(

?

MEMOIRS

OF THE

SCIENCE DEPARTMENT,

 TOKIO DAIGAKU.(University of Tokio.)
No. 4.

GEOLOGY

OF THE

ENVIRONS OF TOKIO.

By

DAVID BRAUNS, Pm. D., M. D.
Professor of Geology in Tokio Daftint.

PUBLISIIED BY TOKIO DAIGAKV.
TOKIO:
2.511 (1881.)
(2)

$$
\begin{aligned}
& 1 \\
& \text { - || } 111 \mid
\end{aligned}
$$

$$
\begin{aligned}
& \hat{i}+1| | 0, i \mid x
\end{aligned}
$$

MEMOIRS

OF THE

SCIENCE DEPARTMENT,

TOKIO DAIGAKU.

(University of Tokio.)
No. 4.

GEOLOGY

OF THE

ENVIRONS OF TOKIO.

BY
DAVID BRACNS, Рн. D., M. D.
Professor of Geology in Tokio Dargakt.

PUBLISHED BY TOKIO DAIGAKU.
TOKIO:

2541 (1881.)

CONTENTS.

PREFACE III
CHAPTER I. Introduction 1
CHAPTER II. Tee allutial deposits of the plain of Tokio 11
CHAPTER III. The diluttal deposits 16
CHAPTER IV. The tertiary deposirs of OJI 213
CHAPTER V. Tene tertiary deposits withis tee precincts of Tokio 50
('HAPTER VI. The tertiary deposits of the environs of Yoko- hama 59
CHAPTER VII. The tertiary deposits of other parts of Japar. 67
CHAPTER VIII. Surmary 77
EXPLANATION OF PLATES 83

PREFACE.

The geology of the environs of Tokio is a subject which has undoubtedly a very high interest for visitors and residents of Tokio or Yokohama, but above all for the Japanese students of geology to whom it offers some difficulties which no one, as far as I know, has tried to obviate. Unfortunately, I have not at hand Professor Rein's last publication about Japan, the only one I have before me being his paper on the Fuji-no-yama contained in the 25 th volume of Petermann's 'geographische Mittheilungen'; but as the prollems which form the main subject of this memoir are chiefly of a paleontological character, the author of the Japanese geography can scarcely hare alluded to those difficulties. Although Dr. E. Naumann's paper concerning the Tokio plain, contained in the same volume of the 'geographische Mittheilungen,' makes also no allusion to them, yet I have been obliged, in treating the same subjects, to advance opinions. as it will be seen, partly agreeing with, partly diverging from those of Dr. Naumann. A paper about the fossil elephants of Japan being under preparation by the same author, I preferred not to recur to the preliminary notices given by Dr. Naumann on this subject in the periodical of the 'Ostasiatische Geselltchaft.'

By far the greatest difficulty was the determintion of the fossil shells mentioned in chapters 4 to 7 , a difficulty increased by the want of several of those books which ought to have been consulted. This circumstance is also the reason why I could not give a fuller account of all the organic remains, and confined myself to giving descriptions only of the Mollusca contained in the pliocene beds of Tokio and Yokohama. Of these, however, a few species were also excluded whose condition would not admit of an exact determination. From the molluscous fanna the conclusions concerning the horizon and nature of the strata were drawn. As a similar way has been followed by other authors in a great many instances, I think I have committed no error in doing the same in a case which was not only of great importance, but also did not promise to yield other means of solving the problem.

The books mostly consulted were Lischke's japanische Meeres-conchylien, contained in three womes, phlished ly Fischer, Cassel, in the years 18199 and 1874-1875. This work, richly illustrated and critically written, mentions (and mostly descrilues) 42 ! speries of Japanest mollusea, and so made up for the want of other books, e. g. Dunker's and Schrenclis works on Japanese Mollusca. The local fanna besides was partly given in Gould's Otia concholugica, or, descriptions of shells and mollusca, from 1839 to 1862, Boston 18i2, to which the Plates of the Mrollusca from Wilke's exploning experlition, by the same
author, were a highly welcome addendum. Pacific shells are besides described by Carpenter in the Proceedings of the California Academy of natural eciences, whilst Gould's publications, except those already mentioned, are chiefly contained in the Boston Proccedings of the society of natural history, quoted in some instances in this memoir.

As the nature of the fauna described will show, the comparison with Atlantic shells was of a much greater importance than, perhape, could have been expected. This was done chiefly with the aid of Forbes and Hanley's british Mollusca, 4 volumes, London, 1853, of Jeffreys british Conchology, 4 volumes London, 1867 (year of last publication), but also of Gould-Binney's report on the Invertebrates of Massachusetts, 2 d ed., Mollusca, Boston 1870, Stimpson's revision pp. Boston 1857, Tryon's American marine Conchology, Philadelphia 1873, Weinkauff"s Conchylien des Mittelmeeres, 2 volumes, 1867 and 1868. But it was quite as important to compare the shells in question with other fossil shells; and for this purpose the 'Crag-Mollusca,' described (and figured) by S. Wood in the reports of the Paleontological Society of London (in two sections, one contained in 3 different numbers, with two supplements, the first of which has also 2 parts, the whole published within the years 1847-1879) were most easential. The subapennine fauna could not be consulted in the original publications; but this was the case again with a great part of the German papers on the fossil beds of Mayence, Vienna, Cassel, Soellingen, on the Mecklenhurg tertiary layers, \&ce, as well as with Nyst's accounts of Belgian fossils. Gollfuss' Petrefacta Germanie-of course-were sometimes of great use.-As the Brachiopoda were added to the true mollusca, the papers of Davidson, above all his paper on Japanese recent Brachioporla, from the 'proceedinge of the Zoological Society of London,' A pril 18th, 1871, page 300-312, and pl. 30 and 31, were consulted.

With the aid of all these books-and many others used on different occasions, all of which need not be mentioned-I feel I have only made a preliminary step in an investigation which, though offering very great difficulties, is of such importance that it seemed to me to require immediate treatment. A further delay would, above all, have been disadvantageous to the students of the Daigaku; I need, therefore, make no apology for this Memoir.

I cannot omit to call the attention of the reader to the clever way in which the Japanese artist, Mr. H. Hirauchi, has done his work in derigning the illustrations, and chiefly a certain number of the pliocene shells. Though-among the more frequent, or otherwise important species-only such specimens were selected, as were well preserved, yet the task set to him was so entirely new, that the difficulties he was to surmount are not to be underrated. Mnch of whatever is excellent in the appenrance of the book is due to the successful execution of his work. As to the printing \&c, it may be called in this case as well as in the preceding memoins 'surprisingly elegant and correct.' I seize this opportunity of expressing my hest thanks for all the aid given me in this direction by the Presidents of the Daignku.

I offer likewise my thanks to the director of the Zoological department for the kindness with which he opened to me all those parts of the Daigaku collections under his care.

Finally I add my thanks to my assistants, past and present, for the ail given me in making these researches, Messrs Sekino, Kato, Kochibe and Nishi, to whom I must add the names of two of the students of the Daigaku, Mr. Yamashita and Mr. Fujitani.

Tokio, December 18\$0.
The Author.

CHAPTER I.

INTRODUCTION.

The environs of Tokio, the capital of the Japanese Empire and, at the same time, the place in which most of the collections, colleges and schools of Japan are united and in which therefore also the university or Daigaku has been founded, exhibit, geologically, a much smaller number of rocks and formations than we might wish for. This is the more to be regretted as these environs are part of a vast plain everywhere constructed on the same plan and showing essentially the same formations, so that, in order to reach rocks and strata of a different kind, the student of geology is always obliged to make long and rather tiresome trins in a country which, it must be adnitted, has but imperfect roads and means of conveyance, and offers but very few comforts to travellers. Moreover, the mountains encircling the large plain of Tokio-the largest in fact of the Japanese Empire, and for that reason most likely selected for the site of the capital-present little variety. In almost every direction we find rocks of a similar character and origin on leaving behind us the formations of the plainthose diluvial plateau-like heights intersected by rivers and rivulets, and more or less broad allurial valleys, which we are to describe in the first chapters of this paper. Those rocks of the adjacent hills and mountains, forming as it were a vast quadrant, to which the small isolated district of Uraga is to be added, are indeed mostly crystalline sedimentary or schistose rocks, micaschists, calcareous micaschists, chlorite-schists, intermixed with quartzites, crystalline limestones, and cipollines, in a few instances passing over to gneissic rocks, in other instances (N. and N.W. of Tokio) to quartzitic conglomerates or to limestones containing few kinds of recognizable organic remains-crinoïds, belonging to the tesselate ones, orthocerata, and fusuline-, all proving that these rocks are at least of a palaeozoïc age. In some parts, as for instance in the Tsukuba-mountains, which, from the northern and northeastern side, project somewhat farther into the plain than the rest of the neighboring heights, or in some parts of the Chichibu district and farther to the west, or in the mountains which northward from Mitn verge nearly to the sea-side, we find granites, diorites and other plutonic rocks of a rather ancient origin; whilst in a few localities, especially in the southern part, alone the const, recent volemie rucks with their tufas are widely spread. These tufas imided pass gradually inte the formations of the plain and especially into the nengene tertiary moks which may be sail to the the most attractive formation of it. These molanic rock have their highest level on the top of the Fuji-no-yama, that well known normal volcanic cone of gigantic dimensions which is situated to the W.S.W. of Iokio

It a distance of ulyut 65 miles, and whose crater, now nearly filled with barrou ashes and lapilli, forms a hollow cone not more than about five hundered feet below the high and shorp ridge encircling it. The volcanic 'action has totally ceased on the high top of the giant-cone, - the last eruption, nearly two centuries ago, having affecterd only a side-cone, the Hoyei-san, about half way up from the western hase-, and we see but slight traces of it in the environs of Hakone. at a direct distance of about 12 miles from the top of the Fuji-mountain, so that it sedms to have vetreaters to the sea. Indeed it seems to have its main centre now in the voleme of the island of Oshima, nearly SSW from Tokio. Not only the last virmons eruption-about a century ngo, - but also smaller ones seth and deseribed and purlly phetured by European geologists, and, as it becomes obvious from a great many dates of the seismoscopical offices, a part at least of the earthquates so freyuently ocourring at Jukohama and 'lokio, print to this fact; whilst un the other hansl, the voleanic phamomenon of the districts is the north of 'lokio, especially on the Asmma-yama, whose lust great cruption is recorded to have taken phace 6 years after that of Oshima, is now apparently lewe vigorous and not much above that degree of intensity which is exhibited by the bot springs and the sulfurous exhahtions near Hakone. As for the sedimentary rocks overlying the older crystalline sedimente, they are, as far as they are known in this vicinity, all very young, being partly tertiary, partly quaternary. The tertiary rokes, thonerh very thick and developed in different shape. as shale, conghomerate and simulstose, are not, or wot much, ohder than the tertiary mocks which we shall find in the phaia, mal form indeed one and the same system, rich thronghont in such spexies of monluscan, as still survive in the Japanese seas. 'I'hese rocks firm sumetinos leals and lowins cucircleal by the micaceons schistuse rocks, partly lasere, as for instance that which extends between Nigawa and Minamo in the district of lhichilm, partly smatler, as one which has been discovered in the enviruns uf sukegnw, in the north of Mito and near the eastern coast. Other parts of those tertiary ntrata are spread along the boundaries between the crystalline eystem and the yusternary soil of the plain, as for instance befwern Mito annl tine munnlatis in the north of that tuwn, or in the district of Komaurori, or west waral from Jokohama. The rocks constitutiog this part of the: conntly, whieh thonsh not protiectly contignous, may le called a belt encircliug the plain, are mosily sumlatumes, monctimes rather impure and fro-
 contain sometimes frumbents of pumice, in the former, they are rich in small
 occurring ju the adjacent mountains. 'I'le species of fussils fund in the sand-stones-unluckily very often mere catsts or moulds-are of conne of great imfortance. Wie shatl, therefore, be obliged to recur to them in the following pares. It may sutfice bere to mention anong them Nassa livereens l'hil., Culunlella suriptat La, Mya. aremaria L., Cyclina Siuensis Gmel., Mactraveneriformis I) ${ }^{\text {ash }}$, Insinia Jupnica Reeve, whone identity, however, with the true

Dosinia exoleta L. will be proved in the following pages, and C'ardium muticum Reeve, all of which have been found frequently and in more than one locality, and serve to illustrate sufficiently, what has been said ahout the character of these strata.

The quaternary formation looses the character which it exhibits in the plain, whenever we ascend a few hundred feet above the level which it has near the sea side, in the environs of the bay of Tokio. The ralleys of the rivers are terraced also there, but the differences between the true diluvial and the true alluvial formation disappear, and instead of them, a furmation is developed containing large pebbles, shingle and sand mixed with loose, impure soil, such as we frequently find along the slopes of steep hills or mountains. As this formation passes insensibly into very recent deposits, there can scarcely be any doubt about its being partly of recent origin, and corresponding to the undonbtedly alluvial deposits of the lower part of the river valleys. But this cannot be said of the totality of these loose quaternary conglomerates, as there is evidence of organic remains in them which beloug to extinct mammals. Though the species could not be always ascertained there can be no donbt about the genus Elephas (v. Chapter 3.) occurring not unfrequently in the beds described above, which, as scarcely needs be mentioned, cover unconfonnably all the other formations, palaeozoic or tertiary, with a coat which sometimes has many metres of thickness, whilst, in other instances, it is partly or entirely eroded and taken off by the waters, or even may have been prevented by them from being deposited at all. As good examples of such deposits we may mention again the districts of Chichibu and Komagori, the latter exhibiting moreover the passage hetween the alovementioned conglomerates and the more clayish soils forming the upper part of the deposits of the plain, a passage gradually appearing just beyond Hanno. Having thus encircled the large plain of Tokio and characterized the mountains in its circumference, upon which, therefore, its deposits are somewhat dependent, we may proceed to describe the plain itself and the parts into which it is to be divided.

Of course the difference is most obvious between the river-valleys themselves and the parts of the plain in which the valleys are cut. The smaller valleys and side-valleys, and on the other hand all the innumemble smaller or larger protions of the higher plain left between the rivers and rivulets, exhilit a similar if not identical character. 'This uniformity in character of both of these formations relieves us from enmmerating all those rivers, which in a very great number descend from the water-ridges towards the plain and reach the sea, partly in the bay of Tokio, partly in the adjacent parts of the ocman. 'The largest of all those rivers, the T'onegawa, is remowned for the partitions which take place about 40 miles from the month. Sume of its arms run into the open sea, the largest of them forming it sort of lagoon-district harred from ocean by sand-banks, similar also in some respect to the Nohrune which severs the munth of the Baltic rivers called Haffs, from the omen sem. Bersides the
lagoons themselves a large fresh-water lake, the Kasumiga-Ura, is to be mentioned, not more than about 8 feet above the level of the sea and, as it were, a repetition of the lagoons in a somewhat higher level. The other anms, among which the Yedogawa-a little eastwaril from Tokio, and from the arm which almost touches the capital, the Nakagawa-is most important and is used not only by common boats but also by stcamboats. In their lower part, these arms have branches communicating with the stream which runs through Tokio, the Sumidagawa; and also in its upper course this river sends tributary arms to the system of the Tonegawa. The sume river, called Amkawa in the upper part of its course and running throngh the district of Chichibn, divides, in its lower part, Tokio itself (Asakusa) from the suburb of Mnknjima. Together with the western arms of the Tonegawa, it forms a sort of delta which we may call the delta of Tokio. Of course, we are to confine this name to the environs of Tokio, and cannot call delta the whole space between the western and eastern arms of the Tonegawa, nor, as is obrious from what is raid above, any part of the region of the mouths of the eastern arms. It may be aildel, that the other river-mouths in the Tokio-bay, among which that of Kawa-saki between Tokio and Yokohamn is the most important, have the same character as the Tokio-delta, whilst the river-mouths as well of the enstern const bordering the open ocean, as of the southem coast to the west of Yokohama are more or less similar to that of the eastern arms of Tonegawa.

It may be added that, as a mule, the snil of the latter is sandy, sometimes intermised with other minerals, among which magnetic imn and may be mentioned, in the north of the north-eastern Tonegawn arms, whilat in the hay it is mostly clayish. In the first case, we may also notice that the bluffis and cliffs, mostly formed of sandstone or tufaceous rocks, are much oftener projecting far into the sea, whilst in the bay, we find such projecting rocks only in the sonthern part. The interior or northern part of the bay generally exhibits a broad margin of low, mostly clayish lauds, the bluff line being situated at some distance from the sea.

As stated above, the parts of the plain which are not cut deep by rivers or by the waves of the sea are considerably higher, even in the closest vicinity of the sea. We find the level of this higher plain, or platean, about 28 metres above the sea at Tokio, and nearly equally high, nay even a little above 30 metres, at Yokohama and its environs. The surface of the higher plain given by atrata which; near the surface, are always nearly horizontal, is more regular than the allnvial deposits themselves which not only follow the slope of the valleys but are also disposed in a somewhat different way in the same cross-section of the valley. In such a cross-rection the riverline itself may be grooved mather deep into the other alluvial layers, and terraces may often be seen which always divide younger and older alluvial deposits, the youngeat alluvial strata being always found in furrows cut deep into the older nnes, exactly in the same way, as the totality of the allurial formations is cut into the diluvial, or even into
any other older formation. Thus it comes, that all the diluvial parts of tho plain appear as isles or peninsulas, divided from one another by all those rivervalleys and side-valleys of tributary rivers and rivulets, down to the most minute undulations of the ground or ravines and torrent-beds.

It is to be mentioned, that this division of the surface of the plain is of the highest importance for agriculture, the rice-fields being in most instances confined to the lower or alluvial tracts, and generally filling them, whilst on the higher level we find the barley, wheat, millet, Indian corn, the many kinds of beans, the nasu, satsuma-imo and sato-imo, and at the same time the plantations of tea, of the mulberry-tree, and also most of the small forests; whilst the villages and towns with their bamboos and garden-trees and shrulss are indifferently spread over both sorts of localities. It will appear from the following pages that the geological constitution of all these originally contiguous and only posthumously intersected higher parts of the plain is also geologically ideutical or nearly identical, the surface being almost always formed of iron-ochre columed sandy clays or loams, and that they are always widely different from the deposits of the river-valleys imbedded between them.

The level of these higher parts of the plain does not, of course, show great differences. In the vicinity of the capital 30 metres are-as above stated-the average height wherever the formations are completely developed, the more elevated heights which occur not exceeding about 45 metres. But even at some distance, e. g. near Tsukuba, or Odawara, scarcely any difference is to be observerl. In the neighbourhood of the mountains, howerer, we get levels of 70 to 150 metres above the sea, and of course the river-beds themselves exhibit a corresponding increase of level. Generally speaking, we have a very uniform plain or, as we may call it and have called it above, in spite of its rather low level, a plateau widely spread around Tokio, which must have been deposited by the sea and under its surface, and therefore must have risen above the level of the sea since the diluyial epoch in which it was formed.

The act of elevation itself which is believed to continue to the present day, and which has been the object of a paper 'Ueber dic ebene on Yelo'-latoly published in the' geographische Mittheilungen 'of Petermann-ly Dr. E. Niumann, will be discussed in the concluding chapter. I therefore proced to puint. out some remarkable features of the country as it now appears.

The very first objects which strike the new arriver at Yokohama and at 'I'okio are the steep bluflis which appear, as has been said, at different distances from the sea, but form an almost continual, though very irregular line. The identity of these bluffs-of the Bluff on the Bouthern side of Yokohma, of those of Kanagawi, Shinagawa, of some parts of 'Tokio, of Gii is inhed whions, ami we may say without any doubt that the deep cnttings of river-valleys and rawines into the plateat-formations of the inland are also precisely of the sume mature and origin. We find, therefore, comparatively tho stecpert and bighent shopes nest to the sea-side; for the water-courson, which necessurily run down according
to the well known parabolic law and which, is we have seen, are cut through a wearly horizontal platestm, must in most strongly "phosed to the phatentisurface next to their montho, and the very highest precipices inust, at all eventa, be found next to the sen side. Consequently we me the lest exposures and goological openinge, and above all those which give the most prorfect sections, in the vicinity of Tokio and Yokohama and other places near the share. It is not, therefore, at of all astonishing, that chiefly at I'okio, Kanayawa, Yokohama we find thoee openings and steep slopes which exhilhit the lower parts of the platenn-formations.

The higher of them-if we deduct the less important alluvial deposits on the very top of the diluvial livers. of the phatem-are undonbedly dilurial, and may be taken as a surt of bume for further inventigution. Nuw there is everywhere a series of more or less thick strita, which often uniformly, or comformably, succeed the uppermost idepsits mal. ns searecly needs he mentioned, are always horizontal. 'These,strata. purtly clayish, partly samily, sumetimes tufuceons and very often intenuixed with thick layen of rount peblles, sometimes fill up the total height from the level of the seat or the deeprest point to loo ohserved in the sections, whilst in many other cases they are only sume metres thick. But in both eases a live of uncomformability is below them, and indeed this line is always more or less clearly to be seen whenever we have the second ease in which the dilurial formations descrilsed alowe do not reach the lowest part of the secetion. The strita lelow that line of ancomformability are sometim searly horizontal; lout in many other cases they are more or less strongly inclined. We may therefore assume that they are different in nge and formation from the upper ones. Indeed they are to be determined without any prejudice and withont excluding them a priori fiom any fimation lekonging to or older than the diluvial era. It is not altogether excloded, that they might belong to the older past of the, 'Diuvium ' or quaternary equch; they might le, on the other hand, of a very old origin, and it is not withont a deeper stndy of all their peculiarities of stracture , and alowe all of their ormanic remaine, that we are allowed to daw a conclusion almut their nature. Now it hus heen already mentioned that a great part of their orrmice romnins. enpeciatly of the fornil mollusca, belongs to recent species, and this fict showe that, if not diluvial, they are of a very recent - or neorene-tertiary origin. Whether the one or the wther case is betore us, will appear, as has beeln nlreaty himterl, in the fullowing pages. It may he noticel hefire-lotmi that the cond lasi:n drawn fiom the menltreca found at Oji, Shinarrawa, loknhama dec, vi\%, that the depmesite must he tertinry and not quaternary ones, is contirmen lye the strictuess with which the line of uncomformability appears, and by the strongly marked diflerences in the angle of dipping between the two series of strata-either alwove or lnelow that line-, which are often to be: olserved. Instancer of twoth facts will be given in the detailed Ileacriptions of the sections of shinagawn, Kimamwa, Yokohama, Takigashiroh, Surugalai and $O_{j i}$. Thins, both the architecture of the furmations and the paleontological character temil to prove that the shell layera helow the line
of uncomformability, which very often form the very top of the deeper formation, are indeed a very young and high part of a system which iucludes all the abovementioned tertiary beds and basins of the slopes and within certain excavations of the old sedimentary rocks of the mountains encircling the vast phain which is the object of this nemoir.

This system is indeed a unit and does not exhibit uncomformabilities, nor even very strikiug lines of partition. We are well enabled to point out younger and older strata in the thick succession of layers which it includes, lout only by the very fact that they orerlie one another. The connexion of the shell-beds of Tokio and its environs, with those of the encirons of Sukegawa and other places in the north of Mito, can also be very nicely traced along the road from Tokio to Mito and farther northward.

It deserves to be noticed that in no part of the plain of Tokio is any trace of glacial deposits to be seen nor any trace of gracial action on any of the formations. Of course we could not expectr from what we know of other countries, to find such traces in any but the dilurial formation, but even in this formation we look for them in rain. This fact is fully admitted by the author of the abov-quated paper, Dr. E. Namann; he adds, however, that there are certain signs of a lower temperature having existed during that formation. I do not think those signs really exist. The Elephas, or Mammoth, which is mentioned in Dr. Naumann's paper, is not Elephas primigenius Blumenbach (see chapter 3rd), and so falls rather short of proving this abatement of temperature, and the presence of a few mollusca in the tertiary beds which are now confined to the seas round the isle of Yesso-or even fatther to the north-gives of course still less eridence of a lower temparature during the diluvial epoch. Indeed this fact must be explained in a thoroughly different Way since other fossils of the tertiary beds would rather seem to indicate a higher temperature of the tertiary age. I have been always of opinion that it is a little rash to draw conclusions from the presence of this or that species of fossil plant or animal on the climate of past ages. In most instances we do not know the animals or plants themselves and are to form our conclusions on the assumption of more or less strict affinity letween them and surviving species, and the case of Elephas primigenius and Rhinoceras tichorthinus ought to have shown sufficiently how erroneous such conclusions may turn out. But even When we know the plants and animals, we are not allowed to derive any definite: dates from their actual gengrahical distribution. Professor Erass, of Stuttgart. one of the best German Geolugists and well versed in researches of deposits ol many fornations and climes, found on studying the prehistoric fauna of southern Gennany-abont 50° of northern latitude-a complex of animals which reminded him of the collections made for slow, or in a zoolugical garden, lions, hyamm and other animals of southern latitndes cast tugether with reindeer, and other animals of frigile climates, and with lorrses, stuys, bears and many other animals existing nowalays in the same hatiturles. All these mectes ure usserted to have
been strictly contempornneons. Now it is cherinis that the reindeer has retreated just ne far to the North an the lion hins relreatel to the Eimuth, nued if we shonal infer frotu the former that the climate Ins bern chlide than it now is, we alould we obliged by the presence of the lime on the uther lunal to nenme that it munt have heen wamer than it actually is. The whole set of fiecta referring to this theme is fully exphinel if wo keep in mind that any aprecies of pinnte or animals may have been restricted to a smaller area liy the strugyle of life to which it wat suljected. Species better adapted to n cold climate persintert there but were reatricted from the southern part of their area, whilst the reverse tork place with those species which were better adapted to n warm climate. Without admitting this fact, we should be indeed at a perfect lose how to explain the majority of facts connected with the stasly of tertiary floms and fannas, and it obliges us much more than it is the custorn among paleontulogiats, to restrict our conclusions and statements on the temperature of the different continents and oceans. Indecd the area over which the mnjority of species are spreal is far larger and includes a far greater variety of climates than is genernlly admitted; and the range of latitude, which a given species may have, or may have hal in the course of geolugical ages, is very often untoulitedly a much larger ono.

Making an application of these views to the matter in question, we may any that the climate of the latest tertiary times may hare been a little warnet-or a very little colder-than it is now, but that it may just as well have been exactly the same.

Still less thay we fortn any comclusions on the temperature of Japan during the diluvial pra, whose funa we know but imperfectly, and whose flom to a necessity was the same as that of both the youngest tertiary age and the present time, and which does not exhibit those glacial phamomena which give such a high interest to the study of the quaternary formations of England, Bcandinavia, Germany and Switzerland. During this period, which so strongly divides the genial climate of the miocene era of Europe from the less warn but also fertile present era of the same part of the world, we find in southern latitudes, snch as that of Tokio and its environs, nothing but a deposit of detritus indicating a smaller extension of the land than we have now, and no proofe of a climate differing from that of the present age, the only reasons for admitting a lowering of the temperature being derived from the observations made in higher latitudes.

In fact the absence of the glacial phienomenon is exactly what might have naturally been expected. The latitude of Tokio, similar to that of Gibraltar or Damascus, together with the absence of Alpine mountaina, would be scarcely in accordance with the presence of inland-ice, such as has been provel to have existed in the ahove-named European districts. The abrence of any tracer of it relieves us from pointing out such heavy changes in the configuration of the land and its surface as could be reconciled with the glacial phrenomenon. It is true, indeed, that the above mentioned German geologist, Fraar, is of opinion that exactly in the sime latitures, and even a little father to the south, vir. in the southern prolongation of the Jordan-valley beyond the Dead Sea and on the

Sinnitic peninsula, glaciers have existed; but his opinion, which as far as we know has never been shared by any other geologist, is neither proved to a certainty, nor even recurred to by the author himself. and the only argment given by him, the configuration of the sufface of the hills and valleys, may be equally well explained in a differcht way.

Whether the dilurial era, which at all events, iu the main, represents a state of things intermediate leetween the tertiary and recent time, but which locally and temporally may be oprosel to either, brought indeed a colder temperature than that of the present day to Japan and the adjacent paits of Asia, can not be explaiucd by the data given us by Japanese geology. Thas, the answer to this question depends upon the answer which geology will give to the important question, to what degree did the influence of the increase of northern ice and cold, which undoultedly took phace at least during a part of the dilusial era and caused its temperature to be somewhat like that of the southern hemisphere of the present age, estend towards the aequator. However probable it may seem that such an influence has been felt in a similar way as the influence of the heat of the Sahara-desert and of the winds arising from it is to be felt in a great part of Europe, and as the infuence of the moist and warm monsoon of castern Iutia is nowadays felt in Japau:-we are not able to assert that it took phace, and much less are we able to speak ahout any degree of it. At any rate there scems to have taken place a slight and gradual alteration of our climates since the tertiary period, and if the degree of alvatement was, in the average, not very high-as there are many reasons to believe-, we cannot deny a strong change of our climates in another way, namely, that the seasons became more distinct and opposite, and that with an alatement of the temperature of winter there is most likely to notice an increase of warmth of summer. This change scems to have gradually hegun towards the end of the tertiary period.

Indeed the assumptions and riews here stated are quite sufficient to explain, in connexion with the theory of natural selection, all the facts connected with the changes of our fitunas and floras since the miocene time.

We find indeed, that Japan has not only at that period but down to n much more recent date had its share of the palaarctic fatmas and fluras, which to a certainty have heen in connection with the living fuma. The continental archipelago, whose centre and most important part is the main island of Nippon, has indeed preserved some features which have disappeared elsewhere ; and wo find here a corrolnation of that law, which so strongly confirms Darwin's theory, that isolated parts of frumas and foras eserpe the severest consempences of the struggle of life and of natural selection, and may preserve certain characters even long after they have disappeared clewhere. In fonne cases, such remnants of sucient flomas and fanas are likewise preserved in other combtris, though very often on the continents they are pushed mull father to the south.

As camples of such remmants of old floras and fumas may loo quotel Gingko hitoha The, a plant known from the mincene and pliocene Earopran
floms under the name of Gingko or Salishuria miamtondes Heer, and the Japanese giant-salamander belonging to the genus Sietoldia whose nearest allies are found in miocene deposits of Europe.

Of course it would lead me ton far, if I would go through the recent fanna or flom of Japan, in order to clucidate these theses more in detuil. It may suffice to have pointed out here their general and most striking features, and to apply the laws thus derived to that protion of the faumas, which is imbedded in the strata which constitute the formations of the plain of Tokio, and which therefore will be the object of the following chapters.

CHAPTERII.

THE ALIUCVIAL DEPOSITS.

It might sem perhaps that the allevial deposits are comparatively of little consequence and. therefure, less interasting than the rest of the stratified formations. Inconsistint as this mode of viewing things is with true science, it turns out to be perfectly erroneous whenever we enter more deeply into the subject. Not only is the agriculturibl importance of the alluvial deposits of the river-valleys and of the deep plains along the sea-side very great, but also a minute investigation of all these deposits is of utmost consequeuce theoretically, for any studies of prehistoric remains.

I need not dwell upon this point, as another Memoir of the Daigakn, 'The Shell Mounds of Omori' (by Lidward S. Morse (Vol. I, part 1 of the memoirs) shows sufficiently the great importance which these researches have especially for the district whose geology we are treating here. This importance calls for the greatest precaution with referance to those shell-mounds, the more so as there are a great many difficulties to be overoome. It would he prepostcrous to call every laver accumulation of shells a shell-mound; many of them are produced by nature and not by men; other are accumblated by men in more recent (historic) times. But a great many of these deposits are indeed the products of humin action in a remoter period. The characters belonging to such artificial sledl mounds are, of course, easily determined-those mounds are never overlaid ly any but recent alluvial deposits-they are accumulated and not arranged in layers or strata-and moreover they are, ill not always, yet almost always intermixed with products of human art and industry, with waste of cookery, bones of animals \&c. The nature of the products of art as well as the character of the buman bones occasionally found within the mounds gives always the best intimations of the age to which they belong.

All these ohjects having been carefully taken into comsideration, we may indeed safely accept the result of the ahove quoted anthor concerning the prehistoric charicter of the momed of Ommri-and also that of Onomura, province of Hien, mentioned by Morse in the chapter ahout the phatyenemic tibix-, thongh we may onit af further disenssion about the exact era of its construction.

Of course in a country where prople are cating daily to very large quantity of shell-fish, we have shell-heaps or deposits of any date up to the present day, and as those heaps are almost always accumulated next to the human dwellinga, they may be very easily mistaken for shell-mounds by any one who is not well versed in anthrophomial restarches. Wherever surh :womblations are fomed
nest to the doors of existing houses, or within a village, or next to the lani-ing-places of fishermen, thero is indeed scarcely any dunger of a mistake being made; but whenever they are found in a comparatively desert place and at a larger distance from the sea, we are indeed forced to reserve nur verdict until an accurate investigation of the mound has been made, and a thorough knowledgo of all remants of pottery and other bmaches of industry contained in it has been obtained. There may be cases where even native tertiary shell-layers are not easily diatinguished from artificial shell-heapm. This difficulty is greatest whenever wo are to deal with such parts of those ahell-layen as have been washed away by the receut sea and therefore, though of tertiary origin, are no longer contained in tertiary stnta, but in alluvial strata, into whioh they have been newly and posthumously imbedded. This, indeed, is the case with n great many accumulations of shells along the base of the ancient bluff-lino at Uyeno, Oji, and other parts of Tokio and its suburbs, where we find shells of the aame description and of the same species as in the more ancient and deep shell layers of Oji, Surugadai \&c., under the soil of the rice-fields, apread along the base of the diluvial hills. This origin of the shell-deposits fonnd in thoso placus is indeed rendered obvious by the occurrence of undoubtelly tortiary layom in their olose vicinity and by the absence of any other cause which conhl affonl the ahells. But in such loculities, es for ingtanco on tho southern side of tho Yokohamabluffs, where the waves of the sea come actually into close contact with the kna of the bluff, or at least very near it, it is sometimes impossible to draw a cortais distinct limit between recent shells and tertiary shells deposited iu a secondary way by the torrents, breakers and wases of the present ago. Wo may ald, however, that in such cases this distinction is generally of slight importance and server only to make still more evident the necessity of utmost accuracy in all those researches which concern allavial shell-deposits.

If we try to classify the alluvial formation, we may proceol in two waya, either arranging them simply according to their chemical and mineralogieal qualities, or according to their geological age or comparative antiquity. In the first case, we are to separate the clayish and sometimes somewhat calcareons deposits of comparatively calm and stagnant water, togother with the pentdeposits made in perfectly stagnant water, from the sand deponita of rivers running with some rapidity, or of the shore of a rougher soa. We may my indeed, that the minerals contained in the rocks from whose destruction the alluvial deposits have been formed, are not without influence on the natue of these deposits (the magnetic-iron sands of the castern const being a striking example of this influence), yet the mineruls forming the greater part of thow sediments-quarts and common clay together with some lime-occur in alenost every kind of rocks and are scarcely wanting in any locality. We see, therefore, that modifications produced by the action of water are of the greateat importance for the constitution of any sediment, and serve above all to sover the diffirout sorts of bulk and weight, cansing in one instance coarse ands or even conglo-
merates, in another fine-grained, or impure sands, in a thind clayish parts to be gathered and depositel together. Thas, we see along the coast surrouming the plain of Tokio, sands and clayish soils alternating and often uccurring close to one anotier, according to the degree of exposure or protection of the part of the strand to which they belong. Thus, sandy deposits prevail along the open coast, especially along the eastern coast, but there are also purts of the shore of the Tokio-Bay which are sandy in consequence of their being expmeed to the direct influence of the waves of the sea. One of these plitecs is to be seen along the road from Yokohama to Othwara, and is one of the best eximples of this kind. Another kind of soil, which is not very frequently met with near Tokio, is also fomd near Yokohama-the peat and peaty soil. Near 'Takigashiramurs we have the following section in those parts which cover the strata to be mentioned in one of the following chapters, and which at the same time are situated nearer to the sea:

1 Meter of sandy clay, blackish and intermixed with peat.
0.6- peaty substance.
0.5- impure sand, coloured dark by peaty arlmixtures.
$0.2-0.3$ loose conglomerate (rounded pebbles with dark and somewhat peat-coloured soil letween).
0.4- impure sand mixed with pebbles.

Under this layer we have that line of umcomformability, which separates the quaternary beds from the tertiary deposits, and which we shall disemss hereafter. The layer next to that line is a shell-layer of a similar importance and of the stme character, mostly also containing the very same species, as that of Oji. As to it, we refer to the 6th chapter, and add here only, that clayish soil, always a little sandy, is widely dispersed through the bay near Takigushiat, in which we find a profusion of such species of shells which seem to be tryical for calm and shallow water, e. g. the Lampriae (L. multiformis Lischke and zonalis Tamek). It is therefore not astonishing to find mear this part of the coast, on the low grommels which are cut by the caual joining the bay with the harbur of Yokohama, those alluvial deposits which indicate the calmest and most starnant waters. Of course these peat-deposits are truly allovial, as is clearly shown by the underlying pebbles, to some of which recent oysters are attachen, which however in their origin have been certainly diluvial. Most of these pethles at least firm a diluvial layer which only in its upher parts secms to have the en greatly allectent by alluvial waters. The lower parts of the river-leals are likewiso more clayish-and-in some instances paty-within the hay than om the castern const. whore sands prevail often to some disance from the seat This canmen be well explainel by any dillierence betwen the biveromones themselves, but it is perfectly accounted for on the supposition that the sume canses acted uphen the land before it rewhed its present extension, it a tione when the shome was sitmated nearer to the base of the bialfs, lut when the elevated hbals were nhrody in exintence and opposed to the low-level-plain. This periul, of comrse, le homes in
an carlier part of the recent or alluvial age.
This fact which will be treated in the concluding chapter of this memuir, leads us to consider the difference exhilited by the alluvial sediments according to their age. It may be said, however, that a distinction between older and younger deposits of this kind cannot be made everywhere-just as we have seen already in the introduction that on the slopes of the mountains encircling the plain of Tokio we cannot draw a certain line even between the two main divisions of the quaternary age, the diluvial and alluvial formation. Indeat the distinction of old and new allowial deposits is confined to bronder river-valleys, whenever they show the phenomenon of terraces, slight as their height and importance may be. By examining our river-beds, we shall very often recognize such terraces, and it would be perfectly erroneous if we should confine that name to the very large, nay gigantic terraces of some of the river-valleys of North America. In any part of the European continent, for instance, we find terraces along the river-banks of a few metres of height, and this seems to be indeed the rule, whilst those very high terraces apparently have an exceptional character.

The phenomenon is moreover in perfect conformity with all the laws which concern the action of water, crosion \&c, the water of any river always tending to cut into the soil and to flatten and lower the parabolic line which as a rule is formed by any freshwater-course. Wherever the land is rising, and the level of the upper part of a river-course is mised above the level of the mouth, of course the phenomenon is rendered more olvious. I have already mentioned, and shall recur to this fact, that such is the case in Japan, or at lenst in the environs of Tokio. We may not be astonished, therefore, to find terruces along many of the larger rivers mentioned in the first chapter, among which the Tonegawa may be said to be a good eximple, although terraces are formed along the banks of almost all the rivers of the Tokio phain.

Of course the deep incisions made ly the rivers in the middle and upper part of their valleys do not strictly, at least not exclusively, belong to the formation of terraces, and this is easily seen from the very slow but unvarying deepening of the river-beds themselves within the brouler parts of the valleys. We cannot deny, however, that a part of this action at least belongs to the terrace-period. Most likely in the upper parts of the valleys this action began already at a time anterior to the alluvial em, continued during all its earlier part, or during the termaceera, and continues still during the later part of the alluvial age.

In such cases where we may trace the limits of the terrace formation, we shall be very often aware of lithological, or mineralogical, differences between its deposits and those anterior and subsequent to it. During the diluvina age conglomerates are of frequent occurrence-as the following chapter will also elucilate-alternating with sands and clays. This is sometimes, but comparatively seldom, the case also in the terrace-formation, in which sands are more commna. It differs by this character also from the more recent deposits which are richer
in clay, peat and calcareous layers, and this difference is well explained by the more uniform movement of the waters which made those older deposits. Though in the average the relocity of the waters was not greater-perhaps somewhat smaller-at that time than it is now, yet the want of stagnant parts of the river-courses and the comparative uniformity of the slope as well as of the breadth of the valleys could but have such consequences. They are, however, less conspicuous in the phain of Tokio than in many other countries, for instance in the plain of northern Europe, where the bulk of the older alluvial deposits (corresponding to the American Terrace- or Champlain-period) is almost entirely built up by the so-called 'Thal-Sand,' or sand of the valleys.

(H APTER III.

In the introluctory chapter we have alreaty skiothom the monle in which the very important ohlor guaternary strata have been depusited under the surfice of the satat a perionl anterior to the present (or alluvial) nere. 'Ihese strata contain in sume cases remains of extinct animals, but in Japun dun not betray any traces of ghacial origin. Owing to the horizomal prosition maintanal by these strata from the beginning, they have lexen cott thromgh by risens and rivulets; and along the banks of the stremes, as well as in roal-cuttings and bamks along the sea, we have geedogical sections throngh hase dilavial stata which somotimes experse their whole extent. In many cames, which have alrealy $\mathrm{l}_{\text {erol }}$ alluded to, and which will the mentoned in the following chapters. these sections are of the hichest value for omer investigation; whilst, in other instances, we have the slopes made less sterp hy superficial waters which always tem to swepe down parts of the suil and to obliterate any sharp contmats of level in the surface of the earth. In consemuence of this action there are also cases in which the uper gats of the dilusiat formation have been sliding down along a sloping hill; as a rule, however, the ninger strata only cover the surface of the higher plain.

A few instances, moneover, are to lee noted where the lower part of the formation is, as it were, a little swollen, and therefure nppors at the surface. This is mostly the case whate sands prevail, and we may say, that in sach lecalities the upper part of the diluvial depmsits is wating or reducerl to a very thin layer nearcely to be perceived in a geologital section and often entirely mixed
 sible to say whether fuseit remaine fonmen in such lenatities ratlly lelong to the upper part of the dilusial fomation, even if they are fomed directly under the firtile sail-as this has bero the case with one or two of the remains of elephathes to be mentioned buldew. As atl thase remains, alamt which we have more arenrate information, have treen either found in deeprer coltings or have twen duge out muller water, it will ln° sater to refer all the elephamas remains to the lower part of the diluvial formation.
'The "ppor pret of the diluvial depesits is surpuisingly uniform, and the
 the cuttines we sec almost invarially a stratmon of 3 th 6 meten thicknese owerlying the rest of the dilurial formation.
'This upper stratum is a smewheme conrse clayish sand of a reldish lown color. An analysis made miler the divertion of l'roferener Atkinson, of the Daigakn, by one of the studentes, gave the following result.
COMPOSITIOS OF TUE LIGHTER PORTION OF SAMPLE AFTER LEVIGATION'.
24,40 percent of the whole.
Siliceous acid, $\mathrm{Si} \mathrm{O}_{3}$ 65.15%
Sesquioxyl of aluminitun, $\mathrm{Al}_{2} \mathrm{O}_{3}$ 19,20
d^{0} of Iron, $\mathrm{Fe}_{2} \mathrm{O}_{3}$ 7,76
Lime, Ca O 1,49
Magnesia, $\operatorname{Mg} \mathrm{O}$ 0,12
Phosphoric acid. $\mathrm{P}_{2} \mathrm{O}_{3}$ 0,20
Loss on ignition 6,03
Total $99,95 \%$

It is remarkable that 'allkalis appear to be wanting'-a fact which in itself serves to refute the notion that there is a small amount of phosphoric acid in the Japanese soils. The superficial diluvial layer, often overlying very loose sand or conglomerates, and always subjected to a deyradation by the rain-water which is mostly kept for a long while ou or near its surface-the soil being but little pervious to water--, has lost its alkali-salts, and yet a tolemble amount of phosphates is left in it. It may be added that not all such soils are free from alkalis, the amount of carbonate of potish being sometimes more than one half percent and that of carbonate of Sola at least more than 2 per mille. The sand, comprising the coarser parts and (amounting to 75,52 percents of the whole, contains

$$
\begin{aligned}
& \text { Silicenus acid, Si } \mathrm{O}_{2} \text {..69.885 } \\
& \text { Sesquioxyd of alunmininm } \mathrm{Al}_{2} \mathrm{O}_{3} \text {.........................15.285 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lime, С: О.. } 1.875 \\
& \text { Magnesia, MrO ... traces }
\end{aligned}
$$

and therefore contans decomposed silicates together with quartz, the silicates having chiefly furnished alrealy clay amb limonite. The presence of a harger ghantity of this last-mentioned substance is shown also by the color of the soil.

The stratum which does unt quite onformably overlie the lower part of the diluvial deposits shows clearly that there was a gradual and gentle passing from one part of the formation to the other. If may be remarked that slight unconformabilities often oceur within the diluvial formation. Tlhough they are liy far less numeross and lesk important love than in all those places where we are in assume a glacial action, yet they are to be chserved, and, at the same time, are in perfect agrement with the nature of the dituvial formation For this formation is one of rather quide destrmetion and tumbent depmesition of poils in com-

more striking and appears so often and so strongly that we are indeed obliged to divide more sharply the upper from the lower diluvial layers.

The mode of deposition explains also fully the great variely which we find among the lower diluvial deposits even within narrow limits, all of which may le deternined as a misture of conglomemtes, sands, clayish sands and clays, of which sometimes the one and sometimes the other prevail.

Now the miformity of the uppermost layer gives another reason for sepanating this deposit from the rest, and one more may bo derived from a striking character, the want of any truces of true stratification within it. This want may be explained in a different wny; but ly far the most probable explanation seems to be that those uppermost diluvial deposits, though they correspond exactly, lithologically, to the loam, and differ from the true, 'locss ' of the Eumpeans by not having a sufficiently large nmount of lime, have had an origin analogons to that of the large deposits of loess found liy Baron von Richthofen in Eastern Asia.

Those loess-deposits had acenmuluted by the action of wind, accorling to theory of von Richthofen, and though this theory, which points out the subaërial character at least of a very great part of the loess, is a very new noe, yet it has been discussed already most copionsly anil may now bo regarded as fully confirmed.

Far as I am from assuming an exclusively subaêrial origin of any loess, and realy as I am to admit that there are loess parts, e. g. the lowest strata around the larger hasins filled by it, which do not exhihit any signs of euhaürial origin and are undoubtedly stratificd (showing alternate layem of loess and conglomerater, or of loess containing many lexss-shells, nud other parts devoid of them), yet the majority of the loess-deposits remains, nud corrobomen the above-mentioned theory. Slight as the upler diluvial deposits of Japan are if compared with those of China and Mongolia, it is scarcely pmssible not to admit an analogous origin, and this assumption morenver is in perfect accordance with the age of the analogous Enropean deposits which we know in a certninty were formed at the conclusion of the dilnvial epoch.

The want of lime, which (as the analysia shows) is not a complete one, is of course much less important than the fact of the analognous mode and period of deposition.

This want of lime may be explained either by a comparative searcity of rocks furnishing lime by their Iletrition and decomposition, or by a subsequent loss of it which has very often heen ohserved in such diluvial deposits as are placed next to the surface and thereforo hare been exposed for a long time to the action of atmospheric water. All the minute resenrches on the superficial, and above all on the superficial quaternary seliments confirm this theory most completely, a theory which as far as I know was first pululished by a Gierman author Profemor Dr G. Berendt at Berlin (as well in his pmpers publisher by the 'Geologische Iandes-Anstalt' at Berlin, as in some papers contained in the periodical of the
'deutsche geologische gesellschafit'). I have had many opportunities when surveying and mapping in the Province of Bradenburg, Germany, to observe the correctness of this theory. In many instances only an upper layer, of irregular extent, and limited by an undulating line at a little distance from the surface of the soil, has lost its lime; but in some other instances, where the thickness of the marly soil was not very great, and where sands or conglomerates pervious to water were underlying it, it is seen to be completely deprived of lime.

It needs scarcely be added that the looss is very often subjected to the same law and very often has, in its superficial parts, lost that higher percentage of lime which is always found in normal loess. Now moreorer we find in such soils, out of which the lime has been washed by the atmospheric water, a certain degree of accumulation of clay in the lower and a comparatively small amount of it in the upper part. This, of course, is also quite natural, as, in the process of outwashing, the soil becomes loose and the clay can also be washed out of it to a certain degree, and thus carried down and, in many instances, accumulated in the lower part of the outwashed soil. In other cases it may be even taken down into loose sands \&e. underlying the smaller liyers of marly and afterwards loamy soil.

That the sandy clayish soil of the upper part of the diluvial formation of the Tokio plain has no lime and a higher percentage of clay than other soils of an analogous origin and of the same geological age, cannot be surprising, even if we do not take into consideration that all the true loess, at least that of Europe, has been derived from rocks worn and ground by glacier action.

Rocks thus reduced to powder would be much less exposed to loss than rocks converted into detritus by the action of water alone. Both causes combine to diminish the amount of lime and to increase the amount of clay, the first being about 14% in the loess as well as in the glacial marly mud (bond-moraines of the Swedish authors) covering a great part of the surface of the northern European plain, and only about 2% in the upper diluvial deposits of Japan, whilst the sesquioxyd of aluminium, abont 8% in the loess \& c ., rises to the donble amount in the latter. In the other substances, eapecially in the amomen of silica and iron, there is no essential difference.

For instance, we have $62 \frac{1}{2}$ percent of siliceous acid in the loess and 65 in the Japanese soil. The only difference still to be nuticed is the presence of a smail percentage of alkalis (2.3 totally) in the loess-a difierence which, as his been already stated, is donbtlessly due to the dissulving action of atmospheric water just as well as the small amount of lime.

The soil in question is practically of a very grat importance. It renders the plain of Tokio fertile even in those parts whith we mot sitnated in rivervalleys and depressions (filled with the alluvial depesite sketched in the foremoing chapter); although not abl of the hiefore phins ane crativated. yet their weratation
 woods are thriving, the gromis of trees romel the villages and tomples are quite as richly develoned as those in the lower intunds, and a ven the bant oo is searcely
inferior to that of the manshy djungles. The Matan- and singi trees are very often met with in large and bentifil specimens. But almove all the fiellas comtaining barley, wheat, buckwheat, tho varimis kimds of millet, beans, Nito- and Sateumapotatoes and other vegetables are very fertile and contribute in a high degree to the almost luxuriant $\mathbf{c m p s}$ which Jupan enjoys in spite of its singular and, as a rational agronomist ought to say, not quite correct system of hushandry. Indeed except that quite correct idea of confining the rive-farming to the low grounde, which is said to be a divine suggestion, the anthor must combless to have seven nothing praseworthy in the agricultural system of the Japanese, although much that deserves prmise in the zeal and skill exhitited by the workmen themselves It may be safely said that even this diligence and industrial cleverners of the farming people would not suffice to provide them with gevel crops if the soil was not fertile in itwelf. Among those sorts of soil which are to be highly valued, the upper diluvial soil is one of the best and at the same time one of the most widely apread, as it covers a very large portion of tho 'Tokio plain. Valnahle, however, as this soil is in respect to farming, it is nather unfavorable to civil engincering; and to a great part the very bad state of the roads of the environs of Tokio is due to the same cause. Indeel it is surprising to see, in the very neighbourhood of a capital of the largeness and impurtance of Tokio, the roads so bad and, I may say, so primitively constructed that any large rainfall, any thaw in winter unvariably makes them nearly impassable. This would, perhape, not be the case, if the roads did not crnes, in the T'okio-plain, very often and for long distances the sandy clay of the upper ililuvial formation, which is impervious to water. In dry weather, the roads made of this soil are tolerable, and so the inhabitants are led to believe erroneously that the ronls are not very bad and that the weather is the canse of those disisters and hindrances in travelling which-as is well worthy of notice-occur not only in side-roads, but in the most important high roads. Indeed some of the governors of provinces and districts enpocially in the north of Tokio bave begun to improve the rowls partly loy digging out ditches and moats for drainage and to correct the road itself by the aldition of gravel and pebbles or fragments of stones. But evell such primitive improvements are far from being frequently made, and wherever they are not, the roads on the high-level plain between the valleys are equally bad with those on the embankments between the rice-fields or on the small likes crossing the low grounds or running along the river-banks.

The lower part of the diluvial furmation is practically far less important, though it has, as a rule, a much grenter thickners. It may be added aleo that it varies much more lithologically and contains either impure conglomerate or eand or clay, and sometimes even an almixture of tufacons parts. Very seldom, however, is it uniform in its totality, fur we very often see the inferior part of it to be clayish whilst the upper part is formerl uf conglumerate. As a rule, we may say that conglomerates predominate. In many pase we see 6-8 meters filled up entirely by them and it is very sellom that tha are entirely wanting.

Even where clay prevails, small layers of conglomerate are inserter between it, and pebhles or other coarser objects are often intermixed with the sauds or clays. We may besides add that these sands and clays, toyether with the conglomerates, are always stratified; the stratitication of sands and cong! omerates often passing over into those undulating layers so olten seen in them, whilst the clays are perfectly horizontal and exhibit many smaller and larger strata.

Though it seems very difficult, atter all, to give a good idea and a picture of the diluvial strata, we add a small sketch of the bluff next to the railway station of Kanagawa (NE from it). It exhibits the horizontal surface of the upper plain, the upper diluvial sandy clays unconformably overlying the lower diluvial strata of clay, conglomerate and sand, which are not of a very great thickness at that place and unconformably overlie the sedimentary rocks described in the following chapter. (Pl. I fig. 1).

The practical use of the lower diluvial deposits is connned mainly to the conglomerates, which, if tolerably pure, are frequently dug out for engineering purposes. Less important is the use of some of the clays for making bricks, or tiles, or even-in small layers of purer quality-fur making pottery in villages whose inhabitants are accustomed to draw the materials required for it from their neighbourhood.

The admisture of the lower diluvial strata with the tufas belonging to the volcanic rocks of the southern coast near Yokohama efc. is not to be omitted, although, withiu the limits of quaternary rocks, it is by far less extensive than in the tertiary formation. It may be said to be almost fully explained by parts of the tertiary tuficeous rocks being destroyed and deposited again by the diluvial sea. Although the outbreak of ashes and lapilli continned through the present era, and must necessarily have brought some material of that kind between the serliment of quaternary origin, yet by far the greater part of that almixture seems to be a secondary deposit and carried over from tertiary tufaceous strata to the quaternary ones. The volcanic energy, indeed, must have hegun to abate long before the present era, and most likely about the end of the tertiary and before the very beginning of the diluvial epoch.

The organic remains of the diluvial formation of Tokio and its environs are not very numerous.

First we must mention the fragments of wool, half decomposed or even entirely converted into brown coal, which frequently oceur in sandy or clayish diluvial beds, especially near their lower limit. I'rints of leaves are but sparely distributed among those fragments of stems, or of roots, all of which belong to recent sprecies. This is of couse to be expected as even most of the youncrist tertiary fossil plants do not belong to other than surviving species. The leases occuring most frequently are oak-and ash-lenves, those of maples, chestmuts, whilst the frasments of wond belong to the sugis or cryptomerias and othor coniferons plants now living in Japan.

The molluseons shells, which may be divided into land-and freeh-water shells (mostly Helix, Melausia and (yrema) on one side, and marine shells on the other, alsa, Indong mosilly to surviving Jupanese species. This may be evell exclusively said of the land-and fresh-water shells, but not an excluwively of the marine shelis, beamse among these there are some which have Ixen washel vit of tertiary leels and redeposited. In this cases, of counse, thos preservation of the shells is inferior to that of the shells of the tertiary layers themelves; fragments prewiil, and that sort of fresh lostre whith is very often found in alluvial shell-deposits of any origin, is entirely wanting, just as it is only exceprtiomally seen in the tertiary beds. The sume may be sail of course almut cribs and crayfish, star-fish, comals and bryozon, whilst reef-building ourals, as scarcely needs be mentioned, are wanting in all the quaternary deposits.

Among the terrestrial animals we have only mammals, and even amoug these the number of species is rather limited. Stag's nutlers have locen foumi, but it has not been ascertained whether they belong to Cervus sika Sich. or to some other species extinct in Japan, so that it would not be allowable to aparak of the existence of any such species. A great many vertelume of Letacea have bxen collected, and as far as may be concluded from the ileseriptions of the beadities. partly in diluvial strata; for whilst in some instances it is repurtel that fly y have heen found in deep valleys, yet in other cases the reverse is asserted. The species they belong to, could be only very imperfectly deternineal; in one cane a skull was dug out which belongs to Phocaena ghobiceps Cinv. Whilst in another one the teeth which had been found are those of Phocaena Orca L. Several other species will no doubt be added to this incomplete list.

Last, not least, the Elephant-teeth and jaws are to le mentioned, which belong to tico different species.

FIRST SPECIES.

1) Four branches of the jaws of one-apparently young-animal have heen found not exactly within the limits of the district we nre describing, but are well worth mentioning in other repects. The number of plates is enmpantively small; the teeth moreover, in spite of being very large, are undoubtedly milkmolars. There are two in every branch, and the posterior one is not ground at all, liat has the ridges or plites rather prominent. I count 5 plates and one (pusterior) talon in the anterior tweth of the lower jaw, four plates and one (jnsterior) talon in the anturiur testh of the upper jaws; the anterior sile is much worn and partly destrnyed. The length of the lower teeth is 66 millim., that of the upper 50 m 'm, the lirealth of 1 mth is 38 mm . The posterior tecth are not fully grown out of the sockets, and their posterior end is not visible. The munber of the plates visible is 5 in the lower jnw, with ne (anterior) talon. In the upper jaw there is one plate less. In both jaws one plate, or perhape one plate and a talon, must be adided to the number of the visible plates. The length is 50 mm .

The small number of plates is remarkable in so large teeth (whose entire height, however, is comparatively small ; it is visible in the posterior part of the left upper jaw, and by this circumstance alone the teeth are proved to be milk-teeth). This fact exeludes every possibility of regarding this specimen as belonging to the second species to be mentioned, viz. E. antiquns. Besiles, the solidity, and the little deviation from the oblong form exhibited by the plates and the ridges corresponiling to them, together with the form of the manilibles, as far as they are preservel, make it certain that we are dealing with Elephas meridionalis Nesti. This species has been establistel by Nesti in the Ann. Mus. d. Firenze, vol. 1, p. g, pl. 1, f 1 and 2, and the name is synonymons with E. Malbattu and with 2 names given also by Nesti, viz E. minutus and E. minimus, $i b . p l$. , f. 1. The latter of these two names is not to be confounder with an E. mininus Giebel, which is nothing but a young F. primigenius Blmb. The comparatively large size of the jaws of the very young animal, and, as I said, the form of the lower jaws attest also this relationship. The mandib'e could be directly compared with a plaster copy of one of the stanlard specimens of Elephas merilionalis, and showed no difference in any proportion, being only as much smaller in all dimensions as may be fully explained by the young age of the individual. The so-called gutter is of the nomnal size, the angle of the branches of the mandible equal to 115°. The entire mandible is 390 mm long. 300 mm wide at the posterior end. The first 215 mm open more slowly (the interval reaching only 70 mm , whilst the breadth of the bones is 100); the anterior extremity is 70 mm broad (in the median line).

The locality in which this specimen was found is in the neightmorhood of the Biva-lake, province of Omi. Further details about the way in which the bones were found and how they were deposited, I have not been able to ascertain.
2) As this first specimen, though the completest of all I have seen in Japan, does not belong to an adult animal, another one is of importance, though topographically still farther separated from our area. It has been found in the province of Iyo, in the island of Shikoku, and is a huge last molar tooth colored very dark brown, almost black, with all the lustre of the fresh tooth, but coverel in a few places by serpulae and small oyster-shells. It belongs to the right branch of the mamitibe and has a total length of $2(0)$ millimeters, a beadth of 90 and reaches a height of 110 . It contains 8 plates, the two last of which are small, the penultimate worn very little and the last one not at all. The crowns are broul, highly elevated and conically ascending; their length reaches 75 millimeters.
3) The third specimen of Elephas meridionalis Nesti is a lower jaw foumel
 in question. It was taken to Paris by Dr. Savatier, and is mentioned by Antonio Stoppmi in his 'Corso di Geokugia,' vol. 2, p. 677 (Milano 1873). 'Together with the remains of the next species it proves the cuexistence of these tern species of Elephas not only in Japan but also in the animens of Tokin, just
as in Italy and other parts of Europe.
The detinition of the beds in which this remain of Eleplus meriliomalis was funnd, as an 'alluvione' (I. c. in Stoppani's Corma) seems to indicate that we have th deal with those quaternary deposits which are contempuranenus with the alluvial as well as the dilnvial ent, and which have heen disenssed in the intwr ductory chapter. At all events the expression which Stoppanis uses on this ascasion, viz., 'terreno glaciale,' or glacial bed, is not founded on any strict olservation, and means nothing but what we cull the dilucial age of tho herle. It may be observed that Stuppani assumes far too much in referring all these beds to a glacial origin.

- seconi specirs.

1) A tooth of 11 plates and 2 ta'ons, 45 to 50 millimeters brond and 100 millim. long with a height of 125 mm in maximn, is a true molar, though not the last one, of the upper jaw of a comparatively large, though not perfectly fullgrown animal. The narrowness of the crown together with the mether lange number of plates, and the slight dilatation of the plates in the median line of the tooth, which in spite of the oblong (ncarly linear) shape of the plates is distinetly to be seen, makes it quite certain that we have to deal with Elephas antiquus Falconer. The companatively less solid and much folded enamel-anats of the plates give a further difference from E. meridionalis Newti, which is chiefly distinguished by the smatler number of phates; E. primigenins Blamenbach, on the other hand, has no dilatation of the plates in the central part of the tooth, though in other respects its charaters are quite similar.

This specimen has been recently found in the Province of Kishiu, not firr from the southern extremity of the main-island. sonth of Osaka. Although, like the first specimen of E. meridionalie, it does not pmperly belong to the district we are describing, yet the distance of the locality in which it was found is not so great, that it need be excluded from our list, which is fir from being a long one.
2) The second specimen which undoubtedly represents an upper last molar of a somewhat older individual, is 140 mm long and 50 mm broul with 125 of height in maximo, and has 14 plates. A part of the terth (anteriorly) being liroken off, we cannot say what has been the real number of platus. Most likely, there were but very few more. The plates exhibit all the charactens of Elephas antiquas Falconer; the enamel-layers are still more folderl and comparatively weak.

I his specimen has been found at Kiham Mura, a village bordering the ahove-mentioned lake, the Kisumiga-Ura, worth of Tokio (Province Hidachi), and is said to have been found under the surfioe of the water.
3) The third specimen, a mandible, found in a deep cutting-neconding to what is culdeal, most likely n gravel-cutting-bear Yokonaka (Province of Sugami)
is still more suited to confirm the determination of the foregoing specimens. Its crown is narrow, 45 to 55 millim., whilst the tooth is 165 mm long and has 14 plates of the same nearly oblong form with a marked, thongh nut sery large dilatation in the middle.
4) If the last mentioned specimen belongs already to the Tokioplain, the fourth one has been found in the metropolis itself near Yedtonlashi, in the diggings made for the construction of the post-office situated in the neighbourhood of this bridge. It is a right upper first true molar, not very large, 183 millim. long, 55 broad (crowns measuring up to 50 , but mostly not more than 40 mm), and has a triangular shape in the ponfle-siew, the highest part reaching 140 millim. The number of plates is 11 , with 2 talons (the posterior of which is more distiactly visible than the anterior one); the enamel is often and decrly plaitert.

Altogether, these 4 specimens leave no doubt whatever about their belonging to the true Elephas antiquus Falconer, a species formerly confounded with the mammoth, but separated from it for sufficient reasons.

This wue chiefly done by Falconer in an essay published after his death, 1865, which is rostly referred to hy A. Leith Adams in a paper puhlished by the Paleontological Society of London, 1875.

These Proboscidean remains sbow, I dare say, to a certainty, that during the diluvial age there were Elephants in Japan which belong to palaarctic quaternary forms.

They seem to have been rather abundantly spread at least in the central part of the main-island, but they do not show close relationship with the Siberian elephants, as they do not belong to truly borcal forms indicating a very cold climate. Elephas antiquus, thnugh found in localities not far distant from the area of the mammoth (e. g. in Thuringia) and sometimes even within its area (in England), has oot been found in any truly glacial depnsit. Still less this is the case with Elephas meridionalis.

The elephants of the diluvial deposits of Japan form, after all, a valuable link between the tertiary and recent faunae, and confirm what is said in the first chapter about the close resemblance of the western and eastern part of the palæarctic region.

As to the relations to American elephants, the Elephas americanus might be compared, which also belongs to a warmer climate. It is at all events very chosely allied to Elephas antigums: but its coamel phate are assertod to lo. loss crowded. As the discussion about this object would lead us too far, I do not

It has been already said that there is no suthicient reasom for extending the era of the Japanese Elephants beyond the reach of the lowe diluvial deposita, to which the same species mostly, if not totally, are also contined in Europe.

CHAPTER IV.

TIETEKTIAKYDEPOSITSOFOJI.

In the introluctury chapiter, I have alrealy alluded to the remarkable fact, that there is a great difference between the diminial heds mal the btrata hencath them. As a rule, these diluvial beds nore also divided; we can ofter very carily find a line which separates the upper dilusial ham from the lower dituvial beds, and which is truly a line of uncomformability. This is quite natural, as the upper diluvial formation-according to what is said in the preceding chapterhas been deposited in a perfectly different way. The lower diluvial struta, not intermixed with any prolucts of glacial action, aro eminently conformable. Thus another line of partition, another true line of uncomformability becomes highly important. It is formed at some distance from the surfino of the suil, although, of course, that distance raries and is often so great that the lower strata are not exposed. The appearance of this line is very nicely exhibited in some of the localities which I am to mention, e. g., at Oji, Fig. 4 and at Kanagawa, Fig. 2 \& 3.

At Oji, the very lowest part of the expossure shows the line of ponition and the strata below it in a similar way, as they are seen in deep cuttinga. At Kanagawa, the line of unconfonnubility appears much higher, ns it does aleo in a great part of the bluffe ncar Yokuhama. Those at Kanagawa, a portion of which I have designed, are very ncar the Kinnagawa station, and between the railway and the sea. They give perhape the lest idea of the true uature of that line, which here takes an molulating course. und so beomes very clear, although there is no visible difficence iu the angle of dipping between the two fornations. In other iustances we cau very casily recognize such a difference: for inatance, in the bluft of the sea side south-west of Yokuhama. 'The diflerence is more than 4 degrees, ausi nmounts up to 6 degrecs, the: lower strata leing inclined to the wett whilst the upper strata continue to le horizontal. This diflerence would be indeed perfectly sufficient to prove that this unconformability is muse than what is namally seen between two suburclinate divisions of a formation, even if the angles of dipping of the inferior strata was not sometimes greater. At Sukegawa and between this place and the town of Mito, it is very aftem alxut 10°, and never below 8°, whilat in some places it rises to $\mathbf{1 4}^{\prime \prime}$. the direction of dipping being here nearly or exactly north. Thus we find the lower formation undulating throughout, and its upper limit is quite irregular in consequence of the erosive action of water during a subseqnent period, after which another selimentary formation was deposited.

If we do not confine ourselves to the plain of Tukio, we find even higher angles of dipping within the formation immediately underlying the quarternary ileposita. In the province of Chichibu, the sandstone, conglomerate and shale, mentioned
in the introductory chapter, have an angle of dipping mostly of 30°, or rather from 30° to $40^{\prime \prime}$, directed towards $\mathrm{W} 30^{\circ} \mathrm{E}$; in a few instances, near the borders of the basin filled by those strata, il amounts to 55^{5} or eren a little above, the direction changiug to due North. As it has been already stated and will be discussed below, the fossils contaived in these bels are to so great an extent the same as thnse of the strata which in the Tokio-phain appear directly below the above-defined line of unconformability, that there can be no doubt ahout all these layers belonging to one and the same formation.

This, of course, could not le affirmed withont some deeper stady of the fussils, and I think, it is quite necessary for the alraucement of our knowledge of this lighly important formation to give the results of the observations thus far made upon it, without attempting for the present to make them quite complete. Indeed, it does not seem adrisable, to extend at once those researches to other animals than mollusca, or to the fossil plants occasional!y found in these uppermost tevtiary deposits of the environs of Tokio, as we may call them quite safely. Although we find almost always frigments of stems of monocotyledous, dicotyledous and gymmospermons phants, and although a few nice small specimens of corals, some sea-urchins, as e. g. Echinocyamus and Scutella found at Oji, and even occasioually, for instance in the province of Mino (Togari and Tsukiyoshi) some crabs or fish may lo found between the remains of mollusca, yet the number of the latter so far excesds that of other organisms, that we may now confine our atteution atrantageonsly to an analysis of the mollusca.

In giving the list of the fossil shells, I think it advisable first to separate them according to the localities. I hopo thus not only to leave no doubt whatever about the unifurmity of all those losalities and shell layers, but also to give a full account of all the facts peenliar to each of them.

The locality first to be mentioned is Oji, see fig. 4, a village in the neigl?bourhood of 'lokio, situatel beyond that part of the town which is called Hongo, and nearly N.N.W. from the ceutre of the towa. Tho distance of Oji from Nihonbashi is about 2 Ri., from the centre of Hungo about 1 Ri (one Ri being nearly equal to 4 kilometres).

Arriving at Oji, we see first a cutting containing sandy conglomerates of the lower diluvial formation under a cover of the upper diluvial loam, next to the roal descending from the height of the plateau down to the rivalet passing through the village. After crossing the river and ascending the platean on the other side, we have the same formation, viz., upper and lower diluvial stratal. We see here, however, sume chayish layers between tho conglomerates and sauds. Passing on a little more to the west, we lind the deep cutting in which a corn-mill is situated, and in this cutting, very near its bottona, are those shell fayers, which are richer in shells, iodividuals as well as species, than any of the other decalities to be mentioned. It is olvious from the very first glance nt the place or at its
 lation of shells male liy mera the thiskess of the diluvial ing asite, here still
more clayish, being but lexs than 7.3 meters. Of this thicknews, 3 meters belong to the upper diluvial losm (which itself is covered by 0.5 to 1.5 metern of soil), and 4.3 meters to the diffirent parts of the lower diluvial formation (2.3 clay, 0.3 conglomerater and 1.7 clay מ'uin, measured from nobve.)

The shell-layers are foumd immediately below the line of unconformability which is sufficiently undulating tu the reconnized: they slowly pass into impure dark clayish strata, somewhat prorer in organic remains, and in the lowent part containing almost nome at all. Thum chay are viaible in a thickneas of 3 meters measured from the shell-layer, which, in the average, is mot thicker than 0.5 meters, thongh sumetimes rising to wearly 1 n . The difference it exhibits from the-unconformable-diluvial deposits, is of eomrse much sharger. and above all we do mot find any well preserved sheels akowe the line of partition. There
 of the layer, imbedilend in then thgether with fragheente of wowd ete. The shell layer is nut confined th the mill, but extends to the north and went. Here it in repeatedly intersected ly cutrings malle for camals, and wometime also it appeans in the lanks of the river itedf. Jut it is mut unformly rich, as we may see in many of those places, mome of which seem to have been in some instances miataken for remains of shell-momols. The true shell-mounds, alluded to by Profesor Morse in his memoir, are, however. quite different and situated both sides of the read from Twkio to (Oji, mear this phace, Lut next to a village named Nishiga-Hara-Mura. At a larger distance froms the mill, the number of whella in rapidly decreasing, at least as far as the inversigation of the layer could be carried on; and ase all the :precies found in the wher places are included within the number of thase finand wext to the mili (in the steep mhope seen behind the mill seen in the sketch, along the smali camal, and in the tumel to the right). I mny confine uyself to the following lint of species found in this locality.

THE SHELLS OF THE LAYYR AT OJ.

Gasteropoda.

Depturen arehritice Valencimbers. Phate II fig. 1 (momptes remdus de l'a:ad. des sciences mat. 18.5, wil. tio page 761. Mernardi, Jourash de Conch vol. 6. P'age 386, plate 12, if 3 . Sohrenck, Tritonimm arthriticum, Nordjap. Moll. page 421. Lischike, Japanische Meresconch. v. 1, pager 37.)
Not very frequent at Oji. Recent at Hakolate; as to the goneric denomination. I think it best to adopt Lovén's genus.

Trophon Gunneri Lovén.
 27, t. 3, fig. 18.1
This apwies, recent from the bwreal seas, fossil from the glacial bexds and acourding tos. V. Winul from the Norwich Crag of England, has been very marely frund at Oji. I have intore me only Isecimen with 5 whorle, 2 of which are
smooth, and the last of which has 11 to 12 frondiculated rib's. It is 7 mm . long and 3 mm . thick.

Nassa Japonica Adams.
(Genera Moll. vol. 1, p. 120, Caesia Japonica ; id. in Ann. and Mag. Nat. History 1870, vol. 5, p. 426.-Lischke, Japan Meeres-conch. III, p. 37, pl. 2, f. 20-23.-Non Nassa Japonica Reeve, Demoulea Japonica Adams, in Reeve, Icon. Nassa, pl. 29, f. 192).
Without trying to criticize the statements made by Lischke, I confine myeelf here to identifying with his species one which is very frequently found at Oji, though almost exclusively in rery small specimens. The turreted shape and the nice transverse striæ with broad, somewhat convex interstitional lines, go almost uniformly over the costre and give to the surface a much less granular character than in the (equally elongated) N. granulata J. Sow. The somewhat convex and rounded form of the whorls makes this identification perfectly certain.

Vassa livescens Philippi.
(Zeitscher für Malacozool. 1848, p. 135, as Buccinum.-Dunker, Moll. Japon. p. 7 Lischke, Japan. Meeres-Conch. II, page 52, pl. 4, f. 1-3).
The same is to be said about another species of Nassa, which occurred but rarely at Oji, broader, thicker, with less convex whorls, and with coarser and more oblique ribs.

Columbella scripta. Linné.
(Syst. Nat. ed. XII, P. 122先, as Murex scriptus.-Blainville, Faune franцaise, p. 208, pl. 8, f. 20-12, as Columbella conica-Philippi, Enum. Moll. Sicil. vol. I, p. 225 and 22 2 , as Buccinum Linnei-Kiener, Coqu. viz. p. 48, pl. 16, f. 56, as Buccinum corniculatum.-Sowerby, Thes. Conch p. 127, pl. 38, f. 101,as Columbella corniculata.-Deshayes in ell. Lamarck, vol. X, P. 175, same name.-Philiqpi, En. Moll. Sic. vol. II, p. 190 and 193, as Buccinum scriptum Chemnitz, Conch. cab. second ed. p. 41, pl. 8, f. 19-22, same name. - Weinkauff, Conch. d. Mittelm. vol. II, p. $3 k$. d'Orbigny, Prodr. vol. III, p. 175, as Columbella psendo-scripta.-Hnernes, Mollusken des Wiener Beckens, v. 1. p. 115, pl. 11, f. 12.14.-Beyrich, Zeitechr. d. geol. Ges. Tert. Moll. p. 107, pl. 6, f. 8.)
This shell known from Nayasaki and meutioned ly Dunker, Lischke (Jap, Meeres-conch. I, p. 57 and 58 land others agrees with fossil and recent specimens of the species, which is eminently mediterrmeart. The specimens of Oji are tolerably numerons, nearly as large $(15 \mathrm{~m} . \mathrm{m}$. long, 6 of which helong to the aperture, $6 \mathrm{~m} . \mathrm{m}$. broad) and of the same proportions as the Enropean.
olivella consotrina Lischke.
(Japan. Meeres-conch II, p. 62, pl. 5, f. 10 and 11.).
 ing being deficient in the fossil shell-have been met with at Oji.

Ringicula aretata Gonld. (Otia Conch. p. 122.-Lischke, Jap. Meeresconch, v. 2, p. 78, pl. 5, fig. 16. 17.).

Small specimens of this kind were the most frequent gusteropuls at Oji, being pearly equalled in number only ly the Nassa Jaquonien and Olostomis, and surpasseal only lyy some of tho conchifera (Tellimn masutab. S̈llen gramelis, Dosinin exoleta. Lucina Unrealis, Dip!'olonta trigounda).
 2 folds and 1 fonth above 1 in m , and with the peintel as are are the propertics
 the number of the whorla $\left(0^{-}, \ldots\right.$) to lenve s:n loult ationt the identity of the epecies found liviug at Hung hong and Nagasaki. The transcenso strine, nut very conspicuons even in the resent shells, are but seldom well preservel in the foasil. It seems doubtful, whether the pliosene fossil shells, which 8 . Wood described 1848 frum the british crag under the names of Ringicula buccinen nod rentricosa (Crag Moll. J, p. 22, pl. 1V. f. 182) bolong to the Fame species or not. They are much larger, the length of the Inrgest specimens of Fingland being at least 70% greater than that of the largest Japancse. The propertions, however, the details of senipture and form, the teeth and folds, and the thick outerlip fogether with the narrow aperture do not differ. In this respect, it may be mentional that the folds are placel comparatively lower in the avemge in the adult and more developed specimens, in which moreover the outer inargin is moro thickened. Thus, thouch Wood says he did not sec any intermediate furme, we may nssume that R. ventricosa is or,ly the full grown stage of IS. buccinea, and must be crased 03π species. The analognos differences we fiad in the younger and older shells of Oji, only-wth of them-in smaller dimensions. As for the reulptnre, it is quite matural to see it better preaerved in the name rolust specimens, in England as we!! ns at Oji, thun in the less developed sprecinens. Thew, it dues not nppar either in the fighare or in the diagnowis amd deacriplion of R . lnectinen
 amthore have been already inited, are at least very bearly nkin tw whe spacies. This, as fionhl says, is also chosely allier to 2 receut I'mitic species (R . caronand propinquans), which I have hasl no oseasion to exminine.

Ficula riticulata Lamirck.

(1list. Nat. des duim. s. rent. 2nd ed. Vol. 15. p. 510-- Phil. En. Moll. Sic. Vol. JI, p. 186.-S. Wienl. C'mg Moll. I. p. 42. pl. 2. f. 12.Lischke, Jap. Mecres-Conch, v. I, p. 40.-Heere, Icon., ľjenla I, 1 .
One small spreimen found at $O j$ i.
Natica Lamarckinna Rcevc.
(Conch. Icon. Natien, H. 2, f. 6.-Lischke Japan. Meeres-C'onch r. 1. p. 80.-Morse, Shell-Mound of Omori, pl. 18, f. 8).

Very frequently form at Oji , sometimes in rather large specimens, of 60 mm. in diaweter and 50 mm. in height and oren larger. Smaller specimens are rather common; they wre not so typical in ontlines, less broulened and ilattened, bnt reddily recognized as belonging to the same species when coupared with the adult form. The adult specimens lave not Deca found in suficient number for comparison with the Omori-drond-specimens. They are, iu the arerage, between the two figures given by Morse, but nearer to the oller form.

Scalavia clathratula MIontague (Turbo).
(Test. Brit: Vol. II p. 297, aud suppl. p. 124-Sowerby, Thes. Cunch, rol. I, pl. 33, f. 47.-S. Wood, Crag Moll. I, p: 94, pl. 8, f. 19.-Forbes and Hanley, Brit. Moll. III. p. 209, pl. 70, f. 384.-Jeffreys, Brit. Conch 1V, p. 97.).
The shell, which (as e. g. Weinkauff states in the Conchylien des Mittelmeeres v. 2, 1. 238 has not always been correctly determined, seems not to differ from S. 'Trevelyana (Leach) Sow., Thes. J, p. 100, pl. 35, f. 129. Compare S. Wood's Crag Moll. 1. c. f. 20 and Supplement, p. 58, pl. IV. f. 6. The differences are not given uniformly by the British authors, S. Trevelyana being not constantly more elongated, nor S. clathratula having the ribs less angulated at the upper end. The aperture is also obliquely elliptic in both. The small specinens foum at Oji do not differ at all frum the Crag specmens. As for the mediterrancan and fossil Viemese specimens, I leave the question unsettled.

Scalaria cancellate IProchi.
(Cospr. Subapenn. p. 37, pl. 7. f. S.-S Woot, Crag-Mull. I, p. 95, pl. 8, f. 2.2, and Suppl. p. 59, 11. 4, f. 2.).

Although I can not compare the very scarce Oii-specimens with Brochis
 the same species with the C'rag-specimens. The margin of the lower volution, the slight convexity of the whorls, which is quite obvious in spite of the rather deep suture, the large number of ribs and transverse strie producing the reticulated surface, all agree. The size is very little above that which Wood indientes (reaching $12 \mathrm{~m} . \mathrm{m}$. in length and nearly 4 in breadth).

Monoptygma puncticulata Gould.
Otia concholugica, p. 149.-Syn? Monoptysma eximia Lischke, Malakozool. Bl. vol. 19, p. 103, June 1873, and Japan. Meeres Conch. v. 3, p. 59, pl. 3, f. 4-6.).

A fear small fracmentary specimens of this subulated shell (lencth to
 apertum, hare hen fomad at Oji. Thomiza a little impertict, they show complete
 species of Lischke's is identical, I lenve undecided.

Monoptygma etriata Gray.
(Sowerby Thes. Vol. II, p. 816, pl. 172, f. 18.).

This rpecies is thicker, duss slender llength th bremith nearly as 5:2) and has an obtuse apex, a little less crowded transvume lines, a wider aperture, and a more conspicuous twisting of the columilla. It inust he, therefore, eoparated from the foregoing apecies, though it has the anane amonth embryonal whorin and is also very similar in appearence. It has heen still more mrely met with at Oji.

Odostomia planata Gould.
(Otia conchol, p. 148)
The comparatively large, elougated and permmidal species (I measure it up to 7.5 mm . in length, and 2 mm . in diameter, 4$) \%$ of the axis equalling the aqeerture with a little more than 8 whorlsi is found in abundance at Oji, though mostly of considerably smaller wize. Just as the chameters given by Combld require, it is smooth, the whorls are flut, the aperture is oval, the lip sinuatel, the columellar fold atrong, and the basis perforated.

Odostomia sulplanata Gould
(Otia Conch. p. 148).
The species, like the foregoing one found living at Hongkong, was abeo, though nut frequently, fomud at Oji. It is much smaller and not perforated, the whorls more convex. less numerons and more quickly tapering to the apex. The size of the fossil specimens of Japan is exactly that which Gould notes, viz., 2.7 mm . in length or somewhat above, 1 mm . in diameter.

Eulima subulata Donovan.
(Brit. shells, vol. 5, pl. 172.-Forbes and Hanley, brit. Noll. v. 3. p. 235, pl. 92, fig. 788.-Jeffreys, brit. Conch. v. 3, p. 208.-Philippi, Moll. Sicil. Vol. II, p. 134 S. Wond, Cimg Moll. I, p. 37 pl. 19, f. 3 and Suppl. p. 66.-Koch and Wiggmann, Moll.-Famnn d. Sternherger Gestines in Mecklenburg p. 95. pl. 3, f. 4.).
'The long, subulated, almost cyliudrical form of the shell, together with the flatness of the whorle, which bave in fact but a very narrow belt in their lower part tapering towards the suture, distinguish this speciea, which is very narely (and scarcely ever in eutine specimens) found at Oji, from all the other specios deacribed from the Pacific coasts, und other localitius. The shell is aill by Philippi, Merian, Speyer and uther authors to oceur in the German upper oligocenc (lowest miocene) strata.

Chemnitria elegantissima Montagre.
(Teet. brit. Vol. II, p. 293, pl. 10, f. 2, and Suppl. p. 124.-Philippi.
Moll. Sicil. Vol. II, p. 136.-Forkes and Haniey Brit. Moll. v. 3, p 283,
pl. 93, f. 1. 2.-Syn. Odostomia lactea Jeffreye, Brit. Conch. IV, p. 164 ;
Turhonilla elegantissima. Mont. in Weinkaufis Conch. d. Mittelm. Vol. II, p. 207;? Ch. Jeffreysii 8. Woal, Crag Moll. add. pl. f. 14, Suppl. p-184;-? Koch and 11 iegnann, Molll. Fuuna il. Sternberger Giest. p. 103, pl. 3, f. 9.).

The shell. as large and nicely scruptured as from any other lacality, has the longitudinal, more or less straight and strong ribs, moderately convex whorls and elongated form belonging to the species. The specimens from Oji vary greatly in all those points which led Koch and Wiegmann, and as they record, Jeffreys, to separate the Turbonilla Jeffreysii from our species; but I think it doultful, whether this separation is correct or not. Still more doubtful is the identification of a crag-shell with this Turbonilla Jeffreysii which the author himself, S. Wood, declares to be uncertain. I may add besides, that there are specimens with quite as many varices as Koch and Wiegmann's Turbonilla variculosa, 1. c., p. 106 , pl. 3, f. 8 , exhibits, and on the whole, I can not but agree with Forbes and Hanley who think several species, e. g. Ch. gracilis and pusilla of Philippi, to be separated from Ch. elegantissima without sufficient reason. I leave it open, whether this is also the case with Ch. elegantior S. Wood (Crag Moll. I. p. 81, pl. 10, f. 5. suppl. p. 61.), originally called Ch. elegantissima.

Cerithiopsis rugosa Gould.
(Otia Conchol. p. 143).
The highly typical, particular and nice Sculpture, together with size and dimensions (15 mm . in length and 4 in diameter) prove the identity of one of the Oji shells (one specimen) with the living Chinese species of Gould.

Pleurotoma tigrina Iamarck.
(Hist. nat. des anim. s. vert.-1856 Gould, U. S. Exploring Exp. of Wilke., p. 249, pl. 18, f. 311).
A few specimens were found at $O \mathrm{ji}$, belonging to the turreted, sharp-keeled form with long curved Sipho and a minor carina just above the suture.

Drillia reciproca Gould.
(Otia. Conchol. p. 135).
Long, fusiform, with 10 conver whorls, on which there are 4 or 5 transverse carinæ, the middle one of which is a little stronger and somewhat gramular. The intervals are nbliquely striated, the ohliqueness being in different direction according to the position atove or below the sinus. Sinus deep and broad, lip produced, canal short, broad and twisted; aperture only about $\&$ of the total length. The largest specimens attain nearly the length noted by fornld, 12 mm . with the same proportion in diameter, viz, 古 of the axis. This shell which dnes not agree with any other but the speries of Gimuld to which I unite it, wats frequently met with at Oji . The recent specimens were found at Oshima.

Mongelia striolata (Scacchi). Phil.
Moll. Sicil. Vol. II, p. 168, pl. 26, f. 7.-Forbes and Hanley, brit. Moll. Vol. III, p. 483, pl. 114 A, f. 1 and 2.-Jeffreys, brit. conch. p. 4, p. 376. S. Wood, Crag Moll. Suppl. p. 179 and Addendum-pl., f. 2.

Not as frequently found at Oji, as the foregoing shell; apex somewhat obtuse, canal lengthomed, aperture namow. Whorla with a prominent angle wear

hittle oblique, are crossed by tmasverse stris. The characters do not differ in any particular from the British quecimene, fosil or reocut. Amoug all the species auentioned by Gould, anly M. miamsa, Ot conch. p. 137, might bo identical ; but its whorls havo their elevated prart nearly in the midille.

Tercbra bipartita Gonld.
(Otia Conchologion p. 126.).
This species was rarely fount at Oji, the epecimens lonsing up to 18 mm . in length. nud nearly 5 mm . in diameter. The number of longitudinal rits is 13 to 10 : in their intervals, we see very finely punctated transerse lines mentioned by Giould, one of which is stronger, and placed nt of rach whorl from the lower, $\frac{1}{3}$ from the upper or posterior suture. The sperimens show very weak traces of the differences of colur seen in the recent shells from $\mathrm{Jn}_{\text {pan }}$.

Trichotropis (Iphinoë) coronata Goull.
(Otia Conchol. p. 121.).
The very curious and elegant species, as diould mays, has been rarely found at Oji. The specimens are nuch smaller than those which Gould mentions from the Arctic Seas (Strnits of Semiavine). Fur the latter ane said to have little more than 6 whorls and 2.5 mm. in leugth hy 18 mm . in dianseter. Whilst the fossil in Oji specimens with 5 whorls, have only 10 mam in length and 6 in dianeter. I'lie dimensions, however, and the very typieal form and seupture fone strong keel on an angulated mangin, atove or hehind which the shell is quite even and borizontal, whilst it is also smonth, but ruthmelated, beluw or anteriorly, the wide and deep umbilicus with its sharp margin. the simple lip and ovately triangulated orifice), so perlectly acree that a specitic separation seems quite untenable. Moreover, the number of the whorls in the larger sixecimens may be diminished by resorption, as Giould's statement : anfr. $6 \ldots$ cte.; sems likewise to indicate. At the utmost, the Japunese fossil form conlt be distinguished as a dwarfish variety.

Trochus argyrostomus Gimelin.

(Nyst. Nat. Linn. ed. 13, p. 3583.-Chemnitz, couch. cal. vol. 5, pl. 165, f. 1562 \& foll., and ed. nov. Trochus 1 l. 6, f. 1.2 Lischke, Jap. MeeresConch. vol, p. 96, pl. 7, f. 3-5).

Some fragmentary specimens of the olutuse conical species (with closed unbilicus) suffiee to give evidence of the existence of this species (peculiar to the East-Asiatic shores and continental isles from Korea to the Phillipines) within the compass of the formation of Oji .

Tornatia exilis Dunker.

(Moll. Japan. p. 25, pl. 2, f. 14.-Lischke, Jap. Meures-Couch. vol. p. 105.).

Very selilom at $O j i$, the shell is nearly cylindrical, rounded at the ends; the epire slightly elevated with mammillated-sinistral-apes. The aperture is
narrow in the upper part, somewhat broader below, with a feeble fohl on the columella.-These characters coincile with those which S. Wood gives for his Bulla Lajonkarrana Basterot (Crag Monl. I, 1. 17R, 1h. 21, f. 5), rectins Bulla mammillatar Philipi Finum. Moll. Sic. v. 1. p. 22.2, p. 7. f. 20 , ant Weinkaut, Conch. d. Mitteln. vol. 2, p. 201, Forbes and Hanley, pl. 114 C, f. 4 and 5, so that I regret very much not to have any specimens, living or fossil, at hand. The size- $\frac{1}{6}$ of an inch in the Crag specimens and 4 millim in those of Oji, with 2 in diameter-ayrees also. The only difference is the sumplus of diameter which is to be seen in the upper part of B. mammillater (or Lajoukareanal, and of which the specimens of Oji do not show any trace. From Wool's remarks, however, it appears that this character is not quite constant and Forbes and Hanley's figure represents atother deviation from the cylindrical form, namely a redmetion of the diameter in the middle of the shell. If all these characters were rati,y variable, there would be no reason whatever to separate these 2 species.

Bulla (Cylichna) cylindracea Pennant.

(Brit. Zool. vol. IV, pl. 70, f. 85. S. Wood, Crag Moll. I, p. 175, pi. 22, f. 1.-Forbes and Hanley brit. Moll. pl. 114 B, f. 6.-Jeftreys, brit. Conch.v. 4, p. 415. Weinkauff, Conch d. mittelmeeres. v. 2, p. 194).
The cylindrical form and the perfectly hidden spire tngegher with tise dimensions and propurtions (10 mm . of asis, 3.5 of diameter) show that the for
 Conch. p. 98, moll. of Wilke's expl. Exped. pl. 15. f. 2177, it is exchuelent by its transverse stria on both ents of the sheil whith anc totaliy wamem in the Ofi specimens.

SOLENOCONCH.E.

Dentalium octogonum Lamarck.
(Hist. nat. d. anim. 8. vest. 2d. eil. vol. V. 3, p. 701,-Sowerby, Thes, Conch. vol. V. p. 102, pl. 223, f. 9.-Lischke, Jap. Mecres-Conch vol. 2, p. 103, vol 3, p. 75. pl. 5, f. 1-3.).
The octagonal outline of the cross-section divides this species sharply from the following one, even from its ribbed varieties. I omit to discnss the question whether 1). hexagnnum Goult, Otia conch. p. 119, Sow. 1. c f. 10, Lischke Vol. 3, p. 1it, ph. 5. f. 4-7, is really a grod species, thongh I think this is not the case. The few specimens found at Oji all belong to the typical netarganal form.

Dentalium entale Liuné.

(Syst. Nat. p. 1263.-Philippi, En. Moll. Sic. Vol. II. p. 2166.-S. Womt,
 12.-Fortes and Hanley, brit. Moll. Vol. 2, p. 4.11, ph. fi7, f. 12.-syn. 1. 'Tarentinum Lamarck, anim, s. vert. wh. V. p. 345, Weinkaff, (onch. d. Mittelm. v. 2, p. 416 : Jeffreys, brit. Conch. v. 3, p. 195.).

The apecimens of Oji, amull, emouth, thin and monlerntely curvert, man not te united with the apecies found liring near the Ja panese coast, o g D. octogonum.

CONCHIFRRA.

Solen grandis Dunker.
(Novitates conchol. II, p 71. M. 24, f 5--lischke. Inpan Meeres-conch vol. I, p. 141.).
Straight, with parallel margias, obliquely trubcatest in front and rounded behind, moulematy slender (length to height $1: 4$ (or $1: 5)$ mikens found in great number at Oji are not different from the shell which liy the above mentioned Authors has been described from the Philippine islandsand Nagaaki, but which also is found at Yenoshima. The hinge, having lint one tenth in each valve, quite close to the anterior margin in the right and a little lehimit in the left salve, suffices to distinguish this true solen from species similar in appeanace (\mathbf{S}. gladiolus (iray, also 8 . siliqua, which is besides a little more alender), whilat the pacific species belonging to the same group are all excluded by their different outlines (e. g. Solen sicarius Gould, Otia conch. p. 74, by its greater height and curved inferior margin; S. gracilis. Gould, or Solen Couldii Conrad in Ampr Journ. of conch. Vol. III. 1867. App. p. 28 and Lischke, Jap. Meeres-much. v. 2, p. 123. and also S. strictus Gould and S comeus Lamek. hy their much smaller beight).

It is to be added, however. that \& sicarius, according to the figure given in the Atlas of Moll. \&c. of Wilke's Eixped. pl. 33, f. 501, may be leas different than the diagnosis seems to indicate.

Saxicava arctica Linné (Myn).
(Syst. Nat. ed. 12. p. 1113, Ginclin, Jinn syst nut. ayl. 13, p' 3226. Phil. Enum. Moll. Sic. vol 2. p. 19-Forbes and Hanley, Hrit. Moll. I. p. 141. pl. 6. f. 4-6 and pl. F. 6. Jeffreys, brit. conch. v 3, p. 41, as \&. rugrisa var. arctica. S. Wiond, Crag moll. II. p 287 , pl. 29. f. 4.-Weinkauff, Conch des Mittelm, vol. I, p 20 -lischke, Japan. Merres-Conch, v. 1, p. 134, v. 2, p. 122 \& 165. v. 3, p. 100.).

The variable, world-wide species. which is alen very ofuen found in Tertiary deposits, occurs abundantly at Oji. It is mostly small. but in a few instances reaches 18 mm . in length and 11 in beight.

Panopaea generosa Gould.
(Otia conch. p. 165 and Atlas of Moll. \& whells of Wilke's Expl. Exp. pl. 34, f. 507.).
Exactly corresponding to the description and figure of Gould, the specimens of Oji are determined accordingly. They are not very numerous and not much above 100 mm . in leugth, and 65 in height, unbones being at 45 mm . distance from the anterine margia. It is not the place here $t w$ discues whether and bow
far Ciould's species deserves to be kept; from Panopea Fanjasii II. de la Groye (Amn. du Mus. vol !, p. 131. 19. 12, 1807; lhasterot. Foss. de Burdeans, p. 95: Phil., En. Moll. Sic. vol. 1. p. 7, 1. 2, 8. 3. ; Gollfuss, 1'etr. Germ. vol. 2, p. 27.4 , 15. 159, f. 1: Sow, Min. Conch. pl. 611, f. 3 \& 4 ; Weinkimfi, Comeh. A. Mittelm. vol. 1, p. 22 as P. glycimeris Born; Wool, Crig Moll. II, p. 283, pl. 27 , f. I), Lamarck's l'anopaea Aldrovandi, I do not find any constant diflerenco. For straightness of the upper margin and ncarly cqual broadness of the fristerion and anterion part of the shell are also fomed among the specimens of 1'. Fanjasii, and even the direction of the lines of growth (and of the irregular, Fonewhat coarse folds or concentrical ribs which in both species are parallel to these lines of growth) are sometimes nearly parallel to the upper part of the shell in buth the P '. generosa and Fanjasii, and the deviations from that direction (in P'. F'abiaii, as e. g. Goldfuss' very good figure exhibits, more convergent to the posterior side of the upper margin; in l'. generosa, as Gould's figure shows, divergent from it) seem neither to become very great, nor to be always of the same nature. Ilse hinge and the pallial simus do not exhibit any peculiar characters.

The shell is found recent in the northern part of the Pacific, and if the identification with P. Farjasii is tenable, in the Mediterranean and near the Atlantic coasts of Spain and Portugal. The boreal form of the Atlantic Sea is widuly different, and even supposed to belong to another genus. 'The Yesso shell described by Gould as P. framilis and identified with P. Jipouica Adams ly Lisclike (Japan. Meeres Conch. III. p. 104) is different in size (2 by 1.5 inches instead of 6 by 4), has a fissure of the upper margin near the base of the tooth and a very thin shell.

Lyonsis (Pandorina) flebellata Gould.

(Otia Conch. p. 162.).
'Two very small specimens are found at Oji, not larger than 1 and 3 millim., lout in all characters (ration of length to height about 17:10, thickness very slight, ronnded auterior part and much truncated, ohliquely nod feehy folded lime purt, beaks at $\frac{1}{3}$ of length from the anterior margin, straight upper margin, very fechle hinge and maceous interior) ${ }^{n}$ refectly resembling this Aretic species of the Pacific Ocean. I feel chliged to mention them in spite of their searcity athl of the minuteness of the specimens of a form attaining much larger dimensions, as they seem to lee not umimportant as to the chatacter of the fama.

Myedora fluctunsa (iomid.
(O)tial conchol. p. 161.).
'I'o Gould's diagmosis (small, thin, concentrically striated or rather follotl, masly equilateral shell, posterionly a lithle smatler, triangular with somewhat

Gould's specimen which was dredgel at hagnahima. Among the apecinwens them is one left vaive, which Gould bas not, quite flat and a littie rmaller, lint correaponding in shape to the right vaive. The cuncentrical undulations ari spread over nearly the catire surface in most of the Oji specimens: but one of them exhilits them only in the middle part of the surfice. We may therefore assume the difference of sculpture mentioned by Gould (undulis concentricis cire. 20 ad margincm haud protractis omata) to be an individual deticiency which does not exclude our specimens from the above montioned apecies.

> Lutraria Nuttalli Conrad. 11. IV, f. 16.
> (Journal of Acad. Nat. Sc. Philad. vol. 7, 1837, p. 235 pl. 18. f. 1.Lischke, Japan. Mceres-Conch. v. 1, p. 136.-Non Mactm Nittalli Heeve, Conch. Ic. Mactra, pl. 21, f. 125.-Syn. I. Maxima Middendorf, Heitregn zu ciner Mahcozool. Rossica, vol. 3, $\mu .66, \mathrm{pl} .19$, f. 1-4, $184 y$; and Reeve, Conch. Icon. Lutruria, pl. 5, f. 18, and Mactra, M. 1. f. 4: almon Adams, Genera etc. vol. 2, p. 381, pl. 101, f. 1., Chemu, Blammal, vol. II. p. 59, f. 243. Syn. also L. caprx Gould, Wilkes Expl. Exp. Still. pl. 34, f. 508 and Otia Conch. p. 76 and 245J.

In denominating this important species foned in tolerably great number anil large specimens at $\mathrm{Oji}^{\text {(reacling }} \mathbf{1 3 0}$ millim. in length, 90 in beisht anll 62 in thickness), I follow Lischke l. c. The name L. maxima, accerlime to his statements, l. c. p. 138, is duly to be applied to another fhell, L. mavima Jon:as-alan a Japanese and Chinese shell of nearly tho came lemgth, Lut murli nomaller height and thicknese-and therefore Guuld's desumimatiou onght to he acraptorl if not the same shell had been already deseribed and figural by Conmul. - The: linge-hinge-tooth brond, with appendix and plicated, nurrow lateral tiw-lh-is well preserved and quite typical, the shell coverel with concuntrical stive anil moderately thick. The large unbones, the large, tungueshaped pallial simss. the anterior rounding and posterior truncation and oblique folding aro all pressent.

Mactra veneriformis Deehayes. PI. IV, f. 17.
(Proc. Zool. S. oc. 1853, p. 15.-Reeve Icon. Conch. Mactra, pi. 1. f. 2-Lischke, Japan. Meeres Conch. v. 1, p. 133, r. 2, p. 121. pl. 9, i. 7 and s1.
This species, common in the Tokio-Bay, has heen found at Oji. liut liss frequently than in other localities of the pliocene formation, a. I. Takigmatim Murn. The specimene, rather ollique, obtheely carinated and molerately thick. agree perfectly with the living ones.

Mactra Sachalinensis Schrenck.
(Molh d. Amurlandes 11. d. Nond-Japan. Meeres, p. 515. pl. 23, f. 3-7.-
 Conch. II, p. 60, pl, 20, f. n-ch

The shell which occurs frequently near the consts of Sachalio and Yessn, liss an elongated, nearly equilateral outline and a nearly straight upper margin. The propertion of length and height is given as 100 to 75 in the elongated varicties. A great many small shells agree perfectly in outline with the latter, and omoreover show a perfect ilentity of the hinge with its rather straight line and its two duplicated lateral teeth. I omit the discussion whether M. spectabilis Lischke (l. c. v. 2. p. 120, pl. 11, f. 1 and 2) whose height is said to be about 0.79 of the length, and whose hinge is exactly the same, is not merely a very larye variety of M. Sachalinensis.

Tellina Yeddoünsis Lischke.
 (Japan. Meeres-Conch. v. 3, p. 92, t. 9, f. 1-3.).

From all the other small Telline this species, somewhat inequiliteral, shorter and a littie pointed behind, with fold, with hinge-tecth and lateral teeth in the right valve, is sufficiently distinguished by the last character. (Cf. Lischke.) It is not very frequent at Oji.

Tellina nitidula Dunker.
(Malakozonl. Bl. Vol. 6, p. 23G, Moll. Japon. p. 27, pl. 3, f. 14.-Lischke,
Japan. Meeres-Conch. v. 1, p. 129, r. 2, p. 113, pl. 10, f. 10 and 11).
This species, which is also not very alundantly found at Oji, seems to be separated into many species ly Martens, Lischke \& ${ }^{\text {e }}$, without sufficient reason, and really to ba somewhat variable in outline and proportions. The absence of posterior lateral teeth distinguishes it from the foremoing, the outline and the presence of an anterior (small) lateral tonth in the right ralve from the following species.

Tellina nasuta Conral. Pl. IV, f. 18.
(.Journal of Acad. Nat. Sc. Philad. Vol. 7, pt. 2d, 1837, p. 238.-Suwerby, Thes. Conch., Vol. 1, p. 314, pl. 64. f. 224.-Reeve, Icon. Conch. Tellina, pl. 9, f. 40.-Lischke, Jap. Meeres-Conch. v. 2, p. 115, pl. 10, f. 15-17.).

There being no doulbt left about the majority of Telline found at Oji belonging to this rather inequilateral, strongly folded, posterintly short, pointed and arcuated species, I omit a further discursion on it and on its symonym, stating ouly that it lebongs to the most frequent shefls of that locality and constitutes a considerable portion of the shell-layer.

Tapes riyidus Gould. Pl. V, f. 19.
(Otia Conch. p. 85.-Moll. of Wilke's exploring Exp. pl. 37, f. 538.).
Gould's diagnosis says: shell solicl, tmusverse, ovate and ventricose, inerquilateral, covered with concentrical laminated lines mod radiating home striaro huth of wheh tore ther leave in the anterion part of the shell, only dowpuints, whilst
behind the intervals ave short perpeudicnlar lines; umbnnes high, enebine vire another, lunule broad ; anterior side narrower and rounded, pueterior one bronel and obliquoly truncated ; lower margin oronulated and upper margin not mu-h convex; 2 bifid hinge-teeth in the right valve, one bifid tooth in the loft valve This and the figure lewres no doubt about the determination of this sprins. which was tolerably frequent at $\mathrm{Oji}^{\mathrm{j}}$, but mostly fractured.

The largest specimens have 70 mm . in length and 60 in height.-Tho genus is denominated accomling to Ciould's atatement in his Isdex (Otia Com ls p. 256) in spite of the crenulated margin, becouse all the other chamctors agicw with those of Tapes. The species has also been found living at Hakorlate.

Saxidomus purpuratus. Sowerby. PI. V, f. 20.
(Thes. Conch. vol 22 p. 692, pl. 150, f. 124 and 125.-l)elinyes, Canal of conchifera of Brit. Mis. p. 188.-Adame, Ann. Mag. Nut. Hist. 18im?, vol. 3, p. 235.-Lischke, Japan. Meeree-Conch. v. 1, p. 127, t. 9. f. 4 \& .5.-Syn. 8. Nuttalli Schrenck, Nordjupan. Moll, p. 253, and 8. giggnituls Martens, prenss. Exped. n. Ost-Asien, Zool. vol. 1, p. 140).
As Lischke undonbtedly is right in identifying this species with the firm. and description given by Sowerby, I follow him in omitting a comperison will Gould's species from tho Pacific coast of America, though it is quite pmesill. that one-if not more-of the latter are identical with the sheil which lum Iwow described from Japan, Tokio as well as Hakolato, and which moat likely me.mes. in many more places of the Japanese coasts. Lischke's anypasition, Kum hew. to be in fict n Japanese, not au Indian locality, seame to be conlthed ly similar names occiurring in Japan. The specimens found not unirempently and if large size (105 mm . by 80 mm .) nt 0 ji , exhilit the powtevior bitial tmith of the. right valve and the doep pallial sinus, which scem to indicate that suxidennm is more akin to Tapes than to Veuns proper; tho concentrical sive sue numelounand sharp, the pesterior side is long, very obtusely carinated and mour. ronfulen thas truncated. The inferior margin is smooth.

Venvs (Mercenario) Stimpsoni Gould. Pl. V, f. 21. (Otin Conch. p. 169.).
This Hakolate species, which I could compare directly will :anlir wital -| cimens from that locality, has boon fornd only once in a monfither :unl larw.
 anterior ond, deep lusula, convex donal magin, pointed pesteninn cint, will, lmoad hinge, shallow pallial sinus and numemus concontrical lanilus: מиeastures 97 by 78 millim. (Rocent specimens reach 105 by 87 mms I Smallur fyw. imn his and fragments have been found in tolemhly large number: they me.t..nee sinuly. about 15 by 12.5 millim. and have the shape of the later : H1w umimume ar. placed at 4.6 millim. from the anterior end, the surfiure is enveresl with folliu... ous concentrical rils; the intervals are leroad and Inngitulinally Ariateal. The margival crenulation is alwaye shatp and fine.

Dosinia exoleta Linné. Pl. VI, f. 22.

(Syst. nat. er. XII, p. 434, as Venus exoleta.-Chemmit\%, Conch. Cibl). vol. 6, p. 48, pl. 38 , f. 104, do-Gruelin, Syst. nat. Linn. ed. XIII, p. 3:S4, do.Montagne, test. brit. p. 116, do--Lamarck, hist. nat. pp. vol. 5, p. 512, and id. secoud. et. by Deshayes, vol. 6, p. 314, as Cytherea.-Philippi, Enum. Moll. Sic. vel. 2, p. 32, and abbild. I, p. 171, do.-Reeve, Conch. Ic. Artemis, pl. 5, f. 29-Forbes and Hanley, Brit. Moll. vol. 1, p. 428, pl. 23, f. 3, 4--Sowerby, Thes. Conch. p. 658, pl. 1 \& 1, f. 12-14.-Jeffreys, brit. Conch. vol. II, p. 327, as Venus.-Weinkauff, Conch. d. Mittelm. vol. 1, p. 120.-Goldfuss, P'etref. German. vol. 2, p. 241, pl. 149, f. 18, as Cytherea.-Hoernes, Foss. Moll. des Wiener Beckens, vol. 2, p. 143, f. 16, f. 2,-Syn. D. lentiformis (Venus) Sowerby, Min. Conch. pl. 203 and Wood, Crag Mull. II, p. 215, pl. 20, f. 7. Syn. also D. Japonica Reeve, Conch. Ieon. Artemis, pl. 3, f. 17, Sowerby 'Thes. vol. 2, p. 669, pl. 143, f. 60, Roemer, Dosinia, p. 60, pl. 11, f. 4, Lischke, Japan. Meeres-Conch. v. 1, p. 127, v. 3, p. S8, and Morse, Shell-mound of Omori, p. 28, pl. 18, f. 7. Syn. also Dosinia Troscheli Lischke, Japan. MeeresConch. III, p. 89, pl. 8, f. 1-3).

The most minute details of the hinge being exactly the same. there can lne no doubt about the Dosinise, which I got from Oji in an unexpertedly rich suply and which were indeed the most common shells of this locality, lelenging to the same species as Dosinia exoleta L., from which also D. lentiformis was quite unnecessarily separated. Outline and area, as well as pallial sinus, exhilit, in the Oji-specimens, all the variations indicated under all the ahove pheted mames and ly any of the mentioned anthors. Especially the character of the stronger demarcation of the area, supposed to lee typical for D. Trusicheli, pass's so gratdually into the common form, aud is not at al! constantly commected with iny shapm of the palliab sinus or of the ontline, or even of the coloring, that in fact-as I convinced myself in examining the Tokio collections-a sreat many of the Japmnese specimens could not be strictly assigned to either of the forms.

Indeal the shell varies much, and as the lare mumber of specimens from one locality and formation, viz. Oji, demonstrates, this variability cam not he explainest as a stage of evolution, or as a lecal morlitication. We must arepht it as it property of the species, which. on the other hand, seems to be wedl distingnished from the species of the same eremer, e. a. D. linctia Pultemey, chase as this form is allied, or D. (Artemis) lambata Gould in Otia Conch. p. it amb Atlas of Wilke's Exp. pl. 37, f. 5336. Dosiniat exoletat I. throtime mast Ine comsidered as one of the trolly palabaretio forms of which inderd already a cortain nmmer has beron erenerally admitterd. We may aht that the rame of the variations is not "ssentially increased lyy all the wher dapanese lowatites, fossil or recent.

Considering these variations, we must imberd minget the comelusinins of Morse,

Who l. c. gives the average of the proportion of length to hoight in the reant shells as 0.939 , in the shells from the mounds as 0.952 . The Oji shells have a range in this respect from 1 down to .927 , which may include almost any proportions observod anywhere. At least I found only some of the so called D. Troscheli going down a little bolow 0.92. As for the size, it is quite true that the Oji shells surpaes as woll the recent as the monnd spociunens, and not rarely have 80 mm . of diameter, or 80 of length to a littie less height. But as the number of spocimens measured by Morse is so very small (10 recent and 9 mound-specimens), especially when conparol with the many hundreds olug out at Oji, this fact loses very much of its importance, und scarcely justitien any conclusion on a gratual diminution of the size of this species which, at linat sight, it eecms to surport. .

Indeed, an examination of the Tokio colloctious of recent shells gavo, at its very beginning, the maximum length of recent Dosiuiso (both labolleal as D. Troscheli and as D. Japonica) oqual to 75-77 millim., the lieight being in the lirst case, cqual to the leugth, viz. 75 millim, in the eccoud 71, (ratio of be ight to length being nbout 0.92).

Cardium Californieuse Derhajen.
(Revie par la Sinc. Cuvidr. 1839. p. 360.-Millendorff, Malacazanl. Rus. sich, vol. 3, p. 40, 11. 15, f. 23-25.-Lischke, Japun. Mneres-Conch. v. 1, p. 144, and v. 2, p. 125.-Syn. C. Dhanhum (ionld, Otia Cunch. p. 83. and Atl. Wilke's b:xpl. Exp. ph. 36, f. 534. Sya. also C. pectulufussile Reeve, Conch. Icon. Car.lium, pl. 10, f. 52.).

The nunerous rils (efreu $\mathbf{4} \mathbf{0}$) are seprated ly narmw intervals and crowe. 1 by fechle, malulating concrutricul lines; the shell is nonrly equilatens mul lout slightly dongrated. Most of the appecimens of Oji have lees than 17 mmn . in lengtli nad 15 in height; only one is considerably larger, but broken. 'They are not very manerous, and do not allow any serious apprach to the question about the relation of this species to C. Islandimm I.inne fsyst. Nat. 12th ed. p. 1124; Gould-Binney, Rep. on Iov. of Mass. p. 139), with whil, fiomld in the Otia declarce it to be nnalognus, and to which it seems quite allin.

Cardium muticum Recve.

(Conch. Icon. Cirrlium, p). 6, f. 32.-Lischke, Jupan. Meures-('onch. voul. I, p. 144.-Syn. C. japonicum Dunker, Moll. Japon. p. 28. p1. 3. f. 16.1.
 Chemn., Conch. cab. vol. 6. p. 190. pl. 18. f. 184, thomeh Schrenck (Xorrl Jap. Moll. p. 517) unites them. At all events I can contirm nhe of the Htatements
 with somewhat broal ribs and intervals, is alwny a litte transvemely clolmated. The largeat of the unbroken specimens fwhich are far from hring fropuent h. has 75 millim. in height, and 85 is length. Thery are oblignely domgatend Prohind.

The species, though not frequent at Oji, is not minteresting as une of the eperies occurring in the sandstones of the north eastern coast of Jupan.

Lacvicardium bullatum H . and A. Adams.
(Genera of recent shells, vol. 2, p. 437. Moerch, as Cardinm, Cat. Conch. Yoldi, vol. 2, p. 33.).

According to Lischke (Japm. Meeres-Conch., v. 3, p. 106), this species is not synonymous with Cardium brallatum Lamarek, and of Reeve, hut to C. rugatum of these authors quotel by the former in his Histoire Naturelle pp., 21 ed, rol. 6, p. 393 , and figured by the latter in the Icon. Conch., Cardium, pl. 12, f. 63. It has been given, as Lischke says, under the sane name by Meuschen in the Zoophylacium Gronovianum vol. 3, p. 266 , no 1125, pl. 18, f. 5, and by Lischke. Without entering into this question, I mention only the few specimens, mostly broken, which were found at Oji. They are thin, subspherical, nearly circular in outline, not much elongated behini. The surfice is very delicately radiated and concentrically striated. Filvia centifilnsa Carpenter, perhaps only a variety of Cardium (Levicardium) modestum, differs by having weaker radii behind, whilst our species does not show any difference between both ends of the shell.

Lasaea rubra Montague.

(Test. brit. p. S3, pl. 27, f. 4, as Cnrdium.-Forbes and Hanley, Brit. Moll. vol. 1, p. 94, pl. 36, f. 5-7, as Poronia rubra, and pl. O, f. 3.-Jeffreys, brit. Conch. vol. 2, p. 219.-Woodward, Mannal of Coach. pl. 19, f. 13, as Kellia, subgenus Puronia,-Weinkatff Conch. do. Mittehn. vol. I, p. 177, as Poronia.-Wood, Crag-Moll. II, p. 125, pl. 11, f. 10.-Tischke, Japan Meeres-Conch. vol. II, p. 137.).

The small species, rounded, not quite equilateral, a little elongaterl behind, covered with strong coucentrical strix and a very fine and minute ratial striation and with the typical hinge of the genus, has been alrealy identified by Lischke. T'he diagnoses of the numerous apecies of this genus given by Gould are all different. A few specimens only were found at Oji, but at Shimagaw the species was met with in a larger number of specimens.

Kellia suborbicularis Montagne.

(Test. brit. p. 38 and 564, as Mya.-Forbec and IIanley, brit. Moll., vol. 2, p. 37, pl. 18, f. 9.-Jeffreys, brit. Conch. vol. 2, p. 225-Wond, Crag Moll. II, p. 119, pl. 12, f. 8.-Wcinkauff, Conch. d. Mittelm. vol. 1, p. 174.).

The same may be sail about the distribution of the very smonth, ventricose shell which also exhihits the typical hinge of its genus. Λ sepration from the

as the shell is known to he varialle, and as the fumil Japaneme npecimens do not go layont the limits prituted out by the above mentionor nuthom, either in their form or in their sizo.

Lucina borealis Linné. PI. VI, f. 24.

(Syst. nat. cel. 73, p. 1184, as Venus-TVorbes and Hanky, brit. Moll. val. 11, p. 46 ${ }_{2}$ I. 35, f. 5.-Juffreyr, brit. Conch. vol. II, p. 242.-Hoernes, Foss. Moll. des Wiener Berkens, wol. 11, p. 299, pl. 33, f. 4.-Wuod, Crag Moll. II, pr 139. pl. 12, f. 1. - Weinknuff Conch d. Mittelm vol. 1, p. 162).

The most minute examination of form, outline, intermal und external reulpture and hinge has not revealed the slightest difference betweena Lucina, found very often, thongh mostly in sinall specimens at Oji, and the foasil and mout Fartopan Lucina borealis. The stroug concentrical stria, the deep lumula, the Ilat, circular shape, the slight internal ridge before the p witerior museular improesion falmost, thongh not yuite constant), the oblique central furrow of the inside:all these, and in fivet, all the other characters perficotly agroe.

The largest specimens of Oji are 25 mm . in leugth and 23 mm . in leight.
Diplodonte trigonula Broun. Pl. VI, f. 25.
(Ital. T'ert. Geb. p. 96 , pl. 3, f. 2.-Philipui, Enum. Moll. Sic. vol. II. p. 24.-Hoernes. Foss. Moll. dew Wiener Deckens, vol. II, p. 218, pl. 32, f. 4.Weinkaufi Conch.des Mittelmeeres, vol. I, p. 158.-Syn. D. apicalis Phil., I. c. vol. I, p. 31,p!. 4, l'f, and vol. :2, p. 24, younger form. Syn. alwo D. astarten Njst, C'mur. furs. Bxig. p. 121, pl. (i, f. 4, and Woal, Cmg Mollusca II, p. 146, pl. 82, f. 2.).
The obligurencs, the triangular form with oblignely descending hingro maryin, and with pisterior elongation, togother with the simple concentrical lines and folds of the surfice, prove the iblentity of the above-quoted species and of one of the shells formd frequently in the layer of Oji. The hinge exhilist some differance from D. orlella Gould (Oti.. Cinuch. p. 21.2, Lischke, v. 2, p. 133) there is a posterior lateral tooth, thongh somewhat indistinct (except at the end of the area, where it becomes more distinctly visibie); hat this species is atill more dexiledly excluded by its equilatemb, rounded and gholume form. Our apecimens rexch 20 mm . in length, 25 in height an: 12 in thickness. The mubones are at $\frac{1}{3}$ to $\frac{7}{5}$ of the length from the anterior end.

Area inflata hecve.

(Comuch. Icon. Arca, pl. 5. f. 30, Lischke, Japm. Meeres-C'onch, vol. I, p. 146, and wol. II. p. 144. Morse, shell-mouml of Omori, p. 26, pl. 18, f. 5.-Syn. II. Broughtoni Schrenck, Moll. des Amerlandes 11. dex Nond-Jap. Meeres. p. 578, pl. 24, f. 1-3.).

This :hell is found fropuently at $\mathrm{Oji}^{2} 90 \mathrm{~mm}$. in length, 74 in height and 60 in thicknere, with 38 to 45 rils. The posterior part in a little narrower, the

Jower margin, being bent upwards, and obdusely puinted. As for the symonys, I refer to Lischke.

The shell being very common at Tokio, it is imped striking that it is so marely met 'with at Omori.

The specimens deseribed by Morse as having an mustally broal hinge area are possibly exceptionally develops ; the Oji-specimens do not differ from the living.

Area suberenata Lischke.
(Japan. Meeres-Conch. vol. I, p. 146, pl. 9, f. 1-3, and vol. II, p. $144 .-$ Morse, shell-mound of Omori, p. 25.).
Of this speeies (differing from the foregoing by at much smaller mumber of ribs, viz. 30 ț 33 , instead of about 42, by their crenulation and by the characters of the sub-genus Seapharen, some small specimens have heon fomm at Oji which perfectly agree with Lischkes diagnosis and figure and with recont specimens. They are neither numerons nor large enomgh to allow any remaks about deviations from the Omori or reent form, like those described by Morse.

Pectunculus glycimeris Linné. Pl. VI, f. 26.
(Syst. nat. ext. 12, p. 1143. as Arca. - Forbes and Hanley, 1rit. Moll. vol. 2, p. 245, pl. 46, f. 4-7.-Jeffreys, Brit. Conch. vol. 2; p. 166.-Weinkauff, Conch. d. Mittelm. vol. I., p. 183.-Wond, Crag Moll. II, p. 66, pl. 9, f. 1, and second Suppl. p. 43, pl. 6, f. 5.-Schrenck, Moll. des Amurlandes 12. Nord-Jipans, 1. 580.-Syn. I'. nummarins Brochi, coneh. foss. sulap. p. 483, pl. 2, f. 8, auctore S. Wood.-Syn. also P. pilosus? Linné, Lamarek, hist nat. vol. 6, 1, p. 49, No. 2, Philippi, En. Conch. Sic. vol. 2, p. 44, and vol. I, p. 62:-Syn. also T'. variahilis Njst. Cuq. foss. lbelg. Vol. 2, p. 2 and $9, \mathrm{pl} .20, \mathrm{f} .1$.-Syn. also P. albo-lineatus Lischke, Japan. Meeres-Conch. vol. III, p. 108, pl. 9, f. 11 and 12.).
Authoms generally mite the two Linne on species, whilst Weinkuff gives - like Born the name P. pilosus to the P. limmentetus of Ioli. He also excludes the P^{\prime}. insubricus Brocehi, which is united to P^{\prime}. glyciuneris by some, and gives that name to the species better kiown under the Lamarekion name of P . violascens or volaceseens.--'The best list of synonyms is genorally said to be that of S . Woml. 1. c., to which I add only the l^{\prime}. alluilimatus of Lischke, as I conld not lind any constant differences betwern the Japanese and Fomonean specimens. At all events, the punctures on which Tischke lays som stress are to lx : sexu in most of the Oji specimens, athl, at the seme time, thery do not difler from what is sen in many of the burwem shells of this sperias. As for the mbring, it is known to lee variable in P. glycimeris, and the white

The sjurimens formed at Oji are-like all the fossil specimens of the other
 in height, and 30) in thickness. The y berome to the transuerse on cirenlar variety, not to the elongatel one. Their mumber is, thongh ilecileilly inferior to the

Solen, Mactma rachalinensix, Tellina nasuta, to tho Lacina and Diplodonta, unil above all to the Dosinire, yet by no means amall.
Nucula Cobboldice Soworby. Il. VI, f. 28 and 28 a.
(Min. Conch. pl. 180, f. 2. 1818-Lyyull, Filem. of (ieal. J. 299, f. 113,
in the 2nd ed. 1841.-Wool Cmg Moll. II, p. 82, p. 10, f. 9. and
suppl. p. III, pl. 10, f. 2.-Woodwaril Manual of Moll. MI. 17, f. 18.-S.5.
N. mimbilis Hinds, Adams and Reeve. - Syn also N. insignis tiould,
Otia Conch, p. 175. Syn. alen N. Lyalli Bell, Ann. aud Mag. Nat. Hist,
1871.? cett.).

There can be no doubt alout the fact, that tho Jupaneso Nucule of the type of N. Cobboldiae (genus Acila) have only been soparated in ennsequaner of so fow specimens having been examined. The loonlitien in which this shull is found fossil, aupplying to a great extent this want, the identification, so much doubted and objected to by the author of the highly valualle monognuph on the Crag-Mollusca, becomes unavoidable. The specimens found at Oii. twierubly numerous and well preservel, answer, on the whole, to Gould's diagnosis and description as well as to the figure giveu of N . mirabilis. Acconding to fiould himself, N. insignis is almost identical with this shell, and it differs only in twn trifling pointe, viz., the angle forned by the iuferior margin with the shmiller, straight side margin (an angle very variable in the different aprom nsl, unl in the angular markings at the extremities, which appar in Hint's ligure, and which sometimes, but not often, are also seen in the Oji specimens. Ont the other hand, there is no difference whatever from the true N. Culimiline. Especially the larger specimens found not at Oji, but at Shimunwa. Kunaraw, Yokohama and in the province of Mino-sperimens to which however rome of the Oji specimens approximate-are perfectly similar to the larger specimens of N. Cobboldire. The posterior part (Gould's anterior one) is olongated, roumleri at the extremity ; the anterior one (Goull's posterior side) is truncated, oftell concave, sometimes provided with a prominent rounded keel; and sometimes next to this keel, there is in some specimens even a slight furmow which mikts the avgle appear still sharper. As for the senlpture, I dare say that the zighag limes, diverging from the central axis of the site-face, always cover cilher the while surface or at least the greater part of it. In this respect, indevt an imprortant objection to the identification wquld be the remark of Wood (in his supplement) about a suooth belt in very large Cray-specimens, if I had not succeverd in finding it also in some of the Kanagawa and shinagawa specimens. I figure it, frugmentary as the specimen is, and may add that iodications of this lu-lt are not unfrequent in other specimens. For instance one more of the Mino sperimens has a distinct belt on the anterior and posterior side (enperially the latter) and would show it most likely entirely, if the central portion was met fruturev). Another Kanagawa specimen has a rather brad belt (2 nm. 1 tehind. but it is smaller in the anterior part of the shell. This specimen has only 27 mm . in
length and $\because \cup$ in leight tlike the one which is figured): the other one which is belted has 37 millim. in length and 28 in height. British specimens, of 21 and 25 millims. in length, with 17 and 18 millim. in height, have a smooth belt; others again do not show it. At Oji , the shells are always below 20 mm . in length, the largest I have lufore me measuring $\mathbf{1 7 . 5}$ millim. in length, and 13 in height. It is the only one which has a slight trace of a belt. The proportion of length to height changes from $\frac{3}{4}$ to $\frac{4}{5}$. The number of teeth is much more varialle than I find it noted. It sometimes goes down to 8 anterior teeth (posterior acconting to Goukd) and 16 posterior (Gould's anterior). The shells quoted by Wood, Crag Moll. 1I, p. 83, in order to prove the wide vertical and topographical range of the group Acila, viz. a recent species dredged off the Cape of Good Hope, and the cretaceous N. bivirgata and ornatissima, have-as Wood himself says-no specitic relationship with our shell. 'Their existence, therefore, cannot have any value in deciding the question under consideration. As to N. Lyalli, the identity of Bell's specimen with N. Cobholdia is affirmed by Wood himself in the supplement, p. 112. The Pacific shell originally callell so mist, therefore, le very much like our species. The characters adiled by Wood (ib. p. 115) as belonging to the Pacitic shells are indeen not to be seen in the recent Hakodate specimens, nor in the fossils I had before me except in the very large and fullgrown fussil specimens mentioned above.
N. Cubboldix is decidedly quaternary in England, as Wood remarks in his supplement. and did mot die ont there before the later part of the ghatial period.

Leda confusa Hanley.

(Sowerby, Thes. vol. 3, p. 119, pl. 228, f. 85.-Reve Conch. Icon. Laela, p. 5, f. 24, his.-Lischke, Jap. Meeres-Conch. vol. IIT. p. 109.Syn. Nucula pella. Sow. Comelo. ill. Nucula, f. 4 , nom. cett.).

The shell, posteriorly narrow and a little shorter than in the rounded anterior portion, concentrically striated, is very rarely found at Oji.

> Yoldia artica Brolerip. Pl. VI, f. 29.
> (Broderip and Sowerhy Zoul. Journal No. 15, p. 359, 13. 15, f. 1. - Midrendurf, Mém. de l'Acad. de Petersh, p. 544.-Syn. Nucula lanceolata Sow, non Lamarck: Woorl Crag Moll. II. p. 88, pl. 10. f. 16, and suppl. p. 115 ; and sowerly, 1817, Min. Conch. pl. 180, f. 1.).

Withont entering upen the question of the correctness of the denomination, I
 the shell, a few specimens of which, reaching 34 mom. in length and 18 in loeight, were found at Oji. These specimens, witely differing from all the Pacilic species mentioneal ly Gould, Stimpon ete., have the whilgue undulating senlpinre and transversely elongated, pasteriorly shortened and narrow. anteriorly ehomsted and rounded form lebouging to the species. All the other characters (smmethess of the part next to the posterior upper margin, solidity of hinge ctc.) are present.

Pecten (Preudamussium) plica Linne. Fl. VII, f. 30.

(Syst. nat. ed. 12, p. 1145.-Sowerby, Thes. vol. I, 1. 65, pl. 2U, f. $2: 17$ -239.-Rever. Conch. Icon. 1'ecten, , I. 3, f. 16.- - Jischke, Japus.

This rambally ribeed and strongly folded species is the most frequent of all the Pectincs of Oji.

I'ceten (Volu) laqucatus Sowerby. I'l. VII, f. 31 and 31 a.
(Thesturus Conch. vol. 1. 1). 46, pl. 15, f. 101.-leuve, Conch. Iron l'ecten, pl. 30, f: 135.-Liseldke, Jajan. Jeerese-Couch. val. 1, y. 16 í. rol 2, p. 157, pl. 12, f. 1 and 2.).

Nearly circular with alkot 13 hroad ant rectangular ribs, broaker than the intervals in the convex valve, smather in the fat one. with conerntrical strias, His shell-thianer than the allied species gremotally are-is fomed ravely at "ii. More numerous angl a little larger speimens will lie mentioned from shimu.....

Pecten (Vola) Yessoünisis Jay.
(lieport. on the shells coll. hy Perry's Expert., p. 203, pl. 4, f: 1 anl 2. pl. 3, f. 3 and 4.-Dmaker, Novit. Oonch. p. 61, pl. 81.-Schrep Fi, Moll. des Amurlandes u. noriljapnn. Merese, p. 48 t, pl, 20, f. 1-4/-liadhl:. Japan Meeres-Conch. vol. 1, p. 165, pl. 10, fi: 3k4, vel. 2, p. 1.57. pl. 13.).

Many romderl nul not very bronal muliating ribe cover the surfine of the shell. They are not radially striated, lut show only the lines of growflh. The shagrect-like çpidermis of the flat valve, seen in all the recent specimens from Hakekiate, are not preserved in the fossil specimens, which do not show neither the overlapping of the conciave valve, and, on tho whole, are not at all frepurnt. Dspecially from Oji I have got only fragments, sufticient however to give dmintless evidence of the presence of this enpecies in the tertiary layems of tho emirines of Tukin.

Ostrea gigas Thuuberg.
(Kong. Vetenskaps akalemiens nya haudlingur, vol. 14, 1793, p. 141. 11. fi, f. 1-n,-Jischke Jnpan. Mecres-Couch. vol. I, ן. 17t, vol. 2, pil. It. f. 182. p. 160, vol. 3. ן. 114.-Syn. O. Lajerousii Scherenck, Norlial Mull. p. 475, pl. 19, f. 1-6, nuct. Lischke).

Jike Lisclike, I confine myself to identify the whell which "in the fiowil state has beens met with at Ojij and in most of the lecalities to ho mentional in the following dapiters shmewhat mure rarely than it is nom fomm. It is eminently clongated, hass a strong shell, somewhat laminated. pimitul in the. lower valve, the upper being shorter and flat..

Anomia patelliformis Linné. Pl. VII, f. 3.2.
(Syst. Nat. 12th er. p. 1151.-Forhes and Hanley, brit. Moll. pl. 50, f. 5 and 6.-Jeffreys, brit. Conch. Vol. II, p. 34.-TVeinkanfl Conch. il. Mittelmeeres, vol. 1, p. 2S2.-S. Wood, Crag-Moll. II, p. 10, pl. I, f. 4.-Syn. A. striata Lovén, Forbes and Hanley, brit. Moll. pl. 55, f. 1 and 6, and pl. 53 f. 6, vol. 2, p. 336.-Lovén, Ind. Moll. Scand. p. 29.Wood, Crag-Moll. II, p. 11, pl. 2, f. 3, 1st suppl. p. 100, 2nd suppl. p. 41. pl. 6, f. 3.).

The properties of Anomix found in the tertiary shell-layers leave no doubt ahout the determination. The thin shells, covered with irregular, undulating, small round ribs and undulating strie, exhibit sometimes traces of reddish or purple color. The muscular scars (3 of the upper valve, sometimes confluent, the lowest being smaller sud placed to the left side of the spectator), exactly correspond to the figures given by Forbes and Hanley, and S. Wood. I think it very probable that the shells mentioned by Lischke (Japan. Meeres-Conch. vol. $1, \mathrm{p} .80$) as different from his A ? laquenta, to which I may add specimens abundantly found at Yokohama, also belong to this species which is known from many places of the Pacific Coast. It was very rare, however, at Oji.-

As the results to be derived from this list of mollusca may better be given after it has been completed by the aldition of the species from other focalities, I pass to the next places of exposure.

CHAPTER V.

THE TEMTABY DEPUSITS WITHIN THE PBECINCTS OF TOKIO.

One locality alluled to in the secon: ehapter, siturtel at the font of the ribges between Oji and that part of Tokio which is calle.l Uyens, ant contaning only such tertiary fossils as have been relemsiten in alluvit layers, has furnishe: a certain number of specimens of shells mentione almbe (TCellim 1 asut. Conr., Dosiniat exuleta La, Ostrea gigas Thmul., Saximmons purpuaths Sow., Area inflatit Ieeve), but no species which is not contaned in the Oji hayers, and therefore it may be dismissed here. Another exposure shown to me an: situatel in the north-westem prof of Tokio, ant suil to have formerly exhilitel the ehell-hyer, wes not show any trace of it now, deep thongh the cutting of the ruat is which in this phe leals duwn from the platean to one of the tracts of law
 always reashim: tha tertiury shell-hel. The only locality therefore, which remains to be mentionel in the nothern puts of Tokio, is Surnertai.

strovicid)al.

 plate:m and isolate this projoting purt of it. The entire hill of Surngalai is said ly some anthors to have bean the result of the constrution of the camal which took plate in the 17th century. This assumption is improluble on account of the great extent ant height of the hill, which extetly eymals the platem on the other sile of the comal: :mbl it beomes entirely motemble after an examination of the stexp siopes of the cemal-cutting. For there we see mative rocks outcropping on the banks of either sille which perfectly correspome to one another. The deeper layers are unemformably coverel hy henizontal strata rich in pelbles, but partly elayish, which are themselves eoverent by the upier diluvial loam. The thickness of both of these pats of the diluvial formation anil their distance from the upher margin is, of course, ly no ments uniform ; the following measurement, made in that part of the northern slope where the lower atrata are richest in fossil shells, may be taken as an awemge. The foil, however, hats been removel there to some extent near the upper margin, a romal being led over the beight and deepenel under the original surface. Below the level of the roul, I fonnd to moters of the upper diluvial loam; 4 metom of lower dilusinus with
pebble-strata; 5 meters of elay containing shells. Under this part of the slope, a less steep portion it filled up with detritus and suil broken off from the upper parts, measuring (vertically) 2 meters. Below the surface of the water, a boring was made which gare the same clay for at least 2 meters more. The strike and dip of the strata could not be measurel exactly, but they seem to have a very slight dip to SE. They are clayish, but impure, an:l resemble very much the Oji strata. An accumulation of shells in one layer, like that of Oji, however, is not observed, and the clay contains some shells or fragments almost in every part which is exposed. I cun only notios a maximum about the milale of the aborementioned 5 meters. The number of the shells collected would havo been large enough, if they had not been mostly broken.

Great care was to be taken not to mis recent shells-ar shells imbedded in the embaukment at the period of its construction, like those mentioned by Morse in his Memoir on Omori, p. 30゙—with the fossils, and no spacimen was collected or noted which was not dug out by myself or in my presence. Thus I obtained the following Oji species:

Nassa juponica Lischke.
Columbella scripta L.
Natiea Lamarckiana Recha.
Cerithiopsis rugosa Glid.
Dentalium entale Is.
Solen grandis Dkr.
Sasicava arctioa L.
Panopaea generosa Gld.
Mactria veneriformis Desh.
Mactra Sarchalinensis Schrenck.
Tellina nasuta Cour.
Tellina Yelloünsis Lischke.
Dosinia cxoleta L.
Cardimm Califomiense Desh.
Laevicardiun bullatum Ail.
Area iuflatar Recve.
Aren suberenata Lischke.
Ostrea gigas Thunb.
Anomia patelliformis 1 .
To those 19 species, the following 6 nue to be added which have not heen fornd at Oji.

Rapana bezaar Linné. PI. II. fig. 2.
(Syst. nat. ed. 12, p. 1204, as Buccinmin-Lamarck, Hist. nat. \&e. Recoml ed. v. 9, p. 514, as I'ymula-Reeve, Couch. Ionn. P'ymh, pl. 4, f. 15,6.Lisclake Japan. Meeres-Conch. V. I, p. 51.-Morse, Shell-monnd of Omori. p. 34.).

Lischke describes quite correctly the Tokio spocimens (with bulky, but somewhat elevatel spire, long and curved canal and rather wide umbilicus) as belonging to the variety called Rapana Thomasiana by Crosse (Journal de Conch., v. 9, p. 176 and 268, pl. 9, 10). The fussil specimens are perfectly alike; they are not at all numerous in any of the tertiary deposits, and very few only occurred at Surugadai.

Lampania zonalis Lamarck. P1. II. fig. 12.
(Hist. nat. sec. el. vol. 9, p. 299, as Cerithium.-Sowerby, Thes. Conch. v. 2, p. 884, pl. 185, f. 264 and 265.-Adams, Genern of shells, v. 1, p. 289, pl. 30, f. 5 and 5a.-Reeve, Conch. Icon. Lampania, pl. 1, f. 5a-c.-Lischke, Japan. Meeres-Conch. v. 1, p. 73, pl. 6, f. 15 and 16, and v. 2, p. 69.).
Turreted, with the proportion of axis to diameter nearly as 3 to $\mathbf{1}$, with many plain whorls covered by some spiral ribs and by curved longitudinal ribs which make the former appear granulated, with a broad outer lip and a deep and broad notch in it, the species is easily to be recognized. From Lampania multiformis Lischlse, the only other species which is important for this paper, L. zonalis differs first by the dsep3r notsh of the lip, then by the straighter and wider canal. The other differences-stronger sculpture and tendency to graduated whorls in L. zonalis-are not constant.-I leave it undecided whether those two characters suffice to charaterize L. multiformis as a species. From Takigashira-mura (v. next chnpter), where the Lampaniæ are very frequent, I have among many specimens provided with a deep notch, some without it, and yet a few of the latter have comparatively strong ribs and a graduated apire. Lischke (v. 2, p. 69, pl. 5, f. 23 and 24) pronouncel them a variety. Other spocimens show an intermediate size of the notch; and even the canul which is comparatively the best character, shows, in one or two instances, an intermediate shape. At any rate, the specimens of Surugadai, by far less numerous than those of Takigashira, all have the characters of L. zonalis Desh. They reach the same size which is mostly seen at Takigashira, viz. 34 mm . in height and 12 in diameter.

Globulus superbus Gould.

(Otia conchol. p. 156.-Lischke, jap. Meeres-conch. v. 2, p. 83, pl. 5, f. 18-21.).

Some specimens of Surugadni corresponding-in their rather elevated apire, in their spiral furrows, in size, 15 mm . in height and 20 in diameter with 7 whorls, in the sick umbilical callus and ovate aperture-exactly to Gould's diagnosis and to Lischke's figures, I cannot but identify them. I omit to discuss the question, left also unsettled ly Lischke, whether Gould's species is really a goorl one. The number of specimens from Yokohama and Takigashim is much larger, and moreover some of them show different characters, viz. those of Glohnlus monilifer Lamarck; but even there I do not find any intermediate form. I thereforo
think it best to separate them provisorily. At Sumpulai mostly framments are found, some of them with nice peirly lustre and with traces of colour-markings on some parts of the shell.

Cytherea meretrix Linné.

(Syst. nat. ed. 12, p. 1132.-Schrenck, nordjapian. Moll. p. 545 to 550 Lischke, jap. Meeres-Conch. v. 1, p. 122, and v. 2, p. 108.).
Omitting the discussion about the limits of this species, most unhappily divided into a great many so-called species and varieties, and referring, like Lischke, to Schrenck's statements on this matter, I classify the Oytheree of the tertiary beds of the environs of Tokio accorling to these authors. I add, however, that according to other authors the name of the frequent Japanese Cytherex, which are identical with the fossil ones, would be C. lusoria Chemnitz (Con-chyl.-Cabinet v. 9, p. 337; Lamarck, hist. nat. 2d. ed. v. 6, p. 297 ; Roemer, Monographie d. Mollusken-Gattung Venus p. 30, pl. 12, f. 1), of which also 'sub-varieties' have been largely established. The triangular, posteriorly elongrated form, the smoothness, the typical hinge and not very thick shell, in some instances also slight colour-marks, are common to all the forsil shells. A few of them, though very small or broken, were found at Surugadai.

Cyclina sinensis (Linné) Gmelin. Pl. VI. fig. 23.
(Syst. nat. Linn. ed. 13, p. 3285.-The name was altered into chinensis by Lamarck, hist. nat. 2d. ed. vol. 6, p. 291, Reere, Conch. Icon. Artemis, pl. 1, f. 6, Sowerby, Thes. Conch. v. 2, p. 661, Lischke, japan. MceresConch. v. 1, p. 126, v. 2, p. 111, and Morse, Shell-mound of Omori, p. 27, pl. 18, f. 1.).
The height is a little greater than the length, the surface covered with fine radiating stria crossing the lines of growth. Besides, the spucies is easily recognizel by its crenulated inner margin and by its flat lumulio. It is ly far more frequent in the Tokio-Pay than it was formerly supposed to be but it does not ocour frequently in any of the tertiary deposits, amt the specimens, not reathing the size of the living ones, are in every respect so much like them that there seems to be no necessity for disubsing here the value of the statement of Mores concerning the smaller size and comparatively smaller length of the revent shells. The differences given by Morse-viz. 1 to 1.057 as promertion of the length to the height of shell-mound specimens, and 1 to 1.042 for the same dimensions of the recent ones-are but slight, and so the case may pussibly be as in losinit exoleta $\mathrm{I}_{\text {a }}$.

Tapes decussatus Linné.

(Syst. nat. ed. 12, p. 1135, as Venus.-Cimelin, syst. nat. L. ell. 13, p. 3294, no. 35, with varietices sub no. 57. 64 and 99 , as Venus.-Lamarek, hist. nat. 2d. ed. v. G, p. 375, as Venus.-Forbes and Himley, brit. Moll. pl. 25, f. 1, and v. 1, p. 379.-Sowerthy, Thes. Cunch. v. 2, p. 693, pl. 150,
f. 115 and 116.-Jeffreys, brit. Conch. v. 2. 1. 3.59.-Weinkanff, Conch. d. Mittelm. v. 1, p. 97.-s. Wood, Cong-Mollusei, ,. 2, p. 327, Suppl. p. 145, pl. 10, f. 4.-Dunker, Mullusaa Japmica p. 2ff.-S'hrenck, nordjupon._Moll. p. 533.-Syn. Tupes Philipinumman Adams and Reeve, Zool. of the vogage of H. M.'S. Samarme, Moll. 1. 79, ph. 22, f. 10; Sowerly, Thes. conch. v. 2, p. 694, pl. 151, f. 14', and 147; Reeve, Cunch. Icon. Tupes, pl. 11, f. 56 ; Lischke, japan. Meeres-Conch. v. 1. p. 115, v. 2, p. 108 and $\mathrm{v} .3, \mathrm{p} .78, \mathrm{pl} .10, \mathrm{f} .4$, the list representing a variety callet Tapes ducalis ly Reemer, Monogr der Mull-(iatt. Venns, v. 2, p. 82, pl^{l} 28, f. 3.).

It seems strange, indeed, that Lischike rejects the demminations of Dunker and Schrenck, and also of Jay, based upon a suruphlons examination of hundreds of apecimens, and that he tries to peint out differeners which do not correspond to what is really seen in the Fast-Asiatic specimens. They are indeel far from being always thicker, or shorter, than the Eurupean unes. The josterior ilorsal margin is very often just as straight in the Japanese shells as in the European, and the differences seen in one part of the gloke recur in the nther. As for the sculpture, the variability of the European specimens may bave even a little wider range. One of Lischke's reasons for giving T. Ihilippinarum as a distinct spucies seems to be that T. decussatus is not an aretio shell. [3ut arhitrary as it undoubtedly is to reject the wide distribution of as species on this areount, this reason is also much weakened by the occurrence of T'. decessatus not only in the British suas, but also in the diluvial post-glacial heds of North-Britain.-The species is not uncommon in other Japanese lucalities containing tertiary beels, but only rarely met with at Surugalai. It reaches here ish mom. in lebgith, 2.5 in height and 16 in thickness.

SHINAGAWA.

The next place to be mentioned is a deep ralway-enting in the sumthwestern part of Tokio itself, next to the station of Shimagawa. It is very uear the sea, but does not belong to the bluffexpexures mentionel in the following chapter.

The milway-cutting dissects, in its wortheastern part, tertiary beils unconformably covered by lower diluvial strata. As far as the vegretation allows to see, both formations are horizontal. The unconfurmability, however, is obvious. The limit is undulatel and slopes so rapilly, that, in the sonthwestern part of the same cutting, only diluvial strata, mostly formed of gravel, are expmesel, and they fill up the whole cutting from the top to the very bottom. The best place for dierging out shells is a few yards beyund the bridge leauling over the cutting, at as short distance from the station, and 1 to 2 meters above the mailwny-level. This digging lwing kindly allowed by the anthoritios, I uhtainevt here the following species ulready mentioned from one or treth of the foreminger localities.

Neptrnea arthritica Valenc--(See Oji.)
Nassa japonica Adams.-(do. and Surugadai.)
Ringicula arctata Gould.-(See Oji.)
Columbella scripta. L.-(See Oji and Surugitlai.)
Natica Lamarckiana Recluz.-(Sce Oji and Surngadai.)
Chemnitzia elegantissima Mont - (See Oji.)
Odostomia planata Gould.-(do.)
Lampania zonalis Lamarck.-(See Surugadai.)
Globulus superbus Gould.-(See Surugadai.)
Dentalium entale L.-(See Oji and Surugadai.)
Panopaea generosa Gould.-(do.)
Saxicava arctica L.-(do.)
Lutraria Nuttalli Cour.-(See Oji.)
Mactra veneriformis Desh.-(Sce Oji and Surugadai.)
Mactra Sachalinensis Schrenck.-(do.)
Venus (Mercenaria) Stimpsoni Gould.--(See Oji.)
Saxidomus purpuratus Sow.-(do.)
Dosinia exoleta L.—(See Oji and Surugandia.)
Cardium Califoruiense Desh.--(do.)
Laevicardium bullatum Ad.-Clo.)
Lasaeia rulura Mont- -(See Oji.)
Kellia orbicularis Mont.- (tho.)
Lucina borealis L.-(do.)
Pectunculus glycimeris $I_{\text {. }}-$ do. $)$
Nucula Cobboldie Sow.-(do. Of this species some large specimens have been fomed at Shinagawn.)
Pecten lapucatus Sow-(See Oji.)
Ostrea gigas Thenu.-Sce Oji and Surugadai.)
Anomia patellifurmis L.--ido.)
To these 28 species the following 8 (one of which is a brachiopoll. whilst 4 are gasteropoda and 3 conchifera) are to be added.

Fusus inconstans Lischke.
(Japan. Meeres-Conch. v. 1, p. 34, pl. 2, f. 1-6, v. 2, p. 26, pl. 3, f. 1-5.)
Leaving the responsibility for the species to the author, I simply note the presence of a fow spectmens morespording entioly to Lischkes description,
 in the 7th chapter.

The shell is elongated, fusifom, with a long canal, strong ribs on the

 carina. This character is lost in the smaller varicty which oceus almost exelnsively in the fossil state. It is about 80 mm . loner and has a ciameter of 27
min. As for tho differences frmin nther species provided with a long canal, c. G. F. nodosoplicatus Dkr (Novit. conch. II, pl. 33, f. 3 and 4) from Japan, F. speetrim Ah, and Reeve (conch. Icon. Fusus, jl. 18, f. 68), also a Japmese form and montioned as such by Schrenck (Norijapab. Moll. p. 417), and F. Novie Hollandiao Reave (1.c. f. 70) which Schrenck rays is synonymous with F. Spectrum, I refer to Lischke, without entering into the above-mentional question, for whose discussion the material provided by the tertiary layers in question is evidently not sufficient.

Neptunea (Sipho) gracilis da Costa.
(Brit. Conch. p. 124, pl. 6, f. 5.-Jeffroys, brit. Conch. v. 4, p. 335. S. Woot, Ciag Moll. 1, p. 46, pl. 6, f. 10, perhaps only partly; mecond suppl. p. 7, pl. 2, f. 4.-Syn. Fusus islaudicus Forbos and Hanley, brit, Moll. v. 3, p. 416, pl. 103, f. 1 and 3 and pl. SS, f. 2.).

The differences between Neptunea islandica, which has a bulbifonn apex, N. propinqua, which has a smaller number of spiral elevated lines on the upper whorls, and N. gracilis are but slight. The latter is chiefly said to have a shorter canal and to be smaller than N. islandica Chemn.; but perhaps S. Wood may be quite right in saying (in his $2 d$ supplement) that all these forms-together, perhaps, with Sipho tortuosus, ventricosus, Sarsii and Leckenbyi-may be only 'inconstant varieties of Sipho islandicus.'-One specimen from Shinagawa has the characters of \mathbf{N}. gracilis.

Purpura lapillus Linné.

(Syst. nat. el. 12, p. 1202.-Forbes and Hanley, brit. Moll. v. 3, p. 3.50, pl. 102, f. 1-3 and pl. LL., f. 4.-Jeffreys, brit. Conch. v. 4, p. 276.S. Wond, Crag.-Moll. I, p. 36, pl. 4, f. 6; 2d Suppl. p. 5, pl. 1, f. 13.Gould, Rep. on the invertebr. of Mass., 2ll ed. by Binney, Moll., p. 360.).
The shell, variable as it is frequent, is but seldom found in the Japanese tertiary deposits. One fragment, belonging to the common form with strnng spiral rils and somewhat elongated in outline, has been fonnd at Shinagawa.

Cemoria noachina Linné.

(Mantissa, p. 551, as Patella.-Lowe, zoological Journal, v. 3, 1828. p. 77, as Puncturella.-Gould, Rep. on the invert. of Mass. 24 ort. p. 276, f. 537.).

Oblong (diameters as 5 to 3), radiully ribbed, with a amall fiesure near the apex, this small shell, about 7 mm . long, has been once found at Shinagnwa. The number of the ribs is 20 ; concentrical strise and mostly one very fichlle rih in the middle of the interval are to be seen between them. The form and sculpture of the shell correspond exactly with the quoted figures nud makn it impossible to identify it with the Puget-Sound and Orange-Harbour epecies mentioned in Gould's Otia conchol. p. 14. The outline, expecially the very
different angle of divergence, and the difference of the plate distinguish this shell from Puncturella Cooperi Carpenter (Dese. of new marine shells from California, Proceedings of the Ca. Acad. of Nat. sc. v. 3.).

Limopsis aurita Brocchi. Pl. VI fig. 27.
(Conch. foss, Subapenn. p. 485, pl. 11, f. 9. as Area-Defrance, Dict. Scient. pl. 39, p. 224.-Goldfuss, Petrefacta German. v. 2, p. 163, pl. 126, f. 14.-Philippi, Enum. Moll. Sic. v. 1, p. 63 , and r. 2, p. 45. All these authors apply the generic name of Pectrnculus.-S. Wood, Crag-Moll. II, p. 70, pl. 9, f. 2 and Suppl. p. 117.-Jeffreys, brit. Conch. v. 2, p. 161.).

This species, as far as I know, has never been fornd living in the Pacific Ocean or in its bays, nor in the East-Inlian Sea, narl even the genus seems to be wanting except in the very remotest corner of this part of the ocean, in the Red Sea. The shells, not rare at Shinagawa, are easily distinguished from $\mathrm{Pe}-$ ctunculus by their sharp and smooth margin. Besides, they wre mostly more oblique, and their ribs are a little sharper. The cancellated surface, on which the radiatiug ribs prevail, is exactly the same as in the European fossil specimens, and the only difference which could bo found is the number of teeth which according to Jeffreys is about a dozen. This does not correspond to the Shinagawa specimens which are partly large, reaching 17 mm . in height and 18 in length, and mostly very well preserved. They have never less than 14 teeth and often 18, or 9 on each side of the cartilinge pit, and in a ferw instances, oneor in the posterior side even 2-may be added. But all the figures and Wood's description prove to a certainty that the normal number of teeth is indeed 18, and that a smaller number indicates either an obliteration or an imperfect stage of develorment. The vertical range of the species is comparatively great, as it is found in the Falun-like miocene deposits of North-Germany as well as in the Subapennine furmation. It is also found in the crag and is said to ocuur in the glacial beds (where it may be derivative). Jellieys and others say that it still exists near the northwestern coast of Britain.

Perten latus Goulk.
(Otia conchol. p. 177.-C'arpenter, Rep. II, p. 587; Cuming and Lischke, v. i., exclude, however, the specimens from New Zealand, mentioned by Gould l. c. p. 95 and figured in Atl. of Moll. of Wilke's Exph. pl. 42, f. 571 ; they unite the latter to P. Dieffenhachii Giray.-Lischke, Japan. Meeres-Cunch. v. 1, p. 169, pl. 12, f. 6 and 7 ; vol. 2, p. 157.).
Omitting, in this case also, a critical investigation whether the species is really good or not, I identify the shells from Shinama with it and particularly with Lischke's figure 6 1. c. They are few in mumer, mostly broken. One is entire but smabler that the mentioned limer ; it has 10 samor ribs with foliated projections, and the number of the intermediate rils is mostly 3 , sonetimes 4
ne 2. The outline is nearly cimular, the length almost ar $\ddot{\sim}$ "at as the height.
 (Gould's hericius), a very variable sprecies which verwes towarils P^{\prime}. mbiblus Hinis (of Alashka) as well as towarta P. ishandicus Muell.

Ostrea denselumellosa Lischke.
(Japan. Mecres-Conch. v. 1, p. 177, ⿲. 13, f. a and lo, pl. 14, f. 1 nalv. 3, p. 114.).

This species may be sail to ine still more dombtrul and resemblen indeed very much those forms which Wionl represents (Cra\%. Moll. II, p. 17, pl. 1, f. 1 and pl. 2, f. 2) under the mane of Ostren prineeps, or Nyst (not Sowerly) ns O. undulata (Coqu. fiss. de Delgique, p. 324, pl. 24, f. 7° and pi. 25, f. 7°.). Some large ant gond specimens were, towether with many frigments, found at Shinagawa.

Waldheimia Grayi Duridson.
(Proceed. of Loml. Soc. Londen, 1852, p. 76 ; ibirl. 1871, April, p. 304, pl. 31, f. 7 and 8.-Adams, Ann. Mag. Nat. IIist. 2d-series. v. 11, p. 99.).

Though ouly one lower valve of this species-abundantly occursing in Jupen-has been found at Shinagawa, it has some importance as the oaly apocimen of Brachioporda of the Tokio lnyers. It is unsily recoynized hy its rounded triangular ribs (about 15) and moderately tmasverse shape.

By the addition of the new species from Surugadai and Shimagawa the total amount becomes 76. This number is again increseed by the localiliea nenr Yokohame which are to follow in the next chapter.

('HAPTER VI.

IILE TERTIARY DEPOSIT'S OF THE ENVIRONS OF YOKOHAMA.

KANAGANA.

The bluffs near the station of Kanagawa (the first from Yokohama in the direction to Tukio) give a very good idea of the strata in question and of the way in which they are unonformably coverel by the quatemary beds, and therefore have been representel not only in the abore-quoted figure, but also in figure -2 and 3, plate I; yet they are not rich in fossils. The hith, neaty vertical bluffs are almost everywhere compose 1 of tafacouls, grayish-green rocks, mostly a little soft, and separated into thick strata. They are, of course, limited above by an undulating line, near which, in the strata them:elves, sometimes a few shells appear. This is also the case in some parts of the lower strata, but the nomber of the specimens is always smath, and they are seattered over the shope of the tufaccous and sandy clay.

The greater part of the Mollusea found are large ant small spacimens of Nucula Coblotdicte Sow., which, thonsh mostly breaking into small dragments when taken out of the native rock, yet in a few instances were gool and always helped to make out the characters of the interesting speeves. It was here that the specimen (I'l. VI, f. 22^{3}) with the smmeth inferion leet of 2.6 millimeters in lreath was fomul. Next to he mentioned is Mya arenctia Lime which will be discussed with other species fomul at Takigrashira-Mnmat where it is aboudint. To fivish the list of Conchifera, I have only to and Ostrea gigus 'Thmb., Pecten plica L. Area subcrenata Lischke, Dosinia exoleta L. and I'apes decussatus L. Gasteropodit are not found except two Niptuneae, one of which is V. gracilis da Costa, whilst the other turns ont to be the true N. islandica Chemn. (Conclyl.-Cabinet. v. 4, p. 150, pl. 141, f. 1312 and 1313; Jeffreys,

 do not differ from those af N . gracilis.

 distance and thus foms a lay between this places aral Yokohama. This portion ofters no remarkahle loralities in which fossils are to bo foumd. The next place in which this is the ense is the Yokahamen Blufl in the south of the town, now coverel with villas. At the print where the bluftine reaches the sea,
the tertiary stratia nor anen to contain a shell-layer, not very much above the level of the sea nul sinking nearer and hearer to it beyoud the coal-atores and other industrial establishments which are here built botween the strand and the bluff. For a short distance, the layer descends nearly to the strand, whilst blocks of tertiary recks tumbled down aro scattered along the shore. Here I collecter, partly in these blucke, but mostly in the native shell-layer, a small number of shells, taking of course very great caro not to mistake recent shells, for instance oysters which cover some of the blocks, for tertiary ones. It may be remarked, however, for this and for many other localities, that the state of preservation mostly sufficed to prevent such a mistake; for excellent as it sometimes was (exhihiting in many cases even traces of color, or nacreous lustre), yet all the tertiary shells were unequivocally fossil, resembling in every respect certain European tertiary shells, e. g. the Viennese, Antwerp and Toumine miocene shells, or those of Grignon, but above all the subapennine fossils.The diluvial rocks-which also descend very low, just above the shell layer-do not contain any well preserved shells (imbeed scarcely any shells at all), and are so different from the tertiary tufacous clays and shell-beds that there is no difficulty in distinguishing the blocks.

LIST OF SPECIES.

Neptunea arthritica Valenciennes.-(See Oji, Shinagawa.)
Nassa japonica Adams.-(do.)
Purpura lanillus L.-(See Shinagawa.)
Lampania zonalis Lamarck,-(See Surugadai, Shinagawa.)
Panopaea generosa Gould.-(See Oji, Surugadai, Shinagawa.)
Tellina nasuta Conrad.-(Sce Oji, Surugadai, Shinagawa.)
Dosinia exoleta L.-(See Oji, Surugalai, Shinagawa and Kanagawa.)
Cardium Californiense Desh. -(See Oji, Surugadai, Shinagawa.)
Laevicardium bullatum Ad.-(do.)
Arca inflata Reeve.-(See Oji, Surugadai.)
Arca subcrenata Lischke.-(See Oji, Surugulai and Kanagawa.)
l'ectunenlus glycimeris L .-(See Oji, Shinagawa.)
Peèten laqueatus Sow.-(Sce Oji, Shinagawa.-Found frequently in the eastern part of the Bluff.)
Ostrea gigas Thunberg.-(Sce Oji, Surugadai, Shinagawa and Kanagawa.)
To these species inentionel already from Tokio two more are to be alded:
Dolium luteostomum Kuister.
(21 ed. of Chemnitz, Conchyl.-Cab. v. 3, Abth. 1, pt. 2, p. 66, pl. 58.Lischke, Japan. Meeres-Conch. v. 1, p. 65 and v. 2, p. 57. - Imeriting to this nuthor, the species is synonymous to D. japonicum Ilunker, Novit. conchol. r. 2, p. 104, pl. 35 and 36 : and to D. variegatum Kilster, 1. c. p. 74, and Schrenck, nordjapan. Moll. p. 401, non Lamarck.)

The buiky, deeply furrowed shell-on whose surfice and mould broad ribs with narrow intervals appear, much flatter on the monll than on the shell itself-has been found ravely in the blocks and shell-layer of the Yokohana Bluff. Though mostly only moulds, the specimens, on being compared with recent Dolia, left no doubt whatever akont their identity with the above-mentioned species.

> Tapes euglyptus Philippi.
> (Zeitshrift für Matacozon). 1847 , p. 89 , anl Ahbildungen etc. v. 3, p. 76 ,Venus, d. 7 , f. 3.-Sowerby, Thes. Conch. マ. 2, p. 680 , pl. 145, f. 17 . Lischke, japı. Meeres-Conch. v. 1, p. 119 , and v. 3, p. 80 , pl. 6 , f. \&-11)

The species which belougs to the group of 'Tapes papilionaceus L. shows sculpture, pallial sims and outline doultesessly to be itlentical with some specimens at Yokohama. One of them represents the variety figured by Lischke.

SOUTH WESTHRS PART OF THE YOKOHAMA BLCHFE.

Crossiug the bluff in its western part from N. to S., we fird a broad and well constructel fontpath leading down to the sea-side and to the fishermen's houses placed next to the sea. This way is duoply out into the rock and, as it crosss the line which divites the qraternayy and the tertiany strata with the shell-layer, here finlly developed below that line, a great many shetls are dug out and spread wer a part of the road, some being also visible in their native rocks on the sides of the road. Thus, though now un clear i.fea of the mature and fosition of the strata is given ly this expmsure, yet I was able to make here some alditions to the collection of fossils. The number of species, however, which I can assign with certanty to the fertiary formation is very small and inclumes mothing that has not ben foand also in other places. I'he largest number of specimens is furnished by Mfactra veneriformis Desh., next to it by Globulas superisus (ionhd. Some speciinens of Zampenirs zonalis Lumarck, a single one of Lampania multiformis Lischke (vite betow, Takigishira Murot), on whose relation to I. zom this I have matu alrealy some rem rke when treating the latter one (from Surugatai), one sprecmen of Tapes dreussutus L. and some of Ostrees gigas Thomb. are to be wldent.

TAKHASSHIRA MlRA.

At the sonthern mometh of the canal which leals from Yokohama-hartomer along the Blaffeshou and its we.tern prombuntion and at last barns to the sumth

 sected liy the camal, and on entting the the ofen haw gromad beyoml, we reath a
gravel-deposit which is used for engineering [mrposes, and in covered by unquestionably alluvial deposits. They have leen dexeriked in the scome chapter as mostly peaty; the loweat part of them is inpure, dark-coloured sand, 0.5 meter in thickness. The pelble-stmtum itself must hive luen exponed to the action of the sea during some part of the nlluvial era, as befire mentioned; but neither the admistures of peaty and hunnse sulnstance, bor the recent cysters covering some of the pelbles prove at all na nlluvial wrigirn of the entire pebble layer. For those ogsters are all continal to tho suprericisl pables, and the whole stratum is evidently a continuation of the layev which appears next to the limit of the tertiary depmsits in the blufferonv: Inetwen 'I'akimshira MIura and Yukohama. The section seen there gives
© metres upper dilavial lommanal with humore suil near the surface.
9 m . grayish chay, mostly in thick strata, lint smetimes niternatine with thin layers of aznely suil
0.5 to 1.5 m . grayish Conglomerate. (line of unconformability.)
18 m . (in max.) dayish and thfacents phe gremish-gmy stmata, to.drubly hard.
6 m . (in the average) sandy soil, nlso greenimh-gray.
As the conglomerate-hayer very gradually shopes down to the level of the lower plain, and as it is exactly like the conglumerate-layer mentioned above, there can be no doubt about the latter loblonging to the sitme geological horizon, vizo to the lower diluvial formation.

Below this layer and the line of meonf rmability, we find at Takiganhins the same clayish suil which is the thickest part of the section given above. Half-way between the bluff anil the place where the gravel is ilug, a large quautity of shells appears, only surpussed ly that of Oji. This shell-layer was afterwards found to extend from the shope of the bhuf of the gravel bield, though the richest development is confined to the first-memtioned place. It sarcely needs be added that only such specimens were admitted ns were undubltedly found in the strata below the gravel, and anything not found in the mative soil of this part of the geological section was rimuronsly exclumed. I found the following fossils mentioned alrendy from other localitics:

Fusus-inconstans Lischke.-(See Shinagawa)
Nassa japonica Aldams.-(See Oji, Shinagawa, Yokuhama)
Nasea livescens Phil.-1Ser Oji. This species aceurred abmalamly at Takigashira.)
Kopana bezoar L. -(See Surugalai.)
Columbella scripta L.-(See Oji, Surıgudai, Shinagnwa.)

Natica Lamarekinna Herluz, - Sive Oji, Surngulai, Shime: wa:
Odostomia planata Gould. -(Sce Oji, Shinagamas.)

Drillia reciproca Gouid.-(See Oji.)
Lampania zonalis Lamarck.-(See Surngratai, Shinagawa, Yokohana.)
Lampania multiformis Lischke, Japan. Neeres-Conch. v. 1, p. 74, pl. 6, f. 1-10 and v. 2, p. 69, p. 5, f. 23 and 24 .-Though I expressed, when speaking about the foregoing species, some doubts about the value of the specific characters, yet the presence of all the marks given by Lischke (viz. obliqueness of the canal, and size of the notch; the flatness of the whorls, the slighter sculpture and the less elevated spire being not constant) obliges me to quote also L. multiformis from Trakigashira as well as from the western part of the Yokohama-Bluff. In both places together, only a few specinens were formd among a multitude of L. zonalis.
Trochus argyrostomus Gould.-(See Oji.)
Globulus superbus Gould.-(See Surugatai and eastern part of YokohamaBluff.)
'Tornatina exilis Dunker--(See Oji.)
Dentalinm entale L.-(See Oji, Surngadai, Shinagawa.)
Solen grandis Dunker:-(See Oji, Surugadai.)
Mya arenaria Linné, Syst. nat. cal. 12, p. 1112; Forbes and Hanley, brit. Moll. v. 1, p. 168 and pl. 10, f. 4-6; Jeffreys, brit. Conch. v. 3, p. 64; Wood. Crag Moll. II, p. 279, pl. 2S, f. 2; Lischlee, Jap. MeeresConch. v. 1, p. 138; Morse, Shell-mound of Omori, p. 30, pl. 18, f. 4; syn. Myar japonica Jay, Rep. on Moll. of Perry's Exp. p. 292, pl. 1, f. 7 and 10.-The elongated form, bullose anteriorly, obtusely pointed behint, the typical hinge ctc. leave, as is universally admittell, no doult about the identity of the recent Japranese specimens with the European, recent and fossil. There is no difference whatever between the recent Japanese shells or those of the mounts (which Morse states not to differ at all), and those found at Takigashira. The shell has not been found in Tokio, but at Kanagawa; more abundantly, than at this place or at Takigashira, it nccurs in the upper tertiary sandstones of Mino (Sce Chapter 7.)
Macti:t veneriformis Desh.-See Oji, Surngadai, Shinagawa, western part of Bluff. At Takigashira, this species is much more numerous than the following one.)
Mactra Sachalinensis Schrenck.-(See Oji, Surugadai, Shinagawa.)
Tellina nasuta Cour--(See Oji, Surugradai, Shinagawa, eastern part of Bluff.)
Thipes decussatus L.-(See Surugadai, western part of Bluff)
Saxidomus purpuratus Sow.-See Oji, Shinagawa.)
Cytherea meretix L.-(See Surngadai. V'requently found at Takigashirn.)
Dosinia exoleta La- - (Sce Oji, Surugalat, Shinagawa, Kınagawa, eastern part of Blulf. Rare at Takigashira.

Cyclina sinemsix Gmel.-Sen Surumadai.)
Kellis suborhicularis Mont - Sice Oji , Shinagnava. 1
Ianver rubra Munt.-See Oji, Shinagıwa.)
Doneina borealiy $\mathrm{L}_{\text {a-- Seo Oji, Shinagrwa.) }}$
Arat intlata Rheve - Sice U jii, Surngul.ui, centurn part of Bluff.
Area sulneremata liselake.-(ise (Oji, Surngutai, cantern part of liluff.)
Pecten laetus Gould -(iee Shinagawa. Sise freqnent at 'lakigunhima.)
 tern and ewsterd part of Bluff.I
 collected at 'Takiganhim which are still to tro disectuend:

Eburnn ja ponicr Reere. Pl. II, f. 5

 58.-Morse, Shell-Munnd of Omori, p. 30, pl. 18, f. 9.1

 and has the angle of diserpence equal la bif", heing in this nopect manere th Morse s specimens from Omori than to the recent. It is typically developed, with the deep motah lethen, the cwate nureture the smonth surfime, and bins even some slight traces of colour.

Purpura lutenstoma Chemnits.

 Omori, p. 33.)
One specimen of 3 in millimeters in height and 24 in dimutor, tomether with a few frapments, gives aderoe of the existence of dhis spurias in the ter-

 to the latter.

Chrmuitzia scalaris Philippi.
(Moll. Sicil. y. 1, pr 15: p 1. 9. f. 9. Ms. Mrlanin, atterwarda me Chemni-

 8. 2, p. 212, as Turlmoilla.)

 millimeters long and 2 lorenol, lurreind, with shandered whorls, which are covere
 appearing chictly in the intervals.

This shell belongs to the warmer part of the temperate Athantio region ; but a variety, of elongated form, (see Jetfireys 1. c. and Furbes and Italey, ib, f. I, Ch. rufescenst is more boreal, and to this variety one of the specimens may be assigned. The remark of Weinkantf, that the spezees has not been foum fossil, seems not to be perfectly true, as Jeffreys mentions one specimen found in the Crag.

The exact resemblance of the British shells and those of Takigashira does not allow us to give them any other name in spite of the wide distance of halitat and the scarcity of the spacies in strat ohler than quaternary. Perhaps the wide Atlantic distribution, which indeles the Me literranean from Gibrabtar to the Fugun Sca, aud New England on the other haud may account for the occurrence of the sprecies on the opposite side of the paliearctic continent.

Vermetus imbinatus Dunker
(Malacozool. Bl. v. 6, p. 240. 1860. and Mollusea Japon. p. 17, pl. 2, f. 18.-Lischke, Japan. Meeres-Conch. v. 1, p. 83.-Non Sandberger, Conch. d. Mainzer lieckens, p. 112.-Syn. Serpulus Adamsii Moerch in Adams, Anv. Mag. Nat. Hist., 1864. p. 141, Schrenck, nordjap. Moll. p. 601, and Moerch, Suppl, notes to Review of Vermetide in Proc. Zool. Soc. 1865, p. 99.)

In regard to this species, formal in congreyated masses on pelblea \&c. abmentantly in the alluvial layers and living, but marely and ouly fractured in the tertiary deposits of takigrashim, I fulluw the demomimation alopted by Lischke.

Globulus monilifer Lamarck.
(Hist nat. 2d ed , v. 9. p. 118, as Rotella-Lischke, Japan. Meeres-Conch. v. 1, p. 64)

The true Globulus monilifer, flat and covered with its sharply circumscribed, that tubereles, has been fomm in small mumbers together with a great many of G. superbas Gld. It has leen already mentioned that I did not find any intermediate forms

Diplodonta orbella Gould.
I'ruc. Boston Suc. Nat. Hist., v. 4, 1851, p. 90; Puston Journal Nat. Ilist., v. 6. p. 395, pl. 15, f. 3: Otia Cunch. p. 212-Cappenter, Proc. Buston Zanol. Soce, 185\%, p. 202 anl 218,-Tischke, Japun. Meeres-Conch., v. 2, p. 133).

The diagnosis of Gould leaves no dombt alout the identity of one entire valve-and some fragments-from 'Takigathirn, with his Diphendonta orkella. The valve in question is 18 millimeters lomg. 17 high, ath the total thickness of both valves would have heen 15. The concentrical stria are irregular, not very atrong; the outline is more regularly rounded thin in [1. motundata. The lateral twoth is much more obliteratest than in D trigonula, described almese

Area granosa Linné.
(Syst. nat. ed. 12, p. 1112.-Reove, Conch. Icom. Area, 11. 3, f. 15.Jischke, Japan. Meeres-Conch. v. 1, j. 145.-Morse, Shell-mumend of Omori, p. 26.)

This shell has comparatively few-I count 18-rils most of which, expeciully the anterior ones, are granulaterl. The outline, obliquely quadrangilar and roundel at the elges, especially at the obtuse anterior. inferior elge, tho binge etc. do not present any peculiar characters. The Eqecimens of Takigashira ane very few in number, but they are purtly well preserved and give unerguivocal evidence of the existence of this species in the tertiary layers of central Jupan. Their proportions are exactly the same as those from Nignsaki and from the Omori mound, but they are smaller (28 millim. long and 22 high). The number of ribs being like the minimum of Omori, the tertiary fossil specimens are of course much nearer akin to the latter than to the recent ones from Nagasaki.-

The total number of species from Takigushira Mura is therefure 40, mud this place is superior to the other localities near Yokohama in the same way us Oji is to the other places in Tokio. Of the 53 species found altogether in the environs of Yokohama, three fuurths belong to Takigashim.

The large number of species common to the layers both of Yoluhama and Tukio would be sufficient to prove the identity of the formation, evca if thin was not geologically evident. Of 53 species 41 are identical with Tukios sceive

As there are 75 species from all the places alout 'Tokion altogether, mul 2 from Kanagawa, 3 from the Bluff mil 7 froms 'I'akigishirs, the whal numit: I' of' species is 87 .

CHAPTER VII.

THE TERTIARY DEPOSITS OF OTHER PARTS OF JAPAN.

Turning to the south from Yokohama, we enter the province of Sagami before we come to the place named already in the third chapter, Yokosuka, and lefore we arrive at the cape which forms the southwestern extremity of the Tokio-Bay. Here, thick and tolembly hard tufaccous rocks, mixed with mildicand fine-grained quartz-sand, of greenish gray color, appear on the bluff-sides, and they are often quarried. Nevertheless, the amount of organic remains exhibited by them has been trilling, and except Nucula Cobboldia Sow., Ostrea gigas 'Thunb, Dosinia exoleta L., I know nothing to mention but a few specimens of bally preservel and undeterminable gasteropodia.

A similar result is obtained in the vicinity of Hakone, where the tertiary deposits are to le scen in a great many places and are developed in the way pointed out in the introductory chapter as being typical for the mountains round the Tokio plain. Hitrl sandstone, conglomerate and shale alternate, and though not a complete series of strata is exposed, yet the tertiary character is evident from the similarity with the Chichibu formation. Besides, in one place, a little northeast of Otogitmue, rocks have been fomb with a few specjes of shells, Dosinia exoleta, L, Cyclina sinensis Gmel., Panomea generosa Gould, Mactra venerifurmis Desh.

A much better result is obtained when we go fanther to NW. and N. and enter the province of Shinshin or Shinime, which borders Musashi-the province containing 'Tokio and Yokohoma-in the west, and the western cud of the Musashi-province itself, the district of Chichilm.

(1IIClIIBC.

Several places in the valley of the Aragawa (or upper Sumillughata), for instance Ninano and a small village named Hinoo letween Omiya and Nigawa, or in the valley of another branch, a little farther to the north, for instance Otagawa, have furnished tertiary leds and fossils. The latter are contaned in hard sandstones, or in hard sanly ant inarly layers between the dark shale mentioned in the introluctory chapter. Fior miles all those rocks, which fill a wide basin amidst behistnse crystalline rocks, do not show any oryanio remains, and only in the phaces mentioned above are they fomet in folerably good momber. Desides the specimens of fussil wool (the species of which camot be determined) are fombl the following shells:

> Nussu livercens Phiil.
> Columbella acripta I.
> Dentalinen chatale I.
> Panopaea generow Gould.
> Mya arenaria L.
> Mactra veneriformis Dealh.
> Taper rigitus Gonld
> Venur (Mercenaria) Stimpeoni Gould.
> Dowinia exoleta lo.
> Cyclina sinensia Gmel.
> Cardinm Californienee I Menth.
> Lacina hurealis I_{s}.
> Lavla confuas Hatal.
> Pecten laqueatus Sow.
> Pecten plica I.
> Pecten Yessoênsin Jay.
> Ostrea gigns Thunherg.
> Ostrea denselamellown Liwchke.
> Lima sqnamofa Lamarek.
> T'erobratulina caput serpentis L.

All of them, except the two last spreies, have been deweriber above; they pmove at the aame time the very yonng uge of the entire system of meks, and the identity of the charwerer of its organic remains with that of Oji, Surugadai, Shinagawa, Kanagawa, Yokumana and Takignshira. 'I'his cunclusion is, of course, not altered jly the two aditional shelis lwoth of which live in the Japanese sea. As they are also fomad at Sukegawa, north of Mito, in the province Hidachi, they will be more conveniently diseramed below.

SHINAHIL. PROVINCF:

 tufacenus rocks epread chidly round the Asmma-Yimm. Among the rockn belonging to the latter formation I montion. ly the way, an alurnite-breccia found in the neighbourhood of the solfatara of Tialayama. The fowila to be mentioned are:

Natica Lamarckiana Reeve.
Turritella communis Rieso (tu) Lee disenssed Teduw.)
Mya aremaria L
Auhes pulchellus Dusker (abmo to le disenseel ledow.)
Lontraria Nuttalli Conr.
Tellinar nauta Conr
Venne (Mercenaria) Stimpeoni Guuld.

Saxidomus purpuraths suw
Iosiuia exoletal $\mathrm{I}_{\text {a }}$ ．
Ceclina siuensis Gmel．
Diplodonta trigunula Bromb．
Lacina boreatis L．
Cardium Californiense Desh．
Arca intlata Reeve．
Pectunculus glycimeris I ．
Nucula Cobboldie Sow：
Pecten laqueatus Sum．
Pecten Yessoensis Jiy：
Pecten laetus Gould．
Among these 19 species，there are astin only 2 which have nut been men－ timed in the foregoing chapters；one of then is a living Japacse specices．

MIS゙い．1RROVINCl：

In this province the stme system of sandstone and shate is developed as in Chichiln，ant the amount of fossils is larger than in any of the districts mentioned in this chapter．As fir the othpr animals，I refer to what I said atove． The mollusca，partly well preserved，belong to the following species：

F゚usus inconstans Idichke．Chiefly fomm at Twakonhio
Neptusea islandica Chemnitz d ${ }^{\text {p }}$ ．
Nepturea arthritica Valenc．Found at Tsukiyoshi and Togari．
Puccinum leucostoma Lischke（discussed below）．From＇logari．
Doliam luteoturnum Kïster．id？
Ehurna jammica Reeve．From Tsukiyoshi．
Natica Lamarckiana Recluz．Frons Tsukiyoshi．
Natien puriformis Rechz．（discussed helow）d＂．
Cérihhopsis rugusa Gould．d＂．
Iatmpaniaz zonalis Jamarck．d＂．
Turritellat communis Rissn（discussed below．）From Trsukiyoshi and Togari，fiequent．
Viennetus imbricatus Dunker．From Togari．
Gibhulus superluns bould．From Tsukiynalii．
Mya arenaria I．Forom Tsukivoshi and Tomari．
Silen grambis Dumber．From Togari．
Erieterilina Bueddinghansii lischke（discussed beluw）．F＇rom T＇sukiyoshi and Tuguri．
Mactra veneriformis Dewh．Ǐmom Thukiyushi．
Tellina masuta Cobr．From Thugri．
Dhesinia exoleta L．Both phaces，frequent and ins groot varicty．

Saxidomus purpumatus Sow. Fimm Tomnri.
Cardium muticum Reevo. Buth places.
Carlium Catiforniense Desth. il:
Lacina borealis L. It․
Diplodonta trigonula Bronn. d°.
Arca inflata Reeve. From Trsukiyoshi.
Nucula Cobbohlise suw. Some large spamens, Inth from 'Inuliyonhi and I'wnari.
I'ceten plica L. Also frum 'l'sukiyowhi anel 'Tomari.
l'ecten Yossö̈nsis Jay. Frmm 'Iswkigoshi. Nut fruynent.
Ostren gigna Thurble From Trukiyazhi and Togeri.
Besides these welles, which entirely comfitm what is saibl above, I camnt omit to mention the rich flom of the slase and the fulis which is nowhere found better than near T'sukiynshi. As for the determinatima, I add simply that not uno belongs to a specien furcion fo the actual Jiaparse f?om; Aoer palmatum seems to necur most frequently.

H1DAC゚II.

The monatains in the noth of the 'lokio phain, liorikering the een, are next to be mentioned. The exposures of tertiary lials are chiefly found a'ong the coast at some distance from Mito. In a few places brown coal occurs, as it seems, under the beds described here, and it is said to extend even into the sea. The fussiliferous strita belong to a very thick system of partly hami, partly solter sandstones, sometimes a little tufaceous, but much oftener sonewhat marly and intermised with small rounded gmins of rocks from the neighbouring crystalline mountains. In one instance, these tertiary rocks are enelosed within the schistose crystalline rocks and form a separate basin; this is the case upwaris, or west, of Sukegawn. In all the other caser, for instance east of Sukegawn, or at Tagagori, Miynkin, they form the very last solid rocks next to the sea. They are covered by dilurial strata much in the same way as at Tokio, and it is worthy of notice that these diluvial strata are alwnys horizontal, whilst the dip of the tertiary strata, as has been stated above, is mostly botween 8° and 15°.

The fossils themselves are numerous but very often too badly preeerval to le determined. It scems the loss to be necossary to describo them here comple tely, as they will be the olject of another paper preparest by Mr. Kochile, graduate and cx-assistant of the Daigaku, now nppointal at the (iecological Surveying-Office of Tokin. But in onder to give a correct idea of the fanma in its relation to that one which I described in the foregoing chaptera, 1 give the following preliminary list confaining the inst important npecits.

L'usus inconstans Lischke.
Neptunea islandica Chemnitz.
Neptunea arthritica Valenc.
Nassar lirescens Phil.
P'rrpura lapillus La.
Ebuma japronica Reeve.
()olinm Inteostomum Küster.

Natica Tamarckiana Recluz.
Vermetus imbricatus Dunker.
l) entalium entale L.

Mya arenaria I .
P'mopres gencrosa Guuld.
Sulen grandis Dunker.
Mactra Sachalinensis Sulbrenck.
'T'ellina nasuta Cour.
Tapes rigidus Gould.
Tirpes clecussatus L.
Saxidomus purpuratus. Sow.
Dosinia exoleta J_{s}.
Cyclina sinensis Gmel.
Cardium muticum Reeve.
Cardium C'aliforniense Desh.
Lucina borealis $I_{\text {. }}$
Area inflata Reeve.
Area sulucrenata Lischke.
l'ectunculus glycimeris I_{2}.
Nucula Cubboldiae Sow.
Yolliar arctica $I_{\text {a }}$.
I'ecten laqueatus Sow.
l'ecten Yussoënsis Schrenck.
1'ecten plica L.

- Pozton liabs Guak (speumons from Sukegum exactly corresponding to Lischke's fig. 6. 1. c.)
Ustrea gigas Thunb.
()strear deuselanellosa Riscuke.

Anomia potelliformis L.
Withlheimiat (irayi I)avilsonn.
'I'his list mhls 7 specios (l'urusiaん hupilhas L., Mactra Suchalinensis Schrench,
 formis $\mathrm{T}_{\text {s. sul }}$ Wahtheinia (xatyi Div.) to the mumber of those which are connmon to dhe lertiary formation of the 'Jobio plate, and that of other districts

SPECIES NOT FOL゚NU IN THK TOKIO PIANN.

Voluta megnapira Sowerby.

 Meeres-Conch. v. 2, p. 167 and v. 3, p. 43.).
Many monlds and fragments neur in all the lowalitien of Hiblathi where sandstones are expmeed.

Buccinum leucostma Lischke.
(Japan. Meeres-Conch. F. 3, p. 38, pl. 1. f. 7 and S.).
Not frequent, nesther at Sukegawa, nur in the provine of Mino. at Tornat (vide supra). The apecimens agree perfectly with the ynuted figure

- Natica pyriformis Recluz.
 ter, Natica, p. 60, pl. 5, f. If.-Lischke, Japum, Merereb-(innch. v. 2, p. 169, and v. 3. p. 53.).
The specimens are partly well preserven, especiatly those from Trukiyoshi, province of Mino (vide supra).

Turritella communis Risso.
(Hist, nat. des pr. proxiuits ile l'Eurnge merril. v. 4. p. 10G, ph. t, f. 3̄̄.-

 Crag Moll. I, p. 74. pl. 9, f. 9.).
Numerons apseimens from the province of Minu (expecially 'Tugari, but also Tsukiooshil eusble me to identify the Jajumese foxsil sheils which were lexn fregnent in Hillichi, with the well known palearetic species, whilat they difler from the living Japanese and Oriental species.

Crepidula aculeata Gmelin.

(Syst mat. Linn. ord. 13. p. 3693--Lamarek. list. mat. ©d ed. r. 7. p. 642.-Reeve, Conch. Ienn. Crepilula, pl. 4. f. 22 and pl. 5. f. 27.-Liwhke Japun. Meeres.Cunch. v. 2. p. 76.1
One spocimen only was found at Tagagori, Hiluclai.

Haliotis gigantea Chemnitz.

(Conch. Cab. r. 10, p. 315, pl. 167. f 1610 and 1611.-Rerve, Conch. Icon. Haliotis, pl. 6, f. 19.-Lischke, Jap. Mecres-Cunch. V. 1, p. 101, and v. 2. p. 91.-Syn. H. Kamtechatkaan Jomas, theve 1. c. pl. 3, f. 3.)

A few but partly excellently preserved specimens were found at Sukegawa, Hilachi.

Patella amussitata Reove.

(Conch. Icon. Patella, pl. 33, f. 83.-Schrenck, nordjapan. Moll. pl. 14, f. 4 and 5.-Lischke, Jap. Meeres-Conch. v. 1, p. 109 and v. 2, p. 100, pl. 5, f. 7-11.)
The species, rather variable, has been found in tolerably large specimens, some of which were well preserved, in several places along the coast of Hidachi.

Aulus pulchellus Dunker.
(Novit. Conch. II, p. 20, pl. 6, f. 4 and 5.-Lischke, Jap. Meeres-Conch. r. 1, p. 124.-Syn. Aulus costattis juniur Schrenck, norljapan. Moll. p. 590 , Midhendorf, Reise \&c. v. 2, first portion, p. 269 ; Aulus costatus Say, from the Atlantic const of America.).
Without entering upon the question of the identity of these two species, answerel in an opposite sense hy Sohrenck and Tischke, I mention the specimens from Hilachi and Shinshiu, tolerably numerous and belonging undoubtedly to the same species as those of Dunker.

Soletellina Boeddinghausii rischke. (Japan. Meeres-Conch, v. 2, p. 118, pl. 9, f. 9.).
In all the localitiss of the provinces of Hidachi and Mino moulds of this species are found; the shells themselves were less frequent.

Lima squamosa Lamarck.

(Hist. nat. 21 ed. v. 7, p. 113.-Lischke, Japan. Meeres-Conch. v. 1, p. 162.-Syn. Sstrea lima Linné, Syst. nat. ed. 12, p. 1147 and Sowerby, Thes. Conch. v. 1, p. 84, pl. 21, f. 1.)

This nearly world-wide species about which Lifchke's discussion may be referred to, has heen chiefly found in the Brachiopordi-beits near Sukegawa which will be mentornel below; but it occurs also in other places of Hidachi and in the district of Chichibu.

Mytilus edulis Linné,
(S.st. nat. ed. 12, p. 1157.-Forhes and Hanley, brit. Moll. v. 2, p. 170, pl. 48, f. 1, 3 and 4.-liecere, Conch. Jcon. Mytilus. pl. S, f. 33.-Jefireys, 1rit. Conch. v. 2, p. 104.-Weinkauff, Conch. d. Nittelm. v. 1, p. 224.Thilippi, En. moll. Sicil. v. 1, p. 73 and v. 2, p. 53.-S. Wood, Crag

Omittin: 6 mention all the varieties, I only add that the reent Mytili of Japan-not all of then like Mytihas bunkeri keeve (Conch. Icon. Mytilas, pl. 5, f. 17; Lisclake, Jap.un. Moeres-Cunch. v. 1, p. 153, p.10, f. 7 and S) or liko the
other forms deacribed by Lischke and other authors-must he. muntly it lenst. united with the true M. elulis L., whowe variability is indeed almust univensilly acknowledgod. The same is the case with the shells and mondels from the Hidachi sandstoncs, whoee number, however, is but small.

Modiola flabellata Gould.

(Otia conchol. p. 93. Atlas of Mollusca of Wilko's Exped. pl. H, f. 5fil.)
This Oregon species is doubtlessly represontal by a fuw of the moulds of the Sukegawa sandstones.

Terebratulina caput-sorpentis L.

(Syst. nat. 12th ed. p. 1153, as A domia; excl. syn.- Ib. p. 1151. as Anиmia retusa.-Tamarck, hist. nat. \&c. 2d ed. v. T, p. 332, as Temelratula c-put. serpentis.-Forbes and Hamley, lurit. Mull. v. 1, p. 3i3. pl. .ti, f. 1-4, also as T'erebratula. Reeve.-Conch. Icon. pl. 4, f. 19 ; nlen in Minnygr. al recent Brachiopola-Jeffreys, brit. Conch; v. 6, p. 69 , us TomphoulaSoworby, Min. Coachol. v. 6, p. 69, as Terelmatidn :triathia-1 Mhiipli, Enum. Moll. Sicil. v. 1, p. 96 and v. 2, p. 66 ; do.- Wrinnkanli, Coneh. d. Mittel-meeres v. 1, p. 285.-Adams, Ann. Mng. Nit. Ili-t inl smime s. 11, p. 68, with rarieties 'I'. japonica and T. Cuminuii.-llan ilson, P'ro. Zool. Soc. 1871, p. 303, pl. 30, f. 7, 8 and 9.).
Though tho outline and sizo-as this is often the case with, Bramionewha :thl especially with Torebratulineo-arosomewhat diflioment fom the typienl sparium tus, those of Hidachi reaching 34 millimeters in heinht and 32 in lemenh, yet the ohameters, for instance the sculpture, agree so profety that they cuns:at I_{x}. referred to different species. Fiven as a variety this finsil form cannot lue appumtial from the recent Japanese specimens, since the lattero from Halrolate, hase Hir. eame-and in come instances a litule laryer-ize and oxactly the sump prupar-tions.-The specimen mentionel above from Chichibu is mulh smiller.

Rhynchonella psittacea Greclin.

 -a variety as Ph. Woodwardi.)

 boen found exclusively in the isulated lacin west if Sulamens: 'They as re
 exclusively at this place.

 cipolline and other crystaline limestones, might be indeed called the 'suhegnwa

Brachinpola-beds' from the frequency of thase two species. This is the more striking as other fossils are comparatively rare and belong only to 5 species, viz. Yecten lactus Goukl, Lima squamosab Jamark, Ostrea grigas Thomberg, Ostrea denselamellosa Lischke and Anomia patelliformis Linné. The identity of the formation, however, is evidentiy proved by the similarity of the rocks to those near the coast, and by the species of shells; for they are all recent Japanese and with one exception found also at Oji, Takigashira \&ec.

Among the other fossils some sea-mrchins might be mentioned, and some fragments of fossilizer wool patly reaching huge dimensions. Unfortunately, they are all ton badly preserved to be of any importance.

In concluding the remarks about Hidachi, I have to mention a locality on the road from Tokio to Mito, ne.u the Tonegras and next to the village of Konone. This locality is includel within the compass of the Tokio environs, but its formations are intermediate between those of Tokio and those of Hidachi. 'They consist of a tufaceous saudstone, very much like that of Sukegawa, only a little softer. It is covered by diluvial strata, mostly also sandy. From the tertiary strata Mactra veneriformis Desh., Cytherea maretrix C_{1}, Area inflata Reeve were brought to me.

IoCALITIES ON RUE ISLAND OF KIUSIU.

The thick and varied system of sandstones, tufis, conglomerate and shale which is seen alung the coast on both siles of the Tokin plain as well as in the hills surrounding it, is, of course, not limited to central Japan. I am fuily conrincer that it will be discovered almost along the whole easte:n and southern shore, and probably it does not end there. To the south and west, this may be said to a certainty; for in the island of Kiusin several places are alrady known and have been explored which donbtlessly contain the same formation.

At Amaknsa, tufacenus rocks, somewhat finc-itained, cuntain a great many moulds of bivalres-Tellina nasuta Conr., Tapes rigidus Gould, Pecten plica I., Mactra Sachalinensis Schrenck, Diplorlonta trigomula Desh., Arcia granosit La, Cardium C'aliforniense Desh., Saxidomus purpuratus Sow.-and moulds aud shells of Turritella communis Risso.

In the ken of Kagroshima the amonnt of tertiary fossils is still larger, though we camot include in this formation all the layers of plants frequently fund in lhis part and in other districts of the island; for some of them are quaternary and bolong to wery modern fresh-water deposits. The fossil shells are Nassa livesens I'hil., Natica pyriformis Recluz, Lampania zonalis Lamarek, Tellina nasuta Conr., Mactra reneriformis Desh., Cytherea meretrix Is., Cardinm C'aliforniense Desh., all the three Arcio desuribed alnue and both species of oysters.

Near Bungo, on the northeastern corner of the island, bocks with Dosinia exoleta L., Mantra vencriformis Desh., Saxidomus purpuratus Sow. and Cardium Californiense Desh. are found.

NOBTHERN LOOALITIES.

Similar rosks havo boon broight im in Likuson, is littlo NE. of Semlat, containing Pecten plics Lo, Dosinia exwicta Lo, Punoprea generose (imuld anhl Suxicava aretica L.; whilat at Hakodaue ant only similar rocks have beens siren, but also smaller and well proserved fossil shells, nuch like those if " y ii in Shinagawn, hare been droiged. Tho most important of them is Limeln is inurita Brocchi, of which a few spocimens, doubtlessly in a fussil staw, aro it the romlogienl collootiou of the Daigaku.

Another looality is situated between Sendur and Hila hi. in the prosin "r of Yuwashirb. The pliocene rocks, groonish tufaceous sandstonet, have heen fimmi
 Asakagori). Here Cardium muticum Rcove, largo and typizal, Lucina horealis Is., Mactna vencriformis Desh., Tellida nasuta Conr., Proten laquentus אium ami atems and leaves of plante (Cryptomeria japonica, and a Chrpinnse are fimml-

The tertiary beds beyond the 'Iokio phain, in their totality, have limi-he. 1 60 species, 46 of which are also contained in tho Tokio aud Jukhntul:-liayern, aud only 14 (about 23 percent) are nuw; but these are all recent und with two exceptions Japanese. Only one of them does not occur in the Pacific.

The different localities do not differ much in their frownrtinn, Chichihm having 20 epecies with 2 new ones, Shinshin 19 with two new oncs. Mino 31 with 4 now species; Hidachi with 50 species bas, bosever, 14 new nhes, whilat the other looslities in which only a few aprecies ane fousd. luave me sum ones. - The largest number of new species, thesefore, belonge to Hidachio, where the - fuce' of the formation is also modified. The modificution, however, sunt the number of new forms is not very great, and the character of the fanna, in its - fotality, is not altered.

CHAPTER VIII.

SUMMARY.

It would be perfectly clear, I believe, even without the assistance of the facts contained in the foregoing chapter, that the shell-layers which are the subject of the 4th, 5th, aud Gth chapter, thongh they are very young, yet belong to the tertiary formation. For the Tokio-abl Yokohama-exposures exhibit an unconformability which separates the bulk of the dilnvial formation (divided in itself by another line of uncouformability) from an underlying formation, and the latter contains a molluscous faruat comprising living species, many of which are not now fomed in the neighbombon of Jann nor even in the Pacific. Besides, in some localities within the 'Iokio plain, the strata below the same line of unconformability have a dip of 5 to 6 degrees, whilst the diluvial strata are horizontal.

To illustrate the character of the fama, I resume that in the upper tertiary deposits of the environs of Tokio and Yokohama 87 species have been determined. Two of them, Dentalinm octogonum Lamarck and D. entale L., belong to the Solenoconchæ; one of them is recent and Japanese, the other exclusively found in the Atlantic. A third species belongs to the Brachiopoda and is recent and Japanese. The rest are 41 Gasteropoda and 43 Conchifera. Among the former, 9 are neither Japansse nor Chinese; if we inchute the species described by Gould from Hongkong or its vicinity, e. g. Cerithiopsis rugosa, Monoptygnna puncticnlata, the two Odostomine, as iudigenous in the neighbouring seas, the number of the indigenons species is 52 . The rest includes only one loreal univalve of the Pacific Ocean, Trichotropis coronata Gld, not found hitherto further south than the strait of Semiavine. The remaining species are Atlantic, and though none of them are really extinct, they are gengraphically seprarated liy a wide interval from the living Japanese fauna. Most of them are very often found in a fossil state, just as a certain number of the other 32 gnsteropora, esfecially those which at present are common to the Atlantic and Parific Ocean, e. g. Columbella scripta L., P'urpura lapillus L_{4}, Chemnitzia elegratissimar MontAmong the 43 Conchifyan there are only 7 which are not living in the Japanese sea, and among them we find 2 horeal Pracific sjecies, Panopnea generosa Gould
 Fast-A siatic temperate cousts. But the other 5 are important species, viz. Kellia suborliculanis Mont., Lucina horealis L., Diplodonta tripumla hesh., Yohdia arefica
 to a genus whose next lucality is the Real seat. Limonsis amitu itself was, mat
very latoly, said to be extinct. Deep-sen dredgings may indeed, as han been tho case with this species, reduce the number of really extinct tertiary forms; but this is a fiet which is applicable to all the younger tertiary deposits. It proves indeed that an extinct fauna must be considerul as such oven if it down not contain any other but living species, whonever a larger part of these precies does not belong to the resent fanna of the axme zongoogmphical province or region.

Of course we find ulso in the class of Conchifera many species which are Atlantic ns well as Pacific. Two of the bivalves, Saricava aretica L. and Myn arenaria L., are circumpolar; one, Lasea rubra Mont., is cosmopolitan. A grint many are also fossil, expecially of those common to hoth the weutern and eastern ncean, and I think it will not nppear a very paraloxical result that-aided by a rich supply of specimens-I added to their number Dosinia exnleta I. and Nucula Cobboldive Sow, and replaced to it Tapes decnseatus L., known from the Japmnese const as Dosinia japwnica and Troscheli, as Nucula mirubilis and insignis, and as Tapes Philippimarum. In this respect, I an iudeod fully convinced that in Japan exactly the reverse will take plnco of what lischke says to bo commonly the case, viz. that in every fauna which is innperfectly known a further revision will probably relluve the number of the forsign forms, or of those sprecies which are said to bo identical with fonns of another part of the globe. Lischke himself has shown by too nany examples that the marine mulluscous fauna of Japan is-just as the faunn of other clasees of naimnla-pmatearctic. l'erhaps it would appear still more so if we know the real distribution and geographical range of some genera and species now mostly confinel to southern latitudes, as for instanco Myadora. At all events, wo have in the faun of Oji, Tukio, Kanagawa, Yokohama, Takigashira elements which do unt agree with the actual Japancse finna, and the number and importance of these elements is so great as to remose all possibility of their ever hoing efficest hy discoveries of receut Japanese shells. I neod scarcely add that some of the species which are extinct on the Erst-Asintic const, occur very freqnently in the tertiary layers, e. g. Lucina borealis, Diplodonta trigonula, Limopsis narita.

In these as well as in many other respects the Japancso shell-hayers discussed above have the greatest resemblance to the Crag, and mext to it with the younger Subappenine deposita, whilet the rocks reamble very chasely the Europess Faluens, a formation, by the way, not at all limited th the wextern const of France. Glacinl deposits have no more affinity with the (j_{ji} depusits than with the English Crag iteolf, and it would be very easy to mateh the 'arctic' species muloubtedly contained in these deposita by others- ('yelinn sinensis, Area granosa, Monoptygma, Myadora, or even Diplorlonta trimoulh-which point mare to the sunth. And thus we should at last be obiignd to recur to the explanations given above on this subject-

If, however, all these ransons should not seem to givo sufficient evidence of these views, the loculities described in the seventh chupter will do so in a perfectly eatisfactory manner.

All these strata of shale, sandstone, hard and loose conglomerate have, as is repeatedly stated, an enormous thickness and yet a perfestly uniform fauna. And this fanda is eminently the same as at Oji, Takigashira etc.

The results given at the end of the 7 th chapter show that in the localities first mentioned, Chichibn, Shinano, Mino, altogether 44 species have been fonnd which belong to the fama of Oji, Takigashira \&e., and that there are only 7 new species; whitst in Hidachi 36 species from Oji, Takigashira ete. and 14 new ones have been found. But Hidachi, on the other hand, is closely connected with the other localities ly the identity of 30 of the former and 7 of the latter species, and thus, only 7 species remain peculiar to Hidachi. These 7 species are all of them living in the Japmese sea, and it is a remarkable fact that the separate basin near Sukegawa, richest comparatively in such species as do not belong to the famma of Oji and Taisigashira (3 among 7), has not one species which is not found living near Japan. All the other localities, and the more distant places, have proportionally very few species (if any) not belonging to the Tolio fossil fauna; and all of them together with Hidachi hare only one species which is neither found in the fossil fauna of Oji ete., nor among the living shells of Japan, viz. Turritella communis Risso. As the proportion of fossil Tokin shells belonging to the living Japanese marine fanna to those which are extinct in Japan is 69 to 18, the latter being 21 percent, the presence of one further species of the latter description with 13 new species living in the neighbourhood would rather serve to prove a younger age of the sandstone, conglomerate, marl and shale. As this cannot le admitted, the Tokio layers being uniloubtedly one of the higher, if not of the very highest parts of the younger tertiary formation of Japan, we are forced to regard both layers as most intimately united.

A further division of the entire system cannot be made, at present, palieontologically; we must confine ourselves to separating it into upper and lower strata simply according to their relative position.

There can be no doubt about its very young age, and the Pliocene Era, or the Crag-division of the tertiary formation, is the only one to which we can assign it. If the question should arise whether we should assume that it belongs to the miocene formation, this is answered in the negative by the absence of a somewhat larger number of extinct shells, by the scarcity of typical miocene species (though there are some present, for instance Columbella scripta, Chemnitzia elegantissima, Eulima subulata, Dentalium entale, Lucina borealis, Diplodonta trigonula, Pectunculus glycimeris, to which perhaps some other, for instance Panopaea generosa and the Tornatina might be adderl), by the close resemblance to the Crag and by an approach which those layers make towards the diluvial deposits.

With these, however, they cannent be identified for the reasons given at the hegiming of this chapter-chatactor of fama, high pereentare of species foreign to the present marine fuma of Japan, line of unconformalitity letween them and donbless lower dilusial strata-, and besides for those rensons which result
from the identity of the Tokio pliocene atrata and the system of sundmonc. shale \&c. amonntiug at least to some hundrud meters in thickinss. This very thickness, clearly showa hy the Chichibm-leyore as well as lyy thome of Hildihi and other provinces, and still more tho high angle of dipying often wherveal, forhids the inclusion of these stata within the compase of the Imaternary firmintion. Now, not being able to claim a quateramery age for thess: large systemin if rocke, wo canmot do mo for the Oji rocke and their pamilels in the 'Pwhin plain.

The nolution of this problem is of the highest importance for Jlyanese: geology. The strata in question oceur ahmost evorywherv: at heast in almuint all the provinces and districts which thus far have been explared. Wie tinl them, with or without other selimentary or volcanic or erystallin: rover, 11 ! only along the coist, but ofton far into the interior. Their gealogical ayn astertained, we have a fixed point from which we may adrnnce, nut without which we should scarcely have a sufficient basis for obeurvation anywhere. This is frur as well in regaril to the moderlying strata, tortiory, for inntance brown ronl, mesozoic, palwzoic or azoic, as to all the omptive formations and to the overlying quaternary strata which give the surface-formation of wide dintricts. The largest of these is the plain of Tokio, whose geology could never be fully undervtood without a strict determination of the fomsiliforons iecter layems of its environs.-

This point being settled, I may add a few remarks aksut the genlurival changes which, since the origin of those oldest deposite of the 'Tukio plain, are to be observed within this district.

The chancter of the fama may be dismised after all that has been suit abut it here and in the introductory chapter. I repent only that the marine fanna also gives evidence to a highly sutisfactory degree of ite palaearctir character. The molluscous fauna of Japan is much more clasely connected with, the European fauna than we should have ever expected without recurring to the fannes of past ages. This connection is much too intimate to tw nceommed for by the amall number of 'circumpohar' species contained in the Japanese fauna; but it is well explained by the close allinity which the piiureme famm reveals with the European. It has, therefore, a far grenter impurtance thun it would have if it was an isolated faunula and nut-as it is-a $\boldsymbol{p}_{\text {mirt of a }}$ a very large fanna which, in certain respects, has been better preserved in Japan than in the: other parts of the palawetic region. I need but call the reader's attention tw the important fact that the plincene Nucula Cohboldiau actually exists in the ocoan enciroling Japan.

As the question sbout the temperature has also been settled in the finst chapter, I may proceed to the last object of theme pugen, to the quertion concorning the changes of the level of the sca.

Of coame there can be no donbt whatever ablent the fint that :inse the deposition of the pliocene atrata the latul has been slow ly cheratial ahwe the level
of the sea. This movement of the entire mass of land forming the Japanese archipelagy, has, to a curtainty, not gone on quite regularly and must have been at times interrupted; but, on the whole, it has continued from the last period of the tertiary age to the present day. The interval batween the pliucene layers and the diluvial strata, causing that line of unconformability often wentioned, may have been filled up by an extent of land greater than at present; and the occurrence of two of the palaurctic species of elephants seems to point to the same fact. But soon after the beginning of the diluvial era another submersion must have taken place to which another elevation succeeded. And this eloration has doubtlessly continued up to the present time.

This seems to be proved, if not with certainty, yet with some probalility, by the Omori shell-mound. A mound of such a size is likely to hare been heaped next to the sea; and I think the discoverer of this mound is perfectly right in laying some stress upon this matter.

On the other hand, it seems scarcely possible to make any calculations concerning the rmount of the increase of land, or the rapidity with which the soil of Japan is elevated above the level of the sea. Much greater precautions must be taken, in this respect, thin has generally been the casc. If we should, for instance, compare the result of the soundings in the bay of Tokio made at different periods, we might perhaps, at a short distance from the shore, perceive a comparatively great diminution of the depth of the bay, and yet the real amount of the elevation might le trifling. For a large mass of detritus is daily brought into the sea by the rivers, by the sea itself, loy men; aud this mass is distributerl mostly along the coast. We are not allowed, therefore, to draw any conclusions concerning a rising of the entire mass of land from soundings made next to the shore, especially in the harbours, and above all in the harbour of Tokio. Just as untenable are the results derived from the increase of land in the precincts of the town itself. Swamps extending along the coast may have been made artificially accessible to men, and therefore they are said now to be land, whilst on the old maps and in the old traditions they are said to belong to the sea. To this increase of land, which must be declared to be strictly local, the stagnations produced by weirs-abore which always a large bulk of detritus is retained and accumulated-add of course a great deal, and this has been evidently the case in some parts of Tokio.

I am far, therefore, from sharing the views contained on this sulject in Dr. Naumannis paper on the Tokio plain. Especially do I think that his estimate of years is incorrect. The very short time assigned for the formation of the plain of Tokio, viz. 45000 years-given, it is truc, as a minimum-scems to be quite inconsistent with the amount of time which we really must assume for our geological periods.

Still less tenable, of course, is the view that within historical time the Tokio phan has ever been covered by the sea. This is not only the case with the higher parts of the plain formed by diluvial strata, but also for the lower
or alluvial parta. Man may have previously oxistol (as be live inew provel to be contemporaneous not only with the cave-bear and the mamumblh, hat ukis with Elephas antiquie in Europs); but he can ouly havo oxistel as a p:chientri. race similar to the man of Einghis and of Neandertbal.

The rising of the land sooms to be indepomdent of the volemic phamenmenn. We find indeed such elevations in any part of the worth, with in without volcanic action, sad the question is a very complicatel ane, whether-ar how far-this action may be the cause of the rising of land. On the uther hami, this rising seems to have an influence on the voleanic phronomens, naturily, that it tonds to mitigate them and causes thom to withdmew from eritain parts. The volcanoes seem to be depondent upun the jresence of water, and thus a diminution and retreat of volcanic action in Japan is perfectly accountel fur.

It has been said above, that we are not entitlext to assume a heichtemed degree of volcanism during the quatemary age; and when wo consider tho harge layers of quaternary conglomerates, which oven in volcanice slialricts coner tufaceous rocks, without being tufacenus themeolves, this conclusion cimmitht be confirmed. The level which, in such instaneas, is ris beal by qutter,ary layers, is sometimes very high. In the district of Hakone it is decideally abowe 700 meters. But we do not know whether these strata are nut fresh water deposits kept up in a high level much liko the present lake of Hakone.

The volcanic action, not very intense, aftor all, at present in Jupan, siems -as above stated-to have had its maximum ahout the same periol at which the youngest tertiary doposits were made, as is proved indewh liy the huer amment of turas found among these rocks, and the mure so, the 1 . w wer wire the the volcanic centres pointed out in the first chapter.-

With these remarks founded upon minuto investization I mom?ule tine sketch of the 'Geology of Tokio,' by which I hops to give some impulace tw, :1nil some basis for, further observations and studies.

EXPLANATION OF PLATES.

PLATE I. Geologycal Sections.

Fig. 1. Section of the diluvial and tertiary strata of the steep Bluff NW. of Kanagawa-Station. Vide p. 21.
Fig. 2 and 3. Sections of the same strata, from the Bluff between the railway and the shore, next to Kanagawa-Station. Vitle p. 26.

Fig. 4. Section of the diluvial aud tertiary strata near the corn-mill at Oji, N. of Tokio. Vide p. 26.
l’LATE II. Tossils from the phiocene deposits.
Gafteropoda.
Fig. 1. Neptunca arthritica Valenciennes. From Oji. V. p. 38.

- 2. Rapana bezonr L. From Surugaidai. V. p. 51.
- 3. Nassa jappnica Lischke. Frum Oji. V. p. 29.
- 4. Nassa livescens Philippi. Do. V. p. 29.
- 5. Thurna japonica Reeve, From Takigashira. V. p. 64.
- R. Columbella scriptar Id. From Oji. V. p. 29.
- 7. Odnstomia planata Gould. Do. V. p. 32.
- 8. Cerithiopsis ragosa Gould. Do. V. p. 33.
- 9. Drillia reciproca Gould. Do. V. p. 33.
- 10. Mangelia strin!atn Suw. Do. I. p. 33.
-11. Terelra bipartita Gould. Do. V. p. 34.
- 12. Lampania zonalis Launarck. Specimen from Takigashira. V. p. 5.

Phat'E III. Fosphe inom the pliocene depoeite.

Concuifrra.

- 13. Solen grandis Dunker. From Oji. V. p. 36.
- 14. Panoprea generosa Gould. Do. V. p. 36.
- 15. Mya arenaria I. From Takigashira. V. p. 59 and 63.

I'Late 1V. Do. continurd.

- 16. Lntraria Nuttalli Conr. From Oji. V. 38.
- 17. Mactrn veneriformis Desh. Specimen from Takignshim. V. p. 38.
- 18. Tellina nasuta Cunr. From Oji. V. p. 39.

PLATE V. Do. contwred.

- 19. Tapes rigidus Gould. From Oji. V. p. 39.
- 20. Saxidomer purpuratus Sow. Do. V. p. 40.
- 21. Venme (Mercenaria) Stimpsoni Gould. Do. V. p. 40.

PLATE VI. Do. conmmord.

- 22. Dosinis oxoleta L. (var.) From Oji. V. p 41 .
- 23. Oyclina sinensis (imel. Spacinen from 'Takizashira. V' p. 53.
- 24. Lucina borealis L. From Oji. V. p. 44.
- 25. Diplodonta trimemula Bronp. Do. V. p. 44.
- 26. Pectunculus glycimeris L. Do. V. 45.
- 27. Linaopsis aurita lirue hi. From Shinagawa, V. 1, it.
- 28. Núucula Cobboldia Sow. From Oji. V. p. 46.
- 28° The same, specimons from Kaungawa. V. p. 46, ant ρ. : !
- 29. Yoldia arctica Broderip. Krom Oji. V. p. 47.

PL.ate VII. Do. cominima.

- 30. Pecten plica L. From Oji. V. p. 43.
- 31. Pecten laquoatus Sow. Do. V. p. 48.
 p. 49.

ADDENDA AND ERRATA.

Page	29.	Line	3.	Add:	Pl. II,	f.	3.	
$"$	$"$	$"$	16.	$"$	Pl.	II,	f.	4.
$"$	$"$	$"$	22.	$"$	Pl.	II,	f.	6.
$"$	32.	$"$	6.	$"$	Pl.	II,	f.	7.
$"$	33.	$"$	15.	$"$	Pl.	II,	f.	8.
$"$	$"$	$"$	25.	$"$	Pl.	II,	f.	9.
$"$	$"$	$"$	36.	$"$	Pl.	II,	f.	10.
$"$	34.	$"$	5.	$"$	Pl.	II,	f.	11.
$"$	36.	$"$	4.	$"$	Pl.	III,	f.	13.
$"$	$"$	$"$	34.	$"$	Pl. III,	f.	14.	
$"$	58.	$"$	2.	fr. bottom. Instead of 76 read 75.				

 4. Nassalivescens. Philiphi. 5. Eburnajaponica, Rje eve, b, Columbella scripta, Linne. 7. Odostomia pranata, Gauid 8. Cerithiopsis rugosa. Gould, g. Drillia reci praca, Gould. 10. Mangelta striolata. Phil. II. Terebra biparlita, dould. 12. Lampania zonalis, Lamarck.
13. Solen gra

PuI.

aswta. Conrad.

20. Saxidomus purpurailus. Sowe py.
19. Tapes rigidus. Gould. 21. V'enus'(Mercernaria) Stimpusoni Gould.
\qquad

$$
\begin{aligned}
& C 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { OC } 1000 \\
& -\sec 0 \\
& 00-\theta-0
\end{aligned}
$$

30. Pecten rymiw patelliformis.

Geology of Tokio.
PLYII.

31

30. Pecten pilica Limnej
$31.431 \cong$ Pecten Laqueatus Sowerby. $\quad 32432 \cong$ Anomia patelliform is.
$\stackrel{-}{\circ}$

PL.VIII.

MEMOIRSof the
SCIENCE DEPARTMENT, TOKIO DAIGAKU.
(University of Tokio.)No. 5.
MEASUREMENTS
OF THE
FORCE OF GRAVITY${ }^{\mathrm{sr}}$
TOKIO AND ON THE SUMMITof
FLJINOMAMA.
BY
I'. C. MENDENHALI, Ph. D.
Punzessor os Exherimextay, Puysies in Tokio Dabakt.
IU'B:I: HED BY TOKIO D.DGAKL. TOKIO: ".)

MEMOIRS

OF THE
心(IENCE DEPARTMENT,TOKIO DAIGAKU.(University of Tokio.) No. 5.

MEASUREMENTS

OF THE

FORCE OF GRAVITY

at
TOKIO AND ON THE SUMMIT
of

FU.JINOYAMA.

 byT. C. mendenhall, Ph. D.
Piburessor of Expermentah, Physics in Tokio Dafaku.

PVBLASIED BY TOKIO DAGGAKU. TOKIO :

PREFACE.

Concerning the following brief memoir, a few things onght to be said which belone more appropriately in a preface than elsewhere.

I have alrealy expressed my indehtedness to various persons who have contributed to a greater or less extent to the success of the experimental investigation herein describerl; lut I wish to make special mention in this place of the invaluable assistance rendered by Messrs. Tamakadate and Truaka, to whom was assigned the task of making the pendulum vibrations hoth in Tokio and on the summit of Fujinoyama. These experiments and the reduction of the results involved a firr greater amount of labour than is at first apparent. The determination of the actual periods of vibration from the chronowroph shects was made, in all cases, by Messrs Tanakadate and Thata althongh, in many instances, I have repeated the measurements, only, however, to verify the results which they hal obtained. The faithfulness and skill with which they performed every assigned duty justitied great confidence in their results

1 im indelited to all of the nembers of the party npon the stmmit of the mountain, for aid remered in very many ways and I onght particularly to mention Mr. Yamatia who took upon himself the cave amt responsithility of Trasporting the instruments from the University to the summit of the mountain and back again.

I must also express my thanks to the Directors of the Cuiversity, Mr. Kato and Mr. Hattori, who kindly granted the use of these instroments and whe aided the undertaking in every way in their power.

A considerable portion of the finst part of this memoir, on the Tokio determination, was puldished, in substance, in the American Jommal of Scienee, for August 1880, and a portion of the secoul part, on the Fujinoyama determination, in the same joumal for Felinhary 1881.

Finally, it seems only justice in call attention to the fact that the printing of the memoir has loeen done entirely by native workmen, who are at once minfaniliar with the language in which it is written and umanainted with the methods of "making up" which are so well understonel in exery western printing office. This fiut, torrether with the diflementy and in some cases, impossibility of ohtaining perfectly snitable fype for the representation of mathematical fommat, will le sumiciont excuse for any shotembing in the mechanical execution of the pampibled.
'T. ('. М.
Tokin-Japan. Janmary 1891.

I

THE ACCELERATION

DUE TO

THE FORCE OF GRAVITY

AT

TOKIO-JAPAN.

Experiments for determining the value of the acceleration due to the force of gravity at Tokio were berou in the I'hysical Laboratory of the Imperial C'niversity in the month of February 1880 and were continned at intervals during the succeeding two or three months. The task of making the peudulum vilnations and the necessary measurements was assigned to Messrs. Tanakardate and Tanaka, two special students in the Department of Physics. Much time was given to preliminary experiments and time determinations in orter to familiarize these students with the use of the apparatus and also to develop, the most desirable method of reaching accurate results

A considerable series of experiments was made in the beginning with it Kater's reversible pendulum belonging to the physical laboratory, the results of which were only useful as furnishing an approximate value. Indeed the investigation by this methol was not carried to any derme of accuracy on account of the impossibility of obtaining an accurate measure of the length of the peodulum, as the University possessed no standarl measure with which it conld be comparesl, as well as ou account of the difficulty of determininer certain corrections for the influence of the atmosphere. It was resolvel, however, to attempt a more precise deternination by means of a so-calleal simple pendulum which han been ordered from Salleron in Paris and which arrived in time for the completion of the experiments in May.

THE PENDULUM.

The pendulum was of the well known furm useal by Borla and many othera and generally known as "Morda's pendulum". It consists of a spherical Lall of metal attached by a thin wire in a small and short cylinder ia which the knifeedge is fixed at right-angles to its axis. On a portion of this cylinder projecting above the knifecedge were the aljusting nerews by means of which this purt of the apparatus, exclusive of the wire and ball, conld be made to vibrate in a period closely upproximating to that of the pendulum as a whole.

It was found by trial that this adjustment might be considenably disturbod without sensibly altering the perient of the pendulun. but it was, neverthelems, carefully attended to in all of the experiments. The advantage of making it in, of course, that it greatly simplifies the calculation of the reduced length of the pendulum.

location and suspension of the pendulum.

The peudulum was swung in one of the small rooms of the physical laboratory which is so protectal from shiden changes of temperuture and from currents of air as to be expecially suitable for the purguse. In this rom is a large stone pier about 60 cm . square insection, bnilt upma molid fondation and extending to a height of alout 2 metres. A heavy har of iron about 70 cm . in length and having a cross-section of about 11 cm . by 2.5 cm . Was placeal on the top of this pier and was secureal in its phace hy means of heavy blocks of stone which wero placeal "puu it. The end of the irmu har projected just far enough to allow a resting place for the phame upun, which the prendulum was swong. The location of the pendulum was approximately as follows:-

$$
\text { Latitudo-N. }-35^{\circ}-41^{\prime}
$$

Longitude-E.-139 - 46^{\prime}
Height above sea level...o.... 5 metres.
According to the origimal plan of this pendulum the bill is to be athehed to the wire by menns of a small cup the inside of which is ground to a ratine equal to that of the ball. The cup is first fastened to the wire through a perfurated screw head, and then a little tallow being sprend over the inside of the cup the ball adleres to it very readily. This is a very uneful deviax in that it makes it ensy to attach the ball in various positions in onier that any lack of uniformity in ita structure may be retected. Having served this purpose, however, the cup was rejected, thus simplifying the calculations and lemening the probability of error in the linear measurements. The boll was fimally fistened to the suspending wire hy means of a small drop of solder which wan furest to
the end of the wire and afterwards brought in contact with the lall while the latter was heatel. A number of different suspending wires were tried ant that at last made use of was of platimum . 35 mm . in diameter which was of sufficient. strength to insure, after a few day's suspension, a pendulum of invariable length during the time of the experiment, sulject, of course, to slight changes due to variation in temperature and the low co-efficient of expasion of phatinum reduces these clanges to a minimum. The knife-edge of the pendulum, which was of steel, rested on a pair of agate phates which were firmly secmed in a plate of brass and which were accurately leveled by means of four leveling screws, alter which the plate was firmly clamped to the iron bar upon which it rested so as to prevent lateral motion and reuder the support as rigid as possible.

The measuring apparatus was also by Salleron and was of the form used by Porda. The rod was of iron and its length was real by means of a vernier and mieroscope to hundredths of a millimetre. There was also a metallie thermometer attached for giving the temperature of the bar.

A strong phat-form was firmly secured to the stone pice immediately below the lower end of the pendulum and upon this was placed the small circular plane table which, in the process of making a measurement, was elevated ly means of a screw until it was tangent to the lower surface of the pendulum ball. When this was done the pendulum was removed from its place and the measuring rou substituted. The deflection of the pendulum support, due to the excess of the weight of the measuring rod over that of the pendulum itself was measured and found to be .02 mm . and this correction was applied to the indicated lougth, as was, also, the proper correction for temperature. For the purpose of verifying the length of the rod we were enathled, throngh the kindness of the officials of the Imperial Treasury, to compare it with a stamlard metre by Ihelenil in the: possession of that Department. The result of this comparison was that a conrection of .04 mm . was made upon the length of the measuring rod at 0°.-Very recently another standard has been reccived by the same Department, which is certified to be a copy of the standard at the Conservatoire des Arts et Metiers and the necessary corrections for it have been furnished. The provions standard has been carefully compared with this and the agreement is so close as not to domand any further correction for the pembulum metre. In all the olservations the temperature was recorded as real from at themometer hanging very near to the mithle puint of the pendulum and the metallic thermometer connected with the measuring rod was also read and weorded at wach measurement of length.

As the apparatus was arranged it was very cany to make a measurement of the length of the pemblalon and this was done at very short intervals, always both before and after a revies of vilorations. It was fombl, however, that when the temperature was constant the length remainal sensilly the same.

The are of vibrition was measured hy means of a scale phaced immediately lwhind the susponding wire and a telesenpe plited about tive metres awny. The mean arcs of viluation varied in the different experiments from 40^{\prime} to 70^{\prime}.

heterminatiun of the: time uf a sinide: vhbiation.

The method of determining the jurion of a pewdulum which has been most genenally used is known as the "methat of coincilences." A merious objection to this methorl is that as the exact moment of coincillence cannot be accurately ascertained the total time of swinging must he loug in order to secure a high degree of nccunacy in the resulting periox of a single vibration. If a chronograph and break-circuit clock or chronometer be made use of, there soems to be no doubt that better results than by the method of onincidences may be obtaineal in seveml ways. Assistant C. S. l'eirce of the U. S. Cuast Survey in his recent elaborate series of pendulum experiments at initial stations in Europe and America, has made use of a Clironograph by telegraphing the transits of a print on the pendulum over the wires of a telescope. Making a pendulum record or count its own vibrations electrically has also been accomplished by various devices. Many of these are ohjectionable on account of the friction exerted against the motion of the pendulum.

In the plan adopted in these experiments it is believed that this oljection to an automatic record was entirely removed. It involves the use of a chronograph, a break-circuit clock or chronometer, and an arrangemeut by means of which the experimental peadulum could be made to break the circuit at any desired vibration. In the beginning the whole number of seconds required for a given number of vibrations may be determined by letting it break the circuit at every vilration, or, better, at every sixtieth or hundredth vibration, which can easily be accomplished by counting and maising the break-circuit apparatus to its proper position underneath the pendulum at the right moment. In our arrangement this apparatus consisted of a very small and light "trip-hammer" made of fine wire, which was so adjusted that by pressing upon a button it was brought up to such a point that it would be just "thrown" by the pendulum in its passage through the lowest point of its arc. Although the resistance offered to the pendulum can be made extremely small, yet it is so great as to interfere quite perceptibly with its motion if the pendulum is obliged to operate the Ireak-circuit at each beat, as experiment has proved. But it may be rejected after the first two or three trials, not only on account of the resistance which it introduces but also because it is not necessary to continue its use. The whole number of seconds required for a given number of vibrations being known, it only remains to determine the fractional part of a second as accurately as possible. It is therefore only necessary to cause the prendulum to break the circuit twice, once at the beginning of the period and nnce again at the end. By this means all objection to the process on account of resistance is removed. Indeed it is in the pmssibility of determining these fractional parts of a mecond at the beginning and at the end, that the merit of this method consists. The clironograph
used in these determination is by Alvan Clark and Sons, and for uniformity of speed it is everything that could be desired. The line made by the pen is sharp and clear. The length of one second on the shcet is about 8 mm ., so that it can be easily measured with a microscope of low power with a micrometer eye piece. It will casily be seen that even if the total time during which the pendulum is made to swing be not great, its value can be ascertained within a very small fraction of itself. By this process, therefore, it becomes possible to make the duration of the experiment extremely short compared with that required in the method of coincidences and yet to reach the same degree of accuracy. As a proof of this it may be statel that in mumerous instances in which the duration of the experiment was only twenty minutes, three independent measurements of the total time, made from the chronogroph sheet, did not differ among themselves by more than one sixty-thousadth part of the whole. The advantages in thus reducing the whole duration of the experiment from hours to minutes are many. All of the conditions may be maintained nearly constant during the whole time of the swing, and this is especially important in regard to temperature and are of vibration, the latter being also made much smaller to begin with than would otherwise be possible. Again, the method eliminates "judgment" to a great extent as the pendulum marks for itself the beginning and the end of the period of time. Another important gain is that the use of the clock may be dispensed with, and, without loss of accuracy, the break-circuit chronometer substituted, thus rendering the whole apparatus for such a determination easily portable.
lime was obtained from a break-circuit sideral chronometer Negus 1629. The chronometer remained in the transit room of the astronomical observatory which is nearly two miles distant from the physical laboratory but a telegraph line connects the two points so that the chronometer could at any moment be made to record its beats upon the chronograph in the laboratory. The rate of the chronometer was determined by star transits observed for several nights in succession before and after the vibration experiments. In the results given the periols of vibration are stated in mean solar time, corrected for chronometer rate and also for arc of vibration.

Besites these corrections applied to the period, the final results must he corrected for the effect of the atmosphere; in other words, they must be reduced to a vacumm. Aside from simply lessening the actual effect of gravity upon the pendulum, a portion of air is carried with the vibrating body in its motion so that it may be said that its real density is less while in motion than while at rest. This fact seems first to have been noticed by Du Buat, who made some investigations concerning it in the latter part of the last centmry, lint it was not reconnizen liy more recont onservers mutil its redisensery by Busel. It has been made the sulject of extensive experiment hy Paily and has been discussed analytically by sevenal mathematicians. The fuantity of air carried by the pendulum is found not to drpend on the material of which it is compused or on its density
hut sidely upun its form. In a mathemutical malysis by fireen the general equation for the effeet upmen ellipmoinls is developeal. From this it is shown that in the case of a sphere the ondinary correction for the nir should be inerewed by one half. 'Ihis finctor lus been insed incorrecting the results of these exproiinents.

Mr. P'eiree of the U.S. Conast Survey han mently diacused the correction due to the flexnre of the suppurt of the pendulam. Althongh attention wan not given to this at the time of making these experiments the produhm support
 eyeprece which was monnterl uxoll the stome pior upon which the support was seremed. No thexure was disenverel which would sensildy alter the reantes obtainer.

It is barilly messisary to refer to the well kunw formulat hy mones of which the length of the equivalent simple gembluturn watainerl. The fiollowe ing are: the dimentions and massers of the varions parta of the pemitulum.

I'otul length of the penduln	18 mm.
listance from. knife-elge to wire.............	46.50
Iongth of wire.	931.62
Diameter of wire	. 3.5
landins of trall	18.03
Weight of lxall.	198.951 gran .
" n wire	1.913
Dennity of ball..	8.0

From these quantities the length of the equivalent simple produlum is finment to be:-

$$
l=994.59 \mathrm{~min} .
$$

Pelow will lex fomed the results of eleven time determinations male on two successive days in May. On both deys during the time of vibration, all of the conditions were gensibly canstant ame the same, nod in suldition io this the nights were lavorable for the determaination of the chromometer mate. Sach of the results is incel "nmin an experiment of twenty minutes' duration, the time of viluation in cach case buitug the mean of two or theres imbeproment momerne

Time of a single vibration.

$$
\begin{aligned}
& \text { May 26. }-\left(\begin{array}{l}
1.00103 \\
1.00100 \\
1.00103 \\
1.00104 \\
1.00103
\end{array}\right. \\
& \text { May 27. }-\left(\begin{array}{l}
1.00101 \\
1.00102 \\
1.00101 \\
1.00103 \\
1.00101 \\
1.00100
\end{array}\right.
\end{aligned}
$$

Cumbining these results with the value of l given above aud making the necessary air correction the following corresponding values of " g " are obtained;

On comparing this result with those whtancel by the use of the gencrally arechier formulas for the calculation of the vathe of " g " for any latitude, it will be fomen to be alightly greater than any of them.

The alsolute determination of the foree of gravity nt any point to any great degree of precision is a mather involving many difticalties and thin is especially true under circumstances in which the ficilities for doing the work are certainly not of the best. Aside from the experimental difficulties, there are numerous sources of possible, imiced probable, error which can only be invertigated and properly disposed of under exceptionally favomble conditions. Undonbterlly, therefore, more trustworthy results are to be expecterl from comparative determinations by messuring the perintic time of the same pendulum vibrated at different stations, the corrections to be applied having been carefully investignted and its period determined at some fundamental station. In accorlance with this view it is proposed in the immediate future to undertake a careful determination of the periedic time of such an "invariable pendulum" and afterwards to send the same to be vibrated at some point in America or Europe.

PREVIOUS DETERMINATIONQ.

Up to about the time of the conclusion of these experiments I was not aware that any previous attempt had boen male to determine the value of the force of gravity at this piat. Ljon the arrival of the Ihilosophical Magazine for April 1880, however, it was found to contain a paper liy Messrs Ayrton and P'erry ou a "Determination of the Acculeration of Gravity for Tokio, J^jan"which was based on experiments made by the Authors at the Conllege of Einginecring in this city in 1878. An exnmination of this paper will show that there are serious objections to the method pursual by Messres. Ayrton and l'erry besides numerous and fatal errors committed in the relluction of their results.

The pendulum used by Messrs. Ayrton and Perry was nearly ten meters in length. There are serious objostions to tha uss of a long padulum. Borda, in his celebrated determinations made at Paris, used a penilulum about fuur meters long, but one which approximates in length to a seconds pendulum has leen almost universally made use of since. The great oljection to the use of a long pendulum is the difficulty of measuring it in place. Messrs. Ayrton and l'erry measured their pendulum by placing it in a borizontal position, and strotching it by allowing the end near the ball to hang over a whoel with very little friction. The length was obtained by comparisou with a bar one meter long, and as this bar must ba placed ten tim3s to cover tho whole length, it is phain that any great degree of accuracy must have been difficult to obtain, and this is especially true when the measurement of that portion of the wire which hangs over the wheel is considered. Their 26 th experiment was male on the 25th of January, and the 5 H on the 21st of February, from which we may infer
that the entire time of suspension was at least two months. As only one measurement is spoken of, it is probable that it was measured at the conclusion of the series of experiments, and it seems hardly likely that its length would have remained constant during that length of time. In getting the time of vibration the first method used was what might be termed the methol of coincidences by electricity, and which. so far as I know, was first described by Professor Pickering, in his excellent "Physical Manipulations." This was afterward rejected, however, and the vibrations were countel by means of a Morse instrument. The authors speak of measuring the fruction of a vibration, but evidently this could not be dune with accuracy by the use of such an arrangernent, and there is also the oljection that the pendulun was obliged to do the work of breaking the circuit at every vibration. Messrs. Ayrton and Perry give the time of vibration of their pendulum for only three experiments, and it is a little difficult to understand exactly how these were obtained. The time, taken from the chronometer, is given and also the number of vibrations. The only way to make these consistant with each other is to assume an extraordinary and rapidly fluctuating clock rate and even then it is impossible to deduce the periodic time which they use in their calculations which is considerably greater than that of either of the three experiments given. In applying the air correction they have failed to take account the air dragged by the pendulum in its motion although in a subsequent paper in the same journal they have applied this correction. They have also omitted to correct for the are of vibration although this was considerable in their experiments. In consideration of these facts it does not seem that the result which they obtained is entitled to great weight, notwithstanding its clise agreement with the calculated ralue for this latitude when the . proper correctious are introduced.

II

IETERMISITIO)

n):

THE FORCE OF GRAIITY
oN TII:

SMMHT OF R(TINO) AM.

The expedition to the summit of Fojizoyama fir the purpare of makimge
 nouth of Augnst 1880. The writer was fortunate in weeluring the interent and
 Cniversity, who accompanict the paty to the smanat of the sambatain amb renilered great assistance thofonghont baking ane ial charge of the determination of the rate of the chronometer. In mdition to l'rofesaur Chughin mal thac writer, the party consisted of linar speciabl rembuts in physion in the Lainemil!. Messrs. Tanakalate, Tanakia Fiojisawa mal Kiunamoter and Js. Vianala, ascistant in the Department of Plysies. Mr. Nohatani of the Metermbigleal Olservatory was with the party a pertion of the time as were alsio, Meran Wial and Natamuat from the Surveyine lhenartmeut.
 penduham vibrations as they hasl, in making the Tokio determimation, wquirevt a knowledge of all of the details of the work. Mr. Fujinawa determined the

 meteorological olservations.

Mr. Naknmura also carrici on a series of meteorological olsersation dhan" his entire stay upon the sumnit which were necompaied by simnlan, in:
nbservations at the foot of the momatain by Mr. Warla. These observations, together with all of the meteorological work done, will be found in the second report from the Meteorological Observatory of the University,-Memoirs of the Science Department of the L'niversity of Tokio. No. 7.-" Meteorology of Tokio for the Year 1880."

The following is the list of the principal instruments and applimees carrical to the summit of the mountain.

> Two pendulums.
> Supports for same with break-circuit arrangement \&e. Chronograph.
> Break-circuit chronometer (Negus. 1629).
> Small Alt-azimuth instrument.
> Mercurill barometer.
> Maximum and Ninimum Thermometers.
> Hygrometer.
> Thermometers.
> Magnets \& Case for swinging.

With batteries and other miscellaneous articles necessary to the sucsess of the unclertaking.

Considerable difficulty was anticipated in getting the apparatus safely to the top of the mountain. The two pandulums were packed together in one box so that injury to either in transportation would hardly be possible. The chronograph was separated into parts and packed in different boses. It was thought best to carry the alt-azimuth in its cass as a whole an l, after some lifficulty, a man was found who undertook to canry it to the summit. Everything reached the top of the mountain in good condition and on the afternoon of August 4th the chronograph was mounted and the pendulum vibrations were commenced. Considerable tronble was experienced in finding a suitable place in which to conduct the experiments. A small tent had basn sent up for the use of the party but it was at once seen that, owing to the high win.ls whish are so frequent upon the summit and which are likely to occur at any time, it would be impossible to carry out the experiments safely in that. There are seveml small stone huts upon the top of the mountain which are useal as temples or as resting places for the pilgrims who visit the momtain annually, during the munths of July and August, in great mombers. Throngh the kinduess of Mr. Kinoshita a priest in charge of some of these small temples we were permittel to tike pnssession of one of them and to mount our instruments within it. It fremi to lee almirably suited to our purposes, its leavy stome walls affording us at onese complete protection from the wind and a firm momenting for the support "ןmen which our pendulums vibrated.

To secure, as far as possible, against any possibility of entire loss of results from accillent two pendulums were carried to the monntain. As it was impossible

18

to procure just what was desimble in the way of pemdulums, it was neceswary to make the best of the material at hand.
.2. To this end a Kater's reversible pendulum by Negretti and Zanima of London was made use of, after remoring one of its kife-edge, its "tail-pieces" and all of the unnecessary movable parts. The heavy brass cylinder was secured at the lower end in such a way that it could hardig, by any pussibility, be moved from its position and a small adjusting slide-pieco war secured in a like manner upon the short piece of the har which extended abve tho knifceedge. The total length of the pendulum was 135 cm .; the bar was 38 mm . wide and 4.2 mm . thick; the that cylinder was 10 cm . in diameter and 19 mm . thick and its centre was approximately 110.5 cm . from the knife-edge.

The woolen penilulum consistel of \ddot{n} thin flat lar of what was thought to be well seasoned wood, liaving the knife-elge which hat been removed from the bmss pemblum inserted at a distance of 19.5 cm . from one end and at the other was attached a heavy briss cyliniler 6.5 cin . long and 5.4 cm . in diameter.

Both of these pendulums had been vibrated in the jhysieal latwomatory of the TViversity before carrying them to the inointain and both were vibratel in the same place immediately after the retirn of the expelition. The suode of conducting the experiment wis similar to that alvaly described as in use in the Tokio determination. The chrongraph sheets were carefully lettered and numbered and the reduction of the work was made after the return of the party to. Tokio. The weather during the stay upon the mountain was everything that could le desired, the nights heing clear and the winds mulemes. The work was finished by the afternoon of Angust bith and it was extremely fortunate that this was the case as on the following morning there begno a storm of rain and wind which would have rendered its continuance estremely difticnlt.

In the results given below only those obtained from the lomss pendulum are included.

The wouden pendulum is not rejected ous nccount of any particular discrepancy between its work and that of the brass pendulum, but because we have no means of making any correction fur the effect of moisture umon it. From experiments since its return from the mountain it is clear that its mate is affected by the hnmidity of the air in which it swingso as, indeed, was anticipated. The results which it gives differ but slightly from those of the brass pendulum but owing to this uncertainty they are not made use of. The pendulum served a useful purpose, however, as a clieck upon the other.

A great many groups of vibrations were recorded both on the mountain and at Tokio before and after the mountain work, the total time of each series being in geucral thirty minutes. Without quoting the individual results it will be sufficient to say that they agree among themselves slightly better than the series of viluation periols given in the paper on the 'Tokio determination. The vibnations at Tokio were all made under nearly the same conditions and, for couvenience, they were reduced to the common tempernture of $23 \cdot 5$, at which
most of them were made, and barometer $3^{\prime \prime}$ incles. The time of ribration of the pendulum under these conditions, the mean of all of the results, was.-

$$
t_{1}=.999934 \text { seconds. }
$$

On the sumnit of the mountain. during the time of making the experiment. the bameter was tolerably constant at almut 19.5 inches and the temperatme 5.5 and to these conditions the results were reluced. after correcting for are and chronometer rate.

Finally the mean of all is reducel to the Tokio conditions as to temperature and pressure.

CORRECTIONS.

The conrections for arc of ribration hare been made by means of well known formulæ. The mean arc of ribration in both the Tokin and Fujinovama experimente was abont one derree anl a half In making the correction fow temuature the co-eficient of expansion lias been assmmed to be . 0000187 as no means were at hand for determining it precisely. This is a commonly accepted co-efficient for brass and a comparison of the vibration periols of the pendulum under different temperatures indlicates that it can not be far from correct.

The correction for difference of baronetric pressure is the most difficult to determine. Were it possible to vibrate the peadulum at the same place under pressures widely differing it might be determined experimentally. Lacking this, I was fortuately able to refer to a recent elaborate and exhaustive discussion of the whole sulpect. from an experimental $a=$ well as a themetical standpuint. by C. S. Peirce Esq. of the Cnited States Cuast Surver In this valuable memoir Mr. Peirce gives a graphical representation of the periods of vibration of his pendulum, under varions pressures, from 30 inches down to practically a vacumm. By interpolation the period for any pressure can be very clusely ascertaiued. as also the correction in going frum one pressure to another. There are important lifferences betreen the pendulum used by Mr. Peirce and that in use here,
 fact that in our pendulum ouly one cylincler was attached. Nevertheless a fisir approximation to the proper correction mar be taken from his curre showing the results with "heary end down" and observing that the differences in the two pendulums are such as to make the correction for our penilulum consilerably less than for that of the Coast Survey. In this way and by considering these differences the correction uasl in the reluction was reacheal. Aiter it had been established I was fortunate in finting in this country a volume of the Philnso-

[^0]phical Transactions of the Royal Society for 1892 containing Mr. Reily'ผ memoir in which a series of elabomte experiments to determine this correction are des criber. Among the many pendulums which he used, was muc, "No 2:2" which. in form and dimensions, rasembles that nsed here much more chosely and the results of his experiments with it confinn the iscunwy of the nssumptions make. It will be rememberod that, as all results aro reduced to the Tokin conditions, the correction is to be made for only about one third of an atmosphere so that, although important, it is less so than if the reluction had been to a racum. It is believed, therefore, that the correction applied is not far wrong.

The corrocted time, therefore, is obtained as follows:-
time on the summit of Fujiyama, temperature 8.5-haromether 19.5 inches, -

$$
\begin{aligned}
t & =1.000146 \\
\text { temperature correction } & =.000140 \\
\text { air correction } & =.000050
\end{aligned}
$$

corrected time.

$$
t_{2}=1.00033 i
$$

Now letting t_{1}, t_{2} and g_{1}, g_{2} represent the time of vibration and force of gravity at 'Tokio and on the summit of Fnjinoyama refecetively. we have,

$$
g_{2}=\frac{g_{1} t_{1}^{2}}{t_{2}^{2}}
$$

Assuming the force of gravity at Tukio to lee, at previonsly deturmineml.-

$$
g_{1}=9.7984
$$

it follows that on the summit of Finjinoyama

$$
y_{3}=9.7886
$$

An interesting and valuable application of this result, were it entirely trustworthy and were the other necessary facts in our possession, would be the determination of the density of the earth. While many of the circumstances are extromely favomble to this end, many of the data are, unfortunately, somewhat uncertain. It was originally intended to undertake at the same time a complete trigonometrical survey of the mountain in order to obtain the necessary data concerning its rolume and form as accurately as possible. This, however, we were obliged to defer but it is hoped that it may be made, at some future time. The following is offered as, perhaps, the most approximate solution of the problem possible under the circumstances.

Fujinoyama is an extinct volcano whose height is known to be 2.34 miles, very closely. It is renowned for its almost perfect symmetry of form and for the fact that it rises solitary and alone out of a plain of considerable extent. Thus there is not much to consider except the attraction of the mountain itself. To determine this, is, of course, a matter of considerable difficulty but it is believed that a result, not far out of the way, is reached by the following assumptions.

Withont any great error the mountain may be assumed to be a cone. The angle of this cone las been obtained by making careful measurements upon a large number of photographs of the mountain, taken from many different points of riew. The mean of many measurements, which do not differ greatly among themselves. gives for this angle:-

$$
\mathrm{A}=138^{\circ}-
$$

Another point of vital importance is the mean density of the mountain. Tlle rock, ais far as can be discovered, is quite uniform in its compesiticn throughout. It is a part of Japanese tradition, for it can hardly be called history, that the mountain was proluced in a single night in the year B. C. 2816. Many geologists are of opinion that it is mainly the result of a single eruption. A number of specimens from the surface have been examined and it is found that when the air is retained in the pores the density is about 1.75 , but when it is ground into a powder and freed from air it is 2.5 .

These facts were communiented to five geologists, at present emplojel in Japan, Messrs. Milne, Lyman, Brauns, Nauman and Netto, most of whom hat considerahle knowledge of the momentain from fersonal examination. They were reybested to give an opinion as to what was its most probalile mean density. ' Ilh ge opinions, which were based on varions suppositions concerning the internal atructure of the mountain, were kindly furnished and I am greatly indebted to these gentlemen for the interest which they exhibited in the problem submitted.

The mean of these results gave for the density of the mountain;-

$$
d=2.12
$$

which is nesumed to be correct in computing the result and it aleo happens to le very nearly the mean of the two densities given above.

The time of a single vibration of the pendulum at the level of the sea at Fujinoyama was not deterninat experimentally but it may be deduced from the Tokio result with sufficient accumcy by the application of the ordinary formula.

The difference of latitude between 'Tokio and Fujinoyama is abont 19' and from this we oltain for the period at the sea level at the foot of the mountain,

$$
t_{3}=.999847
$$

From this it is easy to calculate what the force of gravity would be at the height of the summit, if the mountain did not exist. It is,-

$$
g_{3}=9.7865
$$

and

$$
\frac{g_{3}}{g_{3}}=1.00021
$$

that is,-
Attraction of Monntain $=.00021$ Attraction of Earth.
The attraction exerted by a cone on a particle at its vertex is,-

$$
4-d h \sin ^{2} \frac{a}{2}
$$

in which d represents the density of the cone, h its height and a its semi-vertical angle.

Substituting in this formula the values of the quantities given abore there results for the attraction of the mountain:-

$$
A_{m}=20.072
$$

The volume of the earth is very approximately

$$
2594 \times 10^{4} \text { cubic miles }
$$

and if its density be represented by D , its attraction will be found to be;-

$$
A_{0}=16556 D
$$

Combining this with the equation given nbove we find,-

$$
D=8.77
$$

This result is somewhat greater than the generally accepted density, but considering the great uncertainty of some of the data, its close a arement must be regarded as remarkible.

It is believed that the density of the mountain is the most uncertivin of all the factors involved in the calculation, and it will he of intarest to reverse the problem and, assuming the well established density of 5.67 , accorliug to Baily, determine the mean density of the mountain by combining this with the results of the pendulum experiments. When this is done the result is, -

$$
d=2.03
$$

Now when the infuence of the pressure to which much of the rock is subjected is consideren, it seems highly probable that, if the in ws of the mountain were continuous throughout, its mein lensity woulil be much higher than 2.08 and that it might, indeed, be higher than 2.5. Even after allowing for considerable errors in the pen lulum experiments an l in the masmement of the momntain, the results seem to indicate that the momntain is deficient in attraction and they may thus serve a useful pmopose in throwing some light on the possible internal structure of the volc.mo.

[^1]
MEasurement of the
 FORCE OF GRAVITY aT

 SAPPORO

 SAPPORO
 (YESSO).
 BEING
 AN APPENDIX
 T0
 MEMOIR No. 5
 OF THE

 SCIENCE DEPARTMENT,

 SCIENCE DEPARTMENT, TÔKIÔ DAIGAKU TÔKIÔ DAIGAKU

 (UNIVERSITY OF TÔKIÔ)

 (UNIVERSITY OF TÔKIÔ)}

BI
A. TANAKADATE, R. FUJISAWA, AND S. TANAKA,

Students of Physucs.

PUBLALHED BY TOKIO DAIGAKU
TOKIO
2.542 (1882)
MEASUREMENT
OF THE

FORCE OF GRAVITY AT

SAPPORO

(yESSO), BEING
AN APPENDIX
'ro
MEMOIR No. 5
OF THE

SCIENCE DEPARTMENT, TOKIO DAIGAKU
 (UNIVERSITY OF TOKIO)

13

A. TANAK.DDATE, R. FUTHAWA, AND S. TANAKA, Stubents of Physies.

PIBLISHED BY TOKIO DAIGAKU

$$
\begin{aligned}
& \text { fatere } \\
& \text { if } 84-1 \text { I } \\
& x=-2-2+2
\end{aligned}
$$

REPORT

A determination

OF

THE FORCEOFGRAYITY
 AT
 SAPPORO.

An expedition to Sapporo for the purpose of determining the force of gravity there was undertaken by us with the permission of the University authorities during the month of August 1881. We here express our heartiest thanks to IV. S. Chaplin Esq., Professor of Civil Engineering in the University, who accompanied us for the purpose of taking charge of the rating of the chronometer, and to whom we are indehted for much invaluable advice. Our thanks are also due to H. MI. Paul Esq., Professor of Astronomy, who kindly furnished us with the chronometer rate during our Tokio experiments.

As regards the instrumental appliauces and the method of experiment we have followed the example set by Professor T. C. Mendenhall in his determination of gravity at the sumuit of Fujinoyana. The method consisted esseytially in determining the time of vibration of a so-called invariable pendulum at the two localities, at which the intensities of gravity were to be compared. Two brass peadulums were made hy the Seirensha for the University and were marked A and B respectively. The pendulum A after being vibrated at 'Tokio was taken to America by Prof. Mendenhall to be vibrated there, so as to bring Tokio into direct gravity connection with the initial stations in Eurnpe and America, while the pendulum B together with an old Kater's pendulam were selected for our purpuse.

The penilulum B consisted of a hollow brass cylinder whose outer dinmeter was $2.5 \mathrm{c} . \mathrm{m}$., with a kuife-edge at a distance of $11.0 \mathrm{c} . \mathrm{m}$. from one end and a heavy disc of the same metal weighing 2398 grammes attacheal at the other. Its total length was $121.5 \mathrm{c} . \mathrm{m}$. The Kater's reversible prendulum (by Negrettiand Zambra) was rnade use of after removing one of the knifu-edges and all the unnecessary movable parts. The movable boh, consisting of a heavy brass cylinder was secured at the lower end in such a way as to keep it rigilly in one
 part of the bar which extented almove the lanifoe-eltee for the purpued of making the pendulum have a half-perint if marly mur semal 'The tutal hempth of the
 cylindrical lohb was $11 \mathrm{c} . \mathrm{m}$. in diameter and 1.9 (1) m thick. and ite chatre was approximately $110.5 \mathrm{c} . \mathrm{m}$. from the knife-elge.

Both of these pemblume were vilorated at 'Thkin in the pheseml haturatory of the C'niversity buth lefore nod atter the noservations at Sapmirn The following ilescription applies to the Tokin experiment.

Position and suspension of the produlum. -The prolluitum was mung in one of the small ronms oreupying the sthth wing of the physical lalkeratery. Which is well protected from smblen changes of temperature and from currents of air. In this romm there is a large stone pier about bioc. m. square in horizontal section, built upma a solid fommation and extembing to a height of two metres abwe the ground. A heavy bar of iroll about $\overline{\mathbf{T}}$) (m . in loncth and having a crose section of atumt $11 \mathrm{c} . \mathrm{m}$. hy $2 \underline{2} 5 \mathrm{c}$. m. was phatel on the top uf this pier atul was secured by means of heavy bheck off stone phaced almose it. 'Ther pont of the irom har pre jected just far mongh to allow a resting phaw fire a stout irmplate which was carefnlly levelled and mon which the knite-wlere was made tor res. Thee position of the pendulum was approsimately as follows:-

$$
\begin{aligned}
& \text { Latitule ...35 } 4 \mathfrak{I}^{\prime} \mathrm{N} \\
& \text { Longitude... } 139^{\circ} \text { 4f } f^{\prime} \mathrm{E} \text {. } \\
& \text { Height above sea level } 5 \text { metres. }
\end{aligned}
$$

Determimation of the time of vibmtion.-Time was ubtaned from a break
 transit room of the astronmical nheervatory ant its inats were renceived through a telegraphl line which connects the two places. It is immaterial in the present experiment what unit of time we nse, and it was fimbd convenient to use sidereal time thronghont the experiments. The chromuraph nsed was ly Alvan Clarls and Sons, the same instrument as was used in the Fryimeyama experdition. As to its uniformity of speed and other desirable charmeteristies we have unly to contirm the remarks made by I'rof. Mendenhall in his repmot on the Finjingama expelition. A simple arrangement similar to that used hey Prot. Memdenhall was applied to the pendulum so that it conld lue made th hroak the circuit through the chronugraph magnet at any desired vilimion. The perdalum. after leing cansed tu brak the circuit once, was swome frely during en th to minutes generally, and was then agrain cmened to break the circuit. 'There two breaks, together with seconils marks during the whole interval, were recordeal on the chronograph. The whale number of esconds remured for a given number of vilusations twing kmown from preliminary experiments I which had slawn that the time of a single vibration of twoth pendulums was nearly one secromb, it only remaneal to detemine fwo fractional garts of a serond at the legiming and end
of the interval. The measurement of these, reluced by the chronograph to a linear measurement, was made with a microscope provided with a micrometer eye-piece.

Having completed our experiments at Tokio, we started for Sapporo early in the month of Angust. All the instruments hitherto used, including the two pendulums, the chronograph, the break circuit chronometer, and a portable transit instrument, were carried with us. The methol of experiment having been the same as at Tokio, it is only necessary to specify the position of the observing station at Sapporo. Through the kindness of Governor Dzusho we were allowed the use of a small transit room belonging to the Geographical Bureau of the Colonization Department. There were two stone pillars in the room, on one of which there was already set up a small transit instrument. Upon the other two additional stone blocks were laid, from which the pendulums were swing in the manuer already described. The position of the pendulum was approximately as fullows:-

Everything went on smoothly, the nights being clear for transit observations. Having finished our experiments in the course of a week we imme diately left Sapporo. On our return to Tokio the same series of observations were repeated.

REDUCTIONS.

The numerical data of the experiments are given in full in the accompanying tables. The correction for the reduction to infinitely small arce has been calculated from the well known formula which, with the usial notation, may be written

$$
t \frac{1}{4} \sin ^{2} \frac{A}{2}
$$

A millimeter suale was placed under the pendulum and the extent to which the lower end of the pendulum swing was real on this scale at the beginning and at the end of each experiment. The mean of these two readings in $\mathrm{m} . \mathrm{m}$. is given in the 7 th column under the heading " Mean Are." The semi-angle of vibration has hern computed from this colnmon combined with the length of the pendulum below the axis of rotation. The mean total arc of vibration in both the Tokio and Sapporo experiments was about one degree and a half.

The next correction is that depmending on the temperature of the pendulum. The discordane in the coefricients of expansion given by different authorities as well its the difficulty of exatly identifyine the quality of the metal on which they experimented show that it wond have heen desirable to determine the

 sufficiently menrate for our present pulp wis. A thermemeter was hang mar the
 ment. The emean of the two reading is given in the !th coltume moler the

 temp-matures. The correction is

$$
\frac{4}{2}(T-2,1
$$

 the loths column.

 duriner a whole day the error then internlued will eventhally he. wery -thati

 dulum. and the time of vibation ather the other correction hate lawn appiol.

 when thus sorrected will beromu.
neglecting higher powera of mall quantitien. Now taking the inthity of homs to be 8.47 the emperature of the air $25 \quad 1$. and the larcmeftic pressime 76.0 e.m.
thas heen computed by Poisson to be $\frac{3}{2} \dagger$ in the case of a sphere attacherl to a thin roxl. In the present case the pendulum consisteal of a sery ublate cllipmind attached to a bar as almady descriket, and vibrated in the phane of its honger nxis. so that wo may sately nssume c to have lusen something not far frum the ubwe. Further, since the barometric rembinge were sensibly the satme during lueth the

[^2]Tokio and Sapporo experiments, the error arising from this source will be approximately eliminatel in the mean of different observations.

We regret to say that an accident occurred to the pendulum B in the course of tramsurtation from Tokio to Sapporo: a hass cap at its upper end was pressed in a little. For this reason, ont of the two sets of observations at Tokio, only the one made after returning from Sapporo was used in the case of pendulum B. Nevertheless the earlier observation is of some nse, as showing that the change proluced in the time of vibration was very small.

The eleventh column gives the time of a single vibration, that is, a halfperiod, reduced to an infinitely small arc and to the temperature $25^{\circ} \mathrm{C}$. The results stand as follows :-

Prindeltan B

Kater's Pendelecm

Time of single vibration at Tokin (before)....1.000103 sec $\pm .0000031$

The ratio of the acceleration due to gravity at Sapporo to that at Tokio comes out as follows:-
(1) By Pendulum B . $1.000656 \pm .000017$
(2) „Kater's Pendnlum $1.000690 \pm .000024$

As to the way of combining the two results obtained from the two penduluns. a few remarks seem to be necessary. It will be seen from the magnitules of the probahle errors, that result (1) should have abont twice as much weight as (2): lint on acconnt of the accident alrealy rescriberl, we have been able to utilize only one suries of Tokion vihations for (1). Hence it appears proper on this acconut to diminish the weight of (1) amd we have concluded that simply to take the arithmetical mean will be a not inappropriate way of emmbing the two results.

The: meall of the matio is $1.006 \operatorname{cic}_{2}$. The value of g^{*} at Tokio is known to lne $976.8 t \mathrm{c} . \mathrm{m} . \mathrm{p}^{\mathrm{n}} \mathrm{r}$ sece, per siec. Hence we have fimally for the acceleation due to the force of gmaity at Siapporo
$980.510 \mathrm{c} . \mathrm{m}$. per sec. per sec.

[^3]

makiss g in the lititule "f S.ypmern

$$
!=!54 \pi=2 \quad \therefore 1555 \sin ^{2} \phi
$$
"liill uives

I-rain thre lismanls

$$
!=!\text { !u! fi3 : :..n? en }
$$

 a fow miless firm the sura

 which the numbers of vilorations at the respective lonalitions were calembtat, and these are given under the locading " Connputeal". I'rom these it may le seen
 case of the bonin Islands thatn at uny uther station. In uther reapects ats well
 The following are the fisured siven.

[^4]Latitude | Number of vibrations per day of a |
| :--- |
| London seconds pendulum |
| Observed |

Computed
Bunin Island $27^{\circ} 4^{\prime} 12^{\prime \prime} \mathrm{N} \quad 86322.06$
86310.81

 at It:

 for this in the thate of vihation. The rxat alju-thent of the herizontality

Ms:	[1, ${ }^{\text {a }}$,		$\begin{aligned} & V_{1,+11} \\ & A_{14} \end{aligned}$		$\begin{aligned} & \text { I! an } \\ & 7 \end{aligned}$
1	July : 1	1:3:312:3	$4:$	13.310!	$\because 6.9$
	$1: 10$	1:5.0.?	i 7	$1: \% .2$;11

2	July 28	13.2635	$6^{\circ} .4$	13.2610	$27^{3.5}$
$"$,		13.2641	$5^{\circ} .0$	13.2625	$27^{\circ} .5$
"		13.2652	$6^{\circ} .2$	13.2628	$27^{2} .7$
3	July 31	11.6994	$18^{\circ} .0$	11.6809	$30^{\circ} .0$

Observations at Sapporo.

Mag.	Date Dug.	Time (uncurrected)	Mean Arc	Time (corrected)	Mean Tenp.
1	14.1165	$30^{\circ} .0$	14.0562	$27^{\circ} .5$	
2	$"$	14.0603	$10^{\circ} .1$	14.0524	$28^{\circ} .0$
$"$	$"$	14.0150	$7^{\circ} .7$	$14.01] 1$	$27^{\circ} .6$
$"$	$"$	14.0178	$17^{\circ} .0$	13.998 .5	$27^{\circ} .5$
$"$	$"$	14.0150	$17^{\circ} .0$	13.9957	$27^{\circ} .5$
$"$	$"$	14.0095	$13^{\circ} .0$	13.9983	$27^{\circ} .5$
$"$	$"$	12.7706	$25^{\circ} .0$	12.7326	$27^{\circ} .5$

Observattons at Tokio after the Sapporo Excersion.

Mag.	Date	Time (uncorrected)	Mean Arc	Time (corrected)	Mean Temp.
1	Ang. 31	13.3083	$6^{\circ} .5$	13.3056	$28^{\circ} .4$
$"$	$"$	13.3097	$8^{\circ} .3$	13.3053	$30^{\circ} .0$
"	$"$	13.3103	$10^{\circ} .6$	13.3031	$29^{\circ} .8$
2	Alig. 28	13.2600	$9^{\circ} .6$	13.2541	$29^{\circ} .5$
"	29	13.2672	$9^{\circ} .5$	13.2614	$28^{\circ} .5$
3	Sept. 2	12.0440	$10^{\circ} .0$	12.0382	$29^{\circ} .0$

No. 1 and $\mathrm{N}_{\mathrm{O}} .2$. were cylindrical in form and both of the same dimensions:
length $17.5 \mathrm{c} . \mathrm{m} . \quad$ diameter $0.8 \mathrm{c} . \mathrm{m}$.
weight 73.8 grms.
No. 3. was a rectangular rod:
length 12.0 c. m. section 1.0 c. m. by 0.5 c. m. weight 68.8 grms.

A summary of the result is given helow:-

	Bufore Snıporo.	Sapporo	After Sappioro
1.	13.3167	14.0543	13.3046
2.	13.2fi21	14.0009	13.2578
3.	11.6809	12.73:6	12.9382

In the reluction of the results, the mean of the times of vibration before and after Sapporo is taken.

The ratio of the two intensities is mplal to the square of the inverse ratio of the times of vihation, whence we aret for the ratio of H at sapporo to H at Tokio:-

$$
\begin{aligned}
& \text { In No. 1. } \left.\quad\binom{1: 3: 311 i i}{1410.4: 3}^{i}=.4!171\right) . \\
& \text { INS. S. } \quad\binom{1: 1.010(x)}{1+(x \times 151}^{:}=8!1011
\end{aligned}
$$

 consilerable chanare during the excomsion, and therefore the result piven liv it can harilly Ine relied upwit.

 of 1880 . If in the absence of ang later dotermimation we acoptthes the the present value for 'lokio, we nhtain

$$
11: 265
$$

as the value of the Horizontal Inteusity ut Sillymin.

OBSERTATIONS AND REDUCTIONS

OF

PENDULLYM EXPERIMENTS

FOR THE

DETERMINATION OF THE VALUE OF G

AT SAPPORO.

Aug. 1881.

OBSERVATIONS WTTH PENJCTIT゚M B．I＇T

$\begin{aligned} & \text { Date } \\ & 1882 \end{aligned}$		Ih．frerence No．	Nomler of Minules	$\begin{aligned} & \text { Frartion } \\ & \text { of } \\ & \text { Norn! } \end{aligned}$	Time of ainghe athatton （thaterranted） a：1．si．．	Ments are． （tastio）
July	28 d	1	82	． 8 \％	1．4Wリ1＊3	18．：
	＂	2	80	．3：3：	1．／Mmilm．i	16．5
	2 tth	1	42	． 414%	1．14n17：：	12．1
	＂	2	$4{ }^{4}$	．481	1．Muntis	
	25th	1	64	． 51	1．xMrliat	\％6．：
	n	2	42	．403	2.01014185	16.4
	2fth	1	81	．885	1.40×12011	16．4
	＂	2	82	． 411	1．004r213	18．：
	＂	8	22	.271 ．	2.000205	15.4
	＂	4	89	． 440		16.11
	＂	5	88	． 888	1.0101919	21.11
	＂	6	21	． 281		16．8
	＂	7	85	． 872	1.0601%	16.11
	＂	8	28	． 281	1.000167	18.3
	\because	0	86	． 376	1.0001 it	16.6
	27th	1	88	.847	1.000160	16．\％
	＂	2	80.	．205）	$1.00015 i 3$	18.4
	28 lh	1	81	． 818	1.000168	18.5
	＂	2	81	． 804	1.0001188	18.3
	20 h	1	88	． 851	1.000177	18.5
	＂	2	88	． 885	1.000169	17.1
	19	8	81	.419	1.000225	17.7
	81at	1	27	． 301	1．（WH）194；	10.7
August		1	62	乐的	1.0 （1）18．5	17.4
	＂	2	88	． 85	1.0 （1）17m	$1 \times .3$

TOKIO BEFORE THE SAPPORO EACURSION．

$\begin{gathered} \text { Currection } \\ \text { for ar: } \\ \text { (to be subtracted) } \end{gathered}$	$\begin{gathered} \text { Men } \\ \text { Temp. } \\ { }^{\circ} \mathrm{C} \end{gathered}$	Curreation for Temperature	Connction for chromometer rate （to be added）	Time of single vil ration （corrected） Sid．Sec．	Residumes
．nom015	25.6	－．gonous	．000012	1.000174	＋8
． 0 monl 4	25.0	－．0\％ня09	． 000012	1.000174	$+8$
． 000015	25.6	－．00000；	．000012	1.000168	$+2$
． 0100015	25.9	－．опr）00s	．000012	1.000103	－ 3
．（000014	25.0	－．000000	．000012	1.000152	－14
．000015	25.0	－．000000	．000012	1.000159	-7
．600015	25.2	－．00¢6422	．000012	1.000196	$+30$
． 0 nowl	25.4	－．001004	． 000012	1.000203	$+37$
．000018	25.7		．000012	1.000193	$+27$
．（4）1013	26.0	－．00ヶнк19	． 000012	1.000178	＋12
．000020	26.2	－．000011	． 000012	1.000177	＋11
．000014	$2 t .6$	－．000015	． 000012	1.000169	± 3
． 0000013	26.6	－．000015	．000012	1.000161	－ 5
．（1）0012	23.7	－．000016	． 000012	1.000151	－15
． （Нн014	26.8	－．000017	．000012	1.000155	－11
．（1ヶия14	26.0	－．000009	．000012	1.000149	－17
． 1 （10018	26.1	－． 0006010	．000012	1.000150	-10
． 000018	26.1	－． 000010	．000012	1.000153	－13
． 000017	26.5	$-.000014$	．000012	1.000144	－22
．000018	26.1	－．000010	．000012	1.000161	－ 5
． 0 ¢r\％ots	26.5	－－．，¢яю⿺𠃊14	．000012	1.000152	－14
． 0 Hentis	27.0	－．000019	．000012	1．60202	$+36$
． 0 Ornoz	28.0	－．000028	． 100012	1.000150	－16
	27.4	－．（h）（\％）23	． $00 \% \times 12$	1.000158	－8
．（\％нк12－	27.6	－． $1490+24$	． 060012	1.0160149	－17
i			Men＇		

1）ate 1882	Roference No．	Number uf Minuten	Fraction of Second	Time of ningle viloration （uncorrevied） Sid．sec．	
September 12th	1	30	． 811	$1 .($（M） 178	1－． 1
＂	2	30	． 308	1．mm17：1	$1-.1$
14%	1	$31)$	． 3×2	1．4＊＊닌	$1-.11$
＂	2	81	． 888	1.001208	1－．．
＂	8	30	．384	1．（M以E）15：	1－．．1
16 h	1	29	．345	1．（wn）1：3m	$1-.1$
＂	2	82	． 854		$1 \sim \cdot$
＂	8	94	． 419	1．4M以号！	$1 \cdot .1$
17 th	1	80	．4543	1.00012 .58	14.1
$11: 11$	1	$\therefore 1$	二ism		1 F .7

TOKIO AFTER THE SAPPORO EACLRSION．

Correction for arc （to be subtracted）	Mean Temp． ${ }^{\circ} \mathrm{C}$	Correction for Temperature	Correction for chronometer rate （to be added）	Time of single viloration （corrected） Sill．Sec．	Residuals
．000017	23.2	＋．000n）17	．0601012	1.000185	－12
． 001917	23.1	＋．000017	．revilı	1.000183	－－14
．（1）01017	20.7	－．000018	．000：112	1.000191	－C
． 0100017	23.6	－．001世年5	． 0000 H	1．00：18：	－－12
． 0000017	21.4	－．001：313	．000012	1.000198	$+1$
． 0000017	25.1	－．00ヶmer	．000012	1．0001592	－5
．©neuli	2.9 .4	－．00rgot	．000 012	1．00．173	－4
．006018	2.5 .8	－．00000	． 000012	1.000228	＋31
． 000917	26.5	－．001014	． 000013	1.0001235	＋38
．00\％018	28.2	－．000030	．n00012	1.000203	$+6$
			Mean．．	$\begin{aligned} & 1.000197 \\ & \pm .010004+2 \end{aligned}$	

B AT SAPPORO．

	21.3	$\therefore .041112 \%$	．ย10ッに）	． 9909005	$\div 36$
． 110015	21.16	＋．0ヶッロз	．01400．	． 9004891	$\because \because$
． 1 но015	21.4	$+.0010 \% 0$	．	．99458！	＋24
． 1 ¢\％\％17	$\because 2$	＋．+ H以运	．ศөルハッ	．m90085	-19
．0： 11415	－	¢． 610020^{2}	（1）	．99958\％	$\therefore 119$
．）（1）ハ10	23.4	$\pm .0$（6）15	． （\％）ои：	． 19085	$\because \because 4$
． 1 （1） 1 1：	27.3	－． 10 H012 2	．001\％2\％	．904， 93	－－s．
	27.3	－．0010⿺辶2		．940 8×17	$\cdots 17$
（6）．413：	2－．3	－． 11 кию	． 1 ¢оぃご	SMmit	．．．i
．110．17．	\because		．0100124	．［n！Mal	－－s
	27			－リ以リー！	－ 51
	$23 ;$	－．оөки4	．06\％r－24		$\therefore-\%$
	2－3，	－．0өкин：		－6m010	－．$: 3$
．01015	2？： 11	＋．өикเร！	． （1012－		\therefore
	2.1	＋．10\％イロ゙2	－ 110 （1）29	．nemerini	－：
．（1）（\％）	$\underline{1.9}$	＋．1к世以上！	－110\％以ン		－$!$
			M＇лия		

ORAERVATUNS WITH KATERK［PENIUTIX IT

$\begin{aligned} & \text { Hat: } \\ & 1 \times \pi z \end{aligned}$		Rnf．erone： ㄷ．．	Numbior uf Minber	1＇rantion of Si．4．0．1	Tha．，of oingle ubrat：ma sut．No．．．	Mann ntu （IIILI．）
Ju！	3uth	1	19	．1：4	1．4nıl：口	1－．3
	．	2	\because	．1：4	1．1m＠ll！	1：8：
	，	8	$\because \cdot$	． 21.3	1．14nilis	15.3
	＂	4	\because	$\therefore 11$		17.1
	，	5	\because	．1－ti	1．4M01311	141
	，	6	13	．36in	1．10wlis	14.7
	－	7	31	．241	1．1nmı17\％	16.5
	－	8	（ \sim_{1}	．314：		15，9
	31 st	1	$\because 7$	220110	$1.04 \times 118{ }^{\circ}$	17.11
	－，	2	$2!$	．297	1．（unclat	$1 . .1$
	＊	8	（3）	$\therefore 9$	1．（イ以 133	18．
	：	4	$2 \cdot$	$\therefore 21$	1．（Wh）15：	14.5
	－	5	57	． 431	1．4MM．12\％	16.4
		6	31	． 2×1	1.1 （4411：1	14.3

TOKIO BEFORE THE SAPPORO EXCURSION.

$\begin{gathered} \text { Correction } \\ \text { for arc } \\ \text { (ro be subtracted) } \end{gathered}$	Mean Temp. ${ }^{\circ} \mathrm{C}$	Correction for Temperature	Correction for chronometer rate (to be added)	Time of single viluration (corrected) Sid. Sec.	Residuals
.1000015	27.3	-.000022	.000012	1.000145	$+42$
. 0100014	27.8	-.010026	.000012	1.000083	-20
.00\%014	28.3	-.000031	.000012	1.000102	-1
. 61 H013	28.1	-.0000 2 ?	.000012	1.006084	-9
.1000015	28.2	-.000030	.000012	1.000097	-6
. 000016	28.1	-.000029	.000012	1.000110	$+7$
.000012	28.1	-. 000029	.000012	1.000088	-15
. 000012	28.0	-. 000028	.000012	1.00007\%	-26
.0¢\%013	27.9	$-.000027$.000012	1.000108	$+5$
.000014	28.0	-.000028	.000012	1.000101	-2
.0:0014	28.1	-.000029	. 000012	1.000104	$+1$
. 000015	28.2	$-.000030$.000012	1.000114	+11
.000012	28.2	-.000030	.000012	1.000097	- 6
. 000015	28.2	-.000030	.(100012	1.000118	-15
			Mean...	$\begin{array}{r} 1.000103 \\ \pm .0000031 \end{array}$	

		Wefirence Ni．	$\begin{aligned} & \text { Xumber } \\ & \text { uf } \\ & \text { Minumers } \end{aligned}$	$\begin{aligned} & \text { Finution } \\ & \text { of } \\ & \text { Sinr.nd } \end{aligned}$	ulinatien sul．N．．．．	
sept．	－rith	1	$\because 7$	． $2: /$ \％	1．14n117：	14.1
	＂	\because	3：	－-ma	1．thw114：	17.1
	＊	3	：31	－211	1．4ヶ613：3	1i．\％
	＂	1	311	： 211	8．4ッリI！	1－．${ }^{\text {a }}$
	，	\therefore	：31	．20	1．1．14クIIM	17.0
	＂，	$1{ }^{1}$	3：	．10\％4	J．anmetii	10：\％
	＂	7	311	． 11×1	J．thuriti	11i．：
	＂	$*$	34	． 2 ！！	1.0100161	16.7
	2 2nth	1	32	．185	1．00Mmes	116.9
	30 h	1	31	（10．7	1．101）Mris	17．\％
	＂	2	34	．191	1．twnmest；	17.3
Oct．	1 sit	1	31	．121	1.10 rramis	16.3
	＂	\because	： 2	．1ヶ\％	$1 . \operatorname{crsmox} 1$	16，．5）
	th	1	33	．141）	1．ancouio	$16 . N$
	＂	\because	311	．132	1．0イ以上1\％8	10.2
	19th	1	24	.118		$11 i .9$
	，	2	29	．11．33	1．1кหкา！：	1 x .2
	＂	3	31	（120）	1．（WMM）1：	17．4
	＂	$+$	$21 ;$	．080	1．0xMmes	1N． 1
	2011	1	30	（HM）		17.1

TOKIO AFTER THE SAPPORO ENCURSION．

		Correction fur Temperature	$\begin{array}{\|c\|} \text { Curractiun } \\ \text { for chrombueter } \\ \text { rate } \\ \text { (to be added) } \end{array}$	Time of singla （ilyation （corrected） Sid．Sec．	Lesoiduals
．（\％）N15	20.5	＋．000r）23	．00\％019	1.000167	＋63
． 0000018	23.0	$+.000019$	．0ヶRO12	1.000164	$+60$
．0000013	23．4	$+.000015$	．000012	1.000147	$+43$
．кни）15	23.6	$+.046015$	．0ヶmol2	1.000124	$+20$
． （40）O13	21.3	＋．0мию	．000612	1.000113	$+9$
（ （\％）（1）12	24.8	＋．өиюо 2	． 0001012	1．10イヤ48	-56
．000012	24.9	$+.000001$	． 0000012	1． moOO 46	－58
． 0000012	25．2	－．00．1002	．0ヶwor2	1．countia	-5
．000013	21.6	＋．000033	．000012	－ 1.000115	$+11$
． 100011	20.7	$+.000040$	．060012	1．0ヶ0091	－13
	20.9	＋．0141438	． 000612	1．0иноу	－12
． 000012	20.8	＋．010039	．000012	1.000104	± 0
． $10 \cup 12$	20.9	$+.000038$	．000012	1.06 （e） 19	$+15$
．00\％M13	22.8	$+.000021$	． 000013	1.0 ¢\％01	-13
．1006010	23.5	$+.001014$	．0churers	1.001084	－20
．0ucrul3	17.0	＋．（runcois	． 001610	1.000115	＋11
． 0000075	16.8	$+.000077$	． 000010	1．000091	-13
．000014	17.0	$+.000075$	．001010	1.000083	－21
． 000015	17.1	$+.000075$	．001010	1．00ко96	-8
． （Whol3	15.8	$+.000087$	．000012	1.040086	－18
			Maen．．．．		

$\begin{aligned} & 1 / a t e \\ & 1 \times 52 \end{aligned}$		16－fir－r．иe． Nı．	$\begin{aligned} & \text { Xumber } \\ & \text { of } \\ & \text { Hinuto. } \end{aligned}$			II．．1． ： 11 11． 1 ．
Aug．	16ih	1	$\therefore 1$	Aur	．．．－－${ }^{\text {a }}$	1－．：
	．．	\because	31	$\therefore 1$ ？		1：1：－
	．	：	\＃；	．10：	．．．．うい	17．：
	．	1	\％	－豕，	．$\cdot . .8$ ：	1－．2
	．	\therefore	$\therefore 1$	．14；	－．：－：	1－．
	18111	1	$: 1$	는	．$\cdot . .1$－	$1 \cdot .1$
	．．	\because	31	．113	．$\cdot 0.1$	1：．1
	．	\because	： 1	．$\because 1$	．4．0．11	1 F .1
	－	1	$\therefore 1$	$\because:$	．\cdot ．\cdot ．	$11 . .3$
	－	\therefore	： 3	－2：	ㄷ．．｜c：	$1: .1$
	．．	\therefore	（3）	． 1111	．40．：－	$1:$
	．．	－	3：	－3：：	．1．0．a）	$11 . . \therefore$
	．．	＊	31	．：－7	－ 1×1	1：－7
	1＋1／	1	111	． 211	．\because いい	11．，${ }^{\text {\％}}$
	\bullet	$:$	\％${ }^{\text {a }}$	． 3 \％	：$\times 1.41$	$16 . .:$
	－•	3	\therefore	$\therefore \therefore 1$	－いいいこ	17.1
	．．	1	23	．10： 1	－m．．－	1：．

PENDULUM AT SAPPORO.

Correction for are (to be subtracted)	Mean Temp. ${ }^{\circ} \mathrm{C}$	Correction for Temperature	Correction for chronometer rate (to be added)	Tine of single vibration (corrected) Sid. Sec.	Residuals
. 0000014	25.0	$+.000000$. 000005	. 999713	-45
.000012	25.0	$+.000000$.000005	. $994 \% 01$	- 54
. 000014	24.7	$+.000004$.000005	. 999785	- 23
.000015	24.2	$+.000008$.000005	. 999761	+ 3
. 000014	24.0	$+.000009$.000005	. 999739	-19
. 000012	24.8	$+.000002$.000028	. 999968	- 78
.000013	25.6	-.000006	. 000028	. 999680	- 78
. 000015	27.9	$-.000026$. 0000028	. 999701	- 57
.000012	28.0	$-.000028$. 000028	.999tisf	- 72
.000013	27.6	-.000024	. 0000028	. 930644	-84
.040014	28.4	$-.000022$. 000022	. 999757	- 1
.000012	26.8	-.000017	.000028	. $99986^{\circ} 2$	-104
.000014	25.4	-. 0300004	.000028	. 999884	+96
.000012	25.1	$-.000001$. 000028	. 999807	$+49$
. 000012	26.1	-.000010	.100028	. 999807	+ 49
. 000014	20.5	-.000014	.000028	. 999872	+114
. 000015	26.5	-.000014	. 000028	. 999877	$+119$
			Mean....	$\begin{array}{r} .999758 \\ \pm .0000117 \end{array}$	

APPENDIX

SO THE

MEMOIR No. 5

OF
TÔKIO DAIGAKE (TÔKIO UNIVERSITY).

measurement

OF THE:

FORCE OF GRAVITY

NAHA (0kinawa) AND KAGOSHIMA

BY
S. SAKAI and E. YAMAGUCHI, Stuctents of phigsices. Ineparotmpnt of sirriencer.

> PUBLISHED BY TOKIO DAGAKU.
> TOKIO.
> $\mathbf{2 5 4 4}(\mathbf{1 8 8 4 .)}$

$$
138283
$$

U. S. National Museum.

The Ru Library of Archæology. No. 1197

Dr. Charles Ray was born in Belgium in 1826. He came to the United States in 1848 , and was engaged as teacher at Belleville, Illinois, and in New York. In 1875 he accepted an invitation from the Smithsonian Institution to prepare an Ethnological Exhibit to be displayed at the Centennial Exhibition, and subsequently was appointed Curator of the department of Archæology in the National Museum, which position he held at the time of his death, July 25, 1887 . He bequeathed his Archeological collections and library to the U. S. National Museum.

APPENDIX

TO THE

MEMOIR No. 5

OF

TOKKIO DAIGAKZU

 (TOKIO UNIVERSITY).
MEASUREMENT

OF THE

FORCE OF GRAVITY

AT
NAHA (0kinawa) AND KAGOSHIMA
BY
S. SAKAI and E. YAMAGUCHI,
stuctenls of Physics, Depurtment of Science.
1'UBLISIIED BY TOKIO DAIGAKU.
TOKIO.

2544 (1884.)

MEAsurement

OF THE

FORCE OF GRAVITY

NAHA AND KAGOSHIMA.

According to the direction of the university authorities, an expedition to Naha (Okinara-ken) was undertaken by the physical students, during the snmmer of 1882, with the principal object of making a comparison of the force of gravity there with that at Tokio. The determinations of the force of gravity at different localities in the Pacific Ocean has of late become of peculiar interest, as the determinations hitherto made tend to show that the intensities at places near Japau are decidedly greater than those calculated from the usual furmula. To furnish data which might aid in finally deciding this point formed, therefore, the principal object of the expedition.

The party consisted of Messrs. Yamaguchi, Yamada, Tanakadate and myself. The magnetic observations, which were made along with the pendulum experiments, were conducted by Mr. Yamaguchi. Mr. Yamada, who acted as treasurer of the party, undertook, besides other duties, the transprotation and the general charge of the instruments. Mr. Tanakadate, who had been previonsly on a similar expedition to Sapporo, took upon himself the task of chronometer rating and latitude observations, as being the only one of the party who had had experience in practical astronomy. The trausit instrument used for time observations was the property of the Survering Bureau. We take the opportunity of thanking the llirector, Mr. Arai, for liis kinduess in grauting us the use of it. This instrument not beiug suitable for latitude observations, we employed for this purpose a sextant belouging to the university.

The mode of experiment was essentially similar to that used by Prof. Mendeuhatl in his F'uzingyma experiment, and fullowed ly Mrss. 'limakadate,

Tanaka and Fujisawa in the expedition to Sapporo during the aummer of 1881. The method is fully described in memoir No. 5 of the university, and its Appendix; and consequently but a brief acconnt will here suffice.

Two pendulums were used, called for convenience B and \mathbf{C}. These had similar forms, but different somewhat in construction. The B pendulum consisted of a hollow brass cylinder, $121 \cdot 6$ centimetres long and closed at buth ends. Near the one end was the steel knife-edge on which the pendulam rested when oscillating; and near the other was fixed a flat oblate-spheroidal disc whose diameter was about 18.5 centimetres. The lower end bore a small wedge, whose edge, when desired, could be brought to bear upon the extremity of a delicate spriug, the slight displacoment of which was sufficient to break the circuit of the electric chronograph. Thas the precise instant at which the extremity of the pendulum swept past the end of the spring could be recorded. The form of the C pendulum was exactly similar to that of B ; but its bulb, instead of being a solid brass spheroid, was made of a hollow brass shell of the same outward form but filled with lead. The modification thus introduced was not originally intended, but arose from the misapprehension of the instrument maker.

When C was made, another pendulum exactly similar was constructed. The time of oscillation of this latter pendulum (called D) had been determinced by Mr. Tanakadate and sent to America to supply the place of A^{*} which hat been previously sent, but injured during transportation.

The B pendulum had also been injured during the Sapporo expedition; and its upper brass disc, which was the injured portion, was now replaced by a new one, so that its time of oscillation was slightly changed, as will be seen on comparing the old and the new results. \dagger

In previous expeditions Kater's reversible pendulum had been ased together with B pendulum. But the former, having been always found to give unsatisfactory results, \ddagger it was now abandoned, and the C pendulum was used instead.

Two series of experiments were made in the physical laboratory befure and after the expedition, so that any injuries done to the two pendulums during the expedition might be readily detected by comparing tho two mets of results.

The experiments at Tokio were made in the pendulum room of the lalsoratory. The pendulam was hang from a massive stone pillar erected iu the room. The approximate position of this pillar was
$35^{\circ} 42^{\prime} 40^{\prime \prime}$ north latitude, and
$189^{\circ} 45^{\prime} 45^{\prime \prime}$ east of Greenwich.

[^5]The height of the kuife-edge of the pendulum rested on a steel plate about 11.5 cms . square and about 2 cms . thick. This plate was clamped tightly by means of tro screms to a heary iron bar 75 cms . long, 75 cms . broad, and 2 cms. thick. This was placed on the pillar and kept in position by a large block of stone restiog upon it. 'The pendulum was passed through a hole in the middle of the plate, which was first carefully levelled. The levelling of this steel plate was quite a difficult task; it was never accomplished in less than an hour, while at times it took more thau three or four. Levelling with two screws is indeed a mere matter of chance, and it would certainly be an improvement if the plate were provided with three levelling screws standing in V's, so that it might be clamped geometrically to the heavy iron bar by the weight of the pendulum itself. This plan had been thought of before the expedition, but want of time prevented us carrying it out.

The time of oscillation was measured with a break-circuit sidereal chronometer of Negus construction. Its rate was compared every morning by telegraphic communications with another Negus chronometer in the astronomical observatory; and the rate of the latter was determined by Mr. Tanakadate from transit observations made on every clear night during the progress of the experiments. The pendulum usually continued to vibrate for iwenty to forty minutes, except in some few cases in which, from special circumstances, longer continuation was necessary. The interval between the beginning and eud of each set of oscillations was measured in the way above described. Since the pendulum had been previously adjusted so that its time of oscillation was very nearly one second, the total number of seconds between the beginuing and end of a set of oscillations was to a first approximation the same as the number of oscillations during the whole interval. The correction applied to this estimate could be readily deduced from chronographic records by microscopic measurement.

The amplitudes of oscillations were measured with a small millimetre scale fixed horizontally near the lower end of the pendulum, and readings were taken at the beginning and end of each series of oscillations.

The temperature of the room was measured with a good Saleron thermometer, hung near the pendulum.

The first series of experiments at Tokio having been completed, we started for Nalha on the seventeenth of July.

During our stay at Kagoshina while wating fur the despateh of steamer, wo found ample time to make a series of experiments. "Throngh the kiudness of Mr. C. Watauabe, the Kiagoshima-ken-rei, a small building is the kencho was put at one disposal, and there the experiments were conducted. The chronmeter and the chronograph were placed in the same building; and astronomical observations were made in the garden just in front of the building. Δ largo cylinder of stone about 1.5 metres long and 0.7 metres in diameter, was crected upright on the gromed inside the building; and on this stono tho irou bar was set. The idjustments and measuremente were carricd out as usual. Owing to
the fickleness of the weather, peculiar to the meteorology of the southern summer of this country, mnch inconvenience was felt in making the astronomical observations.

The height of the knife-edge of the pendulum nhove the lovel of the sea was found to be about 6.6 metres and the latitude of the place was determined by Mr. Trakkadate to be about

$$
31^{\circ} 35^{\prime} \frac{1}{2} \text { north. }
$$

According however to the map pablished by the Naval Dupartment, the same place is situated at
$31^{\circ} 31^{\prime} 2^{\prime \prime} \cdot 8$ north latitude.
This difference of about $4^{\prime} \frac{1}{2}$ is far too great to be tulerated in such determinations. The data from which the Navy map had been compiled seems to have been furnished by the officers of "His Majesty's Ship, Teibokan". But in spite of the determination having been made by professional men, we are inclined to think that their result is not very trustworthy. At any rate it is quite irreconcilable with our determination as obtained with the aid of the Berlin Jahrbuch.

We arrived at Kagoshima on the 27 th of July and after a successful series of observations proceeded to Naha which we reached on Augusi 18.

At Naha, through the kindness of the Director of the Normal School, we obtained a room in every way well fitted for our perpose, except that it was freely traversed by currents of air and sensitive to atmospheric changes of temperature. The former evil was easily remedied; and the latter was of little account as the temperature change for a whole day even was only a few degrees.

The pendulum, the chronograph and the chronometer were all set up in this room.

Several rectangular blocks of stone of nearly one metre in length and some 30 centimetres in breadth and thickness were piled up firmly, to the height of about $1 \frac{1}{2}$ metres. On this rough but solid pillar the iron bar was placed, and the experiments were made iu the usual manner.

The astronomical observations were taken in the yard in front of the room, where a similar but smaller pillar had been erected. The weather was showery and unsettled and readered the operations very difficult.

The latitude of the place was determined by Mr. Tanakadate to bo $26^{\circ} 12^{\prime} 6^{\prime \prime}$ north. The height of the position of the pendulum from the sea level was not accurately determined, although it was certainly not more than 6 metres. Any correction due to such a small height is far withis the orrors of experiment and may be neglected.

Eivery thing went on as well as could bo oxpected, and after completing the experiment, we left Naha on the 23rd of August.

REDUCTION.

The method of calculation was similar to that used in the previous expedition. The complete numerical data are arranged in tables at the end of the paper.

The correction for arc was deduced from Captain Basevi's formula*

$$
\text { Correction }=-\frac{t}{64}\left\{(\alpha+\beta)^{2}-\frac{1}{3}(\alpha-\beta)^{2}\right\}
$$

in which t is the observed time of oscillation, and a and β are respectively the initial and the final semi-arcs of the corresponding set of oscillations.

In making the temperature correction, we assumed the value of the coefficient of expansion to be 0.0000187 per degree centigrade, which is a fair average of the determinations hitherto made on brass. From want of time and also from other considerations the direct measurement of the coefficient of expansion conld not be made; but in all probability the error arising from any inaccuracy in the value of the expansion coefficient must be very small.

The correction for temperature was applied so as to reduce the observed time of oscillation to the time of oscillation at $25^{\circ} \mathrm{C}$. This temperature is a convenient one as being approximately the average temperature for all the experiments at Tokio, Kagoshima and Naha.

If $\Delta \mathrm{T}$ is the difference between the actual temperature and 25°, and t the observed time of oscillation, the necessary correction as calculated from the expression

$$
\frac{1}{2} t a \Delta \mathrm{~T}
$$

is very nearly

$$
\frac{a}{2} \Delta \mathrm{~T}=0.00000935 \Delta \mathrm{~T}
$$

as t differs very slightly from unity.
The chronometer correction was calculated from the mean daily rate, any slight error so arising being minimised over the whole series of observations by a suitable distribution in time of the different sets of pendulum observations. In cases of bad weathers, the determination of the average rate for two or three days only was possible. This was not of course very good : but in the long run individual errors would probab'y balance. It may be remarked that the chronometer was carefully protected and carefully managed, and its rate in any one locality tolerably uniform.

The corrections due to the buoyancy and the resistance of air have been neglected, as was the case in the reduction of results in the previous expeditions. \dagger

[^6]With the above corrections the results are as folluws:

Thking the mean of the two sets of results for Tokio, we have for the 13 perdulum, the time of a single oscillation

$$
t=1.000-3 \mathrm{sec} . \pm 0.0000016
$$

and for the \mathbf{C} pendulum

$$
t=0.09200 \mathrm{scc} . \pm 0.001001: 3
$$

Now the value of g fur Tokio according to I'rof. Nementenlall's deter-
 sulat seenml. From the data thas furnished, we have deduced the [.allowitue values of g for Naha and Kagoshima:

$$
\begin{aligned}
& g=979 \cdot 181 \text { C. G. S. } \pm 0.0010 \\
& \text { with } 13 \text { pendulum, and } \\
& g=979 \cdot 149 \text { C. G. S. } \pm 0 \cdot 0059 \\
& \text { with C pendulum. } \\
& \text { Mean, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { For Kngoshimat }\left\{\begin{array}{l}
g=079.578 \text { C. G. S. } \pm 0.017 . y \\
\text { with B pendulum, nud } \\
g=979.545 \text { C. G. S. } \pm 0.000 \% \\
\text { Mean } \\
g=979.061 \text { C. G. S. } \pm 0.005 \% \text {. }
\end{array}\right.
\end{aligned}
$$

Thu almere results are lwh uf them slighty greater than these ubtameal by calculation from approximato formulie.

Thas, from the formula

$$
* g=980.605-2.5028 \cos 2 \lambda-0.000003 h
$$

we get

$$
\text { for Naha, } \quad g=979.04 \mathrm{cms} . \text { per sec. per sec., }
$$

for Kagoshima, $g=979.49$,,\quad,
The formula
$\dagger g=980 \cdot 63-2.553 \cos 2 \lambda$
gives nearly the same results as above.
Again the formula
$\ddagger g=978 \cdot 0728+5.0875 \sin ^{2} \phi$
gives
for Naha, $\quad g=979.06 \mathrm{cms}$. per sec. per sec.,
for Kagoshima, $g=979 \cdot 47$,,
39 3,
Δ gain the formula
$\S g=32.088\left(1+0.005133 \sin ^{2} \lambda\right)$
Which is in terms of the British absolute units gives, in terms of the French units,
for Naha, $\quad g=979.00 \mathrm{cms}$. per sec. per sec.,
for Kagoshima, $g=979^{\prime} 39$,, ,"
Now all these values are slightly smaller than those actually obtained from experiments. Such discrepancies however, cannot much detract from the merit of the experimental work, since the formula are all of them ouly approximate, and the comparisons of the values must be considered as the test of the formula rather than the test of the work.

[^7]
0BSERVATIONS

OF

MAGNETIC ELEMENTS

BY

E. YAMAGUCHI.

I accompanied the expedition for the purpose of making magnetic observations. The instrumental appliances were very imperfect and the results necessarily rough.

The determinations of the horizontal iatensity were only relative, the method being exactly similar to that adopted by Mr. Fujisawa in the expedition to Fujinoyama and Sapporo. The method consisted in the determination of the time of vibration of a horizontally suspended nagnet. The magnet was suspended by a silk fibre about 30 cm . long, in a glass case on which was pasted a scale for measuring the arc of vibration. Silk fibres were also fixed vertically on the outside of the glass case near the middle of the scale. The transits with reference to one of three fibres of a convenient point on the end of the oscillating magnet could be easily observed, and when necessary simultaneous records made on the chronograph, which was being used in the gravity experiments. The adjustment of the magnet in the horizontal position was done by suspending it close over a wooden surface already levelled. The reading on tho glass case did not give at once the true arc; but this could be easily deduced as the diameter of the glass case and the length of the magnet were known.

Two magne tswere used. The one (named A) was cylindrical in form, having a length of 17.3 cm . and a diameter of .8 cm . Its mass was 63.8 gm . It was one of the two magnets kindly lent by the Kobu Daigakko and used by Mr. Fujisawa at Sapporo. The other one had changed so much in magnetic moment, that it was considered not worth using. The second magnet (bamed B) was a rectangular block of square section, 11.2 cm . long and 1.2 cm . square. Its mass was 139.3 gm . Each of the magnets rested in a brass or copper stirrup to which the silk fibro was fastened.

At Kagoshima a fuw observations were made is tho Kencho building, which from the shakiness of the tloor proved unsuitable. Accordingly a stono block was erected on the outside of tho building with a shelter to protect it from the sun's rays. The time of vibration observed there differed from that observed in the building. Observations were then made at two other phees; and again the results were discordant. But before the canse of these discrepaucies could be investigated the party were on tho point of leaving kingoshima. The results given below aro deduced from the mean of all the ubservations made outside of the building.

At Naha, the magnet 13 was accidentally exposed to the sun's direct rays for a short time. The temperature, as iudicated by the thermometer in the glass case rose to about $50^{\circ} \mathrm{C}$, aud produced n great change in the magnetic moment. Therefore as regards maguct is the intensity ubserved at kingoshima is compared with the previous determination at 'Jukio, while the intensity observed at Naha is compared with the subsequent determination at 'lokio. The results of magnet A are more trustworthy.

The means of the times of vibration are found to be:-
At Tokio before the excursion
Magnet A 13.6138 B 10.7070

At Kagoshimn
Magnet 4 13.233.4
13 10.391i.,
At Naha
Magnet A 12.7857
13 ... \ldots.. \quad.. $\quad . . \quad$... 10.4916°
At Tukio after the excursion
Maguet 1 13.587 .4
B 11.81:31
The mean of the two obscrrations at Tokio Magnet $\boldsymbol{\perp}$... 13.6003.

The intensity being iuversely proportiounl to the square of time of viloration, the ratios of the horizoutal intersities at Kingoshimanad Nibla to that at 'I'ukio are as follows :-

Kagoshima.

$$
\begin{array}{rlll}
\text { Magnet A } & \ldots & \cdots & \ldots\left(\frac{13.6003}{13.233 \cdot 4}\right)^{2}=1.0563 \\
\text { B } & \ldots & \ldots & \cdots\left(\frac{10.7070}{10.3965}\right)^{2}=1.0606
\end{array}
$$

\[

\]

The declinations were taken with a declination theodolite of ordinary construction. The diameter of the circle, on which the needle mas mounted, was 14.5 cm . The graduation was only to half-degrees. The circle together with the "telescope mas morable about a rertical axis. This motion mas effected by a tangent screw, and could be read to 10^{\prime} by means of a vernier.

It Kagoshima the direction of north was deduced from time obserrations combined with azimuth observations of the sun's position. The azimuth of the telescope was successively changed by 10^{\prime} and the contacts of the sun's disk were obserred sis times with the preceeding limb and six times with the succeeding limb. The successive positions of the magnet relativel l_{y} to the circle, which moved in azimuth with the telescope, were read at intervals. Tro such series of obserrations were taken. The magnetic declinations so obtained are as follows:-

$$
\begin{array}{rlrllllll}
\text { 1st series... } & \ldots & \ldots & \ldots & \ldots & 3^{\circ} & 20^{\prime} .5 & \mathrm{~T} \\
\text { 2nd }_{\text {nd }} & \ldots & \ldots & \ldots & \ldots & \ldots & 3^{\circ} 17^{\prime} . & \mathrm{W} \\
& \text { IIean } & \ldots & \ldots & \ldots & 3^{\circ} & 18^{\circ} .7 & \mathrm{~W} .
\end{array}
$$

At Naha Mr. Tanakadate from transit observations made meridian marks on two distant objects one to the north and the other to the south. The transit instrument was then dismounted and the theodolite set in its place. The magnetic declination so observed was:-

$$
2^{\circ} 25^{\prime} .5 \mathrm{~T} .
$$

The determinations of the dip were also rough, and mere obtained by a comparison of the horizontal and vertical intensities of the magnetic field due to the earth. A solenoid was formed by winding insulated copper wire upon a glass tube 31.5 cm . in length and .9 cm . in diameter. The wire was mound in two layers, the total number of coils being about 1030. The resistance of the wire was 6.07 ohms. Near one end of this solenoid, which could be fixed either horizontally or retically, a small-mirror maguetometer was set. To intensify the maguetic field within the sulenvid a soft-iron wiro of nearly the same length was iuserted. When the soft-iron wire was in position and a current thowing thenerg the solensid, the iron wire was under the influence of two distinct magnetisations, that due to the carth, and that due to the curreut. The strengeth and the direction of the current were then adjusted until the maguetometer deflection was made equal the that which the current in the sole-
noid alone would produce. The oxternal magnetio effect of tho current alone was always very small. The current strongths necessary in balance in this way tho vertical and horizontal components of the oarth's induction wero thus measured; and their ratio gives the taugent of tho anglo of dip. 'The results were as follows:-

	Hor. Intensity.	Declination.	Dip.
Tokio....	. 1.0000		
Kagoshima	.. 1.0563	$3^{\circ} 188^{\prime} .5 \mathrm{~W}$	$44^{\circ} 566^{\circ}$
Naha	1.1315	$2{ }^{\circ}$ 25'.5 W	$38^{\circ} 190$

RESULTS OF PENDULUM

 EXPERIMENTS.TABLE I ．

	0 i 0 0 0	
景		
言		艻
彦三恶		
$\begin{aligned} & \text { 要 } \\ & \end{aligned}$		
\％ $=$		

TABLE II．
RESULTS OF EXPERIMENTS MADE WITH PENDULUM C AT TOKIO，BEFORE THE EXPEDITION．

		－	－V3K									
H－		＂	：-1	$\because 1-$	$\varepsilon \%$	$8 \cdot 1$	びらし	9atitiviou	STO0	9 9：	8	4
C－	maxicio	＂	I－	：I－	1 \％	I¢】	881	Suniticito	Sisio	$1:$	2	．．．．．．．．
\＆	I（miticito	${ }^{\prime}$	1 ＋	$\because 1-1$	6iti	¢¢1	8．81	Ifinitiol	900	Es	9	\cdots
$01-$	mastimity		G＋	H－1	¢5\％	81	2×1	Ctinatioio	いで0	2：	S	．．．
$10+1$	Stminitic	＂	L ${ }^{\text {＋}}$	$\delta \mathrm{I}-1$	815	91	F＊S	Sanisitiol	1100	nis	b	＂
H＊	Ulimitito		（i＋	$81-$	$0 \% 6$	$8 \% 1$	$3: 1$	1 Gititio	2－10	S	8	．．．
！I＋	Culativito	＂	UI +	い－1	6.88	St1	Esl	Eltaititil	citio	si：	$\%$	＂．．．＂
I－	Cmavixio	$9-01 \times 8+$	$\mathrm{Cl}+$	H－1	L＇\＆	68\％	6 Cl	tambitio	Srico	：$: 1$	I	
\bigcirc－			$2+$	SI ${ }^{-}$	815	SU	$80 \leq 1$	Entrititio	v910	20	8.1	
Bit +	－tGiatio	＂	$2+$	Sl－	$8 \cdot 6$	6.5	96	Latimitiol	$\because 10$	Ob	\％ 1	．．．］
II	Lunitimio		0	$91-$	0 OR	$8: 91$	Ctil	E－atimito	Sillo	\therefore	II	．．．．
$0 \mathrm{~T}+$		＂	0	＋1－	0 0\％	8 H	0 Oil	Citamitio	otto	UR	U1	．
8 －	Sisatizio		0	Sl－	$0 \cdot 8$	$\bigcirc ¢$	6 Cl	Lutinitiolo	El0	If	（i）	
$8-$	Stimerixil		亿＋	II－	21\％	$0 \% 1$	£ 21	matititiou	ETS：0	呺	8	
$6+$	Strimitio	＂	$2 \cdot+$	CI－	$8 \cdot 8$	I¢	Fibl	2 Libitio	U810	98	L	\cdots
$\%$－	UEntititio	，	$\underline{+}$	81－1	6.5	$8 \cdot ¢$	ガこ！	Inderito	が0	2：	9	＂
$1+$	Ltintititio	＂	$\underline{L}+$	WI－1	$6 . \%$	GFI	1×1	tiatititio	2 LiO 0	188	g	
$2+$	arinaimitio		I＋	：1－	650	$6 \% 1$	861	Flutititio	8 sco	A		．
68.	LCxitiou		$2+$	11^{-}	－1\％	$0 \because 1$	$8 \cdot 81$	maxtititio	Rご0	Nic	8	
¢ 0^{-}	İxatatio		$\underset{0}{2+}$	91－	8.8	$\downarrow_{\text {¢ }}$	86	Institito	$10 \% 0$	in	\boldsymbol{z}	
9－01 $\times 9+$	atmeatio）	${ }^{2}-\mathbf{0} \times \mathbf{1}+$	$0-0 \mathbf{x} \times+$	${ }_{0}-01 \times 91-$	9.75	$6 \cdot \mathrm{Cl}$	8.81	Elfititio	ISto	18	I	
＇funtom											－2xqun	ご心じ！

TABLE III.
results of experiments made with pendulum b at tokio, after the expedition.

1.AT\%	Sumber.	$\begin{aligned} & \text { Ximulur } \\ & \text { of } \\ & \text { minutio. } \end{aligned}$						C'urrection for nre.				Residual.
Sept. $14 .$.	1	30	1.274	1.000708	17.5	13.5	24.7	-12×10^{-6}	$+3 \times 10^{-8}$	-8×10^{-6}	1.000691	-44×10^{-6}
Sept. $15 \ldots .$.	1	46	2.024	1.000733	20.5	13.2	23.1	-15	+18	"	1.000728	- 7
, ...	2	46	2.032	1.000736	21.1	13.6	23.0	-18	+19	"	1.000739	+ 4
,	3	30	1.350	1.000750	21.0	16.2	23.5	-18	+14	"	1.000738	+ 8
" .	4	31	1.378	1.000741	21.0	15.6	23.7	-17	+12	"	1.000728	- 7
"	5	39	1.756	1-600750	21.3	15.7	23.8	-18	+11	"	1.000735	0
Sept. 16........	1	59	2.553	1.000721	17.5	10.0	21.0	-10	+37	"	1.000740	+ 5
"	2	38	1.689	1.000741	20.7	15.3	21.0	-17	+37	"	1.000753	+18
"	3	34	1-491	1.000731	21.7	16.0	21.3	- 18	+34	"	1.000739	$+4$
,	4	34	1.544	1.000757	22.3	16.8	21.5	-20	+ 33	"	1.000762	+27
	5	88	1.624	1.000717	20.5	14.3	21.9	-16	+29	"	1.000722	-13
"	6	32	1.389	1.000723	19.2	14.4	22.1	-15	+27	"	1.000727	-8
....	7	33	1.425	1.000720	20.3	13.9	22.2	-15	+26	"	1.000723	-12
,	8	41	1.758	1.000715	20.1	16.5	22.4	-17	+24	"	1.000714	-21
Sept. 18.	1	41	1.789	1.000727	21.1	14.4	20.0	-16	+46	"	1.000749	+14
S	2	46	1.937	1.000702	20.9	13.4	19.6	-15	+50	"	1.000729	-6
"	3	41	1.778	1.000723	20.3	13.6	19.5	-15	+51	"	1.000751	+16
\%	4	35	1.491	1.000710	22.1	16.6	19.6	-19	+50		1.000733	-2
Sept. $19 . . .$.	1	43	1.897	1.000735	22.9	15.4	19.2	-19	+53	-4×10^{-6}	1.000765	+30
Meax											$\begin{aligned} & =1.0007!5, \\ & \pm 0.0000027 \end{aligned}$	

- Distance of the sazle from the kniferedze $=1197$ cms.
- 19 -

TABLE V.
 RESULTS OF EXPERIMENTS MADE WITH PENDULUM B AT KAGOSHIMA.

1).ATE.	Number.	Number of iminutio.	sum of fractions of secound at lockinthang an! 1sul ol onerillationas.	lime of a single orcillation, unredued. Chil, viscreal newnil.	$\begin{aligned} & \text { Initial } \\ & \text { semi-are } \\ & \text { of oscilla- } \\ & \text { tominn } \\ & \text { nim. } \end{aligned}$		$\begin{gathered} \text { Mean } \\ \text { tempera- } \\ \text { fure bn } \\ \text { degere ('. } \end{gathered}$	Correction for are.	Correction for temperature.	$\begin{aligned} & \text { Correctiom } \\ & \text { for } \\ & \text { chronometer } \\ & \text { rate. } \end{aligned}$		Rexidual.
July :	1	40	2.158	1.000899	16.8	10.0	29.3	-9×10^{-0}	-40 $\times 10^{-6}$	$+6 \times 10^{-6}$	1.000856	-16×10^{6}
"	\because	3:3	1.843	1.000831	18.8	11.7	29.5	-12	-42	"	1.000883	+ 8
.,	8	:-	1.15:1	1.000919	20.1	13.1	29.1	-14	-38	"	1.000873	- 2
"	4	$\because 9$	1.551	1.000891	17.2	12.7	28.1	-12	-29	"	1.000856	-19
..	:	:0	1.68	1.0004832	16.4	12.9	27.7	-11	-25	"	1.0001023	$+27$
,	${ }^{6}$	s	1.743	1.000908	18.2	13.6	27.7	-13	-25	"	1.000876	$+1$
"	7	40	2.261	1.000942	18.5	13.8	28.3	-13	-30	$"$	1.000:10.5	+30
July : 11 .	1	31	1.668	1.000896	18.3	13.6	28.1	-13	-29	"	1.000×60	-15
.	\because	$2{ }^{6}$	1.427	1.0009917	18.1	14.2	28.9	-14	-36	"	1.000573	-4
" ...	:	$2!1$	1.571	1.000903	17.3	12.9	29.3	-12	-40	"	1.000857	-18
,. .	4	36	1.991	1.000122	16.7	12.0	29.4	-11	-41	"	1.000876	+1
. .	:	4.5	2.427	1.000899	17.5	11.8	29.0	-12	-37	"	1.000856	-19
, .	(i)	$2!$	1.628	1.000936	18.5	14.4	29.4	-14	-41	"	1.000887	+12
"	7	: 3	2.074	1.000910	18.5	17.4	29.4	-17	-41	"	1.0008 .58	-17
" ...	s	34	1.911	1.000937	18.4	13.8	29.1	-13	-38	"	1.000842	+17
, ..	$1:$	$2 ;$	1.4: 2	1.000918	16.3	12.9	28.9	-11	-36	"	1.000877	+ 2
., .	10	30	1.83i	1.000919	16.3	12.1	28.3	-10	-31	"	$1.0018{ }^{8} \cdot$	+9
"	11	25	1.374	1.000916	17.5	13.9	28.2	-13	-29	"	1.000880	
August 1...	1	36	1.993	1.000923	18.3	12.6	29.3	-12	-40	"	1.000877	+ 2
Medi											$\begin{aligned} & =1.00087 .5 \\ & \pm 0.000002 \mathrm{E} \end{aligned}$	

[^8]TABBLE VI.

	$\frac{0}{x}=:=2=2=2==2==\frac{c}{x}=2=2==$
$\stackrel{y}{y_{n}}$	
曹	
-	

TABLE VII.

		\%
	 	篹
$\begin{array}{ll} \\ \end{array}$		
$\begin{aligned} & 0 \\ & 0 \end{aligned}$	 	
曹		
$\stackrel{y}{\Xi}$		

[^9]TABLE VIII.
RESULTS OF EXPERIMENTS MADE WITH PENDULUM C AT NAHA.

	\qquad	$\begin{aligned} & x \\ & \vdots \\ & \vdots \end{aligned}$
$\stackrel{8}{\square}$		

- Distance of the scale frum the knife-edinc $=164.7 \mathrm{cms}$.

APPENDIX
 TO THE

 MEMOIR No. 5

 MEMOIR No. 5
 or

 TÔKIÔ DAIGAKU

 TÔKIÔ DAIGAKU
 (TÔKIố UNIVERSITY).

 MEASUREMENT

 MEASUREMENT
 OF THE

 FORCE OF GRAVITY

 FORCE OF GRAVITY
 AND
 MagNetic constants
 AT

 OGASAWARAJIMA

 OGASAWARAJIMA (BONIN ISLAND)

 (BONIN ISLAND)}

REPORTED BY
A. TANAKADATE,

Assistant to the Professor of Pleysics, Science Department

> PUBLISHED BY TÓKIÓ DAIGAKU TOKIO $\mathbf{2 5 4 5}$ (1885).

APPENDIX

TO THE

MEMOIR No. 5

OF

TÔKIÓ DAIGAKU

(TÔEIOO Unitersity).

MEASUREMENT

OF THE

FORCE OF GRAVITY

AND
MAGNETIC CONSTANTS
${ }^{\wedge}$

OGASAWARAJIMA (BONIN ISLAND)

REPORTED BY

A. TANAKADATE,
Assistant to the Professor of Physics, Science Department

PUBLISHED BY TÔKIÓ DAIGAKU
TÓKエÓ
2545 (1885).

[^10]
DETERMINATION

OF THE

FORCE OF GRAVITY

OGASAWARAJIMA.

Au excursion to Ogasawarajima (Bonin) for determining the force of gravity was undertaken by the physical students of Tokio University during the summer vacation of 1884 . The opportunity was taken advantage of for making determinations of some of the magnetic constants for the island.

The object of the excursion was to train, during the summer vacation, these physical students in making precise measurements. It was hoped, at the same time, that the result might be of value as a contribution to science, since the force of grarity near Japan shows a slight excess over the values obtained from ordiuary formulae, and remarkably so at Ogasawarajima (Bonin) according to Capt. Leutke's observations and consequent reduction by Baily.*

The other members of the party were Messrs. Sawai, Hayasaki axd Saneyoshi, students in the physical section of the university. The pendulum experiments for the determination of the force of gravity were conducted by Mr. Sawai, both at 'Jokio and Ogasawarajima, except a few which were performed by myself as a check upon his operations; magnetic constants were determined by Messrs. Hayasaki and Saneyoshi ; and the chronometer rating was conducted by me both at Tokio and Ogasawarajima.

[^11]The determination of the force of gravity wan a differential one, and
 lums at the tro places, Tokio and Ognsawarnjima. The method of detere mising the times of : sis gle cerillation was the same as that descrited in the

 1882. A few improrements, however, were made on the former method of working.

Tho iron bar which was used for basging the pendulum in previons
 a mirror to the end of the bar and sighting the reflected image of a scale, plared at a distance of there metres from the mirrer. with a thluanper Thas bar was tested by Prof. Mendenhatl in 1880 with a micrometer nand was found to be rigid enough for the pendulum then employed. But this could not be assumed in the present case, since the pendulums wero more than ten times heavier. A new bar of iron 54 cm . long with a section of 11.5 cm . by 2.5 cm . was enst. This had three screws, two nenr the stage from which the pendulum hung and one near the other ead of the bar. A lend weight of 50 kilog . was placed over the middle of this bar and the level of the
 observed by the reflected image.

We made also a woolen case for protectisig the pendulum from nir currents consequent on approach of the observer. This case was 36 cm . by 27 cm . in section nad 148 cm . in length, and it had fonr glass windows for

 pulating the break circuit arrangement for giving antumatu signals, the observer put his hand through this dowr.

PENDVTったMN.

Three pendulums were employed called B, C, E, for conrenience. It mary be iemarked that A azal I) were sedto America fur comparizg the determination of the force of grarity lhere with that there. I3 and C were the which ones taken to Naha asd Kagoshima iss 1882. Fi wns a new one, which differed from the others hy having the laniferelgen at the upper ard in the form of a T-square instead of a cruss. This peralulum fitted the ngate plane stage which was made hy Salleron of Paris add was used is manisug abselute de terminations in 1880. Thestagre, with its four leweling serews, was munted an the ires bar
 bar, and the other two on the phane surface of the har; while the stage as a whele was fixed to the same by a couple of brass clamps.

For the sake of convenience the dimensions of the pendalums are given in the following tabular form.

Pendilcm.	B.	C.	E.
Total length......................	122.0 cm 。	122.2 cm .	111.0 cm .
Distance between knife-edge and end of pendulum......	111.0 ,	115.1 ,	110.0 ,
Diameter of bob	12.5 \%	12.3 „	12.0 "
Thickness of bob	4.2 \%	4.1 "	4.0 "
Diameter of cylindrical stem	2.5 ,	2.5 ,	2.1%
Total mass ...	$3574 . \mathrm{gr}$.	4356. gr.	2834. gr.

CORRECTIONS.

Corrections for the arc of oscillation, temperature, and chronometer rate, were applied as on the previons occasions. For the arc, Basevi's formula - t/64. $\left(\overline{a+\beta}{ }^{3}-\frac{1}{3} a-\beta^{2}\right)$ was employed. To savo the labours of computation, tables of corrections for each pendulum were made with two arguments, the mean arc of oscillation and the difference of the arcs of oscillation. Temperature correction was applied so as to reduce all the observations to that at $25^{\circ} \mathrm{C}$ which was about the mean for all the experimeats, the coefficient of expansion of brass being taken as 0.0000187 per degree. With regard to the chronometer correction as only the average rate betwee, the two times of observation could be obtained, care was taken to distribute, as far as possible, the peadulum experiments throughout the full period for which this average rate was applied. Observations were made twice every 24 hours when feasible; and from these observations the average rates for zight and day were determined. Gauss's method of determining the azimuth, collimation, and clock error from 6 to 12 star observations was followed.

Wo began experiments at I'okio in the middle of July in the Pendulum Rum of the Physical Laboratory of 'Tokio University, and having completed our preparations, we left Tokio ou the 5th of August reaching the island on the 10 th of the same month. As the ship was expected to stay only for about 10 days, we took with us a prepared set of masonry and woorlen piles to lose as little time as possible in building stono piers for peadulum, trausit instrument, magnetometer and declinometer.

Through the kindness of Mr. T. Minami the Govornor of the Island, we were furnished with a building, in the village of Ggiura, for our exporimental
station. This building was used for keeping honts, and had moflow. Stone piers wero set up in this house for pondulum nad magnetometer. 'The trasit instrument was set near tho homso in upenground with a tormpurary shelter if sail cloth ns a protection from rain. We legan our work on the night of the 13th, and finished on the momaing of the 14th of August. Lenving the Jalaud on the 19 th, we reached Tokio on the 31st. A cherk sorios of experimusts wns made between the 5 th and 9 th of September.

CO-ORDINATES OF THE TWO PLACES.

Токіо.

Lat.	\ldots	\ldots	\ldots	\ldots	35°	42^{\prime}	$40^{\prime \prime}$	N.
Long.	\ldots	\ldots	\ldots	\ldots	139°	45^{\prime}	$45^{\prime \prime}$	F.
Height above the sea level		5	metres					

Ogabamarajima. (Bonin.)

Height above the sea level ...
2.2 metres

RESULTS OF THE PENDULUM EXPERIMENTS.

B						
Time of a single oscillation at Tokio (before)...					$1^{8} .000708 \pm *$	*.0000012
					$1.000729 \pm$.	.0000030
"	"	"	, , (mean)...	...	1.000718	
"	"	"	" Ogasawarajima	...	$1.000906 \pm$.	. 0000016
Time of a single oscillation at Tokio (before)...					$0.999891 \pm$.	. 0000007
"	"	"	". ${ }^{\text {, }}$ (after) ...		$0.999897 \pm$.	. 0000012
"	"	,	" ${ }^{\prime \prime}$ (mean)...	..	. 999894	
"	"	"	" Ogasawarajima	...	$1.000087 \pm$ 。	. 0000014
E						
Time of a single oscillation at Tokio (before)					$1.000088 \pm$.	.000001:3
"	"	"	,, (after)	$1.000089 \pm$.	. 0000011
"	"	"	", (mean)	1.000089	
"	"	"	Ogasawarajima...	...	$1.000271 \pm$.	. 0000021

- A reference to the reduction kheeta will ahow that theae are unt, strictly apmakiug, probable errors in as muchas the chronmeter mate is suppesel to be conatait throughont the time fur which only an average rate is determinet. Apain, if the figure of the pembulum suffer a mighe deformation during the transportation there is monens if jubleing whether that happenavl in goinge ur returning. From these considerations, we ubandon the former plan of kiving weighte to the before and after results inversely proportional to the spuares of the probinable errurn, and we believe that the aimple arithmetical moan gives a better approximation to the truth.

The ratio of the force of gravity at Ogasawarajima to that at Tokio is as follows.

$$
\begin{aligned}
& \mathrm{By} \mathrm{~B}, \ldots \\
& \ldots
\end{aligned} \ldots\left(\frac{1.000718}{1.000906}\right)^{2}=.999624 .
$$

If we take " g " at Tokio to be 979.84 the values at Ogasawarajima come out as follows:

979.472	(C. G. S. unit)	from	B
979.462	,	,	C
979.483	$"$	$"$	E

$$
\text { Mean } 979.472
$$

From Leutke's observation and Baily's reduction, " g " at Ogasawarajima should be 979.388.* Leutke's values for the co-ordinates are

+ Lat.	\ldots	\ldots	\ldots	\ldots	27°	4^{\prime}	$12^{\prime \prime}$	N.
Long.	\ldots	\ldots	\ldots	\ldots	142°	0^{\prime}	E.	

thus differing $1^{\prime \prime} \mathrm{N}$ and $11^{\prime} 54^{\prime \prime} \mathrm{W}$ from the values for our station.
Computed from the formulae.

$$
\begin{array}{ll}
g=980.6056-2.5028 \cos 2 \lambda-.000003 & h \\
\text { (Everett) } \\
g=978.0728+5.0875 \sin ^{2} \lambda & \text { (Listing) } \\
g=980.63-2.553 \cos 2 \lambda & \text { (Major Herschel) } \\
g \text { at } 27^{\circ} 4^{\prime} 11^{\prime \prime} \text { has the corresponding values } \\
979.139 & \\
979.126 & \\
979.135 &
\end{array}
$$

all of which fall short of the value we obtained by about .034 per cent.
In the spring of 1883 the pendulums used in the Indian Operations were brought to Tokio University by Messrs. Smith and Prechet of U. S. Coast Survey, and had their vibration numbers per day determined. When these results are published, we shall be able th get a better value for Tokio, and therefore for Ogasawarajima, Sapporo, Kagoshima and Naha, for all of which places relative determinations have now been made.

[^12]Rexark.- On our retarn from the oxcarsion, wo foand that the wodge-shaped appendage for the break circuit arrangement of the Fendulam had beon slightly scraped by one of the screw nails used th fix the lid of its hox. This of courso is awkward: but if we suppose it to be n mere loss of mass unaccompanied by any furthor change, we may apply the following correction.

Let $\mathrm{I}=$ moment of inertin about the knife-edge of the pendulum,
$\mathrm{K}=$ radius of gyration about the knife-odge,
$\mathrm{L}=$ length of simple equivalent pendulum,
$\bar{x}=$ distance of the centre of mass from the knife-edge.
$m=$ mass of the pendulum,
$\mathrm{M}=m \bar{x}$ the moment of mas,
$\mathbf{z}^{\mathrm{m}}=$ mass scraped off,
$\rho=$ distance of the scrapol portion from tha knifo-edgo.
Then
bnt

$$
t=\pi \sqrt{\frac{\mathrm{L}}{g}} \text { to first approximation. }
$$

$$
\frac{8 t}{t}=\frac{3}{3} \frac{8 \mathrm{~L}}{\mathrm{~L}}
$$

Therefore by differentiation and reduction

$$
\frac{8 \mathrm{~L}}{\mathrm{~L}}=\frac{8 \mathrm{I}}{\mathrm{I}}-\frac{8 \mathrm{M}}{\mathrm{M}}
$$

bat $\quad \delta \mathrm{I}=\rho^{3} 8 \mathrm{~m}$
and $\quad \delta \mathrm{M}=\rho 8 \mathrm{~m}$
whence

$$
\frac{8 L}{L}=\rho^{0} \frac{\delta M}{I}-\rho \frac{\delta M}{M}
$$

$$
=p \delta m\left(\frac{p}{m K^{2}}-\frac{1}{m \bar{x}}\right)
$$

bat $\quad K^{3}=\mathrm{L} \bar{x}$
Hence $\quad \frac{\partial L}{L}=\frac{\rho}{x} \frac{\partial m}{m}\left(\frac{\rho}{L}-1\right)$

$$
\frac{8 t}{t}=\frac{1}{2} \frac{\rho}{\bar{x}} \frac{8 m}{m}\left(\frac{\rho}{\mathrm{~L}}-1\right)
$$

Had we accurately weighed the pendulum before packing it ap, wo might have determined δm by reweighing it. Supposelowever that $\delta \mathrm{m}$ in I gr . whioh in certainly an over-estimate. Then, since

$$
\rho=110 . \mathrm{cm} .
$$

$\bar{x}=87$. "determined experimentally by balancing the pendulum horizontally.
$\mathrm{L}=98.1 \mathrm{~cm}$. eatimated from tand g.
$\mathrm{M}=28.4 \mathrm{gr}$.
we bave $\frac{8 t}{t}=\frac{1}{2} \frac{110}{87} \frac{.1}{2824}\left(\frac{110}{98.1}-1\right)$

$$
=.0000027
$$

which is within the errors of experiments, as will be seen by comparing the times of a single oscillation bsfore and aftor the excursion.

DETERMINATION

OF

MAGNETIC CONSTANTS.

The magnetic constants determined were the horizontal component (H) of the terrestial field and the declination. The dip was not attempted from the want of instrumental appliances.

DETERMINATION OF H.

The method of measuring H was essentially that of Gauss, and consisted in determining the product and ratio of H and M, M being the moment of the bar magnet used. We took four bar magnets called A, B, C, D. A and B had circular sections, and C and D square sections. They were carefully made to fulfil the geometrical conditions as nearly as possible. The following table gives their dimensions at $20^{\circ} \mathrm{C}$.

Magnet.	A.	B.	C.	D.
Length	10.020 cm .	7.016 cm .	10.012 cm .	7.988 cm .
Diameter or breadth 805	. 821 "	. 798	. 794 "
Mass	39.684 gr 。	28.903 gr 。	50.880 gr .	39.324 gr .
Moment of inertia	334.58 in c.gr.	120.52 in c. gr.	427.72 in c. gr.	211.40 in c.gr.

In determining their lengths, the bar was brought in contact with an iron scale graduated to $\frac{1}{2} \mathrm{~mm}$. and the positions of the ends of the bar were read with a micrometor. Four measurements were made along different
longitudinal sections of the bar. The cross section was determined by means of a screw micrometor, ton readings at difforont portions of tho bar giving a fair average.

For determining the time of oscillation, the magnet was set in vibration in a woorlen case with four glass sides, one of which could bo opened at pleasure. The magnet was suspended by two loops of silk fibre, which were united into a single fibre of the same material at n distance of about 5 cm . from the magnet, the length of the single fibre being about 20 cm . To bring the magnet into the horizontal position, the floor of the case was first levelled by means of three levelling screws belonging to the case: the magnet was then lowered close to the floor and was made parallel thereto by sliding ndjustment of one of the silk loops. The bar was now raised by winding the suspending fibre at the top of the case.

When the bar was settled in its adjusted position, it was set in vibration by bringing a piece of iron outside the case at nearly the same level ns the bar. The oscillation was observed by sighting a reflected image of a scale placed at a distance of 50 cm . from the magnet, whoso polished end was used as the reflector. One line in the scale was marked, and when the image of that line passed the wire of the telescope the observer pressed the break-circuit-key, which was in connection with the chronograph. From ten to twenty successive signals were thus given and the magnet was left to vibrate for about five minutes, when another series of ton to twenty signals was made. From the ten successive marks in the chronograph shect the time of a single oscillation was roughly determined, und the number of oscillations in five minutes was inferred as in the pendulum experiments.

The determination of $\frac{\mathrm{M}}{\mathrm{H}}$ was by the tangent method. The magnetometer, of the ordinary small mirror reflecting form, was set upon a tripod stand. The deflecting magnet slid along a groove cut in the upper surface of a brass rod, which was specially constructed to suit the npparatus (see Fig. 1). This brass rod rested on the telescope supports of a theodulite stand, which was truly centred with the magnetometer tripod, but had no contact therewith. Tho line of supports was adjusted to the direction of magnetic east and west by an electro-magnetic method, which will be described beluw in the account of the Declination Experiments. When this adjustment was effected, the brass rod was laid in position. Through a circular hole cut out from the centro of the rad, the magnetometer passed ; and the mirror with its attached magnets was carefully adjusted to the proper level. The V'groove in the brass rol was graduated from the centre in hoth directions. The bar maguet was mounted on this V at two distances r_{1} and r_{2}, whose ratio was approximately 1: 1.32, this being according to Maxwell the best ratio to take.

To measure the angle of deflection a wooden arc of radius 85 cm . was graduated to minutes and was placed to one side of tho theodolite on a wooden tripod support. The reflected image of the scale was obsorved
in a telescope mounted upon the graduated arc. To take account of possible heterogeneity of distribution, the magnet was inverted and reversed in each of its positions as determined by the value of r; so that for any one numerical value of r there were eight magnetometer readings taken, four with the magnet to the east, and four with it to the west of the magnetometer.

CORRECTIONS.

Corrections were applied for temperature, arc of oscillation, torsion of the suspending fibre, and induction on the magnet.

Temperature correction was applied to the moment of inertia by assuming the coefficient of expansion for steel to be 0.000011 per degree C.. In the experiment for determining $\frac{M}{H}$ a like correction was applied to the scale reading of the distance of the magnet from the magnetometer, the coefficient of expansion for brass being taken as 0.000019 .

The arc of oscillation was measured by means of the image of a scale reflected from the polished end of the magnet. The scale was so graduated as to give arcs in radians by direct reading.

The torsion of the suspending fibre was determined by turning the torsion head attached to the upper ead of the fibre through five complete revolutions and observing the deflection thereby prodaced on the reflected image. This gave torsion in terms of the product MH for the magnet used, and the correction was applied accordingly. The mirror magnetometer, being suspended by a spider thread, which proved to have a very small torsional rigidity, was not corrected for torsion.

The chronometer rate as determined for the pendulum experiments was found to be outside the errors of experiment: and the times of a single oscillation were reduced from sidereal to mean solar seconds.

To correct the result for the induced magnetism on each of the bar magnets, the induction for a given value of field was determined in the following way. The bar magnet was placed in the same position as it was in determining $\frac{\mathrm{M}}{\mathrm{H}}$ and a solenoid which was about twice as long as the bar magnet was slid over it and the ∇-groove on which it lay. A known current was passed through the solenoid, and the magnetometer reading was taken. Thus the field inside the solenoid was known; and δM the increment of the moment of bar magnet could be calculated. The curve obtained by plotting the increments of moment against the field in the solenoid was very nearly straight and was quite the same whether the field was increasing or decreasing. The maximum field used was 0.6 (C. G. S. unit), From these data the induction effect was computed, and the corresponding correction applied to the values of H both at Tokio and Ogasawarajima.

The following are the values of H thus determined.

TOKIO (Before Excursion.)

Date and Time.	H	Maget.	Ossertera**
August 1st 81 A.M.2964	B	8
" 11 1'.M.2972	1)	H
", 2 ,2017	D)	S
" 3 , 2958	13	11
" 4 " 2910	A	S
August 2nd 10 P.M. 2977	B	s
August 3rd 7 " 21967	13	II
Mear 2964		

TOKIO (After Excursion.)

Date amd Time.	H	Mageiet.	Ossenvera.
September 5th 2 P.M. 2047	D	11
" 4 , 2948	B	H
September 6th 91 A.M. 2948	B	H
" 11 n 2965	D	II
" 111 ${ }^{\text {P }}$ - .o............	. 2918	B	8
,12¢ P.M. 2956	A	8
" 11 ", 2950	B	H
" 27 , 11	.2965	D	11
" 1) 11 2942	D	8
" 6 " 2968	C	8
" 81, \% 2952	D	H
" 11 ,	. 2945	B	H
September 7th 91 A.M. 2953	B	8
" 11 ", .o............	. 2963	A	8
" 2 P.M. 2932	D	8
" 4 "	. 2969	C	8
September 8th 12 M. 2967	D	H
\% 2 P.M. 2936	13	11
リ 81 \% 2940	B	H
	. 2960	1)	11
Maran 2955		

- H stands for Hayraski and S for Saneyoshi.

OGASAWARAJIMA.

Date and Time.	H	Magnet.	Observer.
August 15th 4 P.M. 3198	B	S
" 7 , 3133	D	S
August 16th 91 A.M. 3184	C	S
n 1 $1 \frac{1}{2}$ P.M. 3155	A	S
Avgust 17th 81 A.M. 3177	B	H
\% 2 P.M. 3164	A	S
" 3 "	. 3154	D.	H
", 3t ${ }^{\frac{1}{2}}$ " 3199	C	S
" 41 , , 3129	D	S
" $11 \pm$, 3169	B	S
Mean 3166		

DECLINATION.

Declination experiments were carried out by means of an electro-magnetic declinometer (see Fig. 2). This instrument essentially consists of three parts, a theodolite, a coil, and a magnetometer.

The theodolite is one of the ordinary kind, and forms the base of the instrument. Its azimuth-circle reads to 5."

The coil* is wound on a rectangular bronze frame in two parts with an open space in the center. The hollow pivots are of the same diameter as those of the theodolite telescope and project at right angles to the axis of the coil, which is disposed symmetrically about their line of collimation. Two narrow slits in the middle of the ends of the coil approximately define the median plane of the coil. About 700 turns of a fine insulated copper wire are wound in this frame in tro layers, and the ends of the wire are led off from the same point in the coil. The two leading wires are twisted together and terminate in a twin-plug. In order to prevent the leading wires from being easily cut they are tied to the frame by an elastic string. The total weight of the coil approximately equals that of the telescope belonging to the theodolite.

The magnetometer is an ordinary small reflecting one. It stands upon an independent tripod nearly centred with the theodolite and projects through the open space in the center of the coil. A small mirror magnet is suspended

[^13]by a single spider thread whose torsional rigidity was found to be about $\frac{1}{70}$ of that of a single silk fibre. The upper end of this thread is fixed to the stem of a fan-shaped horn damper. The top part of the magnetometer caso is a brass tube and can be slide up or down by loosening a jam-nut. The upper ond of this tube is plane and has in its center a triangular hole through which the stem of the damper passes. The damper can be geometrically fixed by moans of a small screw pressing it up against the corner of the triangular hole. As a protection from air-currents a small glass cap is fitted to the brass tube. The lower part of the case is also a brass tube, which is furnished with four glass windows, two square and two rectangular. The mirror hangs with its face parallel to the two square ones while the rectangular ones are just large enough to allow the mirror to be viewed through them edge-on. One of the two square windows is a thin convex lens and the other is plane, so that the magnetometer can be made to suit either the lamp or the telescope method. Directly beluw the mirror, there is a small brass vice whose jaws are liued with chamois skin and which is worked by a screw from outside the case. To take off the initial torsion of the suspending fibre, the top part of the magnetometer is slipped down until the mirror can be caught by the vice, and the whole case is inverted and re-set on the tripod stand. The small screw which bears ngainst the stem of the damper is unscrewed, and the top part of the magnetometer is slipped further along, so that the damper hangs free with the spider thread passing through the triangular hole. When the damper comes to rest the operations are gone through in the reversed order, and the magnetometer is thus suspended free from initial torsion. The magnetometer can be transported safely by having the mirror magnet clamped in the vice.

To work with this instrument, the theodolite stand is set in the astronomical meridian by any of the ordinary processes. The telescope is dismounted without disturbing the base of the instrument, the magnetometer is placed in its center, and the coil is monnted on the Y 's. The magnetometer is adjusted to the central position by means of four screws working horizontally in the circular socket on which the base of the magnetometer case rests. It is brought into the north and south axis by sighting the edge of the mirror through the slits in the ends of the coil, and to the east and west axis by sighting the face of the mirror through one of the hollow pirots and making clearance equal all round. A scale is now placed at a proper position with reference to the magnetometer, and the reflected image of a scale division which coincides with the wire of the telescope is observed. A current from a Daniell cell, which is running steadily through a high resistance of an ordinary resistance-box, is shunted through the declinometer coil by inserting the terminal twin-plug of the leading wires into the plug hole of the high resistance. The current is made so as to produce in the center of the coil a field which has the same direction as that due to the enrth. This is easily determined by observing the rate of vibration of the reflected image. The coil is now turned by means of a
tangent screw until the reflected image is brought back to where it was when no current was passing. The current is then reversed by turning the twinplug half-way round and its strength is adjusted, if necessary, by means of the resistance coils so that the resultant magnetic field is not reversed. The image will again be displaced on account of inefficiency of the previous adjustment. The position of the coil is readjusted to zero deflection of the image and the angle reading on the azimuth circle taken. The coil is now lifted up carefully from the Y's and replaced in the reversed position, after the usual fashion of collimating a telescope. The observations are repeated with this new position of the coil, and the mean of the two rearlings is taken as the mean magnetic bearing belween the two times of setting. This subtracted from the meridian reading of the azimuth circle gives the declination required.

It will be seen that if we take the mean of the two observations thus made, the value obtained will be free from what may be called the error of magnetic collimation, that is, the error arising from the axis of the pivots not being strictly perpendicular to the direction of the electro-magnetic field. This error is half the difference of the two observations, provided the configuration of the coil and the declination remain constant throughout the whole series of operations. When the instrument was in order, the observations could be made in about three minutes, and the so called magnetic collimation was pretty nearly constant, being about 7". This obviously gives a check on any accidental mistake on the angle reading.

The following curve shows the variation of magnetic declination at Ogasawarajima as determined in this way.

- This dip in the curve looks like an accidental error in angle reading.
+ This is probubly due to a displacewent of the base since a downward shift of the succecding portion fits in well with the rent of the curve.
$-14-$

The mean of all the obserred values is $2^{\circ} 3^{\prime} 8^{\prime \prime} \mathrm{W}$.
The maximum west declination observed is $2^{\circ} 10^{\prime} 42^{\prime \prime}$
The minimum

$1^{\circ} 5736^{\prime \prime}$
difference $13^{\prime} \quad 6^{\prime \prime}$

RESULTS

OF

PENDULUM EXPERIMENTS.

RESULTS OF EXPERIMENTS MADE WITH PENDULUM B AT TOKIO，BEFORE THE EXCURSION．（Ior worniannetion ner mix：frye．）

		¢：
	妾	
		ササO
	，	
	E	范
	E	
		\rightarrow－co ${ }^{\text {¢ }}$

	크́	$\begin{aligned} & \underline{Z} \\ & \hline \end{aligned}$
言害密		
ミ		
兰	 	
	吅	
－，．9．		
$\stackrel{Y}{\leftrightarrows}$		

TABLE II.

results of experiments made with pendulum b at tokio, after the excursion.

T A B L E III.

TABLE IV．
RESULTS OF EXPERIMENTS MADE WITH PENDULUM C AT TOKIO，BEFORE THE EXCURSION．For continualion see ne：ct two pages．

※	1	$\frac{8}{1}$	1	＋	$\stackrel{\sim}{1}$	$\stackrel{+}{+}$	$\overline{1}$	$\stackrel{9}{+}$	$\stackrel{2}{2}$	$+$	2 + +	$\stackrel{+}{+}$	∞ + +	＋	$\stackrel{\sim}{1}$	$\stackrel{1}{1}$
		會			$\begin{aligned} & \overrightarrow{\times} \\ & \text { 别 } \\ & \text { © } \end{aligned}$	$\begin{aligned} & \text { 筑 } \\ & \text { 管 } \end{aligned}$		$\begin{aligned} & \text { ت} \\ & \text { 罗 } \end{aligned}$	若				$\begin{aligned} & \text { ⿵冂⿱丷口犬⿴囗口 } \\ & \text { 俞 } \end{aligned}$		$\stackrel{\cong}{\circ}$	$\begin{aligned} & \text { ○ } \\ & \text { 盈 } \end{aligned}$
		$\stackrel{i}{i}$	$\frac{?}{i}$	$\frac{2}{i}$	$\underset{i}{9}$	$\frac{11}{i}$	$\frac{9}{i}$	留	\overbrace{i}	管	\％	管	$\stackrel{8}{\mathrm{i}}$	亩	会	\％
		$\stackrel{\text { \％}}{+}$	$\stackrel{2}{+}$	$\stackrel{\square}{+}$	\cdots	7 +	$=$	\bigcirc	7 + +	\bigcirc	\bigcirc	$\stackrel{+}{+}$	\square + +	＋	¢ +	$+$
		$\underset{i}{7}$	\vec{i}	$\overrightarrow{1}$	$\xrightarrow[1]{1}$	$\stackrel{\square}{1}$	$\overrightarrow{7}$	$\underset{\square}{\sharp}$	$\stackrel{29}{1}$	$\overrightarrow{7}$	$\stackrel{1}{4}$	$\underset{1}{7}$	\cdots	$\stackrel{\cong}{\square}$	12	$\stackrel{m}{1}$
				$\begin{aligned} & \text { 䉥 } \\ & \text {. } \end{aligned}$			$\begin{aligned} & \text { 䈠 } \end{aligned}$			$\begin{aligned} & \text { 篾 } \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { in } \end{aligned}$			意	$\begin{aligned} & \text { 鹍 } \\ & \text { a } \end{aligned}$	
	皆	䃃	$\stackrel{\square}{9}$	¢	$\stackrel{\square}{7!}$	$\stackrel{5}{8}$	7	\％	9	\％	\％	$\stackrel{3}{3}$	잉	$\stackrel{\sim}{7}$	员	$\stackrel{\text { ®0 }}{\sim}$
言言		$\stackrel{7}{4}$	$\underset{1}{1}$	T	$\stackrel{9}{1}$	T	$\stackrel{9}{7}$	$\stackrel{7}{1}$	1	1	7	$\stackrel{\square}{1}$	1	\bar{u}_{0}	i	
高	∞	O		$\stackrel{\ddots}{\mathrm{O}}$	$\begin{aligned} & \infty \\ & \\ & \end{aligned}$		∞	$\stackrel{\circ}{\hat{\mathrm{ci}}}$		$\underset{\sim}{\mathrm{F}}$	－	웁	$\stackrel{\circ}{\mathrm{i}}$	NT	$\stackrel{7}{-}$	$\frac{1}{1}$
	\％	$\stackrel{\text { ®i }}{\substack{i}}$	$\stackrel{\overbrace{}}{\mathrm{f}}$	皆	$\begin{gathered} \infty \\ \substack{\infty\\ } \end{gathered}$	$\begin{gathered} \infty \\ \hat{\hat{\epsilon}} \mathrm{i} \end{gathered}$	$\underset{\substack{\infty \\ \AA \hat{i} \\ \hline}}{ }$		管	萳	$\stackrel{\varkappa}{\hat{\varepsilon}}$	$\begin{aligned} & \infty \\ & \infty \\ & \substack{\text { cis } \\ \hline} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { Oin } \\ & \text { in } \end{aligned}$	$\stackrel{\text { Oi }}{\substack{0}}$	$\stackrel{8}{9}$	$\underset{i}{0}$
	\％	范	®isi	令	$\begin{aligned} & x \\ & x \\ & \end{aligned}$	$\stackrel{\infty}{\infty}$	$\underset{\substack{\infty \\ \hline}}{\infty}$			$\underset{\mathrm{c}}{\mathrm{i}}$	$\stackrel{0}{3}$	$\frac{31}{31}$	$\frac{0}{6}$	$\stackrel{H}{i}$	$\stackrel{9}{4}$	$\stackrel{\rightharpoonup}{3}$
		ت	$\stackrel{\cong}{\cong}$	－	$\stackrel{\text { 令 }}{ }$	$\dot{\varrho}$		OOO	$\stackrel{x}{\underset{-}{\circ}}$	E	$\stackrel{C}{\circ}$	0	？	$\stackrel{\infty}{\leftrightharpoons}$	$\stackrel{9}{\leftrightarrows}$	馬
	9	－	$\stackrel{\text { 失 }}{\text { ¢ }}$	䈅	$\stackrel{\text { \％}}{\sim}$	$\stackrel{\sim}{\sim}$		"	$\underset{\sim}{\infty}$	si	$\stackrel{\text { 2 }}{\text {－}}$		$\stackrel{\square}{\text { n }}$	$\begin{aligned} & 21 \\ & \hdashline 3 \end{aligned}$	$\stackrel{\square}{=}$	
	$=$	$\stackrel{\rightharpoonup}{\Theta}$	$\stackrel{\cong}{\cong}$	$\stackrel{\infty}{\underset{\sim}{\infty}}$	$\stackrel{80}{8}$	$\stackrel{\bullet}{\ddot{\sim}}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{\square}$	\cong	$\stackrel{\sigma}{\dot{\theta}}$	$\stackrel{\rightharpoonup}{\dot{S}}$	$\stackrel{\star}{\Phi}$	$\stackrel{9}{\Xi}$	ö̀	＋	
		8	9	Σ_{5}	\therefore	亏	$\ddot{\omega}$		－	\bigcirc	F		$\stackrel{\sim}{\sim}$	\％	아	＊
		$\ddot{\sim}$	$\frac{0}{\infty}$	$\stackrel{\square}{-}$	$\begin{aligned} & \vdots \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \therefore \\ & \therefore \end{aligned}$	$\bar{\approx}$		$\begin{aligned} & ? ? \\ & 0 \end{aligned}$	$\mathfrak{7}$	$\underset{\infty}{\bar{\infty}}$	$\begin{aligned} & \stackrel{2}{4} \\ & = \end{aligned}$	$\begin{aligned} & \overline{\mathrm{S}} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & 13 \\ & = \end{aligned}$	$\begin{aligned} & 0 \\ & i \end{aligned}$
Sumlur．		$=1$	5	\rightarrow	10	\bigcirc	$1-$	－	\because	：	\bigcirc	4	－	\sim	∞	0
								$\begin{aligned} & 9 \\ & 0 \\ & \vdots \end{aligned}$:		＝	＝	$=$	－		

TABLE
results of expiriments made with pendulum c at tokio, after the excursion.

TABLE VI．
results of experiments made with pendulum c at ogasawarajima．

$\begin{aligned} & \text { 亨 } \\ & \text { 燕 } \end{aligned}$		
		$\frac{\hat{3}}{\frac{3}{4}}$
别品		
$\begin{array}{l:l} \hline \underline{E D} \\ \hline ⿰ ⿺ 乚 一 匕 刂 \end{array}$		
妾亳	娟	
妾竧		
$\begin{aligned} & =1 \\ & = \end{aligned}$		

TABLE VII．
results of experiments made with pendulum e at tokio，before the excursion．

$\frac{\text { 槀 }}{}$			1	，	i	1	$\stackrel{\text { 亿 }}{7}$	$\stackrel{\rightharpoonup}{1}$	＋	＋	－	H1	－	$\overline{1}$	＋	\pm	\％
	3					$\begin{aligned} & \text { 雄 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 틍 } \\ & \text { O} \end{aligned}$		$\begin{aligned} & \text { 爰 } \\ & \hline \end{aligned}$	合	蕞		$\begin{aligned} & \text { 筑 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { rer } \\ & \text { éc } \end{aligned}$	篅	il	$\begin{aligned} & i 1 \\ & \text { in } \\ & \hline \end{aligned}$
	i					$\stackrel{\infty}{i}$	$\underset{i}{\infty}$	$\underset{\sim}{\infty}$	$\underset{i}{x}$		$\stackrel{\infty}{i}$	$\frac{20}{i}$	$\frac{\infty}{i}$	\div	\div	$\%$	i
	7		∞		\because	\cong	$\frac{2}{1}$	9	옥	ন্	it	ä	9	i	$\frac{20}{1}$	$\stackrel{\oplus}{1}$	$\stackrel{30}{1}$
多			1	I	$\underset{\imath}{7}$	$\stackrel{0}{1}$	$\stackrel{0}{1}$	\approx	$\stackrel{O}{1}$	1	$\stackrel{\cong}{1}$	$\stackrel{\cong}{1}$	$\stackrel{0}{i}$	$\underset{1}{\approx}$	$\frac{2}{1}$	7	\cdots
				\mathscr{R}	$\begin{aligned} & \text { 蕆 } \end{aligned}$		$\begin{aligned} & \text { 荌 } \\ & 8 \\ & \hline \end{aligned}$	皆			웅	$\begin{aligned} & \infty \\ & \stackrel{0}{i} \\ & \stackrel{8}{6} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	B		¢ 8
					¢ฺ．	¢		$\stackrel{\circ}{\ldots}$			\％	${ }^{5}$	¢	$\stackrel{3}{\text { c／}}$			¢़
					＋		$\stackrel{+}{+}$	＋	＋		$\stackrel{7}{+}$	$+$					$\stackrel{6}{\square}$
喜			，		8	\％	สั่	$\stackrel{\square}{\circ}$	¢	ก	$\underset{8}{5}$	¢ั	층	1	が	Noç	－
			\％	\％	－	¢	둔	$\stackrel{\square}{\text {－}}$	ก	ล	$\stackrel{0}{6}$	－	¢่̈	$\stackrel{1}{9}$	－	Oٌ	－
总					范	$\stackrel{9}{\square}$	¢	－	5		$\stackrel{\square}{4}$	\％	¢	¢	哭	哭	
	，		－		$\stackrel{\square}{\infty}$	シ		x			C-		足		！		
\dot{E}					$\stackrel{\leftrightarrow}{\Delta}$	\pm						$\stackrel{0}{\square}$	$\begin{aligned} & 0 \\ & \end{aligned}$	－	$=$	$\stackrel{n}{ \pm}$	－
兰			$\dot{\square}$		\bigcirc	8	8	$\check{\hdashline}$	\％	\therefore	-1	๕!	\bigcirc	$\stackrel{\text { cid }}{ }$	\because	$\stackrel{0}{\circ}$	$\stackrel{x}{\overbrace{i}}$
			$\overline{7}$		\because	ㅇ	$\stackrel{\square}{\circ}$			§	\bigcirc	\％	\cdots	\because	皆		－
											x	$=$					
			\cdots	\cdots	－	∞	－	－			©	$=$					\because

		1	+ +	$+$	$\stackrel{+}{+}$	0 + +	$\stackrel{\text { c }}{+}$	$\stackrel{\square}{7}$	$\stackrel{+}{+}$	＋	\square +	$\stackrel{ }{7}$	$\stackrel{+}{+}$	$\stackrel{9}{+}$			
		ob	O 0		$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { to } \\ & \text { O} \\ & \text { O- } \end{aligned}$	®． 흥	$\begin{aligned} & \text { ت} \\ & \stackrel{訁}{8} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ö } \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	응	馹 •	응		N O			
		7	$\underset{i}{\text { F }}$	Fi	F	7	7	7	Fi	7	7	$\underset{1}{7}$	¢	\％		音	
		$\underset{1}{7}$	${ }_{1}$	¢	－	$\stackrel{7}{1}$	$\underset{1}{2}$	$\stackrel{7}{1}$	৷্ম্ত	$\underset{1}{2}$	$\stackrel{\infty}{1}$	$\stackrel{\infty}{1}$	$\stackrel{\infty}{1}$	$\stackrel{\infty}{1}$			
		$1 \stackrel{9}{1}$	$\stackrel{7}{1}$	$\stackrel{7}{7}$	\cdots	$\stackrel{2}{1}$	$\stackrel{m}{1}$	，	$\stackrel{7}{1}$	$\stackrel{10}{1}$	$\stackrel{*}{1}$	$\stackrel{7}{1}$	$\stackrel{\square}{1}$	$\stackrel{0}{1}$			
			$\begin{aligned} & \text { !O } \\ & \stackrel{0}{0} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { O} \\ & \hline \end{aligned}$	응	N \＃ 	合	$\begin{aligned} & \text { on } \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \text { O} \\ & \hline \end{aligned}$			$\stackrel{\infty}{\square}$	$\begin{aligned} & \text { ت} \\ & \stackrel{\rightharpoonup}{0} \\ & \text { in } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { og } \\ & \stackrel{0}{0} \\ & \stackrel{0}{i} \end{aligned}$	H O O－		
		袻	令	¢	¢	$\stackrel{\square}{7}$	\％¢	兌	¢	\％	$\stackrel{\infty}{\sim}$	苓	范	\％			
		$\stackrel{+}{+}$	$\stackrel{\rightharpoonup}{\text { a }}$	$\stackrel{+}{+}$	＋	＋	＋	$\stackrel{+}{+}$	＋	＋	$\stackrel{\square}{7}$	$+$	$\stackrel{+}{+}$	$\underset{+}{+}$			
		cicic on	$\stackrel{\rightharpoonup}{\mathrm{A}}$	$\underset{\mathrm{A}}{\mathrm{~A}}$	$\underset{\text { 犬゙心 }}{\text { N }}$	$\underset{\sim}{\mathrm{N}}$		$\underset{\sim}{\circ}$	$\underset{\sim}{\underset{\sim}{c}}$	$\underset{\sim}{\mathrm{N}}$	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{\circ} \end{aligned}$	俞	oi	$\stackrel{\text { ®i }}{\substack{0}}$			
		第	$\stackrel{\bigcirc}{\text {－}}$		$\stackrel{\sim}{\square}$	－	$\stackrel{+}{\square}$	$\stackrel{\text { ¢ }}{\text { c }}$	$\stackrel{\text { ¢̇ }}{\text { ¢ }}$	¢		\％	た	®	－		
		－		$\stackrel{\text { ®゙ }}{\text { N }}$	＋	$\stackrel{\square}{\text { ¢ }}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	¢	－	$\stackrel{1}{\square}$	令	¢	－	\dot{O}	$\underset{\substack{\infty \\ \hline \\ \hline \\ \hline}}{ }$		
		$\stackrel{9}{\leftrightharpoons} \stackrel{0}{=}$	$\stackrel{\ominus}{\circ}$	号	$\stackrel{\infty}{\infty}$	F	$\stackrel{-}{\square}$		$\stackrel{\square}{\infty}$	$\stackrel{\infty}{\text { ¢ }}$	苐	管	号	$\stackrel{\square}{\square}$	\＃		
		0	$\stackrel{\cong}{\stackrel{\circ}{c}}$	$\check{\cong}$	$$	$\stackrel{\infty}{\infty}$	$\underbrace{\infty}_{n}$	$\mathfrak{e q}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	تِّ	๗ٍ	9	0	$\stackrel{\otimes}{\circ}$	∞		
		$\stackrel{\rightharpoonup}{-1}$	$\stackrel{8}{8}$	＋	－	$\stackrel{\leftrightarrow}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\text { ® }}{ }$	¢	$\stackrel{\text { ® }}{\text { ® }}$	厤	$\stackrel{\text {－}}{\text {－}}$	$\stackrel{\Phi}{\mathrm{j}}$	$\stackrel{6}{\circ}$	$\underset{\sim}{\infty}$		

TABLE VIII．
results of experiments made with pendulum e at tokio，after the excursion．

$\frac{\overline{3}}{\overline{3}}$	1	1	\mp		1			$+$	1	＋		1	1	＋	＋		त +
	$\begin{aligned} & 38 \\ & 0.0 \\ & 8 . \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \stackrel{y}{6} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { R} \\ & 0 \\ & 0.0 \\ & \underline{E} \end{aligned}$	$\begin{aligned} & \overline{00} \\ & \stackrel{0}{8} \\ & 0 \\ & \hline- \end{aligned}$			$\begin{aligned} & \text { Bo } \\ & \text { ᄋ్ర } \\ & \text { O } \end{aligned}$		$\begin{aligned} & \text { rion } \\ & \text { 80 } \\ & 0 \end{aligned}$	忍	$\begin{aligned} & 81 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		है है	$\begin{aligned} & \text { 응 } \\ & \text { ite } \\ & \hline \end{aligned}$
	\％	？ 1		\％	® 1			¢	® 1		1		\％	1	1	1	i
	$\begin{aligned} & \text { ஜ } \\ & + \end{aligned}$	역	$\begin{aligned} & Z \\ & + \end{aligned}$					$+$	$\begin{aligned} & + \\ & + \end{aligned}$	＋	$\begin{aligned} & \sim \\ & + \end{aligned}$	∞ +	$\begin{aligned} & \subseteq \\ & + \end{aligned}$			2 + +	¢ı + +
	\pm	$\stackrel{5}{2}$		$\stackrel{\square}{7}$	1			$\stackrel{7}{1}$	$\stackrel{\text { ® }}{1}$		$\frac{2}{1}$	1		1	1	1	$\stackrel{1}{1}$
		$\begin{aligned} & 30 \\ & \stackrel{3}{8} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{6} \\ & \stackrel{8}{0} \\ & -1 \end{aligned}$	$\begin{aligned} & \text { \% } \\ & \hline 8 \\ & \hline \mathbf{8} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 80 } \\ & \text { 88 } \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & \frac{0}{8} \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\text { CoCl}}{-1} \end{aligned}$		$\begin{aligned} & \text { 응 } \\ & 8 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { है } \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{9}{\circ} \\ & \hline 8 \\ & \hline-8 \end{aligned}$	$\begin{aligned} & 5 \\ & \frac{0}{0} \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 8 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 10 \\ & 0 \\ & 8 \\ & \hline \end{aligned}$		$\begin{aligned} & 2 \pi \\ & 8 \\ & 8 \\ & \hline \end{aligned}$
	శ్లృ	R	Ro	ત্টি	గ్ల్	ి్రి	®్ల	§ి	¢	呂	ल	ஜ゙	畓	${ }_{8}^{8}$	\％		\％
会	$\underset{i}{i}$	$\stackrel{\varrho}{i}$	\cdots		1	1	1	\because	\approx		$\underset{i}{\infty}$	1	$\dot{1}$	1	i	1	0 1
	ผั	た	๗゙		$\stackrel{\infty}{\text { N }}$	$\stackrel{\mathrm{N}}{\mathrm{~K}}$	를	ঙִ	$\stackrel{\cong}{\mathrm{L}}$	$\stackrel{N}{\text { N }}$	$\stackrel{N}{c i}$	$\stackrel{\rightharpoonup}{\mathrm{I}}$	ద్	$\stackrel{\infty}{\infty}$	सै	$\begin{aligned} & \text { EJ } \\ & \text { ci } \end{aligned}$	$\stackrel{3}{3}^{\text {a }}$
	โ్	N	๙ృ		ت゙	تु	İ	$\stackrel{\boxed{c}}{\stackrel{1}{4}}$	$=$	$\underset{\sim}{ \pm}$	$\underset{\square}{5}$	ึิ	$\begin{aligned} & \infty \\ & \underset{\sim}{c} \end{aligned}$	๘	$\overline{\mathrm{N}}$	린	$\underset{\text { ci }}{\substack{\infty \\ \hline}}$
	た	た్	กิ		ज゙	К	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{3}{3}$	륻	ฺฺ	$\stackrel{\cong}{61}$	$\stackrel{Q 1}{\mathrm{~N}}$	$\begin{aligned} & 9 \\ & \text { oif } \end{aligned}$	๕ิ	$\hat{\text { ôi }}$	¢	©
	$\stackrel{\text { Ỳ }}{\varrho}$	$\stackrel{\rightharpoonup}{\circ}$	$\mathscr{\varrho}$		©	$\underset{\sim}{〔}$	$\underset{\sim}{\Xi}$	$\underset{\sim}{0}$	$\begin{aligned} & 0 \\ & \hline 0 \end{aligned}$	$\stackrel{\sim}{\infty}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	8	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\text { N! }}{\approx}$	©	$\stackrel{\infty}{\infty}$	$\stackrel{\sim}{\infty}$
	Əี	$\begin{aligned} & \text { ì } \\ & \text { in } \end{aligned}$	$\stackrel{\infty}{2}$		\pm	Dis	シ	®ֻٍ	$\begin{aligned} & \text { ev } \\ & \stackrel{2}{2} \end{aligned}$	$\stackrel{\oplus}{\mathscr{E}}$	eo	$\stackrel{40}{ \pm}$	©	$\stackrel{\varphi}{=}$	－	\pm	O
	윽	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{0}{1} \end{aligned}$	$\ddot{\square}$	N1	$\underset{\sim}{\infty}$	$\underset{\sim}{\underset{\sim}{\circ}}$	$\stackrel{0}{0}$	$\stackrel{\leftrightarrow}{\mathrm{Q}}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\underset{\text { ®® }}{\substack{0 \\ \hline}}$	$\begin{aligned} & \infty \\ & \text { \& } \\ & \text { - } \end{aligned}$	$\stackrel{\oplus}{\stackrel{\circ}{\circ}}$	©	$\begin{aligned} & \infty \\ & 0 \\ & \hline \end{aligned}$	－	\because	－1
	7	19			ö			～	$\begin{aligned} & 2 \\ & \hline 10 \end{aligned}$				发	¢	$\ddot{\circ}$	9	$\dot{\ddot{\circ}}$
$\frac{\text {－．nqunn }}{}$	$\begin{gathered} \text { R } \\ \stackrel{5}{5} \end{gathered}$	$\begin{aligned} & \Rightarrow \\ & \Rightarrow \end{aligned}$	$\begin{aligned} & \text { © } \\ & \text { 롤 } \end{aligned}$			\％	$\stackrel{\sim}{7}$			$\stackrel{\infty}{\infty}$		인	E \square	－	\bigcirc	－	－
						ω			∞	$\underline{\square}$	$=$	\because	$\stackrel{\square}{\square}$	$=$	－	6	σ
三	$\begin{aligned} & \stackrel{\circ}{\ddot{\circ}} \\ & \dot{\ddot{\circ}} \end{aligned}$	$=$		$=$		$=$	$=$	＝	－	$=$	＝	：	：		年		$=$

$\begin{array}{lllllll}-1 & + & 0 & 0 & 0 & 0 \\ + & H & + & 1 & 1 & 1 & 1\end{array}$	
	$\dot{\vdots}$
	$\underset{\sim}{4}$
艮	
$\frac{\tilde{C}}{2}=z===$	

IX.
 TABLE

RESULTS OF EXPERIMENTS MADE WITH PENDULUM E AT OGASAWARAJIMA.

Date,	䒽		$\begin{gathered} \text { Number } \\ \text { of } \\ \text { minuten. } \end{gathered}$	in mm . Sems-are of omeslation in mm.			Temperatiro in demreas C									Time of a singli oncillation in - hlervalacrent	Residun
				Initial.	F.nal.	an.	Initul.	F.na!	$\mathbf{1}$ an.				Are	Temp.	Chror		
Aug. 14	1	5h23m	39	19.4	14.1	16.8	27.0	27.1	27.1	+2.1	842	1.000360	- 15	- 20	- 46	1.000279	+ 8
,	2	6 b	33_{0}	21.0	15.4	18.2	27.2	27.7	27.5	+2.5	. 756	1.000356	- 17	23	- 40	1.000:20	-
"	3	642	36	19.6	1.4	17.0	27.8	$\because 8.4$	23.1	+3.1	. 269	1.0003 .56	- 15	- 29	- 46	1.000226	-
,	4	724	37	20.0	14.8	17.4	28.5	28.9	28.7	+3.7	. 805	1.000363	- 16	- 35	- 46	1.0002606	-
"	5	80	85\%	20.2	14.9	17.6	24.9	29.1	29.0	+4.0	. 873	1.000359	- 16	- 37	- 46	1.(1)0:260	- 11
,	6	841	39	19.7	14.4	17.1	29.1	29.3	29.2	+4.2	. 831	1.000355	- 1.5	- 39	-46	1.000:3:\%	- 10
"	7	$9 \div 9$	42	19.8	13.8	16.8	29.4	20.5	29.5	+4.5	. 915	$1.00036 ; 3$	- 15	- 42	- 46	1.000 20	- 11
"	8	1143	40	19.8	14.0	16.9	21.9	29.8	21.9	+4.9	. 870	1000962	- 15	- 46	- 40	1.0003:\%	- 10
"	9	1227	25\%	18.4	14.5	16.6	29.8	29.8	29.8	+4.8	.560	1.000370	- 14	- 4	- 46	1.01×30.5	- 6
"	10	130	S0	19.7	13.9	16.3	29.8	29.4	29.6	+4.6	1.095	1.000365	- 1.4	- 43	- 46	1.000262	- 9
"	11	1436	30.	19.7	15.3	17.5	29.1	28.3	29.0	+4.0	. 679	1.000376	- 16	- 37	- 46	$1.0002: 7$	+
"	12	1529	28.	19.8	15.5	17.7	28. 9	28.8	23.9	+ 3.9	. 6.1	1.000369	16	:30	- 46	1.000271	± 0
"	13	1634	29	13.3	15.1	17.2	28.5	2x.2	23.4	+ 3.4	. 633	1.000354	- 15	3	- 46	1.000231	\pm
"	14	17	41:\%	$1 \times .9$	13.2	16.1	2*.2	23.0	23.1	+3.1	. 939	$1.0003: 3$	- 13	- 29	- 46	1.00028;	+ 14
"	15	1748	16	20.4	17.5	18.9	28.1	23.0	28.1	+3.1	. 31	1.00036			46	1.000283	12
"	16	18.4	$43{ }^{3}$	20.6	14.1	17.4	25.0	27.8	27.9	+2.9	1.145	1.000439	- 16	27	- 46	1.0003\%0	+ 79

Sa_{4}
 *
\qquad 3 men .

 2

MEMOIRS

() 111 C

SCIENCE DEPARTMENT, TOKIO DAIGAKU. (University of Tokio.)

No. 6.

THE CHEMISTRY

of
 SAKÉ-BREWING.
 BY

R. W. ATKINSON, B. Sc. (Lond.)

Profegsor of Anatimticai, ard Apphen Chemistry in Torio Daigakt".

$$
\begin{aligned}
& \text { PURITHED BY TOKIO DAIGAKU. } \\
& \text { T(ORIO: } \\
& 2511(1881 .)
\end{aligned}
$$

MEMOIRS
 OF THE

SCIENCE DEPARTMENT,

TOKIO DAIGAKU.

(University of Tokio.)
No. 6.

THE CHEMISTRY

of

SAKÉ•BREWING.
 BY

R. W. ATKINSON, B. Sc. (Lond.)
l'rofessor of Analitical and Appied Cuemistry in Toeio Daigagu.

IUCBLISIED BY TOKIO DAIGAKU.
TOKIO:
2541 (1881.)

CONTENTS.

PART I. KÔJI.

SECTION 1. Rice.
" 2. Preparation of kôji.
" 3. Active properttes of kûju.
" 4. Action of kôju extract upon cane sugar, maltose, and dextrin.
" 5. Action of rôji extract ưpon gelatinized starch.

PART II. SAKÉ BREWING.

section 1. Preparation of moto.
,, 2. The principal process.
„ S. Fermentation of the mash.
„ t. Filtratioy of saké and yield of alcohol.
„ 5. Preservation of saké.
„ 6. Shôchû and mirix.

PREFACE.

Previous to the year 1878 no scientific account of the brewing of sake had appeared, the principal papers which had been published being a translation by Professor J. J. Hofmann, of Leyden, of an article from the Japanese Encyclopredia, 1714, and a paper in the transactions of the German Asiatic Society of Japan by Dr. Hofmana, then Professor in the Medical School of the University of Tôkiò. In December, 1878, Mr. O. Korschelt published an elaborate paper on the subject in the same transactions, in which he gave a detailed description of two processes used in Tôkiô, and the results of special experiments made by himself, after which it seemed that very little more could be said. But continued study of the brewing-process has yielded results which enable us to explain with greater accuracy the chemical changes involved in the manufacture, and although much yet remains to be achieved, the present essay will, I trust, be accepted as another rung in the endless laduer of scientific investigation.

In carrying out this research I have been assisted in very varions ways by a number of friends, all of whom it would be impossible to mention individually, but I should with reason incur the charge of ingratitude did I not put in the front rank Mr. Kato, Presilent, and Mr Hattori, Vice-Presilent, of the University, to whom indeed the very existence of this memoir is owing. My thauks are also due to Mr. Jihei Kamayama and to Mr. Tobei Iizuka, of Yushima, Trikió, Proprietors of the kúji aud saké works resplectively; to Mr. Mansuké Izumi, of Sishinomiya, and to Mr. Shinyemon Konishi, of Itami, to all of whom I owe much valuable information.

To M. Pasteur I am indebted for permission, to make use of plates XVII, XVIII, and XIX, taken from his "Etudes sur le Vin". Without the cordina coöperation of my assistant, Mr. Nakazawa, my task wonld have been much more difficult, and thus publicly I desire to acknowledge my indebtedness to him. Plate XVI. I owe to P'rofessor Ewing, and l'rofessor Cooper has with the greatest kindness looked over the proofs for me.

The sulstance of Part I of this memoir was communicated to the Royal Society of Lonton in a P'aper read on 10th March. 1881.

The printing of the memoir was carried out at the Govermment Printing Office (Insetsu Kiyukn), and the plates were engraved by the Gengendo Engrav= inge Company.

The accompanying French and Einglish equivatents of the Japanese weights and measures nsed in the text will prove of assistance to those who are not faniliar with them.

IV

```
1 kuwamme (kw.) \(\quad=3.75\) kilos. \(=8.28 \mathrm{lbs}\).
1 shaku \(=0.30303\) metre \(=0.9942 \mathrm{ft}\)
1 chò \((=10 \mathrm{tan}) \quad=0.99174\) hectare \(=2.45\) acres
1 koku \((=10\) to \(=100\) sho \(=1000 \mathrm{go})=180.33\) litres \(\left\{\begin{array}{l}=4.963 \text { bushels. }\end{array}\right.\)
1 yen (paper) \((=100\) sen \()=\) about 2s-6t.
```

R. W. A.

University of Tókió, Japan.
May, 1881.

IVI

INTRODUCTION.

It is probably impossible now to ascertain when the art of brewing first became known to the Japanese. Tradition ascribes its introduction to some emigrants from Korea about the end of the third century, who doubtless obtained the knowletge from China where it had long been practised. How improvements were introduced we can only surmise, but it is known that about the end of the XVth century, the two districts of Itami and Ikeda had established their superionity over all others, a position which, together with Nishinomiya, they hold to this day. About 300 years ago a very important improvement was effected relating to the preservation of the sake which, in the hot mouths of summer very quickly becane undrinkable. This consisted in hating the sake to such a temperature that the hand could not bear it, but, although answering the purpose for a time, it did not suffice in the manner in which the heating was carried out to permit the liquil to be kept for any lengthened period. Nor has any important alteration in the process of manufacture been introduced since that time notwithstanding the trouble entailed upon the brewer by the repeated heating of the sake which is necessary, hut it is hoped that the sugrestions made in this memoir mary have the effect of directing attention to the important and efficient process introduced by M. Pasteur for preserving wine.

I am indehted to Mr. Shigetoshi Yoshiwara, Vice-Minister of Finance, for the following statement of the quantity of the various kinds of alcoholic liquids produced in the year ending September 30th, 1880.

	$\begin{gathered} \text { Tax } \\ \text { per koku } \end{gathered}$	No. of koku	Revenue in yen
Ordinary sake (seisha)	1 yen	5,015,084	5,015,08t
Turbid sake (nigorizake)	0.3 "	65,494	19,648
White sake (shiro-zake)	2	1,500	8,000
Sweet saké used for cooking (miris)	2	38,569	77.138
Liqueur (meishn)	8	3,615	10,845
Spirit (shôch0)	1.5 "	88.708	125,562
		5,207,970	5,251,277

The estimated amount of reveme from alonholic liquors for the year emoling September 30 th, 1881 is $10,795,025$ yen, the total extimatal nevenue being yen. $56,616,907$. The former estimate is much greater than the actual yield of the past year, owing to the consilemble changes which lane been made bith in the amounts and in the mode of collerting the taxes. ${ }^{n}$ 'The amount of the different kinds of sake given in the table alowe is $5,207,971$ kokn, or $206,756,419$ gallons., but this number does mot express the total guantity consmond, fur without any donbt, much sake which is not taxerl, is preparexl in private houses in the country. Taking into considemtion only the amonnt of ordinary sakio used, say 5 million koku, or 198 million gallons, the consumption corresponds to 6 gallons per heal per annum reckoning the pupulation at 33 millions. If it were diluted twice so as to be about the same strength as beer, the consmmption would be doubled, that is 12 gallons a hemi, whilst the consumption of beer in England averages 34 gallons per head, wearly three times as much as in Japan. The brewing of sake is, therefore, relatively of less importance than that of beer in England, and this is doubtless to the ascribed to the enormons consumption of tea, which serves at all times, in summer and in winter, as the national beverage.

The study of the chemical rowtions involved in the hrewing prokses described in the following pages has loronght to light a fuct of some importance relating to the physiolngy of plants, viz. that the growth of a mould over thes surface of perfectly dead rice gmaina causes a change in the character of the albumenoid matter of the grain rusembling that which results from the germination of the embryo of similar grains. I cannot omit here to draw attention to the imutual advantage to be deriver from an association of workers in industrial ami in pure science; the coüperation cannot lut he of the greatewt utility on the one hand, by sugreesting new sulpects for research to the theoretical worker, and on the other, in aiding the practical man to attain the beat ruanta possible. The student of science in Japan has a wide field lufore him: that system of isolation which has prevented the introluction of Western knowledge till within the last quarter of a century has not been entirely fruitlens, for it has resulted in the development of industrial processes which are ns novel and interesting to the Europenn as those of the lattur are to Japanese. The scientific students of the university and colleges of Japun need mot, therefore, lamo very far in order to find suljects that require investigation and explamation, and this search will, without dombt, add largely to the sum total of existing kmowlevigr.

[^14]
PARTI. K0.J.

SECTION. 1.

RICE.

The grain from which alcohol is produced in Japm is the same as that which forms the staple article of diet for all classes, viz. rice, and its cultivation employs the latome of the greater number of the pophation. According to the Official Catalngues of the Japanese Fxhibits at I'hilavelpiita, in 1876, and at Paris, in 1878, the total area of paddy land is 1,611.130 chio (3,947,268 acres), and the yield of rice amounts to $28,000,000$ kokn ($138,964,000$ bushels), giviug an average yied of at little more than 35 bushels per acre. The numbers given by General LeGendre in his work, "Progressive Jap nn," are larger than these, but are said to have been obtained from the Finance department, being the results of more recent survess. He says "According to recent surveys (1874-78)
 other fields (Misedlaneons cultures) is 1,732,449 chô and 7:3 tan (kisures procured at the Oknra-Sho)." Fiorther on he gives the total quantity of rice producen as $34,394,757$ kokn, in namberalso furnishe 1 by the Okura-Sho (Finmace Department.), and fom these the average yield of rise is cululatel to be a lifte more than 27 bushels per acre. These numbers include rice of all kinds, several hundred varieties, lont of these there are only three which tre sullicimatly well marked to paticularize. One variety is calle Olalon and is grown in dry fiehs, whilst the two others. common rice (wrechi), and ghtums rice (mo-hignom) ate grown in pully fithls. It is said that the mpand rive (obere) is woll smited for brewing purnses becanse it leaves very litate residue, hat Ihave hat bo experience of its use for that purpnse, that which is almost universally cmpaneal being the
 reason given heing that the lignid prepared fiom it what maplly pattely, but another phesibhe reasom is its greator onst
 Hizen. The nest hest are from Bushiu, Tamb, Tatime amd the thiml quality from Killansa, shimisa, Musthhi, and Riurat.

The lollowing analysen of the two kinds of rive were mate in the doiversity laboratury.

[^15]

	Commann Riem.							vilutimuan Micre.		
	Ise		Bnn. shin	Y¢	Mino	Sendas		Kunhi gaya 1877	$\begin{gathered} \text { Kızni } \\ 1877 \end{gathered}$	18%
	187'	1877	1877	1818	1879	1879	1880			
Wuter$\left\{\begin{array}{l} \text { sugur and dustrin. } \\ \text { Asls } \ldots \\ \text { Alhumennids } \end{array}\right.$	11.0n	18.02 .	12.80°	11.78	11.61	12,018	11.45	12.41	12.00	10.61
	8.22	8.52	0.48	1.40	2.000	8.34	1.950	4.7\%	. 40	1 H
	. 72	. 87	8.12	1.17	1.22	8	. 50	1.48	1.06	12
				1.04			1.71			
Albumersoida.				6.71	1.88		42			4\%
E Starch	71.64	72.53	619, 28	[3.:1	-8. 5	i2.64	78.31	72.84i	72.41,	\%et.is
- Celluluse	2.00	9.18)	8.27	2.80	2.61	2.85	di*	2.74	.07)	. 1
关		1.21	1.88	1.27	1.58	! . 04	1.197	1.80	1.18	2.18
\pm Auls		nod	. 010	11	. 10			. 16	. m	.
	100.00	100.00	100.00	98.61	99.27	1 90.61	90, 123	1(10.00)	$1(\mathrm{~W})$ (x)	! 3

No ussential dificienere in chemical comprasition letween the two himbe of rice is divelosed ly the foregning aballyses, bat the two groiris can the distimgrishel at the fist ghame after removing the hask, the common riwe being
 rice" is given to the latter, doubtless, from the peenliarity it poseremo of furming. when stemed and beaten, pasty lamp: of givat femeity, a properly which is not tharal ly the common rice. It is a similar property to that fresesserl ly. wheaten flour, and in that grain is slue to the presence of a peruliar nitrogenous bonly calle:l "gliadin" which is mot present to nuy markerl extent in miner grains. This sulstance is soluble in hot nleohol aml if it were present in glutinous rice might be expected to te found in the alcoholic enlution, bat experiments made for that purpose have not shown any grat difference between the two kimuls of sice in the proportion of nlbumenoils ilissolveal by alechol. Nor is there any difference in the amomets poluble in cold water; the only essential diflemenee I
 that of common rice beisug colomed deep bliee, like stareh, nmi that of the ghatinots varety red, like dextrin. 'The carse of this diflerence mone probatily lies in the mature of the allannenvils than in the proportions of thestrin.

The weight of a siven bulk of vice varies considerably a momaling the the way
 from the rolume, I have taken what any he consilerent a hai anmore viz fo

One shof of the specified linds of rice xas loosely placed in the measure, and without shaking, carefilly levellerl : carinmmer is the mean of seven weighings.

When the rice was tightly packed, that is, after being well shaken down, the nverage weight of one lioku wals 42 kurcamme, and as a rough average letween the weights when loosely and when tightly packed, 40 kuwamme per linliu will not be fur from the truth.

The rice graiu is a complex structure formed of a great many distiuct parts, some of which can be reatily pared ly ondiatry mechanical appliances, whilst ethers can only he separated hy special meats. Of the former is the harid outer coat, itself compert of several dillerent parts, which is generally removed by the farmer as chatf before the rie: is sent into the makee. The hulled grain, in the form in which it is bought for for ? consists of three easily discernithe parts, a thin, yellowish skin on the ontside (the testa), within this the white starchy matter which constitutes the nutritions part ol the grain (the endosperm), and at the lower end a portion of a dillerent aptearatuce, mathy horny and shrivelied looking (the embryo). Immediately lethis the testa the celis of the endosperm do not difter in general apparathe from those in the interior, hat the greates part of the albumenoid matter of the em luskem is weumblated in these cells. An excellent test for the preme of alhmenoids is merchric nitrate ; if a section of a grain of rice le stecped in such it sohtion those protions which contain allomenoid matter lecome coloned rell, whilst the rest of the grain remains uncoloured. Whea a thin slice of the unwhitene grain is thus treated the cells forming the testa have a somewhat gremish colour and can be sharply distingnished from the layer immeliately within, which is deeply coloured rel. This eobotion extemls inwarls for a distance a lithe greater than the thickuess of the testa, lat the finm of the cells thas coleared does not appear to be difterent fron the manainder of these foming the endesperm, and which assume no coloration. In a similar sectim of whitemed rice the onter layer of greenish, sinare cells is mut sect, abl the colines pesent a jarged apparathee, but
 portion," if :ay, of the cells contamimer nitrughnas matter has been removed. In fact. the thicknes of the haye colomel mat camot he satd to hawe perceptibly diminished. The rel coloration is not meniform but is distributed over numerous

a high prwer distinct proiuts of real matuor esmbedintinguinhel; thase ane the alcurone graine.

When the rice grain is whitencel the testa is removed by leating, and analyses show that the hran sul olfasined contains much more bitmogen than the averuge of the entire hulled grain. Tho two following amalyan are taken from "puper on "The Agricultural Chemistry uf Japan" hy I'rol. Kinch. ${ }^{\circ}$

COBPDSITION OF BBAN (muks).

Λ.	13.
Whter.......e................. 10.96	11.05
Ashe.....e. 9.1	9.22
Oil 13	.15.50
Filreo...e................ 7.16	8.60
Allımernids........o.c...... 13.41	13.55)
Solnble carbohydristea.... 4566	42.08
100.00	103.10

These amalyses slonw that the ash, nil, fibre, ant allmmenoils are contained in large proportion in the bran. 'rogether with the testa, which in manly fibre, or cellnlose, the embryo is removel, and it is from that source that most of the fut and nitrogenous matter is derived. Notwillisturding the large percentage of allmmenoid matter confained ins the hm, that in the whitund rice has not very greatly diminished: thus in one specimen which contained 7.4 per cent. before cleaning, afterwards 6.9 per cent. was fullud, the proportion of moisture being the same in ench. As the born contains so much nitrogenous matter it might have been expected that the groin after whitening would have shown a marked diminution ; that it does not do so is owing to the fract that the whitened grmina are selected, thnse which are unliroken being sepamited from those which have been much broken. I'hus there result on the mue hand graius broken into minute portious enntaining very little nitrogen, and sold to the ame maker, on the other, the unbroken, whitenced grains enntaining alill nlonost all the protein matter of the endosperm, and ieprived of testa and embryo which together fonn the bran (uuka), and coutain the largest percentage of nlbumenoids.

The fullowing analyses of the whitened rice grain are given hecanse from them the samples of linji, the enmposition of which is given afterwards (p. 12) were prepared. A is the rice ued for making kijiz at the Ynehime works; 13 is the rice used at the Tikiio lirewery in the opentions descritest in P'art II.

[^16]COMHOSTIUN OF WHITENER RI(E HRIEI) AT 100° C.

SECTION. 2.

PREPARATION OF KÔJI.

Starch is a substance insoluble in water and incapable of undergoing formentation directly, that is, of being converted into alcohol. In beer-making countries the conversion of the starch into a sugar from which alcohol can be produced is effected by the use of malt, a body formed by allowing the embryo of the barley grain to become partially developed, by which a change in the character of the grain occurs, as the result of which it becomes possessed of certain properties attributed to the existence of a hypothetical substance known as "diastase." The peculiarity of "diastase" is that it is a body containing nitrugen and having the bumer of maturg thick stambaste liquid owing to the formation from it of the sugar maltose together with dextrin.. Other kinds of "diastase" occur, as for eximple in the saliva, and in the pancreas, and these forms althongh they rescmble in some respects the diastase contained in matr, differ from it in other particulars. 'Ihns, the diastase of malt is not ahie to canse maltose to take up water and so be converted fintor dextrose, lut both the diastase of the saliva and of the prancreas effect the hydration of maltose and change it into dexarose. It is evident, themetore that different kimls of "diastase" exist, and that it is mot orie suhstance oraly which possesses these properties. As the material "knj" is compurel in the manmacture of sake, and as it is used for the same purpas as inalt in lwer-heweries it beeomes necessary to examine it in some detaii that we may asomptain how for it aymens with, and how far it difers from nthur similar hruling

examine the mosle of manufacture in the special kiji worke, as there will be found the conditions essential to its successful production moro readily than in tho sake brèweries. I am especially intebtel to Mr. Jihei Kimmayama, of Jushiuna, Tukió, for much iufurmation as well as fur permision to inveatigate at his works the whole process of manufacture.

The cssential part of tho prosers is carried out in long narrow passagos cut in the soli.i chay about 15 or 20 feet below the surfuce of the ground. The olyect of this is to have n chanker which being once heated will not easily losu its heat either hy meliation or ly conduction. That this result is producod by cutting the chambers in the clay is shown by the constancy of temporature which they are found to $\boldsymbol{p}_{\text {mssess even when considemble changes take place in the tem- }}^{\text {en }}$ perature of the outer nir. Chy is a very banl comductor of heat, nad it is practically impossible for heat to be commonicated cither to or from these passages through the clay. The passages are about 25) or 30 feet in length, and each set is reachel throngh a very low and narrow nic-inate so for the purpose of preventing as much as possible an exchange between the outer and the inner nir. The opening passago is not more thau letween 3 and 4 feet high, and about 4 feet wile, and is usually closed with mats. It is appronched by dencenading a shaft from the ground abwe, and at the other oul it opens into a passage of somewhat larger dimensious, from which two others branch off nearly at right angies. It is in these innermost parts that the highest tempenture is maintained. In the sakú-breweries the warm chambers are less carcfully constructerd, being built near the surface of the ground of womlen phanks conted with mud and thickly covered over with strmw mats. 'Ihis is evidensly a less perfoct methond of keeping in the heat than that sulupted in the kiji works proper. Haviug describel the nppratus used we may unw consider how the rive is treatal. It in brought to the works husked lut not cleaney, and the pineras of cleming ar whitening, is done liy the manufacturen. This consists in removing that thin outer skin, the testn, which, as we linve seen, cuntains a large pmoportion of cellulose and mineral matter. It is removed liy the brewers, ns they aby, lncense it would render the liquil brewed very liablu to putrefy. In remering the lman the rice suffers a considomble loss of weirht, owing, nut only to the lens of the testa, but also to the fict that many of the grains become hroken and are rejecte. 1 on that account. In, most places the cleaniug in effiecterl hy hauma lutmor. The rive to be clemed is placed in a wooden mortar sunk in the ground, and a heavy wooden thammer sujparted upou a fulcrum is sul arranged that on prossing down the side of the lever away from the mortar and then removing the preseare, the heavy end of the lever falls by its own weight into tho montar. As it fulle it causes the groins of rios to rub wgainst one another and en tho skin lecomes scruped off. The lues of weight varies ncombing to the degree to which the cleaning is carried; that which is nesel for the prepamation of kijij and of moto (ealled moto-mi) loser from 30 to 40 per cent. of jos volume, whint the laker-mi.

and loses only about 25 per cent. of its volume. The numbers given are, of course, only approximate for, in every operation the percentage of loss must be different. The pounded mass is separated into three portions-the whole grains -the broken grains, and the bran. The whole grains are employed in the manufacture of koji and sake, the broken grains are sometimes made into an inferior kind of lioji, but generally, like the bran, are sold to other persons. The amount of bran obtained is sail to be about 3 kuwamme (25 lbs.) for every koku (4.96 bushels) of rice cleaned.

In some works (salé-works) steam power is employed to work the cleaners, and in other places water power is used.

The rice is next placed in a tank, covered with water, and from time to time trolden upon by the workmen, the water being frequently changed. The fine dust which was adherent to the grain is carriel away by the water, but the amount of matter thus lost, although sufficient to make the water milky is not known. After this washing the grain is left in steep for one night ly which it becomes quite soft and is ready for steaming. The object of the steeping is merely to render the grain soft so that the subsequent steaming may be as short as possible. It is therefore, not analogous to the steeping of the barley-grain in making malt, an operation which is required to promote the germination of the embryo. In the case under consideration, inded, the embryo has been completely destroyed by the rough beating, and no subsequent germination is possibie. It is important to remember this, so that it may be clearly understool in what respects the manfacture of koji differs from that of malt. But even were the embryo not removed by the process of cleaning. it would be completely killed by the next operation, that of steaning. The soaked rice is placel in a large tuh which is provided with a false bottom covered with cloth; the tub is then fixed upon an iron boiler full of water. When the water lwits the steam passes through an opening in the true buttom of the tub, and as it iscents through the rice which is placed upon the choth corering the false lootom, it heats the grain and canses the starch to become gelatinized. The grinins of stermen-rice are flexible and of a horny appearance, and must be the same throuthout. In this state the rice is called mi . It is now apread out upon mats to cool, and during this time the workmen prevent the grains cohering hy rulbing them between their bands. When the temperature has fallen to alout 29° C. the foreman mixes with the rice a small quantity of tane, a yellowish powter cousisting of the spores of a fungus described by the late Mr. Ahlhmorg under the name of Eurotimm oryzere. (Ahlb.) The quantity employed is unt exactly the same in different works, but averages about $3 \mathrm{c} . \mathrm{c}$. to 4 tô (ras litres) of rice.

The subsequent operations vary a liftle in difierent worls lout not in any essential particulars. I shall, therefore, omly descoite them as carried out in the kôji works at Yûkhina, Thikiio.

[^17]
 steamed rice; the comera of the mats are turnell u!! the whols

 distributed. The rive mixed with fingus apmeres is thom carried bullow to the front part of the chambers where the tempmature is not high, and is there allowed the remain one day envered with mats 0_{11} the seromil day the Pomperature of the mass is abmut 25 or $26^{\circ} 1$: wn that it is molher lower thatn when the spures were mixed with it. Ahout nem of the seremb hay calliug Hat on which the admix.
 uhove where it is aprinkled wifh water ln the expming of that day the mixture

 muderneath the benches which bear the keji of the thimb day. The tmys are allowed to remain in this position fum alume 5 p. 111 . . Wh H10 sexond day until ahout $5 \mathrm{a} . \mathrm{m}$. on the third day, ly which time the previnus lately of koji on the benches has been remowed, and the wew hatch is thea fint in its place. The mixture of rice and spores which was previnusly fprend out in a thin layer over the tray is at this time (5. a. ma. third duy) collected into a hasp whench tray and left until between 9 and 10 n. m. Inring this time the temprature rives considerably and, by the vegetation of the fimgins. The graius ure Innimil logether. In order to prevent the temperature rising so high as twinjure the vitality of the plant, the workman cools the mass by spreadine it ont in a thim layer and leaving it for some time. After it has lecome somewhat couler be again collecte it into heaps and leaves it until ahont 1 f m at which than it hne once more attained a temperature nearly as ligh as at 9 ar $16 \mathrm{n} . \mathrm{m}$. after which it is aprenul out and repeatedly worked with the hands during the rest of the day. Shetween 8 viclock in the evening of the thiril lay and 5 a. m. .f the fonrth day the fungas still continues to grow, sufticiently to bint the while mass fore ther :nd the tray. At $5 \mathrm{a} . \mathrm{m}$. it is removed from the chamber anll pusprved on the emys matil required for use.

In the manufacture uf kioiji for Nolki makinis the nipminkling with water on the second day is omitterl, and the prombet is then ralled lii lifiji (raw kiji).

The formation of kegi is all ilhestration of the erewsh of the mecelinm of a fungus which uses the starch of the riere graisa as finel. In phats which pespers
 tion. The former is necompanied liy a tixation of carluon contaned in carlonic acid under the influcher of the smas rays, atol liy the simultanembe likeration of oxygen. In this way the majority of phate ald ta their sulmanere. At the same time the second process, respirationg. grese wh. lutt th a smaller extent than the former: it congists of an oxidation of the tissues of the phant, carkmice a id heing

phyll, the green colouring matter of plants, and it cand be well ohserved to take phace in the growth of the koji funghs. This process of respiration, or uxilation, as a chemist might call it, is accompanied by a remarkable development of heat sufficient to keep the temperature of the kiji and of the chamber very high. The following temperature observations will show this-the first series was male in spring when the amount of kiji being made was very small, and the outsile temperature not very much below that of the chamber. In the secoml series of nbservations, nade in Decemher, the difierences are much greater, the temperature of the outside air being very low, and that of the kojij much higher. During the month in which these observations were male the amount of material produced is very large, and the clambers are kept fally worked: it is owing to this circumstance that the differences of temperature hetween the koji and that of the chamber are so much more marked than in May.
table in. temperatures of koji and chamber in mar. kOJI OF THE THIRD DAY ONLY.

nate	Hour	Temprature of the outer air.	'Temperature of kîji chamber'		$\begin{aligned} & \text { Temperature } \\ & \text { of the } \\ & \text { kôji (3rd day) } \end{aligned}$
			Minimum	Maximum	
May 18th	8 a.m.	$55.3^{\circ} \mathrm{F}$.	$72^{\circ} \mathrm{F}$.	$76^{\circ} \mathrm{F}$ 。	No kôji
" "	$6 \mathrm{p} . \mathrm{m}$.	61.8	72	74°	"
" 19th	$7 \mathrm{a} . \mathrm{m}$.	59.0	72	77	$89.6{ }^{\circ} \mathrm{F}$.
"	$8 \mathrm{p} . \mathrm{m}$.	64.0	74	76	"
, 20th	$8 \mathrm{a} . \mathrm{m}$.	57.7	76	77	84.2
"	$9 \mathrm{p} . \mathrm{m}$.	64.6	75	77	"
" 21st	$7 \mathrm{a} . \mathrm{m}$.	60.5	75	76	"
"	$9 \mathrm{p} . \mathrm{m}$.	85.0	74	76	$8 i^{\circ}$
-1 22 nd	$9 \mathrm{a} . \mathrm{m}$.	63.6	75	77	80
"	$9 \mathrm{p} . \mathrm{m}$.	60.0	76	79	89.8
- 23 rd	7 a.m.	65.5	77	83	"
" "	$8 \mathrm{p} . \mathrm{m}$.	65.0	79	82	95°
" 24th	$7 \mathrm{a} . \mathrm{m}$.	64.0	80	81	102°
\cdots	8 f. 11.	6ifi.i)	78	$8(1)$	¢6, ${ }^{\circ}$

KOJI OF THE THHBD DAY ONLY.

Date	Hour	Temperature of outer nir	Tempemtore of nir in chambor.			
			Misiman	Maxinum	Obsuerved	
December 6th	8 a.m.	$40.7{ }^{\circ} \mathrm{F}$	-	-	$82^{\circ} \mathrm{F}$	$104.8{ }^{\circ} \mathrm{F}$
*	$2 \mathrm{p} . \mathrm{m}$.	49.5	neO	- $88^{\circ} \mathrm{F}$	82	91.0
" "	$8 \mathrm{p} . \mathrm{m}$.	42.5	81	83	11	83.8
" 6th	8 mm .	41.6	80	88	88	100.6
\cdots - \quad	$10 \Omega \mathrm{~nm}$	44.7	81.0	82	81.6	101.0
" "	$1 \mathrm{p} . \mathrm{m}$.	60.0	81	82.5	81.6	104.
" 7th	$9 \mathrm{a} . \mathrm{m}$.	88.6	80	82.5	81.5	104.2
" "	$2 \mathrm{p} . \mathrm{m}$.	61.0	80.5	82	81.6	08.6
\% 8th	8 n.m.	87.5	79	82.6	80	100.0

A carefill examination of the serond servies of temperature olservations will conlice us In trice the qrowth of the fungus very clearly. The temperatures of the kigi at varimes times in the day hawe heen amanged and are given in Table IV.

TABBE IV. T'EMPLRATYRE OF KOJ! ON THIR!) DAY.

Hour.	December blh	Dec. 6th	nec. Th	Dre. 8 cb
	- F	${ }^{\circ} \mathrm{F}$	- F	- ${ }^{\circ}$
8 п. m.	108.8	$10 \mathrm{C}, 6$	-	100.0
9 n.m.	-	-	104.2	-
$10 \mathrm{a} . \mathrm{m}$.	-	101.0	$=$	-
$1 \mathrm{p} . \mathrm{m}$.	--	104.0	-	-
$2 \mathrm{p} . \mathrm{m}$.	91.n	-	18.6	-
$8 \mathrm{p} . \mathrm{m}$.	88.8	-	-	-

Until 1 p . In. in every ease the temperature of the kijiji is nime $100^{\circ} \mathrm{F}$., and after 1 p. in. in every case it falls lelow that point. The period of mot netive growth is, therefore, in the morning, and correaponils with the time during which the material is heapeal up in miscus. The effect of opening out the mases of koji will be best seen in the temperatures raken on Dec. Gth. At $8 \mathrm{a} . \mathrm{m}$. the
 and $10 \mathrm{a} . \mathrm{m}$. when the workman lomee open the henpe and giread them out. The temperature taken at 10 n . m. shows that the mass had cooled down $5.60^{\circ} \mathrm{F}$. After this the mixture was again mate "p, into hompand at $1 p$. m. The tempern-
ture had again risen，though nut quite so high is at 8 a．m．After the heaps bave been broken down between $1 \mathrm{p} . \mathrm{m}$ ．and $2 \mathrm{p} . \mathrm{m}$ ．the rice continnes to coul ；on the 5 th the temperature at $2 \mathrm{pr} . \mathrm{m}$ was $91^{\circ} .9$ and at $8 \mathrm{p} . \mathrm{m}$ ．hat fallen to $88.8^{\circ} \mathrm{F}$ ． The object，therefore，of the working of the mass is not so much to prevent the grains becoming too much matted together as to regulate the activity of the growth of the plant．If the grains were allowed to remain heaped up during the whole time，there would be a dinger of the temperature rising to too high a point，and perhafs remering the prothet useless，whilst if the grains were never collected into heaps，the temperature would not rise sufficiently high to allow the growth to go on vigorously．

The amount of heat generated duriug the growth of the fungus is remarka－ he，and will be best appreciated from the olservations mate in December．At that time the temperature of the open air in the shate varied between 38° ant $51^{\circ} \mathrm{F}$ ，whilst in the subteramean chamber the temperature of the air was very nearly constant and rery much higher than that of the olen air．＇I he growing chamber is not artificially heated except at startirg－that is，ofter having been disused for a consilerable time．It is then heated by the introduction of barrels containing hot water，bat after that，all the heat it receives is derived from the growing plant．In Decemler the difference between the outer and inner tem－ peratures amounts to as much as 44° or $45^{\circ} \mathrm{F}$ ，but in May the difference is not more than 10 or $1 ⿻ コ 一^{\circ} \mathrm{k}$ ．Not only is the heat grenerated during the growth of the phat suffecent to keep the chamber hot，but it also raises the temperature of the rice on the trays about 23° F above the maximum temperatre of the cham－ ber．All this heat must he derivel from the combustion of the rice，and the literation of its carbon and hydrogen in the form of carlonic acill and water． That carlonic aced is fornct in lateqe quantity is slown by the rapid remoral of the oxygen from a confinet portion of air ly the actively growing phant．A handful of the misture on the trays was put into a lottle holdiug about 3 litres of air，and the bottle was then tightly closed with in cork through which tubes passed lyy means of which a sample of the air in the bottle could be forced out and collected for analysis．During the time the bottle remained in the chamber the ends of these tubes were closed with caontchone tulbes an：l pinch－cocks．The bottle was allowed to semain at the temperatere of the chamber for four hous， at the end of which time it was fornd that the whole of the oxygen in the three litres of air had beem replaced ly carbonic acid．The grains of rice in the bottle remainel loose．Whilst thiose on the trays exposed to the frece air of the chamber were mattel together．From this it may he jufered that the quantity of oxyen contained in the bottle was inst：fficient to genemate the heat required hy the fingus fir its growth，which，therefore，censed as foon ne all the oxpgen was consumed．

The oxidation which goxes ondming the growth of the finges，and by which the heat is erenerated，is efleceted mainly at the expense of the stareh contained in tho celle of the grain．I late 1 represents a gection of a grain of liojit cut per－
 circumference are almast hast, whilst in the centre hey are pretty distinct. Very few grains of starch, however, can lee distinguisheal, only those which have resiastel gelatinization during the opention of steaning: the starch is thero, but canmot low distinguixhed, on aceome of its homonemeity. The following amalyees of kóji (A and B .) will indicate its general compresition, although as will be exphaneal later ons. the mament of the sululile mather varies umber different treatment even with the same apecimen a fact which accomets for the large precentage of stanch in one specimen and the small amomet in the other. 'The composition is given of the material after dedncting the percentare of moisture lost by drying it $100^{\circ} \mathrm{C}$.

COMPOSITIUN OF KOJI HRIEL) AT $100^{\circ} \mathrm{C}$.

	A.	B.
Suluble in water (A). 37.76% (B). 69.45\%...	Dextruse...... 25,02 prer cent	58.10 prer mollt.
	Dextrin 3.48	4.41
	Soluble ash 52	. 54
	$\left.\begin{array}{l}\text { Soluble albumenoids.... } 8.34 \\ \text { Insoluble allumenoids } 1.50\end{array}\right\} 9.84 \%$	$\left.\begin{array}{l} 6.41 \\ 1.83 \end{array}\right\} 8.23 \%$
Insoluble in water (A). 62.22% (1). 30.51%	Insuluble ash............... . 09	. 04
	Starch 56.00	26.2
	Cellulose..................... 420	1.94
	Fitt............... 43	.5)
	09.98	.99.9\%
	Water in origimal kiji. 25\%.82\%	.28.10\%

Comparing these with the amalyse of whened rive givern on a furmer pare (1). 5) it will the ohserved that the amment of starch present is mach redowed.

 kieji of whech more will he sathl hereather. The pererotate of starch which wond conrespond to the dextrone, dextrin, amel stard given in the fist mmentris is

 in the tolal amome of allmmemeds indicales that here ham lexer a lowe of some

 properties of that buty.

The loes of material canseal lye the gonwif of the fingus in evident when wo

SBCTIUN OF THTG KGAI ORABN PKHPRNDRCUTA M TO TIIK

$$
8
$$

11.43 kuwamme yielded 12.38 kuwamme of kiji, or 100 pats ly weight of the rice gave 108.3 parts by weight of kiji. The rice cont ined 14.2% of water, and the koji contained 29.5%, therefore, deducting the water from each, we find that 85.8 parts of dry rice gave 76.4 parts of dry kôji, oqual to 89%, or in other words, 11% of material was lost by the dry rice. This loss is probally nearly all starch, and if so, every 100 parts of rice converted into kiji would evolve nearly 18 parts of carbonic acid. Now 107 lbs. of dry rice are converted into kôji every day in each chamlier, and thus evolve 19.2 lbs of carbonic acid are unning 2240 litres. The total capacity of each chamber cannot be more than 20000 litres, and therefore in order to remove the carbonic acid formed a constant circulation of air is necessary. If this were not provided for the air would not only become irrespirable by the workmen, but would also become unfit for the growth of the plant which requires a supply of oxygen. At the same time care has to be taken that the current of fresh air is not sufficiently rapid to lower the temperature of the air within the chamber. The mode of rentilation depends upon the difference in temperature between the inner and the outer air, the inner air being warmer rises up a square shaft at the front end of the series of passages, whilst the cold air bringing fresh oxygen enters and flows along the floor of the chambers, until in its turn it is warmed and rises throngh the shaft to the air above. This method is amply sufficient during winter when the diflerence of temperature between the air outside and inside is about $40^{\circ} \mathrm{F}$, but when, as in the spring and early summer the difference becomes less than $10^{2} \mathrm{~F}$., frequent stoppages occur. This, perhaps, might be remedied by burning a small fire at the foot of the shaft, and thus artificially causing a draught, but as a smaller quantity of kội is required in summer, it is uot of so much importance.

In the germination of barley Day "has shown that an amount of oxygen is alisorbed by the grain greater than is required to proluce the carbmic acid liberated and he concludes that this increasel absonption of oxygen is not connected with the liberation of the carbonic acid. Whether a similar alsorption necurs in the present case is not known, but if, as is not impoolable, it does oceur, the amonnt of starchy material lust by the rice during the conversion inte kijij will be even greater than that given atove. The amomen of carbon oxidized during the gemination of the barley grain is sail by 1)ay to be ahout 2.5 per cent., and he finds that there is a pretty constant relation between the carlon oxilized and the water fommed, which avemges 12 carbon to 18 , 28 water. Thus for every atom of carton oxitized oue melemente of water is literated. a ratio which would arree with the formula for dextruse $\mathrm{C}^{15} \mathrm{H}_{12} \mathrm{O}_{6}$, or in its simplest form (: $\mathrm{H}_{2} \mathrm{O}$. Possibly a similar relation may he ohserved in the case of kijif that a large liberation of water ilons necur is evidonest by the increased parcentage contained by the kiji compratel with that in the riep, and also by the moisture of the atmosphere in the chamber. If however, a fixed relation were to exist it would

[^18]loo hidden owing to the moistening of tho rice which takes plave on the scoond day; in the instance just discussel the ratio between the weight of carbon burnt and water coutained by tho kijit in excesss of that contained in the rice at starting is very nearly 12 : 24 or 3 ntoms of carlons to 4 moleculew of water : an amount of water greater than enrregimals to the formula for dextrose.

SECIION 3.

ACTINE PIROPERTIES OF KOA.

In the preparation of salkie the kojii itself is alded to the stemand rice and water, mul the eolution, mixed with the insululbe resilue of starch and cellulone. then acts upon the steamed rice. To stuly this action more rendily it is mare convenient to make nse of a filtered aquente extract of kijij, for it has been uscertained that the active property of the kojij, the "diastuse," is dismolrod out liy contact with water. And first as to the nature of the solution. A sample of koji when powdered or rubbed down in a porcelain mortar and then digesterl with water for a short time gives, after filtration, n yellow liquid which contuins dextrin, dextrose, albumenoil matter, and n small quantity of minemal mather The proprortions which the three first of these constituents lear to one mother depend upon two things- 1°. The quautity of water used in propertion the the kuji. 2°. The duration of the digestion, whilst 3°. the temperature at which the digestion is effected affects tho amount of the total matter dissolval ant the mpinity with which it enters inte solution. 'Ithe following talle (p. J.II giving the results of experiments made at the orilinary temperature of the nir will show the truth of the first two of these sfatementa.

In column II the volume of water used to dissolve the moluble matrer of $J(x)$ grams of kiji is given ; in III, the time draing which the water atul the kuji remaned in confact; in IV, the number of gronis of solid inaltol disselvert from 100 grams of kiji by the amount of water unentioned; column V gives the averige percentage of solid matter in the experiments imbiented: column V I gives the percentage of dextrose contained in the solid matter ; coltann VII. The spocific motatory power of the solution, and VIII, the average epecific rotatery power of the solutions indicated. In experiments 2 to 12 the ambunt of water nsed for 100 gmms of kijii was $1(00 \mathrm{cc}$. and theso experiments inclate thres. differing pariols of digestion, but there is no evidence that the time uf digestion has much influence upn the quantity of matter dissolven, at least at the tembperature $10.15^{\circ} \mathrm{C}$. The average pereentagge of eolial mattel ilj:whal is 27 (1) Fixperiments 14 to 17 show how much sulid natter is disentwed when the amount
 31.4. We seo, therefore, that when a larger quantity of with r is lacil the.

TMPL.E V'. AMOUN'I OF SOLID MATTER DISSOLVEN BY WATER FROM 103 GRAMS OF KÔJI AT $10-15{ }^{\circ} \mathrm{C}$.

1	II	III	IV	V	VI	VII	VIII
No.	$\begin{aligned} & \text { Volume } \\ & \text { of } \\ & \text { water used } \end{aligned}$	Time	Weight of solid matter in solution	Δ verago weight of solid matter	Percent. of dentrose in solid matter	Specific rotatory power	A verage specific rota. tory power.
1	c. c. 500	$\begin{aligned} & \text { hrs. } \\ & 12 \end{aligned}$	17.7		60.0	65°	
2	1000	18	25.7			61°)
3	"	"	24.2			55.7	5 $7^{\circ} .6$
4	"	$"$	23.0			56.0	
5	*	12	83.3)	49.0	65.3	
6	"	*	33.3		50.9	65.4	
7	"	"	29.4) 27.0	45.0	62.9	
8	"	"	28.6		46.5	67.7) $64^{\circ} .6$
9	"	"	26.8		53.0	61.4	
10	"	"	22.5		53.0	64.5)
11	"	"	22.2)	54.0	65.0)
12	"	4	28.11			61.4	
13	2000	3	81.1		68.0	78.0	
14	- 2500	"	32.2)	58.0	68.1)
15	"	"	82.5	(31.4	70.0	$6{ }^{6} .2$	(090.8
16	"	*	30.7		65.0	73.8	(
17	"	"	80.1)	68.0	70.2)
18	5000	24	30.0		47.0	64.5	
19	10000	"	40.0		66.0	60.5	

any ilefinite conchisions from single experiments, but the very large percentage dissolved when 100 grams of koji were digested with 10000 c.e. of water, bears out the above observations.

We have next to consider the iufluence of time upon the nature of the soluble matter. We have seen that it does mot after 3 or 4 hours at the ordinary temprature affect very much the total amome of soiits dissolved. But column VIII, which gives the averare specifie rotatery puwer of three series of experiments lasting respectively 1.8, 1:, itul :3 hours, shows that at 18 hours the specific rotatory power is smatler than at 12 hours, and at $1: 2$ homs less that at 3 hours. What is the meaning of this variation? 'The specilic rotatory power of the molution is mate up of thre factoms. The spectic rotatory pmer of dextrin is 216°, that of dextrese is 59 . If these were the only two sulstances present the sixecifie rotatory purwer of the sulution would lie butweren these two mumbers
 however, that the average of the experimenta at 18 homex in lese than of ${ }^{\prime}$, and this shows that something clse is preecte which tomls to lowes the value of the specific rotatory power. The allomemoids which are hold ins solution have leven acertuined by nitrogen detemninations to have an average value of -40°, and it is owing to their presence that the specific rolatory power is so low as it in. The compesition of the liquid in experiment fi, for esample, will illustrabe this more clarly. 100 c c. of the solution contatiod 1.195 , m run dextrom, 0.723 gmm dextrin, and 0.914 of allmmemoids (calculated by multiglying the nitrogen fomel hy 6.3). 'Ihis giver a composition in 100 parts -

The observed specific rotatory puwer was 65n.4. The catculatenl apocific rotatory power was obtainel in the fullowing way -

$$
\begin{aligned}
(.509 \times 59)+(.217 \times 216)+(.274 \times-40) & =30.031+46.872-10.96 \\
& =65.94
\end{aligned}
$$

The calculatal number thons arrees wery well with the niserved mumber and we may, therefore, assume the specific rotatory power of the albumenoids to be expressed by the number-40?

Traking the series of experimente which lasted for 3 houm we find that the average specific rotatory power is $6!3$, nkout 10^{2} higher than that of pure dextrose ; the average specific rotatury power of those at 12 hours is $64^{\circ} .6$, nbout 5° higher than that of dextrose, and that of the experiments at 18 hours $57^{\circ} .6$, nivout $1^{\circ} .4$ lower than that of pure ilextrose. This diminution necurs because the amont of albunemids in solution is greater when the specific motatory power is less, their left handed rotation partially wentralizing the right handed rotation of the dextrin and dextrose. But why is it that the amount of alhmmenoids is greater when the treatment with water is longer continued? The most probable explanation is that as the alhumenoids exist in the kiji, they are not entirely soluble; a partion is already sululile in water, but the rest is only lirought into solution hy the action of the water itself. and prrhaps alen, throngh the agency of the albunenoids at first dissoived. It is in fiet a chemical reaction which takes time for its completion, and prolully, if sufficient time were allowod, the
 solution. This is a point of importance to lirewers of sake, for we whall see that the power which the kiji possesses of transformingrg rice into dextrome, capable of
 solution.

The effect of heating a mixture of kiji and water is to bring the matter into solution much more rapidly th to at a low temperature.

TABLE VI. ACOTOX OF WATER AT HIGHER TEMPER.ITURES C゙PON 100 GRAMS OE KOOJT.

Exp.	Time and lemperature	Cub. cent. of water per 100) gre hốji	Solid matter dissolved	Dextrose percent. of solid matter	Specific rot. power
1	2 hoursat $30^{\circ}+1 \times \mathrm{hrse}$ at $1.5{ }^{\circ} \mathrm{C}$.	1700	51.80	68.0	188°
2	1 hour at $45^{\circ} \mathrm{C}$	2000	81.80	84.9	$766^{\circ} .1$
3	2 hours "2	2900	1314	68.5	$53^{\circ} .5$
4	3 hour at 50°	5000	37.2	(ib.0	$63^{\circ} .2$
5	24 hrs , at $15^{\circ}+2$ hrs. a 109°	10000	49.2	58.	$73^{\circ} .8$

With the exception of Exp. 2, the percentage of matter dissolved ly the water is greater than in the experiments conducted at a lower temperature, and as a rule the percentage of dextrose in the solid matter is also greater. We shall, however, learn something by comparing experiments 2 and 3 with an experiment made at the ordinary temperature with the same sample of koji. In every respect the conditions of the three experiments were the same except is regrarils time and temperature.

TABLE: VII. ACTION OF WATER ON KOJ.

Exp.	Time and Temperature	Cub. cent. of water per 100 gan kôji	Solid matter dissolved	Dextiose per cent. of solid matter	Specific rot. power
1	18 hrs at 10.12°	2×4	29.2	69.3	$66^{\circ} .3$
2	$\frac{1}{2} \mathrm{hr}$ at 45°	2200	81.8	84.9	$76{ }^{\circ} .1$
3	2 his at 43°	2000	61.6	68. 8.5	$53^{\circ} .5$

The above comparison shows that the anomut of solil matter dissolved when the contact letwem koji and water is for 18 hours at a low temperatare and for $\frac{1}{2}$ hr. at a high temperature is very nearly the same, but the purcentage of dextrose and the specific rotatory power of the sohation indicate that the proportions in which the three ingredients are prosent ate very diflerent. If we assmone the specific rotatory pwer of the allommomils to be $=-40^{\circ}$ we may ascertain the composition of the solih mattere, and referving it to a fixed amonet of doxtrose,

TABLE VIII. COMPOSITION OF TLE SOBID MATTEA PER 100 PARTS OF DFiATROSK\%

Expo	Time and Temperature	Dextria	Albumenoidn
1	18 hourn at $10.12^{\circ} \mathrm{C}$.	21.2	28.10
2	$1 \mathrm{hroat} 46^{\circ}$	14.7	8.00
3	2 hra at 45°	14.6	25.30

After 18 hours at a low tempenature the anoment of dextrin is 21.2 paris for every 100 parts of ilestrose, but after loth $\frac{f}{8}$ lir. and 2 hours at 455°, it remaius flactically the same and about two-thirils of the nomont in the former case. The most intereating fact to los observed is the variation in the amonnt of the albumenoils; after 18 liours at $10 \cdot 12^{\circ} \mathrm{C}$. it is rery little different from the amount lissolved out in 2 hours at a temperature of $45^{\circ} \mathrm{C}$., but after only hour at $450^{\circ} \mathrm{C}$. the quantity in solution is ouly about one-cighth as much as in the two other experiments. This bears out the ohservations male at lower tempenaturen, viz. that the amount of albumenoil inatter elissolsed is mainly aflected ly the duration of the experiment. It is nut ouly olependent upon that, for we see the influence of a higher temperature in dissolving the ralbumanols mure mpidly, 2 l:ours at $45^{\circ} \mathrm{C}$. being more than equivalent to 38 homen at $10-12^{\circ} \mathrm{C}$. Thus we are again let to the conclusion that the greater part of the nitrogenomes mather in kijij is insoluble in water, but that it is in sich a state that the prolongel contact with water renders it soluble.

Although the effect of heat upon the mistare of kioji nmi water is thin marked, when the clarr solution has leen sepanated ly filtmition from the undissolved grains it is not so mpidty changal cither by expestre to heat or liy longer standing at the ordinary tempemtare of the air. It is impmatant for usto ceamine the change in composition of the folution on licating, as in the experiments upon sfarch-paste to bo presently desuribed it is the filteral sulution of kiji which is uecel. The following table (p. 19) gives the results of a number of
 filterel solutions of kijif for one hour at the rpecified temperatures, the same milution being exnminesl fur comparion nfter standing nt the erdinary tempemture: for the samp tirne.

Below $45^{\circ} \mathrm{C}$. Ho chnnge in the compmition of the liguith in an smatl that it may practically be neglectal, but letween $45^{\circ} \mathrm{C}$. nand $66^{\circ} \mathrm{C}$. the effert in mneh more nairkey. An increane in the nononent of rolid miltor and in the dextrume securs, aceompanied liy a deremase in the apecific rotatory prower. Theme nomutes are cansed lyy an alsorption of water liy the deatrin whith is cowsertal intos dextrose and thos the amonnt of solish mather in stiven whinu of the liguil in incruased which, together with the smaller apecific rofatory prower of the dertrupe. lowers the epecific rotatory power of tho molution.

Table in. action of heat on filteried solutions of kodi.

'Temperature	Solid matter in 100 c.c. of solution			Dextrose in 100 c. c. (f solution			Specific rotatory power		
	Unleate:	Hented	Innrease	Unheated	Inatod	Increna	Unluated	Heated	Decrease
$30^{\circ} \mathrm{C}$.	4.88	-	-	2.97	3.015	0.045	-	-	-
35°	4.88	-	-.	2.97	3.062	0.092	--	-	-
40°	4.89	-	-	2.98	3.079	0.099	-	-	-
45°	4.92	4.98	0.06	2.92	3.412	0.494	$74^{\circ} .0$	70°.	4°
50°	4.95	5.02	0.07	2.793	3.285	0.492	70°.	$67^{\circ} .1$	20.9
55°	4.92	5.00	0.68	2.018	3.463	0.545	74° 。	¢ 88.9	50.1
(60) ${ }^{\circ}$	4.95	5.02	0.07	2.793	3.30	0.507	70°.	$66^{\circ} .8$	$2^{\circ} .2$
65°	4.89	-	-	2.98	3.081	0.101	-	-	-
70°	4.89	-	-	-2.98	3.075	0.005	-	-	-

The alteration is greatest at the temperature of $55^{\circ} \mathrm{C}$. alove which it rapidly diminishes. At 65° and at 70°. the effect produced is very much the sume as at ordinary temperatures, so far as the composition of the liquid itself is concerned, but a very great change in the active properties of the lipuil is luronght about by heating it to these temperatures. The liquid becomes turbid, so much so that its specific rotatory power camot be determined with any accuracy, an effect caused by the precipitation of a cettain propertion of the allumenoids which have been rentered insolubie ly bating. We shall see that at some temperature between $60^{\circ} \mathrm{C}$, and $70^{\circ} \mathrm{C}$. the liquid loses its power of transforming starch into sugar, and reasons will apporr comecting this luss of activity with the precipitation of the allmmenoils.

NBCTION 4.

ACTION OR゙ K \triangle EI EXTRACT TVPON SOME CABBOHYYRATES.

The solution which is preparel lyy digesting kiji in water possesses certain active propertics which canse it to revemble in general character the ayneons solution of malt, so carcfully experimented upon ly Messus. Drown and Heron. It is of interest and importance to compare the artion of kiji extract upon the principal carbohyirates in orker to establish an identity or a difference between the two species of "diastase." From the mode of production there is mo roason to suppose that they will he foumd to be itentical, nud experiments to be hereafter described will prove that, though they agree in some puints, they differ in yet others. The carlohydrates which have been sulfjected to the action of kijiji extrast are ctnc-sugar, maltose, dextrin, atol gelatinized starch.

ACIIUN IVMN CANF. STCBAlt.

Prown and Heron lave shown that when an muman molation of malt in allowed to romais in contact with a sulation of eater mbar, a change taker placre by which the came-sugur is male to taker up water and is thereby converted into invert sugar, a mixture of dextrose noll levuloges. Thes "slisat sae" of malt is said ly them the exert its maximmon affert "pmon sugar at 5.50 (1 : its action is considembly weakenell at $\mathrm{fin}^{\circ} \mathrm{C}$. and almost ilestroved at $6 \mathrm{f}^{\circ} \mathrm{C}$.

Experiment shows that the cxtrut af kijii alsol phosasises the property of camsing cane-sugar fo become inverted, but I am not able to define the limitx of its action. The two following experiments will suffice to prove this phint.
E.speriment 1. 1.974 gram of dry canc-siggar wita dissolveal in 2.5 c. e. of kijij extrict, then diluted with water to l(0) e. e. The amomet of rotation was foumd to be 15.8 divisions, and the calculated mumber 15.5. div.
1.974 gron. cane sugar dissolver in 100 c.e. give motation $=12.1$ div. 25 cec kijiji solution diluted to 100 cc 3.4 » 15.5 .

After beiug alloweil to stand for 18 homes at about 10 to $12^{\circ} \mathrm{C}$. the mataion was formed to have diminished to 5 div.. and the sulution contained 1.67 grm . of glucose. Deducting 0.36 gram contained in 25.) c.e. of kiji folution, the amount, formed from the cane-sngar was 1.31 gram , equivalent to 1.2445° grm. cane-sngar and hence 0.7294 gram of unaltered cane-sugar was present. We thus find the calculated number of divisions matated by the inverted solution in be +5.43 against 5 div. actually observed.

Calculated in degrees of are the sperific motafory prower of the cane-sugar h si licen reduced from 74° in 10°.

Exprement 2. A solution of cantesugar containing 5.41 ghams in $](x)$ ece, and giving a rotation in a 20) m.m. tule of 33.1 div., equal to $|=1|_{\text {. }}=74^{\circ}$, una employed. 75 c.c. of this solution were mixesl with 25 c.c. of a sulution of kioii whith enntained in 100 c.c. 1.46 grm . of eolid matter, 1.0125 g gron. of glveore. and which gave in a 200 mm . tulxe at uptical rofation of 8 divisions. It mus he remarked that from this aml other expe imenta made with the same solution of kiji, it was foumd to be cexeptionally weak in its converting pmwer. 'Tho.
 of the kiefi solution :-

50 c.c. of this mixture and 25 c.c. of koji were trated as below. The numbers siven are corrected for the kiji present.

The experiment was not carried further than this. At low temperatures the converting action of this particular extract of kijit is very slow; bat at higher temperatures, and especially at from 45° to $50^{\circ} \mathrm{C}$. it is much more rapid. In this respect, therefore, koiji extract resembles malt extract.

ACTION UPON MALTOSE.

So recently as 1872 Mr O'sullivan \dagger directed attention to the nature of the sugar formed when malt extract is made to act upon gelatinizel starch, and his experiments conclusively estallished the existence of a new sugar, previously however, pointed out by Dubrunfaut, which is now known as maltose. In composition it agrees with cane-sugar, but differs from it in haviug a specific rotatory power of 150°, and in forming dextrose and not invert sugar when boiled with acids or otherwise hydrated. It also differs in its reducing action upon oxide of copper from either cane-sugar or dextrose, for the former has no reducing action upon cupric oxide, whilst maltose reduces only 61 to 63 per cent. of the amount reduced by the same weight of dextrose. Messrs Brown and Heron have shown that a solution of malt is not able to convert maltose into dextrose, ant that it is quite withont action upon it. The following experiments will, however, Nhow that the solution of koji possesses the property of hylrating maltose and converting it into dextrose. T'his will be rendered evident by the change which the solution of maltose undergoes under the influence of kiji extract both as regards the weight of oxide of copper reluced by a given weight of the solid, and as regards the specific rotatory power of the product.
'The maltose employed was obtained from ame, a kiol of sweetmont prepared by the action of malt in solution upon the st urch contained in millet or in rice. Various specimens of ame contained from 68 to 94 per cent of maltose, which wats separated according to the process deseribed by O'Sullivan. \ddagger The specimens employal were in the erystalline state, mul containel water st:ficient to reduce the apecific rotatory power from 150° to $144^{\circ} .5$.

[^19]Experiment 3. 100 c.c. of a solution of inaltomo containing 1.3:4 grm. if solit matter, ned the equivalent of 0.855 grm . glucose, were mixel with $l(x)$ e.e. of a kijiji solution contuining 3.572 grums of solits and 2.14 grms. ghuconse, und heated for $2 \frac{1}{3}$ hours to $35-40^{\circ} \mathrm{C}$. The liquill after heating (the hoiji laing deductell) gave in 100 c.c. 1.374 gram eolile and 1.348 gram gitcome. It is evident, therefore, that the sulution of maltore had leen completely converted into ilextrose. The propostion of kifif rolution ased in this experiment was very lange.

Experiment 4. A sulution of maltose was prepared containiug 2.68 grama of solid matter in 100 c.c., and giving an optical rotation in a $2(x) \mathrm{m} . \mathrm{m}$. tulue of 32.1 divisions, equal to a specific rotatory power $[4]_{j}=144$?.5. 100 c.c. of Hhis solution were mised with 100 c.c. of kiji extract coutaining 2.3 gmma . of motil matter in 100 c.c. aul giving in a 200 mm . tube an optical rolution of 10.5 divisions. This mixture was heatel to $60^{\circ} \mathrm{C}$. for $2 \frac{1}{2}$ hrs. on the whter-hath, then coolal and diluted to 253 c.c. at $15^{\circ} \mathrm{J}$. It contanel 2() 3 grams of solid matter in $\mathbf{1 0 0}$ c.e. and gave an optical rotation of 11.5 divisions. Derlucting the nmount of solide due to 100 c.c. of kiji extract in 250) c.c. Wo get is the result of the netion npon the maltoee-

	5 gramn.

The actiou of koji extract in reducing the sprecific rotatory power of maltomen is this very marked. The explanation of the ruluction of comrse, if, that 2.68 grams of maltose having a specific rotatory power equal to 144°. 5 lawe fake"ll up 0.095 gram water formiug dextrose having a apecitic rotatory power eflual to 59 . The number $79^{\circ} .6$ shows that the hydrating action was nut guite complate, and this is confirmed by the quantity of water almorical. "hich for 268 grams of maltoee ought to have been 0.14 gr .

The following experiment will alluw tha th trace the griulual action of the keji solution upon the inaltose taking as the alamaral of emmprison the apreifie rotatory power.

Erperiment 8. 100 c.c. of the sume molution of maltome as was umed in the hast experiment were mixed with 100 cc . of a freshly prepared extract of kinji. which contained 2.424 grams of sulial matier in 1(X) c.c. and which gave an optical rotation in a 200 mm . thlo of 11 divisions. 'I he mixture of maltowe and koji solutions was dilutal to 503 c.c. at $1: \mathrm{L}^{\prime} \mathrm{C}$., nad nfter atanding at that temponature for 10 minutes a sample wis withtrawn for amalysis. The remaimider was placed in a water lath heatol to 45% and samplea were Lakens after the lapmo of $30 \mathrm{~min}_{\text {., }} 1 \mathrm{hr}$, and 2 hrs .

Pate 11.

Cusve showine the actrow or Kosi exteact upom

mactose.
Temp. $45^{\circ} \mathrm{C}$.

spectic rotatory power.

Time la hours.

Table x. action of koji extract upon malione.

Time.	Solid matter in $5(\mathrm{~K}) \mathrm{c} . \mathrm{c}$. after deducting kôji.	Rotation afler deducting kôji.	Specific rotatory power of maltose products.
10 min.	2.823	5.8 div.	$324^{\circ} .2$
30		5.3 ,	$111^{\circ} .1$
1 hr	2.884	4.7 ,	98.5
2 "		3.7 ,	$77^{\circ} .6$

The specific rotatory power therefore, fell from $144^{\circ} .5$ to $77^{\circ} .6$ in 2 hours, and would donbtless have fatlen to 59° if the solution hat not been used up after 2 hours. The action may be represented in the form of in curve using time and specific rotatory power as alscisste and ordinates respectively. (See P1. II)
'Ihe curve shows very clearly how regular the action is, and leaves no doubt alout the power of extrict of koji to effect the hydration of maltose. It is especially important to cstablish this, because this property marks in the sharrest manner the difference between malt extract and kojij extract. Brown and IIeron's experiments leave no doubt about the inability of malt extract to convert maltose into dextrose, ant these experiments, I think, establish conciusively the allility of koji extract to do this.

ACTION LPON DESTRIN.

The actiou of koji extract upon dextrin is to cause it slowly to combine with water and form dextrose, as the following experiment shows.

Experiment 6. 100 c.c. of a solution of commerical dextrin containing 5.56 grams of solid matter were diluted to $250 \mathrm{c} . \mathrm{c}$. and then gave a specific rotatory power $[a]_{j}=174^{\circ}$. It was, thecrefore, imprue, and contained a considerable percentage of dextrose.

50 c.c. of this solution were mixell with 50 c.c. of at solution of koji aul heated to $45^{\circ} \mathrm{C}$. for $1 \frac{1}{2}$ hour. After being liluted to 250 c.c. the solution containal 4.145 grans of solid matter in 250 c.c., amd deducting 1.285 gram contaned in the 50 cc . of kiji solution aldel, we get 2.86 grams of solids formed from the 50 c.c. of dextrin solution, instead of 2.78 grams originally present. After making allowance for the rotation caused hy the kiniji solution, the specific rotatory power of the dextrin polluts was fex instem of $17 \mathrm{t}^{2}$ that of the sulstance at starting. The kigi solution hand herome eahansted, hecanse when an anditional amment of kiti solution was added, and the mixtme heated fir at lenger time, the epecific matary pewer further dimini hael to 85". This experiment leaves no doult ennecroing the gradual alsorption of water ly dextrin under the influence of solution of kiaji.

SECTION 5.

ICRION OF KO.I FXTBACT UPON GEIATINIVFI) 8TAHCH.

lirom the puint of view of the saki-lorewer the change which kijii molution pronluces in the mature of starch is of the utmost impurtance, ant it will on that nconnt $\mid \mathrm{k}$, needful to enter into somewhat minute dofails comorning its action under varying comitions of time and temperature. Tliat a romarkable chauge does take place will be evilent to any one whom mila a few enhic centimetres of a filtered solution of kiji to a quantity of thick ntarch-purte exprecially it the luthrer lat at a temperature of aloutt 45° or $50^{\circ} \mathrm{C}$. Within a very shart times, a fow minutes at most. the pisite or jelly which lefore womld not lawe moval ift inverting the versel contaning it, will hecome as lignill as water, and, if the flanks of cellulose be allowel to settle, as transiarent as water. This camme ine olserved in the ordinary prosess of manufuctures. but the chmige takew pluce. it is only disgnised by the presence of a con-iderable quatity of inmoluhice mather. In order, therefore, to inderstand the chemical renctions involverl in sake-brewing, the first point is to ascertain the composition of the clear, Prampurent solution oltanined as above ilescribel.

Using malt extract insteoul of kijij exprut a similar change would the olserved, and the nature of the resulting golution has leen wery thormughly caminal hy O'Sullivan', and inure recently ly lbrown and If owont. The nen't of their investigations has leen to prove that dextrin nud malume atre the only products of the solution of starch by malt extract, and that the chamge may be represented by detinite chemical equations, which are different acoording to the temperature at which the conversion takes phace. Thus accorting to O'Sullivan when the malt solution is allowed to act "ron gelatinized starch at the orelinury temperature of the nir, or at any temper.ture whatever ledow fi3 ${ }^{\circ} \mathrm{C}$, the rewtion is reprovented hy his equation \mathbf{A}.

$$
\text { A. } \quad 6\left(\mathrm{C}^{12} \mathrm{H}_{21} \mathrm{O}_{10}\right)+4 \mathrm{H}_{2} \mathrm{O}=4 \mathrm{C}^{12} \mathrm{H}_{23} \mathrm{O}_{11}+2 \mathrm{C}^{18} \mathrm{I}_{51} \mathrm{O}_{10}
$$

Soluble starch Maltono p-dextrin iii.

That is to say that the promets of the reaction camtain tiz. 8 per cent of
 $=170^{\circ} \cdot 6$.
 B^{\prime} equation

B'. $6\left(\mathrm{C}^{127} \mathrm{I}_{21} \mathrm{O}_{10}\right)+3 \mathrm{H}_{2} \mathrm{O}=3 \mathrm{C}^{13} \mathrm{H}_{28} \mathrm{O}_{11}+3 \mathrm{C}^{12} \mathrm{H}_{21} \mathrm{O}_{14}$
Soluble alarch Nallome p dextrin ii.
Betwen 67° and 70% aplation 13 represente the remetion:
B. $6\left(\mathrm{C}^{12} \mathrm{H}_{20} \mathrm{O}_{10}\right)+2 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{C}^{11} \mathrm{H}_{22} \mathrm{O}_{11}+4 \mathrm{C}^{12} \mathrm{H}_{2} \mathrm{O}_{10}$
soluble march Mallono B-dostris i.

[^20]and between $70^{\circ} \mathrm{C}$ and the point at wheh the activity of the malt iliastinse in destroyed, the reaction is expressel by equation (4
\[

$$
\begin{aligned}
& \text { (2. } \left.6\left(\mathrm{C}^{12} \mathrm{H}_{21} \mathrm{O}_{1,1}\right)+\mathrm{H}_{2} \mathrm{O}\right)=\left({ } ^ { 1 2 } \mathrm { II } _ { 2 2 } \mathrm { O } _ { 1 1 } \quad 5 \left({ }^{12} \mathrm{H}_{211} \mathrm{O}_{1}\right.\right. \\
& \text { Solulle-starch Maltose a-dextrin. }
\end{aligned}
$$
\]

Brown atod Heron agre with O'Sullivan in fiuding only maltuse and dextrin as the products of the netion of malt extract upon starch, but their experiments lead them to represent the proportions formed at different temperatures a little differently. There is also a difference in their theoretic views as to the weight of the molecule of soluble starch and the nature of the dextrins, but we may lenve that aside. They imarge that the conversion of starch into maltose and dextrin is to he represented by nine different equations in the following manner.
(1) $10\left(0^{12} \mathrm{H}_{21} \mathrm{O}_{10}\right)+\mathrm{H}_{2} \mathrm{O}=\mathrm{C}^{12} \mathrm{H}_{22} \mathrm{O}_{11}+9 \mathrm{C}^{12} \mathrm{H}_{21} \mathrm{O}_{11}$ (Frythro-dextrin $\left.\ll\right)$
(2) $10\left(\mathrm{C}^{12} \mathrm{H}_{21} \mathrm{O}_{10}\right)+2 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{C}^{12} \mathrm{H}_{22} \mathrm{O}_{11}+8 \mathrm{C}^{12} \mathrm{H}_{22} \mathrm{O}_{10}(\quad, \quad$, \quad, $)$
(3) $10\left(\mathrm{C}^{12} \mathrm{H}_{21} \mathrm{O}_{14}\right)+3 \mathrm{H}_{2} \mathrm{O}=3 \mathrm{C}^{12} \mathrm{I}_{21} \mathrm{O}_{11}+7 \mathrm{C}^{12} \mathrm{H}_{2 n} \mathrm{O}_{12}$ (Achron-dextrin, 亿)
(4) $10\left(\mathrm{C}^{12} \mathrm{H}_{21} \mathrm{O}_{10}\right)+4 \mathrm{H}_{2} \mathrm{O}=4 \mathrm{C}^{12} \mathrm{H}_{22} \mathrm{O}_{11}+6 \mathrm{C}^{12} \mathrm{H}_{21} \mathrm{O}_{10}(\quad, \quad$, 到

The series is continned through the intermediate equations.

(9) $10\left(\mathrm{C}^{12} \mathrm{H}_{20} \mathrm{O}_{14}\right)+9 \mathrm{H}_{2} \mathrm{O}=9\left({ }^{12} \mathrm{~J}_{22} \mathrm{O}_{11}+\mathrm{C}^{12} \mathrm{H}_{211} \mathrm{O}_{11}(\quad, \quad\right.$,

Of these the most stahle is N 0.8 which represents the manner in which the reaction takes place at and below $63^{\circ} \mathrm{C}$. They cousider also that they have lefinite evidence of the existence of equations 4,3 , and 2 , and indications of 5 and 6 .

It will be seen that the weight of maltose fommed at low temperatures is always greater llan at high temperatures, a circumstance which has to be carefully attemded to in the proses of making beer, because it depends unon the propurtion of sugar in the wort whether the brewed liquid will contain much or little alewhol.

The above mentioned whervers have been able to ohtain definite chemical empations because of the ahsence of any hydrating action of malt extract upon maltuse. As, however, it has been shown in Section 4 of this Memoir that the solution of kinii hydrates maltose, we cannot expect, even if that sugar is formed, to olitain results of the same shampess as where the promitucts first formed are unacteal upou.

We have, therefore, in the first fitce to ascertain whether matose is one of the promucts of the action of keiji extract upon starch paste, and that it is so, will he shown by the following experiments.

Tou prove this an indirect methol is resorted to, on aceount of the difliculty of isolating small quantities of maltose in a pure state from solutions containing muln dextrin. The mothot axdoped consists in determining the redncing antion of the solution uperm oxite of eopper, and from the amount of cuprons neile prempipatal bey n given weight of the alareh producta in solution (culculated from the specibe gravity of the ligutil) to (ime the weights of matose
and dextrin, assuming these to bo tho prolucts. If wo nther sulutance is formed, the specific rofatory pwower of the solution calculated from the percentages if maltose nuld destrin present will nyree with the specinc rotatory power of the folution actually observerl. If they do agree the solution must contain thatwaties nssumed to be present. becanse if others wero there, the specific rotatory powers would differ from one another. A detailenl description of one experimeat will render this more intelligible.

Experiment :. A kuji solution was prepared by digesting for a short time 25 grams of a freshly grepured sample of kiji in about 100 c.c. of water. The liyuid was then filtered, the residue disested with a freah quantity of water, and the whole thrown upon the filter abil washed until the filtrate amounted nearly to $\overline{5}(1)$ c.c. The solution was then diluted exactly to 500 c.c. at $15^{\circ} \mathrm{C}$. The filtration occupict three or four hours even with the assistance of a filter-pmup) on account of the slimy nature of the insoluble matter. The sulution so made contained in 100 c.c. 1.46 gram of sulid matter calculated from the specitic gravity (using the divisor 3.861 , 1.0125 grmm glucone, and cansed an optical rotation of 8 divisions in a $200 \mathrm{~m} . \mathrm{m}$. thie. This given a specifio mtatory power

$$
[k]_{j}=\frac{8 \times 0.242}{2 \times 0.0146}=66^{\circ} .3
$$

5 grams of afarch. previonsly iried at $1\left(0^{\circ} \mathrm{C} \%\right.$, were gelatinized with almut 75 c.c. of water, the paste allowed to conl to $44^{\circ}(1$, , then mixed with 25 ce . .f the kiji solution, and left fior 25 minntes till it wan quite clear. If was then rapidly heated to beiling, conkel, and diluted to 25) c.c. 100 c.c. of this molution, after filtration, contained 2.15 grams of solid matter, and 0.63 gram shtume. determined ly weighing the relluced cuprous oxide after ignition. Thu "primal rotation in a $200 \mathrm{~m} . \mathrm{m}$. tube was 32.4 divisions.

As the kijiji solution contained in 250 c.e. of the stanch prolucte was 2.5 cc . (i.e. one-tenth) we must deduet the weight of solid mater and glumser contained in 10 c.c. of the linji extract from the weights atove found in low ece of the liquid. The optical rotation must ako le diminished by one-tenth the umount caused liy the kiji solution alone. Wo thus get:-

$$
\begin{aligned}
& \text { Solids in } 100 \text { c.c. furmed from slarch.... 2.15--0.146 }=2.1 \text { wh grams. } \\
& \text { Sugur, calculatel us glucose, } 63 \text {-. . } 101=.52 y \\
& \text { Optical rotation................................... . 32.4- } 0.8=31.6 \text { divisionn. }
\end{aligned}
$$

The percentage of sugar calculated ns ghteone is $26 ; 39$, and the unitume corre-
 $=56.72$. If we catculate the specific rotutury fower whichat mixture of matione and deatrin in these propmitions ought to have we fint it la lue

$$
[a] \text {, calculater }=216 ; 0.567+150 ; 0.433=187 \cdot 4
$$

There is in lifference between the two results of $3 . .^{\circ} 4$, which is not more than might be caused by errors of experiment. If we assumed the solution to contain dextrin aud dextrose, the specific rotatory power would be only 174°, a difference of nearly 17. 'This experiment, therefore, shows that maltose and nut dextrose, is formed.

Erperiment 8. 5 grams of starch were gelatinized and after cooling to $40^{\circ} \mathrm{C}$. mixed with 25 c.c. of the same koji extract and lept at that temperature for $\frac{3}{4}$ home. An additional 25 c.c. of kuji was then addiad and the whole allowed to remain at $40^{\circ} \mathrm{C}$. for 15 min . longer, then boiled and diluted to 2.50 c.c. After filtation the solution contained, deduction having been made for the koji atded,

$$
\begin{aligned}
& \text { Solid matter.................... } 2.035 \text { grams in } 100 \text { c.c. } \\
& \text { Sugar (calcil. as dextrose). } 888 \text { ", " } 28.5 \text { divisions } \\
& \text { Optical rotation............. } 28.5 \\
& \text { Hence }[0]_{j} \text { olserved }=169^{\circ} .5
\end{aligned}
$$

The composition of the solution, assuming the sugar to be maltose, is
Maltose............................ 71.54 per cent.
Dextrin....................... 28.46 "
$100 . \overline{00}$

The specific rotatory power calculated for this mixture is $168^{\circ} .8$, which agrees very closely with the observed number.

Experiment 9. With a solution prepared from ditlerent lojiji, using 50 e.c. of the koji solution containing 1.204 gran of sutid mater per low ee., the following results were obtained from 5 grams of gelatinized starch kept for 2 hrs at $10-15^{\circ} \mathrm{C}$.

Maltose	70.01) per cent.
Dextrin	30.6.$)$
	(以)

Specific rotatory power, obsersed $=174^{3} .0$
" \quad, \quad calculater $=10^{\circ} 9.8$
The two last experiments give results which correspond nearly with Brown and Heron's equation, No. 7.
$10\left(\mathrm{C}^{12} \mathrm{H}_{20} \mathrm{O}_{10}\right)+7 \mathrm{H}_{2} \mathrm{O}=7 \mathrm{C}^{12} \mathrm{I}_{21} \mathrm{O}_{11}+3\left({ }^{1212} \mathrm{II}_{21} \mathrm{O}_{10}\right.$
which requires 70.9 per cent. of maltose, ant $[k]$, calculated $=160^{\circ} .2$
Solutions in which maltose can be detected can only be obtained by making use of dilute solutions of kiji and in comparatively small quantity. In by far the greater umber of experiments the mallone which is at tiret fimmel is hyitrated to dextrose by the excess of " "linstase" present in the keni sulntimn amb as in the brewing operations a very large excess of kijii is used, the hewer of naké has practically nothing to do with maltose, but only with dextrose. In this respect
 where the alcohol in fermented for the mont part from maltoves.

The following experiments will serve to illustrate the prodnction of flextrome and dextrin only. The mode of rocognising the matiro of the prolncts in the same in principle as that neal to ifleutify maltuse, vi\%. a compuriman of the olserved specific rotatory power with the sumber calenintelf from the perweutagem of sugar and dextrin, nasuming in this cras: the sugar to be ilestrone with is specitio rutatory power $[u]_{j}=59^{\circ}$.

Experiment 11. 20 grams of dry starch gelntinized amil 200 c.c. of : solution of kiji (prepared from 5) grams in 50) c.e. of water), dilnteyl to one litro
 I'he solmion contamed in 100 ee., lienluction having heen malo for the kui extract) 1.96 grom of solid matter and 1.68 groun glocuse, with 11 rotation of 12.4 divisions. This gives

$$
\begin{aligned}
& \text { Dextrose............................ } 85.7 \text { jer cent. } \\
& \text { Dextrin.............................. } 14.3 \\
& 100.0 \\
& \text { Specitic rotatory powos, olserved }=79^{\circ} \\
& \text { " } \quad \text { " } " \text { calculatol }=81^{\circ} .4
\end{aligned}
$$

Experiment 11. 4 grams of gelatinizel starch and 96 c.ce of li.ni wimiont 120 grams of kiji in 500 c.e. water) were heatel at 450 for 31 hemss. Then evap rated to alont 200 c.c. and diluted to 250 e.e. Tho compmition of The solial m stter in rolution, after dialueting that due to the keiji extrate. Was

$$
\begin{aligned}
& \text { Dextruse86.00 } \\
& \text { Dextrilı.... } 14.00 \\
& 100.00 \\
& \text { Sperifi: rotatory power. wherved, }=85^{\circ} .7 \\
& \text { arlculated, }=81^{\circ}
\end{aligned}
$$

In both experimonte, there"ore, destrin atul destase am the only proilucts.

Experimenta were next directed towards necertainumg the luyrew of rapidity with which the conversion of starch into ilextrose took place at dillerent tumpermturis For this purpose it wns necerary to allow the misture of atareh and kiji molution to react for some times, and to aseertaill the compemision of the selutiots, wr iss specific montory power, at different stages. Selting ant in whe direction the duation of the digention, mul in a direction at right angles to this the kpe ilic rotatory power of the solution at stated intervin, the progress of the netion can
 of the change which has occurral in a given time.

The finat eeries of experiments was carrical ont at the tetuperatire of the air, which at that time varied hetereen 4° and $10^{\circ} \mathrm{C}$.
E.cperiment 12.450 c.c. of starch-paste containing 11.43 grams of dry starch were mixed with 50) e.c. of lijiji extract. The whole wats allowed to stand at this temperature with an occasional shaking and samples were withilrawis after 48, 120, 152, and 240 homs respectively. After making adeduction for the $50 \mathrm{c.c}$ of kijij solution used, the amount of solids in 500 c.c. and the uptical rotation were found to be as follow:-

TARIE KT. AOTION UF KOX EXTRAC" V'PON STARCH AT $4-10^{\circ} \mathrm{C}$.
11.43 grams starch to 10 grams kiji.

-	Time.	$\left\lvert\, \begin{gathered} \text { Total starch products } \\ \text { in solution } \\ \text { (kôji deducted) } \end{gathered}\right.$	Speceific rotatnry power of starch products.
	48 hours	ก. 614 grams.	$109^{\circ} .16$
	120	9.904 ,	$100{ }^{\circ} .2$
	192 .	10.369 ..	$5100^{\circ} .4$
	$240 \quad$ \%	10.450 ..	$810^{\circ} .1$

The curve illustrating this series of experiments is seen in fig. 1, Plate. III, The action upon tho starch, as indicated loy the fall in the specific rotatory
 in a regular and contimnous manner during the remainder of the experiment.

The second set of experiments was condueted at the same temperature, different propmotions of kiji and-starch being used.

5 grams of sturch to 20 grmms of kioji.

Time.	$\begin{gathered} \text { Tutal starch products } \\ \text { in solution } \\ \text { (kãji deducted) } \end{gathered}$	Specilie motatory power of starch products.
C8 hours	4.6388 graus.	$160^{\circ} .4$
164 -	4.816	7.70 .8

In this series the same specific rotatory power, $7(0)^{\circ} .4$, is attained in fs hours, which if twik 120 homs in the finmer serins for arive at, and the reduction is ervater in the hast series i: lfithenes, than in $2 t 1$ hons af the former.

 the mpidity of the actiou appeass to be onty ahont twice as great

The third neml fourth seriese of experiments were make at a temperature

:tamod Mozpejos כy!oods

Fig. 2. Curve showing the action of Kôs extract
upon gelatinized stahch at $10-15^{\circ} \mathrm{C}$.

From these experiments we may minderstand what occurs during the mashing operations in sake making. At first they are conducted at even a lower temperature than $4^{\circ} \mathrm{C}$.. and this is interesting hecanse it shows that the activity of the rliastase in kijiji is not destroverkat low femperatures, even at $0^{\circ} \mathrm{C}$.

At a higher temperature the reduction in the specific rotatory power of the solution goes on more rapidly, and althongh the sake-lower never uses temperaturis so high as those of the succeeling expriments, it is of seientific interest to complete the record at all temperatures lelow that at which the "diastase" of kôji is rendered inactive.

The experiments at higher temperatures were conducted in the following manner. The Hask containing the mixture was imwersed in a water-bath and kept at the specified temperature, samples being taken at stated intervals. The protion used for letermining the total solid matter in solution from its specific gravity was rapidly cooled by means of ice, and another portion in which the specific rotatory fower was to be determined, was poured into a dry flask containing a little salicylic acid, as recommended by Brown and Heron, ${ }^{\text {² }}$ and alsn rapidly cooled. Deduction was made for the amount of knji solution added as in the previous experiments.

The two next series of experiments were conducted at $40^{\circ} \mathrm{C}$. and only differ in the relative proportions of starch and kojii used.

TABLE XV. ACTION OF KOJI EXTRACT UPON STARCH AT $40^{\circ} \mathrm{C}$.
10 grams of starch to 5 grams of kojji.

Time.	$\left\|\begin{array}{c}\text { Total starch products } \\ \text { in solution } \\ \text { (kôji deducted) }\end{array}\right\|$	Specific rotatory power of sturch products.
25 min	10.08 grams.	167°
4 hours	10.08 "	127°
+92 hrs. at $15^{\circ} \mathrm{C}$	10.25 -	106°

table xvi. action of koil extract upon starcil at $40^{\circ} \mathrm{C}$.
10 grams of starch to 10 grams of kóji.

Time.	Total starch products in solution (k0jii deducted)	Specific rotatory power of starch products.
${ }^{3} \mathrm{~m}$ hour	9.64	$1480^{\circ} 1$
1	9.84	$12 \%^{\circ}$
2 hours	9.64	115°
8 .\|n	9.65	106°
$4)^{2}$	9.67	88°
6 "	8.69	85°
+20 hrse at $16^{\circ} \mathrm{C}$.....	9.79	80°

[^21]

 the cornere, as it wore:

 Ihate V_{0}
Specilic rotatory power.

Time in hours.

Fig. 2. Curve showing the action of Kôj extract UPON GELATINIZED STARCH AT $45^{\circ} \mathrm{C}$.

The vertical black line indicalew the time of which a

QELATHNIKED ETANCII AT $60^{\circ} \mathrm{C}$

Time in hours.

The vertical black lime iadicates the time ot which s
ferther addikios of $\mathbb{K O j i b}$ blution tremale.)

10 grams of starch to 10 grams of kigit.

Tinie.

T'utal stareh products
in solation
(kiji deducted)

Specific rotatory power of starela products.

1 hr. Fresh aldition.

2 luts	10.19	.	$145{ }^{\circ} .4$
21.	*	\because	$131^{\circ} .8$
: 3 .	,	"	$128^{\circ} \mathrm{L}$
21.	-•	,	$131{ }^{\circ} .8$
\pm	10.19	.	$131{ }^{\circ} .8$

The number fomer at 15 min is duabtless incorrect. After half-an-hour had elapsed. and the specific rotatory power hat diminished to 168°, the action appeared to cease, until a fresh addition of kiji was made, when it fell at a similar rate, and for nearly the same time as at first. The high temperature, therefore, very quickly renders the "diastase" of kiji inactive.

At a temperature of $70^{\circ} \mathrm{C}$. practically no sulution of starch tuok plice, from which it may lee concluded that in temperature between 60° and $70^{\circ} \mathrm{C}$. renders it completely inert. 'The "diatstise" of malt is not killed until between 80° and 81, which constitutes another point of difference between the two. The two bodies resemble one another in this, that the luss of activity is accompanied by the appearance of a distinct precipiate, consisting of albumenoid matter that has been coagulated by heat. Messes. Brown amd Ileron state that "Fivery stage in the coagnlation of malt-extract by heat is attemed with a distinct modification of its stard-transforming fower; and comersely, we have never been able to discover any modification in stach-tratsforming power which is not attendeal "ith distingt coagnlation. In :uldition to this, at 80$)^{n}-81$? the point at which the diastatic power of maltextract is destroyed, nearly the whole of the corgulahle ablhmenoids have heen precipitated. We we conseruently leat to conclule that the rlastatic prower is a finction of the coaydable albmenoids themetres, and is not due as has been gromally suppsist, to the presence of a distinative transfoming gerent."

[^22]We have already seen that the principal chauge which rice undergere in its converxion into koji is the alteration in the mature of the alhmnenoil matter which tecomes more casily degraded and suluhio in water: taking shis in connection with the destruction of the active properties of the sulution at in temperather. corresponding to that at which the allmmenoid matter beeomen conkulatul. wo are led to the conclusion that there is a similar connection between the presman of soluble albumenoids and the nctivity of the solution of koiji which mecms po hold in the case of malt extract.

PARTII. SAKE BREIVIAG.

SECTION. 1.

PREPARATIUN OF MOTO.

The process of preparing sake followed in the large breweries of Itami and Nishinomiya is very nearly the sime, and may be easily divided into distinct periods, but sake is also very frequently prepared in much smaller establishments, in which case, properly speaking, only two divisions can be noticed, viz. the preparation of moto, and the principal process. The chemical changes which occur will be very easily understood after the details which have heen given in the preceding part, lut it will not he fond possible to make a distinct separation between the solution of the starch and the actual fermentation as can be done in beer-brewing. In that industry the starch is converted into sugar and dextrin during the operation of mashing, after which the diastase is destroyed by boiling before the fermentation is allowed to begin, but in the manufacture of salse these two processes gon on at the same time, except during the first few days. In this respect, therefore, the brewing of sake differs from that of beer, and it max, pertape, be one of the reasons why the former liguid is so wheh more alcoholic than the batter.

As carried ont at Itami and Nishinomival salke-brewing consists of the following series of processes:-

1. Preparation of Moto
2. I'reparation of Soye
3. I'reparation of Valia The principal process.
4. Preparation of shimai
5. Filtration and clarification.

Of these that which requires most care and is most liable to fail is the first, the preparation of moto.

Nol'O.

In the preparation of molo stemmel vice, kijid, and water are meed in proportions which dittier slighaly in difterent works. The term mono is used to expuess not only the promurt of this operation. hut also a definite amount-thons the
workinen speak of one moto-two neml a half moto, ansel so on. It Itami. the most famous district, the jumportions for meme moto nry:-

Stenmal rice.....ese....................	0.5 knku
Koji	2 ..
Water ...n..........................e.e.e	. 6
	1.3

It may be remerked that the nmalsers imbicatiog the amome of steamest rice and kiji used refer, not to the finianol proilucta, hint the the quantity of rice taken to form them.

At Nishinomiya, another very celelontenl saké-rmaking district. tho proportions are as fullow:-

At a livewery in 'fokio at which I haid the opportunity of wathing the whole process from beginuing to emi and of making amalymes of the mash it different perioks, the proportions for one moto were:-

To find the prrcentages of sly riece and water in the last mixtune wo pro. ceed as follow. The weight of ne kuku of water in 48 kuwamace (IB. S. Lyman, Geolagical Survey. Report. P'rngress. 1878-79), aml we have alneady me't that the weight of one kokn of rice is nuthe average 40 kuwamuse, bernext tho weight of one mato is

lice (for steamiag)................ 16.0 kwlice (for making into kújil 6.4 "Witer 19.2 "

 the original sice, which containe: It per. cent. of water, lwat taken 11 p in addition 40 ger. eent. of its weight of water. If knwamen of ries will thas saker
 give $6 t+2.24=8.64 \mathrm{kw}$. of water anel 13.76 kw . of ilry sice.

By the consersion of rice inte keji 100 parts of common rice form 108 parts of kiji contaning 30 per cent. of water (see p. 13), thus 6.4 kw . of rice will form 6.9 kw . of kuji, containing 4.83 kw . dry rice and 2.07 kw of water.

```
The total dry rice, therefore, is \(13.76+4.83\)
18.59 kw
The water taken up is s. 6.4 : \(2.17=10.71\) \}
'lhe water sulsequently added ............19.2291
```

or in percentages
Dry rice............ 38.3 per cent. (containing 32.17 of stardh.)
Water

$$
\frac{61.7}{100.0}
$$

'The qumbity taken for 1 moto is mixed and divided into sis erpal pats, each of which is placed in a shallow wooten tub called hengiri, of a capacity of 0.267 kokn. The mass is thoroughly mixed by hand for two hours, any lumps which are formed being broken down. At first the misture of rice, koji, and water is so thick that it wonld hardly fall out if the vessels were inverted, but in a short time it loses its stiffness and hecomes thin. After 24 hours have elapsed stirning with padlles (kait begins, and when this is finished the whole is thrown into a larger tuh (moto-oroshi), provided witla a cover cut in two to facilitate the inspection of its contents, and covered with matting for the purpuse of lliminishiner loss of heat as moneh as prosible. The preceling operations have lween carried on at a low temperature, from $0^{\circ} \mathrm{C}$. to 9 or $10^{\circ} \mathrm{C}$. at the lighest, and the chemical change which occurs during this period will be easily understond from the account alreally given of the action of kiji upon gelatinized starcls. The rice graius having been steamed are of course in the gelatinized state, but, owing to the greater compactness of the grain, the action is much less rapid than in the experiment carried out at 4 to $10^{\circ} \mathrm{C}$. as described on page 2!). Dunthtess the mixture at first contains a certain proportion of maltose, as well as dextruse and dextrin, but it will be gradually changed into dextrose. The duration of this simple digustion in the cold differs in the different works and even in the fame phace. At Nishinomija, an interval of one day after trausference into one vessel is allowed before the mixture is warmed; at Itami it is sumetimes lucated at once, and sometimes kept for five or six days. At the Toikio lurewery the mash was heatell at 3 p,in on the fiftlo day after mising, and We two following analyses show its composition before that event took place.

Thiralday, 8 a.m. Fifth day, 8 a.m.

bextrose	7.35)	12.25
Dextrin.	5.12.	5.69
(\%lycerin, ash, alhmmurnids, \&ec..........	trace.	. 48
Fiosed neid.	0.017.	0.019
Vollatile actil.	-	SOS
W'atre (ly dilteronce)	ST 51.	S1.5.5:3
	(1) (0) (x)	(10).(4)(

Specific rutatory prwer	$\left.124^{\circ} \ldots \ldots816\right)^{\circ}$
Specific gravity of mash	1.15............... 118
Tempenture of mash.	$13^{\circ} \mathrm{C}$............. $10^{\circ} \mathrm{C}$
Starch undissolyed.	20.43\%15.46\%

The effect thas far has been on increane the amount of dexerves at thes expense of the starch: at the same time a fresh propertion of destrin ia ne dombe formed, but this increase is shasored by the fact that there are two actions going on, formstion of dextrin by a splitting up of the atarch, and a divappeanmes of dextrin by the hyilrating action of the koji, and the result of these two actions is to leave the dextrin very nearly whet it was on the thind day. It is important to observe that even so carly as the thirid day niy dextrose, and no mallose, is present in solution; the observed specific mfatory power is 124°, and that calculated for dextruse and dextrin in the observed proportions is $123^{\circ} .4$. The specific gravity of the mash has increased a little owiug to the larger amount of solid matter in the solution, and the apecitic rotatory power has diminisherl, the proportion of dextrose to dextrin leing greater on the fifth day than on the third day. The composition of the mash as given on the fifth day may probubly be looked upon as the usnal composition just hetore heating; this sumple was taken at $8 \mathrm{a} . \mathrm{m}$. and the heating commenced at 3 p . m . on the same day. If no change had occurrel the mash would have containet 32.17 per cent. uf starch. The dextrose and dextrin on the thirl day correspond tw $\mathbf{1 1 . 7 3 5}$, which leavos 20.43\% of starch undissolved, and in the sime way the starch undisalved on the fifth day amounts to 15.46%.

The heating is rffectel in all establishoments in the same way. A cleserl tuls called nukume or daki of a somewhat conical form, 18 inches high, 12 in . at its upper diameter and 9 to 10 inchea in diameter it the lower gart, in fillerl with boiling water and tightly closed. It is supported by means of n hamelfe formed by a cross bar fastened to two eare which project upwards from approwite siles; in this way it is let down into the thick manh containeal in the large int, and the mixture is agitatal by moving the heater about. As a rule oue heater is allowed to remain in the mash for half a-lay, nud is then replaced by a frewh one which is left in for the same time, but the uumber of leaters ueel depends wnow extent upon the temperature of the nir. During the $\mathbf{1 3}$ days requiret for the completion of the motn at Itami from 5 to 9 heaten are enployerl, and at Nishinomiya from 10 to 13 are used in the same time. It is fonnd undesimbibe to raise the temperature of the mash ton nujidly, pmombly becanme a too high temperature at first would allow the acid furments to become developed tu the exclusion of the alcuholic fermeuts.

In the Tikkis brewery the heaters were allowed tor remain in the inwh for a much shorter time. Introducell on the fifth day nt 3 p.m. the liquid was tmusferrenl back from the harge tub into the shalliwg pars on the righth day at $7 \mathrm{a} . \mathrm{m}$. and was allowed to cool as much as ponsible until the funmenth day at 11 u m .
when a fresh addition of rice and koji was made, the commencement of the main process.

The heating of the mash has the effect of inducing alcoholic fermentation to set in with great vigour. On the seventh day, when the onext sample was taken, gas was rising rapidly throngh the mash and on comiog to the surface burst with a slight, explosive noise. At the same time a very strong, sharp odour was perceptible, whilst a foan covered the surface. The following analyses give the composition of the moto from the seventh to the fourtecuth day, after which the main process began. The mush was again placerl in the shallow hangivi at 7 a.m. on the Sth day.

TABLE XIX. CUMPOSITION OF TIE MOTO FIROM THE SEVENTH TO THE FOERTEENTH DAY.

	Tth day	10th day.	12th day.	14th day.
Alcohol	5.2 p.	8.61 p.c	9.41 p.	9.20
Dextrose	5.4	.99	. 49 "	. 50
Dextrin	7.0	2.81	2.72 ,	2.57
Glycerin, ash, alhumenoids. \&c.	1.14	2.82 \%	2.35 ,	1.93
Fixed acid	. 31	.24	.31 ,	. 30
Volutile acid	.15	.11 ,	. 05.	. 03
Water (by dilference)	80.80	84.42 ${ }^{\text {a }}$	84.67	85.47
	100.00	100,00	100.00	100.00
Specific rotatory prower	183°	$100^{\circ} .7$	$111^{\circ} .6$	116°
Specific gravity of mash	1.08	8.05)	1.06	1.04
Temperature of mash		$14^{\circ} \mathrm{C}$ 。	$11^{\circ} \mathrm{C}$ 。	$99^{\circ} 1$.
starch undissolved	10.68\%	12.4i\%	11.55\%	12.05

The alcobolic fermentation set in somewhat rapilly, for between $3 \mathrm{p} . \mathrm{m}$. on the fifth day and $8 \mathrm{n} . \mathrm{m}$. On the seventh diy 5 per cent. of ateohol was formed, and the dextrose diminished from 12.25 per cent. to 5.4 per cent. The anmunt of dextrin increased in that time, but the increase is probably only apparent, caused lay the lons of matter in the form of cartmmic acid. The solution of starch during this stage does not appene to bave grone on very actively; there is a discrepancy in the mombers calcotateal on the seventh to the fourteenth days, which probalaly arines from the didiculty of taking the average sample of the math. The percentages given are calculaten upmon the origimal weight of the mash.

From the serenth diny in the fonsteenth lay the alcohol stendily inervans; the deatrose is very quickly removed, there leing less than one per cent. on the tenth day, and between the seventh day and the tenth the dextrin is reduced from 7 per cent. to 2.8 per cent. about which it remains during the reve of the time, owing probubly, to the kiji having lost its activity.

When the liquid war heated by the introluction of hot water larrols the temporature nttained was 23^{3} in the Tiokió hrewery, and $25^{\circ} \mathrm{C}$. It Nishinmiyn. As soon as the mash whe transferreal to the shallow tube, however, it hegan in cool down, the activity of the femmentation nut being sufficient in keep up the. temperature; the composition of the liguid indeenl, shows that this result must follore inasmuch as there is not enough fonl left in the lignid in the form of Rugnr and dostrin to allow the netive growth of the ferment to onntinue. Heneve on the tenth day the femperature fill to $14^{\circ} \mathrm{C}$, on the tweifth luy to $10^{\circ} \mathrm{C}$., and on the fourtcenth day to $9^{\circ} \mathrm{C}$.

A sample of the finished moto ohtanel from the lnewery at Nishinomina had the following composition, which agrees very well with that oltained in Tohio, from which it may be inferred that different apecimens of inoto will not differ in composition to any marked extent.

FINISHETI MOTO FHOM NBSHINOMIIA.

$$
\begin{aligned}
& \text { Alcobol..................... } 10.5 \% \\
& \text { Dextrobe...................................... . } 2 \\
& \text { 'Total acid.................. } 56 \\
& \text { Starch and edlulume. } \\
& 16.58 \\
& \text { Water (hy ilifferonce).....................72.16 } \\
& 100.00
\end{aligned}
$$

 emily explained in geneml terms. Duning the first daye, whilst the mixture is kept at n low tempemture, the kijiji is neted upubl ly the water and the sntution then attacks the starch according fo the rexctions alresuly isilicatal. This results in the production of asaccharine and dextrinosas lignial firming a suitable foml for the ferment which suberelu-ntly exsalalinlies itself in the liquid on wanning. How the ferment appears will be discuseal in a later section. Whilet the yezut is growing and converting the sugar into nloubol, the molution of starch and the hydration of dextrin liy the kiji still continne so long as the latter retains itn activity, but that appears th ledestrojed some time lefore the moto is completely finished. At the end of this stage the youst ferment though not vigorous, is well formal and only requires a fresh aldition of food to commence growing with renewel activity. It may, imbed, be said that the preparation of moto has for its main olyect the prouluction of a healthy ferment, wn that the nee of the moto in the sulsequent operations namwion very nearly to the yenst ardel to the wort in Iner-brewing.

The saki-brewer juldges of the progress of the mento by the rigum of the fermentation and ly the taste of the liquid. At Itami it is sail to require 1:3 ilays to obtain the proper taste; after three days the tast: is sweet owing to the presence of much dextrose; after six days it is astringent, on the seventh day it is slightly alcoholic, and finally it becomes sour. When finished the luewer is able to distinguish five tastes, respectively sweet, sour. litter, astringent, and alcoholic, and of these the sour, bitter, and astringent are most pronomencel. The formation of the acid appors to take place between the fifth and the suventh days, and js partly succinic acid formed during the fermentation; a little lactic acil is also furmed during the time the mash is allowed to coul in the shallow vessels, althongh its amount cannot be very large seeing the great development which the yeast has taken. The hifter and astringent tastes are due to the presence of the yenst, though the nature of the sulstances giving rise in them is miknown.

SE("IION 2.

In the chief fermentation process as carried out at Itami nud Nishinomiva there are three stages, called respectively soye, nution, and shimai, although, they to not differ from nue another in any essential particular. In the Tokio brewery it is not so easy to distinguish these stagen, and it will, therefore, be most convenient to describe the former methods first, reserving the latter and the analyses of the probluct at diflerent times until the ofther have bero dispused of.

At Itami the proprtions usel to one moto are the following-

Moto.	1.30 kokn
Steamed rice.	1.30
Kijij.	. 35
Water	1.30
	4.25

and at Nishinnmiga the following quatities are heal:-

'I'his misture is placed in a large Lum calle sanjakin-ofe for three fond tul. Which holde about 8 linku, and which is, therefore, whly about halffefled. The mistore is stirrel avery two homrs, and, after 42 homess ont Itami, mad 3 diys at Nishimmiyn the first stare (senge) is finishect, and the prombet is divided intu fow

 and fragrant arome from the mash A sumple of the mand from Nishinomiya had the following conupxition.

COMPOSIPION OF SOIEE FHOM NISHINOMBYA.

Aleohor.	$11 .(x)$ [n.r. (x)tit.	
Iheitrose	15	-
T'otal mid	. 36	"
Starch	17.52	"
	260)	

 the sanaple was taken ami the time of its amalysim. 'The aleolnol on that socumit is dombtens higher thath in the mash at the com of this stagre.

As sonn as the first stage is finished the mash is divided inte two parta rach
 atal water adileal in the finllowing proportions, using the whale of the moye.

It Ni hinomign the following mixture is male -

'The stirring is continned every two hours as in the soye stage so that the grmins of rice may not fall to the lootom, and get beyond the uction of the koji. The mixture is left for 24 hours by which time the naka stare is finisherl. At Itani the temperature observel was lower than in the maye ntage but the observation was male somb after mixing so that the fermentation had mot then hial time to fully develop itself; the tempemature ubserved wan $15^{\circ} .5 \mathrm{C}$. That of the air being $11^{\circ} \mathrm{C}$. This mash nisu presesand a pungent, fragrant odour though nut so powerful as in the case of the soge.

After the lapse of 24 hours, that is at the end of the secunal (aske) stage, the ynantity of material in each tul, is again divideal inte two, be that cuch of these parts nuw contains unly one-fuurth of the original moto. To the
whole a fresh admixture of steamed rice，koji，and water is made－at Itami in the following proportions ：－

And at Nishinomiya－

Naka	8.68	koku
Steamed rice．	3.61	，
Kojij	1.20	＂
Water	6.20	＂
	19.68	

The quantity of water adder at this stage（shimai）depends upon the alcoholic strength required．At first the whole quantity is divided amongst． four tubs，but after standing for about 3 days the mixture is collected by degrees into one large tub called roku－shaku－oke，holding alout 24 or 25 kokn．In this the fermentation goes on more rigorously for two or three days after which it gradually ceases－the froth siuks，and the liquid is now strongly alcoholic and ready for filtration．The time during which it is allowed to stand before filtration varies，but is not a matter of much importance．

It may be useful to collect together the amounts of each material used ：－

ITAMI．

Stages．	Rice for steaming．	Rice for kîji．	Water．
Moto	0.5 koku	0.2 koku	0.6 koku
Soye	1.3 ＂	． 85 ＂	1.8 ＂
Naka	2.0 ＂	． 65 ＂	8.0 ＂
Shimai	3.3 ＂	1.00 ，	4.2 ＂
	7.1 ＂	2.2 ＂	9.1 ＂
	284 kw 。	88 kr 。	436.8 kw 。

284 kuwamme of rice contain 244.24 kw ．of dry rice and 39.76 kw ．of water．It also takes up in allition，be steaming， 113.6 kw ．of water－hence the fotal weight of water is 153.3 fi kw ．

88 kuwamme of rice after leing convertel into kiji weigh 95.04 kw and the kiji contains 66.53 kw ．of dry rice and 28.51 kw ．of water．
.. We have, therefi re .

	liry riec	Water	-1.0.0. 1
Stamel rics.........	244.24 kw .	153.36 kw	
	66.53 "	28.51	
Water		436.80	
	310.77	618.67	

or in persentagus

Dry rico........ 33.4 gur cent.Water.......... $66.6 " \quad "$100.0	

In a similar way we tian the percentager of dry ried and water neal at Nishinomiga to $1 x^{\circ}$

$$
\begin{aligned}
& \text { Dry riveen } 32.3 \text { ger cent. (conthining } 27.13 \text { ntarch) } \\
& \text { Water.... } 67.7 \text { " " } \\
& \qquad 100.0
\end{aligned}
$$

We may now consider the method of lorewing followed in Tokio. One feature is that the frequent subdivision of the mash does not take place as in Itami and Nishinomiga, but after the moto has lesen finished, it is transferred to a large thil (rokushaku ole) and the subnequent additions are made to it in the same vessel. This must result in a saving both of material and of hatmor. and at the same time the temperature required for the netive growth of the ferment is better mainamed as will he seen from the ohmervations which will he recorled presently.

In the description of the preparation of motas the hast analysig, given of the mash was at 8 a . m . on the fonrteenth day. Tlise next sample was taken at $8 \mathrm{a} . \mathrm{m}$. on the seventecnth day, when the uain process wis already enteral upon.

- The the quantity of material in one moto the fullowing amometa of riee and keyifi were adidal at $11 \mathrm{n} . \mathrm{m}$. on the fourtwenth day:

Stermed ricu...................	1.0 kokn
Kiji 3
Water	1.2
Mato..	. 96
	3.46

Nice - .o.e.o.....a.........	1.2	bukn
	. 36	"
Witur.............	1.44	"
Alruuly mixeleis	3.46	"
	6.46	"

Supposing that an atteration hand taken phace in the misture, the quantites of dry rice and water present in the mash, incluting the first addition, would lne:-

A sanple of the mash taken on the serentecnth they from the commencemeat had the following composition-

Aicohol	$5.500{ }^{\text {ded ment }}$
Dextrose	2.060
Dextrin..	3.890
(t lycerin, alhumenoids, ©	. 04 :3
Fixed acil	. 015
Witer.	88.192
	00.00:)

Undissolved starch amd cellu-
Inso............................ 12.814 per cont.
Specife rotatory power 160°
Specific gravity of mash 1.03
Tremperature of mash $19^{\circ} \mathrm{C}$.

I'be specific rotatory power of the solution is as high as 160 ' becanse the perventige of festrin in the solid matter is solarge, amounting to (f.) pre cent of the total solid mater in solution. The number calentated for
Dextrin (65),00
Dextrose 3430
Inactive matter 0.64
is 160 . 7 . Hence at this stage also man matene is present in solution, that first firmed having been converted into dextrose.

The two additious of steamed rice, kiji, aud water on the fourteenth an I sisteenth days respectively may, perhaps, be regarded as indicating the division of the matin process into the stages soye amd maka. If this $l_{k e}$ so the third aldition which is made on the cighteenth diyy at noon, will correspond with the commencement of the stage called shimai int Itami and Nishinomiya. The last aldition consisted of-

Rice	1.40 knkn
Kôji	.42
Water.	1.65
Wrandy prowert	6.41;
	! 1.9

and the weights and percentages of dry rice and water preaent, if no change had taken place, would be

	Weight.	Perceriage.
Dry rico	175.1 kw .	34.7 (owntaining 29.15\% ntarch)
Water.	329.03 .	65.3
	(1) 4.13	100.11

The temperature of the mash at this stugu rises considerally owing to the very active growth of the alcolablic lerment; thus on the seventeonth day the temperature rose to $19^{\circ} \mathrm{C}$, on the nincternth day to $25^{\circ} \mathrm{C}$, and on the twenty. first day to $26^{\circ} \mathbf{C}$., by which time the fermentation was for the most part finished, and the temperature then fell to $20^{\circ} \mathrm{C}$. on the twenty-fourth day and $4,12^{\circ} \mathrm{C}$. on the twentyeighth duy. Duriag this time the temperature of the air was never above $12^{\circ} \mathrm{C}$. and, for most of the time, liar below that point. The amposition of the mash luring this the last stage of the mais process will brent from the accompanying analyses.

TABLE XX. COMPOSITION OF THE MASH DI'RING THE PRINCIPAI PHOCRSS.

	1 ith day.	21 st duy.	2th day.	2 cth day.
Alcohol	9.44	11.88	12.41	18.28
Dextrose	1.16	. 27	. 27	0
Dextrin	2.74	1.42	. 47	.41
Glycerin, albumenoide dic.	1.09	1.9¢	1.9,	1.09
Fired acid	. 03	. 068	. 086	. 10%
Volatile acid		. 029	.083	.6M1
Water	85.64	84.413	84.194	44.302
	100.00	100.000	106.000	100.000
Specific rotatory power	$182^{\circ} .8$	$88^{\circ} .8$	$48^{\circ} .2$	89°
Specific gravity of manh	1.017	0.894	0.090	0. 3 88
Temperature of mash	$25^{\circ} \mathrm{C}$.	$223^{\circ} \mathrm{C}$.	$20^{\circ} \mathrm{C}$.	$12^{\circ} \mathrm{C}$.
Undiseolved starch	7.85\%	6.584\%	5.40\%	4.14\%

A glance at the numbers given in this table will show how far the fermentation has been carried. After the aldition maic on the cighteenth day, the mash was left to itself except for the stirring which was enntinued an before about every two hours. During this time a vigorous growth of ferment went on, gas cecaped rapidly, and a pungent otour was spread throughout the chamber.

On the nineteenth day the effervescence was very strong, and it rose to a maximm between that day and the twentyfirst day when, althongh the temperature was higher, the amount of efferveacence was perceptibly less. The taste of the mash was hitter and strongly alcoholic. On the twentyfourth day the effervescence was very slight, and the odour was strongly ethereal, but, although, the effervescence had dimimished greatly, formation of alcuhol still went on, as between the twentyfourth and twentyeishth days the perceatage increased from 12.41 to 13.23\%. How much further the process might have been carried is doubtful; at this time the undi-solved matter was separated from the alcoholic solution and the analyses could not be continued, but from the analysis of the misture on the twenty-eighth day compared with that on the twentyfourth day it appears that the diastase of the kigi was not yet destroyed. The amount of dextrose and dextrin which disappeared in that interval was not sufficient to account for the increase in the amount of alcohol, which must, therefore, have been formed by the solution of in fiesh quantity of starch.

From the numbers giving the percentage of undissolved starch it will be seen that it suffers a constant diminution, a change which shows that the solution of the starch under the intluence of the kiji is a contimons process, yoing on concurrently with the fermentation of the sugar formed. Indeed it would appear that the conversion of the sugur into alcohol is a more rapid process than the protuction of sugar from starch, as, if it were otherwise, we might expect the sugar to increase at first, or at any rate, to remain more nearly constant than it dues.

A puint of interest is the increase in the amomet of fixed acil from the ninetsenth day onwards. The monlers given are calculated for sulphuric acid, althoush the acil present is for the most part succinic acid, hot even in the last analysis its amonat is much less than was foumid luring the preparation of moto. In that stage, however, owing to the greater surface exposed to the air, and the lower activity of the alcoholic fermontation, other organisms are present, lactic asid ferments especially, and these contribute to the larger amount of fixed acid in the moto.

AECTION B.

FRKMENTATUON OH: THE: MASH.

In the previnas sections we have seco that the sugar formed by the action of the kaji ipon the starch of the rice grain undergues fermentation, that in, is ronverted into alcohal, carbonic actid, and some ofter products in smatler quantity. It is mow gemerally sumbterd that the production of these hodies is the result of the growth of some fimen of ompaism, which, it the majurity of cases. is a species of the genns Sacelamonyers. In heer brewing the yenst ferment in added to the wort after conling, and then finding the necessary food present it gow on growing
and batding rapielly, prosluciog, in adition th the nutatunce of the newly forment cells, alcohol and carbonic acill as the roanits of its growth. These cells when examined under the microscope have the appearancu (alown in fig. 1 'llute ' 1) of small spherical or oval cells, having a longer dismetor of about ono-humilrellh of a millimetre, and frequently with small bubble in tho interior. They grow hy a proces of budding, that is, a small protulerance forme at the side of a full grown cell, gradually becoming lurger, nud when it has attained the sizes of the first cell, it breaka nway, and then acts on its own account. In tho fermentation of beer the moat important apecier of alcoholic forment in the one just ulbuleyl fo, Succharonyces cerevisie.

In the manufucture of wine no ferment is directly mided th the must, but it has leen found that germs of the alcoholic ferments which subeepuently grow and produce the wine athere to tho nutside of tho wkin and atalke of the grape and in that way enter the liquid when the grupes are crushed. The common ferment of wine is Siccharomyces ellipsoideus, but other apocies uro aboo found, such as 8. pustorianus, 8. exigun, S. conglomeratus, and Carpusyum mpiculatum. The fullowing are the averume dimensions of those speciew :-

		lange diauseter	- Shurt diamuter
Simcharomyas	ellipruitlene.	$0.006 \mathrm{~m} . \mathrm{m}$.	0.004-0.005 m.mm.
"	Pastoriuzus....	.006	variable
"	exigulls.........	.003 n	.0025 rı.m.
"	conglomeratus.	. 006	
"	mycorlerma 006 \%	. $004 \mathrm{~mm} . \mathrm{m}$.
	culatum	.006 11	. 003 v

Tho ferment of lecer. therefore, is much larger than any of these wactex, and athough the full-grown specimens vary a little in sixe, they never fill below $0.008 \mathrm{~m} . \mathrm{m}$. in diameter. M. Pastenr hus, howeter, shown that umider restain conditions S. Pastorianus may mesune very different formm and mize*

Besides these eppecind alcoholic fermonts thore are other furms uf fungi which are capable of yielding alcohol when they are catueal formw sulmerged in a sulcharine solution. Such are especially the Mnowr mueshle and the Mnens macemosus which have heen examineal ly Fitz. They howewer, meter yifhl a liguid containing inoro than from 2 to $\mathbf{4}$ per ceut. of sheothol

Befure considering the nature and urigin of the ferment which is fumbl in saké-breweries, it will lx annvenient to descrilue the miernseppie appamatem
 the last section were inalle.

On the first and second dise after mivines nu apparamese of any anecial

Fig. 1. Cells of Saccharomyces cerivisiæ. Sakurada beer brewery. Tôkio. $\times 700$.

Fig. 2. Cello of sake ferment formed in o Kojimanh a fler

Fig. 1. Mash of third day. \times itu

Fig. 1. Mash of filth dey. $\times 740$
办

$$
\because \because \quad \text { (j) } \because \because
$$

$$
\begin{aligned}
& \text { (ie) } \quad \therefore
\end{aligned}
$$

Fig. 1. Mash of tenth day. $\times 730$

Fig. 2.

Fig. 1. Mash of tourteenth day. $\times 730$
(2,

Fis. \quad.
but it contained no appreciable amome of alohol. The existence of these cells, however, at this very early stage is of cousiderable interest, and that they were capable of developing rapidly when phacel under the proper conditions is shown by the appearance of a sample which was placed near a stove and left till the following day; represented in fig. 2, Plate VII. In this case large numbers of ferment cells are to be seen, of two linds, one nearly spherical the largest measuring 0.0081 mm . in diameter, and the other longer and almost cylindrical. The appearance was that of an actively growing yeast.

The mash which was left under the usual conditions did not alter thus in appearance. A few more cells may be olserved associated with fragments of mycelium, and with others apparenty lurstine aud scattering a fine dust, but there was no active growth, nor did analy wis indiate the formation of any alcohol. The appearance of the mash on the fifth day is shown in fig. 1, Plate VIII.

A fter the last sample was taken the moto was heated, and almost immediately a great development of the ferment cells took place. On the seventh day the temperature was $23^{\circ} \mathrm{C}$. and the microsempic apparance (fig. 2, Plate V III) shows that the cells were bodling and growing with considerable activity, and chemical analysis at the same time indicated the existence of 5.2 per cent. of alcohol. The diameter of the largest cell was 0.0083 millimeter and the average size 0.0076 mm . The mash on the teuth day hat a very similar appearance to that on the seventh, and on the twelfth, although the temperature was then only $16^{\circ} \mathrm{C}$., the rells still appeared fresh amb vigoms as in the left of fig. 2, Plate IX. It the same time frasments of the mycelium were to be seen as well as a number of very minute cells. the functions of which are not known. On the fourteenth day the cells hat much the same chanacter as before, the largest still measuring alout the same, i.e. 0.0082 mm .

The next sample exumined was that taken on the seventeenth day, after the finther addition of rice and kigi, and when the temperature hat risen to $19^{\circ} \mathrm{C}$. sufficiently high to promote the very active growth of the yeast. Fig. 2 Pl. X shows the apkearance of the ferment on that diy, and it will be noticed that the size of the cells is rather less, the largest being only 0.0075 mm ., perhaps because they were not fully grown. By the nineteenth day they were again in ative grow th, and the largest again had a long dianeter of $0.00 \mathrm{~m}^{2} \mathrm{~mm}$. The temperature at that time was ers C a and the amount of atcohol increased from -is per cont. on the sevententh divy to! 4 thereent. on the nineteenth. The errowth of the genst continued, the temperathere of the mash on the twentyitrst day being $2 \mathcal{F}^{\circ} C^{\circ}$, but there are to he ohserved in the figme of this mash other fement cells, small straight on curved filaments whilh are the camee of the fiture deterimation of the saki. Thuy resconle very chatly the fitmonts which are fomud in "furned" beer nul wine, nad are alsu to he found in enormous numbers in sakic which has become spoilt. (Sce figs. 1 anl 22 ['late XV.)

I have dravn also a filament of myceinam to show that it was still present, although as the ferment ceils were very numerons and collected at the surfiee of
the mash, the filamenis appeared to be not so mumeroms ats firat. The some: remark applies to Plate XII which represents the mpearance of the manh on the twentyfourth day, tho last sample of tho series which wus exumined. By this time the temperature had fallen to $20^{\circ} \mathrm{C}$., but the fermentation still wint ons as the increase in the percentage of alcohol provel.

We have here a process of fermentation which resmales tho wine fernent.ition in the fart that no ferment has been knowingly auldet ly the brower, an I which belongs to the class called "spontancous fermentations." By that term of course it is not meant that the living organisms have been gemerati. I spontanconsly, without any forefathens, but ouly that they have appeami without intentional sowing. As the theory that living organisms are produend without the intervention of previous lifu has no Insis of reality we are driven tw enquire from what source these small particles of ferment have been derived. This hus been discussed by Mr. Korschelt ${ }^{\circ}$ in a prper real before tho (iemman Asiatic Society, and be very rightly anys that we may conceive of their intlula... tion in three different ways. In the first place he says that the grains of kinii may carry upon their surface gorms of the yeast in the sime wh! that thre grapes carry into the fermentation vat the cells which aftemards efleet the conversion of sugar into alcohol. Or the germs of the yeast may in the: sembll place fall into the vats from the atmosphero. 'To both explanations lue consi hers that the sudden commencement of the fermentation is sufficient olpertions. lior. as will ho rememberel, betwoen the timo of hating of the vat, and the fime of taking the first sample afterwarils, a period of 41 hours, more than is per sem. of alcohal had been formad. Mr. Korschelt, therefore, inclines to the thirit pessibility, viz., that the mycelium filures of the kijij fungus have been changrel into the ferment cells, and he linses this supposition upou the observations mande by Du Dary and Rees that the ingechium of the two spmeits of Mucor, M. mencelu and M. ricenosus, hare the property under certain condilions of formingere edis which are able to convert sugar into alcohol.

The question is one of very great scientific interest, and mu imbingy is therefore requirel for entering into a sonnowhat minute investimation of it. Fiur
 and Aspervillus glaneus might, under suitable conditions, ine fromsfinmal intu, the onlinary aleoholic ferment, and in that state go on converting mine intu
 in the nost conclusive manaer the absense of any enidence Whatere of an : In as transformation. He has shown that if proper care be tuken to exilude every germ but the one being experimented upon, no converxiom of that spmre intuany
 Mycemberma vini will grow in ordinary wort en lener as it has sulheivent air the

[^23]

Mash of twentyfourth day. $\times 730$
breathe and is proviled with sufficient fosl, but it is never converted into what is usually termed an alcoholic ferment. At the same time if the air be excluded he finds that the phant will go on growing for a longer or shorter time after the exclusion of the oxygen, but that its life is then carried on under abnormal conditions, which is eridenced by a change in the form of the mycelial fibres, and by the fact that a certaia amount of alcohol is produced. The mycelium becomes swollen and contorted, and shows a tendency to break up into small cells attached end to end, and it is only in this state that the plant is capable of forming alcohol, but it does this without the presence of a single cell of the common yeast. If the swollen mycelium-cells be again allowel to grow under the ussull conditions, that is with plenty of food and air, they reprotuce the normal form of the plant from which the spores were originally taken. It may in fact be taken that while the fungus is healthy, growing under norm ol conditions, it consumas sugar, converting it into water and cartwic acil without podncing any alcohol whaterer, lout that as soon as it no longer mects with the requisite quantity of free oxygen, still remaining in presence of sugar, it falls ill, and in that diseasel condition it lives for a longer or a shorter time, prolucing alcohol as a pathological product. All fungi are not so casily killed, zome may produce a very large quantity of alcohol before they die, and may even go on reproducing fresh cells. The Mucor mneede, for instance, acsording to Fitz is killed when the liquid contains more than 1% of alcohol, whilst the Mucor rawemosus is more tenacions of life, and is not killeduntil the liquil contains from? to $4 \frac{1}{2}$ per cent. acoming toditienent whervers.: There may be all rariations in the case of different fungi, and although no case is at present known of one of the common air fungi sielling a greater percentage of alcohol than that giren by the Nucor racemosus, there is no inherent improbability in the supposition that some fungi may yield much more. In fact the chemical difterence between what are usually termed ferments and the ordinary fungi, seems to be their power of living out of contact with free axygen, deriving that which they require from sugar, and thus causing it to spiit up into various other products in the manner shorn by some such eyuations as the following:-

$$
\begin{aligned}
& 1^{\circ} \cdot \underbrace{\mathrm{C}^{6} \mathrm{H}_{2} \mathrm{O}_{5}}_{\text {Dextrose }}=\underbrace{2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}}_{\text {Alcohol }}+2 \mathrm{CO}_{2} \\
& 2^{\circ} \cdot \underbrace{4 \mathrm{CH}_{42} \mathrm{O}_{6}}_{\text {lextrose }}+3 \mathrm{H}^{2} \mathrm{O}=\underbrace{\mathrm{C}^{\prime} \mathrm{H}_{6} \mathrm{O}_{4}}_{\begin{array}{c}
\text { Succinic } \\
\text { acil }
\end{array}}+\underbrace{6 \mathrm{C}^{3} \mathrm{H}_{2} \mathrm{O}_{3}}_{\text {(ilycerin }}+2 \mathrm{CO}_{2}+\mathrm{O} \text { (Monnyer) }
\end{aligned}
$$

Mr. Kurschelt's supposition that the mycelinm of the kijii fungus itself breaks up and goes on living as a ferment would be remarkable, therefore, ouly in the fact that the cells were able to live in a liguid containing as much as fifteen per cent. of alcohol, a very much higher percentage than the common beer yeast can exist in: But the question maturally arises whether the couditions under which the fermentation is carricel on are such as wonld permit a furgus

[^24]which ordinarily grows in nir to live with much resulta immened in a liquid. M. Pasteur has shown that in propartion as the fungus is provided with air it gows without producing alouhol, noul, if the conditions aro such that the phut can get plenty of free oxygen, nn alcohol will he fommal. Even the orlimary brewer's yeast at the beginniag of tho furmmitation proceas growa in a vigornua manner but without producing alcuhul, Inscanse it is at that time living umon the froe oxygen rissolved in the wort, bat by that manns it acquiros a freshumen which enables it to grow at a later parion with great vigonr at the expenme of the sugar contained in the wort. M. P'asteur thes explains tha custom of surating the wort followed in distilleries and in works for the manufacture of yens. Are not the sane conditions to bo found in the manufacture under discussion? During the first fow days the mixture of rice, kiji; and water, divided as it in amongst a number of small vessels, expmee a large surface which allows it th become perfectly saturated with air, so that, when the whole quantity of hiquid is collected in one large tub and heated the ferment is enablel to grow vigorously, and as soon as the air has been used np, to produce alcohol at the expense of the sugar formed in the previous stage. We can remalily underntand that these conditions would be suitable for the growth of such a form of ferment as beer-yeast, which shows very little tendency to nssume the air form (ueroliani), but they appear to be less suited to the growth of a mycolium, Buch as that of the Eurotium. In fact until the mass is collected into the singlo vat, if the mycelium grows at all, it will form long, thin filaments, which will not produce alcohol, and it will only bo when all the oxygen has beon exhanated that any alcohol will be produced. Before very long, however, the mash is allowed to cool down by being again spread out in shallow veasela, and during this time. as a large surface is exposel to the air, the mash will again becrime charged with oxygen, and no more alcohol should bo formed. What do we actually find? The heating in the large tub lasterd in the brewing operation, descrilued in section 1. Part II, from 3 p.m. on the fifth day till 7 a.m. on the eighth day, after which the misture was transferred to the shallow vessels. Yet oven after the tenth day the amount of alcohol increasal, not much it is true, heamse the temperature conditions were unfavomble, but enough to show the fermentative activity of the yenst. If we had to do with an air-fungus, it would not bo expected that the formation of alcohol would go on under such conditions, but it is quite what would bo expected from the growth of a common yeust.

Again, during the main procese, the mash is continually acratad ly repeated beating, and we can bardly recoucile this with the proluction of the large amount of alcohol if the ferment were like the submerged mycelial fibres of a I'enicillium or an Aspergillus. Such treatment, however, would be quite compatible with the active growth and fermentative activity of a apecies of saccharomyoes, and would indeed answor to the aeration of the wort practised ly distillers.

Further, in the drawings illustrating the microscupic appaanace of the ferment during the fermentation, portions of mycelium will be observed at all stages,

Fig. 1. Rell in water let for two dima x Tis

Kig. 2. Sane misen :erl in merm more P, imodeyelina.
and yet in no case was there observel any thickening such as M. Pasteur has figured in figs. 20 an 121 (Engl. Ed.) in the case of Aspergillus glaucus and Mucor racemosus, and in Plate VI. and fig. 24. of Mucor mucedo. "The mycelium remained of the same form throughout the series of observations made at the brewery and only changed in appearance from the presence of minute gramulations, probably some form of foreign organism which found a resting phace within the fibres. Mr. Korschelt has referred to this appearance, as well as to the more frequent crossings in the mycelium, as one of the reasons for supposing that the ferment cells observerd are actnally different forms of the original mycelium. I have not been able to satisfy myself that the crossings of the mycelium are more frequent after the plant has been submerged for some time than at first, but even if it were so, it does not seem that it would necessarily have any bearing upon the question. Nor am I ahle to agree with Mr. lorsehelt when he says that there is a manked difference in the abondance of the mycelinm at the begiming and the end. The point upon which most stress is lail is the suddenness of the fermentation, and that it does appar suddenly is a matter about which no one can have any doubt; but is there not a very simple explanation of it apart from the transformation of the mgeelimm into ferment cells? The fermentation appars immerliately after the warming of the marh, which has alremly heen exposed to the air in shallow ressels for several diys before being gathered into a single vessel. It is also allowed tor remain in the thb for several hours before heating, during which time we may suppose that a large part of the dissolved naygen has been abonber by the ferment. By beating the temperature is rased to alont $25^{\circ} \mathrm{C}$. and that we know is very favomathe for the growth of yeast. Knowing how rapidly the yeast phant buls unler the comelitions, it does not appear to be necessary to invose the transformation of the mycelinm into ferment cells in order to account for the sudden allperance of the fermentation, sul to my mind the simple and natural explanation is that the fermentation is spontaneons, that the gems ane fomme cither on the kijij usem, or attached to the vessels in which the opreations are preformed. Mr. Kurseheit has referred to the fict that on one oceasion, before the fermentation had properly developed itself, I olserved rume completely cylimitical cells. L'ufortmately I did not take sketeles of these cells at the time, hat it is pobloble that they were some species of anyerdema, introduced accidentally. I have repeatedly digested kijif with water withont onserving any change in the appeatance of the meedim. 'Ihe successive changes nsually seen are representen witionficient che whess in the three figures on phates XILI and XIV. A quantity of kigi was plated in a diank with some water, the thask corked and provided with a delivery tube leatling into water, and then left mar a stowe. After two days a drop withdnaw aml cxamined under the microsenpe appeared as shown in the fist fignere Ill. XII, whlargend

[^25]730 diameters. Any one comparing this drawing with either fig. 10 or fig. 11 of M. P'asteur's work "Sur la Biere", which represent abeoholic ferments directly derivel from the atmosphere, will ses the closs resemblance they bear th ono another, an I will hardly entertain any doult converning their atmospheric origin. On allowing this flask to remin for two ilys longer, thero was a slight differenco observable, the mumber of cells of alcoholic ferment hat inerensent, and after three days more fermentation was very active, and an njphrently pure npecinen of yeast was obtained. Comparing these three stages of fennentation, can any vene doubt that the germs of the aleoholic ferment were originally present in the kiji, and on being sulijected to the proper coatitions ilevelopal.

It is, of conse, a matter of great difficulty to prove any propnsition of thin kind, but the probalility appears to my mind to be very greatly in fiswor of the hypothesis that the germs have been either nir-sown or were atherent to the grains of küji before use.

The average size of the fully grown ferment cell is about ().0082 millimeter, that is, lectween that of the ordinary wine ferment, and that of the lecer yeart. Firom the many different appearances which the Succharomyces I'astorianus puts on, it is difficult to say whether this ferment cell agrees in species with any of the Einropean ferments, but from the large propertion of alcolal in the liquid in which it can exist, it appears to differ from beer yeast. The ferment of wine may produce a liquid containing as much as 15 per cent of alcohol, and from this resemblance as well as from the origin of the fermentation, sakio making approaches more nearly the wine than the beer manfacture.

SECTION 4.

HHITHATION OF SAKF: AND YHFUJI OF AICCOHOL.

At the end of the furmentation the mash is very thin ant consints manly of alcohol and water with a small quantity of the unalterel rice grains suspendel in the limuid. The subserpent processes are essentially the same everywhere and it will not be necessary to refer in detail to the methols followed in different loreweries. The separation of the liguill from the suspended matter is effected liy the use of a wronden prose callal fune, a skictech of which is given in the woorlcut at the beginning.

It consists of a wooden linx cowered on the top liy a womben plate of miluer sumaller size which is pressed down "pron the mass leneath by means of a long lever weighted at the free emil with alsut $1: 2$ to 18 humired pmomin, and hingel at the other cenl to a post firmly duge into the gromil. At the lottom of the front purt of the press there is an aperture through nlich the filtered liquid exeapo. Alowing thenere down a gently inelined surfare into a mereptarie placed inelow.

Same as two last left for three days mare. $\times 780$

I'he mash (moromi) is put into long, hempen bags which have been strengthened by being soaked in kaki-no-shibu, the juice of the unripe persimmon.

Each bag is filled about two-thirds full and then contains about $3 \frac{1}{2}$ sho $\hat{0}$; the open end is folded over an lticd, and from 300 to 500 bags are piled $1 p$ in the press according to its size. At Itami there are four presses in use, two of which hold 400 bags, and the other two 342. At Nishinomiya the press holds 500 bags. At first the weight put upon the lever is very small, otherwise the liquid would run through turbid, but afterwards the weights are increased to 12 or 18 hundred pounds. The pressure is kept up for 12 hours after which the weights are removed, the bags turned over, and the pressure renewed for twelve hours longer. The filtrate is slightly turbid and, before use, requires clearing.

At the Tukio brewery one half of the whole quantity of liquil was filterel on the twenty-seventh, and the remainler before the thirty-second day. A s.imple of the filtered liquid taken on that divy hat the following composition:-

Compared with the mash on the twenty-eighth divy it will be observed that the percentirge of alcohol is considerably less, a difference c:used by the atdition to the mash before filtering of the water used by the brewer for the purpose of rinsing out the tuns.

The composition of the pressed residue (kasu) was found to be

Soluble solid matter	1.43	per cent
Starch anal cellulnse.	:2.07	..
Ash	. 70	"
Alcohol.	6.00	,
Water.	5980	"
	100.00	

The alcolol which is unavoilably left in the residue is extractel at a later

The monont of sake obtanel by the brewer from the quatities given above for ons moto was 6.86 kokn of sp. gr. 0.99 , therefore weighing 326 kw , and the weight of the residue was 58 knwamme. We are now in foseession of all

[^26]the dat: requirent to calculate the efficiency of the browing proceses as regrils the conversion of the starch usel into alcohol.

As the sake contained 11.14 per cent. of alenhol by weighta tho tot al weight of absolute aleohol cont:ined in 326 kw . was 36.32 kw . 'Tho 58 kw . of' rewidue. also, contained 6 per cent.o amonnting altogether to 3.48 kw ; the total ymantity of alcolinl, therefore, which the brewer obtationd wam 39.8 kw .

We have alrewly seen (p . 4if) that the inaterials noed for one motu amounted to:-

Dry rice...	175.1
Water .	329.03
	(x)4. 13

The dry rice contains on an average 84 per cent of attrch, which. if it werr. completely converted into alcolol would furnish 80 kw . As tho ninomt arthally obtainel was only 39.8 kw , we sec that the yield is not quite one bulf of that which is theoretically olitainable. In necurato numbers it is 4975 per reut. That the loss of material during the preparation of the sake is considerable will hw evident when the number of transferences from one vensal to nother in comsidered. Two other sources of loss also are very important, the loes of inatter hy the rice first, during the process of cleaning and wushing, and sccondly, during the filtration.

The following calculation will furnish us with somo gride to the quantity of material lost in these operations. Allowance is made for the enrlminiacid evolved by assuming that it amounts to 98 per cont. of the alcoloul formed. This number is the result of experiments made hy many former cheservers upon the ratio of carbonic acid to alcohol formed during ordinary fermentatimu. Any difference between it and the truth will be tho small to alfect the conclusion

Total weight of saké obtained. 329 kw .

As 504.13 kw . of dry rice and water were nsel at sharting the tutal ghantity. nccomuted for is only $8 t$ per cent. The werght of dry rice given abowe whs corrected for the loss of weight during the conversion of a part of it intu kini, so that the loss of $\mathbf{1 6}$ per cent. is over and above that exprerienced during the formation of koji. And, indeed, this is not the whole lows becuns nu accoumt is taken of the additional water used in cleaning the vesmels, sumbuting to ulxint 18 kuwamme, which would mise the loss to 19 jer cent:

The yield of alcobol obtained at Itami is rather higher than that fombit in the Tokios brewery. The quantity of sake ohtained is 13.32 kuku, which will contain

[^27]75.9 kw . of alcohol. 75 kw . of residue are also obtained containing 3.8 kw . of alcohol, which altogether amounts to 79.7 kw . The weight of dry rice used we have seen to be 310.77 kw , contaning 266 . 4 kw . of dry starchand unght to produce 140.3 kw . of alcohol. The actual yield is, therefore, 56.8 of that which theory indicates.

At Nishinomiag the weight of dry rice used is 310.1 kw . and it ought to produce as at Itami 140 kw . of alcohol. The yield of saké for one moto is 14.1 koku, which, together with 80 kw . of residue would contain 77.7 kw . of alcohol, and the actual percentage of alcohol obtained is thus 5.5 .5 per cent. of that theoretically possible.

There is a very general agreement between the actual yield of alcohol in the three breweries mentioned; although that foum by myself as the result of the brewing operation in Tokii is less than that caleulated from the numbers given to me at Itami and Nishinomiya. We may assume that the percentages ollatined at Itami and Nishinomiya are the best results, as they ought to be considering the long experience which the brewers of those districts have had. The operations at Tokiô on the other hand are conducted on a much smaller scale and it is scarcely to be expected that the brewers will possess the same skill as those in the great centres of sake production.

Mr. Korschelt, in the paper on saké * already referred to, has mentioned that the actual yield of alcohol according to information from one brewer is only 50 per cent of that theoretically possible, and he expresses the opinion that in any case it is too little, and that the production must reach nearly 100 per cent, because the conversion of starch into sugar is so complete.

I do not consider that the process followed at the Tôkiò brewery is a very satisfactory one, but that practised at Itami may lie regarded as the one which is carried out with the greatest degree of skill, and yet even there the yield is not more than 57 per cent. of that which might be obtained. The case in which Mr. Korschelt says he obtained 80.5 per cent. must be exceptional, and I am inclined to think that he has overrated the percentage of alcohol contained in the saké producerl. At Itami the strongest saké does not contain, even before dilution, more than 14 per cent. of alcohol, and it is not prohable that the percentage in a Tokio brew will be greater. In the process which Mr. Korschelt examined in T'okio, and of which he gives details, the actual yield of sake is 67 per cent. of the theoretical yield. The mash, which cousisted of

2.9	kokul	of moto
3.2	$"$	" kôji
12.0	$"$	" rice
13.9	$"$	" water

contained 475.4 kw . of starch and ought to have yichled 2.56 kw , of alcohol.
 and contained 14.5 per cent. of alochol. If we assume that the sperifie aravity

[^28]of the mash was 0.99 (as I found in a similar brew), the total w ight of the mash would be 1187.5 kw . and would contan 172 kw . of alcohol, that is 67 per cent. of the theoretical yield. This gield is certuinly greater than the averngo yield in other breweries, und may have ben tho result of especial preantions on the part of the brewer, but even in this case, only two-thiris of the alcohol was oltuined.

In an earlier purt of his pmer Mr. Konschelt has calculateal tho theoretical composition of the moto, and also of the meshat the end of the principal fermentation, compuring it with the momints of extract and alcohol actmally found. He arrives at the conclusion that the whole of the starch nesel enters into molution, at uny rate in one of the examples he briugs forwaril. In the case of moto he gives the theoretical pereentage of extract as 35.46 , whilst in one lateh of moto he finds 34.86 per cent. In none of the other exmmples dows the percentage arrive at such a high point, leing as a rulo from 26 to 28 per cent.

The method of calculating the results alopted liy Mr. Konechelt aptimes in be affected by the existence of errors for which it is difficult to make allowancu.
Some of these crrors act in one direction and some in the opposite one, wo that perhapes, the final result is not so fir from the truth, Int it is nevertheleas desinulile to eliminate them as far as passible, or to adopt another methot of comprason which is not so linble to their presence.

The amount of water contained in freshly made kiji, as usenl lyg the brewer, varies from 2.5 to 33 per cent. and never falls so lowns 15 per cent. which Mr. Korschelt assumes it to contnin. The correction for this will canse nu iucrense in the amount of water given in his paper (los. cit. p. 2.50 from 2.925 kw . to 6.32 kw. Again, acting on the assmmption that the suggtr present in the madh is maltose, the weight of water taken up by the stirch in conversion to sugar in calculatell ouly as $\frac{1}{1}$, whereis, dextrose being present, us I have shown, it should be twice as much, that is iusteal of being 2.6 kw . it will really he 5.2 kw . This correction acts in the opposite direction in two ways, first by alding to the weight of the extract, and ly taking away from the weight of the water.

Further the assumption is made that the matter ather than slarch diseolvel from the rice will amount only to 2 per cent. of the rice, but in reality at least 12 per cent. is dissolved. I have found that the presence of the diustatic ferment of kiji has the property of rendering the insoluble allumenoids of the rioe eolluble, and Messrs Brown and Heron ${ }^{\circ}$ have shown that in the case of malt a certain proportion of the cellulose is held in solution. This will, therefure, add greatly to the concentration of the mash, nod, finally, the percentare of extract is increased by the removal of water aud of carlonic acid during the fermentation. Mr. Korschelt alluws two per cent. for the former, but he omits all correction for the latter. As we have scen however, the weight of carbonis neil evolvert is nbout 98 per cent. of tho total weight of nevhel formed, in consegnence of which

[^29]the total weight of the mash is diminisher by that amount. Hence if the composition of the mash calculated on the supposition that the starch is completely couverted into sugar is compred with the actual quantity of extract calculated from solid matter in solution and from alcohol, it is evident that the former will appear too low, and that therefore, the apparent solution of the sturch will appear too farourable. This makes a very important item in the calculations, and its non-correction diminishes greatly the accuracy of the results obtained by Mr. Korschelt. The following method of calculating the results aroils the errors which have been pointed out, and shows that the whole of the starch is not brought inte solution as Mr. Korschelt supposes.

The composition of the mash was given on p . 57 , and we saw that it conianed 475.4 kuwamme of pure starch. The weight of the whole brew lefore filtering was 1187.5 kw . This contained 172 kw of alenhol, which is equivalent to $1.8 .56 \times 172=319.6 \mathrm{kw}$. of dy starch. The mashalso contained 6.5 per cent. of extract, which we may assume to be entirely dextrin (although this assumption is in favour of the perfection of the method) and would thus weigh $0.065 \times 1187.5=77.2 \mathrm{kw}$. The sum of the two numbers, $319.6+77.2=396.8 \mathrm{kw}$, is the total weight of starch which has been brought into solution. We see, therefore, that only 83.5 per cent. of the total starch used has tren dissolved.

So far, therefore, from leing able to agree with Mr. Korschelt that the "process of sake brewing is so complete, that important improvements cannot be made in it, unless we would alter the ultimate product to such an extent that it would no longer be sake" we ought to conclude from the evidence given in his own paper that it is still capable of being much improved. And this conchasion is borne out by all the cridence as to yield which I have been able to obtain, even from the oldest and best managed beweries.

AECTION 5.

WIESERVATIOA OF S.AKE゙.
Clearing. The lingid which has pussed through the press is turbid and requires clarification before being used. This is effected by collecting the sakn in large funs which have two hoies near the bottom one above the other, and closed by means of plugs. (See Frontispiece.) After the lapse of about 15 days the suspented matter has settled to the lwotom, and the greater part of the cheir

[^30]liquil in proper vessels. Thbe remaimer is allewed to stand for a honger times and the chatr part is separaten by opnomine the bower hole. What remanins is termed ori and is aded to another brew just before filtering.

Heating. The clear sakir su prolloed womld mot kexp for more thon a few days in the warm weather withont lning subigeted to mone further fremess. At Itami and at Nishimomiga the heatimg of the sake is comried ont on the s.ith
 of the fourth mouth of the whl calembar. Thore "penation is a very simple oure.

 alterations so lone as the weather remains cold, but as sombin the summer wis in, the sakie has to the fremently examinest in wriker to detext any chature When any signs of alteration ate apparent it has to he fakern ont if the fill, mal again hetted, after which it is returned to the store vat.

In the followine table are givell amalyes of several kinds of sethe ehtamerl from the distriets of Itani and Nishommina. The? were in ment cases ontabind directly from the respective berewers, and may be renarided as pare and mataterated sumples.

The samples of sake of which amalyses are given in tahle XXI were lirewed

 tion, the percentage of alcohol not passing bevome the limits 11 to 14 . The quantities of dextrose and dextrin are very rmalo, and in this ciremmstance, ns well as in the larger precontage of aleohnt, liew the essemtial differnce letwern saki and beer. Connected with the abseuce of the two Intter buslies almo in the freerlom from carhouic acid, for the saki" is quite as "wtill" "n the mont fermenteal

 and the taste beonus more matured. Shring the lat weather it is ingmssible to prevont the saki "tarning" without frepleme heating, and as this is a very halnifous operation any improvement womble wedemed hy the brewer. S.e.
 to be accompanied by the funnation of butyric asid, manonia, and a vulatike,

TABLE SII．COMPOSITION OF VARIOTS SPRCIMENS OF SAKÉ
FROM IT．AMI ANJ NLAHLNOMHE．

	Itami				Nishinumiya				
Name of Silu	＂Gaika＂	$\begin{array}{\|l\|} \text { "Hatent } \\ \text { hitage" } \end{array}$	shinga juki		"Irw,	＂Tai。 vivo	"s ski Lake'	$\left\lvert\, \begin{gathered} \text { Kimue- } \\ i(c) i^{*} \end{gathered}\right.$	$\begin{gathered} \because z u i- \\ i c \cdot b i= \end{gathered}$
Nume of Drewor．	$\left\|\begin{array}{l} \text { Bonjohi } \\ \text { Shin } \\ \text { yetown } \end{array}\right\|$	$\left\|\begin{array}{c} \text { Kunishi } \\ \text { shini } \\ \text { yemon } \end{array}\right\|$	Komiabi Mote		Idzirmi M：＊： sttie	Tatsir	$\begin{aligned} & \text { Catsu } \\ & \text { yusu } \end{aligned}$	$\left\|\begin{array}{c} \text { Tat sumá } \\ \text { Kijiro } \end{array}\right\|$	
Alcohol	12.30	12.15	12.15	13.10	13.73	11.20	12.83	11.00	13.50
lhextrose．	．153	． 312	－ 11	.561	.104	－	.82	.20	1.41
Inxtrin	．255	． 256	． 30	.05	． 18	． 16	．22	．14	． 35
Cilycerin，ash＊and alluu－	1.530	2.15	1.857	1.46	1.883	1.81	1.22	1.58	2.02
loixed acid	.145	.13	． 123	.32	.143	． 12	． 32	.13	.24
Volatile acid	． 015	． 01	．03）	.03	． 020	－	． 014	.014	． 013
Wiater（by difference）	85.135	84.992	85.098	84.48	83.684	86.71	84.575	86.936	82．127
	1010.000	100.000	100.000	100.0000	100．000	100.000	100.000	100．000	1611.1017
Suecilicegravity	0.991	0.992	0.992	$0.993{ }^{\prime}$	0.988	0.990	0.990	0.991	0.994
Specific rotatory power	36°	$25^{\circ} .6$	33°	$19^{\circ} .7$	24°	$16^{\circ} .4$	37°	$20^{\circ} .10$	$41^{\circ} .6$
Sign of Sake	$\begin{aligned} & \text { 号几 } \\ & \text { 部 } \\ & \text { E円 } \end{aligned}$		$\begin{aligned} & \text { 霡 } \\ & E p \end{aligned}$	$E T$	$\begin{aligned} & 7 \\ & 3 \\ & \frac{3}{2} \\ & F 贝 \end{aligned}$		$\begin{aligned} & \text { 出 } \\ & \text { FD } \end{aligned}$	$\frac{\text { 明 }}{E p}$	

ill－smelling sulstance，whilst at the satme time a purtion of the atembl disuprears． Oue sample which ham been allowed to stand from the eprine of 1ヶT！till Jume 1880 contained 11.4 per cent．of alcohol and 0.316 per cent．of total acid，of which 18 per cent．was butyric acid．As the original saké was not completely analyzel I cannot give it for comparison．Two samples of those alrealy given were kept and analyzed after standing in bothes corked in the nemal way from
 tively．The compasition of the original sake is reprated alomeside for whemener of comparison．

[^31]TABLE XXII. COMPUSITION OF ITAMI BAKE "GAIKA" BEFORE AND AFTER BTANDING.

	Beforo mtanding Feb. 5th 1840.	After standing Jan. 17th 18×1.
Alcahol	12.8	11.90
Dextrome 62	-
Dextrin	. 285	.235
Glycoris, whate	1.63	1.687
Fixad acid 145	. 800
Acotic acid 016	. 002
Butyric acid........	-	. 000
Water	85.185	85.780
	100.000	100.000

TABLE XXIII. COMPOSITION OF NISHINOMIYA BAKE "IROZAKARI" before and after standing.

	Feb. bth 1880.	Nov. 1at 1880
Alcohol .	18.78	12.48
Dextrose	. 404	-
Dextrin.	. 180	
Glycerin, ash \&c	1.888	1.0
Fixed acid	. 148	. 885
Acetic acid	. 020	. 023
Bulyric acid...	-	.088
Water ...	88.684	86.183
	100.000	100.000

In both cases a diminution in the percentage of aloohol took plice after keeping, and at the same time the small quantity of dextrose present in the original make: disappeared. The principal apparent change is the large incrense in the percentage of fixed acid, whilst at the name time a small quantity of butyric acid is aloo formed. It is the presence of this acial together with the volatile boly lwefore mentioned which causcs the disgusting smell possessel ly such "furnel" sake, notwithstanding the very small percentage contained in the liguid, lut the erour taste of spoilt sake is due to the fixed acid, mainly lactic acil. 'The quantitiea of alcohol and dextrose which have disappearel are much grater than the weights
E

Fig. 1. Ferment eclle in rpail raké fram sakri. x

Fig. 2. Permant ealle in another sperimen of spulit akk $\times 720$
of acid formed, a circumstance which shows that a combustion occurs resulting in the formation of carbonic acid and water. In fact the liquid which has been kept over a summer will be found to be highly charged with carbonic acid, whereas unaltered salké contains none.

At the bottom of the vessel in which the sake has been kept is a thick deposit consisting almost entirely of minute cells some of which are represented in the accompanying figures, Plate XV. The organisms in fig. 1. resemble those found in patril beer, and those in fig. 2, are almost identical with the filaments which proluce "turnel" beer. The former are more commonly met with, and doultless, by their growth give rise to the unpleasant odour characteristic of spoilt saké. It is for the purpose of destroying these organisms that the sake is heated, but as, after heating, no precaution is taken to prevent the contact of the liquid with fresh germs repeated heatings are necessary. Indeed during the hot months from June till September, the sake must be heated at least once a month and very often more frequently.

It is an important and interesting fact that the process of heating the sake for the purpose of preserving it has been in use in Japan for about 300 years, and it is all the more remarkable, that having discovered the beneficial effect of this operation, the brewer should not have made it lasting by taking precautions against subsequent contamination. Instead of doing this, however, the liquid after having been heated is returned to the same store vats in which it was formerly kept, and the sides of which still retain particles of the ferment attached. When the still hot liquid is put into the vat, it is possible that the high temperature will kill all those germs adhering to the sides of the tun so far as the liquid rises. But above the level of the liquid they will remain motouched, and as, during the subsequent standing of the sake, the alcohol is drawn up the sides of the tun and runs back again in the form of "tears," the germs will in that way be carried down into the sake, will slowly develope, and in a comparatively short time will render it undrinkable.

The Japanese brewer las been credited with the discovery of the method of preserving alcoholic liquids which has made the uame of M. Pasteur so widely known, but when we consider that in Japan, the heated liquid is allowed to lecome inoculated with the germs of its disease, even at the time of its so-called preservation, we see that he has omitted a part of the process which M. l'astem truly regards as vital. When an alcoholic liquid has been "pasteurized", as the expression is, it will keep for an indefinite time, because the germs of disease which were already present have been killed by the high temperature of the liguid, and care is subsequently taken that no fresh germs find access to it. A wine thus trated not only does not deteriorate but actually improves by keeping, becanse it is allowed to "age" withont the danger of any malaly being set up which would spuil it. The Japmese wince, sakie, is nut allowed to improve in this way; I have in ain caleavoured to get amples whi:h have toen presersed for several years. As a rule, even at the most extensive loweries is Itami and

Nishinomiya, the whole of the winter's proluction is consumed within a year, and the reason is evident; it is impossible that the repeated heatings which the sake requires during the summer months in order to prevent it going utterly to decty should the without effect upon its quality. Further the liquill is not heated until the brewer detects an incipient apoiling, which means the alreuly cousideruble development of ferment with the production of butyric acil, and although a portion of the latter is probably driven awny on heating, nome is sure to nemain. By repeated fennentation and heating, therefore, the amount of bintyric constantly increases, and thus in time, the rake must become undrimkable.

A process simple and effective, which will preserve the sukn is evilently greatly desired by brewers, as is shown by the many attempts which have been male to uie salicylic acid for this purpose. Mr. Kinsehelt wrote a pamphiet alvocating the wee of this antiseptic, aml succeeded in perxanding many langs brewers to try it, lut so fir as I can learn, the success of the experiment has not been such as to satisfy the expectations misel. Salicylic acid has been introklucel in Europe of late years as a menne of preventing thas deterioration of wine and brer, and when employed in sufficient quantity appers to answer the furpose in the elimates of England and Germany. Prof. Kolle mentions that "salieylie. acill addell to new wine entirely prevented after-fermentation. It appean alau in prevent wine kept in half empty bottlea hecoming stale and sour. The quantity of the acid found sufficient for the purpmse was 0.2 gmun. (or 0.1 gmm . salicylic acid and 0.1 gram acid potassimm sulphate) per bottle". He uleo gives experiments showing the influence of the presence of differing quantities of molicylic acil upno a light, English beer, which would usually keep for almut four monthes. The quantities added were to 100 litres of the beer.

BEFHR BREWED IN JANUARY 1875.*

Wright of salicylic acid adiled to 100 litres of loper.	Examined in August 1876.	Framized in December 1876.
0	Sour	-
2.5 grams	Not good tanted	Somr.
$\stackrel{5}{=}=$	Good tanted and in good condition.	Good taved.
10 \%	Good, aparkling, and clear: of good iaste and aroma.	Oood in every reopects
30.	Goond, njarkling, elear and fullbonlinet.	Clear, efmathling mud of gand aroma. Eacedhent in wiery reapect.
40 "	Rather too new, in turte. Yery good.	Jilke the finmgeing, hut firlter. bodied and very sparkliag.

[^32]The evidence of the experiments quoted above goes to show that whern firm 10 to 20 grams of salicylic acid are added to 100 litres of beer, or to about 110000 grms., i.e. 1 or 2 in say, 10000 , the preservation is perfect during summers such as we are accustomed in Europe. How far the higher temperature experienced in this country will modify the results we have no means of knowion. The only direct experiments I am acquainted with, besides those of Mr. Korschelt, are mentioned by Prof. Kinch in the Transactious of the Asiatic Society of Japan." He says, "Numerous experiments were made last summer with salicylic acill as an antiseptic agent for saké, and it was found that usel in the ratio of 1:10000 it preserved sake in imperfectly closed vessels for about a month, and when used in the ratio of $1: 5000$ it preserved the sake through the whole of the summer even under very trying circumstances." This evidence corroborates that offered by Prof. Kolbe, and we must probably look to the quantities used by the brewers for an explanation of their want of success. One of their complaints was the expense of the material, and though I do not know in what proportions it was used, it may readily be imagined that they would err on the side of deficiency rather than on the opposite side.

Although the evidence is in favour of the action of salicylic acid in arresting the change of alcoholic liquids, experiments have been conducted only for a comparatively short time, and there is nothing to show that the effect is a permanent one. Indeed from the chemical properties of salicylic acid, and especially from the readiness with which it is converted into salicylic ether in presence of alcohol and an acid, it may be regarded as certain that when a solution of the acid in sake is allowed to remain for a considerable time, especially at the sumner temperature, it will be transformed into salicylic ether, and an this boly pobally dues not funsess the same antiseltic pmperties as the acid, the preservative effect of the acil will thus prove to be only temporary: Moreover the wood of the vessel in which such liquids are kept has been shown gradually to absorb the acil and thus destroy its utility. These circumstances will however, only necessitate the more frequent aldition of salicerlic acid, and as I'rof. Kinch has shown that 1 part in 5oor) of saki is sufficiont to prevent the liquid spoiling during a whole summer it is only necessary that this amoment shonld be addel each spring to make the process smeessful. So lome, however. as the price of salicylic aril is an high as it is at pement in Japan, it will panathy be more economical to heat the sake with such modifications in the form of the apparatus as will presently lee rlescriberl.

It is not necessary to wait until salicylic acid falls in price sufficiently to make its use economical ; the brewer hats at hand all the applinueces needrul for making his brew keep as loner as he phenses, and withont any alditional expense further than that required to alter the shaje of some of his vessels. I have printed ous that the weak point of the present methent is that the lipuid alfer

[^33]having boen hoated is proured back into the smme ussel in which it hat formerly becomo spoilt, and that the vessel is nos inmplately filled. With the present form of vat ueed for storing saké it would la - hittientt, it nut impmaible, th contpletely fill it, and lwe sure that it was also perfiofly tight, but if, iuntead af using the larse, upright tums which are covered liy larse, flat phates, fi or a
 a vessel wore used with only a smatl bung hate at the upper sithe which would permit of being easily and scourcly fustened, the hewer heed handly wish for any other means of preserving sake. At present cerill at the largent lirewery
 in one season, bat if propur means of preservation were emplaye I. that anment might be largely increased, syy to one million litres of simes) kikit If the silk.: wore distributed into smatl harrels haldinige say 1 kikin cath, ther mumber required in one bsewery would not bo greater than the spmee wrulil almis of. with this advantage, that even if one lamel wont but the reat if the: lirew would not be affecter. Tlbat the heating and preservations if the rekio under the conditions mentioned aluro suftice to pmevent the liguild amiling has Leen shown by direct experiments with two sorts of saki, one from Itani, "Gaika" and the other from Nishinomiva "Irwatiant". F'ive hettles uf each werr. heated in a ressel of water until the tomprature of the contents rase fo fi') ($'$. anid were then tighty corked aud sealed. At the eml of twelwe n:onths the saki remained clear and brilliant, and had in tw, way heterinratent, whilst the smme sakie kiph in a bottle closed in the odinnry wn! was a miftely ? witt. the chatere ha ing imsti-
 that the process appliod to wines is likewise "apalum of appiination th mak:

An arrangement for heating sal:i" which womht he withor "Dpmase to erect nor lialie to get out of oreler is mpmemted in llate. XVI, kimbly furnished by Prof. Ewing. It consiots of a lonte. Wromelt-iruft lax A. about six feet lones, three feat deep, and theme fiet bemal. mushe of twiler phat. rivetted together, and bilt weer a small tinephe with flus circolatine $\left.\right|_{\text {w. }}$ neath ame on both sides so timat the whole of the wesit is pretty cypally heratel by the hot gases before they rseape to the chimmery. Fir 1 is a sertinn tukern through the furnace some distance herent the bireplate: the the lamath is

 it from immediatre contact with the thans by brickurk, which. hewnero. is ont represented in the drawing, and need only exteme a hath di-talne firm the fireplace. In oriler to support the lieating wessel it womht lue adsablike th imith up brick pillare in the middle of the fleve, lat it wemld mot lue merrasary to make them very broad. The vessel is provileal with a lit whish ain lar romowerl when it is required to clean the inside; it has in the centre a lane opmening. somewhat larger at one eml, which is nsually cowerel with winden phatec. Tha"

Ramiquel's apparatuy pom heatimg wine

longer one c for the purpose of stirring the liquid in orter to crpualize the termperature as much as possible. That there may be no danger of the iron becoming lurnt by the exposure of its sides to the action of the hot air when there is no liquid within to protect it, it will always be foum alrisable to withdraw the fire from the grate before remoring the heated sake. A vessel of the size given will hold about S koku of hot sake. To permit of the withdrawal of the sake and its introduction into proper vessels which may be completely filled. with it while still hot, a pipe is led through the brickwork and reaches some distance beyond it ending in a stopeock and a curved beck, the vertical portion being made to slide up and down so that it may allow of the passage under it of a barrel in the way shown in the diagram. At the side of the furnace a depression in the ground is made in such at way that the barrel, resting upon a small barrow, can be wheled down an inclined phane on one side and be brought right under the tap, and when filled can be pushed forwand, and its place taken by a fresh one, and so on until the greater part of the liquill has been stored. As soon as the barrel is filled it is, of course, tightly closed in the usual way. The barrels which would be suitable for this purpose are such as are used in beerbreweries, and some sery good examples are shown by the Fai talu shi (Colonization Department) in the present National Exhibition (1881).

In phate NVII. a form of apparatus fur heating wine, deviced lyy. Rossignol is shown, taken, hy lind permission of the author, from M. Pasteur's work on wine. 1 . 232 . (Ed. of 18731 . The following is a translation of the description which accompanics the drawing. "This apparatus consists of three parts: 1°. a firnace l, which dues not differ from any orlinary furnace; 2^{3} a broal, copper boiler C. prowile $\mathrm{l}_{\text {with a }}$ cover soldered for it, and prolonged into a straight tube II, open at the coud: the apparatus is filled with water half up the tube, and serves as a water-bath. 3°. a wooden trough or batrel T , the bottom of which is sawn off, and which rests upon the edge of the lid of the boiler and is firmly fastened to the cover by a simple arrangement: the ellge of the cover a extends beyond the boiler for 3 or 4 centimetres; below it is a ring of wrought iron, and above a washer of cantchonc, upon which rests the eige of the barrel; an irm ring encircles the elge of the barrel and is provided with straps of itone which are fastened to the lower riug by strong loilts. The interval betwen the outsite of the boiler and the inside of the barrel is tilled with the wine. and all that portion of the boiler with which the wine comes in contact is timed. A thermometer t indicates the temperature of the wine: a ressel E with tulk allows the apparatus to be completely filled and be wine to expand on leatine.

A simple glance at the figure will explain how the apparatus works. It
 hectolitre, and costs 140 francs."

This apparatus like the ome lufime mentioned, hat the dis whatare of beiner

p. 24.5 \&c. I'late XIX shoms the arrangement of caske and heating afiparatis at work. "The hent genemtor consistn of:-
1° a central fire box F in the form of a truncated cone ; the fire occupiess the lower part. The finel is introincel at first through the side opening \mathbf{P}, and when the apparatus is at work, throngh the small door P^{\prime} made in the chimmey. A register moderates the draught.
2°. a water bath B, which oecuppies the whole of the interval brtween the fire box and the outer cylinder. if is clearing cock. Above the buth in in reservoir open to the air, constuntly fill of water, separated from the water hath by means of a horizontal partition, and communicating with it by a vulve " attached to a lever. The lever its.if is connected with the stopoock ob byenum of a chain; when from any accile intal canne the temperature of the bath risen tow ligh, the vapour escapes throngh ". the water enters and the bath is brought hack to the normal temperature and is feil it the same time. If, for any reason, the apparatus bas to be stopped for any time and the temperature of the bath rises too much, the anme result is atticinill ly upening the atopoock ow which nises the valve 0 , the cold water which i- always kept in the open reservoir entess the hath and cools it.
3°. a worm 88, thromgh whidh the wine Hhws : this consiste of 40 matl copper tuhes, 4 millimetres in intermal dianmen, which open at one end at the mowth N , at the other at K . after haviur madr. nearly two turns in the water huth. The cooler II IS is formed of a very lirer. $\|$ Ij sumpounding the heat generator. containing insiele th small paallill tulnes \& 4 millimetres in diameter, like thense
 dips to indicato the temperature, and at thr "pposite cmo if the wide tube into n cavity, R.

When in action the wine flows in the fillowing way thrugh the appuratus. The cold wine enters liy the thle a intul If in the wide ghond which forms the cooler, circulates on the ontside of the small tuhes in RB , and leaves at N liy a tube passing at once intu the limit-ginmator: traverses the 4) tuleas of the apparatus, leaves it at K and chiters the cinhiner ly the tulve I, flows through the 40 small tubes s's' (conled liy the newly arrived colld wime) and timally leaver the heating apparatus by the thile i. !late XIX presents a perspective view of the complete apparatus and ther menle off using it. It is represented hy I at the opening of the cellar: it i- lurme ufuin a hartwiw and may te meved lyy one man ;
 upper part of the rask 'I'. the wine contiwnel in which is to te heated; "pipe inserted in the lower part of the cask brinus the witw to e in the heatines apparatus B; another pipe 8 conducts the heated wine intu an cmply cank ' T '.

To set the whule at work the witer bath is silled, the wine in firceml intu the apparatus by working the pump; and when the water is hot emongh, the stup. cock S is slightly opened: the thermometer rises; when it reachess fits. fur example, the stopcock is opened more, and then ouly is the wine receiverl into the

Terael des Cateses apparatle for heativg uinf.

empty cask. One man works the prmp, while another tikes charge of the heating appatus and regulates the flow of the wine ly means of the stopeok, watching the thermometer all the time.

When, the operation ended, the apparatus has to be cleaned, the valve o is unserewed, and in its place the extremity of the tube e is inserted; a current of steam then passes throngh the apparatus in a direction opposite to the flow of the wine, and drags away the deposit which has foimed in the tubes.

The following data will give an ilea of the economical results of this appuratus:
Price, with all the

requisites | Number of hectolitres heated |
| :---: |
| per loour to 60° |

Large apparatus	1200 fr................... 10
Medium sized	450 ,, 5

The large apparatus receiving the wine at $15^{\circ} \mathrm{C}$. raises it to 60° and cools it to $32^{\circ} \mathrm{C}$. It requires 5 kilos. of coal per hour, costing $1 \frac{1}{2}$ centime per hectolitre; its diameter at the hase is 0.50 metre, its total height 2 metres. The total weight with pump and other requisites does not exceed 230 kilos."

At present is the sake cannot he preserved without alteration for any leneth of time, the beneficial results of "ageing" have not been experiencert, and a decided improvement in the quality of the liquid may be looked forwatel to by the moption of the process of heating and preserving in well-chosed, women barrels. One effect would be that a quantity of air would diffuse through the wood and would mature the wine without the danger of any disease germs accompanying it. The influence of oxygen upon wine camot be better ilescribed than in M. l'isteur's own worls" "In my npinion it is oxygen which makes the wine ; it is by its influence that the wine ages ; it modifies the bitter constitnents. of new wine, and caluses the bad taste to disappear ; it is the same agent which inluces the formation of deposits of grood character in casks and in bottles, and fiar, indeed, from an absorption of a few cubic centimetres of oxygen prer litre of wine spoiling it, removing fron it its "houquet" and weakening it, I believe that wine has not come to jts proper state, and should wot he bottled, so long as it has not absorbed an amount of oxygen much greater than that."

SECTION (i.

8. SHOChÛ aND mirin.

In a former section it was mentionel that the resilue of undissolved starch and celluluse, left hehind after pressing the mash, contained atout six per cent. of aleohol, and that the brewer mate nse of a methent which enabled him to recover the greater part of it. This is eflected by a process of distillation where-

[^34]variations in the treatment, form 20 to more than fil per cont. of absatate. alcobol. The apparatus nis 1 is representerl ly the acompang ine wosk out, and is in principle the same as the smath carthenware still, here called rambih i, mach used in pharmacy. It comsists of a shallow, iron hasin built ion a common fireplace in which wowl is lurnt, and prowided with a thange umon which a wonden eylinder with a perforited hottom resis. Upen the fop of this cylimker or tub, there is fitter an iron lawin terminating \ln bow in a priat immestiandy nave a kind of flat finnel, the tuh: of which ben ls away at an angle, nad lezuls outside the tub to a receiver. The irnh kisin, when filles with colld water. serves as a comlenser

and the alcohol, which collects unn the under surface, runs down to the puint and from that drips into the fund and then thows matside into the reveiver. The condenser A is 24 inches in diameter in the still nsat at Itami, the womben tub ' I ', $21 \frac{1}{2}$ inches in diancter and $2 \cdot j$ inches in height. In other plames the dimensinus vary a little, thus at Hawhing the comenser is 21 inches in diancter. and 15 inches at the deepest part, the tuh is 34 inches high, and in dianeter a little less than the comdenser. About tive of these stills are placed side lige side, and the water required for conding is whamed from a lamemen pije is leanling from a cistern, amb having a loble conserl by a phorg for each condenser. In kinwame of the residue (hasu) are mised with 1.1 kw , of the husk of rice : the quantities used are, howeser, not i:sually weighed, hit are messured in a wamben (uh) 2) inch: in diameter and 13 inches high, two of which hohl 10 kuwamme. The mixture is then plivel in the tub upors a hempen choth which covers the profurated bottum: the loiler is tiol with water and the tub is then phaced in pwition, the junctina leing mate tight ly means of a ntraw ring. The condenser
is then placed upon the top of the tub, and is filled with water by withdrawing the plug from the bamboo pipe S. The fire is lighted, and as soon as the water boils the vapour rises through the mixture of residue and husk, the latter being used for the purpose of keeping the whole porous. The heat is so regulated that when the water boils, that in the condenser never does more than simmer, and the condensed water and alcohol drop onto the funnel and are collected outside. The water in the condenser is changed several times during an operation lasting one hour, and according to the number of times the water is changed does the strength of the distilled liquid vary; this gives the name to the spirit produced which may le san jô dori (collected in three shio), go jô dori, or shichi-jô-dori (collected in fire and seren shô respectively). For the preparation of the first named spirit, the water is removed $2 \frac{1}{2}$ times, for the second 3 times, and $4 \frac{1}{2}$ times for the third; for the production of the latter the fire is not urged so much, so that the operation is somewhat prolonged, and of course, more water condenses.

When any of the sake which has been brewed becomes spoilt, the alcohol which it contains is recovered by putting it into the boiler instead of water, and the process of distillation is then conducted in the way above described.

The following are the percentages of alcohol and the specific gravities of some specimens from various places; the liquids contained mere traces of soluble solid matter.

TABLE XXIV. ANALYSI'S OF SPIRIT. (SHÔCHÊ).

	Kansei from Iyo.	Awomori	Hachiôbori	Itami 3-shô-dori	$\underset{\text { 5-shô-dori }}{\text { Ilami }}$
Alcohol, per cent.	50.2	36.99	43.47	41.5	26.00
Specific gravity	0.918	0.042	0.937	0.941	0.904

The residue left after distilling off the alcohol is sold for use as a manure.
The principal use to which this spinit is put is in the preparation of mirin a kind of liqueur, which is much drunk at the New Year, and is also largely used for cooking purposes.

The fullowing table gives the composition of a good many different kinds of mivin from different parts, each having a distinctive character: the majority retain merely the aroma received in the ordinary process of manuficture, others, however, are flatoured with spectial materials such as phum juice, and the leaves of certain scentel herls.

－	Sv．von y．ur mi่in	Bumbi－ mbi）	K॥wョ． rabe J．1	$\left\|\begin{array}{c} \text { iurongrin } \\ \text { Jiou } \end{array}\right\|$	Kanre Ahia	Sing．ano． уаниа	$11.1 .$. 1.1	
．Hecoliut．	11.1	113．000	12．${ }^{\text {a }}$	12．Mis	1：3．24	$111 .(16)$	1 $\because .1$ i	14．$\quad .1$
	1：183	21.61	15．A（1）	－2．0\％	1：1：12	810．1：	1：\because	13.1
Ilusirin，de．	4.114	fr．ti\％	2．13：	8．19：	111.81	\＄． $\mathrm{Mi}^{\text {i }}$	1.11	\because
Vulatile acid	－	－	－	－	－	－	（1410，	
Fixend＂	－	\sim		－	－	－	． 11	．1mil
Water	（02）．21	1i1． 17	66．388	4i1．90	Pui．j｜	51．918	Pint，\％fil	131． 8 ＇st
	100.00	1161.60	110.60	［（0）．010	16mı	1619．40）	（16），（\％）	IImi．（\％m）
Njeccificgegravity ．	1．（080）		1.00551	1.10×7	1.16%	1.18×10	1．mili	1.10
	t	$1{ }^{1}$	＊	15	11	ini	本安	$\begin{aligned} & 46 \\ & x / 8 \end{aligned}$
		मु		花	if	111		12
	淋	脑4	陑	\M	114	林	717	I11

Nost of the above specimens were yellow，thick，somewhat oily linguila， having a sweet，ulcolulic taste，and with a peculiar aroma．The two last

The mote of preparation of mivin alepremes ngun the primeiples lasil down in the finst part of this momoir sus to the inthemee of kioji ufron starch，hut the

 action \quad upen stach．

At Itani the fullowing misture is make：－

＇Jhe mixture is purt into a large tulo and wimed every two days for a periom
 is mbled；the while is allowerl to stand for two dinys more，atirnal，allowerl to

180 kuwamme, so that, assuming the specific gravity of the mirin to $l_{n} 1.07$, the total weight of mirin and residue will be 1258.5 kw . The total weight of mochigome: kiji, and shochu used, incluting the water taken up durine steaning amounts to 1313 kw ., thus there is a deficiency of 54.5 kw . This may in part be accounted for ly the necessity of using average mmbers in the calculation as for the weight of rice, the specific uravity of mirin, dee. At Ozalka the process is quite similar, but the proportions of the materials usel differ sumewhat ; the following are the amounts:-

This quantity is allowed to stand for 15 or 20 days and is stirred every three days. 24 koku of mirin are oltained and 120 kw , of residue, altogether weighing 1352 kw . while the materials used weigh, according to calculation, 1340 kw , a sufficiently close agreement considering the necessity of guessing more or less at the numbers. If we calculate the percentage of alculow which should be contained in the mirin on the assumption that the shochit used contained 25 per cent. by weight of alcohol, and that 6 per cent. remained in the resilue, the percentage in the Itami mivin ought to be 16%, and in that madr at Ozaka, 16.6 per cent. As the average percentage is much less than this it shows that the strength of the shochut used must be less than that found fur gri-sho-dori, and secondly, that there can be no fermentation in the process, as indeed could be seen from the strength of the spirit nsed. The change which does occur is the conversion of the starch of the rice into dextrose and dextrin: if the whole of the starch contained in the rice used at Ozaka were converted into dextrose, it would form 300 kw . which would yield a liquil containing 243 per cent. dextrose, a number which is not far from those actually found in mauy specimens.

1
\vdots
\vdots

(1) - - 4

$\because \quad \therefore \quad \therefore+\frac{1}{4}$ (.) $11+2=$

$+$

$4: 1$

$\because 1-\quad \because=$
3

$$
10^{-}
$$

ain

- Sire

184

$$
3:+\frac{1}{4}
$$

,
${ }^{*}$
$\sin +2$

$$
\underset{N}{ }
$$

flur

[^0]: - Monsurments of fimsity at Intial Stations in Amerita and Europe Alpendix No. $15 \mathrm{l}^{\circ}$. S. Comat Survey Heport of 1mig.-

[^1]: Note. Since the printing of the abore, Professor Chaplin has completed a discussion of the height of Fujinoyama, based uron all observations yet made which may be considered reliable, both barometrical and trigonometrical. The result of this discussion gives for the heyght of the mountain 3752 metres, or 12441 feet, which is slighly mure than 235 miles. The details of this discussion will be found in No 7 of the Memoirs of the Science Department of the T'okio Daigaku, "Meteorology of Tokio for the Year 1880."

[^2]:
 \& Airy, Treatime on Mund. Art. its.

[^3]: - Momnir No. 5 of the Scipnce Darmotoment of Tokio Jaignku.

[^4]:

[^5]: - Ece "Appendix to memoir No. 5."

 \$ See memoir No. 5 and ite Appendir.

[^6]: - 'lhe (ireat "rizamonntrial survey of India, val. V.
 + See menunir $\overline{3}$ ant alsu its upmentix.

[^7]: * Prof. Everett's System of Units.
 + Major Herschell, Phil. Mag. vol. 1X, p. 417.
 \ddagger Prof. Listing, Astro. Nach., No. 2228.
 § Thomson and Tait's Natural Philosophy, § 22:2.

[^8]: - Distance of the scale from the knife-eldge $=110.0$ cms.

[^9]: - Distance of the scale from the knife-edge $=110.0$ cms

[^10]: Printed by Konusumsma, Toklo.

[^11]: - Encyclopsedia Britanica. Eighth Ed. Vol. IX, Art. "Figure of the Earth."

[^12]: - See Appendix of Memoir No. 5 (Sapporo excursion).
 + G. P. Survey of India Vol. V.

[^13]: - For the discussion of the proper proportion of the shape of the coil see Proc. R. S. E. Vol. XII (1883-4).

[^14]: * The estimated revenue derived from the production nud walo of alerholie liguora given almove
 ending Juse $30 t h, 1 \times 81$. The number there given in yen $6,905,(122 y$, or very little more than one-
 in the fite that since the Fistimaten of the Minister of finance were pulished the tases hase here donblial.

[^15]:

[^16]: -Trans. Asiax. Soc. Japan. VIII. 8ะs.

[^17]:

[^18]:

[^19]:

[^20]: - Journ. Chem. Soc. 88ic, vol. I1. p. 125 dec, also. 1879. Trank, p. 790

 4 Ibid. 1879. Trann. pr fime de.

[^21]: - loce cit. 1879. Tranno po 680.

[^22]:

[^23]: - Mit. der Deutach. Gewells. $101 e s$ Hen. po 238.

[^24]: 2) per cent. (Brefeld) 8.3 to 3.4 pret cent. (P3tleur) 2.3 to 2.7 per cemp. (Kit\%.)
[^25]:
 their appearance.

[^26]: *For an explanation of the action of this liquid upon choth nad paprer, see fahilawn. Ch.onn. New. Dec. ard 18RJ. Trabsactions of the Asiatic soc. of Jugan. IX. She

[^27]:
 with any approach to ecouracy, and it is, therefure, included in the total losa of te grer cent.

[^28]: * Mitheilungen der deutschen Gesellschaf. 10tes Men. p. 266.

[^29]: - loc. cit. p. 627.

[^30]:

[^31]: ＊The ash c maists mainly of the phosphates of calcium and magn＂sium．

[^32]: *Alatmetx in Jumenal uf the C'hem. Sheiety. Jamdon 1876. rol. 1. po PV2. From d. pr. Ch. [2] xiii, 20n.

[^33]: * Vol. VIII. r. N\%.

[^34]: * Eiluden nur lo vin. 1878. p. 80.

