the largest of the series, and in contact with three or four scales behind. Marginals,-a complete row after the second infralabial. Sublinguals,-two well developed pairs, the fellows of each in contact. Costals, anteriorly 2 I to 25 , midbody 2 I to 25 , posterioriy usually 2 (rarely 23) ; imbricate; smooth. Ventrals, -I95 to 240 ; three or more times as broad as the last costa! row ; the last one or two very frequently divided. Anal,-divided. Colour,-like the last, but in old specimens the bands are often effaced ventrally, and converted into dorsal bars.

Habitat.--From the Bay of Bengal through the Malayan Region, China, Philippines to Australia and New Zealand.

EMYDOCEPHALUS.

Key to the species of Emydocephalus.
(A) Præfrontals 4; vertebrals much enlarged; costals smooth; a ventral keel posteriorly ijimce.
(B) Præfrontals 2; vertebrals not enlarged; costals tuberculate; no ventral keel . .

Emydocephalus ijime (Stejneger).

Emydocephalus ijimæ, Stejneger in Journ. Sci. Coll. Tokyo, xiii, pt. 3, p. 223. Aipysurus annulatus, Boulgr. Cat., vol. iii, 1896, p. 304, in part.

Wall in Proc. Zool. Soc., 1903, pp. 95, IoI; and 1905, ii, p. 5I7.

Fig. 4.-Emydocephalus ijime (nat. size).
In my paper referred to above which appeared in 1903, I alluded to this species under the title Aipysurus annulatus. I had not then seen Stejneger's description of this snake, but had formed the opinion that the specimens I saw in Mr. Owston's collection in Yokohama belonged to a species up to that time not described. Discussing the matter with Mr. Boulenger at the British Museum, I reluctantly suppressed my opinion in deference to the views held by so great an authority. Having now examined more specimens from the same locality and collector, and seen all the specimens in the British Museum labelled Aipysurus annulatus, I am more than ever convinced that under the latter title Mr. Boulenger includes two distinct species, viz., the annulatus of Krefft, and the ijime of Stejneger. The former has two præfrontals, little or no enlargement of the vertebral row, the scales rough with many tubercles and no ventral keel. The latter on the other hand has normally four præfrontals in a transverse series, very markedly enlarged vertebrals, smooth scales, and an obtuse ventral keel.

In both the arrangement of the supralabials and infralabials is sufficiently distinctive to warrant their separation from Aipysurus, and their inclusion in a genus apart. I have examined nine examples all collected by Mr. Alan Owston around the Loo Choo Islands.

Description. Rostral,-touches four shields; with or without a sharp spine. Præfrontals, -normally four, but sometimes the pair on one or both sides is fused into one : in one example by this fusion there are but two, in two others there are three. The outer do not touch any supralabial. Frontal, -entire ; in contact with six, seven or eight shields, depending upon the sub-division of the præfrontals; about three-fourths the length of the supraoculars. Parietals, -entire, usually partially split by a suture posteriorly. Nasals,-touch the first and second supralabials. Præoculars,--one. Postoculars,--two. Tempora1s,--two, small. Supralabi-
als,-two or three, the second very long, and touching the eye. Infralabia1s,-the second very long. Margina1s, -none. Sublinguals, -two pairs, the posterior separated by one scale. Costa1s, -anteriorly 15 to 17 , in midbody 17 to 19 , posteriorly I5 to I7 ; smooth ; the vertebrals enlarged and twice as broad as the next row of costals in the posterior part of the body, but in three specimens where the costals numbered ig for a limited extent in the middle of the body the corresponding vertebrals were little if at all larger than the upper costal row. In these specimens the reduction of rows to the normal $I 7$ was occasioned by the absorption of the uppermost costal row into the vertebral, and the great enlargement of this row was re-established. Ventra1s, - I37 to I43, broad as in land snakes, the posterior obtusely keeled in the median line ; the last one or two sometimes divided. Anal, -divided (entire in one). Colour, banded broadly with yellow, and blackish brown, the latter broader.

Habitat.-Loo Choo Islands, Formosa.
I append a synopsis of the specimens I have seen showing the shields which are subject to variation.

Emydocephalus annulatus (Krefft).
Emydocephalus annulatus, Krefft in Proc. Zool. Soc. Lond., I869, p. 322.
Aipysurus annulatus, Boulgr. Cat., vol. iii, I896, p. 304, in part.
Similar to the above, but differing in having but two præfrontals, little if any enlargement of the vertebral row, costals pluri-tuberculate and rough, and no ventral keel posteriorly.

Habitat.-Loyalty Islands.

AIPYSURUS.
Key to the species of Aipysurus.

(A) Costals in midbody 17	\ldots	\ldots	\ldots	eydouxii.	
(B)	Ditto	I9	\ldots	\ldots	\ldots	..	.

Aipysurus eydouxil (Gray).

Tomogaster eydouxii, Gray, Cat., I849, p. 59.
Aipysurus anguillæformis, Günther, Rept. Brit. Ind., 1864, p. 357. 1ævis, Jan, Icon. Gen., I872, livr. 40, pl. ii, fig. I.

A

R

C
Fig. 5.-Aipysurus cydouxii (leevis). After Jan, Icon. Gén., I872, livr. 40, pl. ii, fig. r.
I have examined six specimens.
Description.-Rostra1, -touches four shields; the portion visible above about half the internasal suture. Præfrontals,--touch no supralabial, usually undivided, but sometimes divided longitudinally on one or both sides into two parts. Fronta1,touches six shields, all the sutures sub-equal; one-third to one-fourth longer than the supraoculars, longer than the parietals. Parietals, -entire; sometimes obliquely divided. Nasa1s, 一in contact with the first and second supralabials. Præoculars, -one. Postoculars, - two. Temporals, -one or two. Supralabials, six, the sixth longest, the fourth only touching the eye (the third also in one specimen on the left side). Infralabials, 一the fourth is the largest of the series, and touches two scales behind. Margina1s, -absent. Sublinguals, -two pairs, the posterior quite separated by a scale. Costals, -smooth; anteriorly 17, midbody 17, posteriorly I_{5}, (I_{7} in one) the reduction from I_{7} to I_{5} takes place close to the site where I count the scales posteriorly and is effected by a fusion of the third and fourth rows above the ventrals. Ventra1s,-r38 to 142 , three or more times as broad as the last costal row; obtusely keeled in the posterior part of the body. Colour, -yellow or yellowish, with dark brown dorsal bars ending in the flanks, or broken up into ventral spots.

Habitat.—Indian Ocean, Singapore, Java, Philippines.
Aipysurus australis (Sauvage).
Aipysurus australis, Sauvage in Bull. Soc. Philom., (7), i, 1877, p. II4.
,' fuscus, Günther, Rept. Brit. Ind., 1864, p. 358.
(For a figure of this see fig. 6 on plate vii.)

I have examined three specimens only, all in the British Museum.
Description. Rostra1,- touches four shields. Nasals,--touch the first and second supralabials (the first only in one specimen on the right side). Supralabials, -eight or nine, the anterior five or six are well developed, the rest divided ; the fifth only touches the eye in one example. The other head, and chin shields are all broken up, and irregular. Costals, -anteriorly I9, midbody 19, posteriorly I7; the reduction from 19 to $I 7$ is due to the fusion of the third and fourth rows above the ventrals; smooth or indistinctly keeled. Ventra1s,-r56 to 166 , three or more times as broad as the last costal row. Colour,-brown, or yellowish with irregulas dorsal bars of brown spots.

Habitat - New Guinea, and Australia
Aipysurus lexivis (Lacépède).
Aipysurus lævis, Lacép. in Ann. Mus., iv, 1804, pp. 197, 210 and pl. 1vi, fig. 3
,, ,, Günther, Rept. Brit. Ind., 1864, p. 358.
Hypotropis jukesii, Gray in Ann. and Mag. Nat. Hist., 1846, p. 284.
Aipysurus fuliginosus, Jan, Icon. Gen, 1872, livr. 40, pl. i, fig. 3.

A

B

C

Fig. 7.-Aipysuyus lavis (ṭuliginosus). After Jan, Icon. Gén., I872, livr. 40, pl. i, fig. 3.
I had insufficient time to bestow upon the specimens available in the British Museum, but the constancy of the scales in individuals of the species of this genus, and its closest allies (Emydocephatus and Platurus), is so remarkable that I think the range given by Boulenger, viz., 2 I to 25, makes it likely that more than one form is embraced within his conception of the species. The only four specimens referred by Guinther to this species had the costals in 21 rows. Under the circumstances I have no course other than to accept Mr. Boulenger's views.

Description. Rostral, -touches four shields, the portion visible above half, or less than half the internasal suture. Præfrontals,-very variable, sometimes a single row of four, sometimes a double row of three or four ; the outer not in contact with any supralabial. Frontal,-entire or broken up. Supraoculars,—divided into two. Parietals, - broken up. Nasals, - touch no supralabial. Præocular,-one, two or three. Postoculars,-two or three. Temporals, three or four. Supralabia1s, -7 to Io; very variable; some or all transversely divided; the fourth, fifth and sixth, or fifth and sixth, would touch the eye if not divided. Infralabia1s, - the fourth is the largest of the series, and in contact with three scales behind. Margina1s, -
absent. Sublinguals,-two small pairs; both or the posterior only quite separated by scales. Costals, -anteriorly 2 I to 25 , midbody 2 I to 25 , posteriorly 19 to 2 I ; smooth ; the vertebrals may or may not be enlarged. Ventra1s, - I 37 to 162 . Three times or more than three times as broad as the last costal row ; sometimes with a ventral obtuse keel posteriorly. Anal,--divided into two. Colour,-uniform dark brown.

Habitat. - Pacific Ocean from Celebes to the Loyalty Islands.
Hydrelaps darwiniensis (Boulenger).
Hydrelaps darwiniensis, Boulgr. Cat. iii, 1896, p. 270.

A

B

C

Fig. 8.-Hydrelaps darwiniensis. After Boulenger.
I have examined two examples only, both in the British Museum.
Rostra1,-touches four shields; the portion visible above from one-third to onefourth the internasal suture. Præfrontals,-touch the second and third supralabials and the eye. Frontal, - touches six shields; the fronto-parietal sutures twice or nearly twice the fronto-præfrontals. Supraoculars,-length and breadth about two-thirds that of the frontal. Parietals,-entire. Nasals, -touch the first and second suprala. bials. Præocular, -absent. Postoculars, -one. Temporals, -one. Supra1abia1s, -6 ; the third and fourth touch the eye. Infra1abia1s, -thefourth is the largest of the series, and touches three or four scales behind. Margina1s,--absent. Sublingua1s, -two well developed pairs, in contact with their respective fellows. Costa1s, -anteriorly 27, midbody 27 (28), posteriorly 25 (24); smooth, imbricate. Ventra1s, -172 to 173 ; under three times as broad as the last costal row. Ana1, divided. Colour, -banded with 37 yellowish and black rings, the black rather broader than the yellowish dorsally, rather narrower ventrally. The posterior maxillary teeth are grooved.

Habitat.-Port Darwin.
Enhydrina valakadyn (Boie).
"Hoogli pattee" and "valakadyn," Russell, Ind. Serp., I8or, ii, pls. x \& xi. Hydrus Valakadyn, Boie, Isis., I827, p. 554.
Hydrophis schistosa, Daudin, Rept., I803, vii, p. 386.
Schlegel, Phys. Serp., 1837, ii, p. 500, p1. xviii, figs. I to 3.
," ", Jan, Icon. Gén. 1872, livr. 4I, p1. ii, fig. I.
,, bengalensis, Gray in Zool. Misc., 1842, p. 62.
,, fasciatus, Jan, loc. cit., livr. 4I, pl. iii, fig. 2.
Pelamis schistosus, Merrem, Tent., 1820, p. I39.
Hydrus , Cantor, Cat. Mal. Rept., 1847, p. 132.

Enhydrina bengalensis, Gray, Cat., 1849, p. 48.

,	G	Günther, Rept. Brit. Ind., 1864, p. 38r.
"		Fayver, Thanat. Ind., 1874, pl. xviii.
',		Nicholson, Ind. Snakes, 1893, p. II8, p1. x, fig. 6.
,	valakadyen,	Gray, Cat., I849, p. 48.
,	B	Boulgr. in Blantord, Fauna Ind. Rept. and Batrach. I8go, p. 406 and fig. ; and Cat., iii, I896, p. 302.
"	S	Sclater, List Snakes Ind. Mus., I891, p. 64.
',	,"	Wall and Evans in Journ. Bomb. Nat. Hist. Soc., xiii, pp. 347 and 616.
,		Wall in Journ. Bomb. Nat. Hist. Soc., xvi, p. 3II, and in Spol. Zeylan., Augt. 1907, p. 172.

A

B

C

Fig. 9.-Enhydrina valakadyn (nat. size).
The type-specimen, which had previously been lost sight of, I discovered in the Royal College of Surgeons' Museum, London. It is No. 523 of their catalogue (1859 , p. 78), and is the original specimen from Tranquebar figured by Russell in his second volume, plate xi. It was one of Russell's collection which was presented to the above Institution by the East India Company, most of which has since been transferred to the British Museum.

I do not concur with Boulenger in thinking plate x . of Russell's same volume a distinct species. I think there can be no doubt that this figure represents the same species as plate xi, viz. valakadyn (Boie), a view I may state taken by many other herpetologists. If this assumption is correct, and I cannot think otherwise, this species should rest under the title given it by Daudin in 1803, viz., schistosa, and Boie's valakadyn should be suppressed. I have examined a very large series of this species. In Cannanore on the Malabar Coast of India the fishermen brought them to me in bucketfuls, and I have frequently seen a dozen or more in a net at one haul on the Coromandel Coast (Gopa1pore). It is a very easy snake to identify. The downward projection of the rostral and the groove in the symphysis menti are to be seen in no other sea snake.

Description.-Rostral, -touches four shields; the portion visible above is onethird or less than one-third the internasal suture. Præfrontals,--touch the second supralabial (except in rare examples where they fail to touch any).

Fronta1,-touches six shields; the fronto-parietal sutures are longest, the frontopræfrontal shortest. Nasa1s,-touch the first and second supralabials; sometimes two or more sutures radiate from the nostril and subdivide this shield, forming a pseudo-loreal or other pseudo shields. Præoculars,-one. Postoculars,-one or two. Temporals, -one, two or three superposed small shields. Supralabi-a1s,-irregular ; the anterior two to five are well developed, the rest small, occasioned by horizontal sub-division, the extent to which this occurs affecting the contact with the eye, and the number of postoculars and temporals; the third and fourth usually touch the eye, sometimes the fifth also, more rarely the fourth only, or none at all touch the eye. Infralabials, - the fourth or fifth is the largest of the series, and in contact with three or four scales behind. Marginals, -absent. Sub1inguals,imperfectly developed, but an anterior pair at least can usually be discerned, the fellows of which are widely separated. Costa1s, -anteriorly 40 to 60 , midbody, 50 to 70 , posteriorly 50 to 70 ; sub-imbricate, or imbricate. Ventra1s, -230 to 3I4, little larger, or not as large as the last costal row. Colour,-very variable. The young are bluish or bluish-grey with many well defined, black annuli, often dilated vertebrally. As age advances these bands become more and more obscured, first disappearing ventrally, and so converted into dorsal bars, which in old specimens may disappear altogether. In old adults the dorsum is frequently a uniform bluish or bluishgrey, merging at midcosta to yellow or yellowish ventrally. Both dorsal and ventral hues again are subject to much modification according to whether the specimen has recently desquamated or is about to do so. In the latter case the yellow on the belly becomes often tinged with brown.

Habitat.-From the Persian Gulf, through the Indian and Malayan region to New Guinea.

The post maxillary teeth I find all grooved.

DISTIRA.

Having failed to discover a single species in which the posterior maxillary teeth are ungrooved, I have no course open to me but to unite the two genera Hydrophis and Distiva (held by Mr. Boulenger to be distinct on this understanding) ; and as Distiva is the older title, I retain this name to designate the genus.

I cannot but think, judging from external characters, that osteological differences will be discovered, to separate the slender-necked species from those of more even relative proportions, and I also expect to discover anatomical grounds for the isolation of viperina and jerdoni from the other species herein included in this genus. There seems to me sufficient justification for doing so on external characters alone; however, I prefer for the present to let them remain as placed by Mr. Boulenger.

Key to the Genus Distiva.

A. Ventrals present; anterior three to four times breadth of last costal row. (See fig. 57) viperina.
B. Ventrals present ; anterior not more than twice breadth of last costal row. (See fig. 38).
(a) Scales in midbody 19 to 2 I
. jerdoni.
(b) Scales in midbody more than 21 .
$\left(a^{1}\right)$ Ventrals with median suture or furrow in posterior half of body. (See fig. 13).
$\left(a^{2}\right)$ Præfrontal touches second supralabial, but not third. Anterior costals I7 to 2I. Ventrals 225 to 298 .. gracilis.
$\left(b^{2}\right)$ Præfrontal touches third supralabial (rarely second also). Anterior costals 2I to 25. Ventrals 377 to 474
cantoris.
(bi) Ventrals unfurrowed; a few posterior irregularly divided, especially about umbilical scar.
((i^{2}) Posterior costals juxtaposed (except rare examples of fasciata and some torquata).
$\left(a^{3}\right)$ One or more marginals.
$\left(a^{b}\right)$ One large anterior temporal.
(a^{5}) Anterior costals I to 9 less than posterior .. torquata.
(b5) Anterior costals 10 to 22 less than posterior fasciata.
($/$ b \cdot) Two small superposed anterior temporals.
(a^{5}) Anterior costals 25 to 29 mamillaris.
(b^{b}) Anterior costals 31 to 37 ; parietals touching postocular

- lapemoides.
$\left(c^{5}\right)$ Anterior costals 36 to 45; parietals not touching postocular coerulescens.
($1,{ }^{\circ}$) No marginals.
(a) Anterior costals 29 to 4 ornata.
(b) Anterior costals 45 ocellata.
(b^{2}) Posterior costals imbricate or sub-imbricate (except rare examples of corviescens and some torquata).
(a^{8}) Anterior costals I9 to 23. Neck $\frac{1}{4}$ to $\frac{1}{5}$ greatest body depth
($\left.6^{\text {b }}\right)$ Anterior costals 23 or more. Neck $\frac{1}{3}$ to $\frac{2}{3}$ greatest body depth.
(a^{\downarrow}) Ventrals 250 or less maior.
(b^{\downarrow}) Ventrals 270 to 375 .
$\left(a^{5}\right)$ Costals in midbody 29 to 36 . One large anterior temporal. Præfrontal touching 2nd labial
(b^{5}) Costals in midbody 33 to 44 . Two superposed anterior temporals. Præfrontal
$\left(c^{6}\right)$ Costals in midbody 36 to 43 . Two superposed anterior temporals. Præfrontal touching no labial. .
nigrocincta.
$\left(^{6}\right)$ Costals in midbody 37 to 54 . One large anterior temporal. Præfrontal touching 2nd labial
..
.. torquata.
(e^{5}) Costals in midbody 42 to 53 . Two superposed anterior temporals. Præfrontal touching and labial
..
ccerulescens.
(f^{6}) Costals in midbody 47. One large anterior temporal. Præfrontal touching no labial bituberculata.
(c^{4}) Ventrals 375 to 53 I.
(a^{5}) Anterior costals 25 to 36 . Two superposed anterior temporals. Ventrals 375 to 397
cyanocincta.
(b^{5}) Anterior costals 25 to 4I. One large anterior temporal.
(a^{β}) Anterior costals I to 9 less than posterior. Ventrals 376 to 438 .. torquata.
(b^{6}) Anterior costals 10 to 22 less than posterior. Ventrals 376 to 531 .. fasciata.
(c) Anterior costals 48 ..
. . neglecta.
Synopsis of Specific characters in the Genus Distiva.

t^{1} to ${ }^{\text {a }}$	2nd (o)	$\begin{aligned} & \text { Parietals } \mid \text { to }\} \\ & >\text { rest. } \end{aligned}$	$\frac{4}{3}$ to $=1$	Do.	$\begin{aligned} & \text { I (2 or } \\ & \text { 3) } \end{aligned}$	1 (2)		$\left\|\begin{array}{c} 3 \mathrm{rd} \\ \text { and } \\ \text { 4th, } \\ \text { or 3rd, } \\ 4 \text { th } \\ \text { and } \end{array}\right\|$	4	$\begin{gathered} 3 \text { or } \\ 4 \end{gathered}$		${ }^{2}$	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	$\begin{aligned} & 30 \text { to } \\ & 41 \end{aligned}$	${ }^{37} \text { to }$	$\begin{gathered} \text { Do. } \\ \text { or } \\ \text { juxt. } \end{gathered}$	$\left\lvert\, \begin{gathered} 3 \text { ro to } \\ 438 \end{gathered}\right.$	Do.	Do.	torquata	.	29
$\begin{aligned} & \frac{1}{2} \text { or } \\ & \text { less. } \end{aligned}$	2nd	$\left\lvert\, \begin{gathered} \text { Parietals } \frac{1}{2} \text { to } \\ >\text { rest. } \end{gathered}\right.$	学施 $=$	$\begin{gathered} \text { No } \\ \text { (Yes.) } \end{gathered}$	1 or 2	2 (3)	6 to 8	$\begin{aligned} & \text { 5th. } \\ & \text { 3rd, } \\ & \text { 4th } \\ & \text { (and } \end{aligned}$	4	$\left\|\begin{array}{c} 3 \text { or } \\ 4 \end{array}\right\|$	I after 3rd	$\begin{gathered} \text { Small } \\ \text { or } \\ \text { none. } \end{gathered}$	$\begin{gathered} \text { No } \\ \text { (Yes). } \end{gathered}$	${ }^{36} \text { to }$	$\left\lvert\, \begin{gathered} 42 \text { to } \\ 53 \end{gathered}\right.$	$\begin{gathered} \text { Inub. } \\ \text { or } \\ \text { juxt. } \end{gathered}$	$\left.\begin{gathered} 277 \text { to } \\ 339 \end{gathered} \right\rvert\,$	Do.	Do.	carulescens	..	29
$\frac{1}{2}$ to $\frac{8}{5}$	$\begin{aligned} & 2 n \mathrm{~d} \\ & \text { (o) } \end{aligned}$	$\begin{aligned} & \text { Parietals } \frac{1}{3} \text { to } \frac{1}{4} \\ & >\text { rest. } \end{aligned}$	${ }^{\frac{2}{3}}$ to $=$	Yes.	2 or 3	$\begin{array}{ccc} 2 & \text { or } & 3 \\ & (1) \end{array}$	7 to 8	5th).	4	$\left\|\begin{array}{c} 3 \text { or } \\ 4 \end{array}\right\|$	None (I after 3rd).	$\begin{gathered} 2 \\ (\mathrm{I}) \end{gathered}$	$\begin{gathered} \text { Yes } \\ \text { (No). } \end{gathered}$	$\begin{gathered} 29 \text { to } \\ 4 \mathrm{I} \end{gathered}$	$\begin{gathered} 33 \text { to } \\ 46 \end{gathered}$	Juxt.	$\begin{gathered} 227 \mathrm{ta} \\ 300 \end{gathered}$	Do.	Do.	ornata	..	36
rather more	2nd	$\underset{\begin{array}{c} \text { Parietals } \\ \text { rest. } \end{array} \quad \frac{1}{3}>}{ }>$	4	Do.	2	2	6		5	2	None ..	2	No	45	58	Do.	290	Do.	Do.	ocellata	-	1
$\begin{gathered} \text { than } \frac{1}{2} \\ \frac{1}{2} \text { os } \\ \text { less. } \end{gathered}$	2nd	Parietals $\frac{1}{3}>$, or subequal.	$\frac{3}{4}$	Do.	2 (1)	2	8 (9)	4th. 3rd and 4th.	4	$\begin{gathered} 3 \text { or } \\ 4 \end{gathered}$	All after 3 rd	2	No	$\begin{aligned} & 31 \text { to } \\ & 35 \end{aligned}$	$\begin{aligned} & 33 \text { to } \\ & 42 \end{aligned}$	Imb.	$\begin{gathered} 233 \text { to } \\ 250 \end{gathered}$	Do.	$\begin{gathered} \text { None } \\ \text { or } \\ \text { many. } \end{gathered}$	major	. \cdot	5
$\frac{1}{2}$ to $\frac{3}{5}$	-	Parictals twice or thrice supraoculars, latter small-	$\frac{1}{2}$ to $\frac{1}{3}$	Do.	2 (1)	$\underset{(\mathrm{I})}{2 \text { or }} 3$	7 to 9	($\begin{gathered}\text { 4th. } \\ \text { 3rd } \\ \text { and } \\ \text { ath } \\ \text { or 3rd } \\ \text { 3rd }\end{gathered}$	4	$\left\|\begin{array}{c} 3 \text { or } \\ 4 \end{array}\right\|$	I or 2 after 3rd.	2	Yesor No.	$\begin{gathered} 27 \text { to } \\ 34 \end{gathered}$	$\begin{gathered} 39 \text { to } \\ 50 \end{gathered}$	Juxt.	$\begin{gathered} 235 \text { to } \\ 267 \end{gathered}$	$\begin{aligned} & \text { Four } \\ & \text { or } \\ & \text { more } \\ & \text { times. } \end{aligned}$	many None or few	viperina	.	21
${ }^{\frac{3}{4}} \mathrm{to}=$	$\begin{gathered} \circ \\ (2 \mathrm{nd}) \end{gathered}$	est. Parietals rather longest or all subequal.	${ }^{2}$ to $\frac{3}{4}$	Do.	1 (2)	I	6	4th and 5th. 3rd and ath.	3	2	None	$\begin{gathered} 2 \text { sinall } \\ \text { or } \\ \text { obsent. } \end{gathered}$	Yes	$\begin{aligned} & 17(16 \\ & \text { to } 18) \end{aligned}$	$\begin{aligned} & 19 \text { to } \\ & 2 \mathrm{l} \end{aligned}$	Imb.	$\begin{gathered} 219 \text { to } \\ 24^{8} \end{gathered}$	times. About twice.	Do.	jerdoni		17

* It is possible that in many more of the species individuals occur with the 5 th touching the eye, as well as the 3rd and 4th, as many of my earlier notes recorded the
unbroken shields only in this connection.

Distira gracilis (Shaw).

```
"Tatta pam," Russell, Ind. Serp., I8or, i, pl. xliv(?) and vol. ii, pl. xiii.
    Hydrus gracilis, Shaw, Zool., I802, iii, p. 560.
    Anguis mamillaris, Daudin, Rept., I803, vii, p. 340.
    Microcephalophis gracilis, Gray, Cat., I849, p. 46.
    Liopala gracilis, Gray in Zool. Misc., I842, p. 60.
    ? Hydrophis gracilis, Schlegel, Phys. Serp., I837, pl. xviii, figs. 6 and 7.
\begin{tabular}{|c|c|c|c|}
\hline \multirow{5}{*}{?} & " & , & Günther, Rept. Brit. Ind., I864, p. 373. \\
\hline & & , & Murray, Vert. Zool. Sind, 1884, p. 395. \\
\hline & ', & " & Boulgr. in Blanford, Fauna Brit. Ind. Rept. and Batrach., 1890, p. 404, and fig., p. 398. \\
\hline & , & " & Sclater, List Snakes Ind. Mus., I891, p. 64. \\
\hline & , & " & Wall in Mem. As. Soc. Bengal, 1906, p. 283, and in Spol. Zeylan., Augt. 1907, p. 167. \\
\hline ? & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{microcephala, Jan, Icon. Gén., 1872, 4I, pl. v, fig. 2. guentheri, Murray, loc. cit., p. 396, and plate (non Theobald).}} \\
\hline ? & & & \\
\hline
\end{tabular}
```


Fig. Io. - Distira gracilis $(\times 4)$.

I have examined 32 of this common, and very well differentiated species.
I do not concur with Mr. Boulenger's view concerning plate xliv in Russell's first volume, which I think clearly represents this species. Mr. Boulenger seeks to make this the type of his mamillaris (see Catalogue, vol. iii, p. 277). I only know two species, in which the portion of the rostral visible above ever equals the length of the internasal suture as shown in this plate, viz., gracilis (Shaw), and cantoris (Günther). It seems probable that the large anterior and posterior temporal shields shown in the same plate are single though this point is not quite certain. The relative proportions of depth in the neck and body are not apparent owing to the dorsal aspect of the snake being shown in toto. The breadth, and number of the bands, their vertebral dilation, and the juxtaposed character of the scales mentioned in the letterpress, are as typical of gracilis (Shaw) as mamillaris (Boulenger), but the condition of the rostral and the anterior temporal, followed by a larger posterior shield, are so typical of gracilis (Shaw) that I cannot escape the conviction that it is this snake which is represented.

Again, I do not share Mr. Boulenger's opinion with regard to the snake figured by Schlegel (Phys. Serp., 1837, plate xviii, figs. 6 and 7) which he considers fasciata (Schneider). The specimen is so faithfully depicted that one can count 21 rows of scales in the neck (fasciata has 25 to 3I). It appears to me to agree perfectly with gracilis (Shaw).

I find the posterior maxillary teeth in this species grooved in at least three wellgrown specimens.
gracilcs (Shaw) shares with cantoris (Günther), a combination of characters which occurs in these two species alone amongst Distirc. The portion of the rostral visible above is nearly equal to or even exceeds the length of the internasal suture; the fourth infralabial touches two scales only behind, and the ventrals in the major part of the posterior half of the body are grooved or divided in the median line, so that each is represented by a pair of pentagons with apposed bases. The commissure of the mouth seen in profile resembles the italic letter f. (Not well shown in figure 10). Some of these characters are suggested or approached in others of the very slendernecked species, viz., obscura (Daudin), fasciata (Schneid.) and neglecta (Wall), but the ventrals are quite peculiar to gracilis and cantoris.

Description.-Body anteriorly three-tenths to one-fourth the greatest depth. The last measurement was from a gravid female.

The head shields show great constancy.
Rostra1, -the portion visible above, three-fourths to greater than the internasal suture. Præfrontals,--touch the second supralabial (five exceptions on one or both sides). Postoculars, -one. Temporals,-one large anterior succeeded by another even larger shield, the anterior touching the fifth and sixth supralabials. Supralabials,-6, not subject to division. Infralabials,-4, the last touching two scales only behind; the suture between the first longer than that between the anterior sublinguals. Marginals,-none. Sublinguals,-two pairs, the fellows of each in contact. Costals,-anterior 19 (17 in two, 18 in three, and 2 I in one), midbody 27 to 3 I , posterior 27 to 35 ; the anterior imbricate, the posterior juxtaposed. Ventra1s,-225 to 298 ; entire anteriorly and about twice the breadth of the last costral, row divided or furrowed in the median line in the posterior half of the body. Colour,-in the young the head is quite black. The body is surrounded with from 42 to 6 I annuli, usually dilated, and often more or less confluent vertebrally, and ventrally especially in the forebody. With age the rings may lose definition, or become much obscured especially ventrally, and the head often assumes a much lighter hue.

Habitat.-All the specimens I have examined were procured from shores between the Persian Gulf and Mergui on the Tenasserim Coast.

Distira cantoris (Günther).

Liopala fasciata, Gray in Zool. Misc., I842, p. 60. Hydrophis fasciata, Gray, Cat., I849, p. 50, spec. C. ,, cantoris, Günther, Rept. Brit. Ind., 1864, p. 374, pl. xxv, fig. V.

Hydrophis cantoris, Boulgr. in Blanford, Fauna Ind. Rept. and Batrach., 1890, p. 405. ,, Sclater, List Snakes Ind. Mus., 1891, p. 64. (Except No. 8232).
,, Boulgr. Cat. Brit. Mus., 1896, iii, p. 28I, and pl. xiv.
,, Wall in Mem. As. Soc. Bengal, 1906, p. 284. fasciatus, Sclater, loc. cit., p. 63, No. 8258.
Distira gillespiæ, Boulgr. in Journ. Bomb. Nat. Hist. Soc., xii, p. 642, and plate. ,, ,, Wall in Journ. Bomb. Nat. Hist. Soc., xv, p. 723 and fig. ,, ," Wall, loc. cit., xvi, p. 3II.

Fig. Ir.-Distiva cantoris.

A

B

C

Fig. I2.-Distira gillespia. After Boulenger.
This species is poorly represented in the British Museum, where there are but five examples. These, however, include the type obtained by Cantor in Penang. I have examined in all 22 specimens exclusive of the type of Mr. Boulenger's Distira gillespice' which I consider identical.

Distira gillespia (Boulenger). -This is known from a single large specimen from Karachi. Mr. Boulenger finding grooves in the post-maxillary teeth, placed it with his genus Distira, and made it a new species. I find, however, that typical specimens of cantoris have grooves in these teeth contrary to Mr. Boulenger's belief, and in the enormous specimen of cantoris presented by Rogers to the British Museum since the publication of Mr. Boulenger's catalogue, they can be seen with the naked eye. Cantoris is an extremely well differentiated member of the family, and marked off from all the other species of this genus by one feature peculiar to itself, viz., the contact of the præfrontal with the third labial. Added to this it presents a combination of characters which it shares with gracilis alone, viz., the shape of the commissure of the mouth, the great length of the rostral, the contact of only two scales behind the fourth infralabial, and the peculiar divided condition of the posterior ventrals. All of these
characters, besides many other unusual ones found in cantoris, are all found in gillespice. The slight and only differences apparent in Mr. Boulenger's descriptions of the two, concerning the body scales, and the ventrals disappear within the range my I9 specimens cover.

Description.-The body anteriorly is about one-third to one-fourth the greatest body depth. The snout projects well over the chin, and the commissure of the mouth resembles an italic f in profile.

The headshields are very constant.
Rostral,- the portion visible above is from three-fourths to greater than the internasal suture. Præfrontals,--touch the third supralabial (the second also rarely). Postoculars, -one (two rarely). Temporals, -one large anterior, succeeded by another even larger posterior shield, the anterior touching the fifth and sixth supralabials. Supralabials,-6, not subject to division. Infralabials,4, the last in contact with only two scales behind; the suture between the first as long or longer than the suture between the anterior sublinguals. Marginals,none. Sublinguals, -two well developed pairs, the fellows of each in contact (separated in one specimen). Costals,-anterior 2I to 25 (2I in one only), midbody 27 to 37 , posterior 39 to 46 ; the anterior imbricate, posterior juxtaposed. Ventrals 377 to 474 , entire anteriorly and twice or nearly twice the breadth of the last costal row, divided by a median furrow in the posterior half of the body.

Colour,-yellowish ventrally, olivaceous dorsally. Surrounded by 5 I to 6 I black rings in the young which become obscured ventrally, and converted into bars, these in turn becoming more and more obscured as age advances Head black in young, fading later. The bands much confluent ventrally anteriorly and usually expanded vertebrally. All the specimens are from the Indian shores (Karachi to the Gangetic Delta), except Cantor's specimen which is from Penang. A specimen in the Indian Museum (No. 8260) measures 6 feet I inch.

DISTIRA obscura (Daudin).

```
"Shootur sun," and " Kalla shootur sun," Russell, Ind. Serp., 18or, ii, figs. vii
    and viii.
Hydrophis obscurus, Daud., Rept., 1803, vii, p. 375
    chloris, Daud., loc. cit., p. 377, p1. xc.
? Pelamis obscurus, Merrem., Tent., 1820, p. I39.
? ,, chloris, Merrem., loc. cit.
Hydrophis coronata, Günther, Rept. Brit. Ind., 1864, p. 372, p1. xxv, M, and M'.
? ". ". Anderson in Proc. Zool. Soc. Lond., I87I, p. I92.
? ," "Fayrer, Thanatoph. Ind., 1874, pl. xxvi.
    ,, ", Boulgr. in Blantord, Fauna Brit. Ind. Rept. and Batrach.,
        1890, p. 402.
    " " Boulgr. Cat. Brit. Mus., I896, iii, p. 279.
    ", ", Sclater, List Snakes Ind. Mus., I891, p. 63.
    ",,\(\quad\) Wall in Mem. As. Soc. Bengal, I906, i., p. 282.
```

? Hydrophis latifasciatus, Günther, loc. cit., p. 372, p1. xxv, fig. T.

"	,	Blantord in Journ. As. Soc. Bengal, 1879, p. 132.
"	,	Boulgr. in Blantord, Fauna Brit. Ind. Rept. and Batrach., I890, p. 401.
"	"	Boulgr. Cat., 1896, iii, p. 279, and p1. xiii.
"	,'	Sclater, loc. cit., 189r, p. 63.
"	,	Wall, loc. cit., 1906, p. 28I.

(For figure I3 see plate vii.)

Fig. I4.-Distiva obscura, $\times 3$.
Mr. Boulenger is without doubt in error in his consideration of this species. ${ }^{1}$ Daudin's obscurus is based upon two specimens figured by Russell, ${ }^{2}$ the originals of which are in the British Museum. Daudin gave to one (plate vii) the name obscurus, and to the other (plate viii) the title chloris. Both these snakes being now recognised by Mr. Boulenger as identical, an opinion with which I am in accord, they are united under the former title, i.e., obscura. Under obscura, however, Mr. Boulenger describes a totally different snake, which is obviously the torquata of Günther! One point alone will suffice here in support of this statement, viz., the neck scales in obscura as described by Mr Boulenger are from 33 to fo, whereas in Russell's type-specimens just alluded to they are $2 I$! This snake the true obscura of Daudin he describes ander the name H. coronata (Ciinther).

The following description is based upon 15 examples including those labelled coronata and latifasciata in the British Museum, which there is no doubt are the same. Two of these are Russell's types, six are in the Indian Museum (five of these from the Gangetic Delta), two are specimens of mine from Burma, and two others in the Bombay Natural History Society's collection from Karwar on the coast near Bombay.
H. latifasciata (Günther). The descriptions of this, and coronata (Günther) given in Mr. Boulenger's catalogue are almost identical. The only differences are that in coronata the temporal is stated to descend to the labial border whereas this is not specified in latifasciata. The post-chin shields are in contact in coronata, separated in latifasciata. I find on examining these specimens that the temporal descends to the labial border on the right side in the type-specimen of latifasciata, a species only known from a solitary specimen ; and in two specimens of coronata in other collections,

[^31]I find the post-chin shields separated. I can find no point of difference therefore between the two species.

Daudin's name obscura has preference over both coronata and latifasciata, and must therefore be retained to denote this species. It is an extremely well-marked form, that should never be confused with any others up to now described. The scales in the neck alone (19 to 23) mark it off from all the other species of Distiva excepting gracilis, which it resembles in some ways, especially in bodily conformation, the relative proportions of neck and body, and in the head shields generally, but it is very definitely a species apart, owing to the imbrication of the costals posteriorly, the greater number of ventrals, the presence of marginals and the much greater length to which it attains.

Description. -The body anteriorly varies from more than one-fourth to less than one-fifth the greatest body depth. I find the posterior maxillary teeth grooved, in specimens labelled coronata in the British Museum and my own specimens (and in the type-specimen of latifasciata). The head shields as in the other slender-necked species are mostly very constant, but certain shields, notably the anterior temporal and the posterior sublinguals, are less so than in gracilis and cantoris.

Rostral, -the portion visible above is from half to three-fifths the internasal suture. Præfrontals, -touch the second supralabial. Postoculars,-one. Temporals,-one large anterior succeeded by another as large or larger. Supralabials, -six; the fifth and sixth usually separated by the descent between them of the anterior temporal ; they are not subject to division. Infralabia1s, -four, the last in contact with three or four scales behind, the suture between the first as long or longer than the suture between the anterior sublinguals. Marginals, -one after the third infralabial usually, sometimes two after the second (absent on one side in two examples). Sublinguals,-two well developed pairs, the fellows of each in contact. (Intwo examples the posterior fellows are separated). Costa1s,-anterior I9 to 23, midbody 25 to 32 , distinctly imbricate everywhere. Ventra1s, 296 to 354, entire throughout, and twice or nearly twice the breadth of the last costal row throughout. Colour,-much like the last two. The inead is uniformly black in the young, and the body surrounded by from 34 to 60 broad annuli which are dilated, and often more or less confluent vertebrally, and ventrally especially in the forebody and neck. With age the colour of the head may change, and become bluish or olivaceous blue, and acquire or retain a yellow spot or horse-shoe mark on the crown. The bands become less defined with age especially posteriorly.

Habitat.-Shores between Karwar on the Coromandel Coast of India and Mergui on the 'Ienasserim Coast. Theobald's specimens have no habitat recorded, but are probably from the Burmese Coast. My figures are from a specimen of mine from Burma in which the scales are 21 to 22 anteriorly, 29 in midbody, and 3 I posteriorly; imbricate everywhere. The ventrals are 318. The neck is one-fifth the greatest body depth.

Distira. fasciata (Schneider).
? Hydrophis gracilis, Jan, Icon. Gén., I872, 4I, pl. iv, fig. 2. chloris, Günther, part, Rept. Brit. Ind., 1864, p. 370 (non Daudin).

Hydrophis atriceps, Günther, loc. cit., p. 371, pl. xxv, fig. i.
Aturia lindsayi, Gray in Zool. Misc., 1842, p. 61.
Hydrophis lindsayi, Gray, Cat., 1849, p. 50.

```
                ,, Günther, loc. cit., p. 37I.
? ,, fasciatus, Peters in Mon. Berl. Ac., 1872, p. 849, pl. I, fig. I.
," ,, Boulgr. in Blanford, Fauna Brit. Ind. Rept. and Batrach.,
                                    1890, p. 404.
            Sclater, List Snakes, Ind. Mus., 1891, p. 63. Nos. 8257,
                8259, 8261, 8264, 8265, 13393.
            Boulgr., Cat. Brit. Mus., 1896, iii, p. 28ı.
            Wall in Mem. As. Soc. Bengal, 1906, p. 285.
                melanocinctus, Wall, loc. cit., p. 287.
                cantoris, Sclater, loc. cit., p. 64, No. 8232.
                        leptodira, Cantor in Trans. Zool. Soc. Lond., I840, p. 3II, p1. 1vi.
                        brookii, Günther in Proc. Zool. Soc. Lond., 1872, p. 597 and fig.
```

Distira rhombifer, Boulgr. in Amn. and Mag. Nat. Hist. Igoo, p. 306.

Fif. I5.-I)istiva fassiata.

$+$

B

C

Fig. I6.-Hydrophis brookii. After Günther, Proc. Zool. Soc., I872, p. 597.
I have examined 38 examples of this snake including the four species leptodiva (Cantor), brooki (Günther), rhombifer (Boulenger), and melanocincta (Wall), all of which I consider the same. It is very well differentiated, as much so as any of the preceding.

In bodily configuration, general appearance, colour, and markings it is exactly like gracilis, a fact which has led to the confusion of the two, though there are many, and considerable differences between them.
H. leptodira is known from a single specimen, described by Cantor, ${ }^{1}$ and now in the British Museum. The description given by Mr. Boulenger exactly accords with that given by him of fasciata (Schneider), except that leptodira has 58 scales round the body. That authority counts the scales differently from me, taking them round the extreme body girth. I count them in three definite situations as already stated in my prefatory remarks under "costals." The scales in these three places number 30, 50 and 47, and the snake accords perfectly in this, as in all other respects, with typical examples of fasciata. In three other specimens I find them 50 in midbody, and in three 49.
H. brookii (Günther). ${ }^{2}$-I have examined the only known specimen which is in the British Museum. The description of this specimen in Mr. Boulenger's catalogue compared with that of fasciata shows one solitary difference, viz., in the length of the frontal which in brookii equals its distance to the end of the snout, but in fasciata equals its distance to the rostral only. I find, however, that in many specimens of fasciata the frontal equals its distance to the end of the snout. Even if it did not, so extremely slender a distinction occurring in a solitary individual should deter one from ranking it as a species. I think I am nearly accurate if I say that probably no individual is found of any species exactly in accord with the type, and if one were to create species on differences as slender as has here been the case, almost every individual would have equal claim to such rank. I have examined the type with many specimens of fasciata, and can find nothing to separate them

Distira rhombifer.-A single example only of this is known, described by Mr. Boulenger ${ }^{\text { }}$ from a specimen now in the British Museum. He remarks upon its close affinities to fasciata, and separates it on the broader rostral, larger number of body scales (55) and the colour. The first distinction affecting the rostral is a very minute one, and affects a shield which in breadth is subject to much variation in individuals of the same species. I find other specimens which I consider fasciata where it is relatively quite as broad. The scales in this specimen I count 32,49 to 5 I , and 45 in anterior, mid, and posterior body. It thus accords perfectly with other specimens of fasciata in the British Museum. As regards colour there are at least four other examples of fasciata in the British Museum exactly similar, i.e., with rhombs dorsally instead of complete rings. I see no difference between this and fasciata.
H. melanocinctus.-Last year I described as a new snake ${ }^{\text {b }}$ what I considered at the time a very definite species, but which now I must regard as a somewhat aberrant fasciata. I took my original view because the specimen had only 25 rows of scales anteriorly, the præfrontal failed to touch the second supralabial, and the scales were imbricate posteriorly. Though the anterior scales are unusually low, I find a a specimen of fasciata in the British Museum with 26, viz., the type of Günther's atriceps, I find the præfrontal does not touch the second labial in four other specimens I have seen, and the scales I observe are imbricate posteriorly, contrary to the rule,

[^32]in certain specimens of fasciata in the British Museum. In all other respects this specimen agrees with typical fasciata, and should, I feel certain now, be considered as such.

Description.-Fasciata like the three preceding, has an extremely slender neck in relation to its body, and is almost as regular in the arrangement of its headshields. The neck is from one-third to one-fourth the extreme body depth.

The posterior maxillary teeth are grooved.
Rostral, -The portion visible above is from half to three-fifths the length of the internasal suture. Præfrontals, -touch the second supralabial (except in five examples where they fail to, and in four of these on both sides). Postoculars, -one (in one example two) Temporals,-one large anterior succeeded by a posterior of equal or greater size. The anterior in five examples descends to the labial margin. (In two specimens only the posterior are broken up, and in both on one side only.) Supralabials, -six or seven; not subject to division. Infralabials, four; the last in contact with three or four scales behind; the suture between the first as long or longer than that between the anterior sublinguals. Marginals,present, usually one only after the third infralabial, sometimes two after the second or third. Sublinguals, -two well developed pairs, the fellows of each in contact (in three examples at least the posterior are quite separated by a scale). Costals, anterior 25 to 33 (usually 29 to 3I), midbody 37 to 5 I (usually 4 I to 47) ; posterior 37 to 5 I (usually 4 I to 47) ; the anterior imbricate, the posterior usually juxtaposed (rarely imbricate). Ventrals, -376 to 531 , entire, twice or nearly twice the breadth of the last costal row. Colour,-exactly like the last two in young specimens. The annuli vary from 48 to 7 I , are well defined and about as broad at midcosta as the interspaces. They are often expanded vertebrally and tend to lose their definition in old specimens, sometimes indeed they are entirely lost ventrally, and the dorsum is then marked with black or blackish diamond marks.

Habitat. - All the specimens have been obtained along the shores between Malabar and China, one from Borneo, and two others from the Malay Archipelago, the exact locality not specified (Bleeker's specimens in the British Museum). It appears to be common on the Coromandel Coast of India specially. One solitary specimen has been recorded from the Malabar Coast, the exact spot not specified.

Distira neglecta (Wall).
Hydrophis obscurus, Sclater, List Snakes Ind. Mus., I891, p. 63, No. 8598. neglectus, Wall in Mem. As. Soc. Bengal, 1906, p. 288.

Fig. 17.-Distira neglecta.

Known from a single very young specimen in the Indian Museum, described by me.

It presents very definite characters which demarcate it very clearly from other species. These are notably the scales in the neck and body which are 48 and 54 respectively. These numbers only accord with carulescens and ocellata. The number of the ventrals (over 420) and imbricate character of the scales posteriorly are sufficient to exclude both carulescens and ocellata. In general appearance it is extremely like fasciata.

Description. -The portion visible above is about half the suture between the nasals. Præfrontals, - touch the second labial. Postoculars,-one. Temporals, -one anterior on the right side, two on the left. Supralabials, -seven, none divided. Infralabials,-four, the fourth largest and in contact with three scales behind ; the suture between the first pair subequal to that between the anterior sublinguals. Marginals,-one after the third infralabial. Sublingua1s,--two well developed pairs, the fellows of each in contact. Costals,-anterior 48? midbody 54 ? ${ }^{1}$ posterior 45 ; imbricate everywhere. Ventrals, -exceed 420 (probably are I_{5} to 30 more, but the neck is rent), entire and about twice the breadth of the last costal row everywhere. Colour,-head and neck black; body with 59 well defined annuli not confluent ventrally except in front, about as broad as the interspaces at midcosta.

Habitat.-Rangoon.
Distira mamiliaris (Boulenger, nec Daudin).
Hydrophis fasciata, Günther, Rept. Brit. Ind., 1864, p. 374, pl. xxv, fig. Q and Q'. mamillaris Boulgr. in Blanford, Fauna Brit. Ind. Rept. and Batrach., I890, p. 40I, and Cat., I8g6, iii, p. 277.

Fig. I8.-Distira mamillaris, $\times 2$.
The name mamillaris originated with Daudin, who applied it to the original of plate xliv of Russell's first volume. This plate, I consider, represents without doubt the gracilis of Shaw as already mentioned under that species, so that the form now under discussion has no right to this des'gnation.

The type-specimen of the form referred to by Mr. Boulenger as mamillaris is, I

[^33]consider, undoubtedly Beddome's specimen in the British Museum, which was figured by Günther ${ }^{1}$ and referred by him to fasciata (Schneider). I agree with Mr. Boulenger in considering this specimen distinct from fasciata, but I do not agree with him in associating it with Russell's plate xliv. Whether or not this form should rank as a definite species, or be considered a lapemoides or a variety of cyanocincta, it is difficult to say.

I have seen six specimens which are so alike in scale characters and colour that I feel sure they are identical. Two of these are the specimens labelled mamillaris in the British Museum, one in the College of Surgeons' Museum (No. 52 IC) ; one in the Indian Museum, Calcutta (No 13392); and two in the Bombay Natural History Society's collection. The range of variation in the anterior costals is 25 to 29, in the costals at midbody 31 to 40 . The ventrals range between 287 and 367. The annuli vary from 43 to 56 , are well defined, and broader than the spaces; and in all other particulars including postoculars, temporals and labials they are alike.

The sole character I can find to differentiate these from lapemoides is that the costals are fewer. From cyanocincta they are characterised only by the juxtaposed condition of the costals.

Description.-The forebody is from one-third to one-fourth the greatest body depth The head shields are almost as regular as in the preceding species of Distiva.

Rostral,--the portion visible above from half to three-fifths the internasal suture. Præfrontals,- touch the second supralabial. Postoculars,-two. Temporals,-ill developed and irregular, usually two superimposed scales anteriorly (in one specimen three on one side, and a single large shield on the other). Supra-labials,-seven, the posterior three or four subject to division. Infralabials,four, the last in contact with three or four scales behind. The suture between the first shorter than that between the anterior sublinguals. Marginals,-present; usually one after the third infralabial, sometimes two after the second or third (in one example none on one side, one after the third on the other). Sublingua1s, -two well developed pairs, the fellows of each in contact. Costals,--anterior 25 to 29, midbody 31 to 40 , posterior 34 to 4 I ; the anterior imbricate, posterior juxtaposed. Ventrals, -287 to 367 , entire, twice or nearly twice the breadth of the last costal row throughout. Colour, - head black, body surrounded by from 43 to 56 well defined black annuli, which are much broader than the interspaces at midcosta, and usually much confluent ventrally, especially anteriorly.

Habitat.-The shores of Peninsular India. Apparently rare. My figure is from a specimen in the Bombay Society's collection from Bombay.

Distira spiralis (Shaw).

Hydrus spiralis, Shaw, Zool. iii., 1802, p. 564, pl. cxxv.
Hydrophis spiralis, Gray, Cat., I859, p. 54.

Hydrophis spiralis, Boulgr. in Blanford, Fauna Ind. Rept. and Batrach., 1890, p. 40 ; and Cat. Brit. Mus., I896, iii, p. 273.

```
                    Wall and Evans in Journ. Bomb. Nat. Hist. Soc., xiii, p. 348 ;
                            Wall. in Spol. Zeylan., Augt., 1907, p. 66.
    nigrocinctus, Jan, Icon. Gén. 1872, 41, pl. ii, fig. 2.
    robusta, Günther, loc. cit., p. 364, in part.
                        Fayrer, Thanat. Ind., 1874, p1. xxi.
```

Distira robusta, Boulgr. in Blanford, Fauna Brit. Ind. Rept. and Batrach., 1890, p. 409.

$$
\begin{aligned}
& \text { ", " Sclater, List Snakes Ind. Mus., 1891, p. } 65 . \\
& \text { ", ", Wall and Evans in Journ. Bomb. Nat. Hist. Soc., xiii, p. } 615 .
\end{aligned}
$$

$$
\text { ", Wall in Mem. As. Soc. Bengal, 19o6, p. } 290 .
$$

? Hydrophis rappii, Jan, loc. cit., 4I, pl. iv, fig. I.
? ,, temporalis, Blantord in Proc. Zool. Soc. Lond., 1881, p. 680, and fig.
? ,, bishopii, Murray, Vert. Zool. Sind, I884, p. 391, and p1.
," subcinctus, Gray in Zool. Misc., 1842, p. 63 ; and Cat., 1849, p. 52.
,,, Günther, loc. cit., p. 368, pl. xxv, fig. F.
,, melanocephalus, Gray, Cat., I849, p. 53, in part.
", ", Boulgr., Cat. Brit. Mus., iii, p. 283, and p1. xv.
,, melanosoma, Günther, loc. cit., p. 367, pl. xxv, fig. E.

Distira melanosoma, Boulgr., Cat., 1896, iii, p. 291.

```
,, brugmansii, Boulgr., Cat., I896, iii, p. }292
    Wall in Proc. Zool. Soc. Lond., 1903, p. 96; and in Spol.
    Zeylan., August, 1907, p. I69.
```

Hydrophis alcocki, Wall in Mem. As. Soc. Bengal, 1906, p. 288, pl. xv, fig. 3. floweri, Boulgr. in Proc. Zool. Soc. Lond., 1898, p. 106, and plate.
", longiceps, Günther, loc. cit., p. 375, p1. xxv, fig. O.
Chitulia fasciata, Gray, Cat.; I829, p. 56.

Fig. I9.-Distiva spiralis.
Under this title I include six species considered distinct by Mr. Boulenger, viz., brugmansii (Boie), subcinctus (Gray), melanocephalus (Gray), melanosoma (Günther), wrayi (Boulenger), floweri (Boulenger), and one described by myself, alcocki (Wall), all divided I consider, on insufficient grounds, affecting shields known to be subject to variation in this and other allied species.
spiralis -.There are in the British Museum only five specimens labelled spiralis,
all of which appeared to me to be the young of the species labelled in the British Museum brugmansii (Boie). Upon examining the posterior maxillary teeth I could discern grooves in them. The one important difference between the two supposed species judging from the descriptions of the two in Mr. Boulenger's Catalogue was therefore abolished. The other apparent differences affect the supralabials and the ventrals. Though Mr. Boulenger's description of spiralis gives the supralabials as " six or seven," in all the specimens so labelled in the British Museum they are seven except in one specimen on one side only where they are six. It is to be noted, too, that in four of the twelve specimens labelled brugmansii in the same institution, there are six supralabials on one or both sides and seven in the rest. As regards ventrals the same authority gives the range for spiralis 270 to 334 , that for brugmansii 300 to 354. The overlapping is great, and the available species meagre in the case of spiralis and not very numerous in the case of brugmansii. I would point out that four of the five specimens of spiralis are so alike in size and general appearance as to leave one with the conviction that they are hatchlings of the same brood, an idea supported by the fact that they are all preserved in the same bottle, and presented by the same donor. A careful examination of the available specimens of the two supposed species side by side strengthened my conviction, for I failed to discover any difference between them. The slight difference apparent in the number of ventrals entirely disappears within the range given me by the large series of specimens I have examined.

The vertebral spots which occur between the annuli by no means form a complete series in some of the specimens of spiralis; and it is to be specially remarked that a very good series of these spots occurs in Beddome's specimen labelled brugmansii from Malabar, and there is at least one pronounced vertebral spot in one of Henderson's specimens. I think the most that can be conceded to the two forms is the rank of colour varieties retaining for the species the name spiralis which has precedence. My figure (I9) is from a specimen of mine from Pegu now in the Bombay Society's collection referred to by Evans and me as Distiva robusta in the Bombay Journa1, Vol. xiii, p 615. The scales in the neck are 27 , midbody 34 , posteriorly 34 . The ventrals are 320.
brugmansii (Boie).- Of the twelve specimens so named in the British Museum, only nine appear to me to be identical, and should, I think, be included under the older specific title spiralis with the five small specimens already so described by Mr. Boulenger. This species I propose, for the present, to consider distinct as above constituted, but it is so extremely closely allied to the forms cyanocincta (Daudin) and lapemoides (Gray) that I cannot escape the conviction that the three will eventually be united. Certain specimens, indeed, can be definitely referred to one or other of these three forms by the possession of certain groups of characters which seem to mark very definite specific differences. But, on the other hand, many specimens present these same characters in varying combinations of such extreme confusion that it is impossible to place them with certainty with either of the three species, to all of which they show almost equal affinity. I am strongly of opinion that these specimens
are intermediate forms which unite the three supposed species, and am opposed to the view held by all previous herpetologists that such forms should each rank as species apart. This old view seems to me responsible for much of the extreme confusion into which the subject has fallen, and this is not surprising since the characters made use of to differentiate these pseudo-species are precisely those which I have remarked upon above as very variable in individuals of many well defined species of this genus.
subcincta (Gray).-This species was described over 60 years ago from the solitary type in the British Museum which still remains the only specimen known. In Mr. Boulenger's key to the genus Distiva (vol. iii, p. 287), it is separated from brugmansii on two points, viz., that the neck scales in subcincta are 23 to 25 , in brugmansii 27 to 3 I , and that the frontal is hardly as long as its distance to the rostral in subcincta, whereas it is as long or longer in brugmansii. To make any reference to the length of the frontal as a distinction between these two supposed species amounts to an eloquent admission of the extremely close resemblance between them, for the length of this shield in brugmansii by Mr. Boulenger's own showing varies considerably, viz., between its distance to the rostral and its distance to the end of the snout. I

A

B

C

Fig. 20.-Distiva subcincta. After Günther, Rept. Brit. Ind., pl. xxv, fig. F.
can find no points of difference in the two species, nor does Mr. Boulenger mention any in his detailed descriptions other than those already referred to, and I cannot doubt that this solitary specimen of subcincta should, therefore, be considered a spiralis vel brugmansii. The ow number of neck scales is not by itself sufficient to form the basis of a distinct species, and, moreover, agrees with that of some specimens of melanocephalus, which I am unable to separate from spiralis.

The colour of subcincta is unusual, in that there are round costal spots below the dorsal bars, a peculiarity, however, not necessarily opposed to its inclusion with spiralis, since an exactly similar colour variety is included by Mr. Boulenger with his species ornata. a form usually characterised by dorsal bars.
melanocephalus (Gray), described in 1849 from a single specimen in the British Museum, remained the sole representative till Igor. In that year I saw in Mr. Owston's collection I9 specimens from the Loo Choo Islands which I examined (nine in detail) and identified as D. robusta (Günther), i.e., brugmansii (Boie). One of these I sent to the British Museum and learnt from Mr. Boulenger he considered H. melanocephalus. This species, in his catalogue description, differs from brugmansii in two points only, $v z z$., that the head and fore-body are smaller and the neck scales fewer in number in melanocephalus.

I have re-examined the specimen I presented to the British Museum, and find
that the posterior maxillary teeth are grooved, and it exactly accords with specimens of spiralis (vel brugmansii) except in the lower number of neck scales. These in the two museum specimens of melanocephalus are 25 and 24, but in the nine I specially

Fig. 2I.-Distira melanocephala, $\times 2$.
examined in Japan they ranged from 23 to 27 , the latter number being already recorded for spiralis. It is, therefore, impossible to draw a dividing line between the two species, and I take the view that melanocephalus is a local variety of spiralis characterised by rather fewer neck scales.
melanosoma (Günther).-This is only known from a single specimen in the British Museum which I cannot see differs in any way trom spiralis, vel brugmansii, except in colour. The sole distinction between the two utilised by Mr. Boulenger in his key (p. 287) is that the posterior chin shields are in contact in brugmansii, separated in melanosoma. His detailed descriptions of the scale characters in each show complete accord in every other particular, nor can I, by careful examination of the specimens side by side, find any differences between them. As regards the chin

A

B

C

Fig. 22.-Distiva melanosoma. After Günther, Rept. Brit. Ind., pl. xxv, fig. E.
shields, they are variously separated or in contact in many species, and are separated in at least three others of the large series of spiralis examined by me. The colour is certainly peculiar, in that the black bands are unusually broad, and melanosoma might, I think, be conceded the rank of a colour-variety, characterised by the breadth of its annuli. The postocular is single, as correctly stated in Mr. Boulenger's description (p. 291), not two as incorrectly given in his key (p. 287).
longiceps (Günther).-This is known from a single specimen in the British Museum in which I find the post-maxillary teeth are grooved. Its affinities are extremely close to both spiralis and cyanocincta, in fact it combines the distinguishing characters of both these forms so intimately that it is difficult to decide to which to refer it. I incline to the opinion that it should rank with shivalis on account of the costals in
the fore, and midbody being repectively 28 , and 33 to 34 . I hold that the costals carry greater weight than the postoculars and temporals. The latter, in this specimen, conform to the generality of examples of cyanocincta, but these shields being subject to some

A

B

C

Fig. 23.-Distira longiceps. After Günther, Rept. Brit. Ind., pl. xxv, fig. O.
variation in both these forms prompts me to regard them as abnormal in this instance.
The one other departure from the normal mentioned by Mr. Boulenger is the juxtaposed character of the posterior costals. Personally I found it extremely hard to decide for myself whether these scales were imbricate or juxtaposed, and finally decided they were juxtaposed dorsally and subimbricate ventrally. I do not attach sufficient weight to this character to consider it should justify separating this form from spiralis, and even granting that the scales are juxtaposed ventrally behind, the fact that Mr. Boulenger himself in one case at least, viz., fasciata (Schneider), places specimens with the scales imbricate, together with others that are juxtaposed, makes it probable that a similar deviation from the normal may be expected in other species.
wrayi (Boulenger).-As recently as Igoo Mr. Boulenger described this as a new species from a specimen sent from Perak. I have examined the three available specimens so labelled in the British Museum, the only ones known. One of them is so labelled by an oversight, for it is obviously a very typical specimen of gracilis (Shaw). Of this there is no possible doubt. The other two I examined beside specimens of spiralis and brugmansii, but failed to detect in them one feature by which they could be distinguished. One of them is peculiar in having no marginals. Referring to Mr. Boulenger's description of D. revayi, ${ }^{\text {' }}$ and comparing it with his description of brugmansii in his catalogue, I find they completely agree, except in two extremely minute details, viz., the length of the frontal which it is claimed is rather shorter in wrayi, and carination which is more pronounced in wrayi. Such minute differences, especially affecting features which are subject to considerable variation, appear to me very unconvincing. I cannot even agree that the differences claimed are any more noticeable than is seen in certain examples of brugmansii in the British Museum.

Aloweri (Boulenger). -This is known from two specimens only, both in the British Museum. Though placed by Mr. Boulenger with his genus Hydrophis, the postmaxillary teeth are grooved, and had this circumstance been noticed by him, I cannot but think he would have referred them to brugmansii. From this species I can only separate it by (I) the absence of marginals, and (2) the failure of the præfrontal to meet the second supralabial. The absence of marginals is remarkable, the only other instance of these shields being wanting among the specimens I consider alike being

[^34]2 III, p. 293.
in one of the specimens labelled rerayi, and it is noteworthy that the specimens labelled wrayi and floweri are all from the same locality, viz., Perak. The failure of the præfrontal to meet the second supralabial is only partial, for this contact occurs on one

Fig. 24.-Distira (Hydrophis) floweri, \times [$\frac{1}{2}$. After Boulenger in Proc. Zool. Soc., 1898.
side in one of the specimens. I have observed the same abnormality in eight of the large series I consider spiralis. I am strongly of opinion these specimens should be regarded as an abnormal form of spiralis (Shaw).

A

13

C

Fig. 25-Distiva alcocki.
alcocki (Wall). - Last year I described ' what I considered at the time a very well marked new species under the above title. I could not satisfactorily view the teeth, as the specimen was a very small one, and placed it with the Hydrophis on account of the slender proportions of the neck.

In most respects very like brugmansii the fact that the præfrontal shield did not meet the second supralabial, taken with the low number of scales in the neck (25), and body (30), and the small number of ventrals (282) made it difficult to know where to place it. I find now, however, that of 65 specimens in my notes which I identify as spiralis the præfrontal fails to meet the second supralabial in seven other instances, ${ }^{2}$ including the type-specimen of spiralis in the British Museum. I find also that other examples afford parallel or nearly parallel departures from the normal with reference to the three other details made mention of, and so I have no hesitation whatever in considering this snake now as, a somewhat aberrant example of sipralis.

The characters upon which reliance is placed to separate spiralis from cyanocincta are all subject to some variation in both species, and specimens occur combining these characters sometimes so intimately that it is difficult to decide with which form to place them ; indeed, it seems to me very dubious whether they can be considered apart. Of 12 specimens labelled brugmansii in the British Museum, a form I hold to be synonymous with spiralis, three I consider are misplaced, and should be included with

[^35]cyanocincta. These specimens are Jayakar's from Muscat, the type of H. sublavis, and Cantor's specimen from Penang. They are all included with brugmansii, presumably on their possession of a large single anterior temporal, but there are, I consider, weightier reasons for supposing them aberrant examples of cyanocincta to which I will refer again. The differences I can see between typical examples of each form are as follows:-

spuralis.

(1) One postocular.
(2) One anterior temporal.
(3) A single marginal after the third infralabial.
(4) Costals in midbody 29 to $36 ; 2$ to 7 more than anteriorly.

cyanocincta.

Two postoculars.
Two anterior small superposed temporals.
A complete row of marginals after the second infralabial.
Costals in midbody 33 to $44 ; 7$ to II more than anteriorly.

I attach far greater weight to the costal rows than any of the other characters concerned ; and in the three specimens I refer to, I make them 39, 39 and 4 I respectively, and from eight to ten more in midbody than anteriorly. In addition to this there is a complete row of marginals after the second infralabial in all, and two postoculars in one specimen. On the other hand, each has a single anterior large temporal, and two a single postocular. I may remark here that the features which I take to be abnormal in these specimens are exactly on a par with those made use of to separate grandis from cyanocincta, and it seems most inconsistent to grant to one trio, viz., grandis, the rank of a species and withhold this distinction from the other trio.

Description.-- This is based on my conception of the species based on 65 examples.
Body anteriorly from one to two-thirds the greatest depth, probably less as my notes on this point are scanty, and I have no record of a gravid female.

Rostral, -the portion visible above less than two-thirds the internasal suture. Præfrontals,-touch the second supralabials (eight exceptions; one of these on one side only). Postoculars, -one. (Eleven exceptions, of which five are normal on one side only). Temporals,-one large anterior succeeded by a subequal shield. In 23 examples the anterior by a confluence with a supralabial reaches the labial margin, and in 12 of these this occurs on one side only. In six examples there are two superposed anterior small shields, in four of these on one side only. The posterior shield is subject to greater variation than the anterior. Supralabials, 6 to 8 ; the anterior 4 , 5 or 6 usually undivided and well developed; the third and fourth (and in nine examples, the fifth also) touch the eye. Infralabials,four; the last in contact with three or four scales behind; the suture between the first usually smaller than that between the anterior sublinguals. Marginals,-one usually, after the third sublingual (sometimes two or more after the second or third. Wanting in three examples, one of rerayi and both floweri in the British Museum). Sublinguals, -two well developed pairs, the fellows of each in contact. (The posterior separated completely in four specimens). Costals, -- anteriorly 23 to 3I (usually 25 to 29), midbody 29 to 36 (usually 3I to 35), posteriorly 28 to 36 ; imbricate anteriorly ; imbricate or subimbricate posteriorly; usually smooth in the young, feebly or strongly
tuberculate in large adults, the tubercles often bi- or tridentate. Ventrals, -282 to 373 ; entire throughout, except a few posteriorly; twice or less than twice the breadth of the last costal row. Colour,--olivaceous or greenish dorsally, merging to yellowish costally and ventrally, or yellowish with dark bars or bands, which may number from 34 to 70 , but are most usually from 40 to 55 . I group the various forms as follows, and it will be noticed how very alike the varieties of this are to those of cyanocincta:-

Group (A) completely banded. The bands are very variable. In some examples they are narrow throughout, in others broad. In some they are of even breadth from dorsum to ventrum ; in others dilated vertebrally ; in others tapering ventrally. Some of the posterior ones are interrupted costally in some specimens. In some instances the black is only preserved for a variable depth dorsally, but the indication of the completely black band of younger days can, though faint, be distinctly traced ventrally, and also the ventral connecting band so commonly retained in adult life.

In some the bands are discrete vertebrally and ventrally, and in others more or less confluent, especially ventrally, where a broad stripe very frequently passes from the throat to a variable extent backwards, and not uncommonly in the whole length of the snake.
(I) brugmansii (Boie).-Bands narrower than interspaces; no vertebral nor ventral spots. It is one of the commonest varieties. robusta (Günther), bishopi (Murray), and melanocephalus (Gray) I place here.
The form is very analogous to var. B of cyanocincta.
(2) spiralis (Shaw).--Differing from the last only in exhibiting one or more vertebral spots placed singly in the interspaces. There are usually a few only anteriorly or posteriorly, but a regular series is exceptional. In fig. 26 on plate vii these are not visible at all. It is from a specimen so labelled in the British Museum.
(3) Similar to the last, with in addition a series of similarly placed ventral spots, which may be as variable in number as the vertebral series of the last. It is an unusual form. The only example I have seen, an adult, is in the Colombo Museum (No. II3). The vertebral and ventral spots are very black, and form unusually regular series.
(4) Bands nearly as broad, or broader than the light intervals, and frequently connected in part, or wholly, by a broad ventral stripe of black. Head black. With this I place melanosoma (Günther) (see fig. 27 on plate viii), floweri (Boulenger), and alcocki (Wa11). It is rather an unusual variety analogous to variety A of cyanocincta.
(5) subcincta (Gray).--With a series of costal spots. An unusual variety, the type of which is from the Indian Ocean. It is analogous to variety 4 of ornata, and somewhat like variety $\mathrm{D}(a)$ of cyanocincta.
(6) Barred dorsally but no costal spots. The type-specimen is from the Indian Ocean. With this I place the temporalis of Blanford, the type of which came from the Persian Coast, and longiceps (Günther). I have
seen other specimens from Bombay and Karachi, but it is an uncommon form. Analogous to variety $\mathrm{D}(b)$ of cyanocincta.
6 (a) A form intermediate between these two groups is to be seen in a specimen in the British Museum from Madras presented by Mr. Henderson. In this there are complete bands anteriorly, and dorsal bars posteriorly Analogous to variety A (c) of cyanocincta. Group (B) with transverse dorsal bars.

Distira cyanocincta (Daudin).

"Chittu1," Russell, Ind. Serp., I8or, ii, pl. ix.
Hydrophis cyanocincta, Daud., Rept., 1803, vii, p. 383.

	s in Mon. Berl. Acad., 1872, p. 852, p1. 1, fig.
	Günther, Rept. Brit. Ind., 1864, p. 367.
	Fayver, Thanatoph. Ind., 1874, pl. xxiii.
	Ewart, Pois. Snakes Ind., 1878, pl. 17.
	,, Murray, Vert. Zool. Sind, 1884, p. 391.
	tuberculata, Anderson in Journ. As. Soc. Bengal, 187I, pt. 2, p. 88.
	,, Murray, loc. cit., p. 393.
	dayanus, Stoliczka in Proc. As. Soc. Bengal, 1872, p. 89.
	subannulata, Gray, Cat., 1849, p. 54.
	aspera, Gray, Cat., p. 55.
	,, Günther, loc. cit., p. 365.
	crassicollis, Anderson, loc. cit., p. I9.
	Fayrer, loc. cit., pl. xxii.
	Ewart, Pois. Snakes Ind., 1878, pl. 16.
	trachyceps, Theobald, Cat. Rept. As. Soc. Mus., 1868, p. 70.
	phipsoni, Murray in Journ. Bomb. Nat. Hist. Soc., ii, p. 32 and p1.
	westermanni, Jan, Icon. Gén., 1872, 39, p1. v, fig. I.
	, Gray, Cat., 1849, p. 5 I.

Aturia belcheri, Gray, Cat. (I849), p. 46.
Hydrophis belcheri, Günther, Rept. Brit. Ind., I864, p. 364.
Distira belcheri, Boulgr., Cat. iii, 1896, p. 296.
? Hydrophis frontalis, Jan, loc. cit., 39, pl. v, fig. 2 (non Boulgr.).
," sublævis, Gray in Zool. Misc., 1842, p. 62, and Cat., 1849, p. 52.
," elegans, Günther, loc. cit., p. 369, pl. xxv, figs. K \& K'.
? ,, semperi, Garman in Bull. Mus. Comp. Zool., I88r, p. 85.
,, pacificus, Boulgr., Cat., I886, iii, p. 278, p1. xii, fig. 2.
,, kingii, Boulgr., Cat., 1896, iii, p. 276.
? ,", striatus, Schlegel, Phys. Serp., I837, p. 502, p1. xviii, figs. 4 and 5.
Aturia elegans, Gray in Zool. Misc., 1842, p. 63.
Chitulia fasciata, Gray, Cat., 1829, p. 56.
Distira belcheri, Boulgr., Cat., iii, p. 296.
,, semperi, Boulgr., Cat., iii, p. 292.
Distira tuberculata, Boulgr. in Blanford, Fauna Brit. Ind. Rept. and Batrach. 1890, p. 409, and Cat., iii, p. 293.
,, ,, Sclater, List Snakes Ind. Mus., I891, p. 65.
,, lapemidoides, Sclater, loc. cit., p. 66, Nos. 8278 and 8632.
,,' grandis, Boulgr., Cat., iii, p. 292, and pl. xvi.
,, macfarlani, Boulgr., Cat., iii, p. 294, and pl. xvii.
,, cyanocincta, Boulgr. in Blantord, Fauna Brit. Ind. Rept. and Batrach.,
1890, p. 410, and Cat., iii, p. 294.
Wall in Proc. Zool. Soc. Lond., I903, p. 96, and Mem. As.
Soc. Bengal, 1906, p. 291, and in Spol. Zeylan., August
1907, p. I7.
Sclater, loc. cit., p. 65. (Except No. 8242).

Fig. 28.-Distiva cyanocincta.

B
Fig. 29.-Distiva westermanni. After Jan, Icon. Gén. livr. 39, p. v, fig. r.
The specific title originated with Daudin, who applied it to the original of plate ix. in Russell's second volume. A specimen now in the British Museum collected by Russell and labelled from the Sunderbunds is, without doubt, this very specimen; for Russell, on the last page of this volume, mentions the Sunderbunds as the locality from which the original of this plate was obtained. Mr. Boulenger omits to record the discovery of this type, which had previously been lost sight of.

With this species, I am of opinion, should be united several forms previously described as distinct by various authors, and considered as such by Mr. Boulenger in his Catalogue (I896). All of these appear to me to be separated on insufficient grounds affecting shields, which analogy shows to be inconstant in many individuals of certain
species. Most of these specimens I have carefully compared side by side with the specimens labelled cyanocincta in the British Museum, and my opinion is the only possible one I see open to me. The forms are as follows: kingi (Boulenger), elegans (Gray), pacificus (Boulenger), semperi (Garman), tuberculata (Anderson), grandis (Boulenger), marfarlani (Boulenger), belcheri (Gray), and frontalis (Jan).
kingi (Boulenger).-This form rests on the single specimen so named by Mr. Boulenger which is in the British Museum. Contrary to his belief the posterior maxillary teeth are grooved. The only differences apparent in the descriptions of this and cyanocincta in Mr. Boulenger's catalogue are trifling and affect the proportions of the rostral, nasals and frontal, the scales in the body and the relative proportion of the head to the body. I think the slender differences claimed in the head shields may be dismissed without comment. The scales in the body in kingi (37) are only two less than the range given by Mr. Boulenger for cyanocincta, and come well within the range given me by my large series of specimens (35 to 44). The head in kingi recorded as one-third the extreme body depth is within the variation I have observed in examples of cyanocincta.

I see no reason, therefore, to suppose this a species separable from cyanocincta.
It is to be noted that this specimen was placed by Gray with his doliata, a form subsequently united by Mr. Boulenger with elegans of the same author (Gray), which form I am unable also to separate from cyanocincta.
elegans (Gray). -The three young specimens so named in the British Museum and the only ones known, constitute, I think, a very distinct colour variety of cyanocincta, but no more. I have failed, I find, to record the condition of the posterior maxillary teeth, possibly owing to the small size of the specimens. A comparison of Mr. Boulenger's descriptions of the two forms shows they are identical except for the single anterior temporal, and the slightly shorter frontal shield in elegans. A single anterior temporal occurs in at least five of the British Museum specimens of cyanocincta, so this feature cannot be made use of to differentiate this from allied forms. A comparison of these three specimens with many cyanocincta made it impossible for me to consider them apart.

A

B

Fig. 30.-Distiva pacifica. After Boulenger, Cat., vol. iii, pl. xii, fig. 2.
pacificus (Boulenger).-Known from a single adult specimen in the British Nuseum from New Britain. I find that the posterior maxillary teeth are grooved, and a careful comparison of this with specimens labelled cyanocincta in the same collection shows no points by which it is possible to separate it from them. The neckscales of pacificus, correctly stated in Mr. Boulenger's description (Catalogue, page 279), are wrongly given in his key (page 272) ; the correct count, viz., 27 to 29, agrees with
that of typical cyanocincta. According to Mr. Boulenger the rostral shield in pacificus is a little narrower and the frontal a little longer than in cyanocincta, and there is a single anterior temporal, but the remarks made on elegans, kingi, etc., apply equally here. I cannot doubt that, had Mr. Boulenger recognised the grooved condition of the posterior maxillary teeth in these species, he would long ago have included them in his D. cyanocincta, as the varying scale characters on which they are separated from each other are all to be found in one or other of the large series of 29 specimens in the British Museum assigned to that species, e.g., the two anterior temporals of kingi and the one of elegans and pacificus.
semperi (Garman).-Not represented in the British Museum and known only from Garman's description of a single specimen from Lake Taal, Luzon. Mr. Boulenger includes this specimen in his genus Distira, but separates it in his key under the points -- (a) "Second pair of chin shields, if distinct, separated by several scales." (b) "A single anterior temporal." Garman's description makes no mention of the separation of the posterior chin shields, and there is no plate of the specimen. Further, he says that the seventh labial is separated from the temporal by a large pentagonal plate, which clearly must constitute what many consider an inferior temporal shield. I cannot, therefore, separate this from cyanocincta.
tuberculata (Anderson).-Of this there is no specimen in the British Museum, but I have examined in the Indian Museum the type and only specimen which was described by Anderson in 187 I, and have no hesitation in considering it cyanocincta. From this species Mr Boulenger separates it by its single anterior temporal and the large number of neck scales given as 38. This number is Anderson's count, close behind the head where the rows are always too variable to give reliable results. The scales counted two heads-lengths behind the head number 32 , and at midbody 40 , both of which numbers accord with those usually found in specimens of cyanocincta; and it has already been pointed out that a single temporal shield is sometimes present in members of that species. The head shields of Anderson's tuberculata are granular and the body scales bi-tuberculate, as is so often the case in large specimens of cyanocincta, e.g., the H. aspera of Gray incorporated by Mr. Boulenger in this species.

A

B

C

1

Fig. 31.-Distiva grandis. After Boulenger, Cat., vol. iii, pl. xvi.
grandis (Boulenger).-This species rests on three specimens so named in the British Museum. These, on careful examination, I cannot separate from the species cyanocincta. The distinctions made use of in Mr. Boulenger's key are that in grandis there is a single anterior temporal shield only, the rostral is slightly narrower and the ventrals
rather more in number, 372-400 against 281-385 (cyanocincta). As before stated, a single anterior temporal shield occurs in several museum specimens of cyanocincta, the breadth of the rostral is always more or less variable in every species, and I count the ventrals 306,325 and 375 in the three specimens labelled grandis, these numbers falling well within the limits given for cyanocincta.

A

B

C

Fig. 32.--Distira macfarlani. After Boulenger, Cat. iii, pl. xviii, fig. I.
macfarlani.-Only known from two young specimens in the British Museum considered a distinct species by Mr. Boulenger. His description of them differs only from that of cyanocincta in the following points: The nasal and frontal shields appear to be proportionately a shade longer in mactarlani, the neck scales slightly more and the ventrals considerably fewer in number. The first points are of no importance in differentiation, and the neck scales given as $3 \mathrm{I}-35$ in the two specimens are 33 in both at the point two headslengths behind the head which I find to give the most consistent results. With regard to the ventrals, Mr. Boulenger's numbers 220 and 256 are incorrect, and by repeated counts I find them to be 342 to 349 and 385 to 392 respectively. I have, therefore, no hesitation in including these two specimens in the species cyanocincta.

A

B

C

Fig. 33.-Distiva belcheri. After Boulenger, Cat., vol. iii, pl. xvii, fig. 2.
belcheri (Gray).-This is known from a solitary specimen, which was obtained 58 years ago from New Guinea, and is preserved in the British Museum collection. The only points claiming attention I can see between this and typical specimens of cyanocincta are: (I) The absence of marginals ; (2) the contact of the fourth supralabial only with the eye; and (3) the number of costal rows. Of these, the absence of marginals I consider a very important point, though previous herpetologists have completely ignored the existence of these shields. In my large series of cyanocincta, no specimen has these shields wanting; but as a certain degree of inconstancy in this direction is to be seen in individuals of some other species, I think the absence in this case is best considered an aberrant feature. I attach little importance to the contact of the fourth supralabial only with the eye, as the third is only just excluded. The costal rows anteriorly (25) are but one less than the limits furnished by my numerous examples,

[^36]and in midbody the number (34), though low, agrees with Anderson's specimens in the British Museum labelled cyanocincta from Mergui, in which they are 33 to 34. The affinities of the specimen are so extremely close to cyanocincta that I cannot believe it is distinct.

frontalis (Jan).-This name was given by Jan to a single specimen which he described and figured ; and Mr. Boulenger similarly names one specimen in the British Museum collection. The two were probably considered identical on their common possession of one unusual feature, viz., that the anterior angle of the frontal shield projects, and separates the præfrontal pair. This, however, is clearly an abnormality, for I have seen the same condition in more than one specimen of viperina and occasionally in other species; and Mr. Boulenger notes that it occurs in the type-specimen of brookii (Catalogue, vol. iii, p. 283), a gravid female, though absent in her fully developed young. Apart from this abnormality the British Museum specimen appears to me to be an almost typical ornata (Gray), and the posterior maxillary teeth being grooved, I include it in that species. Jan's specimen, however, I am unable to separate from members of the species cyanocincta (Daudin). It does not accord with Mr. Boulenger's description of H. frontalis on page 276 of the Catalogue in the following particulars: The neck is not very slender, being about three-fifths the body depth; the labials are eight, with the third, fourth and fifth touching the eye ; both pairs of chin shie'ds are well-developed and the posterior are only just separated. I count 30 scales in the anterior body. Though unable to verify the presence of grooves in the teeth, it appears to me probable that this will prove to be a cyanocincta aberrant in the division of the first supralabial, the division of the frontal and the separation of the præfrontals, all of which conditions are to be met with as abnormalities in certain individuals of other species.

Description.-This is based on 8I examples, inclusive of 12 considered distinct by Professor Boulenger, which I think the same. The body anteriorly is from one-third to two-thirds the greatest depth, probably less, my notes on this point being very incomplete; and I have no record of the measurements in a gravid female.

Rostral, - the portion visible above is less than two-thirds the internasal suture. Præfrontals, - touch the second supralabial. (Two exceptions and on one side only.) Postoculars,-two usually. (In eleven examples only one, and in five of
these on one side only.) Temporals, -. usually broken up and replaced by two or more superposed scales anteriorly. (A well developed single anterior shield occurs in sixteen specimens, ${ }^{1}$ and in four of these on one sideonly.) Supralabia1s, - subject to great variation, the third and succeeding shields subject to division; the third and fourth, and usually the fifth, touch the eye. Infralabials, --four ; the last in contact with three or four scales behind; the suture between the first usually less than that between the anterior sublinguals. Marginals, -usually a complete row after the second supralabial (sometimes one, or more after the third). Sublinguals, -two well-developed pairs, the fellows of each in contact. (In six examples the posterior are quite separated.) Costa1s, -anterior, 25 to 36 (usually 28 to 33); midbody 33 to 44 (usually 36 to 4 I) ; posteriorly 34 to 43 , imbricate, or subimbricate throughout. Ventrals,-280 to 397, distinct everywhere; twice or nearly thrice the breadth of the last costal row.

Colour. -The many varieties have been summed up by Mr. Boulenger, and I have little to add to his arrangement.
A. Well-defined black bands, more or less connected ventrally. Analogous to variety A. (4) of spiralis.
(a) All the bands complete. A common form ranging from the Persian Gulf to the Philippines. With this I would place the semperi of Garman.
(b) Some of the posterior bands interrupted costally or subcostally. Not uncommon. In the British Museum, in Reeves' specimen from China, and others, the bands are briefly interrupted costally. In a specimen of Jayakar's, from Muscat, the interruption is subcostal, and more extensive. Ventral spots occur corresponding to the dorsal bars. With this macfarlani (Boulenger) should be placed (see fig. 36 on plate viii). It occurs between the Persian Gulf and Australia.
(c) Some of the posterior bands deficient ventrally, and thus converted into bars. Not uncommon. With this I would include kingi (Boulenger) from Australia. Analogous to variety $6(a)$ of spiralis.
B. Well-defined black bands not united ventrally. A common form occurring between the Persian Gulf and China. With this I would place the tuberculata of Anderson. Analogous to variety brugmansii of spiralis.
C. Obscure bands or bars. A common form usually met with in adult specimens, and occurring between the Persian Gulf and the Philippines. With this, I think, should be included the crassicollis of Anderson, the grandis of Boulenger, aspera of Gray, and pacificus of Boulenger. Analogous to specimens of variety A(6) of spiralis.
D. Well-defined dorsal bars.
(a) Costal, and subcostal spots. An uncommon form from Australia, viz., the elegans of Gray (see fig. 37 on plate viii). Somewhat comparable to variety $\mathrm{A}(5)$ of spiralis.

[^37](b) No costal spots. A common form seen in examples from the Persian Gulf to China. Comparable to variety $\mathrm{A}(6)$ of spiralis.
E. A continuous, black, dorsal band (see fig. 35 on plate viii), a rare form-the phipsoni of Murray known from a single specimen from Bombay. Completely analogous to variety inornata of ornata, and jayakari of viperina.

Habitat.-. From Persian Gulf to North Australia. With the exception of two grandis, none that I have seen are from the Malayan Archipelago.

Distira nigrocincta (Daudin, nec Jan, nec Cantor).

Hydrophis nigrocinctus, Daud., Rept., 1803, vii, p. 380.

Gray, Cat., 1849, p. 5 I.
Günther, Rept. Brit. Ind., 1864, p. 368, pl. xxv, fig. L.
Fayrer, Thanatoph. Ind., 1874, pl. xxv.
Ewart, Pois. Snakes Ind., 1878, pl. 19, fig. 2.
Boulgr. in Blanford, Fauna Brit. Ind. Rept. and Batrach., I890, p. 400.
Sclater, List Snakes Ind. Mus., I891, p. 63, Nos. 8239 and 8240 .
Boulgr., Cat. Brit. Mus., I896, iii, p. 277.
Wall in Mem. As. Soc. Bengal, 1906, p. 281.
? Enhydris nigrocinctus, Mervem., Tent., 1820, p. 140.
Distira lapemidoides, Sclater, List Snakes Ind. Mus., I891, p. 66, No. 8235.
,, cyanocincta, Wall and Evans in Journ. Bomb. Nat. Hist. Soc., xiii, p. 364.
., hendersonii, Boulgr. in Journ. Bomb. Nat. Hist. Soc., xiv, p. 719, and plate.
,, ,, Wall in Mem. As. Soc. Bengal, 1906, p. 294.
,, , saravacensis, Boulgr. in Proc. Zool. Soc. Lond., I900, p. I84, and fig. 2 , pl. xiv.

A

B

C

Fig. 39.-Distiva nigrocincta. After Günther, Rept. Brit. Ind., pl. xxv, fig. L.
I have examined eight examples, not including the Distira hendersonii (Boulenger), which I consider the same species.

One of General Hardwicke's specimens in the British Museum, labelled nigrocinctus, I consider misplaced. It is in reality a cyanocincta (Daudin). In Bleeker's specimen I could distinctly discern grooves in the post-maxillary teeth, and it agrees, therefore, in this respect, with examples I have examined in the Indian Museum and my own
specimens from Burma. I consider the species fairly well differentiated, but it is in most respects extremely like cyanocincta. The præfrontal, however, does not touch the second labial, in which respect it differs from cyanocincta.

I find the head shields in this species very liable to be broken up, especially the supralabials, and many departures from the type-specimen are, in consequence, to be met with. This I will refer to again

Fig. 40 -Distiva hendersoni. After Boulenger, Journ. Bomb. Nat. Hist. Soc., vol. xiv, p. 719.
Distira hendersoni. - This is known from a single specimen from Burma described by Mr. Boulenger. A specimen very like it I referred to under that title in the paper I wrote on the Sea Snakes in the Indian Museum. I remarked at the time upon the very close affinities between this and nigrocinctus (Daudin). Now that I have examined the types of both and the other specimens of nigrocincta in the British Museum, I feel convinced that the two forms are identical, though this view is not borne out by the first glance at the figures I attach herein-the one from Günther representing one of General Hardwicke's specimens labelled nigrocinctus, and the other reproduced from Boulenger's figure of the type of hendersoni.

The most important distinction between the two claimed by Mr. Boulenger affects the posterior maxillary teeth, which, he observes, are grooved in hendersoni. I find these teeth also grooved in nigrocincta. In colour and markings the two are peculiar and exactly similar. In the numbers of the scales, ventrals, and in most of the head shields, the two are alike; the apparent differences affecting the latter only, I think, obviously arise from a tendency many of these shields have to division. This same tendency, I may remark, is seen in certain other well defined species, viz., cyanocincta, ornata, viperina, etc. It is particularly noticeable in the supralabials and nasals, though by no means confined to these shields.

The type-specimen of hendersoni has, I consider, the second, third, fourth, fifth and sixth supralabials divided on the left side, and the second, third, fifth and sixth on the right. The upper part of the second Mr. Boulenger considers a loreal, the upper part of the third a preocular, and the upper parts of the fourth and fifth on the left side suboculars. On the right side the fourth, being undivided, touches the eye; but if my view, which appears to me the obvious one from analogy, is accepted, the third, fourth and fifth labials touch the eye on both sides. Now some of these shields are similarly divided in specimens labelled nigrocinctus in the British Museum, viz., in two out of the three available specimens. (The fourth has been already referred to as a wrongly identified specimen of cyanocincta). In the type, and in Bleeker's specimen, a similarly formed "pseudo loreal" is to be seen on the left side only. In the type-specimen the first supralabial is divided into an upper and a lower part.

As regards the shields referred to by Mr. Boulenger as internasals (the sole remaining difference between the two supposed forms) it appears to me that the nasals have been divided into three parts by three sutures radiating from the nostril, and "pseudo-internasals" thus formed. This view is the obvious one suggested by analogy, and, when the three component parts are taken together, it will be noticed they conform to the normal shape of the nasal shields seen in others of this family. A precisely similar division is met with in aberrant examples of viperina and major and in Enhydrina valakadyn, etc., and the condition reminds one of that seen in the parietals in Enhydris curtus, which shields, though broken up, preserve their contour. I may remark on other specimens I have examined. One in the Indian Museum, viz., No. 8240 (in which the scales are 3 I anteriorly, 43 in midbody, imbricate posteriorly, ventrals 338) has the second, third and fifth supralabials divided as in the type of hendersoni, and the fourth entire on both sides. Strictly speaking, the third, fourth and fifth touch the eye. I enter the condition in my note-books thus $9 ; I \frac{2}{2}\left(\frac{3}{3} 4 \frac{5}{5}\right) \frac{6}{6}$, the bracketed figures of the formula implying contact with the eye.

In another specimen of mine from Barma (in which the scales are 32 anteriorly, 42 in midbody, imbricate posteriorly, ventrals 3II) the supralab als are 9 , the second and all the succeeding shields are divided, and the fourth and fifth only touch the eye. In another specimen of mine from Burma (in which the scales are 31 anteriorly, 39 in midbody, imbricate posteriorly, ventrals 325), the supralabials are 9 , the fifth and subsequent shields are divided on the right side, the second, fourth and succeeding shields on the left, and the third, fourth and fifth touch the eye. Exactly parallel variations are to be met with in specimens of cyanocincta, ornata, etc., in the same genus, and in Astrotia stokesi, Enhiydrina valakadyn, etc.

Description. - Neck one-third to two-fifths the greatest body depth. Rostral, the portion visible above is from half to three-fifths the suture between the nasals. Præfiontals,- touch no supralabial. (It does so on one side only in two specimens). Frontal, - is very distinctive, and differs from all the others of this genus, in that the fronto-parietal sutures are about twice as long as the fronto-præfrontals. Præoculars, - one or two independently of any division of the subjacent labials. Postoculars, - two or three. (One on one side in two examples). Tempora1s,irregular and scale-like; two or three superposed anteriorly. Supralabials,--very inconstant. All are liable to be divided transversely, and by their division scales formed which may occupy the position of loreals, pre-, sub- or postoculars and temporals; the third and fourth, or third, fourth and fifth may touch the eye. Infralabia1s, - the fourth is the largest of the series and in contact with three or four scales behind ; the suture between the first pair subequal to that between the anterior sublinguals. Marginals,-one after the third infralabial usually ;rarely two after the second. In two examples they are completely absent). Sublinguals,-two fairly well-developed pairs, the posterior fellows separated. (In contact in four examples). Costals,-anterior 27 to 32 , midbody 36 to 43 , posterior 36 to 42 ; imbricate throughout. Ventrals, -3II to 339, entire, and nearly twice as broad as the last costal row throughout. Colour,-olivaceous green dorsally, merging to
bright yellow ventrally. From 42 to 62 dark, well-deined greenish-black bands surround the body, which are from half to two-thirds the breadth of the interspaces at midcosta, and preserve their width throughout, excepting vertebrally where they are expanded. They are not joined ventrally in the anterior part of the body. Head distinctively marked with a curved black moustache on the upper lip, an occipitonuchal narrow streak to behind the gape, and some black mottling on the crown. A short lateral black band in the neck just behind the occipito-nuchal band.

Habitat. - From the Gangetic Delta to the Malay Archipelago.

Distira Lapemoides (Gray).

```
Aturia lapemoides, Gray, Cat., I849, p. 46.
Hydrophis lapemoides, Günther, Rept. Brit. Ind., I864, p. }375
    ," holdsworthii, Günther in Amn. and Mag. Nat. Hist., 1872, p. 33.
    ,, stewartii Anderson in Proc. Zool. Soc. Lond., I872, p. }399
    ,, ,", Fayrer, Thanatoph. Ind., I874, p. xxiv.
    ,, Ewart, Pois.Snakes Ind., I878, p. 49, pl. I8;'I.
Distira lapemidoides, Boulgr. in Blanford, Fauna Ind. Rept. and Batrach., 18go,
                                    p. 4I2.
    ?",
?
    ,"Jan,Icon. Gén., 4I, pl. v, fig I.
    ,, ,, Boulgr.Cat., I896, iii, p. 274.
```


Fig. 42 -Distiva hybrida. Aftet Jan, Icon. Gén., 4I, pl. v, fig I.
hybridus (Schlegel). This form is only known from the single example described, and figured by Schlegel in 1844, and subsequently by Jan in 1872. Not having seen this I am unable to pronounce upon the posterior maxillary teeth, but after an examination of the figures referred to above, and a consideration of the detailed description, the specimen appears to me to agree with lapemoides (Gray) as Mr . Boulenger records the costals as juxtaposed, otherwise it would completely agree with cyanocincta (Daudin).

This form is separated from cyanocincta in Mr. Boulenger's key on one point only, viz., the juxtaposition of the posterior costals. In all other characters it appears by his own showing they agree, and I can find no other difference between the two after a careful comparison. It is very dubious whether this single peculiarity justifies
the separation of the two, especially as specimens of tasciata (Schneider) are to be found with the costals imbricate, though normally juxtaposed in that species. I note, too, in reference to a specimen labelled cyanocincta in the British Museum, viz., the one presented by Lort Phillips from Bushire, "scales almost juxtaposed." As there is in that Institution a series of nine specimens labelled lapemoides in which the posterior costals are very definitely juxtaposed, I think it wiser to adhere to Mr. Boulenger's opinion, though I think it probable these may, at a later date, be relegated to the rank of a variety only of cyanocincta. I have examined in all only nine examples.

Description.-Rostral,--the portion visible above from half to three-fifths the internasal suture. Præfrontals, -touch the second supralabial (two exceptions in which they touch none). Postoculars, two or three (one on one side in one example). Temporals, -broken up and replaced by small scales, two or three of which are superposed anteriorly. (One large shield occurs on one specimen on one side). Supralabials,-seven or eight subject to much variation, the third and subsequent shields sometimes divided. In Jerdon's specimen from Madras in the British Museum the third and succeeding shields are all divided, and according to some authorities, therefore, none touch the eye. In Layard's specimen the fourth is divided on the left side, and the same arrangement only reversed on the two sides is seen in the type. In one of Holdsworth's examples the third is divided, and the fourth entire. Infralabials, -four, the last in contact with three or four scales behind; the suture between the first usually less than that between the anterior sublinguals. Marginals,-a complete row succeeds the second or third infralabial. Sublinguals, -two well-developed pairs, the fellows of the posterior pair separated (in at least two examples they just touch). Costa1s, -anterior 3I to 37, midbody 40 to 49 , posterior 37 to 51 , juxtaposed posteriorly. Ventrals,-300 to 387, all entire or a few divided posteriorly, twice or less than twice the breadth of the last costal row. Colour,-very variable. Some specimens are completely banded, in others the bands are obsolete ventrally, and converted into dorsal bars. In one of Holdsworth's examples from Ceylon, there are vertebral spots between the bars constituting a variety analogous to the forma tupica of spiralis. In Blanford's specimen from Gwadar the annuli are complete, and about as broad as the intervals at midcosta. In a specimen of Holdsworth's from Ceylon, the bands are complete, and only about one quarter the breadth of the intervals at midcosta. The analogy of these varieties with varieties of spiralis and cyanocincta is very striking.

Habitat.-Shores between the Persian Gulf and Puri on the Coromandel Coast of India.

Distira bituberculata (Peters).

Hydrophis bituberculata, Peters in Mon. Berl Acad., 1872, p. 855, pl. ii, fig. 2.
Distira bituberculata, Boulgr. in Blantord Fauna Brit. Ind. Rept. and Batrach., I890, p. 4 II, and Cat., I896, iii, p. 296.

Fig. 43-Distira (Hydrophis) bituberculata. After Peters, Mon. Berl. Acad., pl. ii, fig 2.
This form is only known from a single example which is preserved in the Berlin Museum. As already observed by Mr. Boulenger its affinities are extremely close to lapemoides, and I am dubious whether it has sufficient claim to be considered distinct from this or cyanocincta, uniting as it does the characters of each. The difference in the number of rows anteriorly and in midbody is remarkable, viz. i9, a disparity beyond that seen in any other species of approximately similar corporeal habit. The greatest difference I have met with in lapemoides is in Fayrer's specimen from Puri now in the British Museum, and in this it amounts to 16 . In the other specimens I have seen it ranges between 9 to II. The single large anterior temporal is probably abnormal, as seen in certain specimens of cyanocincta, and other species in which these shields are normally small.

Not having examined the specimen I prefer to leave it as placed by Peters and Boulenger.

Description.-Rostral, -the portion visible above about two-thirds the internasal suture. Præfrontals, -touch no supralabial. Postoculars,-two. Temporals,-one large anterior shield, followed by another subequal shield. Supralabials,-seven, the anterior five well-developed, the third and fourth touching the eye. Infralabials,-four, the last touching three or four scales behind; the suture between the first subequal to that between the anterior sublinguals. Marginals, -one after the third infralabial. Sublinguals,-two well-developed pairs, the fellows of the posterior pair separated. Costals, -anteriorly 28 , n midbody 47 ; imbricate posteriorly. Ventra1s, -278 , about twice as broad as the last costal row. Colour,-dorsally dark brown, ventrally yellowish.

Habitat.-Ceylon.
Distira torquata (Günther).
Hydrophis torquatus, Günther, Rept. Brit. Ind., 1864 , p. 369, pl. xxv, fig. H.

> Boulgr. in Blanford, Fauna Brit. Ind. Rept. and Batrach., I890, p. 402.
> ", Boulgr., Cat. Brit. Mus., I896, iii, p. 283.

Hydrophis obscurus, Boulgr. in Blanford, Fauna Brit. Ind. Rept. and Batrach. 1890, p. 403.

```
Sclater,List Snakes Ind. Mus., 1891, p. 63, Nos. 8254, 8256 and 8262.
Boulgr., Cat., iii, p. 284.
Wall in Mem. As. Soc. Bengal, 1906, p. 286.
", ," diadema, Günther, loc. cit., p. 373, pl. xxv, fig S.
stricticollis, Günther, loc. cit., p. 376, p1. xxv, fig. R.
Anderson in Proc. Zool. Soc. Lond., I872, p. 397.
Fayver, Thanatoph. Ind., 1874, pl. xxviii.
? ,, nigrocinctus, Cantor, Cat. Malay Rept., I847, p. 128.
```

Distira lapemidoỉes, Wall and Evans in Journ. Bomb. Nat. Hist. Soc., xiii, pp. 346 and 615.

Fig. 41.-Distiva tnrquata ($\times 2$).
I have examined 29 examples of this very well differentiated species. The types are in the British Museum. With them I think should be united II of the 13 specimens at present labelled obscurus in that institution. As already mentioned under obscura in this paper, the remaining two specimens are Russell's types of Daudin's obscurus, and do not accord in any way with the description given by Mr. Boulenger under that title. His description, however, fits the remaining II examples labelled obscurus which I cannot see differ in any way from Günther's torquatus. Reference to Mr. Boulenger's descriptions of these two species (viz., obscurus and torquatus) in his Catalogue shows the following differences: the frontal is slightly shorter in torquatus, and the posterior shields in contact. The first point is too trifling to consider of specific value, and as regards the chin shields, in 7 out of the II specimens above alluded to as labelled obscurus, seven have the posterior fellows in contact. I have examined the examples of each supposed species side by side, and can find no means of discriminating between them. The two should, I think without any doubt, be united and Günther's name torquatus retained to designate the species, as all names given prior to this are preoccupied The posterior maxillary teeth in the type specimens labelled torquatus are grooved, as I find them in specimens labelled obscurus.

Description. -The body anteriorly is from less than one-third to two-thirds the extreme depth behind. The former measurement is from a specimen of mine from Burma (figure 44) in which the costals are anterior 4I, midbody 49, posterior 4I,
juxtaposed, and ventrals 427. The latter is from another specimen of mine from the same locality in which the costals are anterior 38 , midbody 48 . posterior 42 juxtaposed, and ventrals 398. Rostral, -the portion visible above from half to three-fifths the internasal suture. Præfrontals,-touch the second supralabial. (This contact fails in one example on both sides, and in two others on one side). Postoculars, -one. (In one example there are two on one side, and in another three on one side). Temporals,-usually one large anterior shield, and sometimes a subequal posterior one. (There are two superposed anterior on one side in two specimens, and on both sides in one). Supralabials, -seven or eight, the anterior four, five or six entire : the third and fourth touch the eye (The fifth also in at least four examples). Infralabials,-four, the last in contact with three or four scales behind, the suture between the first usually less than that between the anterior sublinguals. Marginals, one or more after the third (sometimes the second) infralabial. Sublinguals, two well-developed pairs, the fellows of the posterior as frequently separated as in contact. Costals, -anterior 30 to 4 I , midbody 37 to 54 , posterior 34 to 46 ; subimbricate, or juxtaposed posteriorly. Ventrals,-3Io to 438 ; mostly entire ; twice or less than twice the breadth of the last costal row.

Colour.-Olivaceous dorsally merging to yellow ventrally. From 40 to 65 black rings surround the body, which gradually lack definition with increasing age. Some of these are interrupted costally sometimes, especially the posterior ones. At midcosta the rings are about as broad as the spaces. Head mottled above with yellow and black.

Habitat.-All are from coasts between the Gangetic Delta and Borneo. By far the majority of specimens are from the Burmese Coast.

Distira cemplescens (Shaw).
Hydrus cærulescens, Shaw, Zool., I802, iii, 561.
Hydrophis cærulescens, Gray in Zool. Misc., 1842, p. 62, and Cat., 1849, p. 55.

"	,	Gïnther, Rept. Brit. Ind., 1864, p. 365, pl. xxv, fig C.
,	,"	Boulgr. in Blanford, Fauna Brit. Ind. Rept and Batrach 1800, p. 400.
,'	"	Boulgr., Cat. Brit. Mus., 1896, iii, p. 275.
	,	Sclater, List Snakes Ind. Mus., 1891, p., 62.

Fig. 45.-Distiva caerulescens.

I have examined 29 of this well-differentiated species. Eleven of these which I examined in the Indian Museum, I omitted by an oversight to make any mention of in my paper on the Sea Snakes in that Institution (Mem. Asiat. Soc. Bengal, Igo6, Vol. I, No. I4).

The costals in the neck and body are unusually numerous for members of this genus, and the sublinguals are poorly developed or absent. One feature it possesses which is peculiarly its own, and in fact is only seen in one other species of the subfamily as an abnormal trait, viz., in Hydrus platurus. This feature concerns the parietal shield which usually fails to touch the postocular. Unfortunately this is not quite constant though constant enough to prove of considerable value in assisting identification.

I find the posterior maxillary teeth are grooved.
Description.-The forebody is from one-third to two-thirds the extreme body depth. Rostral, -the portion visible above is about half the internasal suture. Præfrontals, 一touch the second supralabial. Postoculars,-one or two, the upper not touching the parietal on one or both sides (except in five examples). Temporals, -absent, replaced by small scales, two or more being superposed anteriorly (one large anterior on one side in one specimen). Supralabials,-six to eight, the first four or five entire, the rest divided. Infralabials, -four, the last in contact with three or four scales behind ; the suture between the first shorter than that between the anterior sublinguals when the latter are developed. Marginals, -one after the third infralabial. Sublinguals,-one or two pairs, one or both often ill-developed or absent, the posterior when developed usually separated (in two examples in contact). Costals, -anterior 36 to 45 , midbody 42 to 53 , posterior 37 to 46 , imbricate or subimbricate anteriorly, imbricate, subimbricate, or juxtaposed posteriorly. Ventrals, 277 to 339 ; entire twice or rather less than twice as broad as the last costal row.

Colour.-Bluish, or greyish-blue, darker dorsally, surrounded with from 35 to 58 dark purplish or bluish black bands, which are as broad or broader than the interspaces at midcosta, complete in the young, but lose definition and become obscured or lost ventrally with advancing age. In some adults these are very obscure.

Habitat.-Coasts between Bombay and Penang.
Distira ornata (Gray).
Aturia ornata, Gray in Zool. Misc., 1842, p. 6I, and Cat., I849, p. 45.
Chitulia inornata, Gray, Cat., p. 56.
? Hydrophis schlegelii, Jan, Icon. Gén., I872, 40, pl. vi, fig. I. ornata, Günther, Rept. Brit. Ind., I864, p. 376, p1. xxv, fig. V. ellioti, Günther, loc. cit., p. 377, pl. xxv, fig. N.
? ,, striatus, Jan, loc. cit., 40, pl. v, fig. I.
? ", polyodontus, Jan., loc. cit., 4I, pl. I, fig. I.
Boulgr., Cat., I896, iii, p. 274.
Distira ornata, Boulgr. in Blanford, Fauna Ind. Rept. and Batrach., I890, p. 4 II
,, ,, Boulgr. Cat. Brit. Mus., I896, iii, p. 290.

Distira ornata, Wall in Proc. Zool. Soc. Lond., I903, pp. 95 and Ior.
,, ,. Wall in Mem. As. Soc. Bengal, 1906, p. 289, and Spol. Zeylan., August, I907, p. I68.
,, andamanica, Amandale in Journ. As. Soc. Bengal, 1905, p. I94.
? Hydrophis godeffroyi, Peters in Mon. Berl. Acad., 1872, p. 856, pl. I, fig. 3

> ,, Boulgr., Cat., 1896, iii, p. 29r.
? ., pachycercos, Fischer in Abhandl. Nat. Hamb., iii, 1856, pl. ii, and p. 44.
., pachycercus, Günther, loc cit., p. 378.
.. ,, Jan, loc. cit., 39, pl. vi.
. ,", Boulgr., Cat., iii, p. 297
frontalis, Boulgr., Cat., iii, p. 275 (non Jan).
Hydrophis ocellata, Gray, Cat., p. 53, in part.
,, Günther, Rept. Brit. Ind., I864, p. 378, in part.
Distira ornata, Boulgr., Cat, I896, iii, p. 290, in part.

Fig. 46.—Distiva crnata (\times ($\frac{1}{2}$).
I have examined 36 specimens exclusive of those I consider should be absorbed under this title.

It is, I consider, well marked off from the other species. Thus it is one of the few that have no marginal scales. The only other speries that are so distinguished are cantoris, gracilis and jerdoni, all of which are too we'1 differentiated to be confused.

One specimen referred by Mr. Boulenger to this species, viz., the one presented by I ord Derby to the British Museum and originally described by Gray ${ }^{1}$ as a distinct species under the name ocellata, has, I consider, such well marked characters, that I take the same view as Gray, supported by Günther.? I refer to it again under the title H. ocelata.

Fig. 47.-Hydrophis godeffroyi. After Peters, Mon. Berl. Aca7., I872, p1. 1, fig. 3.

I think that the Hydrophis godeffroyi (Peters), H. pachycercos (Fischer), and H. polyodontus (Jan) will probably prove to be specimens of this species and think the Distira andamanica (Annandale) which I have examined, cannot be separated.

Hydrophis godeffroyi was described by Peters in 1872^{1} from two specimens. Only two other specimens are known, both of which are in the British Museum. The two latter I have examined, and cannot find to differ in any way from specimens of orna'a in the British Museum. The only differences claimed for them by Mr. Boulenger ${ }^{2}$ affect the rows of scales in the neck and body. Thus these are in ornata 35 to 42 in the neck 40 to 50 in the body; in godeffroyi 28 to 33 in the neck, and 38 to 43 in the body. I find, however, that in specimens of ornata in the British Museum the anterior scales vary from 3I to 39, and in the godeffroyi from 30 to 33. Again the scales in midbody in ornata vary from 36 to 45 ; in godeffroyi from 37 to 39 . Examined side by side with specimens of ornata they seem to agree in every respect.

The description of Peters' type-specimens, one of which he figures, entirely agrees with specimens of ornata.

Fig. 48.-Hydrophis pachycercos.

After Jan, Icon Gén.. 1872, 39, pl. vi.

Hydrophi pachycercos was described and figured in 1856 by Fischer from a single specimen. Jan figures another specimen, and a third so named is in the British Museum. This last specimen, I have seen and consider, has every right to be called ornata. The differences claimed by Mr. Boulenger if one refers to his descriptions are-
ornata.
(I) Head moderate.
(2) Rostral broader than deep.
(3) Posterior chin shields not in contact.
(4) Neck scales 35 to 42 .
(5) Body scales 40 to 50 .

pachycercos.

(r) Head rather small.
(2) Rostral as broad as deep.
(3) Posterior chin shields in contact.
(4) Neck scales 27 to 29 .
(5) Body scales 38 to 39 .

Of these differences the first is too indefinite, and the second too minute to discuss. The third is again minute for the posterior chin shields only just touch in the British Museum specimen labelled pachycercus. This is, moreover, a character constant in but very few of the species. As regards neck and body scales, the differences claimed vanish when the scales are counted as I count them at definite spots in the body length, and then come within the range taken from my 36 specimens. Thus I make the range for the anterior scales in ornata 30 to 4 I , the scales in midbody 33 to 46 . In pachycercus they are 29 anteriorly, and 39 in midbody. The British Museum

[^38][^39]specimen agrees with Jan's in the failure of the præfrontal to meet the second labial, which must be considered an abnormal feature. The same abnormality occurs in 12 of my 36 specimens; in 4 of these, however, only on one side, the usual contact with the second labial occurring on the other. In all respects Jan's description and figure accord with ornata, and so apparently does Fischer's type.

Fig. 49.-Hydrophis polyodontus. After Jan, Icon. Gén., I872, 41, pl. I, fig I.
Hydrophis polyodontus.-This is only known from Jan's original specimen. The only apparen tdifferences between this and Distiva ornata are that it has one anterior temporal, and only one pair of chin shields. It appears to me in his figure that the lower anterior temporal is confluent with the sixth labial, and hence wanting. As regards the one pair of chin shields, in some ornata, the posterior pair is so small that it may be considered wanting. For instance, I think the type-specimen of ornata in the British Museum can hardly be said to have posterior chin shields. This poor development of the posterior pair is in consonance with what one sees in individuals of other species, for instance jerdoni and corulescens.

Distira andamanica.-Only one specimen is known, which is in the Indian Museum. I have examined it, and find it accords perfectly with specimens of ornata. The scales in the neck and body, which Dr. Annandale thought too few, come well within the range given by my 36 specimens.

Description.-The neck is about half to two-thirds the extreme body depth.
The head shields are constant if one excludes the postoculars, temporals and labials.

Rostral,-portion visible above from about half to three-fifths the internasal suture. Præfrontals, -touch the second supralabial (12 exceptions, and in four of these on one side only). Postoculars, -two (three in six examples, and in three of these on one side only). Temporals, -usually broken up, two or three superposed scales occurring anteriorly (in five examples a well-developed single anterior shield, in two of these on one side only). Supralabials, ...seven or eight, the first three entire, but any or all of the rest may be divided; the third and fourth, third, fourth and fifth, or fourth, fifth and sixth may touch the eye. Infralabials, four, the last in contact with three or four scales behind, the suture between the first usually less than that between the anterior sublinguals. Marginals, - none (one after the third on one or both sides in three examples only). Sublinguals,--two well-developed pairs, the posterior fellows separated, or the posterior pair ill-
developed or absent. Costa1s, - anterior 29 to 4 I , midbody 33 to 46 , posterior 28 to 42 , feebly imbricate anteriorly, feebly imbricate or juxtaposed posteriorly. Ventrals,-227 to 300, entire or a few divided posteriorly, about twice or less than twice the breadth of the last costal row.

Habitat.-From the Persian Gulf to Australia and as far north as the Loo Choo Islands and Japan.

Colour.-The adornment of this species is very diversified, and at least six well defined varieties may be met with.
(I) Completely banded. This is seen more often in young specimens, but in rare instances, the bands are preserved towards or into adult life. Figure 5I furnishes a good illustration from the specimen presented by me to the British Museum. It was collected by Mr. Owston in the Loo Choo Islands. The specimens of godeffroyi (Boulenger) in the British Museum which I cannot separate from ornata are very similar. The bands taper ventrally, are complete anteriorly, but incomplete ventrally in the hinder part of the body. A specimen from Karwar in the Bombay collection has dorsal bars anteriorly, and nearly complete tapering annuli behind. This form is analogous to variety (I) of viperina.
(2) Forma typica (Gray). Dorsum beset with blackish bars which are discrete, and broader than the intervals. Much the commonest variety in adults and young. The specimens of pachycercus in our National Collection which I cannot distinguish from ornata are much the same, but the bars are less distinct. It is analogous with the forma typica of viperina.
(3) Like the last but the dorsal bars modified into thombs, the angles of many of which may be confluent vertebrally. Polyodonta (Jan) which I regard as merely a variety of ornat. is a good example. It is very analogous to var. (3) of viperina.
(+) Dorsum ornamented as in "forma typica," and the costal region with a single, more or less complete, series of large spots or bars alternating with the dorsal series. It is not uncommon, Jerdon's example in the British Museum (Fig. 50) is an excellent illustration. It is from Madras. A specimen in the Colombo Museum (No. I27) is presumably of localorigin. A young specimen in the Indian Museum presented by Captain Lloyd, I.M.S., is from Sandaway Island on the Burmese coast. In this the costal spots are smaller than in the otiler examples. Of this variety is, aiso, I consider, frontalis (Boulenger, non Jan). It is very comparable to var. subcincta of spiralis.
(5) inornata (Gray). The whole dorsum black as though ail the dorsal bars of "forma typica" had become confluent. The band so produced occupies the upper two-fifths or half of the body depth, and is sharply defined, reminding one of the colour disposition of the common variety of Hydrus platurus. It is a rare form. The type, viz. inornata (Gray), is
from the Indian Ocean, and another specimen also in the British Museum is Kempe's from India, the exact locality not known. TLis form is very comparable to var. jayakari of viperina and var. phipsoni of cyanocincta.
(6) Ornamented with many ocelli of very variable size and capricious distribution, the largest occurring for the most part dorsally. This form is only known from Australia, and has been confused with ocellata (Günther) which latter is very similar in coloration, but I consider it a very distinct species. It deserves the name pseudocellata. I think it very analogous to the variety elegans of cyanocincta.

Distira ocellata (Gray).
Hydrophis ocellata, Gray, Cat., p. 53, in part.
,, Günther, Rept. Brit. Ind., I864, p. 378, pl. xxv, P., in part.
Distira ornata, Boulgr. in Blanford, Fauna Brit. Ind. Rept. and Batrach. . 1890, p. 4 II , in part.

$$
\text { .. } \quad \text { Boulgr. Cat., I896, iii, p. 290, in part. }
$$

Fig. 53.-Distiva ocellata. After Günther's figure of the type specimen, Rept. Brit. Ind., pl. xxv, fig. P.
I cannot accept in toto the view held by Mr. Boulenger in uniting ocellata (Gray) with ornata (Gray). So far as the type-specimen of ocellata is concerned I find the rows of costals much greater than in the other specimens so named, and they exceed by 12 the outside limits given by my series of 36 examples of ornata at midbody.

The difference is enormous. My view regarding the type-specimen of ocellata supports that previously held by Gray and Günther.

The other specimens referred by Gray and Günther to ocellata I consider distinct, and I agree with Mr. Boulenger that they are but colour varieties of ornata (Gray).

The species ocellata thus rests on a single specimen which is in the British Museum.

Description.- The neck is about half the extreme body depth.
Rostral, 一 the portion visible above is rather more than half the suture between the nasals. Præfrontals,--touch the second labial. Postoculars,-two. Tem-porals,-two, ill-developed, superposed scales anteriorly, the lower reaching the labial border. Labials,-six; (if the lower temporal is not considered as such) the third and fourth touching the eye. Infralabials, -five, the fourth largest, and in contact with the fifth, and one small scale behind; the suture between• the first pair subequal to that between the anterior sublinguals Marginals,-none. Sub-
lingua1s,-two pairs, the posterior ill-developed and separated. Costa1s,-anterior 45, midbody 58, posterior 56; imbricate anteriorly, juxtaposed posteriorly. Ven-trals,-290; entire and nearly twice the breadth of the last costal row throughout. Colour,-yellowish with 3I black broad dorsal bars, alternating with narrow bars, all rounded lateraly. Several series of round spots costally very variable in size, and capricious in distribution

Habitat.-Australia.
Distira major (Shaw).
Hydrus major, Shaw, Zool., 1802, iii, p. 558, pl. cxxiv, in part.
Disteira doliata, Günther, Rept. Brit. Ind., 1864, p. 350.
Hydrophis mentalis, Gray in Zool. Misc., I842, p. 62, and Cat. 1849, p. 53.
? Disteira dumerilii, Jan, Icon. Gén., 1872, 39, pl. iv.
Hydrophis major, Günther, loc. cit., p. 363, pl. xxv, fig. G.
Distira major, Boulgr. in Blanford, Fauna Brit. Ind. Rept. and Batrach., 1890, p. 407, and Cat. Brit. Mus., I896, iii, p. 289.

Fig. 54.-Distiva major. After Günther, Rept. Brit. Ind, r864, pl. xxv, fig. G.
The only specimens I have seen are the five in the British Museum. In many respects the species shows close affinities with Astrotia stokesi.

Description.-Body anteriorly more than half the extreme depth posteriorly.
Rostral,- the portion visible above about half the internasal suture. Præ-frontals,--touch the second supralabial. Postoculars,-two. (One on one side in one example, and on both sides in one). Temporals,--two small superposed scales anteriorly. Supralabials, -eight or nine, the first four entire, the rest variously divided; the third and fourth touch the eye. Infralabials,-four, the last in contact with three or four scales behind ; the suture between the first about equal to that between the anterior sublinguals. Marginals, 一a complete row after the third infralabial. Sublingua1s, —usually two pairs, the posterior fellows separated. Sometimes one or both poorly developed. Costals, -anterior 3 I to 35 , midbody 33 to 42 , posterior 34 to 39 ; imbricate everywhere. Ventrals, - 233 to 250 (200 to 236, Boulenger). Mostly entire or many divided posteriorly ; rather less than twice as broad as the last costal row. Colour,-yellowish ventrally with from 26 to 30 dorsal bars and sometimes an intermediate line : sometimes a series of costal spots, alternate with the bars

Habita t.-With the exception of one from the Indian Ocean all are from Australia

Distira viperina (Schmidt).

? Hydrophis obscurus, Jan, Icon. Gén., 1872, 孔o, pl. vi, fig 2 (non Daud.) viperina, Günther, Rept. Brit. Ind., I864, p. 378.
Distira viperina, Boulgr. in Blanford, Fauna Brit. Ind. Rept. and Batrach., I8go, p. 413 .
,. ,, Boulgr., Cat. Brit. Mus., I896, iii, p. 298.
,, ,, Sclater, List Snakes Ind. Mus., I891, p. 66.
., ,, Wall in Proc. Zool. Soc Lond., 1903, p. 96, and in Mem. As. Soc. Bengal, 1906, p. 292.
Hydrophis jayakari, Boulgr. in Ann. and Mag. Nat. Hist., I887 (5), xx p. 408
.. nigra, Anderson in Proc. Zool. Soc. Lond., 1872, p. 399.
," ,, Fayver, Thanatoph. Ind., 1874, pl. xxv.
," ," Ewart, Pois. Snakes Ind., 1878, pl. 19, fig. I.
,, ,, Boulgr., Cat. Brit. Mus., 1896, iii, p. 274.
Distira lapemidoides, Sclater, loc. cit., p. 66. No. 8269.

Fig. 55.--Distira vinerina.

A

P

C

Fig. 56.—Distiva (Hydrophis) nigra (Anderson). After Fayrer, Thanatoph. Ind., pl. xxv.
I have examined 2I specimens. No Hydrophid with the exception of jerdoni presents such well-marked characters to differentiate it from the rest of this genus. It has at least two shields with characters peculiar to itself, and so pronounced that either will suffice to declare its ident'ty. These are the frontal and the anterior ventrals.

In all the other species of this genus the frontal equals, or is rather greater in breadth than, the supraoculars. In viperina it is at least twice as broad (often three
times). Again in all the other species the sutures made by the frontal with its contiguous shields are subequal, or the fronto-parietal sutures are rather the longest. In viperina the fronto-supraocular sutures are the shortest, and only half as long as the fronto-parietals. The anterior ventrals in all the other species are barely twice as broad as the last costal row. In this they are four times as broad or broader. I think it extremely probable that osteological peculiarities will be found justifying its separation from this genus and the creation of a genus apart.

Hydrophis nigra. This is known from a solitary specimen which is now in the British Museum. It was originally described by Anderson, ${ }^{\text {b }}$ and subsequently figured by Fayrer. ${ }^{\text {. }}$ It has the peculiar frontal and anterior ventrals typical of viperina and agrees with this species in all other respects except colour, being black throughout. (The specimen is now shrivelled, and the detail of some of the head shields in consequence no longer discernible with certainty. Where I have had any doubt, however, reference to Anderson's description from the fresh specimen has cleared it up).

I reproduce Fayrer's figures of this snake. From an artistic point of view the figures leave much to be desired, but the two most important and clinching characteristics of viperina (Schmidt) are well shown, and to my mind can leave no possible doubt that the specimen is a melano-viperina.

Description.-The neck is about half to three-fourths the extreme body depth. Some of the head shields are very irregular in individuals, notably the postoculars, temporals, supralabials, and posterior chin shields. Rostral, -the portion visible above is about half (sometimes rather more or less) the suture between the nasals. Præfrontals, --touch no supralabial. Frontal, -twice to three times the breadth of the supraoculars. Fronto-parietal sutures twice as long as the frontosupraoculars. Postoculars, --two usually (in four examples one). Temporals,very irregular, and usually broken up. (In four examples a fairly well-developed anterior shield). Supralabials,-subject to much variation. Sometimes 7, 8, or 9. Often one or more of these shields from the third backwards divided. The third and fourth, third, fourth and fifth, or fourth and fifth touch the eye. Infralabia1s, -four, the last in contact with three or four scales behind; the suture between the first, equal to or greater than that between the anterior sublinguals. Margina1s, one usually after the third infralabial (sometimes two). Sublinguals,-two fairly well-developed shields, the fellows of each in contact. (In five examples the posterior separated). Costals, -anterior 27 to 34 (usually 27 to 3 I), midbody 39 to 50 (usually 39 to 46), posterior 35 to 45 ; imbricate anteriorly, juxtaposed posteriorly. Ventrals, 235 to 267 . Entire throughout, anteriorly four or five times, midbody and posteriorly barely twice as broad as the last costal row.

Habitat.-Persian Gulf to South China. It is remarkable that though not an uncommon species, no specimen that I have seen has come from the Malayan Archipelago.

Colour.-This is very variable. Most specimens are adorned with from 26 to 37 dorsal bars or complete bands. I group the varieties as follows :-
(I) Completely banded. This is an unusual form seen generally in young specimens. Jerdon's example in the British Museum from Madras affords a good illustration. Another such is No. 8277 in the Indian Museum from Puri. I have seen one other in the Bombay Society's collection from Karwar. Some of the bands are frequently confluent vertebrally.

It is analogous to var. (I) of ornata.
A young specimen in the Indian Museum, No. 8274, is intermediate between this and the next form. It has dorsal bars anteriorly, and complete bands posteriorly.
(2) Forma typica (Schmidt). With black dorsal bars, sometimes confluent vertebrally. This is one of the commonest forms, and very comparable to the forma typica of ornata.
(3) Like the last but the bars modified into rhombs, the angles of which are very prone to vertebral confluence. It is one of the commonest varieties. I have seen specimens from Karachi, Malabar, and Swatow in South China. (The last in the City Hall Museum, Hong-Kong, No. 2, labelled Hydrus major).

It is analogous to var. (3) of ornata.
(4) jayakari (Boulenger). The whole dorsum black as from a confluence of the bars seen in forma typica. The band thus produced sharply defined costally. Two such examples are in the British Museum including the type which is from Muscat. The other is from the Indian Ocean. A similar specimen in the Indian Museum (No. 8276) is from Puri. A somewhat modified form is that from Bombay presented to the British Museum by Mr. Phipson in which very indistinct bars can be discerned across the dorsal band. This variety is analogous to variety phipsoni of cyanocincta, and inornata of ornata.
(5) nigra (Anderson). This is known from a unique example now in the British Museum, which is young and completely black. It should be considered a melanotic freak, but it is convenient to tabulate it here as a colour variety. It is from Puri.

Distira Jerdoni (Gray).
"Shiddil, " Russell, Ind. Serp., I8o i, ii, p1. xii.
? Hydrus nigrocinctus, Cantor, Cat. Malay Rept., 1847, p. 129, pl. x1, fig. 8 (nec Daudin, nec Jan).
Kerilia jerdonii, Gray, Cat., 1849, p. 57.
Hydrophis jerdonii, Günther, Rept. Brit. Ind., 1864 , p. 362, p1. xxv, fig. B.
Fayrer, Thanatoph. Ind., 1874, pl. xx.
$\begin{array}{lll}" & ", & \text { Eayrer, Thanatoph. Ind., 1874, p1. xx. } \\ " & , " \quad \text { Ewart, Poisonous Snakes Ind., 1878, pl. I4. }\end{array}$
Distira jerdonii, Boulgr. in Blanford, Fauna Brit. Ind. Rept. and Batrach., 1890, p. 408, and Cat. Brit. Mus., I896, iii, p. 299.
,, ," Sclater, List Snakes Ind. Mus., I891, p. 65.
" ," Wall in Mem. As. Soc. Bengal; 1906, p. 293, and in Spol. Teylan., August, 1907, p. I7I.

Fig. 58.-Distiva jerdoni ($\times 2$ 2).
I believe Mr. Boulenger is in error in supposing Jerdon's specimen in the British Museum the type (vide Catalogue, 1896, vol iii, p. 299). A specimen of this species (No. 528) in the Royal College of Surgeons' Museum, London, collected by Russell, on comparison with Russell's plate xii (Ind. Serp., vol. ii, I8oI) leaves little doubt in my mind is the original of the figure, and if my conviction is correct should be acknowledged the type.

I have examined I7 examples. It is so very well differentiated from all the other species in the subfamily, and those of the genus to which it has been attached, that it is one of the few snakes that has not been confused with other forms. The costal rows (19 to 2I) are fewer than in any other species of this genus. The infralabials being three only are absolutely distinctive, and so is the peculiar turtle-like snout. The descent of the large anterior temporal to the labial border is only seen in aberrant examples of two or three other species.

Description.-Body anteriorly from about one-half to two-thirds the greatest depth posteriorly.

Rostral, - the portion visible above is from three quarters, to equal to the internasal suture. Præfrontals, -touch no supralabial. (In one they touch the second on one side, and in another on both sides). Postocu1ars, -one (two in four examples, three of which on one side only). Temporals, -confluent with sixth supralabial to form a large shield. Often succeeded by another subequal shield. Supralabials,-five anterior to the temporo-labial, the third and fourth touching the eye. Infralabials, -three, the last touching two scales only behind, only the first two in contact with the anterior sublinguals; the suture between the first subequal to or rather shorter than that between the anterior sublinguals. Mar-ginals,-none. Sublinguals, -two rather poorly developed pairs, or only an anterior pair. Sometimes a confluence between the anterior and posterior on one or both sides occurs. Costa1s,-anterior I7 (16 in one, 18 in two examples), midbody 19 to 21 , posterior 19 to 21 ; imbricate throughout. Ventrals, - 2 I9 to 248 entire everywhere, twice or hardly twice the breadth of the last costal row.

Colour. -Olivaceous dorsally, yellowish ventrally. Surrounded by 31 to 4 I black bands, with usually an intermediate black spot or bar dorsally. In old specimens the bands may become obscured ventrally, and be converted into bars. In a specimen in
the British Museum, the præocular is confluent with the præfrontal on both sides. In another I obtained from Madras the præfrontals fail to meet one another owing to the forward projection frontal.

Habitat.-All were captured along the shores between Ceylon and Penang.

ACALYPTUS.

Acalyptus peroni (Duméril et Bibron).

Acalyptus superciliosus-
vel peroni, Duméril et Bibron, Erp. Gen. Hist. Nat., vii, p. I340.
Acalyptus peronii, Duméril in Mem. Acad. Sc. Paris, 1853, xxiii, p. 522.
Acalyptophis superciliosus, Günther, Rept. Brit. Ind., I864, p. 359.

$$
\begin{aligned}
& ", \quad \text { Jan, Icon. Gén., I872, 40, pl. ii, fig. } 2 . \\
& ", \quad \text { peronii, Boulgr., Cat., iii, I896, p. } 269 .
\end{aligned}
$$

A

B

C

Fig. 59.-Acalyptus (superciliosus) teroni. After Jan, Icon. Gén., 40, p1. ii, fig. 2.
I have examined three specimens only, all in the British Museum. The two examples presented by Dr. Günther, and the Earl of Crawford appear to me alike, but that presented by Dr. Fischer will, I think, prove to be a species apart. In the last named the costals are I9 anteriorly, 24 in midbody, and 23 posteriorly. The ventrals I56, and narrower than the last costal row. On the other hand the two former have 23 costal rows anteriorly, and 29 in the mid and posterior parts of the body. The ventrals are 195? and 209, and about as broad as the last costal row. Fischer's specimen is from Hong-Kong. The habitat of Günther's is unknown, and the Earl of Crawford's is from Torres Straits. I think Fischer's specimen should be given specific rank, but there being only one specimen I prefer to follow Mr. Boulenger's ruling in the matter.

Description.-The head shields are studded with asperities.
Rostra1,-in contact with four shields, the portion visible above about two-thirds the internasal suture. Præfrontals, -touch no supralabial. Fronta1, -broken up. Parietals, -broken up. Nasa1s,-touch the first and second supralabials; nostril in the nasal shield, a suture runs from it to the præfrontal, and another to the second supralabial, so that the shield is divided into two parts. The detached fragment, however, is obviously a part of the nasal, and not a separate shield. A similar condition
is met with in individuals of many other hydrophids, viz., Enhydrina valakadyn, Enhydris hardwickii, Distira ornata, D. viperina, D. nigrocincta, and others. Præocu-1ar,-one. Postoculars,---three. Temporals,-many, small, and scale-like. Supralabia1s,-seven, the anterior five entire and well-developed, the rest small; the third and fourth touch the eye. Infralabials, -four, the fourth divided, the last in contact with two scales behind. Marginals,-one or more after the third infralabial. Sublinguals, -two well-developed pairs, the fellows of each in contact. Costals, -anterior I9 to 23 , midbody 24 to 29 , posterior 23 to 29 ; subimbricate. Ventrals,- -56 to 209 about as broad, or narrower than the last costal row.

Colour.-Yellowish-grey with a series of dorsal black cross-bars, tapering subcostally, and a series of ventral bars alternating with the above.

Habitat.-Torres Straits, Hong-Kong.

THALASSOPHIS.

Thalassophis anomalus (Schmidt).

Thalassophis anomalus, Schmidt in Abhandl. Nat. Hamb., 1852, ii, p. 81, pl. iv. Boulgr., Cat., iii, I896, p. 269.
Hydrophis anomala, Günther, Rept. Brit. Ind., 1864, p. 379.
?
Jan, Icon. Gén., 1872, 40, pl. iv, fig. I.

A

B

C

Fig. 60.-Thalassophis anomalus. After Jan, Icon. Gén., 40, pl. iv, fig. I
I have seen no specimen.
Description.-Rostral, -broken up. Internasals, -narrow, longer than the præfrontals. Personally I regard these as detached fragments of the nasals which in this species like other head shields are prone to subdivision. (In Jan's figure confluent with the nasals). Præfrontals, -four? in one transverse series, the outer not in contact with any supralabial. Frontal, -entire? (divided transversely in Jan's figure). Supraoculars, -entire. Parietals, -entire (showing a tendency to disintegration in Jan's figure). Nasa1s,-lateral ; in contact with the first three supralabials. Præoculars,-one. Postoculars,-two. Temporals,-two or three, small, scale-like. Supralabial,-seven to nine, showing a tendency to subdivision (in Jan's figure the first and sixth are horizontally divided) ; the fourth, fifth and sixth touching the eye. Infralabials, - the fourth is the largest of the series, and in contact with four scales behind. Marginals, -absent. Sublinguals,
-two small pairs, the posterior quite separated by scales. Costa1s,-3I to 33 in midbody ; juxtaposed, strongly tubercular. Ventra1s,-small, subequal or smaller than the last costal row.

Colour.-Yellowish with dark annuli dilated vertebrally.
Habitat.-Java.
Thalassophis? annandalei (Laidlaw).
Distira annandalei, Laidlaw in Proc. Zool. Soc. Lond., rgor, vol. ii, p. 579, and figure.
," ," Boulgr., Fasc. Malay Zool., 1903, pt. I, p. 166.

Fig. 60a. Thalassophis annandalei, \times 2. After Laidlaw, in Proc. Zool. Soc., vol. ii, 1901.
I have not seen a specimen.
Description.-Rostra1, - not broken up. ? Internasa1s, -broad in front, narrowed behind, separating the nasals. Præfrontals,-many arranged in two transverse series. Frontal,-more or less broken up behind, and thus separated by detached fragments from the parietals. Parietals,-irregular; an isolated part surrounded by small scales apparently derived from peripheral disintegration. Nostrils placed in single small scales which appear to be derived from the large shields anterior to them, designated herein as internasals. Analogy seems to indicate that the internasals so called herein should be considered nasals. Præoculars,one. Postoculars,-two. Temporals, -three, small, hardly deserving recognition as such. Supralabials-9 to I2, all subject to division. (I have numbered these shields in the annexed figure as I consider they should be regarded), the 4th to the 7 th may touch the eye. Sublinguals, -one pair present, entire, or divided. Infra-labials,-apparently irregular. Costa1s, -about 76 rows round the neck, 90 to Ioo at midbody, juxtaposed, more or less tuberculate. Ventrals, -barely enlarged, 350 to 370 .

Colour.-Pale greyish-olive above, white below ; back with dark cross-bars, narrower than the interspaces, tapering to a point on the sides.

Habitat.-Malay Peninsula (Patani).

ENHYDRIS.

Key to the species of Enhydris.
(A) Parietals broken up; suture from nostril to second labial
(B) Parietals entire ; suture from nostril to first labial
.. curtus.
.. havdwickir.

Enhydris curtus (Shaw).

Hydrus curtus, Shaw, Zool., i802, iii, p. 562.
Lapemis curtus, Gray in Zool. Misc., I842, p. 60, and Cat., 1849, p. 44.
Hydrophis curta, Günther, Rept. Brit. Ind., 1864, p. 379.
", ," Stoliczka in Proc. As. Soc. Bengal, 1872, p. 91.
,, ," Fayver, Thanatoph. Ind., I874, pl. xxiv.
,, propinquus, Jan., Icon. Gén., I872, 41, pl. i, fig. 2.
Enhydris curtus, Boulgr. in Blanford, Fauna Brit. Ind. Rept. and Batrach., 1890, p. 396, and Cat., iii, 1896, p. 300.
,, ,' Sclater, List Snakes Ind. Mus., 1891, p. 62.
,, ," Wall in Jour. Bomb. Nat. Hist. Soc., xvi, p. 310, and in Spol. Zeylan., August 1907, p. 172.

Fig. GI.-Enhydris curtus $\left(\times \mathrm{I} \frac{1}{2}\right)$.
I have examined in detail 2I examples of this species, which is very common around the Coasts of India. On the Malabar Coast it was the commonest sea snake after Enhydrina valakadyn.

It is a very easy species to recognise. It shares with E. hardroickii alone the peculiar enlargement o. the lowest three or four costal rows. The completely broken up condition of the parietals is only seen in the genus Acalyptus among the Hydrophiinæ with this one exception.

Description.-Rostra1,--touches four shields; the portion visible above is onethird or less than one-third the length of the internasal suture. Præfrontals, touch the second supralabial (the third also in one, no supralabial in one example). Fronta1,-entire. Parieta1s, -broken up; very frequentíy into three, sometimes more parts, which, however, taken together preserve the contour of these shields as seen in other species of the family. ${ }^{1}$ Nasa1s,-touch the first and second supra-

[^40]labials; a suture runs from the nostril to the second supralabial (in three examples to the first). Præoculars,-one. Postoculars,-one or two. Temporals, two or three small shields. Supralabials,-seven usually, sometimes eight; the third and fourth usually touch the eye (sometimes the fifth also, rarely the fourth only). Infralabials. -the fourth is the largest of the series, and in contact with three or four scales behind. Marginals,-a more or less complete row after the second infralabial. Sublinguals, -poorly developed, often so small, they hardly deserve the name. The anterior and posterior fellows are widely separated. Cos-tals,-anteriorly 29 to 36 , midbody 30 to 45 , posteriorly 3 I to 42 ; juxtaposed everywhere ; the lowest three or four rows distinctly enlarged, and in many males the tubercles are remarkably spinose. Ventrals,-I5I to 2I9, ill-developed except anteriorly.

Colour.-Olivaceous with dark, ill-defined dorsal transverse bars, as wide or wider than the interspaces.

Habitat.-Coasts from the Persian Gulf to Borneo.
The post-maxillary teeth are grooved.

Enhydris hardwickil (Gray).

Lapemis hardwickii, Gray, Ill. Ind. Zool., I834, ii, p1. 1xxxvii, f. 2, and Cat., 1849, p. 44.
,, loreatus, Gray in Ann. Mag. Nat. Hist., 1843, xi, p. 46. loreata, Günther, Rept. Brit. Ind., 1864, p. 380.
Hydrophis pelamidoides, Jan, Icon. Gén., 1872, 4I, pl. iii, fig. I. abbreviatus, Jan, loc. cit., 40, pl. iv, fig. 2, and v, fig. 2.
,, fayreriana, Anderson in Journ. As. Soc. Bengal, I87I, p. 19.
Enhydris hardwickii, Gïnther, Rept. Brit. Ind., 1864, p. 380, p1. xxv, fig. W ; Boulgr. in Blanford, Fauna Ind. Rept. and Batrach., 1890, p. 397, and Cat., iii, 1896, p. 301.
.. ., Sclater, List Snakes, Ind. Mus., I891, p. 62.
., ,. Wall in Proc. Zool. Soc. Lond., 1903, p. 96.

Fig. 62.-Enhydris (Hydrophis) hardwickii. After Günther, Rept. Brit. Ind., 1864, pl. xxv, fig. 4.
I have examined at least 22 examples. It is an easy snake to recognise. One feature requires special mention as being almost peculiar to itself, i.e., suture runs from the nostril to the first supralabial. I have seen but two exceptions, and it is a feature I have only seen in a few aberrant examples of E.curtus and Distira ornata among all
the species of this family, the suture when present running to the second supralabial. The ventrals are very small and few, and the costals are juxtaposed everywhere.

Description.-Rostra1,--touches four shields, the portion visible above is about one-third, or less than one-third the internasal suture. Præfrontals,- touch the second supralabial. Frontal, -entire, touches six shields; the fronto-parietal sutures are longest, the fronto-præfrontal shortest. Parietals,-entire. Nasals,touch the first and second supralabials, a suture from the nostril runs to the first supralabial ; sometimes other sutures radiating from the nostril divide this shield into two or three segments, one of which may resembe a loreal (hence the loreata of Gray and Günther). Præoculars,-one. Postoculars, -one, two, or three. Tem-porals,-two, three, or four small superposed shields. Supralabials, -seven or eight, the third and fourth usually touch the eye (rarely the fourth or fifth only, or the third and fifth). Infralabials, -the fourth is the largest of the series, and in contact with three or four scales behind. Margina1s,-a more or less complete row behind the second infralabial. Sublingua1s,-small or absent. Costals,-anteriorly 26 to 32 , midbody 27 to 37 , posteriorly 27 to 34 ; juxtaposed everywhere; the lowest three or four rows enlarged. Ventrals,-130 to 200, smaller than the last costal row.

Colour.-Olivaceous-grey or yellowish with distinct though ill-defined blackish bands, or dorsal bars, the latter often confluent vertebrally.

Habitat.-The Coromandel Coast of India (Puri), through the Ma'ayan Archipelago to New Guinea. It is rare in the Bay of Bengal, but appears to be not uncommon about the Philippines.

The post-maxillary teeth are grooved.

HYDRUS.

Hydrus platurus (Linnæus).

Anguis platura, Linn., Sys. Nat., I766, i, p. 391.
" Nalla Wahlagillee pam," Russell, Ind. Serp., I796, i, pl. xli.
Pelamis bicolor, Daudin, Rept., 1803, vii, p. 366, pl. 1xxxix.
Gray, Cat., 1849, p. 4I.

,,	",	Gray, Cat., I849, p. 4I.
$"$,	,$"$	Giinther, Rept. Brit. Ind., 1864, p. 382.
,$"$,$"$	Fayrer, Thanatoph. Ind., I874, pl. xvii.
,,	ornata, Gray, Cat., I849, p. 43.	

Hydrophis bicolor, Jan, Icon. Gén., 1872, 40, pls. ii and iii.
Hydrus platurus, Boulgr. in Blanford, Fauna Ind. Rept. and Batrach., I890, p. 397, and Cat., iii, I896, p. 267.

$$
\begin{aligned}
& , " \quad \text { Sclater, List Snakes Ind. Mus., 1891, p. } 62 . \\
& \text { ". } \quad \text { Wall in Proc. Zool. Soc. Lond., 1903, pp. } 95 \text { and IoI, and in } \\
& \text { Journ.Bomb. Nat. Hist. Soc., xvi, p. 310, and in Spol. Zeylan., } \\
& \text { August 1907, p. 166. }
\end{aligned}
$$

Fig. 64.-Hydrus platurus.
I have examined 47 specimens besides those in the British Museum. I find the posterior maxillary teeth grooved.

Description.-Rostra1,-the visible portion above one quarter to one half the internasal suture. Præfrontals,-touch the second supralabial (rarely the third also). Frontal, -sutures subequal, or the fronto-supraocular rather the longest. Postoculars,-one or two. Temporals,-absent, replaced by small scales. Supralabials,-seven to ten very irregular, the third and succeeding shields very frequently divided, two sometimes three touch the eye, viz., the third, fourth or fifth. Infralabials, -five or six, the last in contact with three or four scales behind. Marginals, -none. Sublingua1s,-small, an anterior pair usually more or less distinct, but widely separated, a posterior pair still less distinct if recognisable at all as such. Costals, -anterior 40 to 54 , midbody 45 to 62 , posterior 4 I to 52 juxtaposed everywhere. Ventrals, -370 to 440 , small but rather larger than the last costal row, very irregular, many being divided.

Colour.-Vary variable. I quote from Boulenger's Catalogue (I 896).
" A.-Yellow, with brown, black edged cross-bands ; black bars between the crossbands on the sides of the belly (P. ornata, Gray).
B.-Anterior third of body with a black dorsal stripe; further back, a series of transverse dorsal rhombs on the back, and black spots on the sides and belly. (Var. maculata, Jan).
C.-Dorsal region black ; sides and belly yellow, with a lateral series of black spots, which may be partly confluent into a stripe ; tail with dorsal and lateral spots.
D.-Dorsal region black, ventral region brown, the two separated by a yellow lateral stripe ; tail spotted as in the preceding.'
E.-Black above, sides and belly yellow ; tail spotted as in the preceding (H. bicolor, Schn.).
F.-Yellow, with a black vertebral stripe, broken up into spots posteriorly ; no lateral spots on the body or tail.
G.-Yellow, with a vertebral band and spots on the tail pale brown or olive."

Habitat.-The tropical area of the Pacific Ocean, and connected waters. In Asia the litoral from the Persian Gulf to Yezo (N. Japan). In Africa the East Coast

[^41](including Madagascar) to the Cape. In Australia, as far East as New Zealand. In America the Western Coast (Mexico, Ecuador, Panama).

ASTROTIA.

Astrotia stokesi (Gray).

Hydrus major, Shaw, Zool., I802, iii, p. 558, in part.
,, stokesii, Gray, Stokes Discov. Austral., 1846, p. 502, pl. iii, and Cat., 1849, p. 58 .

Hydrophis annulatus, Gray, Cat., I849, p. 59.
? Astrotia schizopholis, Jan, Icon Gén., 1872, 39, pl. iii. Hydrophis stokesii, Günther, Rept. Brit. Ind., 1864, p. 363.
? ,, guttata, Murray in Journ. Bomb. Nat. Hist. Soc., 1887, p. 34.
ocellata, Günther, loc. cit., p. 378, and pl. xxv, fig. P.
Distira stokesii, Boulgr. in Blanford, Fauna Brit. Ind. Rept. and Batrach., 1890, p. 408, and Cat. Brit. Muse, I896, iii, p. 288. Wall in Spol. Zeylan., August 1907, p. 168.

Fig. 65.-Astrotie (Schizopholis) stokesi. After Jan, Icon. Gén., 1872, 39, pl. iii.
I have examined seven examples. The species is not only very well differentiated, but possesses ventrals peculiar to itself, and I cannot but think that this alone warrants its separation from the genus Distira, where Mr. Boulenger places it. These shields are best considered absent ; they are replaced by scales similar to the adjacent costals in that they are strongly imbricate, and serrate or dentate at the margins. They are little broader than the adjacent costal rows, and rather more pointed. There
are from 230 to 267 of these scales in the series. The number of costal rows exceeds that of nearly all the other species of this subfamily, the exceptions being Hydrus platurus, Enhydrina valakadyn and Thalassophis annandalei. The head shields vary much in individuals, and the supralabials are especially prone to division.

Description.-The neck is more than half the extreme body depth.
Rostral,-touches four shields; the portion visible above is about half the suture between the nasals. Præfrontals, -usually touch the second labial only (sometimes the third also, rarely none). Postoculars,-two usually (sometimes three). Tempora1s, -absent, replaced by scales of which there are two or three superposed between the parietals and subjacent labials. Supralabia1s,-eight to eleven, very irregular, the third, fifth and succeeding members of the series frequently divided into an upper and lower part. The fourth is not divided in any of these specimens, but from analogy there is every reason to believe this merely a coincidence. The fourth, fifth and sixth are the usual ones to find contact with the eye. Infrala-bia1s,-Very irregular, all are prone to division, but the first, second or third may be entire. Marginals,-a row succeeds the first, second or third infralabials. Sublinguals,—absent, replaced by small scales. Here from analogy I would expect to see specimens in which the anterior and possibly the posterior of these shields are sufficiently developed to merit the name ; this is justified from the condition of these shields in individuals of viperina, carulescens, and ornata. Costa1s, -anterior 4 I to 48 , midbody 48 to 59 , posterior 4 I to 50 , strongly imbricate everywhere, the last rows irregularly dentate, marginally and apically emarginate. Ventra1s,-230 to 267 (Boulenger). Absent, replaced by pairs of scales similar in size and shape to the adjacent costals except they are more pointed. (Anteriorly there are generally a few entire shields similar to those seen in other species).

Colour.-Yellowish with black bands, or more frequently bars. Often there is a dorsal and a ventral series of bars in mid and posterior body which alternate costally. The ventral series is sometimes modified into several series of spots of variable size, H. guttata (Murray): A dorsal line occurs between the bars or bands usually.

Ranges between the Mekran Coast and Australia, but appears to be decidedly rare everywhere.

C
Fig. 6.

- urrey of India Offices, Calcutta, 10,18

Fig. 6. A, B, C, Aipysurus australis.
., 13. Distira cantoris to show median furrow in posterior ventrals.
., 26. " spiralis, var forma typica.

Fig. 27

Fig. 35.

Fig. :37.

Fig. 38.
Suresy of India Offices, Calcutta. 199\%

Fig. 27. Distira spiralis var melanosoma.
35. ", cyanocincta var phipsoni.
. 36. " " " macfarlani.
., 37. " " " elegans.
., 38. ", ", to show ventrals.

A

P

C
Fig. 41.

Fig. 51.

Fig. 5. 2.

Fig. 57

Fig. 41. A, B, C, Distira lapemoides.
" 50. Distira ornata var 4, from Jerdon's specimen in the British Museum.
.. 51. " " "I, from the Loo Choo Islands in the British Museum.
" 52. " " "5, Inornata from the type in the British Museum.
.. 57. " viperina. Showing enlarged anterior ventrals.

Fig. 63.

A

C
Fig. 66.

Fig. 63. Enhydris hardwickii. Showing the ill developed irregular ventrals
, 66. A, B, C, Astrotia stokesi.
67. Astrotia stokesi.

1905-1906.

I. On certain Tibetan Scrolls and Images lately brought from Gyants.-By Prof. .Satis Chandra Vidyabhợana, M.A., M.R.A.S. (Price Re. i-8; or 2s. 3d.)
II. Sal-Ammoniac: a Study in Primitive Chemistry.-By H. E. Stapleton, B.A., B.Sc. (Price Re. I; or Is. 6 d.)
III. The Similarity of the Tibetan to the Kashgar-Brahmi Alphabet.-By The Rev. A. H. Francke. (Price Rs. 2 ; or 2 s .10 d .)
IV. Alchemical Equipment in the Eleventh Century, A.D.-By H. E. Stapleton and R. F. Azo. (Price Re. $1-8$; or $2 s .3 d$.)
V. Malaysian Barnacles in the Indian Museum, with a list of the Indian Pedunculata.By N. Annandale, B.A., D.Sc. (Price Re. I-8; or $2 s .3 d_{\text {. }}$)
VI. Ashrafpur Copper-plate Grants of Devakhadga.-By Ganga Mohan Laskar, M.A. (Price Annas 8; or rod.)
VII. Festivals and Folklore of Gilgit.-By Ghulam Muhammad. (Price Rs. 2 ; or 2s. 1od.)
VIII. Notes on the Bhotias of Almora and British Garhwal.-By C. A. Sherring, M.A., F.R.G.S., I.C.S. (Price Re. 1-5 ; or 2 s.) $^{\text {. }}$
IX. Religion and Customs of the Uraons.-By the late Rev. Father Dehon, S.J. (Price Rs. 2 ; or 2 s .10 d.)
X. Notes on the Fauna of a Desert Tract in Southern India (Herpetology and Entomology).-By N. Annandale, D.Sc., C.M.Z.S., with a list of Mammals by R. C. Wroughton, F.E.S. (Price Rs. 2 ; or 2 s .1 rd .)
XI. Amulets as Agents in the Prevention of Disease in Bengal.-Compiled in the Office of the Superintendent of Ethnography, Bengal. (Price Annas 12 ; or $\mathbf{1 s}$. 2d.)
XII. Earth-Eating and the Earth-Eating Habit in India.-By D. Hooper and H. H. Mann. . (Price Re. I ; or Is. $6 d$. .)
XIII. On a Cup-Mark Inscription in the Chumbi Valley.-By E. H. C. Walsh, I.C.S., (Price Re. I ; or Is. 6d.)
XIV. A Descriptive List of the Sea-Snakes (Hydrophiidæ) in the Indian Museum, Calcutta. - By Captain F. Wall, I.M.S., C.M.Z.S. (Price Re. I; or Is. $6 d$. .)
XV. Common Saws and Proverbs collected, chiefly from Dervishes, in Southern Persia.-By Lieut. ${ }^{\text {Col. D. C. Phillott. "(Price Re. i ; or is. } 6 d . \text {.) }}$
XVI. The Common Hydra of Bengal: its Systematic Position and Life History.-By N. Annandale, B.A., D.Sc., C.M.Z.S. (Price Re. 1 ; or is. $6 d$.)
XVII. Animals in the Inscriptions of Piyadasi- By Monmohan Chakravarti, M.A. (Price Annas 12 ; or $1 s .2 d$.)
XVIII. Some current Persian Tales told by Professional Story-Tellers.-By Lieut.-Col. D. C. Phillott. (Price Re. I; or is. $6 d$. .)
XIX. The Dards at Khalatse in Western Tibet.-By Rev. A. H. Francke. (Price Re. 1-6; or 23.)
Supplement, Miscellanea Ethnographica. Part I. I. The Blow-Gun in Southern India 2. Miscellaneous objects from the Ramanád subdivision of the Madura district 3. Indian Weighing-beams.-By N. Annandale, D.Sc. (Price Re. i.)

Supplement, Miscellanea Ethnographica. Part II. I. Some Malayan Weapons-By N. Annandale. 2. Plan of a Persian Gentleman's House.-By Lieut.-Col. D. C. Phillott. (Price Annas 8 ; or 10 d.)

Memoirs of the Asiatic Society of Bengal.

Vol. 11 .
I. Cirrhipèdes operculés de l'Indian Museum de Calcutta_-Par M. A. Gruvel. (Price Rs. 2 ; or 2 s. 2 10 ${ }^{\text {a }}$.)
II. The Coinage of Tibet.-By E. H. C. Walsh. (Price Re. 1 ; or $1 s .6 d$. .).
III. The Exact Determination of the Fastness of the more Common Indigenous Dyes of Bengal, and comparison with typical synthetic Dye-stuffs. Part I. Dyeing on Cotton.-By E.R. Watson. (Price Re. I ; or is. $6 d$. .)
IV. The Saorias of the Rajmahal Hills.-By R. B. Bainbridge. (Price Rs. 2 ; or 2 s. Iod.)
V. Mundari Poetry, Music and Dances.-By Rev. Fr. J. Hoffmann, S.J. (Price Re. I; or is. 6d.)
VI. Tarikh-i-Nuṣratjangi.-By Harinath De.. (PriceRe. I ; or is. 6 d.)
VII. The Exact Determination of the Fastness of the more Common Indigenous Dyes of Bengal, and comparison with typical Synthetic Dye-stuffs. Part 11. Dyeing on Silk. -By E. R. Watson. (Price Annas 12; or 1s. 2d.)
VIII. Monograph on Sea Snakes.-By Major F. Wall, I.M.S. (Price Rs. 5; or 7s.)
IX. A Polyglot List of Birds in Turki, Manchu and Chinese.-By E. Denison Ross, Рн.D. (Price Rs. 4 ; or 6 s.)

An Avabic translation of Controversial Pamphlets in Urdu and Persian by Rafi al-Khuli.-By Harinath De. (In the press.)
Ramacavita by Sandhyakara Nandi-Edited by Mahamahopadhyaya Haraprasad Shastri, M.A. (In the press.)
On the Correlations of A reas of Matured Crops and the Rainfall, and certain allied problems in Agriculture and Meteorolgy.-By S. M. Jacob, I.C.S. (In the press.)
The Wakf of Movables.-By Dr. Abdullah al-Mamun Suhrawardy, M.A., Barrister-at-Law. (In the press.)

MEMOIRS

of the

ASIATIC SOCIETY OF BENGAL

VOL. II, No. 9, pp. 258-840.

A POLYGLOT LIST OF BIRDS IN TURKI, MANCHU AND CHINESE.

Edited with Identifications, Notes and Indices
BY
E. DENISON ROSS, Ph.D.

CALCUTTA :
Printed at the Baptist Mission Press, and published by The Asiatio Societt, 57, Park Street.
1909.

Price Re. 4 ; or 6 s.

Vol. II, No. 8, of the "Memoirs" is in press, and will be issued later.

Polyglot List of Birds - Turki, Manchu and Chinese.

By Dr. E. Denison Ross.

INTRODUCTION.
The present contribution to the "Memoirs" of the Asiatic Society of Bengal owes its inception to a desire on my part to discover what sources, not hitherto utilised, there might be for the Lexicography of that variety of Turkish which is known as Chaghatai or Turki.

While I was examining the resources of the British Museum, during my leave in England in 1907, my friend, Mr. A. G. Ellis, called my attention to a unique work in manuscript, which contained the whole vocabulary of the Manchu-Chinese "Mirror" in five languages, namely, Manchu, Mongolian, Tibetan, Turki, and Chinese.

I must here explain that the Manchu-Chinese " Mirror," the full Manchu title of which is Han i araha nonggime toktobuha manju gisun i buleku bithe, is an exhaustive vocabulary of the Manchu language published in I77I. ${ }^{1}$

This vocabulary is arranged according to a number of main headings which practically include all the words to be found in the most complete alphabetical dictionary. Klaproth, in his well-known " Verzeichniss der chinesichen und manschuischen Bücher und Handschriften der königlichen Bibliothek zu Berlin'" (I822), has given a list of the main headings included in the Manchu-Chinese "Mirror." This list, in spite of its apparent fulness, does not convey to the general reader a correct impression of the exhaustive character of this famous dictionary.

In the bi-lingual "Mirror" each Manchu word has its Chinese equivalent. The Manchu is transcribed into Chinese (according to the three-character system invented by K'ien Lung), while the Chinese characters are transcribed phonetically in Manchu character. Thereafter follows the full definition in Manchu of each word. The pentaglot version of the "Mirror" differs in two respects from the Manchu-Chinese original : (i) the Manchu and the Chinese are not transcribed; (ii) the definitions are

[^42]omitted. At the head of the page is the Manchu, then follows the Mongolian, next comes Tibetan in the Tibetan character, which is transcribed firstly according to the exact spelling, and secondly according to the pronunciation. Next comes the Turki in Persian character, which is duly transcribed into Manchu letters, and finally the Chinese.

On examination I at once determined to put its utility to the test as far as the Turki portion was concerned, but seeing that my furlough was limited (and also that I had other work in the British Museum to occupy me), the great difficulty was to determine which portion to select for study. Finally, I decided to take the chapter on birds, partly because of the existence of other Turki lists of birds, partly because the Mongols had a marked predilection for ornithology as witness Baber's " Memoirs" and the common occurrence of birds' names in Turki nomenclature ; and partly again because I felt that the compilers of the vocabulary might have obtained from Turki-speaking men more accurate information on the subject of birds than on any other Fauna of Central Asia. Such was my aim in copying out the birds contained in this work. ${ }^{\text {d }}$ Ultimately, of course, the whole Turki vocabulary ought to be transcribed and edited.

At first I intended merely to consult the three best-known European Manchu dictionaries, -namely those of Amyot, Zakharoff, and Gabelentz, ${ }^{2}$ - and give the translations of the corresponding Manchu word in each case. I soon found, however, that this would be unsatisfactory owing to the imperfections of the three dictionaries referred to. I next turned to the Manchu definitions contained in the original ManchuChinese " Mirror." Here again the result was disappointing. I was therefore compelled to turn to the Chinese equivalents. Having worked upon these Chinese names I thought it a pity not to make use of the material I had thus collected. Moreover, I found that on the subject of birds the European Chinese dictionaries were sadly defective, not only as regards compound expressions but also in the matter of actual characters. I therefore thought that the inclusion of the Chinese names of the birds might be of utility to future compilers of Chinese dictionaries, and possibly even to scientific explorers in China. As far as the identification of Chinese names is concerned, I should certainly have derived more help from outside sources had I selected the Chapter on Flowers; for this subject has engaged the attention of several distinguished sinologists who, like Bretschneider, were at the same time botanists. But our sources of information as to the Turki names of plants are too limited to render this portion of the vocabulary a test of the whole.

I must here disclaim any acquaintance with the science of Ornithology, and I wish to forestall the criticism that might be levelled at me for undertaking such a

[^43]work with nothing but linguistic equipment. My hope is that some ornithologist may think the list worthy of study, and will succeed, where I have failed, in establishing the identity of many of these birds with the help of their position in the list and the accompanying definitions.

In many cases the identification is practically certain ; in the majority of cases I fear it is very vague if attempted at all. In such a large list as this, there are no doubt many names which are simple fabrications, as far as one or other of the languages is concerned, though I presume there is always something genuine at the bottom either of the Chinese or the Manchu name. In many cases the Turki seems merely a translation (sometimes a mistranslation) of the Manchu or the Chinese, and in all too many cases the Turki name simply represents the briefest possible summary of the Manchu definition. In spite of these defects I think the list worthy of publication in its entirety if only for the literary curiosity it presents of the Manchu method of Lexicography.

Chapter XXX of the " Mirror" contains, in addition to the list of birds, two short sections, one dealing with the names of the various wings, feathers, etc., and the other with verbs expressive of the flight and habits of birds. I had originally intended to include these in the present memoir, but I have decided to reserve them for a separate paper.

When I began with the aid of the Manchu and Chinese dictionaries to work out the identification of the birds, I at first determined to give in extenso the Manchu definitions, both in the original (romanised) and in literal translation. To this end my wife romanised all the definitions occurring in the "Mirror." But when it came to translating these definitions literally and in their entirety, I found there was so much vain repetition and so much vague description that I thought no useful purpose could be served by a reproduction of the whole. Moreover, in view of these repetitions, and also because the Manchu language is very little studied nowadays and is rapidly dying out as a spoken language, I judged that the inclusion of the original text would not add to the utility of my paper.

Anyone consulting both the "Mirror" and Zakharoff's Manchu-Russian Dictionary will see by comparison that they are very often in disagreement. Thus in the case of the birds Zakharoff often gives details not to be found in the "Mirror" and often omits those that are to be found there. It was therefore necessary to have before me a complete translation of all Zakharoff's definitions, and for the preparation of this part of my work, also, I am indebted to my wife.

The above considerations will explain my general method of procedure. The arrangement is as follows:-
(I) Turki name.
(2) Tentative identification.
(3) Manchu name.
(4) Chinese name, with references to Chinese dictionaries.
(5) Definition of Manchu word derived from the "Mirror," Zakharoff, Amyot, and Gabelentz.
(6) Notes and observations.

I cannot close this introduction without a word of grateful thanks to Colonel Phillott, who, in the matter of Persian and Indian falconry, possesses unrivalled knowledge. His name and authority will be found constantly quoted in the sections dealing with the falconida. I have also to thank Mr. T. Bentham, formerly temporary assistant in the Indian Museum, for assistance received while this Memoir was passing through the Press.

List of the commonest descriptive terms occurring in Turki bird names.
$\bar{A} l a=$ variegated.
$A q=$ white. Diminutive, aqiš $=$ whitish.
$B a s ̌=$ head.
Búz=(a) grey ; (b) a bird after first moult.
Čapar $=$ mottled.
Čaqir = (wall-eyed), blue-eyed.
Darya = belonging to the water or sea.
Kičik = small, " lesser."
$K o ̈ k=$ blue, dark-blue, black. Diminutive
kökiš.
Máda $=$ male.
Püpeklik= crested.
Qara $=$ black.

Qizil $=$ red. Diminutives, qizghij, qizghinj, qizghiš.
$Q u m=$ sand. $\quad Q u y r u q=$ tail.
Sarigh $=$ yellow. Diminutives, sarghinj, sarighič, sarighiš, sarghinečlik.
$S u=$ water .
Tagh $=$ mountain.
$U z u n=$ broad, wide, long.
Yawa $(y a b a, y a b a n)=$ wild .
Yašil $=$ green.
$D \ddot{u} k u ̈ r=\mathrm{a}$ spur.
Tirmaq $=$ a talon or claw.

Method of Transcription.

$\mathrm{c}=\mathrm{ch}$
$\mathrm{c}=\mathrm{sh}$
$\mathrm{q}=\mathrm{k}$

The letter "f" (ف) in the Turki nearly always represents "p," while "b" (ب) very often stands for "w."
N.B.-The Turki is given in each case exactly as it is found in the original manuscript, which is often very curious, especially in regard to the division of syllables.

List of commonest Abbreviations.

H. \& H. $=$ Hume and Henderson's Lahore to Yarkand.
Z. = Zakharoff's Manchu-Russian Dictionary.
P. de C. $=$ Pavet de Courteille's Dictionnaire Turc-Orientale.
Sang. $=$ Sanglakh. The famous Turki-Persian Dictionary by Mīrzā Mehdī Khān, the Historian Nā dir Shāh.
G. = Giles's Chinese-English Dictionary.
B. S. $=$ Bowdler Sharpe. The Scientific Results of the Second Yarkand Mission. Section Aves.
B.M. I. $=$ Or. I9I2. $\left\{\begin{array}{c}\text { Rieu's Catalogue of } \\ \text { Persian Manuscripts }\end{array}\right.$
B.M. II. $=$ Or. 404. $\left\{\begin{array}{l}\text { in the British Mu- } \\ \text { seum }\end{array}\right.$

The Mirror $=$ The Manchu Mirror. See Introduction.
Scully S. F. $=$ Stray Feathers.
Houtsma's List. Ein Turkisch-Arabisches Glossar, Leiden, 1894.

PART I.-Large Birds.

GROUP I.

1. Quš.

This is a generic term for large birds in contradistinction to quc̆qač which is a general name for smaller birds.

The word qus is in this place a translation of the Manchu gasha, but in the title of the section where the Manchu has likewise gasha, the Turki has janwar, جانوار.

The terms janwar and quš are thus, apparently, interchangeable.
Manchu: Gasha.
Chinese: Niao.
2. Sir Murgh.

The Male Phœnix.
Manchu: Garudai.
Chinese: Fêng.
The Turki Sir Murgh is obviously a corruption of the Persian Simurgh, $\dot{\text { mang. One }}$ wonders how the " r " can have crept in. Klaproth, in his Uighur list, gives the same word in the form of simrukha. The Pehlevi form is senmurv, while in the Avesta it is called saènō mergo.

3. Mada Sir Murgh. $\dot{\varepsilon} y^{\circ}$ m

The Female Phœnix.
Manchu: Gerudei.
Chinese: Huang.
It is interesting to observe the introduction of the Manchu feminine principle of vowel modification in the case of a loan-word like garudai, which is, of course, the Sanskrit गइड.
4. Učar Sir Murgh. وحار سیر مغ غ

The Flying Phœnix.
Manchu: Garunggô.
Chinese: Luan.
5. Rukh. $\dot{\boldsymbol{U}}$)Written in the original $\gamma \dot{\varepsilon}$, which must, I think, be the copyist's misreading of $\dot{\varepsilon} ر$, i.e., the $j a z m$ over the ghayn has been mistaken for a hé.]

The famous Roc of Oriental fable and romance.
Manchu: Horongu Čečike.

Chinese : Chrin wu. [See Tobar, "Inscriptions Juives de K'ai-fong-fou" in Variétés Sinologiques, vol. xvii, p. 50, note 2.]
A very valuable note on the Rukh will be found in Yule's Marco Polo, 3rd Edition, Vol. II, pp. 415-420, note.
6. Kharzi.

A Fabulous Bird.
I have not been able to identify the word kharzi.
Manchu: Daipun.
Chinese: PÊNG.
The Manchu daipun is simply a transcription of the Chinese t'ai pêng, or Great Phœnix.
7. Quqnus. قق نوس (sic)

A fabulous crane.
Manchu: Bulehen.
Chinese: HaO.
The Turki quqnús is from the Greek кúкvos. In Ottoman Turkish it means a swan, and also the Phœnix of fable.

This crane is regarded by the Chinese as the emblem of longevity.
8. Turna. تورنا

Probably the Siberian crane, Grus leucogevanus.
Manchu: Šanyan bulehen.
Chinese: HSIEN haO. [Giles, Grus vividorostris.]
The "Mirror" says: This bird is of uniform white colour.
B.M. II gives as the Persian equivalent "kulang," אius, which is the name of the common crane (Grus communis) in Persia and India.

The Chinese hsien hao means the "immortal" crane. It is the badge worn by officials of the Ist civil rank, and as such is usually described as representing the Manchurian crane, Grus montignesia: and is regarded as the emblem of longevity.
9. Kök Turna. كوك تورنا

The Blue Crane.
Grus cinerea.
Manchu: Yačin bulehen.
Chinese: Ch^{\prime} ing hao.
10. Kul-rang Turna. كول رانك (sic.) تورنا

The Ash-coloured Crane.
? Grus antigone.
Manchu: Kôrčan.
Chinese: Hul hao.

11. Kiěik Turna. كيتِيك تورنا
 The Lesser Crane.
 Anthropoides virgo.
 Manchu: Ajige Kôrčan.
 Chinese: Hsiao hut hao.

According to the Chinese this crane is a small variety of No. Io.
The "Mirror" says: Its colouration is grey, neck black, beak long, and in the corner of each eye there are white feathers which seem to protrude from the nape of the neck. The length of the body is one foot, five or six inches.

This may be the fourth of Marco Polo's five cranes (see Chap. 1 x): " a small kind, having at the ears beautiful pendent feathers of red and black." (The colour of the pendants varies in the texts). See note, Vol I, p. 297, of Yule, 3rd ed.).

There seems to be but slight difference between Nos. 9, 10 and II. One of them probably stands for the Demoiselle Crane, Grus virgo.

12. Kök Laglag. كوك المللك

The Blue Stork.
Manchu: Lamurčan.
Chinese: Lan.
The laglag (alias laqlaq, laklak or lailak) is known as "Hajji Laglag" among the Persians, who say that it makes the pilgrimage to Mekka during its annual winter absence ; hence the title hajji.

The "Mirror" says: It somewhat resembles the bulehen (No. 7), its colouration is grey; it stands three feet in height, and has a long neck. When kept in private gardens, if it sees anyone in brightly-coloured clothes, it cries out, jumps about, pursues and pecks him.

The Chinese lan means " blue," and standing alone this character does not mean a bird (in the dictionaries I have consulted). Possibly the word hao is to be supplied. But such omissions are not common in the "Mirror" ; compare, however No. I37.
13. Uqar or Auqar. اوقار

A stork or heron.
Both pronunciations seem common. It is also spelt ele, as if it were an Arabic word.

Manchu: Yadana [Z. white ibis].
Chinese : Ku [G. snow-goose, Anser hyperboreus].
Scully, "Stray Feathers" (923), says: This is the Turki name for the Ardea cinerea or grey heron.

In Klaproth's Uighur vocabulary we find $u k h a v=$ the stork.
Scully (S. F. 925) gives aq uqar, "Herodias alba."
The "Mirror" says: It is a water-bird, larger than the wild-goose; its plumage is a brilliant white; it soars very high. When settled, it looks thin and spare [doči ganggahôn ilambi]; its stride is wide.

The presence of the Chinese $k u$ in this place is very remarkable.
14. Sarighiš Uqar. سارذيش اوقار

The Yellowish Heron (or Ibis).
Manchu: Suwayan yadana.
Chinese: Huang gu.
According to the "Mirror" this is a sacred bird
15. Ular [or Aular].

A species of stork.
? Ciconia boyciana.
This word is sometimes transcribed aular, but B. M. II states that ular is the correct pronunciation.

Manchu: Weijun [Z. " large, black stork "].
Chinese: Kun [G. The common stork, Ciconia alba: heron or crane].
The ular mentioned by Sully "Stray Feathers," 8 I 6 and 8 I 6 bis, must be quite distinct. According to him, this name is given to two species of snow-cocks or snow-pheasants, viz., Tetraogallus himalayensis and Tetraogallus tibetanus. It is, however, curious to note that Hume and Henderson, p. 282, give the name of the latter bird as utar. But this is no doubt a misprint, for in the short list of birds given in the Report of Yarkand Expedition (1873), p. 70, ular is given as the name for the snow-pheasant.
B. M. II translates ular by Pets. . have not been able to trace. An interesting note on "ullar" will be found in Marco Polo, Vol. I, p. 298.

The "Mirror" says: It is like the yadana (No. I3) in nature, but has no red markings on the head. The wings and tail are blue-black, and the body white.

Swinhoe (Proc. Zool. Soc., May I873, p. 12) says : "The existence of any stork in China is very doubtful": but it has now been proved that a stork called C. boyciana (very like C. alba) and another called C. nigra both occur in China.
16. Ta'us.

The Peacock.
Manchu: Tojin.
Chinese: K'ung Chiao [G. The Malayan peacock, Pavo muticus].
This peacock is the badge of rank of Criminal Judges in China.
17. Gemma Ta'us.

A tail-spreading peacock.
Manchu: Huweijehengge tojin.
Chinese : K'ai p'ing k'ung chiao.
The word ass is presumably to be read germ from the verb germen, "to spread out."

The Manchu expression is derived from the word huweijehen, "a parasol"

18. Aqiš Janwar. آيشش جانوار

The Silver Pheasant.
Euplocamus nycthemerus.
Manchu: Šunggayan gatha.
Chinese: Pal hSIEN [G. Silver pheasant, Euplocamus nycthemerus].
The Turki is apparently merely a translation of the Manchu, "a whitish bird."

The "Mirror"' says: Body white, on the side of the wing feathers are black markings. Tail, two feet long. Beak and legs red.

This bird is the badge of office of a Sub-prefect in China.
19. Waq. وات

A Stork or Heron.
Manchu: Gôwasihiya [Z. A stork].
Chinese: Lu ssǔ [G. Egretta modesta].
Wag is an onomatopæic name for the Night Heron (Nycticorax griseus) derived from the sound which this bird makes at night. A commoner form in Persian is waq-waq. In Sanskrit this bird has a similar name. In Kapurthala it is known as the awank.

The "Mirror" says: It has a crest on the head ; neck long; beak long. It is found in various colours such as white, brown and sky-blue, and in various sizes.

The Chinese lu ssǔ is said by some to represent the Egretta garzetta, and is one of the badges of a Sub-prefect in China.

20. Kök Waq.

The Blue Heron or Stork.
Manchu: Lamun Gôwasihiya.
Chinese: Ching lu.
The "Mirror" says: It is somewhat larger than the white Gôwasihiya (No. I9) and it has three feathers of a mixed black and yellow colour on its head.

GROUP II.

21. Yaw Ghazi. ي! غاز

The Wild Goose.
The word for "wild" is pronounced variously yawa, yaba and yaban (Mod. Turkish)

Manchu: Bigan-i niongniyaha.
Chinese: Hung yen.
The "Mirror" says: These birds have long necks, they make a loud cry, and in flight keep a straight course.

No special variety is indicated by this number. In Chinese both hung and yen mean wild-goose. According to the Japanese Encyclopedia Kashira gaki zō ho kun mo $z u$ wi, the large birds are called hung and the small ones yen.
22. Qizil Tumšuq Ghaz. قيزيل توهشوق غl
? The Grey-Lag Goose [lit. red-beaked].
Anser cinereus.
Manchu: Šangkôra niongniyaha.
Chinese: Ch'a YEn [lit. "the tea-goose "].
The "Mirror" says: This is the largest of the wild-geese, and has a red beak.
Anser cinereus has a reddish, fleshy beak.
23. Püpeklik Ghaz. فونك ليك غاز

The Crested or Tufted Goose.
Manchu: Kanjiha niongniyaha.
Chinese: Pin hung [lit. "the visitor-goose"].
The "Mirror" says: This is the smallest of the wild-geese. Its beak is red, and on its head is a white, fleshy growth.

The Chinese epithet pin or "visitor" may refer to a Chinese saying that the wildgeese which migrate the first to the south are the hosts, while those who arrive later are the visitors. See Pétillon, Allusions Littéraires, p. 453.
24. Waqt-lik Ghaz. وقـت ليك غاز

The Timely Goose.
Manchu: Eringge niongniyaha.
Chinese: Hou yen.
The " Mirror" says: This is another name for the kanjiha goose (No. 23). This goose arrives punctually on the fifth day of "Šahôrun silenggi."

Šahôrun silenggi is one of the 24 atmospheric changes or divisions of the year among the Manchus. It coincides with the beginning of the "cold dews" or the hoar-frost.

25. Čung Āla Buyun Ghaz.

A large goose with variegated neck.
Manchu: Amba konggoro niongniyaha.
Chinese: Huang shuo yen.
The " Mirror" says: Its colouration is yellow, and its beak black.

[^44]27. Utra Āla Buyun Ghaz. اوترا آلا بويون غاز

A medium-sized goose with variegated neck.
I take utra (اوترا) to be a variation of orta (اورته), cf. Ott. Turkish بويلى not اورته, " of medium height."

Manchu: Kailun niongniyaha [Z. Anas crytropus].
Chinese: Lien yen.
28. Kičik Qara Baš Ghaz. كيخَيك ترا باش غاز

A small black-headed goose.
? Anser erythropus.
Manchu: Kiyoo niongniyaha [Z. Russian, Kazarka, i.e., the Barnacle Goose].
Chinese: Hsiao het t'ou yen.
The "Mirror" says: This goose has a black head and a white throat.

The Wall-eyed Goose.
Manchu: Čangkir niongniyaha.
Chinese: Ch'tn yen.
The "Mirror" says : This goose is found in the Koko-Nur District.
For explanation of the Turki word čaqir, see No. 53.
30. Qu.
? The Cormorant.
Manchu: Kôtan [Z. Russian, Baklan (=Carbo cormoranus)].
Chinese: T’Aо но.
The "Mirror" says: It somewhat resembles the wild swan (garu No. 36) and is grey in colour. Its beak is wide and its crop large. It fills its crop with water [which it then pours into rat holes], and having thus driven out the rats eats them.

I am in doubt whether the swan or the cormorant is intended here. $Q u$ is the common Turki word for a swan.
31. Uqar or Auqar. اوقار

The Buff-backed Heron.
? Ardea bubulcus.
Manchu: Hoohan.
Chinese: Chuang.
The " Mirror" says: Like the gôrwasihiya (No. 19) in nature; the plumage is reddish. See also No. I3 (above).

32. Kök Baliqči.

The Common Heron.
Ardea melanocephala.
Manchu: Lamun hoohan.
Chinese: Ch'ing chuang [G. The common heron].
The "Mirror" says: This heron has a black back.
Scully, S. F., 986 and 988 gives baliqči as the local name of two kinds of tern, Sterna fluviatilis and Sternula minuta. Baliqči means literally a fisherman.

33. Āla Baliqči. آلا باليق

? The Purple Heron.
Ardea purpurea.
Manchu: Kuringge hoohan.
Chinese: Hu pan ch'ung [lit. "tiger-marked reptile"].
The "Mirror" says: This bird has red markings on the breast.
34 Čulluq. چولولوت
The young of the white heron (No. 3I).
Manchu: Šeyelhen.
Chinese : Pai ho Tzǔ [G. white crane].
The "Mirror" says: Šeyelhen is the name given to the young of the white heron.
\check{C} ulloq is a name applied to various kinds of plover, see Scully, S. F., 844, 848. In Ottoman Turkish it means a woodcock.
35. Baliqči Quš.

? The Osprey or Sea-Eagle.
Pandion haliaëtus, Linn.
Manchu: Niyo-i hoohan [Z. the marsh falcon].
Chinese: Shur ying, lit. The water-falcon.
The "Mirror" says: This bird has claws like those of a falcon (giyahôn No. 67) and it frequents marshy land.

Zakharoff adds : Hunters chase the female of this bird.
36. Dughduri.
? The Wild Swan.
Manchu: Garu.
Chinese: T'IEN o [G. Wild swan].
The "Mirror" says: This bird resembles the domestic goose, and has brilliant white plumage.
The Turki word is very like the common Indian name for the tukdar (تسدر) Great Indian Bustard, Eupodotis edwardsii, Gray. Pavet de Courteille gives tughduy as the name for the bustard (outarde), while Shaw (Yarkand Mission, 1873) gives tughdarra as the name for the Hubara, see No. 40.
37. Čin. ن
A sea-gull.
\check{C} in is perhaps merely a transcription of the Manchu. Radloff gives qigharčin=a gull. This may possibly be composed of qigha, greedy, and čin, a gull ; but it is possible that čin is in this case merely a termination as in baldirčin, a word Baber uses for the quail.

Manchu: Čin [Z. (Russian chaika) a gull].
Chinese: Jan o.
The "Mirror" says: The Čin somewhat resembles the white weijun (No. 15) but is smaller. It sits on the water and feeds on fish.
38. Su Tasqara. سو تّاس *ورا

The white Ibis.
Ibis melanocephala.
Manchu: Muke tashari [Z. Carbo cormoranus, Russian baklan].
Chinese : T'U CH'IU [G. bald-headed crane].
Zakharoff (who in this instance gives fuller details than the "Mirror") says: This bird is found in marshy land; it is a very large bird, has red eyes and a long neck; but has no feathers on the head and neck. It feeds on fishes and snakes.

The Turki appears to be a bald translation of the Manchu. Su=muke (water) tasqara is perhaps merely a transcription of tashari. In the next number it will be seen that tashari is translated by quš.

Sarigh Quš.

? The Yellow Crane.
Manchu: Sohon tashari.
Chinese : Mai huang ch'iu.
The "Mirror" says: It frequents the fields when the corn is ripening.
The same Turki name is applied to an owl, see No. 97.

40. Ghačir.

The Great Bustard.
Otis tarda.
Manchu: Humudu [Z. Bustard; Russ. dudak and drakhvá].
Chinese: Pao [G. Otis tarda].
The " Mirror" says: It is larger than the wild-goose; neck and breast white ; back mottled ; tail short.
P. de Courteille gives qačir as the Turki name for a vulture. Compare No. 36.

? MacQueen's Bustard.
Otis macqueenii.
Manchu: Todo [Z. Russ. dudak].
Chinese : Yang PaO [lit. "sheep bustard"].

The "Mirror" says: It is a large bird, like the humudu in form; it has no spurs; below the chin it has long hanging feathers like a goat's beard.
"Below the chin" is hardly an accurate description of the position of these feathers.

With regard to the name "sheep bustard," my friend, Col. D. C. Phillott, informs me that in Persia the large bustard is called misc murgh, or "sheep bird."
42. Su-Buqa.

? Bittern.

Botaurus stellaris.
Manchu: Hônksi (pronounced Hunsi).
Chinese: Wei nab, lit. the reed-bird.
The "Mirror" says: It is smaller than the large stork, and larger than the small stork. When it puts its beak in the water it makes a very loud noise like the soughing of the wind (hong sere).

Dr. Scully has the following note quoted in Bowler Sharpe's List, No. 287, on the Bittern, Botaurus stellaris.
" The Yarkandis call this species Kul Bughasi, 'the Stag of the Lake,' and say that it is a permanent resident in the country, breeds in long grass jungle, and makes a very loud booming noise by sticking its bill into a reed!"

Now the Turki name sub buqa means literally 'the water-ox.' Taking together this name, the Chinese name, and the description in the "Mirror," I imagine that this number is identical with Scully's Botaurus stellaris.

Colonel Phillott informs me that in Mesopotamia the Arabs call both the pelican and the white heron 'water-sheep'-an appellation given also to gulls by the boatmen in the Persian Gulf.

The popular etymology (Volksetymologie) of Botaurus from os +taurus forms an interesting pendant to the peculiar Eastern names for the Bittern.
43. Kesma Tumšuq.

? Spoon-bill.
Platalea leucorodia.
Manchu: Saibihan [Z. Russian, Kolpitsa].
Chinese : TÊNG Kó TZǓ TAUT.
The "Mirror" says: It somewhat resembles the Gôrwasihiya (No. I9). The end of the beak is broad (ončo).
44. Yesi Tumšuq.
? Spoon-bill.
Platalea leucorodia.
Manchu: Halbahan [Z. Russian, Kolpitsa].
Chinese: Same as No. 43.
Here we apparently have two words in Manchu and in Turki to express one and the same bird. The Mirror simply says "this is also the Saibihan."

Zakharoff translates both words by Kolpitsa, which is Anas latirostra, whereas a spoon-bill is Kolpik in Russian.

Both Turki names refer to the peculiar formation of this bird's beak (tumšuq).

45. Biz Tumšuq. بيز "و مشوق

Manchu: Wangga. [Not in Zakharoff.]
Chinese: Chiao ching.
The "Mirror" says : This bird somewhat resembles the Saibihan (No. 43) but has a sharp (narhôn) beak.

The following definition of the Chinese chiao ching is given in Giles.
" A long-legged bird described as having a mallard's body, long legs and a reddish feathery crust. Its colour is dun-yellow. It makes its nest in the hollows of high trees, and its young hold onto its wings with their beaks, and are carried down to feed on fish."

The Turki name means literally " awl-beaked."
46. Yamghurči.

? Plover, Sanderling or Avocet.
Manchu: Wakan.
Chinese: Shur wa tzǔ.
The " Mirror" says: This is a small bird somewhat resembling the gôrwasihiya (No. Ig). It is whitish in colour and has a long, curved neck (meifen golmin bime gahôngga).

The Chinese wa $t z{ }^{\imath}$, , without $\operatorname{shui}(=$ water $)$, is translated in the dictionaries by ' lapwing' and by ' common heron.'

The Turki name is derived from yamghur (or yaghmur) rain, and means therefore 'the rainy one' or pluvialis. It is a common name for all waders. Scully (S. F. 888) gives it as a name for the Sanderling Calidris arenaria.

If the "Mirror" had said long, curved beak instead of neck, the description might have fitted the Avocet Recurvirostra avoceta.

See also No. 242.

47. Buranci.

? Moorhen.
Manchu: Čoogan.
Chinese: SHU YÜ [Giles, Moorhen].
The " Mirror" says: This is a small water-bird somewhat resembling the lamun gôwasihiya (No. 20). It lives on fish.

GROUP III.

48. Qara Salwar. قرا سالبار

A Black Vulture.
? Otogyps calvus.
Manchu: Ayan tashari.
Chinese: LaO tsao tiao,

The "Mirror" says : This bird resembles the damin (No. 52) in build. Its body is very arge ; its wings and tail are a glossy black.
49. Salwar.

The Vulture.
Vultur monachus.
Manchu: Tashari.
Chinese: Tsao tiao [a general name for eagles].
The "Mirror" says: This bird resembles the damin (No. 52) in build. It measures more than two Chinese feet in length ; it has black down on the legs.

Scully (S. F. I) says : Salwar is the Turki name for the Vultur monachus.
50. Alamán Quš. آلم قوش

General name for Raptores.
Manchu: Dasihiku gasha [Z. Russian, Lovchaya ptitsa].
Chinese: Chtir niao [Giles, vulture].
The Chinese chih means 'to hold or grasp.' The Turki álaman is from álmaq, to 'seize,' while the Manchu verb dasihimbi means 'to seize with the claws.'

51. Aqq Báš. آن باش

The White-headed Vulture.
? Gypatus barbatus.
Manchu: Yolo.
Chinese: Kou t'ou tiao, lit. dog-headed vulture.
The "Mirror" says: This is the largest of all birds (!) ; its head is white and its body grey (f ulengge $=$ ash-coloured).

Zakharoff says : This is the Berkut of old Russian books. [According to the Dictionary of the Academy, berkut = Falco imperialis.]

I do not know on what authority Zakharoff makes this identification. The word berkut is evidently a Turkish word taken by the Russians from the Tartars, and the compilers of this polyglot dictionary use this word for the translation of the Manchu damin (No. 52).

52 Borgut. بوزكوت
A general name for eagles, especially for The Golden Eagle or Bearcoote.
Aquila chrysaētus.
Manchu: Damin.
Chinese: Trao.
Scully says: Birkut is the Turki name for the Golden Eagle, but in Kashgar this eagle is known as the qaraqus.

According to Vambéry the Turki name is derived from börk, a hawk's cap (a corruption of the Arabic برقع), this eagle being much employed for falconry, as we are correctly informed by Marco Polo.

A most vivid description of a stag-hunt with a bearcoote is given on pp. 492-494 of Atkinson's Oriental and Western Siberia (London 1858). Col. Delmé Radcliffe in his article on falconry in the 9th edition of the "Encyclopædia Brittanica" says he does not believe that the bird described by Atkinson and Scully is the Golden Eagle.
53. Čaqir Borgut.

A two-year old eagle.
Manchu: Saksaha damon.
Chinese: Chief pat tito.
The "Mirror" says: A two-year old damin, whose wing feathers are blackish, but white near the quill, is called Saksaha damin.

Saksaha = a magpie.
Chieh par might mean " beginning to whiten."
The Turki adjective čaqir is translated in the dictionaries by "blue-eyed." I remember hearing the term applied to a "walleyed" dog in Bokhara. It is very likely connected with the Manchu word čikiri, which denotes a grey horse or dog, but is rendered in Turki by ala in No. 56 and by čapar in No. 70 .
54. Bederlik Borgut. \qquad
The Spotted Eagle.
Aquila clang, Pall.
Manchu: Kari damon [= variegated eagle].
Chinese: Wu pan tito [= tiger-striped eagle].
The Turki word bederlik is not to be found in the dictionaries. It presumably means spotted or striped, and may be borrowed from the Manchu word bederi $=$ a spot.

The "Mirror" says: This is a full-grown (lit. fully aged) eagle, whose wing feathers are striped like a tiger's skin.
55. Sarighič Borgut.

The Tawney Eagle.
Aquila fulvescens.
Manchu: Kôwa darin.
Chinese: Huang par tao [lit. yellow-white eagle].
The "Mirror" says: This eagle is pale-yellow (gelfyen solon) in colour.
56. Ala Borgut. آل إوزكون世
? The Variegated Eagle.
Manchu: Čakiri damon.
Chinese: Hula par tito [lit. variegated white eagle].
The "Mirror" says : The colouring of this eagle is a mixture of black, white and crimson.

A white eagle.
Manchu: Isuka.
Chinese: Pal tito.
Zakharoff says: This eagle has white stripes on the primaries, white eyes, and a white tail. The "Mirror" says: It somewhat resembles the nimašan (No. 59).
58. Kökiš Borgut.

A dark-grey eagle.
? Spizaëtus alboniger.
Manchu: Yasuka.
Chinese: Ching tao.
The "Mirror" says: This bird resembles the isuka (No. 57) and is found on the lakes of Liaotung in Manchuria.
59. Qara Tár. قو اتال

A dark-coloured eagle.
Manchu: Nimašan.
Chinese: Chin ma trad.
The "Mirror" says: This eagle is like the damin (No. 52); body blackish; tail short; on the wings are very small black spots. The tail is sometimes white.

60. Buy Quš. هوي "وش

An eagle.
Manchu: Tarbalji.
Chinese: T'uan tito.
The "Mirror" says: This eagle has a blackish body and variegated wings.
The same Turki name is used for No. 92 below.
Probably an eagle resembling an owl. Compare No. 65 below.
61. Čuli.

An eagle or vulture.
Manchu: Matkala.
Chinese: Tao sha tao.
The "Mirror" says: This bird somewhat resembles the giyahôn (No. 67). It is as large as the damin (No. 52) but slighter in build. It lives in the depths of forests.

The Turki name cull is not to be found in any of the Turki dictionaries I have consulted, except the "Lughat-i-Turki," where it is given as an alternative form of čauli, and is translated by the Persian B. M. I and II both say that čáuli falcon.

Perhaps the list changes from vulturida to falconide with this number; though the Chinese still has tia !
62. Aq Báš Sár. آق باش سار

The Marsh Harrier.
Circus ceruginosus.
Manchu: Karčin [Z. A vulture].
Chinese: Hua yao ying.
Scully, S. F., No. 54, gives $A^{\prime} q$ báš sá as the name for Circus aruginosus.
The forms $s \bar{a} r$ and $s \bar{a}$ seem to be interchangeable in this list.
Giles says: Yao ying is milvus govinda. The Chinese name for this bird would therefore be the variegated kite. But yao ying is used to express No. 63, the Buzzard.
63. Sár. ju

The Buzzard.
Buteo vulgaris [Scully, S. F., 44].
Manchu: Hiyebele.
Chinese: Yao ying [Giles, Milvus govinda].
luagain used for more usual lu sá.
64. Kökenek. كو كت~ك
? The Kestrel.
? Cerchneis timmunculus.
Manchu: Baldargan.
Chinese: Ch'ing chien.
The "Mirror" says: This bird resembles the karanidun (No. 76). The eyes and feet are yellow. It eats frogs and toads.

Zakharoff says: It belongs to the Vulturida
B. M. Or. II gives Kökenek as the equivalent of the Persian búm, an owl.

According to Scully the Turki name for the Kestrel is Kurganak, but in B. S. No. 22 one allusion to this bird will be found under "Kukunak Kushkunak" [adult male].

65 Yurtči.

? An owl.
Manchu: Se [Gabelentz, "Weisser Sperber." Z. "Crested ow1"].
Chinese: FÊng ying.
The "Mirror" says: This bird somewhat resembles the tarbalji (No. 60). It is whitish in colour and its ears are like the ears of a lynx.

Zakharoff seems to be right in saying this bird is an owl. And it is worthy of remark that the bird to which it is compared by the "Mirror," namely, the tarbalji, has in the Turki the name huy quš, which is also the name for Bubo maximus: see No. 92 below.

Side by side with Gabelentz's "Weisser Sperber" or white sparrow-hawk, we have in P. de Courteille's Dictionary Yurtji translated by "corneille."

The Turki name yurtči (from yurt, a camp) was used to designate a man who went ahead of an army and selected the next camping ground. The name as applied to an owl may therefrom be connected with some superstition among the Turki-speaking peoples.
66. Püpeklik yurtči. وونل ليك يورت
? A crested owl.
Manchu: Gunggulunge Še.
Chinese: Chitao Ying [G. the harpy eagle].

GROUP IV.
67. Qarčigha.

The Goshawk.
Astur palumbarius [Scully S. F., 2I].
Manchu: Giyahôn.
Chinese: Yivg.
Scully gives a long description of this bird in "Stray Feathers," and says it is commonly used for hawking in Kashgharia.

Vambery says: Qarčiga or qarčuga means " black-headed."
68. Sunggar. شُونْ

A species of Gyr-falcon.
Falco Gyr-falco.
Manchu: Šongkon.
Chinese: HAI CH'Ing, lit., "sea-blue."
The "Mirror", says: The Šongkon resembles the itulhen (No. 72) in nature. It is skilful and rapid in flight. It captures swans and other birds of that kind.

A Chinese-Persian Vocabulary in my possession (dated A.D. 1549) gives Sháh-báz as the translation of hai-ch'ing. Sháh-báz is the the Persian name for the crested hawk-eagle, Limnatus cristatellus.

Scully and others maintain that the Turki Šungqar or Šunghar is the Falco hendersonii (Hume). But Col. Phillott assures me that the Šunggar of old MSS. is a species of Gyr-falcon. See also No. 72.
69. Aq Šunggar. آق شُونا

The White Falcon.
Manchu: Šanyan šongkon [Z. Greenland Falcon].
Chinese: Pai hai ch'ing.
The "Mirror" says: This bird is bigger than the Šongkon (No. 68). The feathers on its breast are a brilliant white.

Scully (S. F., p. 78) also speaks of perfectly white Šungqars, which he calls albinos. But this may be incorrect as the "Mirror" indicates a distinct white variety.
$A^{\prime} q$-sungqar was the name of one of the Amirs of Sultan Mahmud of Ghazna.
70. Čapar Šungqar. شیار شونك

A mottled falcon.
Manchu: Čakiri šongkon.
Chinese: Lu hua hai ch'ing.
The " Mirror" says: This bird has a white head, while the back and wings present a mixture of black and white.

The word čapar is Persian, and means " of two colours."
71. Mašriq-daghi šungqar. مشُريق (sic) טاقي شوí

The Eastern Falcon.
Manchu: Šongkoro.
Chinese: Hai tung Ch'ing.
The "Mirror" says: This falcon is found on the shores of the Eastern Seas. It catches big and little birds with ease.

Zakharoff says : It is the biggest of this family. It kills even swans.
The Turki-speaking peoples, not knowing the sea, simply call this falcon "one which lives in the East."

The Turki Šungqár and the Manchu Šongkoro are no doubt identical in origin.
72. Italgu or Aitalgu. ايتّك

Saker Falcon.
Falco sacer.
Manchu: Itulhen.
Chinese: T'U HU.
Scully says: The italgu is the female of the šungqar (No. 68), but Col. Phillott says it is F. sacer, the "charkh" of India. The Turki name of this falcon, especially of the female, is aitalg \bar{u} or $i \operatorname{talg} \bar{u}$ (see J.A.S.B., Vol. III, No. 3, 1907).

The similarity of the Turki name italgu, with the Manchu itulhen, can hardly be fortuitous.

David says: F. sacer is called by the Pekinese huang ying.
73. Sáng-Sáng. سانك سانك
A variety of Saker (Phillott).
Manchu: Heturhen.
Chinese: Lan hu shou.
Col. Phillott (J.A.S.B., Vol. III, No, 3, 1907) says: "A variety of Saker that does not appear to have been yet described is said to be feathered on the tarsi and feet like ' certain breeds of pigeons.' Amongst the professional falconers of Pindi Gheb this variety is called sang-sang."
74. Lačin.
? The Shahin Falcon.
Falco peregrinator, Sundevall.
Manchu: Način.
Chinese: YA HU.
Scully says: The lačin is Falco barbarus, but Col. Phillott assures me it is the Shahin of India.

The Merlin Falcon.
Manchu: Indahôn način.
Chinese: Ya hu to erh.
This may possibly be the Red-headed Merlin, Resa'on chicquera (see J.A.S.B., Vol. III, No. 6, 1907) which in India is called "turumti."
76. Turumtay. (sic) توزو طاعی

The Merlin.
Lithofalco asalon (Scully, S. F., I5).
Manchu: Karanidun.
Chinese: To ERH.
The "Mirror" says: This bird has a large head but a small body. The apple of its eye is black. It catches quails and such-like birds, and is very swift and cunning.

77. Qirghuy. قيوتوه

The common sparrow-hawk.
Accipiter nisus.
Manchu: Silmen.
Chinese: Ch'iao ying [Giles, Milvus govinda].
The "Mirror" says: "Silmen" is the general name for birds which catch quails and the like.

Scully says (karghai) qarghay is the Turki name for the sparrow-hawk. I presume that the qirghuy of our list is only another form of the same word.

If, as is quite possible, the name is derived from the verb qirmáq, to destroy, the form qirghuy is the more accurate.

Baber speaks of the qirghu in his "Memoirs."
78. Itka Qirghuy. ايتكه قيثويا

Another name for the sparrow-hawk.
Manchu: Ayan silmen (The white sparrow-hawk).
Chinese: Hsi hsiung.
The "Mirror" says: This is the name of the male of the Morin silmen (No. 79).

The Chinese hsiung (G. No. 4699) is used to express the male of birds; hsi means fine or delicate, and occurs in a name for Accipiter nisus given by Giles, hsi hsiung (G. No. 4696).

The Turki word itka is defined below : see No. 88.
79. Búz Qirghuy.

Another name for the sparrow-hawk.
Manchu: Morin silmen.
Chinese: Yao TZǓ [Giles, sparrow-hawk].
The "Mirror" says: This bird is the female of the Ayan silmen (No. 78): than which it is somewhat larger.

Col. Phillott informs me that buz and búzyur are terms applied to birds up to the first moult ; the equivalent term in India is chúz.
read boz means "grey," and bozdaghan is the name of a grey falcon. B.M. I وبوزدم-جانور كه كيمز الول خورده باشلد gives
80. Jip Qirghuy. جينس قيونوي

Another name for the sparrow-hawk.
Manchu: Ajige hiyan silmen.
Chinese: Sung ERH [G. a brown sparrow-hawk].
The " Mirror" says: This is the male of the hivan silmen (No. 81).
81. Tiš Qirghuy.

Another name for the sparrow-hawk.
Manchu: Hiyan silmen.
Chinese: Pai hsiung.
The female of the preceding bird (No. 80).
82. Turi. توزيا

Another name for the sparrow-hawk.
A term in falconry.
Manchu: Jafata.
Chinese: Ch'in huang.
The "Mirror" says: A silmen, when it first leaves the nest of its own accord, is called jafata.
83. Tölek. تولاك

A term in falconry: "Intermewed."
Manchu: Hukšen.
Chinese: LuNG ying [lit. a trapped falcon].
The "Mirror" says: "All eagles, falcons, etc., who have passed a year in the falconer's house are called hukšen.

B.M. I gives توريز خانه = توركاك for " that is, the " intermewed,"
84. Taš Tölek. تاش تولا ك

A term in falconry: "haggard."
Manchu: Bigan-i hukšen.
Chinese: Shan lung.
The "Mirror" says : Birds which have passed a year in the wild state are called bigan-i huǩ̌en.
B.M. I. gives كويز هصرا=تاش تورك

Nos. $80,8 \mathrm{I}, 82,83$ and 84 are all falconers' terms, but seeing that they are introduced in this place it is quite possible these terms are applied to birds in the state specified without further addition.

85. Ala Quyruq Sár. آل قوي روت سار

A Buzzard.
? Archibutes aquilinus.
Manchu: Huweten.
Chinese: HUA PaO [Giles: Archibutes aquilinus].
The "Mirror" says: The huweten somewhat resembles the vulture (hiyebele No. 63), and is whitish in colour. It catches mice, hares and pheasants, but with difficulty (arkan).

The Turki ála quyruq means " having a variegated tail."
Giles also gives pai (white) pao as a name for the Buzzard.

86. Lapang Sár.

A Buzzard.
Manchu: Lahôta.
Chinese: Pai CH'AO.
The "Mirror" says: The lahôta resembles the vulture (No. 63), but is smaller. The root of the tail is white. It is an unintelligent bird, i.e., it is useless for hunting.

I have not been able to trace the Turki word lapang or lafang.
87. Kök Lapang Sar. ,

A Buzzard.
Manchu: Lamun lahôta.
Chinese: HEI CH'AO.
Apparently a dark variety of No. 86.
88. Itka ايتكه

A term in falconry.
Manchu: Utan.
Chinese: Wo CH ' U [lit. a nestling or fledgeling].
The "Mirror" says: Hawks and falcons taken from the nest and tamed are called utan.
Zakharoff only gives utan in the sense of pelican, synonymous with kutan.

GROUP V.

89. Selkeš.

A hybrid falcon.
Manchu: Kiyakôha.
Chinese: P'iao ying [lit. a moulting falcon].
The description in the "Mirror" is lengthy and curious; I therefore give the original.

Kiyakôha amu hačin jaka damin giyahôn silmen hiyan silmen-i jergi jaka de gemu bi tuibulači morin-i adali imu de juru jaka gôrwa jaka de ačafi banjihangge be kiyakôha sembi, umesi aldasi bude fusihôn jaka.

Amyot (Vol. III, p. 54, sub-voce kiakouha) gives the following definition which represents very fairly the meaning of the above :-
"Nom d'une espèce d'oiseau de proie qui s'accouple indifféremment avec les " oiseaux d'autres espèces ; c'est pourquoi leurs petits, tantôt d'une espèce, et tantôt
" d'une autre, sont des oiseaux inutiles, qui ressemblent au mulet dans leur gente."
90. Jaghalmay جغالمالمى

The Hobby.
Falco subbuteo (Scully, S. F., No. I3).
Manchu: Keikuhen.
Chinese: Hsia mo ying.
Scully gives the form jaghalbay.

91. Bay Quš.

? The Snowy Owl.
Nyctea nivea (Scully, S. F., 68 bis) more probably here Asio otus.
Manchu: Ančun gôwara.
Chinese: HÊN HU.
The "Mirror" says: This bird has a large body. Its plumage is yellow, with black markings. It has large eyes, and on its head are feathers which look like lynx's ears.

The above description does not at all fit the Snowy Owl, but would do for the Eagle Owl, Bubo ignavus, or the long-eared owl, Asio otus.
B. M. Or. IgI2 merely translates bay quš by búm. B. M. Or. 404 gives bay $u g h l i=$ = also mean "rich," and Scully translates the name by " noble bird." D. de Rhins gives bay ughli $=$ Scops giu. See also No. 97 below.

In Houtsma's List bay quš is translated by the Arabic التٌبيس, which is only an orthographic variation of "̈axal", which Dozy gives as "chouette."
92. Huy Quš. هوي قوش

The Eagle Owl.
Bubo maximus (Scully, S. F., 70 bis).
Bubo turcomanus (B. S. 25).
Manchu: Fu gôwara.
Chinese: MU T'U [lit. tree rabbit].
The "Mirror" says: In nature this owl resembles No. 9I. It is about the size of the damin eagle (No. 52).

Compare No. 60, where the same Turki name is applied to a species of eagle.
93. Yapalaq. يافالات

The Short-eared Owl.
Otus brachyotus (Scully, S. F., 68).
Manchu: E1ben gôwara.
Chinese: Mao сн'in [lit. reed-owl].
The "Mirror" says: This bird is like No. 92, but smaller.
This would seem to imply that it was long-eared rather than short-eared,

94. Šúm Quš.

A species of owl.
Manchu: Yabulan.
Chinese: Hsiao niao.
The "Mirror" says : This owl resembles No. 93 ; its cry is disagreeable, but its flesh pleasant to the taste.

Zakharoff adds that it is the size of the turtle-dove; and that its cry is regarded as a bad omen.

Giles says hsiao niao is a fabulous bird which devours its own mother, all but the head; but the definition in the "Mirror" does not imply a fabulous bird.

The Turki ším quš is a translation of the Arabic al-búm al-maš' $u m$, the owl of ill-omen. Steingass gives an idiom بوم خواندس: "to call or invite the owl, to render desolate."

Persian literature is full of allusions to the ill-luck which owls bring.

95. Čüghündük.

Athene bactriana (Scully, S. F., 76 A).
Carine bactriana (B. S. 28).
Manchu: Hôšahô.
Chinese: Yeh mao erh [lit. the night-cat].
Giles gives yeh mao tzŭ = Scops sunia, the screech owl.
The Turki word recalls the Persian chughud = little night-owls.
96. Ayágh-siz. آياغ سيز

The Night-jar or Goat-sucker.
Caprimulgus arenicolor (Scully, S. F., II2 A).
Manchu: Yabšahô.
Chinese: Ch'th hSiao [Giles, the eared-owl].
The " Mirror" merely says: This bird resembles No. 95.
Gabelentz says yabšahô is a bird resembling the cuckoo. Zakharoff and Amyot have omitted this word.

The Turki name means literally " the footless one."

97. Sarigh Quš.

? The Scops Owl.
Scope gin.
Manchu: Hums.
Chinese : She mao ert [lit. the tree-cat].
The "Mirror" says: This bird is like the ančun gowâra (No. 9I) but much smaller.
Now the Turki name for No. 9I is bay quš, which I am inclined to identify with Asio otus. D. de Rhins, in his short list of birds, mentions one called bay oghli= Sops git. Bay oghli means literally the rich man's or nobleman's son. And seeing that the bird here called sarigh quš is said to be like the Bay quš, but much smaller, it is quite possible that in some localities it may have received the name bay oghli on account of this resemblance.

The same name is applied to a crane, see No. 39.
98. Leken Tukhosi.

A gull or petrel.
Manchu: Suzan.
Chinese: Lu ssǔ.
The "Mirror" says: It has a black body and a hooked beak. It is bigger than a crow (gatha), and catches fish.
99. Baliqči.
? The Tern.
Sterno hirundo.
Manchu: Suksuhu (Lakh., Sterna hirundo).
Chinese: YÜ vyING [lit. fish-falcon] (Giles, Sterna hivundo).
The "Mirror" says: Colouration yellow, wings long, tail short, neck thick. It catches fish.
Sculley apud Shaw says that the name baliqči (or fisherman) is applied both to Stern fluviatilis and to Sterna minuta.

The Sanglákh translates baliqčin by the Persian بورتيما $($ bú-tímár $)=$ a heron.
In view of the probable identification of No. roo, it seems quite possible that the Osprey or fish-eagle, Pandion heliaëtus, Linn., is here intended.

White Fish-Eagle.
Heliaëtus albicilla, Linn.
Manchu: Šanyan suksuhu.
Chinese: PAI CHÜЕН.
The " Mirror" says: It is like the falcon (giyahôn No. 67) ; it has white feathers on the head. The tip of the tail is whitish. It catches fish with great ease.

The word chiueh is not given in Giles. But the pai chiueh is one of the seventy-two birds illustrated in the Erh-ya, where it looks like an eagle.
101. Turna Baliqči.

The Osprey.
Pandion Heliaëtus.
Manchu: Sisuhu [Z. misprints sisuku].
Chinese: O [Giles, Osprey].
The "Mirror" says: This bird has sunken eyes like the owl (elbe gôtwara No. 93).

102. Qara Baliqči.
 قرا بيق

? A black tern or sea-eagle.
Manchu: Dasukô.
Chinese: Tao chr.
The "Mirror" says: This is a large gull somewhat resembling an Eagle.
This resemblance is also implied by the Chinese name.
103. Darya Italgu. دريا ايتلكو
? A large sea-eagle.
Manchu: Mutulhen.
Chinese: Hal mu.
The Turki and Chinese names both mean sea-falcon.
104. Darya Qirghuy. دريا قيرخوي
? A sea-hawk.
Manchu: Mu1men.
Chinese: Hal mao.
The Turki and Chinese names both mean sea-hawk.
105. Qizghiš Baliqči. قيز غيش بليت
? A red-beaked gull.
Manchu: Buhere.
Chinese: Yü gov (lit. fish-dog).
According to the "Mirror" this gull has a red beak and a white neck.

The word qizghiš is not to be found in the dictionaries, but it probably means " reddish," cf. qizimtul.

106. Yašil Baliqči. ياشُيل بليت هیى

? The green gull.
Manchu: Nimargan.
Chinese: YÜ HU (lit. fish-tiger).
The "Mirror" says: This is a large gull with green plumage.

107. Kökiš Baliqči.

? A blue gull.
Manchu: Čurbi gasha.
Chinese: Ts'UI PI (lit. blue-green).
The "Mirror" says: A small gull with blue plumage.

108. Čulloq Baliqči. خول لوت بليق

? A small gull.
Manchu: Čunu gash.
Chinese: Ts'uI nu.
The "Mirror" says: This bird is smaller than the Čurbi gash.

109. Šib Turunghu.
 ```شيب! #ّور ونكغو```

? A white gull.
Manchu: Kilahôn (Z. a stork).
Chinese: OU.
The "Mirror" says: There is no difference between the large and small varieties of this bird. Its colouration is white; it has a stumpy tail, and eats fish.

? A sea-owl.
Manchu: Make hôšahô.
Chinese: Shut hisao.
All three names mean sea-owl.
The "Mirror" says : The kilahôn, which resembles the owl, is called mule hôšahô.
GROUP VI.
111. Keti Rang Tukhi.

The Golden Pheasant of China.
Thaumalea Dicta (Gould).
Manchu: Junggiri čoko.
Chinese: Chin chi [David, Kin $\mathrm{ki}=$ Thaumalea pieta].

Zakharoff says: This is a small golden pheasant. It is used on embroideries as the heraldic emblem of the third and fourth classes.

The " Mirror" says : Five colours are represented on its body.
The Turki Tukhi means a fowl, and corresponds to the Manchu Čoko and the Chinese Chi.

112. Püpišheklik Tukhi.

Temminck's Horned Pheasant.
Ceriornis Temmincki.
Manchu: Suihetu čoko.
Chinese: T'U show chr [Gould, Tu you niao].
The "Mirror" says : It has a red head. The plumage on the breast is a mixture of grey and yellow. On fine days it spreads [its feathers]. From the head two fleshy horns stand out prominently. In the place of a chin it has a fleshy bag hanging down.

Gould says : In the pairing season the membrane can be enlarged or contracted at the will of the bird.

I think the "Mirror's" description and Gould's illustration, taken together, justify this identification.

113. Uštur Burgh. او شتر مرغ

The Ostrich.
Struthis.
Manchu: Temege čoko.
Chinese: T'O CHI [lit. camel-fowl].
The "Mirror" says: This bird is found in the Southern Seas and in the south of the Province of Fu-Kien. It is very large, measuring six feet in height. It is unable to fly. When full grown, five colours are represented on its body.

The Turki uštur is another form of the Persian šutur, a camel.
Giles says t'o niao (camel-bird) is the name for the Emu; while the usual Chinese name for the Ostrich is ta ma chiao (the great horse-bird).

Bretschneider (" Mediæval Researches" I, pp. I43-I44) says: The Ostrich, although found only in the deserts of Africa and Western Asia, was known to the Chinese in early times, since their first intercourse with the countries of the Far West.

114. Qaramtil Burgh. قرام تيل مرغ

The Chinese Crossoptilon.
Crossoptilon auritum.
Manchu: Yahana čoko [Z. Russian glukhar = grouse].
Chinese: Huo Chr [usually means the Turkey].
The "Mirror" says: It resembles the šunggin gasha (No. I8): it is larger than the pheasant; body blackish; head and neck dark-blue; beak white; reddish rings round the eyes; feet all red; tail white, but slightly black at the extremity. It stands two Chinese feet in height.

Underneath the chin, and standing out from the side of the head, are ash-coloured feathers looking like the horns of a wild beast.

This description corresponds so exactly with the illustration of the Chinese Crossoptilon in Gould's "Birds of Asia" that I feel no hesitation in making the identification. Moreover, the matter seems finally settled by the following quotation in regard to the Chinese name: "The Chinese name is ho chi, either "river-fowl" or "firefowl." From our text we now know it to be the "fire-fowl."
115. Tajilik Murgh. تاجه ليك موغ

Pencilled Pheasant.
Gennœeus nycthemerus (Gould).
Manchu: Gônggala čoko [Z. name of a grouse].
Chinese: Ho chr.
The "Mirror" says: On its head it has black feathers like a tuft (sorson), which hang down below the neck. It is a strong fighter.

Zakharoff says: "Name of a grouse (teterev). Feathers hang from its head like the tassel of a Chinese hat! It is very quarrelsome.

Giles and Poletti say of the Chinese ho $(\operatorname{Rad} 196+73)$: A variety of pheasant, emblem of courage. Its long tail feathers are worn by actors; it has a crest.

Giles says it is Reeve's Pheasant, but I am inclined, on account of the picture in Gould, to identify it with the Pencilled Pheasant.

See No. I33, which I think is more likely to be Reeve's Pheasant.

116. Ala Buyun Murgh. آلا بويون مغ

A kind of Francolin.
? Ithaginis sinensis.
Manchu: Alhari čoko.
Chinese: Shan hua chi.
The "Mirror" says: It is like the pheasant (ulhôma). It is found in the Fu-Kien Province. Head black; the feathers on its cheeks protrude above the head. The feathers on its back are white, with markings of various colours. The feathers of the tail are black, spotted with yellow.

I have not seen a picture of Ithaginis sinensis, but David gives hoa $k i$ as the Chinese name for this bird, which might represent the same Chinese characters as hua chi (lit. the variegated fowl).
117. Püpeklik Murgh. ونك ليك

A blue-winged pheasant.
Euplocamus lineatus (Vigors).
Manchu: Genggele čoko.
Chinese: Chieh.
The "Mirror" says: It is like the gônggalo čozo (No. II5). The wing feathers are blue . It is a strong fighter.

I have not found the Chinese chieh in any dictionary.

My tentative identification is based on the circumstance that it is like the pencilled pheasant, and has blue wings.

118. Yašil Güzlük Murgh. ياشيل كوز لوكس مرغ

A Peacock Pheasant.
? Polyplectron Chinquis.
Manchu: Jihana čoko.
Chinese: Chin ch'ien chi.
The "Mirror" says: It resembles the fa ulhôma (No. I32). It is like a peacock. On the feathers are green eyes.
119. Čapar Murgh.

Pucras Pheasant.
Pucrasia darwinii or P. xanthospila.
Manchu: Satangga čoko.
Chinese: Sung chi.
The "Mirror" says: It is like the fiyelenggu (No. I29). It is found in Mongolia. Its body is all speckled with black and yellow markings. It has yellow down on the legs.

David gives Song-ki as the Chinese name for both P. darwinii and P. xanthospila.
120. Dükür Murgh. دكوز

Manchu: Niyo čoko [lit. marsh-fowl].
Chinese: SHuI CHI [lit. water-fowl].
The "Mirror" says: It has a black body; it frequents marshy land; and has a red fleshy comb.

Zakharoff adds that the head and neck are black, spotted with red, and the breastbone and wings yellow, spotted with black.
121. Čuláq Murgh. $\dot{\text { ولات }}$

A species of Pheasant.
Manchu: Simelen čoko.
Chinese: Tsê chI [lit. marsh bird].
The "Mirror" says : Its colouration is black; it has yellow markings ; breast yellow. It has no spurs.
P. de C. says čuláq means " manchot," i.e., a penguin. The Turkish word čulaq means ordinarily one who is without hands. Here I presume it to imply either a pheasant without spurs, or one which flies with difficulty.
122. Kičik Dükür Murgh. كهِ

A species of Pheasant.
Manchu: Ajige niyo čoko.
Chinese: Hsiao shui chi.
A small variety of No. 120 .

123. Sulaimanlik Murgh.

A species of Pheasant (?).
Manchu: Horki.
Chinese: TzǓ chit.
The "Mirror" says: It is like the fa ulhôma (No. I32). A very large grey-coloured bird. Tail long. It is found in cold places. It has down on the legs.

The Turki name means Solomon's Fowl. The name looks genuine enough, but I have not been able to trace it.

Murgh-i-Sulaiman is one of the many Persian names for the hud-hud or hoopoe, but this bird cannot be here intended.
124. Sarghij Murgh.

A species of Pheasant (?).
Manchu: Niyekserhen.
Chinese: T'IEN TUNG CHI.
The "Mirror" says: This bird is found in the Province of Fu-Kien. Head yellow; breast black; wings bordered with yellow. Lives on fish and shellfish.
125. Miyana Murgh.

A kind of Chicore.
? Caccabis chukor.
Manchu: Itu.
Chinese: PaN Ch'IH [lit. half-winged].
The "Mirror" says: It is like a pheasant (ulhôma), but smaller. Its tail is short.

126. Keklik.
 \qquad

The Chicore.
Caccabis pallescens (Hume).
Manchu: Eng ge fulgiyan itu.
Chinese: Shit CHI.
The "Mirror" says: In nature it is like the cook (fowl) ; beak red; legs short and red, Its body is the colour of natural woollen stuffs (funiyesun).
127. Čil burgh. $\dot{\varepsilon} y^{\circ} ل_{\wedge}$

A Bamboo-Partridge.
Bambusicola sonorivox.
Manchu: Čuse moo-i itu.
Chinese: CHU CHI.
The "Mirror" says: In nature it is like the čoko (fowl). Its body is the colour of natural woollen stuffs (funiyesun), and is speckled allover. It is fond of screeching and fighting. It lives in bamboo forests.

Some dictionaries say that the Chinese $c h u-c h i=$ a snipe.
128. Čil

Pallas' Sandgrouse.
Syrrhaptes paradoxus.
Manchu: Nuturu.
Chinese: Sha chr.
The "Mirror" says: It is like the i tu (No. I25). Its foot resembles the foot of a hare. In the winter season the birds flock together, and they make a small chuckle in flight.

Mr. Rockhill (Journey, p. 9, note), speaking of the Syrrhaptes, writes: "I for my part never heard any other name than sha-ch'i (sic) 'sand-fowl' given them."

Marco Polo's "Barguerlac" has been identified with this bird. (Yule, and ed., p. 272), but on the authority of this list it would seem to be Syrrhaptes tibetanus. See No. 129.

129. Baghirtaq.

Tibetan Short-toed Sand-grouse. Syrrhaptes tibetanus. Manchu: Fiyelenggu. Chinese: SHU CHI.
The " Mirror" says : It is like the female i itu (No. 125) or grey partridge.
David gives chou $k i$ as the local Pekinese name of the Tetrastes bonasia. This may possibly be our stu chi.

On Marco Polo's Bargeurlac see preceding number (128).
130. Čedüki Baghirtáq.
 The Northern Sand-grouse. Manchu: Jase-i amargi fiyelenggu. Chinese: Per she chi.
The "Mirror" says: Is smaller than No. 129. It is found on the northern frontier (of China).

GROUP VII.

131. Qirghul. قير غول

A generic name for pheasants. Manchu: U1hôma.
Chinese: У EH CHI [lit. wild fowl].
The "Mirror" says : It is like the čoko (fowl); tail long; the male has brilliant glistening feathers, while the female is yellowish in colouration.

According to the Manchu transcription the pronunciation is qirghul, but the usual forms are qirghaul and qirghawal.
132. Qaramtil Qirghul. قوام تيل ڤیر غول

A black partridge or francolin.
Manchu: Fa ulhôma.
Chinese: U CHIH [lit. black pheasant].
The "Mirror" says: The colouration of this bird is blackish. Its body is smooth (halfiyan). Tail short, like that of a duck. It perches in trees. It has down on its legs.

Zakharoff says: It is a grouse (Russian, teterev), but Amyot only says " une sorte d'oiseau."

133. Khitay Qirghul.
 ذطاجى قيزیول

Reeves's Pheasant.
Syrmaticus reevesii.
Manchu: Nikan ulhôma [Z. Gallina sylvestris].
Chinese: Снін chi [lit. the pheasant fowl].
The "Mirror" says: It is like the ulhoma. It is found in the depths of forests. Its tail is long.

Perè David says: Djeu-ky is the local Pekinese name for Reeves's Pheasant. This is probably identical with the name here given in Mandarin transcription.

The Turki and the Manchu names both mean "Chinese Pheasant."

134. Purmuy Qirghul. ورْوعى "يَغْول

The Tartar Pheasant.
Manchu: Juwaringga junggidei.
Chinese: Hsia ti (or chai) [lit. the summer (Tartar) pheasant].
The "Mirror" says: A mountain pheasant, whose plumage becomes a very brilliant colour during the summer season.
135. Ala Qirghul. آلا قيرغول

A species of pheasant.
Manchu: Ala ulhôma.
Chinese: YÜan-niao.
The "Mirror" says: Resembles the pheasant. Makes its nest on mountain crags.
The Manchu word ála here corresponds with the Chinese word yüan=a high plateau. The Turki ála means variegated.

Zakharoff says: This is a grouse which is called by the Kirghiz ular. See No. 15.

136. Aq Qirghul. آت قيرغول

The White Pheasant.
Manchu: Šanyan ulhôma.
Chinese: Pai chif.
The "Mirror" says: The whitish pheasant is called šanyan wolhôma.

137. Ranglik Qirghul. رنك ليك قير غول

A variegated pheasant.
Manchu: Fiyangga ulhôma [Z. A Chinese Pheasant].
Chinese: Hur.
The " Mirror" says: A beautiful variegated pheasant of five colours.
The Chinese word hui means variegated, but the word chih, which is not repeated here, is perhaps implied. Giles, however, says hui alone means a pheasant, and that hui chih $=$ the Tartar Pheasant.

138. Qara Qirghul. ترا تيرغول

The "Sea" Pheasant.
Manchu: Mederi ulhôma.
Chinese: Hai chir [lit. the sea-pheasant].
The "Mirror" says: A black pheasant, also called the sea-pheasant to distinguish it from other black pheasants.
139. Tagh Qirghul. تاغ قيزغول

The Mountain Pheasant.
Manchu: Alin-i ulhôma.
Chinese: Shan chin.
All these names mean " the mountain pheasant."
The "Mirror" says: Mountain pheasant, with long tail.

140. Baldir Qirghul. بالدير قيرخول

A species of pheasant.
Manchu: Koksin ulhôma.
Chinese: CH^{\prime} ' C CHIf.
The "Mirror" says: A pheasant which heralds approaching thunderstorms by its cry.
The word baldir apparently forms part of a name for the quail, balderčin.
The Chinese $c h^{\prime} i i$ is another name for $c h^{\prime} i \ddot{i} y i \ddot{ }$, the Mynah. See No. ${ }^{\prime} 78$.
Shaw says: baldir means "first," but P. de C. and the "Sanglakh" say baldir means " the fat part of the leg, the calf."

A fighting pheasant.
Manchu: Bečun ulhôma [lit. fighting pheasant].
Chinese: Fén Chth.
The Manchu bečun comes from bečunambi, to fight.
The Chinese fên means "impetuous."
The Turki čoqušghaq comes from the verb čoqušmaq $=$ to peck one another.

142. Dürlam Qirghul.

The Sand-grouse.

Syrrhaptes sp.
Manchu: Fenihe ulhôma.
Chinese: K'ои chi н [Giles = Syrrhaptes paradoxus].
The "Mirror" says: Resembles the kureečihe (pigeon) (No. 194); body small. They flock together when flying.

I have not been able to trace the Turki word dïrlam.

143. Čuja.

Name for the young of pheasants.
Manchu: Šoron.
Chinese: Lin [Giles says, a species of "lark" known as t'ien (heaven) lin].
There seems to be considerable difference of opinion as to the meaning of this number. The "Mirror" says this is a name for the young of pheasants. Gamelentz and Zakharoff say, a name for the young of geese and ducks; and Zakharoff also adds, a name for the nest itself, where the young are reared. Poletti, like Giles, says it is a species of lark.

The Turki čuja is the common word for a chicken.
144. Yaw Urdak. يبا اورديك

Wild duck, in general.
Manchu: Bigan-i niyehe.
Chinese: Yer ya.
The "Mirror" says: A general name for many varieties of wild duck.
Sully says the Yarkandis distinguish twenty species of duck. It will be seen that the present list includes no less than twenty-six.
145. Karrak Urdak.

The Teal.
Querquedula circia.
Manchu: Yangsimu niyehe.
Chinese: Kun ya [lit. crested duck].
The "Mirror" says: A crested wild duck with variegated feathers.
Karak or karrak (as it is always written in the MS.) means "patch-work." The Sanghlakh says kayak is the Turki name for a species of quail.
B. S. 299 says, kayak urdak is the Turki name for the Blue-winged Teal, Querquedula circia. But from the description and the Chinese and Manchu names, it might be the Tufted Pochard (Fuligula fuligula) which migrates to North India and China in the winter.
146. Kičik Ala Urdak. كيتحَي

A species of duck.
Anas clangula.
Manchu: Ajige yangsimu niyehe.
Chinese: Hsiao guan ya.
The "Mirror" says: Resembles the yangsimu niyehe (No. I45). Body small.
Zakharoff has: Little crested wild duck. (Anas clangula).
147. Soma Urdak.

The Mallard.
Anas boschas.
Manchu: Borjin niyehe.
Chinese: P'u ya [p'u =rushes].
The "Mirror" says: This bird is reared in captivity, and resembles the green domestic duck.
P. de C. gives Sona-borjin as the name of a duck. The "Sanglakh" says, soma is the drake and borčin the duck. It is a curious coincidence that here we have "rona" in the Turki and "borjin" in the Manchu. In China it is quite a common practice to call a certain variety of bird by the combined names of the female and the male. Compare No. 155 .
148. Kičik Urdak. كيهيك اور ديك

Another name for No. 147 .
Manchu: Tarmin niyehe.
Chinese: P'U ya.
149. Quba Urdak. قوبا اورديك

The Shoveller.
Spatula clypeata.
Manchu: Kaltara niyehe.
Chinese: MA ya.
The "Sanglakh" says quiba is a Kalmak word for a breastplate. The Turki name thus offers an interesting similarity to the Latin name.

The "Mirror" says: A duck resembling the borjin niyehe (No. 147). It is "Kaltara" coloured. [Kaltara literally means a red horse with white breast.]
150. Petek Urdak.

A species of duck.
Manchu: Yargičan niyehe [Z. A diving Duck: Russ. Nïrok].
Chinese: P'I hut Lu.
The "Mirror" says: This is a small wild duck resembling the borjin niyehe (No. 147).
I have not been able to trace the Turki word petek: but there is a word curiously like it in Ottoman Turkish for the Shoveller Duck, Spatula clypeata, namely, a
151. Sukhsur or Suqsur.

```
سو خسو
```

The Pintail Duck.
Dafila acuta.
Manchu: Borboki niyehe.
Chinese: Ni ko ta.
The " Mirror" says: A small wild duck resembling No. I50, with delicate white spots on the wings. It cries out when flying.

Scully (I. 962) : Dafila acuta, Pintail Duck, " cha sughsu aurdak."
The "Sanglakh" says: Suqsur is the male of the duck, and is synonymous with sona.

152. Qizghinj Karrak Urdak.

Purple-headed Duck.
Manchu: Dudu niyehe.
Chinese: Tzǔ t'ou ya.
The word $d u d u$ in Manchu means a turtle-dove.
The "Mirror" says: Purple head, broad beak, resembles the borboki niyehe (No. $\mathbf{1} 5 \mathrm{r}$) in the body.
153. Jar Karrak Urdak. جاركرّك اورديك

A mottled Duck.
Manchu: A1hačan niyehe.
Chinese: Lo wên ya.
The "Mirror" says: Resembles No. I52, but has variegated plumage.
154. Čapar Karrak Urdak. شغار كّ, اوركس

A mottled duck.
Manchu: Bulhačan niyehe.
Chinese: WÊN HAN ya.
The "Mirror" says: Resembles the alhačan niyehe (No. I53). The plumage is variegated.

> GROUP VIII.
155. Qušmaq Urdak. قوشهـقى اورديك

The Mandarin Duck.
Aix galeviculata.
Manchu: Ijifun niyehe.
Chinese: YÜan yang.
The "Mirror" says : Purple head, white eyebrows, has a crest. The male and female are inseparable.

The Chinese words yüan and yang stand for male and female Mandarin duck respectively, and they are used as emblems of conjugal fidelity.

A description of the Yüan yang is given by Huc, see Voyages, Vol. I, p. 243.
156. Tutuš Urdak.

Another name for the Mandarin Duck.
Manchu: Irgeče niyehe.
Chinese : Chis Ch' if.
The " Mirror" says: Another name for the ijifun niyehe (No. 155).
Giles says, $c h^{\prime} i$ is a bird with variegated plumage, found in marshes, whose high tail is sometimes likened to a rudder.

157. Hang Ghirta.

The Brahminy Duck.
Casarca rutile.
Manchu: Lama niyehe.
Chinese: T'U YÜAN YANG.
The "Mirror" says: This bird resembles the ijifun niyehe (No. 155), but is of a yellowish colour.

Scully (S. F. 954): Hangghut pronounced Hangat = Brahminy Duck, Casarca rutile.
This Turki name is found recorded in many forms, such as Angit, Anqit, Hangat and Alqit.
158. Sarigh Urdak. سريغ اوريیك

Yellow Duck.
Manchu: Anggir niyehe [Z. Russian Turban = Anas nigra].
Chinese: Huang ya.
The "Mirror" says: This is a large yellow duck.

The Short-tailed Duck.
Manchu: Sočili niyehe.
Chinese: Hsiao wei ya.
The "Mirror" says: Forked tail ; body has white markings.
180. Yeken Urdak. يكان اوردوك
? Anas querquedula.
Manchu: I ja niyehe [Z. Mountain duck (Anas querquedula)].
Chinese: Shut mu Lu.
The "Mirror" says: Of the nature of the sočili niyehe (No. 159). Very small, and has very good tasting flesh.
161. Marg Urdak.

Another name for No. 160 .
Manchu: Niojan niyehe.
Chinese: Same as the above.
162. Baliqči Urdak. بليّ

The Fisherman Duck.
Manchu: Kanggô niyehe.
Chinese: Yü ya.
The "Mirror" says: Somewhat larger than the borjin niyehe (No. I47) with a pointed beak. Eats fish.
163. Qara Payča Urdak.

Black variegảted duck.
Manchu: Jukjuhu niyehe.
Chinese: Hei chiao ya.
The "Mirror" says: Body black with variegated plumage. It is a very skilful diver, and resembles the čikiri niyehe (No. I65).
164. Qulang Sa Urdak. قولنك سا اوركيك

Manchu: Čunggur niyehe.
Chinese: YU HU LU.
The "Mirror" says: Very small duck with curved beak. It feeds on fish, and therefore the flesh is not good to eat.

Giles says: Yu $\urcorner \boldsymbol{\prime} / \boldsymbol{l}$ is a kind of cricket which sings during the winter in stoves.

165. Baliq-güz Urdak. بليت كوز 'ورديك

The Eastern White-eyed Pochard [lit. the fish-eyed duck].
Nyroca baeri.
Manchu: Čikiri niyehe.
Chinese: Yü yen ya [lit., jade-eyed duck].
The "Mirror" says: This duck resembles the dudu niyehe (No.. I52) ... It is called čikiri because its eyes and beak are white-grey, like the eyes of a wall-eyed horse or dog: [See note on No. 53].
166. Ala Mač Urdak. آلا

Variegated duck.
Manchu: Alha niyehe.
Chinese: HUA ya.
The "Mirror" says: Variegated duck, resembling the dudu niyehe (No. 152).

167. Ala Sarighinj Urdak. آل سالغينغ اوريكـ

The Eastern Grey Duck.
Anas zonorhyncha.
Manchu: Alhari niyehe.
Chinese: Chien hua ya.
The "Mirror" says : Ash-coloured duck, with red plumage and small feet,
168. Baliq-gha Amraq Urdak. بليمّ غه اهراق اورديكـ

A diver.
Manchu: Aka niyehe.
Chinese: Lо но.
The "Mirrot" says: Resembles the kanggô niyehe (No. I62). Has a curved beak; eats fish. Its flesh is consequently unpleasant to the taste.

The Turki name means "a duck resembling a fish."
169. Hurluq Urdak. هور لوق اورديك

The Coot.
Fulica atra.
Manchu: Karan kalja [Z. Russian, lisukha, a coot].
Chinese: Ku ting.
The "Mirror" says: Resembles a crow : body black, nose and beak white.
170. Yašil Šatuti. ياشيل شاطوطي

A green parrot.
Manchu: Yengguhe.
Chinese: Ying wu.
The "Mirror" says: A green parrot with a beak like that of the vulture. Can be taught to talk.

The common Persian word for a parrot is tuti i. The present list never uses the word $t u t t i$ alone, but always speaks of Shá tuti, which is probably a corruption of Sháh tututi شاه طوطي, or " King Parrot," the term sháh being applied out of respect, just as the falcon is called Sháh báz.

Only in this place is tuti spelled with the correct "t.." Pavet de Courteille, in his Dictionary s. v. bilik, p. I9I, quotes the following line :-
"Since the king knows the names of the animals, what wonder if one find among them a kingly nature."
P. de Courteille says this is an allusion to the name given to certain birds; for example, a parrot which talks very well is called .شُtu (sháh tuti).
171. Sirmurgh Šatuti. سير هو غ شالوّتي

The Phœnix Parrot.
Manchu: Garudangga yengguhe.
Chinese: Fêng huang ying wu.
The "Mirror" says: Has a long body, measures three feet. Resembles the phicenix, and is of five colours.
172. Khušaliq Šatuti. خوشاليت شاتوتي

The Parrot of Good Fortune.
Manchu: Sebjengge yengguhe.
Chinese: Shif lo niao.
The Turki here, as elsewhere, writes khušali خخرشاليق, for khušhal liq خرش الليق. The "Mirror" says: Another name for the garudangga yengguhe (171).
173. Šatuti. شاتوتّي

The Parrot
Manchu: Yenggehe.
Chinese: Ying ko.
The "Mirror" says: Resembles the yengguhe (No. 170) ; beak small ; of different colours.
For explanation of the Turki Šatuti, see No. I70.
174. Sarigh Ṣopia. سريغ صوفيا

A yellow parrot.
Manchu: Suwayan yenggetu.
Chinese: Huang ting hilang niao.
The "Mirror" says: Smallish parrot, with head, back and wings all green, neck and breastbone yellow.

The word sopia, according to Scully (S. F. 470) and Dutreuil de Rhins, means the Oriole, Oriolus kundoo, or Oriolus galbula. But in our list I think it must mean a species of parrot. The Chinese ting hsiang $=$ cloves !
175. Yašil Ṣopia. ياشيل صوونيا

A green parrot.
Manchu: Niowanggiyan yenggetu.
Chinese: Lü ting hisiang niao.
The "Mirror" says: Resembling the yellow parrot, but larger. Head, breast-bone, back and wings all green. Yellow markings at the base of the wings.
176. Máda Ṣopia. ماله صوفيا

A hen-parrot.
Manchu: Yenghuhe.
Chinese: Mu Hou.
The "Mirror" says: This is the female of the yengguhe (No. 170).
GROUP IX.
177. Čikdači.

Chinese Mynah.
Acridotheres cristatellus.
Manchu: Bangguhe.
Chinese: Pa ko [lit. the eight brothers].
Giles gives yen (swallow) pa ko erh = Sturnus cineraceus

The "Mirror" says: Black body, green beak, sometimes crested. White wing feathers, white markings on tail, yellow legs. Can be taught to talk.

Zakharoff says: This bird has a crest, but not the power of speech; though it belongs to a class of birds without crests, but possessing the power of talking.

The Chinese pa ko means literally eight brothers, which reminds one of the wellknown name, seven sisters or seven brothers (sath bhai), given to Babblers in India.

Eta, in "Tribes on my Frontier," says: "Here (Bombay) they are brothers, and in Bengal they are sisters; but everywhere, like Wordsworth's opinionative child, they are seven." Eta, however, seems to have overlooked the Chinese variety.

Scaly (S. F. 365) gives a very similar name "jigda chuk" for Planesticus atrogularis, Temm. He says: "It feeds chiefly on Eleagnus berries called jigda in Turki, and commonly known as 'Trebizond dates,' hence its name Jigda chuk, ie., ' jigda-eater.' "

Redhouse says the Turkish $\underset{\text { ה }}{\text { (pron. in Ottoman chiyde) }}=$ Zizyphus vulgaris, the jujube.

Dutreuil de Rhine identifies čigdači with Turdus fuscatus.

178. Zákarči. زاكیي

Another name for the Chinese Mynah.
Manchu: Kiongguhe.
Chinese : Ch'Ü yü [Giles, Acridotheres cristatellus].
179. Aqiš Čikdači.

The Chough.
Pyrrhocorax graculus.
Manchu: Cinjiri [Z. Russian Drozd].
Chinese: Liao ko [Giles, the blue grackle].
The "Mirror" says: Colouration violet ; red beak, parting on the top of the head. A skitfut singer, with a very clear voice.
180. Saghizghan. ساغيز غان

The Magpie.
Pica pica (B. S. 35), P. bactriana (Scully, S. F., 668 bis).
Manchu: Saksaha.
Chinese: HSI Chiao [Giles, magpie].
The "Mirror" says: Resembles the crow. Body and wings half white. At the end of the winter months it makes its nest.

181. Khabarči Saghizghan. هبر په ساغيزغان

A species of magpie.
Manchu: Šengge saksaha.
Chinese: Ling chiao.

The "Mirror". says: Talking magpie, which, according to the Chinese, heralds" the advent of a great man.

Zakharoff adds: "for example, the founder of a dynasty," thus reminding one of the king-making qualities attributed by the Persians to the humá bird.

Turki : khabarči $=$ news-bringer.
Manchu: šengge = divine
Chinese : ling, applied to animals, means intelligent.
182. Aqiš Saghizghan. آَيش ساءيز عُان

The White Magpie.
Manchu: Šahôn saksaha.
Chinese: Pai hisi ch'iao.
The "Mirror" says: Like the Saksaha but bigger, with rather short tail. On the body mixed white and grey feathers.
183. Tagh Saghizghan. تاغ ساغيز غاب

The hill magpie.
Manchu: A1in-i saksaha.
Chinese: Shan hSi ch'iao.
The "Mirror" says: Like the ordinary magpie, but somewhat smaller. Black and white markings on the head, long tail; makes its nest in mountain forests.
184. Say Saghizghan. سأى ساغيز غاب

A species of Magpie.
Manchu: Niyo saksaha.
Chinese: Shui his ch'iao.
The "Mirror" says: Black, with long beak, white head and short tail. Very tall. Found on sand-banks and dunes. Fish-eater.

The Turki word say means "a river which is dry in summer and a torrent in winter"'; but here it seems to be a translation of the Manchu niyo which means "a marsh."
185. Qizghiš Saghizghan. قيز غيش سافيز غان

A Paradise Fly-catcher (female).
Tchitrea paradisi.
Manchu: Baibula.
Chinese: Lien ch'iao [Giles, Tchitrea incei, Gould].
The "Mirror" says: Resembles the magpie. Smoke-coloured, with long tail.
The Turki epithet qizghiš, reddish or russet, would only apply to the female.
186. Uzun Quyruq A'q Saghizghan. اوزون ويروق آت

Paradise Fly-catcher (male).
Tchitrea paradisi.

Manchu: Golmin unčehengge šanyan baibula.
Chinese: T’o pai lien.
The "Mirror" says: Resembles the baibula (No. .t85), but with a longer tail.
The Chinese have probably mistaken the male and female of this bird for two different species. (See Gould, Vol. II, Plate I8).
187. Qargha. قارغا

The Crow.
Manchu: Gaha.
Chinese: Wu ya or U ya.
The "Mirror" says: Body all black, broad beak.
188. Qung Qargha. قونّ قازفا :

A species of crow.
Manchu: Holon gaha.
Chinese: Tzǔ ya.
The "Mirror" says: A crow which is found round about the districts of the Great Wall.
P. de Courteille says $Q u n g=$ corbeau.
189. Ala Qargha. آلا قارغا

The Variegated Crow.
Corvus cornix, Lin.
Manchu: Ayan gaha.
Chinese: Hua pu ya.
The "Mirror" says: A white-necked crow. Body large.
Scully, S. F., 659 bis.-Corvus cornix.
The "Sanglakh" says: Ala qargha is the equivalent of the Persian Kulagh-i-kabud and the Arabic ' $u k k a \Delta<c$, which usually stand for the common Indian magpie, Dendrocitta rufa.
190. Aq Qargha. آق قارْا

The White Crow.
Manchu: Šanyan gaha.
Chinese: PaI ya.
The "Mirror" says: A large crow, all white; smallish head, oblong shaved. Light-red beak and feet.
191. Tokhanak.

Jackdaw.
Coleus monedula.
Manchu: Turaki [Z. Russian Grach =a rook].
Chinese: YÜAN niao.
The "Mirror" says: A crow with small body and beak;
Scully, S. F., 665, gives Tukhunák qargha, Jackdaw-Coleus monedula.
192. Kök Qargha. كوك فارغا

The European Roller.
Coracias garrula. [B.S. 259].
Manchu: Karaki [Z. Russian Grach $=$ a rook ${ }^{\text {] }}$.
Chinese: Сh'ing ya.
The "Mirror' says: Smallish body, beak and tail black.
193. Qara Qargha. (\%) قارغا

The White-necked or Parson Crow.
Corvus culminatus.
Manchu: Tanggôha.
Chinese: Han ya.
The "Mirror" says: Smaller than the ordinary crow. White-necked.
Scully, S. F., 660. Corvus culminatus.
194. Kaftar.

The Pigeon.
Manchu: Kuwečihe.
Chinese: Ko tzǔ [Giles, domestic pigeon].
The "Mirror" says: Resembles the $d u d u$ (No. 196) (turtle-dove); of all colours; reared in captivity.

Kaftar is another form of the Persian word kabutar [Pehlevi, kapōtar; Afghan, kautar].
195. Pay Paqliq Kaftar. هالى فأىليق كفـطر

The Downy-legged Pigeon.
Manchu: Nunggari fathangga kuwečihe.
Chinese: Mao chiao ko.
The "Mirror" says: Head, back and tail black ; white wings, downy legs.
196. Tuzlagha. توز

The Wild Pigeon.
Columba rupicola, Pall.
Manchu: Dudu [Z. Russian Gorlitsa $=$ Columba turtur].
Chinese: Pan ch'iao.
The "Mirror" says: Resembles the wild pigeon.
Zakharoff adds: Found in a wild state in fields and flat places generally.
197. Yašil Yawa Kaptar. يابيل بيا كفـطر

The Green Wild Pigeon.
Manchu: I 1 huru dudu.
Chinese: Lu pan.

The "Mirror" says: Resembles the Kekuhe (No. 198). Head black, body green, breast brown. Has downy feathers on the back-bone.

198. Khupup. خونوف

The Hoopoe.
Uрира epops, Lin.
Manchu: Kekuhe.
Chinese: K'o KU.
The "Mirror" says: Resembles the Silmen (No. 77) (sparrow-hawk). Blackish colouration.

199. Qara Kakkuk.

The Black Cuckoo.
Cuculus canorus [B. S. 253].
Manchu: Sahaliyan kekuhe.
Chinese: Hei ch'iu.
The "Mirror" says: Head and breast blackish; tail and wings white; legs short; on the foot of the male there are two toes in front.
200. Torolgha. (توزوز

Turtle-dove.
Turtur auritus [B. S. 270].
Manchu: Saksari kekuhe.
Chinese: Ch'iao ch'iu.
The "Mirror" says: This dove resembles the mountain magpie (No. 183) but is smaller.

A species of dove.
Manchu: Kekutu.
Chinese: Tz'Ǔ mao ying. [Wrongly read in Index as La mao ying.]
The "Mirror" says: In form like the kekuhe (No. 198), wings and tail black. The rest of the plumage coffee-brown, streaked in lines.

Scully says Pakhtak is the Turki name for the Turtur stoliczka.
I have not been able to trace the epithet pakhmayghan.
GROUP X.
202. Bulutči Janwar. بولوت جی جانوار
"The Cloud Bird." Possibly a species of lark, e.g., Alauda arvensis.
Manchu: Tugitu.
Chinese: P'ing hsiao.
The "Mirror" says: This bird is found in the wild districts of Tsang-yü. In nature it resembles the sparrow. It makes its nest in sand dunes.

Turki : Bulut=a cloud. Manchu: Tugi=a cloud. Chinese: H siao $=$ the sky.
203. Azzčaq. آز
"The Strayed Bird" ["L'oisean égaré"].
Manchu: Šajingga gash [lit. the edict-giving bird].
Chinese: Fo mao [lit. The Buddha Bird].
The "Mirror" says: Head, beak, neck and back all black. Round the wings is a coffeebrown border. When it sings the words mi t' u are heard.

For mi thu, we may possibly read the characters 7,835 and 12,106 in Giles, which would mean "to have lost the road."

In support of this interpretation we have the Turki word ázmaq, "to lose the way."
204. Toyton. توى"ون

The "Toyton" Bird.
A species of cuckoo.
Manchu: Toiton.
Chinese: Pu ky niao [Giles, Cuculus canorus].
The "Mirror" says: Found in mountain woods. It sings at night, and its cry sounds like the word "Toiton."

Zakharoff adds: This bird is such an assiduous hunter that the word toiton is metaphorically applied to man in the sense of shrewd, adroit, cunning, etc.

The Turki name is merely a transcription of the onomatopæic Manchu name.
205. Kakkuk Janwar.

A kind of cuckoo.
Manchu: Gugun gash.
Chinese: Kuo rung niao ["Royal Duke Bird"].
The "Mirror" says: Found in the mountain caves in the Fu-kien province. Head shiny black, green feathers on the wings, tail bluish, breast and feet red.
206. Hue Pisan.

Manchu: CLung ai [Z. Russian Kulik= woodcock].
Chinese: Shul hud guan.
The "Mirror" says: Neck red, beak black, on the head long feathers, like a crest. When it sees men it cries out, and the feathers on its head bristle up. The feet resemble those of a fowl.

207. Kökča Janwar.

The Blue Crow.
Coracias garrula.
Manchu: Niowargi gash [Z. Coracias garrula].
Chinese: Ts'ul yün nad.
The "Mirror" says: Head and beak red ; body all green ; handsome shining green plumage. See also No. 192.
208. Mihakči Janwar.

The Shrike.
? Lanius major.
Manchu: Hionghioi pasha.
Chinese: ChüЕн [Giles, Lanius major].
The "Mirror" says: Sings much in the summer, but rarely in the winter. When it sings in the summer, its note indicates the time for spinning to begin.

The Turki miḩakči seems to be derived from the Arabic mihakk (pronounced in Ottoman Turkish meherk and meheng) which means a touchstone. But one would have expected here some name connected with a spindle or spinning.

209. Qičqirghaq Janwar. قيجّهرغاق جانُوار

A Cuckoo [lit. the bird which cries out].
Manchu: Hodman gash [transcription of the Chinese].
Chinese: Ho tan.
The "Mirror" says: This bird in nature resembles the Č ono (fowl) ; it sings unceasingly, day and night, up to the middle of the winter months.

Giles has: $H o-\tan =a$ kind of nightingale which is said to sing until the dawn comes; the word tan here being the Chinese character for dawn plus the Radical gig for larger birds. See also No. 308.
210. Awazliq Janwar. آوازليت جانواز

A singing bird. Possibly The Persian Nightingale, Daulias golzi.
Manchu: Jilgangga gasha [lit. singing bird].
Chinese: Wang rang ko.
The "Mirror" says: Sings at night, but has never been seen by anyone.
211. Munguzluq Janwar. جونک اوزلوق (sic) جونر

Manchu: Senggelengge gatha.
Chinese: Nu ko ya k'o [perhaps a foreign word].
The "Mirror" says: Head black, beak large, coffee-brown plumage. On the head is a bone which looks like a crest.
212. U̇sma Janwar. وسها جانواد

A species of Magpie.
Manchu: Given gash [Z. Russian Sinaya soroka].
Chinese: Then hun^.
The "Mirror" has: Resembles the saksaha (No. 180) (magpie). Tip of the beak slightly bent, head and tail feathers indigo blue. It imitates the voices of all other birds.

The Chinese tien-hua means indigo blossom.

Manchu: Fulaburu gasha.
Chinese: Shif ch'ing.
The "Mirror" says: Beak black, with curved tip. The tips of the wings are violet.
214. Targhil Janwar. تارغيل جانوار

Manchu: Kuringge gasha.
Chinese: Wu pan ch'ung.
The "Mirror" says: Head black, beak curved, markings all over the body.
215. Jar Janwar. جار جانُوار

Manchu: Hôngsitu gasha.
Chinese: Ti PÊN NIU.
The "Mirror" says: Another name for No. 214.
216. Kol.

Manchu: Laidakô.
Chinese: TA ku niao.
The "Mirror" says: Head, wings, tail, all black; breast white. Found in marshy places.
Kol or gol in Persian means an owl.
217. Seḥer-Khíz.
"The Early-Riser."
Manchu: Kôwaha [Z. Russian $K u l i k=$ woodcock].
Chinese: Yeh ming niao.
The "Mirror" says: Small beak, small body. Cries out at night.
Zakharofi says: Small marsh woodcock, with long legs. Cries out at night.
218. Sürmeči. \qquad
? The Jay.
? Garnulus glandarius.
Manchu: I sha [Z. Russian Soy $a=$ The Jay].
Chinese: Sung ya.
Giles has sung $y a=a$ mynah.
The "Mirror" says: Resembles the baibula (No. 185). Body somewhat small; tail, short and flecked. Very gluttonous bird.
219. Tuqačak. توڤاهاق

Manchu: Kataha fadu.
Chinese: Shao shan niao.
The "Mirror" says: Name of a small bird which, in singing, makes a sound resembling the words " Kataha fadu."
220. Tam Kütlej. تام كوستلا

Manchu: Ga1man hereku [lit. a fly-catcher].
Chinese : T'IEH SHU P'I.
The "Mirror" says : Reddish eyes, long wings. Found in forests. Feeds on flies whilst flying.

Zakharoff says: Name of a bird resembling the Teterev (grouse).

SECTION II.

SMALL BIRDS.

GROUP I.
221. Qučqač. 『ق̆

A general name for small birds.
Manchu: Čečike.
Chinese: Сh'iao.
In H. and H., p. 2Io, it is stated that qučqač is specially applied by the Kirghiz to Guldenstadt's Redstart Rubicilla erythrogastra.

The "Lucky" Bird.
Manchu: Taifintu čečike.
Chinese: T'Ai P'ING Ch'iao [lit. the peaceful bird].
The "Mirror" says: Crested head, beak slightly curved. Body whitish in colour, tail black, with gold tip.
223. Sarghinčliq Qučqač. سارغينج ليق قوڤقٌ

Manchu: Suwafintu čečike.
Chinese: Shit ERH huANG.
The "Mirror" says : Resembling the above. On the wings are white and yellow feathers in even rows.

Manchu: Fulfintu čečike.
Chinese: Shit erh hung.
The "Mirror" says: Plumage on the body like the taifuntu čečike (No. 222). Red and white feathers lengthwise in rows.

Manchu: Indahôn čečike [lit. dog bird].
Chinese: Tai shêng [Giles, the hoopoe, Upupa epops].
The "Mirror" says: Long beak, colouration mixed; crest on the head.

226. Uru-til Qučqač. (اتٌ

Manchu: Kôbulin ilengku čečike [Z. A black starling].
Chinese: Fan Shê.
The " Mirror" says: Yellow beak, body uniformly black, red feet.
Zakharoff adds : Imitates a man's voice.
The Turki unu til is perhaps from wourmak ="to turn over," and til "the tongue" ; corresponding to the Chinese fan-shê. The name may have reference to the facility possessed by the bird for imitation.

227. Čuqughaq〔Qučqač. جّ

A species of woodpecker.
Manchu: Fiyorhon.
Chinese: Shan cho mu.
The "Mirror" says: Like the indahón čečike (No. 225) but without a crest. It searches in trees for worms and insects, and pecks the wood. Black, green, and various colours.

The Turki Čuqumaq = to peck.

The Great Red-crowned Woodpecker.
Manchu: Fulgiyan tosingga fiyorhon.
Chinese: Chu ting ta cho mu.
The "Mirror" says: Large bird, in measurement the size of the gaha (crow). Body uniformly black, but inside feathers red.

The Variegated Woodpecker.
Manchu: Yolokto.
Chinese: Hua сно мu.
The "Mirror" says: The name for the variegated woodpecker.

230. Quqačaq. قوقاحثاق

A species of woodpecker.
Manchu: Torhon.
Chinese: PÊN TA mu.
The "Mirror" has: A I iyorhon (woodpecker) which pecks away at the trees to find insects, which it eats.
231. Zara Baš Hupup. قرا باش هغونب

The Black Woodpecker.
Manchu: Kurehu.
Chinese: HEI T’OU сНо mu.
The "Mirror" says: The black fiyorhon is called kurehu.
232. Aq Baš Quqačak. قا باش ",

The White-necked Woodpecker.
Manchu: Čakôlu kurehu.
Chinese: Pal thou chow mu.
The "Mirror" says: The white-necked kurehu (No. 23r).
The Turki and Chinese names mean literally "white headed woodpecker."
233. Purčaqči Qučqač. وورپا

The Common Finch.
Manchu: Puri čečike.
Chinese: Wu T'ung.
Giles says: Wut'ung is the name of a tree upon which alone the phœnix is said to alight.
The "Mirror" has : Body grey-coloured, head and wing feathers black; broad yellow beak.
In Turkish burčáq is the name of the common vetch, Vicia sativa.
234. Gil-rang Purčaqči.

The Grey Finch.
Manchu: On čečike [Z. Grey Woodcock].
Chinese: HuI ERH.
The "Mirror" has: Resembling the indahôn čečike (No. 225). Body small, grey or ashcoloured.

The Hawfinch.
Manchu: Yačin on čečike.
Chinese: Tao ert.
The "Mirror" has: Resembles the preceding. Large; head and tips of the wings white.

The Drongo or King-crow.
Dicrurus ater.
Manchu: Gaha čečike.
Chinese : Li chi [Giles, The black Drongo, Dicrurus cathacus].
The "Mirror" says: A very small bird resembling the crow. Uniformly black. Sings at dawn.

The Chinese Oriole.
Oriolus chinensis.
Manchu: Gôlin čečike [Z. A Siskin].
Chinese: Huang li [Giles, Oriole].
The "Mirror" says: Gold coloured, wing feathers black. The male and female always fly together, and sing up to the end of autumn.

This bird is worn in China as the badge of honour by wives of civil officials of the loth rank.

The young of the above.
Manchu: Deberen gôlin čečike.
Chinese: Ying ch'tu.
The "Mirror" says : Beak reddish, pale yellow plumage without markings.
239. Ghuralay. غورا لا

A Shrike.
Lanius homeyeri [B.S. I38].
Manchu: Giyahôn čečike.
Chinese: Ying pu la.
The "Mirror" says: Body and claws of a falcon. The tip of the beak, which it uses to catch small birds, is shaped like a fish-hook.
240. Alaman Ghuralay. ألمان غور الايى

A species of shrike.
? Lanius collurio
Manchu: Mergen čečike.
Chinese: Han lu [Giles, Butcher-bird].
The "Mirror" says: Resembles the gryahon čečike (No. 239). Is found in northern climes.
241. Čipar Ghuralay. خيغار (sic) خورالاني

Red-backed Shrike.
Manchu: Ilhuru giyahôn čečike [Z. Lanius collurio].
Chinese: Chin pei pu la.
The "Mirror" says: Resembles No. 240. Head and neck ash-coloured, plumage on back reddish-gold. Found in southern districts.
242. Yamghurči. يانغور

The Sanderling
Calidris arenaria (B. S. 325).
Manchu: Čuiken [Z. Russian Kulik].
Chinese: Shul wu niao.

The "Mirror" says: Resembles the Čoočiyali (No. 246); but is somewhat larger. Its cry announces rain.

Scully says: Yamghurči is a general name for waders.
243. Čul köktalgha. نالغا

A species of warbler.
? Sylvia nisoria.
Manchu: Kokoli.
Chinese: Yu kuan erf.
The "s Mirror" says: White-tailed bird resembling the yaksargan (No. 244).
244. Köktalgha. كوك ثالغا

The Tree Warbler.
Phyllopneuste rama (B.S. I47).
Manchu: Yaksargan.
Chinese: TA shut cha tzǔ.
The "Mirror" says: Resembles the Čoočiyali (No. 246). Beak long, legs short, plumage light brown, tail white.
245. Yawa Köktalgha. يبا كوك تالغا

A species of warbler.
Manchu: Ihan yaksargan.
Chinese: SHu CHA TZǓ.
The "Mirror" says: Bigger than the yaksargan (No. 244), but resembling it very strongly. Found in thick damp jungles.

A species of warbler [lit. long-legged].
Manchu: Čoočiyali.
Chinese: Sha LiU tZǓ.
The "Mirror" says: Resembles the yaksargan (No. 244). Short tail, long beak, and long legs.
GROUP II.
247. Budana (or Budina). is

The Quail.
Coturnix communis or C. dactylisonans.
Manchu: Mušu.
Chinese: An ch'un.
The " Mirror" says: This bird's tail has no tip ; plumage light brown.
This bird is worn in China as the badge of Assistant Magistrates.
The spelling of the "Turki" name in the MS. is peculiar, but this Persian word
for a quail takes many forms, both in writing and in speech: Sculley writes baidina. The method of writing adopted here would suggest the pronunciation bédéné.

The author of the Sanglakh says the correct reading is budana. Another word for a quail is baldirčin, which is a Turki word much used in Persia. Other names

A species of quail (spurless).
Manchu: Shan must.
Chinese: JU [Giles: "A kind of quail said to be a transformed mole"].
The "Mirror" says: Somewhat smaller than the preceding. It has no hinder toes.

249. Uzun Tirmaq Budina.

A species of quail (long-toed).
Manchu: Ni yo mušu.
Chinese: Shul an.
The "Mirror" says: Body resembles that of the mus̆u (No. 247), three long toes in the front and a small spur.
250. Erkek. Si,
The Male Quail.
Manchu: Gimšu.
Chinese: Chief [Giles: "A cowardly quail that will not fight "].
251. Tiši.

The Female Quail.
Manchu: Bimšu.
Chinese: Pi.
The "Mirror" says: The female of the mušu (quail) is called bimšu.
252. Čurpa.

The young of the quail.
Manchu: Šurun.
Chinese: WÊn.
The "Mirror" says: The young of the quail are called šurun.
The "Sanglakh" says: Čurpa is the name for the young of pheasants.
253. Bulbul.

The Grey Thrush.
Leucodopteron sinensis.
Manchu: Yada1i čečike.
Chinese: HUA MEI [Giles: the grey thrush].
David, adopting the Chinese name, calls this bird L. hoamy.

The "Mirror" says : Long, as it were pencilled, eyebrows; colouration yellowish grey, with small spots. It is a strong fighter and has a clear voice.

Zakharoff calls this bird a Chinese nightingale.
The Japanese hojiro is represented by the same Chinese characters, and means the Japanese Meadow Bunting.

254. Tagh Bulbul. تاغ بلبل

Mountain Thrush.
Manchu: Alin yadali čečike.
Chinese: Shan hua mei.
The "Mirror" says: Found in mountain caves. Long tail, whitish yellow eyebrows. Sings cleverly, but not so well as the yadali čéčike (No. 253).
255. Yawa Bulbul. يبا بلبل

The "Stone" Thrush.
Manchu: Wehe yadali čečike.
Chinese: Shit hua mei.
The "Mirror" says: Head and body blackish, sometimes green. The eyebrows are somewhat smaller than those of the yadali čečike (No. 253). Sings beautifully.
256. Aq Qaš Bulbul. آق قاش بلبل

White-browed Thrush.
Manchu: Šadali čečike.

- Chinese : Pai mer.

The "Mirror" has: The name for the white eye-browed wehe yadali čécike (No. 255).
257. Aqiš Bulbul.

Manchu: Yentu čečike.
Chinese: Pai tao mei.
The "Mirror" says: Eyes with reddish-black pupils; blackish beak, white eyebrows, variegated wings, and yellow legs.
258. Sarghinč Bulbul. سارغيْ حִ بلبل

Manchu: Suwayan faitangga čečike.
Chinese: Huang tao mei.
The "Mirror" says Resembles the fiyasha čečike (sparrow) (No. 339). Beak and wings black ; yellow eyebrows, reddish legs.
259. Narinji Bulbul. نارينجى بلبل

Manchu: Sontu čečike.
/ Chinese: Tan huang tao mei.
The "Mirrot" says : Resembles No. 258. Rather large body, yellowish eyebrows, long upper feathers on the tail, yellow legs.
260. Biš Yolloq. بيش يولوت

Manchu: Jingjara [Z. Russian Lyesnoi vorobei = wood-sparrow].
Chinese: Wu tao mei.
The Chinese wu tao mei means literally " five-striped eyebrow."
The "Mirror" has: Resembles the fiyasha čečike (No. 339). From the beak up to the head extend five black stripes, looking like eyebrows; the female does not possess these.

The Turki has the appearance of a doggerel translation of the Chinese. Tao, in this and the three preceding words, evidently means "streak" or "stripe," like the Manchu justan. The Turki yol, "a road," is here used in the same sense.
261. Ghaz Turghay.

```
غاز "ور غاحى 
```

A lark.
Manchu: Haihôna.
Chinese: Pai ling.
The "Mirror" says: Larger than the wenderhen (No. 262), reddish beak, black breast; varied song.

Zakharoff calls this the Pyrennean lark (Alauda calandra).
262. Torghay. توز

A species of lark.
Manchu: Wenderhen.
Chinese: O LAN. [The Manchu transcription indicates the pronunciation o.]
The "Mirror" says : Resembles the Saman čečike (No. 264), but has no crest.
263. Gilrang Turghay. كلزانلُ تورغاع

A lark.
Manchu: Suhun wenderhen.
Chinese: Hur shê o lan.
The "Mirror" says: Resembles the Saman čečike. Beak whitish, eyes black, body deep coffee-brown, legs white.
264. Püpeklik Torghay. وفكليك تورغاهى

The Crested Lark.
Alauda cristata, Linn.
Manchu: Saman čečike.
Chinese: FêNG T'OU o-LAN [lit. phœnix-headed lark].
The "Mirror" says: Resembles the wenderhen (No. 262). On the head is a crest. Its song is varied.
265. Qarloghač. تا,

The Common Swallow.
Hirundo rustica.
Manchu: Čibin.
Chinese: Tzǔ yen [lit. the purple swallow].

The "Nirror" says: Has a black body and bifurcated tail. Appears in China in the middle of spring, and migrates in the middle of the autumn.

The Turki word for a swallow takes a great variety of forms, amongst which the following may be noted :-ج

Amyot, Vol. II, p. 448, defines čibin as: "Nom d'une espece d'oie qui a sur la queue quelques taches rouges"!

Scully gives ïi qarloghač, "a house-swallow," for Hirundo rustica.

The Crag Martin.
Cotile rupestris.
Manchu: Hada čibin [Z. Hirundo riparia].
Chinese: Shif yen.
The "Mirror" says: Has a long grey tail; somewhat larger than the common čibin. Makes its nest under the eaves of houses and on rocky prominences.

A Chinese saying, shit yen $f e i=$ "the stone-martins are on the wing," is an indication of coming rain.
267. Qalmaq Qarloghač.

The Kalmuk or Mongolian Swallow.
Manchu: Monggo čibin.
Chinese: HU YEN.
The "Mirror" says: Somewhat smaller than the all-black swallow. Found on the borders of Mongolia.

The Chinese $h u$ means Mongolian. The Turki definition of Kalmuk is more precise.
268. Uwwači Qarloghač. اوواجی قارلوغّه

A sacred swallow.
Manchu: Boihoju čibin.
Chinese: Shê yen.
The "Mirror". says: Swallow with red eyeballs, black beak, blackish feet, white wings with small spots. Appears in China on the 5th day from the beginning of winter (" the day of the bringing of the sacrifices of two lands").

The Turki urewa means a "bird's nest," and must not be confounded with üi, " a house," see No. 265.
269. Qum Uwwa Qarloghač. قوم اوو قارلوغاء

The Sand Martin.
Cotile riparia, Linn.
Manchu: Yonggan čibin.
Chinese: SHA YEN.

The "Mirror" says: A swallow making its nest in the sand on the sea-shore.
The Turki implies a swallow whose nest is made either of sand or in the sand (qum).
270. Čighirčiq Qarloghač. ج゙

The Hibernating Swallow.
Manchu: Butuha čibin.
Chinese: Chif yen.
The "Mirror" says: This swallow, at the time of moulting (the autumn), hides itself in the hollows of trees, on sea islands, and in lonely places.

271. Čighirčíq. قّی

The Northern Swallow.
Manchu: Biyara.
Chinese: SAI YEN.
The "Mirror" says: Found in Mongolia and in cold countries generally. Somewhat like the common swallow, but much bigger.

GROUP III.

The House Swallow.
Manchu: Gôldargan.
Chinese: YÜeh yen.
The "Mirror" says: Resembles a swallow. Red tips to the wings ; builds a long-shaped nest of dirt.

The Turki implies the swallow whose nest is made of mud (lay).

The Yellow Swallow.
Manchu: Aijirgan.
Chinese: Chin yen.
The " Mirror" says: The yellow-bodied swallow is called aijirgan.
274. Jijirghan Qarloghač. جـ ج ج ج

A general name for sand-martins.
Manchu: Jijirgan.
Chinese: Yi [Giles: House-martin].
The "Mirror" says: This name is given to all swallows which make their nests on the sandy banks of rivers.

The Turki is an imitation of the Manchu.

275．Yilan Qarloghač．で

A species of house－swallow．
Manchu：Kelterhen．
Chinese：Shê yen．
The＂Nirror＂says：Bigger than the gôldargan（No．272）．Short beak，body uniformly black， breast－bone white with black markings．Builds a long－shaped nest under the cornices of houses．

The Turki and the Chinese names both mean＂snake－swallow，＂perhaps referring to this swallow＇s diet！

276．Qarloghač Qučqač．ख゙̈ッ゙
？The Brambling．
Fringilla montefringilla．
Manchu：Čibirgan．
Chinese：Yen ch＇iao．
The＂Mirror＂says：Head and back reddish colour speckled with black．The yellowish chin resembles the swallow＇s chin．

277．Tagh Qarloghač Qučqač．
？Crag Martin．
Cotile rupestris（Scop．）．
Manchu：Alin čibirgan．
Chinese：Shan huo yen．
The＂Mirror＂says：Beak black，head，neck，feet and breast feathers black，with small white markings．Tail mouse－coloured，with yellow tip．

The Kingfisher．
Alcedo ispida or Ceryle rudis，Linn．
Manchu：Ulgiyan čečike［Z．Coracias garrula］．
Chinese：Ts＇ui niao．
The＂Mirror＂says：Colouration green，beak long，tail short．

The Turquoise Kingfisher．
Halcyon smyrnensis．
Manchu：Lamun ulgiyan čečike．
Chinese：Ts＇ur yü［Giles：Halcyon smymnensis］．
The＂Mirror＂says：Like No．278．Its plumage is greenish－blue．
280．Qizil Qučqač．ثيزيل توتٌ
？The Crimson Kingfisher．
Manchu：Hailun čečike［Z．：Russian，Krasnǔi simorodok＝red kingfisher］．
－Chinese：Fei niao［Giles：The cock－kingfisher］．
The＂Mirror＂says：Like No．278，but with red plumage．

281. Yašil-raq Qučqač. ياشيل واق توشقالج

The Green Kingfisher.
Manchu: Niowari čečike.
Chinese: Lu niao.
The "Mirror" says: Eyeballs black, cheeks yellow, head, neck and back feathers have broad green bands.

A kingfisher.
Manchu: I huru.
Chinese: Chin PEI.
The "Mirror" says: Eyeballs black, cheeks yellow, head, neck and back shining purple.

283. Marjan Qučqač. 『l̈ä

The Coral-bird.
Manchu: Šuru čečike [lit. the coral bird].
Chinese: Shan hu niao [lit. red-coral bird].
The "Mirror" says: It has a crest on its head ; the plumage of the body is black. The male has a long tail ; the female a short one. It is a good singer and a strong fighter.

284. Tagh Marjan Qučqač. ج゙

The Hill Coral-bird.
Manchu: Alin-i šuru čečike.
Chinese: Shan hu.
The "Mirror" says : Resembles No. 283. A kind of large dove. On the cheeks are black and white markings.
285. Tagh Sarighliq Qučqač.

The Yellow Hill-bird.
Manchu: Alin-i suwayangga čečike.
Chinese: Huang shan niao.
The "Mirror" says: Resembles the yadali (No. 253), but is larger. Head, back and tail are golden-yellow. It spreads its tail like the fingers of a hand.

The Green Hill-Bird.
Manchu: Alin-i niowanggiyangga čečike.
Chinese: Lu shan niao.
The "Mirror" says: Resembles the kekuhe (No. I98), but is larger. From the side of the eyes and the neck are two black stripes like eyebrows. Head and neck green, back blue, tail blackish.

287. Khabarči Qučqač.

"The News Bird."
Manchu: Mejin čečike.
Chinese: Hin mao.
The "Mirror" says: It is smaller than the saksaha (No. 180) (magpie). Neck and back black ; long bifurcated tail which flutters when the bird sings. The priests regard this as a good omen.

"The Lucky Bird."
Perhaps a magpie.
Manchu: Jurguntu čečike.
Chinese: Shuang hi [lit. double joys].
The "Mirror" says: Beak black, variegated wings, black tail. It has two pure white feathers, like the white saksaha (or magpie).

289. Khuš Wakhtliq Qučqač.

" The Good Luck Bird."
Manchu: Sabirgan čečike.
Chinese: Chit hsiang niao [lit. the auspicious bird].
The "Mirror" says: Body small, head all black, chin white, neck and back black, with singular markings looking like fishes' scales. In between the "scales" are flecks of white hair. This bird is regarded as very beautiful.
290. Khurramliq Qučqač. خرَ
" The Happy Bird."
Manchu: Sabingga čečike.
Chinese: Shut hung niao [lit. good luck red bird].
The "Mirror" says: Beak red, broad and strong. Body blackish. Male and female always inseparable.

GROUP IV.

A grasshopper warbler.
Locustella nœvia.
Manchu: Karka čečike.
Chinese: Shul cha tzǔ [lit. water warbler].
The "Mirror" says: Resembles the giyahôn čě̌ike (No. 239, the shrike). Beak long. It is found amongst the reeds; and brings up the young of the cuckoo.

There is a word čirliq, according to the "Sanglakh" (synonymous with črrjirek), in Turki which means a "cricket," or "grasshopper," and it is possible this bird may
have been named thereafter，as in the case of the European variety Locustella nevil，Dod．

The Reed Warbler．
Acrocephalus streperus．
Manchu：Urka čečike．
Chinese：Wei cha tzǔ［lit．reed warbler］．
This is apparently another name for No． 291.
Bowdler Sharpe（B．S．184）gives caghči as the Turki name for the Indian Blue－throat Cyanecula carulecula．But I think this is a mistake for čarkhči，as Scaly says the bird is so named because it makes a noise resembling the whirr of a spinning wheel（čarkh）．

293．Šakhsanaghač Qučqač．で范
The Tailor Bird．
Manchu：Darha čečike［Z．tailor－bird］．
Chinese：Lu wei mao．
The＂Mirror＂says：Resembles the fenihe čečike（No．358）．It builds a nest，which looks as if it were made of felt，with a narrow opening．Women，in order to recover their health after child－birth，burn this nest and dissolve the ashes in wine，which they then drink．

Another name for No． 293 （above）．
Manchu：Jirha čečike．
Chinese：Chiao liao［Giles：tailor－bird or wren］．
Hepburn＇s Japanese－English Dictionary says Nus sazai，which is written in Chinese characters chiao liao，means a＂wren．＂

295．Hawadar Qučqač．
＂The Love Bird．＂
Manchu：Tomika čečike．
Chinese ：T＇Ao ch＇ung［Giles：wren］．
The＂Mirror＂says：the young of jirha čečike（No．294）are called tamika čečike．

Manchu：Torho čečike．
Chinese：T＇AO ChiaO．
Another name for No． 295.

297．Máda Šakȟ̌i Qučqač．

The hen of the Tailor－Bird．
Manchu：Aimika čečike．
Chinese ：AI［Giles：the hen of the tailor－bird］．

298. Tormačuq Qučqač. تورغ

A Finch ?
Manchu: Darhôwan čečike [Z.: Russian, Trostyaika = Reed-warbler].
Chinese: Tit niao.
The " Mirror" says: It is smaller than the baibula (No. 185). It has a long double tail. It builds its nest amongst the reeds.

Perhaps the same as Tumučuq in Scully, S.F., 732, bis A, Erythrospiza obsoleta.

299. Uštur Qučqač.

اوشتور قوخقا
The Little Camel-Bird.
Manchu: Temen čečike.
Chinese: Shur Lo T'o [lit. water camel-bird].
The "Mirror" says: Beak long, back yellow, delicate markings on the head. Under the gizzard it has long hanging feathers like a hanging lip. Its neck is bent forward like a camel's.
300. Ala Par Janwar. Tا

Pied Wagtail.
Motacilla luzoniensis or M. lugubris.
Manchu: Ingga1i
Chinese : Cht LING [Giles: pied wagtail].
The "Mirror" says: Colouration grey, neck black, breast white, when it walks it wags its tail.
301. Ala Par Lamaj Janwar. ألافر لماج جانوار

A species of wagtail.
Manchu: Yanggali.
Chinese: Lu pu hua [lit. the turnip-flower].
The "Mirror" says: Resembles No. 300 in form, but in size is like the wenderhen (lark) (No. 262) family. Body feathers yellow, with black and white markings.
302. Yonjiliq Janwar. يونجهى ليت جانوار

A species of sparrow.
Manchu: Sišargan.
Chinese: MA сн'iao [Giles: sparrow].
The "Mirror" says: Resembles the fyabko (No. 354). Breast brownish ; on its face are blackish markings. These birds fly in flocks.

The Turki yonja = clover. Yonjaliq = pasture field.
308. Qizil Yonjiliq Janwar. قيزيل يونجيجليت جانورا

The Red Mountain Sparrow.
Manchu: Fulgiyan sišargan.
Chinese: K'ao shan hung.
The "Mirror" says: It has red feathers, with black markings.
304.

The Red-headed Linnet.
Manchu: Čalihôn [Z. : Russian, Chechetka, Fringilla linaria].
Chinese: Che ting hung.
The "Mirror" says: Back light brown, head red.
305. Baqam Janwar. رغّ̈م جانوار

The Dark Red Linnet.
Manchu: Šušu čalihôn [Z.: Russian, Malinovka, Motacilla Salicaria].
Chinese: She she niao.
The "Mirror" says: Its plumage is all red. It is larger than the lark (wenderhen).
The Manchu word $\check{s ̌ u s ̌ u ~}=$ violet or dark red.
306. Sarigh Güz Janwar. سويغ كوز جالوار

A species of Finch.
Manchu: Aisuri.
Chinese: Chin yen.
The "Mirror" says: Eyes yellow, eyeballs black, like the lark (wenderhen, No. 262); tail short, body uniformly black, neck white. It has no hinder toes so it can not perch on trees.
307. Var Qanat Qučqač.

The Gold-Finch.
Manchu: Aisha čečike [Z.: Russian, Shtshegól. Fringilla carduelis].
Chinese: Chin сн'iн [Giles: Chlorospiza spinus].
The "Mirror" says: Resembles in nature the yellow shrike (suwayan giyahôn). Back red, wings black ; but having in the centre a row of yellow feathers looking like shining gold.

A yellow nightingale.
Manchu: Hôwangdana [a transliteration of the Chinese name].
Chinese: Huang tan.
The "Mirror" says: Back brown, breast yellow. It migrates in the summer.
For explanation of the Chinese word tan, see No. 209.

309. Nim Rang Qučqač.

Manchu: Hongko čečike.
Chinese: Shim huang.
The "Mirror" says: It is somewhat smaller than the honggon čečike (No. 3ro). Breast yellow, back blackish ; it sings like a lark.
310. Qongrogholoq Qučqač.

The Brass-Bell Bird.
Manchu: Honggono čečike.
Chinese: T'ung Ling [lit. a brass-bell].
The "Mirror" says: It is somewhat bigger than the tomika čečike (No. 295). Body speckled. When it sings its voice is like a brass-bell, being very flexible and clear.

Radloff gives qongaraq and qongr \bar{u} as Turki words for a bell.

The Golden-Bell Bird.
Manchu: Honggon čečike.
Chinese: Chin ling [lit. a gold-bell].
The "Nirror" says: Smaller than the gôlin čě̌ike (No. 237). When it sings its voice sounds like a bell.

The Turki Jirqiraq is apparently another form of the Ottoman word for a "bell," which has several recognised forms: činghiraq, činghirdaq.

GROUP V.

The Spring Bird.
Manchu: Niyengniyeltu čečike.
Chinese: Ch'ang ch'un hua niao.
The "Mirror" says: Head and neck uniformly white, wings and tail black. Strong clear voice. Appears in the spring and sings unceasingly all through that season.

The Spring Bird.
Manchu: Tuniyeltu čečike.
Chinese: Wan ch'un niao.
The "Mirror" says : Another name for the above.

The Southern Bird.
Manchu: Jukidun [Z.: Russian, Byelaya kuropatka $=$ white partridge].
Chinese: Сно Ku [Giles: the common partridge].
The "Miirror" says: The body of this bird is white with black markings like those of the young pheasant. It always migrates to the south.

The Mountain Partridge.
Manchu: Alin-i jukidun.
Chinese: Shan cho.

The "Mirror" says: Resembles the Magpie. Legs and beak red; plumage dark green; tail long and large; black at the root and white at the extremity; on it are two upper feathers, very long, ash-coloured with reddish tips.

A Love Bird.
Manchu: Kidun čečike.
Chinese: Hsiang ssǔ niao [Giles: " love-bird"].
The "Mirror" says: It is mouse-coloured; neck short. It has a penetrating voice. The male and the female are not easily separated.

The Turki مهربان

317. Kötki Qučqač.

\qquad
A Love-Bird.
Manchu: Ekidun čečike.
Chinese: LÜ FÊNG Ch'tu.
Zakharoff says: This bird is smaller than the sparrow, and has a short neck. The male and female are inseparable.

The Chinese Tit.
Parks minor, Temp.
Manchu: Simari čečike [Z.: Parks minor].
Chinese: Tzǔ kuer [Giles: a name for the cuckoo].
The "Mirror" says: On the head and neck are black markings. The cheeks are white, the wings and tail blue ; the wings have white tips. Sings all night up to daybreak, until the blood drops from its mouth.
319. Ala Qanat Qučqač.

Manchu: Tinggu čečike.
Chinese: Ti he nad.
The "Mirror" says: Body blackish ; delicate white spots on the back and wings.
Pétillon says: $T^{\prime} i$-how t'i-hou, onomatopée done on a fair le nom d'un oiseau. Et j'entends l'oiseau du printemps qui m'invite à porter mon pot à vin. Allusions Littéraires, p. 69.

The Chinese t ' i au here means " bring the kettle."

320. Hudhud. dd

The Hoopoe.
Manchu: Sončoho čečike [Z.: Russian, Udod=Upupa epos].
Chinese: San ho shang.
The "Mirror" says: Beak long, head black; on the head longish black feathers like a pigtail (sončoho).

Crossbill.
Loxia curvirostra.
Manchu: Hiyahali čečike [Z.: Russian, Klest].
Chinese: Chiao tsur.
The "Mirror" says: This bird's bill is crooked. The chin of the male is curved to the left, that of the female to the right.

A love-bird.
Manchu: Sukiyari čečike.
Chinese: Tao kua niao [Giles: Loricula, the love-bird of Formosa].
The "Mirror" says: The pupils of the eyes are white, the beak reddish, with hooked tip. Colouration light-green, feet blackish. Hangs from the branches of trees by its feet and beak, and swings round and round whilst singing.

323. Tutušqaq Janwar. توّوش

A species of love-bird.
Manchu: Garukiyari.
Chinese: Lu mao yao fêng.
The "Mirror" says: Somewhat larger than the Sukiyari čečike (No. 322). Outer feathers green, inner feathers yellow. It hangs upside down from the branches of fruit trees, and swings about.
324. Müki Tumšuq Qučqač.

Manchu: Enggetu čečike.
Chinese: Ko pa tsur.
The "Mirror" says: Reddish eyes, blackish beak. Black and white mixed feathers on the head, back and tail.

A woodpecker.
Manchu: Čolkon čečike.
Chinese: Ch'ang cho niao.
The "Mirror" says : Back black, long beak.
Zakharoff says: Woodpecker (Russian, Dyatel) which has a long beak and feeds on cedar nuts.
326. Kök Tamghaq Janwar. كوك تامغاق جانوار

Dove-coloured mocking-bird.
Manchu: Lamuke.
Chinese: Lan tien k'o [lit. indigo-coloured chin].

The "Mirror" says: In size like the flyasha čečike (No. 339) (sparrow). On the chin are blue feathers.

Zakharoff has: Dove-coloured mocking-bird.
327. Qara Tamghaq Janwar. قرا تامغات جانوار

Black mocking-bird.
Manchu: Yačike.
Chinese: Hei tien k'o.
The "Mirror" says: Has black feathers on the chin.
328. Qiz Tamghaq Janwar. قيز (sic) تأهغاق جانورا

Red mocking-bird.
Manchu: Fulgike.
Chinese: Hung tien k'o.
The "Mirror" has: This bird has red feathers on the chin.
329. Aqiš Tamghaq Janwar. آقيّش تاهغ اقٌ جانوار

White mocking-bird.
Manchu: Šeyeke.
Chinese: Pai tien k'o.
The "Mirror" says: Has white feathers on the chin.
330. Aq Baš Qučqač. آت باش قو
? A white-headed bulbul.
Manchu: Čakôlutu čečike.
Chinese: PAI T'OU WÊNG.
The "Mirror" says: At the back of the head are white feathers with black markings.
331. Ala Baš Qučqač. آلا باش قورقّ

A variety of bulbul.
Pycnonotus sp.
Manchu: Čakôlu čečike.
Chinese: Pai t'ou Lang [Pycnonotus occipitalis].
The " Mirror" says: The beak is black, the head and neck white.
332. Burma buyun Qučqač. بورما بو يون قوحتّا

Manchu: Meihe čečike.
Chinese: Shê t'ou niao. [The Chinese means lit. snake-headed bird].
The "Mirror" says: This bird has a snake-like neck and a long tongue.
In Turki burmaq $=$ to twist or bend.
333. Yulbars baš Qučqač.

```
\و!(!)
```

A Wood-sparrow.
Manchu: Bunjiha [Z: Russian Lyesnoï vorobeï, wood-sparrow].
Chinese: Hu t'ou ch'iao [lit. tiger-headed bird].
The "Mirror" says: Resembles the fiyasha čečik: (No. 339). The body is small, but the head and eyes are large.
334. Qapáq baš Qučqač. قفاق باش ״و

Manchu: Holtu čečike.
Chinese: Hu lu t'ou [lit. pumpkin-headed].
The "Mirror" says: On the head are white feathers so arranged that they give the impression of the sections of a pumpkin.

The Manchu appears to be a transcription of the Chinese.
The Turki appears to be a translation of the Chinese. $\quad Q a p a ́ q=a \operatorname{pumpkin}$.

Manchu: Intu čečike.
Chinese: Yao ku
The "Mirror" says: Head and body reddish; somewhat larger than the Suiha čečike (No. 357). Sings unceasingly.
336. Ding ding Qučqač. (ينک دينك قو

A species of wagtail.
Manchu: Tukiyeri čečike.
Chinese: Yao t'un Ch'iao.
The "Mirorr" says: Over the eyelids are long ash-coloured feathers looking like eyebrows; short tail ; always struts when walking.

This name bears a curious resemblance to the jing jing (Bearded Reedling, Panurus biarmicus) of Bowdler Sharpe's List.
337. Timur-tirmaq Qučqač. 『゙

Manchu: Ukan čečike.
Chinese: T'ieh chiao [lit. Iron-foot].
The "Mirror" says: Resembles the fiyasha čečike (No. 339). Head blue, white feathers on the borders of the tail. Appears in spring.

The Turki name is apparently a translation of the Chinese.

Manchu: Derdu čečike.
Chinese: Tou-tou chiao.
The " Mirror" says: Resembles the Kiongguhe (No. 178) in nature. At the beginning of the beak there are black downy feathers. When it sings its cry sounds like the words der-du.

GROUP VI.

339. Aq Qučqač. آت قوحقّا

The house-sparrow.
Passer domesticus.
Manchu: Fiyasha čečike.
Chinese: Chit ChiaO.
The " Mirror" says: This bird builds its nest under the eaves of houses
340. Mihman Qučqač.

A sparrow.
Manchu: Antarhan čečike.
Chinese: Pin Chiao [G. Passer montanus].
The " Mirror" says: A sparrow which also nests under the eaves of houses.
341. Danlaghaq Qučqač.

The "shop" sparrow.
Manchu: Jeleme čečike.
Chinese : T'ou Ts'ANG [Chinese t 'out = to pilfer].
The " Mirror" says: Resembles the fiyasha čečike (No. 339). Ash-coloured, with black markinge. This bird steals rice, etc., from shops and cupboards

Manchu: Yadan čečike.
Chinese: WU KÊNG MING.
'The "Mirror" says: Resembling the fiyabko (354). Colouration coffee-brown.
The Turki bird name most resembling this is Sonia for which see No. I/44.
343. Ala Caa Qučqač. جl大亏้

A species of Bunting.
? Emberiza schœniclus.
Manchu: Bederi čec̀ike.
Chinese: Hum pan.
The "Mirror" says: Beak long and broad; over the eyelids white feathery stripes; the plumage of the body, black and white mixed.

BS. 82 gives $\check{c} a$ quc̆qač $=$ Emberiza shaniclus.

Manchu: Sahaltu čečike.
Chinese: Pal hut chiao.
The "Mirror" says: Larger than the fiyasha čečike (No. 339). Head black, neck white, feathers on the back dark yellow, with white markings.

345. Tagh Ala Qučqaě تأ ألا تو حقّا

Manchu: Alhatu čečike.
Chinese: Shan hua ch'tao.
The " Mirror" says: This bird has black and white variegated feathers [Z. says: This bird is used as a dedication by the Priests].
346. Bederlik Qučqač. (模

Manchu: Marutu čečike.
Chinese : YÜ LIN Ch'iao [Chinese yii-lin = fishes' scales].
The "Mirror" says : The plumage of the body is black and white, the markings having the appearance of fishes' scales.
347. Tagh Qučqač. تاغ "وحٌّا

Mountain-sparrow.
Manchu: Alin-i čečike.
Chinese: Shan ch'iao.
The "Mirror" says: The colouration is slightly different to that of the fiyasha čěcike (No. 339). This bird makes its nest in mountain crevices

Manchu: Sunggali čečike.
Chinese: Sung hua [lit. pine-tree flowers].
The "Mirror" says: Body black with white spots. Strong voice.
349. Quruqči Qučqač. قورو

The Nut-cracker.
Nucifraga coryocatactes Linn.
Manchu: Ongguro čečike. [Z:Russian, Kedrovka].
Chinese: Hu sung niao (lit. the pine-protecting bird).
The "Mirror" says: This bird feeds on hazel-nuts in the woods. When the sable and other animals climb the pine-trees for nuts, this bird gives a cry of fright.
350. Khán lik Qučqač. خان ليك قوشقّا

A species of Linnet.
? Fringilla cannabina.
Manchu: Sišari čečike [Z: Russian, Konoplyanka].
Chinese: MA yeh Ch'tao.
The "Mirror" says: Beak reddish yellow ; on the cheeks curly white feathers. The tail feathers are reddish and sometimes white.
351. Jár qiraghaq. جاز قیى واغّات

A species of Lark.
Alauda sp.

Manchu: Guwenderhen [Z: Russian, Polevoï javorronok].
Chinese: Shao t'ien ch'iao.
The "Mirror" says : Resembling the Čibirgan (No. 276) in nature. In colouration it resembles the quail. At daybreak this bird comes out of the thick grass, and soars up into the clouds.
352. Jibildaghaq. جيبيلدا غاق

Field-lark.
Alauda sp.
Manchu: Jorgirhen. [Z: Russian, Polevoï javoronok].
Chinese: Chiao t'ien tzǔ.
The "Mirror" says: This lark sings (twitters) at sunrise, hence its name jorgirhen. The Manchu verb jorgimbi $=$ to twitter.
353. Watil da ghaq. ونّل טا غات

A species of lark.
Alauda sp.
Manchu: Mulderhen.
Chinese: T'IEN LIU.
The "Mirror" says : A lark with plumage like that of the female quail.
354. Čili.
? The Siberian Fieldfare
Turdus ruficollis.
Manchu: Fiyabkô.
Chinese : Ch'UAN tsao Cht [Giles: Turdus ruficollis, Siberian Fieldfare].
The " Mirror" says: Coloration light brown. Appears in the summer.

A species of Tit.
Manchu: Ija čečike.
Chinese: Tzǔ-TZǓ HEI.
The "Mirror" says: Green in colour. Somewhat larger than the jinjiba čečike (359).
356. Qipač Quĕqac. で

Manchu: Čuseri čečike.
Chinese: Chu yeh ch'iao.
The "Mirror" says: The feathers on the body are ash-coloured. Over the eyelids are fight yellow feathers like eyebrows. Legs very red.

357 Daghlaghu. قانِالا غو
Manchu: Suiha čečike.
Chinese: AI pao [Chinese pao = panther].

The "Mirror" says: Back light brown, breast blackish.
Zakharoff adds: Breastbone y lllowish grey, breast white like a leopard's.
358. Tukhmakči. توخمك

Manchu: Fenehe čečike.
Chinese: Hual ch'uan.
The "Mirror" says : Plumage resembles that of the fiyabkô (354). Very small bird.
359. Ala güz.
? A Wren.
Manchu: Jinjiba.
Chinese: Fên yen.
The "Mirror" says: Colouration green, body very small.
Zakharoff: Russian Pyentra [Sylvia trochilus].

? A Linnet.
? Fringilla cannabina.
Manchu: Fodoba.
Chinese: Litu yeh ch'iao [lit. the willow-leaf bird].
The "Mirror" says: Colouration green, like the green of the Willow tree.
According to the "Sanglakh" qiqač is a word peculiar to the Turks of Persia and means " crooked."

INDEX OF TURKI BIRD NAMES.

		$\begin{aligned} & \text { Seriait } \\ & \text { No. } \end{aligned}$			$\begin{aligned} & \text { SERIAL } \\ & \text { No. } \end{aligned}$
Aitalgu. See Italgu.			Azčaq	\cdots	- 203
. .la baliqci	.	33	Baghirtaq	.	129
Ala borgut		56	Bahár-daghi quěqač.	.	313
Ala buynaq qučqač		318	Bala sayraghuč qučqač	\cdots	. 238
Ala buyun murgh		116	Baldir qirghul	.	. 140
Ala ča quecqač		343	Baliqči	.	32, 33, 35, 99
Ala čuqughaq qučqač		229	Baliqči quš..	.	35
Ala güz		359	Baliqči urdak	. .	162
Ala máč urdak		r66	" Baliqgha amraq" urdak	.	168
Ala par jánwar		300	Baliq-güz urdak	.	165
Ala par lamaj jánwar		301	Baqam jánwar	.	305
Ala qanat qučqač		319	Bay quš	.	91
Ala qargha..		189	Bederlik borgut	.	54
Ala qirghul		135	Bederlik qučqač	.	. . 346
Ala quyruq sár		85	Biš yolloq . .	\ldots	260
Ala sarghinj urdak		167	Bíz tumšuq	.	45
Alamán ghuralay	-	240	Borgut	.	. 52,54
A amán quš		50	Budana	.	. 247
Aq baliqči		IOO	Bulbul	.	253
Aq bás		51	Bulutči jánwar	.	202
Aq báš bulbul		256	Buranči	\ldots	47
Aq báš qučqač		330	Burma buyun qučqač	.	- 332
Aq bás tuqačaq	\ldots	232	Búz qirghuy	.	79
Aq qargha .		190	Čadüki baghirtaq	\ldots	- 130
Aq qučqač		339	Čap lašad qaq qučqač		- 322
Aqiš burgut		57	Čapar ghuralay		. 24 I
Aqiš bulbul		257	Čapar karrak Urdak	.	. I 54
Aqišs čikdači		179	Čapar murgh		. 119
Aqiš jánwar		18	Čapar qučqač	\ldots	282
Aqišs saghizghan		182	Čaqír borgut	. .	53
Aqiš tamghaq jánwar		329	Čaqír gház..		29
Aulár. See Ưlár.			Čarkhči quêqač	.	. 292
Aurdak. See Urdak.			Čighi: čiq		. 271
Auqár. See Uqár.			Čighirčiq qarloghač	\ldots	. 270
Awázliq jánwar		210	Čikdači		. 177
Ayagh-siz .		96	Čil	.	128
Ayis qirma qučqač	\cdots	355	Cil murgh	-	. 127

	$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$			$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$
Čili	354	Jar janwar		- 215
Čin	37	Jar Karrak Urdak	-	153
Corpa	252	Jar qiraghaq		.. 35I
Čüghïndük	95	Jibildaghaq	.	352
Čuja	. 143	Jijirghan qarloghač		. . 274
Čulaq murgh	121	Jip qirghuy..	.	80
Čuli (perhaps for Čauli).	61	Jirlaq qučqač		. 29 I
Cul kök talgha	243	Jir qiraq qučqač	.	3 II
Čulloq baliqči	108	Jöki tumšuq qučqač	\ldots	- 325
Čung-ála-buyún gház	25	Jıınúbi qučqač	.	314
Čuqughaq qučqač	. 227	Kak-kuk jánwar		205
Čuqušghaq qirghul	14 I	Kaptar	.	194
Daghlaghu .	. 357	Keti rang tukhi	.	III
Danlaghaq qučqač	341	Kesma tumšuq	.	43
Darya italgu	.. 103	Khabarči qučqač	.	.. 287
Darya qirghuy	.. 104	Khabarči saghizghan	.	181
Deir deir qučqač	.. 338	Khanlik quěqač	.	.. 350
Ding-ding qučqač	. 336	Kharzi	.	6
Dughduri	.. 36	Khitay qirghul	.	I33
Dükür murgh	120	Khupup	.	.. 198
Dükür-yoq budana. .	. 248	Khurram-liq qučqač		. 290
Dürlam qirghul	. 142	Khušalliq qučqač (for	Khušhálliq)	- 288
Erkek	.. 250	Khušaliq šatuti		.. 172
Erte yaz-daghi qučqač	.. 312	Khušwaqtliq qučqač. 289
Faryadči qučqač	. 335	Kičik ála buyún gház	. .	26
Germa ta'us	17	Kičik ála urdak	.	.. 146
Ghačir	.. 40	Kičik duikür murgh		122
Ghaz	21 to 29	Kičik qara báš ghaz..		28
Ghaz turghay	.. 261	Kičik quyruq urdak	.	. 559
Ghuralay	239	Kičik urdak	.	148
Gilrang purčaqči	. 234	Kök baliqči	.	- 32
Gilrang turghay	.. 263	Kök lafang sar		87
Hang-ghirta	.. 157	Kök leklek .		12
Hawádár quěqač	. . 295	Kök qargha	.	.. 192
Hudhud	. 320	Kök talgha.	.	. 244
Hupup. See Khupup.		Kök tamghaq jánwar		- 326
Hurluq urdak	. 169	Kök wáq . .	.	20
Hurpigan	. 206	Kök zangkar qučqač. .	.	. 279
Huy quš	. . 60, 92	Kökenek	.	.. 64
Huy quš	92	Kökča jánwar	.	. . 207
Italgu	72	Kökis baliqči	-	.. 107
Itka	88	Kökiš borgut	-	.. 58
Itka qirghuy	78	Kul	-	216
Jaghalmay .	.. 90	Kütki qučqač	. \cdot	.. 317
Jánwar	I	Lačin	.	.. 74

$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$						$\begin{aligned} & \text { Seriat. } \\ & \text { No. } \end{aligned}$
Lafang sar	-	86	Qara tar	.		59
Lay uwwa qarlogha	.	272	Qaramtil murgh			II4
Leken tukhosi		98	Qaramtil purčaqči	.	\ldots	235
Leklek			Qaramtil qirghul			132
or $\}$ See Kök l			Qarčigha	\ldots		67
Laglag			Qargha			187
Mada pir murgh	.	3	Qargha quěqač	\ldots	.	236
Mada šakhči qučqač	.	297	Qarloghač		.	265
Mada sopia			Qarloghač qučqač	.	\ldots	276
Mahakexi jánwar	.	208	Qayči tumšuq quč			32 I
Marg urdak		161	Qáz. See Ghaz.			
Marjan qučqač		283	Qičiqirghaq jánwar	.	.	209
Mašriq-daghi sungq		71	Qighač jánwar		.	360
Mihman qučqax		340	Qipač qučqač		.	356
Mihruban qučqač (f	an)	316	Qirghinčliq qučqač	.	\ldots	224
Miyana murgh		125	Qirghul		.	131-142
Müki tumšuq qučqa		324	Qirghuy		.	77
Munguzluq jánwar		211	Qizghinj karrak ur			152
Narinji bulbul		259	Qizghiš baliqči		.	105
Nimrang qučqač	.	309	Qizghiš saghizghan	.		185
Pakhmayghan pakh		201	Qizil baš jánwar			304
Pay paqliq kaptar		195	Qizil qašqaliq čuqu			228
Petek urdik		150	Qizil qučqač			8
Pir murgh	.	- 2	Qizil tamghaq jánv			328
Pir murgh šatuti	.	171	Qizil tumšuq gház			22
Püpeklik ghaz	.	23	Qizil yonjiliq jánwa			303
Püpeklik murgh		- 117	Qu			30
Püpeklik turghay	.	- 264	Quba urdak	.	.	149
Püpeklik yurtči		66	Qučqač			- 22 I
Püpishaklik tukbi	.	112	Qulang sa urdak			164
Pur čaqči qučqač		233	Qum uwwa qarlogh			269
Pur muy qirghul	.	. I34	Qung qargha		.	188
Qalmaq qarloghač		. 267	Qungrogholoq qučq			310
Qapaq baš qučqač		334	Quqačaq			230
Qaqnús	-	7	Quruqči qučqač	.	.	349
Qara ála qučqač		344	Qušmaq urdak	.	.	I55
Qara baliqči		102	Quy ghačir .	.		41
Qara baš hüpuip		231	Quyran qarloghač			266
Qara čapar qučqač	.	- 248	Rukh		.	- 5
Qara kakkuk		- 199	Sá. See under Sár.			
Qara payča urdak	.	163	Saghizghan			180-186
Qara qargha		- 193	Selkeš	.		89
Qara qirghul		- 138	Salwar	.		49
Qara salwar		- 48	Sang-sang			73
Qara tamghaq jánw	-	- 327	Sar	\ldots		. 62,63

	$\begin{gathered} \text { Serial } \\ \text { No. } \end{gathered}$		$\begin{aligned} & \text { SERIal } \\ & \text { No. } \end{aligned}$
Sarghič murgh	124	Timur tirmaq qučqač	337
Sarghinč bulbul	. 258	Tinčliq qučqač	222
Sarghinčliq qučqač	223	Tiš̌ qirghuy	8I
Sarigh ála qarloghač	. 273	Tiši	251
Sarigh güz jánwar	. 306	Tokhanak	191
Sarigh qučqač	. 308	Tokhmakči	. 358
Sarigh quš ..	97	Tormačoq quě̌qač	. 298
Sarigh sopia	.. I74	Torolgha . .	200
Sarigh urdak	.. 158	Tulak	83
Sarighič borgut	55	Tumšuqluq qučqač	225
Sarighis úqár	I4	Tuqačaq	219
Sariq quš	39	Turghay	261, 262
Say Saghizghan	. 184	Turi	82
Sayraghuč qučqač	.. 237	Turna	8, 9, Io, II
Seher khiz	.. 217	Turna baliqči	roi
Sopičaq	342	Turumtay .	.. 76
Su buqa	42	Turumtay lačin	75
Su čüghünduik	IIO	Tutuš qaq janwar	-. 323
Su tasqara .	38	Tutuš urdak	. 156
Sukhsur	151	Tuytun	204
Sulaiman-lik murgh	. 123	Tuzlagha	.. 196
Suna urdak..	147	Učár pír murgh	.. 4
Surmači	218	Ular	15
Suseni Janwar	213	Ưqár	. 13,31
Šakhči qučqač	294	Urdak	144-168
Šakhsanaghuč qučqač	293	Urutil qučqač	- 226
Šatuti	. 173	Usma janwar	2 I 2
Šib turungghu	. 109	Uštur murgh	113
Šum quš	. 94	Uštur qučqač	- 299
Šung qár	68	Utra-ala-buyún ghaz	. 27
Tagh ála qučqač	345	Uwwači qarloghač ..	. 268
Tagh bulbul	254	Uzun put kök talgha	. 246
Tagh junubi qučqač..	315	Uzun quyruq áq saghizghan	186
Tagh marjan qučqač	. 284	Uzun tirmaq budana	. 249
Tagh qarloghač qučqač	. 277	Wáq	. . 19, 20
Tagh qirghul	139	Waqtlik ghaz	24
Tagh qučqač	347	Watil-daghaq	. . 353
Tagh saghizghan	$\therefore \quad 183$	Yawá bulbul	255
Tagh sarighliq qučqač	. 285	Yawá ghaz	2 I
Tagh yašilliq qučqač	286	Yawá kök talgha	- 245
Tajilik murgh	II5	Yamghurči	46,242
Tamkütlej ..	220	Yapalaq ..	93
Targhil Janwar	-. 214	Yašil baliqči	106
Táštölek	. 84	Yašil güzlük murgh	II8
Ta'us	$\ldots \mathrm{I} 6,17$	Yašil-raq qučqač ..	. 28I

INDEX OF TURKI BIRD NAMES

		$\begin{gathered} \text { Serial } \\ \text { No. } \end{gathered}$				$\begin{gathered} \text { Serial } \\ \text { No. } \end{gathered}$
Yašil sopia	.	175	Yonjiliq janwar	.	.	302
Yašil šatuti		. 170	Yürtči		.	65
Yašil yawa kaptar	\ldots	. 197	Zagarči			- 178
Yeken urdak		160	Zangkar qučqač			- 278
Yesi tumšuq	.	44	Zarqanat qučqač		.	- 307
Yilan qarloghač		- 275	Zarrawar qučqač	\cdots	.	. . 2,96

INDEX TO LATIN NAMES.

		$\begin{aligned} & \text { SERLat. } \\ & \text { No. } \end{aligned}$			$\begin{aligned} & \text { Seriali, } \\ & \text { No. } \end{aligned}$
Accipiter nisus	.	. 77	Astur palumbarius ..		67
Acridotheres cristellatus	\cdots	177, 178	Athene bactriana	.	95
Acrocephalus streperus	.	. 292	atra, Fulica	.	169
acuta, Dafila	\cdots	151	atrogularis, Planesticus	.	. 177
aruginosus, Circus	\cdots	62	auritum, Crossoptilon	.	114
asalon, Lithofalco	.	. 76	auritus, Turtur	.	200
Aix galericulata	-	... 155	avoceta, Recurvirostra	\ldots	. 46
Alauda calandra		26I	bactriana, Athene	.	95
,, cristata	.	. 264	,, Carine	.	95
alba, Ciconia	.	15	,, Pica	\cdots	180
,, Herodias	-•	I3	baeri, Nyroca	.	165
albicilla, Haliaëtus	.	100	Bambusicola sonorivox	.	. 127
alboniger, Spitzaētus	.	58	barbarus, Falco	-	74
Alcedo ispida	.	273	barbatus, Gypretus	.	51
Anas boschas	\cdots	. 147	biarmicus, Panurus	.	. 336
,, clangula	\cdots	. 146	bonasia, Tetrastes	.	. 129
,, crytropus	.	. 27	boschas, Anas	..	. 147
, latirostra	.	44	Botaurus stellaris	.	42
, ${ }^{\text {nigra.. }}$.	. 158	boyciana, Ciconia	.	15
,, querquedula	-	160	brachyotus, Otus	.	93
,, zonorhyncha	.	.. 167	Bubo maximus	.	92
Anser cinereus	-	22	,, turcomanus	.	92
,, erythropus	.	28	bubulcus, Ardea	.	. 31
,, hyperboreus		13	Buteo vulgaris	.	.. 63
Anthropoides virgo	.	II	Caccabis chukor	.	. 125
antigone, Grus	.	10	,, pallescens	.	126
Aquila chrysaētus	.	52	carulecula, Cyancuula	.	. 292
,, clanga	\therefore	54	calandra, Alauda	.	.. 261
,, fulvescens	.	55	Calidris arenaria	:.	46, 242
aquilinus, Archibuteo	\ldots	85	calvus, Otogyps ..	\cdots	.. ${ }^{48}$
Archibuteo aquilinus		85	cannabina, Fringilla..	.	350, 360
Ardea bubulcus	.	- 31	canorus, Cuculus		199, 204
," cinerea	.	13	Caprimulgus arenicolor	. .	. 96
,, melanocephala..	-	- 32	Carbo cormoranus		. 30,38
,, purpurea	-	33	Carduclis, Fringilla	.	- 307
arenicolor, Caprimulgus	.	. 96	Carine bactriana	.	95
Asio otus	-	91	Casarca rutila		.. 157

		$\begin{aligned} & \text { Serial } \\ & \text { No. } \end{aligned}$			$\begin{aligned} & \text { SERLAL } \\ & \text { No. } \end{aligned}$
Cerchneis tinnunculus		64	Dafila acuta	.	151
Ccriornis temmincki		112	darwinii, Pucrasia	.	. II9
Ceryle rudis		. 273	Dendrocitta rufa	.	. 189
chinensis, Oriolus		237	domesticus, Passer	.	- 339
Chlorospiza spinus		-. 307	edwardsii, Eupodotis..	.	.. 36
chrysaëtus, Aquila		52	Egretta garzetta	.	19
chukor, Caccabis		.. 125	,, modesta		19
Ciconia alba		. 15	Emberiza schooniclus	.	343
,, boyciana	.	15	epops, Upupa	\cdots	198, 225, 320
," nigra		15	erythrogastra, Rubicilla		221
cineraccus, Sturnus		.. 177	erythropus, Anser	.	28
cinerea, Ardea		I3	Erythrospiza obsoleta	.	. 298
,, Grus		9	Euplocamus lineatus		. 117
cinereus, Anser		22	,, nychthemerus	.	I8
circia, Querquedula		. 145	Eupodotis edroardsii	\ldots	36
Circus aruginosus		62	Falco barbarus	.	74
clanga, Aquila		54	," gyrfalco	.	68
Cla gula, Anas		. 146	,, hendersonii	. .	68
clypeata, Spatula		I49	,, peregrinator	.	74
Colcus monedula		19I	,, sacer	.	72
collurio, Lanius		240, 24 I	,, subbuteo	.	90
Columba rupicola		. 196	Auviatilis, Sterna		
,, turtur		. 196	Fringilla cannabina	.	350, 360
communis, Coturnix 247	,, carduclis	.	. 307
,, Grus		8	linaria	.	.. 304
Coracias garrula		192, 207	,, montefringilla	.	. 276
cormoranus, Carbo	.	. 30,38	Fulica atra		. 169
cornix, Corvus		. 189	Fuligula fuligula	.	145
Corous cornix		. 189	fuscatus, Turdus	\ldots	. 177
,, culminatus	\ldots	. 193	fulvescens, Aquila	.	55
coryocatactes, Nucifraga	.	349	galbula, Oriolus	.	174
Cotile riparia		. 269	galericulata, Aix	.	155
,, rupestris		266, 277	Gallina sylvestris	.	133
Coturnix communis		. 247	garrula, Coracias	.	192, 207
," dactylisonans	.	. . 247	garzetta, Egretta		19
cristala, Alauda	.	. 264	Genneus nycthemerus	.	II5
cristatellus, Limnetus	.	68	giu, Scops	.	97
cristellatus, Acridotheres		177, 178	govinda, Milvus	. .	77
Crossoptilon aurium	.	. 114	graculus, Pyrrhocorax	.	. 179
cryiropus, Anas		27	griseus, Nycticorax	. .	19
Cuculus canorus		199, 204	Grus antigone	. .	10
culminatus, Corvus		. 193	," cinerea	. .	9
curvirostra, Loxia		. 32 I	,, communis	.	8
Cyanecula carulecula.		. 292	,, leucogeranus	.	8
dactylisonans, Coturnix	\cdots	. . 247	,, montignesia	.	8

	$\begin{gathered} \text { Serial } \\ \text { No. } \end{gathered}$		$\frac{\text { SERTAL }}{\text { No. }}$
Grus virgo	II	Motacilla lugubris	300
viridorostris	8	,, luzoniensis	300
Gypatus barbatus	51	salicaria	305
gyrfalco, Falco	68	muticus, Pavo	16
Halcyon smyrnensis	279	nevia, Locustella	291
Haliaètus albicilla	. 100	nigra, Anas	- 158
haliaëtus, Pandion	35, IOI	," Ciconia	15
hendersonii, Falco	68	nisoria, Sylvia	243
Herodias alba	13	nisus, Accipiter	77
Hirundo rustica	265	nivea, Nyctea	91
hirundo, Sterna	99	Nucitraga coryocatactes	349
homeyeri, Lanius	239	nychthemerus, Euplocamus	18
hyperboreus, Anser	13	Genneus	115
in:ei, Tchitrea	. 185	Nyctea nivea	.. 91
Ithaginis sinensis	116	Nycticorax griseus	19
ispida, Alcedo	273	Nyroca baeri	165
kundoo, Oriolus	174	obsoleta, Erythrospiza	
Lanius collurio	240, 241	occipitalis, Pycnonotus	331
,, homeyeri	. 239	Oriolus chinensis	237
,, major	208	,, galbula	
lativostra, Anas	44	,, kundoo	174
Leucodopicron sinensis	253	Otis macqueenii	41
leucogeranus, Grus	. 8	,, tarda	40
leucorodia, Platalea	- 43,44	Otogyps calvus	48
Limnetus cristatellus	68	otus, Asio	91
linaria, Fringilla	304	Otus brachyotus	93
lineatus, Euplocamus.	Ii7	pallescens, Caccabis	126
Lithofalco asalon	76	palumbarius, Astur	
Locustella ncevia	291	Pandion haliaëtus	35, хох
Loxia curvirostra	32 I	Panurus biarmicus	.. 336
lugubrus, Motacilla	300	paradisi, Tchitrea	185, 186
luzoniensis, Motacilla	.. 300	paradoxus, Syrrhaptes	128
macqueenii, Otis	4 I	Parus minor	318
major, Lanius	208	Passer domesticus	339
maximus, Bubo	92	,, montanus	.. 340
melanocephala, Ardea	32	Pavo muticus	16
Milvus govinda	77	peregrinator, Falco	74
minor, Parus	318	Phyllopneuste rama	
minuta, Sterna	99	Pica bactriana	
modesta, Egretta	19	,, pica	
monachus, Vultur	49	picta, Thaumalea	
monedula, Coleus	. ${ }^{\text {I }}$ I	Planesticus atrogularis	.. 177
montanus, Passer		Platalea leucorodia	..43,44
montefringilla, Fringilla	. . 276	Pucrasia darwinii	.. 119
montignesia, Grus	8	Pucrasia xanthospila.	119

CHINESE INDEX

Note. The numbers in the Index refer to the numbers in the List.

CHU TING TA CHO MU－ 228 －	朱
	頂
	大
	䄽
	木
CHU YEH CH＇IAO－ $356-$	竹
	葉
	雀
$\mathrm{CH}^{\text {c }} \mathrm{U} \mathrm{CHIH}-\mathrm{I} 40-$	鴝
	雉
CH^{c} Ü YÜ－17S－	䚑
	谷島
CHUANG－ 3 I －	莊
CH＇UAN TS ${ }^{\text {c }}$（O $\mathrm{CHI}-354-$	穿
	草
	鵸
CHUEH－20S－	鵙
FAN SHE－ 226 －	反
	古
FEI NIAO－280－	䨿
	鳥
FEN CHIH－I4I－	奮
	雉
FEN YEN－ 359 －	粉
	眼
FENG－2－	鳳
FENG HUANG YING－171－	鳳
	俨
	䝧

FENG T＇OU O LAN－ 264 － 鳳
FENG YING－ $65-$ 風
鷹
FO NIAO－ $203-$ 佛HAI CHIH－I33－海雉
HAI $\mathrm{CH}^{\mathrm{c}} \mathrm{ING}$－ 68 － 海
varieties－ $69-70-$ 青
HAI HU－ 103 － 海
鶻
HAI TUNG CHING $-7 \mathrm{I}-$ 海
東HAI YAO－ 104 －海
鵷
HAN LU－ 240 － 寒露
HAN YA－ 193 － 寒
鴉
HAO－ $7-$ 鶴
HEI CH ${ }^{c} A O$－ 87 － 黑
超
HEI CHIAO YA－ 163 －黑
脚

HEI CHIU－ $199-$	黑
	鳵
HEI TIEN $\mathrm{K}^{\text {c }} \mathrm{O}-327-$	黑
	敖
	頝
	黑
	頭
	啄
	木
HÊN HO－91－	狠
	鶻
$\mathrm{HOCHI}-\mathrm{II}_{5}$	鶡
	雞
HO TAN－ 209 －	鶡
	旦鳥
HOU YEN－ $24-$	候
	雁
HSI CHIAO－I80－	喜
	鵲
HSI HSIUNG $-78-$	細
	雄
HSIA MO YING－90－	蝦
	蟇
	鷹
HSIA TI－ $134-$	夏
	翟
HSIANG SSỮ NIAO－316－	相
	思
	鳥
HSIAO HEI T＇OU YEN－ $28-$	小
	黑
	頭
	䧹

HU SUNG NIAO - 349 -

HU YEN - $267-$
HUA CHO MU - $229-$

HUA MEI - 253 -

HUA PAI TIAO - $56-$

HUA PAN - 343 -

HUA PAO - $85-$

HUA PU YA - 189 -

HUA YA - 166 -

HUAI CH ${ }^{c}$ UAN - 358 -

HUI ERH - 234 -

HUI HAO - Io -

NIAO－I－	鳥	PAI LING－26i－	白
NU K ${ }^{\text {c }}$ O YA $\mathrm{K}^{\mathrm{c}} \mathrm{O}-2 \mathrm{II}$	努		鴒
	克	PAI MEI－ 256 －	白
	呀		眉
	克	PAI TAO MEI－ 257 －	白
O－IOI－	鶚		道
O LAN－ $262-$	阿		眉
	蘭	PAI TIAO－ $57-$	白
OU－Iog－	鷗		鵰
PAI $\mathrm{CH}^{\text {c AO }}-86-$	白	PAI TIEN K ${ }^{\text {c }} \mathrm{O}-329-$	白
	超	－	靛 顔
PAI CHÜEH－roo－	臽	PAI T＇OU CHO MU－ 232	白
PAI HAI $\mathrm{CH}^{\text {c }}$ ING－ $69-$	白 海		啄
	青	PAI T＇OU LANG－331－	白
PAI HO TZ乌̆－ $34-$	白		頭
	鶴		郎
	子	PAI T＇OU WÊNG－ $330-$	白
PAI HSI CH＇IAO－ $182-$	白		頭
	喜		翁
	鵲	PAI YA－ $190-$	白
PAI HSIEN－ 18 －	白		鴉
	閉島	PÊNG－ 6 －	鵬
PAI HSIUNG－8i－	柏 雄	PAN CH＇IH－I25－	乎
PAI HUA CH＇IAO－ $344-$	$\begin{aligned} & \text { 白 } \\ & \text { 花 } \\ & \text { 雀 } \end{aligned}$	$\begin{aligned} & \text { PAO }-40- \\ & \text { see also }-4 \mathrm{r}- \\ & \text { PÊN TA MU }-230- \end{aligned}$	轲 鐼
PA KO－ 177 －	八		打
	哥		木

PEI SHU CHI－I30－

PI－ $25 \mathrm{I}-$
PII HU LU－ 150
PIAO YING $-89-$

PIN $\mathrm{CH}^{\text {e }} \mathrm{IAO}-340-$

PIN HUNG $-{ }_{23}-$

P＇ING HSLAO－ 202
PU KU NIAO－ $204-$
$\mathrm{P}^{c} \mathrm{U}$ YA $-147-148-$

SAI YEN－ 27 I －

SAN HO SHANG－ 320

STHA CHI－ 128 －

SHA LIU TZŬ－ 246 －

北
樹
雞

痺
皮
葫
蘆
鷅
賓
雀
賓
鴻

憑
霄

布

縠
鳥
蒲
鴨
塞
䜩
三
和
向

沙
雞
SHA YEN－ 269 － 沙
燕
SHAN CHE $-315-$ 山
騳 鷓
SHAN CHIAO－ 347 － 山
雀
SHAN CHIH－I 39 － 山
SHAN CHO MU－ 227 － 山
SHAN HAO -8 － 仙
SHAN HSI CHCIAO－ 183 － 山 喜
鵲
SHAN HU－ 284 － 山胡鳥
SHAN HU NIAO－ 283 － 珊瑚鳥
SHAN HUA CHI－in6－ 山
花雞
SHAN HUA CHㄷAO－ 345 － 山
鶴
－
－
喜

雀
SHAN HUA MEI－ 254 －山畵

眉

SHUI HSIAO－iro－
SHUI HU LU－ $160-16 ı-$

SHUI HUA KUAN－ 206 －

SHUI HUNG NIAO－ 290 －

SHUI LO TTO－ $299-$

SHUI WA TZŬ－ 46 －

SHUI WU NIAO－ 242 －

SHUI YING－ 35 －

SUNG CHI－II9－

SUNG ERH－So－

SUNG HUA－ 348 －

SC゙NG YA－218－

淕

子

水
沃
鳥
水
鷹
松
雞
盷
兒
松
花
松
鴉

TA KU NIAO－ 216 — 打
穀
鳥

TAI SHENG－ 225 －
戴
勝

TA SHUI CHA TZŬ－ 244 — 大
水
札
子

T＇AI P ${ }^{\mathrm{c}} \mathrm{ING}$ CH ${ }^{\mathrm{c}} \mathrm{IAO}-222$－
A
雨
雀

TAN HUANG TAO MEI－ 259 －
淡
黃
道
眉
TAO SHA TIAO－6I－
倒
䑙
鵰
倒
掛
鳥
桃
雀
$\mathrm{T}^{\mathrm{c}} \mathrm{AO} \mathrm{CH}^{c} \mathrm{UNG}-295$－
狐
需

淘
河
TÊNG K ${ }^{c} \mathrm{O}$ TZU ŤSUI－ $43-44$－
星
殻
子
嘴

TI NIAO－ $298-$

TI PÊN NIU－ $215-$

TiI HU NIAO－ 319 －

TIAO－ 52 －
see also－ $48-49-51-$
TIAO CHI－IO2－

T＇IEH SHU P ${ }^{c} \mathrm{I}$－ 220 －

T＇IEH CHIAO－ 337

TIEN HUA－ 212 －

T＇IEN LIU－ 553 －

T＇IEN O－ $36-$

T＇IEN TUNG CHI－ 124 －

TO ERH－ $76-$

T＇O CHI－II3－

地	T ${ }^{\text {c }}$ PAI LIEN－ 186 －	拖
鳥		白
		練
地		
生	TOU－TOU CH＇IAO－ 33^{8}－	皃
牛		兜
		雀
提		
噎	T ${ }^{\text {c }}$（ ${ }^{\text {TS }}$ ANG－ 34 I －	偷
鳥		倉
鵰	TSAO ERH－ 235 －	皀
		兒
鵰	$\begin{aligned} & \text { TSAO TIAO }-49- \\ & \text { see also }-48- \end{aligned}$	皀
鴙		鵰
貼	TSÊ CHI－ $12 \mathrm{I}-$	澤
樹		雞
皮		
鐵	TS ${ }^{\text {CUI }}$ NIAO－ 278 －	翠
脚		鳥
靛	TS＇UI NU－ 108 －	翠
花		奴
天	TS ${ }^{\text {c }}$ UI PI－ $107-$	翠
翵		碧
天	TS＇UI Y Ü－ $279-$	翠
我		鷸
田	TS＇UI YÜN NIAO－ 207 －	翠
洞		雲
雞		鳥
趂	$\mathrm{T}^{\text {c }}$ CH＇IU－ $38-$	鵚
兒		鶖
駝	$\begin{gathered} T^{C} U \text { HU 一 } 72 \text { - } \\ \text { 鬼 for 磈 } \end{gathered}$	兎
雞		鶻

T$^{C} U$ SHOU CHI－Ir2－
$T^{C} U$ YÜAN YANG $-157-$

T＇UAN TIAO－ 60 －

T$^{c} \mathrm{UNG}$ LING－ $310-$
TZॅॅ CHIH－ $123-$

TZŬ KUEI－ 328 －

TZÜ T＇OU YA－ 152 －

TZŬ TZŨ HEI－ 355 －

TZ ${ }^{\text {C }} \mathrm{U}$ YA－ $188-$

U CHIH $-132-$

U YA－ 187 －－

WAN $\mathrm{CH}^{C} \mathrm{UN}$ NIAO $-313-$

專

鵰

銅
鈴
鶓
雉

子 規

紫

頭
鴨

仔
仔
黑
鹪
僙
慈
鴉

鷍
雉
鳥
鴉
萬
春
鳥

WANG KANG KO－ $210-$	王
	岡
岢	

鶻
褚
兒

WEI CHA TZŬ－292－葦
喳
子
葦
鳥
鳼
WEN HAN YA－ 154 －文
鶾
鴨
WO $\mathrm{CH}^{\mathrm{C}} \mathrm{U}-88-$
窩
雛
WU KENG MING－ 34^{2}－
五
更
鳴
五
斑
蟲
WU TAO MEI－ 260 －
五
道
眉
梧
桐
鴉
鶻
鴉
WU PAN CH ${ }^{c}$ UNG－ 214 －．

眉
WU T ${ }^{\text {U }}$ UNG－ 233 －

YA HU－ $74-$

YA HU TO ERH－ 75 －

YANG PAO $-4 \mathrm{I}-$
YAO KU $-335-$
YAO T ${ }^{C}$ UN CHIAO $-336-$

YAO TZŬ－79－

YEN CHI－ 13 I －

YEH MAO ERH－ 95 －

YEH MING NIAO－ $217-$

YEN CHIAO－ 276 －

YING－ 67 －
YING CH＇U－ 238 －

YING KO－ 173 －

YiNG PU LA－ 239 －

YING WU－i $70-$

羊	YI－ 274 －	鴔
轲	YU KUAN ERH－ 243 －	油
腰		罐
鼓		兒
摇	YU HU LU－ $164-$	油
殿		葫
雀		蘆
鷂	YU LIN CHCIAO－ $346-$	魚
子		鱗
		雀
野		
雞	YÜ HU－ 106 －	魚
夜		虎
猫	YÜ KOU－ 105 －	魚
兒		狗
夜	YÜ YA－ $162-$	魚
明		鴨
，鳥	YÜ YEN YA－ 165 －	玉
燕		眼
雀		鴨
鷹	YÜ YING－ $99-$	魚
鶯		鷹
㚬	YÜAN NIAO－ $135-$	原
㛝鳥		鳥
哥	YÜAN NIAO－191－	元
鷹		鳥
不	YÜAN YANG－ $155-$	鴽
刺		套
䴍	YÜEH YEN－ 272 －	越
鵡		燕

Memoirs of the Asiatic Society of Bengal.
 1905-1906.

1. On certain Tibetan Scrolls and Images lately brought from Gyantse.-By Prof. Satis Chandra Vidyàbiósana, M.A., M.R.A.S. (Price Re. 1-8; or 2s. 3d.)
II. Sal-Ammoniac: a Study in Primitive Chemistry.-By H. E. Stapleton, B.A., B.Sc. (Price Re. I; or Is. $6 d$.)
III. The Similarity of the Tibetan to the Kashgar-Brahmi Alphabet.-By The Rev. A. H. Francke. (Price Rs. 2 ; or $2 s$. iod.)
IV. Alchemical Equipment in the Eleventh Century, A.D.-By H. E. Stapleton and R. F. Azo. (Price Re. 1-8; or 2 s. 3 d.)
V. Malaysian Barnacles in the Indian Museum, with a list of the Indian Pedunculata.By N. Annandale, B.A., D.Sc. (Price Re. I-8; or 2 s .3 d.)
VI. Ashrafpur Copper-plate Grants of Devakhadga.-By Ganga Mohan Laskar, M.A. (Price Annas 8; or 10d.)
VII. Festivals and Folklore of Gilgit.-By Ghulam Muhammad. (Price Rs. 2 ; or 2s. iod.)
VIII. Notes on the Bhotias of Almora and British Garhwal.-By C. A. Sherring, M.A., F.R.G.S., I.C.S. (Price Re. I-5; or $2 s_{\text {. }}$)
IX. Religion and Customs of the Uraons.-By the late Rev. Father Dehon, S.J. (Price Rs. 2 ; or 2 s .1 I d.)
X. Notes on the Fauna of a Desert Tract in Southern India (Herpetology and Entomology).-By N. Annandale, D.Sc., C.M.Z.S., with a list of Mammals by R. C. Wroughton, F.E.S. (Price Rs. 2 ; or 2 s. 1od.)
XI. Amulets as Agents in the Prevention of Disease in Bengal.-Compiled in the Office of the Superintendent of Ethnography, Bengal. (Price Annas i2; or 1s. 2d.)
XII. Earth-Eating and the Earth-Eating Habit in India.-By D. Hooper and H. H. Mann. (Price Re. I; or Is. 6 d .)
XIII. On a Cup-Mark Inscription in the Chumbi Valley.-By E. H. C. Walsh, I.C.S. (Price Re. I ; or 1s. 6d.)
XIV. A Descraptive List of the Sea-Snakes (Hydrophiidæ) in the Indian Museum, Calcutta. -By Captain F. Wall, I.M.S., C.M.Z.S. (Price Re. I; or is. 6 d.)
XV. Common Saws and Proverbs collected, chiefly from Dervishes, in Southern Persia.-By Lieut.-Col. D. C. Phillott. (Price Re. i; or is. 6 d.)
XVI. The Common Hydra of Bengal: its Systematic Position and Life History.-By N. Annandale, B.A., D.Sc., C.M.Z.S. (Price Re. i ; or Is. $6 d^{-}$.)
XVII. Animals in the Inscruptions of Piyadasi-By Monmohan Chakravarti, M.A. (Price Annas 12 ; or 1s. 2d.)
XVIII. Some current Persian Tales told-by Professional Story-Tellers.-By Lieut.-Col. D. C. Philloti. (Price Re. I; or Is. $6 d$. .)
XIX. The Dards at Khalatse in Western Tibet.-By Rev. A. H. Francie. (Price Re. 1-6; or $2 s$.)
Supplement, Miscellanea Ethnographica. Part I. 1. The Blow-Gun in Southern India 2. Miscellaneous objects from the Ramanád subdivision of the Madura district 3. Indian Weighing-beams.-By N. Annandale, D.Sc. (Price Re. i.)

Supplement, Miscellanea Ethnographica. Part II. 1. Some Malayan Weapons-By N. Annandale. 2. Plan of a Persian Gentleman's House.-By Lieut.-Col. D. C. Phillott. (Price Annas 8 ; or 10d.)

Memoirs of the Asiatic Society of Bengal.

Vol. II.

I. Cirrhipèdes operculés de l'Indian Museum de Calcutta.-Par M. A. Gruvel. (Price Rs. 2 ; or 2 s .1 IO .)
II. The Coinage of Tibet.-By E. H. C. Walsh. (Price Re. I; or Is. 6d.).
III. The Exact Determination of the Fastness of the more Common Indigenous Dyes of Bengal, and comparison with typical synthetic Dye-stuffs. : Part I. Dyeing on Cotton.-By E. R. Watson. (Price Re. I ; or 1s. $6 d$. .)
IV. The Saorias of the Rajmahal Hills.-By R. B. Bainbridge. (Price Rs. 2 ; or 2 s. Iod.)
V. Mundari Poetry, Music and Dances.-By Rev. Fr. J. Hoffmann, S.J. (Price Re. I; or $1 s, 6 d$.)
VI. Tarikh-i-Nuşratjangi.-By Harinath De. (Price Re. I ; or is. 6d.)
VII. The Exact Determination of the Fastness of the more Common Indigenous Dyes of Bengal, and comparison with typical Synthetic Dye-stuffs. Part II. Dyeing on Silk. -By E. R. Watson. (Price Annas 12; or I.s. 2d.)
Monograph on Sea Snakes.-By Major F. Wall, I.M.S. (In the press).
A Polyglot List of Birds in Turki, Manchu and Chinese.-By E. Denison Ross, Ph.D. (Price Rs. 4 ; or 6 s.)

MEMOIRS

of the

ASIATIC SOCIETY OF BENGAL

VOL. II, No. 10, pp. 841-846.

NOTES ON SOME MONUMENTS IN AFGHANISTAN.

${ }^{\text {в }}$
H. H. HAYDEN, Geological Survey of India.

CALCUTTA:
Printed at the Baptist Mission Press, and published by The Asiatic Sooiett, 57, Park Street: 1910.

Notes on some Monuments in Afghanistan.

By H. H. Hayden, Geological Survey of India.

The Munárs near Kabul.

Masson's detailed researches on the subject of the Afghan topes, published in Wilson's "Ariana Antiqua " (I84I), leave little for subsequent travellers to add. This,, indeed, is fortunate, since the state of preservation of the topes and other monuments both about Jalalabad and at Yakhdara near Kabul is now very inferior to what it was in Masson's day. A few, however, still survive, and, of these, the most striking are the two columns known as the Munár-i-Chakri and Munár-i-Surkh.

The Munár-i-Chakri (Plate xi) is one of the most conspicuous landmarks in the neighbourhood of Kabul. It stands on the Kotal-i-Munár, a pass over the high ridge crossed by the short cut from Kabul to Khurd Kabul and at about eight miles to the south-east of the former place. It has already been described by Masson, ' but the figure given by him does not give a very accurate idea of the upper part of the column. His drawing, however, shows the curious bulge on the north-western side of the pillar ; this is very marked in the original, and is quite noticeable in the photograph now reproduced. This bulge is due to the fact that the upper part of the column leans over to the south-east, a defect which probably dates from the time of its construction, as there is no evidence of recent displacement. The height of the column is about IO5 feet ; this estimate is based on the height of a stick, 5 ft . long, placed against the tower and photographed with it ; it consequently only gives an approximation to the true height, which is probably somewhat greater.

A fact which appears to have escaped Mr. Masson's attention is the considerable use of timber in the construction of this Munár. Ends of wooden beams can be clearly seen at the first projecting course, and other beams have been used, though more sparingly, in the main mass of the masonry.

A regrettable feature will be noticed in the illustration now published: this is the dilapidated condition of the square base on which the pillar stands. Owing to the effects of the weather, the western side of the pedestal is becoming gradually undermined, and unless steps are taken before long to repair this damage, the Munár must inevitably fall.

The illustration now published is a reproduction of a photograph taken on December 5th, I907, by Mr. W. Donovan, of the Oriental Telephone and Electric Company, Electrical Engineer to the Amir of Afghanistan.

The Munár-i-Surkh has already been described by Masson, and I only mention it here in order to correct an obvious slip to be found on page 56 of Fergusson's History of Indian and Eastern Architecture (1876) and which evidently escaped the author's notice. In his description of the Munárs near Kabul, Fergusson refers to them as the Chakri Munár and the Surkh Munár, and publishes a woodcut purporting to illustrate the latter and said to be taken "from a drawing by Mr. Masson in Wilson's 'Ariana Antiqua' ' '. Masson states in his description of the Munár-i-Surkh (op. cit., p. II4), that "its upper parts have fallen beneath the injuries of time": when Masson saw it, it was evidently in the same dilapidated state as at the time of my recent visit ; only a portion--probably representing about two-thirds of the original struc-ture-is still standing ; this consists of a plain cylindrical column capped by a projecting course similar to that seen at rather less than two-thirds of its height in the illustration now published of the Munár-i-Chakri. On the other hand, Fergusson's woodcut represents a pillar in a very good state of preservation, and also resembles closely the Munár-i-Chakri. In his reference to his woodcut, " Munár-i-Surkh" is evidently, therefore, merely a slip for " Munár-i-Chakri." Curiously enough, however, his woodcut differs considerably from the illustration given by Masson on Plate ix of Aviana Antiqua, from which it purports to be taken. ${ }^{1}$ It is clearly not a copy of Masson's figure, yet a comparison of both with the photograph now published shows the Fergusson's woodcut is the more accurate of the two!

Buddhist Carvings at BÁmián.

The Bámián caves and carvings have been described by many writers, beginning with Hiuen Tsiang, who visited the valley nearly thirteen hundred years ago (between A.D. 629 and 645). Notes on them have also been published at various times in this Society's journal ; viz., by Burnes in 1833 (vol. ii, 56r), and by Masson in 1836 (vol. v, 707). Subsequently in I839, Bámián was visited by Dr. W. Griffith (Posthumous Papers: Journals of Travels in Assam, \&c., edited by J. McClelland (1847), p. 389). Both he and Burnes give illustrations of the principal figures; these were drawn from rough sketches and with the exception of a photograph of one of the figures taken by Mr. A. Collins and reproduced in Dr. J. A. Gray's " My Residence at the Court of the Amir'" (I895), p. I44, no photographs have, I believe, been published.

There are at present altogether five statues in Bámián, three of which are in the main valley at Taibut. Plate xii gives a general view of the cliffs of Tertiary conglomerate on the left side of the valley and shows the two chief niches, one at either end, and two smaller niches between them. Only one of the latter contains a statue and that has suffered, like the two principal figures, from systematic mutilation as well as from the effects of cannon-balls fired at it by Mahommedan invaders.

A fourth statue (Plate xiii) is seen in the cliffs on the right bank of the Chapdara, a stream which joins the Bámián river on its right bank about two miles below Taibut.

1 Only two copies of this work were accessible to me in Calcutta-one in the Imperial Library, and the other in the Library of the Asiatic Society of Bengal ; but the illustrations were probably the same throughout the edition.

The fifth statue, which is the recumbent one and which I had not an opportunity of seeing, is at Azhdahár on the right side of the Bámián valley above Taibut.

Plate xii shows the numerous caves in the cliffs at Bámián ; some of these are now used as barracks, others are occupied by the local peasants, whilst many are empty. Similar caves are to be seen in many of the smaller valleys in the neighbourhood.

Hiuen Tsiang describes the statues as being of great beauty ; the largest, he says, was I40 or 150 feet in height, whilst "its golden hues sparkle on every side and its precious ornaments dazzle the eyes by their brightness." ${ }^{\text {l }}$ It is difficult, however, to identify them from his description of their situations, but the two large ones, to which he refers as statues of Șakya Muni, are presumably those in the principal niches illustrated on Plate xii, while the recumbent figure, that he describes as being in a monastery to the east of Bámián, may be that at Azhdahár, "east" having been accidentally used instead of "west." At the time of his visit they were all evidently in an excellent state of preservation, since Buddhism then prevailed throughout the whole of Afghanistan, and a consideration of the extreme smallness of the remnants now left of the many statues, monasteries, stupas and viháras described by him leaves one appalled at the barbarism displayed in their ruthless destruction by subsequent conquerors.

The illustration now published (Plate xiv) is from a photograph of the largest figure, which stands in the niche seen at the left side of Plate xii. That published by Dr. Gray is from a photograph of the figure in the niche at the opposite end of the same plate. The sizes given for the largest of the figures vary considerably, ranging from I20 feet (Burnes) through I35 feet (Griffith) and I40 to 150 feet (Hiuen Tsiang) to 173 feet (Gray). Unfortunately I had not an opportunity of taking measurements, but I should be inclined to accept Dr. Gray's figure, viz. 173 feet. The heights given by the older Mahomedan historians are evidently only approximate.

Burnes, when he visited Bámián, was told the same fable with regard to these carvings as is repeated at the present day ; according to this, they represent, the largest one a male, the next a female, wife of the large one, and the smallest, which is in a niche between the two large ones, their child. Both Burnes and Masson failed to realize the true nature of these carvings, but Griffith, probably as a result of his travels in Burma and Bhutan, at once recognised them as of Buddhist origin.

The frescoes above the heads of the two principal figures are now much dilapidated ; those over the smaller statue appeared to be better preserved and are in parts extraordinarily fresh and bright; they appear to have been not unlike the frescoes found in Buddhist temples in Tibet at the present day. The only subject that I was able to recognise was a well-preserved painting of the Garuda bird.

All the statues are carved out of the solid cliffs of Tertiary conglomerate, which consists of small pebbles embedded in a fairly hard matrix of sandy clay.

[^45]
Cup－marks in Bámián．

On the descent from the Ak Rabát Kotal to Bámián，and at about one－and－a－half mile below the top of the pass，two large blocks of limestone have rolled down from the small scarp above the road，and lie at the side of the footpath．Both of these are covered with cup－marks on the side next the path．On the top of each block is a heap of pebbles and several of the cups contain small stones．Many of the marks are quite fresh and show signs of recent excavation．It is，therefore，clear that the present Mahommedan inhabitants still continue to hollow them out as they pass by．

The question of the origin of cup－marks has been dealt with at some length by Mr．E．H．Walsh，I．C．S．，in a Memoir published by this Society［vol．i， 27 I（1907］． My observations throw no further light on the matter．The people of Bámián have apparently no idea of the meaning or origin of the marks，and，when asked，merely say that the place is a＂ziarat＂and that a holy man presumably died on this spot． When he died or who he was they do not know，and there is no trace of anything resembling a grave．

Plate xv shows old cups below and freshly－cut ones，with pebbles in them，above． The other block，on the left－hand side of the picture，is covered with more numer－ ous and much finer cup－marks，but when I saw it，I had unfortunately used my last film and was unable to photograph it．

It is interesting to find customs of this kind surviving in a Mahommedan com－ munity so strictly orthodox as that of Afghanistan，but this is by no means the only instance of the kind．Throughout the hill－country of Bámián and Saighán it is quite usual to find the hill－tops and passes crowned by cairns in which one is tempted to see a survival of the Buddhist＂lá－dse＂（R⿴囗十⿱一⿴⿻儿口一⿺卜丿． stones on which are planted sticks with white flags attached，or they may be built－up piles of horns of ibex and wild sheep．None of these，so far as I could ascertain，have any historical legend attached to them，although they are classed under the comprehen－ sive term＂ziarat．＂They are in just the places in which in Tibet one would confi－ dently expect to find a＂lá－dse＂erected in honour of such local deities as inhabit passes and mountain－tops．As in Tibet，too，solitary trees beside the mountain－streams are hung with flags and their branches adorned with horns，and although more rigid en－ quiries than I was able to make might elicit a story of some legendary saint，it is difficult to avoid the conclusion that the devout Mahommedan，who strokes his beard as he passes by，is unwittingly doing homage to the tutelary deity whose simple shrine has survived the iconoclasm that destroyed the more pretentious monuments erected to the founder of Buddhism and defaced the magnificent carvings in the valley of Bámián．

BÁbar＇s tomb at Kabul．

On the western flanks of Sher Darwáza lies the Bágh－i－Bábar，perhaps the most beautiful garden in all Afghanistan．Here are the chenar trees under which Bábar is said to have sat，the marble water－channels and the basin that he filled with wine， and here too are masses of the purple árghawán，the flowering shrub in which he took
such a keen delight. On a terrace on the hill-side, at the upper end of the garden, and overlooking the scene of many a joyous carouse, stands Bábar's grave, and lower down is a small mosque erected to his memory.

Both mosque and tomb are of white marble from Maidán. The main portion of the mosque (Plate xvi) is of great beauty, but it is enclosed by an untidy railing of rusty iron rods, and is characteristically disfigured by a sloping roof made from old kerosene-oil tins and painted a brilliant blue.

The tomb (Plate xvii) also suffers from its immediate surroundings, planted as it is in the middle of an untidy, flagged courtyard and with a common white-washed chirágh-dán for background ; the site, however, with the garden immediately below it and, in the distance, the snow-capped heights of Paghmán, is no doubt just the one that Bábar would have chosen.

The inscription on the tombstone has been read under the superintendence of Dr. E. D. Ross, to whom I am indebted for the following note :-
"The Emperor Babar, after a life of continuous excitement, vicissitude and adventure such as has fallen to the lot of only a few of the great heroes of history, died in Agra on the 6th of Jumāda I, 937 (December 2oth, 1530). ${ }^{1}$ He was, according to local tradition, temporarily buried in the Rāmbāgh on the left side of the river, about two miles above the present Railway bridge. ${ }^{2}$ According to Ferishta he expressed in his will a desire to be buried in Kabul. His body was, however, left in Agra till after the battle of Kanauj in 945 (1538) when Humayun and his family were driven out of India, and Babar's widow, Bika Begum, performed the pious duty of removing her late husband's body to Kabul.
" Babar's tomb is still to be seen in Kabul; Plate xvii shows his tombstone bearing an inscription, and Plate xvi the mausoleum erected to his memory. It will be seen that these monuments bear a very modern appearance, especially the latter. With the aid of a glass the inscription on the tomb has been read, and is now printed, I believe, for the first time. Fierishta says that Babar was buried near a place called Qadam Rasul.
"The inscription runs as follows:-

Translation:-

' A king from whose brow shone the light of God
' Was Zahiruddin Muhammad Babar Padishah.
' With splendour, wealth, good fortune, justice, probity, and faith

[^46]' He commanded a force composed of Divine Bounty, Grace, Victory, and Triumph.
' He seized the world of bodies and became bright souled
' For the conquest of the world of souls he became like the light of the Eyes,
'When Paradise became his dwelling, Rizwán (the doorkeeper of heaven) demanded of me a chronogram.
' I replied: Paradise is for ever the abode of Babar Padishah.'
The words Firdares dả́ im jái-Bábar Pádisháh give the date A.H. 937.'

[^47]CHAKRI MUNAR: from the S.S.W.
Memoirs As. Soc. Beng. Vol. II.

H. H. Havelenshatr,

CARVED FIGURE IN CLIFFS on right side of Chapdara.

FIGURE IN NICHE (1), seen on left-hand side of Plate XII.
Memoirs As. Soc. Beng. Vol. II.

CUP-MARKS ON LIMESTONE BLOCK about $11 / 2$ mile below Ak Rabat Kotal on road to Bamian.
Memoirs As. Soc. Beng. Vol. 11.

Memoirs As. Soc. Beng. Vol. II.

Memoirs of the Asiatic Society of Bengal. 1905-1906.

I. On certain Tibetan Scrolls and Images lately brought from Gyantse.-By Pror. Satis Chandra Vidyabiosana, M.A., M.R.A.S. (Price Re. i-8; or 2s. 3d.)
II. Sal-Ammoniac: a Study in Primitive Chemistry.-By H. E. Stapleton, B.A., B.Sc. (Price Re. I ; or Is. 6d.)
III. The Similarity of the Tibetan to the Kashgar-Brahmi Alphabet.-By The Rev.
A. H. Francke. (Price Rs. 2 ; or 2s. iod.)
IV. Alchemical Equipment in the Eleventh Century, A.D.-By H. E. Stapleton and R. F. Azo. (Price Re. 1-8; or 2s. 3d.)
V. Malaysian Barnacles in the Indian Museum, with a list of the Indian Pedunculata.By N. Annandale, B.A., D.Sc. (Price Re. I-8; or 2s. 3 d.)
VI. Ashrafpur Copper-plate Grants of Devakhadga.-By Ganga Mohan Laskar, M.A. (Price Annas 8; or 1od.)
VII. Festivals and Folklore of Gilgit.-By Ghulam Muhammad. (Price Rs. 2 ; or 25 . 10d.)

Viil. Notes on the Bhotias of Almora and British Garhwal.-By C. A. Sherring, M.A., F.R.G.S., I.C.S. (Price Re. I-5; or 2s.)
IX. Religion and Customs of the Uraons.-By the late Rev. Father Dehon, S.J. (Price Rs. 2 ; or $2 \mathrm{~s} . \mathrm{rod}$.)
X. Notes on the Fauna of a Desert Tract in Southern India (Herpetology and Entomology).-By N. Annandale, D.Sc., C.M.Z.S., with a list of Mammals by R. C. Wroughton, F.E.S. (Price Rs. 2 ; or 2 s. Iod.)
XI. Amulets as Agents in the Prevention of Disease in Bengal.-Compiled in the Office of the Superintendent of Ethnography, Bengal. (Price Annas 12; or Is. 2d.)
XII. Earth-Eating and the Earth-Eating Habit in India.-By D. Hooper and H. H. Mann. (Price Re. I; or 1s. 6 d .)
XIII. On a Cup-Mark Inscription in the Chumbi Valley.-By E. H. C. Walsh, I.C.S. (Price Re. I ; or Is. 6d.)
XIV. A Descriptive List of the Sea-Snakes (Hydrophiidæ) in the Indian Museum, Calcutta. -By Captan F. Wall, I.M.S., C.M.Z.S. (Price Re. I; or is. 6d.)
XV. Common Saws and Proverbs collected, chiefly from Dervishes, in Southern Fersia.-By Lieut.-Col. D. C. Phillott. (Price Re. i; or is. 6 d.)
XVI. The Common Hydra of Bengal: its Systematic Position and Life History.-By N. Annandale, B.A., D.Sc., C.M.Z.S. (Price Re. I ; or is. 6 d .)
XVII. Animals in the Inscriptions of Piyadasi.-By Monmohan Chakravarti, M.A. (Price Annas 12; or 1s. 2d.)
XVIII. Some current Persian Tales told by Professional Story-Tellers.-By ${ }^{5}$ Lieut.-Col. D. C. Phillotr. (Price Re. i ; or is. 6d.)
XIX. The Dards at Khalatse in Western Tibet.-By Rev. A. H. Francke. (Price Re. 1 -6; or $2 s$.)
Supplement, Miscellanea Ethnographica. Part 1. 1. The Blow-Gun in Southern India 2. Miscellaneous objects from the Ramanad subdivision of the Madura district 3. Indian Weighing-beams.-By N. Annandale, D.Sc. (Price Re. I.)

Supplement, Miscellanea Ethnographica. Part II. 1. Some Malayan Weapons-By N. Annandale. 2. Plan of a Persian Gentleman's House.-By Lieut.-Col. D. C. Phillotr. (Price Annas 8; or rod.)

Memoirs of the Asiatic Society of Bengal.

Vol. II.

1. Cirrhipèdés operculés de l'Indian Museum de Calcutta.-Par M. A. Gruvel. (Price Rs. 2 ; or $2 s . \mid 10 d$.
II. The Coinage of Tibet.-By E. H. C. Walsh. (Price Re. I; or is. 6d.).
III. The Exact Determination of the Fastness of the move Common Indigenous Dyes of Bengal, and comparison with typical synthetic Dye-stuffs. Part I. Dyeing on Cotton.-By E. R. Watson. (Price Re. I; or is. Ed.)
IV. The Saorias of the Rajmahal Hills.-By R. B. Bainbridge. (Price Rs. 2; or 2s. Iod.)
V. Mundari Poetry, Music and Dances.-By Rev. Fr. J. Hoffmann, S.J. (Price Re. I; or Is. $6 d$.)
VI. Tarikh-i-Nuşatjangi.-By Harinath De. (Price Re. I ; or is. 6d.)
VII. The Exact Determination of the Fastness of the more Common Indigenous Dyes of Bengal, and comparison with typical Synthetic Dye-stuffs. Part II. Dyeing on Silk. -By E. R. Watson. (Price Annas 12 ; or is. 2d.)
VIII. Monograph on Sea Snakes.-By Major F. Wall, I.M.S. (Price Rs, 5 ; or 7s.)
IX. A.Polyglot List of Birds in Turki, Manchu and Chinese.-By E. Denison Ross, Ph.D. (Price Rs. 4 ; or $6 s_{\text {. }}$)
X. Notes on some Monuments in Afghanistan. $-B y$ H. H, Hayden. (Price Re. I; or $1 s .6 d$.)

On the Correlations of A reas of Matured Crops and the Rainfall, and certain allied problems in Agriculture and Meteorolgy. - By S. M. Јacob, I.C.S. (In the press.)
Ramacavita by Sandhyakara Nandi.-Edited by Mahamahopadhyaya Haraprasad Shastri, M.A. (In the press.)
The Wakf of Movables.-By Dr. Abdullah al-Mamun Suhrawardy, M.A., Barrister-at-Law. (In the press.)

MEMOIRS

- of ras

ASIATIC SOCIETY OF BENGAL

VOL. II, No. 11, pp. 847-429.

ON THE CORRELATIONS OF AREAS OF MATURED CROPS AND THE RAINFALL.

BY
S. M. JACOB, I.C.S.

CALCU'TTA:
Printed at the Baptist Mission Press, and publishbd by Thr Asiatic Society, 57, Park Strret. 1910.

On the Corvelations of Areas of Matured Crop and the Rainfall, and certain allied Problems in Agriculture and Meteorology.
(A preliminary enquiry).
By S. M. Јacob, I.C.S.

CONTENTS.

INTRODUCTION.

This paper is divided into three parts, as follows:-
Part I deals with the interdependence of the crop and the rainfall which enables it to come to maturity. This dependence is, of course, the most elementary fact in Agriculture. Of the different ways in which this relationship might be expressed quantitatively, that provided by Galton's correlation function appears to be the
most effective for approaching the problems which arise when the relationship is to be expressed numerically.

In this paper the correlation coefficient ' r ' has been calculated for a number of cases, the correlated variables, so far as the main purpose of the paper is concerned, being the total rainfall in certain groups of months and the total harvested area in chosen localities for the harvests which mature subsequently to these months.

The results obtained seem to be of some interest and of practical importance. For the autumn harvest the correlation coefficient has a value of about 4 to $\cdot 5$, and for the spring harvest, from 6 to 8 .

Even the high probable errors of these coefficients do not rob them of their significance.

Other fundamental constants of the modern theory of statistics, e.g., the " coefficient of variation," "standard deviation" are calculated in a number of cases, and in the light of this theory it may be said that a knowledge of these constants is essential to a proper description of the chief facts of Agriculture and Meteorology.

So far as the author is aware these constants have not been previously calculated for India, except for certain rainfall data by Blanford, who has given the 'probable deviations' in certain cases. ${ }^{1}$

Apart from the fact that the data of this paper differ from those considered by Blanford, the special object has been to find equations which will predict within certain limits of error the amount of a crop from the rainfall on which it depends. These equations are the well-known regression equations, and in forming them the author believes that at any rate a first approximation to scientific prediction is attained.

In each case diagrams are given from which the probable extent of a crop can be found from the antecedent rainfall for the localities considered.

In this part of the paper there is also a theoretical discussion of the way in which the regression equations are modified by errors of measurement such as certainly occur for agricultural statistics and to a less extent in rainfall data.

Part II.-Here the distribution of rainfall, a fundamental problem both for agriculture and meteorology is considered by the method of curve fitting developed by Prof. Karl Pearson. The 'Gaussian' and ' normal' curve

$$
y=y_{0} e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

and the skew curve

$$
y=y_{0}\left(\mathrm{I}+\frac{x}{a}\right)^{p} \cdot e^{-\frac{p}{a} x}
$$

[^48]are fitted to the data by the 'method of moments', and the results are exhibited graphically. This discussion forms a connecting link between the problems of Part I and that of

Part III, in which the change of a rainfall from year to year is considered. It is shown that if we take the deviations of rainfall from its mean value for the two periods April-September, October-March, and form their product for each period of 12 months, we get a series of points which are found to indicate a marked oscillatory change, which can be roughly described by the help of harmonic $\frac{\text { sine }}{\text { cosine }}$ curves where periods are about 19 years and some simple ratio of this period. The oscillation of 19 years periods appears to be sufficiently characteristic in certain cases, though in others it may perhaps be marked by oscillations of different period and amplitude.

The matter is one which demands a thorough harmonic analysis, but it seems that some light may be thrown in this way on the nature of the saecular changes in climatic conditions; though it is possible that random sampling may explain away all the variations. The subject is still one for speculation; but apart from that, certain definite facts are established, and they may perhaps be suggestive of future paths of enquiry. Since the paper was written the following results for the total unirrigated harvests of Sialkot, Zafarwal and Daska Tahsils have been obtained, and a table is annexed showing what the predicted value of these areas was as calculated from the appropriate regression equations:-

	Sialkot.	Zafarwal.	Daska.
Prediction based on April—			
August rainfall	\ldots	$56,200 \pm 7000$	$52,000 \pm 6200$

The predictions for Sialkot and Zafarwal based on April—September rainfall are only about 2% in error, which is certainly smaller than the error of measurement itself.

For Daska the error is large. Such an error might indeed be attributed to a defect in the process applied, but I had long since remarked (v. p. 355) that the Daska statistics seemed to require correction. As, however, the Daska Tahsil regression equations had been calculated it was thought well to give the predicted area of matured crop, even although it differed from the value given by official measurement. It would be completely unscientific to conceal a discrepancy of this kind.

The object of this paper is to investigate to a first approximation only the interdependence and correlations which subsist between certain of the fundamental data in the statistics of Agriculture and Meteorology.

This will be attempted with the help of the modern methods of treatment which originating with Bravais and Quetelet owe their greatest development to the work of Francis Galton and Karl Pearson.

The application of these methods has not, so far as the author is aware, been previously made to the data considered in this paper, or indeed to any similar data, ${ }^{1}$ so that it is hoped that, in spite of the fact that the statistics discussed are far from being as complete or wide-reaching as is desirable, some at least of the results obtained will be of value if only for purposes of comparison when fuller treatment becomes possible. In any case, too, an advance will have been made by indicating what are the more favourable lines on which to approach those problems whose practical solutions appear to be of high utility.

Some familiarity with the more elementary parts of the modern theory of statistics has to be assumed for an understanding of the procedure to be adopted in this paper, as it would unduly lengthen the argument to enter into a mathematical explanation of all the processes employed, and such an explanation might well be regarded as impertinent by those conversant with their use.

At same time it is believed that even without a grasp of the 'exact' meaning of such terms as 'correlation', 'standard deviation', 'probable error' and the like, the reader may at least be able to obtain a qualitative idea of the nature of the results reached, although the sooner such qualitative notions are replaced by definite quantitative ones, the more hope there will be that statistical problems will receive adequate statistical treatment.

Similarly, the characteristic agricultural and metereological conditions which prevail in India will be assumed to be known at any rate in outline. The different modes of agriculture and the variations of climatic influence are of extreme importance in their effect on the resultant harvest, but into these it is not proposed to enter in detail as the statistics dealt with apply (except in the case of certain rainfall data) only to a very limited area in the Panjab.

It will be time to discuss the effect of special differences in agricultural operations and physical circumstance when the applications of the present methods has been made to many diverse and widely-separated tracts. Until such time it will not be wise to try to generalise the formulæ so as to make them applicable to other places than those for which they are calculated.

It is, however, quite certain that such generalisation is possible, but it must, of course, be reached very gradually and by considering one by one all the contributory causes.

[^49]
PART I.

THE CORRELATION OF THE MATURED AREAS OF CROPS AND THE RAINFALL.

I. The data considered in this part of the paper refer on the one hand to the total areas of crops which come to maturity and contain an 'average' amount of grain, and straw, variously spoken of as 'cropped,' 'matured' or 'harvested' areas ; and on the other to the rainfall recorded at or near the places where the crops in question have grown.

The accuracy of the latter or rainfall data may for the most part be assumed to be fair, and where the guages are directly under the supervision of the Meterological Department, to be good. In cases where the rainfall is measured by the district authorities an accuracy of more than I or 2 per cent. is hardly to be expected, ${ }^{1}$ though, on the whole, the records even here are at any rate approximately correct.

In respect of the matured areas of crops the data are less satisfactory. In the Punjab these data are based on a rough estimate of the relative amount of the grain and straw-bearing crop in each field examined by a local official, and compared mentally with what he believes to be a normal outturn for the particular locality and the class of crop. In many cases, too, it is to be feared that the estimate is made without seeing the field, merely from hearsay and by a judgment of the probabilities of the case. The area of each field is quite accurately known, and it is only in this mental comparison of the produce of a unit of area for the harvest considered with the 'average' or 'normal' produce of a unit of area that serious errors arise. The 'average' or 'normal' is solely the estimating official's conception of what a 'normal' harvest should be. Though, of course, persons of long experience will agree to some extent in their conception of the 'normal' or 'average' harvest, yet, so far as I know, it has never been quantitatively defined. Whether the total yield should be measured by weight or by volume, what proportions of grain, chaff and straw it should contain, what percentage of moisture should be deducted, and so forth are all questions which would have to be answered if an accurate standard is to be set up; and the need for some such standard appears to be very great.

Yet, in spite of indefiniteness in these respects a certain tradition as to what constitutes an average crop, made more precise by experiments on the yield of certain crops, exists, and as a unit of measurement is not quite the inadequate instrument that it might appear to be at first sight.

When the ratio of the actual yield to the assumed average has been determined, to be, for instance three-quarters, then a field of an area of I acre of this kind of crop

[^50]is entered in the Government papers as three-quarters of an acre of matured crop.

It is the areas of the crops so estimated, which form the closest measure of the real outturn at present obtainable, with which we are here concerned.

The accuracy of these estimates is, às will be seen from the above, very limited : errors of 5 , Io or even, $\mathrm{I} 5 \%$ are by no means improbable and greater ones are possible.

The most serious errors will arise from a want of constancy in the 'personal equation' of the estimator from harvest to harvest, and to a less extent in passing from field to field: and even if the 'personal equation' were constant for a single individual, discrepancies would arise wherever one estimating official was substituted for another owing to their ' relative personal equation.' It is of the utmost importance then, if the data are to be relied on as approximately accurate, that the 'personal equation' should be as nearly as possible constant, and the 'relative personal equation' small. ${ }^{1}$ In practice I think these conditions hold good to a certain extent. The estimating official has usually been born and reared in an agricultural community which has a very shrewd insight into the quantity and quality of its means of subsistence, and, unless deliberately falsified, the official's estimate must have a real significance.

Taking, then, the data so obtained, and going back as far as is possible, ${ }^{2}$ in this part of the paper the standard deviations, coefficients of variation and correlation of rainfall and harvested areas will be examined for each of the two chief harvests and for the months preceding them during which the rainfall has a determining effect on them.

If, as will prove to be the case, a substantial correlation is found to exist between the amount of the matured crop in any harvest and the rainfall in the selected period preceding, then the regression or prediction equations can be formed from which it will be possible to forecast within stated limits of error the probable extent of the matured crop for the locality for which the equations have been calculated, whenever the amount of rainfall in the months preceding that harvest is given. ${ }^{3}$

[^51]In this paper the crops considered are those which are known technically as ' unirrigated,' that is, they do not ordinarily receive any water except that which falls on them directly in the form of rain. No doubt crops which receive water from other sources, such as canals, wells, or by spill, ${ }^{8}$ from torrent or river, depend, too, very largely on the water which reaches them directly in the form of rain, and in any case they will in general depend ultimately on the rainfall which falls within a certain distance; it might therefore be reasonably anticipated that the amount of such crops would show a correlation with the local rainfall, but the correlation will probably be smaller than that for the class of crops dealt with here, and its determination will be left to a future date.

It would be highly desirable that every different kind of crop should be treated separately. In the present instance the large probable errors to which most of the constants are subject make it open to question whether the differences in the coefficients of correlation and regression would be large enough to be significant. Though, undoubtedly, this is of importance, it is not proposed to consider here the constant special to each class of crop. This point must be noted when applying the regression equations for purposes of prediction to any particular group of unirrigated crops, since, should the group taken consist of different classes of crops from those whose regression equations are given, or consist even of the same staple crops in different proportions, it is obvious that the results obtained would be greatly diminished in accuracy should the differences in the constants mentioned above be really significant.

Again, caution must be used in attempting to apply the equations based on the special circumstances of one locality (not only in respect of the nature of its crops) to a locality of completely distinct physical and climatic conditions. Thus, to take an important case, it would clearly be unjustifiable to assume that the equations would remain unmodified if they were determined for a locality in which the distribution of rainfall differed greatly from that which is characteristic of the localities discussed, even although the total mean rainfalls might be the same.
§ 2. The general process adopted in dealing with the statistics of rainfall and crop is as follows :

Let C denote the known matured area of crop in any village, group of villages, or other arbitrarily chosen area for a given harvest. Let R denote the total rainfall during a given period measured at any selected point, preferably as near as may

[^52]The standard deviation is readily seen to be a quantity of the same quantity as the 'radius of gyration' of dynamics or the R.M.S. of the electrician. The quantity I corresponds to the dynamical 'product moment' divided by the mass.

1 A poor equivalent for the Urdu word 'baràni' or rainland crops.
2 These are also frequently classed as 'unirrigated,' but they have been excluded from this investigation, as they are quite differently circumstanced.
be to the 'centroid' of the area mentioned. Let \bar{C}, \bar{R} denote the mean values \bar{R}, and $\sigma_{c},{ }^{\sigma} R$ the standard devations of C and R respectively. Let r denote their correlation.

Then the equation determining the probable value of the matured crop in the given area, based on the total amount of rainfall assumed known, is

$$
\begin{equation*}
C-\bar{C}=\frac{{ }^{\sigma} c}{{ }^{\sigma} R} \gamma(R-\bar{R}) . \tag{I}
\end{equation*}
$$

This is known as the regression equation of C on R, or, as we shall call it, of crop on rain, and the quantity $\frac{{ }_{\sigma}{ }_{\sigma}}{{ }^{\sigma} R}$ is known as the regression coefficient.

This is the fundamental equation of linear regression for predicting the value of one variable from a knowledge of the value of a second variable, when the means, standard deviations, and coefficients of correlation of both variables are given.

Similarly, the regression equation of R on C or of rain on crop is

$$
\begin{equation*}
R-\bar{R}=\frac{{ }^{\sigma} R}{\sigma_{c}} \gamma(C-\bar{C}) \tag{2}
\end{equation*}
$$

which is clearly a different equation from (I) above.
In the present application, the latter equation (2) will not in general be of much use as it will give us a means of finding out how much rain has probably fallen when the extent of the crop dependent on it is known. But for the most part this information will be valueless, as the amount of rainfall is already known. An occasion for its use would occur where the record of rainfall for some past period had been lost, and we wished to reconstruct its probable value from the known amount of crop which succeeded that period.

The values of C and R determined by equations (I) and (2) respectively are the most probable subject to the limitations of our statistics. If these statistics extend over a period of ' n ' years, and if we are justified in assuming that the amounts and distributions of the rainfall and other circumstances social and economic, which have an influence on agriculture, form a typical or 'random' sample of their values in the neighbouring years, then with the already noted limitation as to the nature of the correlation; the probable errors in the prediction
of the 'regression value' of C, say, is $\frac{67449^{\sigma} c \sqrt{I-r^{2}}}{\sqrt{n}} \cdots$. (3).
About the 'regression value' of C so determined the actual values of C will be scattered, and if the whole distribution be normal, the standard deviation of the distribution or the measure of the scattering about the true regression point is ${ }^{\sigma} c \sqrt{\bar{I}-\overline{\gamma^{2}}}$. Hence as
already remarked an absolutely definite value of C cannot (except in the case of perfect correlation) be determined, and when the amount of crop or other variable is calculated from the regression equation, not only is the ordinate of the regression line in error to an extent given by its probable error of equation (3), but also no anticipation of the distance of C in excess and defect of the ordinate can be made except by the statement of a probability, the prediction becoming closer as σ_{C} is reduced or as r approaches unity.

This point will be further discussed at a later stage.
§3. It is now possible to consider the application of the theory to the statistics chosen. The greater part of those in this part relate to the Sialkot District in the Punjab, and these are taken first of all.

Diagram I gives a map of the District with its 5 Tahsils-Sialkot, Zafarwal, Raya, Pasrur and Daska.

In each of these Tahsils 30 villages were chosen with especial reference to their containing a large amount of unirrigated crop. It was found, however, that the statistics for the 30 villages selected for the Daska Tahsil exhibited such a large progressive increase in the amount of the matured crop, that it was evident that either the villages in question had started additional cultivation on unirrigated lands during the period under consideration, which fact would to some extent invalidate the regression equations unless special modifications were introduced, ${ }^{2}$ or that the statistics themselves were seriously at fault. In either case the coefficients found would be of little use and they were not evaluated.

Lists of the villages chosen and the figures for the cropped areas of the two harvests on unirrigated land will be found in the Appendix.

The Diagram I shows the position of each of thevillages in the 4 Tahsils: Sialkot, Zafarwal, Raya and Pasrur.

From inspection of the map the mean distances of the villages in each Tahsil from the Tahsil town, that is from the point at which the rainfall is measured, were found to be as follows :-

Sialkot	$5 \frac{1}{2}$	miles.
Zafarwal	.	\ldots	..	9	,
Pasrur	.	\ldots	..	$2 \frac{1}{2}$	",
Raya	15	,

These distances are intended to represent roughly not the distances of the 'centroids' of the areas, but their mean scalar distance from the Tahsil Town. Except in the case of Raya, where the villages all lie within bearings of N . and N. E. of Raya Town itself, the 'centroidal' or vectorial mean distances of the village areas will be considerably less than the above.

[^53]Now it is clear that we want as far as possible to correlate the amount of matured crop as nearly as may be with the actual rain which reaches the land on which the crop is grown, and the problem at once arises whether it would be desirable to interpolate, or rather to extrapolate, from the values of the rainfall at the Tahsil Towns, and so to obtain a measure of the rainfall over each of the areas in question. But the problem of determining the best interpolation and extrapolation formula is in itself a task of some magnitude, and simply to weight the rainfalls at the Tahsil Towns by their scalar mean or centroidal mean distances is not a process which can be confidently adopted until it is found to be justifiable.

Consequently, no attempt has been made to find the probable value of the rainfall over the selected areas, and the correlations of the matured area of crop have been made simply with the rainfall at the chief town of the Tahsil in which the villages are situated.

Some measure of the differences between the true mean rainfall over the areas chosen and the actual adopted value of the rainfall will be given by an examination of the differences in the rainfall where it has been measured, viz., at Sialkot, Zafarwal, Raya, Pasrur and Daska.

The total rainfall for each year for the 6 months April to September, both inclusive, and for the 6 months October to March, both inclusive, have been formed for each Tahsil Town, and taking the rainfall at Sialkot as a standard, the differences between the rainfall there and the four other Tahsil Towns have been calculated. These differences were squared, their mean value taken, and then the square root of this mean value. The results are given in the table below :-

Table showing the root-mean-square of the differences between the rainfall in Sialkot

 Town and the places mentioned below for the years 1887-8 to 1906-7.> Daska. Pasrur. Zatarreal. Raya.
I. For the 6 months

| April to September \quad. | $8^{\prime \prime} \cdot$ го | $7^{\prime \prime} \cdot$ or | $8^{\prime \prime} .87$ | $7^{\prime \prime} \cdot 64$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

II. For the 6 months

October to March
.. $2^{\prime \prime} \cdot 42$
$I^{\prime \prime} \cdot 63$
$\mathrm{I}^{\prime \prime} .88$
$2^{\prime \prime} \cdot 56$

Now the standard deviations of the rainfall in each of these places is :-
I. For the 6 months
April to September $\quad \therefore \quad 8^{\prime \prime} \cdot 670 \quad 7^{\prime \prime} \cdot 043 \quad 9^{\prime \prime} \cdot 698 \quad 7^{\prime \prime} \cdot 465$
II. For the 6 months
$\begin{array}{llllll}\text { October to March } \quad . . & 3^{\prime \prime} \cdot 126 & 4^{\prime \prime} \cdot 300 & 4^{\prime \prime} \cdot 575 & 3^{\prime \prime} \cdot 350\end{array}$

Thus we see that the root-mean-square of the differences of rainfall as we pass from Sialkot to the four places mentioned is as large as the standard deviation in these
places themselves in the case of the rainfall of April to September, and is quite comparable with it for the rainfall of October to March. That the ratio of the root-mean-square of the differences to the standard deviation is much larger for the summer than for the winter rains appears to indicate that a smaller error will be made in taking the rainfall measured at one point as a measure of the true rainfall at another neighbouring point in the latter case than in the former.

The four places above have been entered in the table in the order of their nearness to Sialkot, the direct distances from Sialkot being approximately, Daska 16 miles, Pasrur 18 miles, Zafarwal 28 miles, and Raya 36 miles.

It does not appear that within the limits of these distances that the root-meansquare of the differences varies much with the distance. No doubt it would diminish if the rainfall were measured at a near point to Sialkot, but its variation within the limits of 16 to 36 miles appears not to be sensible, at least so far as the above results go. The matter is interesting, but cannot be pursued further here.

So far, then, it might seem quite beside the mark to attempt to correlate the growth of crops in one neighbourhood with the rainfall at some point whose distance from that neighbourhood is of the order of the above distances. But the high correlations existing between the rainfall at the places named shows that the expectation of some such correlation is not an idle one.

The correlations between the rainfalls at the above places can be very simply deduced from the data above.

For let x_{1}, x_{2} be the rainfalls at two points, and put $\Delta=x_{1}-x_{2}$.
Then $\quad \Delta^{2}=x_{1}{ }^{2}-2 x_{1} x_{2}+x_{2}{ }^{2}$.
Whence by summation for each of the years in which the rainfall is measured,

$$
\Sigma\left(\Delta^{2}\right)=\Sigma\left(x_{1}{ }^{2}\right)-2 \Sigma\left(x_{1} x_{2}\right)+\Sigma\left(x_{2}{ }^{2}\right)
$$

and dividing by the number of years

$$
\sigma_{\Delta}^{2}=\sigma_{x_{1}}^{2}-2 \sigma_{x_{1}} \sigma_{x_{2}} v_{x_{1} x_{2}}+\sigma_{x_{2}}^{2}+\left(\bar{x}_{1}-\bar{x}_{2}\right)^{2}
$$

where σ denotes the standard deviation, \bar{x} the mean, and r the correlation between x_{1}, x_{2}.

$$
\begin{gathered}
\therefore r_{x_{1} x_{2}}=\frac{I}{2 \sigma_{x_{1}} \sigma_{x_{2}}}\left\{\sigma_{x_{1}}{ }^{2}+\sigma_{x_{2}}{ }^{2}-\sigma^{2} \Delta+\left(\bar{x}_{1}{ }^{2}-\bar{x}_{2}^{2}\right)\right\} . \\
=\frac{I}{2 \sigma_{x_{1}} \sigma_{x_{2}}}\left\{\sigma^{2} x_{1}+\sigma^{2} x_{2}-\sigma^{2} \Delta+\bar{\Delta}^{2}\right\} \text { where } \bar{\Delta}=\bar{x}_{1}-\bar{x}_{2} .
\end{gathered}
$$

In the present instances we know $\sigma_{\boldsymbol{x}_{1}},{ }^{\sigma} \boldsymbol{x}_{2}, \sigma_{\Delta}, \bar{\Delta}$ and the correlations follow at once. The correlations are with the Sialkot rainfall.

	Daska.	Pasrur.	Zatarwal.	Raya.
I. For the 6 months April to September . .	$\cdot 7182 \pm .0731$	$\cdot 7076 \pm \times 0755$	$\cdot 5700 \pm$ IoI8	$7195 \pm .0727$
II. For the 6 months October to March	$\mid \cdot 9358 \pm \cdot 0188$	$\cdot 9756 \pm \cdot 0073$	$\cdot 9157 \pm 0244$	$\cdot 9086 \pm \cdot 0263$

In spite of their large probable errors all these coefficients of correlation are significant, and all of them are large enough to make it likely that if a high correlation exist between the cropped area, and the rainfall in one locality, there will at least be some correlation with the rainfall in an adjacent locality. Thus although considerable local variations of rainfall do occur there are some grounds for thinking that the value of the correlation of the crop in one place with the rainfall in some near place will at any rate approximate to the true correlation with the rainfall in the place where the crop is grown. The nearer one can get to an estimate of the true mean rainfall affecting a certain area, the higher one would expect the correlation with the crop grown on that area to be, so that even without extending the present method by altering the periods for which the rainfall is taken, or by forming multiple regression equations, the limit of accuracy of prediction is not set by the correlations reached in this paper.

For the purpose of discussing the effect of the rainfall in the two chief harvests, Kharif (autumn harvest) and Rabi (spring harvest) which occur in the Punjab, it seemed simplest and to a fair extent to be justified by agricultural conditions, to divide the year into two nearly equal divisions comprising respectively the six months of April to September and of October to March, to find the total rainfall in each of these periods and to correlate it with the amount of matured crop in the harvests which ripen towards the close of these periods. These roughly represent too the division of the year meteorologically into the two groups of the South-West Monsoon and the winter rains of the Panjab.

The notation adopted is as follows :-
$\bar{R}_{k}=$ the mean of the total rainfall for the six months April to September, both inclusive, for the years 1887-1906, measured in inches.
$\sigma_{\mathrm{R}}=$ the standard deviation of the above rainfall.
$v_{R}=$ the coefficient of variation of the rainfall.
$\bar{C}_{\kappa}=$ the mean area of matured crops measured in acres for the kharif (autumn) harvest.
${ }^{\sigma} C=$ the standard deviation of the above area of matured crops.
$v_{C}=$ the coefficient of variation of the above areas of matured crop.
$r_{k}=$ the correlation of the matured area of crops and the rainfall as defined above.
$\phi_{\kappa}=$ the regression coefficient for the regression of crop on rain divided by the mean area of the matured crop, viz. $\frac{\sigma_{c}}{\sigma_{R}} \cdot \frac{\gamma_{\kappa}}{\bar{C}_{\kappa}}$.

The same symbols are used for the corresponding quantities for the Rabi (spring) harvest, except that the suffix ' ρ ' is substituted for ' κ ' wherever the latter occurs, and the period to which the rainfall data apply being from October to March, both inclusive.

The following tables give the values of these coefficients for the 30 villages selected in each of the 4 Tahsils: Raya, Pasrur, Sialkot and Zafarwal.

For the calculation of the coefficients for the rainfall the figures have been taken to the nearest $\frac{1}{10}{ }^{\prime \prime}$, and for the areas of the crops to the nearest Io acres.

Table I-Kharif (Autumn) harvest.

Place.

\bar{R}_{κ}	${ }^{\circ} R$	${ }^{v} R$	\bar{C}_{κ}	${ }^{\sigma} C$	${ }^{v} C$	r_{κ}	ϕ_{κ}

Raya
Pasrur
Sialkot
Zafarwal

Table II-Rabi (Spring) harvest.

	\bar{R}_{ρ}		${ }^{v} R$	\bar{C}_{ρ}	${ }^{\sigma} C$	${ }^{2} \mathrm{C}$	r_{ρ}	ϕ_{ρ}
Raya	$5 \cdot 49 \pm 51$	$3 \cdot 35 \pm 36$	6I.00	5025 ± 291	1929 ± 206	$38 \cdot 42$	$\cdot 5885 \pm .097$	$\therefore 068$
Pasrur	$6 \cdot 90 \pm 66$	$4 \cdot 30 \pm 46$	$63 \cdot 12$	6900 ± 394	2613 ± 279	37.88	- $4613 \pm$-119	-040
Sialkot	7.30 ± 63	$4 \cdot 18 \pm 45$	$57 * 29$	3208 ± 264	1754 ± 187	54.67	$\cdot 7335 \pm .070$	-096
Zafarwal	$773 \pm .69$	$4 \cdot 57 \pm 49$	59'18	4860 ± 229	2151 ± 219	$44 \cdot 26$	$\cdot 7207 \pm{ }^{\prime} 072$	-070

The places considered are entered in each table in ascending order of their mean rainfalls.

Before dealing with the correlations and regressions of each place separately, some general remarks on the facts brought to light by the tables will be made.

Thus it is remarkable that the coefficients of variation for both rainfall and crop are considerably smaller for the kharif harvest than they are for the Rabi, and that the crop is in both harvests less variable than the rainfall on which it depends. The coefficient of variation of the rainfall of April to September might be put roughly at about 37 , and for the months October to March at about 60, the divergences
from these values being well within the limits of the probable errors. The average coefficients of variation for the Kharif and Rabi crops respectively are roughly 25 and 44 .

Turning to the coefficients of correlation the relative smallness of the kharif coefficient as compared with that for the Rabi is a very important fact. The values seem fairly consistent, except that for Pasrur they are in both cases far lower than for the remaining Tahsils. This occurrence is repeated for the kharif harvest when dealing with the unirrigated areas in the whole of each Tahsil (v. § 4 seq.), where the coefficient of correlation for Pasrur is so small that it is exceeded by its probable error. I am not aware of any exceptional circumstances in this Tahsil which would account for this lowness, and it is not necessary to do more than to point to the probable errors of the coefficients, and the great reduction in the values of the coefficients produced by inaccurate measurements. This latter question will be considered more fully later on, as it has a bearing on statistical treatment where there is some uncertainty in the data.

However, the coefficients of correlation for the Rabi harvest are decidedly larger than those for the kharif, and at first sightothis result would appear to be contrary to expectation, as it was well-known that rain falling at the close of the period April to September has, as a rule, a beneficial effect on the succeeding Rabi, whereas the influence of the rain which falls from October to March is generally disregarded as a factor influencing the kharif crop. In excluding the rainfall at the end of the period April to September in forming the variable with which to correlate the Rabi harvest, it might have been anticipated that a serious diminution in the correlation would result. 'As a matter of fact, as will be shown later, this actually is the case ; but the correlation of the Rabi crop with the total rainfall of September to March is so high, that even when reduced by excluding the September rainfall from computation it still remains higher than the correlation of the kharif crop.

This difference in the coefficients of correlation appears to be significant, but at the present stage it is a somewhat difficult matter to explain it. Without attempting to give a complete explanation certain considerations will be adduced which will show in what way the coefficient of correlation can be altered, some of which may partially account for the above-noted difference.

In the first place neither the crops nor the proportions of the principal crops are the same for the two harvests. Rice, maize and jowár (Indian Millet) are the chief crops of the autumn; and wheat, barley, gram of the spring harvest; but whereas wheat is, as a rule, more than half the total spring crop, jowár the largest of the autumn crops rarely forms more than one quarter of the total harvest.

Secondly, there is the important matter of the distribution of the rainfall. Clearly if we correlate the amount of crop and the total rainfall, then whenever the distribution of the rainfall varies, the correlation will be diminished.

This is an obvious deduction from the well-known fact that the same quantity of rain will have a completely different effect on the harvest according as it its distribution is beneficial or adverse.

The question, therefore, which arises is-' Is the type distribution of the rainfall the same for the two periods April-September and October-March?' By type here I mean simply the average distribution and the deviations therefrom. Though the enquiry will need great extension yet some grounds for answering this question in the negative is given in Part II of this paper, where it appears that in a certain instance the skewness of the distribution has opposite signs in the two cases.

Again, is the high value of γ_{ρ} as it were factitious, since the Rabi harvest is largely dependent on the rainfall of April-September, which for the 20 years considered is correlated with the rainfall of the succeeding October to March ? But calculated for longer periods this correlation of the rainfall in the two periods becomes insignificant (v. Part III), so that may be γ_{ρ} too would be reduced if found from a greater range of values. Finally, in the case of the Kharif harvest are we not correlating the crop with a rainfall more widely differing from the true mean rainfall than is the case for the Rabi harvest, as seems probable from inspection of the correlations of local rainfall?

I put these questions to show what points have to be considered before any deduction can be made from the differing values of the coefficient of correlation for the two harvests. At present I must leave them unanswered.

As to the function for which the value ϕ has been adopted, it appears to be desirable to tabulate it, but it cannot be fully discussed till it has been evaluated for a number of cases.

Since the regression equation of crop on rain is

$$
C-\bar{C}=\frac{\sigma_{C}}{\sigma_{R}} r(R-\bar{R})
$$

we have

$$
\frac{C-\bar{C}}{\bar{C}}=\phi(R-\bar{R}) .
$$

Thus ϕ is the ratio which the excess of the probable crop obtained from a rainfall one unit above the average, over the average crop bears to the average crop. So that if, for instance, the average crop is I acre, ϕ represents the added or diminished acreage due to every inch above or below the average rainfall.

Thus for the 120 villages considered here, whilst one inch of rain above the average in the months April to September increases the probable Kharif crop by about $\frac{1}{77}$ th, the Rabi crop may be expected to have about $\frac{1}{15}$ th added to its mean crop by each additional inch of rain in the months October to March : or from this point of view an inch of rain in October to March has about five times the crop-producing value of an inch of rain in the months April to September.

Taking each of the Tahsils separately the distribution of rain and crop will be shown by diagrams which will also exhibit the regression lines.
(i) Raya. The 30 villages chosen all lie in the Darp Assessment Circle.
(a) Kharif.

The regression equations are :-
For the regression of crop on rain

$$
C_{\kappa}=53.25 \mathrm{I} R_{\kappa}+1914.4
$$

and for the regression of rain on crop

$$
C_{\kappa}=250 \cdot 74 R_{\kappa}-1978 \cdot \mathrm{I} .
$$

Figure I shows the distribution of crop and rainfall, the ordinates of the point marked with small closed curves giving the crop and the abscissæ of these points the rainfall corresponding, according to the scale given in the diagram.

The probable error of a prediction of the mean value of the crop given by a certain rainfall is 115 acres.

It will be convenient to call this probable error E_{c}.
(b) Rabi.

The regression equations are :-
For crop on rain

$$
C_{\rho}=339.07 R_{\rho}+3 \mathrm{I}_{4}
$$

For rain on crop

$$
C_{\rho}=979^{\circ} 02 R_{\rho}-349^{\circ} 3
$$

The value of $\quad E_{c}= \pm 235$.
The distribution and the regression lines are shown in Figure 2.
(ii) Pasrur. The 30 villages are all in the Pasrur Assessment Circle.
(a) Kharif.

The regression equations are :-
For crop on rain

$$
C_{\kappa}=56.935 R_{\kappa}+3213.5 .
$$

For rain on crop
and

$$
\begin{gathered}
C_{\kappa}=57878 R_{\kappa}-7942 \\
E_{\bullet}= \pm \mathrm{r} 74 .
\end{gathered}
$$

The distribution and regression lines are exhibited in Figure 3.
(b) Rabi.

The regression equations are :-
For crop on rain

$$
C_{\rho}=276 \cdot 8 R_{\rho}+4990 \cdot 4
$$

For rain on crop
$C_{\rho}=$ Izor $R_{\rho}-2076.6$
and

$$
E_{0}= \pm 350
$$

The distribution and regression lines are given in Figure 4.

The correlations for both harvests appear to be small.
It is true that their probable errors are large, and a value of 4 for γ_{κ} would be within the range of probable values for all four Tahsils, though the difference between r_{p} for this Tahsil and for Sialkot and Zafarwa? may poss bly be significant.

In his Assessment Report Captain Dunlop-Smith says (p. 5) that in the Pasrur circle " the soil most frequently met with is 'bharari', a hard brittle loam incapable of retaining moisture, and thus requiring constant and heavy rain....The rainfall is not heavy, and the extent of crops failed from drought is sometimes formidable.' It is possible, therefore, that the explanation of the low correlation is to be sought for in this statement.
(iii) Sialkot. One village is situated in the Charkhri circle, all the rest beng in the Bharari.
(a) Kharif.

The regression equations are:-
For crop on rain

$$
C_{\kappa}=53.5 R_{\kappa}+329 I^{\circ} 5
$$

For rain on crop

$$
\begin{gathered}
C_{\kappa}=248 \cdot 7 R_{\kappa}-I 393.5 \\
E_{c}= \pm I 56 .
\end{gathered}
$$

The following is roughly the percentage of the principal crops:-

Rice		5
Maize	.	.		II
Jowar	.	.		33
Cane	.	.	.	2
Cotton	.	.		7
Fodder	.	.	.	I2
Others	.	.		30

(b) Rabi.

The regression equations are:-
For crop on rain

$$
C_{p}=307.39 R_{p}+964.6
$$

For rain on crop

$$
C_{\rho}=57 \mathrm{I} \cdot 33 R_{\rho}-962 \cdot 2
$$

The proportions of the chief crops are:-

Figure 6 shows the distribution of rain and crop and the regression lines.
(iv) Zafarwal. Of the 30 villages taken 14 are in the Jatátar circle, 7 in the Charwa, 4 in the Dosáhe, 3 in the Dokandi, and 2 in the Darp.
(a) Kharif.

The regression equations are:-
For crop on rain

$$
C_{\kappa}=33.73 R_{\kappa}+3159.7
$$

For rain on crop

$$
\begin{gathered}
C_{\kappa}=\mathrm{I} 74.05 R_{\kappa}-46 \mathrm{I} \cdot 5 \\
E_{c}= \pm \text { IoI. } .
\end{gathered}
$$

The principal crops are:-

(b) Rabi.

The regression equations are :
For crop on rain

$$
C_{\rho}=338^{\circ} 9 R_{\rho}+2240^{\circ} 4
$$

For rain on crop

$$
C_{\rho}=652 \cdot 39 \mathrm{R}_{\rho} \mp \mathrm{I} 83
$$

and

$$
\mathrm{E}_{c}= \pm 225 .
$$

The crops are :-

Wheat 56
Barley	.	.	2 I
Gram	.	.	4
Others	.	.	19

The distribution is shown in Figure 8.
§ 4. The correlations for the total unirrigated areas in 4 Tahsils.
We will now turn to the consideration of the correlation of rainfall and matured crop for the whole of the unirrigated areas in each of the Tahsils Daska, Fasrur, Sialkot and Zafarwal. The data for Tahsil Daska did not appear to be primâ facie abnormal in respect of the early part of the period, as was the case of the figures for the 30 selected villages, and its correlations though low, especially for the

Rabi harvest, cannot be rejected as incorrect without further examination. The figures for the Raya Tahsil for the matured crop could not be procured, for the years 1887-8, 1888-9 and 1889-90, and the loss of the 3 years out of 20 would so greatly increase the already large probable errors that it was not thought worth while to calculate the various coefficients.

The results for the four Tahsils are as follows:-
(a) Kharif harvest.

Tahsil.	\bar{R}_{κ}	${ }^{\sigma} R$	$v_{R} \quad \bar{C}_{k}$		σ_{C}	v_{C}	γ_{k}	ϕ_{κ}
Daska	19.33 ± 1.31	$8 \cdot 670 \pm 92$	44.84	$19435 \pm 127 \mathrm{I}$	8426 ± 899	$43 \cdot 35$	'4352' +1222	.02I3
Pasrur	$2 \mathrm{I} \cdot \mathrm{I} 3 \pm \mathrm{I} \cdot 06$	$7 \cdot 043 \pm 75$	$33 \cdot 32$	29225 ± 1353	8972 ± 957	$30 \cdot 70$	-II2I \pm '1489	0049
Sialkot	$24^{\circ} \mathrm{Or} \pm$ - 36	$8 \cdot 979 \pm 96$	$37 * 41$	$50420 \pm 166 \mathrm{I}$	ІІог 6 ± 1175	21.85	$\cdot 4693 \pm \cdot$ II 80	-OII4
Zafarwal	$25^{\circ} 80 \pm$ r 45	$9.698 \pm{ }^{\circ} \mathrm{O} 03$	37.58	47215 ± 1549	10272 ± 1095	21.76	${ }^{\circ} 5174{ }^{\circ} \pm 1105$	'0117

(b) Rabi harvest.

Tahsil.	\bar{R}_{ρ}	${ }^{\sigma}$ R	v_{R}	\bar{C}_{ρ}	${ }^{\sigma}{ }_{C}$	v^{2}	γ_{ρ}	ϕ_{ρ}
Daska	$5 \cdot 55 \pm 47$	$3 \cdot 13 \pm 33$	$56 \cdot 28$	17575 ± 1956	12969 ± 1383	73.80	$\cdot 4458 \pm$ '122I	'105
Pasrur	$6 \cdot 90 \pm 66$	$4 \cdot 30 \pm 46$	63.12	41090 ± 2717	$18015 \pm 192 \mathrm{I}$	$43 \cdot 84$	-5179 \pm '1102	-052I
Sialkot	$7 \cdot 30 \pm .63$	$4 \cdot 18 \pm 45$	57.29	52215 ± 2906	19265 ± 2055	36.90	$\cdot 6309 \pm \cdot 0927$	-0556
Zafarwal	$773 \pm * 69$	$4 \cdot 57 \pm 49$	59.18	553 $0_{0} \pm 3783$	25083 ± 2675	45.33	$\cdot 6532 \pm \cdot 0865$	-0647

The notation and units are the same as before, the rainfall being measured in inches and the crop in acres.

As in the case of the 30 villages selected for each Tahsil, Pasrur again shows a very low correlation, so much so that in the case of the Kharif harvest this coefficient is even lower than its probable error. It seems fairly certain that in the case of this Tahsil some special circumstance must determine the exceptional values, and the Kharif coefficient of correlation would certainly seem to be a result of inaccurate statistics.

On the whole the selection of villages with a larger area devoted to 'unirrigated' cultivation appears to have raised the correlations slightly, and the difference between the Rabi coefficients for Sialkot and Zafarwal is fairly large, though, of course, no stress can at present be laid on these differences. By selecting the villages the average coefficient of correlation for the Kharif harvest for the 4 Tahsils taken in each case has been raised from 36 to 4 I and for the Rabi harvest from $\cdot 56$ to 62 ; thus the accuracy of prediction for the harvest of a whole Tahsil by a single formula is, on the
whole, somewhat less than that for the chosen villages, and this is perhaps due to the greater liability to mistakes in classing any particular crep where only a small proportion of that class of crop exists in any definite area, and especialy for those villages which largely depend on well water a crop classed as unirrigated may have really received irrigation at critical times from wells, and yet still remain classed as unirrigated.

It appears probable, therefore, that as a rule the correlation coefficients in the selected villages, that is, in general, the higher values of the coefficients are more probably the true ones.

Taking each Tahsil separately, the regression equations and the diagrams showing the regression lines together with the distribution of rainfall and matured crop wi. 1 now be given.
(i) Tahsil Daska.
(a) Kharif.

The regression equations are :-
For the regression of crop on rain

$$
C_{\kappa}=413.53 R_{\kappa}+I I 439
$$

For the regression of rain on crop

$$
C_{\kappa}=2233.2 R_{\kappa}-23744 .
$$

The rainfall from April to September appears to have a high variability from year to year, and the coefficient of variation for the matured area of the crop is nearly twice that of Sialkot and Zafarwal, and consequently ${力_{k}}$ is 'arge.

It is probable that for this Tahsil the true mean rainfall over the unirrigated area differs somewhat widely from the value adopted, as, according to Captain DunlopSmith, the rainfall varies very greatly from place to place in this Tahsil. He gives the following approximate averages for the total yearly rainfall in each of the four assessment circles:-

Charkhri II	\ldots	$18^{\prime \prime}$
Charkhri I	$22^{\prime \prime}$
Aik	.	.	.	$27^{\prime \prime}$
Bet Bela	$30^{\prime \prime}$

The Tahsil town of Daska at which the rainfall is taken for the purposes of this enquiry is situated in Charkhri I, and the mean annual value of the rainfall there is about $25^{\prime \prime}$, which is just over the mean of the four rainfalls given above. At the same time, as by far the greater part of the unirrigated area of this Tahsil is situated in the Bet Bela assessment circle, the adopted values of the rainfall will probably be too small, in general, while the true mean values will vary from year to year in a different way from the adopted values. Consequently, the value of the correlation coefficient will be different from and most probably less than the value it would have if the true mean values of the rainfall had been ascertained. Figure 9 shows the distribution of rainfall and matured crop with the regression lines.

THE CORRELATIONS OF AREAS OF MATURED CROP AND THE RAINFALL. 367
(b) Rabi.

The regression equations are:-
For crop on rain

$$
C_{\rho}=\mathrm{I} 849 \cdot 6 R_{\rho}+730 \mathrm{I}
$$

For rain on crop

$$
C_{r}=9307 \cdot \mathrm{I} R_{\mu}-34 \mathrm{I} 26 .
$$

Here again the variability of the crop is very great, and to has a high value in consequence. The average rainfall being low, this is to be expected to a certain extent, but the differences between the values for this and the other Tahsils can hardly be explained altogether on this basis.

The distribution of rain and crop with the regression lines is shown in figure 10.
(ii) Pasrur.
(a) Kharif.

It is quite useless to give the regression equations for this Tahsil for the Kharif harvest, as the abnormally low value of the coefficient of correlation makes them worthless for the purposes of prediction, and they would merely mislead. Up to the present I have been unable to trace the source of the error, for such it undoubtedly is, which has produced this anomalous value, but I fear that either one or both of the statistical series for crop and rainfall are at fault, though other explanations considered while discussing the 30 selected villages in this Tahsil are not to be overlooked.
(b) Rabi.

The regression equations are:-
For the regression of crop on rain

$$
C_{\rho}=2 \mathrm{I} 42 \cdot 3 R_{\rho}+26308
$$

For the regression of rain on crop

$$
C_{\rho}=7987.3 R_{\rho}-14022 .
$$

The value of ϕ_{ρ} appears to be practically the same as for Sialkot and Zafarwal, and both r_{p} and ϕ_{p} are greater than they were for the 30 selected villages of this Tahsil, though the differences are scarcely significant.

From the data given by Captain Dunlop-Smith on p. 42 of the Assessment Report, and assuming approximately that the whole unirrigated cropped area of the Tahsil is distributed in the following proportions in the various circles, namely, Dokánde II, Darp 8, Pasrur 2I, Charkhri 4, the percentages of the principal Rabi crops in this Tahsil are roughly as follows :-

The diagram below gives the distribution of the rainfall from October to March against the matured crop, with the regression lines.
(iii) Sialkot.
(a) Kharif.

It seems probable that the data for this and Tahsil Zafarwal are the most reliable of any of the four Tahsils. There is certainly no physical difference, so far as I know, to account for the higher correlations, except perhaps higher rainfall, which in certain instances (vide p. 363 ante) will determine greater coefficients of correlation.

The regression equations are:-
For crop on rain

$$
C_{n}=575.727 R_{\kappa}+36600
$$

For rain on crop

$$
C_{\kappa}=26 \mathrm{I}_{4} \cdot 3 R_{\kappa}-\mathrm{I} 2.336
$$

The probable error $\quad E_{c}= \pm 1467$
From the average of 5 years (1887 - 1891) the proportions of unirrigated matured crop in the five circles are as follows: Bharari 26, Niánda Io, Bet 4, Bajwat 4, Charkhri 4, and thus we find from the table on p. 48 of the Assessment Report the following percentages of matured crop in the unirrigated area of this Tahsil :-

Thus the crops are very diverse, and the same correlation can, of course, only be predicated of another area where the rainfall, physical conditions and proportions of crop are the same as those here. This is an important point, for the correlations for each individual crop have almost certainly a particular value, which it is undoubtedly desirable to investigate. Until this is done the above limitations must be borne in mind.

The distribution of rainfall and crop are shown in the diagram below:-
(b) Rabi harvest.

The regression equations are:
For crop on rain

$$
C_{\rho}=2904^{\circ} \circ R_{\rho}+3100 I^{\circ} 9
$$

For rain on crop

$$
C_{\rho}=7296.3 \mathrm{R}_{\rho}-1085
$$

The value of $\quad E_{\mathrm{c}}= \pm 2254$.

THE CORRELATIONS OF AREAS OF MATURED CROP AND THE RAINFALL. 369
The proportions of unirrigated matured crop in the different circles is somewhat different from those of the Kharif harvest.

They are Bharari 23, Niánda II, Bet 6, Bajwat 6, Charkhri 8, and the average of the 5 years $1887-8$ - 1891 -2 gives the following proportions of crop for the whole Tahsil.

Wheat	\ldots	.	..	51
Barley	..	\ldots	.	26
Gram	.	\ldots	.	IO
Fodder	.	\ldots	.	2
Other crops	II

Total .. IOO

The diagram showing the distribution of rainfall and crop with the regression lines is:-
(iv) Zafarwal.
(a) Kharif.

The regression equations are:- -
For crop on rain

$$
C_{\kappa}=548 \cdot 2 \mathrm{I} R_{\kappa}+31,910
$$

For rain on crop
$C_{\kappa}=20464 R_{\kappa}+238 \mathrm{I}$
and the probable error $E_{c}= \pm 1325$.

The percentages of the principal crops are roughly:--Rice II, Maize 16, Jowar 22, Sugarcane 4, Cotton 7, others 40.

The diagram shows the distribution and the regression lines :-
(b) Rabi.

The regression equations are :-
For crop on rain

$$
C_{\rho}=358 \mathrm{I} \cdot 5 R_{\rho}+27645 .
$$

For rain on crop
$C_{\rho}=8392 \cdot 9 R_{\rho}-9547$
and

$$
E_{c}= \pm 2196 .
$$

The percentages of the chief matured crops are:-

Wheat	\ddots	\ddots	\ddots	57
Barley	\ddots	\ldots	.	20
Cram	\ldots	\ldots	\therefore	3
Others	\ldots	\ldots	.	20

The distribution of rainfall and crop with the regression lines is shown in the Fig 15.
§5. Correlation of the matured crop with other than the six-monthly periods dealt with previously.

The beneficial effect of heavy rainfall in September on the Rabi harvest, and its frequently adverse influence on the Kharif crop, has already been referred to. It seemed desirable, therefore, to exclude it from computation in the rainfall correlated with the latter harvest and to include it in the period to be correlated with the former.

I have taken only the Tahsils Sialkot and Zafarwal which have the heaviest rainfall and whose correlations appeared to be probably the nearest to the truth.

The following results were found :-
Table showing the correlations of the Kharif matured area with the total rainfall from April to August, both inclusive, and of the Rabi matured area with the total rainfall from September to March, both inclusive, for unirrigated lands.

	Kharit.	$R a b i$.
Total unirrigated areas of Sialkot Tahsil	$\begin{gathered} \cdot 4 \mathrm{I} 6 \mathrm{I} \pm \cdot \mathrm{I} 25 \\ (\cdot 4693 \pm \cdot \mathrm{II} 8) \end{gathered}$	$\begin{gathered} \cdot 828 \mathrm{I} \pm .047 \\ (\cdot 6309 \pm \cdot 093) \end{gathered}$
Total unirrigated area of Zafarwal Tahsil	$\begin{gathered} \cdot 5045 \pm \cdot 112 \\ (\cdot 5174 \pm \cdot 110) \end{gathered}$	$\begin{aligned} & 7215 \pm .074 \\ & (\cdot 6532 \pm .086) \end{aligned}$
Total unirrigated area of 30 selected villages in Zafarwal.	$\cdot 3939 \pm$-127	$\cdot 7550 \pm \cdot 065$
	$(\cdot 4402 \pm \cdot 122)$	$(7207 \pm .072)$

For purposes of comparison the correlations for the rainfall taken in each of the six-monthly periods, April-September, October-March, are entered in round brackets below the corresponding correlations.

The results are of considerable interest, seeing that in spite of the large probable errors, they all tend to corroborate the existence of the effects noted. The increase in the Rabi coefficient is particularly marked, and the change in the Kharif coefficient though small is consistently a diminution.

It would, of course, be totally erroneous to argue from these figures to the effect that all rain in September, whatever its amount and distribution, is beneficial to both the autumn and to the spring crop. All that can be said is that rain, of the quantity and mode of distribution that occurred during the period 1887-8 to 1906-7, appears on the whole to have done some slight good to the former crop and considerable good to the latter.

As a matter of fact, though it is difficult to see how rainfall in September, unless absolutely overwhelming, could harm the Rabi harvest, the case of September rain causing harm to the Kharif crop is quite easy of conception. The above results show that the contradictory of this latter proposition is more generally true.

THE CORRELATIONS OF AREAS OF MATURED CROP AND THE RAINFALL. 371
The following tables show the mean value of the rainfall, its variation, and the value of ϕ for the two Tahsils, Sialkot and Zafarwal (total unirrigated area):-
I. Kharit Harvest.

Sialkot $\left\{\begin{array}{c}\text { Rainfall April to August .. } \\ \text {,, April to September }\end{array}\right.$. Zafarwal $\left\{\begin{array}{cc}\text { Rainfall April to August .. } & \text {.. } \\ \text {,, April to September } & \text {.. }\end{array}\right.$

II. Rabi Harvest.

Sialkot $\left\{\begin{array}{cc}\text { Rainfall September to March } & \text {.. } \\ \text {,, October to March } & \text {.. }\end{array}\right.$

Zafarwal $\left\{\begin{array}{c}\text { Rainfall September to March } \\ \text {,. } \quad \text { October to March .. }\end{array}\right.$

20\% $79 \pm$ I 22	$8 \cdot 116 \pm 87$	- 0112
$24^{\circ} \mathrm{OI} \pm$ I•36	$8 \cdot 979 \pm 96$	- 0114
22.94 ± 1.31	$8 \cdot 713 \pm 93$. 0126
$25 \cdot 80 \pm 1.45$	$9 \cdot 698 \pm 1.03$	-01I7
$10 \cdot 50 \pm 92$	$6 \cdot 09 \pm .65$	- 0501
$7 \cdot 30 \pm 63$	$4 \cdot 18 \pm 45$	$\cdot 0556$
10.43 ± 1.05	$6 \cdot 96 \pm 74$	-0470
$7773 \pm{ }^{6} 9$	4.57 ± 49	$\cdot 0647$

The regression equations giving the probable value of the crop in the two harvests from the known rainfall in the two periods, April to August (both inclusive), and September to March (both inclusive) are:-
(i) Total unirrigated area in Tahsil Sialkot.
(a) Kharif harvest.

For the regression of crop on rain

$$
C=564 \cdot 7 R+38676
$$

For the regression of rain on crop

$$
\begin{gathered}
C=3262 \cdot \mathrm{I} R-\mathrm{I} 74 \mathrm{I} 7 \\
E_{c}= \pm \mathrm{I} 5 \mathrm{I} 8 .
\end{gathered}
$$

and
(β) Rabi harvest.
For the regression of crop on rain

$$
C=2618 \cdot 4 R+24722
$$

For the regression of rain on crop

$$
\begin{gathered}
C=38 \mathrm{I} 8.6 R+\mathrm{I} 2 \mathrm{II} 9 \\
E_{c}= \pm \mathrm{I} 623 .
\end{gathered}
$$

(ii) Total unirrigated area in Tahsil Zafarwal.
(a) Kharif harvest.

For the regression of crop on rain

$$
C=5947 \mathrm{R}+33569
$$

For the regression of rain on crop

$$
C=2336 \cdot 5 \mathrm{R}-6397
$$

and

$$
E_{c}= \pm 1355
$$

(β) Rabi harvest.
For the regression of crop on rain

$$
C=2600 \cdot 9 \mathrm{R}+28203
$$

For the regression of rain on crop

$$
\begin{gathered}
C=4996.7 \mathrm{R}+3215 . \\
E_{c}= \pm 2630 .
\end{gathered}
$$

I will content myself by giving the diagram showing the distribution of rain and crop for the Rabi harvest in Tahsil Sialkot only. This is shown below in Figure 16.

The diminution in the angle between the regression lines due to the high correlation is seen by a comparison with the previously-given diagrams for the Rabi harvest, although their point of intersection is not quite the same.
$\S 6$. The prediction of isolated values of cropped areas.
It has already been pointed out that in predicting the amount of crop from a knowledge of the rainfall, what is actually predicted is the amount of crop which is, if the regression be linear, the mean of the 'array' of values corresponding to the given value of the rainfall. Now the assumption has been made that the regression dealt with is to a first approximation both 'linear' and 'normal,' so that knowing the standard deviation of the whole series of observations and the correlation, namely, σ_{c} and r, the standard deviation of the 'array' corresponding to a particular value of the rainfall is $\sigma_{c} \sqrt{1-r^{2}}$. In other words, if we put $\lambda=67449^{\prime}$ then corresponding to a given rainfail the amount of crop will oscillate about the true mean, and have a probable excess or defect of $\lambda \sigma_{c} \sqrt{1-r^{2}}$. But we do not even know the true mean exactly. The mean found from any number ' n ' of observations has itself a probable deviation from the true mean of $\frac{\lambda \sigma_{C} \sqrt{1-v^{2}}}{\sqrt{n}}$.

Where ' n ' is at all large the error produced by an incorrect estimate of the mean is quite negligible as compared with the previous error, but theoretically, so long as ' n ' is finite the latter error does not vanish, and in the present case it produces a certain practical error which has to be taken into account. It is desirable, therefore, to show how these probable errors are to be combined, so that the whole probable error in predicting a single isolated value of the crop (which is the practical desideratum) can be obtained.

Let c denote the true and c^{\prime} the actually determined regression point. Then let the distribution of the c^{\prime} s about c be such that the frequency of c 's contained in the interval x to $x+\delta x$ is $f(x) \delta x$, where x is the distance from c.

1λ is given by the equation $\int^{\lambda-x^{2}} d x=\frac{\sqrt{\pi}}{4}$.

THE CORRELATIONS OF AREAS OF MATURED CROP AND THE RAINFALL. 373
Further let P be the position of an individual value of a single observation, then the single observations are grouped about c with a frequency $F(\xi) \delta \xi$, say, and it is necessary to find the grouping of the P^{\prime} s about c^{\prime}.

The frequency of a deviation X of p from c^{\prime}, where $X=\xi-x$, is clearly

$$
\begin{aligned}
& =\frac{\delta X \int_{-\infty}^{+\infty} F(\xi) f(x) d x}{\int_{-\infty}^{+\infty} f(x) d x} \\
& =\frac{\delta X \int_{-\infty}^{+\infty} F(X+x) f(x) d x}{\int_{-\infty}^{+\infty} f(x) d x}
\end{aligned}
$$

where X is a constant for the integration.
Suppose the distribution of the $c^{\prime} s^{\prime}$ and of the individuals about c to be 'normal' and of the form

$$
\begin{aligned}
& y=y_{c} e^{-\frac{x^{2}}{2 \sigma_{c^{2}}}} \equiv f(x) \\
& y=y_{i} e^{-\frac{x^{2}}{2 \sigma_{i}{ }^{2}}} \equiv F(x)
\end{aligned}
$$

then the distribution of the individuals about c^{\prime} is

$$
\begin{aligned}
& \frac{y_{c} y_{i} \int_{-\infty}^{+\infty} e^{-\frac{(x+X)^{2}}{2 \sigma_{i}{ }^{2}}-\frac{x^{2}}{2 \sigma_{c}{ }^{2}}} d x}{y_{c} \int_{-\infty}^{+\infty} e^{-\frac{x^{2}}{2 \sigma_{c}{ }^{2}}} d x} \\
& =-\frac{y_{c} y_{i} \frac{\sqrt{2 \pi}}{\sqrt{\frac{\mathrm{I}}{\sigma_{2}^{2}}+\frac{\mathrm{I}}{\sigma_{c}^{2}}}} e^{-\frac{X^{2}}{2\left(\sigma_{c}^{2}+\sigma_{i}^{2}\right)}}}{y_{c} \sqrt{2 \pi} \sigma_{c}} \\
& =y_{i} \frac{\sigma_{i}}{\sqrt{\sigma_{i}{ }^{2}+\sigma_{c}^{2}}} e^{-\frac{X^{2}}{2\left(\sigma_{c}^{2}+\sigma_{i}^{2}\right)}}
\end{aligned}
$$

Then the distribution is also normal and the standard deviation is given by $\sqrt{\sigma_{i}{ }^{2}+\sigma_{c}{ }^{2}}$, the well-known result for the errors of the sum or difference of two uncorrelated variables.

Thus the probable deviation in the grouping of individuals about the determined regression point is $\lambda \sqrt{\sigma_{i}{ }^{2}+\sigma_{c}{ }^{2}}$.

Now assuming as before that the whole distribution, and not only the 'array' distributions, is normal, we have $\sigma_{i}=\sigma \sqrt{I-\gamma^{2}}$ and $\sigma_{c}=\frac{\sigma}{\sqrt{n}} \sqrt{I-\gamma^{2}}$.
So that the whole probable error is $\lambda \sigma \sqrt{\frac{n+I}{n}\left(I-r^{2}\right)}$
As already noted, when n is large this tends simply to the value $\lambda \sigma \sqrt{I-r^{2}}$, but in the cases we are dealing with n is often as low as 20 , and $\lambda \sqrt{I-\gamma^{2}}$ has to be increased by about 10247 of its value, or roughly $\frac{4}{4} \frac{1}{0}$.

Thus, with the previously adopted notation the probable error in the prediction of a crop of standard deviation σ_{c} is $E_{c} \sqrt{n+I}$.

As an example the rainfall in 1908 of April to August in Sialkot is $3 r^{\prime \prime} \cdot 3$, so that using the regression equation for the Kharif harvest, we find the probable unirrigated crop to be 56,200 acres approximately with a probable error in excess or defect of about 7,000 acres.

Or, again, the April to August rainfall on 1908 at Zafarwal was $3 I^{\prime \prime} \cdot 0$, which gives, on using the regression equation, a probable Kharif harvest of 52,000 acres for the whole of the Tahsil for unirrigated land, with a probable error of 6,200 acres.

Exactly the same process will apply to prediction based on any of the regression equations given in this paper, in every instance the given value of E_{c} being multiplied by 4.58 approximately to obtain the probable error of the prediction.

The probable errors may seem large, but it must be remembered that in approaching the subject for the first time many refinements have to be neglected as beyond the scope of pioneer work. Some of these have already been referred to.

Even so some advance has been made. ${ }^{1}$
§7. The effect of errors of measurement on the correlation coefficient.
It has already been pointed out that in treating the problems of the dependence of the matured areas of crop on the rainfall, we are using statistics which are subject to considerable errors which may be in part random and in part systematic. From the standpoint of the present investigation the inaccuracies in the rainfall data are small enough to be negligible, but this is not the case for the measurements of the cropped areas, and it becomes important to determine the effect which such errors would produce on the correlations.

[^54]The question is one of some difficulty.
Let $x_{m} y_{m}$ be the co-ordinates of any character, as here of rainfall and crop respectively.

Let N_{m} be the total frequency of the occurrence of the character x_{m}, that is in a unit interval enclosing x_{m}. Here x_{m}, y_{m} are the true values of the characters. Suppose, then, that x_{m} (rainfall) is correctly measured, but that y_{m} (crop) is incorrectly measured as $k_{m} y_{m}$. It is reasonable to assume that in measurements of the cropped area, the error is proportional to the area measured, but that the multiplying factor has a random distribution, so that if y_{m} is constant the erroneously measured y_{m} 's have the same mean value as y_{m}, but are 'normally' distributed about this mean.

Then the errors in measurement will alter the distribution of each array corresponding to a given x_{m}, but N_{m} will remain unaltered.

To make the process clearer consider first the case of perfect linear correlation.

Then let P be point on the regression line, and let x_{m} be its abscissa. Then the whole array is concentrated at P, thus there are N_{m} individuals with characters $x_{m} \bar{y}_{m}$ say at P. Now when the erroneous process of measurement of the kind supposed is applied to these N_{m} individuals, the \bar{y}_{m} character will become distributed in an array about P with a standard deviation about P of $k \bar{y}_{m}, P$

- Fig. I7a. remaining the centroid of the array, and k is to be a constant for all the arrays. That is to say the new distribution, that is the distribution from which, in practice, the correlation and regression coefficients are estimated, becomes such that the regression remains linear but is not 'normal,' and the correlation is reduced below unity.

Put $\sigma_{y_{m}}$ for the old standard deviation of the $m^{\text {th }}$ array, which in this case is zero, and $\sigma_{y_{m}}{ }^{\prime}$ for the new standard deviation, which is equal to $k \bar{y}_{m}$. Let $\sigma_{\boldsymbol{y}}$ be the old standard deviation for the whole system about an axis parallel to $O x$ and $\sigma_{y}{ }^{\prime}$ the new standard deviation.

And let N be the total frequency. Then we have at once

$$
N\left(\sigma_{y}{ }^{\prime 2}+\bar{y}^{2}\right)=S_{m=1}^{m}\left\{N_{m}\left(\bar{y}_{m}{ }^{2}+\sigma_{y_{m}}{ }^{\prime 2}\right)\right\}
$$

where S denotes a summation, and \bar{y} is the ordinate of the centroid of the whole system.

$$
\begin{aligned}
& \quad=\int_{m=\mathrm{I}}^{m}\left\{N_{m} \bar{y}_{m}^{2}\left(\mathrm{I}+k^{2}\right)\right\} \\
& =\left(\mathrm{I}+k^{2}\right) . \quad N\left(\bar{y}^{2}+\sigma_{y}{ }^{2}\right) \\
& \text { Thus } \sigma_{y}{ }^{\prime 2}=\sigma_{y}{ }^{2}+k^{2}\left(\bar{y}^{2}+\sigma_{y}{ }^{2}\right) .
\end{aligned}
$$

Now let I, I' denote the old and new product moments of the distribution about the axes o_{x}, o_{y}. Then, clearly, $\mathrm{I}=\mathrm{I}^{\prime}$, and therefore the product moment about the centroid is unchanged. Hence if r^{\prime} is the new (erroneous) coefficient of correlation

$$
r^{\prime}=\frac{\sigma_{y}}{\sqrt{\sigma_{y}{ }^{2}+k^{2}\left(\bar{y}^{2}+\sigma_{y}{ }^{2}\right)}}=\frac{\sigma_{y}}{\sqrt{\sigma_{y}{ }^{2}+k^{2}\left(y^{2}+\sigma_{y}{ }^{2}\right)}}
$$

since the original correlation was perfect.
This is sufficient to indicate the method, and we will now turn to the general case of a correlation less than unity.

The original correlation being assumed to be normal the standard deviation of each y array is $\sigma_{y} \sqrt{I-r^{2}}$. Then the frequency of a character of deviation y_{s} from the mean of the array corresponding to x_{m} is given by
say where δy_{s} is a small interval enclosing y_{s}.
Now owing to inaccurate measurement of the assumed type each character in the interval δy_{s} gets a different value, so that the whole group is distributed about the mean character y_{s} with a standard deviation $k\left(\bar{y}_{m}+y_{s}\right)$.

Thus the standard deviation of the whole array corresponding to x_{m} is altered to a value $\sigma_{y_{m}}{ }^{\prime}$ where

$$
\begin{gathered}
N_{m} \sigma_{y_{m}}{ }^{\prime 2}=\int_{-\infty}^{+\infty} p_{s}\left(y_{s}{ }^{2}+k^{2}\left(\bar{y}_{m}+y_{s}\right)^{2} d y_{s}\right. \\
=N_{m}{ }^{\sigma} y_{m}{ }^{2}+\int_{-\infty}^{+\infty} \frac{k^{2}}{\sigma_{y_{m}} \sqrt{2 \pi}} e^{-\frac{1}{2} \frac{y_{s}{ }^{2}}{\sigma y_{m}{ }^{2}}}\left\{y_{m}+\bar{y}_{s}\right\}^{2} d y_{s} \\
=N_{m}\left(\sigma_{y_{m}}{ }^{2}+k^{2} \bar{y}_{m}{ }^{2}\right)+\frac{k^{2}}{\sigma_{y_{m}}} \sqrt{2 \pi} \int_{-\infty}^{+\infty} e^{-\frac{1}{2} \frac{y_{s}{ }^{2}}{\sigma y_{m}{ }^{2}}}\left(2 \bar{y}_{m} y_{s}+y_{s}{ }^{2}\right) d y_{s} .
\end{gathered}
$$

Now the first part of the integral must clearly vanish, and we require to find only

$$
\begin{gathered}
\int_{-\infty}^{+\infty} e^{-\frac{1}{2} \frac{y_{s}{ }^{2}}{\sigma y_{m}{ }^{2}}} y_{s}{ }^{2} d y_{s}=\int_{-\infty}^{+\infty}-\sigma_{y_{m}}{ }^{2} y_{s} \frac{d\left(e-\frac{1}{2} \frac{y_{s}{ }^{2}}{\sigma y_{m}{ }^{2}}\right)}{d y_{s}} d y_{s} \\
=\left[-\sigma_{\left.y_{m}{ }^{2} y_{s} e^{-\frac{1}{2} \frac{y_{s}{ }^{2}}{\sigma y_{m}{ }^{2}}}\right]_{-\infty}^{+\infty}+\sigma_{y_{m}}{ }^{2} \int_{-\infty}^{+\infty} e^{-\frac{1}{2} \frac{y_{s}{ }^{2}}{\sigma y_{m}{ }^{2}}} d y_{s}}^{=\sigma_{y_{m}}{ }^{2} \cdot N_{m} \sqrt{2 \pi} \sigma_{y_{m}}}\right. \\
=\sqrt{2 \pi} N_{m} \sigma_{y_{m}}{ }^{3}
\end{gathered}
$$

THE CORRELATIONS OF AREAS OF MATURED CROP AND THE RAINFALL. 377
Thus

$$
\sigma_{y_{m}}{ }^{2}=\sigma_{y_{m}}{ }^{2}+k^{2}\left(\bar{y}_{m}{ }^{2}+\sigma_{y_{m}}{ }^{2}\right)
$$

This gives the relative standard deviations of the array of the old and new systems in terms of each other.

To find the new standard deviations of the whole distribution

$$
\begin{aligned}
N\left(\sigma_{y}{ }^{\prime 2}+\bar{y}^{2}\right) & ={\underset{m=1}{m}\left\{N_{m}\left(\bar{y}_{m}{ }^{2}+\sigma_{\gamma_{m}}{ }^{\prime 2}\right)\right\}}={\underset{m}{m=1}}_{m}^{S_{m}}\left\{N_{m}\left(\bar{y}_{m}{ }^{2}+\sigma_{y_{m}}{ }^{2}+k^{2}\left(\bar{y}_{m}{ }^{2}+\sigma_{y_{m}}{ }^{2}\right)\right)\right\} \\
& =S_{m=1}^{m}\left\{N_{m}\left(\mathrm{I}+k^{2}\right)\left(\bar{y}_{m}{ }^{2}+\sigma_{y_{m}}{ }^{2}\right)\right\} \\
& =N\left(\sigma_{y}{ }^{2}+\bar{y}^{2}\right)\left(\mathrm{I}+k^{2}\right) \\
\therefore \sigma_{y}{ }^{\prime 2} & =\sigma_{y}{ }^{2}+k^{2}\left(\sigma_{y}{ }^{2}+\bar{y}^{2}\right)
\end{aligned}
$$

thus we have $r^{\prime}=\frac{r \sigma_{y}^{*}}{\sqrt{\sigma_{y}{ }^{2}+k^{2}\left(\sigma_{y}{ }^{2}+\bar{y}^{2}\right)}}$
which is the same result as before for the case $r=\mathrm{r}$.
We may write it $r^{\prime}=\frac{r}{\sqrt{I+k^{2}\left(\mathrm{I}+i^{2}\right)}}$
where $\tau=\frac{\bar{y}}{\sigma_{y}}=\frac{100}{v}$, where v is the coefficient of variation of the whole group of y characters.

Again since $r^{\prime} \sigma_{y}{ }^{\prime}=r \sigma_{y}$ and σ_{x} is unaltered, the regression coefficient of y on x is unaltered, and consequently so far as errors of this type are concerned the regression equation of y on x is unaffected. But the regression coefficient of x on y is now

$$
\frac{\sigma_{y}^{\prime}}{\sigma_{x}} \frac{\mathrm{I}}{r^{\prime}}=\frac{\sigma_{y}\left(\mathrm{I}+\kappa^{2}\left(\mathrm{I}+\tau^{2}\right)\right)}{\sigma_{x} r}
$$

and the regression coefficient of x on y is increased by the factor $I+k^{2} I+\tau^{2}$)
To express the value of the true coefficient of correlation in terms of the erroneously estimated values of r^{\prime} and $\sigma_{y^{\prime}}{ }^{\prime}$, we have

$$
\begin{gathered}
r=r^{\prime}\left\{\mathrm{I}+k^{2}\left(\mathrm{I}+\tau^{2}\right)\right\}^{\mathrm{I} / 2} \\
\text { Now } \tau^{2}=\frac{\bar{y}^{2}}{\sigma_{y}{ }^{2}}=\frac{\bar{y}^{2}\left(\mathrm{I}+k^{2}\left(\mathrm{I}+\tau^{2}\right)\right)}{\sigma_{y}{ }^{\prime 2}} \\
\therefore \tau^{2}\left(\mathrm{I}-\frac{k^{2} \bar{y}^{4}}{\sigma_{y}{ }^{\prime 8}}\right)=\left(\mathrm{I}+k^{2}\right) \frac{\bar{y}^{2}}{\sigma_{y}^{\prime \prime 2}}
\end{gathered}
$$

$$
\begin{gathered}
\therefore \tau^{2}=\frac{\left(\mathrm{I}+k^{2}\right) \bar{y}^{2}}{\sigma_{y}^{\prime 2}-k^{2} \bar{y}^{2}} \\
\mathrm{I}+\tau^{2}=\frac{\sigma_{y}^{\prime 2}+\bar{y}^{2}}{\sigma_{y}^{\prime 2}-k^{2} \bar{y}^{2}}=\frac{\left(\frac{v^{\prime}}{100}\right)^{2}+\mathrm{I}}{\left(\frac{v^{\prime}}{100}\right)^{2}-k^{2}}
\end{gathered}
$$

which gives

$$
r=r^{\prime}\left\{I+k^{2}\left(\frac{\left(\frac{v^{\prime}}{I O O}\right)^{2}+\mathrm{I}}{\left(\frac{v^{\prime}}{I O O}\right)^{2}-k^{2}}\right)\right\}^{\frac{1}{2}}
$$

where v^{\prime} is the measured coefficient of variation

$$
\begin{aligned}
& r=r^{\prime}\left\{\frac{\left(\frac{v^{\prime}}{\mathrm{IOO}}\right)^{2}\left(\mathrm{I}+k^{2}\right)}{\left(\frac{v^{\prime}}{\mathrm{IOO}}\right)^{2}-k^{2}}\right\}^{\frac{1}{2}} \\
& =r^{\prime} \frac{v^{\prime}}{100}\left\{\frac{\mathrm{I}+k^{2}}{\left(\frac{v^{\prime}}{\mathrm{IOO}}\right)^{2}-k^{2}}\right\}^{\frac{1}{2}}
\end{aligned}
$$

This gives the true coefficient of correlation in terms of the measured values and the known 'standard' error k.

In the cases dealt with here, for the Kharif harvest v^{\prime} has a typical value of 20 , and for the Rabi harvest 40.

Now if we put $k=\frac{1}{8}$ this would be equivalent to saying that in the estimation of matured areas of crop the probable error was about 8.5%.

This is perhaps somewhat larger than might be met with in practice, but I fear, it is a not very unreasonable value to adopt.

Accordingly, for the Kharif harvest $r^{\prime}=\mathrm{r} \cdot 35^{\circ} r$ approximately.
And for the Rabi harvest $r^{\prime}=1 \cdot 12 r$ approimately.
Thus the coefficients of $\cdot 5$ and $\cdot 7$ would be increased to 675 and $\cdot 784$ respectively. Of course no stress can be laid on particular figures till we are in a position to say what the percentage error of measurement actually is, but they indicate the type of correction which would be applicable, and point to higher values of the correlation coefficient being obtained with increased accuracy of measurement. Further, the assumptions made here must be borne in mind. At best they can be only partial representations of truth, as it is very probable, for instance, that the actual errors made in measurement have a skew distribution.

THE CORRELATIONS OF AREAS OF MATURED CROP AND THE RAINFALL. 379
§ 8. Tables for finding the value of ' E_{c} ' and of the probable error of ' r ' for the case of 20 observations.

In dealing with agricultural statistics in the Panjab we shall frequently find that a reliable series is only available for 20 years, or, that they fall into groups of 20. It is desirable to tabulate some of the probable errors which are wanted approximately.

Table showing the values of $\log \sqrt{\mathrm{I}-r^{2}}$, and $\log \left(\frac{67449}{\sqrt{20}} \sqrt{\mathrm{I}-r^{2}}\right)$ for values of ' r ' ranging from $\cdot 20$ to ${ }^{-81}$.

'	$\log \sqrt{1-r^{2}}$	$\log E_{c}{ }^{\prime}$	Δ_{1}	r	$\log \sqrt{1-y^{2}}$	$\log E_{c}{ }^{\prime}$	Δ_{1}	r	$\log \sqrt{1-}$	$\log E_{c}^{\prime}$	Δ_{1}
$\cdot 20$	İ.99II4	$\overline{\mathrm{F}} \cdot 16960$	93	- 41	$\overline{\mathrm{I}} .96004$	İ13850	218	- 62	$\overline{\mathrm{I}} .89465$	$\overline{\mathrm{I}}$.073II	445
-21	-9902	- 16867	98	$\cdot 42$	-95786	-13632	225	$\cdot 63$	-89020	-06866	463
$\cdot 22$	-98923	-16769	103	-43	-95561	13407	233	$\cdot 64$	-88557	-06403	480
$\cdot 23$	-98820	-16666	108	-44	-95328	-13174	241	$\cdot 65$	-88077	-05923	497
$\cdot 24$	-98712	${ }^{\text {I }} 16558$	113	$\cdot 45$	-95087	- 12933	250	$\cdot 66$	-87580	- 05436	519
$\cdot 25$	-98599	-16445	II9	$\cdot 46$	-94837	- 12683	257	. 67	-8706r	-04907	538
$\cdot 26$	-98480	-16326	124	$\cdot 47$	-94580	- 12426	267	-68	-86523	-04369	561
$\cdot 27$	-98356	-16202	129	$\cdot 48$	-94313	'I2I59	275	$\cdot 69$	-85962	-03808	584
$\cdot 28$	-98227	-16073	134	$\cdot 49$	-94038	-11884	285	70	- 85378	-03224	608
- 29	-98093	-I5939	I4I	$\cdot 50$	'93753	II599	295	71	-84770	-026ı6	636
$\cdot 30$	*97052	- 15798	146	-5	-93458	-11304	304	$\cdot 72$	-84I34	- 01980	663
$\cdot 31$	97806	- 15652	152	$\cdot 52$	-93154	${ }^{-1} 1000$	314	$\cdot 73$	-8347I	-01317	695
$\cdot 32$	$\cdot 97654$	${ }^{\text {I } 5500}$	158	-53	-92840	'I0686	226	$\cdot 74$	-82776	-00622	727
$\cdot 33$	-97496	' 15342	163	$\cdot 54$	'92514	-10360	337	$\cdot 75$	-82049	$\overline{2} \cdot 99895$	763
$\cdot 34$	-97333	-15179	171	$\cdot 55$	${ }^{9} 92177$	-10023	348	776	-8工286	$\overline{2} \cdot 99132$	801
$\cdot 35$	-97162	- 15008	176	- 56	-91829	-09675	361	$\cdot 77$	-80485	$\overline{2} \cdot 9833 \mathrm{I}$	843
$\cdot 36$	-96986	- 14832	183	$\cdot 57$	-91468	'09314	372	$\cdot 78$	$\cdot 79642$	$\overline{2} 97488$	888
'37	-96803	-14649	190	$\cdot 58$	-91096	-08942	387	$\cdot 79$	-78754	2.96600	939
-38	-966r3	-14459	196	-59	'90709	-08555	400	$\cdot 80$	$\cdot 77815$	$\overline{2} \cdot 9566 \mathrm{I}$	994
$\cdot 39$	-96417	$\cdot \mathrm{r} 4263$	203	-60	-90309	-08155	415	-8I	$\cdot 76821$	2.94667	
$\cdot 40$	-96214	' 14060	210	-6I	-89894	-07740	429				

Table showing the values of the＇probable error＇of the coefficient of correlation＇r＇， together with its five－figure logarithms and their first differences for $n=20$ ．

r	E_{r}	Δ_{1}	$\log E_{r}$	Δ_{1}	γ	E ，	Δ_{1}	$\log E_{r}$	$\Delta 1$	r	E_{γ}	Δ_{1}	$\log E_{r}$	Δ_{1}
－ 20	－I448	6	$\overline{\mathrm{I}} \times 16073$	I 86	47	＇I175	I4	I＇07005	532	＇74	－0682	22	$\overline{2} \cdot 83398$	I454
$\cdot 2 \mathrm{I}$	－I442	7	－I5887	196	－ 48	$\cdot \mathrm{II} 6 \mathrm{I}$	I5	－06743	55I	$\bullet 75$	－ 0660	23	－81944	I526
－ 22	－I435	7	$\cdot \mathrm{I} 569 \mathrm{r}$	205	－49	－II4 6	I5	－05922	570	${ }^{7} 76$	－0637	23	－804I8	I602
$\cdot 23$	$\cdot 1428$	7	－15486	216	$\cdot 50$	$\cdot 1131$	I5	－05352	589	＇77	．06I4	23	－78816	工686
$\cdot 24$	$\cdot \mathrm{I} 42 \mathrm{I}$	7	＇15270	227	${ }^{\circ} 51$	$\cdot \mathrm{III} 6$	I5	$\cdot 04763$	609	$\cdot 78$	－0591	24	－77130	I777
$\cdot 25$	$\cdot \mathrm{I} 414$	8	＇I5043	237	$\cdot 52$	＇IIOI	16	－04154	629	＇79	$\cdot 0567$	24	－75353	1877
$\cdot 26$	－1406	8	＇14806	247	$\bullet 53$	$\cdot 1085$	16	－03525	651	－80	－0543	24	73476	1959
$\cdot 27$	＇1398	8	＇I4559	259	$\cdot 54$	－1069	I7	－02874	674	－8I	－05I9	25	－715I7	2137
$\cdot 28$	－I 390	9	＇I4300	269	$\cdot 55$	－1052	17	－02200	696	$\cdot 82$	－0494	25	－69380	2244
29	－138I	9	＇I403I	281	$\cdot 56$	－IO35	I7	－OI504	721	$\cdot 83$	．0469	25	－67I36	2396
$\cdot 30$	－1．372	9	－13750	292	－ 57	－ 1018	17	－00783	746	． 84	＇0444	25	－64740	2568
＇3I	－1363	9	\％ 13458	304	$\cdot 58$	－IOOI	I7	－00037	773	$\cdot 85$	－04I9	26	－62172	2762
$\cdot 32$	－ 1354	IO	－13I54	315	$\cdot 59$	$\cdot \mathrm{og} 84$	I8	$\stackrel{\rightharpoonup}{2} \cdot 99264$	800	－86	－0393	26	－59410	2986
$\cdot 33$	－ 1344	10	－I2839	328	$\cdot 60$	－0966	I9	$\cdot 98464$	829	$\cdot 87$	$\cdot 0367$	26	－56424	3244
$\cdot 34$	－I334	10^{1}	＇I25II	340	－6I	－0947	19	－97635	859	－ 88	－0340	27	－53180	3549
$\bullet 35$	－1324	10	＇12171	353	－62	． 0928	I9	$\cdot 96776$	891	$\cdot 89$	－0314	27	－4963I	3910
36	－1313	I I	＇II8I8	366	． 63	$\cdot 0909$	I9	＊95885	924	－90	$\cdot 0287$	28	－45721	4347
－ 37	－1302	II	＇II452	379	－ 64	． 0890	I9	\％ 94961	960	－91	－0259	28	－41374	4889
－ 38	－ 1291	II	－11070	395	－ 65	－087I	20	－94001	996	－92	$\cdot 0232$	28	－36485	5573
－39	－1279	12	＇10680	407	－ 66	．085I	20	－93005	1036	＇93	－0204	28	－30912	6471
$\cdot 40$	－1267	12	＇IO273	420	$\cdot 67$	－083I	20	．91969	1077	－94	$\cdot 0176$	29	2444 I	7695
${ }^{41}$	＇I255	13	$\cdot \mathrm{og} 853$	435	－ 68	－08II	2 I	－90892	112I	＇95	－OI47	29	－ 16746	9468
42	－ 1242	I3	－09418	45 I	． 69	－0790	21	－8977	II68	$\cdot 96$	－OII8	29	－07278	12273
43	－1229	I3	－08967	466	－70	－0769	2 I	－88603	I2I8	－97	－0089	29	$\overline{3} 95005$	工ク389
$\cdot 44$	－I2I6	I3	－08501	482	－7I	－0748	22	－87385	1270	$\cdot 98$	－0060	30	－77616	29885
$\cdot 45$	$\cdot 1203$	I4	－08019	498	$\cdot 72$	－0726	22	－86II5	I328	－99	－0030	30	－4773I	
46	－I 189	14	＇0752I	516	＇73	$\cdot 0704$	22	－84787	I389	＊00	$0 \cdot 000$			

PART II.

THE MEAN DISTRIBUTION OF RAINFALL AS EXPRESSED BY CERTAIN TYPES OF FREQUENCY CURVES.

§9. The problem of the mean distribution of the rainfall throughout the year or other period is an important one, as when random variations have been eliminated, there results a certain type-curve which will be characteristic for the given locality and period.

The curves do not, of course, express the actually occurring rainfall during any given year, or other non-recurring cycle, as the ordinate representing the actual rainfall will have a series of maxima and minima. It seems probable, however, that if a sufficient number of recurring cycles are taken, their maxima and minma will not in general coincide, and that the resultant curve will have but a few maxima and minima, and be expressible by the help of the ordinary frequency curves of the types recently investigated. If this be the case, then a given frequency curve will represent the generic rainfall, from which the actual rainfall in any year will vary, but within certain limits, as a species might vary from its genus in the animal kingdom.

Further, the problem of the determination of the characteristic distribution of the rainfall, interesting as it is in itself, has a most important bearing on the nature and seasonal position of the crops which it affects.

Example Ist. The rainfall data of Zafarwal (District Sialkot) fitted with a normal or 'Gaussian' frequency curve.

The average rainfall in Zafarwal for the years 1887-Igo6 is as follows:-

Let us suppose each of the frequencies collected at the median line of the month in which it occurs, and let us find the moments referred to the median line of July. Properly the unequal lengths of the months should be allowed for, but the error introduced is small.

The moments are $\nu^{\prime}{ }_{1}=\cdot 449, \nu^{\prime}=r^{\circ} 377, \nu^{\prime}=\cdot 653, \nu^{\prime}{ }_{4}=5 \cdot 408$, and using Shephard's corrections $\mu_{1}^{\prime}=\cdot 449, \mu_{2}^{\prime}=I^{\prime} \cdot 294, \mu_{3}^{\prime}=54 \mathrm{I}, \mu^{\prime}{ }_{4}=4^{\prime} 749$. Thus the mean is at a point 449 beyond the median point of July, a month being the base unit.

And the moments about the mean are :-

$$
\begin{aligned}
& \mu_{1}=0 \\
& \mu_{2}=\mathrm{I} \cdot 092 \\
& \mu_{3}=-\mathrm{I} \cdot 020 \\
& \mu_{4}=5.220 .
\end{aligned}
$$

The Gaussian curve $y=\frac{N}{\sqrt{2 \pi \sigma}} e^{-\frac{x^{2}}{2^{\sigma^{2}}}}$ becomes $y=101 \cdot 17 e^{-458 x^{2}}$
with a standard deviation $\sigma=1 \cdot 045$.
The diagram shows this curve and the original data.
The mean and modal rainfall would have to occur together on July 3oth, if this curve is to be an adequate representation.

One-fourth of the total rainfall will have fallen on an average by the 9 th of July, and three-fourths by the 18th August ; the former of these dates being roughly about the time of the so-called breaking of the south-west monsoon.

However, the diagram itself shows that a skew curve would probably be better suited to represent the facts.

2nd. The Gaussian curve will not fit the data of any frequency group within the limits of the errors of random sampling unless $\beta_{2} \sim 3$ is sensibly zero, where $\beta_{2}=\frac{\mu_{4}}{\mu_{2}{ }^{2}}$.

In the case of the rainfall data of example $I^{\text {st }}$, we have $\beta_{2} \sim 3=I \cdot 38$ which is many times greater than its probable error $67449 \sqrt{\frac{24}{265}}$.

Let us fit, therefore, a curve of the type $y=y_{0}\left(\mathrm{I}+\frac{x}{a}\right)^{p} e^{-\frac{p}{a} x}$, to the data, where

$$
\begin{aligned}
& a=\frac{4 \frac{\mu_{2}{ }^{3}}{\mu_{3}{ }^{2}}-\mathrm{I}}{2 \frac{\mu_{2}}{\mu_{3}}} \\
& p=4 \frac{\mu_{2}{ }^{3}}{\mu_{3}{ }^{2}}-\mathrm{I}
\end{aligned}
$$

We find $p=4^{\circ} 006, \quad a=-\mathrm{I} \cdot 87 \mathrm{I}$, and the curve is

$$
y=\operatorname{IIO} \cdot 8\left(\mathrm{I}-\frac{x}{\mathrm{I} \cdot 87 \mathrm{I}}\right)^{4.006} e^{2.14 \mathrm{I} x}
$$

where the distance between mean and mode is 467 , and the range ends at 2.338 from the mean, and 2.787 from the median line of July.

The time of mean rainfall is as before at the 3oth July, but the modal or maximum rate of rainfall occurs about a fortnight later on the 13th August, the rate being then $\mathrm{II}^{\prime \prime} \cdot 08$ per mensem.

The effective ending of rainfall due to the south-west monsoon is about October 8 th. The diagram below shows that a much better fit has been obtained.

3rd. The distribution of rainfall in Zafarwal (November-April). The rainfall in inches is (average of 1887-8-1906-7) -

November, December, January, February, March, April. $\begin{array}{llllll} & 03 & 68 & 2.69 & \text { •85 } & \text { 1.62 }\end{array}$
Multiplying by $\mathrm{I}, 000$ and dividing by the number of days in the month (for February average number of days $=28.2$) the following frequencies are obtained approximately-I, 22, 87, 66, 52, 19 .

The moments about the mean are :-

$$
\begin{aligned}
& \mu_{\mathrm{I}}=0 \\
& \mu_{2}=\mathrm{I} \cdot \mathrm{I} 32 \\
& \mu_{3}=364 \\
& \mu_{4}=3 \cdot 183 . \\
& \beta_{2}=2 \cdot 19 .
\end{aligned}
$$

Thus $3-\beta_{2}=8 \mathrm{I}$, which is 3 or 4 times its probable error.
Fitting the curve $y=y_{0}\left(I+\frac{x}{a}\right)^{p^{p}} e^{-\frac{p}{a} x}$ we get

$$
y=9 I \cdot 4\left(I+\frac{x}{7 \cdot 04}\right)^{42 \cdot 79} e^{-6 \cdot 08 x}
$$

The mode is on the 2nd of February, and the mean on the 7 th of February, thus the skewness is of opposite sign to that for the months April--October.

The curve is shown in diagram Ig.
The modal rainfall for the summer rains precedes the modal rainfall for the winter by I73 days, but the points of mean rainfall are 192 days apart.

The sum of these two periods is 365 , though, of course, the result being exactly a tropical year is somewhat fortuitous.

It is interesting to exhibit the two curves last obtained on the same scale, as they clearly show the distribution of rainfall throughout the year.

The two curves have their two steeper slopes facing each other.
Lastly I have taken the actual daily rainfall data for the 20 years $1887-8$ - $1906-7$, and found the mean rate of rainfall at intervals of 10 days, this rate being the mean of 20 days, so that in the frequency polygon shown in the diagram, the vertices of the polygon represent the mean rainfall for ro days on either side of the vertex in question.

This, of course, will produce a flatter curve system than would otherwise be the case.

The curves obtained from the monthly data are superposed.
 periods we have the following data :--

These give the average ' monthly' rates, that is, the amount of rain which would fall in one month, if the given rate for the 20 days were maintained throughout the month.

This scheme has been adopted because the monthly rainfall is the most frequently tabulated datum, and comparison becomes easy.

In order to fit the above with a skew curve of type $y=y_{0}\left(1+\frac{x}{a}\right)^{p} e^{-\frac{p}{a} x}$ we find the moments about the mean to be

$$
\begin{aligned}
& \mu_{0}=0 \\
& \mu_{2}=\mathrm{r} \cdot 675 \\
& \mu_{3}=-.274 \\
& \mu_{4}=7.504
\end{aligned}
$$

We have $\beta_{2}=1 \cdot 6, \beta_{2} \sim 3=1 \cdot 4$ with a probable error of $\cdot 18$, so that the skewness is significant, and Gaussian curve will not sufficiently represent the data.

The equation of the curve is

$$
y=\operatorname{I05} 66\left(1-\frac{x}{20 \cdot 40}\right)^{249 \cdot 4} e^{12 \cdot 23 x}
$$

The distance between mean and mode $=392$.
This gives a modal value for the 5 th August.
The points of inflexion of this type of frequency curve are given by $x= \pm \frac{a}{\sqrt{p}}$, so that in this case the points of inflexion are 26 days on either side of the mode, that is, at the IIth July and the Ist September respectively.

If we remember that the south-west monsoon begins and ends with a certain abruptness, these dates will roughly determine the typical duration of the monsoon, though, of course, the limits may often be exceeded.

Figure 22 shows the curve in question.

PART III.

CORRELATIONS OF THE SEASONAL RAINFALLS.

§ 10. From the work done in Part I of the paper, it was easy to deduce the correlations of the total rainfall in April to September with the total for October to March. For the 20 years discussed the results were:-

These correlations are from 3 to 6 times greater than their probable errors, and it was clearly a matter of high interest and importance to discover whether these correlations were really due to a definite relationship between the seasonal rainfalls or to the fact that the years dealt with constituted a special group. As a matter of fact it was found that, at any rate for the part of the Punjab dealt with, the 20 years 1887-8-r906-7 form a very special group, and can by no means be taken to represent the result of a random sampling from among all years.

For the purpose the data for 8 stations in the North-West of India were obtained from the Meteorological Department. ${ }^{\text {. }}$

The results which are given below very soon showed how completely the years 1887-8-r906-7 failed to be representative of the secular rainfall.

	\bar{R}_{κ}	${ }^{\sigma} \mathrm{R}$	${ }^{v} \mathrm{R}$	\bar{R}_{p}	${ }^{\sigma} \mathrm{R}$	v_{R}	N	r
Peshawar	6.76	$4^{\circ} 18$	6 ¢ 79	$6 \cdot 28$	3.50	$55 \cdot 66$	45	-0496
Shahpur	10.65	4.45	$4 I^{8} 8 \mathrm{I}$	3.40	2.52	73.91	53	- $1514 \pm .093$
Kohat	II*49	$4 \cdot 68$	$40 \cdot 75$	$6 \cdot 36$	400	62.87	45	-.076
Lahore	15.63	$6 \cdot 35$	$40 \cdot 64$	3776	2.23	$59^{*} 16$	45	-1895 + 097
Beawar	I8.26	7×14	$39^{\circ} \mathrm{I} 2$	I'09	1.07	97.87	51	-06ro
Ajmere	19.54	$6 \cdot 75$	34.57	- 66	I 26	$76 \cdot 09$	44	--1665 $\pm .099$
Nagpur	$4 r^{\circ} 23$	10'II	24.52	4.00	2.78	69.62	53	$\cdot 1874 \pm .09$
Jubbulpore	$49 \cdot 36$	1.3.59	27.54	3.93	3×37	85.87	62	$\cdot \mathrm{I} 240 \pm$ - 084

[^55]The notation is the same as that previously adopted, R_{κ} being the total meanrainfall of April to September, both inclusive; and \bar{R}_{ρ} of October to March, both inclusive ; and r denotes the correlation of R_{κ} with the following R_{ρ}.
N denotes the number of years to which the data extend.
Of the 8 coefficients of correlation, 5 are positive, and 3 negative, and not one of them is but just over twice its probable error. It is doubtful if any one of them is gnificant.

If the diagrams given below, which show the product moment for each year, be examined, it becomes clear that for a few years a positive correlation is possible, but that on the whole the positive and negative moments alternate in such a way that no correlation results.

Thus the Lahore data exhibit a very striking alternation. From 1862 to 1876 the correlation is on the whole positive, for 1877 to 1889 it is markedly negative, and from 1890 to 1906 it is again positive.

Thus the reason for the high correlations given above for four stations in the Sialkot district is that the years for which the calculation was based included the last of the periods mentioned, and not the previous one. The inclusion of the first of the periods in the Lahore data has had the effect of making the correlation positive ; but it would certainly seem that previous to 1860 a period of negative correlation had probably existed, the inclusion of which would cause all positive correlation to disappear. At any rate the results for the whole period 1862 - igo6 are suggestive of some such conclusion.

It is clear, therefore, that no linear equation of regression will suffice to predict the value of the rainfall in October to March from the given April to September rainfall preceding. Direct attack of this problem by this method does not apparently promise much success.

If, however, we take the system of points which give the value of the product moment, and plotting these as ordinates to the corresponding years as abscissæ, join the points for successive years, as has been done in the diagrams below, in certain cases there seems to be an alternation of the sign and magnitude of the product moment which is roughly simple harmonic.

This is a very wide field of speculation, and my investigations are not sufficiently extended either in time or space to enable the existence of periodic alternations to be definitely asserted.

In the case of three of the places taken-Pesháwár, Nagpore, and Jubbulporethe alternations are such that no simple harmonic curves can be fitted to them by inspection. In the remaining five cases a sine curve, or, as in the case of Lahore, a double sine curve has been fitted to the data.

As neither the method of moments or of least squares has been adopted for the fitting, it is not possible to assert that the curves given will best represent the given points. To do this and to apply the proper tests for goodness of fit are problems which must be made the subjects for future enquiry.

The following are the constants for the sine curves chosen:-

THE CORRELATIONS OF AREAS OF MATURED CROP AND THE RAINFALL. 387
The amplitude is measured in inches-squared, and the epoch represents the date at which the amplitude is a maximum. The period is the time of a half oscillation, that is from a maximum to a minimum.

> Amplitude. • Period. Epoch.

Shahpur	5	19 years	1890	A.D.
Kohat (curve I)	Io	19 ,	I890	,'
,, (curve II)	Io	19 ,	1895	,
Lahore (curve I)	Io	13.5 ,	1900	,
,. (curve II)	10	9 ,	1893	,
Ajmere	Io	19 ,,	1895	,'
Beawar	2.5	I9 ,	1890	,

All these appear to be at any rate partial representations of the change in the value of the product moment.

In the case of Lahore a combination of the above two curves gives a better fit than either of them alone.

If y denote the product of the two deviations from the mean rainfall, the following are the equations which gives its value as a rough approximation for the places named.

Shahpur $y=5 \sin \left\{\frac{\pi(t-1890)}{I 9}+\frac{\pi}{2}\right\}$
Kohat $\quad y=10 \sin \left\{\frac{\pi(t-1890)}{19}+\frac{\pi}{2}\right\}$
Lahore $\quad y=10 \sin \left\{\frac{2 \pi(t-1900)}{27}+\frac{\pi}{2}\right\}+$ Io $\sin \left\{\frac{\pi(t-1893)}{9}+\frac{\pi}{2}\right\}$
Ajmere $\quad y=10 \sin \left\{\frac{\pi(t-1895)}{I 9}+\frac{\pi}{2}\right\}$
Beawar $\quad y=2.5 \sin \left\{\frac{\pi(t-1890)}{19}+\frac{\pi}{2}\right\}$.
To predict the value of the rainfall of October to March from the known rainfall in the preceding six months, we determine the value of y from the above, and have

$$
\left(R_{\kappa}-\bar{R}_{\kappa}\right)\left(R_{\rho}-\bar{R}_{\rho}\right)=y
$$

whence

$$
R_{n}=\bar{R}_{\rho}+\frac{y}{R_{\kappa}-\bar{R}_{\kappa}}
$$

It is not contended that this will determine accurate values of the probable rainfall, but it would seem not impossible that it will give first approximations. ${ }^{1}$

The diagrams will now be understood without further comment.
Here this paper must be brought to a close.
It is hoped that the conclusions reached will not be applied without appreciation of the limitations to which they are subject.

In the future it is trusted that some of these limitations will be removed.
In conclusion, I wish to express my thanks to Miss G. M. McLaren for her kind help in Part III of this paper.

[^56]

Fig. I.

Hor. Scale I divn. $=2^{\prime \prime}$.
Ver. Scale I divn. $=300$ acres.
Diagram showing the distribution of rain and crop for 30 villages in Tahsil Raya (Kharif harvest).

Eqns. of the regression lines are:-
(i) of crop on rain: $y=1.355 x+6 \cdot 38 \mathrm{I}$.
(ii) of rain on crop: $y=1 \cdot 672 x-6 \cdot 594$.

Fig. 3.
Hor. Scale I divn. $=2^{\prime \prime}$.
Ver. Scale I divn. $=400 \mathrm{acres}$.
Distribution of rain and crop for 30 villages in Pasrur (Kharif harvest).

Eqns. of the regression lines are:-
(i) of crop on rain: $y=\cdot 255^{x}+8 \cdot 053$.
(ii) of rain on crop: $y=2.894 x-19.85$.

Fig. 2.

Hor. Scale I divn. $=2^{\prime \prime}$.
Ver. Scale I divn. $=500$ acres.
Diagram showing the distribution of rain and crop for 30 villages in Tahsil Raya (Rabi harvest), with the regression lines.

Eqns. of the regression lines are:-
(i) of crop on rain: $y=\mathrm{I} \cdot 356 x+6 \cdot 328$.
(ii) of rain on crop: $\quad 6.69$

Fig. 4.
Hor. Scale I divn. $=2^{\prime \prime}$. Ver. Scale I divn. $=700$ acres.
Distribution of rain and crop for 30 villages in Tahsil Pasrur (Rabi harvest).

Eqns. of the regression lines are :-
(i) of crop on rain: $y={ }^{\prime} 79 \mathrm{I} x+7^{\prime} \mathrm{I} 43$.
(ii) of rain on crop: $y=3.717 x-2.967$.

$$
\text { Fig. } 5 .
$$

Hor. Scale I divn. $=2^{\prime \prime}$.
Ver. Scale I divn. $=500$ acres.
Diagram showing distribution of rain and crop of 30 villages in Tahsil Sialkot for the years 1887-rgo6 (Kharif harvest), with the regression lines.

Eqns. of the regression lines are:-
(i) For crop on rain: $y={ }^{\circ} 214 \mathrm{I} x+6.583$.
(ii) For rain on crop: $y=9949 x-2 \cdot 787$.

Fig. 7.
Hor. Scale I divn. $=3^{\prime \prime}$.
Veŕ. Scale I divn. $=300 \mathrm{acres}$.
Distribution of rain and crop for 30 villages in Tahsil Zafarwal (Kharif harvest), with the regression lines.

Eqns. of the regression lines are:-
(i) of crop on rain: $y=337 x+10 \cdot 530$.
(ii) of rain on crop: $y=I^{\circ} 740 x-I^{\circ} 538$.

Fig. 6.
Hor. Scale I divn. $=2^{\prime \prime}$.
Ver. Scale I divn. $=500$ acres.
The distribution of rain and crop for 30 villages in Tahsil Sialkot (Rabi harvest).

Eqns. of the regression lines are:-
(i) for crop on rain: $y=1 \cdot 230 x+1 \cdot 929$.
(ii) for rain on crop: $y=2 \cdot 285 x-1 \cdot 924$.

Fig. 8.

Hor. Scale I divn. $=2^{\prime \prime}$.

Ver. Scale I divn $=500$ acres.
Distribution of rain and crop for 30 villages in Tahsil Zafarwal (Rabi harvest), with the regression lines.

Eqns. of the regression lines are :-
(i) of crop on rain: $y=1 \cdot 356 x+4 \cdot 48 \mathrm{I}$.
(ii) of rain on crop: $y=2 \cdot 610 x-\cdot 366$.

Fig 9.
Hor. Scale I divn. $=6^{\prime \prime}$.
Ver. Scale I divn. $=9000$ acres.
Distribution of rain and crop for total harvest (Kharif) for Daska Tahsil, with rainfall April to September.

Eqns. of the regression lines:-
(i) crop on rain: $y={ }^{\circ} 2757 x+3 \cdot 813$.
(ii) Rain on crop: $y=1.489 x-7.914$.

Fig. II.
Hor. Scale I divn. $=2^{\prime \prime}$.
Ver. Scale I divn. 5000 acres.
Distribution of rain and crop total for Rabi harvest unirrigated area of Tahsil Pasrur, with rainfall October to March.

Eqns. of the regression lines are :-
(i) Crop on rain: $y=8569 x+5 \cdot 262$.
(ii) Rain on crop: $y=3 \cdot 195 x-2 \cdot 804$.

Fig. 10.
Hor. Scale I divn,$=I^{\prime \prime}$
Ver. Scale I divn. $=3000$ acres.
Distribution of rain and crop for the total Rabi harvest of Tahsil Daska unirrigated areas, with rainfall October to March.

Eqns. of regression lines are:-
(i) of crop on rain: $y=\cdot 616 x+2 \cdot 434$.
(ii) of rain on crop: $y=3 \cdot 102 x-11 \cdot 375$.

Fig 12.
Hor. Scale I divn. $=2^{\prime \prime}$.
Ver. Scale I divn. $=5000$ acres.
Diagram showing the distribution of rain and cropped area in the whole of Tahsil Sialkot from 1887-1906 for unirrigated lands.
Eqns. of the regression lines are:-
(i) of crop on rain: $y=\cdot 2303 x+7.320$.
(ii) of rain on crop: $y=r \cdot 0457 x-2.467$.

Fig. 13.
Hor. Scale I divn. $=2^{\prime \prime}$.
Ver. Scale I divn. $=5000$ acres.
Diagram showing the distribution of the total unirrigated mature and crop (Rabi harvest) and rainfall from $1887-8$ to $1906-7$, with the regression lines for Sialkot Tahsil.

Eqns. of the regression lines are :-
(i) of crop on rain: $y=I^{\prime} 16 \mathrm{I} x+6 \cdot 200$.
(ii) of rain on crop: $y=2.918 x-0.217$.

Fig. I5.
Hor. Scale I divn. $=2^{\prime \prime}$. Ver. Scale I divn. $=5000$.
Diagram showing the distribution of rain and crop for the whole of Zafarwal Tahsil unirrigated areas in Rabi harvest from 1887-8 to 1906-7, with the regression lines.

Eqns. of the regression lines are:-
(i) crop on rain: $y=1.4326 x+5.529$.
(ii) rain on crop: $y=3.357 x-1.909$.

Fig. I4.
Hor. Scale I divn. $=3^{\prime \prime}$.
Ver. Scale I divn. $=5000$ acres .
Diagram showing the distribution of rain and crop for the whole of Tahsil Zafarwal (Kharif har. vests, 1887-igo6), with the regression lines.

Eqns. of the regression lines are :-
(i) crop on rain: $y={ }^{\prime} 3289 x+6 \cdot 38$ r.
(ii) rain on crop: $y=1.228 x-0.476$.

Fig. I6.
Hor. Scale I divn. $=2^{\prime \prime}$.
Ver. Scale I divn. $=5000$ acres.
Correlation of the matured area of crop in the whole of Sialkot Tahsil, Rabi harvest, with the total rainfall September to March for the year $1887-8$ to 1906-7.

Eqns. of the regression lines are:-
(i) of crop on rain: $y=1 \cdot 047 x+4944$.
(ii) of rain on crop: $y=1 \cdot 527 x+2 \cdot 424$.

Fig. 17.
The fitting of a 'normal' (Gaussian) curve to the rainfall data of Zafarwal, District Sialkot, for the 20 years $1887-1906$.

$$
\begin{aligned}
& \text { Ver. Scale } 1 \mathrm{~cm} .=3^{\prime \prime} \\
& \text { Hor. Scale } 2 \mathrm{cms} .=3 \text { months. }
\end{aligned}
$$

Equation of curve-

$$
y=10 \cdot 1,17 e^{-1145 x^{2}}
$$

where x and y are both measured in $\frac{1}{3} \mathrm{rd} \mathrm{cm}$. units.
The maximum (modal) rate of rainfall occurs at about July 30th.

Fig. 18.
The Rainfall data of Zafarwal fitted with a skew curve-

$$
y=110 \cdot 8\left(1-\frac{x}{37^{\prime} 42}\right)^{4^{\circ 006}} e^{\cdot 10705 x}
$$

where x and y are both measured in $\frac{1}{3} \mathrm{rd} \mathrm{mms}$.
Ver. Scale I mm. $=\frac{3}{10}$ h h.m.
Hor. Scale $I \mathrm{~mm} .=\frac{3}{20}$ th month .
Distance between mean and mode $=3 \cdot I I \mathrm{mms}$.
From mid point of July to end of range $=18.58 \mathrm{mms} .=2.787$ mos.

Fig. 19
Fitting of the Rainfall data of Zafarwal (Nov. to April) with a skew curve-

$$
y=9^{\circ} 14\left(1+\frac{x}{14^{\circ} 08}\right)^{42 \cdot 79-3.04 x} e^{2}
$$

where x and y are both measured in $\frac{1}{3} \mathrm{~cm}$.
Hor. Scale I cm. $=45^{\circ} 3$ days.
Ver. Scale I cm. $=\frac{\frac{3}{10} 0^{\prime \prime}}{}$ per diem.

Fig. 20.
The two curves (Summer and Winter rains) on the same scale.

Equations of curves-
(i) $y=11 \cdot 0\left(\mathrm{I}-\frac{x}{3.742}\right)^{1.006} e^{+1 \cdot 0705 x}$
(ii) $y=2.742\left(\mathrm{I}+\frac{x}{14.08}\right)^{4279} e^{-3.01 x .}$
where x and y are measured in $\frac{1}{3} \mathrm{cms}$.

Fig. 2I.

The curves obtained from the total monthly rainfall fitted to the polygon whose vertices represent the average rainfall for 10 days on either side of the vertex in question.

Ver. Scale $1 \mathrm{~cm}=3^{\prime \prime}$ per month.
Hor. Scale $6575 \mathrm{~cm} .=30$ days.

Fig. 23.
Rainfall in Sialkot (1887-8 to 1906-7) 20-day means for 20th May-27th Oct. fitted with a skew frequency curve-

$$
y=10.57\left(1-\frac{x}{27^{\circ} 2}\right)^{249^{.4}} e^{917 x}
$$

where x and y are measured in $\frac{1}{3} \mathrm{cms}$.
Hor. Scale Icm. $=45$ days.
Ver. Scale Icm. $=3^{\prime \prime}$ in 30 days.

Fig. 22.
Product moment for Peshawar-

$$
r=\cdot 049
$$

Scale I mm. $=\frac{500^{m 2}}{100^{2}}$

Fig. 24.
Product moment for Shahpur-- 15 I - -093 .

Scale I mm. $=\frac{13}{2} \frac{30}{0} 0^{\prime \prime 2}$

Fig. 25.
Product moments for Kohat (Kharif and succeeding Rabi)-

Ver. Scale I mm. $=\frac{120^{\prime \prime 2}}{100^{2}}$

$$
r=-\cdot 076
$$

Fig. 27.
Product moment for Lahore-

$$
r=\cdot 189 \pm .097
$$

Ver. Scale I $\mathrm{mm}=\frac{90172}{100}$
The equation of the curve fitted is-

$$
=\frac{3}{2}\left[\sin \left\{\frac{\pi(t-1893)}{9}+\frac{\pi}{2}\right\}+\sin \left\{\frac{2 \pi}{27}(t-1900)+\frac{\pi}{2}\right\}\right]
$$

Fign 26.
Product moment for Lahore-

$$
r=\cdot 189 \pm \cdot 097
$$

$$
\text { Scale } 1 \mathrm{~mm}=\frac{90}{100}{ }^{12}
$$

With the curves -

$$
\begin{aligned}
& y=3 \sin \left\{\frac{\pi(t-1893)}{9}+\frac{\pi}{2}\right\} \\
& y=3 \sin \left\{\frac{2 \pi(y-1900)}{27}+\frac{\pi}{2}\right\}
\end{aligned}
$$

where t is the year A.D.

Fig. 28.
Product moment for Ajmere-

$$
r==^{\circ}-167 \pm{ }^{\circ} 099 .
$$

Scale I mm. $=\frac{150172}{10} 0^{\prime \prime 2}$

Fig. 29.
Product moment for Beawar-
Ver. Scale I mm. $=\frac{100}{100}(\text { inches })^{2}$ $r=\cdot 061$.

Fig. 30.
Product moments for Nagpur (Kharif and succeeding Rabi)-

$$
\begin{aligned}
& \text { Ver. Scale I mm. }=(3 \text { inch })^{2} \\
& \quad r={ }^{\prime} 187 \pm{ }^{\circ} 09 .
\end{aligned}
$$

Fig. 31.
Product moment for Jubbulpore-

$$
\text { Scale } 1 \mathrm{~mm} .=3^{\prime \prime 2}
$$

$$
r=\cdot 124 \pm \cdot 084
$$

PESHAWAR．

Raintall．

	Year．		完		号	$\underset{\substack{\infty \\ \text { in }}}{\substack{\infty \\ \hline}}$	运	$\stackrel{ \pm}{\Xi}$	范	$\begin{aligned} & \text { 岂 } \\ & \text { 毒 } \\ & \text { H0 } \\ & 00 \end{aligned}$			$\begin{aligned} & \stackrel{4}{0} \\ & \text { 鞄 } \\ & \stackrel{0}{0} \end{aligned}$	
		＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	
	1853	0	I． 88	$3 \cdot 63$	0.88	0•13	0．06	4.50	3.00	0.63	0.88	$0 \cdot 38$	0	9：20
10.66	1854	$5 \cdot 06$	3.76	0.58	0×77	0\％73	0×42	$3 \cdot 63$	0.64	0.60	0	0．10	0	$6 \cdot 79$
4.03	1855	0.60	0.80	$2 \cdot 53$	－ 67	0	$0 \cdot 45$	$3 \cdot 60$	0.46	0.83	$0 \cdot 20$	0	0.02	$7{ }^{\circ} \mathrm{OI}$
I． 83	1856	0	0.91	0.70	0.87	？	？	？	？	？	？	？	？	－ 87
	$\begin{gathered} 1857 \\ \text { to } \\ 186 I \end{gathered}$	$\}$				Not	on	record						
	1862	？	？	？	I． 60	0	$0 \cdot 50$	1．30	0.90	0	0	I． 60	0	$4 \cdot 30$
530	1863	$2 \cdot 50$	o	I＇20	0.30	－	0．10	$2 \cdot 10$	3.00	o	0	0	1．30	$5 \cdot 50$
$3 \cdot 20$	1864	I•Io	0	0.80	7．00	I．90	$0 \cdot 50$	0	$0 \cdot 50$	0.30	o	0	0×40	10：20
$8 \cdot 10$	1865	I\％ 70	2.90	3＇10	I．90	\bigcirc	0	$0 \cdot 70$	$2 \cdot 10$	I•IO	0	0.50	$3 \cdot 20$	$5 \cdot 80$
$9 \cdot 60$	1866	0.80	I 30	$3 \cdot 80$	0.50	0＊70	o	o	I＇30	I 20	0	\bigcirc	o	370
＇90	1867	0	$0 \cdot 50$	0.40	270	0.80	\bigcirc	0	$3 \cdot 10$	0	0	0	0.40	． 6.60
$3 \cdot 20$	1868	$0 \cdot 30$	0．20	$2 \cdot 30$	$3 \cdot 60$	$0 \cdot 40$	0	$0 \cdot 50$	\bigcirc	I．00	0	0	3.40	$5 \cdot 50$
$8 \cdot 30$	1869	I＇70	0＇90	$2 \cdot 30$	$0 \cdot 20$	0	0\％70	0	0×90	$7{ }^{\circ} 00$	I． 60	0	0	$8 \cdot 80$
$4 \cdot 00$	1870	I＇IO	0．20	I＇10	$0 \cdot 20$	0	o	0	$3 \cdot 60$	0．80	0	0	$0 \cdot 40$	$4 \cdot 60$
5．90	187I	$0 \cdot 10$	5.00	$0 \cdot 40$	I 40	0	$0 \% 0$	$3 \cdot 10$	o	o	0	0	0．60	$5 \cdot 20$
490	1872	I 50	0\％70	$2 \cdot 10$	2.20	I＇70	－10	270	5．10	0.40	0	0	o	12：20
$4 \cdot 30$	1873	I 50	I．00	I．80	0.40	$2 \cdot 30$	O．10	I．80	$0 \cdot 90$	0.20	0	0	o	$5 \% 0$
6.20	1874	$4 \cdot 80$	0	1.40	0.60	\bigcirc	0	240	$5 \cdot 40$	0.50	0	0	0	$8 \cdot 90$
470	1875	0	$3 \cdot 30$	1．40	0	0.80	0	4.90	$4 \cdot 60$	0.40	I ${ }^{0} 0$	I． 50	0\％70	10\％70
9.00	1876	$2 \cdot 20$	0.80	$2 \cdot 80$	I 20	0	$0 \cdot 50$	$2 \cdot 10$	2.80	0.30	I．00	I． 60	0	$6 \cdot 90$
9776	｜ 1877	$3 \cdot 54$	2：64	0.98	$7 \cdot 24$	0×17	0.38	0	0	O＇II	0.64	$8 \cdot 50$	$3 \cdot 67$	7.90
17×74	1878	I＇99	277	0×17	$3 \cdot 86$	376	0	2.07	II＊34	$0 \cdot 13$	0.23	0	0	$21 \cdot 16$
$3 \cdot 42$	1879	0	$0 \cdot 46$	273	0.24	0.14	0.05	0.47	0.97	$0 \cdot 16$	0	－ 10	$0 \cdot 52$	$2 \cdot 01$
－99	1880	0	0.37	0	O．II	$0 \cdot 52$	0.47	I． 65	0	－ 39	0	0	$0 \cdot 50$	$4 \cdot 14$
$3 \cdot 54$	I88I	0.35	0.49	$2 \cdot 20$	$4 \cdot 89$	0.03	$3 \cdot 85$	$0 \cdot 12$	2．18	0.97	$0 \% 76$	0	0.06	12.04

PESHAWAR．－（Contd．）

Raintall．
Elevation I，rio feet．

	Year．	$\begin{aligned} & \text { 炭 } \\ & \text { 品 } \\ & \text { 品 } \end{aligned}$		䘡	范	$\underset{\sim}{\infty}$	送	总		$\begin{aligned} & \dot{H} \\ & \stackrel{0}{0} \\ & \text { gu . } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \dot{\sim} \end{aligned}$			嵳	－
		＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	
4：16	1882	r．46	$0 \cdot 14$	I＇74	$2 \cdot 16$	$0 \cdot 11$	0	$3 \cdot 30$	0	$2 \cdot 40$	0•14	0	\bigcirc	$7 \cdot 97$
3＊75	1883	1．98	$0 \% 74$	0.89	0.53	－ 16	$0 \cdot 10$	4.57	0.07	0．24	0.07	I ${ }^{\circ} 93$	$0 \cdot 17$	$5 \cdot 67$
6.24	1884	$3 \cdot 28$	0.95	I． 84	0.88	$0 \cdot 56$	$0 \cdot 15$	I•II	I 20	1\％78	0	O．II	0	$5 \cdot 68$
7.51	1885	4．19	0.62	2.59	7×35	300	$0^{\circ} 12$	0.02	1 97.	0	0．06	O．OI	0.42	12．46
II＊ 41	I886	$4^{\circ} \mathrm{OI}$	I．16	5’75	I ${ }^{3} 3$	I 55	o	1.50	0	0＇20	0．09	$0 \cdot 22$	0.48	$4 \cdot 58$
I．96	1887	$0 \cdot 13$	0.07	0.89	0.64	$0 \cdot 05$	o	0.80	I＊08	1．25	0.05	0	$0 \cdot 15$	$3 \cdot 82$
$3 \cdot 67$	1888	0.66	I＇3I	I 50	$0 \cdot 33$	O＇II	$0 \cdot 20$	0.86	142	0	0	2.14	0．17	$2 \cdot 92$
8．10	1889	I．98	$2 \cdot 66$	I＇I5	I 93	0.32	o	0.30	$2 \cdot 33$	o	0	0	0.02	$4 \cdot 88$
I＇70	1890	$0 \cdot 50$	0.23	$0.95{ }^{\text { }}$	I． 89	0.20	0	1347	I ${ }^{\circ} 94$	0.02	0．19	4＊02	$2 \cdot 33$	$5 \cdot 52$
15.27	1891	4.41	2.69	r． 63	2.59	0.32	O．I4	$0 \cdot 20$	0.67	0.08	0.20	$0 \cdot 37$	o	$4^{\circ} 00$
2.04	1892	0．19	$0 \cdot 23$	r．05	0.03	0.50	$0 \cdot 42$	$3 \cdot 68$	17．75	0.07	O．12	$0 \cdot 12$	$0 \cdot 37$	22.45
$6 \cdot 72$	1893	$3 \cdot 17$	0.71	$2 \cdot 23$	$0 \cdot 79$	0.69	$0 \cdot 06$	6.89	0．3I．	I 23	o	o	0×94	997
$5 \cdot 30$	1894	I＊96	0×94	I． 46	2.55	0.79	0	I＇74	0.41	0	O•I2	$0 \cdot 03$	0.44	$5 \cdot 49$
9.08	1895	0.08	0.88	7.53	2．02	0.03	0＊40	0	I． 84	0.33	0.07	$0 \cdot 16$	o	$4 \cdot 62$
$4 * 90$	I896	0.98	2.44	I． 25	0.26	0.50	o	$0 \cdot 35$	0．10	o	0	I．06	0	I＇2I
7＊49	1897	$3 \cdot 23$	I＇I4	$2 \cdot 06$	2.72	I 44	0.47	0.54	476	0.41	o	0	I 25	10．34
6.25	I898	0.05	$2 \cdot 60$	$2 \cdot 35$	0.42	I 37	0.05	4.22	0.40	I＊ 41	0	0	$0 \cdot 40$	7.87
6.15	1899	\bigcirc	3.07	$2 \cdot$	$1 \cdot$	$0 \cdot 20$	$0 \cdot 17$	0.88	$0 \cdot 95$	0	0．06	o	$0 \cdot 05$	3.44
3＇95	1900	I 57	I 37	$0 \cdot 90$	r 99	$2 \cdot 36$	0.07	0•19	I＊34	0.71	0.05	0.09	0.89	$6 \cdot 66$
$7 \cdot 37$	Igor	I． 69	I 53.3	$3 \cdot 12$	0.84	5．16	0.40	O． 14	$0 \cdot 10$	I－2I	0.29	0	0.04	$7 \cdot 85$
I•19	1902	o	$0 \cdot 12$	0.74	0.65	0．10	0.52	0.78	0.05	0.57	$0 \cdot 54$	0.05	0	$2 \cdot 67$
57^{2}	1903	I＊ 41	0	372	I＇04	$2 \cdot 10$	0.13	$0 \cdot 45$	I 00	I＊I3	o	$0 \cdot 08$	I＊03	$5 \cdot 85$
117\％	1904	$3 \cdot 30$	0.03	7×27	0.94	$0 \cdot 34$	o	0.83	I ${ }^{1} 4$	I 06	0.47	0.07	0•19	431
$9 \cdot 13$	1905	I． 60	I＇9I	$4 \cdot 89$	0.67	I． 84	o	$0 \cdot 12$	$0 \cdot 15$	I＊52	0	0	2.54	430
$8 \cdot 12$	1906	0	4.34	I 24	0．91	0×47	0.09	0.57	I． 46	0.63	0＊39	o	I． 46	4－13
8.00	1907	＇157	275	I．83	3.62	$0 \cdot 22$	$0 \cdot 36$	1．33	I＇13	\bigcirc	0	0	o	$6 \cdot 66$

SHAHPUR．
Raintall．
Elevation 647 teet．

	Year．	䔍 莒			荷	$\stackrel{\Delta}{\mathrm{C}}$	邑	者		$\begin{aligned} & \dot{0} \\ & \text { 苛 } \\ & \text { H } \\ & 00 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { io } \\ & \text { U } \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{H} \\ & \text { 曹 } \\ & 0 \\ & \text { 女 } \end{aligned}$		
		＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂		
	1854	？	I． 40	$0 \cdot 50$	0	I．30	17%	$2 \cdot 20$	I＇90	I•то	0	0.60	0	$8 \cdot 20$
2•10	1855	I 50	？	？	？	O．10	0.70	$6 \cdot 50$	$2 \cdot 90$	2.80	0．10	o	0	13.00
$3 \cdot 50$	1856	O．10	0.20	$3 \cdot 10$	0.80	$0 \cdot 30$	I＊00	4×40	12．60	I． 40	o	o	0	20.50
$3 \cdot 60$	1857	$2 \cdot 00$	I． 60	o	I．80	$0 \cdot 30$	0.60	$4 \cdot 30$	$4 \cdot 60$	I－20	$0 \cdot 40$	o	o	12．80
290	1858	I． 60	0.80	0．10	O 10	0	0.70	$6 \cdot 30$	0.50	0.50	0	o	0.30	$8 \cdot 10$
$3 \cdot 00$	1859	0.90	0.80	I 00	I 30	$0 \cdot 40$	I．00	150	$2 \cdot 10$	I＇00	0	0．10	0.40	$7 \cdot 30$
2\％70	1860	$0 \cdot 60$	I．00	0.60	0	I ${ }^{\circ} 0$	I•30	I•50	3.70	0.80	0	0	0	8－30
2．70	I86I	I－20	0	I． 50	0	$0 \cdot 50$	$0 \cdot 30$	$4^{\circ 00}$	$6 \cdot 00$	0	0	0	$2 \cdot 00$	10.80
$5^{\circ} 00$	1862	I．00	0	$2 \cdot 00$	I 00	0	2.90	$6 \cdot 30$	5．10	$5 \cdot 00$	0.90	0×40	0	20．30
3.90	1863	I－60	0•10	0.90	0	0	2．10	$7{ }^{\circ} 00$	$4^{\text {10 }}$	0	\bigcirc	0＊IO	$0 \cdot 50$	13.20
I－30	1864	$0 \cdot 20$	0.50	o	2：20	I． 80	0.80	I．60	$2 \cdot 30$	I 20	0	0	I． 00	9.90
9.00	1865	$2 \cdot 10$	$3 \cdot 30$	$2 \cdot 60$	$0 \cdot 10$	$\bigcirc \cdot 10$	0	$3: 30$	$4 \cdot 40$	$2 \cdot 00$	o	O．10	I 40	$9^{\circ} 90$
$4 \cdot 50$	1866	I＊40	1．30	0.30	$0 \cdot 30$	0	$0 \cdot 10$	$4 \cdot 60$	I＊90	I．00	0	0	0	$7{ }^{\circ} 90$
$2 \cdot 50$	1867	0.40	0.60	I 50	r＇io	I． 40	0.50	I 50	4.50	I．30	0	o	0•10	$10 \cdot 30$
$3 \cdot 10$	I868	0	2.40	0.60	o	o	0.90	I＇30	I＇10	$0 \cdot 60$	0	o	0	3.90
$0 \cdot 00$	1869	0	0	0	0	\bigcirc	o	I．60	I 60	I．00	$0 \cdot 10$	o	0.20	$4 \cdot 20$
$2 \cdot 50$	1870	o	0	$2 \cdot 20$	0.50	0.50	I 50	1＇10	$3 \cdot 30$	0	0	o	I． 40	6.40
2．80	1871	0	1．40	0	0	0	440	3.00	2.50	0	o	0	0.50	10.40
$2 \cdot 30$	1872	0.40	\bigcirc	1．40	1．20	$2 \cdot 50$	400	770	5.40	$2 \cdot 30$	\bigcirc	o	0.20	23．10
$2 \cdot 00$	1873	I． 30	0.20	0.30	\bigcirc	$2 \cdot 20$	0.50	x＇70	$4 \cdot 10$	$4^{\circ} \mathrm{OO}$	I 30	0	0．80	12.50
3.70	1874	I 20	o	0.40	0.70	－	I．50	$5 \cdot 20$	$3 \cdot 40$	$2 \cdot 20$	o	0	o	13.00
I－80	1875	0	$\mathrm{I}^{\prime} \% 0$	0．10	o	0.60	0.60	I＊90	0.90	370	o	0.80	0：70	770
4^{-20}	1876	0.20	0.90	I．60	1．20	0.90	I． 80	$3 \cdot 10$	3.90	0．20	I．40	0.80	o	II＊IO
6.40	1877	1．00	$3 \cdot 20$	I 00	$2 \cdot 20$	$0 \cdot 30$	1．70	$0 \cdot 10$	$0 \cdot 50$	o	o	$3 \cdot 10$	2.30	4.80
1540	1878	0.40	9.30	0.30	0.90	3.50	0	3.70	$4 \cdot 60$	$6 \cdot 60$	\bigcirc	o	0	19.30
$2 \cdot 10$	1879	0	0	$2 \cdot 10$	0	0	0.90	0.80	$6 \cdot 60$	0．20	0	o	o	8.50
I． 50	1880	0	1．50	0	0	0.30	$0 \cdot 50$	$2 \cdot 50$	3.20	I．90	0	$0^{\prime} 20$	0.60	8.40
$2 \cdot 60$	188I	o	o	I． 80	I 00	0.20	4×40	370	2.40	0	I＇IO	0	0	Ir $\% 0$
2.50	1882	I．40	－	0	0.90	0＇50	0	I．050	I 60	$9^{\circ} 00$	0	0	0	22.50

SHAHPUR－（Contd．）

Rainfall．
Elevation 647 feet．

	Year．	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { E } \\ & \text { 万 } \end{aligned}$		这	腒		足	$\stackrel{\square}{\square}$		$\begin{aligned} & \text { H } \\ & \text { 葛 } \\ & \text { H } \\ & \text { む } \\ & \text { W } \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \text { 曷 } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{U} \\ & \text { B } \\ & \text { U } \\ & \text { U } \end{aligned}$	
		＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂		
270	I 883	2970	0	0	0	$0 \cdot 30$	0	9° Io	$2 \cdot 20$	0	0	I 40	0	II 60
$2 \cdot 80$	I 884	$0 \cdot 20$	$0 \cdot 50$	0.70	I 20	0	0.80	3＊00	$0 \% 70$	$3 \cdot 80$	0	0	0	9.50
2.80	I885	2．10	$0 \% 70$	0	$2 \cdot 10$	2.90	0	$2 \cdot 10$	I＇50	I－80	0	0	0	10.40
$5{ }^{\circ} 00$	1886	I ${ }^{\prime} 20$	0.50	$3 * 30$	0	I＊00	O＊IO	$7 * 90$	$0 \cdot 60$	$2 \cdot 10$	0	0	0	117\％
$\bullet 10$	工887	0	0	$0^{\circ} \mathrm{IO}$	$0 \cdot 30$	0	0.80	I＇IO	0.60	I ${ }^{\text {IO }}$	O＊IO	0	0	3.90
3．10	I888	0.80	I＇00	I＇20	0	9840	$0 \cdot 40$	$3 \cdot 50$	4.00	0	$0 \cdot 60$	0.40	0	$8 \cdot 30$
$4 \cdot 30$	1889	I＇30	1＊70	$0 \cdot 30$	$0 \cdot 20$	0.40	0ッ70	I＇00	4.60	0.60	0	0	0	7.50
I＊O3	1890	O．12	O＾I3	0\％78	0.63	0.33	I 82	I•II	2.50	0	$0 \cdot 34$	2.50	I＊50	$6 \cdot 39$
$9^{\circ} \mathrm{I} 2$	1891	$2 \cdot 31$	I＇IO	1．37	0＊75	O•18	$0 \cdot 28$	$2 \cdot 58$	2•18	O＇I5	0.06	0	0	$6 \cdot 12$
$\cdot 38$	I892	0.13	O＇土 8	O＊OI	0	0	I•59	9.41	5.47	0.38	O． 19	0	$0 \cdot 94$	16.85
4.48	1893	$2 \cdot 29$	$0 \% 70$	0．26	I．58	$3{ }^{\circ} \mathrm{OI}$	0.40	I． 49	$2 \cdot 24$	$2 \cdot 22$	0	0	0.28	10．94
$5 \cdot 46$	1894	I ${ }^{\prime}$ II	0.70	$3 \cdot 37$	I． 80	0	0.80	9^{-12}	$0 \cdot 52$	I＊47	0	0	0.26	1371
$4 \cdot 28$	1895	$0 \cdot 3 \mathrm{I}$	0．28	3.43	0.52	O．13	$2 \cdot 50$	4＊00	$4 \cdot 26$	$0 \cdot 30$	0	0．04	0	II． 61
$2 \cdot 59$	1896	$0 \cdot 30$	$0 \cdot 72$	1．53	0	0.09	2.52	3.53	3.93	0×35	O．16	0.03	0	10.42
2.47	1897	I＇02	0．28	－＊98	0.88	O＇I8	I 60	$7 * 45$	5＇73	0.81	O＊IO	0	I＊60	16．65
$4 * 45$	1898	0.65	$2^{\circ} 10$	0	0	2.15	$2 \cdot 00$	5＊95	0＊15	I 25	0	0	0	11．50
$\cdot 52$	1899	0	$0 \cdot 37$	O．15	0.31	0.25	$2 \cdot 3 I$	0.96	0.62	0	0	0	0	4.45
I＇25	1900	0.45	0.54	$0 \cdot 26$	$0 \cdot 98$	2．15	0.56	0.63	0.74	2.97	0.42	0	I＇04	$8 \cdot 03$
3.95	IgOI	I＇47	$0 \cdot 30$	$0 \cdot 72$	0.98	4•13	$0 \cdot 92$	$2 \cdot 59$	I＇74	I＇52	0	0	0	II． 88
$\cdot 58$	1902	0	O	0.58	$0 \cdot 36$	1＊37	I＇50	I＊53	$5 \cdot 57$	I＇04	0	0	0	II＊37
I．69	1903	$0 \cdot 38$	0	I 3 I	0.72	0．53	$0 \cdot 35$	$3 \cdot 05$	4.60	$0 \cdot 32$	0	0	$0 \cdot 35$	9.57
$6 \cdot 45$	1904	2.05	0	$4^{\circ} 05$	0	0	0	$2 \cdot 22$	3.99	0	0	0.74	$0 \cdot 12$	$6 \cdot 21$
3.44	1905	I＇II	I 26	O．2I	0	0．19	0.59	$2 \cdot 31$	0.80	$3 \cdot 53$	0	0	0.80	7.42
4.86	I906	0	$3 \cdot 10$	0.96	O＇I7	0	I＇05	I＇74	$7 * 60$	0.29	O＇II	0	$0 \cdot 08$	10．85
$3 \cdot 02$	1907	0	I ${ }^{\prime} 94$	0.89	$2 \cdot 78$	0.52	0.84	I＇73	2．OI	$\therefore 0$	0	0	0	$7 \cdot 88$

KOHAT．
Rainfall．

	Vear．	$\begin{aligned} & \dot{B} \\ & \text { 号 } \\ & \text { E } \\ & \end{aligned}$	会苞		要	－i	号	$\stackrel{\square}{\square}$	范	边	U	$\begin{aligned} & \text { L } \\ & \text { 兑 } \\ & 0 \\ & 0 \\ & 0 \\ & 4 \end{aligned}$		
		＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂		
	I852	0.63	？	4.54	？	？	？	？	？	？	？	？		
	I853						Not	on	record					
	I854	5＊94	？	？	？	？	？	13.70	$4 * 90$	$0 \cdot 40$	0.60	O＾IO	0	19＊00
3.93	1855	2＇I3	0	I ${ }^{\text {I }}$	$3 * 70$	$0 \cdot 30$	I．80	10.80	$2 \cdot 60$	$3 \cdot 30$	0.60	0	0	22.50
$2 \cdot 35$	1856	0.20	I＇05	$0 \cdot 50$	I＇00	0\％70	O＇IO	$2 \cdot 10$	？	？	？	？	？	3.90
	$\begin{gathered} \text { I857 } \\ \text { to } \\ \text { I } 86 \mathrm{I} \end{gathered}$	$\}$					Not	on	record					
	I862	？	？	？	$2 \cdot 30$	0.60	$0 \cdot 40$	$0 \% 70$	$0 \cdot 90$	I 30	I＇IO	I＇20	0	$6 \cdot 4$
$5 \cdot 60$	I863	$2 \cdot 30$	0	0	$0 \cdot 10$	0＊20	4＊10	$5 \cdot 80$	270	$0 \cdot 30$	0	0	0.60	I3．20
I＇IO	I864	$0 \cdot 30$	$0 \cdot 20$	0	430	$0 \cdot 50$	$2 \cdot 00$	0	0.80	0.80	0	0	$0 \cdot 20$	$8 \cdot 40$
8－00	I865	0.80	$3{ }^{\circ}$	3.50	$2 \cdot 50$	0.40	0	3＇10	$2 \cdot 30$	2.80	0.90	0	$2 \cdot 30$	II＇IO
5\％70	I866	0.40	0.90	I 20	0.50	$5 \cdot 90$	O•IO	I． 60	$2 \cdot 30$	$3 \cdot 40$	0	0	0	13：30
$2 \cdot 20$	I867	0	I．40	0.80	$3 \cdot 00$	0.90	\bigcirc	0	I＇90	$0^{\circ} \mathrm{IO}$	0	0	$0 \% 70$	5＊90
7×70	I868	$0 \% 70$	$3 * 40$	$2 \cdot 90$	$3 \cdot 40$	0.40	0770	I 20	$0 \cdot 20$	$0 \cdot 90$	O＾IO	0	I． 80	$6 \cdot 80$
I4 ${ }^{\circ} 00$	1869	0.80	I ${ }^{\circ} 00$	I 30	I．80	0．20	O：IO	$3 \cdot 00$	$3 \cdot 50$	$6 \cdot 00$	I＇IO	0	0	14.60
$4^{\circ 00}$	1870	0.80	0	$2 \cdot 10$	$0 \cdot 50$	0	$0 \cdot 90$	$6 \cdot 30$	$2 \cdot 60$	I 40	0	0	0	II＇70
$6 \cdot 70$	1871	O＇IO	5＊90	$0 \cdot 70$	0.60	I． 60	4．00	$3 \cdot 30$	2.50	0.90	0	0	0.60	12．90
400	1872	－220	I＇20	0	$2 \cdot 10$	$3 \cdot 50$	0	10＊40	$3 \cdot 10$	0.50	0.80	$0 \cdot 20$	0	$2 \mathrm{I} \cdot 60$
$3 \cdot 20$	1873	＇050	0.60	I＇IO	$0^{\circ} 10$	2．00	0	$2 \cdot 20$	2770	2.00	$0 \cdot 30$	0	0.60	9．06
$6 \cdot 20$	1874	$6 \cdot 00$	0\％20	I•IO	$0 \cdot 30$	0	10＊30	$7 \cdot 80$	I•30	0.60	0	0	0	20．00
4.40	1875	0	$3 \cdot 00$	I． 40	0	$3 \cdot 40$	$0 \cdot 20$	$3 \cdot 90$	4.70	9° IO	I．30	I 20	0.40	2I＊30
$9^{\circ} 20$	1876	2：00	0.60	3：70	I 50	$0 \cdot 20$	I＊20	$4 \cdot 80$	$2 \cdot 10$	I． 20	$3 \cdot 00$	2＇10	0.90	II＇00
13＊10	1877	I． 80	$3 \cdot 30$	2＊00	0.50	$2 \cdot 60$	$3 \cdot 40$	$0 \cdot 70$	I＇00	0.80	I＇90	13.00	4^{10}	9．00
$22 \cdot 60$	1878	I＇90	I． 60	$0 \cdot 10$	2000	2.20	$0 \cdot 10$	$7{ }^{\circ} 00$	$8 \cdot 80$	O＇IO	$2 \cdot 60$	0	0	20＊20
$5 \cdot 30$	1879	0	$0 * 40$	$2 \cdot 30$	0	0	0.80	240	$2 \cdot 80$	I＇50	0	0	0.60	7.50
I＇IO	1880	0	0.50	0	0	$2 \cdot 30$	$2 \cdot 10$	2：20	I 60	I＇90	0	0	$0 \cdot 70$	IO＇IO
450	I88I	0.20	$0 \cdot 50$	$3 \cdot 10$	3.90	0.80	I．60	I．80	2．00	0.60	0.80	0	0	1070

$$
\mathrm{KOHAT}-\text { (Contd. })
$$

Rainfall．
Elevation 1，754 feet．

	Year．				$\frac{\tilde{E}}{\square}$	完	号	官	4 $\stackrel{4}{20}$ $\frac{0}{4}$		$\begin{aligned} & \dot{0} \\ & \text { ö } \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \dot{H} \\ & \text { 苟 } \\ & \text { U } \\ & \text { Q } \end{aligned}$	，
		＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂		
3.25	1882	I．30	0.05	I＇10	$2 \cdot 20$	I－20	I＇IO	10．20	r 50	I 60	0	0	0	17．80
2900	1883	I 20	$0 \cdot 20$	I 50	1．30	0•10	$0 \cdot 40$	570	2.70	0	0.60	I－80	0	10：20
$7 \cdot 80$	1884	r 90	I 30	$2 \cdot 20$	$0 \cdot 40$	0×40	1．30	$3 \cdot 32$	$2 \cdot 59$	$2 \cdot 16$	0.78	0.33	\bigcirc	10．17
7.88	I885	$3 \cdot 26$	0×75	2.76	$6 \cdot 48$	$5 \cdot 80$	O 21	1．60	2.88	0.58	o	O•10	$0 \cdot 52$	I7．55
8.99	1886	2.77	I． 64	$3 \cdot 86$	I． 80	$2 \cdot 62$	054	I＊09	I＇77	I＇IO	0	0．24	0.25	8.92
I． 65	1887	0.06	0	I•Io	0.98	$0 \cdot 26$	0.96	$2 \cdot 07$	r．50	I＊29	0.47	0	0	$7 \cdot 06$
3.03	I888	0.72	I 14	0770	0.82	0	O．I8	0.56	$2 \cdot 08$	0	0．27	$2 \cdot 00$	0	$3 \cdot 64$
8.06	1889	I－12	$2 \cdot 87$	0.80	I 60	0\％71	I 50	$3 \cdot 14$	$3 \cdot 78$	0.84	0	0	0	II•57
$3 \cdot 38$	I890	0.78	$0 \cdot 29$	$2 \cdot 31$	$2 \cdot 22$	I． 65	0.94	0.78	$5{ }^{\circ} \mathrm{I}$	0	0．21	$2 \cdot 60$	I 53	10.60
15.51	1891	$4 \cdot 66$	2.77	374	I＊07	I 62	0.15	0.48	0.56	I． 64	0×37	o	0	$5 \cdot 52$
I•2I	1892	0	$0 \cdot 12$	0.72	0	0.7	0．18	375	14.99	0	0．8I	0	$0 \cdot 10$	$19 \% 0$
5＊94	r893	$2 \cdot 07$	0.33	2.63	0．70	$3 \cdot 17$	0.24	$6 \cdot 21$	I•I2	2.98	0.35	0	1．3I	14.42
5.09	1894	0.92	$0 \cdot 95$	I． 56	$2 \cdot 61$	$0 \cdot 32$	2.95	9•II	I•68	I•32	o	0	$0 \cdot 19$	17.99
7.82	1895	0	0.05	$7 \cdot 58$	0.79	o	0.83	I． 88	3.26	O．15	o	0.09	0	6.9 I
437	r896	I＇I6	I－83	I 29	0	$0 \cdot 34$	r 43	2.48	2.01	I．90	0.37	0．86	0	$8 \cdot 6 \mathrm{r}$
$6 \cdot 73$	1897	$2 \cdot 30$	I－82	I． 38	$4^{\text {¹ II }}$	I． 65	I 27	I． 54	4＊19	0.27	$0 \cdot 16$	o	0.97	13.03
$5 \cdot 94$	1898	O．IO	3×15	I．56	o	$2 \cdot 04$	$0 \cdot 43$	$2 \cdot 28$	$2 \cdot 85$	I 27	o	0	0.6 I	$8 \cdot 87$
4.50	I899	0	I＇78	$2 \cdot 11$	0.84	0.07	I 44	$2 \cdot 85$	0．8I	I．23	o	0.03	0	$7 \cdot 24$
$7 \cdot 26$	1900	277	I．51	$2 \cdot 95$	I 93	I． 48	0.57	2.55	4．10	I．07	$0 \cdot 01$	$0 \cdot 04$	0.98	II ${ }^{\prime} 0$
$7 \cdot 00$	190I	2071	0.83	2.43	0.30	$8 \cdot 20$	1．27	$0 \% 9$	$2 \cdot 23$	3.68	0.50	0	0	16.47
$2 \cdot 74$	1902	0	0．10	2.14	－ 38	0.72	0.46	$2 \cdot 39$	2.57	I． 63	I．25	0	0	9•15
7.40	1903	0.63	0	$5 \cdot 52$	0.94	I 39	0.75	I．36	I． 64	$6 \cdot 30$	o	0	I．06	12．38
II．8I	1904	2.63	0	$8 \cdot 12$	0.14	I．3I	$0 \cdot 32$	0.83	$3 \cdot 11$	0.86	I．93	0.84	$0 \cdot 16$	6.57
II•36	1905	2.22	$2 \cdot 58$	3.63	0×40	0.96	0.24	0.82	0.30	0×44	0×17	0	$2 \cdot 67$	$3 \cdot 16$
$8 \cdot 14$	2906	0	3.55	9＊75	I．46	I 41	I＇OO	$2 \cdot 51$	I•59	x•08	0.58	0	2.63	9.05
8.95	1907	I 03	2＇10	2.61	$3 \cdot 6 \mathrm{I}$	I． 67	0.79	0．86	3.42	r．18	0	0	0	II 53

I．AHORE．

Rainfall．
Elevation 702 feet．

Year．		寅		若	空	号	$\frac{\grave{Z}}{\Xi}$			$\begin{aligned} & \dot{0} \\ & \text { ơ } \\ & \stackrel{U}{0} \\ & 0 \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { ह̈ } \\ & 0 \\ & \ddot{U} \end{aligned}$
	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	
1851	？	？	？	I．00	$0 \cdot 45$	$0 \cdot 54$	15．II	I． 49	$2 \cdot 35$	o	0.60	$0 \cdot 10$
1852	0	1．78	$6 \cdot 49$	$2 \cdot 50$	I＇I4	$8 \cdot 80$	$3 \cdot 13$	5．51	$0 \cdot 57$	o	$0 \cdot 34$	0.05
1853	0.09	？	0.22	？	？	？	？	？	？	？	？	？
1854	$0 \cdot 34$	2.53	0.33	$0 \cdot 20$	0．21	$2 \cdot 98$	14.05	$9 \cdot 35$	079	2.15	0.50	$0 \cdot 04$
1855	0.45	？	？	？	？	？	？	？	？	？	？	？
$\begin{gathered} 1856 \\ \text { to } \\ \mathbf{1 8 6 0} \end{gathered}$						Not	on	record				
I86I	？	？	？	？	2．10	$3 \cdot 50$	$9 \cdot 10$	6.50	0	0	0	I 30
1862	$0 \cdot 10$	\bigcirc	$2 \cdot 50$	0	0.50	I． 30	9.40	3.50	0．30	$2 \cdot 30$	0.30	0
1863	2.40	0.30	$0 \cdot 30$	0	0	2.00	17．30	$2 \cdot 20$	o	ryo	0	0．20
1864	0	$0 \cdot 30$	0.50	I•10	$0 \cdot 30$	I．30	$3 \cdot 60$	$4 \cdot 80$	0	0	o	0.50
1865	I 30	2.50	I． 80	0.50	0.70	0	4.90	$3 \cdot 30$	$7 \cdot 20$	0	0	I．80
1866	0.40	0.50	0	0.20	0	0.50	$5 \cdot 30$	10．00	0	$0 \cdot 30$	0	0
1867	o	0.80	$0 \cdot 50$	0.80	$3 \cdot 40$	I．50	$5 \cdot 50$	$4 \cdot 80$	I． 60	0	o	I－20
1868	I＇50	$3{ }^{\circ} 00$	I． 60	I 20	I•10	0.90	$4 \cdot 60$	$0 \cdot 70$	0	o	o	0．50－
1869	0.60	0	3.40	o	0	I＇70	$5 \cdot 50$	$0 \cdot 20$	49°	3.60	\bigcirc	\bigcirc
1870	0	0	$0 \cdot 30$	$0 \cdot 10$	0	0.60	I． 20	$6 \cdot 20$	$0 \cdot 20$	－	0	$0 \cdot 60$
1871	0	1－50	－	0	I－30	0.70	$4 \cdot 30$	\bigcirc	0	－	0	0.90
1872	0.90	0.80	1．40	0	0.60	2.60	$6 \cdot 30$	$2 \cdot 80$	I 70	o	0	－
1873	0	0	0	0	150	0.40	13.20	$4{ }^{50}$	4.40	0	o	I 30
1874	2．00	0.90	I．00	o	0	$2 \cdot 00$	$4 \cdot 60$	$3 \cdot 30$	I． 40	0	\bigcirc	0
1875	0	${ }^{1} 53$	0	0	I 35	I． 60	3.37	16．42	II＊40	1．63	$0 \cdot 20$	$0 \cdot 30$
1876	0.06	O＇I3	1．45	0.72	0×35	I•I2	16．65	$2 \cdot 10$	0＊95	1.44	o	0
1877	I． 88	4.67	0.90	3.34	0.69	0	$2 \cdot 01$	O＇12	$2 \cdot 03$	0.70	I 32	2.57
1878	$0 \cdot 20$	2.46	0．19	I 45	1．77	0.36	5．96	$8 \cdot 03$	$0 \cdot 33$	0	0	$0 \cdot 13$
1879	0	0.01	I 32	0	O．OI	5.48	I－13	7×49	$3 \cdot 12$	0.17	o	0.45

LAHORE－（Contd．）．

Rainfall．
Elevation 702 feet．

	Year．	会		㐌	䓓	$\sum_{i=1}^{\infty}$	适	$\frac{\square}{\square}$	+3 00 00 30 30		L مٌ ¢ ¢	$\begin{aligned} & \dot{山} \\ & \text { 品 } \\ & \text { N } \\ & 0 \\ & \text { Z } \end{aligned}$	岕	
		＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂		
	1880	0	0.78	0	0	0.89	$3 * 10$	4．73	0.58	0.29	0	$0 \cdot 26$	0.64	
－	r 88 I	$0 \cdot 03$	I＊3I	$2 \cdot 35$	$0 \cdot 57$	$0 \cdot 95$	$0 \cdot 44$	42．38	$8 \cdot 05$	0．18	$0 \cdot 12$	0	0	
	I882	I． 43	I．8I	0.03	0.99	$0 \cdot 22$	$0 \cdot 47$	13.03	$9 \cdot 1.0$	IO． 35	0	0	0	
	1883	$2 \cdot 39$	$0 \cdot 33$	$0 \cdot 43$	O．18	$3 \cdot 05$	0.58	$2 \cdot 27$	0.70	10.72	0	0.66	$0 \cdot 07$	
	1884	$0 \cdot 3 \mathrm{I}$	I． 64	$0 \cdot 16$	0.58	0.53	2.43	$9 \cdot 35$	$2 \cdot 80$	$3 \cdot 29$	$0 \cdot 24$	0.08	0	
	r 885	I 47	$0 \cdot 46$	0	I．06	$4 \cdot 38$	0.8 I	4.50	4.43	$0 \cdot 37$	0	0	I＊23	
	1886	$2 \cdot 3 \mathrm{I}$	O．20	$2 \cdot 34$	0	0．08	3.93	II＊53	3.93	$0 \cdot 97$	$2 \cdot 27$	0.06	0.09	
	I 887	O＊4	0	0.05	O＂OI	O．14	2.45	2.50	9.98	I•I8	0	0	0	
	I 888	0.93	0\％71	0.53	$0 \cdot 12$	$0 \cdot 02$	0.53	$3 \cdot 67$	$6 \cdot 15$	0	0．16	0	$0 \cdot 02$	
	I 889	I＊54	$3 \cdot 83$	$0 \cdot 12$	0.44	I＇IO	I．51	$7 \cdot 32$	$6 \cdot 83$	$0 \cdot 26$	0	0	0	
	I 890	0.30	$0 \cdot 34$	0.58	0.99	0	$3 \cdot 35$	II 127	$7 \cdot 38$	0.25	$0 \cdot 12$	0.50	$2 \cdot 25$	
	189I	$3 \cdot 22$	0.47	2.87	0.51	0.65	$0 \cdot 36$	I． 56	$5 \cdot 70$	I 22	I•I2	0	0	
	I892	$0 \cdot 44$	O．18	0.06	0	0×72	$0 \cdot 99$	8．11	II 168	0.53	0	0	0.80	
	1893	$2^{\circ} \mathrm{OI}$	$3 \cdot 13$	0.64	0.49	I 90	$2 \cdot 72$	$7 \cdot 36$	0.50	$6 \cdot 85$	0	0	0.40	
	I894	3.91	0.76	0.98	0.40	0.04	$7 \cdot 54$	$3 \cdot 54$	$3 \cdot 60$	2．10	0	0	$0 \cdot 32$	
	I 895	I＊96	0.98	0.63	I＇28	\bigcirc	I． 49	I＇I6	4.64	0	0	\bigcirc	$0 \cdot 02$	
	1896	0．39	I 29	$0 \cdot 37$	0	$0 \cdot 25$	0.91	$2 \cdot 66$	3.73	$0 \cdot 14$	$0 * 02$	O＇12	0.03	
	I 897	I． 42	$0 \cdot 78$	0.44	O＇II	0.41	2.41	$3 \cdot 25$	9.87	0.33	0	0	I＊23	
	1898	0.06	$3 \cdot 25$	0	0	I．06	$2 \cdot 28$	10.49	0.28	0.65	0	0	$0 \cdot 37$	
	1899	0	0.13	$0 \cdot 20$	0.29	0	I 61	2.73	－0．90	0.25	O．IO	0	0	
	1900	0×45	$0 \cdot 32$	O＇I9	0.38	0.46	$0 \cdot 22$	6．14	$5 \cdot 67$	$7 \cdot 13$	0．17	0	$0 \cdot 94$	
	Igoi ${ }^{\text {l }}$	I＊54	$0 \cdot 22$	I•33	O•19	r．34	0.56	$9 \cdot 86$	2.83	0.09	0	0	0	
	1902	0	$0 \cdot 03$	077	0．25	0.73	$0 \cdot 92$	2.59	$3 \cdot 86$	$2 \cdot 45$	$0 \cdot 23$	0	0	
	1903	0.52	0.05	0.64	$0 \cdot 02$	0.82	0×33	$4 \cdot 36$	$5 \cdot 31$	$2 \cdot 25$	O．10＇	0	$0 \cdot 31$	
	1904	I．39	0	$5 \cdot 37$	$0 \cdot 32$	0．2I	0.99	0.76	2＊55	0.49	0.04	0.06	0	
	1905	I．86	I＇I2	0.43	0	0.03	$0 \cdot 56$	334	0	9＊19	$0 \cdot 33$	0	$0 \cdot 56$	
	1906	O．OI	2.99	I•I6	O．14	0．17	$0 \cdot 96$	2.46	$3 \cdot 21$	$8 \cdot 69$	0	0	$0 \cdot 25$	
	I907	$0 \cdot 72$	2.48	$0 \cdot 97$	I． 48	0．07	I．4I	I 51	$6 \cdot 25$	0	$0 \cdot 15$	C．OI	0	

BEAWAR．

Rainfall．

	Year．	$\begin{aligned} & \underset{\sim}{E} \\ & \underset{\sim}{E} \end{aligned}$	$\begin{aligned} & \text { L } \\ & \text { 苛 } \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$	号		$\begin{gathered} \text { ふi } \\ \text { ふin } \end{gathered}$	$\stackrel{\stackrel{\circ}{E}}{\underset{E}{E}}$	$\stackrel{i}{\Xi}$	$\begin{aligned} & \dot{3} \\ & \stackrel{3}{3} \\ & 00 \\ & \underset{4}{3} \end{aligned}$		$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{4} \\ & \frac{0}{0} \\ & \text { B } \\ & \stackrel{y}{0} \\ & 0 \\ & z \end{aligned}$		
		＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂		
	I856	$?$	？	？	O＇I0	0	I＇70	II $\cdot 60$	$5 \cdot 30$	I 20	0	0	0	19＊90
3＇10	1857	$2 \cdot 70$	0.40	0	$0 \cdot 30$	$0 \cdot 30$	$7{ }^{*} 40$	I＇20	II＇50	$3 \cdot 20$	0	0	0	$25 \cdot 90$
I 00	I858	I 00	0	0	0	0	0	19．50	$0 \cdot 30$	I ${ }^{2} 20$	0	－	0	$25 * 90$
I＇00	1859	0.40	0	0.60	0	0	$2 \cdot 10$	10.60	6.50	$3 \cdot 80$	0	0	0	23.00
$0 \cdot 20$	1860	0	$0 \cdot 20$	O	0	$x \cdot 30$	0.70	2.80	I＊90	$0 \cdot 30$	0	0	0	7.00
0＊00	I86I	0	0	0	0	$0 \cdot 30$	$2 \cdot 30$	2.40	14.20	0	0	0	$0 \cdot 20$	19＊20
$0 \cdot 20$	I862	0	0	0	0	0	2．10	23.50	$7 \cdot 30$	$9^{\cdot 20}$	0.60	0	0	42＊10
0.60	I863	0	0	0	0	0	9.50	10.90	$2 \cdot 50$	0	0	0	0	22.90
0.00	I864	0	0	0	0	0	$0 \cdot 30$	$9 \cdot 30$	10.20	$0 \cdot 90$	0	0	0	20\％70
2.50	1865	$0 \cdot 30$	O＊IO	2＊10	I＇00	0	0.40	$2 \cdot 80$	II＇IO	I． 50	0	0	0	16．80
0.00	I 866	0	0	0	0	0	I＇IO	$3 \cdot 80$	$9^{\circ} 00$	0	$0 \% 70$	0	0	13.00
0.90	1867	0	0	0．20	$0 \cdot 20$	0.50	I 220	$4{ }^{*} 40$	$8 \cdot 00$	0.80	0	0	I． 60	$15^{\circ} 10$
I＊70	I 868	0	0	O－10	0.30	$0 \cdot 10$	0.40	$3 \cdot 80$	$0 \cdot 80$	0	0	0	0	$5 \cdot 40$
I 40	1869	0.50	$0 \cdot 30$	0.60	0	0	0	$2 \cdot 00$		10\％70	I＇00	0	$0 \cdot 20$	I5＊IO
I＇90	1870	0	0	$0 \cdot 70$	0	0	0.80	4.70	5．10	I＇IO	0.40	0	I＇00	10＊70
I 40	1871	0	0	0	$0 \cdot 32$	$0 \cdot 75$	$8 \cdot 53$	6.94	0.85	I＇7I	0	$3 \cdot 20$	0.21	I9＇IO
3.41	1872	0	0	0	0	0.30	0.90	370	15.80	0.49	0	0	0	2I＇I9
0.30	1873	O 10	O＇20	0	0	I． 85	0.74	18．75	$8 \cdot 06$	I＇7I	0	0	0	$3 \mathrm{X} \times 11$
$0 \cdot 12$	1874	$0 \cdot 07$	0.05	0	0	$0 \cdot 02$	I 68	$10 * 74$	$6 \cdot 48$	I＇75	0	0	0	20.67
2.03	1875	0	2＊03	0	0	2.90	I 26	$6 \cdot 04$	I＇I8	16．56	0	0	0.68	$27^{\circ} 94$
0.68	1876	0	0	0	0.09	0.62	I．76	$7 \cdot 20$	4.69	$9 \cdot 00$	$0 \cdot 19$	0．23	0	$23 \cdot 36$
0.42	1877	0	0	0	0.50	O＇I8	2．78	$8 \cdot 59$	0.43	0.41	2.52	I＇I2	0.66	I2．86
439	1878	0	0.09	0	0	0.28	$2 \cdot 98$	t． 58	I2．64	0.29	0	0	0	20：79
O ${ }^{\circ} \mathrm{I} 0$	1879	0	0	O．10	0	$0 \cdot 20$	$5 \cdot 20$	I． 60	$8 \cdot 80$	0.30	0	0	0.70	16．10
0×70	I880	0	0	0	0	0.60	I＇IO	$6 \cdot 90$	3.30	3.50	$0 \cdot 60$	0	0	I5＊40
0.80	I881	0	0	$0 \cdot 20$	0.40	0	$0 \cdot 10$	IO＊50	6.80	$2 \cdot 10$	0	0	$0 \cdot 50$	I9．90

BEAWAR．－（Contd．）

Raintall．

	Year．				若	ion	$\underset{\Xi}{\Xi}$	$\underset{\equiv}{\Xi}$	$\begin{aligned} & \stackrel{+}{4} \\ & \stackrel{2}{2} \\ & \stackrel{0}{20} \\ & \frac{1}{4} \end{aligned}$	号	辿	$\begin{aligned} & \dot{0} \\ & \text { N } \\ & \text { 呙 } \\ & \Delta \\ & 0 \\ & Z \end{aligned}$	辿	
		＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂		
I 60	1882	0.80	$0 \cdot 30$	\bigcirc	0	0.80	$0 \cdot 90$	15：30	2＊10	$3 \cdot 50$	0	0	0	$22 \cdot 60$
$0 \cdot 30$	1883	$0 \cdot 30$	0	0	0	I 16	0.60	$5^{\circ} 00$	$0 \cdot 30$	$5 \cdot 20$	0．20	0	0	12．26
$0 \cdot 20$	I 884	0	0	0	0	0	24.40	$7^{\circ} 10$	$4 \cdot 30$	10.85	0	0.05	0	24.65
0.45	1885	0.40	0	0	0	$0 \cdot 70$	$3 \cdot 10$	$5^{\circ} 10$	$9 * 90$	0	0	0	0.40	I． 8.80
0.40	I886	0	0	0	0	O＇IO	r．65	3.70	$3 * 95$	0	$0 \cdot 50$	0	0	9.40
$0 \cdot 70$	1887	$0 \cdot 20$	0	0	0．20	0	$0 \% 70$	I2．90	$5 \cdot 50$	$0 \cdot 60$	0	0	0	19．90
I 10	1888	0．60	0	$0 \cdot 50$	0	0	$0 \cdot 50$	$2 \cdot 30$	II＊ 10	0	0	0	0	13．90
0.20	1889	O＊IO	$0 \cdot 10$	0	$0 \cdot 20$	$0 \cdot 70$	$6 \cdot 00$	$2 \cdot 33$	$7 \cdot 40$	0	O＾10	0	0	I6．63
$0 \cdot 20$	1890	0	o	$0 \cdot 10$	0	O．10	$0 \cdot 50$	4.90	4.80	$3 \cdot 20$	O．10	$0 \cdot 30$	0.50	13.50
I－80	I891	0.40	0	0.50	0.60	0	$0 \cdot 20$	$5^{\circ} 10$	I 20	I＇I8	O＾12	0	0	$8 \cdot 28$
$0 \cdot 68$	I 892	0．56	0	0	0	O．2I	I＇7I	$5 \cdot 48$	II＇74	10.82	$0 \cdot 21$	0	$0 \cdot 20$	29.96
$2 \cdot 36$	工893	I＇OO	0.53	0.42	0	I 60	$8 \cdot 15$	5.45	472	$2 \cdot 8 \mathrm{I}$	0.15	$2 \cdot 25$	0．20	$22 \cdot 73$
2＊93	1894	O•IO	O\％OI	$0 \cdot 22$	0.08	\bigcirc	IO＊93	$4 \cdot 15$	$2 \cdot 10$	$2 \cdot 84$	0	0	$2 \cdot 86$	$30 \cdot 10$
$3 \cdot 63$	1895	O＊I9	0	0.58	$0 \cdot 56$	0	O＂57	$5 \cdot 52$	$7^{\circ} 04$	0×94	O＊I3	0	0	14．63
$0 \cdot 16$	1896	0.03	\bigcirc	0	0	0	$3 \cdot 67$	$7{ }^{\circ} 43$	12．76	0	0	0＊39	0.05	23.86
0.44	1897	0	\bigcirc	0	0.02	0	0.87	12．25	$7 \cdot 27$	2＊04	$0 \cdot 16$	0	0	22.45
0.56	1898	0	0×40	0	0	$0 \cdot 48$	I＇I9	4.47	0.93	4.55	\bigcirc	0	$0 \% 70$	II． 63
$0 \cdot 70$	1899	o	0	0	0	0	I＇54	$2 \cdot 68$	0	0.66	O．	0	0	$4 \cdot 88$
0.00	1000	o	0	0	0.49	O．91	I．36	$5: 33$	$6 \cdot 57$	6.51	0	0.57	0.54	$2 \mathrm{I} \cdot 17$
I－80	Igoi	0.50	0	0．19	0	$0 \cdot 12$	$2 \cdot 54$	$5 \cdot 08$	$2 \cdot 20$	0.16	0.47	0	0	10＇10
$0 \cdot 47$	1902	0	0	O	0	O＇I5	I＊23	3.45	$3 \cdot 60$	3.78	$0 \cdot 36$	0	0	12．2I
0.91	1903	o	O．IO	$0 \cdot 45$	0	$0 \cdot 26$	0.55	II．86	$4 \% 0$	$2 \cdot 65$	0	0	0	20．02
0.65	1904	σ	0×04	0.61	0	I 49	2.95	$4 * 20$	3＊79	0.41	0	0	$0 \cdot 17$	I2．84
$0 \cdot 73$	1905	0.07	0.47	O．O2	0	0.05	0	2.44	－ 19	4.75	0	0	0	7.43
$0 \cdot 91$	1906	0	0＊9I	0	0	0	O＇94	$9 \cdot 83$	3.44	$5 \cdot 84$	0.26	0	0.44	$20 \cdot 05$
3.17	1907	0	$2 \cdot 58$	$0 \cdot 59$	0.09	I＇I7	0.46	I•37	17.14	0	0	0	0	20．23

$A J M E R$ ．

Raintall．

	Year．		$\begin{gathered} B \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$		$\begin{aligned} & \dot{Z} \\ & \dot{B} \\ & \hline \end{aligned}$	辰	$\begin{aligned} & \stackrel{B}{3} \\ & \stackrel{y y}{3} \end{aligned}$	$\stackrel{\square}{3}$			$\begin{aligned} & \text { 世 } \\ & \text { O } \\ & \text { O } \\ & 0 \end{aligned}$		L O U U ®	
		＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂
	1863	0.50	0	0＊10	0	$0 \cdot 53$	9770	12＊34	2.97	0	I 20	0	0	25.54
$2 \cdot 62$	1864	$0 \cdot 92$	0.50	0	0	0．11	0．08	7×97	$8 \cdot 54$	0.52	0	0	0	17＊ 22
$6 \cdot 00$	1865	0.25	0.75	$5^{\circ} 00$	0	\bigcirc	0.02	I 47	$7 \cdot 38$	I•I8	0.42	0	0	10．05
$0 \cdot 42$	I866	c	0	0	0.44	$0 \cdot 35$	I 33	3＇70	20：04	0	$0 \cdot 30$	0	0	$25 \cdot 86$
$0 \cdot 30$	I867	0	0	0	$0 \cdot 30$	0.51	$2 \cdot 05$	$7{ }^{\circ} 00$	I3．92	I 66	0	0	工 83	25.44
$2 \cdot 28$	I868	0	$0 \cdot 12$	$0 \cdot 33$	0.30	$0 \cdot 22$	I． 03	$6 \cdot 37$	0.85	0	0	0	0.06	$8 \cdot 77$
2.81	I869	0.40	$0 \cdot 40$	I 95	0	0	0	$4 \cdot 65$	I＊55	14.60	$0 \cdot 20$	0	0＇17	$20^{\circ} 00$
İ09	1870	0	0	0772	0	0.03	$3 \cdot 40$	0.67	II＇30	0.05	0.40	0	0.40	15.45
0.80	I87I	0	0	0	0.05	I＇I2	$8 \cdot 23$	$6 \cdot 65$	0.50	4.25	0	0.90	0	20\％00
I 20	1872	$0 \cdot 30$	0	0	0	I 20	I 28	7.57	I8．15	$3 \cdot 35$	0	0	0.15	$3 \mathrm{I} \cdot 55$
$0 \cdot 30$	I873	$0 \cdot 15$	0	0	0	エ＇77	I＊7I	9：13	$5 \cdot 82$	$2 \cdot 58$	0	0	O＇II	2I＇OI
0＾21	I874	$0 \cdot 05$	$0 \cdot 03$	0.02	0	0.66	$4 * 59$	$5 \cdot 47$	5.02	I＇9I	0	0	0	17.65
2：94	1875	0．10	$2 \cdot 84$	0	0	I＇53	0.98	8．00	$4 \cdot 19$	17．80	0	0	0×93	32.50
$0 \bullet 94$	1876	0	0	O\％I	0	0	2.41	8．05	$5 \cdot 98$	$6 \cdot 33$	0.63	0．28	0.04	$22 \cdot 77$
$2 \cdot 04$	1877	$0 \cdot 04$	0.89	0．16	0.43	0.82	O．2I	$4 * 23$	$0 \cdot 23$	O＇19	I． 8 I	I＊35	I 40	$6 \cdot 11$
4.60	I878	0	0．04	0	003	$2 \cdot 78$	I 65	10：06	I5．32	I＇I7	0	0	0,	3I＇OI
I＇I6	1879	0	0.89	0.27	0＇02	$0 \cdot 13$	$6 \cdot 56$	0．38	16＊71	2＊03	O＇10	0	0.51	25.83
0.89	I 880	0	0．28	0	0	$0 \cdot 18$	0×94	10＇2	2.85	$2 \% 91$	0.47	0．28	O＇IO	17＊09
I＇40	I881	0.03	0＊03	0.49	$0 \% 70$	$0 \cdot 18$	0.45	$9 \cdot 26$	7．17	2.45	0	0	0.45	$20^{\circ} 21$
I．8I	I882	I＇05	$0 \cdot 31$	0	0	0.57	0＊33	I6•18	$5 \cdot 82$	$3 \cdot 20$	0	0	0	$26 \cdot 10$
0.40	I883	$0 \cdot 38$	0	0002	0	$2 * 19$	I＇09	9×24	0.45	$3 \cdot 91$	0	0	0	I6．88
$0 \cdot 39$	I884	0.23	O．12	$0 \cdot 04$	0	O＇I2	5＊05	$6 \cdot 65$	4.96	10＊4	0.05	O＇I8	O．OI	27 19
0.61	I885	0×37	0	0	0	I＇3I	4.54	7＇19	10＊92	0.21	0	0	0．28	24＇17
0×53	I886	$0 \cdot 20$	0.05	0	0	0.95	I． 89	3.94	$4 \cdot 60$	I＇50	2\％OI	0	0	I2．88
2.81	1887	0.80	0	0	0	0.08	I．97	10．55	$7 \cdot 82$	0\％70	0	0	O．OI	2I＊ 12
2＊75	1888	0.47	$2 \cdot 22$	0.05	0	\bigcirc	I＇I6	$5 \cdot 76$	I． 3.89	0.02	0.25	0.60	0	$20 \cdot 8$

A JMER-(Contd.)

Raintall.

NAGPUR．

Rainfall．
Elevation I， 025 feet．

	Year．		$\begin{aligned} & \text { 采 } \\ & \text { 足 } \end{aligned}$		葆	$\underset{\underset{\lambda}{\top}}{\text { İ }}$	$\begin{aligned} & \text { ① } \\ & \text { B } \end{aligned}$	$\stackrel{\Delta}{E}$			H 0 0 0 0	$\begin{aligned} & \dot{4} \\ & \text { 著 } \\ & \stackrel{0}{0} \\ & \text { 号 } \end{aligned}$	$\begin{aligned} & \stackrel{4}{0} \\ & \text { 䔍 } \\ & \stackrel{U}{\circ} \end{aligned}$	
		＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	
	1854	？	？	？	？	？	$6 \cdot 43$	$24 \cdot 8 \mathrm{I}$	4.44	957	$3 \cdot 15$	0	－	45.25
5｀10	1855	0.98	$0 \cdot 45$	$0 \cdot 52$	O＇II	0	$5 \cdot 40$	7.50	$3 \cdot 60$	445	3.09	o	o	2I＇04
3.09	I856	o	\bigcirc	0	0	2.03	$7 \cdot 20$	$24^{\circ} 00$	$10 \cdot 02$	2＇79	$0 \cdot 32$	o	o	$46 \cdot 04$
$0 \cdot 56$	1857	0.14	$0 \cdot 06$	0.04	0.62	I ${ }^{\text {9 }}$ I	$10 \cdot 52$	4.46	$8 \cdot 56$	7×7	$2 \cdot 75$	o	o	33.24
5．23	1858	\bigcirc	$2 \cdot 07$	0．4I	0	0.84	3.85	II＇96	5.88	$9 \cdot 60$	0.58	0	o	$32 \cdot 13$
0.58	1859	0	0	o	3.93	0.28	6.59	$6 \cdot 36$	14.94	I＇5I	0.08	0	0\％71	$33 \cdot 61$
0×54	I860	0	0.4 I	0.05	0	0.15	476	15.23	8.72	15.76	0.03	o	o	44.62
$6 \cdot 38$	I86I	3.15	0	0.54	o	I 35	13.84	17 ${ }^{1} 6$	$8 \cdot$	I 26	o	0	0	42．24
$0 \cdot 12$	1862	O•I2	0	0	$0 \cdot 05$	0.98	10.48	I 57	11＇02	$6 \cdot 66$	3.56	I ${ }^{\circ} 7$	0.31	$30 \% 6$
$6 \cdot 65$	1863	0．12	0	I 59	0	$0 \cdot 52$	10.44	15.66	4.24	6.51	0.6 I	0	o	$37 \cdot 37$
$2 \cdot 65$	1864	$2 \cdot 04$	o	o	0.74	I 95	734	$9 \cdot 10$	$8 \cdot 52$	$4^{\circ} 00$	0	0×97	0	31.65
457	1865	0	0	$3 \cdot 60$	$1 \cdot 30$	I 00	$10 \cdot 60$	13.46	$8 \cdot 60$	370	I．80	0.50	o	$38 \cdot 66$
4.20	1866	0	I＇90	o	o	0	$6 \cdot 20$	10＊10	14.42	8.89	I＊40	o	0.20	$39^{\circ} \mathrm{6I}$
r＇94	1867	o	0	0.34	2.60	104	14.50	12\％70	1070	13.28	2.54	0	$0 \cdot 05$	$64 \cdot 82$
$8 \cdot 15$	1868	4.84	o	$0 \cdot 72$	o	0.65	400	8.87	$4 \cdot 66$	r 67	0.08	o	0	19.85
0.76	1869	\bigcirc	0	0.68	0.20	0	4：12	$8 \cdot 62$	$9 \cdot 61$	730	2.46	o	O－39	29.85
5.97	1870	2.14	o	0.98	0.57	O．OI	949	18.98	1×88	$5{ }^{\circ} 00$	209	0.59	0	$35 \cdot 83$
3.05	1871	0.17	0.20	o	o	1＇33	12.80	I7＇I5	2.04	12．86	0	0	$0 \cdot 20$	$46^{\circ} \mathrm{I} 8$
0.26	1872	0	o	0.06	I＇OI	0	4.01	7×44	$9 \cdot 35$	14.80	4^{22}	o	$0 \cdot 05$	$36 \cdot 61$
5＊99	1873	0	I．02	070	0×35	$0 \% 8$	$4 \cdot 80$	$6 \cdot 03$	8.02	9．11	o	0	0.02	28.89
0.27	1874	0	0.25	o	0	0.57	8.53	19.43	733	$4 \cdot 6 \mathrm{I}$	$0 \cdot 04$	0	$0 \cdot 12$	$40 \cdot 47$
2.05	1875	$0 \cdot 39$	I＇50	0	O＇II	0	12.57	$20 \cdot 84$	$8 \cdot 73$	$6 \cdot 84$	$3 \cdot 88$	0	\bigcirc	$49^{\circ} 09$
4.05	1876	0	0	0×17	o	$0 \cdot 37$	2．8I	13.95	10.15	9.06	0.91	o	o	$36 \cdot 34$
$6 \cdot 05$	｜ 1877	423	0.66	0.25	$2 \cdot 16$	I．09	$9 \cdot 88$	14.86	12.76	4.53	476	O＇10	I 57	$45 \cdot 28$
$8 \cdot 04$	1878	o	0.65	0.96	I＇54	I＇30	3.86	17＇91	19.46	12.78	437	0	o	$56 \cdot 85$
$5 \cdot 00$	1879	0	0.63	0		592	13.46	$8 \cdot 48$	13.50	$6 \cdot 54$	$3 \cdot 65$	0	\bigcirc	$47^{\circ} 90$

NAGPUR．－（Contd．）

Rainfall．

	Year．				$\begin{aligned} & \text { 邑 } \\ & \text { 足 } \end{aligned}$	$\underset{己 心}{\infty}$	邑	$\stackrel{B}{E}$	$\begin{aligned} & \dot{\vec{u}} \\ & 0 \\ & 0 \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 . \\ & \ddot{G} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \dot{N} \\ & \text { 品 } \\ & 0 \\ & 0 \\ & \text { 右 } \end{aligned}$	$\begin{aligned} & \dot{\circ} \\ & \text { É } \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	
		＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	
$3 \cdot 65$	1880	o	\bigcirc	0	0	0.34	9.21	$8 \cdot 06$	2.91	10＇3I	$2 \cdot 64$	0.07	0	$30 \cdot 83$
4.87	188I	0.03	0	$2 \cdot 13$	o	0.76	19＊71	14.28	II＊56	10.24	$0 \% 44$	0．6I	0	$56 \cdot 55$
151	1882	0.42	$0 \cdot 02$	0.02	O＇II	0.27	8.92	23.44	I．85	9.88	$0 \cdot 11$	479	0	44.47
5.63	1883	$0 \cdot 39$	0	$0 \cdot 34$	o	$0 \cdot 27$	II＇37	15.21	12＇I7	$15 \% 2$	$5 \cdot 98$	0	0	54．74
$7 \cdot 34$	1884	1 25	0	O．II	O．OI	$0 \cdot 20$	4.08	18.99	15.02	13.74	0.22	0	2.68	52．04
$4 \cdot 87$	1885	0	$0 \cdot 57$	I＇40	I 47	2•10	970	I7．22	7＊13	3.01	1.08	$0 \cdot 53$	4＊7	$40 \cdot 63$
6.44	I886	0.02	$0 \cdot 34$	$0 \cdot 30$	o	0.08	5＊95	16.03	$6 \cdot 97$	$3 \cdot 38$	$9 \cdot 65$	0.03	0.60	32.41
10．3I	1887	0.03	\bigcirc	0	$0 \cdot 30$	$0 \cdot 36$	9＇99	18.05	12.62	$6 \cdot 65$	$4 \cdot 86$	I．76	0•13	47.97
9＊00	1888	1．75	$0 \cdot 33$	0．17	0.06	0	9.83	12.41	8.01	$5 \cdot 49$	$0 \cdot 37$	I•16	\bigcirc	$35 \cdot 80$
I•53	1889	0	o	o	I•19	0.06	$7 \cdot 66$	$9 \cdot 62$	II＇I9	$6 \cdot 10$	3.53	0	0	$35 \cdot 82$
3＊79	1890	0	0	0． 26	0．19	0.04	9.67	15.66	II＊72	13.92	0.06	$2 \cdot 53$	2.62	51：20
7.87	1891	I＇17	0.63	0．86	0×44	$0 \cdot 33$	0．01	1979	$5 \cdot 59$	24.69	0.59	\bigcirc	0	$50 \cdot 85$
I•16	I892	0	0.57	0	$0 \cdot 02$	O＇OI	$6 \cdot 17$	13.46	$8 \cdot 57$	Ir 54	374	0	$0 \cdot 03$	$39^{\circ} 77$
II＊23	1893	357	0.63	3.26	0．09	0．8I	$9 \cdot 84$	7×59	15×75	$8 \cdot 04$	$5 \cdot 83$	2.96	\bigcirc	$42 \cdot 12$
9.07	1894	O＇I2	0	0．16	0．18	$0 \cdot 16$	7＊95	13.56	13.50	14．12	4•15	2.48	$0 \cdot 18$	$49 \cdot 47$
$8 \cdot 17$	I895	0	0.65	0.71	I． 88	0.75	11＊32	19.07	18.76	$3 \cdot 45$	I＇02	0•16	0	54.53
I 35	1896	o	0	$0 \cdot 17$	0×12	0.03	1I＊96	17.97	18.33	$2 \cdot 30$	0	0.57	$0 \cdot 14$	50\％7
r＇72	1897	0.66	0.20	$0 \cdot 15$	0.56	0．18	4.96	12.55	13.04	$5 \cdot 32$	0．91	0	－	$36 \cdot 61$
$3 \cdot 55$	1898	\bigcirc	$2 \cdot 64$	0	I 36	0.35	6.47	19.92	12.83	9.64	0•15	0	$0 \cdot 08$	50.57
$0 \cdot 39$	1899	o	O＇I4	$0 \cdot 02$	0.42	0.57	4.94	$3 \cdot 54$	$2 \cdot 69$	$2 \cdot 04$	o	0	0	14．20
$0 \cdot 48$	1900	0	0.48	0	$0 \cdot 12$	O． 14	2.69	14.32	20.64	11．23	0	0	o	$49^{\cdot 14}$
3.00	Igor	0.97	I＇04	0.99	2.46	0.58	5.99	7.97	13.70	3.92	0	0	o	34.62
$0 \cdot 00$	1902	0	0	0	0.04	0.08	I．78	$9 \cdot 86$	$9 * 43$	4.09	I＊02	0.46	1.48	$25 \cdot 28$
$3 \cdot 10$	1903	O．OI	$0 \cdot 13$	0	0.06	2.09	7.01	23.49	14.50	5.05	432	0	0	52：20
$6 \cdot 59$	1904	0.07	$0 \cdot 19$	I＇II	0	$0 \cdot 51$	$8 \cdot 52$	$5 \cdot 15$	9.22	6.74	I 92	0	0.04	$30 \cdot 14$
3－10	1905	0.22	0.76	0.16	0.90	$0 \cdot 37$	748	13.50	10．13	17.72	0	0	－	50＇10
3.05	1906	0.21	0．3I	2.53	0	I＇14	18.47	14.64	$22 \cdot 37$	3.99	$0 \cdot 20$	0	$0 \cdot 50$	$60 \cdot 6$ I
3.66	1907	0×09	$2 \cdot 86$	0.01	I 66	O＇II	12＇14	13.63	II•0	5．14	0	0.72	0.09	44.48

JUBBULPORE．

Rainfall．
Elevation 1，327 feet．

	Year．				号	㝕	ت゙	需	蒔		$\begin{aligned} & \dot{0} \\ & \text { 另 } \\ & \text { U } \end{aligned}$			
		＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	
	I844	？	？	？	？	？	204	I2．55	12．26	I 61	o	0	0	28.46
I． 80	1845	$0 \cdot 50$	$0 \cdot 50$	0.80	0	0	3.95	19．28	I6．5I	I’\％o	0	0	I 68	4I＊44
2.45	1846	\bigcirc	0.75	$0 \cdot 02$	0	0	I4＊II	23.57	$9 \cdot 66$	9.34	I•10	o	0	$56 \cdot 68$
I－30	1847	$0 \cdot 20$	0	o	0	0	9.74	II．3I	$18 \cdot 60$	$2 \cdot 57$	$2 \cdot 13$	0.41	0	42.22
$2 \cdot 69$	1848	0	0×15	0	0	0.27	$6 \cdot 04$	I3．86	10.87	3.47	0.46	0	0	34.51
$3 \cdot 29$	1849	I－80	0.86	O「I7	$0 \cdot 2 \mathrm{I}$	$2 \cdot 40$	$3 \cdot 66$	10．I3	16.63	$7{ }^{72}$	3.09	0＇10	0×15	$40 \cdot 75$
4.24	1850	0	0.90	0	0.45	0	9.89	13.86	10．08	$6 \cdot 33$	3.03	o	0.05	$40 \cdot 61$
$4{ }^{\circ} 5$	1851	0×50	$0 \cdot 90$	$0 \cdot 02$	0	0.47	5×7	17＇19	$3 * 93$	$8 \cdot 22$	I 34	0	0	$35 \% 8$
4.8 I	1852	$0 \cdot 58$	o	2.89	o	I＇12	． $7 \cdot 56$	12.40	26.40	$23^{\circ} 00$	I＇70	o	0.40	$70 \cdot 48$
$3 \cdot 60$	1853	I 50	0	0	0	0	24.40	20＇50	13.40	？	？	？	？	？
？	1854	？	？	？	？	？	6.97	$6 \cdot 72$	13.90	12.75	$5 \cdot 84$	5＊7I	0.90	$40 \cdot 34$
18.93	1855	I 66	2.94	I． 88	$0 \cdot 28$	0	7×17	30.07	0.41	9\％I	$3 \cdot 85$	0	o	$47^{\circ} 64$
$5 \cdot 6 \mathrm{I}$	1856	0.03	I＇7I	$0 \cdot 02$	O｀II	0004	4.8 I	19：22	$10 \cdot 58$	$5 \cdot 2 \mathrm{I}$	0.6 I	I． 62	0	39.97
2.71	1857	\bigcirc	$0 \cdot 48$	o	0	0’10	2.50	II＇Io	26.50	10：40	0	0	0	50.60
－12	1858	0．12	0	o	o	0	0\％\％	20＊00	12.60	$5 \cdot 60$	0	o	o	$38 \cdot 90$
－ 41	I859	0.01	0．30	0	I 00	o	$5 \cdot 40$	15.90	14.90	10＇10	0.60	0	0．80	$47 * 30$
1×40	1860	o	0	0	0	0	2.48	I7．53	14.84	13.50	0	0	0	$48 \cdot 35$
2.90	I86I	$2 \cdot 12$	0	$0 \% 78$	0	0.36	$8 \cdot 56$	I7．59	10．65	4.97	0	0	0	$42 \cdot 13$
I－86	1862	I＇18	\bigcirc	0.68	$0 \cdot 09$	0	$5 \cdot 02$	$8 \cdot 84$	16．68	$5 \cdot 66$	0×95	0	0	$36 \cdot 29$
I．95	1863	$0 \cdot 35$	0.06	0.59	0	0	1773	I7．21	10．78	7.98	4.75	0	0	$53^{\prime \prime} 70$
$6 \cdot 34$	1864	I．2I	0.38	0	0×35	2.51	1．33	14.59	14.05	9.46	o	1．55	o	42.29
7×08	1865	$2 \cdot 20$	1．99	I 34	0	0	$5 \cdot 56$	$27^{\circ} 21$	14.89	$5 \cdot 80$	I．28	0×15	o	53.46
I 69	I866	0.03	$0 \cdot 20$	0.03	$0 \cdot 59$	0	13.15	23.76	10．96	4.39	0	0	0	$52 \cdot 85$
$\cdot 94$	1867	$0 \% 42$	0.07	0.45	0.28	0.04	II＇I5	$20 \cdot 45$	$20 \% 0$	17．36	ェ＇73	o	0.45	69.98
$7^{\circ} 25$	I868	2.81	I＇II	I＇15	0.04	$0 \cdot 32$	$9 \cdot 34$	$5 \cdot 8 \mathrm{I}$	4.25	3.81	0	0	－ 16	23.57
$\cdot 24$	1869	0.08	0	0	，	O	3.37	28.25	8.90	16．97	5．06	0	0．14	57.49

JUBBULPORE－（Contd．）
Rainfall．
Elevation 1,327 feet．

$\begin{aligned} & \text { 円i } \\ & \stackrel{y}{\circ} \mathrm{O} \\ & H \end{aligned}$	Year．			$\begin{aligned} & \text { 를 } \\ & \text { 怸 } \end{aligned}$	品	突	\＃	雨		$\begin{aligned} & \dot{4} \\ & \text { B } \\ & \text { B } \\ & \text { H } \\ & 0 \\ & \text { H } \end{aligned}$		$\begin{aligned} & \dot{0} \\ & \text { 品 } \\ & 0 \\ & 0 \\ & \text { 号 } \end{aligned}$	$\begin{aligned} & \dot{山} \\ & \text { 号 } \\ & \stackrel{U}{U} \\ & 0 \end{aligned}$	
		＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	
$7 \cdot 60$	1870	0.67	0.22	I＇5I	O＇IO	\bigcirc	12.84	27.39	18＊39	12.63	3.82	0．2I	0	71．35
5＊O1	187I	0.37	0.61	0	$0 \cdot 02$	0071	12．4I	19\％7I	I1 20	13＇19	0	0	I 00	57．24
3.45	1872	0.27	O．14	$2 \cdot 04$	0.65	0	5.45	$28 \cdot 67$	21．95	6•14	1.48	o	0.40	62．86
2.61	1873	0	0.49	0.24	0	076	$0 \cdot 33$	16.89	12．98	14．2I	0	o	0.21	45＇17
． 60	1874	0.36	0.13	0	0	0.97	$19 * 58$	$25^{\prime} 12$	36.14	438	$0 \cdot 20$	o	0.05	$86 \cdot 19$
－53	1875	$0 \cdot 20$	0.08	0	O＇IO	\bigcirc	7×49	$22 \cdot 60$	$8 \cdot 80$	II＇54	0.82	0	0	$50 \cdot 53$
－ 82	1876	0	0	0	0	1×02	2.19	$28 \cdot 33$	$12{ }^{\prime \prime}{ }^{2}$	12．37	0	0	0	56.63
5.40	1877	$2 \cdot 33$	I＇09	I． 98	352	$2 \cdot 62$	17．26	$7 \cdot 05$	9.82	I． 63	1×07	0	0	4I＇90
I．66	1878	0×12	0.47	\bigcirc	O＇12	$0 \cdot 32$	I． 85	Iİ7	12．4I	$7{ }^{20}$	$0 \cdot 17$	O＾II	0	33.61
I＇OI	1879	0	$0 \% 73$	\bigcirc	\bigcirc	0．06	8.60	$10 \cdot 84$	I7＊ 45	8.67	3.92	0	0	$45 \cdot 62$
$3 \cdot 92$	1880	0	0	0	\bigcirc	o	$6 \cdot 30$	I9＊II	7｀13	10.89	473	$2 \cdot 06$	0.03	43.43
$9 \cdot 17$	188I	O＇OI	0.24	210	0.05	0.27	$6 \cdot 8 \mathrm{I}$	21＊45	I7＊Io	1 75	O＇II	0．16	0	$47 * 43$
－29	1882	0	0.02	0	0.98	0.14	23.93	$30 \cdot 26$	II ${ }^{\circ} 00$	$2 \cdot 21$	$0 \cdot 07$	I＇I4	0	68.52
I＊99	1883	0.57	o	0.2 I	0	0.24	9.25	18＇10	5.98	12．50	I 43	0	o	46．07
4.04	1884	$0 \% 76$	I＇50	0×35	O OI	0＊39	13＊06	$36 \cdot 55$	$25^{\prime 3} 3$	14．04	$2 \cdot 33$	0	0.46	89.37
4.55	I885	1＊37	0.27	$0 \cdot 12$	0.08	4.41	13.71	$20^{\circ} 27$	12．5I	$0 \cdot 76$	$0 \cdot 14$	1×45	492	51＊74
7×5	I886	o	O．10	0.94	\bigcirc	I•34	II＊48	18.34	$7{ }^{\prime 25}$	$2 * 98$	$6 \cdot 26$	0	$0 \cdot 42$	4 ${ }^{\prime} 39$
10．66	1887	3.98	o	o	0	$0 \cdot 28$	738	$40^{\prime} 57$	22.82	$10 \cdot 38$	5．08	0×29	$0 \cdot 32$	8 I 43
$8 \cdot 05$	1888	2.02	0．26	$0 \cdot 08$	$0 \cdot 02$	0．18	477	17.60	17．34	2.24	0．13	0×25	0	$42 \cdot 15$
I＊96	1889	$0 \cdot 05$	0.89	0.64	I 06	0．08	9.57	2039	30.02	2.22	I 66	0	0	63.34
3.23	1890	0	0．08	I＊49	O＇II	0.05	$8 \cdot 35$	12.46	13．91	9.90	0.73	0.60	0	$44 \% 8$
$2 \cdot 24$	I891	0	$0 \% 0$	0.2 I	\bigcirc	0.30	2.63	$24 * 30$	17．80	28.84	$0 \cdot 51$	0	0	73.87
$2 \cdot 46$	1892	0.65	I＊30	o	0×15	$0 \cdot 14$	$4 * 47$	$21 \cdot 38$	16．41	9＊13	I＇77	0	0	$5 \mathrm{r} \cdot 68$
732	1893	$2 \cdot 68$	0×93	1＊94	0＊35	2.44	20\％71	$9 \cdot 86$	22.54	16．36	3.80	r 94	0	$72 \cdot 26$
$6 \cdot 67$	1894	0.46	$0 \cdot 34$	0＇13	0.07	0	12．81	19．65	9.60	7×49	$7{ }^{25}$	$2 \cdot 55$	0.30	49.62
13.15	1895	0.70	0.85	150	0	0.04	17.55	13.47	18.42	1＊43	010	0	0.06	50．91

$J U B B U L P O R E$－（Contd．）

Rainfall

$$	Year．	$\begin{aligned} & \text { 会 } \\ & \text { 艮 } \\ & \text { た } \end{aligned}$	$\begin{aligned} & \dot{y} \\ & \text { 烒 } \\ & \dot{0} \\ & \text { む } \end{aligned}$	$\begin{aligned} & \text { Bi } \\ & \text { Nu } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { Fin } \\ & 0 \\ & 0 \end{aligned}$	$\underset{\sim}{\text { i }}$	$\stackrel{\stackrel{\oplus}{3}}{\stackrel{\rightharpoonup}{3}}$	立	$\begin{aligned} & \stackrel{3}{2} \\ & 0 \\ & 0.0 \\ & 00 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \dot{4} \\ & \text { 具 } \\ & \stackrel{4}{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { O } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { む } \\ & \text { B } \\ & \text { B } \\ & \vdots \\ & \text { Z } \end{aligned}$	$$	
		＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	＂	
－20	I896	O．OI	0	0003	0	0.05	1507	2I＇93	27．98	$0 \cdot 37$	0	$0 \cdot 3 \mathrm{I}$	$0 \cdot 75$	$65.4{ }^{\prime \prime}$
$3 \cdot 84$	I897	$2 * 10$	0.51	0＊17	0×72	$0 \cdot 23$	7＊99	$9 \cdot 69$	I9 67	8．18	0.62	0	0	$46 \cdot 48$
3.97	I 898	0	$3 \cdot 35$	0	0＾10	0＊18	$4 \cdot 83$	$27^{\prime 3}$ 31	$2 \mathrm{I} \cdot 28$	12．51	O•I6	0	0	66.21
－38	I899	0×04	0．18	0	0.08	$0 \cdot 92$	434	I8．46	$7 \cdot 57$	3.51	0	0	0	34.88
$2 \cdot 31$	I900	$2 \cdot 31$	0	0	0.61	$0 \cdot 10$	0＊70	I4．28	$24 \cdot 76$	12．26	$0 \cdot 76$	0	$0 \cdot 92$	52\％${ }^{\prime}$
$5 \cdot 6 \mathrm{I}$	I90I	$2 \cdot 28$	I•I2	0.53	$0 \cdot 31$	0.06	I＊53	10.97	34.78	$4 * 97$	0．6I	0	0	$52 \cdot 62$
$\mathrm{I} \cdot 07$	I902	0.27	0＊19	0	0＊22	0.08	0＊77	I $8^{\circ} \mathrm{II}$	$7 \cdot 67$	9．03	O•IO	0×76	O＇OI	35.88
I＊22	1903	0＊32	0.03	0	0	$2 \cdot 30$	330	I2 16	I9＊90	9.47	$7^{\circ} 17$	\bigcirc	0	47＊13
$9 \cdot 38$	1904	O＇I7	0.69	I＊35	0	O＇II	$3 \cdot 93$	I5 11	12．26	500	$2 \cdot 64$	$0 \cdot 02$	0.64	36.41
$3 \cdot 98$	1905	0×29	$0 \cdot 23$	0.26	0.09	0.08	$2 \cdot 36$	I $8 \cdot 63$	II＊39	9＇99	$0 \cdot 06$	0	0.05	$42 \cdot 54$
3＇71	1906	I 3 I	I•29	I＇00	0	0.05	II．08	I9＊I9	5＇91	10．96	0	0	0	$47^{\circ} \mathrm{I} 9$
$5 \cdot 43$	I907	$0 \cdot 26$	5° I6	$0 \cdot 01$	［．43	0＊93	$2 \cdot 16$	977	工5＇75	0.69	0	0.48	0	

MR. S. M. JACOB ON

Name of villages.	YEAR.																						
	1886	I887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	I 899	1900	I9OI	1902	1903	1904	1905	1906	1907	1908
Deswál .	214	198	105	92	36	205	150	129	I9I	I74	84	67	89	106	13	159	5	71	136	214	184	2 I 2	22
Saidowál ..	126	130	68	79	25	151	120	112	95	137	58	90	9 I	107	40	157	27	72	143	I68	150	150	30
Ghaun	83	73	35	4 I	9	64	40	39	68	61	20	12	27	32	I	42	.	3	32	69	55	72	I
Kak	67	49	22	40	10	72	I6	55	66	64	3	15	24	19	I	69	4	4	24	66	63	82	2
Jáhar	192	170	136	171	37	88	IOI	101	308	231	234	85	117	98	16	308	\cdots	10	120	I2I	273	330	12
Bhakko Bhatti ..	156	109	89	109	39	工. 98	104	124	153	188	IIO	99	II4	II3	13	274	II	20	146	I64	178	213	4
Jarwál	435	432	305	404	243	49I	231	317	412	426	148	128	236	243	26	384	37	135	363	433	391	412	26
Badiána .	949	801	654	443	5	902	827	928	743	512	85	145	313	402	49	876	3	206	700	954	1103	1073	10
Sidhpur Becharagh	58	4 I	38	24	I	48	27	45	59	4 I	10	7	3 I	32	5	53	\cdots	17	36	63	69	69	-
Mahuga ..	113	89	75	46	2	99	47	95	79	74	22	9	4 I	35	6	87	I	31	70	97	154	I45	I
Kaulpur	179	195	167	60	4	231	69	196	150	62	28	35	31	53	4	93	7	43	98	183	258	366	13
Dhalwán ..	38 I	392	303	146	12	389	I65	358	416	357	61	52	51	97	84	149	7	105	216	380	45I	401	42
Kot kalál . .	175	144	77	50	5	137	76	123	124	71	28	14	25	55	8	74	7	2	62	65	II8	125	3
Bhatti	140	148	117	93	Io	130	III	128	164	147	43	22	51	59	8	. 163	9	17	126	157	201	218	5
Bhaganian	411	395	284	276	12	365	259	331	360	355	240	127	151	360	-•	358	3	4	319	419	403	446	2
Buttar Sahjdin	290	274	254	202	6	277	128	164	220	286	186	61	79	220	-	261	14	19	197	210	229	282	5
Sarangpur . .	182	196	183	125	24	198	125	168	149	152	138	135	82	137	19	166	6	20	122	150	190	I86	12

Names of villages.	YEAR.																						
	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907
Deswál ..	14	121	108	135	114	198	74	155	91	117	143	157	144	144	123	194	97	170	217	142	142	146	103
Saidowál ..	10	102	102	82	100	132	64	159	II8	117	III	137	118	142	8 I	167	124	107	175	120	120	163	67
Ghaun	2	45	125	129	103	108	43	78	65	143	III	193	39	159	15	186	78	88	In6	34	94	115	37
Kak	2	14	39	44	46	57	27	61	36	50	33	43	45	46	15	42	17	39	38	14	18	30	12
Jáhar	14	73	59	57	57	89	59	163	152	142	123	138	120	158	134	132	166	162	238	189	174	16 I	106
Bhakko Bhatti	23	73	93	88	104	77	58	15	118	96	74	117	114	141	21	120	90	133	195	59	112	86	49
Jarwál	114.	237	248	324	267	397	203	355	231	175	282	153	322	279	193	338	266	343	330	294	230	273	59
Badiána	375	605	362	524	521	446	445	610	501	494	301	509	558	539	24	615	313	609	728	376	368	373	160
Sidhpur Becharágh	25	22	24	4 I	34	41	37	32	22	26	23	34	22	38		26	19	19	43	15	19	24	9
Mahuga ..	60	56	56	86	78	77	66	87	58	65	.	82	80	71	8	97	66	100	98	55	56	64	53
Kaulpur ..	57	128	99	152	143	117	89	Ir3	62	128	79	8 I	92	123	59	187	III	132	128	95	118	80	25
Dhalwán ..	177	270	233	28I	207	194	243	197	147	241	247	144	138	205	95	270	195	216	302	239	189	230	52
Kot Kalál..	36	II9	8 I	136	124	128	104	128	107	III	79	93	64	90	47	120	76	118	109	85	69	8 I	31
Bhatte	4	77	51	84	83	155	95	135	96	II6	105	144	94	124	8	76	80	7 I	185	10	76	8 I	78
Bhaganián..	117	191	142	153	If6	189	104	273	116	100	177	148	161	9	6	282	65	223	219	149	110	12I	45
$\begin{gathered} \text { Butar Sahj } \\ \text { Din } \end{gathered}$	63	99	102	137	II8	160	74	120	104	97	153	120	131	96	92	134	92	Iro	175	159	102	98	68
Sárangpur..	46	86	63	77	82	115	87	II6	46	73	9r	82	II8	93	33	135	48	100	133	67	98	68	23

Statement showing Rabi cropped area in the following villages Barani (in acres) for Sialkot Tahsil.

Names of villages.	YEAR.																						
	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899	rgoo	I9OI	1902	1903	1904	1905	1906	1907
Bharth		190	147	113	171	59	187	190	275	246	249	69	10	23	44	.	171	45	II	176	86	207	255
Karol		207	198	134	159	39	267	191	184	201	199	132	146	152	139	167	180	106	94	153	127	189	.
Gulbhár Khurd		287	243	44	184	43	292	176	271	236	231	62	66	107	162	33	279	III	66	229	233	226	273
Det		104	96	72	68	25	119	71	114	104	98	43	24	31	52	9	97	18	37	76	83	99	106
Tokan		129	220	67	184	II	269	Ior	201	157	155	38	13	38	119	I	159	37	60	78	221	77	206
Gulbhar Kalán		219	218	162	198	34	291	175	215	261	209	82	23	71	129	17	233	83		135	192	320	219
$\begin{gathered} \text { Harspur Ma- } \\ \text { laná } \end{gathered}$		354	265	123	148	55	368	275	219	265	245	120	60	127	207	17	236	38	62	186	306	268	282
Nandpur ..		262	216	105	12I	20	240	213	265	222	148	68	88	122	150	31	196	33	72	212	243	214	223
Bans Uncha		IIO	78	61	51	11	108	98	102	117	$1{ }^{1} 3$	53	31	48	51	9	98	II	7	87	145	124	r30
Kasire		68	70	27	37	6	59	47	49	68	117	20	23	22	30	9	74	7	8	29	II3	63	67
Chak Rání	.	283.	150	9 I	43	4	18I	210	207	162	168	ıо	5	14	49	.	II6	32	2	94	71	I70	109
Bans Ninwán	.	133	93	67	18	18	86	77	73	35	115	27	27	19	50	12	129	14	13	100	I4I	II4	125
Bhoth	..	72	65	37	33	3	104	46	132	132	124	15	7	9	18		8 I	8	12	35	23	43	5 I
Rampur	190	140	87	96	5	134	162	135	162	156	42	12	33	roi	75	96	51	2 I	104	II7	133	III
Dhele		171	106	103	8 I	9	175	214	136	190	175	18	19	64	45	14	105	32	2 I	128	126	165	143
Kundanpur	\cdots	$66 \pm$	300	272	66	4	582	394	361	282	293	18	66	89	160	I	382	4 I	153	314	475	284	409
Jálapwálí		132		46	69	8	139	96	104	Ir8	121		12	65	69	14	I2	16	33	rir	108	140	I47

THE CORRELATIONS OF AREAS OF MATURED CROP AND THE RAINFALL. 419

Statement showing Kharif cropped area of the following villages Barani (in acres) for Sialkot Tahsil.

Names of villages.	188							YEAR.											1903	1904	1905	1906	1907
		1886	1887	1888	1889	1890	18 gr	1892	1893	1894	1895	1896	1897	1898	1899	1900	1901	1902					
Bharth	66	85	98	Ior	II2	96	55	82	104	125	94	94	133	144	4	162	123	181	159	3 r	100	114	.
Karol	202	214	244	258	266	52	182	205	196	205	224	172	262	227	102	275	227	270	275	170	231	327	\cdots
Gulbhar Khurd	192	246	221	271	292	288	215	234	198	238	229	187	341	239	175	317	287	348	275	120	270	123	.
Det	80	89	83	99	III	112	87	94	97	93	102	26	95	83	46	II3	103	109	107	31	50	46	..
Tokan	85	99	266	176	206	189	209	170	141	158	135	144	274	190	120	226	260	172	316	II5	268	123	.
Gulbhar Kalán	27 I	270	251	260	263	346	257	294	264	254	272	219	326	306	146	321	283	301	359	I3I	200	312	.
$\begin{gathered} \text { Harspur Ma- } \\ \text { lána } \\ \text {.. } \end{gathered}$	106	257	305	306	330	315	276	303	283	269	274	334	399	345	143	42 I	363	414	449	255	328	350	
Nandpur	58	246	160	193	233	343	77	236	194	237	225	201	235	.	65	254	248	260	273	186	185	236	..
Bans Uncha	33	97	57	87	103	98	59	92	71	86	84	9 I	93	97	23	109	97	85	II2	57	52	82	
\% ${ }^{\text {asire }}$	25	58	80	54	69	71	37	63	52	8 r	56	53	70	67	20	90	75	85	9 I	45	59	83	.
Chak Rání	III	219	184	215	198	269	161	220	174	153	161	141	210	291	7	184	204	214	259	93	II8	199	.
Bans Niñwán	15	66	67	67	87	89	27	62	13	63	63	63	60	71	14	82	56	70	102	52	55	67	.
Bhoth	14	15	15	25	14	20	19	55	42	37	35	15	19	26	2	29	26	27	45	19	13	56	.
Rampur ..	124	176	207	215	229	250	153	227	I80	132	208	I98	263	217		267	234	253	249	121	176	159	.
Dhele	105	152	155	152	I8I	215	128	191	89	171	156	17 I	136	189	122	173	147	154	160	149	120	16 I	.
Kundanpur	179	306	351	269	361	501	139	565	465	465	555	516	202	547	88	378	412	292	569	215	410	301	.
Jálapwáli ..	91	II7	129	120	I28	105	120	IIO		104	126	III	roi	123	82	113	126	105	146	105	87	104	.

Names of villages.	YEAR.																						
	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	I90I	1902	1903	1904	1905	1906	1907	1908
Naukaríán. .	220	205	183	183	60	194	793	I60	I98	203	112	71	108	97	6	201	20	5	152	I75	2 II	220	\cdots
Khichián Bhattian. .	302	284	264	280	150	390	355	294	325	302	168	153	176	182	32	268	4 I	53	227	249	305	323	
Malo Patiál	195	18I	144	110	33	169	91	84	106	79	82	48	66	60	18	125	9	16	118	127	140	138	\cdots
Bureke	379	327	299	296	89	447	260	239	294	34 I	396	242	245	349	109	395	80	27	409	383	422	427	.
Mardána ..	337	242	249	234		290	242	267	252	234	177	175	195	222	95	267	48	49	119	179	201	334	\cdots
Kotli Bájwa	80	80	64	60	II	68	62	70	81	73	56	37	2 I	52	I	72	7	4	69	74	85	86	\cdots
Sádullapur..	282	214	22 I	$2 \downarrow 4$	II3	253	2.41	188	262	232	133	103	123	I7I	35	239	58	48	206	180	250	277	.
Mirza Bájwa	201	202	2 II	I56	93	212	189	207	261	I8I	12 I	53	88	I58	9	I76	4 I	34	180	194	229	236	.
Dullamwála	279	27 I	174	I66	15	256	197	296	270	234	170	79	77	206	15	263	63	64	191	254	306	317	-•
Bakhtpur . .	168	139	170	I2I	75	164	148	229	223	210	163	112	123	201	3	254	109	73	232	216	240	255	\cdots
Jitogil ..	122	124	103	103	96	153	114	146	136	107	99	85	93	II6	4	139	59	36	124	II8	139	135	.
Tawána	106	97	97	96	9^{6}	527	104	108	107	III	74	88	96	105	2	II6	7 I	97	III	4	118	125	-
Bhuler ..	745	696	544	552	572	843	629	651	672	694	500	332	442	628	74	760	409	390	674	517	801	832	. .
Mirakpur . .	186	148	153	18	119	137	174	132	307	278	218	237	277	252	III	331	153	146	283	203	322	387	.
Chak Hushyára	135	14I	152	110	51	116	140	146	154	142	12I	39	72	121	8	168	72	II	137	77	162	153	-
Tayab Bhutta ..	135	129	121	100	59	148	138	125	140	128	103	67	88	III	23		9I	40	IOI				
Bakhatpur..	226	216	171	I6I	21	166	142	144	160	136	II2	50	91	129	. .	I65	48	r5	94	106	168	162	

THE CORRELATIONS OF AREAS OF MATURED CROP AND THE RAINFALL.

THE CORRELATIONS OF AREAS OF MATURED CROP AND THE RAINFALL.

Names of villages.	YEAR.																						
	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	I896	1897	1898	1899	1900	IgoI	1902	1903	1904	1905	1906	1907
Chak Nadoke . .	II	15	9	15	9	16	3	II	8	5	12	23	25	28	\ldots	38	4	29	3 I	3	14	15	\cdots
Jarowálí	26	34	30	34	29	40	28	35	34	28	34	36	33	35	4	35	19	36	33	23	26	36	24
Cháhal	62	102	97	95	85	112	127	127	107	131	II8	104	I28	128	3	143	75	140	II4	88	74	84	3 I
Bubak	I8I	234	210	261	257	28I	201	284	246	259	240	248	249	238	I	376	170	343	217	175	I49	151	40
Rajáda	77	114	19	126	II9	124	94	136	II2	138	150	95	149	169	2	180	93	187	126	108	87	100	54
Habíb Chak	27	32	26	31	28	33	19	32	29	34	36	24	25	37	3	39	15	38	22	14	17	25	I6
Shahábadike	108	70	86	108	95	117	85	122	127	120	105	126	76	122	7	I66	96	94	132	89	77	IIO	55
Chak Sahábadike	31	53	29	34	52	37	25	43	35	23	35	40	58	69	\cdots	97	35	IOI	15	23	27	28	13
Lallahar	24	26	19	19	33	29	28	31	35	43	30	33	29	39	2	55	32	49	41	19	24	35	17
Dhola	57	154	113	130	164	175	126	193	126	193	216	210	272	318	26	373	109	167	259	190	163	I85	80
Domála ..	183	187	136	186	198	218	144	319	251	I9I	202	183	152	228	7	273	194	295	233	148	168	175	67
Kesúwálí	103	89	85	109	III	121	106	114	131	107	III	115	9 I	104	6	164	12 I	155	102	87	93	105	48
Akalgarh .	30	27	37	47	57	46	30	34	40	45	41	39	36	36	I	44	43	48	43	28	34	37	22
Sutto Bájwa	43	39	37	54	59	57	37	47	37	58	42	53	56	56	2	57	34	66	49	4 I	38	35	31
Iadhar Becharágh..	22	29	29	63	5 I	90	20	34	48	30	28	39	39	44	2	66	16	5 I	30	16	30	30	14
Sáhdoke .	112	116	III	1 I 8	130	128	9 r	114	120	105	12I	130	130	127	9	133	92	148	124	98	IOI	94	78
Buso Wairán	35	35	44	30	50	53	26	47	47	40	57	50	43	45	2	62	36	6 I	52	53	36	40	21

THE CORRELATIONS OF AREAS OF MATURED CROP AND THE RAINFALL．

ช	\square	今	\cdots	\％			in	$\stackrel{\sim}{\circ}$		N		む	¢
¢	¢	\％	\％	๕	\％	웁	∞	今	\％	\cdots	\％	$\stackrel{3}{4}$	¢ c ç
今	\％	a	18	\％	\％	∞	d	侖	骨	8	容	¢	$\stackrel{\infty}{+}$
－	m	\％	in	－	E	＋	ㅇ	0	\％	$\stackrel{M}{4}$	$\stackrel{\sim}{\sim}$	N	$\stackrel{8}{\text { ले }}$
육	ले	$\stackrel{\sim}{m}$	in	소사N	に	\％	枵	\bigcirc	8	\％	m	令	¢
ã	in	\otimes	\％	合	今̀	\％	）	운	\％	号	N	웅	会
荘	9	：	is	K	ㅇ	Nّ	ir	¢	～	¢	\％	－	
$\underset{\mathrm{N}}{\mathrm{~N}}$	in	¢	献	今	\％	¢	\bigcirc	B	－	N	\％	／	－
－	ค	H		＊	＋				\sim	\bigcirc	A	A	含
त्ले	¢	$\stackrel{\infty}{\infty}$	\％	8	8	\％	8	－	呂	$\stackrel{H}{\square}$	m	セ	$\stackrel{\infty}{\infty}$
\％	\％	Ω	in	∞	＋	๕	\pm	∞	只	$\stackrel{\sim}{*}$		～	
극	$\stackrel{8}{9}$	A	in	O	N	－	J	～	¢	\％	in	\cdots	道
－	＋	A	ㅇ	O．	∞	芯	毕	\％	$\stackrel{+}{*}$	$\stackrel{\sim}{4}$	in	骨	$\stackrel{\text { ¢ }}{\text { ¢ }}$
음	$\stackrel{\sim}{4}$	战	\％	d	¢	\％	\ldots	太	年	\％	in	¢	－
＋	9	\pm	8	太	$\stackrel{\square}{0}$	8	운	\％	剓	合	＋	\％	$\stackrel{\circ}{\circ}$
\％	$\underset{\sim}{9}$	\％	K	¢ ${ }^{\circ}$	®	－	）	－	\％	荘	$\stackrel{\infty}{\sim}$	合	$\stackrel{8}{\text { ¢ }}$
$\stackrel{\sim}{n}$	－	\％	in	ㅇ	\cdots	\％	子	in	敞	8	$\stackrel{\circ}{\text { ® }}$	$\stackrel{\sim}{8}$	＋
風	$\stackrel{\sim}{4}$	N	®	8	\％	\％	8	∞	～	\％	8	$\stackrel{9}{9}$	䁍
芯	\cdots	∞	赈	∞	R	\％	in	$\stackrel{\infty}{+}$	合	－	8	～ّ	$\stackrel{\square}{3}$
\bigcirc	$\stackrel{\sim}{0}$	8	¢	＊	今	$\stackrel{\infty}{\sim}$	す	in	直	\％	¢	ผّ	¢
\hat{N}	\cdots	$\stackrel{\sim}{\sim}$	สี	사N	\bigcirc	O	$\stackrel{\text { ¢ }}{ }$	－	去	号	\％	セٌ	N
¢	\％	$\stackrel{\infty}{+}$	¢	∞	\pm	缶	H	\％	¢	G	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\square}$	－
	\because	in	今	∞	in	∞	in	\pm	N	－	苓	๕	$\xrightarrow{\circ}$
	第菏			紫	$\begin{aligned} & \vdots \\ & \text { 荷 } \\ & \text { o } \\ & \text { 号 } \end{aligned}$			플	$\begin{aligned} & \text { \#̈ } \\ & \text { \# } \end{aligned}$			淢	$\underset{\substack{0 \\ \multirow{2}{*}{\hline}\\ \hline}}{\substack{0}}$

MAP SHOWING THE 30 SELECTED VILLAGES IN EACH OF THE TAHSHS SLALKOT, ZAFARWAL, RAYA, AND PASRUR.

INDEX.

Memoirs of the Asiatic Society of Bengai, Vol. II.

A

Abdul Ghani, Sayyid, I20.
Acacia arabica, 20, 3I.
2. catechu, an auxiliary used in dyeing, 26, 28, 32, 4I.
Acalyptus, 170, 175, 182, 183, 243, 246.
,, peroni, 175, I79, 243, 244.
,, superciliosus, 243.
Acetate of alumina : its preparation, 31.
Afghanistan, monuments in, 34I.
Africa, East, Hydrophiince of, 249.
Aipysurus, 171, 172, 173, I75, 176, 180, 182, 183, 189.
,, anguillaformis, I89.
,, annulatus, 187,188 .
., australis, $176,179,189$.
," eydouxii, I79, I89.
", fuliginosus, 190 .
" fuscus, 189.
," lavis, 176, 189, 190.
Ak Rabūt Kotal, valley, 344.
A1 (Morinda citrifolia), dyeing with, 3I.
A1 (Morinda tinctoria), dyeing with, 27, 31.
Alcohol, absolute, 36,
Alepas gigas, I.
" malaysiana, I.
,, xenophora, I.
Alizarine colours on cotton, 3I, 32 .
Alum, as mordant in dyeing with lacdye, 158.
," as mordant in dyeing with sapan, 156 .
" used in dyeing, 29 .
,, used as mordant in dyeing with manjista, 31.

Aluminium acetate: its preparation, 31.
,, used as a mordant in dyeing with manjista, 3 I.
America, Hydrophiince of, 250.
Amonium carbonate, 31 .
Am Narrah, a devil of the Saorias, 83.
Anguis mamillaris, 198.
", platura, 248.

Ang-tuk, coin, II.
Anhydris nigrocinctus, 224.
Annatto, see Latkan.
Ariana Antiqua, Wilson's, 34I.
Artocarpus integrifolia, 26.
Astrotia, І72, I75, І77, I79, 182, 工83, 250.
,, absence of ventral shields in, I70.
,. schizopholis, 250.
\therefore stokesi, 170, 173, I75, 178, 226, 238, 250.

Aturia belcheri, 217.
," elegans, 217.
," lapemoides, 227.
,, lindsayi, 204.
, ornata, 232.
Australia, Hydrophiince of, 185, 186, 190, 223, 224, 236, 237, 238, 250, 25 I.
Azhdahār, a place, 343.

B

Babul (Acacia arabica), bark of ; its use in dyeing with latkan, 30, 3 I.
Bābar's tomb at Kabul, description of, 344.
Badri Gosain, Godling of chicken-pox and coughs, 77.

Bāgh-i-Bābar, a garden in Afghanistan, 344.
Bainbridge, R. B., on the Saorias of the Rajmahal Hills, 48.
Bajotro Gosain, a Godling of the Saorias, 76.
Bakam (Caesalpinia sappan), 26, 4I.
Balanus, I. ," amphitrite, var. communis, 6.
",,\quad var. niveus, 6 .
", \quad var. variegatus, 6 .
," amaryllis, 7 .
", carenatus, 6.
,, perforatus, var. angustus, 6 .
Bāmiān, Buddhist carvings at, 342 .
" cup-marks in, 344 .
Bandari, the moral preacher of the Saorias, 48.
Banerji, Nagendranath. See Nagendra Nath Bandopādhyaya.

Index.

Bansloi, river, 43 .
Bara Duari Gosain or Dúará Gosain, 77.
Bassia latifolia in tattooing, 48.
Bay of Bengal, Hydrophiince of the, 185, I85, 248.

Beawar, Statistics of rainfall at, 405 .
Bedsitu, Groom's party, 5 I,
Bengal, dyes of, 25, 155 .
Bern Gosain, the Sun-God, 5 I.
Bhatgaon coinage for Tibet, Ig.
Bhim Raja, a legendary king of the Saorias, 46.
Bhim Rani, a legendary queen of the Saorias, 46.
Bhupatindra Mulla Deva, king, 16.
Bika Begum, widow of Babār, 345 .
Birds, a polyglot index to names in Turki, Manchu and Chinese, 33 r.
Birth ceremonies among the Saorias, 62 .
Bixa orellana, 26, 30, 36, 41 .
Bombay, Hydrophiince of, 202, 208, 217, 232, 236.

Bombay Natural History Society, specimens of Hydrophiince in the Museum of the, 169.
Borneo, Hydrophiince of, 206, 224, 231, 247.
British Museum, Catalogue of Snakes in the, I84, r69.
Buddhist carvings at Bāmiān, 342 .
Bungurus, I70.
Burma, Hydrophiince of, 202, 203, 224, 226, 231, 236.
Butea frontosa, 26, 28, 30, 4I, 155, 157.

C

Casalpinia sappan, 26, 29, 4I, I55, 156.
Calico-printing, catechu used for, 27 .
Cannanore, Hydrophiince of, 192.
Cape Colony, Hydrophiince of, 250 .
Carbonate of ammonia, 3 r.
Carthanus tinctorius, process employed in dyeing with, 29, 26, 4I, I55.
Cash, Chinese, 2 I.
Catechu (Acacia catechu), 26, 4I, 32.
Cedrela toona, 26.
Celebes, Hydrophiince of, I91.
Ceylon, Hydrophiince of, 228, 229, 243, 229.
Chah chen, coinage of, 2 I.
Chakri minar, 34I.
Chal Naddu-Jahirthan, godling of the village grove, a mongst the Saorias, 75.

Chamḍa Gosain, a godling of the Saorias, 70-73.
Chang Errwe, a godling of the Saorias, 76 .
Chapdara river, 342.
Charcoal in tattooing, 48.
Chark Gosain Át Machli Gosain-a godling of the Saorias, 77.
Chelonobia patula, 8.

$$
\text { ," testudinaria, } 8 .
$$

Chetteh, a division of the Saorias, 46 .
Chhan Lung, coinage of, 21 .
Chhi-ke, coin, 12.
China, Hydrophiince of, 185, 186, 206, 223, 224, 240, 241.
Chittuel, 217.
Chitulia fasciata, 209, 217.

$$
\because \quad \text { inornata, } 232 .
$$

Cho-tang coin, I2.
Chötang, or " tangkas for cutting," 20.
Chrome mordants, 27 .
Chthamalus stellatus, 5 .
Cirripedia pedunculata, 9.
,, operculata, collection of, in the Indian Museum, I.
Coefficients of the rainfall, calculation of, 359 .
Coinage of Tibet, II.
Colombo, Government Museum, specimens of Hydrophiina in the, 169.
Colour and markings, their variation with age in the Hydrophiina, 180 .
Coluber laticaudatus, 185.
Conchoderma aurita, 9. $\because \quad$ virgata, 9.
Coromandel Coast, Hydrophiince of the, 192, 203, 206, 228, 248.
Correlation coefficient, probable error in the calculation of, 379 .
Correlations of crops and rainfall, 347 .
Costal shields ; in the Hydrophiince, 83.
," their carinated structure, I 73 .
,. their importance in classification of
Hydrophiinæ, I7I.
their shape, 173.
Cotton, dyeing, 25, 28.
,, catechu used for dyeing, 27.
Crops and the rainfall, 347 .
Cup-marks in Bamian, 344.
Curcuma longa, 155.
Curcuma longa, dyeing with, 29, 26, 4 I.

D

Dacca, 120-i.
Dakṛĩi, a division of the Saorias, 46.
Dal Erwe, worship or propitiation of the god on disease and trouble, 73-75.
Dala Gosain, god of disease and trouble, 73 .
Dalai Lama, seal of the, I6.
Damin-i-koh-a range of hills, 43 .
Dances, Mundari, 85.
Darjeeling, process of dyeing with manjista in 31.

Darmáre Gosain, Codifier of the Ethical and Moral Laws of the Saorias, 48.
Das Kwong, coinage of, 2I.
Daska, crops of, 349, 355, 356, 359.
Demno, the moral preacher of the Saorias, 4^{8}.
Dyestuffs, chemistry of, 26.
Dindeh, a female devil of the Saorias, 82.
Diospyros embryopteris, 26.
Distira, I70, $175, \mathrm{I} 76, \mathrm{I} 78$, $177, \mathrm{I} 79, \mathrm{I} 80, \mathrm{I} 8 \mathrm{r}$, I82, I83, I93, 196, I97, 203, 208, 2II, 220, 250.

$$
, \quad \text { alcocki, 214, 215, } 216 \text {. }
$$

,, andamanica, 233, 235, 236.
,, annandalei, 245 .
,, aspera, 223.
,, belcheri, 217, 219, 221.
,, bishopi,216.
,, bituberculata, I95, I96, 228.
,, brookii, I75, 222.
,, brugmansii, 209, 210, 2II, 2I2, 2I3, 2I4, 215, 216, 223.
carulescens, 172, 173, 176, 177, 179, 194, I95, I96, 207, 23I, 235, 25 I.
cantoris, $171,172,174,175,177,178$, 179, 180, 194, 196, 199, 200, 201, 203, 233.
,, coronata, 203.
,, crassicollis, 223 .
,, cyanocincta, I71, 174 176, 177, 181, 182, 194, 195, 196, 208, 210, 212, 213, 214, 215, 216, 217, 219, 220, 221, 222, 224, 225, 226, 227, 228, 229, 237, 241.
dumerilii, 238.
", doliata, 219, 238.
,, elegans, 219, 220, 223, 237.
". fasciata, I7I, I72, 174, I77, I78, I79, I80, 18I, 194, 195, 196, I99, 203, 205, 206, 207, 208, 213, 228.

Distiva floweri, 209, 213, 214, 215, 216.
frontalis, 175, 177, 219, 222, 236.
gillespia, 200, 201.
gracilis, 171, I72, $174,177, ~ 178, ~ 179, ~ 180, ~$
194, 198, 199, 200, 203, 207, 213, 233.
grandis, 174, 215, 218, 219, 220, 22I,
223, 224.
hendersoni, $178,224,225,226$.
,, var. saravacensis, 224.
hybrida, 227
inornata, 224, 236, 241 .
jayakari, 224, 241.
jerdoni, 171, 172, 175, 177, 179, 180, 193,
194, 196, 223, 233, 235, 239, 24I.
kingi, 219, 220, 223.
lapemidoides, 218, 224, 239, 227, 239 .
lapemoides, 194, 196, 197, 208, 227, 228,
230, 210.
latifasciata, 203.
longiceps, 212, 213, 216.
macfarlani, 218, 22I, 223.
wajor, 171, 179, 194, 196, 226, 238.
mamillaris, 194, 196, 207, 208.
melanocephalus, 211, 212, 216.
melanocincta, 204.
melanosoma, 209, 2I2, 216.
neglecta, 180, 195, 196, 199, 206.
nigra, 239, 24 I .
nigrocincta, 175, 176, $177,178,195,196$,
224, 225, 244.
obcura, 174, 175, 177, 178, 179, 180, 194,
I96, I99, 201, 202, 203, 230.
ocellata, I94, 197, 207, 233, 237.
ornata, 172, 175, 176, 179, 194, 197, 211,
216, 222, 224, 225, 226, 232, 233, 234,
235, 236, 237, 24I, 244, 247, 25 I.
pacefica, 219, 220, 223.
phipsoni, 224, 237, 241.
polyodonta, 236.
rhombifer, 204, 205.
robusta, 209, 210, 216.
semperi, 217, 219, 220, 223.
spivalis, $17 \mathrm{I}, \mathrm{I} 72, \mathrm{I} 77, \mathrm{I} 80, \mathrm{I} 8 \mathrm{I}, \mathrm{I} 82,194$,
196, 210, 208, 209, 2II, 212,
2I3, 214, 215, 216, 223, 224,
236.
", stokesii, 250.
,, subcincta, 2II, 212, 216, 236.
,. temporalis, 216 .

Distiva torquata, 171, 172, 173, 179, I94, 195, 196, 202, 229.
", tuberculata, 218, 219, 220, 223.
", viperina, I70, I7I, 175, 176, 177, I79, 193, 194, 197, 222, 224, 225, 226, 236, 237, 239, 240, 244, 25 I.
,, westermanni, 218 .
,, werayi, 209, 213, 2I4, 215 .
Divorce among the Saorias, 58.
Donovan, Mr. W., Electrical Engineer of the Amirr of Afghanistan, 341.
Do-ls̄e, a sum of money, 2 I.
Dúará Gosain-or " Bara Duari Gosain," 77.
Dung-tang, coin, I5.
Dung-tse, coin, 15 .
[28, 29.
Dyeing, methods employed by the native dyers,
, of cotton, $25,25,29$.
,2 of silk, 29.
Dyes, European, popularity of, 25 .
,, Indigenous, fastness of, 25, 26.
". \quad possibility of improving the fastness of, 4 I .
,, of Bengal, Watson on, 25, I55.
,, Synthetic, 32.

E

Emydocephalus, 17x, 172, 173, 175, 177, 178, 180, I82, I83, I86, 190.

$$
\Rightarrow \quad \text { annulatus, } 186 \text {, I88. }
$$

,, ijime, 173, I74, 175, 176, 186, I87, 188.
Eosin, 32.
Equation, relative personal, in estimating harvests, 35^{2}.
Enhydrina, 170, I71, 172, I74, I75, I77, I79, 182, 183.

$$
\text { ,, bengalensis, } \mathrm{rg2} \text {. }
$$

,. valakadyn, 175, I80, I8I, I9I, 192, 226, 244, 246, 251.
Enhydris, 170, I7I, 173, I77, I79, 182, 183, 246. ,, curtus, 173, 176, 226, 246, 247 .
", ", with anteriorly developed ventral shields, 170 .
hardwickii, 175, 244, 246, 247.
nigrocinctus, 224, 247, 248.

F

Fayrer, Sir Joseph, his specimen of D. lapemoides in the British Museum, 229.

Formosa, Hydrophiince of, 188.

Frequency curves expressing the mean distribution of rainfall, 381.
Frontal Shields in the Hydrophiina, I75, 183.

G

Gab (Diospyros embryopteris), 26.
Ga-den Pho-dang tang-ka, coin, I3.
," tang-ka, coin, I2.
Gangetic Delta, Hydrophiince of the, 201, 202, 227, 23 I.
Gasteropoda, 6.
Gopalpur, Hydrophiina of, I92.
Gor-mo, 'the round coin,' 22.
Gosain Taddi,--a great general festival amongst the Saorias, 78-79.
Gruvel, A.,-on operculate cirrhipedes in the Indian Museum, I.
Gumo Gosain, a godling of the Saorias, 69, 70, 73. Gwador, Hydrophiince of, 228.
Gyaser yige, or 'great golden letters,' I7.

H

Harinath De, his edition of the Nasratjanji, I2I.
Hayden, H. H., on Afghan Monuments, 34 I .
Head Shields; their importance in the classification of the Hydrophiina, I73.
Henderson, J. R., his collection of the Hydrophiina, 169.
Hexamerida, 5.
Hoffmann, Rev. Fr. J., on Mundari Poetry, Music and Dances, 85.
Hongkong City Hall Museum, specimens of Hydrophiince in the, 169, 24I, 243. 244.
Hoogli pattee, Igr. , valakadyn, IgI.
Huldi. See Turmeric.
Hydrelaps, І70, Іү1, 工82, I83.
,, darwiniensis, 175, 177, 191.
Hydrophiina, I69.
Hydrophis, 170, 182, 193, 213, 214.
," abbreviatus, 247.
,, alcocki, 209.
", annulatus, 250 .
", anomala, 244
,, atviceps, 204, 205.
," aspera, 174, 217, 220.
," belcheri, 217.

Hydrophis bengalensis, IgI.
bicolor, 248, 249.
,, bishopii, 209.
,, bituberculata, 228.
,, brookri, 204, 205.
., ccerulesceus, 23 I.
", cantoris, 199, 200, 204.
,. chloris, 201, 202, 203.
,, colubrinus, I86.
,, coronata, 201, 202.
\therefore crassicollis, 217 .
,, curtus, 246 .
,, cyanocincta, 217, 224, 23I.
,, dayanus, 217 .
,: diadema, 230.
:, doliata, 217.
," elegans, 217 .
:, ellioti, 232.
., fasciata, 199, 207.
,, fasciatus, I9I, 200, 204
$\therefore \quad$ fayreriana, 247.
" floweri, 209.

```
., frontalis, 217, 222, 233, 236.
```

,, godeffroyi, 233, 234, 236 .
,, gracilis, I70, 198, 203, 204, 207.
guentheri, 198.
guttata, 250, 25 I.
holdsworthii, 227.
hybridus, 227.
jayakari, 237, 239, 24 I.
jerdonii, 24I.
kingii, 217 .
lapemoides, 227.
latifasciatus, 202.
leptodira, 204, 205.
longiceps, 209.
maculata, 249.
major, 238.
mamillaris, 207.
melanocephalus, 209, 2II.
melanocinctus, 204, 205.
melanosoma, 209.
melanoviperina, 240.
mentalis, 238.
microcephala, Ig8.
nigra, 239, 240, 241.
neglectus, 206.
nigrocinctus, 209, 224, 230. [239.
obscurus, 20I, 202, 206, 229, 230, 23I,

Hydrophis ocellata, 233, 237, 250.
", ornata, 232.
", pacificus,217.
,, pachycercos (pachycercus), 233, 234, 236.
," pelamidoides, 247.
,, phipsoni, 217.
," platurus, 232.
," polyodontus, 232, 234, 235.
," propinquus,246.
,, rappii, 209.
", robusta, 209.
" schistosa, I91, I92.
", schlegelii, 232.
", semperi,217.
", spiralis, 208, 209, 236.
", stewartii, 227.
", striatus, 217, 232.
,, stricticollis, 230 .
,, stokesii, 250 .
,, subannulata, 217 .
,, sublavis, 215, 217.
,, subcinctus, 209.
,, temporalis, 209.
". torquatus, 202, 229, 230.
", trachyceps,217.
", tuberculata, 2I7.
", wiperina, 239.
", westermanii, 2I7.
Hydrus, І70, I72, 177, I79, I82, I83, 248.
" carulescens, 23 I.
", curtus, 246 .
," colubrinus, I86.
,, gracilis, I98.
, guttata, 25 I .
", major, 238, 24I, 250.
" nigrocinctus, 24 I .
., platurus, I7I, I75, I76, I80, 232, 236 248, 25 1.
", spiralis, 208.
,, stokesi, 250.
," valakadyn, I9x.
Hypotropis jukesii, I9o.

I

India, Hydrophiince of, 206, 208, 228, 237, 246.
Indian Museum, specimens of Hydrophiince in the, I69.
Indian Ocean, Hydrophiince of, 189, 192, 216 236, 238, 24 I.

Indigo, 26.
Indigofera tinctoria, 26, 27.
Inheritance among the Saorias, 59.
Interlabial shields in the Hydrophiince, 178 .
Internasal shields, their presence in the genus Platurus, 175 .
Internasal shields in the Hydrophiince, 183.
Investigator, explorations of, 4, 6 .
Iron mordants, 27.

J

Jack wood, jak or kanthal(Artocarpus integrifolia), I55, I58.
Jacob, S. M., on the correlations of crop and rainfall, 347.
Jak. See Jack wood.
Jalalabad, monuments about, 34I.
Jampori, an evil of the Saorias, 83.
Jan Sengs, Emperor, 2I.
Jandi Gosain, marriage God, 54 .
Janḍi or Janḍa Gosain - a godling of the Saorias, 78.

Japan, collection of the Hydrophiince in the seas about, I69, 236, 249.
Java, 189, 245.
Jaya Bhupatindra Malla Deva, King, II.
Jaya Pratapa Malla, King, I6.
Jaya Ranajita Malla Deva, King, Ió.
Jingles (woods), 98.
Jowar or juar, 360 .
Jubbulpore, Statistics of rainfall, 4II.

K

Kabul, an account of the Minars near, 34I-342.
Ka-cha, a sum of money, 21.
Kalla Shootar Sun, 201.
Kamala, (Mallotus philippensis), 26, I55.
," its unsuitableness for cotton dyeing, 28 .
" processes of dyeing with, 158 .
Kandeh thorn for tattooing, 48.
Kando Gosain-a goding of the Saorias, 80.
Kanthal (Artocarpus integrifolia), 26.
Kanthal. See Jack wood.
Karachi, Hydrophiince of, 201, 217.
Karma, a unit of weight, II.
Kar-ma-uga, coin, I2.
Karwar, Hydrophiince of, 202, 203, 236, 24I
Kashmir, dyeing in, 25.
Kerilia jerdonii, 24I.
| Kath, an auxiliary used in dyeing, 26.
Kha-kang, coin, $\mathbf{t} 2$.
Khap-chhe, coin, I2.
Kharif harvest, effect of the rainfall in, 358.
Khurd Kabul, place, 34I.
Kohat, Statistics of rainfall, 401.
Kong-par-tang-ka, coin, I3.
,", I5.
Kotal-i-Munār, a pass, 34I.
Koura Gosain, a pujah or propitiation of the godling of illness, amongst the Saorias, 79-80.
Kusum. See Safflower.
L.

Lac, 26.
, its unsuitableness for cotton dyeing, 28.
Idádse, a cairn erected in honour of local deities in Tibet, 344.
Lahore, Statistics of rainfall, 403.
Laihu Gosain, God, the Codifier of the Ethical and Moral laws of the Saorias, 48 .
Lapemis curtus, 246.
,, hardwickii, 247.
,, loveatus, 247.
Lapsitu, 'feast-broker,' 5 I.
Latkan (Bixa orellana), 26, 27, 28, 36, 41.
Lawsonia alba, 26.
Lime-juice, in dyeing with, 29 .
Liopala fasciata, 199.
Loochoo Islands, Hydrophiince of the, 169, I84: 185, I87, I88, 2II, 236.
Loyalty Islands, Hydrophiince of the, Igr.
Luzon, Hydrophiine of, 220.

M

Madagascar, Hydrophiinae of, 250.
Madras, Hydrophiince of, 217, 236, 24I, 243.
Madras Medical College Museum, Specimens of Hydrophiince in the, $\mathbf{1 6 9 .}$
Magenta, 32
Mahendra Malla, King, II, I9.
Mahesh Naddu, a godling of the Saorias, 83.
Maidān, a place, 345.
Maize, 360.
Malabar Coast, Hydrophiince of the, 192, 206, 210, 246.
Malacca, Straits of, 4.
Malayan Region, 185, 186, 192, 245 .

Malaya archipelago, 206, 224, 227, 240, 248.
Mal or Male, an appellation of the Saorias, 45
Mallotus philippinensis, 26. See also Kamala.
Mandro, a division of the Saorias, 46.
Mangre Erwe, propitiation of the god of maladies and epidemics, 77.
Manjista (Rubia cordifolia), dyeing with, 26, 27, 28, 3I, 4I, I55, 557.
Mārā Kambe-a male devil of the Saorias, 82.
Marginal shields: in the Hydrophiince, 179, 183.
Marriage prohibitions of the Saorias, 54.
McCann, H. W., on dyeing with bakam, 29.
Megalasma striatum, sub-sp. minus, I.
Mehnder-Mulie, or silver eight-anna piece, 18.
Mehndi (Lawesonia alba), 26.
Mekran coast, Hydrophiince of the, 25r.
Mergui, Hydrophiince of, 199, 203, 221.
Merleh thorn for tattooing, 48.
Microcephalophis gracilis, 108.
Midnapur process of dyeing with manjista, 3I.
Moluccas, Hydrophiince of, 184.
Mongolian characters, Nigur, form of, I7.
Monuments, Afghan, 34I.
Mordants, 2%.
Móri Ertwe-"Peafowl" festival of the Saorias, 76.

Morinda citrifolia, 3I.
tinctoria, 26, 27, 28, 31.
Munār-i-Chakri, Description of the column known as, 341 .
Munär-i-Surkh, Description of the column known as, 342.
Munda, a name by which the Saorias are called by the Santhals, 46.
Mundari Poetry, Music and Dances, 85 .
Muriatic acid in the composition of the Red Spirits, 30 .
Murshidabad process of dyeing with latkan, 30, 31.

Muscat, Hydrophiine of, 215, 223, 241.
Music, Mundari, 85.
Myrabolam, used in dyeing, 30.

N

Nadia process of dyeing with latkan, 30, 3I.
Nagendra Nāth Bandopādhyāya, on dyeing 30, 155.

Nagpur, Statistics of rainfall, 409.
Nag-tang, coin, I3.

Naia, 170.

Nalla Wahlagillee pam, 248.
Naphthol β, 32, 4 I.
Nárráh, a devil of the Saorias, 82 .
Nasratjang, Nawab, I20-i.
Nepal coinage for Tibet, II.
Ner Lalleh, Snake dance festival, $8 \mathrm{x}, 82$.
Newars strike coins for Thibet, II.
New Guinea, Hydrophiince of, 190, 192, 221, 248.
New Britain, Hydrophiince of, 219 .
New Zealand, Hydrophiince of, I86, 250.
Nitric acid in the composition of the Red spirits, 39.

Nug-tang, coin, 2 I.
Nyctanthes arbor-tristis, 26. See also Singhar.

O

Orleans. See Latkan.

P

Pacific Ocean, Hydrophiince of the, 196, 249.
Padauk (Pterocarpus dalbergioides), 28, 4I.
,, not used as a dye stuff, 32 .
" result obtained by dyeing with, 32, 36 .
Paghman mountains, 345 .
Palas, (Bulea frondosa), 26, 28, 30, 4I, 155, 157.
Pan Duri Gosain, godling of highways and journeys amongst the Saorias, 66-69.
Parietal shields, in the $H y d r o p h i i n c e, ~ 176, ~ I 83 . ~$
Parte, a division of the Saorias, 46.
Pasrur, crops of, $355,356,359$.
Pa -ıying tang-ka, coin, I3, I5.
Pegu, Hydrophiince of, 210.
Pelamis bicolor, 248.
,, chloris, 20 I.
,, obscurus, 20 .
" ornata, 248.
,, schistosus, I9I.
Penang, Hydrophiine of, 201, 203, 215, 232. 243.
Perak, Hydrophiince of, 213, 214.
Persian Gulf, Hydrophiince of, 192, 199, 222, 224 228, 236, 240, 247, 249.
Persian Coast, Hydrophiince of the, 216.
Perspiration, fastness of dyes to, 36 .
Peshawar, Statistics of rainfall, 397.
Phenol, 32.
,, phthaleïn, 36 .
Phi-ling gor-mo, 'the foreign round coin,' 22.

Philippines, Hydrophiince of the, 185, 186, 189, 223, 248.
Pice, Nepalese, 21.
Platurus, I7O, I7I, I72, I73, I74, I75, I80, 182 , I83, I84, 190.
,, affinis, 185.
," colubrinus, I74, I76, I84, I86.
,, cyanocincta, 178, 94.
,, fasciatus, 186 .
," fischeri, 185.
,, laticaudatus, I74, 176, I84, I85.
,, mulleri, 185.
,, ornata, 249.
," schistorhynchus, I74, I75, I76, I79, I84.
,, scutatus, 186
Poetry, Mundari, 85.
Pori, a devil of the Saorias, 82.
Port Darwin, IgI.
Postocular shields, in the Hydrophiince, I77, I78.
Potassium bichromate, 32.
Præfrontal shields, in the Hydrophiince, I75.
Præocular shields, their nature and occurrence
in the Hydrophiince, 177, I78.
Primuline, 4I.
Prithi Narain, Maharaja, I4, I8, I9.
Product moment curves, 394 .
Pterocarpus dalbergioides, 28, 4I.
,, santalinus, 28, 4I.
Pūbbi, a division of the Saorias, 46 .
Puri, Hydrophimae of, 228, 229, 24I, 248.
Pyrgop is annandalei, 8.
Pyrgoma milleporce, 9.

Q

Qadam Rasul, a place near which Bäbar was buried, 345.

R

Rabi harvest, effect of the rainfall on, 358 .
Rainfall and crops, 347.
,. deviations of, indicated by harmonic curves, 349 .
,. distribution of, as expressed by frequency curves, 381.
in September, its beneficial effect on the Rabi harvest, 370 .
Rain guages, faulty, 35I.
Rajmahal hills, the Saorias of the, 43 .
Raksi Gosain, a godling of the Saorias, 80 .

Rāmbāgh, a garden, 345 .
Rangoon, Hydrophiince of, 270.
Raya, crops of, 355, 356, 359.
Red sandal (Pterocarpus santalinus), dyeing with, 28, 32, 36, 41.
Red spirits, as mordant in dyeing, 30.
Religion of the Saorias, 65 .
Resorsin, 32.
Rice, 360 .
Ross, E. D., on the tomb of Bäbar, 345 .
,, ,, on the names of birds in Turki, Manchu and Chinese, 253.
Rostral shields in the classification of the Hydrophiince, 174 .
," ", in the Hydrophiince, I83.
Royal College of Surgeons, specimens of Hydro. phiince in the Museum of the, 169 .
Rubia cordifolia, 26, 27, 28, 4I.
Rupee, Indian, in 'Tibet, 13.

Safflower (Carthamus tinctorius), dyeing with, 26, $27,28,29,4 \mathrm{I}, ~ I 56$.
Safranine, 32.
Saighan, hill country of, 344 .
Sajimati, employed in dyeing with safflower, 29.
Sancoa, Hydrophiince of, I84.
Sandal, red. See Red sandal.
Sendway Island, Hydrophiince of, 236.
Saorias, anthropology of the, 43.
, birth ceremonies amongst the, 60 .
, custom of adoption amongst the, 56 .
.. devils and evil spirits of the, 82 .
, division of the, 45 .
,. ethics and morals of the, 47 .
,, five divisions of the, 46 .
,, gods of the, 65 .
,, houses of the, 84 .
,. Law of Divorce amongst the, 58.
,. Law of Inheritance amongst the, 59.
,, marriage customs of the, 49 .
,. marriage prohibitions of the, 54 .
,. Modes of address amongst the, 60 .
.. new pujahs of the 83 .
,. obsequies and burial of the, 62 .
,, Panchayat of the 84 .
," prohibitions regarding food of the, 84 .
,. religion of the, 65 .
,, religious terminology of the, 66 .

Saorias, tattooing of the, 48 .
traditions and legends of, 46 .
Sappan wood (Casalpinia Sappan), processes of dyeing with, 155
Sarkari Pálki Gosain, a godling of the Saorias, 76.
Savage Island, Hydrophiince of, 184, I89.
Savaras. See Saorias.
Savātā Pahār, a name of the Rajınahal hills, 46 .
Scalpellum alcockianum, I.

```
,, bengalense, I.
:. gruveli, I.
,, inerme, I.
,, laccadivicum, I.
,, sociabile, I.
,, squamuliferum, 1, 5.
,, subflavum, I.
,, velutinum,9.
,, woodmasoni, I.
```

Schleichera trijuga tree in birth ceremonies of the Saorias, 65 .
Sea-snakes, monograph of, 169-251.
Shahpur, Statistics of rainfall, 399.
Shanghai Museum, specimens of Hydrophiine in the, I69.
Sher Darwāza, a place, 344.
Shiddil, 24 I.
Shields in the Hydrophiina, I72.
". variation of, in the specimens of Emydocephalus ijime, I88.
Shintu-Jod-pa, or 'perfectly finished' character of the Dalai Lama's seal, I7.
Sho-kang, coin, 12.
Sho-nga, a sum of money, 21 .
Shoolur sun, 201.
Sialkot, crops and rainfall in, 349.
Silk-dyeing, 27, 29, I55
Singapore, 189 .
Singhar, (Nyctanthes arbor-tristis), dyeing with, 26, 155
Situdar, 'Marriage-broker' among the Saorias, 50.

Snakes, sea, changes with age, I80. ". " monograph of, I69.
Soap, tested for neutrality, 36 .
Society Islands, Hydrophiinae of the, I84.
Spirits, red. See Red spirits.
Srang, a sum of money, 2 I.
Sri Nivasa Malla, King, I6.
Sublingual shields, in the Hydrophiine, 179 .

Sunderbunds, Hydrophiince of the, 218.
Supralabial shields, in the Hydrophiine, I77, 183.
Supraocular shields, in the Hydrophiinee, 176, 183.
Surkh Munar, description of the, 342 .

T

Taal Lake, Hydrophiine of, 220.
Taibut, valley, 342.
Ta-mig-ma, a kind of Tibetan coin, 22.
Tand Kutti Naddu, a pujah or propitiation of the
godling of illness, amongst the Saorias, 80 .
Tande Errwe-a godling of the Saorias, 76 .
Tang-ka, coin, II.
Tankas, Chinese, I3.
Tannin, as mordant in dyeing, 30, 3I, 32.
Tarīkh-i-Nașratjangi, I2I.
Tatta pam, 198.
Tattooing, 48.
Teeth of the Hydrophiince, 169, 170, I92.
Temporal shields, in the Hydrophiince, 178.
Tenasserim coast, Hydrophiince of, 199, 203.
Tetraelita porosa, 8.
Tetramerida, 8.
Thalassophes, I70, 174, 175, I82, 183, 244.
", annandalei, I7I , I72, 173, I75, I76, 245, 251.
anomalus, 244, 245 .
Tibet, coinage of, II, 23.
Tin, in the composition of the Red spirits, 30.
Tomogaster eydouxii, 189 .
Toon (Cedrela toona), 26.
Torres Straits, Hydrophiince of, 243, 244.
Tranquebar, Hydrophiince of, 192.
Turmeric (Curcuma longa), dyeing with, 26, 28, 29, 4I, I55.

U

Umet Narrah, a devil of the Saorias, 83.
Unirrigated areas, correlations for, 364 .

> V

Van Diemen's Land, 185.
Ventral shields, of Hydrophiince, 170, 182, 183.
Verruca costata, 4.
," cristallina, 2.
,, evecta, 2.
," imbricata, 5 .

Verruca kcehleri, 4
,, magna, 5.
,, multicostata, 4 .
, plana, 2
,, radiata, 3 .
Vitriol, green, used in dyeing, 30.

W

Walker, G. T., 348.
Wall, F., on sea-snakes, I69.
Walsh, E. H. C., on the coinage of Tibet, II, 23.

Watson, E. R., on the Dyes of Bengal, 25, I55. Wei Yuian, the Chinese author, II.
X.

Xenobalanus, 9, 10.

Y

Yakhdara, monuments at, 341 .
Yak-mig-ma, a kind of Tibetan coin, 22:
Yezo, Hydrophiince of, 249.
Yokohama, Collection of Hydrophiince at, I69.

Z

Zafarwal, crops of, $349,355,356 ; 357$.
Zahiruddin Muhammad Bābar Padishah, 345
Ziarat, a place of pilgrimage, 344 .

Memoirs of the Asiatic Society of Bengal. 1905-1906.

I. On certain Tibetan Scrolls and Images lately brought fiom Gyantse-By Pror. Satis Chandra Vidyábhoṣana, M.A., M.R.A.S. (Price Re. 1-8; or 2s. 3d.)
II. Sal-Ammoniac: a Study in Primitive Chemistry.-By H. E. Stapleton, B.A., B.Sc. (Price Re. 1 ; or $15.6 d$.)
III. The Similarity of the Tibetan to the Kashgar-Brahmi Alphabet.-By The Rev. A. H. Francke. (Price Rs. 2 ; or 2 s . Iod.)
IV. Alchemical Equipment in the Eleventh Century, A.D.-By H. E. Stapleton and R. F. Azo. (Price Re. 1-8; or 2s. 3d.)
V. Malaysian Barnacles in the Indian Museum, with a list of the Indian Pedunculata.By N. Annandale, B.A., D.Sc. (Price Re. 1-8; or 2 s .3 d .)
VI. Ashrafpur Copper-plate Grants of Devakhadga.-By Ganga Mohan Laskar, M.A. (Price Annas 8; or 10d.)
VII. Festivals and Folklore of Gilgit.-By Ghulam Muhammad. (Price Rs. 2 ; or 2 s. 1od.)
VIII. Notes on the Bhotias of Almora and British Garhwal.-By C. A. Sherring, M.A., F.R.G.S., I.C.S. (Price Re. 1-5; or 2 s.)
IX. Religion and Customs of the Uraons.-By the late Rev. Father Dehon, S.J. (Price Rs. 2 ; or 2 s .10 d.)
X. Notes on the Fauna of a Desert Tract in Southern India (Herpetology and Entomology)- - By N. Annandale, D.Sc., C.M.Z.S., with a list of Mammals by R. C. Wroughton, F.E.S. (Price Rs. 2 ; or $2 \mathrm{~s} . \mathrm{Iod}$.)
XI. Amulets as Agents in the Prevention of Disease in Bengal.-Compiled in the Office of the Superintendent of Ethnography, Bengal. (Price Annas 12; or is. 2d.)
XII. Earth-Eating and the Earth-Eating Habit in India.-By D. Hoorer and H. H. Mann. (Price Re. I; or Is. 6 d.)
XIII. On a Cup-Mark Inscription in the Chumbi Valley.-By E. H. C. Walsh, I.C.S. (Price Re. \mathbf{I}; or Is. $6 d_{\text {. }}$)
XIV. A Descraptive List of the Sea-Snakes (Hydrophiidæ) in the Indian Museum, Calcutta. -By Captain F. Wall, I.M.S., C.M.Z.S. (Price Re. I; or is. 6d.)
XV. Common Saws and Proverbs collected, chiefly from Dervishes, in Southern Persia.-By Lieut.-Col. D. C. Phillott. (Price Re. i; or is. $6 d$.)
XVI. The Common Hydra of Bengal: its Systematic Position and Life History.-By N. Annandale, B.A., D.Sc., C.M.Z.S. (Price Re. 1 ; or is. 6d.)
XVII. Animals in the Inscnotions of Piyadasi.-By Monmohan Chakravarti, M.A. (Price Annas 12 ; or $1 s .2 d_{\text {. }}$)
XVIII. Some current Persian Tales told by Professional Story-Tellers.-By Lieut.-Col. D. C. Philloti. ${ }^{\text {i }}$ (Price Re. 1; or is. $6 d$.)
XIX. The Dards at Khalatse in Western Tibet.-By Rev. A. H. Francke. (Price Re. 1-6: or $2 s$.)
Supplement, Miscellanea Ethnographica. Part I. 1. The Blow-Gun in Southern India 2. Miscellaneous objects from the Rámanád subdivision of the Madura district 3. Indian Weighing-beams.-By N. Annandale, D.Sc. (Price Re. 1.)

Supplement, Miscellanea Ethnographica. Part II. 1. Some Malayan Weapons-By N. Annandale. 2. Plan of a Persian Gentleman's House.-By Lieut.-Col. D. C, Phillott. (Price Annas 8; or 1od.)

Memoirs of the Asiatic Society of Bengal.

Vol. II.

I. Cirrhipèdes operculés de l'Indian Museum de Calcutta.-Par M. A. Gruvel. (Price Rs. 2 ; or $2 \mathrm{s.110d)}$.
II. The Coinage of Tibet.-By E. H. C. Walsh. (Price Re. 1 ; or $1 s .6 d$.).
III. The Exact Determination of the Fastness of the more Common Indigenous Dyes of Bengal, and comparison with typical synthetic Dye-stuffs. Part I. Dyeing on Cotton.-By E. R. Watson. (Price Re. 1; or 1s. $6 d$.)
IV. The Saorias of the Rajmahal Hills.-By R. B. Bainbridge.-(Price Rs. 2 ; or 2s. Iod.)
V. Mundari Poetry, Music and Dances.-By Rev. Fr. J. Hoffmann, S.J. (Price Re. i ; or $1 s .6 d$.)
VI. Tarikh-i-Nuṣatjangi.-By Harinath De. (Price Re. 1; or 1s. 6d.)
VII. The Exact Determination of the Fastness of the moxe Common. Indigenous Dyes of Bengal, and comparison with typical Synthetic Dye-stuffs. Part I1. Dyeing on Silk. -By E. R. Watson. (Price Annas 12; or 1s. 2d.)
VIII. Monograph on Sea Snakes.-By Major F. Wall, I.M.S. (Price Rs. 5; or 7s.)
IX. A Polyglot List of Birds in Turki, Manchu and Chinese.-By. E. Denison Rosss, Ph.D. (Price Rs. 4 ; or $6 s$.)
X. Notes on some Monrments in Afghanistan.-By H. H. Hayden, (Price Re. 1 ; or $1 s .6 d$.)
XI. On the Correlations of A reas of Matured Crops and the Rainfall, and certain allied problems in Agriculture and Meteorolgy.-By S. M. JАсов, I.C.S. (Price Rs. 2-8; or $3 s .10 \mathrm{~d}$.)

Ramacarita by Sandhyakara Nandi.-Edited by Mahamahopadhyaya Haraprasad Shastri, M.A. (In the press.)

The Fournal of Major Fames Rennell, F.R.S., First Surveyor-General of India.Edited by T. H. D. LATouche. (In the press.)

$"$

[^0]: 1 Memoirs of the Asiatic Society of Bengal, Vol. I., No. 5, pp. 73-84.
 2 Annals \& Mag. of Natural History, Ser. F., Vol. XVII., April ı.goб́.

[^1]: 1 "Notes on the Ethnology of Tibet." Based on the collections in the U.S. National Museum, by W. W. Rockhill, Washington, Government Printing Office, 1895.

[^2]: 1 The obverse of the coins figured is shewn on Plate IIIA. and the reverse is shewn in the corresponding number of Plate IIIB. Similarly Plate IVB gives the reverse of the cuins whose obverse is shewn on Plate IVA.
 ${ }_{2}$ "Notes on the Ethnology of Tibet." Based on the collections in the U.S. National Museum, Plate 27, and "The Land of the Lamas." By W. W. Rockhill, p. 207.

[^3]: I Rockhill, "Land of the Lamas," p. 208.

[^4]: 1 Prof. B. Jülg on "The Mongolian Language," in the Encyclopædia Britt., Vol. XVI, p. I50.
 ${ }^{2}$ Lhasa and its Mysteries." By L. A. Waddell, p. 448
 3 Rai S. C. Das, Bahadur, has given an example of the Shintu-fodpa character, J.A.S.B., Vol. lvii., Part I., 1888., p. 45. He, like myself, was unable to get the symbols of this character named individually, though the purport of the different groups or vertical lines of characters, which he gives as examples, was stated to him.

[^5]: 1 An account of the kingdom of Nepal, being the substance of observations made during a mission to that country in the year 1793, by Col. Fitzpatrick, London, William Miller, 1811, pages 217, 218.

[^6]: 1 Op. cit., pp. 339-3ұ0. 2 Op. cit., p. 211 . Op. cit., p. $211-212$.

[^7]: Reverse of Coins, the obverse of which is shewn on Plate IV (A) (except Nos. $12 \& 13$, the obverse of which is shewn on this plate and the Reverse on

[^8]: I These materials were all obtained in the Calcutta bazaars, with the exception of A1. I must here thank Babu Bipin Behari Das, Research Student, Civil Engineering College, Sibpur, for his assistance in collecting these materials.

[^9]: I Cloth mordanted with tannin and red spirits was used for several dyeings. It was prepared always according to the following description:-

 Enter the cloth into a boiling 3 per cent. tannin bath and work till the bath has become cold. Wring out and enter into a bath red spirits I in 32. Work for one hour and wash well.

 To prepare red spirits:-Take 3 parts, by measure, muriatic acid and I part nitric acid, with I part water. Put the vessel containing the mixture into a cool place and add, in small quantities at a time, feathered tin, in the proportion of 2 ozs . tin for each pound of acid. A few hours after the action has ceased, the spirits are ready for use.

[^10]: ${ }^{1} \mathrm{Pad}$ with aluminium acetate solution sp. g. $r^{\circ} 025$ at $90^{\circ} \mathrm{F}$ till weight of goods tripled. Hang up for 48 hours in a warm moist atmosphere (dry bulb Thermo. $30^{\circ} \mathrm{C}$.; wet bulb. $28^{\circ} \mathrm{C}$.) Pass through 2 per cent. $\left(\mathrm{NH}_{k}\right)_{2} \mathrm{CO}_{3}$ solution and wash.

 To make acetate of alumina:-In one gall. hot water dissolve 2 lb . alum; dissolve in a separate vessel 2 lb . acetate of lead in one gall. water; in a third vessel dissolve $\frac{1}{2} \mathrm{Hb}$. crystallised soda; mix all the solutions together and stir well for some time, then allow to stand over night ; decant the clear solution which is ready for use.

[^11]: 1 Mordanted according to instructions issued by Badische Anilin und Soda Fabrik using Method III (a) I. in pamphlet "Alizarine Colours on Cotton," A. 815.c.

[^12]: * More than 23 days. $\quad \dagger$ Classified by Cassella \& Co. (loc. cit.).

[^13]: * Results agree with observations of Messrs. Cassella \& Co. (loc. cit.).

[^14]: L Spelling of Malto words: The spelling adopted is that which is understood by Saorias who know the Roman alphabet. There are five vowels, long and short, viz., a á, e é, i í, o ó, u ú. These are sounded more or less as they are in Hindustani. Short e and o do not occur in Hindustani and are sounded as in "let " and "lot."

 Malto has no diphthongs. In pronouncing foreign words with ai, or au, the Hillnan uses the syllables ey and aw, as "Seytaneh" for "Shaitan."
 $b, c h, d, d, g, g, h, j, k, l, m, n, \underline{n}$, or $\tilde{n}, p, q, r, r, s, t, t, t h, w, y$. B vibrates between th: English B and $v ; g$ and q come deeper and fuller from the throat than in Hindi, th is a sharp English, th sounded lightly with just a suspicion of z. The rest resemble in sound the corresponding characters in Hindi.

 In Malto many words are pronounced with a lisp; othersjcome deeply from the throat with a sound of the Northumbrian " r." H, as a general rule, is almost silent, except at the end of a word when it is clearly sounded, e.g., in the word Hindi the Hillman would sound the H very nearly in the same way as the Frenchman in the word Hibou. In the word Maleh the H would be clearly heard.
 ${ }^{2}$ Male, masculine singular-two syllables as mal-e. Maler, mas. plural, Malni, feminine singular. Malnir, feminine plural. There is one declension of Malto nouns by means of case signs, e.g. :-

[^15]: 1 I am indebted to my wife for the illustrations which indeed give an excellent idea of tattooing among the Saorias.

[^16]: 1. Dáhu Gosain = the Creator. Darmáre Gosain $=$ Divinity of truth, \&c. Farmâtre Gosain $=$ Divinity of Birth.
[^17]: 1 It is impossible to translate these questions and answers: they are too grossly indecent!
 ${ }^{2}$ Chaur Mokú pig or hog in this particular connection. One to the husband's relatives $=$ Kind Mókú.

[^18]: 1 Planted bamboos, not jungle bamboos.
 ${ }_{2}^{2}$ Correct way of spelling Gosain in Malto. I have, however, adopted the usual method throughout. The rest of this song is too grossly indecent for translation and I have therefore expunged the balance.

[^19]: 1 The stone is circular and about 3 feet in height; it is usually fashioned. Smaller stones are placed all round it : clearly a lingam.

[^20]: 1 The Demno should be present at all pujahs offered to these evil spirits.

[^21]: 1 There is a variant to this song which in two additional stanzas describes the life of the two trees and enters into the details of their flowering. In the first stanza the word jengedi jenged is replaced by a jingle descriptive of the trunk of the cotton tree, viz., lengen-leng, i.e., tall and straight.

 Burura' edelo miru lengen-Iengea miru
 Berara' kadalo kare kere bore kare.

[^22]: Kandi is used of the peculiar formation of both the bud and flower as well as of the bunch of fruit of the plantain tree. Hence the term recurs in the 3rd stanza:

[^23]: The rest of the song is the same as given above. These two additional stanzas are evidently meant to depict the grace of mature youth more in detail.

 I have been told by one man that the two trees denote both the young man who is represented by the cotton tree' and the maiden whose loss is bewailed, she being represented by the plantain tree. Such an explanation is, however, at variance with the song itself and with the whole character of their poetry and may, therefore, be dismissed as wrong.

 I myself suggested the following explanation of the original song:
 'You Mundas like the forest and fine trees, because they are beautiful. Still you go and cut them down to gain ground for cultivation and then you burn them in order to manure the new ground. So the song complains that the beautiful trees are so ruthlessly cut down. But at the end it says: Well, after all it is all right, because by their ashes the trees give us rich fields.

 Only one elderly man accepted my explanation saying: Sir, your interpretation is also good, it is very good! in fact it is better than ours. You have found that out by reflexion: uru'tem namakada!

 Needless to say that I did not feel flattered by his compliment the more so as he himself, being asked about the meaning of the song, had begun by giving me the same interpretation as that given in the text above.

[^24]: * Generally spelt Hpungyi (E. R. W.).

[^25]: * The whole sample was exposed to sunlight for two days before the tests were started.
 \dagger More than 30 days.

[^26]: * The whole sample was exposed to sunlight for two days before the tests were started.

[^27]: * The whole sample was exposed to sunlight for two days before the tests were started.

[^28]: * The whole sample was exposed to sunlight for two days before the tests were started.

[^29]: i A similar condition is seen in a specimen of D. carulescens in the British Museum presented by Annandale and Robinson from the Malayan Region.

[^30]: I I did not see the type-specimen said to be in the Indian Museum, Calcutta, nor does Sclater mention it in his List (I89r, p. 6r.) It may prove to be the specimen figured by Fayrer, pl. xix.

[^31]: 1 Cat., vol. iii, p. 284.
 2 Ind. Serp., vol. ii, 1801, plates vii and viii.
 3 Eoc. cit., p. 279.

[^32]: 1 Trans. Zool. Soc. Lond., 1840, p. 3II, and plate lvi. 3 III, 1896, p. 282.
 2 Proc. Zool. Soc. Lond., 1872, p. 597.4 Ann. Mag. Nat. Hist., i900, p. 306.
 5 Memoirs, As. Soc. Bengal, I906, p. 287.

[^33]: I The specimen is sodden, and the scales difficult to count with certainty.

[^34]: 1 Ann. and Mag. Nat. Hist. v, 1900, p. 307.

[^35]: 1 Memoirs As. Soc. Bengal, 1906, p. 288.
 2 I have signally failed to bring these six specimens together by any comhination of characters

[^36]: 1 It may appear strange to record the ventrals variously in the same individual, hut it is extremely difficult to count these shields accurately in certain specimens (see my final remarks under ventrals in my prefatory notes).

[^37]: 1 Five of these are British Museum specimens labelled cyanocincta.
 2 None in one specimen, viz., belcheri, in the British Museum.

[^38]: 1 Mon. Berl. Acad., p. 856, plate I, fig. 3.

[^39]: 2 Cat., 1896, vol.iii. pp. 290 and 291.

[^40]: : One exception No. II53I in Indian Museum where they are entire.

[^41]: 1 A modified form of this without the yellow lateral stripe occurs. One such is No. 153 in the Colombo Museum.

[^42]: 1 The principal native Manchu Dictionaries will be found enumerated in Möllendorf's "Essay on Manchu Literature" in the Journal of the China Branch of the Royal Asiatic Society, Vol. xxiv, pp. I-45.

[^43]: 1 The " Mirror" contains a lengthy supplement which gives 300 additional birds, but I have not been able to include these, and most of them are fabulous or absurd.

 2 (i) Amyot, Dict. Tartar-Mantchou, Paris, 1789. (ii) Zakharoff, Polniy Mandjursko-Russkiy Slovar, St. Petersburg, 1875 . [This work is almost impossible to procure in the market. The copy I used was kindly lent me by Mr. Thomas from the I. O. Library.] (iii) Gabelentz, Abhandlung der Z.D.M.G. III, No. 2 (1864).

[^44]: 26. Kičik Āla Buyun Ghaz. كي

 A small goose with variegated neck.
 Manchu: Ajige konggoro niongniyaha.
 Chinese: Hsiao huang shuo yen.
 The "Mirror" says: It is like No. 25, but smaller.

[^45]: 1 S. Beal: Si-yu-ki : Buddhist Records of the Western World, i, 5 I (1885).

[^46]: 1 According to Ferishta, he died on the 5 th of this month.
 2 See Beveridge. Translation of Akbar Nama, Vol. I, Errata, p. xi.

[^47]: W'. Derrescean, fhoto.

[^48]: 1 Since this paper was written, Dr. Gilbert T. Walker, F.R.S., Director-General of Observatorines in India, has very kindly shown me bis calculations in manuscript of a very large number of coefficients of correlations of rainfall and pressure and other meteorological variables, which he has made the basis of a wide-reaching treatment of the problem of monsoon prediction.-S. M. J. 14-8-09.

[^49]: ${ }^{1}$ I have since been informed by Mr. G. Udny Yule, Honorary Secretary of the Royal Statistical Society, that the similar problem for English crops has been treated by R. H. Hooker in the Journal of the Royal Statistical Society for 1907. Mr. Yule has kindly promised to send me a copy of this paper, but unfortunately I have not yet received it. .

[^50]: I I have found a guage which should have had an opening of a circular shape and $5^{\prime \prime}$ in diameter, to have an opening approximately elliptical with axes of $5^{\prime \prime \cdot} \cdot 10$ and $4^{\prime \prime} \cdot 96$. This alone, apart from inaccurate measurement, would introduce an error of over 1%.

[^51]: I I have tested the 'relative personal equation' of myself and another person over a considerable area, the estimates being made quite independently and at different times. The agreement was on the whole within 3% and rarely exceeded 6 or 7% of the total area.
 ${ }^{2}$ Unfortunately only 20 years' statistics have been available in the majority of instances.
 ${ }^{3}$ The prediction cannot, of course, be absolute for any individual harvest, since unless the correlation of cropped area with the variable used for prediction be unity, the cropped area will not be the same even for the same rainfall. What is predicted by the regression equations is the mean value of the various cropped areas which occur for a particular amount of rainfall. The value of any particular cropped area will vary about that mean in a way expressible, if the correlation be ' normal,' in terms of the standard deviation of the crop and the coefficient of correlation.

 As a matter of fact in this paper it will be assumed that the correlation is 'normal' throughout. For the purpose of calculating the probable errors of the constants this assumption will be near enough to the truth; but, should it prove to be the case, as seems likely à priori, that the correlation is not only not ' normal' but not even 'linear', then the regression equations would need modification when applied to extreme cases. Paucity of data do not justify the consideration of this problem just at present, and it is not contended that the present investigation will lead to more than a first approximation.

 Conformably, the coefficient used throughout is Galton's function ' r ', which it is perhaps necessary to define here.'
 Let $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\left(x_{3}, y_{3}\right) \ldots \ldots\left(x_{n} y_{n}\right) \ldots$ be a system of pairs of associated variables, let \bar{x}, \bar{y} be the meau

[^52]: values of the x 's and y 's respectively, so that if N be the total number of associations $N \bar{x}=\Sigma\left(x_{r}\right), N \bar{y}=\Sigma\left(y_{r}\right)$ where Σ denotes a summation for every value of x and y respectively, then the 'standard deviation' of the x - variable which is usually denoted by σ_{x} is given by $N \sigma_{x}{ }^{2}=\Sigma\left(x_{n}-\bar{x}\right)^{2}$. A similar expression holds for the $y-$ variable. Then if we write $N I=\Sigma\left(x_{n}-\bar{x}\right)\left(y_{n}-\bar{y}\right)$, where the summation is for every associated pair of x^{\prime} 's and y^{\prime} s, the correlation coefficient is given by $r=\frac{I}{\sigma_{x} \sigma_{y}}$.

[^53]: 1 The period is so short, that this would hardly be feasible. As a matter of fact the area sown is not corstant for any of the villages, and a double regression equation based on both area cropped and area sown would probably give better results. It is intended to make this extension, or one equivalent to it, later on.

[^54]: 1 Since this paper was written I have seen in Dr. Shaw's British Association Address to Section A in 1908, that some 'interesting relations between the yield of barley and cool summers, and the yield of wheat and dry autumns' have been recently obtained, and this is being made the starting point by the Board of Agriculture for a 'general investigation of the relation between the weather and the crops which cannot fail to have important practical bearings.'

 Note added 2 r. 9-09.-I have now received Mr. Hooker's paper. Mr. Hooker is the Head of the Statistical Branch of the Board of Agriculture in England, and it is clearly his investigation that Dr. Shaw refers to.

[^55]: 11 am indebted to the courtesy of Mr. J. H. Field, Imperial Meteorologist, for the selection of the specially long series.

[^56]: 1 The root-mean-square of the differences of the value of the product from the chosen harmonic curves is as follows, the units being inches-squared.
 Kohat (curve I)
 Lahore \quad.
 Ajmere $\quad . \quad$
 Beawar (curve 2)

 | R. M. S. | S. D. of points about mean straight line. |
 | :---: | :---: |
 | I 2.9 | $\mathbf{I} .6$ |
 | $\mathrm{IO.5}$ | $\mathbf{I 1 . 4}$ |
 | 8.8 | 9.0 |
 | 5.8 | 6.6 |

 The improvement in the fit is small, but definite. It is hoped that harmonic analysis may be usefully employed in getting better results.

